Roman Goldenberg


2024

pdf
Breaking the Language Barrier: Can Direct Inference Outperform Pre-Translation in Multilingual LLM Applications?
Yotam Intrator | Matan Halfon | Roman Goldenberg | Reut Tsarfaty | Matan Eyal | Ehud Rivlin | Yossi Matias | Natalia Aizenberg
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Large language models hold significant promise in multilingual applications. However, inherent biases stemming from predominantly English-centric pre-training have led to the widespread practice of pre-translation, i.e., translating non-English inputs to English before inference, leading to complexity and information loss. This study re-evaluates the need for pre-translation in the context of PaLM2 models, which have been established as highly performant in multilingual tasks. We offer a comprehensive investigation across 108 languages and 6 diverse benchmarks, including open-end generative tasks, which were excluded from previous similar studies. Our findings challenge the pre-translation paradigm established in prior research, highlighting the advantages of direct inference in PaLM2. Specifically, PaLM2-L consistently outperforms pre-translation in 94 out of 108 languages. These findings pave the way for more efficient and effective multilingual applications, alleviating the limitations associated with pre-translation and unlocking linguistic authenticity.

2023

pdf bib
Clinical BERTScore: An Improved Measure of Automatic Speech Recognition Performance in Clinical Settings
Joel Shor | Ruyue Agnes Bi | Subhashini Venugopalan | Steven Ibara | Roman Goldenberg | Ehud Rivlin
Proceedings of the 5th Clinical Natural Language Processing Workshop

Automatic Speech Recognition (ASR) in medical contexts has the potential to save time, cut costs, increase report accuracy, and reduce physician burnout. However, the healthcare industry has been slower to adopt this technology, in part due to the importance of avoiding medically-relevant transcription mistakes. In this work, we present the Clinical BERTScore (CBERTScore), an ASR metric that penalizes clinically-relevant mistakes more than others. We collect a benchmark of 18 clinician preferences on 149 realistic medical sentences called the Clinician Transcript Preference benchmark (CTP) and make it publicly available for the community to further develop clinically-aware ASR metrics. To our knowledge, this is the first public dataset of its kind. We demonstrate that our metric more closely aligns with clinician preferences on medical sentences as compared to other metrics (WER, BLUE, METEOR, etc), sometimes by wide margins.