
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2011–2023
December 7-11, 2022 ©2022 Association for Computational Linguistics

MatRank: Text Re-ranking by Latent Preference Matrix

Jinwen Luo ∗1, Jiuding Yang ∗2, Weidong Guo ∗1, Chenglin Li 2, Di Niu 2, Yu Xu 1

1Platform and Content Group, Tencent
2University of Alberta

1{jamsluo,weidongguo,henrysxu}@tencent.com
2{jiuding,ch11,dniu}@ualberta.ca

Abstract

Text ranking plays a key role in providing con-
tent that best answers user queries. It is usually
divided into two sub-tasks to perform efficient
information retrieval given a query: text re-
trieval and text re-ranking. Recent research on
pretrained language models (PLM) has demon-
strated efficiency and gain on both sub-tasks.
However, while existing methods have ben-
efited from pre-trained language models and
achieved high recall rates on passage retrieval,
the ranking performance still demands further
improvement. In this paper, we propose Ma-
tRank, which learns to re-rank the text retrieved
for a given query by learning to predict the
most relevant passage based on a latent pref-
erence matrix. Specifically, MatRank uses a
PLM to generate an asymmetric latent matrix
of relative preference scores between all pairs
of retrieved passages. Then, the latent matrix
is aggregated row-wise and column-wise to ob-
tain global preferences and predictions of the
most relevant passage in two of these direc-
tions, respectively. We conduct extensive ex-
periments on MS MACRO, WikiAQ, and Se-
mEval datasets. Experimental results show that
MatRank has achieved new state-of-the-art re-
sults on these datasets, outperforming all prior
methods on ranking performance metrics.

1 Introduction

The enormous growth of online content has posed
significant challenges for information retrieval (IR)
systems, e.g., Google, Baidu, Bing, and Quora.
Ranking methods are crucial in IR systems in iden-
tifying the most relevant passage and document
to answer a user query. Generally, text ranking
is divided into two steps, i.e., text retrieval and
text re-ranking. In the text retrieval step, a number
of passages or documents of high relevance to a
user query are retrieved to ensure the efficiency
of the text ranking. In the re-ranking step, all the

∗These authors contributed equally to this work.

retrieved paragraphs are ranked in decreasing order
of relevance to the given query.

Recent studies adopt pre-trained language mod-
els (PLMs) to boost the ranking performance of IR
systems. Current state-of-the-art text retrieval tech-
niques can provide decent performance in recalling
the most relevant content of a query (Xiong et al.,
2020; Qu et al., 2021; Karpukhin et al., 2020; Ren
et al., 2021a; Gao and Callan, 2021, 2022). How-
ever, how to better present those retrieved texts in
order of their relevance to the query is still chal-
lenging. Previous learning to rank methods can
be roughly divided into three categories: 1) the
point-wise methods (e.g., McRank (Li et al., 2007)),
which score each candidate independently, 2) the
pair-wise methods (e.g., RankNet (Burges et al.,
2005), LambdaRank (Burges et al., 2006)), which
employ a pair-wise loss between every pair of can-
didate paragraphs, and 3) list-wise methods (e.g.,
LambdaMart (Burges, 2010), ListRank-MF (Shi
et al., 2010)), most of which try to rank all can-
didates at once. However, the sizes of the bench-
marks are increasing due to the enormous growth
of online texts. Such large sizes have limited the
number of annotations per query (Nguyen et al.,
2016). That is, only a few truth answers are avail-
able for each query, rather than a ground-truth rank
list. Therefore, directly implementing the classi-
cal pair-wise or list-wise ranking methods on these
benchmarks is infeasible due to the lack of ground-
truth labels. Moreover, the increasing online text
brings more homogeneous passages, making the
re-ranking even more challenging.

To tackle the above challenges, recent research
on text re-ranking (Ren et al., 2021b; Gao et al.,
2021b; Ma et al., 2021; Xin et al., 2020; Li et al.,
2020; Gao et al., 2020; Hofstätter et al., 2020) uti-
lizes PLMs to better understand the content of text
before evaluating its relevance to a query. In case
of limited annotations, they try to convert the text
re-ranking problem into a classification task, which

2011

learns to predict the best relevant candidate directly.
The outputs for each candidate are their probabil-
ity of becoming the best choice, which is used to
represent their relevance score to the query. How-
ever, such classification tasks do not utilize prefer-
ence comparisons between candidates (pair-wise
comparison). Furthermore, the limitation on the
sequence length of the PLMs makes the re-ranking
of long documents even harder.

In this paper, we introduce the MatRank (Text
Re-ranking by Latent Preference Matrix), an ef-
fective method for re-ranking the retrieved text by
learning a latent preference matrix, which enables
the preference assessment during the re-ranking
process and makes full use of the annotation. Given
a query, MatRank employs a PLM to encode every
two candidates into latent vectors and an MLP se-
lector to generate a latent preference Matrix, where
each entry represents a preference score between
two candidates. The matrix entries are then aggre-
gated to generate the row-wise preference and the
column-wise preference, which are used to predict
the rank result. The entire model is trained end-
to-end by simultaneously minimizing the list-wise
classification losses on both the row-wise prefer-
ence and the column-wise preference to identify
their winners, which are used to match the ground
truth. Specifically, we make the following contri-
butions:

We proposed the MatRank method, which can
implicitly assess the preference between every two
candidates by generating a latent preference matrix
even when the preference labels are unavailable.
Through the aggregation of the estimated pair-wise
preference scores in the matrix, the MatRank can
also make use of the list-wise information to gener-
ate a better ranking result.

To handle the re-ranking for long documents, we
design MatRank-Split, which splits the long docu-
ments into pieces and uses MatRank to generate a
latent preference matrix of these text pieces. Each
document will be represented by its text piece with
the highest global preference. With such a design,
our MatRank-Split can aggregate much more infor-
mation from a document to assess the preference
between every two documents more accurately.

To demonstrate the performance of the pro-
posed method, we have tested MatRank on the MS
MACRO (Nguyen et al., 2016) Passage, WikiQA
(Yang et al., 2015), and three SemEval datasets
(Nakov et al., 2015, 2016, 2017). The results indi-

cate that the proposed method significantly outper-
forms a wide range of existing passage re-ranking
methods. Furthermore, experimental results on the
MS MACRO Document dataset demonstrate the su-
periority of the proposed MatRank-split model over
state-of-the-art non-ensemble methods on long-
document re-ranking tasks. We have also per-
formed extensive ablation studies to demonstrate
the effectiveness of the proposed model design of
both the MatRank and the MatRank-Split models
by exploring a variety of potential variants.

2 Related Work

In this section, we introduce the related works in
the following aspects.

2.1 Traditional Text Ranking

Text Ranking is a central problem for an Infor-
mation retrieval system. Traditional approaches
rank text mostly based on vector-based method
(Baeza-Yates et al., 1999; Deerwester et al., 1990)
and probabilistic-based method (Maron and Kuhns,
1960; Robertson, 1997). Later, the learning-to-
rank method is developed by implementing super-
vised machine learning in ranking problems using
manually-engineered features (Cao et al., 2007;
Li, 2011; Liu, 2011). Those methods are usually
grouped into three types: 1) Point-wise approaches
which score each candidate independently from
other text (Crammer et al., 2001; Li et al., 2007);
2) pair-wise approaches which compare every two
candidates to ensure the correctness of the output
rank list (Herbrich et al., 1999; Burges et al., 2005;
Gao et al., 2014); 3) List-wise approaches which
consider the entire candidate list when ranking (Xia
et al., 2008; Valizadegan et al., 2009; Burges, 2010;
Shi et al., 2010). The latter two kinds of approaches
are believed to be closer to the “concept” of rank-
ing (Liu, 2011), which inspired us to design our
proposed method.

Then, with the development of neural networks,
neural text ranking, which relies on soft matching
between text representations, is introduced. Un-
like traditional text ranking, neural text ranking
is developed to utilize (deep) neural networks to
abstract the relevance between query and text with-
out manually-engineered features. Researches ex-
tract text features from pre-trained word embed-
dings such as word2vec (Mikolov et al., 2013)
and GLoVe (Pennington et al., 2014) to compute
similarities between query and text as relevance

2012

score (Ganguly et al., 2015; Guo et al., 2016; Ty-
moshenko et al., 2016; Xiong et al., 2017).

2.2 PLM Based Ranking

The great success achieved by pre-trained language
models (PLMs), e.g., BERT (Devlin et al., 2019),
further draws the attention of researchers on build-
ing Transformers-based ranking model (Karpukhin
et al., 2020; Zhu and Klabjan, 2020; Xin et al.,
2020; Gao et al., 2020; Hofstätter et al., 2020;
Gao and Callan, 2021, 2022; Ma et al., 2021;
Zhuang and Zuccon, 2021). To balance the trade-
off between efficiency and effectiveness, recent
researches conventionally separate the text ranking
procedure into text retrieval and text re-ranking, us-
ing different models. Text retrieval method mostly
utilize dual-encoder architectures (Qu et al., 2021;
Gao et al., 2021a; Ren et al., 2021a), which en-
code query and text separately for efficiency. The
re-ranking step usually employs a cross-encoder
model to extract a union representation for a query-
candidate pair, which enables the interactions be-
tween the query and the candidate (Li et al., 2020;
Gao et al., 2021b; Ren et al., 2021b). However,
while those state-of-art retrieval methods can en-
sure relatively high recall rates, the rank perfor-
mance of re-ranking tasks still needs further im-
provement.

Recent research has made multiple attempts on
optimizing re-ranking learning (Ren et al., 2021b;
Gao et al., 2021b; Ma et al., 2021; Li et al., 2020;
Xin et al., 2020; Zhuang and Zuccon, 2021). How-
ever, those PLM-based methods mostly focus on
effective representation learning, ignoring a human-
like comparison between texts when ranking. Han
et al. (Han et al., 2020) trained an ensemble of
point-wise, pair-wise, and list-wise learning-to-
rank models with BERT (Devlin et al., 2019). How-
ever, the authors combine those three methods sim-
ply by summing up the corresponding losses. In
contrast, our proposed method effectively com-
bines pair-wise preference and list-wise classifica-
tion. MatRank learns a latent preference matrix and
simultaneously minimizes the list-wise classifica-
tion losses on both the row-wise and column-wise
preferences aggregated from the matrix.

3 Methodology

In this section, we introduce the proposed MatRank,
which learns to rank based on the content compari-
son between different candidates, in detail. We will

mainly discuss the design parts of MatRank based
on the MS MACRO datasets.

Given a query q and the corresponding retrieved
candidate list T = {ti}1≤i≤MT

, the goal of text re-
ranking is to generate a rank list R = {ri}1≤i≤MR

from T , where MT is the number of candidates and
MR(≤ MT) represents the length of the generated
rank list. Here, we assume MR = MT = M .

3.1 Passage Re-ranking
The overall architecture of MatRank is shown in
the left part of Figure 1. Given a query q, and its
retrieved passage set T = {ti}1≤i≤M , where M is
the number of candidate passages. Starting from
the bottom left of Figure 1, we first employ a pre-
trained language model (PLM) as a cross-encoder
to encode each query-passage pair into a latent
vector, e.g., BERT (Devlin et al., 2019), ERNIE
(Sun et al., 2020). Those models have superior
abilities in extracting semantic information from
given texts, which our method utilizes to predict
pair-wise preference.

Formally, we have

hi = encode
[CLS]

(q, ti), (1)

where hi denotes the output embedding of the
[CLS] token of each given query-passage pair. q
is the query, and ti is the ith passage in the pas-
sage set T of query q. [CLS] is commonly used
in PLM models to represent the overall semantic
meaning of the input sequence. By feeding both
the query and the passage into PLM, PLM can es-
tablish the connection between them and thus can
better understand the passage.

Then, we compare every two query-passage
pairs by feeding their latent embeddings, e.g.,
(hi, hj)i ̸=j , into an MLP module to predict the de-
gree to which query q is more relevant to paragraph
ti than paragraph tj . To be specific, we have

si,j = MLP(h⌢i hj), (2)

where h⌢i hj represents the concatenated embed-
ding of hi and hj . Let

S = [si,j]1≤i,j≤M , (3)

be the latent preference matrix that stores all the
comparison results where si,j = 0 if i = j. We
further aggregate the asymmetric preference matrix
row-wise and column-wise to generate the relative
preference scores of all the retrieved paragraphs

2013

Row-wise Score Column-wise Score

Softmax Softmax

Cross-Entropy

Loss of q

Voter

Rank List

[CLS] [CLS]

(h2 , h3)

Pair Up

s2,3

MLP

MLP

...

...

Preference Matrix

R
o

w
-w

is
e

 A
v

e
ra

g
e

Column-wise Average

P
a

ss
a

g
e

s

Cross-encoder

Encoder

...

...

...

q, t3q, t2

h2 h3

Predict Preference

Column-wise Average

Row-wise Score Column-wise Score

Softmax Softmax

Cross-Entropy

Loss of q

Voter

Rank List

Preference Matrix

R
o

w
-w

is
e

 A
v

e
ra

g
e

M
a

x
 P

o
o

l

D
1

D
2

D
3

Max Pool
[CLS] [CLS]

(h1,2 , h2,1)

Pair Up

s2,6

MLP

MLP

...

...

h1,2 h2,1

Cross-encoder

Encoder

...

...

...

q, t2,1q, t1,2

Predict Preference

Figure 1: The architecture of MatRank (left) and MatRank-Split (right). The encoder is a pre-trained language
model. For MatRank, We use the comparison between passage-2 and passage-3 as an example for preference
prediction. For MatRank-Split, we use the comparison between the second text piece of document-1 (t1,2) and the
first text piece of document-2 (t2,1) as an example for preference prediction.

both row-wise and column-wise. Finally, these
two aggregated vectors are used to predict the truly
clicked passage for query q, respectively. Here,
we aggregate the preference matrix by taking the
average of each row or column. Specifically,

r =
1

M

M∑

j=1

[si,j]1≤i,j≤M , (4)

c =
1

M

M∑

i=1

[si,j]1≤i,j≤M , (5)

where r denotes the raw-wise average of S, and c
denotes the column-wise average of S. Then, we
can calculate the row-wise average score β and the
column-wise average score ω through the softmax
operation:

β = softmax(r), (6)

ω = softmax(−c), (7)

The average row score of a passage is obtained
by comparing the passage to all other candidates,
and the average column score is obtained by com-
paring each candidate to the passage. Therefore,
these two scores calculated from the two directions
can both represent the relative relevance of the pas-
sage compared to all the other candidates. Thus,
we treat both the β and ω as the predicted label dis-
tribution of the truly clicked (preferred) paragraph.

Finally, we calculate the loss between the predic-
tions and the ground truth with the Cross-entropy

loss function. Let bu ∈ β and wv ∈ ω, the loss of
the query q is formed as:

ℓ =

M∑

u=1

yu log bu +

M∑

v=1

yv logwv, (8)

where yx = 1 if tx is the ground truth, otherwise
yx = 0. The first term denotes the prediction loss
of the row-wise average score, i.e., β, and the sec-
ond term indicates the loss of the column-wise
preference score, i.e., ω.

By optimizing the loss function defined in Equa-
tion (8), our model learns to compare query-
passage pairs from two different directions, which
makes full use of the retrieved candidate set. Thus,
our model is more effective than previous work,
which directly transfers the learn-to-rank task to a
classification task. We will demonstrate the superi-
ority of such a model design by comparing experi-
mental results to previous state-of-the-art methods.

To get the rank list of query q, we sort β and ω
in descending order. The resulting indices are two
rank lists that indicate the orders of a paragraph
row-wise and column-wise. We then use the voting
method to fuse these two lists into one rank list as
the final output.

3.2 Document Re-ranking
We further propose MatRank-Split to handle the
document re-ranking. As shown in the right part of
Figure 1, given a query q and its retrieved document
set T = {ti}1≤i≤M where M is the number of
candidates, we first split every document ti into

2014

ti = {t̂i,k}1≤k≤K where ti,k is a text piece of the
document ti with a max length of L, and K is
the max number of text pieces that each document
can be split into. Similarly, we utilized Equation
(1) and Equation 2 to build the latent preference
matrix:

Ŝ = [ŝg,f]1≤g,f≤MK , (9)

where ŝg,f = 0 if the g-th and f -th text pieces are
from the same document. Note that each document
is split into K text pieces, thus Ŝ ∈ RMK×MK . To
predict the most relevant document, we need to find
the most relevant text pieces among all candidates.
As shown in Figure 1, we calculate the row-wise
average score β̂ and the column-wise average score
ω̂ by adding a maxpool function which extracts the
max value of every K elements in a vector:

β̂ = softmax(maxpool(r̂)), (10)

ω̂ = softmax(maxpool(−ĉ)). (11)

where r̂ denotes the row-wise average of Ŝ, and
ĉ denotes the column-wise average of Ŝ. Finally,
following similar procedure of the MatRank model,
the prediction loss can be formulated as:

ℓ̂ =
M∑

u=1

ŷu log b̂u +
M∑

v=1

ŷv log ŵv, (12)

where ŷx is one if the x-th test piece belongs to a
ground truth document, otherwise is zero. b̂u ∈ β̂
and ŵv ∈ ω̂ denote the relative row-wise prefer-
ence score of the u-th and column-wise preference
score of the v-th documents, respectively.

Document re-ranking is much more challeng-
ing than passage re-ranking due to the large text
length. Despite that they have richer information
than passages, their relevance with a query may
only depend on a small portion of their texts. More-
over, limited by hardware, the documents usually
can not be directly fed into most of the existing
PLMs for cross-encoding. How to effectively lo-
cate the text pieces relevant to a query becomes
the key to a better prediction. By splitting docu-
ments into text pieces, our method can perform
a piece-wise comparison between different docu-
ments. For each candidate, the most preferred text
piece will be used to represent the document for
rank list prediction. Our design can include more
information from a long document when compar-
ing, which leads to a more accurate assessment of
preference.

4 Experiments

We develop and test our method on the MS
MACRO Passage and the MS MACRO Document
datasets, which are widely used benchmarks in
many recent studies on passage ranking (Gao et al.,
2021a; Qu et al., 2021; Gao and Callan, 2021;
Li et al., 2020). To further justify the robustness
of the MatRank, we also conduct experiments on
other public datasets such as the WikiQA (Yang
et al., 2015) and the SemEval datasets (Nakov et al.,
2015, 2016, 2017). Detailed descriptions of those
datasets are given in Appendix A.

We adopt the same settings and retrievers as the
current state-of-the-art methods on each dataset for
fair comparisons. We report the MRR (Mean Re-
ciprocal Rank) and, if applicable, the MAP (Mean
Average Precision) as the evaluation metrics.

We fine-tune our model on 8 NVIDIA Tesla
A100 GPUs (with 40G RAM) under FP16. We em-
ploy the AdaFactor (Shazeer and Stern, 2018) opti-
mizer with a learning rate of 1e-5 and a 10% warm-
up ratio to train our models on all the datasets. The
epochs are set to be 3 on the MS MARCO dataset
and 5 on the WikiQA and the SemEval datasets.
The positive to the hard negative ratio is set to be
1:96 on the MS MARCO Passage dataset, 1:16 on
the MS MARCO Document dataset, and 1:4 on the
WikiQA and the SemEval datasets. In addition, we
set the max text piece of document re-ranking to
5 and the max length of each piece to 512. Our
model contains 120 million parameters. The im-
plementation details of the compared baselines are
given in Appendix B.

4.1 Passage Re-ranking

Table 1 and Table 2 summarize the results of the
passage re-ranking performance of MatRank and
other baselines on the MS MACRO Passage, Se-
mEVal, and WikiQA datasets. The results of the
baselines are collected from their corresponding
published papers. We further reproduce the LCE
with the ANCE retriever on MS MACRO Passage
since the original paper does not report it.

On the MS MACRO Passages dataset, we
achieved the best MRR@10 score of 42.6, which
outperforms the SOTA method, i.e., Ren et al.
(2021b), by 0.7 points, following the same exper-
imental settings. On the SemEval datasets, we
outperform CETE by 0.4 to 1.9 on MAP and 1.2 to
2.3 on MRR. Furthermore, on the WikiQA dataset,
we outperform CETE by 1.6 and 1.9 on MAP and

2015

Model Retriever Passage Document Retriever Passage Document
MRR@10 MRR@100 MRR@10 MRR@100

BM25 (Robertson and Zaragoza, 2009) BM25 18.7 23.0 - - -
ColBERT (Khattab and Zaharia, 2020)1 BM25 34.9 - - - -

TFR-BERT (Han et al., 2020)1 BM25 40.5 - RocketQAv2 41.1 -
RocketQAv2 (Ren et al., 2021b)2 BM25 40.1 - RocketQAv2 41.9 -

LCE Gao et al. (2021b)1 HDCT - 43.4 ANCE - 44.7
DML Zhang and Yang (2021)1 HDCT - 42.5 ANCE - 44.2

MatRank1 BM25 40.2 - RocketQAv2 41.9 -
MatRank2 BM25 40.8 - RocketQAv2 42.6 -

MatRank-Split1 HDTC - 44.9 ANCE - 45.2
MatRank-Split2 HDTC - 45.4 ANCE - 45.8

Table 1: Experiment results on the MS MACRO Passage dataset. We use BM25@1000 and RocketQAv2@50 (Ren
et al., 2021b) for passage retrieval, and HDTC@100 (Dai and Callan, 2020) and ANCE@100 (Xiong et al., 2020)
for document retrieval. Methods with 1 use BERTbase as text encoder. Similarly, 2 indicates the ERNIEbase encoder.

Model SemEval2015 SemEval2016 SemEval2017 WikiQA
MAP MRR MAP MRR MAP MRR MAP MRR

KeLP (Filice et al., 2017) - - 79.2 88.8 88.4 92.8 - -
MVFNN (Sha et al., 2018) - - 80.1 87.2 - - 75.6 75.8
GSAMN (Lai et al., 2019) - - - - - - 85.7 87.2
CETE (Laskar et al., 2020) 93.3 95.6 85.1 90.0 90.9 94.4 84.7 86.0

MatRank 93.7 96.8 87.0 92.3 91.6 96.1 86.3 87.9

Table 2: Experiment results on the SemEval datasets. Following Laskar et al. (2020), we encode query-passage
pairs using RoBERTabase.

MRR, respectively.

Apparently, our method achieves the best perfor-
mance among all the baseline methods under the
same settings, i.e., the same pretrained language
model and the same candidate retriever. Unlike
those baselines that compare scores to generate
permutations, our method can better measure the
semantic interaction between different passages to
encode query-passage pairs under the supervision
of all retrieved candidates by comparing the content
representation of candidates.

Figure 2 shows a real case example of the con-
tent comparison, where passage-11 is the ground
truth, on the MS MACRO Passage dataset. How-
ever, as shown in Figure 3, passage-1 is also a
candidate of high relevance and can provide an-
swers to the query “how long to get a bachelor”.
This kind of high-relevance negative sample is com-
mon in the MS MACRO dataset, which makes it
harder for models to distinguish the best answer
(passage-11) from those highly relevant candidates
(e.g., passage-1). For example, RocketQAv2, a
score-based ranking model, failed to predict the
ground truth and rank the passage-1 at TOP-1. In
contrast, our MatRank successfully ranks passage-
11 as Top-1 by comparing the content of all can-
didates, and the reason for such a decision can
be explicitly shown by the heat map in Figure 2.

Circled by the red dashed lines, although the pref-
erence between passage-1 and passage-11 is very
small, one can easily tell that passage-11 should be
more relevant to the query since it is preferred by
the model compared with all the other candidates.
The comparison to the content of other candidates
becomes the key to a more accurate permutation.

4.2 Document Re-ranking

Table 1 shows the result of the document re-ranking
of MatRank-Split and the other two baselines.
From the table, we can observe that the MatRank-
Split achieved the best performance. With the
HDTC retriever, MatRank-Split outperforms the
LCE baseline by 1.5 points and DML by 2.4 on
MRR@100 score. Meanwhile, the MatRank-Split
with the ANCE retriever outperforms the LCE
baseline by 0.5 and the DML by 1.0 points on
MRR@100.

Restricted by the built-in text length limitation of
BERT, DML and LCE can only extract information
from a small portion of a long document. Instead,
we split at most 5×512 terms of a document into 5
pieces for later content comparison. Such a length
can cover most of the candidates in the dataset,
whose average document length is 584. Figure 4
shows a real case from the MS MARCO Document
dataset. According to the figure, the third text piece

2016

Passage Index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
a

ss
a

g
e

 I
n

d
e

x

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

Figure 2: A real case from the MS MACRO Passage
dataset, where passage-11 is the ground truth.

how long to get a bachelor

Query

On average, a bachelors degree takes four years to earn from a

college or a university. While four years is the average time for

completion, a student can find that it sometimes takes much longer

to earn one.

Our Prediction (passage-11)

Generally, a bachelor degree takes 3-5 years to complete.

Most of the universities have designed their programs for full time

students and have set a prescribed manner of study, which if

followed diligently, guarantees that the degree will be completed in

four years.

False Prediction (passage-1)

Figure 3: The query and two passages mentioned in
Figure 2.

of document-3 is the most preferred, and the first
text piece of document-2 is the second preferred.
Based on the results, our model correctly predicts
document-3 as the TOP-1, while other baselines
can only extract limited information from docu-
ments and may falsely rank document-2 as the
TOP-1. Moreover, as shown in Table 1, without the
document splitting, our MatRank still outperforms
the two baselines with the same retriever, which
further demonstrates the effectiveness of our model
design that enables content comparison.

4.3 Ablation Study

To further test the effectiveness of our designed con-
tent comparison method on passage and document
re-ranking, we compare our model to a variety of

Document Index

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

D
o

c
u

m
e

n
t
 I

n
d

e
x

3
3

3
3

3
2

2
2

2
2

1
1

1
1

1

Figure 4: A real case from the MS MACRO Document
dataset, where document-3 is the ground truth.

penitential variants of both MatRank and MatRank-
Split. Tale 3 gives the performance comparison and
Figure 5 provides an illustration of the variants of
MatRank.

For the “Point-wise” model, we collect the latent
vectors of all query-passage pairs of the q using
BERTbase and feed them into an MLP to obtain
the score of every passage to generate the permu-
tation. For the “List-wise” model, we concatenate
the latent vectors obtained from the cross-encoder
and employ an MLP model to generate the passage
score in a multi-class classification setting. This de-
sign aims to build the interaction directly between
passages by feeding all information at once. How-
ever, as shown in Table 3, the method does not
have a visible performance impact on the result,
demonstrating the limitation of pure MLP models
in handling interaction between candidates. To help
build interactions between candidates, we further
modified “List-wise” to the “+BigBird” model and
the “+Attention” model.

Based on the “List-wise” model, we test the
“+BigBird” by leveraging the ability of BigBird
(Zaheer et al., 2020) to deal with long text and ex-
tract the context signal of all candidate passages at
once. Specifically, we concatenate the query with
all its candidates, feed the newly formed long text
into a BigBird model, and directly use the output
[SEP] embeddings of all passages to calculate their
scores. However, the performance of such a design
is even worse than the “Point-wise” model. One po-

2017

h1, h2, , hM

MLP

s1, s2, , sM

Point-wise

MLP

hi

si

List-wise

...

...

...

List-wise+Attention

s1 s2 sM

h1 h2 hM

List-wise+BigBird

t1q[CLS] [SEP] t2[SEP] tM[SEP]...

BigBird

s1 s2 sM

[sep]

h1 h2 hM

[sep] [sep]

...

Transformer

encoder

Figure 5: An illustration of other alternative comparison
methods.

tential reason for this deduction is that, compared
with MatRank, the sparse-attention mechanism in
the Transformer layer of BigBird does not fit the
idea of comparison. The term-level interactions
between queries and passages may be too far to
handle.

Model Passage Document
MRR@10 MRR@100

Point-wise 41.9 43.2
List-wise 41.9 -

+BigBird 41.2 -
+Attention 42.3 -

MatRankrow 42.4 -
MatRank 42.6 44.0
BigBird - 44.1
MatRank+BigBird - 44.3
MatRank-Split - 45.4

Table 3: Ablation study on MS MARCO datasets. The
passage retriever is RocketQAv2, and the document
retriever is HDTC.

For the “+Attention” method, we employ a
Transformer encoder layer to build the attention
among all query-passage pairs of q and set the
output dimension to 1 to score their relevance to
the query. The relevance of a passage is scored
by aggregating the content information of all can-
didates. Benefits from the self-attention interac-
tion mechanism between passages, the “+Attention”
method outperforms the “Point-wise” model by 0.4
on MRR@10. However, MatRank still performs
better than “+Attention”.

From the above observations, we can conclude
that proper content comparison between candidates
is the key to increasing the re-ranking performance
since the ranking process is naturally done by com-
paring. Unlike the other approaches, our MatRank

can better measure the content preference between
candidates by calculating the preference matrix,
thus achieving a more accurate prediction of the
permutation.

As mentioned in Section 3, we also test the
learning performance from only the row-wise av-
erage score with “MatRankrow” (the column-wise
only MatRank has the same performance). The
decreased performance shown in Table 3 clearly
proves that learning from both the row-wise and
the column-wise score is more effective.

Table 3 also give the performance comparison on
MS MACRO Document dataset. As shown in the
table, with our proposed split method, MatRank-
Split achieves better performance than the point-
wise model by 2.2 and the MatRank model by 1.4,
which proves the effectiveness of our MatRank-
Split design. We also report the performance
of two potential variants: “BigBird”, and “Ma-
tRank+BigBird”. The candidates of all ablation
models are prepared by the HDTC method for con-
sistency.

To start, we first test the performance of Big-
Bird with a max sequence of 1024. As shown
in Table 3, since the BigBird can handle longer
sequences than the “Point-wise” model, it outper-
forms “Point-wise” by 0.9. Moreover, we replace
the encoder of the MatRank module with BigBird
to further test the effectiveness of our proposed
content-aware comparison method. From the table,
we can observe that “MatRank+BigBird” achieves
higher performance than its non-comparison ver-
sion (i.e., “BigBird”) by learning from the latent
preference matrix built by MatRank.

From the above observations, we can conclude
that both the proper comparison and the capabil-
ity of handling long sequences are essential for
increasing the document re-ranking performance.
Our MatRank-Split method can effectively com-
bine those two advantages by constructing a prefer-
ence matrix on split documents, thus achieving the
best performance among all compared methods.

5 Conclusion

In this paper, we introduce MatRank for passage
re-ranking. MatRank adopts a pre-trained language
model to generate an asymmetric latent matrix of
relative preference scores, which is aggregated row-
wise and column-wise to predict the most relevant
passage in both directions, respectively. The model
is trained in an end-to-end manner with classifi-

2018

cation loss. By minimizing the list-wise classifi-
cation loss generated from the pair-wise compar-
ison scores, MatRank makes full use of all the
retrieved passages, even with only a few annota-
tions. Furthermore, we propose MatRank-Split for
long document re-ranking. In MatRank-Split, the
documents are split into text pieces to fit the com-
parison method designed in MatRank. Experimen-
tal results on several benchmark datasets demon-
strate the effectiveness of both the MatRank and
MatRank-Split models.

Limitations

Compared with other methods, MatRank and
MatRank-Split require more GPU memories for
training. Thus we use a smaller batch size to train
the models. Furthermore, since our computing re-
sources are limited, we have not implemented help-
ful learning strategies, such as adversarial training.
Also, we didn’t fine-tune the hyper-parameters of
our model. Instead, we followed the settings of
those parameters with existing works. To overcome
the short-comes addressed above, we will further
test our method with available learning strategies
and perform a grid search to find the best parameter
settings in the future.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments.

References
Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999.

Modern information retrieval, volume 463. ACM
press New York.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on
Machine learning, pages 89–96.

Christopher Burges, Robert Ragno, and Quoc Le. 2006.
Learning to rank with nonsmooth cost functions. Ad-
vances in neural information processing systems,
19:193–200.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Koby Crammer, Yoram Singer, et al. 2001. Pranking
with ranking. In Nips, volume 1, pages 641–647.

Zhuyun Dai and Jamie Callan. 2020. Context-aware
document term weighting for ad-hoc search. In Pro-
ceedings of The Web Conference 2020, pages 1897–
1907.

Scott Deerwester, Susan T Dumais, George W Furnas,
Thomas K Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–
407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2017. KeLP at SemEval-2017 task 3:
Learning pairwise patterns in community question
answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 326–333, Vancouver, Canada. Association for
Computational Linguistics.

Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and
Gareth JF Jones. 2015. Word embedding based gen-
eralized language model for information retrieval. In
Proceedings of the 38th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 795–798.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xi-
aodong He, and Li Deng. 2014. Modeling interest-
ingness with deep neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 2–13,
Doha, Qatar. Association for Computational Linguis-
tics.

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-
training architecture for dense retrieval. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 981–993,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Luyu Gao and Jamie Callan. 2022. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2843–2853,
Dublin, Ireland. Association for Computational Lin-
guistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Un-
derstanding bert rankers under distillation. arXiv
preprint arXiv:2007.11088.

2019

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/S17-2053
https://doi.org/10.18653/v1/S17-2053
https://doi.org/10.18653/v1/S17-2053
https://doi.org/10.3115/v1/D14-1002
https://doi.org/10.3115/v1/D14-1002
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a.
COIL: Revisit exact lexical match in information
retrieval with contextualized inverted list. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3030–3042, Online. Association for Computational
Linguistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021b. Re-
think training of bert rerankers in multi-stage retrieval
pipeline. arXiv preprint arXiv:2101.08751.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In Proceedings of the 25th ACM in-
ternational on conference on information and knowl-
edge management, pages 55–64.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and
Marc Najork. 2020. Learning-to-rank with bert in
tf-ranking. arXiv preprint arXiv:2004.08476.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer.
1999. Support vector learning for ordinal regression.
IET.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint
arXiv:2010.02666.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Tuan Lai, Quan Hung Tran, Trung Bui, and Daisuke
Kihara. 2019. A gated self-attention memory net-
work for answer selection. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5953–5959, Hong Kong,
China. Association for Computational Linguistics.

Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, and
Enamul Hoque. 2020. Contextualized embeddings
based transformer encoder for sentence similarity
modeling in answer selection task. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 5505–5514, Marseille, France. Eu-
ropean Language Resources Association.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and
Yingfei Sun. 2020. Parade: Passage representation
aggregation for document reranking. arXiv preprint
arXiv:2008.09093.

Hang Li. 2011. A short introduction to learning to rank.
IEICE TRANSACTIONS on Information and Systems,
94(10):1854–1862.

Ping Li, Qiang Wu, and Christopher Burges. 2007.
Mcrank: Learning to rank using multiple classifi-
cation and gradient boosting. Advances in neural
information processing systems, 20:897–904.

Tie-Yan Liu. 2011. Learning to rank for information
retrieval. Springer Science & Business Media.

Xiaofei Ma, Cicero Nogueira dos Santos, and Andrew O.
Arnold. 2021. Contrastive fine-tuning improves ro-
bustness for neural rankers. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021, pages 570–582, Online. Association for Com-
putational Linguistics.

Melvin Earl Maron and John Larry Kuhns. 1960. On
relevance, probabilistic indexing and information re-
trieval. Journal of the ACM (JACM), 7(3):216–244.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Preslav Nakov, Doris Hoogeveen, Lluís Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 27–48, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Preslav Nakov, Lluís Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
SemEval-2015 task 3: Answer selection in commu-
nity question answering. In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 269–281, Denver, Colorado. As-
sociation for Computational Linguistics.

Preslav Nakov, Lluís Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545, San Diego, California. Association for Com-
putational Linguistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

2020

https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/D19-1610
https://doi.org/10.18653/v1/D19-1610
https://aclanthology.org/2020.lrec-1.676
https://aclanthology.org/2020.lrec-1.676
https://aclanthology.org/2020.lrec-1.676
https://doi.org/10.18653/v1/2021.findings-acl.51
https://doi.org/10.18653/v1/2021.findings-acl.51
https://doi.org/10.18653/v1/S17-2003
https://doi.org/10.18653/v1/S17-2003
https://doi.org/10.18653/v1/S15-2047
https://doi.org/10.18653/v1/S15-2047
https://doi.org/10.18653/v1/S16-1083
https://doi.org/10.18653/v1/S16-1083

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835–5847, On-
line. Association for Computational Linguistics.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, QiaoQiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021a. PAIR: Leverag-
ing passage-centric similarity relation for improving
dense passage retrieval. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 2173–2183, Online. Association for
Computational Linguistics.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021b. RocketQAv2: A joint training method
for dense passage retrieval and passage re-ranking.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2825–2835, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: BM25 and beyond.
Now Publishers Inc.

Stephen E Robertson. 1997. Overview of the okapi
projects. Journal of documentation.

Lei Sha, Xiaodong Zhang, Feng Qian, Baobao Chang,
and Zhifang Sui. 2018. A multi-view fusion neural
network for answer selection. In Thirty-second AAAI
conference on artificial intelligence.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-
wise learning to rank with matrix factorization for
collaborative filtering. In Proceedings of the fourth
ACM conference on Recommender systems, pages
269–272.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 8968–8975.

Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. 2016. Convolutional neural
networks vs. convolution kernels: Feature engineer-
ing for answer sentence reranking. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1268–1278, San
Diego, California. Association for Computational
Linguistics.

Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jian-
chang Mao. 2009. Learning to rank by optimizing
ndcg measure. In NIPS, volume 22, pages 1883–
1891.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and
Hang Li. 2008. Listwise approach to learning to
rank: theory and algorithm. In Proceedings of the
25th international conference on Machine learning,
pages 1192–1199.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy
Lin. 2020. Early exiting bert for efficient document
ranking. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing,
pages 83–88.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017. End-to-end neural
ad-hoc ranking with kernel pooling. In Proceedings
of the 40th International ACM SIGIR conference on
research and development in information retrieval,
pages 55–64.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1253–1256.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In NeurIPS.

Xuanyu Zhang and Qing Yang. 2021. Dml: Dynamic
multi-granularity learning for bert-based document
reranking. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 3642–3646.

2021

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/N16-1152
https://doi.org/10.18653/v1/N16-1152
https://doi.org/10.18653/v1/N16-1152
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237

Xiaofeng Zhu and Diego Klabjan. 2020. Listwise learn-
ing to rank by exploring unique ratings. In Pro-
ceedings of the 13th international conference on web
search and data mining, pages 798–806.

Shengyao Zhuang and Guido Zuccon. 2021. Fast pas-
sage re-ranking with contextualized exact term match-
ing and efficient passage expansion. arXiv preprint
arXiv:2108.08513.

A Dataset

MS MACRO Passage. MS MACRO Passage
dataset is one of the largest relevance dataset con-
sisting of over 500k queries with 8.8 million pas-
sages. The dataset is built with an MRR metric,
where each query has at least one high-relevant
passage labeled as the ground truth. Different from
most previous relevance dataset, their queries are
collected from real-user, which can best represent
our daily needs of information.

MS MACRO Document. MS MACRO Docu-
ment dataset is a recently released relevance dataset
which is consist of over 367k queries and 3.2 mil-
lion documents. Similar with the MS MACRO
Passage dataset, it designed for document retrieval
and re-ranking.

WikiQA. WikiQA (Yang et al., 2015) is an open
domain QA dataset created from Wikipedia. The
questions can be viewed as user queries, and the
model will generate a permutation from the an-
swers.

SemEvalCQA. SemEvalCQA (Nakov et al.,
2015, 2016, 2017) is a series of datasets collected
from Qatar Living Forums1. Each candidate is la-
beled with either “Good”, “Potentially Useful” or
“BAD”. Here, we follow CETE (Laskar et al., 2020)
to set “Good” as ground truth and the other two
kinds of labels as negative. We test our models on
the sub-task A of the dataset.

B Baselines

MB25. BM25 (Robertson and Zaragoza, 2009) is
a popular sparse retrieval method which is widely
used by search engines. The relevance score be-
tween a query and a candidate is calculated based
on the bag-of-words representations. We use the
baseline provided by Anserini (Yang et al., 2017)
to run BM25.

ColBERT. The contextualized late interaction
over BERT (ColBERT) (Khattab and Zaharia,
2020) uses a late interaction consists of 1) dual-
encoder that independently encodes the query and

1https://www.qatarliving.com/forum

the document using BERT, 2) max-sim operator
that interacts every query embedding with all docu-
ment embeddings, and 3) summed scalar outputs
across query terms.

TFR-BERT. The TFR-BERT (Han et al., 2020)
fine-tunes BERT in cross-encoder setting to extract
the representation of each query-document pair,
and trains an ensemble of a point-wise, a pair-wise
and a list-wise prediction models to optimize the
performance.

RocketQAv2. RocketQAv2 (Ren et al., 2021b)
jointly trains a retrieval model and a re-ranking
model for more effective training. To alleviate the
false negative problem, they perform data augmen-
tation on the negative samples, which further im-
proves the model performance.

HDCT+LCE. Gao et al. (Gao et al., 2021b) de-
signs a cross-encoder that evaluates the candidate
relevance using a localized contrastive estimation
(LCE) loss, which focus on learning on hard neg-
atives rather than randomly sampled noisy nega-
tives. They use Context-aware Hierarchical Doc-
ument Term weighting framework(HDCT) (Dai
and Callan, 2020) as their retriever, which projects
BERT representation into weight of terms, and pro-
vides a widely-used document retrieval baseline.

DML. The Dynamic Multi-Granularity Learn-
ing(DML) (Zhang and Yang, 2021) integrate Gaus-
sian function into the loss calculation, which pays
more attention to hard negatives while avoids the
influence of confusing samples. They utilize the
Approximate nearest neighbor negative contrastive
learning (ANCE) (Xiong et al., 2020) as the doc-
ument retriever, which extracts global negatives
rather than random or in-batch local negatives. We
reproduce the retrieval candidates by the MaxP
method for document re-ranking, where the docu-
ment is split to at most four 512-token passages.

KeLP. The Kernel-based Learning Plat-
form(KeLP) (Filice et al., 2017) uses kernel-based
classifiers to sort the instances and produce the
final ranking. Especially, it employs a SVM learn-
ing algorithm which operates on a combination of
multiple kernels to extract information.

MVFNN. The Multi-View Fusion Neural Net-
work(MVFNN) uses an attention-based Recurrent
Neural Network model to integrate the four views
of a QA pair. These four views are named as in-
quiry type view, inquiry main verb view, inquiry
semantic view, and co-attention view.

CETE. The Contextualized Embeddings based

2022

Dataset #Questions #Candidate Answers
Train Dev Test Train Dev Test

MS MACRO P. 502,939 6,980 6,837 8,841,823 - -
MS MACRO D. 367,013 5,193 5,793 3,213,835 - -

WikiQA 2,118 296 633 20,360 2,733 6165
SemEval-2015 2,600 300 329 16,541 1,645 1,976
SemEval-2016 4,879 244 327 36,198 2,440 3,270
SemEval-2017 4,879 244 293 36,198 2,440 2,930

Table 4: The statistics of used datasets. For MS MACRO datasets, the candidates are shared for training, developing
and testing. P. represents passage dataset, D. represents document dataset.

Transformer Encoder(CETE) (Laskar et al., 2020)
uses a cross-encoder to measure the similarity of
sentence pairs. CETE also compares the perfor-
mance of cross/dual encoders and different PLMs.

2023

