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Introduction

The NAACL 2012 Workshop on Statistical Machine Translation (WMT-2012) took place on Thursday
and Friday, June 7-8, 2012 in Montreal, Canada, immediately following the Conference of the North-

American Chapter of the Association for Computational Linguistics - Human Language Technologies
(NAACL HLT).

This is the seventh time this workshop has been held. The first time it was held at HLT-NAACL 2006 in
New York City, USA. In the following years the Workshop on Statistical Machine Translation was held
at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens,
Greece, ACL 2010 in Uppsala, Sweden, and EMNLP 2011 in Edinburgh, Scotland.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted three shared tasks: a translation task, a quality estimation task, and a task to test
automatic evaluation metrics. The results of the shared tasks were announced at the workshop, and
these proceedings also include an overview paper for the shared tasks that summarizes the results, as
well as provides information about the data used and any procedures that were followed in conducting
or scoring the task. In addition, there are short papers from each participating team that describe their
underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 45 full paper submissions and 39 shared task submissions. In

total WMT-2012 featured 20 full paper oral presentations and 39 shared task poster presentations.

The invited talk was given by Salim Roukos (IBM Research, USA), entitled “Deployment of Statistical
Machine Translation for the IBM Enterprise”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia

Co-Organizers
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WMT 5-year Retrospective Best Paper Award

Last year we created a WMT 5-year Retrospective Best Paper Award. This year we selected the best
paper from 2007’s Workshop on Statistical Machine Translation, which was collocated with ACL in
Prague. The goals of this retrospective award are to recognize high-quality work that has stood the test
of time, and to highlight the excellent work that appears at WMT.

The WMT12 program committee voted on the best paper from a list of eight nominated papers. Six of
these were nominated by high citation counts, which we defined as having 10 or more citations in the
ACL anthology network (excluding self-citations), and more than 30 citations on Google Scholar. We
also opened the nomination process to the committee, which yielded two further nomination for papers
that did not reach the citation threshold but were deemed to be excellent.

The program committee decided to award the WMT 5-year Retrospective Best Paper Award to:

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In Proceedings of the Workshop on Statistical Machine
Translation. Pages 228-231.

Like last year’s best paper award winner, Lavie and Agarwal’s publication was a short paper describing
the authors’ submission to one of the WMT shared tasks. WMTO07 introduced a new shared task to
evaluate the quality of automatic metrics for machine translation quality by comparing the metrics’
rankings to human rankings of MT systems. In the shared task, METEOR demonstrated higher
correlation than BLEU (the de facto standard) across a variety of human evaluation measures, including
adequacy and fluency, ranking the translations of whole sentences, and ranking the translation of smaller
constituents within sentences.

The program committee members who selected Lavie and Agarwal’s paper pointed out that METEOR is
the only metric that has managed to compete with BLEU for attention in the MT world without a major
funder backing the metric. They pointed out that TER and HTER have also become prominent, but it
is not clear whether that would have happened without backing from DARPA. Furthermore, METEOR
has contributed substantially to improving the assessment of the quality of MT systems by showing the
importance of word similarity beyond surface form.

In many ways this paper represents the ideals of the WMT workshops. It introduced a novel approach
to the automatic evaluation of machine translation and demonstrated the metric’s value empirically by
comparing it to other state-of-the-art metrics on a public data set.

Congratulations to Alon Lavie and Abhaya Agarwal for their excellent work!
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Putting Human Assessments of Machine Translation Systems in Order

Adam Lopez
Human Language Technology Center of Excellence
Johns Hopkins University

Abstract

Human assessment is often considered the
gold standard in evaluation of translation sys-
tems. But in order for the evaluation to
be meaningful, the rankings obtained from
human assessment must be consistent and
repeatable.  Recent analysis by Bojar et
al. (2011) raised several concerns about the
rankings derived from human assessments of
English-Czech translation systems in the 2010
Workshop on Machine Translation. We extend
their analysis to all of the ranking tasks from
2010 and 2011, and show through an exten-
sion of their reasoning that the ranking is nat-
urally cast as an instance of finding the mini-
mum feedback arc set in a tournament, a well-
known NP-complete problem. All instances
of this problem in the workshop data are ef-
ficiently solvable, but in some cases the rank-
ings it produces are surprisingly different from
the ones previously published. This leads to
strong caveats and recommendations for both
producers and consumers of these rankings.

1 Introduction

The value of machine translation depends on its util-
ity to human users, either directly through their use
of it, or indirectly through downstream tasks such
as cross-lingual information extraction or retrieval.
It is therefore essential to assess machine transla-
tion systems according to this utility, but there is a
widespread perception that direct human assessment
is costly, unreproducible, and difficult to interpret.
Automatic metrics that predict human utility have
therefore attracted substantial attention since they
are at least cheap and reproducible given identical

data conditions, though they are frequently and cor-
rectly criticized for low interpretability and correla-
tion with true utility. Their use (and abuse) remains
contentious.

The organizers of the annual Workshop on Ma-
chine Translation (WMT) have taken a strong stance
in this debate, asserting the primacy of human eval-
uation. Every annual report of their findings since
2007 has included a variant of the following state-
ment:

It is our contention that automatic mea-
sures are an imperfect substitute for hu-
man assessment of translation quality.
Therefore, we define the manual evalua-
tion to be primary, and use the human
judgments to validate automatic metrics.
(Callison-Burch et al., 2011)

The workshop’s human evaluation component has
been gradually refined over several years, and as a
consequence it has produced a fantastic collection of
publicly available data consisting primarily of pair-
wise judgements of translation systems made by hu-
man assessors across a wide variety of languages
and tasks. Despite superb effort in the collection of
these assessments, less attention has been focused
on the final product derived from them: a totally-
ordered ranking of translation systems participating
in each task. Many of the official workshop results
depend crucially on this ranking, including the eval-
uation of both machine translation systems and auto-
matic metrics. Considering the enormous costs and
consequences of the ranking, it is important to ask:
is the method of constructing it accurate? The num-
ber of possible rankings is combinatorially large—
with at least ten systems (accounting for more than

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 1-9,
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half the cases we analyzed) there are over three mil-
lion possible rankings, and with at least twenty (oc-
curring a few times), there are over 10'® possible
rankings. Exceptional care is therefore required in
producing the rankings.

Bojar et al. (2011) observed a number of discrep-
ancies in the ranking of English-Czech systems from
the 2010 workshop, making these questions ever
more pressing. We extend their analysis in several
ways.

1. We show, through a logical extension of their
reasoning about flaws in the evaluation, that
the final ranking can be naturally cast as an in-
stance of the minimal feedback arc set problem,
a well-known NP-Hard problem.

2. We analyze 25 tasks that were evaluated using
pairwise assessments from human annotators in
2010 and 2011.

3. We produce new rankings for each of the tasks,
which are in some cases surprisingly different
from the published rankings.

4. We identify a new set of concerns about sources
of error and uncertainty in the data.

2 Human Assessment as Pairwise Ranking

The workshop has conducted a variety of different
manual evaluation tasks over the last several years,
but its mainstay has been the relative ranking task.
Assessors are presented with a source sentence fol-
lowed by up to five translations, and are asked to
rank the translations from best to worst, with ties
allowed. Since it is usually infeasible to collect in-
dividual judgements for all sentences for all pairs of
systems on each task, consecutive sequences of three
sentences were randomly sampled from the test data,
with each sentence in each sequence presented to the
same annotator. Some samples were presented mul-
tiple times to the same assessor or to multiple asses-
sors in order to measure intra- and inter-annotator
agreement rates. Since there are often more than
five systems participating in the campaign, the can-
didate translations are likewise sampled from a pool
consisting of the machine translations and a human
reference translation, which is included for quality

JHU 1 JHU<BBN-COMBO
BBN-COMBO 2 JHU<RWTH

RWTH 3 JHU<RWTH-COMBO
RWTH-COMBO 3 JHU<CMU

cMU 4 BBN-COMBO—<RWTH

BBN-COMBO<RWTH-COMBO
BBN-COMBO~<CMU
RWTH=RWTH-COMBO
RWTH<CMU
RWTH-COMBO<CMU

Figure 1: Example human relative ranking of five sys-
tems (left) and the inferred pairwise rankings (right) on
a single sentence from the WMT 2010 German-English
campaign.

control purposes. It is important to note that the al-
gorithm used to compute the published final rank-
ings included all of this data, including comparisons
against the reference and the redundant assessments
used to compute inter-annotator agreement.

The raw data obtained from this process is a large
set of assessments. Each assessment consists of a
list of up to five systems (including the reference),
and a partial or total ordering of the list. The relative
ranking of each pair of systems contained in the list
is then taken to be their pairwise ranking. Hence a
single assessment of five systems yields ten implicit
pairwise rankings, as illustrated in Figure 1.

3 From Pairwise to Total Ranking

Given these pairwise rankings, the question now be-
comes: how do we decide on a total ordering of
the systems? In the WMT evaluation, this total or-
dering has two critical functions: it is published as
the official ranking of the participating systems; and
it is used as the ground truth against which auto-
matic evaluation metrics are graded, using Spear-
man’s rank correlation coefficient (without ties) as
the measure of accuracy. Choosing a total order is
non-trivial: there are N! possible orderings of N
systems. Even with relatively small N of the work-
shop, this number can grow extremely large (over
102 in the worst case of 25 systems).

The method used to generate the published rank-
ings is simple. For each system A among the set
S of ranked systems (which includes the reference),



compute the number of times that A is ranked better
than or equivalent to any system B < S, and then
divide by the total number of comparisons involv-
ing A, yielding the following statistic for system A,
which we call WMT-OFFICAL.

. ZBGS count(A <X B)
> Besoe<,=} COunt(ACB)

The systems are ranked according to this statistic,
with higher scores resulting in a better rank.

Bojar et al. (2011) raise many concerns about this
method for ranking the systems. While we refer the
reader to their paper for a detailed analysis, we focus
on two issues here:

score(A) @

e Since ties are rewarded, systems may be un-
duly rewarded for merely being similar to oth-
ers, rather than clearly better. This is of particu-
lar concern since there is often a cohort of very
similar systems in the pool, such as those based
on very similar technigues.

e Since the reference is overwhelmingly favored
by the assessors, those systems that are more
frequently compared against the reference in
the random sample will be unfairly penalized.

These observations suggest that the statistic
should be changed to reward only outright wins in
pairwise comparisons, and to lessen the number of
comparisons to the reference. While they do not
recommend a specific sampling rate for comparisons
against the reference, the logical conclusion of their
reasoning is that it should not be sampled at all. This
yields the following statistic similar to one reported
in the appendices of the WMT proceedings, which
we call HEURISTIC 2.

ZBesfref count(A < B)
ZBGS*TG]“,QE{<,E,>}? Count(AOB)
)
However, the analysis by Bojar et al. (2011) goes
further and suggests disregarding the effect of ties
altogether by removing them from the denominator.
This yields their final recommended statistic, which
we call BOJAR.

score(A)

ZBESfref COUTLt(A = B)

N ZBGSfref,Oe{<7>}, count(A<CB)
©)

score(A)

Superficially, this appears to be an improve-
ment. However, we observe in the rankings that
two anonymized commercial systems, denoted ON-
LINEA and ONLINEB, consistently appear at or near
the top of the rankings in all tasks. It is natural to
wonder: even if we leave out the reference from
comparisons, couldn’t a system still be penalized
simply by being compared against ONLINEA and
ONLINEB more frequently than its competitors? On
the other hand, couldn’t a system be rewarded sim-
ply by being compared against a bad system more
frequently than its competitors?

There are many possible decisions that we could
make, each leading to a different ranking. However,
there is a more fundamental problem: each of these
heuristic scores is based on statistics aggregated over
completely incomparable sets of data. Any total
ordering of the systems must make a decision be-
tween every pair of systems. When that ranking is
computed using scores computed with any of Equa-
tions 1 through 3, we aggregate over completely dif-
ferent sets of sentences, rates of comparison with
other systems, and even annotators! Deriving sta-
tistical conclusions from such comparisons is at best
suspect. If we want to rank A and B relative to each
other, it would be more reliable to aggregate over
the same set of sentences, same rates of comparison,
and the same annotators. Fortunately, we have this
data in abundance: it is the collection of pairwise
judgements that we started with.

4 Pairwise Ranking as a Tournament

The human assessments are a classic example of a
tournament. A tournament is a graph of IV vertices
with exactly () directed edges—one between each
pair of vertices. The edge connecting each pair of
vertices A and B points to whichever vertex which
is worse in an observed pairwise comparison be-
tween them. Tournaments are a natural represen-
tation of many ranking problems, including search
results, transferable voting systems, and ranking of
sports teams.*

Consider the simple weighted tournament de-
picted in Figure 2. This tournament is acyclic, which
means that we can obtain a total ordering of the ver-

The original motivating application was modeling the peck-
ing order of chickens (Landau, 1951).



Consistent ranking: A< B<C <D

Ranking accordingto Eq. 1: A< C < B < D

Figure 2: A weighted tournament and two different rank-
ings of its vertices.

tices that is consistent with all of the pairwise rank-
ings simply by sorting the vertices topologically. We
start by choosing the vertex with no incoming edges
(i.e. the one that wins in all pairwise comparisons),
place it at the top of the ranking, and remove it along
with all of its outgoing edges from the graph. We
then repeat the procedure with the remaining ver-
tices in the graph, placing the next vertex behind
the first one, and so on. The result is a ranking that
preserves all of the pairwise rankings in the original
graph.

This example also highlights a problem in Equa-
tion 1. Imagine an idealized case in which the con-
sistent ranking of the vertices in Figure 2 is their true
ranking, and furthermore that this ranking is unam-
biguous: that is, no matter how many times we sam-
ple the comparison A with B, the result is always
that A < B, and likewise for all vertices. If the
weights in this example represented the number of
random samples for each system, then Equation 1
will give the inaccurate ranking shown, since it pro-
duces a score of % for B and % for C.

Tournaments can contain cycles, and as we will
show this is often the case in the WMT data. When
this happens, a reasonable solution is to minimize
the discrepancy between the ranking and the ob-
served data. We can do this by reversing a set of
edges in the graph such that (1) the resulting graph
is acyclic, and (2) the summed weights of the re-
versed edges is minimized. A set of edges satisfying
these constraints is called the minimum feedback arc
set (Figure 3).

The feedback arc set problem on general graphs

Figure 3: A tournament with a cycle on vertices E, F,
and G. The dotted edge is the only element of a minimum
feedback arc set: reversing it produces an acyclic graph.

Algorithm 1 Minimum feedback arc set solver
Input: Graph G = (V, E), weights w : £ — R*
Initialize all costs to co
Let cost(() — 0
Add () to agenda A
repeat

Let R «— argmin . 4 cost(R)
Remove R from A > R is a partial ranking
LetU — V\R > set of unranked vertices
for each vertex v € U do

Add R U v to agenda

Letc — ZU/GU:(U/,v)EE w(<v/7 'U>)
Letd — cpst(l%) +c A
Let cost(RU{v}) < min(cost(RU{v}),d)

until argminpe 4 cost(h) =V

is one of the 21 classic problems shown to be
NP-complete by Karp (1972).2 Finding the mini-
mum feedback arc set in a tournament was shown
to be NP-hard by Alon (2006) and Charbit et al.
(2007). However, the specific instances exhibited
in the workshop data tend to have only a few cy-
cles, so a relatively straightforward algorithm (for-
malized above for completeness) solves them ex-
actly without much difficulty. The basic idea is to
construct a dynamic program over the possible rank-
ings. Each item in the dynamic program represents
a ranking of some subset of the vertices. An item
is extended by choosing one of the unranked ver-
tices and appending it to the hypothesis, adding to
its cost the weights of all edges from the other un-
ranked vertices to the newly appended vertex (the

2Karp proved NP-completeness of the decision problem that
asks whether there is a feedback arc set of size k; NP-hardness
of the minimization problem follows.



Task name #sys  #pairs Task name #sys  #pairs
2010 Czech-English 12 5375 2011 English-French individual 17 9086
2010 English-Czech 17 13538 2011 English-German syscomb 4 4374
2010 English-French 19 7962 2011 English-German individual 22 12996
2010 English-German 18 13694 2011 English-Spanish syscomb 4 5930
2010 English-Spanish 16 5174 2011 English-Spanish individual 15 11130
2010 French-English 24 8294 2011 French-English syscomb 6 3000
2010 German-English 25 10424 2011 French-English individual 18 6986
2010 Spanish-English 14 11307 2011 German-English syscomb 8 3844
2011 Czech-English syscomb 4 2602 2011 German-English individual 20 9079
2011 Czech-English individual 8 4922 2011 Spanish-English syscomb 6 4156
2011 English-Czech syscomb 2 2686 2011 Spanish-English individual 15 5652
2011 English-Czech individual 10 17875 2011 Urdu-English tunable metrics 8 6257
2011 English-French syscomb 2 880

Table 1: The set of tasks we analyzed, including the number of participating systems (excluding the reference, #sys),
and the number of implicit pairwise judgements collected (including the reference, #pairs).

edges to be reversed). This hypothesis space should
be familiar to most machine translation researchers
since it closely resembles the search space defined
by a phrase-based translation model (Koehn, 2004).
We use Dijkstra’s algorithm (1959) to explore it ef-
ficiently; the complete algorithm is simply a gener-
alization of the simple algorithm for acyclic tourna-
ments described above.

5 Experiments and Analysis

We experimented with 25 relative ranking tasks pro-
duced by WMT 2010 (Callison-Burch et al., 2010)
and WMT 2011 (Callison-Burch et al., 2011); the
full set is shown in Table 1. For each task we con-
sidered four possible methods of ranking the data:
sorting by any of Equation 1 through 3, and sort-
ing consistent with reversal of a minimum feedback
arc set (MFAS). To weight the edges for the latter
approach, we simply used the difference in num-
ber of assessments preferring one system over the
other; that is, an edge from A to B is weighted
count(A < B) — count(A = B). If this quantity is
negative, there is instead an edge from B to A. The
purpose of this simple weighting is to ensure a so-
lution that minimizes the number of disagreements
with all available evidence, counting each pairwise
comparison as equal.®

3This is not necessarily the best choice of weighting. For
instance, (Bojar et al., 2011) observe that human assessments of

WMT-OFFICIAL MFAS BOJAR
(Ea 1) (Eq3)
ONLINE-B CU-MARECEK ONLINE-B
CU-BOJAR ONLINE-B CU-BOJAR
CU-MARECEK CU-BOJAR CU-MARECEK
CU-TAMCHYNA  CU-TAMCHYNA CU-TAMCHYNA
UEDIN CU-POPEL CU-POPEL

CU-POPEL UEDIN UEDIN

COMMERCIALZ2
COMMERCIAL1

COMMERCIAL1
COMMERCIALZ2

COMMERCIALZ2
COMMERCIAL1L

JHU JHU JHU
CU-ZEMAN CU-ZEMAN CU-ZEMAN
38 0 69

Table 2: Different rankings of the 2011 Czech-English
task. Only the MFAS ranking is acyclic with respect to
pairwise judgements. The final row indicates the weight
of the voilated edges.

An MFAS solution written in Python took only a
few minutes to produce rankings for all 25 tasks on a
2.13 GHz Intel Core 2 Duo processor, demonstrating
that it is completely feasible despite being theoreti-
cally intractible. One value of computing this solu-
tion is that it enables us to answer several questions,

shorter sentences tend to be more consistent with each other, so
perhaps they should be weighted more highly. Unfortunately,
it is not clear how to evaluate alternative weighting schemes,
since there is no ground truth for such meta-evaluations.



ONLINEB LIUM < ONLINEB 1 RWTH-COMBO
RWTH-COMBO UPV-COMBO < CAMBRIDGE 6 | CMU-HYPOSEL-COMBO
CMU-HYPOSEL-COMBO JHU < CAMBRIDGE 1 DCU-COMBO
CAMBRIDGE LIMSI < UEDIN 1 ONLINEB
LIUM LIMSI < CMU-HYPOSEL-COMBO 1 LIUM
DCU-COMBO LIUM-COMBO < CAMBRIDGE 1 | CMU-HEAFIELD-COMBO
CMU-HEAFIELD-COMBO LIUM-COMBO < NRC 3 UPV-COMBO
UPV-COMBO RALI < UEDIN 1 NRC
NRC RALI < UPV-COMBO 4 CAMBRIDGE
UEDIN RALI < JHU 1 UEDIN
JHU RALI < LIUM 3 JHU-COMBO
LIMSI LIG < UEDIN 6 LIMSI
JHU-COMBO BBN-COMBO < NRC 3 RALI
LIUM-COMBO BBN-COMBO < UEDIN 5 LIUM-COMBO
RALI BBN-COMBO < UPV-COMBO 5 BBN-COMBO
LIG BBN-COMBO < JHU 4 JHU
BBN-COMBO RWTH < UPV-COMBO 3 RWTH
RWTH CMU-STATXFER < JHU 1 LIG
CMU-STATXFER CMU-STATXFER < LIG 1 ONLINEA
ONLINEA ONLINEA < RWTH 1 CMU-STATXFER
HUICONG ONLINEA < JHU 2 HUICONG
DFKI HUICONG < LIG 3 DFKI
CU-ZEMAN DFKI < RWTH 3 GENEVA
GENEVA DFKI < CMU-STATXFER 1 CU-ZEMAN

Table 3: 2010 French-English reranking with MFAS solver. The left column shows the optimal ranking, while the
center shows the pairwise rankings that are violated by this ranking, along with their edge weights. The right column
shows the ranking under WMT-OFFICIAL (Eq. 1), originally published as two separate tables.

both about the pairwise data itself, and the proposed
heuristic ranking of Bojar et al. (2011).

5.1 Cycles in the Pairwise Rankings

Our first experiment checks for cycles in the tourna-
ments. Only nine were acyclic, including all eight
of the system combination tasks, each of which con-
tained only a handful of systems. The most inter-
esting, however, is the 2011 English-Czech individ-
ual task. This task is notable because the heuristic
rankings do not produce a ranking that is consistent
with all of the pairwise judgements, even though one
exists. The three rankings are illustrated side-by-
side in Table 2. One obvious problem is that neither
heuristic score correctly identifies CU-MARECEK as
the best system, even though it wins pairwise com-
parisons against all other systems (the WMT 2011
proceedings do identify it as a winner, despite not
placing it in the highest rank).

On the other hand, the most difficult task to dis-
entangle is the 2010 French-English task (Table 3),
which included 25 systems (individual and system
combinations were evaluated as a group for this task,
despite being reported in separate tables in official
results). Its optimal ranking with MFAS still vio-
lates 61 pairwise ranking samples — there is sim-
ply no sensible way to put these systems into a to-
tal order. On the other hand, the heuristic rankings
based on Equations 1 through 3 violate even more
comparisons: 107, 108, and 118, respectively. Once
again we see a curious result in the top of the heuris-
tic rankings, with system ONLINEB falling several
spots below the top position in the heurstic ranking,
despite losing out only to LIUM by one vote.

Our major concern, however, is that over half of
the tasks included cycles of one form or another in
the tournaments. This represents a strong inconsis-



tency in the data.

5.2 Evaluation of Heuristic Scores

Taking the analysis above further, we find that the
total number of violations of pairwise preferences
across all tasks stands at 396 for the MFAS solution,
and at 1140, 1215, 979 for Equations 1 through 3.
This empirically validates the suggestion by Bojar
et al. (2011) to remove ties from both the numera-
tor and denominator of the heuristic measure. On
the other hand, despite the intuitive arguments in its
favor, the empirical evidence does not strongly fa-
vor any of the heuristic measures, all of which are
substantially worse than the MFAS solution.

In fact, HEURISTIC 2 (Eq. 2) fails quite spec-
tacularly in one case: on the ranking of the sys-
tems produced by the tunable metrics task of WMT
2011 (Figure 4). Apart from producing a ranking
very inconsistent with the pairwise judgements, it
achieves a Spearman’s rank correlation coefficent
of 0.43 with the MFAS solution. By comparison,
WMT-OFFICIAL (EQ. 1) produces the best ranking,
with a correlation of 0.93 with the MFAS solution.
The two heuristic measures obtain an even lower
correlation of 0.19 with each other. This difference
in the two rankings was noted in the WMT 2011
report; however comparison with the MFAS ranker
suggests that the published rankings according to the
official metric are about as accurate as those based
on other heuristic metrics.

6 Discussion

Unfortunately, reliably ranking translation systems
based on human assessments appears to be a difficult
task, and it is unclear that WMT has succeeded yet.
Some results presented here, such as the complete
inability to obtain a sensible ordering on the 2010
French-English task—or to produce an acyclic tour-
nament on more than half the tasks—indicate that
further work is needed, and we feel that the pub-
lished results of the human assessment should be re-
garded with a healthy skepticism. There are many
potential sources of uncertainty in the data:

e Itis quite rare that one system is uniformly bet-
ter than another. Rather, one system will tend
to perform better in aggregate across many sen-
tences. The number of sentences on which this

MFAS Ranking
CMU-BLEU
CMU-BLEU-SINGLE
CU-SEMPOS-BLEU

HEURISTIC 2 Ranking
CU-SEMPOS-BLEU
NUS-TESLA-F
CMU-BLEU

RWTH-CDER CMU-BLEU-SINGLE
CMU-METEOR STANFORD-DCP
STANFORD-DCP CMU-METEOR
NUS-TESLA-F RWTH-CDER

SHEFFIELD-ROSE SHEFFIELD-ROSE

Table 4: Rankings of the WMT 2011 tunable metrics
task. MFAS finds a near-optimal solution, violating only
six judgements with reversals of CMU-METEOR < CMU-
BLEU and STANFORD-DCP < CMU-BLEU-SINGLE. In
contrast, the HEURISTIC2 (Eq. 2) solution violates 103
pairwise judgements.

improvement can be reliably observed will vary
greatly. In many cases, it may be less than the
number of samples.

e Individual assessors may be biased or mali-
cious.

e The reliability of pairwise judgements varies
with sentence length, as noted by Bojar et al.
(2011).

e The pairwise judgements are not made directly,
but inferred from a larger relative ranking.

e The pairwise judgements are not independent,
since each sample consists of consecutive sen-
tences from the same document. It is likely
that some systems are systematically better or
worse on particular documents.

e The pairwise judgements are not independent,
since many of the assessments are intention-
ally repeated to assess intra- and inter-annotator
agreement.

e Many of the systems will covary, since they are
often based on the same underlying techniques
and software.

How much does any one or all of these factors
affect the final ranking? The technique described
above does not even attempt to address this ques-
tion. Indeed, modeling this kind of data still ap-
pears to be unsolved: a recent paper by Wauthier



and Jordan (2011) on modeling latent annotator bias
presents one of the first attempts at solving just one
of the above problems, let alone all of them.

Simple hypothesis testing of the type reported in
the workshop results is simply inadequate to tease
apart the many interacting effects in this type of
data and may lead to many unjustified conclusions.
The tables in the Appendix of Callison-Burch et al.
(2011) report p-values of up to 1%, computed for
every pairwise comparison in the dataset. However,
there are over two thousand comparisons in this ap-
pendix, so even at an error rate of 1% we would ex-
pect more than twenty to be wrong. Making matters
worse, many of the p-values are in fact much than
higher than 1%. It is quite reasonable to assume
that hundreds of the pairwise rankings inferred from
these tables are incorrect, or at least meaningless.
Methods for multiple hypothesis testing (Benjamini
and Hochberg, 1995) should be explored.

In short, there is much work to be done. This pa-
per has raised more questions than it answered, but
we offer several recommendations.

e We recommend against using the metric pro-
posed by Bojar et al. (2011). While their anal-
ysis is very insightful, their proposed heuristic
metric is not substantially better than the met-
ric used in the official rankings. If anything, an
MFAS-based ranking should be preferred since
it can minimize discrepancies with the pairwise
rankings, but as we have discussed, we believe
this is far from a complete solution.

e Reconsider the use of total ordering, especially
for the evaluation of automatic metrics. As
demonstrated in this paper, there are many pos-
sible ways to generate a total ordering, and the
choice of one may be arbitrary. In some cases
there may not be enough evidence to support a
total ordering, or the evidence is contradictory,
and committing to one may be a source of sub-
stantial noise in the gold standard for evaluating
automatic metrics.

e Consider a pilot study to clearly identify which
sources of uncertainty in the data affect the
rankings and devise methods to account for it,
which may involve redesigning the data collec-
tion protocol. The current approach is designed

to collect data for a variety of different goals,
including intra- and inter-annotator agreement,
pairwise coverage, and maximum throughput.
However, some of goals are at cross-purposes
in that they make it more difficult to make reli-
able statistical inferences about any one aspect
of the data. Additional care should be taken
to minimize dependencies between the samples
used to produce the final ranking.

e Encourage further detailed analysis of the ex-
isting datasets, perhaps through a shared task.
The data that has been amassed so far through
WMT s the best available resource for mak-
ing progress on solving the difficult problem of
producing reliable and repeatable human rank-
ings of machine translation systems. However,
this problem is not solved yet, and it will re-
quire sustained effort to make that progress.

Acknowledgements

Thanks to Ondréj Bojar, Philipp Koehn, and Mar-
tin Popel for very helpful discussion related to this
work, the anonymous reviewers for detailed and
helpful comments, and Chris Callison-Burch for en-
couraging this investigation and for many explana-
tions and additional data from the workshop.

References

N. Alon. 2006. Ranking tournaments. SIAM Journal on
Discrete Mathematics, 20(1):137-142.

Y. Benjamini and Y. Hochberg. 1995. Controlling the
false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical
Society, 57:289-300.

O. Bojar, M. Ercegovcevit, M. Popel, and O. F. Zaidan.
2011. A grain of salt for the WMT manual evaluation.
In Proc. of WMT.

C. Callison-Burch, P. Koehn, C. Monz, K. Peterson,
M. Przybocki, and O. Zaidan. 2010. Findings of the
2010 joint workshop on statistical machine translation
and metrics for machine translation. In Proc. of WMT.

C. Callison-Burch, P. Koehn, C. Monz, and O. F. Zaidan.
2011. Findings of the 2011 workshop on statistical
machine translation. In Proc. of WMT.

P. Charbit, S. Thomass, and A. Yeo. 2007. The minimum
feedback arc set problem is NP-hard for tournaments.
Combinatorics, Probability and Computing, 16.



E.

R.

W. Dijkstra. 1959. A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1:269-271.
M. Karp. 1972. Reducibility among combinatorial
problems. In Symposium on the Complexity of Com-
puter Computations.

. Koehn. 2004. Pharaoh: a beam search decoder for

phrase-based statistical machine translation models.
In Proc. of AMTA.

. G. Landau. 1951. On dominance relations and

the structure of animal societies: | effect of inher-
ent characteristics. Bulletin of Mathematical Biology,
13(1):1-109.

. L. Wauthier and M. 1. Jordan. 2011. Bayesian bias

mitigation for crowdsourcing. In Proc. of NIPS.



Findings of the 2012 Workshop on Statistical Machine Translation
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Abstract

This paper presents the results of the WMT12
shared tasks, which included a translation
task, a task for machine translation evaluation
metrics, and a task for run-time estimation of
machine translation quality. We conducted a
large-scale manual evaluation of 103 machine
translation systems submitted by 34 teams.
We used the ranking of these systems to mea-
sure how strongly automatic metrics correlate
with human judgments of translation quality
for 12 evaluation metrics. We introduced a
new quality estimation task this year, and eval-
uated submissions from 11 teams.

1 Introduction

This paper presents the results of the shared tasks
of the Workshop on statistical Machine Translation
(WMT), which was held at NAACL 2012. This
workshop builds on six previous WMT workshops
(Koehn and Monz, 2006; Callison-Burch et al.,
2007; Callison-Burch et al., 2008; Callison-Burch
et al., 2009; Callison-Burch et al., 2010; Callison-
Burch et al., 2011). In the past, the workshops have
featured a number of shared tasks: a translation task
between English and other languages, a task for au-
tomatic evaluation metrics to predict human judg-
ments of translation quality, and a system combina-
tion task to get better translation quality by combin-
ing the outputs of multiple translation systems. This
year we discontinued the system combination task,
and introduced a new task in its place:

e Quality estimation task — Structured predic-
tion tasks like MT are difficult, but the dif-
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ficulty is not uniform across all input types.
It would thus be useful to have some mea-
sure of confidence in the quality of the output,
which has potential usefulness in a range of set-
tings, such as deciding whether output needs
human post-editing or selecting the best trans-
lation from outputs from a number of systems.
This shared task focused on sentence-level es-
timation, and challenged participants to rate
the quality of sentences produced by a stan-
dard Moses translation system on an English-
Spanish news corpus in one of two tasks:
ranking and scoring. Predictions were scored
against a blind test set manually annotated with
relevant quality judgments.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dissem-
inate common test sets and public training data with
published performance numbers, and to refine eval-
uation methodologies for machine translation. As
with previous workshops, all of the data, transla-
tions, and collected human judgments are publicly
available.! We hope these datasets form a valuable
resource for research into statistical machine transla-
tion, system combination, and automatic evaluation
or automatic prediction of translation quality.

2 Overview of the Shared Translation Task

The recurring task of the workshop examines trans-
lation between English and four other languages:
German, Spanish, French, and Czech. We created a

"http://statmt.org/wmt12/results.html

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 10-51,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



test set for each language pair by translating newspa-
per articles. We additionally provided training data
and two baseline systems.

2.1 Test data

The test data for this year’s task was created by hir-
ing people to translate news articles that were drawn
from a variety of sources from November 15, 2011.
A total of 99 articles were selected, in roughly equal
amounts from a variety of Czech, English, French,
German, and Spanish news sites:?

Czech: Blesk (1), CTK (1), E15 (1), denik (4),
iDNES.cz (3), iHNed.cz (3), Ukacko (2),
Zheny (1)

French: Canoe (3), Croix (3), Le Devoir (3), Les
Echos (3), Equipe (2), Le Figaro (3), Libera-
tion (3)

Spanish: ABC.es (4), Milenio (4), Noroeste (4),
Nacion (3), El Pais (3), El Periodico (3), Prensa
Libre (3), El Universal (4)

English: CNN (3), Fox News (2), Los Angeles
Times (3), New York Times (3), Newsweek (1),
Time (3), Washington Post (3)

German: Berliner Kurier (1), FAZ (3), Giessener
Allgemeine (2), Morgenpost (3), Spiegel (3),
Welt (3)

The translations were created by the professional
translation agency CEET.> All of the translations
were done directly, and not via an intermediate lan-
guage.

Although the translations were done profession-
ally, we observed a number of errors. These errors
ranged from minor typographical mistakes (I was
terrible... instead of It was terrible...) to more
serious errors of incorrect verb choices and nonsen-
sical constructions. An example of the latter is the
French sentence (translated from German):

1l a gratté une planche de béton, perdit des
pieces du véhicule.

(He scraped against a concrete crash bar-
rier and lost parts of the car.)

2For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.
Shttp://www.ceet.eu/
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Here, the French verb gratter is incorrect, and the
phrase planche de béton does not make any sense.
We did not quantify errors, but collected a number
of examples during the course of the manual evalua-
tion. These errors were present in the data available
to all the systems and therefore did not bias the re-
sults, but we suggest that next year a manual review
of the professionally-collected translations be taken
prior to releasing the data in order to correct mis-
takes and provide feedback to the translation agency.

2.2 Training data

As in past years we provided parallel corpora to train
translation models, monolingual corpora to train lan-
guage models, and development sets to tune system
parameters. Some statistics about the training mate-
rials are given in Figure 1.

2.3 Submitted systems

We received submissions from 34 groups across 18
institutions. The participants are listed in Table 1.
We also included two commercial off-the-shelf MT
systems, three online statistical MT systems, and
three online rule-based MT systems. Not all systems
supported all language pairs. We note that the eight
companies that developed these systems did not sub-
mit entries themselves, but were instead gathered by
translating the test data via their interfaces (web or
PC).* They are therefore anonymized in this paper.
The data used to construct these systems is not sub-
ject to the same constraints as the shared task partic-
ipants. It is possible that part of the reference trans-
lations that were taken from online news sites could
have been included in the systems’ models, for in-
stance. We therefore categorize all commercial sys-
tems as unconstrained when evaluating the results.

3 Human Evaluation

As with past workshops, we placed greater empha-
sis on the human evaluation than on the automatic
evaluation metric scores. It is our contention that
automatic measures are an imperfect substitute for
human assessment of translation quality. Therefore,
we define the manual evaluation to be primary, and

“We would like to thank Ondfej Bojar for harvesting the
commercial entries, Christian Federmann for the statistical MT
entries, and Hervé Saint-Amand for the rule-based MT entries.



Europarl Training Corpus

Spanish < English French — English German «— English Czech — English
Sentences 1,965,734 2,007,723 1,920,209 646,605
Words 56,895,229 | 54,420,026 | 60,125,563 | 55,642,101 | 50,486,398 | 53,008,851 | 14,946,399 | 17,376,433
Distinct words 176,258 117,481 140,915 118,404 381,583 115,966 172,461 63,039

News Commentary Training Corpus

Spanish — English

French < English

German — English

Czech — English

Sentences

157,302

137,097

158,840

136,151

Words

4,449,786 | 3,903,339

3,915,218 | 3,403,043

3,950,394 | 3,856,795

2,938,308 | 3,264,812

Distinct words

78,383 57,711

63,805 53,978

130,026 57,464

136,392 52,488

United Nations Training Corpus

Sp

anish < English

French < English

Sentences

11,196,913

12,886,831

Words

318,788,686

365,127,098

411,916,781

360,341,450

Distinct words 593,

567 581,339

565,553 666,077

10° Word Parallel Corpus

French «—

English

Sentences

22,520

,400

Words

811,203,407

668,412,817

Distinct words

2,738,882

2,861,836

CzEng Training Corpus

Czech — English

Sentences

14,833

,358

Words

200,658,857

228,040,794

Distinct words

1,389,803

920,824

Europarl Language Model Data

English

Spanish

French

German

Czech

Sentence

2,218,201

2,123,835

2,190,579

2,176,537

668,595

Words

59,848,044

60,476,282

63,439,791

53,534,167

14,946,399

Distinct words

123,059

181,837

145,496

394,781

172,461

News Language Model Data

English

Spanish

French

German

Czech

Sentence

51,827,706

8,627,438

16,708,622

30,663,107

18,931,106

Words

1,249,883,955

247,722,726

410,581,568

576,833,910

315,167,472

Distinct words

2,265,254

926,999

1,267,582

3,336,078

2,304,933

News Test Set

English | Spanish | French

German | Czech

Sentences

3003

Words 73

,185 78,965

81,478

73,433 | 65,501

Distinct words 9,

881 12,137

11,441

14,252 | 17,149

Figure 1: Statistics for the training and test sets used inlthe translation task. The number of words and the number of
distinct words (case-insensitive) is based on the provided tokenizer.



ID Participant

CMU Carnegie Mellon University (Denkowski et al., 2012)
CU-BOJAR Charles University - Bojar (Bojar et al., 2012)

CU-DEPFIX Charles University - DEPFIX (Rosa et al., 2012)
CU-POOR-COMB Charles University - Bojar (Bojar et al., 2012)

CU-TAMCH Charles University - Tamchyna (Tamchyna et al., 2012)
CU-TECTOMT Charles University - TectoMT (Dusek et al., 2012)
DFKI-BERLIN German Research Center for Artificial Intelligence (Vilar, 2012)
DFKI-HUNSICKER German Research Center for Artificial Intelligence - Hunsicker (Hunsicker et al., 2012)
GTH-UPM Technical University of Madrid (Lépez-Ludeia et al., 2012)
ITS-LATL Language Technology Laboratory @ University of Geneva (Wehrli et al., 2009)
JHU Johns Hopkins University (Ganitkevitch et al., 2012)

KIT Karlsruhe Institute of Technology (Niehues et al., 2012)

LIMSI LIMSI (Le et al., 2012)

LIUM University of Le Mans (Servan et al., 2012)

PROMT ProMT (Molchanov, 2012)

QCRI Qatar Computing Research Institute (Guzman et al., 2012)
QUAERO The QUAERO Project (Markus et al., 2012)

RWTH RWTH Aachen (Huck et al., 2012)

SFU Simon Fraser University (Razmara et al., 2012)
UEDIN-WILLIAMS University of Edinburgh - Williams (Williams and Koehn, 2012)
UEDIN University of Edinburgh (Koehn and Haddow, 2012)

UG University of Toronto (Germann, 2012)

UK Charles University - Zeman (Zeman, 2012)

UPC Technical University of Catalonia (Formiga et al., 2012)
COMMERCIAL-[1,2] | Two commercial machine translation systems

ONLINE-[A,B,C] Three online statistical machine translation systems
RBMT-[1,3,4] Three rule-based statistical machine translation systems

Table 1: Participants in the shared translation task. Not all teams participated in all language pairs. The translations
from the commercial, online, and rule-based systems were crawled by us, not submitted by the respective companies,
and are therefore anonymized. Anonymized identifiers were chosen so as to correspond with the WMT11 systems.
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Language Pair Num Label Labels per
Systems Count  System
Czech-English 6 6,470 1,078.3
English-Czech 13 11,540 887.6
German-English 16 7,135 445.9
English-German 15 8,760 584.0
Spanish-English 12 5,705 475.4
English-Spanish 11 7,375 670.4
French-English 15 6,975 465.0
English-French 15 7,735 515.6
Overall 103 61,695 598

Table 2: A summary of the WMT12 ranking task, show-
ing the number of systems and number of labels (rank-
ings) collected for each of the language translation tasks.

use the human judgments to validate automatic met-
rics.

Manual evaluation is time consuming, and it re-
quires a large effort to conduct on the scale of our
workshop. We distributed the workload across a
number of people, beginning with shared-task par-
ticipants and interested volunteers. This year, we
also opened up the evaluation to non-expert anno-
tators hired on Amazon Mechanical Turk (Callison-
Burch, 2009). To ensure that the Turkers provided
high quality annotations, we used controls con-
structed from the machine translation ranking tasks
from prior years. Control items were selected such
that there was high agreement across the system de-
velopers who completed that item. In all, there were
229 people who participated in the manual evalua-
tion, with 91 workers putting in more than an hour’s
worth of effort, and 21 putting in more than four
hours. After filtering Turker rankings against the
controls to discard Turkers who fell below a thresh-
old level of agreement on the control questions,
there was a collective total of 336 hours of usable
labor. This is similar to the total of 361 hours of
labor collected for WMT11.

We asked annotators to evaluate system outputs
by ranking translated sentences relative to each
other. This was our official determinant of trans-
lation quality. The total number of judgments col-
lected for each of the language pairs is given in Ta-
ble 2.
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3.1 Ranking translations of sentences

Ranking translations relative to each other is a rea-
sonably intuitive task. We therefore kept the instruc-
tions simple:

You are shown a source sentence followed
by several candidate translations.

Your task is to rank the translations from
best to worst (ties are allowed).

Each screen for this task involved judging trans-
lations of three consecutive source segments. For
each source segment, the annotator was shown the
outputs of five submissions, and asked to rank them.
We refer to each of these as ranking tasks or some-
times blocks.

Every language task had more than five partici-
pating systems — up to a maximum of 16 for the
German-English task. Rather than attempting to get
a complete ordering over the systems in each rank-
ing task, we instead relied on random selection and
a reasonably large sample size to make the compar-
isons fair.

We use the collected rank labels to assign each
system a score that reflects how highly that system
was usually ranked by the annotators. The score for
some system A reflects how frequently it was judged
to be better than other systems. Specifically, each
block in which A appears includes four implicit pair-
wise comparisons (against the other presented sys-
tems). A is rewarded once for each of the four com-
parisons in which A wins, and its score is the num-
ber of such winning pairwise comparisons, divided
by the total number of non-tying pairwise compar-
isons involving A.

This scoring metric is different from that used in
prior years in two ways. First, the score previously
included ties between system rankings. In that case,
the score for A reflected how often A was rated as
better than or equal to other systems, and was nor-
malized by all comparisons involving A. However,
this approach unfairly rewards systems that are sim-
ilar (and likely to be ranked as tied). This is prob-
lematic since many of the systems use variations of
the same underlying decoder (Bojar et al., 2011).

A second difference is that this year we no longer
include comparisons against reference translations.
In the past, reference translations were included



among the systems to be ranked as controls, and
the pairwise comparisons were used in determin-
ing the best system. However, workers have a very
clear preference for reference translations, so includ-
ing them unduly penalized systems that, through
(un)luck of the draw, were pitted against the ref-
erences more often. These changes are part of a
broader discussion of the best way to produce the
system ranking, which we discuss at length in Sec-
tion 4.

The system scores are reported in Section 3.3.
Appendix A provides detailed tables that contain
pairwise head-to-head comparisons between pairs of
systems.

3.2 Inter- and Intra-annotator agreement in
the ranking task

Each year we calculate the inter- and intra-annotator
agreement for the human evaluation, since a reason-
able degree of agreement must exist to support our
process as a valid evaluation setup. To ensure we
had enough data to measure agreement, we occa-
sionally showed annotators items that were repeated
from previously completed items. These repeated
items were drawn from ones completed by the same
annotator and from different annotators.

We measured pairwise agreement among anno-
tators using Cohen’s kappa coefficient (x) (Cohen,
1960), which is defined as

_ P(4) - P(E)
- 1-P(E)

where P(A) is the proportion of times that the anno-
tators agree, and P(FE) is the proportion of time that
they would agree by chance. Note that « is basically
a normalized version of P(A), one which takes into
account how meaningful it is for annotators to agree
with each other, by incorporating P(F). Note also
that x has a value of at most 1 (and could possibly
be negative), with higher rates of agreement result-
ing in higher .

We calculate P(A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B,or A < B. In
other words, P(A) is the empirical, observed rate at
which annotators agree, in the context of pairwise
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comparisons. P(A) is computed similarly for intra-
annotator agreement (i.e. self-consistency), but over
pairwise comparisons that were annotated more than
once by a single annotator.

As for P(E), it should capture the probability that
two annotators would agree randomly. Therefore:

P(E) = P(4>B)*> 4+ P(4=B)* 4+ P(A<B)?

Note that each of the three probabilities in P(E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is com-
puted empirically, by observing how often annota-
tors actually rank two systems as being tied. We
note here that this empirical computation is a depar-
ture from previous years’ analyses, where we had
assumed that the three categories are equally likely
(yielding P(E) = § + & + § = 1). We believe that
this is a more principled approach, which faithfully
reflects the motivation of accounting for P(E) in the
first place.

Table 3 gives « values for inter-annotator and
intra-annotator agreement. These give an indica-
tion of how often different judges agree, and how
often single judges are consistent for repeated judg-
ments, respectively. The exact interpretation of the
kappa coefficient is difficult, but according to Lan-
dis and Koch (1977), 0 — 0.2 is slight, 0.2 — 0.4
is fair, 0.4 — 0.6 is moderate, 0.6 — 0.8 is sub-
stantial, and 0.8 — 1.0 is almost perfect. Based on
these interpretations, the agreement for sentence-
level ranking is fair for inter-annotator and moder-
ate for intra-annotator agreement. Consistent with
previous years, intra-annotator agreement is higher
than inter-annotator agreement, except for English—
Czech.

An important difference from last year is that the
evaluations were not constrained only to workshop
participants, but were made available to all Turk-
ers. The workshop participants were trusted to com-
plete the tasks in good faith, and we have multiple
years of data establishing general levels of inter- and
intra-annotator agreement. Their HITs were unpaid,
and access was limited with the use of a qualifica-
tion. The Turkers completed paid tasks, and we used
controls to filter out fraudulent and unconscientious
workers.



INTER-ANNOTATOR AGREEMENT ~ INTRA-ANNOTATOR AGREEMENT
LANGUAGE PAIRS | P(A) P(E) K P(A) P(E) K
Czech-English 0.567 0.405 0.272 0.660  0.405 0.428
English-Czech 0.576  0.383 0.312 0.566 0.383 0.296
German-English 0.595 0.401 0.323 0.733  0.401 0.554
English-German 0.598 0.394 0.336 0.732 0.394 0.557
Spanish-English 0.540 0.408 0.222 0.792  0.408 0.648
English-Spanish 0.504 0.398 0.176 0.566 0.398 0.279
French-English 0.568 0.406 0.272 0.719  0.406 0.526
English-French 0.519 0.388 0.214 0.634 0.388 0.401
WMT12 0.568 0.396 0.284 0.671 0.396 0.455
WMTI11 0.601 0.362 0.375 0.722  0.362 0.564

Table 3: Inter- and intra-annotator agreement rates for the WMT12 manual evaluation. For comparison, the WMT11
rows contain the results from the European languages individual systems task (Callison-Burch et al. (2011), Table 7).

Agreement rates vary widely across languages.
For inter-annotator agreements, the range is 0.176 to
0.336, while intra-annotator agreement ranges from
0.279 to 0.648. We note in particular the low agree-
ment rates among judgments in the English-Spanish
task, which is reflected in the relative lack of statis-
tical significance Table 4. The agreement rates for
this year were somewhat lower than last year.

3.3 Results of the Translation Task

We used the results of the manual evaluation to an-
alyze the translation quality of the different systems
that were submitted to the workshop. In our analy-
sis, we aimed to address the following questions:

e Which systems produced the best translation
quality for each language pair?

e Which of the systems that used only the pro-
vided training materials produced the best
translation quality?

Table 4 shows the system ranking for each of the
translation tasks. For each language pair, we define
a system as ‘winning’ if no other system was found
statistically significantly better (using the Sign Test,
at p < 0.10). In some cases, multiple systems are
listed as winners, either due to a large number of par-
ticipants or a low number of judgments per system
pair, both of which are factors that make it difficult
to achieve statistical significance.

As in prior years, unconstrained online systems
A and B are among the best for many tasks, with
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a few notable exceptions. CU-DEPFIX, which post-
processes the output of ONLINE-B, was judged as
the best system for English-Czech. For the French-
English and English-French tasks, constrained sys-
tems came out on top, with LIMSI appearing both
times. Consistent with prior years, the rule-based
systems performed very well on the English-German
task. A rule-based system also had a good showing
for English-Spanish, but not really anywhere else.
Among the systems competing in all tasks, no sin-
gle system consistently appeared among the top en-
trants. Participants that competed in all tasks tended
to fair worse, with the exception of UEDIN. Addi-
tionally, KIT appeared in four tasks and was a con-
strained winner each time.

4 Methods for Overall Ranking

Last year one of the long papers published at WMT
criticized our method for compiling the overall rank-
ing for systems in the translation task (Bojar et
al., 2011). This year another paper shows some
additional potential inconsistencies in the rankings
(Lopez, 2012). In this section we delve into a de-
tailed analysis of a variety of methods that use the
human evaluation to create an overall ranking of sys-
tems.

In the human evaluation, we collect ranking judg-
ments for output from five systems at a time. We in-
terpret them as 10 - (23%) pairwise judgments over
systems and use these to analyze how each system
faired compared against each of the others. Not all



Czech-English English-Czech German-English

3,603-3,718 comparisons/system 2,652-3,146 comparisons/system 1,386—1,567 comparisons/system
System C? | >others System C? | >others System C? | >others
ONLINE-Be | N 0.65 CU-DEPFIX e N 0.66 ONLINE-A e N 0.65
UEDIN * Y 0.60 ONLINE-B N 0.63 ONLINE-B e N 0.65
CU-BOJAR Y 0.53 UEDIN * Y 0.56 QUAERO Y 0.61
ONLINE-A N 0.53 CU-TAMCH N 0.56 RBMT-3 N 0.60
UK Y 0.37 CU-BOJAR * Y 0.54 UEDIN % Y 0.60
JHU Y 0.32 CU-TECTOMT * Y 0.53 RWTH % Y 0.56
Spanish-English ONLINE-A N 0.53 KIT % Y 0.55
1,527-1,775 comparisons/system COMMERCIAL-1 | N 0.48 LIMSI Y 0.54
COMMERCIAL-2 | N 0.46 QCRI Y 0.52
System C? | >others CU-POOR-COMB | Y 0.44 RBMT- 1 N 0.51
ONLINE-Ae | N 0.62 UK Y 0.44 RBMT-4 N 0.50
ONLINE-Be | N 0.61 SFU Y 0.36 ONLINE-C N 0.43
SEE:: z ggg JHU Y 0.32 DFKI-BERLIN | Y 0.40
ox .
UPC Y 0.57 English-Spanish }J;U :{{ 821
GTH-UPM Y 052 2,013-2,294 comparisons/system UG v 0'17
RBMT-3 N 0.51 System C? | >others ’
JHU Y 0.48 ONLINE-Be | N 0.65 English-German
RBMT-4 N 0.46 RBMT-3 N 0.58 1,777-2,160 comparisons/system
RBMT-1 N 0.42 ONLINE-A e | N 0.56 System C? | >others
ONLINE-C N 0.42 PROMT N 0.55 ONLINE-B e N 0.64
UK Y 0.19 UPC % Y 0.52 RBMT-3 N 0.63
French-English UEDIN Y 0.52 RBMT-4 e N 0.58
1,437-1,701 comparisons/system BT N 0.46 SLELIL N 0.56
RBMT-1 N 0.45 LIMSI * Y 0.55
System C? | >others ONLINE-C N 0.43 ONLINE-A N 0.54
LIMSI ox Y 0.63 UK Y 0.41 UEDIN-WILLIAMS * | Y 0.51
ESL;;E - ; ggé JHU Y 0.36 KIT * Y 0.50
Ae ]
cMue | Y | 057 English-French B R Y
ONLINE-B e | N 057 1,410-1,697 comparisons/system RWTH x ¥ 0.47
UEDIN Y 0.55 System C? | >others ONLINE-C N 0.47
LIUM Y 0.52 LIMSI ex Y 0.66 UK Y 0.45
RWTH Y 0.52 RWTH Y 0.62 JHU Y 0.43
RBMT-1 N 0.46 ONLINE-B | N 0.60 DFKI-BERLIN % 0.25
RBMT-3 N 0.46 KIT ex Y 0.59
UK Y 0.44 LIUM Y 0.55
SFU Y 0.44 UEDIN Y 0.53
RBMT-4 N 0.43 RBMT-3 N 0.52
JHU Y 0.41 ONLINE-A | N 0.51
ONLINE-C N 0.32 PROMT N 0.51
RBMT-1 N 0.48
JHU Y 0.44
UK Y 0.40
RBMT-4 N 0.39
ONLINE-C | N 0.39
ITS-LATL N 0.36

C? indicates whether system is constrained (unhighlighted rows): trained only using supplied training data, standard
monolingual linguistic tools, and, optionally, LDC’s English Gigaword.
e indicates a win: no other system is statistically significantly better at p-level < 0.10 in pairwise comparison.
* indicates a constrained win: no other constrained system is statistically better.

Table 4: Official results for the WMT12 translation task. Systems are ordered by their > others score, reflecting how
often their translations won in pairwise comparisons. For detailed head-to-head comparisons, see Appendix A.
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pairwise comparisons detect statistical significantly
superior quality of either system, and we note this
accordingly.

It is desirable to additionally produce an overall
ranking. In the past evaluation campaigns, we used
two different methods to obtain such a ranking, and
this year we use yet another one. In this section, we
discuss each of these overall ranking methods and a
few more.

4.1 Rank Ranges

In the first human evaluation, we use fluency and
adequacy judgments on a scale from 1 to 5 (Koehn
and Monz, 2006). We normalized the scores on a
per-sentence basis, thus converting them to a rela-
tive ranking in a 5-system comparison. We listed
systems by the average of these scores over all sen-
tences, in which they were judged.

We did not report ranks, but rank ranges. To
give an example: if a system scored neither sta-
tistically significantly better nor statistically signif-
icantly worse than 3 other systems, we assign it the
rank range 1-4. The given evidence is not sufficient
to rank it exactly, but it does rank somewhere in the
top 4.

In subsequent years, we did not continue the re-
porting of rank ranges (although they can be ob-
tained by examining the pairwise comparison ta-
bles), but we continued to report systems as win-
ners whenever there was not statistically signifi-
cantly outperformed by any other system.

4.2 Ratio of Wins and Ties

In the following years (Callison-Burch et al., 2007;
Callison-Burch et al., 2008; Callison-Burch et al.,
2009; Callison-Burch et al., 2010; Callison-Burch et
al., 2011), we abandoned the idea of using fluency
and adequacy judgments, since they showed to be
less reliable than simple ranking of system transla-
tions. We also started to interpret the 5-system com-
parison as a set of pairwise comparisons.

Systems were then ranked by the ratio of how of-
ten they were ranked better or equal to any of the
other systems.

Given a set J of sentence-level judgments
(s1,82,c¢) where s1 € S and s3 € S are two sys-
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tems and
win if s; better than so
c =\ tie if s1 equalto sg (D)
loss if s; worse than s9

then we can count the total number of wins and ties
of a system s as

win(s) = [{(s1,s2,¢) € J:s=s1,¢c=win}|+
{(s1,s2,¢) € J: 8= s2,c=loss}|
loss(s) = |{(s1,s2,¢) € J:5=s51,c=loss}|+
{(s1,s2,¢) € J: 8= 82,c=win}|
tie(s) = |{(s1,82,¢) € J : s =s1,C = tie}|+
{(s1,82,¢) € J :5=s9,c=tie}|
2)
and rank systems by the ratio
score(s) = win(s) + tie(s) 3)

win(s) + loss(s) + tie(s)

This ratio was used for the official rankings over
the last five years.

4.3 Ratio of Wins (Ignoring Ties)

Bojar et al. (2011) present a persuasive argument
that our ranking scheme is biased towards systems
that are similar to many other systems. Given that
most of the systems are based on phrase-based mod-
els trained on the same training data, this is indeed a
valid concern.

They suggest ignoring ties, and using as ranking
score instead the following ratio:

win(s)
win(s) + loss(s)

“

score(s) =

This ratio is used for the official ranking this year.

4.4 Minimizing Pairwise Ranking Violations

Lopez (2012, in this volume) argues against using

aggregate statistics over a set of very diverse judg-

ments. Instead, a ranking that has the least number

of pairwise ranking violations is said to be preferred.
If we define the number of pairwise wins as

{(s1,s2,¢) € J:c=win}|+
|{(82,81,C) cJ:c= lOSS}|

Win(sl, 82) =

&)
then we define a count function for pairwise order
violations as



score(sy, s2) = max(0, win(sz, s1) — win(s1, s2))
(6)
Given a bijective ranking function R(s) — i with
the codomain of consecutive integers starting at 1,
the total number of pairwise ranking violations is de-
fined as

score(R) =

2.

R(si)<R(s;)

score(s;, s;) @)

Finding the optimal ranking R that minimizes this
score is not trivial, but given the number of systems
involved in this evaluation campaign, it is quite man-
ageable.

4.5 Most Probable Ranking

We now introduce a variant to Lopez’s ranking
method. We motivate it first.
Consider the following scenario:

win(A4, B) = 20 win(B,A) =0
win(B,C) = 40 win(C, B) = 20
win(C, A) = 60 win(A4, C) = 40

Since this constitutes a circle, there are three
rankings with the minimum number of 20 violation
(ABC, BCA, CAB).

However, we may want to take the ratio of wins
and losses for each pairwise ranking into account.
Using maximum likelihood estimation, we can de-
fine the probability that system s; is better than sys-
tem sy on a randomly drawn sentence as

win(sl, 82)
win(sy, s2) + win(sz, s1)

p(s1 > s2) = 8)

We can then go on to define’ the probability of a
SSketch of derivation:

p(s1 > s2 > s3) = p(s first)p(sz second|s; first)
(chain rule)

p(s1 first) = p(s1 > s2 and s1 > s3)

= p(s1 > s2)p(s1 > s3)

(independence assumption)

p(s2 sec.|sq first) p(s2 second)
(independence assumption)

= p(s2 > s3)
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ranking of three systems as:

p(s1 > s2 > s3) = p(s1 > s2)p(s1 > s3)p(s2 > s3)
©))
This function scores the three rankings in the ex-
ample above as follows:

p(A>B>C)= 7058 =027
p(B>C>A)= Fgs =0
p(C>A>B)= 022 (020

One disadvantage of this and the previous rank-
ing method is that they do not take advantage of all
available evidence. Consider the example:

win(A, B) = 100 win(B,A) =0
win(A, C) = 60 win(C, A) = 40
win(B,C) = 50 win(C, B) = 50

Here, system A is clearly ahead, but how about B
and C'? They are tied in their pairwise comparison.
So, both ABC and AC B have no pairwise ranking
violations and their most probable ranking score, as
defined above, is the same.

B is clearly worse than A, but C' has a fighting
chance, and this should be reflected in the ranking.
The following two overall ranking methods over-
come this problem.

4.6 Monte Carlo Playoffs

The sports world is accustomed to the problem of
finding a ranking of sports teams, but being only able
to have pairwise competitions (think basketball or
football). One strategy is to stage playoffs.

Let’s say there are 4 systems: A, B, C,and D. As
in well-known play-off fashion, they are first seeded.
In our case, this happens randomly, say, 1:A4, 2:B,
3:C, 4:D (for simplicity’s sake).

First round: A plays against D, B plays against
C. How do they play? We randomly select a sen-
tence on which they were compared (no ties). If A
is better according to human judgment than D, then
A wins.

Let’s say, A wins against D, and B loses against
C. This leads us to the final A against C' and the
3" place game D against B, in which, say, A and D
win. The resulting final ranking is ACDB.

We repeat this a million times with a different ran-
dom seeding every time, and compute the average
rank, which is then used for overall ranking.



Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.641: ONLINE-B RBMT-4 RBMT-4 6.16: ONLINE-B 0.640 (1-2): ONLINE-B
2 0.627: RBMT-3 ONLINE-B ONLINE-B 6.39: RBMT-3 0.622 (1-2): RBMT-3
3 0.577: RBMT-4 RBMT-3 RBMT-3 6.98: RBMT-4 0.578 (3-5): RBMT-4
4 0.557: RBMT-1 RBMT-1 RBMT-1 7.32: RBMT-1 0.553 (3-6): RBMT-1
5 0.547: LIMSI ONLINE-A ONLINE-A 7.46: LIMSI 0.543 (3-7): LIMSI
6 0.537: ONLINE-A UEDIN-WILLIAMS | LIMSI 7.57: ONLINE-A 0.534 (4-8): ONLINE-A
7 0.509: UEDIN-WILLIAMS | LIMSI UEDIN-WILLIAMS | 7.87: UEDIN-WILLIAMS | 0.511 (5-9): UEDIN-WILLIAMS
8 0.503: KIT KIT KIT 7.98: KIT 0.503 (6-11): KIT
9 0.476: DFKI-HUNSICKER | DFKI-HUNSICKER | DFKI-HUNSICKER | 8.32: UEDIN 0.477 (7-13): UEDIN
10 | 0.475: UEDIN ONLINE-C ONLINE-C 8.38: DFKI-HUNSICKER | 0.472 (8-13): DFKI-HUNSICKER
11 | 0.470: RWTH UEDIN UEDIN 8.41: ONLINE-C 0.470 (8-13): ONLINE-C
12 | 0.470: ONLINE-C UK UK 8.44: RWTH 0.468 (8-13): RWTH
13 | 0.448: UK RWTH RWTH 8.72: UK 0.447 (10-14): UK
14 | 0.435: JHU JHU JHU 8.87: JHU 0.434 (12-14): JHU
15 | 0.249: DFKI-BERLIN DFKI-BERLIN DFKI-BERLIN 11.15: DFKI-BERLIN 0.249 (15): DFKI-BERLIN

Table 5: Overall ranking with different methods (English—German)

4.7 Expected Wins

In European national football competitions, each
team plays against each other team, and at the end
the number of wins decides the rankings.® We can
simulate this type of tournament as well with Monte
Carlo methods. However, in the limit, each team will
be on average ranked based on its expected number
of wins in the competition. We can compute the ex-
pected number of wins straightforward as

1
§T=1 > plsi > s))
Jig e

score(s;) =

(10)

Note that this is very similar to Bojar’s method of
ranking systems, with one additional and important
twist. We can rewrite Equation 4, the variant that
ignores ties, as:

win(s;)
win(s;)+loss(s;)
D54 Win(si,s5)
- Z] o WIn(si,s5)+loss(s;,85)

score(s;) =

QY
(12)

This section’s Equation 10 can be rewritten as:

\5! Z

win(s;, s;)
score(s;)

win(s;, sj) + loss(s;, s;)

(13)

The difference is that the new overall ranking
method normalizes the win ratios per pairwise rank-
ing. And this makes sense, since it overcomes one

SThey actually play twice against each other, to balance out
home field advantage, which is not a concern here.
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problem with our traditional and Bojar’s ranking
method.

Previously, some systems were put at an dis-
advantage, if they are compared more frequently
against good systems than against bad systems. This
could happen, if participants were not allowed to
rank their own systems (a constraint we enforced
in the past, but no longer). This was noticed by
judges a few years ago, when we had instant re-
porting of rankings during the evaluation period. If
you have one of the best systems and carry out a lot
of human judgments, then competitors’ systems will
creep up higher, since they are not compared against
your own (very good) system anymore, but more fre-
quently against bad systems.

4.8 Comparison

Table 5 shows the different rankings for English—
German, a rather typical example. The table dis-
plays the ranking of the systems according to five
different methods, alongside with system scores ac-
cording to the ranking method: the win ratio (Bo-
jar), the average rank (MC Playoffs), and the ex-
pected win ratio (Expected Wins). For the latter, we
performed bootstrap resampling and computed rank
ranges that lie in a 95% confidence interval. You
can find the tables for the other language pairs in the
annex.

The win-based methods (Bojar, MC Playoffs, Ex-
pected Wins) give very similar rankings — exhibit-
ing mostly just the occasional pairwise flip or for



many language pairs the ranking is identical. The
same is true for the two methods based on pairwise
rankings (Lopez, Most Probable). However, the two
types of ranking lead to significantly different out-
comes.

For instance, the win-based methods are pretty
sure that ONLINE-B and RBMT-3 are the two top
performers. Bootstrap resampling of rankings ac-
cording to Expected Wins ranking draws a clear
line between them and the rest. However, Lopez’s
method ranks RBMT-4 first. Why? In direct com-
parison of the three systems, RBMT-4 beats statis-
tically insignificantly ONLINE-B 45% wins against
42% wins and essentially ties with RBMT-3 41%
wins against 41% wins (ONLINE-B beats RBMT-3
49%-35%, p < 0.01).

We use Bojar’s method as our official method for
ranking in Table 4 and as the human judgments that
we used when calculating how well automatic eval-
uation metrics correlate with human judgments.

4.9 Number of Judgments Needed

In general, there are not enough judgments to rank
systems unambiguously. How many judgments do
we need?

We may extrapolate this number from the num-
ber of judgments we have. Figure 2 provides some
hints. The outlier is Czech—English, for which only
6 systems were submitted and we can separate them
almost completely even at p-level 0.01. For all the
other language pairs, we can only draw for around
40% of the pairwise comparisons conclusions with
that level of statistical significance.

Since the plots also contains the ratio of signifi-
cant conclusions when sub-sampling the number of
judgments, we obtain curves with a clear upward
slope. For English—Czech, for which we were able
to collect much more judgments, we can draw over
60% significant conclusions. The curve for this lan-
guage pair does not look much different than the
other languages, suggesting that doubling the num-
ber of judgments should allow similar levels for
them as well.

5 Metrics Task

In addition to allowing us to analyze the translation
quality of different systems, the data gathered during
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Figure 2: Ratio of statistically significant pairwise com-
parisons at different p-levels, based on number of pair-
wise judgments collected.
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Metric IDs Participant

AMBER National Research Council Canada (Chen et al., 2012)
METEOR CMU (Denkowski and Lavie, 2011)

SAGAN-STS FaMAF, UNC, Argentina (Castillo and Estrella, 2012)
SEMPOS Charles University (Machacek and Bojar, 2011)

SIMBLEU University of Sheffield (Song and Cohn, 2011)

SPEDE Stanford University (Wang and Manning, 2012)
TERRORCAT University of Zurich, DFKI, Charles U (Fishel et al., 2012)
BLOCKERRCATS, ENXERRCATS, WORD- | DFKI (Popovic, 2012)

BLOCKERRCATS, XENERRCATS, POSF

Table 6: Participants in the metrics task.

the manual evaluation is useful for validating auto-
matic evaluation metrics. Table 6 lists the partici-
pants in this task, along with their metrics.

A total of 12 metrics and their variants were sub-
mitted to the metrics task by 8 research groups. We
provided BLEU and TER scores as baselines. We
asked metrics developers to score the outputs of
the machine translation systems and system com-
binations at the system-level and at the segment-
level. The system-level metrics scores are given in
the Appendix in Tables 29-36. The main goal of
the metrics shared task is not to score the systems,
but instead to validate the use of automatic metrics
by measuring how strongly they correlate with hu-
man judgments. We used the human judgments col-
lected during the manual evaluation for the transla-
tion task and the system combination task to calcu-
late how well metrics correlate at system-level and
at the segment-level.

5.1 System-Level Metric Analysis

We measured the correlation of the automatic met-
rics with the human judgments of translation qual-
ity at the system-level using Spearman’s rank cor-
relation coefficient p. We converted the raw scores
assigned to each system into ranks. We assigned a
human ranking to the systems based on the percent
of time that their translations were judged to be bet-
ter than the translations of any other system in the
manual evaluation (Equation 4).

When there are no ties, p can be calculated using
the simplified equation:

63 df

:1—
P n(n? —1)
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CS-EN - 6 SYSTEMS
DE-EN - 16 SYSTEMS

ES-EN - 12 SYSTEMS
FR-EN - 15 SYSTEMS

AVERAGE

’ System-level correlation for translations into English ‘
SEMPOS 94 92 94 80 | .90
AMBER 83 79 97 85 | .86
METEOR .66 .89 95 84 | .83
TERRORCAT .71 .76 97 .88 | .83
SIMPBLEU 89 .70 89 .82 | .82
TER -89 -62 -92 -82]| .81
BLEU .89 .67 .87 .81 | .81
POSF 66 .66 .87 .83 | .75

BLOCKERRCATS -.64 -75 -88 -74 .75
WORDBLOCKEC -.66 -67 -85 -77 | .74
XENERRCATS -.66 -.64 -87 -77 | .74

SAGAN-STS 66 n/a 91 n/a | n/a

Table 7: System-level Spearman’s rho correlation of the
automatic evaluation metrics with the human judgments
for translation into English, ordered by average absolute
value.



EN-CZ - 10 SYSTEMS
EN-DE - 22 SYSTEMS
ERAGE

N-ES - 15 SYSTEMS
EN-FR - 17 SYSTEMS

E
AV

’ System-level correlation for translations out of English ‘

SIMPBLEU .83 46 42 .94 | .66
BLOCKERRCATS -.65 -53 -47 -93 | .64
ENXERRCATS -.74 -38 -47 -93 | .63
posF 80 .54 37 .69 | .60
WORDBLOCKEC -71 -37 -47 -81 .59
TERRORCAT .65 48 .58 .53 .56
AMBER .71 25 50 .75 | .55

TER -69 -41 -45 -66 | .55

METEOR .73 .18 45 82 | .54

BLEU 80 22 40 .71 | .53

SEMPOS 52 n/a n/a n/a | n/a

Table 8: System-level Spearman’s rho correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average abso-
lute value.

where d; is the difference between the rank for
system; and n is the number of systems. The pos-
sible values of p range between 1 (where all systems
are ranked in the same order) and —1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher absolute value
for p is making predictions that are more similar to
the human judgments than an automatic evaluation
metric with a lower absolute p.

The system-level correlations are shown in Ta-
ble 7 for translations into English, and Table 8 out
of English, sorted by average correlation across the
language pairs. The highest correlation for each
language pair and the highest overall average are
bolded. Once again this year, many of the metrics
had stronger correlation with human judgments than
BLEU. The metrics that had the strongest correlation
this year were SEMPOS for the into English direc-
tion and SIMPBLEU for the out of English direc-
tion.

5.2 Segment-Level Metric Analysis

We measured the metrics’ segment-level scores with
the human rankings using Kendall’s tau rank corre-
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FR-EN (11594 PAIRS)
DE-EN (11934 PAIRS)

ES-EN (9796 PAIRS)
CS-EN (11021 PAIRS)

AVERAGE

] Segment-level correlation for translations into English \

SPEDEO7-PP .26 .28 .26 .21 | .25
METEOR .25 27 25 .21 | .25
AMBER 24 25 23 .19 | .23

SIMPBLEU .19 .17 .19 .13 | .17
TERRORCAT .18 .19 .18 .19 | .19
XENERRCATS .17 .18 .18 .13 | .17
posF .16 .18 .15 .12 | .15
WoRDBLOCKEC .15 .16 .17 .13 | .15
BLOCKERRCATS .07 .08 .08 .06 | .07
SAGAN-STS n/a n/a .21 .20 | n/a

Table 9: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation into English, ordered by average correla-
tion.
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| Segment-level correlation for translations out of English |

METEOR .26 .18 21 .16 | .20
AMBER 23 .17 .22 .15 | .19
TERRORCAT .18 .19 .18 .18 | .18
SIMPBLEU .2 A3 .18 .10 | .15
ENXERRCATS .20 .11 .17 .09 | .14
posF .15 .13 .15 .13 | .14
WORDBLOCKEC .19 .1 A7 1 .14
BLOCKERRCATS .13 .04 .12 .01 | .08

Table 10: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average corre-
lation.



lation coefficient. We calculated Kendall’s tau as:

num concordant pairs - num discordant pairs

total pairs

where a concordant pair is a pair of two translations
of the same segment in which the ranks calculated
from the same human ranking task and from the cor-
responding metric scores agree; in a discordant pair,
they disagree. In order to account for accuracy- vs.
error-based metrics correctly, counts of concordant
vs. discordant pairs were calculated specific to these
two metric types. The possible values of 7 range
between 1 (where all pairs are concordant) and —1
(where all pairs are discordant). Thus an automatic
evaluation metric with a higher value for 7 is mak-
ing predictions that are more similar to the human
judgments than an automatic evaluation metric with
a lower 7.

We did not include cases where the human rank-
ing was tied for two systems. As the metrics produce
absolute scores, compared to five relative ranks in
the human assessment, it would be potentially un-
fair to the metric to count a slightly different met-
ric score as discordant with a tie in the relative hu-
man rankings. A tie in automatic metric rank for
two translations was counted as discordant with two
corresponding non-tied human judgments.

The correlations are shown in Table 9 for trans-
lations into English, and Table 10 out of English,
sorted by average correlation across the four lan-
guage pairs. The highest correlation for each lan-
guage pair and the highest overall average are
bolded. For the into English direction SPEDE and
METEOR tied for the highest segment-level correla-
tion. METEOR performed the best for the out of En-
glish direction, with AMBER doing admirably well
in both the into- and the out-of-English directions.

6 Quality Estimation task

Quality estimation aims to provide a quality indica-
tor for machine translated sentences at various gran-
ularity levels. It differs from MT evaluation, because
quality estimation techniques do not rely on refer-
ence translations. Instead, quality estimation is gen-
erally addressed using machine learning techniques
to predict quality scores. Potential applications of
quality estimation include:
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e Deciding whether a given translation is good
enough for publishing as is

e Informing readers of the target language only
whether or not they can rely on a translation

e Filtering out sentences that are not good
enough even for post-editing by professional
translators

e Selecting the best translation among options
from multiple systems.

This shared-task provides a first common ground
for development and comparison of quality estima-
tion systems, focusing on sentence-level estimation.
It provides training and test datasets, along with
evaluation metrics and a baseline system. The goals
of this shared task are:

e To identify new and effective quality indicators
(features)

e To identify alternative machine learning tech-
niques for the problem

e To test the suitability of the proposed evalua-
tion metrics for quality estimation systems

e To establish the state of the art performance in
the field

e To contrast the performance of regression and
ranking techniques.

The task provides datasets for a single language
pair, text domain and MT system: English-Spanish
news texts produced by a phrase-based SMT sys-
tem (Moses) trained on Europarl and News Com-
mentaries corpora provided in the WMT10 transla-
tion task. As training data, translations were man-
ually annotated for quality in terms of post-editing
effort (1-5 scores) and were provided together with
their source sentences, reference translations, and
post-edited translations (Section 6.1). The shared-
task consisted on automatically producing quality-
estimations for a blind test-set, where English source
sentences and their MT-translations were used as in-
puts. Hidden (and subsequently publicly-released)
manual effort-annotations of those translations (ob-
tained in the same fashion as for the training data)



were used as reference labels to evaluate the per-
formance of the participating systems (Section 6.1).
Participants also had full access to the translation
engine-related resources (Section 6.1) and could use
any additional external resources. We have also pro-
vided a software package to extract baseline quality
estimation features (Section 6.3).

Participants could submit up to two systems for
two variations of the task: ranking, where par-
ticipants submit a ranking of translations (no ties
allowed), without necessarily giving any explicit
scores for translations, and scoring, where partici-
pants submit a score for each sentence (in the [1,5]
range). Each of these subtasks is evaluated using
specific metrics (Section 6.2).

6.1 Datasets and resources
Training data

The training data used was selected from data
available from previous WMT shared-tasks for
machine-translation: a subset of the WMTI0
English-Spanish test set, and a subset of the WMT(09
English-Spanish test set, for a total of 1832 sen-
tences.

The training data consists of the following re-
sources:

o English source sentences

e Spanish machine-translation outputs, created
using the SMT Moses engine

e Effort scores, created by using three profes-
sional post-editors using guidelines describ-
ing Post-Editing (PE) effort from highest effort
(score 1) to lowest effort (score 5)

e Post-Editing output, created by a pool of pro-
fessional post-editors starting from the source
sentences and the Moses translations; these PE
outputs were created before the effort scores
were elicited, and were shown to the PE-effort
judges to facilitate their effort estimates

e Spanish translation outputs, created as part of
the WMT machine-translation shared-task as
reference translations for the English source
sentences (independent of any MT output).
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The guidelines used by the PE-effort judges to as-
sign scores 1-5 for each of the (source, MT-output,
PE-output) triplets are the following:

[1] The MT output is incomprehensible, with lit-
tle or no information transferred accurately. It
cannot be edited, needs to be translated from
scratch.

[2] About 50-70% of the MT output needs to be
edited. It requires a significant editing effort in
order to reach publishable level.

[3] About 25-50% of the MT output needs to be
edited. It contains different errors and mis-
translations that need to be corrected.

[4] About 10-25% of the MT output needs to be
edited. It is generally clear and intelligible.

[S] The MT output is perfectly clear and intelligi-
ble. It is not necessarily a perfect translation,
but requires little or no editing.

Providing reliable effort estimates turned out to
be a difficult task for the PE-effort judges, even in
the current set-up (with post edited outputs available
for consultation). To eliminate some of the noise
from these judgments, we performed an intermedi-
ate cleaning step, in which we eliminated the sen-
tences for which the difference between the max-
imum score and the minimum score assigned be-
tween the three judges was > 1. We started the
data-creation process from a total of 2000 sentences
for the training set, and the final 1832 sentences we
selected as training data were the ones that passed
through this intermediate cleaning step.

Besides score disagreement, we noticed another
trend on the human judgements of PE-effort. Some
judges tend to give more moderate scores (in the
middle of available range), while others like to com-
mit also to scores that are more in the extremes of
the available range. Since the quality estimation task
would be negatively influenced by having most of
the scores in the middle of the range, we have chosen
to compute the final effort scores as an weighted av-
erage between the three PE-effort scores, with more
weight given to the judges with higher standard de-
viation from their own mean score. We have used



weights 3, 2, and 1 for the three PE-effort judges ac-
cording to this criterion. There is an additional ad-
vantage resulting from this weighted average score:
instead of obtaining average numbers only at val-
ues x.0, x.33, and x.66 (for unweighted average)7,
the weighted averages are spread more evenly in the
range [1, 5].

A few variations of the training data were pro-
vided, including version with cases restored and a
version detokenized. In addition, engine-internal
information from Moses such as phrase and word
alignments, detailed model scores, etc. (parameter
-trace), n-best lists and stack information from the
search graph as a word graph (parameter -output-
word-graph) as produced by the Moses engine were
provided.

The rationale behind releasing this engine-
internal data was to make it possible for this shared-
task to address quality estimation using a glass-box
approach, that is, making use of information from
the internal workings of the MT engine.

Test data

The test data was a subset of the WMT12 English-
Spanish test set, consisting of 442 sentences. The
test data consists of the following files:

e English source sentences

e Spanish machine-translation outputs, created
using the same SMT Moses engine used to cre-
ate the training data

e Effort scores, created by using three profes-
sional post-editors® using guidelines describing
PE effort from highest effort (score 1) to lowest
effort (score 5)

The first two files were the input for the quality-
estimation shared-task participating systems. Since
the Moses engine used to create the MT outputs was
the same as the one used for generating the train-
ing data, the engine-internal resources are the same

"These three values are the only ones possible given the
cleaning step we perform prior to averaging the scores, which
ensures that the difference between the maximum score and the
minimum score is at most 1.

8The same post-editors that were used to create the training
data were used to create the test data.
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as the ones we released as part of the training data
package.

The effort scores were released after the partic-
ipants submitted their shared-task submission, and
were solely used to evaluate the submissions accord-
ing to the established metrics. The guidelines used
by the PE-effort judges to assign 1-5 scores were the
same as the ones used for creating the training data.
We have used the same criteria to ensure the con-
sistency of the human judgments. The initial set of
candidates consisted of 604 sentences, of which only
442 met this criteria. The final scores used as gold-
values have been obtained using the same weighted-
average scheme as for the training data.

Resources

In addition to the training and test materials, we
made several additional resources that were used for
the baseline QE system and/or the SMT system that
produced the training and test datasets:

e The SMT training corpus: source and target
sides of the corpus used to train the Moses en-
gine. These are a concatenation of the Eu-
roparl and the news-commentary data sets from
WMTI10 that were tokenized, cleaned (remov-
ing sentences longer than 80 tokens) and true-
cased.

e Two Language models: 5-gram LM generated
from the interpolation of the two target cor-
pora after tokenization and truecasing (used
by Moses) and a trigram LM generated from
the two source corpora and filtered to remove
singletons (used by the baseline QE system).
We also provided unigram, bigram and trigram
counts (used in the baseline QE system).

e An IBM Model 1 table that generated by
Giza++ using the SMT training corpora.

e A word-alignment file as produced by the
grow-diag-final heuristic in Moses for the SMT
training set.

e A phrase table with word alignment informa-
tion generated from the parallel corpora.

e The Moses configuration file used for decod-
ing.



6.2 Evaluation metrics
Ranking metrics

For the ranking task, we defined a novel met-
ric that provides some advantages over a more tra-
ditional ranking metrics like Spearman correlation.
Our metric, called DeltaAvg, assumes that the refer-
ence test set has a number associated with each en-
try that represents its extrinsic value. For instance,
using the effort scale we described in Section 6.1,
we associate a value between 1 and 5 with each
sentence, representing the quality of that sentence.
Given these values, our metric does not need an ex-
plicit reference ranking, the way the Spearman rank-
ing correlation does.” The goal of the DeltaAvg met-
ric is to measure how valuable a proposed ranking
(which we call a hypothesis ranking) is according to
the extrinsic values associated with the test entries.

We first define a parameterized version of this
metric, called DeltaAvg[n]. The following notations
are used: for a given entry sentence s, V' (s) repre-
sents the function that associates an extrinsic value
to that entry; we extend this notation to a set S, with
V(S) representing the average of all V(s),s € S.
Intuitively, V'(S) is a quantitative measure of the
“quality” of the set S, as induced by the extrinsic
values associated with the entries in S. For a set
of ranked entries S and a parameter n, we denote
by 51 the first quantile of set .S (the highest-ranked
entries), Sy the second quantile, and so on, for n
quantiles of equal sizes.!® We also use the notation
Sij = {C:i Si. Using these notations, we define:

o1 V(S1k)

1 V()

DeltaAvgy, [n| = (14)
When the valuation function V is clear from the con-
text, we write DeltaAvg[n] for DeltaAvgy [n]. The
parameter n represents the number of quantiles we
want to split the set .S into. For instance, n = 2
gives DeltaAvg[2] = V(S1) — V(.5), hence it mea-
sures the difference between the quality of the top

% A reference ranking can be implicitly induced according to
these values; if, as in our case, higher values mean better sen-
tences, then the reference ranking is defined such that higher-
scored sentences rank higher than lower-scored sentences.

'If the size |S| is not divisible by n, then the last quantile
Sy, is assumed to contain the rest of the entries.
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quantile (top half) .S; and the overall quality (rep-
resented by V(S)). For n = 3, DeltaAvg[3] =
(V(51)+V(512)/2=V(5) = (V(51) =V (5)) +
(V(S12 — V(5)))/2, hence it measures an aver-
age difference across two cases: between the quality
of the top quantile (top third) and the overall qual-
ity, and between the quality of the top two quan-
tiles (51U Sa, top two-thirds) and the overall quality.
In general, DeltaAvg[n| measures an average differ-
ence in quality across n — 1 cases, with each case
measuring the impact in quality of adding an addi-
tional quantile, from top to bottom. Finally, we de-
fine:

25:2 DeltaAvgy,[n]

DeltaAvg, = N _1

5)

where N = |S|/2. As before, we write DeltaAvg for
DeltaAvgy when the valuation function V' is clear
from the context. The DeltaAvg metric is an aver-
age across all DeltaAvg|n| values, for those n values
for which the resulting quantiles have at least 2 en-
tries (no singleton quantiles). The DeltaAvg metric
has some important properties that are desired for a
ranking metric (see Section 6.4 for the results of the
shared-task that substantiate these claims):

e it is non-parametric (i.e., it does not depend on
setting particular parameters)

e it is automatic and deterministic (and therefore
consistent)

e it measures the quality of a hypothesis rank-
ing from an extrinsic perspective (as offered by
function V)

e its values are interpretable: for a given set of
ranked entries, a value DeltaAvg of 0.5 means
that, on average, the difference in quality be-
tween the top-ranked quantiles and the overall
quality is 0.5

e it has a high correlation with the Spearman rank
correlation coefficient, which makes it as use-
ful as the Spearman correlation, with the added
advantage of its values being extrinsically in-
terpretable.



In the rest of this paper, we present results for
DeltaAvg using as valuation function V' the Post-
Editing effort scores, as defined in Section 6.1.

We also report the results of the ranking task using
the more-traditional Spearman correlation.

Scoring metrics

For the scoring task, we use two metrics that have
been traditionally used for measuring performance
for regression tasks: Mean Absolute Error (MAE) as
a primary metric, and Root of Mean Squared Error
(RMSE) as a secondary metric. For a given test set
S with entries s;,1 < i < |S|, we denote by H (s;)
the proposed score for entry s; (hypothesis), and by
V (s;) the reference value for entry s; (gold-standard
value). We formally define our metrics as follows:

N . —_ .
Mag = SR Vel

R (H(s) -
RMSE\/ 1 N

V(si))? (17

where N = |S|. Both these metrics are non-
parametric, automatic and deterministic (and there-
fore consistent), and extrinsically interpretable. For
instance, a MAE value of 0.5 means that, on aver-
age, the absolute difference between the hypothe-
sized score and the reference score value is 0.5. The
interpretation of RMSE is similar, with the differ-
ence that RMSE penalizes larger errors more (via
the square function).

6.3 Participants

Eleven teams (listed in Table 11) submitted one or
more systems to the shared task, with most teams
submitting for both ranking and scoring subtasks.
Each team was allowed up to two submissions (for
each subtask). In the descriptions below participa-
tion in the ranking is denoted (R) and scoring is de-
noted (S).

Baseline system (R, S): the baseline system used
the feature extraction software (also provided
to all participants). It analyzed the source and
translation files and the SMT training corpus
to extract the following 17 system-independent
features that were found to be relevant in previ-
ous work (Specia et al., 2009):
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e number of tokens in the source and target
sentences

e average source token length

e average number of occurrences of the tar-
get word within the target sentence

e number of punctuation marks in source
and target sentences

e LM probability of source and target sen-
tences using language models described in
Section 6.1

e average number of translations per source
word in the sentence: as given by IBM 1
model thresholded so that P(t[s) > 0.2,
and so that P(t|s) > 0.01 weighted by
the inverse frequency of each word in the
source side of the SMT training corpus

e percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source side of the SMT train-
ing corpus

e percentage of unigrams in the source sen-
tence seen in the source side of the SMT
training corpus

These features are used to train a Support Vec-
tor Machine (SVM) regression algorithm using
a radial basis function kernel with the LIBSVM
package (Chang and Lin, 2011). The v, e and C
parameters were optimized using a grid-search
and 5-fold cross validation on the training set.
We note that although the system is referred to
as a “baseline”, it is in fact a strong system.
Although it is simple it has proved to be ro-
bust across a range of language pairs, MT sys-
tems, and text domains. It is a simpler variant
of the system used in (Specia, 2011). The ratio-
nale behind having such a strong baseline was
to push systems to exploit alternative sources
of information and combination / learning ap-
proaches.

SDLLW (R, S): Both systems use 3 sets of fea-
tures: the 17 baseline features, 8 system-
dependent features from the decoder logs of
Moses, and 20 features developed internally.
Some of these features made use of additional
data and/or resources, such as a secondary



ID | Participating team

PRHLT-UPV | Universitat Politecnica de Valencia, Spain (Gonzélez-Rubio et al., 2012)
UU | Uppsala University, Sweden (Hardmeier et al., 2012)
SDLLW | SDL Language Weaver, USA (Soricut et al., 2012)
Loria | LORIA Institute, France (Langlois et al., 2012)
UPC | Universitat Politecnica de Catalunya, Spain (Pighin et al., 2012)
DFKI | DFKI, Germany (Avramidis, 2012)
WLV-SHEF | University of Wolverhampton & University of Sheffield, UK (Felice and Specia, 2012)
SJTU | Shanghai Jiao Tong University, China (Wu and Zhao, 2012)
DCU-SYMC | Dublin City University, Ireland & Symantec, Ireland (Rubino et al., 2012)

UEdin | University of Edinburgh, UK (Buck, 2012)
TCD | Trinity College Dublin, Ireland (Moreau and Vogel, 2012)

Table 11: Participants in the WMT12 Quality Evaluation shared task.

MT system that was used as pseudo-reference
for the hypothesis, and POS taggers for both
languages. Feature-selection algorithms were
used to select subsets of features that directly
optimize the metrics used in the task. System
“SDLLW _M5PbestAvgDelta” uses a resulting
15-feature set optimized towards the AvgDelta
metric. It employs an M5P model to learn a
decision-tree with only two linear equations.
System “SDLLW _SVM” uses a 20-feature set
and an SVM epsilon regression model with ra-
dial basis function kernel with parameters C,
gamma, and epsilon tuned on a development
set (305 training instances). The model was
trained with 10-fold cross validation and the
tuning process was restarted several times us-
ing different starting points and step sizes to
avoid overfitting. The final model was selected
based on its performance on the development
set and the number of support vectors.

UU (R, S): System “UU_best” uses the 17 base-

line features, plus 82 features from Hardmeier
(2011) (with some redundancy and some over-
lap with baseline features), and constituency
trees over input sentences generated by the
Stanford parser and dependency trees over both
input and output sentences generated by the
MaltParser. System “UU_bltk” uses only the
17 baseline features plus constituency and de-
pendency trees as above. The machine learn-
ing component in both cases is SVM regres-
sion (SVMlight software). For the ranking task,

29

the ranking induced by the regression output
is used. The system uses polynomial kernels
of degree 2 (UU_best) and 3 (UU_bltk) as well
as two different types of tree kernels for con-
stituency and dependency trees, respectively.
The SVM margin/error trade-off, the mixture
proportion between tree kernels and polyno-
mial kernels and the degree of the polynomial
kernels were optimised using grid search with
5-fold cross-validation over the training set.

TCD (R, S): “TCD_MS5P-resources-only” uses

only the baseline features, while “TCD_MS5P-
all” uses the baseline and additional features.
A number of metrics (used as features in
TCD_M5P-all) were proposed which work in
the following way: given a sentence to eval-
uate (source sentence for complexity or target
sentence for fluency), it is compared against
some reference data using similarity mea-
sures (various metrics which compare distri-
butions of n-grams). The training data was
used as reference, along with the Google n-
grams dataset. Several learning methods were
tested using Weka on the training data (10-
fold cross-validation). The system submission
uses the MSP (regression with decision trees)
algorithm which performed best. Contrary to
what had been observed on the training data
using cross-validation, “TCD_M5P-resources-
only” performs better than “TCD_MS5P-all” on
the test data.



PRHLT-UPV (R, S): The system addresses the

task using a regression algorithm with 475 fea-
tures, including the 17 the baseline features.
Most of the features are defined as word scores.
Among them, the features obtained form a
smoothed naive Bayes classifier have shown to
be particularly interesting. Different methods
to combine word-level scores into sentence-
level features were investigated. For model
building, SVM regression was used. Given
the large number of features, the training data
provided as part of the task was insufficient
yielding unstable systems with not so good per-
formance. Different feature selection methods
were implemented to determine a subset of rel-
evant features. The final submission used these
relevant features to train an SVM system whose
parameters were optimized with respect to the
final evaluation metrics.

UEDIN (R, S): The system uses the baseline fea-

tures along with some additional features: bi-
nary features for named entities in source using
Stanford NER Tagger; binary indicators for oc-
currence of quotes or parenthetical segments,
words in upper case and numbers; geometric
mean of target word probabilities and proba-
bility of worst scoring word under a Discrim-
inative Word Lexicon Model; Sparse Neural
Network directly mapping from source to tar-
get (using the vector space model) with source
and target side either filtered to relevant words
or hashed to reduce dimensionality; number of
times at least a 3-gram is seen normalized by
sentence length; and Levenshtein distance of
either source or translation to closest entry of
the SMT training corpus on word or character
level. An ensemble of neural networks opti-
mized for RMSE was used for prediction (scor-
ing) and ranking. The contribution of new fea-
tures was tested by adding them to the baseline
features using 5-fold cross-validation. Most
features did not result in any improvement over
the baseline. The final submission was a com-
bination of all feature sets that showed im-
provement.
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SJTU (R, S): The task is treated as a regression

problem using the epsilon-SVM method. All
features are extracted from the official data, in-
volving no external NLP tools/resources. Most
of them come from the phrase table, decod-
ing data and SMT training data. The focus
is on special word relations and special phrase
patterns, thus several feature templates on this
topic are extracted. Since the training data is
not large enough to assign weights to all fea-
tures, methods for estimating common strings
or sequences of words are used. The training
data is divided in 3/4 for training and 1/4 for
development to filter ineffective features. Be-
sides the baseline features, the final submission
contains 18 feature templates and about 4 mil-
lion features in total.

WLV-SHEF (R, S): The systems integrates novel

linguistic features from the source and target
texts in an attempt to overcome the limitations
of existing shallow features for quality estima-
tion. These linguistically-informed features in-
clude part-of-speech information, phrase con-
stituency, subject-verb agreement and target
lexicon analysis, which are extracted using
parsers, corpora and auxiliary resources. Sys-
tems are built using epsilon-SVM regression
with parameters optimised using 5-fold cross-
validation on the training set and two differ-
ent feature sets: “WLV-SHEF _BL” uses the 17
baseline features plus 70 linguistically inspired
features, while “WLV-SHEF_FS” uses a larger
set of 70 linguistic plus 77 shallow features (in-
cluding the baseline). Although results indicate
that the models fall slightly below the baseline,
further analysis shows that linguistic informa-
tion is indeed informative and complementary
to shallow indicators.

DFKI (R, S): “DFKI_morphPOSibm1LM” (R) is

a simple linear interpolation of POS 6-gram
language model scores, morpheme 6-gram lan-
guage model scores, IBM 1 scores (both “di-
rect” and “inverse”) for POS 4-grams and for
morphemes. The parallel News corpora from
WMTI10 is used as extra data to train the lan-
guage model and the IBM 1 model. “DFKI _cfs-



plsreg” and “DFKI_grcfs-mars” (S) use a col-
lection of 264 features generated containing
the baseline features and additional resources.
Numerous methods of feature selection were
tested using 10-fold cross validation on the
training data, reducing these to 23 feature sets.
Several regression and (discretized) classifica-
tion algorithms were employed to train predic-
tion models. The best-performing models in-
cluded features derived from PCFG parsing,
language quality checking and LM scoring, of
both source and target, besides features from
the SMT search graph and a few baseline fea-
tures. “DFKI_cfs-plsreg” uses a Best First
correlation-based feature selection technique,
trained with Partial Least Squares Regression,
while “DFKI_grcfs-mars” uses a Greedy Step-
wise correlation-based feature selection tech-
nique, trained with multivariate adaptive re-
gression splines.

DCU-SYMC (R, S): Systems are based on a clas-

sification approach using a set of features that
includes the baseline features. The manually
assigned quality scores provided for each MT
output in the training set were rounded in or-
der to apply classification algorithms on a lim-
ited set of classes (integer values from 1 to 5).
Three classifiers were combined by averaging
the predicted classes: SVM using sequential
minimal optimization and RBF kernel (parame-
ters optimized by grid search), Naive Bayes and
Random Forest. “DCU-SYMC _constrained” is
based on a set of 70 features derived only from
the data provided for the task. These include
a set of features which attempt to model trans-
lation adequacy using a bilingual topic model
built using Latent Dirichlet Allocation. “DCU-
SYMC _unconstrained” is based on 308 fea-
tures including the constrained ones and oth-
ers extracted using external tools: grammatical-
ity features extracted from the source segments
using the TreeTagger part-of-speech tagger, an
English precision grammar, the XLE parser and
the Brown re-ranking parser and features based
on part-of-speech tag counts extracted from the
MT output using a Spanish TreeTagger model.
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Loria (S): Several numerical or boolean features

are computed from the source and target sen-
tences and used to train an SVM regression al-
gorithm with linear (“Loria_SVMlinear”) and
radial basis function (“Loria_SVMrbf”) as ker-
nel. For the radial basis function, a grid search
is performed to optimise the parameter . The
official submission use the baseline features
and a number of features proposed in previous
work (Raybaud et al., 2011), amounting to 66
features. A feature selection algorithm is used
in order to remove non-informative features.
No additional data other than that provided for
the shared task is considered. The training data
is split into a training part (1000 sentences) and
a development part (832 sentences) to learn the
regression model and optimise the parameters
of the regression and for feature selection.

UPC (R, S): The systems use several features on

top of the baseline features. These are mostly
based on different language models estimated
on reference and automatic Spanish transla-
tions of the news-v7 corpus. The automatic
translations are generated by the system used
for the shared task. N-gram LMs are esti-
mated on word forms, POS tags, stop words
interleaved by POS tags, stop-word patterns,
plus variants in which the POS tags are re-
placed with the stem or root of each target
word. The POS tags on the target side are ob-
tained by projecting source side annotations via
automatic alignments. The resulting features
are: the perplexity of each additional language
model, according to the two translations, and
the ratio between the two perplexities. Addi-
tionally, features that estimate the likelihood
of the projection of dependency parses on the
two translations are encoded. For learning, lin-
ear SVM regression is used. Optimization was
done via 5-fold cross-validation on a develop-
ment data. Features are encoded by means of
their z-scores, i.e. how many standard devia-
tions the observed value is above or below the
mean. A variant of the system, “UPC-2” uses
an option of SVMLight that removes inconsis-
tent points from the training set and retrains the
model until convergence.



6.4 Results

Here we give the official results for the ranking and
scoring subtasks followed by a discussion that high-
lights the main findings of the task.

Ranking subtask

Table 12 gives the results for the ranking sub-
task. The table is sorted from best to worse using
the DeltaAvg metric scores (Equation 15) as pri-
mary key and the Spearman correlation scores as
secondary key.

The winning submissions for the ranking subtask
are SDLLW’s M5PbestDeltaAvg and SVM entries,
which have DeltaAvg scores of 0.63 and 0.61, re-
spectively. The difference with respect to all the
other submissions is statistically significant at p =
0.05, using pairwise bootstrap resampling (Koehn,
2004). The state-of-the-art baseline system has a
DeltaAvg score of 0.55 (Spearman rank correla-
tion of 0.58). Five other submissions have perfor-
mances that are not different from the baseline at a
statistically-significant level (p = 0.05), as shown
by the gray area in the middle of Table 12. Three
submissions scored higher than the baseline system
at p = 0.05 (systems above the middle gray area),
which indicates that this shared-task succeeded in
pushing the state-of-the-art performance to new lev-
els. The range of performance for the submissions
in the ranking task varies from a DeltaAvg of 0.65
down to a DeltaAvg of 0.15 (with Spearman values
varying from 0.64 down to 0.19).

In addition to the performance of the official sub-
mission, we report here results obtained by var-
ious oracle methods. The oracle methods make
use of various metrics that are associated in a or-
acle manner to the test input: the gold-label Ef-
fort metric for “Oracle Effort”, the HTER metric
computed against the post-edited translations as ref-
erence for “Oracle HTER”, and the BLEU metric
computed against the same post-edited translations
as reference for “Oracle (H)BLEU”.!! The “Oracle
Effort” DeltaAvg score of 0.95 gives an upperbound
in terms of DeltaAvg for the test set used in this
evaluation. It basically indicates that, for this set,

""We use the (H)BLEU notation to underscore the use of
Post-Edited translations as reference, as opposed to using ref-
erences that are not the product of a Post-Editing process, as for
the traditional BLEU metric.
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the difference in PE effort between the top-quality
quantiles and the overall quality is 0.95 on average.
We would like to emphasize here that the DeltaAvg
metric does not have any a-priori range for its values.
The upperbound, for instance, is test-dependent, and
therefore an “Oracle Effort” score is useful for un-
derstanding the performance level of real system-
submissions. The “Oracle HTER” DeltaAvg score
of 0.77 is a more realistic upperbound for the cur-
rent set. Since the HTER metric is considered a
good approximation for the effort required in post-
editing, ranking the test set based on the HTER
scores (from lowest HTER to highest HTER) pro-
vides a good oracle comparison point. The oracle
based on (H)BLEU gives a lower DeltaAvg score,
which can be interpreted to mean that the BLEU
metric provides a lower correlation to post-editing
effort compared to HTER. We also note here that
there is room for improvement between the highest-
scoring submission (at DeltaAvg 0.63) and the “Ora-
cle HTER” DeltaAvg score of 0.77. We are not sure
if this difference can be bridged completely, but hav-
ing measured a quantitative difference between the
current best-performance and a realistic upperbound
is an important achievement of this shared-task.

Scoring subtask

The results for the scoring task are presented in
Table 13, sorted from best to worse by using the
MAE metric scores (Equation 16) as primary key
and the RMSE metric scores (Equation 17) as sec-
ondary key.

The winning submission is SDLLW’s
M5PbestDeltaAvg, with an MAE of 0.61 and
an RMSE of 0.75 (the difference with respect to
all the other submissions is statistically significant
at p = 0.05, using pairwise bootstrap resam-
pling (Koehn, 2004)). The strong, state-of-the-art
quality-estimation baseline system is measured to
have an MAE of 0.69 and RMSE of 0.82, with six
other submissions having performances that are
not different from the baseline at a statistically-
significant level (p = 0.05), as shown by the gray
area in the middle of Table 13). Five submissions
scored higher than the baseline system at p = 0.05
(systems above the middle gray area), which
indicates that this shared-task also succeeded in
pushing the state-of-the-art performance to new



System ID | DeltaAvg | Spearman Corr
e SDLLW _MS5PbestDeltaAvg 0.63 0.64
¢ SDLLW_SVM 0.61 0.60
UU _bltk 0.58 0.61
UU _best 0.56 0.62
TCD_MS5P-resources-only™* 0.56 0.56
Baseline (17FFs SVM) 0.55 0.58
PRHLT-UPV 0.55 0.55
UEdin 0.54 0.58
SJTU 0.53 0.53
WLV-SHEF_FS 0.51 0.52
WLV-SHEF_BL 0.50 0.49
DFKI_morphPOSibm1LM 0.46 0.46
DCU-SYMC _unconstrained 0.44 0.41
DCU-SYMC _constrained 0.43 0.41
TCD_M5P-all* 0.42 0.41
UPC_1 0.22 0.26
UPC_2 0.15 0.19
Oracle Effort 0.95 1.00
Oracle HTER 0.77 0.70
Oracle (H)BLEU 0.71 0.62

Table 12: Official results for the ranking subtask of the WMT12 Quality Evaluation shared-task. The winning submis-
sions are indicated by a e (the difference with respect to other systems is statistically significant with p = 0.05). The
systems in the gray area are not significantly different from the baseline system. Entries with * represent submissions
for which a bug-fix was applied after the submission deadline.
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System ID | MAE | RMSE
o SDLLW M5PbestDeltaAvg | 0.61 0.75
UU _best | 0.64 0.79
SDLLW _SVM | 0.64 0.78
UU_bltk | 0.64 0.79
Loria_SVMlinear | 0.68 0.82
UEdin | 0.68 0.82
TCD_M5P-resources-only* | 0.68 0.82
Baseline (17FFs SVM) | 0.69 0.82
Loria SVMrbf | 0.69 0.83
SJTU | 0.69 0.83
WLV-SHEF_FS | 0.69 0.85
PRHLT-UPV | 0.70 0.85
WLV-SHEF BL | 0.72 0.86
DCU-SYMC _unconstrained | 0.75 0.97
DFKI_grefs-mars | 0.82 0.98
DFKI _cfs-plsreg | 0.82 0.99
UPC_1 | 0.84 1.01
DCU-SYMC _constrained | 0.86 1.12
UpPC2 | 0.87 1.04
TCD_M5P-all | 2.09 2.32

Oracle Effort | 0.00 0.00
Oracle HTER (linear mapping into [1.5-5.0]) | 0.56 0.73
Oracle (H)BLEU (linear mapping into [1.5-5.0]) | 0.61 0.84

Table 13: Official results for the scoring subtask of the WMT12 Quality Evaluation shared-task. The winning submis-
sion is indicated by a e (the difference with respect to the other submissions is statistically significant at p = 0.05).
The systems in the gray area are not different from the baseline system at a statistically significant level (p = 0.05).
Entries with * represent submissions for which a bug-fix was applied after the submission deadline.

34



levels in terms of absolute scoring. The range of
performance for the submissions in the scoring task
varies from an MAE of 0.61 up to an MAE of 0.87
(the outlier MAE of 2.09 is reportedly due to bugs).

We also calculate scoring Oracles using the meth-
ods used for the ranking Oracles. The difference is
that the HTER and (H)BLEU oracles need a way
of mapping their scores (which are usually in the
[0, 100] range) into the [1, 5] range. For the compar-
ison here, we did the mapping by excluding the 5%
top and bottom outlier scores, and then linearly map-
ping the remaining range into the [1.5, 5] range. The
“Oracle Effort” scores are not very indicative in this
case. However, the “Oracle HTER” MAE score of
0.56 is a somewhat realistic lowerbound for the cur-
rent set (although the score could be decreased by a
smarter mapping from the HTER range to the Effort
range). We argue that since the HTER metric is con-
sidered a good approximation for the effort required
in post-editing, effort-like scores derived from the
HTER score provide a good way to compute oracle
scores in a deterministic manner. Note that again
the oracle based on (H)BLEU gives a worse MAE
score at 0.61, which support the interpretation that
the (H)BLEU metric provides a lower correlation
to post-editing effort compared to (H)TER. Over-
all, we consider the MAE values for these HTER
and (H)BLEU-based oracles to indicate high error
margins. Most notably the performance of the best
system gets the same MAE score as the (H)BLEU
oracle, at 0.61 MAE. We take this to mean that the
scoring task is more difficult compared to the rank-
ing task, since even oracle-based solutions get high
eITor SCOres.

6.5 Discussion

When looking back at the goals that we identified for
this shared-task, most of them have been success-
fully accomplished. In addition, we have achieved
additional ones that were not explicitly stated from
the beginning. In this section, we discuss the accom-
plishments of this shared-task in more detail, start-
ing from the defined goals and beyond.

Identify new and effective quality indicators
The vast majority of the participating systems use
external resources in addition to those provided for
the task, such as parsers, part-of-speech taggers,
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named entity recognizers, etc. This has resulted in
a wide variety of features being used. Many of the
novel features have tried to exploit linguistically-
oriented features. While some systems did not
achieve improvements over the baseline while ex-
ploiting such features, others have (the “UU” sub-
missions, for instance, exploiting both constituency
and dependency trees).

Another significant set of features that has been
previously overlooked is the feature set of the MT
decoder. Considering statistical engines, these fea-
tures are immediately available for quality predic-
tion from the internal trace of the MT decoder (in
a glass-box prediction scenario), and its contribu-
tion is significant. These features, which reflect the
“confidence” of the SMT system on the translations
it produces, have been shown to be complemen-
tary to other, system-independent (black-box) fea-
tures. For example, the “SDLLW” submissions in-
corporate these features, and their feature selection
strategy consistently favored this feature set. The
power of this set of features alone is enough to yield
(when used with an M5P model) outputs that would
have been placed 4th in the ranking task and 5th
in the scoring task, a remarkable achievement. An-
other interesting feature used by the “SDLLW” sub-
missions rely on pseudo-references, i.e., translations
produced by other MT systems for the same input
sentence.

Identify alternative machine learning techniques
Although SVM regression was used to compute the
baseline performance, the baseline “system” pro-
vided for the task consisted solely of a software to
extract features, as opposed to a model built us-
ing the regression algorithm. The rationale behind
this decision was to encourage participants to exper-
iment with alternative methods for combining differ-
ent quality indicators. This was achieved to a large
extent.

The best-performing machine learning techniques
were found to be the M5P Regression Trees and the
SVM Regression (SVR) models. The merit of the
MS5P Regression Trees is that it provides compact
models that are less prone to overfitting. In contrast,
the SVR models can easily overfit given the small
amount of training data available and the large num-
bers of features commonly used. Indeed, many of



the submissions that fell below the baseline perfor-
mance can blame overfitting for (part of) their sub-
optimal performance. However, SVR models can
achieve high performance through the use of tun-
ing and feature selection techniques to avoid overfit-
ting. Structured learning techniques were success-
fully used by the “UU” submissions — the second
best performing team — to represent parse trees. This
seems an interesting direction to encode other sorts
of linguistic information about source and trans-
lation texts. Other interesting learning techniques
have been tried, such as Neural Networks, Par-
tial Least Squares Regression, or multivariate adap-
tive regression splines, but their performance does
not suggest they are strong candidates for learning
highly-performing quality-estimation models.

Test the suitability of evaluation metrics for qual-
ity estimation DeltaAvg, our proposed metric for
measuring ranking performance, proved suitable for
scoring the ranking subtask. Its high correlation with
the Spearman ranking metric, coupled with its ex-
trinsic interpretability, makes it a preferred choice
for future measurements. It is also versatile, in the
sense that the its valuation function V' can change to
reflect different extrinsic measures of quality.

Establish the state of the art performance The
results on both the ranking and the scoring subtasks
established new state of the art levels on the test set
used in this shared task. In addition to these lev-
els, the oracle performance numbers also help under-
stand the current performance level, and how much
of a gap in performance there still exists. Addi-
tional data points regarding quality estimation per-
formance are needed to establish how stable this
measure of the performance gap is.

Contrast the performance of regression and
ranking techniques Most of the submissions in
the ranking task used the results provided by a re-
gression solution (submitted for the scoring task) to
infer the rankings. Also, optimizing for ranking per-
formance via a regression solution seems to result in
regression models that perform very well, as in the
case of the top-ranked submission.
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6.6 Quality Estimation Conclusions

There appear to be significant differences between
considering the quality estimation task as a ranking
problem versus a scoring problem. The ranking-
based approach appears to be somewhat simpler
and more easily amenable to automatic solutions,
and at the same time provides immediate benefits
when integrated into larger applications (see, for in-
stance, the post-editing application described in Spe-
cia (2011)). The scoring-based approach is more dif-
ficult, as the high error rate even of oracle-based so-
lutions indicates. It is also well-known from human
evaluations of MT outputs that human judges also
have a difficult time agreeing on absolute-number
judgements to translations.

Our experience in creating the current datasets
confirms that, even with highly-trained profession-
als, it is difficult to arrive at consistent judge-
ments. We plan to have future investigations on
how to achieve more consistent ways of generating
absolute-number scores that reflect the quality of au-
tomated translations.

7 Summary

As in previous incarnations of this workshop we car-
ried out an extensive manual and automatic evalu-
ation of machine translation performance, and we
used the human judgements that we collected to val-
idate automatic metrics of translation quality. This
year was also the debut of a new quality estimation
task, which tries to predict the effort involved in hav-
ing post editors correct MT output. The quality es-
timation task differs from the metrics task in that it
does not involve reference translations.

As in previous years, all data sets generated by
this workshop, including the human judgments, sys-
tem translations and automatic scores, are publicly
available for other researchers to analyze.'?
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Table 14: Head to head comparison for Czech-English systems

A Pairwise System Comparisons by Human Judges

Tables 14-21 show pairwise comparisons between systems for each language pair. The numbers in each of
the tables’ cells indicate the percentage of times that the system in that column was judged to be better than
the system in that row. Bolding indicates the winner of the two systems. The difference between 100 and
the sum of the complementary cells is the percent of time that the two systems were judged to be equal.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine differences
(rather than differences that are attributable to chance). In the following tables x indicates statistical signif-
icance at p < 0.10, T indicates statistical significance at p < 0.05, and I indicates statistical significance at
p < 0.01, according to the Sign Test.

Each table contains a final row showing how often a system was ranked to be > than the others. As
suggested by Bojar et al. (2011) present, this is calculated ignoring ties as:

win(s)
win(s) + loss(s) (18)

score(s) =

B Automatic Scores

Tables 29-36 give the automatic scores for each of the systems.
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Table 16: Head to head comparison for English-French systems
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RBMT-3  26x .39 .46} .34f - 32% 28« 24 34f 32% 37
ONLINE-C  .33x .54x .61x .40 47% - 43 50x 50~ 42 48
RBMT-1 .39% .51x .61x .39 49x 34 - 47t 50 39 46
PROMT .28 41 B1x 337 29 33x 34% - 42 32« 40
UEDIN .25%x 41 48+« 38 47t .30« 357 43 - 28% .39
UK 317 .52« .57« A48 53x 42 44 52%  A42% - .50%
UPC  .24% 40 53« 40 43 .39 .39 46 36 28% -
>others 036 0.56 0.65 046 058 043 045 055 052 041 052

Table 18: Head to head comparison for English-Spanish systems

43



< 0 <
= z 2z L % 2 ¢ = z
2 2 £ 2 2 2 3 : 2 32 Z 5 2 B |«
o = % 3 3 o o & [~ o & ] 7 =) =)
CMU - 341 32 46 .35 41 39 30« 36 29 357 32 28% 45 331
JHU  .50% —  63x S5« S3x  .63x ST« 43 42 31« 46 527 43 537 43
KIT 40 21x - .36 .30 35 44 33x 337 23% 31x 25« 28« .23%  .30%

LIMSI 35 26% 37 - 3lx 35 40 29x 327 23% 337 29x 28« 29 23%

LIUM 47 25« 43 53« - 44 42 .36 43 28% 38 38 .32% 40 42
ONLINE-A 45 22x 41 47 40 - 41 30% 25« 28 .23« 40 27x 40 25«
ONLINE-B 45 32«% .38 42 41 .39 - 347 39 30x  33x 30« .34% 44 327

RBMT-4 .56x .40 .54x .61x .48 .54« .54% — 43 31f 48t 45 42 52f 46
RBMT-3 .50 .46 .53t .53t .46 .S4x 47 33 ~ 28« 40 .53f .52 .50 .48
ONLINE-C  .59% .57% .72x .66x .59x .60x .61x .45} .54% - S8x  .65x 531 .66%x .58«
RBMT-1 .54} 43 58x 547 48 .62x .55« 31t 44 20+ - 47 41 567 .38
RWTH 39 351 50x .52« 43 S50 55« 42 371 23% 40 - 34% 36 29x
SFU  .57% 38  55x  S54x 48% 55« 517 42 38 .35¢% 45 507 - 41 46
UEDIN 37 0 32F 42 42 40 43 40 347 40 24x 367 39 41 - 29
UK .50 .40 .48t .59« .44  .58x .50t 42 41 35+ 49 53« 35 Slx -
> others 057 041 0.61 063 052 059 057 043 046 032 046 052 044 055 044
Table 19: Head to head comparison for French-English systems
=
z < a 0 .
o 7 2 2 ;'r o 2 = — & o Z
o B g = z Z = = Z = 3 s E a o) M
A = & 3 o o & & o . & o & =) ) S)
DFKI-BERLIN - .38 49 521 57« .65« 55T .62 50 49 517 .66%  53x  .61x  .17% .37
JHU 45 - 60x .66x .66x .69x STx .60« S2 0 .62x  S8x  .67x  S9x  .62x  21x 37
KIT 36 .16% - 47 .60% .50 41 S0 31 .39 32 36 32 39 15 26%
LIMST .30 .14% .35 - 497 57« 49 54 341 33% 43 31 44 491 14x 307
ONLINE-A  .32x  .20x 224 .32% - 39 30% 44 20« 30% 37 0 35¢ 321 31f .16x .29x
ONLINE-B  .25x 2l 38 29« .38 - 27% 39 3l1x 37 307 43 34 337 12+« 24
RBMT-4 .33t .33% 49 44 57« .63% - 46 26x% 40 531 517 .56% A48 21x 32«
RBMT-3  .26x .30% .39 40 45 45 32 - .35 36 341 48  33% 41 13x 23%
ONLINE-C .36 37 58x 547 JT0x .62x ST .50 - .53% A48 57« 551 58x  .14x 45
RBMT-1 41 32« 48 557 .64x 52 42 47 344 - S1 49 48 45 15+« 25«
QCRI 311  .26% 43 .37 48 517 36f  .52% 43 .38 —  48x 481 451 .14x  23%
QUAERO  .18% .19« 29 33 511 43 33% 42 31x 37 23% - 34 487  .09x .16
RWTH .29+  25% 38 34 51% 48 371  .58% .38% 40 297 39 - 44 20x  24%
UEDIN .24 20 38 .30t .55f .52 42 44 35« 37 29% 32 .38 ~ 08x 22«
UG .68 .61x .72% .76%x .76%x .82x .72x .80x .70x .76x .73x .76x .7T3x .84x - S57x
UK 43 37 A8x A8  S4x .62x STk .64% 44 59%x  49x  S8x  Slx S56x  .20% -
> others 040 034 055 054 065 065 050 060 043 051 052 061 0.56 0.6 0.17 037

Table 20: Head to head comparison for German-English systems
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Ay [Sa] m <t o 8] —
2 z z ¢ ¢ £z & _ oz
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GTH-UPM 41 501 .52 .38 46 32x  35x 447 46 17x 41
JHU .37 - S4x 56% 44 48 .39 39 477 S0k 5% 475
ONLINE-A 341  31x - 43 28x  38%  29% .29« 40 39 16% 41
ONLINE-B  .367 .30x 44 - 34x 38 30« 32+« .37% 38 18« 41
RBMT-4 .50 45 .61x  ST7x - 46 41 40 537 S7x 21x 567
RBMT-3 42 40 531 51 .36 - 361 31x  .60x .54 14x  .54%
ONLINE-C .54 48  58x  .62x 49 501 - 40 58x  59x  23x 55«
RBMT-1  .56% S50 59 57« 40 .53« 41 - 57x 59x  23x .58«
QCRI .28  .31% 45 50F 381 32x  29x  34x - 31 12+« .33%
UEDIN 39 27x 49 49 33%x 38t 31x 31k 34 - 5% 38
UK JT74% TJ1x  81x .76x .73x .76x .69%x .66%x .76x .75x - TJ7%
UPC 42 32% 49 49 387 361 33x  35x  44i 36 14x -
> others 0.52 048 0.62 0.61 046 051 042 042 060 058 0.19 0.57
Table 21: Head to head comparison for Spanish-English systems
Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 | 0.643: ONLINE-B | ONLINE-B | ONLINE-B 2.88: ONLINE-B | 0.642 (1): ONLINE-B
2 | 0.606: UEDIN UEDIN UEDIN 3.07: UEDIN 0.603 (2): UEDIN
3 | 0.530: ONLINE-A | CU-BOJAR | CU-BOJAR 3.40: CU-BOJAR | 0.528 (3-4): ONLINE-A
4 | 0.530: CU-BOJAR | ONLINE-A | ONLINE-A 3.40: ONLINE-A | 0.528 (3-4): CU-BOJAR
5 ] 0.375: UKk UK UK 4.01: UK 0.379 (5): UK
6 | 0.318: JHU JHU JHU 4.24: JHU 0.320 (6): THU
Table 22: Overall ranking with different methods (Czech—English)
Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 0.646: ONLINE-A ONLINE-B ONLINE-B 6.35: ONLINE-A 0.647 (1-3): ONLINE-A
2 0.645: ONLINE-B ONLINE-A ONLINE-A 6.44: ONLINE-B 0.642 (1-3): ONLINE-B
3 0.612: QUAERO UEDIN UEDIN 6.94: QUAERO 0.609 (2-5): QUAERO
4 0.599: RBMT-3 QUAERO QUAERO 7.04: RBMT-3 0.600 (2-6): RBMT-3
5 0.597: UEDIN RBMT-3 RBMT-3 7.16: UEDIN 0.593 (3-6): UEDIN
6 0.558: RWTH KIT KIT 7.76: RWTH 0.551 (5-9): RWTH
7 0.545: LIMSI RWTH RWTH 7.83: KIT 0.547 (5-10): KIT
8 0.544: KIT QCRI QCRI 7.85: LIMSI 0.545 (6-10): LIMSI
9 0.524: QCRI RBMT-4 RBMT-4 8.20: QCRI 0.521 (7-11): QCRI
10 | 0.505: RBMT-1 LIMSI LIMSI 8.40: RBMT-4 0.506 (8-11): RBMT-1
11 | 0.502: RBMT-4 RBMT-1 RBMT-1 8.42: RBMT-1 0.506 (8-11): RBMT-4
12 | 0.434: ONLINE-C ONLINE-C ONLINE-C 9.43: ONLINE-C 0.434 (12-13): ONLINE-C
13 | 0.402: DFKI-BERLIN | DFKI-BERLIN | DFKI-BERLIN | 9.86: DFKI-BERLIN | 0.405 (12-14): DFKI-BERLIN
14 | 0.374: UK UK UK 10.25: UK 0.377 (13-15): UK
15 | 0.337: JHU JHU JHU 10.81: JHU 0.338 (14-15): JHU
16 | 0.179: uG UG UG 13.26: UG 0.180 (16): UG

Table 23: Overall ranking with different methods (German—English)
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Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 0.630: LIMSI LIMSI LIMSI 6.33: LIMSI 0.626 (1-3): LIMSI
2 0.613: KIT CMU CMU 6.55: KIT 0.610 (1-4): KIT
3 0.593: ONLINE-A | ONLINE-B | ONLINE-B 6.80: ONLINE-A 0.592 (1-5): ONLINE-A
4 0.573: cMU KIT KIT 7.06: cMU 0.571 (2-6): cMU
5 0.569: ONLINE-B | ONLINE-A | ONLINE-A 7.12: ONLINE-B 0.567 (3-7): ONLINE-B
6 0.546: UEDIN LIUM LIUM 7.51: UEDIN 0.538 (5-8): UEDIN
7 0.523: LIuM RWTH RWTH 7.73: LIUM 0.522 (5-8): LIUM
8 0.515: RWTH UEDIN UEDIN 7.88: RWTH 0.510 (6-9): RWTH
9 0.459: RBMT-1 RBMT-1 RBMT-1 8.51: RBMT-1 0.463 (8-12): RBMT-1
10 | 0.457: RBMT-3 UK UK 8.56: RBMT-3 0.458 (9-13): RBMT-3
11 | 0.444: UK SFU SFU 8.75: SFU 0.444 (9-14): sFu
12 | 0.444: sFu RBMT-3 RBMT-3 8.78: UK 0.441 (9-14): UK
13 | 0.429: RBMT-4 RBMT-4 RBMT-4 8.92: RBMT-4 0.430 (10-14): RBMT-4
14 | 0.412: JHU JHU JHU 9.19: JHU 0.409 (12-14): JHU
15 | 0.321: ONLINE-C | ONLINE-C | ONLINE-C 10.31: ONLINE-C | 0.319 (15): ONLINE-C
Table 24: Overall ranking with different methods (French—-English)
Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 0.617: ONLINE-A | ONLINE-A | ONLINE-A 5.38: ONLINE-A | 0.617 (1-4): ONLINE-A
2 0.612: ONLINE-B | ONLINE-B | ONLINE-B 5.43: ONLINE-B | 0.611 (1-4): ONLINE-B
3 0.603: QCRI QCRI QCRI 5.56: QCRI 0.600 (1-4): QCRI
4 0.585: UEDIN UPC UPC 5.75: UEDIN 0.581 (2-5): UEDIN
5 0.565: upC UEDIN UEDIN 5.89: urPC 0.567 (3-6): UPC
6 0.528: GTH-UPM | RBMT-3 RBMT-3 6.29: GTH-UPM | 0.526 (5-7): GTH-UPM
7 0.512: RBMT-3 JHU JHU 6.37: RBMT-3 0.518 (6-8): RBMT-3
8 0.477: JHU GTH-UPM | GTH-UPM 6.73: JHU 0.480 (7-9): JHU
9 0.461: RBMT-4 RBMT-4 RBMT-4 6.92: RBMT-4 0.460 (8-10): RBMT-4
10 | 0.423: RBMT-1 ONLINE-C | ONLINE-C 7.19: RBMT-1 0.429 (9-11): RBMT-1
11 | 0.420: ONLINE-C | RBMT-1 RBMT-1 7.24: ONLINE-C | 0.423 (9-11): ONLINE-C
12 | 0.189: UK UK UK 9.25: UK 0.188 (12): UK
Table 25: Overall ranking with different methods (Spanish-English)
Bojar Lopez Most Probable MC Playoffs Expected Wins
1 0.662: CU-DEPFIX CU-DEPFIX CU-DEPFIX 5.25: CU-DEPFIX 0.660 (1): CU-DEPFIX
2 0.628: ONLINE-B ONLINE-B ONLINE-B 5.78: ONLINE-B 0.616 (2): ONLINE-B
3 0.557: UEDIN UEDIN UEDIN 6.42: UEDIN 0.557 (3-6): UEDIN
4 0.555: CU-TAMCH CU-TAMCH CU-TAMCH 6.45: CU-TAMCH 0.555 (3-6): CU-TAMCH
5 0.543: CU-BOJAR CU-BOJAR CU-BOJAR 6.58: CU-BOJAR 0.541 (3-7): CU-BOJAR
6 0.531: CU-TECTOMT CU-TECTOMT CU-TECTOMT 6.69: CU-TECTOMT 0.532 (4-7): CU-TECTOMT
7 0.528: ONLINE-A ONLINE-A ONLINE-A 6.72: ONLINE-A 0.529 (4-7): ONLINE-A
8 0.478: COMMERCIALI COMMERCIAL2 COMMERCIAL2 7.27: COMMERCIALI1 0.477 (8-10): COMMERCIAL1
9 0.459: COMMERCIAL2 COMMERCIALI1 COMMERCIALI1 7.46: COMMERCIAL2 0.459 (8-11): COMMERCIAL2
10 | 0.442: CU-POOR-COMB | CU-POOR-COMB | CU-POOR-COMB | 7.61: CU-POOR-COMB | 0.443 (9-11): CU-POOR-COMB
11 | 0.437: UK UK UK 7.65: UK 0.440 (9-11): UK
12 | 0.360: SFU SFU SFU 8.40: SFU 0.362 (12): SFU
13 | 0.326: JHU JHU JHU 8.72: JHU 0.328 (13): JHU

Table 26: Overall ranking with different methods (English—Czech)
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Table 28: Overall ranking with different methods (English—Spanish)

47

Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 0.655: LIMSI LIMSI LIMSI 5.98: LIMSI 0.651 (1-2): LIMSI
2 0.615: RWTH RWTH RWTH 6.57: RWTH 0.609 (2-4): RWTH
3 0.595: ONLINE-B | ONLINE-B | ONLINE-B 6.84: ONLINE-B | 0.589 (2-5): ONLINE-B
4 0.590: KIT KIT KIT 6.86: KIT 0.587 (2-5): KIT
5 0.554: L1uM LIUM LIUM 7.36: LIUM 0.550 (4-8): LIUM
6 0.534: UEDIN UEDIN UEDIN 7.67: UEDIN 0.526 (5-9): UEDIN
7 0.516: RBMT-3 RBMT-3 RBMT-3 7.85: RBMT-3 0.514 (5-10): RBMT-3
8 0.513: ONLINE-A | ONLINE-A | ONLINE-A 7.92: PROMT 0.507 (6-10): ONLINE-A
9 0.506: PROMT PROMT PROMT 7.92: ONLINE-A | 0.507 (6-10): PROMT
10 | 0.483: RBMT-1 RBMT-1 RBMT-1 8.23: RBMT-1 0.483 (8-11): RBMT-1
11 | 0.436: JHU JHU JHU 8.85: JHU 0.436 (10-12): JHU
12 | 0.396: UK UK RBMT-4 9.34: RBMT-4 0.397 (11-15): RBMT-4
13 | 0.394: ONLINE-C | RBMT-4 ITS-LATL 9.38: ONLINE-C | 0.393 (12-15): ONLINE-C
14 | 0.394: RBMT-4 ITS-LATL ONLINE-C 9.41: UK 0.391 (12-15): UK
15 | 0.360: ITS-LATL ONLINE-C | UK 9.81: ITS-LATL 0.360 (13-15): ITS-LATL
Table 27: Overall ranking with different methods (English—French)
Bojar Lopez Most Probable | MC Playoffs Expected Wins
1 0.648: ONLINE-B | ONLINE-B | ONLINE-B 4.70: ONLINE-B | 0.646 (1): ONLINE-B
2 0.579: RBMT-3 RBMT-3 RBMT-3 5.35: RBMT-3 0.577 (2-4): RBMT-3
3 0.561: ONLINE-A | PROMT PROMT 5.49: ONLINE-A | 0.561 (2-5): ONLINE-A
4 0.545: PROMT ONLINE-A | ONLINE-A 5.66: PROMT 0.542 (3-6): PROMT
5 0.526: UEDIN UPC UPC 5.78: UEDIN 0.528 (4-6): UEDIN
6 0.524: upc UEDIN UEDIN 5.81: upC 0.525 (4-6): upPC
7 0.463: RBMT-4 RBMT-1 RBMT-1 6.33: RBMT-4 0.464 (7-9): RBMT-4
8 0.452: RBMT-1 RBMT-4 RBMT-4 6.42: RBMT-1 0.452 (7-9): RBMT-1
9 0.430: ONLINE-C | UK ONLINE-C 6.57: ONLINE-C | 0.434 (8-10): ONLINE-C
10 | 0.412: UK ONLINE-C | UK 6.73: UK 0.415 (9-10): UK
11 | 0.357: JHU JHU JHU 7.17: JHU 0.357 (11): JHU



BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
METEOR

POSF
SAGAN-STS
SEMPOS
SIMPBLEU

TER
TERRORCAT
XENERRCATS

Czech-English News Task |
CU-BOJAR 0.17 0.2 39 031 44 066 050 021 065 0.2 50 639
JHU 0.16 0.18 41 028 41 0.63 047 0.19 065 0.10 53 692
ONLINE-A 0.18 021 40 0.31 43 0.68 051 021 062 022 50 648
ONLINE-B 0.18 0.23 40 030 42 067 053 023 059 020 52 660
UEDIN 0.18 022 39 032 45 069 053 023 060 0.25 49 627
UK 0.16 0.18 41 029 41 063 049 0.19 0.67 0.17 53 682

Table 29: Automatic evaluation metric scores for systems in the WMT12 Czech-English News Task

BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
METEOR

POSF

SEMPOS
SIMPBLEU

TER
TERRORCAT
XENERRCATS

German-English News Task
DFKI-BERLIN 0.17 021 40 03 43 046 0.18 0.61 025 50 653
JHu 0.17 02 41 029 42 042 021 061 020 52 672
KIT 0.18 023 39 031 45 046 023 058 028 49 630
LiMst  0.18 023 39 031 45 048 023 0.6 030 49 628
ONLINE-A 0.18 021 40 032 44 050 022 06 027 50 645
ONLINE-B 0.19 024 39 031 44 053 024 059 029 50 636
RBMT-4 0.16 0.16 41 029 42 044 0.18 0.68 024 53 690
RBMT-3 0.16 0.17 40 03 42 047 0.19 066 029 52 677
ONLINE-C 0.15 0.14 42 0.28 40 043 0.17 070 026 54 711
RBMT-1 0.15 0.15 43 029 40 045 0.17 0.69 024 54 711
QCrRI 0.18 023 40 031 44 046 023 059 026 50 639
QUAERO 0.19 024 38 032 46 049 024 057 03 48 613
RWTH 0.18 023 39 031 45 048 024 058 027 49 626
UEDIN 0.18 023 39 031 46 051 023 059 032 49 630
UG 0.11 0.11 45 024 35 038 0.14 077 0.10 59 768
UK 0.16 0.18 42 029 40 042 02 065 027 53 683

Table 30: Automatic evaluation metric scores for systems in the WMT12 German-English News Task
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BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
METEOR

POSF

SEMPOS
SIMPBLEU

TER
TERRORCAT
XENERRCATS

French-English News Task ‘
cmu 020 029 36 034 51 054 029 052 025 44 561
JHu 0.19 026 37 033 47 050 026 054 020 46 596
KiT 021 030 35 034 51 054 03 051 025 43 551
LIMST 021 030 35 034 52 055 03 051 025 43 546
LIUM 020 029 36 034 50 054 029 052 024 44 558
ONLINE-A 0.2 027 37 034 48 052 027 053 024 45 584
ONLINE-B 020 030 36 033 48 055 029 051 022 46 582
RBMT-4 0.18 020 38 032 45 049 021 064 0.15 48 622
RBMT-3 0.18 021 39 031 46 049 022 061 0.15 48 637
ONLINE-Cc 0.18 0.19 38 031 45 045 021 064 0.10 48 633
RBMT-1 0.18 021 39 032 47 05 022 062 0.15 48 626
RWTH 020 029 36 034 50 053 028 053 020 44 563
SFU 0.2 025 37 033 48 051 026 054 017 46 596
UEDIN 020 030 35 034 51 054 03 051 025 43 549
Uk 0.19 025 38 033 47 052 025 057 0.17 47 602

Table 31: Automatic evaluation metric scores for systems in the WMT12 French-English News Task

BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
METEOR

POSF
SAGAN-STS
SEMPOS
SIMPBLEU

TER
TERRORCAT
XENERRCATS

Spanish-English News Task |
GTH-UPM 021 029 35 035 51 0.7 0.55 029 051 031 43 565
JHU 0.21 029 35 035 51 0.7 056 029 051 031 43 560
ONLINE-A 0.22 031 34 036 52 0.72 058 031 049 036 42 535
ONLINE-B 0.22 038 33 036 53 070 0.60 035 045 035 41 523
RBMT-4 0.19 023 36 033 49 0.69 054 024 060 029 45 591
RBMT-3 0.19 023 36 033 49 069 054 023 060 029 45 590
ONLINE-C 0.19 022 37 033 47 068 0.5 023 061 024 46 598
RBMT-1 0.18 022 38 033 48 0.67 052 023 062 023 47 607
QCRI 022 033 33 036 54 071 0.6 032 049 032 40 523
UEDIN 022 033 33 036 54 071 059 032 048 032 40 519
UK 0.18 022 37 030 44 0.6 048 023 0.60 0.10 48 634
upc 022 032 34 036 54 071 057 031 049 033 41 531

Table 32: Automatic evaluation metric scores for systems in the WMT12 Spanish-English News Task
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BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
ENXERRCATS
METEOR

POSF

SEMPOS
SIMPBLEU

TER
TERRORCAT

English-Czech News Task \

COMMERCIAL-2 0.01 008 47 693 0.17 23 038 0.1 0.76 0.17 61
CU-BOJAR 0.17 0.13 45 644 021 28 04 0.13 0.69 026 57
CU-DEPFIX 0.19 0.16 44 623 022 28 045 0.15 066 030 55
CU-POOR-COMB 0.14 0.12 48 710 0.19 27 035 0.12 0.67 023 60
CU-TAMCH 0.17 0.13 45 647 021 28 038 0.13 0.69 029 57
CU-TECTOMT 0.16 0.12 48 690 0.19 26 036 0.12 0.68 022 60
JHU 0.16 0.1 47 691 02 23 039 0.11 069 0.10 60
ONLINE-A 0.17 0.13 n/a n/a 021 n/a 042 0.13 067 025 n/a
ONLINE-B 0.19 0.16 44 623 021 28 045 0.15 0.66 030 55
COMMERCIAL-1 0.11 0.09 48 692 0.18 22 038 0.10 074 021 61
SFU 0.15 0.11 47 674 0.19 23 039 0.11 071 021 60

UEDIN 0.18 0.15 45 639 021 27 041 0.14 066 040 56

UK 0.15 0.11 47 669 0.19 25 039 0.12 071 035 59

Table 33: Automatic evaluation metric scores for systems in the WMT12 English-Czech News Task

BLEU-4-CLOSEST-CASED
BLOCKERRCATS
ENXERRCATS

SIMPBLEU

TERRORCAT
WORDBLOCKERRCATS

AMBER
METEOR

s 9
wn
2
English-German News Task \
DFKI-BERLIN 0.18 0.14 46 628 035 41 0.13 0.69 0.10 57
DFKI-HUNSICKER 0.18 0.14 45 621 035 42 0.15 0.69 0.17 57
JHU 0.2 0.15 45 618 037 42 0.16 0.68 0.17 56
KIT 020 0.17 45 606 0.38 43 0.17 066 0.14 55
LiMst 0.2 0.17 45 615 037 43 0.17 0.65 0.15 56
ONLINE-A 020 0.16 45 617 038 43 0.17 065 036 55
ONLINE-B  0.22 0.18 43 589 038 42 0.18 0.64 035 55
RBMT-4 0.18 0.14 45 623 035 42 0.15 0.69 035 57
RBMT-3 0.19 0.15 44 608 036 44 0.16 0.68 037 56
ONLINE-C 0.16 0.11 47 655 032 39 0.13 0.74 0.37 60
RBMT-1 0.17 0.13 47 643 034 42 0.15 070 036 58
RWTH 0.2 0.16 44 609 037 43 0.16 0.67 025 56
UEDIN-WILLIAMS 0.19 0.16 45 628 0.37 43 0.17 0.66 033 57
UEDIN 020 0.16 45 611 037 43 0.17 066 0.29 55
UK 0.18 0.14 46 632 036 40 0.15 071 0.27 58

TER

Table 34: Automatic evaluation metric scores for systems in the WMT12 English-German News Task
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BLEU-4-CLOSEST-CASED
LOCKERRCATS

ENXERRCATS

SIMPBLEU

TERRORCAT

WORDBLOCKERRCATS

AMBER
METEOR

%
2
English-French News Task ‘
ITS-LATL  0.24 021 41 548 045 48 021 061 0.15 50
JHU 026 0.25 38 511 049 51 025 057 015 47
KIT 028 028 36 480 052 55 028 054 022 44
LIMSI 028 029 36 472 052 55 028 054 022 44
LM 028 028 37 480 051 54 028 055 020 45
ONLINE-A 026 025 39 512 05 52 026 057 0.17 47
ONLINE-B 0.24 021 36 473 048 45 026 077 0.10 49
RBMT-4 0.24 021 40 539 046 48 022 0.60 0.10 49
RBMT-3 0.26 024 39 511 048 52 024 058 0.14 47
ONLINE-C 023 02 41 550 045 50 021 0.62 0.10 50
RBMT-1 025 022 40 531 047 51 023 06 0.13 49
PROMT 0.26 0.24 38 502 049 52 025 058 0.18 46
RWTH 0.28 029 36 478 0.52 54 028 054 022 44
UEDIN 0.28 028 36 479 052 54 028 055 027 45
UK 025 023 39 523 048 51 024 06 0.17 48

B
TER

Table 35: Automatic evaluation metric scores for systems in the WMT12 English-French News Task

BLEU-4-CLOSEST-CASED
WORDBLOCKERRCATS

AMBER
BLOCKERRCATS
ENXERRCATS
METEOR
SIMPBLEU
TERRORCAT

7
g
English-Spanish News Task \
JHU 0.29 029 37 494 054 52 029 051 0.14 45
ONLINE-A 031 031 36 475 056 54 031 048 0.2 43
ONLINE-B  0.33 036 34 431 057 54 034 048 025 42
RBMT-4 0.27 024 39 528 0.5 50 025 0.55 0.14 48
RBMT-3 0.28 026 39 510 051 51 026 054 0.13 46
ONLINE-C 0.26 024 40 532 0.5 49 025 055 0.10 48
RBMT-1 0.26 023 40 534 050 49 025 0.57 0.13 49
PROMT 0.29 027 38 497 052 52 028 053 0.18 45
UEDIN 031 032 35 466 056 55 032 049 0.19 42
UK 029 028 38 510 054 51 028 052 0.17 46
upc 031 032 36 476 056 54 031 049 0.19 43

TER

Table 36: Automatic evaluation metric scores for systems in the WMT12 English-Spanish News Task
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Abstract

This paper describes the system used for our
participation in the WMT12 Machine Transla-
tion evaluation shared task.

We also present a new approach to Machine
Translation evaluation based on the recently
defined task Semantic Textual Similarity. This
problem is addressed using a textual entail-
ment engine entirely based on WordNet se-
mantic features.

We described results for the Spanish-English,
Czech-English and German-English language
pairs according to our submission on the Eight
Workshop on Statistical Machine Translation.
Our first experiments reports a competitive
score to system level.

1 Introduction

The evaluation of Machine Translation (MT) has
become as important as MT itself over the last few
years. This is evidenced by the fact that there are
now specific forums to present and test new met-
rics, such as the Workshop for Statistical MT
(WMT) or the NIST MetricsMatr. Every year a
vast number of MT metrics are created, the majori-
ty being automatic, and seeking to find an efficient,
low labor-intensive and reliable evaluation method
as an alternative to human-based evaluation.
Automatic metrics employ different evaluation
strategies: classical MT automatic metrics, such as
BLEU (Papineni et al., 2002), NIST (Doddington.
2002), WER (Tillmann et al., 1997), PER (Nie3en
et al., 2000) are language-independent based on n-
gram matching (considering or not the ordering of
words in a sentence); other use some kind of lan-
guage-specific knowledge, for example METEOR
(Banerjee et al., 2005), which uses WordNet to
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match synonyms if exact matchings do not occur,
and METEOR-NEXT (Denkowski et al., 2010)
that, in addition to METEOR’s features, incorpo-
rates paraphrases; and more sophisticated metrics
use deeper linguistic information, as for example
the DCU-LFG metric (Yifan et al., 2010).

However, relatively few attempts have been
made to use semantic information for MT evalua-
tion. Moreover, only one work has been published
about using semantic equivalence (known as Tex-
tual Entailment) of texts for MT evaluation. In this
work we propose an improved metric, based on TE
features, that indicates to what extent a candidate
sentence is equivalent to a reference.

The paper is organized as follows: Section 2 de-
scribes the relevant work done on semantic orient-
ed MT evaluation, Section 3 describes the
architecture of the system to compute our metric,
then Section 4 relates TE and semantic textual
similarity to MT, and Section 5 presents some
results obtained with our TE-based metric; and
finally Section 6 summarize some conclusions and
future work.

2 Related work

Given the vast literature in the field of MT evalua-
tion, in this section we briefly mention a few at-
tempts to evaluate MT based on semantic features,
which we deem most recent and important.

2.1 Semantics for MT evaluation

Giménez and Marquez (2007) present a set of met-
rics operating over shallow semantic structures,
which they call linguistic elements, with the idea
that a sentence can be seen as a ‘bag’ of LEs. Pos-
sible LEs are word forms, part-of-speech tags,
dependency relationships, syntactic phrases, named

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 52-58,
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entities, semantic roles, etc. The metrics calculate
the similarity of a candidate to one or more refer-
ences by calculating the overlap and matches of
LEs, and the resulting score is the highest obtained
from the individual comparisons to each reference.
The shallow-semantic evaluation is performed by
computing the matching and overlap of named
entities and semantic roles, after automatically
annotating the sentences.

Following this work, Giménez and Marquez
(2009) propose the family of metrics discourse
representation structure (DRS) based on the Dis-
course Representation Theory of Kamp (1981),
where a discourse is represented in structure that is
essentially a variation of first-order predicate cal-
culus. These sets of metrics are then used to evalu-
ate poor quality MT, concluding that semantic
oriented metrics are more stable at the system lev-
el, while at the sentence level their performance
decreases (probably due to external factors, for
example if a parse tree of the sentence is not avail-
able, the metric cannot be computed).

More recently, Lo and Wu (2011) present a new
semi-automated metricc, MEANT, that assesses
translation utility by matching semantic role fillers.
Their hypothesis is that a good translation is one
that lets a reader get the central information of the
sentence. Conceptually, MEANT is defined in
terms of f-score, calculated by averaging the trans-
lation accuracy for all frames in the MT output
across the number of frames in the MT out-
put/reference translations. To determine the trans-
lation accuracy for each semantic role filler in the
reference and machine translations, they ask hu-
mans to indicate if a role filler translation is cor-
rect, incorrect or partially correct, hence being a
semi-automatic metric. According to Lo and Wu
(2011) MEANT can be run using inexpensive un-
trained monolingual human judges and yet it corre-
lates with human judgments on adequacy as well
as other labor-intensive metrics, such as HTER
(Snover et al., 2006), which needs to train humans
to find the closest right translation.

2.2 Textual Entailment in MT

Textual Entailment (TE) is defined as a generic
framework for applied semantic inference, where
the core task is to determine whether the meaning
of a target textual assertion (hypothesis, H) can be
inferred from a given text (T). For example, given
the pair (H,T):
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H: The Tunisian embassy in Switzerland was at-
tacked

T: Fire bombs were thrown at the Tunisian embas-
sy in Bern

we can conclude that T entails H.

The recently created challenge “Recognising
Textual Entailment” (RTE) started in 2005 with
goal of providing a binary answer for each pair
(H,T), namely whether there is entailment holds or
not (Dagan et al., 2006). The RTE challenge has
mutated over the years, aiming at accomplishing
more accurate and specific solutions; for example,
2008 a three-way decision was proposed (instead
of the original binary decision) consisting of “en-
tailment”, “contradiction” and “unknown”; in 2009
the organizers proposed a pilot task, the Textual
Entailment Search (Bentivogli et al., 2009), con-
sisting in finding all the sentences in a set of doc-
uments that entail a given Hypothesis and since
2010 there is a Novelty Detection Task, which
means that RTE systems are required to judge
whether the information contained in each H is
novel with respect to (i.e., not entailed by) the in-
formation contained in the corpus.

This task is quite close to the goal of MT and
MT evaluation given that a correct translation
should be semantically equivalent to its reference,
and thus both translations should entail each other.

Despite this close relation, at present there are
only two works using TE in MT, namely Mirkin et
al. (2009) proposes to handle OOV(Out-of-
vocabulary words) terms by generating alternative
source sentences for translation but instead of
simply using paraphrases they use entailed texts;
the other contribution is by Aziz et al. (2010), in
which TE features are integrated into standard
SMT workflow (i.e. they dynamically generate
alternative entailed words to replace OOVs).

More directly related to our work, is that of
Pado et al., (2009) that uses TE to evaluate MT.
The main idea is to find out if the translation para-
phrases (entails) the reference using entailment
features. This is implementing by checking for
entailment both from the candidate to the reference
and from the reference to the candidate; best can-
didates are thus assumed to be those that both en-
tail and are entailed by the references and worst
candidates are assumed to be those that neither
entail the references nor are entailed by these ref-
erences. Pado et al. (2009a) found that entailment-



based features extracted from partially ill-formed
translations are sufficiently robust to be predictive
for translation quality.

Our approach differs from that of Pado et al.
(2009) in that we do not have a binary entailment
relation; instead we try to state in a scale of 0 — 5
the degree of similarity between a candidate and a
reference. This approach has very recently been
proposed as a new task of the Semantic Evaluation
Exercises 2012, called Semantic Textual Similarity
(STS) by Aguirre et al. (2012) and is explained in
more detail in Section 4.

3 System architecture

Sagan is a RTE textual entailment system which
has taken part of several challenges, including the
Textual Analysis Conference 2009 and TAC 2010,
and the Semantic Textual Similarity (Castillo and
Estrella, 2012) and Cross Lingual Textual Entail-
ment for content synchronization (Castillo and
Cardenas, 2012) as part of the *SEM 2012 Task8
(Negri et al., 2012).

The system is based on a machine learning ap-
proach for STS. We adapted this system to produce
feature vectors for all MT outputs for all language
pairs ES-EN, DE-EN, FR-EN and CS-EN. It is
worth noting that we work on all pairs into English
because the system was run in a monolingual set-
ting to take advantage of all the resources available
for EN.

This Semantic Textual Similarity engine utilizes
eight WordNet-based similarity measures, as ex-
plained in (Castillo, 2011), with the purpose of
obtaining the maximum similarity between two
concepts. These text-to-text similarity measures are
based on the following word-to-word similarity
metrics: (Resnik, 1995), (Lin, 1997), (Jiang and
Conrath, 1997), (Pirrd and Seco, 2008), (Wu &
Palmer, 1994), Path Metric, (Leacock & Chodor-
ow, 1998), and a semantic similarity to sentence
level named SemSim (Castillo and Cardenas,
2010).

Additional information about how to produce
feature vector and metric to word and sentence
level can be found in (Castillo, 2011).

The output of the system as modified for this
workshop, is a similarity score between 5 and 0,
where 5 means a perfect semantic similarity (ap-
plied to MT it means that a candidate is indeed a
good translation) and 0 means that there is no se-
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mantic similarity between the pair, i.e. in MT
terms, the candidate is not a translation.
The architecture of the system is shown in Fig-

ure 1.
Training Set:
MSRPC_STS

v
Pre-Processing
Normalizer| | Stemming | |

y

I

‘ Word Level Semantic Metrics ‘ |
|Resnik| | Lin | W&P SemSim| .. | ‘
I

I

I

Parser

'

Sentence Level Semantic Metric ‘

‘ Feature Extraction ‘

Testset:
Lenguage
Pairs XX->EN

Gold B

Reference-
EN

A4

SVM with
Regression

A4

Result

Similarity Score

Fig.1. STS system architecture for MT evaluation

The system computes the semantic similarity of
two texts (T,H) as a function of the semantic simi-
larity of the constituent words of both phrases. A
graph matching algorithm is used to determine the
overall similarity between two text fragments.

As a result, a text to text similarity measure is
built based on word to word similarity. It is as-
sumed that combining word to word similarity
metrics to text level would be a good indicator of
text to text similarity.

4 Sagan for MT evaluation

Sagan for MT evaluation is based on a core devel-
opment to approach the Semantic Textual Similari-
ty task(STS). The pilot task STS was recently
defined in Semeval 2012 (Aguirre et al., 2012) and
has as main objective measuring the degree of
semantic equivalence between two text fragments.
STS is related to both Recognizing Textual En-
tailment (RTE) and Paraphrase Recognition, but



has the advantage of being a more suitable model
for multiple NLP applications.

As mentioned before, the goal of the RTE task
(Bentivogli et al., 2009) is determining whether the
meaning of a hypothesis H can be inferred from a
text T. Thus, TE is a directional task and we say
that T entails H, if a person reading T would infer
that H is most likely true. The difference with STS
is that STS consists in determining how similar
two text fragments are, in a range from 5 (total
semantic equivalence) to 0 (no relation). Thus,
STS mainly differs from TE and Paraphrasing in
that the classification is graded instead of binary.
In this manner, STS is filling the gap between TE
and Paraphrase.

In view of this, our claim is that the output of
MT systems will be more strongly correlated with
humans if we have a higher STS score between
MT system output and the reference translation.

To apply Sagan to MT evaluation, we first, pre-
process the pairs from Microsoft Research Para-
phrase Corpus (Dolan and Brockett, 2005) with
dates and time normalization, and then optional
modules are applied depending on the metric we
want to calculate. Second, we compute 8 sentence
level semantic features, and, finally, for every
segment generated by systems participating at
WMT 2012, we determine the semantic similarity
score between that output and the given reference
translation. The scores are then normalized to a
value in the range 0 — 1.

5 Experiments and results

For the WMT 2012 we participated in the Czech-
English and Spanish-English evaluation task but
we did not have enough time to extensively test
our metric on a diverse range of settings (i.e. dif-
ferent corpora and language pairs), given that it
was developed for the STS task, which released the
data and results only a couple of months ago.
However, we are now running experiments to
get a better picture of the metric's ability to rate
translation quality. In this section we report results
obtained by training the system on the WMT 2011
data and testing on the news test portion, only for
the Spanish-English pair. Although the system
handles both SVM with regression and MLP clas-
sifiers, well known to have good performance on
natural language applications, we only submit the
results obtained using SVM with regression due to
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previous experiments that consistently showed
higher accuracy using SVM instead of MLP.

At the system level, we calculated the Spearman
Rank Correlation Coefficient (p) to compare our
metric's behavior with respect to the human based
metric applied in WMT 2011. The result is p =
0.96 indicating a strong positive correlation. More-
over, we successfully reproduce the systems rank-
ing given by humans regarding the best and worst
systems.

System Id Human Sagan
score score

online-B 0.72 0.71
online-A 0.72 0.71
systran 0.66 0.7
koc 0.67 0.69
alacant 0.66 0.69
rbmt-1 0.63 0.69
rbmt-4 0.6 0.69
rbmt-3 0.61 0.69
uedin 0.51 0.68
rbmt-2 0.6 0.68
upm 0.5 0.68
rbmt-5 0.51 0.68
ufal-um 0.47 0.67
cu-zeman 0.16 0.59
hyderabad 0.17 0.58

Table 1. Sagan's score for ES-EN WMT 2011 news test
set.

When correlating our metric to other automatic
metrics, we find that it better correlates with Mete-
or-Rank and Adq (Denkowski and Lavie, 2011),
Tesla-b (Dahlmaier et al., 2011) and MPF (Popo-
vic, 2011), with a correlation coefficient of 0.96.
On the other hand, the worst correlations are found
against Tesla-f, F15 (Bicici and Yuret, 2011) and
the TER baseline (Snover et al., 2006).

We also performed experiments to segment lev-
el with the language pair ES-EN. We used the
MSR _STS as training set and the newstest2011
from WMT 2011 as test set. MSR_STS' is com-
posed by 750 sentence pairs with a graded seman-
tic relationship ranging from 5 (equivalence) to 0
(no-equivalence).

As result, we obtained a Kendall-tau correlation
coefficient of 0.29 to segment-level for translations

! http://www.cs.york.ac.uk/semeval-2012/task6/



into English. These preliminary results, although
low, shows that STS and Textual Entailment could
be used to address the problem of MT evaluation.
Clearly, further improvements are needed and we
suspect that higher score can be reached using
bigger training data. We also remark the necessity
of larger corpus of STS providing a graded score
among sentences.

At the segment level, we show in Table 2 some
examples found by manually inspecting the results.

MT out-
put

Example Texts

Number

Sagan
score

2397 Reference | Adelaida, 4 years old, | 0.95
wants a doll or a
bicycle, while her
sister Isabel, 3 years
old, would like a

Barbie doll.

Online-A | Adelaide, of 4 years,
want a doll or a bicy-
cle, while his sister
Isabel, 3 years, would

like a Barbie doll.

2417 Reference | "I strongly rely on the | 0.18

Charter."

Online-A | "Me I based mainly

on the letter."

45 Reference | But there is a snagin | 0.105

that.

Alacant However, there is a

fly in the ointment.

1510 Reference | Unfortunately, even 0.5206
Scarlett Johansson
might struggle to raise
China's subterranean
regard for these city
squads.
Lamentablemente,
until scarlett johans-
son should fight to
increase the infimo
respect of china for
with these es-

cuadrones the city.

Cu-zéman

Table 2. Sagan's score for some illustrative ES-EN
WMT 2011 example pairs showing the score between
MT outputs and the reference translation.

The example number 2397 shows a sentence
that achieves a high score (0.95) but that has an
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agreement error (marked in bold), that prevented
Sagan from assigning the highest score.

Otherwise, the instance number 2417 has a score
of 0.18 showing that Sagan correctly penalizes ill-
formed or meaningless sentences. Similarly, the
example number 45 has a very low score which
quantifies the dissimilarity with the reference
translation.

Finally, the last example provided shows that
the translation remains words in the original Span-
ish language (marked in bold).

This manual inspection will be complemented
with a deeper study of the correlations at the sen-
tence level.

6 Conclusions and future work

In this paper we introduced a new metric for MT
evaluation based on Semantic Textual Similarity
computed over textual entailment features. The
metric's goal is to provide an indicative score of
the extent to which two texts (a candidate transla-
tion and a reference) are equivalent. This goal is
more complex than classical binary decisions in
the field of TE and is a new approach to bring to-
gether the knowledge from different areas that a
similar ambitions.

While promising results were found at the sys-
tem level, the metric still needs to be tested on a
diversity of settings and at the segment level; this
is work in progress and results will be reported in
due time.
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Abstract

A recent paper described a new machine
translation evaluation metric, AMBER. This
paper describes two changes to AMBER. The
first one is incorporation of a new ordering
penalty; the second one is the use of the
downhill simplex algorithm to tune the
weights for the components of AMBER. We
tested the impact of the two changes, using
data from the WMT metrics task. Each of the
changes by itself improved the performance of
AMBER, and the two together yielded even
greater improvement, which in some cases
was more than additive. The new version of
AMBER clearly outperforms BLEU in terms
of correlation with human judgment.

1 Introduction

AMBER is a machine translation evaluation metric
first described in (Chen and Kuhn, 2011). It is de-
signed to have the advantages of BLEU (Papineni
et al., 2002), such as nearly complete language
independence and rapid computability, while at-
taining even higher correlation with human judg-
ment. According to the paper just cited: “It can be
thought of as a weighted combination of dozens of
computationally cheap features based on word sur-
face forms for evaluating MT quality”. Many re-
cently defined machine translation metrics seek to
exploit deeper sources of knowledge than are
available to BLEU, such as external lexical and
syntactic resources. Unlike these and like BLEU,
AMBER relies entirely on matching surface forms
in tokens in the hypothesis and reference, thus sac-
rificing depth of knowledge for simplicity and
speed.

59

Roland.Kuhn,

George.Foster}l@nrc.ca

In this paper, we describe two improvements to
AMBER. The first is a new ordering penalty called
“y” developed in (Chen et al., 2012). The second
remedies a weakness in the 2011 version of
AMBER by carrying out automatic, rather than
manual, tuning of this metric’s free parameters; we
now use the simplex algorithm to do the tuning.

2 AMBER

AMBER is the product of a score and a penalty, as
in Equation (1); in this, it resembles BLEU. How-
ever, both the score part and the penalty part are
more sophisticated than in BLEU. The score part
(Equation 2) is enriched by incorporating the
weighted average of n-gram precisions (AvgP), the
F-measure derived from the arithmetic averages of
precision and recall (Fmean), and the arithmetic
average of F-measure of precision and recall for
each n-gram (AvgF). The penalty part is a
weighted product of several different penalties
(Equation 3). Our original AMBER paper (Chen
and Kuhn, 2011) describes the ten penalties used at
that time; two of these penalties, the normalized
Spearman’s correlation penalty and the normalized
Kendall’s correlation penalty, model word reorder-
ing.

AMBER = scoreX penalty (1)
score =6, x AvgP + 6, X Fmean @
+(1-6,-6,)xAvgF
P
penalty = H pen;” 3)
i=l1

where 6, and 6, are weights of each score com-
ponent; w; is the weight of each penalty pen,.
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In addition to the more complex score and pen-
alty factors, AMBER differs from BLEU in two
other ways:

e  Not only fixed n-grams, but three different
kinds of flexible n-grams, are used in com-
puting scores and penalties.

e  The AMBER score can be computed with
different types of text preprocessing, i.e.
different combinations of several text pre-
processing techniques: lowercasing, to-
kenization, stemming, word splitting, efc. 8
types were tried in (Chen and Kuhn, 2011).
When using more than one type, the final
score is computed as an average over runs,
one run per type. In the experiments re-
ported below, we averaged over two types
of preprocessing.

3 Improvements to AMBER

3.1 Ordering penalty v

We use a simple matching algorithm (Isozaki et
al., 2010) to do 1-1 word alignment between the
hypothesis and the reference.
After word alignment, represent the reference by

a list of normalized positions of those of its words
that were aligned with words in the hypothesis, and
represent the hypothesis by a list of positions for
the corresponding words in the reference. For both
lists, unaligned words are ignored. E.g., let P, =
reference, P, = hypothesis:

Pip ploplop b D)

Py py Py Py Py o Py D)
Suppose we have

Ref: in the winter of 2010 , I visited Paris
Hyp: I visited Paris in 2010 ’s winter

Then we obtain

P: 123456 (the 2 word “the”, 4"
word “of” and 6™ word “,” in the reference
are not aligned to any word in the
hypothesis. Thus, their positions are not in
Py, so the positions of the matching words
“in winter 2010 I visited Paris” are nor-
malizedto 12345 6)

Py 4561 3 2 (the word “’s” was
unaligned).
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The ordering metric v is computed from two

distance measures. The first is absolute
permutation distance:
DIST,(P.P)=Y | p| - p} | “4)
i=1
DIST (P, P,
Let v, =1-PBLER) 5)
n(n+1)/2

v, ranges from O to 1; a larger value means more
similarity between the two permutations. This
metric is similar to Spearman’s p (Spearman,
1904). However, we have found that p punishes
long-distance reordering too heavily. For instance,
v, is more tolerant than p of the movement of

“recently” in this example:

Ref: Recently , I visited Paris
Hyp: I visited Paris recently

P:1234
P,:2341

6(1+1+149) __ . .
26D = 0.2 ; however, its

— 14+14+143
v, =1- 4@+ T 04.

Inspired by HMM word alignment (Vogel et al.,
1996), our second distance measure is based on
jump width. This punishes only once a sequence of
words that moves a long distance with the internal
word order conserved, rather than on every word.
In the following, only two groups of words have
moved, so the jump width punishment is light:

Ref: In the winter of 2010, 1 visited Paris
Hyp: I visited Paris in the winter of 2010

Its p=1-

The second distance measure is
DIST,(P,P)=Y | (pi = pi )= (ps = ps )1 (6)
i=1

where we set pl0 =0 and pg =0.Let

DIST,(P,P)
——i L2 @)
n -1

As with vy, v, is also from O to 1, and larger values
indicate more similar permutations. The ordering
measure v, is the harmonic mean of v, and v, (Chen
etal., 2012):

v, =2/, +1/,) . (8)
In (Chen et al., 2012) we found this to be slightly
more effective than the geometric mean. v; in (8) is

computed at segment level. We compute document
level ordering v, with a weighted arithmetic mean:

v, =1



3 Zizl v, xXlen (R)
Zi:l len (R)

where [ is the number of segments of the
document, and /en(R) is the length of the reference
after text preprocessing. v, is the segment-level
ordering penalty.

Recall that the penalty part of AMBER is the
weighted product of several component penalties.
In the original version of AMBER, there were 10
component penalties. In the new version, v is in-
corporated as an additional, 11th weighted penalty
in (3). Thus, the new version of AMBER incorpo-
rates three reordering penalties: Spearman’s
correlation, Kendall’s correlation, and v. Note that
v is also incorporated in a tuning metric we recent-
ly devised (Chen et al., 2012).

©)
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3.2 Automatic tuning

In (Chen and Kuhn, 2011), we manually set the 17
free parameters of AMBER (see section 3.2 of that
paper). In the experiments reported below, we
tuned the 18 free parameters — the original 17 plus
the ordering metric v described in the previous sec-
tion - automatically, using the downhill simplex
method of (Nelder and Mead, 1965) as described
in (Press et al., 2002). This is a multidimensional
optimization technique inspired by geometrical
considerations that has shown good performance in
a variety of applications.

4 Experiments

The experiments are carried out on WMT metric
task data: specifically, the WMT 2008, WMT
2009, WMT 2010, WMT 2011 all-to-English, and
English-to-all submissions. The languages “all”
(“xx” in Table 1) include French, Spanish, German
and Czech. Table 1 summarizes the statistics for
these data sets.

Set | Year | Lang. | #system | #sent-pair
Testl | 2008 | xx-En 43 7,804
Test2 | 2009 | xx-En 45 15,087
Test3 | 2009 | en-Ex 40 14,563
Test4 | 2010 | xx-En 53 15,964
Test5 | 2010 | en-xx 32 18,508
Test6 | 2011 | xx-En 78 16,120
Test7 | 2011 | en-xx 94 23,209

Table 1: Statistics of the WMT dev and test sets.
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We used 2008 and 2011 data as dev sets, 2009
and 2010 data as test sets. Spearman’s rank
correlation coefficient p was employed to measure
correlation of the metric with system-level human
judgments of translation. The human judgment
score was based on the “Rank” only, ie., how
often the translations of the system were rated as
better than those from other systems (Callison-
Burch et al., 2008). Thus, BLEU and the new ver-
sion of AMBER were evaluated on how well their
rankings correlated with the human ones. For the
segment level, we followed (Callison-Burch et al.,
2010) in wusing Kendall’s rank correlation
coefficient 7.

In what follows, “AMBER1” will denote a vari-
ant of AMBER as described in (Chen and Kuhn,
2011). Specifically, it is the variant AMBER(1,4) —
that is, the variant in which results are averaged
over two runs with the following preprocessing:

1. A run with tokenization and lower-casing

2. A run in which tokenization and lower-

casing are followed by the word splitting.
Each word with more than 4 letters is seg-
mented into two sub-words, with one being
the first 4 letters and the other the last 2 let-
ters. If the word has 5 letters, the 4" letter
appears twice: e.g., “gangs”
“gang” + “gs”. If the word has more than 6
letters, the middle part is thrown away.

becomes

The second run above requires some explana-
tion. Recall that in AMBER, we wish to avoid use
of external resources such as stemmers and mor-
phological analyzers, and we aim at maximal lan-
guage independence. Here, we are doing a kind of
“poor man’s morphological analysis”. The first
four letters of a word are an approximation of its
stem, and the last two letters typically carry at least
some information about number, gender, case, efc.
Some information is lost, but on the other hand,
when we use the metric for a new language (or at
least, a new Indo-European language) we know
that it will extract at least some of the information
hidden inside morphologically complex words.

The results shown in Tables 2-4 compare the
correlation of variants of AMBER with human
judgment; Table 5 compares the best version of
AMBER (AMBER?2) with BLEU. For instance, to
calculate  segment-level  correlations  using



Kendall’s 1, we carried out 33,071 paired compari-
sons for out-of-English and 31,051 paired compar-
isons for into-English. The resulting t© was
calculated per system, then averaged for each con-
dition (out-of-English and into-English) to obtain
one out-of-English value and one into-English val-
ue.

First, we compared the performance of
AMBER1 with a version of AMBERI that in-
cludes the new reordering penalty v, at the system
and segment levels. The results are shown in Table
2. The greatest impact of v is on “out of English” at
the segment level, but none of the results are par-
ticularly impressive.

has been tuned by the simplex method. We will
denote the new version of AMBER containing
both changes “AMBER2”. It will be seen from
Table 4 that AMBER?2 is a major improvement
over AMBERI at the segment level. In the case of
“into English” at the segment level, the impact of
the two changes seems to have been synergistic:
adding together the percentage improvements due
to v and simplex from Tables 2 and 3, one would
have expected an improvement of 4.5% for both
changes together, but the actual improvement was
6.2%. Furthermore, there was no improvement at
the system level for “out of English” when either
change was tried separately, but there was a small
improvement when the two changes were com-
bined.

AMBERI1 +v Change
Into-En 0.860 0.862 | 0.002
System (+0.2%)
Into-En 0.178 0.180 | 0.002
Segment (+1.1%)
Out-of-En 0.637 0.637 0
System (0%)
Out-of-En 0.167 0.170 | 0.003
Segment (+1.8%)

Table 2: Correlation with human judgment for

AMBERI1 | AMBER2 | Change
Into-En 0.860 0.870 0.010
System (+1.2%)
Into-En 0.178 0.189 0.011
Segment (+6.2%)
Out-of-En 0.637 0.642 0.005
System (+0.8%)
Out-of-En 0.167 0.184 0.017
Segment (+10.2%)

AMBERI1 vs. (AMBERI1 including v).

Second, we compared the performance of manu-
ally tuned AMBER1 with AMBER1 whose param-
eters were tuned by the simplex method. The
tuning was run four times on the dev set, once for
each possible combination of into/out-of English
and system/segment level. Table 3 shows the re-
sults on the test set. This change had a greater im-
pact, especially on the segment level.

Table 4: Correlation with human judgment for
AMBERI1 vs. AMBER?2.

Of course, the most important question is: does
the new version of AMBER (AMBER2) perform
better than BLEU? Table 5 answers this question
(the version of BLEU used here was smoothed
BLEU (mteval-vi3a)). There is a clear advantage
for AMBER?2 over BLEU at both the system and
segment levels, for both “into English” and “out of

English”.

AMBERI | +Simplex | Change
Into-En 0.860 0.862 0.002
System (+0.2%)
Into-En 0.178 0.184 0.006
Segment (+3.4%)
Out-of-En 0.637 0.637 0
System (0%)
Out-of-En 0.167 0.182 0.015
Segment (49.0%)

Table 3: Correlation with human judgment for
AMBERI1 vs. simplex-tuned AMBERI.

Then, we compared the performance of
AMBERI1 with AMBERI that contains v and that
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BLEU | AMBER2 | Change
Into-En 0.773 0.870 0.097
System (+12.5%)
Into-En 0.154 0.189 0.035
Segment (+22.7%)
Out-of-En | 0.574 0.642 0.068
System (+11.8%)
Out-of-En | 0.149 0.184 0.035
Segment (+23.5%)

Table 5: Correlation with human judgment for
BLEU vs. AMBER?2.



5 Conclusion

We have made two changes to AMBER, a metric
described in (Chen and Kuhn, 2011). In our exper-
iments, the new version of AMBER was shown to
be an improvement on the original version in terms
of correlation with human judgment. Furthermore,
it outperformed BLEU by about 12% at the system
level and about 23% at the segment level.

A good evaluation metric is not necessarily a
good tuning metric, and vice versa. In parallel with
our work on AMBER for evaluation, we have also
been exploring a machine translation tuning metric
called PORT (Chen et al., 2012). AMBER and
PORT differ in many details, but they share the
same underlying philosophy: to exploit surface
similarities between hypothesis and references
even more thoroughly than BLEU does, rather than
to invoke external resources with richer linguistic
knowledge. So far, the results for PORT have been
just as encouraging as the ones for AMBER re-
ported here.
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Abstract

We present TerrorCat, a submission to the
WMT’ 12 metrics shared task. TerrorCat uses
frequencies of automatically obtained transla-
tion error categories as base for pairwise com-
parison of translation hypotheses, which is in
turn used to generate a score for every trans-
lation. The metric shows high overall corre-
lation with human judgements on the system
level and more modest results on the level of
individual sentences.

1 The Idea

Recently a couple of methods of automatic trans-
lation error analysis have emerged (Zeman et al.,
2011; Popovi¢ and Ney, 2011). Initial experiments
have shown that while agreement with human error
analysis is low, these methods show better perfor-
mance on tasks with a lower granularity, e.g. ranking
error categories by frequency (Fishel et al., 2012).
In this work we apply translation error analysis to a
task with an even lower granularity: ranking transla-
tions, one of the shared tasks of WMT’12.

The aim of translation error analysis is to identify
the errors that translation systems make and catego-
rize them into different types: e.g. lexical, reorder-
ing, punctuation errors, etc. The two tools that we
will use — Hjerson and Addicter — both rely on a ref-
erence translation. The hypothesis translation that is
being analyzed is first aligned to the reference on the
word level, and then mistranslated, misplaced, mis-
inflected, missing or superfluous words and other er-
rors are identified.
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The main idea of our work is to quantify trans-
lation quality based on the frequencies of different
error categories. The basic assumption is that differ-
ent error categories have different importance from
the point of view of overall translation quality: for
instance, it would be natural to assume that punc-
tuation errors influence translation quality less than
missing words or lexical choice errors. Furthermore,
an error category can be more important for one out-
put language than the other: for example, word or-
der can influence the meaning in an English sentence
more than in a Czech or German one, whereas in-
flection errors are probably more frequent in the lat-
ter two and can thus cause more damage.

In the context of the ranking task, the absolute
value of a numeric score has no importance, apart
from being greater than, smaller than or equal to the
other systems’ scores. We therefore start by per-
forming pairwise comparison of the translations —
the basic task is to compare two translations and re-
port which one is better. To conform with the WMT
submission format we need to generate a numeric
score as the output — which is obtained by compar-
ing every possible pair of translations and then using
the (normalized) total number of wins per translation
as its final score.

The general architecture of the metric is thus this:

e automatic error analysis is applied to the sys-
tem outputs, yielding the frequencies of every
error category for each sentence

e every possible pair of all system outputs is rep-
resented as a vector of features, based on the
error category frequencies

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 64-70,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



e a binary classifier takes these feature vectors as
input and assigns a win to one of the sentences
in every pair (apart from ties)

o the final score of a system equals to the normal-
ized total number of wins per sentence

o the system-level score is averaged out over the
individual sentence scores

An illustrative example is given in Figure 1.
We call the result TerrorCat, the translation error
categorization-based metric.

2 The Details

In this section we will describe the specifics of
the current implementation of the TerrorCat met-
ric: translation error analysis, lemmatization, binary
classifier and training data for the binary classifier.

2.1 Translation Error Analysis

Addicter (Zeman et al., 2011) and Hjerson (Popovié
and Ney, 2011) use different methods for automatic
error analysis. Addicter explicitly aligns the hy-
pothesis and reference translations and induces error
categories based on the alignment coverage while
Hjerson compares words encompassed in the WER
(word error rate) and PER (position-independent
word error rate) scores to the same end.

Previous evaluation of Addicter shows that
hypothesis-reference alignment coverage (in terms
of discovered word pairs) directly influences er-
ror analysis quality; to increase alignment cover-
age we used Berkeley aligner (Liang et al., 2006)
and trained it on and applied it to the whole set of
reference-hypothesis pairs for every language pair.

Both tools use word lemmas for their analysis;
we used TreeTagger (Schmid, 1995) for analyzing
English, Spanish, German and French and Morce
(Spoustova et al., 2007) to analyze Czech. The same
tools are used for PoS-tagging in some experiments.

2.2 Binary Classification

Pairwise comparison of sentence pairs is achieved
with a binary SVM classifier, trained via sequential
minimal optimization (Platt, 1998), implemented in
Weka (Hall et al., 2009).

The input feature vectors are composed of fre-
quency differences of every error category; since the
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Source: Wir sind Meister!

Translations:
Reference: We are the champions!

\ 2% .
HYP-1: Us champions!

HYP-2:
HYP-3:

The champions we are
We are the champignons!

Error Frequencies:

HYP-1: 1 xinflection, 2 xmissing
HYP-2: 2xorder, 1xpunctuation
HYP-3: 1 xlex.choice

Classifier Output: (or manually created
input in the training phase)

HYP-1 < HYP-2
HYP-1 < HYP-3
HYP-2 > HYP-3

Scores:

HYP-1: 0
HYP-2:

HYP-3: 0.5

Figure 1: Illustration of TerrorCat’s process for a single
sentence: translation errors in the hypothesis translations
are discovered by comparing them to the reference, error
frequencies are extracted, pairwise comparisons are done
by the classifier and then converted to scores. The shown
translation errors correspond to Hjerson’s output.

maximum (normalized) frequency of any error rate
is 1, the feature value range is [—1,1]. To include
error analysis from both Addicter and Hjerson their
respective features are used side-by-side.

2.3 Data Extraction

Training data for the SVM classifier is taken from
the WMT shared task manual ranking evaluations
of previous years (2007-2011), which consist of tu-
ples of 2 to 5 ranked sentences for every language
pair. Equal ranks are allowed, and translations of
the same sentence by the same pair of systems can
be present in several tuples, possibly having conflict-
ing comparison results.

To convert the WMT manual ranking data into
the training data for the SVM classifier, we collect
all rankings for each pair of translation hypothe-



| | 2007-2010 | 2007-2011

fr-en 34152 46 070
de-en 36 792 53790
es-en 30 374 41 966
cs-en 19 268 26 418
en-fr 22 734 35854
en-de 36 076 56 054
en-es 19 352 35700
en-cs 31728 52 954

Table 1: Dataset sizes for every language pair, based
on manual rankings from WMT shared tasks of previ-
ous years: the number of pairs with non-conflicting, non-
equivalent ranks.

ses. Pairs with equal ranks are discarded, conflicting
ranks for the same pairs are resolved with voting. If
the voting is tied, the pair is also discarded.

The kept translation pairs are mirrored (i.e. both
directions of every pair are added to the training set
as independent entries) to ensure no bias towards the
first or second translation in a pair. We will later
present analysis of how well that works.

2.4 TerrorCat+You

TerrorCat is distributed via GitHub; information on
downloading and using it can be found online.! Ad-
ditionally we are planning to provide more recent
evaluations with new datasets, as well as pre-trained
models for various languages and language pairs.

3 The Experiments

In the experimental part of our work, we search for
the best performing model variant, the aim of which
is to evaluate different input features, score calcula-
tion strategies and other alternations. The search is
done empirically: we evaluate one alternation at a
time, and if it successful, it is added to the system
before proceeding to test further alternations.
Performance of the models is estimated on a held-
out development set, taken from the WMT’11 data;
the training data during the optimization phase is
composed of ranking data from WMT 2007-2010.
In the end we re-trained our system on the whole
data set (WMT 2007-2011) and applied it to the un-

"http://terra.cl.uzh.ch/terrorcat.html
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labeled data from this year’s shared task. The result-
ing dataset sizes are given in Table 1.

All of the resulting scores obtained by different
variants of our metric are presented in Tables 2 (for
system-level correlations) and 3 (for sentence-level
correlations), compared to BLEU and other selected
entries in the WMT’ 11 evaluation shared task. Cor-
relations are computed in the same way as in the
WMT evaluations.
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The following is a brief description of successful
modifications to the baseline system.

Model Optimization

Weighted Wins

In the baseline model, the score of the winning
system in each pairwise comparison is increased by
1. To reduce the impact of low-confidence decisions
of the classifier on the final score we tested replac-
ing the constant rewards to the winning system with
variable ones, proportional to the classifier’s confi-
dence — a measure of which was obtained by fitting
a logistic regression model to the SVM output.

As the results show, this leads to minor improve-
ments in sentence-level correlation and more notice-
able improvements in system-level correlation (es-
pecially English-French and Czech-English). A pos-
sible explanation for this difference in performance
on different levels is that low classification confi-
dence on the sentence-level does not necessarily af-
fect our ranking for that sentence, but reduces the
impact of that sentence on the system-level ranking.

PoS-Split Features

The original model only makes a difference be-
tween individual error categories as produced by
Hjerson and Addicter. It seems reasonable to assume
that errors may be more or less important, depending
on the part-of-speech of the words they occur in. We
therefore tested using the number of errors per er-
ror category per PoS-tag as input features. In other
words, unlike the baseline, which relied on counts
of missing, misplaced and other erroneous words,
this alternation makes a difference between miss-
ing nouns/verbs/etc., misplaced nouns, misinflected
nouns/adjectives, and so on.

The downside of this approach is that the number
of features is multiplied by the size of the PoS tag



Maetric fr-en de-en es-en cs-en ‘ *-en ‘ en-fr en-de en-es en-cs ‘ en-* ‘
TerrorCat:
Baseline 073 074 082 076 |076 070 0.81 0.69 0.84 | 0.76
Weighted wins 073 074 082 079 | 077 | 075 081 069 0.84 | 0.77
PoS-features 087 076 080 086 |082|076 086 074 087 | 0.81
GenPoS-features 086 077 084 088 |0.84 |08 08 075 090 | 0.83
No 2007 data (GenPoS) | 0.89 0.80 0.80 095 | 086 | 0.85 0.84 0.81 090 | 0.85
Other:
BLEU 085 048 090 088 |078 | 086 044 0.87 0.65 |0.70
mp4ibm1 0.08 056 0.12 091 | 042|061 091 071 0.76 | 0.75
MTeRater-Plus 093 090 091 095 | 092 | - - - - -
AMBER _ti 094 063 085 088 |083|084 054 088 0.56 |0.70
meteor-1.3-rank 093 071 088 091 |086 085 030 074 0.65 | 0.63

Table 2: System-level Spearman’s rank correlation coefficients (p) between different variants of TerrorCat and hu-
man judgements, based on WMT’11 data. Other metric submissions are shown for comparison. Highest scores per
language pair are highlighted in bold separately for TerrorCat variants and for other metrics.

set. Additionally, too specific distinctions can cause
data sparsity, especially on the sentence level.

As shown by the results, PoS-tag splitting of the
features is successful on the system level, but quite
hurtful to the sentence-level correlations. The poor
performance on the sentence level can be attributed
to the aforementioned data sparsity: the number of
different features is higher than the number of words
(and hence, the biggest possible number of errors)
in the sentences. However, we cannot quite ex-
plain, how a sum of these less reliable sentence-level
scores leads to more reliable system-level scores.

To somewhat relieve data sparsity we defined sub-
sets of the original PoS tag sets, mostly leaving out
morphological information and keeping just the gen-
eral word types (nouns, verbs, adjectives, etc.). This
reduced the number of PoS-tags (and thus, the num-
ber of input features) from 2 to 4 times and produced
further increase in system-level and a smaller de-
crease in sentence-level scores, see GenPoS results.

To avoid splitting the metric into different ver-
sions for system-level and sentence-level, we gave
priority to system-level correlations and adopted the
generalized PoS-splitting of the features.

Out-of-Domain Data

The human ranking data from WMT of previ-
ous years do not constitute a completely homo-
geneous dataset. For starters, the test sets are
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taken from different domains (News/News Com-
mentary/Europarl), whereas the 2012 test set is from
the News domain only. Added to this, there might be
a difference in the manual data, coming from differ-
ent organization of the competition — e.g. WMT 07
was the only year when manual scoring of the trans-
lations with adequacy/fluency was performed, and
ranking had just been introduced into the competi-
tion. Therefore we tested whether some subsets of
the training data can result in better overall scores.

Interestingly enough, leaving out News Commen-
tary and Europarl test sets caused decreased correla-
tions, although these account for just around 10%
of the training data. On the other hand, leaving out
the data from WMT 07 led to a significant gain in
overall performance.

3.2 Error Meta-Analysis

To better understand why sentence-level correlations
are low, we analyzed the core of TerrorCat — its pair-
wise classifier. Here, we focus on the most success-
ful variant of the metric, which uses general PoS-
tags and was trained on the WMT manual rankings
from 2008 to 2010. Table 4 presents the confusion
matrices of the classifier (one for precision and one
for recall), taking into consideration the confidence
estimate.

Evaluation is based on the data from 2011; the
prediction data was mirrored in the same way as for



Maetric fr-en de-en es-en cs-en ‘ *-en ‘ en-fr en-de en-es en-cs ‘ en-* ‘
TerrorCat:
Baseline 020 022 033 025 | 025030 0.19 024 020 | 0.23
Weighted wins 020 023 033 025 | 025031 020 024 0.20 | 0.24
PoS-features 0.13 0.18 024 0.15 |0.18 | 027 0.15 0.15 0.17 | 0.19
GenPoS-features 016 024 031 022 |023 (027 0.18 022 0.19 |0.22
No 2007 data (GenPoS) | 0.21 030 033 023 |[0.27 | 029 020 023 020 | 023
Other:
mp4ibm1 0.15 0.16 0.18 0.12 |0.15 021 0.13 0.13 0.06 | 0.13
MTeRater-Plus 030 036 045 036 | 037 | - - - - -
AMBER _ti 024 026 033 027 |028 032 022 031 0.21 |0.27
meteor-1.3-rank 023 025 038 028 |029 031 014 026 0.19 |0.23

Table 3: Sentence-level Kendall’s rank correlation coefficients (7) between different variants of TerrorCat and hu-
man judgements, based on WMT’11 data. Other metric submissions are shown for comparison. Highest scores per
language pair are highlighted in bold separately for TerrorCat variants and for other metrics.

the training set. Our aim was to measure the bias
of the classifier towards first or second translations
in a pair (which is obviously an undesired effect).
It can be seen that the confusion matrices are com-
pletely symmetrical, indicating no position bias of
the classifier — even lower-confidence decisions are
absolutely consistent.

To make sure that this can be attributed to the mir-
roring of the training set, we re-trained the classifier
on non-mirrored training sets. As a result, 9% of the
instances were labelled inconsistently, with the av-
erage confidence of such inconsistent decisions be-
ing extremely low (2.1%, compared to the overall
average of 28.4%). The resulting correlations have
slightly dropped as well — all indicating that mirror-
ing the training sets does indeed remove the posi-
tional bias and leads to slightly better performance.

Looking at the confusion matrices overall, most
decisions fall within the main diagonals (i.e. the
cells indicating correct decisions of the classifier).
Looking strictly at the classifier’s decisions, the re-
calls and precisions of the non-tied comparison out-
puts (“<” and “>") are 57% precision, 69% recall.
However, such strict estimates are too pessimistic in
our case, since the effect of the classifier’s decisions
is proportional to the confidence estimate. On the
sentence level it means that low-confidence decision
errors have less effect on the total score of a system.
A definite source of error is the instability of the in-
dividual translation errors on the sentence level, an
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effect both Addicter and Hjerson are known to suffer
from (Fishel et al., 2012).

The precision of the classifier predictably drops
together with the confidence, and almost half of the
misclassifications come from unrecognized equiva-
lent translations — as a result the recall of such pairs
of equivalent translations is only 20%. This can be
explained by the fact that the binary classifier was
trained on instances with just these two labels and
with no ties allowed.

On the other hand the classifier’s O-confidence de-
cisions have a high precision (84%) on detecting the
equivalent translations; after re-examining the data
it turned out that 96% of the O-confidence decisions
were made on input feature vectors containing only
zero frequency differences. Such vectors represent
pairs of sentences with identical translation error
analyses, which are very often simply identical sen-
tences — in which case the classifier cannot (and in
fact, should not) make an informed decision of one
being better than the other.

4 Related Work

Traditional MT metrics such as BLEU (Papineni et
al., 2002) are based on a comparison of the trans-
lation hypothesis to one or more human references.
TerrorCat still uses a human reference to extract fea-
tures from the error analysis with Addicter and Hjer-
son, but at the core, TerrorCat compares hypotheses
not to a reference, but to each other.



Manual Classifier Output and Confidence: Precision
label < < or > >
0.6-1.0 | 0.3-0.6 | 0.0-0.3 0.0 0.0-0.3 | 0.3-0.6 \ 0.6-1.0
< 60% 45% 8% 32% 23% 10%
= 9% 17% 23% 23% 17% 9%
> 10% 23% 32% 8% 45% 60%
Manual Classifier Output and Confidence: Recall
label < <or > >
0.6-1.0 | 0.3-0.6 | 0.0-0.3 0.0 0.0-0.3 | 0.3-0.6 | 0.6-1.0
< 23% 18% 1% 20% 7% 3%
= 5% 9% 20% 9% 5%
> 3% 7% 20% 1% 18% 23%

Table 4: The precision and recall confusion matrices of the classifier — judgements on whether one hypothesis is worse
than, equivalent to or better than another hypothesis are compared to the classifier’s output and confidence.

It is thus most similar to SVM-RANK and Tesla
metrics, submissions to the WMT 10 shared met-
rics task (Callison-Burch et al., 2010) which also
used SVMs for ranking translations. However, both
metrics used SVMrank (Joachims, 2006) directly for
ranking (unlike TerrorCat, which uses a binary clas-
sifier for pairwise comparisons). Their features in-
cluded some of the metric outputs (BLEU, ROUGE,
etc.) for SVM-RANK and similarity scores between
bags of n-grams for Tesla (Dahlmeier et al., 2011).

5 Conclusions

We introduced the TerrorCat metric, which performs
pairwise comparison of translation hypotheses based
on frequencies of automatically obtained error cate-
gories using a binary classifier, trained on manually
ranked data. The comparison outcome is then con-
verted to a numeric score for every sentence or doc-
ument translation by averaging out the number of
wins per translation system.

Our submitted system achieved an average
system-level correlation with human judgements in
the WMT’ 11 development set of 0.86 for transla-
tion into English and 0.85 for translations from En-
glish into other languages. Particularly good per-
formance was achieved on translations from English
into Czech (0.90) and back (0.95). Sentence-level
scores are more modest: average 0.27 for transla-
tion into English and 0.23 for those out of English.
The scores remain to be checked against the human
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judgments from WMT’12.

The introduced TerrorCat metric has certain de-
pendencies. For one thing, in order to apply it to
new languages, a training set of manual rankings is
required — although this can be viewed as an advan-
tage, since it enables the user to tune the metric to
his/her own preference. Additionally, the metric de-
pends on lemmatization and PoS-tagging.

There is a number of directions to explore in the
future. For one, both Addicter and Hjerson report
MT errors related more to adequacy than fluency, al-
though it was shown last year (Parton et al., 2011)
that fluency is an important component in rating
translation quality. It is also important to test how
well the metric performs if lemmatization and PoS-
tagging are not available.

For this year’s competition, training data was
taken separately for every language pair; it remains
to be tested whether combining human judgements
with the same target language and different source
languages leads to better or worse performance.

To conclude, we have described TerrorCat, one
of the submissions to the metrics shared task of
WMT’12. TerrorCat is rather demanding to apply on
one hand, having more requirements than the com-
mon reference-hypothesis translation pair, but at the
same time correlates rather well with human judge-
ments on the system level.



References

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 17-53, Uppsala, Sweden.

Daniel Dahlmeier, Chang Liu, and Hwee Tou Ng. 2011.
Tesla at wmt 2011: Translation evaluation and tunable
metric. In Proceedings of the Sixth Workshop on Sta-
tistical Machine Translation, pages 7884, Edinburgh,
Scotland.

Mark Fishel, Ondfej Bojar, and Maja Popovié. 2012.
Terra: a collection of translation error-annotated cor-
pora. In Proceedings of the 8th LREC, page in print,
Istanbul, Turkey.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explorations, 11.

Thorsten Joachims. 2006. Training linear SVMs in
linear time. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining (KDD),
Philadelphia, USA.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the HLT-
NAACL Conference, pages 104—111, New York, NY.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In ACL ’02: Proceedings
of the 40th Annual Meeting on Association for Compu-
tational Linguistics, pages 311-318, Morristown, NJ,
USA. Association for Computational Linguistics.

Kristen Parton, Joel Tetreault, Nitin Madnani, and Mar-
tin Chodorow. 2011. E-rating machine translation. In
Proceedings of the Sixth Workshop on Statistical Ma-
chine Translation, pages 108—115, Edinburgh, Scot-
land.

John C. Platt. 1998. Using analytic gp and sparseness
to speed training of support vector machines. In Pro-
ceedings of Neural Information Processing Systems
11, pages 557-564, Denver, CO.

Maja Popovi¢ and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Computational Linguistics, 37(4):657-688.

Helmut Schmid. 1995. Improvements in part-of-speech
tagging with an application to german. In Proceedings
of the ACL SIGDAT-Workshop, Dublin, Ireland.

Drahomira Spoustov4, Jan Haji¢, Jan Votrubec, Pavel Kr-
bec, and Pavel Kvéton. 2007. The best of two worlds:
Cooperation of statistical and rule-based taggers for

70

Czech. In Proceedings of the Workshop on Balto-
Slavonic Natural Language Processing, ACL 2007,
pages 67-74, Praha.

Daniel Zeman, Mark Fishel, Jan Berka, and Ondfej Bo-
jar. 2011. Addicter: What is wrong with my transla-
tions? The Prague Bulletin of Mathematical Linguis-
tics, 96:79-88.
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Abstract

We investigate the use of error classification
results for automatic evaluation of machine
translation output. Five basic error classes are
taken into account: morphological errors, syn-
tactic (reordering) errors, missing words, ex-
tra words and lexical errors. In addition, lin-
ear combinations of these categories are in-
vestigated. Correlations between the class er-
ror rates and human judgments are calculated
on the data of the third, fourth, fifth and sixth
shared tasks of the Statistical Machine Trans-
lation Workshop. Machine translation outputs
in five different European languages are used:
English, Spanish, French, German and Czech.
The results show that the following combina-
tions are the most promising: the sum of all
class error rates, the weighted sum optimised
for translation into English and the weighted
sum optimised for translation from English.

1 Introduction

Recent investigations have shown that it is possi-
ble to carry out a reliable automatic error analysis
of a given translation output in order to get more
information about actual errors and details about
particular strengthnesses and weaknesses of a sys-
teml (Popovi¢ and Ney, 2011). The obtained results
correlate very well with the human error classifica-
tion results. The question we try to answer is: how
the class error rates correlate with the human eval-
uation (ranking) results? As a first step, we inves-
tigate the correlations of five basic class error rates
with human rankings. In the next step, linear com-
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binations (sums) of basic class error rates are inves-
tigated.

Spearman’s rank correlation coefficients on the
document (system) level between all the metrics and
the human ranking are computed on the English,
French, Spanish, German and Czech texts gener-
ated by various translation systems in the frame-
work of the third (Callison-Burch et al., 2008),
fourth (Callison-Burch et al., 2009), fifth (Callison-
Burch et al., 2010) and sixth (Callison-Burch et al.,
2011) shared translation tasks.

2 Class error rates

In this work, the method proposed in (Popovié
and Ney, 2011) is used, i.e. classification of
the translation errors into five basic categories
based on the Word Error Rate (WER) (Levenshtein,
1966) together with the recall- and precision-based
Position-independent Error Rates called Reference
PER (RPER) and Hypothesis PER (HPER).

As a result of an error classification, two values
are usually of interest: raw error counts for each er-
ror class, and error rates for each class, i.e. raw error
counts normalised over the total number of running
words. Which of the values is preferred depends of
the exact task. For example, if only a distribution
of error types within a translation output is of in-
terest, the raw error counts are sufficient. On the
other hand, if we want to compare different transla-
tion outputs, normalised values i.e. error rates are
more suitable. Therefore they are appropriate candi-
dates to be used for the evaluation task.

In this work, we explore the error rates calculated
on the word level as well as on the block level, where

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 71-75,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



a group of consecutive words labelled with the same
error category is called a block. The normalisation
in both cases is carried out over the total number of
running words. Therefore the block level error rate
for a particular error class is always less or equal
than the corresponding word level error rate.

2.1 Basic class error rates

The following five basic class error rates are ex-
plored:

INFER (inflectional error rate):
Number of words translated into correct base
form but into incorrect full form, normalised
over the hypothesis length.

RER (reordering error rate):
Number of incorrectly positioned words nor-
malised over the hypothesis length.

MISER (missing word error rate):
Number of words which should appear in the
translation hypothesis but do not, normalised
over the reference length.

EXTER (extra word error rate):
Number of words which appear in the transla-
tion hypothesis but should not, normalised over
the hypothesis length.

LEXER (lexical error rate):
Number of words translated into an incorrect
lexical choice in the target language (false dis-
ambiguation, unknown/untranslated word, in-
correct terminology, etc.) normalised over the
hypothesis length.

Table 1 presents an example of word and block
level class error rates. Each erroneous word is la-
belled with the corresponding error category, and the
blocks are marked within the parentheses { and }.
The error rates on the block level are marked with a
letter “b” at the beginning. It should be noted that
the used method at its current stage does not enable
assigning multiple error tags to one word.

2.2 Combined error rates (sums)

The following linear combinations (sums) of the ba-
sic class error rates are investigated:
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reference:

The famous journalist Gustav Chalupa ,
born in Ceské Budéjovice ,

also confirms this .

hypothesis containing 14 running words:
The also confirms the famous

Austrian journalist Gustav Chalupa ,
from Budweis Lamborghini .

hypothesis labelled with error classes:

The {alsoorger confirmsorder

{theea:tra} {famousorder} {AUStTianea:tra}
{journalist,,ger Gustaverger Chalupaorder} »
{fromye, Budweisie, Lamborghinije,} .

class error rates:
word order:

RER =6/14 =42.8%
bRER =3/14 =21.4%

extra words:
EXTER =2/14=14.3%
bEXTER =2/14 = 14.3%

lexical errors:
LEXER =3/14=21.4%
bLEXER =1/14=7.1%

Table 1: Example of word and block level class error
rates: the word groups within the parentheses { and } are
considered as blocks; all error rates are normalised over
the hypothesis length, i.e. 14 running words.

WXER (sum of word level error rates)! :
Sum of all basic class error rates on the word
level;

BXER (sum of block level error rates):
Sum of all basic class error rates on the block
level;

WBYER (sum of word and block level error rates):
Arithmetic mean of WXER and BXER.

IThis error rate has already been introduced in (Popovié¢ and
Ney, 2011) and called ¥ ER; however, for the sake of clarity, in
this work we will call it WXER, i.e. word level 2 ER.



XENYER (X—English sum of error rates):
Linear interpolation of word level and block
level class error rates optimised for translation
into English;

ENXXER (English—X sum of error rates):
Linear interpolation of word level and block
level class error rates optimised for translation
from English.

For the example sentence shown in Table 1,
WXER = 84.7%, BXER = 46.2% and WBXER =
65.4%. XENXER and ENXYER are weighted sums
which will be explained in the next section.

The prerequisite for the use of the described met-
rics is availability of an appropriate morphological
analyser for the target language which provides base
forms of the words.

3 Experiments on wMT 2008, 2009, 2010
and 2011 test data

3.1 Experimental set-up

The class error rates described in Section 2 were
produced for outputs of translations from Spanish,
French, German and Czech into English and vice
versa using Hjerson (Popovi¢, 2011), an open-
source tool for automatic error classification. Span-
ish, French, German and English base forms were
produced using the TreeTagger?, and the Czech base
forms using Morce (Spoustova et al., 2007). In this
way, all references and hypotheses were provided
with the base forms of the words.

For each error rate, the system level Spearman
correlation coefficients p with human ranking were
calculated for each document. In total, 40 correla-
tion coefficients were obtained for each error rate —
twelve English outputs from the wMT 2011, 2010
and 2009 task and eight from the wMT 2008 task,
together with twenty outputs in other four target lan-
guages. For further analysis, the obtained corre-
lation results were summarised into the following
three values:

e mean
average correlation coefficient;

e rank>
percentage of documents where the particular
error rate has better correlation than the other
error rates;

e rank>
percentage of documents where the particular
error rate has better or equal correlation than
the other error rates.

3.2 Comparison of basic class error rates

Our first experiment was to compare correlations for
the basic set of class error rates in order to investi-
gate a general behaviour of each class error rate and
to see if some of the error categories are particularly
(in)convenient for the evaluation task. Since certain
differences between English and non-English trans-
lation outputs are observed for some error classes,
the values described in the previous section were
also calculated separately.

Table 2 presents the results of this experiment.
The mean values over all documents, over the En-
glish documents and over the non-English docu-
ments are shown.

According to the overall mean values, the most
promising error categories are lexical and reorder-
ing errors. However, the mean values for English
outputs are significantly different than those for non-
English outputs: the best error classes for English
are in deed lexical and reordering errors, however
for the non-English outputs the inflectional errors
and missing words have higher correlations. On the
other hand, for the English outputs missing words
have even negative correlations, whereas correla-
tions for inflectional errors are relatively low. The
extra word class seems to be the least convenient in
general, especially for non-English outputs.

Therefore, the rank> values were calculated only
separately for English and non-English outputs, and
the previous observations were confirmed: for the
English outputs lexical and reordering errors are the
most relevant, whereas for the non-English outputs
all classes except extra words are almost equally im-
portant.

Apart from this, it can be noticed that the group-
ing of words into blocks significantly improves cor-
relation for reordering errors. The reason for this

Zhttp://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ is ambiguity of tagging words as reordering errors.
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error mean rank>
rate overall x—en en—X | X—en en—X
INFER | 0398 0.190 0.595 | 462 71.7
RER 0360 0344 0373 | 53.8 511
MISER | 0.173  -0.101 0434 | 263 544
EXTER | 0.032 0212 -0.195 | 427 122
LEXER | 0.508 0.669 0.355 | 86.0 58.3
bINFER | 0.423 0.211 0.624 | 479 175.6
bRER 0.508 0.594 0426 | 783 60.0
bMISER | 0.169 -0.121 0.446 | 21.1 53.9
bEXTER| -0.031 0.186 -0.238 | 36.8 10.0
bLEXER| 0.515 0.634 0402 | 79.5 62.8

Table 2: mean and rank> values for each basic word level
and block level error rate over all documents, over En-
glish documents and over non-English documents.

For example, if the translation reference is “a very
good translation”, and the obtained hypothesis is “a
translation very good” , one possibility is to mark
the word “translation” as reordering error, another
possibility is to mark the words “very good” as re-
ordering errors, and it is also possible to mark all the
words as reordering errors. In such cases, the group-
ing of consecutive word level errors into blocks is
beneficial.

3.3 Comparison of error rate sums

A first step towards combining the basic class error
rates was investigation of simple sums, i.e. WXER,
BYER as well as WBXER as arithmetic mean of pre-
vious two. The overall average correlation coeffi-
cients of the sums were shown to be higher than
those of the basic class error rates. Further exper-
iments have been carried out taking into account the
results described in the previous section. Firstly, ex-
tra word class was removed from all sums, however
no improvement of correlation coefficients was ob-
served. Then the sums containing only the most
promising error categories separately for English
and non-English output were investigated, but this
also resulted in no improvements. Finally, we in-
troduced weights for each translation direction ac-
cording to the rank> value for each of the basic
class error rates (see Table 2), and this approach
was promising. In this way, the specialised sums
XENXER and ENXXER were introduced.
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In Table 3 the results for all five error rate sums
are presented. mean, rank> and rank> values are
presented over all translation outputs, over English
outputs and over non-English outputs. As already
mentioned, the overall correlation coefficients of the
sums are higher than those of the basic class error
rates. This could be expected, since summing class
error rates is oriented towards the overall quality of
the translation output whereas the class error rates
are giving more information about details.

According to the overall values, the best error rate
is combination of all word and block level class er-
ror rates, i.e. WBXER followed by the block sum
BYER, whereas the WXER and the specialised sums
XENYER and ENXYER have lower correlations.
For the translation into English, this error rate is also
very promising, followed by the specialised sum
XENYER. On the other hand, for the translation
from English, the most promising error rates are the
block sum BXER and the corresponding specialised
sum ENX>ER. Following these observations, we
decided to submit WBXER scores for all transla-
tion outputs together with XENXER and ENXYER
scores, each one for the corresponding translation
direction. In addition, we submitted BXER scores
since this error rate also showed rather good results,
especially for the translation out of English.

4 Conclusions

The presented results show that the error classifica-
tion results can be used for evaluation and ranking
of machine translation outputs. The most promis-
ing way to do it is to sum all word level and block
level error rates, i.e. to produce the WBXER error
rate. This error rate has eventually been submitted
to the WMT 2012 evaluation task. In addition, the
next best metrics have been submitted, i.e. the block
level sum BXER for all translation directions, and
the specialised sums XENXER and ENXXER each
for the corresponding translation outputs.

The experiments described in this work are still at
early stage: promising directions for future work are
better optimisation of weights>, further investigation
of each language pair and also of each non-English

3First steps have already been made in this direction using
an SVM classifier, and the resulting evaluation metric has also
been submitted to the WMT 2012.



error rate mean rank> rank>

overall x—en en—Xx | overall x—en en—Xx | overall x—en en—X
WXER 0.616 0.694 0.541 55.1 50.0 61.2 390.1 48.6 36.2
BYER 0.629 0.666 0.594 | 60.3 55.2 68.8 46.1 39.5 52.5
WBXER 0.639 0.696 0.585 68.0 67.1 63.7 48.7 52.6 45.0
XENXER | 0.587 0.692 0.487 51.9 63.2 41.2 37.8 52.6 23.7
ENX3ER | 0599 0.595 0.602 | 50.6 38.1 62.5 39.1 32.9 45.0

Table 3: mean, rank> and rank> values for error rate sums compared over all documents, over English documents

and over non-English documents.

target language separately, filtering error categories
by POS classes, etc.
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Abstract

This paper describes Stanford University’s sub-
mission to the Shared Evaluation Task of WMT
2012. Our proposed metric (SPEDE) com-
putes probabilistic edit distance as predictions
of translation quality. We learn weighted edit
distance in a probabilistic finite state machine
(pFSM) model, where state transitions corre-
spond to edit operations. While standard edit
distance models cannot capture long-distance
word swapping or cross alignments, we rectify
these shortcomings using a novel pushdown
automaton extension of the pFSM model. Our
models are trained in a regression framework,
and can easily incorporate a rich set of linguis-
tic features. Evaluated on two different pre-
diction tasks across a diverse set of datasets,
our methods achieve state-of-the-art correla-
tion with human judgments.

1 Introduction

We describe the Stanford Probabilistic Edit Distance
Evaluation (SPEDE) metric, which makes predic-
tions of translation quality by computing weighted
edit distance. We model weighted edit distance in
a probabilistic finite state machine (pFSM), where
state transitions correspond to edit operations. The
weights of the edit operations are then automatically
learned in a regression framework. One of the ma-
jor contributions of this paper is a novel extension
of the pFSM model into a probabilistic Pushdown
Automaton (pPDA), which enhances traditional edit-
distance models with the ability to model phrase shift
and word swapping. Furthermore, we give a new log-
linear parameterization to the pFSM model, which
allows it to easily incorporate rich linguistic features.
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We conducted extensive experiments on a di-
verse set of standard evaluation data sets (NIST
OpenMTO06, 08; WMTO06, 07, 08). Our models
achieve or surpass state-of-the-art results on all test
sets.

2 Related Work

Research in automatic machine translation (MT) eval-
uation metrics has been a key driving force behind
the recent advances of statistical machine transla-
tion (SMT) systems. The early seminal work on
automatic MT metrics (e.g., BLEU and NIST) is
largely based on n-gram matches (Papineni et al.,
2002; Doddington, 2002). Despite their simplicity,
these measures have shown good correlation with hu-
man judgments, and enabled large-scale evaluations
across many different MT systems, without incurring
the huge labor cost of human evaluation (Callison-
Burch et al. (2009; 2010; 2011), inter alia).

Later metrics that move beyond n-grams achieve
higher accuracy and improved robustness from re-
sources like WordNet synonyms (Miller et al., 1990),
paraphrasing (Zhou et al., 2006; Snover et al., 2009;
Denkowski and Lavie, 2010), and syntactic parse
structures (Liu et al., 2005; Owczarzak et al., 2008;
He et al., 2010). But a common problem in these
metrics is they typically resort to ad-hoc tuning meth-
ods instead of principled approaches to incorporate
linguistic features. Recent models use linear or
SVM regression and train them against human judg-
ments to automatic learn feature weights, and have
shown state-of-the-art correlation with human judg-
ments (Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b; Sun et al., 2008; Pado et al., 2009). The
drawback, however, is they rely on time-consuming

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 76—83,
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REF: Torrential  rains  hit western India _ 43  people dead

SYS: Heawy rainfall is 437 peoplé” “wefe  killed in ,western, India,
Jstart umo 1 Jumo3 Jianding Jend
¢I ume ump ! A Jump 2 I'T

Q X2 Q X5 Q X2 Q X5
pFSM [ Insert H Delete H Insert ]—)[ Delete H Sword ]-)[ Insert ]-)[ Delete ]
side fwi side SYS side fwd
Q X3 Q X3 ?I?/vegte:fn ¢ Q X2 glsd tg 43 O To India
pPDA' [ Insert Delete H Jump H Sword H Jump ]')[ Delete H Sword H Insert ]-)[ Jump H Delete ]

SYS side fwd
To western X2

SYS side
bwd to 43

SYS side fwd
To India

dead <->
were killed

Qx

Qx
pPDA+f [ Spara H Insert H Delete ]—)[ Jump H Sword ]-)[ Jump ]-)[ Sword H Delete ]-)[ Sword ]-)[ Spara ]-)[ Insert ]-)[ Jump ]

Figure 1: This diagram illustrates an example translation pair in the Chinese-English portion of OpenMTO08 data set
(Doc:AFP_CMN_20070703.0005, system09, sent 1). The three rows below are the best state transition (edit) sequences
that transforms REF to SYS, according to the three proposed models. The corresponding alignments generated by the
models (pFSM, pPDA, pPDA+f) are shown with different styled lines, with later models in the order generating strictly
more alignments than earlier ones. The gold human evaluation score is 6.5, and model predictions are: pPDA+f 5.5,

pPDA 4.3, pFSM 3.1, METEORR 3.2, TERR 2.8.

preprocessing modules to extract linguistic features
(e.g., a full end-to-end textual entailment system was
needed in Pado et al. (2009)), which severely lim-
its their practical use. Furthermore, these models
employ a large number of features (on the order of
hundreds), and consequently make the model predic-
tions opaque and hard to analyze.

3 pFSMs for MT Regression

We start off by framing the problem of machine trans-
lation evaluation in terms of weighted edit distance
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting a
string of input tokens in the language, and rejecting
those that are not. A probabilistic FSM defines the
probability that a string is in a language, extending on
the concept of a FSM. Commonly used models such
as HMMs, n-gram models, Markov Chains, proba-
bilistic finite state transducers and PCFGs all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our FSM accepts is an edit sequence that
transforms a reference translation (denoted as ref)
into a system translation (sys).
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Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described
as:

1 el

w(e|s,r) Hexpe f(ej—1,ei,8,xr) (1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and 0 are the associated feature weights; r and s are
shorthand for ref and sys; Z is a partition function.
In this basic pFSM model, the feature functions are
simply identity functions that emit the current state,
and the state transition sequence of the previous state
and the current state.

The feature weights are then automatically learned
by training a global regression model where some
translational equivalence judgment score (e.g., hu-
man assessment score, or HTER (Snover et al.,
2006)) for each sys and ref translation pair is the
regression target (¥). Since the “gold” edit sequence
are not given at training or prediction time, we treat
the edit sequences as hidden variables and sum over



them in our model. We introduce a new regression
variable y € R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

le |
y =log Z Hexp 0 -f(ej_1,e,s,r) ()

e/ge* i=1

The sum over an exponential number of edit se-
quences in e* is solved efficiently using a forward-
backward style dynamic program. Any edit sequence
that does not lead to a complete transformation of
the translation pair has a probability of zero in our
model. Our regression target then seeks to minimize
the least squares error with respect to ¥, plus a L2-
norm regularizer term parameterized by A:

—mm{z

Si, i

+o)* +4[6]}
(3)

The |s;| + |r;| is a length normalization term for the
ith training instance, and ¢ is a scaling constant for
adjusting to different scoring standards (e.g., 7-point
scale vs. 5-point scale), whose value is automatically
learned. At test time, y/(|s|+ |r|) + o is computed
as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: S,,,,4 for same word
substitution, S;e;;me for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of ref;
similarly it cannot transition into Sy, unless the
lemma of the two words under edit in sys and ref
match). When the end of both sentences are reached,
the model transitions into the stop state and ends the
edit sequence. The first row in Figure 1 starting with
pFSM shows a state transition sequence for an exam-
ple sys/ref translation pair. There exists a one-to-one
correspondence between substitution edits and word
alignments. Therefore this example state transition
sequence correctly generates an alignment for the
word 43 and people.

|Sl| 'H rj|
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It is helpful to compare with the TER met-
ric (Snover et al., 2006), which is based on the idea
of word error rate measured in edit distance, to better
understand the intuition behind our model. There
are two major improvements in our model: 1) the
edit operations in our model are weighted, as defined
by the feature functions and weights; 2) the weights
are automatically learned, instead of being uniform
or manually set; and 3) we model state transitions,
which can be understood as a bigram extension of
the unigram edit distance model used in TER. For
example, if in our learned model the feature for two
consecutive S,,,4 states has a positive weight, then
our model would favor consecutive same word sub-
stitutions, whereas in the TER model the order of
the substitution does not matter. The extended TER-
plus (Snover et al., 2009) metric addresses the first
problem but not the other two.

3.1 pPDA Extension

A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. ! Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model
to a probabilistic pushdown automaton (pPDA), to
capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”

IThe edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.



forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on
the sys side, > the machine remembers its current edit
position in sys as Jyat, and the destination position
on sys after the jump as Jjuuging-

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sworq).- And after at least one substitution
has been made, the device can now “jump” back
to Jsart, remembering the current edit position as
Jena- Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Delete, which cannot take place until at least one
substitution has been made. When the edit sequence
advances to position Jjgnging, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position J,,4, at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in sys that has
not been edited yet. It remembers where it left off,
and comes back to it after some substitutions have
been made to complete the edit sequence. The sec-
ond row in Figure 1 (starting with pPDA) illustrates
an edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted imme-
diately after “jump 2” is deleting the comma in ref,
since inserting the word 43 in sys before any substi-
tution is disallowed. Once the gap is completed, the
model resumes at position J,,; by making “jump 3”,
and completes the jump sequence.

The “jumps” allowed the model to align words
such as western India, in addition to the alignments
of 43 people found by the pFSM. In practice, we
found that our extension gives a big boost to model
performance (cf. Section 5.1), with only a modest
increase in computation time. 3

ZRecall that we transform ref into sys, and thus on the sys
side, we can only insert but not delete. The argument applies
equally to the case where the jump was made on the other side.

3The length of the longest edit sequence with jumps only
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3.2 Parameter Estimation

Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to find
the optimal feature weights and scaling constant for
the objective. We initialized 6 = 6, a=0,and A = 5.
We also threw away features occurring fewer than
five times in training corpus. Gradient calculation
was similar to other pFSM models, such as HMMs,
we omitted the details here, for brevity.

4 Rich Linguistic Features

We add new substitution operations beyond those in-
troduced in Section 3, to capture synonyms and para-
phrase in the translations. Synonym relations are de-
fined according to WordNet (Miller et al., 1990), and
paraphrase matches are given by a lookup table used
in TERplus (Snover et al., 2009). To better take ad-
vantage of paraphrase information at the multi-word
phrase level, we extended our substitution operations
to match longer phrases by adding one-to-many and
many-to-many bigram block substitutions.

5 Experiments

The goal of our experiments is to test both the ac-
curacy and robustness of the proposed new models.
We then show that modeling word swapping and rich
linguistics features further improve our results.

To better situate our work among past research
and to draw meaningful comparison, we use exactly
the same standard evaluation data sets and metrics
as Pado et al. (2009), which is currently the state-
of-the-art result for regression-based MT evaluation.
We consider four widely used MT metrics (BLEU,
NIST, METEOR (Banerjee and Lavie, 2005) (v0.7),
and TER) as our baselines. Since our models are
trained to regress human evaluation scores, to make
a direct comparison in the same regression setting,
we also train a small linear regression model for each
baseline metric in the same way as descried in Pado
et al. (2009). These regression models are strictly
more powerful than the baseline metrics and show
higher robustness and better correlation with human

increased by 0.5 % max(]s|,|r|) in the worst case, and by and
large swapping is rare in comparison to basic edits.



Data Set Our Metrics Baseline Metrics
train test pFSM | pPDA | pPDA+f | BLEUR | NISTR | TERR | METR | MTR | RTER | MT+RTER
A+C U 54.6 55.3 57.2 49.9 49.5 50.1 49.1 50.1 54.5 55.6
A+U | C 59.9 63.8 65.7 53.9 53.1 50.3 61.1 573 | 58.0 62.7
C+U A 61.2 60.4 59.8 52.5 50.4 54.5 60.1 552 | 59.9 61.1
MTO08 | MT06 | 65.2 63.4 64.5 57.6 55.1 63.8 62.1 62.6 | 62.2 65.2

Table 1: Overall results on OpenMT08 and OpenMTO06 evaluation data sets. The R (as in BLEUR) refers to the
regression model trained for each baseline metric, same as Pado et al. (2009). The first three rows are round-robin
train/test results over three languages on OpenMTO08 (A=Arabic, C=Chinese, U=Urdu). The last row are results trained
on entire OpenMTO08 (A+C+U) and tested on OpenMTO06. Numbers in this table are Spearman’s rank correlation p
between human assessment scores and model predictions. The pPDA column describes our pPDA model with jump
distance limit 5. METR is shorthand for METEORR. +f means the model includes synonyms and paraphrase features
(cf: Section 4). Best results and scores that are not statistically significantly worse are highlighted in bold in each row.

judgments. * We also compare our models with the
state-of-the-art linear regression models reported in
Pado et al. (2009) that combine features from mul-
tiple MT evaluation metrics (MT), as well as rich
linguistic features from a textual entailment system
(RTE).

In all of our experiments, each reference and sys-
tem translation sentence pair is tokenized using the
PTB (Marcus et al., 1993) tokenization script, and
lemmatized by the Porter Stemmer (Porter, 1980).
Statistical significance tests are performed using the
paired bootstrap resampling method (Koehn, 2004).

We divide our experiments into two sections, based
on two different prediction tasks — predicting abso-
lute scores and predicting pairwise preference.

5.1 Exp. 1: Predicting Absolute Scores

The first task is to evaluate a system translation
on a seven point Likert scale against a single ref-
erence. Higher scores indicate translations that are
closer to the meaning intended by the reference. Hu-
man ratings in the form of absolute scores are avail-
able for standard evaluation data sets such as NIST
OpenMT06,08. Since our model makes predictions
at the granularity of a whole sentence, we focus on
sentence-level evaluation. A metric’s goodness is
judged by how well it correlates with human judg-
ments, and Spearman’s rank correlation (p) is re-
ported for all experiments in this section.

We used the NIST OpenMT06 corpus for develop-
ment purposes, and reserved the NIST OpenMTO08
corpus for post-development evaluation. The

4See Pado et al. (2009) for more discussion.
3 Available from http://www.nist.gov.
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OpenMTO6 data set contains 1,992 English trans-
lations of Arabic newswire text from 8 MT systems.
For development, we used a 2-fold cross-validation
scheme with splits at the first 1,000 and last 992 sen-
tences. The OpenMTO08 data set contains English
translations of newswire text from three languages
(Arabic has 2,769 pairs from 13 MT systems; Chi-
nese has 1,815 pairs from 15; and Urdu has 1,519
pairs, from 7). We followed the same experimental
setup as Pado et al. (2009), using a “round robin”
training/testing scheme, i.e., we train a model on data
from two languages, making predictions for the third.
We also show results of models trained on the entire
OpenMTOS8 data set and tested on OpenMT06.

Overall Comparison

Results of our proposed models compared against
the baseline models described in Pado et al. (2009)
are shown in Table 1. The pFSM and pPDA mod-
els do not use any additional information other than
words and lemmas, and thus make a fair comparison
with the baseline metrics. ¢ We can see from the ta-
ble that pFSM significantly outperforms all baselines
on Urdu and Arabic, but trails behind METEORR
on Chinese by a small margin (1.2 point in Spear-
man’s p). On Chinese data set, the pPDA exten-
sion gives results significantly better than the best
baseline metrics for Chinese (2.7 better than METE-
ORR). It is also significantly better than pFSM (by

®METEORR actually has an unfair advantage in this compari-
son, since it uses synonym information from WordNet; TERR
on the other hand has a disadvantage because it does not use
lemmas. Lemma is added later in the TERplus extension (Snover
et al., 2009).



3.9 points), suggesting that modeling word swapping
is particularly rewarding for Chinese language. On
the other hand, pPDA model does not perform bet-
ter than the pFSM model on Arabic in MTO08 and
OpenMTO6 (which is also Arabic-to-English). This
observation is consistent with findings in earlier work
that Chinese-English translations exhibit much more
medium and long distance reordering than languages
like Arabic (Birch et al., 2009).

Both the pFSM and pPDA models also signifi-
cantly outperform the MTR linear regression model
that combines the outputs of all four baselines, on all
three source languages. This demonstrates that our
regression model is more robust and accurate than a
state-of-the-art system combination linear-regression
model. The RTER and MT+RTER linear regression
models benefit from the rich linguistic features in the
textual entailment system’s output. It has access to
all the features in pPDA+f such as paraphrase and de-
pendency parse relations, and many more (e.g., Norm
Bank, part-of-speech, negation, antonyms). However,
our pPDA+f model rivals the performance of RTER
and MT+RTER on Arabic (with no statistically sig-
nificant difference from RTER), and greatly improve
over these two models on Urdu and Chinese. Most
noticeably, pPDA+f is 7.7 points better than RTER
on Chinese.

5.2 Exp. 2: Predicting Pairwise Preferences

To further test our model’s robustness, we evaluate
it on WMT data sets with a different prediction task
in which metrics make pairwise preference judg-
ments between translation systems. The WMTO06-
08 data sets are much larger in comparison to the
OpenMTO06 and 08 data. They contain MT outputs of
over 40 systems from five different source languages
(French, German, Spanish, Czech, and Hungarian).
The WMTO06, 07 and 08 sets contains 10,159, 5,472
and 6,856 sentence pairs, respectively. We used por-
tions of WMT 06 and 07 data sets ’ that are annotated
with absolute scores on a five point scale for training,
and the WMTO08 data set annotated with pairwise
preference for testing.

To generate pairwise preference predictions, we
first predict an absolute score for each system trans-
lation, then compare the scores between each system

7 Available from http://www.statmt . org.
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pair, and give preference to the higher score. We
adopt the sentence-level evaluation metric used in
Pado et al. (2009), which measures the consistency
(accuracy) of metric predictions with human prefer-
ences. The random baseline for this task on WMT08
data set is 39.8%.

Models WMTO06 | WMTO07 | WMT06+07
pPDA+f 51.6 52.4 52.0
BLEUR 49.7 49.5 49.6
METEORR | 514 514 51.5
NISTR 50.0 50.3 50.2
TERR 50.9 51.0 51.2
MTR 50.8 51.5 51.5
RTER 51.8 50.7 51.9
MT+RTER | 52.3 51.8 52.5

Table 2: Pairwise preference prediction results on WMTO08
test set. Each column shows a different training data set.
Numbers in this table are model’s consistency with human
pairwise preference judgments. Best result on each test
set is highlighted in bold.

Results are shown in Table 2. Similar to the results
on OpenMT experiments, our model consistently out-
performed BLEUR, METEORR, NISTR and TERR.
Our model also gives better performance than the
MTR ensemble model on all three tests; and ties with
RTER in two out of the three tests but performs sig-
nificantly better on the other test. The MT+RTER
ensemble model is better on two tests, but worse
on the other. But overall the two systems are quite
comparable, with less than 0.6% accuracy difference.
The results also show that our method is stable across
different training sets, with test accuracy differences
less than 0.4%.

6 Conclusion

We described the SPEDE metric for sentence level
MT evaluation. It is based on probabilistic finite state
machines to compute weighted edit distance. Our
model admits a rich set of linguistic features, and
can be trained to learn feature weights automatically
by optimizing a regression objective. A novel push-
down automaton extension was also presented for
capturing long-distance word swapping. Our metrics
achieve state-of-the-art results on a wide range of
standard evaluations, and are much more lightweight
than previous regression models.
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Abstract

We describe a submission to the WMT12
Quality Estimation task, including an exten-
sive Machine Learning experimentation. Data
were augmented with features from linguis-
tic analysis and statistical features from the
SMT search graph. Several Feature Selec-
tion algorithms were employed. The Quality
Estimation problem was addressed both as a
regression task and as a discretised classifi-
cation task, but the latter did not generalise
well on the unseen testset. The most success-
ful regression methods had an RMSE of 0.86
and were trained with a feature set given by
Correlation-based Feature Selection. Indica-
tions that RMSE is not always sufficient for
measuring performance were observed.

1 Introduction

As Machine Translation (MT) gradually gains a po-
sition into production environments, the need for es-
timating the quality of its output is increasing. Vari-
ous use cases refer to it as input assessment for Hu-
man Post-editing, as an extension for Hybrid MT or
System Combination, or even a method for improv-
ing components of existing MT systems.

With the current submission we are trying to
address the problem of assigning a quality score
to a single MT output per source sentence. Pre-
vious work includes regression methods for in-
dicating a binary value of correctness (Quirk,
2001; Blatz et al., 2004; Ueffing and Ney, 2007),
human-likeness (Gamon et al., 2005) or continu-
ous scores (Specia et al., 2009). As we also work
with continuous scores, we are making an effort
to combine previous feature acquisition sources,

&4

such as language modelling (Raybaud et al., 2009),
language fluency checking (Parton et al., 2011),
parsing (Sdnchez-Martinez, 2011; Avramidis et al.,
2011) and decoding statistics (Specia et al., 2009;
Avramidis, 2011). The current submission combines
such previous observations in a combinatory experi-
mentation on feature sets, feature selection methods
and Machine Learning (ML) algorithms.

The structure of the submission is as follows: The
approach is defined and the methods are described
in section 2, including features acquisition, feature
selection and learning. Section 3 includes informa-
tion about the experiment setup whereas the results
are discussed in Section 4.

2 Methods

2.1 Data and basic approach

This contribution has been built based on the data
released for the Quality Estimation task of the
Workshop on Machine Translation (WMT) 2012
(Callison-Burch et al., 2012). The organizers pro-
vided an English-to-Spanish development set and a
test set of 1832 and 422 sentences respectively, de-
rived from WMT09 and WMT10 datasets. For each
source sentence of the development set, participants
were offered one translation generated by a state-of-
the-art phrase-based SMT system. The quality of
each SMT translation was assessed by human evalu-
ators, who provided a quality score in the range 1-5.
Additionally, statistics and processing information
from the execution of the SMT decoding algorithm
were given.

The approach presented here is making use of the
source sentences, the SMT output and the quality
scores in order to follow a typical ML paradigm:

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 84-90,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



sentence suggestion
...los lideres de la Unién han descrito como deducciones politico . .. number agreement
La articular y ideolégicamente convencido de asesino de masas ... transform “y” to “e”

Right after hearing about it, he described it as a “challenge. ..”

disambiguate -ing

Table 1: Sample suggestions generated by rule-based language checking tools, observed in development data

each source and target sentence of the development
set are being analyzed to generate a feature vector.
One training sample is formed out of the feature vec-
tor and the quality score (i.e. as a class value) of each
sentence. A ML algorithm is consequently used to
train a model given the training samples. The per-
formance of each model is evaluated upon a part of
the development set that was kept-out from training.

2.2 Acquiring Features

The features were obtained from two sources: the
decoding process and the analysis of the text of the
source and the target sentence. The two steps are
explained below.

2.2.1 Features from text analysis

The following features were generated with the use
of tools for the statistical and/or linguistic analysis
of the text. The baseline features included:

e Tokens count: Count of tokens in the source
and the translated sentence and their ratio, un-
known words and also occurrences of the target
word within the translated sentence (averaged
for all words in the hypothesis - type/token ra-
tio)

e IBM1-model lookup: Average number of
translations per source word in the sentence,
unweighted or weighted by the inverse fre-
quency of each word in the source corpus

e Language modeling: Language model proba-
bility of the source and translated sentence

e Corpus lookup: percentage of unigrams / bi-
grams / trigrams in quartiles 1 and 4 of fre-
quency (lower and higher frequency words) in
a corpus of the source language

Additionally, the following linguistically motivated
features were also included:
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e Parsing: PCFG Parse (Petrov et al., 2006) log-
likelihood, size of n-best tree list, confidence
for the best parse, average confidence of all
parse trees. Ratios of the mentioned target fea-
tures to the corresponding source features.

e Shallow grammatical match: The number
of occurences of particular node tags on both
the source and the target was counted on the
PCFG parses. Additionally, the ratio of the
occurences of each tag in the target sentence
by the corresponding occurences on the source
sentence.

e Language quality check: Source and target
sentences were subject to automatic rule-based
language quality checking, providing a wide
range of quality suggestions concerning style,
grammar and terminology, summed up in an
overall quality score. The process employed
786 rules for English and 70 rules for Spanish.
We counted the occurences of every rule match
in each sentence and the number of characters it
affected. Sample rule suggestions can be seen
in Table 1.

2.2.2 Features from the decoding process

The organisers provided a verbose output of the de-
coding process, including probabilistic scores from
all steps of the execution of the translation search.
We added the scores appearing once per sentence
(i.e. referring to the best hypothesis), whereas for
the ones being modified over the generation graph,
their average (avg), variance (var) and standard de-
viation (std) was calculated. These features are:

e the log of the phrase translation probability
(pC) and the phrase future cost estimate (c)

e the score component vector including the dis-
tortion scores (d; . 7), word penalty, translation
scores (e.g. ay: inverse phrase translation prob-
ability, ag: inverse lexical weighting)



2.3 Feature Selection

Experience has shown difficulties in including hun-
dreds of features into training a statistical model.
Several algorithms (such as Naive Bayes) require
statistically-independent features. For others, a
search space of hundreds of features may impose
increased computational complexity, which is often
unsustainable in the time and resources allocated.
In these cases we therefore applied several common
Feature Selection approaches, in order to reduce the
available features to an affordable number.

We used the Feature Selection algorithms of Re-
lieff (Kononenko, 1994), Information Gain and
Gain Ratio (Kullback and Leibler, 1951), and
Correlation-based Feature Selection (Hall, 2000).
The latter is known for producing feature sets highly
correlated with the class, yet uncorrelated with each
other; selection was done in two variations, greedy
stepwise and best first.

The data were discretised according to the algo-
rithm requirements and features were scored in a 10-
fold cross-validation.

2.4 Machine Learning

We tried to approach the issue with two distinct
modelling approaches, classification and regression.

24.1 Classification algorithms

In an effort to interpret Quality Estimation as a
classification problem, we expect to build models
that are able to assign a discrete value, as a mea-
sure of sentence quality. This bears some relation to
the way the quality scores were generated; humans
were asked to provide an (integer) quality score in
the range 1-5. In our case, we try to build classifiers
that do the same, but are also able to assign values
with smaller intervals. For this purpose, we set up
4 sub-experiments, where the class value in our data
was rounded up to intervals of 0.25, 0.5, 0.7 and 1.0
respectively.

In this part of the experiment we used the Naive
Bayes, k-nearest-neighbours (kNN), Support Vector
Machines (SVM) and Tree classification algorithms.
Naive Bayes’ probabilities for our continuous fea-
tures were estimated with locally weighted linear re-
gression (Cleveland, 1979).
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2.4.2 Regression algorithms

Regression algorithms produce a model for di-
rectly predicting a quality score with continu-
ous values. Experimentation here included Par-
tial Least Squares Regression (Stone and Brooks,
1990), Multivariate Adaptive Regression Splines —
MARS (Friedman, 1991), Lasso (Tibshirani, 1994)
and Linear Regression.

3 Experiment and Results

3.1 Implementation

PCFG parsing features were generated on the out-
put of the Berkeley Parser (Petrov and Klein,
2007), trained over an English and a Spanish tree-
bank (Mariona Taulé and Recasens, 2008). N-
gram features have been generated with the SRILM
toolkit (Stolcke, 2002). The Acrolinx IQ" was used
to parse the source side, whereas the Language Tool?
was applied on both sides.

The feature selection and learning algorithms
were implemented with the Orange (DemSar et al.,
2004) and Weka (Hall et al., 2009) toolKits.

3.2 [Experiment structure

The methods explained in the previous section pro-
vide a wide range of experiment parameters. Con-
sequently, we tried to extensively test all the possi-
ble parameter combinations. The development data
were separated in two sets, one “training” set and
one “keep-out” set, used to test the predictions. In
order to give learners better coverage over the data,
the development set was split in two ways (70%
training - 30% test and 90% training - 10% test), so
that all experiments get performed under both set-
tings. The scores of these two were averaged?.

3.3 Results

The small size of the dataset allowed for fast train-
ing and testing of the discrete classification problem,
where we could execute 370 experiments. The re-
gression problem was considerably slower, as only
36 experiments concluded in time.

"http://www.acrolinx.com (proprietary)

>http://languagetool.org (open-source)

3Given the disparity of the test sizes, it would have in prin-
ciple been better to use a weighted average. Though, this would
not have lead to significant differences in the results.



5-fold avg 70-30%, 90-10% folds
algorithm  feat. set  discr. CA AUC | RMSE MAE | interval
Tree #17,#20 0.25 | 1540 54.10 0.84 067 |15 5.0
Tree #23 0.25 | 14.60 53.50 0.85 0.68 |20 5.0
Tree #12 0.25 | 13.90 52.00 086 069 |18 5.0
Tree #4 0.25 | 1450 53.70 0.86 0.69 | 2.0 5.0
SVM #16 0.25 | 16.00 60.40 0.86 0.69 |32 32
kNN #22 0.25 | 12.30 55.50 1.00  0.78 | 2.0 5.0
Tree #21 0.50 | 22.70 54.60 0.87 0.69 | 2.0 5.0
SVM #19 0.50 | 22.40 60.20 091 073 ]28 5.0
kNN #12 0.50 | 20.00 54.70 098 0.78 |22 5.0
Naive #6 0.50 | 21.20 59.40 099 076 |12 50
Tree #9 0.70 | 32.70 53.30 0.89 0.71 |35 49
kNN #12 0.70 | 28.20 56.10 093 073 |25 49
SVM #18 0.70 | 30.90 55.60 097 077 |35 42
Tree #22 1.00 | 40.30 55.70 090 071 | 20 5.0
kNN #22 1.00 | 40.90 59.10 096 076 | 25 5.0
Naive #23 1.00 | 41.00 65.50 1.02 078 | 1.2 50
SVM #6 1.00 | 36.60 51.10 1.02  0.84 | 3.0 4.0

Table 2: Indicative discretised classification results, sorted by best performance and discretisation interval. Classifica-
tion Accuracy (AC), Area Under Curve (AUC), Root Mean Square Error (RMSE) and Mean Average Error (MAE),
Largest Error Percentage (LEP) and Smallest Error Percentage (SEP)

Feature generation resulted (described in Section
2.2) into 266 features, while 90 of them derived from
language checking. Feature selection suggested sev-
eral feature sets containing between 30 and 80 fea-
tures. We ended up defining 22 feature sets, includ-
ing the full feature set, the baseline feature set and
a couple of manually selected feature sets. Unfor-
tunately, due to size restrictions, not all features can
be listed; though, indicative feature sets are listed in
Table 5.

The most important results of the classification
approach can be seen in Table 2 and the results of
the regression approach in Tables 3 (development
set) and 4 (shared task test set).

4 Discussion

4.1 Machine Learning Conclusions

Discrete classifiers (section 2.4.1) do not yield en-
couraging accuracy, as acceptable levels of accu-
racies appear only with a discretisation interval of
1.00, which though cannot be accepted due to its
high Root Mean Square Error (RMSE). On the de-
velopment keep-out set, the discretised Tree classi-
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fier seemingly outperforms all other methods (in-
cluding the regression learners), since it yields a
RMSE of 0.84, given several different feature vec-
tors. Unfortunately, when applied to the final un-
known test data, these classifiers performed obvi-
ously bad, providing the same single value for all
sentences. We could attribute this to overfitting vs.
sparse data and consider how we can handle this bet-
ter in further work.

Another remarkable observation was the incapa-
bility of the RMSE to objectively show the qual-
ity of the model, in situations where the predicted
values are very close or equal to the average of
all real values. A Support Vector Machine with
RMSE = 0.86 ranked 3rd among the classifiers, al-
though it “cheated” by producing only the average
value: 3.25. This leads to the conclusion that the
selection of the best algorithm is not just dictated
by the lowest RMSE, but it should consider several
other indications such as the standard deviation.

We therefore resort to the regression learners
(section 2.4.2), whose scores are not worse, having
a RMSE of 0.855. We have to notice that the four



Table 3: Regression results. Root Mean Square Error
(RMSE) and Mean Average Error (MAE), Largest Error
Percentage (LEP) and Smallest Error Percentage (SEP).
Bold face indicates submitted sets

regression algorithms have comparable performance
given the same features.

The best-performing feature set (#19) which was
chosen as the first submission (DFKI cfs-plsreg)
trained with PLS regression, contains features in-
dicated by Correlation-based Feature Selection, run
with bestfirst on a 10-fold cross-validation. We used
the features which were selected on the 100% or
90% of the folds. An equally best-performing fea-
ture set (#18) has resulted from exactly the same fea-
ture selection execution, but contains only features
which were selected in all folds.

The second submission (DFKI_grcfs-mars) was
chosen to differentiate both the feature set and the
learning method, with respect to a decent interval.
Feature set #16 is the result of the Correlation-based
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avg. 70-30%, 90-10% folds learner feat. name RMSE | MAE
algorithm f. set | RMSE MAE | interval MARS #16 grcfs—mars | 0.98 0.82
PLS #19 086 0.69 |25 43 PLS #19  cfs-plsreg 0.99 0.82
Lasso #19 0.86 0.68 |27 44
Linear #19 0.86 068 | 26 45 Table 4: Results of the submitted methods on the official
MARS  #19 | 086 068 |26 47| B
PLS #18 0.86 0.69 |27 44
Linear #18 086  0.69 )28 44 Feature Selection, run in a greedy-stepwise mode.
Lasso #18 086  0.69 |28 44 The regression was trained with MARS.
MARS #16 087 069 )24 4.6 The baseline feature set (#2) performed worse.
MARS #18 086 0.69 |24 4.5 Noticeable was the RMSE of the feature set #4, with
MARS 4 086 069 ] 3.4 4.5 features selected based on their Gain Ratio, but we
PLS #16 087 0701 2.1 48 did not submit this due to its very narrow interval.
PLS #4 0.87 070 ]21 54
L%near #4 0.88 0.70 | 24 438 4.2 Feature conclusions
Linear #16 088 070 | 1.4 4.9
Lasso #4 08 070|119 53 The best performing feature set gives interesting
MARS #2 090 072130 45 hints on what worked as a best indication of trans-
Lasso #16 090 071127 45 lation quality. We would try to summarize them as
Linear #2 090 072 |30 40| follows:
Lasso #2 090 0.72 3.0 4.0
PLS #2 090 073130 39 e The language checking of the source sen-
Tree #21 1.08 08115 5.0 tence detected complex or embedded sentences,
Tree #19 1.19 096 |16 5.0 which are often not handled properly by SMT
Tree #16 123 098 |16 5.0 due to their complicated structure.
Tree #18 1.25 098 |14 50

e The language checking of the target sentence
detected several agreement issues.

e Parsing provided of source and target count
of verbs, nouns, adjectives and secondary sen-
tences; with the assumption that translations
are relatively isomorphic, the loss of a verb or
a noun or the inability to properly handle a sec-
ondary sentence, would mean a considerably
bad translation outcome. The number of parse
trees generated for each sentence can be an in-
dication of ambiguity.

e Punctuation (dots, commas) often indicates a
complex sentence structure.

e The most useful decoding features were the in-
verse phrase translation probability (a;), the in-
verse lexical weighting (a3), the phrase proba-
bility (pC) and future cost estimate (c) as well
as statistics over their incremental values along
the search graph.



feature
set type source target
#19 Baseline LM, %bi_q4, punct LM, punct
Checker complex_sent, embedded_sent pp-v_plural, nom_adj_masc
Parsing trees, CC, NP, NN, JJ, comma trees, S, CC, VB, VP, NN, JJ, dot
Decoding avg(ag), a1, as
#16 Baseline LM, seen, punct, %uni_q, %bi_q1, LM, target_occ
%bi_qy, Ytri_qq
Checker | score: style, spelling, quality; double_punct, to_too_confusion,
verb: agr, form, obj_inf, close_to_subj; word_repeat, det_nom_sing, pp_v_plural,
avoid_parenth, complex_sent, pp-v-sing, nom_adj_plural,
these_those_noun, np_num_agr, comma_parenth_space, nom_adj_fem,
noun_adj_conf, repeat_subj, wrong_seq, nom_adj_masc, nom_adj_sing,
wrong_word, disamb_that, use_rel_pron, det_nom_fem, del_nom_sing,
use_article, avoid_dangling, repeat_modal, | del_nom_masc, det_nom_plur
use_complement
Parsing trees, S, CC, JJ, comma, VB, NP, NN, VP | trees, S, CC, JJ, NP, VB, NN, VP, dot, PP
Decoding avg(pC), avg(ay), std(pC), var(c), std(Im),
avg(as), do, std(c), a1, as

Table 5: Indicative feature sets for the most successful quality estimation models. Features explained at section 2.2
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Abstract

In this paper we introduce a number of new
features for quality estimation in machine
translation that were developed for the WMT
2012 quality estimation shared task. We find
that very simple features such as indicators of
certain characters are able to outperform com-
plex features that aim to model the connection
between two languages.

1 Introduction and Task

This paper describes the features and setup used in
our submission to the WMT 2012 quality estimation
(QE) shared task. Given a machine translation (MT)
system and a corpus of its translations which have
been rated by humans, the task is to build a predic-
tor that can accurately estimate the quality of fur-
ther translations. The human ratings range from 1
(incomprehensible) to 5 (perfect translation) and are
given as the mean rating of three different judges.
Formally we are presented with a source sentence
fi and a translation e{ and we need to assign a score
S(f{,el) € [1,5] or, in the ranking task, order the
source-translation pairs by expected quality.

2 Resources

The organizers have made available a baseline QE
system that consists of a number of well established
features (Blatz et al., 2004) and serves as a starting
point for development. Furthermore the MT system
that generated the translations is available along with
its training data. Compared to the large training cor-
pus of the MT engine, the QE system is based on a
much smaller training set as detailed in Table 1.

91

# sentences

europarl-nc 1,714,385
train 1,832
test 422

Table 1: Corpus statistics

3 Features

In the literature (Blatz et al., 2004) a large number
of features have been considered for confidence es-
timation. These can be grouped into four general
categories:

1. Source features make a statement about the
source sentence, assessing the difficulty of
translating a particular sentence with the sys-
tem at hand. Some sentences may be very easy
to translate, e.g. short and common phrases,
while long and complex sentences are still be-
yond the system’s capabilities.

2. Translation features model the connection be-
tween source and target. While this is very
closely related to the general problem of ma-
chine translation, the advantage in confidence
estimation is that we can exercise unconstruc-
tive criticism, i.e. point out errors without of-
fering a better translation. In addition, there is
no need for an efficient search algorithm, thus
allowing for more complex models.

3. Target features judge the translation of the sys-
tem without regarding in which way it was
produced. They often resemble the language

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 91-95,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



model used in the noisy channel formulation
(Brown et al., 1993) but can also pinpoint more
specific issues. In practice, the same features as
for the source side can be used; the interpreta-
tion however is different.

4. Engine features are often referred to as glass
box features (Specia et al., 2009). They de-
scribe the process which produced the transla-
tion in question and usually rely on the inner
workings of the MT system. Examples include
model scores and word posterior probabilities
(WPP) (Ueffing et al., 2003).

In this work we focus on the first three categories
and ignore the particular system that produced the
translations. Such features are commonly referred
to as black box features. While some glass box fea-
tures, e.g. word posterior probabilities, have led to
promising results in the past, we chose to explore
new features potentially applicable to translations
from any source, e.g. translations found on the web.

3.1 Binary Indicators

MTranslatability (Bernth and Gdaniec, 2001) gives a
notion of the structural complexity of a sentence that
relates to the quality of the produced translation. In
the literature, several characteristics that may hin-
der proper translation have been identified, among
them poor grammar and misplaced punctuation. As
a very simple approximation we implement binary
indicators that detect clauses by looking for quota-
tion marks, hyphens, commas, etc. Another binary
feature marks numbers and uppercase words.

3.2 Named Entities

Another aspect that might pose a potential problem
to MT is the occurrence of words that were only ob-
served a few times or in very particular contexts, as
it is often the case for Named Entities. We used the
Stanford NER Tagger (Finkel et al., 2005) to detect
words that belong to one of four groups: Person, Lo-
cation, Organization and Misc. Each group is repre-
sented by a binary feature.

Counts are given in Table 2. The test set has sig-
nificantly less support for the Misc category, possi-
bly hinting that this data was taken from a different
source or document. To avoid the danger of biasing
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train (src)  test (src)

abs rel abs rel
Person 623 34% 141 33%
Location 479 26% 99 23%
Organization 505 28% 110 26%
Misc 428 23% 53 13%

Table 2: Distribution of Named Entities. The counts are
based on a binary features, i.e. multiple occurrences are
treated as a single one.

the classifier we decided not to use the Misc indica-
tor in our experiments.

3.3 Backoff Behavior

In related work (Raybaud et al., 2011) the backoff
behavior of a 3-gram LM was found to be the most
powerful feature for word level QE. We compute for
each word the longest seen n-gram (up to n = 4)
and take the average length as a feature. N-grams at
the beginning of a sentence are extended with <s>
tokens to avoid penalizing short sentences. This is
done on both the source and target side.

3.4 Discriminative Word Lexicon

Following the approach of Mauser et al. (2009) we
train log-linear binary classifiers that directly model
p(e|f{) for each word e € el:

exp (Zfeflj Ae,f)
1+ exp <Zfef{ Ae,f)

where )\, ; are the trained model weights. Please
note that this introduces a global dependence on the
source sentence so that every source word may influ-
ence the choice of all words in e{ as opposed to the
local dependencies found in the underlying phrase-
based MT system.

Assuming independence among the words in the
translated sentence we could compute the probabil-

ity of the sentence pair as:

pleil )= T pel)- TT = plelf) - @

I I
ece; e¢e;

plelfi) = (1)

In practice the second part of Equation (2) is too
noisy to be useful given the large number of words



source
target

resumption of the session

reanudacion del periodo de sestones

Table 3: Example entry of filtered training corpus.

that do not appear in the sentence at hand. We there-
fore focus on the observed words and use the geo-
metric mean of their individual probabilities:

11

[Iepeh| - @

I
6661

zowr(fief) =

We also compute the probability of the lowest
scoring word as an additional feature:

eoWLmin(f{s €1) = minp(e|f{). @)
€€€1
3.5 Neural Networks

We seek to directly predict the words in e using

a neural network. In order to do so, both source
and target sentence are encoded as high dimensional
vectors in which positive entries mark the occur-
rence of words. This representation is commonly
referred to as the vector space model and has been
successfully used for information retrieval.

The dimension of the vector representation is de-
termined by the respective sizes of the source and
target vocabulary. Without further pre-processing
we would need to learn a mapping from a 90k (|V|)
to a 170k (|V¢|) dimensional space. Even though our
implementation is specifically tailored to exploit the
sparsity of the data, such high dimensionality makes
training prohibitively expensive.

Two approaches to reduce dimensionality are ex-
plored in this work. First, we simply remove all
words that never occur in the QE data of 2,254 sen-
tences from the corpus leaving 8,365 input and 9,000
output nodes. This reduces the estimated training
time from 11 days to less than 6 hours per iteration'.
Standard stochastic gradient decent on a three-layer
feed-forward network is used.

As shown in Table 3 the filtering can lead to arti-
facts in which case an erroneous mapping is learned.
Moreover the filtering approach does not scale well
as the QE corpus and thereby the vocabulary grows.

lusing a 2.66 GHz Intel Xeon and 2 threads
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Our second approach to reduce dimensionality
uses the hashing trick (Weinberger et al., 2009): a
hash function is applied to each word and the sen-
tence is represented by the hashed values which
are again transformed using vector space model as
above. The dimensionality reduction is due to the
fact that there are less possible hash values than
words in the vocabulary. To reduce the loss of infor-
mation due to collisions, several different hash func-
tions are used. The resulting vector representation
closely resembles a Bloom Filter (Bloom, 1970).

This approach scales well but introduces two new
parameters: the number of hash functions to use
and the dimensionality of the resulting space. In
our experiments we have used SHA-1 hashes with
three different salts of which we used the first 12
bits, thereby mapping the sentences into a 4096-
dimensional space.

The results presented in Section 4 based on net-
works with 500 hidden nodes which were trained for
at least 10 iterations. The networks are not trained
until convergence due to time constraints; additional
training iterations will likely result in better per-
formance. Experiments using 250 or 1000 hidden
nodes showed very similar results.

After the models are trained we compare the pre-
dicted and the observed target vectors and derive
two features: (i) the euclidean distance, denoted as
NNdist and HNNdist for the filtered and hashed ver-
sions respectively and (ii) the geometric mean of
those dimensions where we expect a positive value,
denoted as NNprop+ and HNNprob+ in Table 5.

3.6 Edit Distance

Using Levenshtein Distance we computed the dis-
tance to the closest entry in the training corpus. The
idea is that a sentence that was already seen almost
identically would be easier to translate. Likewise,
a translation that is very close to an element of the
corpus is likely to be a good translation. This was
performed for both source and target side and on
character as well as on word level giving a total of
four (EDIT) scores. The scores are normalized by
the length of the respective lines.



13 2 "

source corpus

europarl-nc 37 227 25,637
train 0 0 641
test 78 76 100

Table 4: Counts of different quotation mark characters.

4 Experiments

In this work we focus on the prediction of human
assessment of translation quality, i.e. the regression
task of the WMT12 QE shared task. Our submission
for the ranking task is derived from the order implied
by the predicted scores without further re-ranking.

In general our efforts were directed towards fea-
ture engineering and not to the machine learning as-
pects. Therefore, we apply a standard pipeline and
use neural networks for regression. All parameter
tuning is performed using 5-fold cross validation on
the baseline set of 17 features as provided by the or-
ganizers.

4.1 Preprocessing and Analysis

To avoid including our own judgment, no more than
the first ten lines of the test data were visually in-
spected in order to ensure that the training and test
data was preprocessed in the same manner. Further-
more, the distribution of individual characters was
investigated. As shown in Table 4, the test data dif-
fers from the training corpus in treatment of quo-
tation marks. Hence, we replaced all typographi-
cal quotation marks (*, ) with the standard double
quote symbol (").

Prior to computation of the features described in
Subsections 3.3, 3.4 and 3.5 all numbers are re-
placed with a special Snumber token.

Baseline features are used without further scal-
ing; experiments where all features were scaled to
the [0, 1] range showed a drop in accuracy.

While we implemented the training ourselves for
the features presented in Subsection 3.5, the open
source neural network library FANN? is used for
all experiments in this section. As the performance
of individual classifiers shows a high variance, pre-
sumably due to local minima, all experiments are
conducted using ensembles on 500 networks trained

*http://leenissen.dk/fann/wp/
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Feature (Section) MAE RMSE |PCC|
BACKOFF (3.3) 0.0 0.0

INDICATORS (3.1) +0.5 +0.7

NER (3.2) +0.5 +0.4

DWLmin (3.4) -0.1 -0.1 0.19
DWL (3.4) 0.0 —-0.1 0.36
EDIT (3.6) - tgt words 0.0 0.0 0.32
EDIT (3.6) - tgt chars  —0.1 0.0 0.27
EDIT (3.6) - src words 0.0 0.0 0.36
EDIT (3.6) - src chars  +0.2  +0.1  0.37
NNdist (3.5) 0.0 0.0 0.35
NNprob+ (3.5) +0.1  +0.2 0.35
HNN(dist (3.5) 0.0 0.0 0.37
HNNprob+ (3.5) +0.1  +0.1 0.35

Table 5: Analysis of individual features using 5-fold
cross-validation. Positive values indicate improvement
over a baseline of MAE 57.7% and RMSE 72.7%; e.g.
including the DWL feature actually worsens RMSE from
72.7% to 72.8%.

The last column gives the Pearson correlation coefficient
between the feature and the score if the feature is a single
column. This information was not used in feature selec-
tion as it is not based on cross validation.

with random initialization. Their consensus is com-
puted as the average of the individual predictions.

4.2 Feature Evaluation

To evaluate the contribution of individual features,
each feature is tested in conjunction with all base-
line features, using the parameters that were opti-
mized on the baseline set. This slightly favors the
baseline features but we still expect that expressive
additional features lead to a noticeable performance
gain. The results are detailed in Table 5. In addi-
tion to the main evaluation metrics, mean average
error (MAE) and root mean squared error (RMSE),
we report the Pearson correlation coefficient (PCC)
as a measure of predictive strength of a single fea-
ture. Because features are not used alone this does
not directly translate into overall performance. Still,
it can be observed that our proposed features show
good correlation to the target variable. For compari-
son, among the baseline features only 2 of 17 reach
a PCC of over 0.3.

While the results generally remain inconclusive,
some very simple features that indicate difficulties



for the translation engine show good performance.
In particular binary markers of named entities and
and the indicator features introduced in Subsection
3.1 perform well. Further experiments with the latter
show their contribution to the systems performance
can be attributed to a single feature: the indicator of
the genitive case, i.e. occurrences of ’s or s’.
Testing more combinations of simple and com-
plex features may lead to improvements at the risk
of over-fitting on the cross validation setup. As a
simple remedy several feature sets were created at
random, always combining all baseline features and
several new features presented in this paper. Averag-
ing of the individual results of all sets that performed
better than the baseline resulted in our submission.

4.3 Results and Discussion

Of all the features detailed only a few lead to a con-
siderable improvement. This is also reflected by our
results on the test data which are nearly indistin-
guishable from the performance of the baseline sys-
tem. While this is disappointing, our more complex
features introduce a number of free parameters and
further experimentation will be needed to conclu-
sively assess their usefulness. In particular, features
based on neural networks can be further optimized
and tested in other settings.

Even though the machine learning aspects of this
task are not the focus of this work we are confident
that the proposed setup is sound and can be reused
in further evaluations.

5 Conclusion

We described a number of new features that can be
used to predict human judgment of translation qual-
ity. Results suggest pointing out sentences that are
hard to translate, e.g. because they are too complex,
is a promising approach.

We presented a detailed evaluation of the utility
of individual features and a solid baseline setup for
further experimentation. The system, based on an
ensemble of neural networks, is insensitive to pa-
rameter settings and yields competitive results.

Our new features can potentially be applied for a
multitude of applications and may deliver insights
into the fundamental problems that cause translation
errors, thus aiding the progress in MT research.
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Abstract

This paper describes a study on the contribu-
tion of linguistically-informed features to the
task of quality estimation for machine trans-
lation at sentence level. A standard regression
algorithm is used to build models using a com-
bination of linguistic and non-linguistic fea-
tures extracted from the input text and its ma-
chine translation. Experiments with English-
Spanish translations show that linguistic fea-
tures, although informative on their own, are
not yet able to outperform shallower features
based on statistics from the input text, its
translation and additional corpora. However,
further analysis suggests that linguistic infor-
mation is actually useful but needs to be care-
fully combined with other features in order to
produce better results.

1 Introduction

Estimating the quality of automatic translations is
becoming a subject of increasing interest within the
Machine Translation (MT) community for a num-
ber of reasons, such as helping human translators
post-editing MT, warning users about non-reliable
translations or combining output from multiple MT
systems. Different from most classic approaches for
measuring the progress of an MT system or compar-
ing MT systems, which assess quality by contrast-
ing system output to reference translations such as
BLEU (Papineni et al., 2002), Quality Estimation
(QE) is a more challenging task, aimed at MT sys-
tems in use, and therefore without access to refer-
ence translations.
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From the findings of previous work on reference-
dependent MT evaluation, it is clear that metrics
exploiting linguistic information can achieve sig-
nificantly better correlation with human judgments
on quality, particularly at the level of sentences
(Giménez and Marquez, 2010). Intuitively, this
should also apply for quality estimation metrics:
while evaluation metrics compare linguistic repre-
sentations of the system output and reference trans-
lations (e.g. matching of n-grams of part-of-speech
tags or predicate-argument structures), quality esti-
mation metrics would perform the (more complex)
comparison og linguistic representations of the input
and translation texts. The hypothesis put forward in
this paper is therefore that using linguistic informa-
tion to somehow contrast the input and translation
texts can be beneficial for quality estimation.

We test this hypothesis as part of the WMT-12
shared task on quality estimation. The system sub-
mitted to this task (WLV-SHEF) integrates linguis-
tic information to a strong baseline system using
only shallow statistics from the input and transla-
tion texts, with no explicit information from the MT
system that produced the translations. A variant
also tests the addition of linguistic information to
a larger set of shallow features. The quality esti-
mation problem is modelled as a supervised regres-
sion task using Support Vector Machines (SVM),
which has been shown to achieve good performance
in previous work (Specia, 2011). Linguistic features
are computed using a number of auxiliary resources
such as parsers and monolingual corpora.

The remainder of this paper is organised as fol-
lows. Section 2 gives an overview of previous work
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on quality estimation, Section 3 describes the set of
linguistic features proposed in this paper, along with
general experimental settings, Section 4 presents our
evaluation and Section 5 provides conclusions and a
brief discussion of future work.

2 Related Work

Reference-free MT quality assessment was ini-
tially approached as a Confidence Estimation task,
strongly biased towards exploiting data from a Sta-
tistical MT (SMT) system and the translation pro-
cess to model the confidence of the system in the
produced translation. Blatz et al. (2004) attempted
sentence-level assessment using a set of 91 features
(from the SMT system input and translation texts)
and automatic annotations such as NIST and WER.
Experiments on classification and regression using
different machine learning techniques produced not
very encouraging results. More successful experi-
ments were later run by Quirk (2004) in a similar
setting but using a smaller dataset with human qual-
ity judgments.

Specia et al. (2009a) used Partial Least Squares
regression to jointly address feature selection and
model learning using a similar set of features and
datasets annotated with both automatic and human
scores. Black-box features (i.e. those extracted from
the input and translation texts only) were as discrim-
inative as glass-box features (i.e. those from the MT
system). Later work using black-box features only
focused on finding an appropriate threshold for dis-
criminating ‘good’ from ‘bad’ translations for post-
editing purposes (Specia et al., 2009b) and investi-
gating more objective ways of obtaining human an-
notation, such as post-editing time (Specia, 2011).

Recent approaches have started exploiting lin-
guistic information with promising results. Specia
etal. (2011), for instance, used part-of-speech (PoS)
tagging, chunking, dependency relations and named
entities for English-Arabic quality estimation. Hard-
meier (2011) explored the use of constituency
and dependency trees for English-Swedish/Spanish
quality estimation. Focusing on word-error detec-
tion through the estimation of WER, Xiong et al.
(2010) used PoS tags of neighbouring words and a
link grammar parser to detect words that are not con-
nected to the rest of the sentence. Work by Bach et
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al. (2011) focused on learning patterns of linguis-
tic information (such as sequences of part-of-speech
tags) to predict sub-sentence errors. Finally, Pighin
and Marquez (2011) modelled the expected projec-
tions of semantic roles from the input text into the
translations.

3 Method

Our work focuses on the use of a wide range of
linguistic information for representing different as-
pects of translation quality to complement shallow,
system-independent features that have been proved
to perform well in previous work.

3.1 Linguistic features

Non-linguistic features, such as sentence length or
n-gram statistics, are limited in their scope since
they can only account for very shallow aspects of
a translation. They convey no notion of meaning,
grammar or content and as a result they could be
very biased towards describing only superficial as-
pects. For this reason, we introduce linguistic fea-
tures that account for richer aspects of translations
and are in closer relation to the way humans make
their judgments. All of the proposed features, lin-
guistic or not, are MT-system independent.

The proposal of linguistic features was guided by
three main aspects of translation: fidelity, fluency
and coherence. The number of features that were
eventually extracted was inevitably limited by the
availability of suitable tools for the language pair
at hand, mainly for Spanish. As a result, many of
the features that were initially devised could not be
implemented (e.g. grammar checking). A total of
70 linguistic features were extracted, as summarised
below, where S and T indicate whether they refer to
the source/input or translation texts respectively:

e Sentence 3-gram log-probability and perplexity
using a language model (LM) of PoS tags [T]

e Number, percentage and ratio of content words
(N, V, ADJ) and function words (DET, PRON,
PREP, ADV) [S & T]

e Width and depth of constituency and depen-
dency trees for the input and translation texts
and their differences [S & T]



e Percentage of nouns, verbs and pronouns in the
sentence and their ratios between [S & T]

e Number and difference in deictic elements in
[S & T]

e Number and difference in specific types of
named entities (person, organisation, location,
other) and the total of named entities [S & T]

e Number and difference in noun, verb and
prepositional phrases [S & T]

e Number of “dangling” (i.e.
miners [T]

unlinked) deter-

e Number of explicit (pronominal, non-
pronominal) and implicit (zero pronoun)
subjects [T]

e Number of split contractions in Spanish (i.e.
al=a el, del=de el) [T]

e Number and percentage of subject-verb dis-
agreement cases [T]

e Number of unknown words estimated using a
spell checker [T]

While many of these features attempt to check
for general errors (e.g. subject verb disagreement),
others are targeted at usual MT errors (e.g. “dan-
gling” determiners, which are commonly introduced
by SMT systems and are not linked to any words) or
target language peculiarities (e.g. Spanish contrac-
tions, zero subjects). In particular, studying deeper
aspects such as different types of subjects can pro-
vide a good indication of how natural a translation
is in Spanish, which is a pro-drop language. Such a
distinction is expected to spot unnatural expressions,
such as those caused by unnecessary pronoun repe-
tition. !

For subject classification, we identified all VPs
and categorised them according to their preceding

'E.g. (1) The girl beside me was smiling rather brightly.
She thought it was an honor that the exchange student should
be seated next to her. — *La nifia a mi lado estaba sonriente
bastante bien. Ella pensé que era un honor que el intercambio
de estudiantes se encuentra proximo a ella. (superfluous)

(2) She is thought to have killed herself through suffocation us-
ing a plastic bag. — *Ella se cree que han matado a ella medi-
ante asfixia utilizando una bolsa de pldstico. (confusing)
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NPs. Thus, explicit subjects were classified as
pronominal (PRON+VP) or non-pronominal (NON-
PRON-NP+VP) while implicit subjects only in-
cluded elided (zero) subjects (i.e. a VP not preceded
by an NP).

Subject-verb agreement cases were estimated by
rules analysing person, number and gender matches
in explicit subject cases, considering also inter-
nal NP agreement between determiners, nouns, ad-
jectives and pronouns.” Deictics, common coher-
ence indicators (Halliday and Hasan, 1976), were
checked against manually compiled lists.> Unknown
words were estimated using the JMySpell* spell
checker with the publicly available Spanish (es_ES)
OpenOffice’ dictionary. In order to avoid incorrect
estimates, all named entities were filtered out before
spell-checking.

TreeTagger (Schmid, 1995) was used for PoS tag-
ging of English texts, while Freeling (Padr¢ et al.,
2010) was used for PoS tagging in Spanish and
for constituency parsing, dependency parsing and
named entity recognition in both languages.

In order to compute n-gram statistics over PoS
tags, two language models of general and more
detailed morphosyntactic PoS were built using the
SRILM toolkit (Stolcke, 2002) on the PoS-tagged
AnCora corpus (Taulé et al., 2008).

3.2 Shallow features

In a variant of our system, the linguistic features
were complemented by a set of 77 non-linguistic
features:

e Number and proportion of unique tokens and
numbers in the sentence [S & T]

e Sentence length ratios [S & T]

e Number of non-alphabetical tokens and their
ratios [S & T]

e Sentence 3-gram perplexity [S & T]

E.g. *Algunas de estas personas se convertird en héroes.
(number mismatch), *Barricadas fueron creados en la calle
Cortlandt. (gender mismatch), *Buena mentirosos estdn cuali-
ficados en lectura. (internal NP gender and number mismatch).

3These included common deictic terms compiled from vari-
ous sources, such as hoy, alli, tii (Spanish) or that, now or there
(English).

*http://kenai.com/projects/jmyspell

Shttp://www.openoffice.org/



e Type/Token Ratio variations: corrected TTR
(Carroll, 1964), Log TTR (Herdan, 1960),
Guiraud Index (Guiraud, 1954), Uber Index
(Dugast, 1980) and Jarvis TTR (Jarvis, 2002)
[S & T]

e Average token frequency from a monolingual
corpus [S]

e Mismatches in opening and closing brackets
and quotation marks [S & T]

e Differences in brackets, quotation marks, punc-
tuation marks and numbers [S & T]

e Average number of occurrences of all words
within the sentence [T]

e Alignment score (IBM-4) and percentage of
different types of word alignments by GIZA++
(from the SMT training alignment model pro-
vided)

Our basis for comparison is the set of 17 baseline
features, which are shallow MT system-independent
features provided by the WMT-12 QE shared task
organizers.

3.3 Building QE models

We created two main feature sets from the features
listed above for the WMT-12 QE shared task:

WLV-SHEF _FS: all features, that is, baseline fea-
tures, shallow features (Section 3.2) and lin-
guistic features (Section 3.1).

WLV-SHEF BL: baseline features and linguistic
features (Section 3.1).

Additionally, we experimented with other variants
of these feature sets using 3-fold cross validation on
the training set, such as only linguistic features and
only non-linguistic features, but these yielded poorer
results and are not reported in this paper.

We address the QE problem as a regression task
by building SVM models with an epsilon regressor
and a radial basis function kernel using the LibSVM
toolkit (Chang and Lin, 2011). Values for the cost,
epsilon and gamma parameters were optimized us-
ing 5-fold cross validation on the training set.
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MAE | | RMSE | | Pearson |
Baseline 0.69 0.82 0.562
WLV-SHEF_FS 0.69 0.85 0.514
WLV-SHEF_BL 0.72 0.86 0.490

Table 1: Scoring performance

The training sets distributed for the shared task
comprised 1, 832 English sentences taken from news
texts and their Spanish translations produced by an
SMT system, Moses (Koehn et al., 2007), which
had been trained on a concatenation of Europarl and
news-commentaries data (from WMT-10). Transla-
tions were accompanied by a quality score derived
from an average of three human judgments of post-
editing effort using a 1-5 scale.

The models built for each of these two feature
sets were evaluated using the official test set of 422
sentences produced in the same fashion as the train-
ing set. Two sub-tasks were considered: (i) scor-
ing translations using the 1-5 quality scores, and
(ii) ranking translations from best to worse. While
quality scores were directly predicted by our mod-
els, sentence rankings were defined by ordering the
translations according to their predicted scores in de-
scending order, with no additional criteria to resolve
ties other than the natural ordering given by the sort-
ing algorithm.

4 Results and Evaluation

Table 1 shows the official results of our systems in
the scoring task in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), the
metrics used in the shared task, as well as in terms
of Pearson correlation.

Results reveal that our models fall slightly be-
low the baseline, although this drop is not statisti-
cally significant in any of the cases (paired t-tests for
Baseline vs WLV-SHEF_FS and Baseline vs WLV-
SHEF_BL yield p > 0.05). This may suggest that
for this particular dataset the baseline features al-
ready cover all relevant aspects of quality on their
own, or simply that the representation of the lin-
guistic features is not appropriate for the task. The
quality of the resources used to extract the linguistic
features may also have been an issue. However, a
feature selection method may find a different com-
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Figure 1: Comparison of true versus predicted scores

bination of features that outperforms the baseline, as
is later described in this section.

A correlation analysis between our predicted
scores and the gold standard (Figure 1) shows some
dispersion, especially for the WLV-SHEF_FS set,
with lower Pearson coefficients when compared to
the baseline. The fluctuation of predicted values for
a single score is also very noticeable, spanning more
than one score band in some cases. However, if we
consider the RMSE achieved by our models, we find
that, on average, predictions deviate less than 0.9 ab-
solute points.

A closer look at the score distribution (Figure 2)
reveals our models had some difficulty predicting
scores in the 1-2 range, possibly affected by the
lower proportion of these cases in the training data.
In addition, it is interesting to see that the only sen-
tence with a true score of 1 is predicted as a very
good translation (with a score greater than 3.5). The
reason for this is that the translation has isolated
grammatical segments that our features might regard
as good but it is actually not faithful to the original.®
Although the cause for this behaviour can be traced
to inaccurate tokenisation, this reveals that our fea-
tures assess fidelity only superficially and deeper
semantically-aware indicators should be explored.

Results for the ranking task also fall below the
baseline as shown in Table 2, according to the two
official metrics: DeltaAvg and Spearman rank cor-
relation coefficient.

4.1 Further analysis

At first glance, the performance of our models seems
to indicate that the integration of linguistic infor-

87 won’t give it away. — *He ganado ’ t darle.
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Predicted score
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WLV-SHEF FS o WLV-SHEF BL

Figure 2: Scatter plot of true versus predicted scores

DeltaAvg T | Spearman 7
Baseline 0.55 0.58
WLV-SHEF _FS 0.51 0.52
WLV-SHEF _BL 0.50 0.49

Table 2: Ranking performance

mation is not beneficial, since both linguistically-
informed feature sets lead to poorer performance as
compared to the baseline feature set, which contains
only shallow, language-independent features. How-
ever, there could be many factors affecting perfor-
mance so further analysis was necessary to assess
their contribution.

Our first analysis focuses on the performance of
individual features. To this end, we built and tested
models using only one feature at a time and repeated
the process afterwards using the full WLV-SHEF_FS
set without one feature at a time. In Table 3 we re-
port the 5-best and 5-worst performing features. Al-
though purely statistical features lead the rank, lin-
guistic features also appear among the top five (as
indicated by (L)), showing that they can be as good
as other shallow features. It is interesting to note that
a few features appear as the top performing in both
columns (e.g. source bigrams in 4th frequency quar-
tile and target LM probability). These constitute the
truly top performing features.

Our second analysis studies the optimal subset of
features that would yield the best performance on the
test set, from which we could draw further conclu-
sions. Since this analysis requires training and test-
ing models using all the possible partitions of the



Rank | One feature All but one feature
1 | Source bigrams in 4th freq. quartile Source average token length
2 | Source LM probability Source bigrams in 4th freq. quartile
3 | Target LM probability Unknown words in target (©
4 | Number of source bigrams Target LM probability
5 | Target PoS LM probability © Difference in constituency tree width ©
143 | Percentage of target S-V agreement © Difference in number of periods
144 | Source trigrams in 2nd freq. quartile Number of source bigrams
145 | Target location entities (© Target person entities ©
146 | Source trigrams in 3rd freq. quartile Target Corrected TTR
147 | Source average translations by inv. freq. | Source trigrams in 3rd freq. quartile

Table 3: List of best and worst performing features

full feature set,” it is infeasible in practice so we
adopted the Sequential Forward Selection method
instead (Alpaydin, 2010). Using this method, we
start from an empty set and add one feature at a time,
keeping in the set only the features that decrease the
error until no further improvement is possible. This
strategy decreases the number of iterations substan-
tially® but it does not guarantee finding a global op-
timum. Still, a local optimum was acceptable for
our purpose. The optimal feature set found by our
selection algorithm is shown in Table 4.

Error rates are lower when using this optimal fea-
ture set (MAE=0.62 and RMSE=0.76) but the differ-
ence is only statistically significant when compared
to the baseline with 93% confidence level (paired t-
test with p <= 0.07). However, this analysis allows
us to see how many linguistic features get selected
for the optimal feature set.

Out of the total 37 features in the optimal set,
15 are linguistic (40.5%), showing that they are in
fact informative when strategically combined with
other shallow indicators. This also reveals that fea-
ture selection is a key issue for building a quality
estimation system that combines linguistic and shal-
low information. Using a sequential forward selec-
tion method, the optimal set is composed of both lin-
guistic and shallow features, reinforcing the idea that
they account for different aspects of quality and are
not interchangeable but actually complementary.

"For 147 features: 247
8For 147 features, worst case is 147 x (147 4+ 1)/2 =
10, 878.
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5 Conclusions and Future Work

We have explored the use of linguistic informa-
tion for quality estimation of machine translations.
Our approach was not able to outperform a baseline
with only shallow features. However, further feature
analysis revealed that linguistic features are comple-
mentary to shallow features and must be strategi-
cally combined in order to be exploited efficiently.

The availability of linguistic tools for processing
Spanish is limited, and thus the linguistic features
used here only account for a few of the many aspects
involved in translation quality. In addition, comput-
ing linguistic information is a challenging process
for a number of reasons, mainly the fact that trans-
lations are often ungrammatical, and thus linguistic
processors may return inaccurate results, leading to
further errors.

In future work we plan to integrate more global
linguistic features such as grammar checkers, along
with deeper features such as semantic roles, hybrid
n-grams, etc. In addition, we have noticed that rep-
resenting information for input and translation texts
independently seems more appropriate than con-
trasting input and translation information within the
same feature. This representation issue is somehow
counter-intuitive and is yet to be investigated.

Acknowledgements

This research was supported by the European Com-
mission, Education & Training, Eramus Mundus:
EMMC 2008-0083, Erasmus Mundus Masters in
NLP & HLT programme.



Iter. | Feature
1 | Source bigrams in 4th frequency quartile
2 | Target PoS LM probability ©
3 | Source average token length
4 | Guiraud Index of T
5 | Unknown words in T ©
6 | Difference in number of VPs between S and T ©
7 | Diff. in constituency trees width of S and T ©
8 | Non-alphabetical tokens in T
9 | Ratio of length between S and T
10 | Source trigrams in 4th frequency quartile
11 | Number of content words in S ©
12 | Source 3-gram perplexity
13 | Ratio of PRON percentages in S and T ©
14 | Number of NPs in T ©
15 | Average number of source token translations with

p > 0.05 weighted by frequency

16 | Source 3-gram LM probability

17 | Target simple PoS LM probability (O

18 | Difference in dependency trees depth of S and T ©
19 | Number of NPsin S ©

20 | Number of tokens in S

21 | Number of content words in T ©

22 | Source unigrams in 3rd frequency quartile

23 | Source unigrams in 1st frequency quartile

24 | Source unigrams in 2nd frequency quartile

25 | Average number of source token translations with
p > 0.01 weighted by frequency

26 | Ratio of non-alpha tokens in S and T

27 | Difference of question marks between S and T nor-
malised by T length

28 | Percentage of pron subjects in T ©

29 | Percentage of verbs in T ©

30 | Constituency trees width for S ©

31 | Absolute diff. of question marks between S and T
32 | Average num. of source token trans. with p > 0.2
33 | Diff. of person entities between S and T ©

34 | Diff. of periods between S and T norm. by T length
35 | Diff. of semicolons between S and T normalised by
T length

36 | Source 3-gram perplexity without end-of-sentence
markers

37 | Absolute difference of periods between S and T

Table 4: An optimal set of features for the test set. The
number of iteration indicates the order in which features
were selected, giving a rough ranking of features by their
performance.
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Abstract

This is a description of the submissions made
by the pattern recognition and human lan-
guage technology group (PRHLT) of the Uni-
versitat Politecnica de Valéncia to the qual-
ity estimation task of the seventh workshop
on statistical machine translation (WMT12).
We focus on two different issues: how to ef-
fectively combine subsequence-level features
into sentence-level features, and how to select
the most adequate subset of features. Results
showed that an adequate selection of a subset
of highly discriminative features can improve
efficiency and performance of the quality esti-
mation system.

1 Introduction

Quality estimation (QE) (Ueffing et al., 2003; Blatz
et al., 2004; Sanchis et al., 2007; Specia and Farzin-
dar, 2010) is a topic of increasing interest in machine
translation (MT). It aims at providing a quality indi-
cator for unseen translations at various granularity
levels. Different from MT evaluation, QE do not
rely on reference translations and is generally ad-
dressed using machine learning techniques to pre-
dict quality scores.

Our main focus in this article is in the combi-
nation of subsequence features into sentence fea-
tures, and in the selection of a subset of relevant fea-
tures to improve performance and efficiency. Sec-
tion 2 describes the features and the learning algo-
rithm used in the experiments. Section 3 describe
two different approaches implemented to select the
best-performing subset of features. Section 4 dis-
plays the results of the experimentation intended to
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determine the optimal setup to train our final sub-
mission. Finally, section 5 summarizes the submis-
sion and discusses the results.

2 Features and Learning Algorithm

2.1 Available Sources of Information

The WMTI12 QE task is carried out on English—
Spanish news texts produced by a phrase-based MT
system. As training data we are given 1832 trans-
lations manually annotated for quality in terms of
post-editing effort (scores in the range [1,5]), to-
gether with their source sentences, decoding in-
formation, reference translations, and post-edited
translations. Additional training data can be used,
as deemed appropriate. Any of these information
sources can be used to extract the features, however,
test data consists only on source sentence, transla-
tion, and search information. Thus, features were
extracted from the sources of information available
in test data only. Additionally, we compute some
extra features from the WMTI12 translation task
(WMTI12TT) training data.

2.2 Features

We extracted a total of 475 features classified into
sentence-level and subsequence-level features. We
considered subsequences of sizes one to four.

Sentence-level features

Source and target sentence lengths, and ratio.

e Proportion of dead nodes in the search graph.

Number of source phrases.

Number and average size of the translation op-
tions under consideration during search.

Proceedings of the 7th Workshop on Statistical Machine Translation, pages 104—108,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



e Source and target sentence probability and per-
plexities computed by language models of or-
der one to five.

e Target sentence probability, probability divided
by sentence length, and perplexities computed
by language models of order one to five. Lan-
guage models were trained on the 1000-best
translations.

e 1000-best average sentence length, 1000-best
vocabulary divided by average length, and
1000-best vocabulary divided by source sen-
tence length.

e Percentage of subsequences (sizes one to four)
previously unseen in the source training data.

Subsequence-level features

e Frequency of source subsequences in the
WMTI2TT data.

e IBM Model-1 confidence score for each word
in the translation (Ueffing et al., 2003).

e Subsequence confidence scores computed on
1000-best translations as described in (Ueffing
et al.,, 2003; Sanchis et al., 2007). We use
four subsequence correctness criteria (Levens-
thein position, target position, average position,
and any position) and three weighting schemes
(translation probability, translation rank, and
relative frequencies).

e Subsequence confidence scores computed by a
smoothed naive bayes classifier (Sanchis et al.,
2007). We computed a confidence score for
each correctness criteria (Levensthein, target,
average and any). The smoothed classifier was
tuned to improve classification error rate on a
separate development set (union of news-test
sets for years 2008 to 2011).

2.3 Combination of Subsequence-level
Features

Since WMT12 focuses on sentence-level QE,
subsequence-level features must be combined to ob-
tain sentence-level indicators. We used two different
methods to combine subsequence features:

e Average value of subsequence-level scores, as
done in (Blatz et al., 2004).
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e Percentage of subsequence scores belonging to
each frequency quartile’, as done in (Specia
and Farzindar, 2010).

Thus, each subsequence-level feature was repre-
sented as five sentence-level features: one average
score plus four quartile percentages.

Both methods aim at summarizing the scores of
the subsequences in a translations. The average is
a rough indicator that measures the “middle” value
of the scores while the percentages of subsequences
belonging to each quartile are more fine-grained in-
dicators that try to capture how spread out the sub-
sequence scores are.

2.4 Learning Algorithm

We trained our quality estimation model using an
implementation of support vector machines (Vap-
nik, 1995) for regression. Specifically, we used
svMmlight (joachims, 2002) for regression with a ra-
dial basis function kernel with the parameters C', w
and ~ optimized. The optimization was performed
by cross-validation using ten random subsamples of
the training set (1648 samples for training and 184
samples for validation).

3 Feature Selection

One of the principal challenges that we had to con-
front is the small size of the training data (only
1832 samples) in comparison with the large number
of features, 475. This inadequate amount of train-
ing data did not allow for an acceptable training of
the regression model which yielded instable systems
with poor performance. We also verified that many
features were highly correlated and were even re-
dundant sometimes. Since the amount of training
data is fixed, we tried to improve the robustness of
our regression systems by selecting a subset of rele-
vant features.

We implemented two different feature selection
techniques: one based on partial component anal-
ysis (PCA), and a greedy selection according to the
individual performance of each feature.

3.1 PCA Selection (PS)

Principal component analysis (Pearson, 1901)
(PCA) is a mathematical procedure that uses an or-

'Quartile values were computed on the WMTI2TT data.
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Figure 1: Delta average score (a) (higher is better) and mean average error (b) (lower is better) as a function of the
number of features. Cross-validation results for PCA selection (PS), and greedy selection (GS) methods.

thogonal transformation to convert a set of observa-
tions of possibly correlated variables into a set of
values of linearly uncorrelated variables called prin-
cipal components. This transformation is defined in
such a way that the first principal component has
the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and
each succeeding component in turn has the highest
variance possible under the constraint that it be un-
correlated with the preceding components. Strictly
speaking, PCA does not perform a feature selection
because the principal components are linear combi-
nations of the individual features.

PCA generates sets of features (the principal com-
ponents) with almost no correlation. However, it ig-
nores the quality scores to be predicted. Since we
want to obtain the best-performing subset of fea-
tures, there is a mismatch between the selection cri-
terion of PCA and the criterion we are interested in.
In other words, although the features generated by
PCA contain almost no redundancy, they do not nec-
essarily have to constitute the best-performing sub-
set of features.

3.2 Greedy Performance-driven Selection (GS)

We also implemented a greedy feature selection
method which iteratively creates subsets of increas-
ing size with the best-scoring individual features.
The score of each feature is given by the perfor-
mance of a system trained solely on that feature. At
a given iteration, we select the K best scoring fea-
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tures and train a regression system with them.

Since we select the features incrementally accord-
ing to their individual performance, we expect to ob-
tain the subset of features that yield the best perfor-
mance. However, we do not take into account the
correlations that may exist between the different fea-
tures, thus, the final subset is almost sure to contain
a large number of redundant features.

4 Experiments

4.1 Assessment Measures

The organizers propose two variations of the task
that will be evaluated separately:

Ranking: Participants are required to submit a
ranking of translations. This ranking will used
to split the data into n quantiles. The evalua-
tion will be performed in terms of delta average
score, the average difference over n between
the scores of the top quantiles and the overall
score of the corpus. The Spearman correlation
will be used as tie-breaking metric.

Scoring: Participants are required to assign a score
in the range [1,5] for each translation. The
evaluation will be performed in terms of mean
average error (MAE). Root mean squared error
(RMSE) will be used as tie-breaking metric.

4.2 Pre-Submission Results

We now describe a number of experiments whose
goal is to determine the optimal training setup.



Specifically, we wanted to determine which selec-
tion method to use (PCA or greedy) and which fea-
tures yield a better system. As a preliminary step,
we extracted all the features described in section 2.
The complete training data consisted on 1832 sam-
ples each one with 475 features.

We trained systems using feature sets of increas-
ing size as given by PCA selection (PS) or greedy
selection (GS). The parameters of each system were
tuned to optimize each of the evaluation measures
under consideration. Performance was measured as
the average of a ten-fold cross-validation experiment
on the training data.

Figure 1 shows the results obtained for the ex-
periments that optimized delta average, and MAE
(result optimizing Spearman and RMSE were quite
similar). We also display the performance of a sys-
tem trained on the baseline features. We observed
that both selection methods yielded a better perfor-
mance than the baseline system. PS allowed for a
quick improvement in performance as more features
are selected, reaching its best results when select-
ing approximately 80 features. After that, perfor-
mance rapidly deteriorate. Regarding GS, its im-
provements in performance were slower in com-
parison with PS. However, GS finally reached the
best scores of the experimentation when selecting
~ 225 features. Specifically, the best performance
was reached using the top 222 features for delta av-
erage, and using the top 254 features for MAE.

According to these results, our submissions were
trained on the best subsets of features as given by
the GS method. 222 features were selected accord-
ing to their delta average score for the ranking task
variation, and 254 according to their MAE value for
the scoring task variation. Final submissions were
trained on the complete training set.

Most of the selected features are sentence-level
features calculated from subsequence-based scores.
For instance, among the 222 features of the rank-
ing variation of the task, 174 were computed from
subsequence scores. Among these 174 features,
129 were calculated from confidence scores com-
puted on 1000-best translations, 29 from confidence
scores computed by a smoothed naive bayes classi-
fier, 11 from the frequencies of the subsequences in
the WMT12TT data, and 5 from IBM Model-1 word
confidence scores.
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Participant ID | Delta average f MAE |}
SDL Language Weaver 0.63 0.61
Uppsala U. 0.58 0.64
LORIA Institute - 0.68
Trinity College Dublin 0.56 0.68
Baseline 0.55 0.69
PRHLT 0.55 0.70
U. Edinburgh 0.54 0.68
Shanghai Jiao Tong U. 0.53 0.69
U. Wolverhampton/Sheffield 0.51 0.69
DFKI 0.46 0.82
Dublin City U. 0.44 0.75
U. Politecnica Catalunya 0.22 0.84

Table 1: Best official evaluation results on each task of
the different participating teams. Results for our submis-
sions are displayed in bold. Baseline results in italics.
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Figure 2: Average value (% std. deviation) of the first
15 features used in our final submissions. Feature values
follow a similar distribution in the training and test data.

4.3 Official Evaluation Results

After establishing the optimal training setup, we
now show the official evaluation results for our sub-
missions. Table 1 shows the performance of the var-
ious participants in the ranking (delta average) and
scoring (MAE) tasks. Surprisingly our submissions
yielded a slightly worse result than the baseline fea-
tures. However, given the large improvements over
the baseline system obtained in the pre-submission
experiments, we expected to obtain similar improv