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Abstract

Contrastive explanation methods go beyond
transparency and address the contrastive aspect
of explanations. Such explanations are emerg-
ing as an attractive option to provide actionable
change to scenarios adversely impacted by clas-
sifiers’ decisions. However, their extension to
textual data is under-explored and there is little
investigation on their vulnerabilities and limita-
tions.

This work motivates textual counterfactuals
by laying the ground for a novel evaluation
scheme inspired by the faithfulness of explana-
tions. Accordingly, we extend the computation
of three metrics, proximity, connectedness and
stability, to textual data and we benchmark two
successful contrastive methods, POLYJUICE
and MiCE, on our suggested metrics. Experi-
ments on sentiment analysis data show that the
connectedness of counterfactuals to their origi-
nal counterparts is not obvious in both models.
More interestingly, the generated contrastive
texts are more attainable with POLYJUICE
which highlights the significance of latent rep-
resentations in counterfactual search. Finally,
we perform the first semantic adversarial at-
tack on textual recourse methods. The results
demonstrate the robustness of POLYJUICE and
the role that latent input representations play in
robustness and reliability.

1 Introduction

With the unprecedented growing deployment of
Machine Learning (ML) models in high-stake ar-
eas such as law enforcement and medicine, many
concerns are raised about their black-box decision-
making process. Recently, transparency is be-
coming a momentous requirement for account-
able ML bringing forth the concept of Explain-
able AI (ExAI). ExAI is witnessing endeavors in

Code available at: https://gitlab.com/awadailab/faithful-
contrastive-explanations/

all modalities and textual data in particular (Pruthi
et al., 2020; Ribeiro et al., 2016; Lundberg and
Lee, 2017). However, such explanations might
not be sufficient in critical areas where stronger
guarantees and more fine-grained explanations are
required. Data controllers and subjects pose strong
requirements on the usefulness aspect of explana-
tions which implies a selective, contrastive and
social process (Forrest et al., 2021; Ribera and
Lapedriza, 2019). The latter entails an interac-
tion between the explainers and the explainees
and human-understandable explanations (Mittel-
stadt et al., 2019).

To this end, contrastive1 explanations have seen
a surge of interest as a main tool to reach recourse
(Ustun et al., 2019; Mothilal et al., 2020; Madaan
et al., 2021). Those explanations search for opti-
mally proximate alternative inputs that would result
in a different, usually desired, prediction. They of-
fer explanations that are tailored to the recipient’s
beliefs and comprehension capabilities.

Whilst there is a plethora of literature published
on recourse methods applied on tabular datasets
and computer vision applications (Mothilal et al.,
2020; Dosovitskiy and Brox, 2016; Pawelczyk
et al., 2021a), little is available on contrastive tex-
tual explanations. Specifically, hand-crafted con-
trastive sets have been employed before to evalu-
ate fairness and robustness of ML models (Garg
et al., 2019) by rewriting input instances (Gardner
et al., 2020) and defining perturbation functions
(Ribeiro et al., 2020) to obtain counterfactual sets.
A novel, yet interesting, vein of research is con-
sidering an automated counterfactuals generation
in NLP (Ross et al., 2021; Wu et al., 2021). The
focus of our work is this largely under-explored tar-
geted recourse methods for language data and their
evaluation schemes. We highlight scenarios where
non-recourse methods fall short of the usefulness

1Throughout this work, we use the terms contrastive, coun-
terfactual and recourse interchangeably.
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aspect of explanation especially due to the blend of
syntax and semantics in the words.

Additionally, we consider the assessment
schemes, and we target a novel evaluation aspect
of the plausibility and attainability aspect of the
generated counterfactuals. We argue that counter-
factuals should (1) meet textual attainability from a
grammatical and semantic perspective, (2) convey
connectedness to their original counterparts, and
(3) satisfy local algorithmic stability. Accordingly,
we extend proximity, connectedness and stability,
in the context of faithfulness, to textual data and
we propose tangible measures to quantify them.
We benchmark our metrics on a sentiment analysis
task on two famous recourse methods (Wu et al.,
2021; Ross et al., 2021). Our results highlight the
role that latent representations in (Wu et al., 2021)
play in robustness and plausibility. Finally, we
present the first study on the resilience of textual re-
course methods in the context of adversarial attacks.
The study demonstrates a significant improvement
in the adversarial robustness of POLYJUICE over
MiCE. Our contribution falls under the following
categories:

• Surveying textual counterfactuals and high-
lighting their usefulness over traditional ExAI

• Proposing new evaluation metrics inspired by
explanation faithfulness and benchmarking
contrastive methods, POLYJUICE and MiCE

• Evaluating the robustness of NLP recourse
methods through semantic adversarial attacks

Next, we start by motivating the use of textual coun-
terfactuals in Section 2 and highlighting their in-
terconnection to adversarial attacks in Section 2.2.
Then, we present the background needed on coun-
terfactuals methods in Section 3 before reporting
current evaluation schemes in Section 4. Finally,
we extend the faithfulness concept to textual data
and validate it in Sections 5 and 6 respectively be-
fore concluding with final remarks in Section 7.

2 Use cases of Contrastive Explanations

2.1 Favourable Use-cases

Textual ExAI methods interpret outcomes by high-
lighting segments that support the decision (Ribeiro
et al., 2016, 2018) by computing gradients, atten-
tion weights, and simpler approximations. Such
methods have fundamental impediments.

First, highlighting important input segments fails
to specify the contrast between different decision
boundaries. Second, the search space of traditional
explainability is restricted to the words in the in-
put text. Such methods forsake an integral space
of words whose absence from inputs affected the
prediction. This assumption thwarts the compre-
hensiveness and completeness of the explanations.
Finally, the fusion of syntax and semantics in a
word makes it hard for a practitioner to identify the
precise aspect of the word the model is attending to.
For instance, the explanation in Figure 1 shows that
the sentiment is negative because of the word slow.
A user is left uninformed on whether the sentence
structure (part-of-speech tag, named entity...) or
the meaning of the adjective “slow” is driving the
model’s decision.

While the first two limitations are shared by gen-
eral explainability methods; the last limitation is
specific to NLP. Recourse methods address these
limitations and present additional assets to the
model’s transparency. Their underlying design
matches the human perception of explanations. In
fact, humans inherently understand explanations
contrastively (Kumar et al., 2020). A fact-foil con-
trast can thus introduce a user-centered explanation
aspect that complies with the human-in-the-loop
drift in AI.

To further highlight the importance of counter-
factuals in NLP, we show how they can be lever-
aged in digital strategy (Boulton and Writer, 2019).
We assume an ML model M that classifies cus-
tomer comments based on sentiment. We consider
three scenarios thereafter illustrated in Figure 1.

(A) Predictive: M predicts a sentiment s ∈
S = { positive, negative, neutral }.

(B) Descriptive: M predicts a sentiment s ∈ S,
with a set of input segments supporting the decision,
i.e. through non-recourse explainable AI.

(C) Prescriptive: M predicts a sentiment s ∈
S, with one (or more) counterfactual inputs that
are close to the original input but can change the
decision s.

(A) helps the institution in the assessment of
their customer satisfaction. A company that hopes
to better understand its customers has to resort to
(B) or (C). Both models analyze user feedback
as detractors to identify areas that need improve-
ment. (B) highlights the service and the portion
size. However, these explanations are not the strong
guarantee that strategic planning requires. On the
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Figure 1: Non-recourse Vs. recourse methods

other hand, (C) does not stop at highlighting input
features that support M’s decision; it generates
reviews in a parallel counterfactual word that can
change the feedback of the user from negative to
positive. (C) can thus prescribe a workable strategy
that is more likely to improve the users’ feedback.

In addition to that, contrastive methods convey
a way to evaluate and improve models and expose
bias (Ribera and Lapedriza, 2019; Wu et al., 2021;
Sharma et al., 2020; Cheng et al., 2020; Garg et al.,
2019; Huang et al., 2020). Contrast sets can also
serve as ways to identify general model’s vulner-
ability (Gardner et al., 2020; Artelt et al., 2021)
and improve the robustness through contrastive
data augmentation (Wu et al., 2021; Qi and Luo,
2020). Contrastive learning is also shown to pro-
mote better separation in clustering applications
(Zhang et al., 2021) and easier model debugging
for non-experts (Ribera and Lapedriza, 2019). (Iter
et al., 2020) and (Kiyomaru and Kurohashi, 2021)
further prove that pre-training language models
with contrastive text improves the discourse coher-
ence between clauses in text.

2.2 Malignant Counterfactuals

Can counterfactuals be used as adversarial at-
tacks? To illustrate this, we consider hate speech
detection where counterfactuals can be used to
make a post get through the “hate speech” check.
These modification are minimal by design. This
brings us to jointly study contrastive explanations
(CEs) through the lens of adversarial attacks (AEs)
and robustness.

While both methods solve a similar optimization
problem, the philosophy behind the optimization
of CE and AEs can be conflicting. The former
methods compute alternatives that result in a dif-
ferent desired prediction. Adversarial alternatives
are generally semantically indistinguishable from
the original input (Zhang et al., 2019a) whereas
counterfactuals are perturbations to actionable fea-

tures. Interested readers are referred to the work
of (Pawelczyk et al., 2021b) that establishes the
theoretical and empirical connections between the
literature on counterfactual explanations and adver-
sarial examples.

3 Contrastive Textual Explanations

3.1 General Contrastive Theory
Assuming a predictor, potentially non-linear, f :
X 7→ Y , an instance xi ∈ X such that f(xi) =
yfact and a foil class yfoil, a counterfactual xi

cf ∈ X
can be computed as:

argmin
xcf

d(xi
cf ,x

i) (1)

subject to f(xi
fl) = yfoil (2)

where d(.) is a distance metric.
This optimization can be also perceived as

argmin
xcf

L(f(xi
fl), yfoil)+λd(xi

cf ,x
i) in the La-

grangian notation, with l(.) denoting a loss function
and λ > 0 is a regularization factor that balances
the minimal edit distance and the success in altering
the model’s decision. Depending on the method,
restrictions might complement the above definition.

One line of research deploys gradient-based tech-
niques to achieve a feasible solution (Dhurandhar
et al., 2018; Schut et al., 2021). Another track fo-
cuses on graph search techniques (Poyiadzi et al.,
2020), growing hyper-spheres (Laugel et al., 2017)
and integer programming tools (Ustun et al., 2019).

When considering the counterfactual cost or dis-
tance d(.), the literature has formed a consensus
on the use of the (normalized) l0 or l1 norm or any
convex combination thereof (Mothilal et al., 2020;
Karimi et al., 2020a; Ustun et al., 2019; Wachter
et al., 2017). ExAI is witnessing momentum in
the adoption of manifold-like distance measures
based on adversarial learning (Zhou et al., 2021;
Dosovitskiy and Brox, 2016) and Variational Auto-
Encoders (VAEs) (Samanta et al., 2020; Joshi et al.,
2019). Interested readers are referred to (Stepin
et al., 2021) and (Karimi et al., 2020b) that survey
state-of-the-art recourse methods.

3.2 Contrastive Methods in NLP
Up until 2021, natural language data was a modal-
ity that did not receive enough attention when it
comes to recourse methods. Although contrastive
sets have been extensively applied to evaluate ro-
bustness and fairness (Garg et al., 2019; Huang
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et al., 2020; Gardner et al., 2020) in NLP, these sets
are carefully manufactured as adversarial attacks.

(Jacovi et al., 2021) present contrastive explana-
tions as textual highlights that support one decision
against its contrasts. Their approach encodes an
input text into a latent vector and applies a linear in-
terpolation where the contrastive direction is found
in the latent space. This approach can be viewed
as a contrastive search based on the positive perti-
nent which is not very aligned with the “actionable
change” of recourse methods. (Dhurandhar et al.,
2018) formulate the pertinent negatives aspect of
counterfactuals that are represented by the missing
features but did not apply their pertinent negatives
to natural language data.

Generate Your Counterfactuals (GYC) in
(Madaan et al., 2021) is one of the first explicit
attempts at automating the generation of textual
contrastive explanations. GYC trains a language
model to reconstruct the input from the generated
counterfactuals and then learns perturbations on the
latent space while forcing a proximity constraint.

(Ross et al., 2021) refer to the GYC’s prox-
imity criterion as minimal edits in their Minimal
Contastive Edits framework. To this end, they train
a contextualized EDITOR to associate edits with
task-specific labels by applying masks on input
segments that are important for a particular label.
EDITOR then serves as a generator by predicting
the labels of some masked inputs monitored by bi-
nary and beam search to find the optimal maskings.

POLYJUICE (Wu et al., 2021) allows for more
edits through negation, replacement, insertion, and
deletion for targeted counterfactuals monitored by
control codes. Similar to GYC, POLYJUICE relies
on a language model to achieve a fluent conditional
text generation. A filtering layer is added to the
process to refine the generated counterfactuals by
ignoring the ones that achieve low fluency scores.

The Contrastive Attributed explanations for Text
(CAT) of (Chemmengath et al., 2021) inject an at-
tribute prediction layer in the contrastive search
process. This layer indicates attributes that the
contrast adds to or removes from the given ex-
ample. Very recently, Malandri et al. (Malandri
et al., 2022) develop ContrXT, a Time Contrastive
model-agnostic explanation framework in lifelong
learning settings. ContrXT is not restricted to lo-
cally explaining predictions, it rather focuses on
the learning process and on how the decision paths
of classifiers evolve after retraining. The discussed

methods are summarized in Table 1.

4 Evaluation Methods

4.1 Quantitative Evaluation

The most intuitive desiderata for any contrastive ex-
planation are their proximity and ability to change
the model’s prediction. Both conditions are ax-
iomatically inferred from the problem formulation
in Equation 1. In NLP, these conditions are referred
to as minimal distance and label-flip score respec-
tively. Proximity between xcf and x is measured
by word-level Levenshtein distance (Levenshtein
et al., 1966) reflecting the edit distance in terms
of replacement, insertions and deletions. We draw
the reader’s attention to the fact that embedding
distance measures how similar two vectors are in
terms of syntax and semantics (Vylomova et al.,
2016) whereas Levenshtein distance reflects the
edit distance, or the path to reach counterfactuals.
The latter is aligned with the fundamentals of con-
trastive textual explanations whereas the former is
used to measure content preservation. Another way
to measure the edit distance is through syntactic
trees (Zhang and Shasha, 1989; Wu et al., 2021).

An additional requirement for counterfactuals
is the diversity of the generated explanations. In-
spired by the Self-BLEU metric of (Zhu et al.,
2018), diversity can be measured through the Self-
BLEU or Self-BERT (Zhang et al., 2019b) metric
between the generated counterfactual samples.

Other requirements that are tailored to natural
language are (1) fluency through grammatical cor-
rectness and semantic meaningfulness, and (2) con-
tent preservation. Fluency can be evaluated by
comparing the loss of a particular language model
on xcf and x using a pre-trained model (Ross et al.,
2021; Morris et al., 2020; Wu et al., 2021). Content
preservation can be inferred by latent embedding
representations as the cosine similarity between the
embeddings of xcf and x.

4.2 Qualitative Evaluation

In the social aspects of AI, user studies are ubiq-
uitous in evaluating explainable and fair AI mod-
els (Luss et al., 2021; Natesan Ramamurthy et al.,
2020; Singh et al., 2018). GYC uses a score to
estimate the human judgment of grammatical cor-
rectness, plausibility, fluency, sentiment change,
and content preservation. Similarly, CAT evalu-
ates human judgment of completeness, sufficiency,
satisfaction, and understandability mainly. Instead
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Method Pertinent Neg-
atives

Diversity Latent Repre-
sentations

Strategy

Highlights ✗ ✗ ✓ Linear interpolation on latent space
GYC ✓ ✓ ✓ Perturbations on latent space and auto-

encoder generation
MiCE ✓ ✓ ✗ Masking input segments and searching for

optimal mask combinations
POLYJUICE ✓ ✓ ✓ Conditional generation with refinement
CAT ✓ ✗ ✗ Attribute injection in the contrastive search

process
Contr-XT ✓ ✗ ✗ Global and time-sensitive explanations

through BDD

Table 1: Summary of existing work on contrastive textual explanations

of surveying human judgment, MiCE’s counter-
factuals are compared to human edits for overlap,
minimality, and fluency. Finally, ContrXT employs
crowd-sourcing efforts to evaluate its global expla-
nations, their understandability, and usefulness.

5 Faithfulness Metrics

None of the metrics discussed so far explicitly tar-
gets explanation faithfulness that has been studied
in non-textual frameworks (Laugel et al., 2019;
Pawelczyk et al., 2020). In this work, we rede-
fine faithfulness (Laugel et al., 2019), in natural
language settings, via three main requirements.

Explanation faithfulness entails that counterfac-
tuals should be generated from a “possible” world
which is proximate to the starting point specified by
the user. This is formalized in two quantitative mea-
sures: proximity and connectedness (Laugel et al.,
2019) inferring an attainable generation of counter-
factuals based on the input distribution. Moreover,
faithfulness to the explainee engenders local sta-
bility of the explainer during the counterfactual
generation process.

5.1 Proximity

The contrastive explanation is only useful when
presented in terms of plausible means of action.
A plausible contrastive text is usually proximate
(using a distance notion) to a ground-truth text from
the same foil class.

Formally, we consider an instance x belonging
to the fact class yfact and its counterfactual xcf

belonging to the foil class yfoil. Proximity of xcf

is measured as the ratio between its distance to x
and the minimum distance between x and a ground
truth input belonging to the foil class, X foil.

P (xcf ) =
d(x,xcf )

min
xgt∈X foil

d(x,xgt)
(3)

The notion of proximity is not any different in NLP,
except for the computation of the distance metric.
This will be discussed later in this section.

Furthermore, we propose the Local Reachability
Density (LRD) as a quantitative measure of prox-
imity. LRD reflects how far a point (xcf ) is from
the nearest cluster of points (xgt ∈ X foil). Mainly,

LRDk(xcf ) =
1

∑
xgt∈Nk(xcf )∩X foil

RD(xcf ,xgt)
||Nk(xcf )||

(4)
with RD is the reachability distance defined as
RD(i, j) = max

(
k − distance(i), d(i, j)

)
, with

k−distance(i) is the distance from i to its closest
neighbor. Higher LRD values are desired as they
reflect closer clusters of ground truth data.

5.2 Connectedness

Counterfactual plausibility also engenders a con-
tinuous connectedness to the original ground-truth
observation. Relying on the topological notion of
the path, we borrow the definition of connectedness
from (Laugel et al., 2019) as follows:

(ϵ−connectedness) x1 ∈ X is ϵ−connected to
x2 ∈ X if f(x1) = f(x2) and ∃ an ϵ-chain
(ei)i<N ∈ XN between x1 and x2 such that,
e0 = X1, eN = x2 and ∀i < Nd(ei, ei+1) < ϵ
∀n < N, f(ei) = f(e).

The implementation of the above definition is a
compelling problem. We highlight its analogy with
density-based clustering (Ester et al., 1996; Laugel
et al., 2019) and we adopt the use of DBSCAN
algorithm to check whether two texts are connected
while setting the min_points parameter to 2.

5.3 Stability

This criterion is highly related to robustness where
stability requires close counterfactuals for close
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inputs. Formally, a contrastive explanation method
is stable if it satisfies

max
x′∈B(x,ϵ)

d(x′
cf ,xcf )

d(x,x′)
< ϵ2 (5)

with B(x, r) is a ball of center x and radius r.
Stability can also serve as an evaluation of the

model’s resistance to adversarial attacks. (Slack
et al., 2021) bring to the front the high sensitivity
of recourse methods to insignificant input changes.
In fact, gradient-based methods (Wachter et al.,
2017) can yield counterfactuals x(1)

cf and x
(2)
cf that

are very distant for close inputs x(1) and x(2).
In summary, proximity measures the distance

between the encodings of the generated counterfac-
tual x′ and the closest instance with the same label
in the ground truth data. Connectedness requires
x′ to be accessible from x along a path consisting
of neighboring points with the same label. Stability
requires the close counterfactuals for close inputs.

Distance measure: The aforementioned notions
anticipate a distance measure. Choosing a suitable
distance measure is of utmost criticality, especially
in NLP, where distances have to reflect syntax and
semantics. We use latent space embeddings en-
coded by language models such as GPT-2 (Radford
et al., 2019) and we compute their cosine similarity.

5.4 Discussion

Inadvertently, some of the metrics discussed in
Section 4 hint at the faithfulness concept. In gen-
eral, contrastive attainability can be linked to flu-
ency and grammatical correctness (Wu et al., 2021;
Chemmengath et al., 2021; Ross et al., 2021). How-
ever, none of the existing work on textual con-
trastive explanations explicitly addresses faithful-
ness. We draw the reader’s attention to the fact
that proximity is not to be mistaken with the min-
imal edit distance requirement. The former is the
smallest distance between the counterfactual and a
ground truth instance belonging to the same class
and the latter is a minimal distance between the
counterfactual and the original instance.

The masking strategy in MiCE can be associ-
ated with a search strategy for the topological path.
However, this aspect is not explicitly tested. The
content preservation concept of (Chemmengath
et al., 2021) might be an educated guess at con-
nectedness but not a direct measure.

6 Validation of Faithfulness

We consider models with open source code,
POLYJUICE, MiCE, and ContrXT mainly. Coun-
terfactuals generated by ContrXT are global which
makes faithfulness not directly applicable as it eval-
uates specific (local) explanations. Thus, we con-
sider POLYJUICE and MiCE for our validation.
We train both models on the IMDB sentiment anal-
ysis task on NVIDIA K80/T4 GPU with 16GB
RAM. We consider restaurant reviews for senti-
ment analysis 2 with 977 validation instances.

6.1 Proximity
We start by evaluating how close the generated
counterfactuals are to ground truth data from the
foil class. For this purpose, we compute P (xcf ) of
Equation 3 and plot the distribution of its values
in Figure 2. One can see a predominance of low
proximity scores (< 0.2) in POLYJUICE and an
inclination to achieve higher scores with MiCE.

0.0 0.2 0.4 0.6 0.8
P(xcf)

(a) POLYJUICE

0.0 0.2 0.4 0.6 0.8
P(xcf)

(b) MiCE

Figure 2: Distribution of P (xcf ) scores

We further split our validation data according
to their foil classes into two categories: positive
and negative sentiment foils. For both categories,
we compute the outlier factor for the generated
counterfactuals, which is inversely proportional to
LRD, while changing k and we show the values in
Figure 3a. For small k, i.e. strong conditions on
outliers, a great deal of the generated counterfac-
tuals, especially with POLYJUICE, are considered
outliers. With fair values of k, POLYJUICE drops
its generated outliers to nearly zero while some
outliers can still be observed with MiCE. Both ex-
planation models are systematic with the foil class
being positive or negative sentiments.

6.2 Connectedness
To assess whether the generated counterfactuals
are connected to their original factuals, we com-
pute the connectedness score for both explanation

2kaggle.com/apekshakom/sentiment-analysis-of-
restaurant-reviews
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Figure 3: Scores while changing the number of neigh-
bors k

models and foil sentiments. The results shown in
Figure 3b demonstrate that POLYJUICE and MiCE
achieve low connectedness scores when k is small
where only half of their generated counterfactuals
can be considered connected to the original input.
When we loosen the connectedness requirement by
increasing k, we notice that more counterfactuals
become connected especially with POLYJUICE.
For both explanation methods, positive sentiment
foil classes seem to achieve higher connectedness
scores but the discrepancy between positive and
negative sentiments is insignificant with MiCE.

6.3 Stability

We compute d(x′
cf ,xcf ) as counterfactual simi-

larity and d(x,x′) as input similarity and show
how the former measure is scattered in terms of
the latter in Figure 4 for POLYJUICE and MiCE.
Both plots show that a near-linear correlation gov-
erns both models with some high variance. The

ratio
d(x′

cf ,xcf )

d(x,x′) represented by the slope of the lin-
ear regression model on the given scatter plots is
bounded showing a stability of both explanation
algorithms. This can suggest that the non-gradient
aspect of the considered contrastive methods yields
more robust counterfactuals. The lower variance in

POLYJUICE suggests better robustness guarantees.
Besides, no significant distinction can be inferred
between the two foil categories.

0.0 0.2 0.4 0.6 0.8 1.0
d(x, x′)

0.0

0.2

0.4

0.6

0.8

1.0

d(
x′ cf

,x
cf
)

Positive Sentiment
Negative Sentiment

(a) POLYJUICE

0.0 0.2 0.4 0.6 0.8 1.0
d(x, x′)

0.0

0.2

0.4

0.6

0.8

1.0

d(
x′ cf

,x
cf
)

(b) MiCE

Figure 4: Scattering of counterfactual similarity with
respect to the input similarity. Linear scattering infers
local stability.

Finally, we consider more fine-grained stability
study, by considering three ranges of input sim-
ilarities: d(x, x′) < 0.2, 0.2 ≤ d(x, x′) < 0.4
and 0.4 ≤ d(x, x′) < 0.6. Figure 5 shows how
the counterfactual similarity is distributed for the
three considered ranges. Locally, i.e. with input
distance < 0.2 POLYJUICE is shown to be more
stable on the positive foil class by achieving low
distances on the generated counterfactual. MiCE
seems to outperform POLYJUICE on the negative
foil class. Zooming out, better stability is observed
with POLYJUICE for both foil classes.

+ -
Foil

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d(
x′ cf

,x
cf
)

d(x, x′) < 0.2

+ -
Foil

d(
x′ cf

,x
cf
)

0.2≤ d(x, x′) < 0.4

+ -
Foil

d(
x′ cf

,x
cf
)

0.4≤ d(x, x′) < 0.6

POLYJUICE
MiCE

Figure 5: Distribution of the distance between counter-
factuals for different input distance ranges

6.4 Adversarial Robustness

We generate adversarial perturbations based on se-
mantic similarity (Morris et al., 2020) on the restau-
rant reviews. The adversarial inputs are then fed
into POLYJUICE and MiCE for a counterfactual
generation. Figure 6a demonstrates that the pertur-
bation had no impact on the proximity behavior of
POLYJUICE. Markedly, MiCE’s counterfactuals
became less in-distribution with ground truth data
showing questionable robustness to adversarial at-
tacks. The connectedness scores are not affected
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for both methods as shown in Figure 6b.
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Figure 6: Results with adversarial attacks

Finally, we visualize how the generated coun-
terfactuals are affected when inputs are perturbed.
Figure 7 shows the distribution of the cosine simi-
larities between xcf (the counterfactual of the orig-
inal input, x) and xadv

cf (the counterfactual of its
adversarial counterpart, xadv) with respect to the
similarity between x and xadv on a sample of 300
points. POLYJUICE scores higher similarities be-
tween counterfactuals showing more robustness to
adversarial attacks. Since POLYJUICE does not
rely on gradient descent to reach recourse, its re-
sults are per the discussion of (Slack et al., 2021) on
the problematic behavior of gradient-based coun-
terfactual search on robustness.

While we are aware of the wide range of adver-
sarial textual attacks, we restrict our experiment
to semantic similarity and leave the rest for future
inspection. We underline that this experiment is
different from the attacks discussed in Section 2.2.
Rather than attacking the classifier, we perturb its
input and feed it into a counterfactual method to
study whether the latter is robust to adversarial
attacks.

6.5 Comparison to Existing Metrics
We compute existing evaluation metrics, BLEU
and Self-BERT mainly, on the generated counter-
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Figure 7: Distribution of the cosine similarity of the
generated counterfactuals with adversarial attacks

factuals. On average, POLYJUICE counterfactuals
achieve a BLEU score of 0.38 as opposed to a 0.32
score achieved by MiCE. Self-BERT scores were
higher, where POLYJUICE and MiCE achieve 0.95
and 0.92 scores respectively.
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Figure 8: Distribution of the BLEU and Self-BERT
scores

The results show a slight improvement of
POLYJUICE over MiCE which confirms our find-
ings highlighting again the importance of latent
representations. Figure 8 shows the distribution
of the scores on the counterfactuals generated by
POLYJUICE and MiCE.

6.6 Discussion
The fundamental difference between POLYJUICE
and MiCE can be traced to word representations.
The former anticipates latent space encodings while
the latter operates at the textual level. Hence, we
will interpret their faithfulness through the word
representation lens.

Proximity results were not consistent. Higher
P (xcf ) scores are reported with MiCE while lower
outlier factors are observed with POLYJUICE. One
can thus say, that relative to d(x,xcf ) edits on the
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textual level achieve higher proximity. Consider-
ing a cluster of ground truth inputs with the same
class as the counterfactual, POLYJUICE is shown
to obey the input distribution in generating con-
trastive texts. We also call attention to the fluency
filtering layer of POLYJUICE which yields better
reachability. These results hint at the connection
between latent representations and the attainability
of generated counterfactuals.

Conversely, connectedness scores do not show
any substantial difference. POLYJUICE is shown
to be more locally stable and more robust to adver-
sarial attacks. The results make intuitive sense as
the distances are computed based on latent repre-
sentations that are used by POLYJUICE in their
contrastive search. Hence, latent representation
of words (instead of textual ones) can serve the
algorithmic stability of recourse methods.

7 Conclusion

Counterfactual methods go beyond interpretability
and offer practical explanations that comply with
the social and algorithmic aspects of explainability.
In this work we chart the path towards contrastive
methods in NLP with a common evaluation scheme
inspired by faithfulness. We present the limitations
of traditional explainability which are leveraged
with recourse methods, in NLP mainly.

We further define faithfulness of textual expla-
nations and present corresponding computation
schemes. Our benchmarks on two famous meth-
ods, POLYJUICE and MiCE, show that better al-
gorithmic stability and attainability are achieved in
the former, highlighting the importance of latent
representation in the counterfactual search strat-
egy. We highlight the vulnerabilities of textual
recourse methods against semantic adversarial at-
tacks. Three immediate steps in this line of work
are the mitigation of the “unconnected” counterfac-
tuals by posing connectedness constraints on the
search strategy, the enhancement of the stability
when textual edits are employed, and the investiga-
tion of textual attacks on recourse methods.

8 Limitations

While our work addresses one of the limitations
of counterfactual textual explanations, faithfulness
evaluation specifically, it has its own restrictions.
First, the connectedness aspect of faithfulness is
computed based on neighbors sampled from a vali-
dation set. This evaluation reflects the plausibility

of generated counterfactuals based on the data at
hand. A more generalizable plausibility requires
sufficiently large validation sets.

One can also argue that faithfulness heavily de-
pends on the distance notion which is based on
transformers’ encodings. Although transformers
are state-of-the-art language models that success-
fully encode syntax and semantics, their perfor-
mance is crucial for a faithful evaluation. Extension
to other languages requires careful consideration.
This is mainly due to the counterfactual generation
process operating differently with different mor-
phologies and so does the distance measure.

Finally, the intriguing relation between coun-
terfactuals and AEs can motivate the use of the
former to improve models’ robustness against AEs.
Informing practitioners of their potential harm is
a key responsibility to preventing unfavorable ma-
nipulations.
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