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Preface: General Chair

In my welcome to participants in this year’s conference handbook, I especially welcomed those for
which it was their first ACL. I expressed the hope that the conference fulfilled their expectations and
remained in their memory as a great start. Trying to imagine the first experience of a present-day ACL,
the magnitude of the whole event may be a bit overwhelming - our field is on an expanding trajectory,
and even a selection of the best work fills a great number of parallel sessions over a number of days;
plus, there are the workshops and tutorials to quench many topical thirsts. This ACL again promises to
be a next peak in a progressive development.

ACL Conferences are the product of many people working together, kindly offering their services to the
community at large. ACL-2016 is no exception to this. I would like to thank each and every person
who has volunteered their time to make the event possible. I am deeply impressed with the sense of
community that organizing an ACL brings about.

Priscilla Rasmussen, the ACL Business Manager, and the 2015 ACL Executive Committee (Chris
Manning, Pushpak Bhattacharyya, Joakim Nivre, Graeme Hirst, Dragomir Radev, Gertjan van Nood,
Min-Yen Kan, Herman Ney, and Yejin Choi) have been instrumental in setting ACL-2016 in motion and
in guiding the ACL-2016 team along the path from concept to execution. Without the collective memory
and hands-on guidance of the committee, an ACL conference will never happen.

The ACL-2016 team was formidable in building all the components of the conference and connecting
them together in an impressive programme: Katrin Erk and Noah Smith (Programme Committee
Chairs); Valia Kordoni, Markus Egg (Local Arrangements Chairs) who brought together a fantastic local
organization team; Sabine Schulte im Walde and Jun Zhao (Workshop Chairs), Alexandra Birch and
Willem Zuidema (Tutorial Chairs); Hai Zhao, Yusuke Miyao, and Yannick Versley (Publication Chairs);
Tao Lei, He He, and Will Roberts (Student Research Workshop Chairs), Yang Liu, Chris Biemann, and
Gosse Bouma (Faculty Advisors for the Student Research Workshop), Marianna Apidianaki and Sameer
Pradhan (Demonstration Chairs), Barbara Plank (Publicity Chair), Florian Kunneman and Matt Post
(Conference Handbook Team), and Yulia Grishina (Student Volunteer Coordinator).

The Program Chairs selected outstanding invited speakers: Mark Steedman (University of Edinburgh)
and Amber Boydstun (University of California, Davis).

I am deeply grateful to our sponsors for their generous contributions, allowing the conference not to
become prohibitively expensive: Google, Baidu, Amazon (Platinum Sponsors); Bloomberg, Facebook,
eBay, Elsevier, Microsoft Research, and Maluuba (Gold Sponsors); Huawei Technologies, Zalando SE
(Silver Sponsors); Nuance, Grammarly, Voicebox, Yandex, and Textkernel (Bronze Sponsors).

Finally, I would like to express my deep appreciation for the hard work carried out by all area chairs,
workshop organizers, tutorial presenters, and the massive army of reviewers. Kudos to all.

Welcome to ACL-2016!

Antal van den Bosch
General Chair
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Preface: Program Committee Co-Chairs

Welcome to the 54th Annual Meeting of the Association for Computational Linguistics! This year, ACL
received 825 long paper submissions (a new record) and 463 short paper submissions.1 Of the long papers,
231 were accepted for presentation at ACL—116 as oral presentations and 115 as poster presentations.
97 short papers were accepted—49 as oral and 48 as poster presentations. In addition, ACL also features
25 presentations of papers accepted in the Transactions of the Association for Computational Linguistics
(TACL). With 353 paper presentations at the main conference, this is the largest ACL program to date.

In keeping with the tremendous growth of our field, we introduced some changes to the conference. Oral
presentations were shortened to fifteen (twelve) minutes for long (short) papers, plus time for questions.
While this places a greater demand on speakers to be concise, we believe it is worth the effort, allowing
far more work to be presented orally. We also took advantage of the many halls available at Humboldt
University and expanded the number of parallel talks during some conference sessions.

We introduced a category of outstanding papers to help recognize the highest quality work in the community
this year. The 11 outstanding papers (9 long, 2 short, 0.85% of submissions) represent a broad spectrum of
exciting contributions; they are recognized by especially prominent placement in the program. From these,
a best paper and an IBM-sponsored best student paper have been selected; those will be announced in the
awards session on Wednesday afternoon.

Following other recent ACL conferences, submissions were reviewed under different categories and using
different review forms for empirical/data-driven, theoretical, applications/tools, resources/evaluation, and
survey papers. We introduced special fields in the paper submission form for authors to explicitly note
the release of open-source implementations to enable reproducibility, and to note freely available datasets.
We also allowed authors to submit appendices of arbitrary length for details that would enable replication;
reviewers were not expected to read this material.

Another innovation we explored during the review period was the scheduling of short paper review before
long paper review. While this was planned to make the entire review period more compact (fitting between
the constraints of NAACL 2016 and EMNLP 2016 at either end), we found that reviewing short papers first
eliminated many of the surprises for the long paper review process.

We sought to follow recently-evolved best practices in planning the poster sessions, so that the many high-
quality works presented in that format will be visible and authors and attendees benefit from the interactions
during the two poster sessions.

ACL 2016 will have two distinguished invited speakers: Amber Boydstun (Associate Professor of Political
Science at the University of California, Davis) and Mark Steedman (Professor of Cognitive Science at the
University of Edinburgh). We are grateful that they accepted our invitations and look forward to their
presentations.

There are many individuals we wish to thank for their contributions to ACL 2016, some multiple times:
1These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations (9 short

and 21 long papers) or that were withdrawn prior to review (approximately 59 short and 52 long papers).
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• The 38 area chairs who recruited reviewers, led the discussion about each paper, carefully assessed
each submission, and authored meta-reviews to guide final decisions: Miguel Ballesteros, David Bam-
man, Steven Bethard, Jonathan Berant, Gemma Boleda, Ming-Wei Chang, Wanxiang Che, Chris Dyer,
Ed Grefenstette, Hannaneh Hajishirzi, Minlie Huang, Mans Hulden, Heng Ji, Jing Jiang, Zornitsa
Kozareva, Marco Kuhlmann, Yang Liu, Annie Louis, Wei Lu, Marie-Catherine de Marneffe, Gerard
de Melo, David Mimno, Meg Mitchell, Daichi Mochihashi, Graham Neubig, Naoaki Okazaki, Simone
Ponzetto, Matthew Purver, David Reitter, Nathan Schneider, Hinrich Schuetze, Thamar Solorio, Lucia
Specia, Partha Talukdar, Ivan Titov, Lu Wang, Nianwen Xue, and Grace Yang.

• Our full program committee of 884 hard-working individuals who reviewed the conference’s 1,288
submissions (including secondary reviewers).

• The ACL coordinating committee members, especially Yejin Choi, Graeme Hirst, Chris Manning,
and Shiqi Zhao, who answered many questions as they arose during the year.

• TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with us
on TACL presentations at ACL.

• Ani Nenkova and Owen Rambow, program co-chairs of NAACL 2016, and Michael Strube, program
co-chair of ACL 2015, who were generous with advice.

• Yusuke Miyao, Yannick Versley, and Hai Zhao, our well-organized publication chairs, and the respon-
sive team at Softconf led by Rich Gerber.

• Valia Kordoni and the local organization team, especially webmaster Kostadin Cholakov.

• Antal van den Bosch, our general chair, who kept us coordinated with the rest of the ACL 2016 team
and offered guidance whenever we needed it.

• Antal van den Bosch, Claire Cardie, Pascale Fung, Ray Mooney, and Joakim Nivre, who carefully
reviewed papers under consideration for outstanding and best paper recognition.

• Priscilla Rasmussen, who knows everything about how to make ACL a success.

We hope that you enjoy ACL 2016 in Berlin!

ACL 2016 program co-chairs
Katrin Erk, University of Texas
Noah A. Smith, University of Washington
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Danilo Croce, James Cross, Montse Cuadros, Heriberto Cuayahuitl, Silviu-Petru Cucerzan, Xiaodong Cui,
Jennifer Culbertson, Aron Culotta,

Walter Daelemans, Robert Daland, Amitava Das, Dipanjan Das, Hal Daumé III, Brian Davison, Munmun
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Dobnik, Ellen Dodge, A. Seza Doğruöz, Doug Downey, Eduard Dragut, Mark Dras, Markus Dreyer, Gre-
gory Druck, Lan Du, Kevin Duh, Jesse Dunietz, Long Duong, Nadir Durrani, Greg Durrett, Chris Dyer,
Marc Dymetman,

Koji Eguchi, Patrick Ehlen, Vladimir Eidelman, Andreas Eisele, Jacob Eisenstein, Jason Eisner, Michael
Elhadad, Micha Elsner, Nikolaos Engonopoulos, Katrin Erk, Miquel Esplà-Gomis, Paula Estrella, Keelan
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Ivan Vulić and Anna Korhonen

Session 8C: Topics and discourse (short papers)

15:30–15:46 Claim Synthesis via Predicate Recycling
Yonatan Bilu and Noam Slonim

15:46–16:02 Modelling the Interpretation of Discourse Connectives by Bayesian Pragmatics
Frances Yung, Kevin Duh, Taku Komura and Yuji Matsumoto

16:02–16:18 Nonparametric Spherical Topic Modeling with Word Embeddings
Kayhan Batmanghelich, Ardavan Saeedi, Karthik Narasimhan and Sam Gershman

16:18–16:34 A Novel Measure for Coherence in Statistical Topic Models
Fred Morstatter and Huan Liu

16:34–16:50 Coarse-grained Argumentation Features for Scoring Persuasive Essays
Debanjan Ghosh, Aquila Khanam, Yubo Han and Smaranda Muresan

xxxiii



Wednesday, August 10, 2016 (continued)

Session 8D: Syntax and morphology (short papers)

15:30–15:46 Single-Model Encoder-Decoder with Explicit Morphological Representation for Re-
inflection
Katharina Kann and Hinrich Schütze

15:46–16:02 Joint part-of-speech and dependency projection from multiple sources
Anders Johannsen, Željko Agić and Anders Søgaard
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Abstract

The topological field model is commonly
used to describe the regularities in German
word order. In this work, we show that
topological fields can be predicted reliably
using sequence labeling and that the pre-
dicted field labels can inform a transition-
based dependency parser.

1 Introduction

The topological field model (Herling, 1821; Erd-
mann, 1886; Drach, 1937; Höhle, 1986) has tra-
ditionally been used to account for regularities in
word order across different clause types of Ger-
man. This model assumes that each clause type
contains a left bracket (LK) and a right bracket
(RK), which appear to the left and the right of the
middle field (MF). Additionally, in a verb-second
declarative clause, the LK is preceded by the ini-
tial field (VF) with the RK optionally followed by
the final field (NF).1 Table 1 gives examples of
topological fields in verb-second declarative (MC)
and verb-final relative (RC) clauses.

Certain syntactic restrictions can be described
in terms of topological fields. For instance, only
a single constituent is typically allowed in the VF,
while multiple constituents are allowed in the MF
and the NF. Many ordering preferences can also
be stated using the model. For example, in a main
clause, placing the subject in the VF and the direct
object in the MF is preferred over the opposite or-
der.

In parsing, topological field analysis is often
seen as a task that is embedded in parsing itself.
For instance, Kübler (2005), Maier (2006), and
Cheung and Penn (2009) train PCFG parsers on

1The abbreviations are derived from the German terms
linke Klammer, rechte Klammer, Mittelfeld, Vorfeld, and
Nachfeld.

treebanks that annotate topological fields as inte-
rior nodes. It is perhaps not surprising that this ap-
proach works effectively for phrase structure pars-
ing, because topological fields favor annotations
that do not rely on crossing or discontinuous de-
pendencies (Telljohann et al., 2006).

However, the possible role of topological fields
in statistical dependency parsing (Kübler et al.,
2009) has not been explored much. We will show
that statistical dependency parsing of German can
benefit from knowledge of clause structure as pro-
vided by the topological field model.

2 Motivation and corpus analysis

Transition-based dependency parsers (Nivre,
2003; Kübler et al., 2009) typically use two tran-
sitions (LEFT ARC and RIGHT ARC) to introduce
a dependency relation between the token that
is on top of the processing stack and the next
token on the buffer of unprocessed tokens. The
decision to make an attachment, the direction
of attachment, and the label of the attachment
is made by a classifier. Consequently, a good
classifier is tasked to learn syntactic constraints,
ordering preferences, and selectional preferences.

Since transition-based dependency parsers pro-
cess sentences in one deterministic linear-time
left-to-right sweep, the classifier typically has lit-
tle global information. One popular approach
for reducing the effect of early attachment er-
rors is to retain some competition between alter-
native parses using a globally optimized model
with beam search (Zhang and Clark, 2008). Beam
search presents a trade-off between speed (smaller
beam) and higher accuracy (larger beam). More
recently, Dyer et al. (2015) have proposed to
use Long short-term memory networks (LSTMs)
to maintain (unbounded) representations of the
buffer of unprocessed words, previous parsing ac-
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VF LK MF RK NF
MC: In Tansania ist das Rad mehr verbreitet als in Uganda

In Tansania is the bike more common than in Uganda
RC: der fünfmal mehr nach Bremerhaven liefert als Daewoo

who five-times more to Bremerhaven delivers than Daewoo

Table 1: Topological fields of a verb-second clause and a verb-final clause.

tions, and constructed tree fragments.
We believe that in the case of German, the topo-

logical field model can provide a linguistically-
motivated approach for providing the parser with
more global knowledge of the sentence structure.
More concretely, if we give the transition classi-
fier access to topological field annotations, it can
learn regularities with respect to the fields wherein
the head and dependent of a particular dependency
relations lie.

In the remainder of this section, we provide a
short (data-driven) exploration of such regulari-
ties. Since there is a myriad of possible triples2

consisting of relation, head field, and dependent
field, we will focus on dependency relations that
virtually never cross a field and relations that
nearly always cross a field.

Table 2 lists the five dependency relation that
cross fields the least often in the TüBa-D/Z tree-
bank (Telljohann et al., 2006; Versley, 2005) of
German newspaper text. Using these statistics, a
classifier could learn hard constraints with regard
to these dependency relations — they should never
be used to attach heads and dependents that are in
different fields.

Dependency label Cross-field (%)
Particles 0.00
Determiner 0.03
Adjective or attr. pronoun 0.04
Prepositional complement 0.04
Genetive attribute 0.07

Table 2: The five dependency relations that most
rarely cross fields in the TüBa-D/Z.

Table 3 lists the five dependency relations that
cross fields most frequently.3 These relations (vir-
tually) always cross fields because they are verbal
attachments and verbs typically form the LK and
RK. This information is somewhat informative,

2335 in the TüBa-D/Z treebank.
3Dependency relations that connect two clauses are ex-

cluded.

since a classifier should clearly avoid to attach to-
kens within the same field using one of these re-
lations. However, we can gain more interesting
insights by looking at the dependents’ fields.

Dependency label Cross-field (%)
Expletive es 100.00
Separated verb prefix 100.00
Subject 100.00
Prepositional object 99.80
Direct object 99.51

Table 3: The five dependency relations that most
frequently cross fields in the TüBa-D/Z.

Table 4 enumerates the three (where applicable)
most frequent head and dependent field combina-
tions of the five relations that always cross fields.
As expected, the head is always in the LK or RK.
Moreover, the dependents are in VF or MF in the
far majority of cases. The actual distributions pro-
vides some insights with respect to these depen-
dency relations. We will discuss the direct object,
prepositional object, and separated verb prefix re-
lations in some more detail.

Direct objects In German, direct objects can
be put in the VF. However, we can see that di-
rect object fronting only happens very rarely in
the TüBa-D/Z. This is in line with earlier obser-
vations in corpus-based studies (c.f. Weber and
Müller (2004)). Since the probability of having a
subject in the VF is much higher, the parser should
attach the head of a noun phrase in the VF as a sub-
ject, unless there is overwhelming evidence to the
contrary, such as case markers, verb agreement, or
other cues (Uszkoreit, 1984; Müller, 1999).

Prepositional objects The dependency annota-
tion scheme used by the TüBa-D/Z makes a dis-
tinction between prepositional phrases that are a
required complement of a verb (prepositional ob-
jects) and other prepositional phrases. Since a sta-
tistical dependency parser does not typically have
access to a valency dictionary, it has difficulty de-
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Dependency label Head Dep %
Expletive es RK MF 44.23

RK VF 32.99
LK VF 13.43

Separated verb prefix LK RK 99.95
RK RK 00.05

Subject LK VF 36.40
LK MF 35.10
RK MF 20.11

Prepositional object RK MF 51.04
LK MF 39.81
LK VF 04.11

Direct object RK MF 54.84
LK MF 35.64
RK LK 03.38

Table 4: The three most frequent head-dependent
field combinations of the five relations that always
cross fields.

ciding whether a prepositional phrase is a preposi-
tional object or not. Topological field information
can complement verb-preposition co-occurrence
statistics in deciding between these two different
relations. The prepositional object mainly occurs
in MF, while a prepositional phrase headed by the
LK is almost as likely to be in the VF as in the MF
(42.12% and 55.70% respectively).

Separated verb prefixes Some verbs in German
have separable prefixes. A complicating factor in
parsing is that such prefixes are often words that
can also be used by themselves. For example, in
(1-a) fest is a separated prefix of bindet (present
tense third person of festbinden), while in (1-b)
fest is an optional adverbial modifier of gebunden
(the past participle of binden).

(1) a. Sie
She

bindet
ties

das
the

Pferd
horse

fest
tight

.

.
b. Das

The
Buch
book

ist
is

fest
tightly

gebunden
bound

.

.

Similarly to prepositional objects, a statistical
parser is handicapped by not having an extensive
lexicon. Again, topological fields can complement
co-occurence statistics. In (1-a), fest is in the RK.
As we can see in Table 4, the separated verb pre-
fix is always in the RK. In contrast, an adverbial
modifier as in (1-b) is rarely in the RK (0.35% of
the adverbs cases in the TüBa-D/Z).

3 Predicting fields

As mentioned in Section 1, topological field an-
notation has often been performed as a part of
phrase structure parsing. In order to test our hy-
pothesis that topological field annotation could in-
form dependency parsing, it would be more ap-
propriate to use a syntax-less approach. Several
shallow approaches have been tried in the past.
For instance, Veenstra et al., (2002) compare three
different chunkers (finite state, PCFG, and clas-
sification using memory-based learning). Becker
and Frank (2002) predict topological fields using
a PCFG specifically tailored towards topological
fields. Finally, Liepert (2003) proposes a chunker
that uses support vector machines.

In the present work, we will treat the topolog-
ical field annotation as a sequence labeling task.
This is more useful in the context of dependency
parsing because it allows us to treat the topological
field as any other property of a token.

Topological field projection In order to obtain
data for training, validation, and evaluation, we
use the TüBa-D/Z treebank. Topological fields
are only annotated in the constituency version of
the TüBa-D/Z, where the fields are represented as
special constituent nodes. To obtain token-level
field annotations for the dependency version of the
treebank, we project the topological fields of the
constituency trees on the tokens. The recursive
projection function for projection is provided in
Appendix B. The function is initially called with
the root of the tree and a special unknown field
marker, so that tokens that are not dominated by a
topological field node (typically punctuation) also
receive the topological field feature.

We should point out that our current projection
method results in a loss of information when a
sentence contains multiple clauses. For instance,
an embedded clause is in a topological field of
the main clause, but also has its own topological
structure. In our projection method, the topologi-
cal field features of tokens in the embedded clause
reflect the topological structure of the embedded
clause.

Model Our topological field labeler uses a recur-
rent neural network. The inputs consist of con-
catenated word and part-of-speech embeddings.
The embeddings are fed to a bidirectional LSTM
(Graves and Schmidhuber, 2005), on which we
stack a regular LSTM (Hochreiter and Schmidhu-
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ber, 1997), and finally an output layer with the
softmax activation function. The use of a recur-
rent model is motivated by the necessity to have
long-distance memory. For example, (2-a) con-
sists of a main clause with the LK wird and RK
begrünt and an embedded clause wie geplant with
its own clausal structure. When the labeler en-
counters jetzt, it needs to ‘remember’ that it was
in the MF field of the main clause.

(2) a. Die
The

neue
new

Strecke
stretch

wird
is

,
,

wie
as

geplant
planned

,
,

jetzt
now

begrünt
being-greened

.

.

Moreover, the use of a bidirectional LSTM is mo-
tivated by the need for backwards-flowing infor-
mation to make some labeling decisions. For in-
stance, die Siegerin is in the VF of the verb-second
clause (3-a), while it is in the MF of the verb-
final clause (3-b). The labeller can only make such
choices by knowing the position of the finite verb.

(3) a. die
die

Siegerin
winner

wurde
was

disqualifiziert
disqualified

b. die
the

Siegerin
winner

zu
to

disqualifizieren
disqualify

4 Parsing with topological fields

To evaluate the effectiveness of adding topo-
logical fields to the input, we use the publicly
available neural network parser described by De
Kok (2015). This parser uses an architecture that
is similar to that of Chen and Manning (2014).
However, it learns morphological analysis as an
embedded task of parsing. Since most inflectional
information that can be relevant for parsing Ger-
man is available in the prefix or suffix, this parser
learns morphological representations over charac-
ter embeddings of prefixes and suffixes.

We use the same parser configuration as that of
De Kok (2015), with the addition of topological
field annotations. We encode the topological fields
as one-hot vectors in the input of the parser. This
information is included for the four tokens on top
of the stack and the next three tokens on the buffer.

5 Evaluation and results

To evaluate the proposed topological field model,
we use the same partitioning of TüBa-D/Z and the
word and tag embeddings as De Kok (2015). For
training, validation, and evaluation of the parser,
we use these splits as-is. Since we want to test the

parser with non-gold topological field annotations
as well, we swapped the training and validation
data for training our topological field predictor.

The parser was trained using the same hyper-
parameters and embeddings as in De Kok (2015).
Our topological field predictor is trained using
Keras (Chollet, 2015).4 The hyperparameters that
we use are summarized in Appendix A. The topo-
logical field predictor uses the same word and tag
embeddings as the parser.

In Table 5, we show the accuracy of the topo-
logical field labeler. The use of a bi-directional
LSTM is clearly justified, since it outperforms the
stacked unidirectional LSTM by a wide margin.

Parser Accuracy (%)
LSTM + LSTM 93.33
Bidirectional LSTM + LSTM 97.24

Table 5: Topological field labeling accuracies.
The addition of backward flowing information im-
proves accuracy considerably.

Table 6 shows the labeled attachment scores
(LAS) for parsing with topological fields. As
we can see, adding gold topological field annota-
tions provides a marked improvement over pars-
ing without topological fields. Although the parser
does not achieve quite the same performance with
the output of the LSTM-based sequence labeler,
it is still a relatively large improvement over the
parser of De Kok (2015). All differences are sig-
nificant at p < 0.0001.5

Parser LAS UAS
De Kok (2015) 89.49 91.88
Neural net + TFs 90.00 92.36
Neural net + gold TFs 90.42 92.76

Table 6: Parse results with topological fields and
gold topological fields. Parsers that use topolog-
ical field information outperform parsers without
access to such information.

6 Result analysis

Our motivation for introducing topological fields
in dependency parsing is to provide the parser with

4The software is available from: https://github.
com/danieldk/toponn

5Using paired approximate randomization tests (Noreen,
1989).
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a more global view of sentence structure (Sec-
tion 2). If this is indeed the case, we expect the
parser to improve especially for longer-distance
relations. Figure 1 shows the improvement in
LAS as a result of adding gold-standard topolog-
ical fields. We see a strong relation between the
relation length and the improvement in accuracy.
The introduction of topological fields clearly ben-
efits the attachment of longer-distance dependents.

5 10 15 20

1
2

3
4

5

Head−dependent distance

∆
 A

cc
ur

ac
y

Figure 1: The improvement in labeled attachment
score as a result of adding gold topological fields
to the parser by dependency length.

Since the introduction of topological fields has
very little impact on short-distance relations, the
differences in the attachment of relations that vir-
tually never cross fields (Table 2) turn out to be
negligable. However, for the relations that cross
fields frequently, we see a marked improvements
(Table 7) for every relation except the preposi-
tional object. In hindsight, this difference should
not be surprising — the relations that never cross
fields are usually very local, while those that al-
most always cross fields tend to have longer dis-
tances and/or are subject to relatively free order-
ing.

Dependency label LAS ∆
Expletive es 2.71
Separated verb prefix 1.64
Subject 1.22
Prepositional object -0.29
Direct object 1.59

Table 7: The LAS ∆ of the parser with access to
gold standard topological fields compared to the
De Kok (2015) parser for the relations of Table 4.

Dependency label LAS ∆
Coordinating conjunction (clausal) 11.48
Parenthesis 8.31
Dependent clause 3.49
Conjunct 3.38
Sentence root7 2.92
Expletive es 2.71
Sentence 2.64
Comparative 1.87
Separated verb prefix 1.64
Direct object 1.59

Table 8: The ten dependency relations with the
highest LAS ∆ of the parser with access to gold
topological fields compared to the (de Kok, 2015)
parser.

The ten dependency relations with the highest
overall improvement in LAS are shown in Table 8.
Many of these relations are special when it comes
to topological field structure and were not dis-
cussed in Section 2. The relations parenthesis, de-
pendent clause, and sentence link two clauses; the
sentence root marks the root of the dependency
tree; and the coordinating conjunction (clausal)
relation attaches a token that is always in its own
field.6 This confirms that the addition of topologi-
cal fields also improves the analysis of the overall
clausal structure.

7 Conclusion and outlook

In this paper, we have argued and shown that
access to topological field information can im-
prove the accuracy of transition-based dependency
parsers. In future, we plan to see how com-
petitive the bidirectional LSTM-based sequence
labeling approach is compared to existing ap-
proaches. Moreover, we plan to evaluate the use
of topological fields in the architecture proposed
by Dyer et al., (2015) to see how many of these
regularities that approach captures.
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book for the tübingen treebank of written German
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A Hyperparameters

The topological field labeler was trained using
Keras (Chollet, 2015). Here, we provide a short
overview the hyperparameters that we used:

• Solver: rmsprop, this solver is recommended
by the Keras documentation for recurrent
neural networks. The solver is used with its
default parameters.

• Learning rate: the learning rate was deter-
mined by the function 0.01(1 + 0.02i)−2,
where i is the epoch. The intuition was to
start with some epochs with a high learning
rate, dropping the learning rate quickly. The
results were not drastically different when us-
ing a constant learning rate of 0.001.

• Epochs: The models was trained for 200
epochs, then we picked the model of the
epoch with the highest performance on the
validation data (27 epochs for the unidirec-
tional LSTM, 124 epochs for the bidirec-
tional LSTM).

• LSTM layers: all LSTM layers were trained
with 50 output dimensions. Increasing the
number of output dimensions did not provide
an improvement.

• Regularization: 10% dropout (Srivastava et
al., 2014) was used after each LSTM layer
for regularization. A stronger dropout did not
provide better performance.

B Topological field projection algorithm

Algorithm 1 Topological field projection.
function PROJECT(node,field)

if IS TERMINAL NODE(node) then
node.field← field

else
if IS TOPO NODE(node) then

field← node.field
end if
for child ∈ node do

PROJECT(child,field)
end for

end if
end function
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Abstract

The enormous scale of unlabeled text
available today necessitates scalable
schemes for representation learning in
natural language processing. For instance,
in this paper we are interested in classi-
fying the intent of a user query. While
our labeled data is quite limited, we have
access to virtually an unlimited amount
of unlabeled queries, which could be
used to induce useful representations: for
instance by principal component analysis
(PCA). However, it is prohibitive to even
store the data in memory due to its sheer
size, let alone apply conventional batch
algorithms. In this work, we apply the
recently proposed matrix sketching algo-
rithm to entirely obviate the problem with
scalability (Liberty, 2013). This algorithm
approximates the data within a specified
memory bound while preserving the
covariance structure necessary for PCA.
Using matrix sketching, we significantly
improve the user intent classification
accuracy by leveraging large amounts of
unlabeled queries.

1 Introduction

The large amount of high quality unlabeled data
available today provides an opportunity to im-
prove performance in tasks with limited supervi-
sion through a semi-supervised framework: learn
useful representations from the unlabeled data and
use them to augment supervised models. Un-
fortunately, conventional exact methods are no
longer feasible on such data due to scalability is-

sues. Even algorithms that are considered rela-
tively scalable (e.g., the Lanczos algorithm (Cul-
lum and Willoughby, 2002) for computing eigen-
value decomposition of large sparse matrices) fall
apart in this scenario, since the data cannot be
stored in the memory of a single machine. Con-
sequently, approximate methods are needed.

In this paper, we are interested in improving
the performance for sentence classification task by
leveraging unlabeled data. For this task, supervi-
sion is precious but the amount of unlabeled sen-
tences is essentially unlimited. We aim to learn
sentence representations from as many unlabeled
queries as possible via principal component anal-
ysis (PCA): specifically, learn a projection matrix
for embedding a bag-of-words vector into a low-
dimensional dense feature vector. However, it is
not clear how we can compute an effective PCA
when we are unable to even store the data in the
memory.

Recently, Liberty (2013) proposed a scheme,
called matrix sketching, for approximating a ma-
trix while preserving its covariance structure. This
algorithm, given a memory budget, deterministi-
cally processes a stream of data points while never
exceeding the memory bound. It does so by occa-
sionally computing singular value decomposition
(SVD) on a small matrix. Importantly, the algo-
rithm has a theoretical guarantee on the accuracy
of the approximated matrix in terms of its covari-
ance structure, which is the key quantity in PCA
calculation.

We propose to combine the matrix sketching al-
gorithm with random hashing to completely re-
move limitations on data sizes. In experiments, we
significantly improve the intent classification ac-
curacy by learning sentence representations from

8



huge amounts of unlabeled sentences, outperform-
ing a strong baseline based on word embeddings
trained on 840 billion tokens (Pennington et al.,
2014).

2 Deterministic Matrix Sketching

PCA is typically performed to reduce the dimen-
sion of each data point. Let X ∈ Rn×d be a
data matrix whose n rows correspond to n data
points in Rd. For simplicity, assume that X is pre-
processed to have zero column means. The key
quantity in PCA is the empirical covariance ma-
trix X>X ∈ Rd×d (up to harmless scaling). It is
well-known that the m length-normalized eigen-
vectors u1 . . . um ∈ Rd of X>X corresponding
to the largest eigenvalues are orthogonal directions
along which the variance of the data is maximized.
Then if Π ∈ Rd×m be a matrix whose i-th col-
umn is ui, the PCA representation ofX is given by
XΠ. PCA has been a workhorse in representation
learning, e.g., inducing features for face recogni-
tion (Turk et al., 1991).

Frequently, however, the number of samples n
is simply too large to work with. As n tends to
billions and trillions, storing the entire matrix X
in memory is practically impossible. Processing
large datasets often require larger memory than
the capacity of a typical single enterprise server.
Clusters may enable a aggregating many boxes of
memory on different machines, to build distributed
memory systems achieving large memory capac-
ity. However, building and maintaining these in-
dustry grade clusters is not trivial and thus not ac-
cessible to everyone. It is critical to have tech-
niques that can process large data within a lim-
ited memory budget available in most typical en-
terprise servers.

One solution is to approximate the matrix with
some Y ∈ Rl×d where l � n. Many matrix ap-
proximation techniques have been proposed, such
as random projection (Papadimitriou et al., 1998;
Vempala, 2005), sampling (Drineas and Kannan,
2003; Rudelson and Vershynin, 2007; Kim and
Snyder, 2013; Kim et al., 2015b), and hashing
(Weinberger et al., 2009). Most of these tech-
niques involve randomness, which can be undesir-
able in certain situations (e.g., when experiments
need to be exactly reproducible). Moreover, many
are not designed directly for the objective that we
care about: namely, ensuring that the covariance
matrices X>X and Y >Y remain “similar”.

Input: data stream x1 . . . xn ∈ Rd, sketch size l

1. Initialize zero-valued Y ∈ 0l×d.

2. For i = 1 . . . n,

(a) Insert xi to the first zero-valued row of Y .
(b) If Y has no zero-valued row,

i. Compute SVD of Y = UΣV > where Σ =
diag(σ1 . . . σl) with σ1 ≥ · · · ≥ σl.

ii. Compute a diagonal matrix Σ with at least
dl/2e zeros by setting

Σj,j =

√
max

(
Σ2

j,j − σ2
bl/2c, 0

)
iii. Set Y = ΣV >.

Output:Y ∈ Rl×d s.t.
∣∣∣∣X>X − Y >Y ∣∣∣∣

2
≤ 2 ||X||2F /l

Figure 1: Matrix sketching algorithm by Liberty
(2013). In the output, X ∈ Rn×d denotes the data
matrix with rows x1 . . . xn.

A recent result by Liberty (2013) gives a de-
terministic matrix sketching algorithm that tightly
preserves the covariance structure needed for
PCA. Specifically, given a sketch size l, the algo-
rithm computes Y ∈ Rl×d such that

∣∣∣∣∣∣X>X − Y >Y ∣∣∣∣∣∣
2
≤ 2 ||X||2F /l (1)

This result guarantees that the error decreases
in O(1/l); in contrast, other approximation tech-
niques have a significantly worse convergence
bound of O(1/

√
l).

The algorithm is pleasantly simple and is given
in Figure 1 for completeness. It processes one data
point at a time to update the sketch Y in an on-
line fashion. Once the sketch is “full”, its SVD is
computed and the rows that fall below a threshold
given by the median singular value are eliminated.
This operation ensures that every time SVD is per-
formed at least a half of the rows are discarded.
Consequently, we perform no more than O(2n/l)
SVDs on a small matrix Y ∈ Rl×d. The analy-
sis of the bound (1) is an extension of the “median
trick” for count sketching and is also surprisingly
elementary; we refer to Liberty (2013) for details.

3 Matrix Sketching for Sentence
Representations

Our goal is to leverage enormous quantities of un-
labeled sentences to augment supervised training
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for intent classification. We do so by learning a
PCA projection matrix Π from the unlabeled data
and applying it on both training and test sentences.
The matrix sketching algorithm in Figure 1 en-
ables us to compute Π on arbitrarily large data.

There are many design considerations for using
the sketching algorithm for our task.

3.1 Original sentence representations
We use a bag-of-words vector to represent a
sentence. Specifically, each sentence is a d-
dimensional vector x ∈ Rd where d is the size
of the vocabulary and xi is the count of an n-gram
i in the sentence (we use up to n = 3 in exper-
iments); we denote this representation by SENT.
In experiments, we also use a modification of this
representation, denoted by SENT+, in which we
explicitly define features over the first two words
in a query and also use intent predictions made by
a supervised model.

3.2 Random hashing
When we process an enormous corpus, it can be
computationally expensive just to obtain the vo-
cabulary size d in the corpus. We propose using
random hashing to avoid this problem. Specif-
ically, we pre-define the hash size H we want,
and then on encountering any word w we map
w → {1 . . . H} using a fixed hash function. This
allows us to compute a bag-of-words vector for
any sentence without knowing the vocabulary size.
See Weinberger et al. (2009) for a justification of
the hashing trick for kernel methods (applicable in
our setting since PCA has a kernel (dual) interpre-
tation).

3.3 Parallelization
The sketching algorithm works in a sequential
manner, processing each sentence at a time. While
it leaves a small memory footprint, it can take pro-
hibitively long time to process a large corpus. Lib-
erty (2013) shows it is trivial to parallelize the al-
gorithm: one can compute several sketches in par-
allel and then sketch the conjoined sketches. The
theory guarantees that such layered sketches does
not degrade the bound (1). We implement this par-
allelization to obtain an order of magnitude speed-
up.

3.4 Final sentence representation:
Once we learn a PCA projection matrix Π, we use
it in both training and test times to obtain a dense

feature vector of a bag-of-words sentence repre-
sentation. Specifically, if x is the original bag-of-
words sentence vector, the new representation is
given by

xnew =
x

||x|| ⊕
xΠ
||xΠ|| (2)

where ⊕ is the vector concatenation operation.
This representational scheme is shown to be effec-
tive in previous work (e.g., see Stratos and Collins
(2015)).

3.5 Experiment
To test our proposed method, we conduct in-
tent classification experiments (Hakkani-Tür et al.,
2013; Celikyilmaz et al., 2011; Ji et al., 2014;
El-Kahky et al., 2014; Chen et al., 2016) across
a suite of 22 domains shown in Table 1. An in-
tent is defined as the type of content the user is
seeking. This task is part of the spoken language
understanding problem (Li et al., 2009; Tur and
De Mori, 2011; Kim et al., 2015c; Mesnil et al.,
2015; Kim et al., 2015a; Xu and Sarikaya, 2014;
Kim et al., 2015b; Kim et al., 2015d).

The amount of training data we used ranges
from 12k to 120k (in number of queries) across
different domains, the test data was from 2k to
20k. The number of intents ranges from 5 to 39
per domains. To learn a PCA projection matrix
from the unlabeled data, we collected around 17
billion unlabeled queries from search logs, which
give the original data matrix whose columns are
bag-of-n-grams vector (up to trigrams) and has di-
mensions approximately 17 billions by 41 billions,
more specifically,

X ∈ R17,032,086,719×40,986,835,008

We use a much smaller sketching matrix Y ∈
R1,000,000×1,000,000 to approximate X . Note that
column size is hashing size. We parallelized the
sketching computation over 1,000 machines; we
will call the number of machines parallelized over
“batch”. In all our experiments, we train a linear
multi-class SVM (Crammer and Singer, 2002).

3.6 Results of Intent Classification Task
Table 1 shows the performance of intent classifica-
tion across domains. For the baseline, SVM with-
out embedding (w/o Embed) achieved 91.99% ac-
curacy, which is already very competitive. How-
ever, the models with word embedding trained on
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w/o Embed 6B-50d 840B-300d SENT SENT+
alarm 97.25 97.68 97.5 97.68 97.74
apps 89.16 91.07 92.52 94.24 94.3

calendar 91.34 92.43 92.32 92.53 92.43
communication 99.1 99.13 99.08 99.08 99.12

finance 90.44 90.84 90.72 90.76 90.82
flights 94.19 92.99 93.99 94.59 94.59
games 90.16 91.79 92.09 93.08 92.92
hotel 93.23 94.21 93.97 94.7 94.78

livemovie 90.88 92.64 92.8 93.28 93.37
livetv 83.14 85.02 84.67 85.41 85.86

movies 93.27 94.01 93.97 94.75 95.16
music 87.87 90.37 90.9 91.75 91.33

mystuff 94.2 94.4 94.51 94.51 94.95
note 97.62 98.36 98.36 98.49 98.52

ondevice 97.51 97.77 97.6 97.77 97.84
places 97.29 97.68 97.68 98.01 97.75

reminder 98.72 98.96 98.94 98.96 98.96
sports 76.96 78.53 78.38 78.7 79.44
timer 91.1 91.79 91.33 92.33 92.61
travel 81.58 82.57 82.43 83.64 82.81

tv 91.42 94.11 94.91 95.19 95.47
weather 97.31 97.33 97.4 97.4 97.47
Average 91.99 92.89 93.00 93.49 93.56

Table 1: Performance comparison between different embeddings style.

6 billion tokens (6B-50d) and 840 billion tokens
(840B-300d) (Pennington et al., 2014) achieved
92.89% and 93.00%, respectively. 50d and 300d
denote size of embedding dimension. To use word
embeddings as a sentence representation, we sim-
ply use averaged word vectors over a sentence,
normalized and conjoined with the original rep-
resentation as in (2). Surprisingly, when we use
sentence representation (SENT) induced from the
sketching method with our data set, we can boost
the performance up to 93.49%, corresponding to
a 18.78% decrease in error relative to a SVM
without representation. Also, we see that the ex-
tended sentence representation (SENT+) can get
additional gains.

As in Table 2 , we also measured performance
of our method (SENT+) as a function of the per-
centage of unlabeled data we used from total un-
labeled sentences. The overall trend is clear: as
the number of sentences are added to the data for
inducing sentence representation, the test perfor-
mance improves because of both better coverage
and better quality of embedding. We believe that
if we consume more data, we can boost up the per-

formance even more.

3.7 Results of Parallelization

Table 3 shows the sketching results for vari-
ous batch size. To evaluate parallelization, we
first randomly generate a matrix R1,000,000×100

and it is sketched to R100×100. And then we
sketch run with different batch size. The results
show that as the number of batch increases, we
can speed up dramatically, keeping residual value∣∣∣∣X>X − Y >Y ∣∣∣∣

2
. It indeed satisfies the bound

value, ||X||2F /l, which was 100014503.16.

4 Conclusion

We introduced how to use matrix sketching al-
gorithm of (Liberty, 2013) for scalable semi-
supervised sentence classification. This algorithm
approximates the data within a specified mem-
ory bound while preserving the covariance struc-
ture necessary for PCA. Using matrix sketching,
we significantly improved the classification accu-
racy by leveraging very large amounts of unla-
beled sentences.
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0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
apps 89.16 89.83 90.04 90.26 90.88 91.9 92.41 92.41 92.95 93.72 94.3

music 87.87 89.12 89.61 90.4 90.83 91.26 91.31 91.33 91.38 91.33 91.33
tv 91.42 92.28 92.83 93.61 93.96 94.67 94.91 95.12 95.34 95.44 95.47

Table 2: Performance for selected domains as the number of unlabeled data increases.

Batch Size
∣∣∣∣X>X − Y >Y ∣∣∣∣

2
time

1 1019779.69 100.21
2 1019758.22 50.31
4 1019714.19 26.50
5 1019713.43 21.67
8 1019679.67 14.53
10 1019692.67 12.13
16 1019686.35 8.53
20 1019709.03 7.35
25 1019650.51 6.40
40 1019703.24 4.97
50 1019689.33 4.48

Table 3: Results for corresponding batch size.
Second column indicates the norm of gap between
original and sketching matrix. Time represents the
running time for sketching methods, measured in
seconds.
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Abstract

Low-dimensional vector representations are
widely used as stand-ins for the text of words,
sentences, and entire documents. These em-
beddings are used to identify similar words
or make predictions about documents. In this
work, we consider embeddings for social me-
dia users and demonstrate that these can be
used to identify users who behave similarly or
to predict attributes of users. In order to cap-
ture information from all aspects of a user’s
online life, we take a multiview approach,
applying a weighted variant of Generalized
Canonical Correlation Analysis (GCCA) to a
collection of over 100,000 Twitter users. We
demonstrate the utility of these multiview em-
beddings on three downstream tasks: user en-
gagement, friend selection, and demographic
attribute prediction.

1 Introduction
Dense, low-dimensional vector representations (em-
beddings) have a long history in NLP, and recent work
on neural models have provided new and popular al-
gorithms for training representations for word types
(Mikolov et al., 2013; Faruqui and Dyer, 2014), sen-
tences (Kiros et al., 2015), and entire documents (Le
and Mikolov, 2014). These embeddings often have nice
properties, such as capturing some aspects of syntax or
semantics and outperforming their sparse counterparts
at downstream tasks.

While there are many approaches to generating em-
beddings of text, it is not clear how to learn embeddings
for social media users. There are several different types
of data (views) we can use to build user representations:
the text of messages they post, neighbors in their local
network, articles they link to, images they upload, etc.
We propose unsupervised learning of representations of
users with a variant of Generalized Canonical Correla-
tion Analysis (GCCA) (Carroll, 1968; Van De Velden
and Bijmolt, 2006; Arora and Livescu, 2014; Rastogi
et al., 2015), a multiview technique that learns a single,
low-dimensional vector for each user best capturing in-
formation from each of their views. We believe this

is more appropriate for learning user embeddings than
concatenating views into a single vector, since views
may correspond to different modalities (image vs. text
data) or have very different distributional properties.
Treating all features as equal in this concatenated vec-
tor is not appropriate.

We offer two main contributions: (1) an application
of GCCA to learning vector representations of social
media users that best accounts for all aspects of a user’s
online life, and (2) an evaluation of these vector repre-
sentations for a set of Twitter users at three different
tasks: user engagement, friend, and demographic at-
tribute prediction.

2 Twitter User Data

We begin with a description of our dataset, which
is necessary for understanding the data available to
our multiview model. We uniformly sampled 200,000
users from a stream of publicly available tweets from
the 1% Twitter stream from April 2015. To include
typical, English speaking users we removed users with
verified accounts, more than 10,000 followers, or non-
English profiles1. For each user we collected their
1,000 most recent tweets, and then filtered out non-
English tweets. Users without English tweets in Jan-
uary or February 2015 were omitted, yielding a total
of 102,328 users. Although limiting tweets to only
these two months restricted the number of tweets we
were able to work with, it also ensured that our data
are drawn from a narrow time window, controlling for
differences in user activity over time. This allows us
to learn distinctions between users, and not temporal
distinctions of content. We will use this set of users to
learn representations for the remainder of this paper.

Next, we expand the information available about
these users by collecting information about their so-
cial networks. Specifically, for each user mentioned
in a tweet by one of the 102,328 users, we collect up
to the 200 most recent English tweets for these users
from January and February 2015. Similarly, we col-
lected the 5,000 most recently added friends and fol-
lowers of each of the 102,328 users. We then sampled
10 friends and 10 followers for each user and collected

1Identified with langid (Lui and Baldwin, 2012).
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up to the 200 most recent English tweets for these users
from January and February 2015. Limits on the num-
ber of users and tweets per user were imposed so that
we could operate within Twitter’s API limits. This data
supports several of our prediction tasks, as well as the
four sources for each user: their tweets, tweets of men-
tioned users, friends and followers.

3 User Views
Our user dataset provides several sources of informa-
tion on which we can build user views: text posted by
the user (ego) and people that are mentioned, friended
or followed by the user and their posted text.

For each text source we can aggregate the many
tweets into a single document, e.g. all tweets written
by accounts mentioned by a user. We represent this
document as a bag-of-words (BOW) in a vector space
model with a vocabulary of the 20,000 most frequent
word types after stopword removal. We will consider
both count and TF-IDF weighted vectors.

A common problem with these high dimensional
representations is that they suffer from the curse of
dimensionality. A natural solution is to apply a di-
mensionality reduction technique to find a compact
representation that captures as much information as
possible from the original input. Here, we consider
principal components analysis (PCA), a ubiquitous
linear dimensionality reduction technique, as well as
word2vec (Mikolov et al., 2013), a technique to learn
nonlinear word representations.

We consider the following views for each user.
BOW: We take the bag-of-words (both count and TF-
IDF weighted) representation of all tweets made by
users in that view (ego, mention, friend, or follower)
following the above pre-processing.
BOW-PCA: We run PCA and extract the top princi-
pal components for each of the above views. We also
consider all possible combinations of views obtained
by concatenating views before applying PCA, and con-
catenating PCA-projected views. By considering all
possible concatenation of views, we ensure that this
method has access to the same information as multi-
view methods. Both the raw BOW and BOW-PCA rep-
resentations have been explored in previous work for
demographic prediction (Volkova et al., 2014; Al Za-
mal et al., 2012) and recommendation systems (Abel et
al., 2011; Zangerle et al., 2013).
Word2Vec: BOW-PCA is limited to linear representa-
tions of BOW features. Modern neural network based
approaches to learning word embeddings, including
word2vec continuous bag of words and skipgram mod-
els, can learn nonlinear representations that also cap-
ture local context around each word (Mikolov et al.,
2013). We represent each view as the simple average
of the word embeddings for all tokens within that view
(e.g., all words written by the ego user). Word em-
beddings are learned on a sample of 87,755,398 tweets
and profiles uniformly sampled from the 1% Twitter

stream in April 2015 along with all the tweets/profiles
collected for our set of users – a total of over a billion
tokens. We use the word2vec tool, select either skip-
gram or continuous bag-of-words embeddings on dev
data for each prediction task, and train for 50 epochs.
We use the default settings for all other parameters.
NetSim: An alternative to text based representations
is to use the social network of users as a representation.
We encode a user’s social network as a vector by treat-
ing the users as a vocabulary, where users with simi-
lar social networks have similar vector representations
(NetSim). An n-dimensional vector then encodes the
user’s social network as a bag-of-words over this user
vocabulary. In other words, a user is represented by
a summation of the one-hot encodings of each neigh-
boring user in their social network. In this representa-
tion, the number of friends two users have in common
is equal to the dot product between their social network
vectors. We define the social network may be as one’s
followers, friends, or the union of both. The motiva-
tion behind this representation is that users who have
similar networks may behave in similar ways. Such
network features are commonly used to construct user
representations as well as to make user recommenda-
tions (Lu et al., 2012; Kywe et al., 2012).
NetSim-PCA: The PCA-projected representations
for each NetSim vector. This may be important for
computing similarity, since users are now represented
as dense vectors capturing linear correlations in the
friends/followers a user has. NetSim-PCA is to NetSim
as BOW-PCA is to BOW– we apply PCA directly to the
user’s social network as opposed to the BOW represen-
tations of users in that network.

Each of these views can be treated independently as
a user representation. However, different downstream
tasks may favor different views. For example, the
friend network is useful at recommending new friends,
whereas the ego tweet view may be better at predict-
ing what content a user will post in the future. Pick-
ing a single view may ignore valuable information as
views may contain complementary information, so us-
ing multiple views improves on a single view. One ap-
proach is to concatenate multiple views together, but
this further increases the size of the user embeddings.
In the next section, we propose an alternate approach
for learning a single embedding from multiple views.

4 Learning Multiview User Embeddings
We use Generalized Canonical Correlation Analysis
(GCCA) (Carroll, 1968) to learn a single embedding
from multiple views. GCCA finds G,Ui that minimize:

arg min
G,Ui

∑
i

‖G−XiUi‖2F s.t. G′G = I (1)

where Xi ∈ Rn×di corresponds to the data matrix for
the ith view, Ui ∈ Rdi×k maps from the latent space
to observed view i, and G ∈ Rn×k contains all user
representations (Van De Velden and Bijmolt, 2006).
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Since each view may be more or less helpful for a
downstream task, we do not want to treat each view
equally in learning a single embedding. Instead, we
weigh each view differently in the objective:

arg min
G,Ui

∑
i

wi‖G−XiUi‖2F s.t. G′G = I, wi ≥ 0 (2)

where wi explicitly expresses the importance of the ith
view in determining the joint embedding. The columns
of G are the eigenvectors of

∑
i wiXi(X ′iXi)−1X ′i ,

and the solution for Ui = (X ′iXi)−1X ′iG. In our ex-
periments, we use the approach of Rastogi et al. (2015)
to learn G and Ui, since it is more memory-efficient
than decomposing the sum of projection matrices.

GCCA embeddings were learned over combinations
of the views in §3. When available, we also consider
GCCA-net, where in addition to the four text views, we
also include the follower and friend network views used
by NetSim-PCA. For computational efficiency, each of
these views was first reduced in dimensionality by pro-
jecting its BOW TF-IDF-weighted representation to a
1000-dimensional vector through PCA.2 We add an
identity matrix scaled by a small amount of regulariza-
tion, 10−8, to the per-view covariance matrices before
inverting, for numerical stability, and use the formula-
tion of GCCA reported in Van De Velden and Bijmolt
(2006), which ignores rows with missing data (some
users had no data in the mention tweet view and some
users accounts were private). We tune the weighting
of each view i, wi ∈ {0.0, 0.25, 1.0}, discriminatively
for each task, although the GCCA objective is unsuper-
vised once the wi are fixed.

We also consider a minor modification of GCCA,
whereG is scaled by the square-root of the singular val-
ues of

∑
i wiXiX

′
i , GCCA-sv. This is inspired by pre-

vious work showing that scaling each feature of multi-
view embeddings by the singular values of the data ma-
trix can improve performance at downstream tasks such
as image or caption retrieval (Mroueh et al., 2015).
Note that if we only consider a single view, X1, with
weight w1 = 1, then the solution to GCCA-sv is iden-
tical to the PCA solution for data matrix X1, without
mean-centering.

When we compare representations in the fol-
lowing tasks, we sweep over embedding width
in {10, 20, 50, 100, 200, 300, 400, 500, 1000} for all
methods. This applies to GCCA, BOW-PCA, NetSim-
PCA, and Word2Vec. We also consider concatena-
tions of vectors for every possible subset of views:
singletons, pairs, triples, and all views. We tried ap-
plying PCA directly to the concatenation of all 1000-
dimensional BOW-PCA views, but this did not perform
competitively in our experiments.

2 We excluded count vectors from the GCCA experiments
for computational efficiency since they performed similarly
to TF-IDF representations in initial experiments.

5 Experimental Setup
We selected three user prediction tasks to demonstrate
the effectiveness of the multi-view embeddings: user
engagement prediction, friend recommendation and
demographic characteristics inference. Our focus is to
show the performance of multiview embeddings com-
pared to other representations, not on building the best
system for a given task.
User Engagement Prediction The goal of user en-
gagement prediction is to determine which topics a user
will likely tweet about, using hashtag as a proxy. This
task is similar to hashtag recommendation for a tweet
based on its contents (Kywe et al., 2012; She and Chen,
2014; Zangerle et al., 2013). Purohit et al. (2011) pre-
sented a supervised task to predict if a hashtag would
appear in a tweet using features from the user’s net-
work, previous tweets, and the tweet’s content.

We selected the 400 most frequently used hashtags
in messages authored by our users and which first ap-
peared in March 2015, randomly and evenly dividing
them into dev and test sets. We held out the first 10
users who tweeted each hashtag as exemplars of users
that would use the hashtag in the future. We ranked all
other users by the cosine distance of their embedding
to the average embedding of these 10 users. Since em-
beddings are learned on data pre-March 2015, the hash-
tags cannot impact the learned representations. Perfor-
mance is measured using precision and recall at k, as
well as mean reciprocal rank (MRR), where a user is
marked as correct if they used the hashtag. Note that
this task is different than that reported in Purohit et al.
(2011), since we are making recommendations at the
level of users, not tweets.
Friend Recommendation The goal of friend rec-
ommendation/link prediction is to recommend/predict
other accounts for a user to follow (Liben-Nowell and
Kleinberg, 2007).

We selected the 500 most popular accounts – which
we call celebrities – followed by our users, randomly,
and evenly divided them into dev and test sets. We
randomly select 10 users who follow each celebrity
and rank all other users by cosine distance to the av-
erage of these 10 representations. The tweets of se-
lected celebrities are removed during embedding train-
ing so as not to influence the learned representations.
We use the same evaluation as user engagement pre-
diction, where a user is marked as correct if they follow
the given celebrity.

For both user engagement prediction and friend rec-
ommendation we z-score normalize each feature, sub-
tracting off the mean and scaling each feature indepen-
dently to have unit variance, before computing cosine
similarity. We select the approach and whether to z-
score normalize based on the development set perfor-
mance.
Demographic Characteristics Inference Our final
task is to infer the demographic characteristics of a user
(Al Zamal et al., 2012; Chen et al., 2015).
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Model Dim P@1000 R@1000 MRR
BOW 20000 0.009/0.005 0.241/0.157 0.006/0.006
BOW-PCA 500 0.011/0.008 0.312/0.29 0.007/0.009
NetSim NA 0.006/0.006 0.159/0.201 0.004/0.004
NetSim-PCA 300 0.010/0.008 0.293/0.299 0.006/0.006
Word2Vec 100 0.009/0.007 0.254/0.217 0.005/0.004
GCCA 100 0.012/0.009 0.357/0.325 0.011/0.008
GCCA-sv 500 0.012/0.010 0.359/0.334 0.010/0.011
GCCA-net 200 0.013/0.009 0.360/0.346 0.011/0.011
NetSize NA 0.001/0.001 0.012/0.012 0.000/0.000
Random NA 0.000/0.000 0.002/0.008 0.000/0.000

Table 1: Macro performance at user engagement prediction
on dev/test. Ranking of model performance was consistent
across metrics. Precision is low since few users tweet a given
hashtag. Values bolded by best test performance per metric.
Baselines (bottom): NetSize: a ranking of users by the size of
their local network; Random randomly ranks users.
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Figure 1: The best-performing approaches on user engage-
ment prediction as a function of k (number of recommenda-
tions). The ordering of methods is consistent across k.

We use the dataset from Volkova et al. (2014;
Volkova (2015) which annotates 383 users for age
(old/young), 383 for gender (male/female), and 396 po-
litical affiliation (republican/democrat), with balanced
classes. Predicting each characteristic is a binary su-
pervised prediction task. Each set is partitioned into 10
folds, with two folds held out for test, and the other
eight for tuning via cross-fold validation. The pro-
vided dataset contained tweets from each user, men-
tioned users, friends and follower networks. It did not
contain the actual social networks for these users, so we
did not evaluate NetSim, NetSim-PCA, or GCCA-net at
these prediction tasks.

Each feature was z-score normalized before being
passed to a linear-kernel SVM where we swept over
10−4, . . . , 104 for the penalty on the error term, C.

6 Results
User Engagement Prediction Table 1 shows results
for user engagement prediction and Figure 1 the preci-
sion and recall curves as a function of number of rec-
ommendations. GCCA outperforms other methods for
precision and recall at 1000, and does close to the best
in terms of MRR. Including network views (GCCA-
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Figure 2: Macro recall@1000 on user engagement prediction
for different combinations of text views. Each bar shows the
best-performing model swept over dimensionality. E: ego,
M: mention, Fr: friend, Fol: followertweet views.

Model Dim P@1000 R@1000 MRR
BOW 20000 0.133/0.153 0.043/0.048 0.000/0.001
BOW-PCA 20 0.311/0.314 0.101/0.102 0.001/0.001
NetSim NA 0.406/0.420 0.131/0.132 0.002/0.002
NetSim-PCA 500 0.445/0.439 0.149/0.147 0.002/0.002
Word2Vec 200 0.260/0.249 0.084/0.080 0.001/0.001
GCCA 50 0.269/0.276 0.089/0.091 0.001/0.001
GCCA-sv 500 0.445/0.439 0.149/0.147 0.002/0.002
GCCA-net 20 0.376/0.364 0.123/0.120 0.001/0.001
NetSize NA 0.033/0.035 0.009/0.010 0.000/0.000
Random NA 0.034/0.036 0.010/0.010 0.000/0.000

Table 2: Macro performance for friend recommendation.
Performance of NetSim-PCA and GCCA-sv are identical
since the view weighting for GCCA-sv only selected solely
the friend view. Thus, these methods learned identical user
embeddings.

Model age gender politics
BOW 0.771/0.740 0.723/0.662 0.934/0.975
BOW-PCA 0.784/0.649 0.719/0.662 0.908/0.900
BOW-PCA + BOW 0.767/0.688 0.660/0.714 0.937/0.9875
GCCA 0.725/0.740 0.742/0.714 0.899/0.8125
GCCA + BOW 0.764/0.727 0.657/0.701 0.940/0.9625
GCCA-sv 0.709/0.636 0.699/0.714 0.871/0.850
GCCA-sv + BOW 0.761/0.688 0.647/0.675 0.937/0.9625
Word2Vec 0.790/0.753 0.777/0.766 0.927/0.938

Table 3: Average CV/test accuracy for inferring demo-
graphic characteristics.

net and GCCA-sv) improves the performance further.
The best performing GCCA setting placed weight 1
on the ego tweet view, mention view, and friend view,
while BOW-PCA concatenated these views, suggesting
that these were the three most important views but that
GCCA was able to learn a better representation. Figure
2 compares performance of different view subsets for
GCCA and BOW-PCA, showing that GCCA uses infor-
mation from multiple views more effectively for pre-
dicting user engagement.

Friend Recommendation Table 2 shows results for
friend prediction and Figure 3 similarly shows that per-
formance differences between approaches are consis-
tent across k (number of recommendations.) Adding
network views to GCCA, GCCA-net, improves per-
formance, although it cannot contend with NetSim or
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Figure 3: Performance on friend recommendation varying k.

NetSim-PCA, although GCCA-sv is able to meet the
performance of NetSim-PCA. The best GCCA placed
non-zero weight on the friend tweets view, and GCCA-
net only places weight on the friend network view;
the other views were not informative. BOW-PCA and
Word2Vec only used the friend tweet view. This sug-
gests that the friend view is the most important for
this task, and multiview techniques cannot exploit ad-
ditional views to improve performance. GCCA-sv per-
forms identically to GCCA-net, since it only placed
weight on the friend network view, learning identical
embeddings to GCCA-net.
Demographic Characteristics Prediction Table 3
shows the average cross-fold validation and test ac-
curacy on the demographic prediction task. GCCA +
BOW and BOW-PCA + BOW are the concatenation
of BOW features with GCCA and BOW-PCA, respec-
tively. The wide variation in performance is due to
the small size of the datasets, thus it’s hard to draw
many conclusions other than that GCCA seems to per-
form well compared to other linear methods. Word2Vec
surpasses other representations in two out of three
datasets.

It is difficult to compare the performance of the
methods we evaluate here to that reported in previous
work, (Al Zamal et al., 2012). This is because they re-
port cross-fold validation accuracy (not test), they con-
sider a wider range of hand-engineered features, differ-
ent subsets of networks, radial basis function kernels
for SVM, and find that accuracy varies wildly across
different feature sets. They report cross-fold validation
accuracy ranging from 0.619 to 0.805 for predicting
age, 0.560 to 0.802 for gender, and 0.725 to 0.932 for
politics.

7 Conclusion
We have proposed several representations of Twitter
users, as well as a multiview approach that combines
these views into a single embedding. Our multiview

embeddings achieve promising results on three differ-
ent prediction tasks, making use of both what a user
writes as well as the social network. We found that each
task relied on different information, which our method
successfully combined into a single representation.

We plan to consider other means for learning user
representations, including comparing nonlinear dimen-
sionality reduction techniques such as kernel PCA
(Schölkopf et al., 1997) and deep canonical correlation
analysis (Andrew et al., 2013; Wang et al., 2015). Re-
cent work on learning user representations with mul-
titask deep learning techniques (Li et al., 2015), sug-
gests that learning a nonlinear mapping from observed
views to the latent space can learn high quality user
representations. One issue with GCCA is scalabil-
ity: solving for G relies on an SVD of a large ma-
trix that must be loaded into memory. Online variants
of GCCA would allow this method to scale to larger
training sets and incrementally update representations.
The PCA-reduced views for all 102,328 Twitter users
can be found here: http://www.dredze.com/
datasets/multiview_embeddings/.
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Abstract 

This paper deals with a double-implicit prob-
lem in opinion mining and sentiment analysis. 
We aim at identifying aspects and polarities of 
opinionated statements not consisting of opin-
ion words and aspect terms. As a case study, 
opinion words and aspect terms are first ex-
tracted from Chinese hotel reviews, and then 
grouped into positive (negative) clusters and 
aspect term clusters. We observe that an im-
plicit opinion and its neighbor explicit opinion 
tend to have the same aspect and polarity. Un-
der the observation, we construct an implicit 
opinions corpus annotated with aspect class 
labels and polarity automatically. Aspect and 
polarity classifiers trained by using this cor-
pus is used to recognize aspect and polarity of 
implicit opinions.  

1 Introduction 

Opinions are classified into explicit and implicit 
ones depending on the subjectivity and objectivity 
(Liu, 2012; Zhang and Liu, 2014). It is more chal-
lenging to detect implicit opinions than explicit 
ones due to the lack of explicit opinion words in 
the sentences. Aspects refer to facets of the target 
entities in opinions. They are also categorized into 
explicit and implicit ones depending on the occur-
rences of aspect terms. Recognizing implicit as-
pects in implicit opinions is much more challeng-
ing because both opinion words and aspect terms 
are absent in opinionated statements.  

Implicit opinions often describe the situations at 
which persons concern in their reviews. (S1) and 
(S2) are two examples selected from positive and 
negative rating rows respectively in hotel reviews. 
They do not mention any explicit opinion words 
and aspect terms. The situation of “many restau-
rants nearby” infers the convenience for eating, 
while the situation of “a lot of ants” infers the dirt-
iness of a room. The implicit opinion describes not 

only the situation at which customers feel, but also 
infers the reason why they have such feelings. Im-
plicit opinions are positive in (S1) and negative in 
(S2), and the implied aspects are location and 
cleanness.  

(S1) 附近有很多餐廳。(There are many restau-
rants nearby.) 

(S2) 房間裡有很多螞蟻。(There are a lot of 
ants in the room.) 

The implicit opinions may be subjective in some 
cases. For example, (S1) may be placed in negative 
rating row in a hotel review. Its implicit interpreta-
tion will become “There are many restaurants 
nearby, and thus the air pollution is severe and the 
smell of the air is very bad.” 

People may describe a situation first, and then 
reveal their attitudes and judgments. (S3) is an ex-
ample. The first clause (only ten meters to the 
subway entrance) describes a situation, while the 
second clause (the location is good) is an explicit 
opinion. In Chinese review, an explicit opinion can 
also be specified before a situation description. (S4) 
is an example. In both cases, the polarity and the 
aspect of the situation are consistent with those of 
the explicit opinions. 

(S3) 到地鐵出入口僅十米，地段好。(Only 
ten meters to the subway entrance, good location.) 

(S4) 地點不錯，可步行至周圍三個捷運站。
(Location is good, within walking distance of three 
MRTs around.) 

This paper aims at extracting implicit opinions 
and identifying their implicit aspects and polarity. 
We will extract opinions from Chinese hotel re-
views, then transfer polarity and aspect from ex-
plicit expressions to the corresponding implicit 
opinions, and train aspect and polarity classifiers. 
We evaluate the performance of polarity and as-
pect recognition on implicit opinions. 

Almost all previous approaches identify implicit 
aspects in explicit opinions. They extract opinion 
words from opinionated sentences, regard them as 
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implicit aspect clues, and find aspects through 
opinion word-aspect term mapping. The lack of 
opinion words in implicit opinions results in no in-
dicators in mapping. To the best of our knowledge, 
this paper is the first one to resolve a double-
implicit problem in opinion mining and sentiment 
analysis. 

This paper is organized as follows. Section 2 
gives a survey on implicit aspect recognition in 
opinion mining and sentiment analysis. Section 3 
constructs an implicit opinions corpus labelled 
with aspect classes and polarity automatically. Sec-
tion 4 presents classifiers for implicit polarity and 
implicit aspect recognition. Section 5 shows and 
discusses the experimental results.   

2 Related Work 

Hu and Liu (2004) present the first feature-based 
opinion summarization system. They point out ex-
plicit and implicit product features, and extract ex-
plicit features by using association miner and prun-
ing strategies. The opinionated sentences along 
with their polarity are listed under individual prod-
uct features. Popescu and Etzioni (2005) introduce 
an opinion extraction system OPINE. OPINE ex-
tracts explicit product features based on Point-wise 
Mutual Information. This work does not discuss 
the implicit feature generation. Liu et al. (2005) 
present an association mining approach to extract 
both explicit and implicit features in their opinion 
observer, but the implicit features discussed occur 
explicitly in an overt form, e.g., [MB] indicates a 
product feature <memory>. 

Su et al. (2008) define an implicit feature as the 
product feature which does not occur explicitly, 
but can be inferred from the surrounding opinion 
word. They propose a mutual reinforcement ap-
proach to cluster product features and opinion 
words simultaneously, and extract implicit features 
based on opinion words. In the subsequent work, 
different methodologies are proposed to identify 
the association between opinion words and aspect 
terms (called also product features), thus implicit 
aspects are inferred from opinion word-aspect term 
mapping (Bagheri et al., 2013). 

Zhen et al. (2011) propose a two-phase co-
occurrence association rule mining approach. Yu et 
al. (2011) generate a review hierarchy based on as-
pects. Implicit aspect of a review can be deter-

mined by the cosine similarity of the review vector 
and the vector for each aspect node in the review 
hierarchy. Zeng and Li (2013) regard identification 
of implicit features as a classification problem, and 
consider reviews for each clustered opinion-pair as 
training set. Wang et al. (2013) employ five collo-
cation methods including frequency, PMI, fre-
quency⁄PMI, t-test and chi-square test to measure 
the association between opinion words and aspect 
terms.  

Cruz et al. (2014) manually annotate implicit 
aspects and implicit aspect indicators (IAI) on the 
customer review datasets in Hu and Liu (2004), 
and employ Conditional Random Fields to recog-
nize IAI. Poria et al. (2014) identify implicit aspect 
clues (IACs) in a document. Both approaches es-
tablish IAI (IAC) and aspect mapping. 

Mukherjee and Liu (2012) propose two statisti-
cal models to deal with aspect categorization prob-
lem. They use hotel reviews from tripadvisor.com, 
and point out categorizing aspects is a subjective 
task. Total 9 major aspects based on commonsense 
knowledge, including Dining, Staff, Maintenance, 
Check In, Cleanliness, Comfort, Amenities, Loca-
tion and Value for Money, are considered. Kim et 
al. (2013) further analyze general aspects and spe-
cific aspects, and discuss how aspect structure is 
helpful. Zhao et al. (2015) present a fine-grained 
corpus for sentiment analysis.  

Our work is different from the previous ones in 
two-fold: (1) opinion is implicit, so that no opinion 
words can be used as clues; and (2) aspect is im-
plicit, so that no aspect terms can be found. The di-
rect opinion word and aspect mapping is not feasi-
ble in implicit polarity and implicit aspect recogni-
tion. We focus on the construction of an implicit 
opinions corpus for double-implicit recognition. 
The aspect categorization is not the major concern. 

3 Constructing Implicit Opinions Corpus 

This section first defines the implicit opinions, col-
lects a Chinese hotel dataset, identifies opinion and 
aspect clusters from the dataset, and constructs im-
plicit opinion corpus labelled with aspect class and 
polarity. 

3.1 Definitions of Implicit Opinions 

A sentence in a review can be partitioned into sev-
eral segments separated by punctuation marks. The 
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following show four possible types of segments 
based on the occurrences of opinion words and as-
pect terms, where + and - denote occurrence and 
non-occurrence. Segments of types (T1) and (T2) 
contain explicit opinion words, while segments of 
types (T3) and (T4) contain no opinion words. 
They appear together with and without aspect 
terms. 

(T1)  (+opinion word, +aspect term) 
  e.g., 地點不錯 (location is good) 
(T2)  (+opinion word, -aspect term)  
  e.g., 很便宜 (very cheap) 
(T3)  (-opinion word, +aspect term) 
  e.g., 地理位置 (location) 
(T4)  (-opinion word,-aspect term) 

e.g., 到油麻地地鐵站只要兩分鐘 (Just  
 two minutes to Yau Ma Tei MRT Station) 

Segments of either type can not only appear in-
dividually, but also can be combined with other 
types of segments to form a sentence.  Segments of 
types (T1) and (T2) are opinionated. Segments of 
type (T3) are opinionated implicitly when they ap-
pear in positive/negative rating row. Segments of 
type (T4) can be opinionated or non-opinionated. It 
is interpreted as an opinionated segment clearly 
when it is placed in rating row individually. 

(S5) is a sentence consisting of 5 segments of 
types T3, T2, T1, T4 and T3, respectively. The 4th 
segment, i.e., feeling a little like shanty towns, is a 
double-implicit opinion. Its polarity and aspect 
(negative and environment) can be inferred from 
the 3rd segment, i.e., the surrounding environment 
is really bad. 

 (S5) [T3旅館在小巷子裡]，[T2安全沒有問題]，
[T1但附近環境確實不好]，[T4有點棚戶區的感

覺]，[T3 周圍沒有飯店]。([T3 hotel in the alley]，
[T2 security is no problem]，[T1 but the surround-
ing environment is really bad]，[T4 feeling a little 
like shanty towns]，[T3 no hotels around]) 

In this paper, we deal with opinionated segments 
of type (T4). On the one hand, we extract pairs of 
segments of types T1-T4 or T4-T1 from a Chinese 
hotel review dataset. The segments of type T4 will 
be annotated with opinion words and aspect terms 
extracted from their paired segments of type T1. 
The segments of type T4 along with their annota-
tions form a training corpus. On the other hand, the 
test segments of types (T4) will be labelled with 

polarity and aspect by polarity and aspect classifi-
ers.  

At first glance, we do not need to perform the 
classification task on T4 segments since we can di-
rectly use polarity and aspect of T1 segments. The 
scenario is just for test purpose because we do not 
have large-scale manually-labelled data. In the lat-
ter experiments, we will also consider the cases of 
T4 segments existing individually in rating rows. 
That will reflect the real situations. 

3.2 Extraction of Implicit Opinions 

Opinion words and aspect terms are the indicators 
to define the four types (T1)-(T4). As a case study, 
we collect a Chinese hotel review dataset from 
booking.com. It consists of 144,158 positive re-
views and 113,844 negative reviews about 20,973 
hotels from 49 international cities. Here only Chi-
nese reviews are kept. We use Stanford NLP tools 
to segment, POS tag, and parse all the reviews. 

At first, we construct an opinion dictionary from 
this dataset. Words of POS tags VA, VV, AD, and 
JJ are candidates of opinion words. We adopt Chi-
square test and point-wise mutual information to 
filter out less confident words from the candidate 
set, respectively. We examine the union of the re-
maining words manually and construct an opinion 
dictionary consisting of 374 positive and 408 nega-
tive opinion words. 

Then, we construct an aspect dictionary based 
on opinion words.  A word meeting the following 
four conditions is regarded as an aspect term can-
didate: (1) its POS is NN, (2) it occurs at least 100 
times, (3) it is accompanied with an opinion word 
within the same segment, and (4) their dependency 
is nsubj. We examine 183 proposed candidates 
manually and construct an aspect dictionary con-
sisting of 153 aspect terms. 

In an extreme case, a review does not contain 
any opinion words and aspect terms. It may be a 
single segment or multiple segments of type T4. 
Reviews are listed under positive and negative rat-
ing rows, so we know their polarity, but not aspect. 
Table 1 shows the statistics of such kinds of re-
views in the hotel dataset. Interestingly, 2.07% of 
positive reviews are pure T4, and 7.29% of nega-
tive reviews are pure T4. That demonstrates dou-
ble-implicit is a practical issue and customers tend 
to express negative opinions implicitly. The pure  
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 single multiple total 
# pure T4 (positive reviews) 2,266 717 2,983 
# pure T4 (negative reviews) 5,847 2,451 8,298 

Table 1: Statistics of pure T4 reviews. 

 T1 T2 T3 T4 
total 192,353 161,863 257,831 303,357 
ratio 21.01% 17.68% 28.17% 33.14% 

Table 2:  Statistics of segment types. 

T4 reviews set consisting of single segments only 
is called PT4S hereafter. 

Table 2 shows the statistics of segments of types 
T1, T2, T3, and T4. Only 21.01% of segments con-
tain both opinion words and aspect terms, and 
33.14% of segments do not contain any opinion 
words and aspect terms. We further examine the 
type combinations of two successive segments. 
There are 103 possible punctuation marks between 
any two segments, including common ones like 
“，”, “。”, “?”, and “!”, and some special ones 
like “~~~”. To avoid misinterpretation of the spe-
cial marks, we considers only those segment pairs 
linked by commas. Moreover, to obtain an auto-
matically labelled dataset, the ambiguous sequence 
of segments, X-T4-Y, where X and Y of types T1, 
T2, or T3, are removed. Total 31,136 T4-T1/T1-T4 
segment pairs remain. They are used to derive an 
implicit opinions corpus for learning and testing 
polarity classifier and aspect classifiers. This data 
set is called T41 hereafter. 

In most of the cases we observed, segment of 
type T2 or T3 does not pass its aspect or opinion to 
nearby segments of type T4. (S6) is an example of 
a triple of segments of type T1-T4-T3, which in-
troduces ambiguity between aspect and opinion as-
signment. The aspect of segment of type T1, i.e., 
the equipment, competes with that of segment of 
type T3, the toilet. In this case, the safety deposit 
box, which is the undetected aspect of the segment 
of type T4, and the toilet are two sub-aspects of the 
equipment. The latter two clauses are supplemen-
tary description of the first clause. 

(S6) 設施比較舊，保險箱不好使，馬桶上水
時有故障 (The equipment is old, the safety deposit 
box is hard to use, and the toilet sometimes stucks 
while refilling.) 

This work bases on the postulation – say, an im-
plicit opinion and its neighbor explicit opinion 
tending to have the same aspect and polarity, to 

construct a training corpus automatically. We ran-
domly sampled 1% of pairs of segments of type 
T1-T4 or T4-T1 in a training corpus (see Section 4) 
to verify whether our assumption holds. In this set-
up, we discard clauses that contain parsing errors 
and those are too short to represent both aspects 
and opinions. The result is promising. On average, 
70.46% of the pairs follow the observation. In par-
ticular, the pairs keep the property more often (i.e., 
74.51%) when the polarity of T1 is negative. 

4 Double-Implicit Opinion Analysis 

We assign polarity and aspect of a T4-type seg-
ment in T41 dataset based on the information from 
its paired T1-type segment. Negation in the T1-
type segment will reverse the polarity. To avoid 
data sparseness, 153 aspect terms are partitioned 
into 10 aspect classes based on common sense 
knowledge, including food, hotel, price, room, in-
ternet, staff, services, facilities, neighborhood, and 
general. The criterion in the selection of the cate-
gory of aspects is not the major concern in this pa-
per. For example, facilities and services may be 
merged into the same aspect category. The 31,136 
labelled T4-type segments in T41 dataset are di-
vided into training and test sets consisting of 
23,352 and 7,784 segments, respectively. 

Figure 1 shows the segment length distribution 
of T41-train, T41-test, T41, and PT4S datasets. 
The length is measured by number of Chinese 
words in a segment. X-axis and Y-axis denote 
length of segments and ratio, respectively. Seg-
ments in PT4S dataset are shorter than those in 
T41 dataset. Segments of 2 and 3 words occupy 
48.61%. Table 3 shows the polarity distribution in 
these datasets. Because T41 dataset is divided into 
T41-train and T41-test datasets uniformly, their 
polarity distribution is the same, i.e., positive:  

 
Figure 1: Length distribution in experimental datasets. 
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 T41 T41-train T41-test PT4S 
positive 79.64% 79.63% 79.68% 27.93% 
negative 20.36% 20.37% 20.32% 72.07% 

Table 3:  Polarity distribution in experimental datasets. 

(%) 
BOW 
linear 

W2V 
linear 

BOW 
RBF 

W2V 
RBF 

W2V 
CNN 

T41-test (p) 78.55 73.67 81.54 79.76 85.04 
PT4S (p) 77.30 77.64 72.01 72.22 67.96 
MicroAvg 77.91 75.69 76.67 75.91 76.32 
T41-test (a) 43.25 41.50 46.35 46.13 55.90 

Table 4:  Accuracy of implicit polarity and aspect recognition. 

negative=4:1. Comparatively, positive:negative= 
1:2.58 in PT4S dataset. The two test sets bias to-
ward different polarities. 

We employ T41-train dataset to train binary po-
larity classifier and 10-way aspect classifiers, and 
test on T41-test dataset. We also explore T41 da-
taset to train polarity classifier, and test on PT4S 
dataset. T41-testing evaluates both implicit polarity 
and implicit aspect recognition. Note the ground 
truth is generated automatically. PT4S-testing 
evaluates implicit polarity only based on the hu-
man-annotated ground truth. 

We consider bag of words (BOW) and word 
vectors generated by word2vec (W2V) as features, 
where word vectors are pre-trained by using the 
part-of-tagged Chinese sentences extracted from 
the ClueWeb09 dataset (CMU, 2009; Yu et al., 
2012). Moreover, we adopt SVM with linear ker-
nel and SVM with RBF kernel learning algorithms 
in Scikit-Learn library (Pedregosa et al., 2011), and 
run cross-validation multiple times on the training 
set to facilitate a grid search on hyperparameters 
with F-measure as the metric to optimize.  

Besides, we also explore Convolutional Neural 
Networks (CNN) (Kim, 2014). Table 4 summariz-
es the accuracy of implicit polarity and implicit as-
pect recognition, where (p) and (a) after dataset 
denote polarity and aspect performance of that da-
taset, respectively. CNN achieves the best implicit 
polarity and aspect recognition in T41-test dataset. 
However, its implicit polarity accuracy is de-
creased to 67.96%. It may be due to overfitting in 
small amount of training data. Different dropout 
rates (Srivastava et al., 2014) can be explored. 
SVM with linear kernel (BOW) gets the best micro 
average accuracy (77.91%) in implicit polarity 
recognition.  

Figure 2 shows the accuracies of the implicit po-
larity recognition on segments of different lengths. 

 
Figure 2: Accuracies of segments of different lengths. 

It is challenging to predict the implicit polarity and 
aspect for segments of very short length.  Figure 1 
depicts one-word segments occupy 5%-10%. One 
word segment like “旺角” (Mong Kok) is ambigu-
ous. If we neglect such segments, the micro aver-
age accuracy in implicit polarity recognition using 
SVM with linear kernel (BOW) is increased to 
79.94%, and the accuracy in implicit aspect recog-
nition (10-way classification) becomes 46.01%. 

5 Conclusion and Future Work 

In this paper, we address the double-implicit issue 
in opinion mining and sentiment analysis, and pro-
pose a protocol to derive a labelled corpus for im-
plicit polarity and implicit aspect analysis. SVM 
with linear kernel (BOW) is robust in implicit po-
larity recognition. Ten-way classification for im-
plicit aspect recognition still has space to improve. 

This work bases on the aspect-and-polarity-
transfer postulation to construct a training corpus 
automatically. We randomly sample T4 segments 
from T4-T1 or T1-T4 pairs and check them manu-
ally. We find that 70.46% of the pairs follow the 
observation. The experimental setup is reasonable 
for evaluation with PT4S dataset because it is la-
belled by users themselves. To derive a more relia-
ble training set, distinguishing if T4 is non-
opinionated needs to be investigated further. 

Moreover, we neglect the cases T4-X (X-T4), 
where X is either T2 or T3, in the selection of 
training set. It is also challenging when either opin-
ion word or aspect term is absent from the cue 
segment. In this paper, we provide some case stud-
ies of these scenarios, but how to utilize the partial 
information in implicit polarity and implicit aspect 
recognition is a future work. 
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Abstract

Finding domain invariant features is crit-
ical for successful domain adaptation and
transfer learning. However, in the case of
unsupervised adaptation, there is a signif-
icant risk of overfitting on source training
data. Recently, a regularization for domain
adaptation was proposed for deep models
by (Ganin and Lempitsky, 2015). We build
on their work by suggesting a more appro-
priate regularization for denoising autoen-
coders. Our model remains unsupervised
and can be computed in a closed form.
On standard text classification adaptation
tasks, our approach yields the state of the
art results, with an important reduction of
the learning cost.

1 Introduction

Domain Adaptation problem arises each time
when we need to leverage labeled data in one or
more related source domains, to learn a classifier
for unseen data in a target domain. It has been
studied for more than a decade, with applications
in statistical machine translation, opinion mining,
part of speech tagging, named entity recognition
and document ranking (Daumé and Marcu, 2006;
Pan and Yang, 2010; Zhou and Chang, 2014).

The idea of finding domain invariant features
underpins numerous works in domain adapta-
tion. A shared representation eases prediction
tasks, and theoretical analyses uphold such hy-
potheses (Ben-David et al., 2007). For instance,
(Daumé and Marcu, 2006; Daumé, 2009) have
shown that replicating features in three main sub-
spaces (source, common and target) yields im-
proved accuracy as the classifier can subsequently
pick the most relevant common features. With
the pivoting technique (Blitzer et al., 2006; Pan

et al., 2010), the bag of words features are pro-
jected on a subspace that captures the relations
between some central pivot features and the re-
maining words. Similarly, there are several ex-
tensions of topic models and matrix factorization
techniques where the latent factors are shared by
source and target collections (Chen and Liu, 2014;
Chen et al., 2013).

More recently, deep learning has been pro-
posed as a generic solution to domain adaptation
and transfer learning problems by demonstrating
their ability to learn invariant features. On one
hand, unsupervised models such as denoising au-
toencoders (Glorot et al., 2011) or models built
on word embeddings (Bollegala et al., 2015) are
shown to be effective for domain adaptation. On
the other hand, supervised deep models (Long et
al., 2015) can be designed to select an appropri-
ate feature space for classification. Adaptation to
a new domain can also be performed by fine tun-
ing the neural network on the target task (Chopra
et al., 2013). While such solutions perform rel-
atively well, the refinement may require a signif-
icant amount of new labeled data. Recent work
by (Ganin and Lempitsky, 2015) has proposed a
better strategy; they proposed to regularize inter-
mediate layers with a domain prediction task, i.e.
deciding whether an object comes from the source
or target domain.

This paper proposes to combine the domain pre-
diction regularization idea of (Ganin and Lempit-
sky, 2015) with the denoising autoencoders. More
precisely, we build on stacked Marginalized De-
noising Autoencoders (sMDA) (Chen et al., 2012),
which can be learned efficiently with a closed form
solution. We show that such domain adaptation
regularization keeps the benefits of the sMDA and
yields results competitive to the state of the art re-
sults of (Ganin and Lempitsky, 2015).
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2 Target Regularized MDA

Stacked Denoising Autoencoders (sDA) (Vincent
et al., 2008) are multi-layer neural networks
trained to reconstruct input data from partial ran-
dom corruption. The random corruption, called
blank-out noise or dropout, consists in randomly
setting to zero some input nodes with probability
p; it has been shown to act as a regularizer (Wa-
ger et al., 2013). The sDA is composed of a
set of stacked one-layer linear denoising autoen-
coder components, which consider a set of N in-
put documents (represented by d-dimensional fea-
tures xn) to be corrupted M times by random fea-
ture dropout and then reconstructed with a linear
mapping W ∈ Rd×d by minimizing the squared
reconstruction loss:

L(W) =
N∑

n=1

M∑
m=1

||xn − x̃nmW||2. (1)

As explicit corruption comes at a high com-
putational cost, (Chen et al., 2012) propose to
marginalize the loss (1) by considering the limit-
ing case when M →∞ and reducing de facto the
learning cost. The main advantage of this method
is a closed form solution for W, which depends
only on the uncorrupted inputs (xn) and the drop-
out probability. Several Marginalized Denoising
Autoencoders (MDA) can be then stacked together
to create a deep architecture where the representa-
tions of the (l − 1)th layer serves as inputs to the
lth layer1.

In the case of domain adaptation, the idea is to
apply MDA (or sMDA) to the union of unlabeled
source Xs and target Xt examples. Then, a stan-
dard learning algorithm such as SVM or Logistic
Regression is trained on the labeled source data us-
ing the new feature representations (xs

nW) which
captures better the correlation between the source
and target data.

In Figure 1, we illustrate the effect of the MDA;
it shows the relation between the word log docu-
ment frequency (x-axes) and the expansion mass
defined as the total mass of words transformed
into word i by MDA and represented by

∑
j Wji.

We can see that the mapping W learned by MDA
is heavily influenced by frequent words. In fact,
MDA behaves similarly to document expansion
on text documents: it adds new words with a

1Between layers, in general, a non linear function such as
tanh or ReLU is applied.

Figure 1: Relation between log document fre-
quency and expansion mass. One dot represents
one word.

very small frequency and sometimes words with a
small negative weight. As the figure shows, MDA
promotes common words (despite the use of tf-idf
weighting scheme) that are frequent both in source
and target domains and hence aims to be domain
invariant.

This is in line with the work of (Ganin et al.,
2015). To strengthen the invariance effect, they
suggested a deep neural architecture which em-
beds a domain prediction task in intermediate lay-
ers, in order to capture domain invariant features.
In this paper we go a step further and refine this
argument by claiming that we want to be domain
invariant but also to be as close as possible to the
target domain distribution. We want to match the
target feature distribution because it is where the
classification takes place.

We therefore propose a regularization for the
denoising autoencoders, in particular for MDA,
with the aim to make source data resemble the tar-
get data and hence to ease the adaptation.

We describe here the case of two domains, but
it can be easily generalized to multiple domains.
Let D be the vector of size N indicating for each
document its domain, e.g. taking values of ’−1’
for source and ’+1’ for target examples. Let c be
a linear classifier represented as a d dimensional
vector trained to distinguish between source and
target, e.g. a ridge classifier that minimizes the loss
R(c, α) = ||D−Xc>||2 + α||c||2.

We guide the mapping W in such a way that
the denoised data points xW go towards the target
side, i.e. xWc> = 1 for both source and target
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samples. Hence, we can extend each term of the
loss (1) as follows:

||xn − x̃nmW||2 + λ||1− x̃nmWc>||2. (2)

The first term here represents the reconstruction
loss of the original input, like in MDA. In the sec-
ond term, x̃mnWc> is the domain classifier pre-
diction for the denoised objects forced to be close
to 1, the target domain indicator, and λ > 0.

Let X̄ be the concatenation ofM replicated ver-
sion of the original data X, and X̃ be the matrix
representation of the M corrupted versions. Tak-
ing into account the domain prediction term, the
loss can be written as:

LR(W) = ||X̄− X̃W||2 + λ||R̄− X̃Wc>||2,
(3)

where R is a vector of sizeN , indicating a desired
regularization objective, and R̄ its M -replicated
version. Loss (3) represents a generic form to cap-
ture three different ideas:

• If R = 1, the model incites the reconstructed
features moving towards target specific fea-
tures.

• If R = −D, the model aims to promote do-
main invariant features as in (Ganin et al.,
2015).

• If R = [0; 1], where 0 values are used for
source data, the model penalizes the source
specific features.

Learning the mapping W. (Chen et al., 2012)
observed that the random corruption from equa-
tion (1) could be marginalized out from the re-
construction loss, yielding a unique and optimal
solution. Furthermore, the mapping W can be ex-
pressed in closed form as W = PQ−1, with:

Qij =
[

Sijqiqj , if i 6= j,
Sijqi, if i = j,

Pij = Sijqj , (4)

where2 q = [1 − p, . . . , 1 − p] ∈ Rd , p is the
dropout probability, and S = XXT is the covari-
ance matrix of the uncorrupted data X.

The domain regularization term in (3) is
quadratic in W, the random corruption can still be

2In contrast to (Chen et al., 2012), we do not add a bias
feature so that the domain and MDA have the same dimen-
sionality. Experiments shown no impact on the performance.

marginalized out and the expectations obtained in
closed form. Indeed, the mapping W which mini-
mizes the expectation of 1

MLR(W) is the solution
of the following linear system3:

(P + λ(1− p)X>Rc>)(I + λcc>)−1 = QW.
(5)

In (5), parameter λ controls the effect of the
proposed target regularization in the MDA and
the regularization on c is controlled by parame-
ter α. This approach preserves the good properties
of MDA, i.e. the model is unsupervised and can
be computed in closed form. In addition, we can
easily stack several layers together and add non-
linearities between layers.

3 Experiments

We conduct unsupervised domain adaptation ex-
periments on two standard collections: the Ama-
zon reviews (Blitzer et al., 2011) and the 20News-
group (Pan and Yang, 2010) datasets.

From the Amazon dataset we consider the four
most used domains: dvd (D), books (B), electron-
ics (E) and kitchen (K), and adopt the settings of
(Ganin et al., 2015) with the 5000 most frequent
common features selected for each adaptation task
and a tf-idf weighting. We then use the Logistic
Regression (LR) to classify the reviews.

Our previous experiments with MDA revealed
that the MDA noise probability p needs to be set
to high values (e.g. 0.9). A possible explanation is
that document representations are already sparse
and adding low noise has no effect on the features
already equal to zero. Figure 2 shows the average
accuracy for the twelve Amazon tasks, when we
vary the noise probability p.

In addition, we observed that a single layer
with a tanh activation function is sufficient to
achieve top performance; stacking several layers
and/or concatenating the outputs with the original
features yields no improvement but increases the
computational time.

The dropout probability p is fixed to 0.9 in all
experiments, for both the MDA baseline and our
model; we test the performance with a single layer
and a tanh activation function. Stacking several
layers is left for future experiments. Parameters
α and λ are tuned on a grid of values4 by cross
validation on the source data. In other words, we

3The derivation is not included due to space limitation.
4α ∈ [.1, 1, 50, 100, 150, 200, 300], λ ∈ [.01, .1, 1, 10].
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Figure 2: Impact of the noise parameter p on the
average accuracy for the 12 Amazon adaptation
tasks. Both MDA and its extension with the reg-
ularization (MDA+TR) perform better with a high
dropout-out noise. Here MDA+TR is run with
fixed parameters α = 100 and λ = 1.

select the LR parameters and the parameters α, λ
by cross validating the classification results using
only the ”reconstructed” source data; for estimat-
ing W we used the source with an unlabeled tar-
get set (excluded at test time). This corresponds
to the setting used in (Ganin et al., 2015), with the
difference that they use SVM and reverse cross-
validation5.

Table 3 shows the results for twelve adapta-
tion tasks on the Amazon review dataset for the
four following methods. Columns 1 and 2 show
the LR classification results on the target set for
the single layer MDA and the proposed target
regularized MDA (MDA+TR). Column 3 reports
the SVM result on the target from (Ganin et al.,
2015). They used a 5 layers sMDA where the
5 outputs are concatenated with input to generate
30,000 features, on which the SVM is then trained
and tested (G-sMDA). Finally, column 4 shows
the current state of the art results obtained with
Domain-Adversarial Training of Neural Networks
(DA NN) instead of SVM (Ganin et al., 2015).

Despite a single layer and LR trained on the
source only, the MDA baseline (80.15% on aver-
age) is very close to the G-sMDA results obtained
with 5 layer sMDA and 6 times larger feature set
(80.18%). Furthermore, adding the target regular-
ization allows to significantly outperform in many

5It consists in using self training on the target validation
set and calibrating parameters on a validation set from the
source labeled data.

S T MDA MDA+TR G-sMDA DA NN
D B 81.1 81.4 82.6 82.5
D K 84.1 85.3 84.2 84.9
D E 76.0 81.1 73.9 80.9
B D 82.7 81.7 83.0 82.9
B K 79.8 81.8 82.1 84.3
B E 75.9 79.3 76.6 80.4
K D 78.5 79.0 78.8 78.9
K B 77.0 77.0 76.9 71.8
K E 87.2 87.4 86.1 85.6
E D 78.5 78.3 77.0 78.1
E B 73.3 75.1 76.2 77.4
E K 87.7 88.2 84.7 88.1

Avg 80.15 81.27 80.18 81.32

Table 1: Accuracies of MDA, MDA+TR, G-
sMDA and DA NN on the Amazon review dataset.
Underline indicates improvement over the base-
line MDA, bold indicates the highest value.

cases the baseline and the state of the art DA NN.
We note that our method has a much lower cost,
as it uses the closed form solution for the recon-
struction and a simple LR on the reconstructed
source data, instead of domain-adversarial train-
ing of deep neural networks.

We also look at the difference between the pre-
viously introduced expansion mass for the MDA
and MDA+TR. In the adaptation task from dvd (D)
to electronics (E), the words for which the mass
changed the most are the following6: worked,
to use, speakers, i have, work, mouse, bought, ca-
ble, works, quality, unit, ipod, price, number ,
sound, card, phone, use, product, my. These words
are mostly target specific and the results confirm
that they get promoted by the new model.

Our model favors features which are more likely
to appear in target examples, while DA NN seeks
domain invariant features. Despite this difference,
the two approaches achieve similar results. It is
surprising, and we argue that eventually both ap-
proaches penalize source specific features. To test
this hypothesis, we use MDA with R = [0; 1]
(case 3) that penalizes source specific features and
we obtain again similar performances.

Finally, we test our approach on the 20News-
group adaptation tasks described in (Pan and
Yang, 2010). We first filter out rare words and
keep at most 10,000 features. Then, we apply both
MDA and MDA+TR as above. Table 3 shows re-
sults for ten adaptation tasks. As we can see, in all
cases the target regularization (MDA+TR) helps
improve the classification accuracy.

6In ascending order of the differences.
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Task MDA MDA+TR
comp vs sci 73.69 73.38
sci vs comp 69.39 69.92
rec vs talk 72.54 85.10
talk vs rec 72.30 76.22
rec vs sci 77.25 82.70
sci vs rec 79.95 80.00
sci vs talk 78.94 79.26
talk vs sci 77.17 77.91
comp vs rec 89.84 89.66
rec vs comp 89.92 90.29
Avg 78.1 80.40

Table 2: Accuracies of MDA and MDA+TR on
20Newsgroup adaptation tasks.

4 Conclusion

This paper proposes a domain adaptation regu-
larization for denoising autoencoders, in particu-
lar for marginalized ones. One limitation of our
model is the linearity assumption for the domain
classifier, but for textual data, linear classifiers are
the state of the art technique. As new words and
expressions become more frequent in a new do-
main, the idea of using the dropout regularization
that forces the reconstruction of initial objects to
resemble target domain objects is rewarding. The
main advantage of the new model is in the closed
form solution. It is also unsupervised, as it does
not require labeled target examples and yields per-
formance results comparable with the current state
of the art.
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Abstract

Recently, neural network approaches for
parsing have largely automated the combi-
nation of individual features, but still rely
on (often a larger number of) atomic fea-
tures created from human linguistic intu-
ition, and potentially omitting important
global context. To further reduce fea-
ture engineering to the bare minimum, we
use bi-directional LSTM sentence repre-
sentations to model a parser state with
only three sentence positions, which au-
tomatically identifies important aspects of
the entire sentence. This model achieves
state-of-the-art results among greedy de-
pendency parsers for English. We also in-
troduce a novel transition system for con-
stituency parsing which does not require
binarization, and together with the above
architecture, achieves state-of-the-art re-
sults among greedy parsers for both En-
glish and Chinese.

1 Introduction

Recently, neural network-based parsers have be-
come popular, with the promise of reducing the
burden of manual feature engineering. For ex-
ample, Chen and Manning (2014) and subsequent
work replace the huge amount of manual fea-
ture combinations in non-neural network efforts
(Nivre et al., 2006; Zhang and Nivre, 2011) by
vector embeddings of the atomic features. How-
ever, this approach has two related limitations.
First, it still depends on a large number of care-
fully designed atomic features. For example, Chen
and Manning (2014) and subsequent work such as
Weiss et al. (2015) use 48 atomic features from
Zhang and Nivre (2011), including select third-
order dependencies. More importantly, this ap-
proach inevitably leaves out some nonlocal in-
formation which could be useful. In particular,

though such a model can exploit similarities be-
tween words and other embedded categories, and
learn interactions among those atomic features, it
cannot exploit any other details of the text.

We aim to reduce the need for manual induction
of atomic features to the bare minimum, by us-
ing bi-directional recurrent neural networks to au-
tomatically learn context-sensitive representations
for each word in the sentence. This approach al-
lows the model to learn arbitrary patterns from the
entire sentence, effectively extending the general-
ization power of embedding individual words to
longer sequences. Since such a feature representa-
tion is less dependent on earlier parser decisions,
it is also more resilient to local mistakes.

With just three positional features we can build
a greedy shift-reduce dependency parser that is on
par with the most accurate parser in the published
literature for English Treebank. This effort is sim-
ilar in motivation to the stack-LSTM of Dyer et al.
(2015), but uses a much simpler architecture.

We also extend this model to predict phrase-
structure trees with a novel shift-promote-adjoin
system tailored to greedy constituency parsing,
and with just two more positional features (defin-
ing tree span) and nonterminal label embeddings
we achieve the most accurate greedy constituency
parser for both English and Chinese.

2 LSTM Position Features

f1;b1

w1;t1

f2;b2

w2;t2

f3;b3

w3;t3

f4;b4

w4;t4

f5;b5

w5;t5

Figure 1: The sentence is modeled with an LSTM
in each direction whose input vectors at each time
step are word and part-of-speech tag embeddings.
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The central idea behind this approach is exploiting
the power of recurrent neural networks to let the
model decide what apsects of sentence context are
important to making parsing decisions, rather than
relying on fallible linguistic information (which
moreover requires leaving out information which
could be useful). In particular, we model an in-
put sentence using Long Short-Term Memory net-
works (LSTM), which have made a recent resur-
gence after being initially formulated by Hochre-
iter and Schmidhuber (1997).

The input at each time step is simply a vector
representing the word, in this case an embedding
for the word form and one for the part-of-speech
tag. These embeddings are learned from random
initialization together with other network param-
eters in this work. In our initial experiments, we
used one LSTM layer in each direction (forward
and backward), and then concatenate the output
at each time step to represent that sentence posi-
tion: that word in the entire context of the sen-
tence. This network is illustrated in Figure 1.

h1

f2
1 ;b21

f1
1 ;b11

w1;t1

h2

f2
2 ;b22

f1
2 ;b12

w2;t2

h3

f2
3 ;b23

f1
3 ;b13

w3;t3

h4

f2
4 ;b24

f1
4 ;b14

w4;t4

h5

f2
5 ;b25

f1
5 ;b15

w5;t5

Figure 2: In the 2-Layer architecture, the output
of each LSTM layer is concatenated to create the
positional feature vector.

It is also common to stack multiple such LSTM
layers, where the output of the forward and back-
ward networks at one layer are concatenated to
form the input to the next. We found that parsing
performance could be improved by using two bi-
directional LSTM layers in this manner, and con-
catenating the output of both layers as the posi-
tional feature representation, which becomes the
input to the fully-connected layer. This architec-

input: w0 . . . wn−1

axiom 〈ε, 0〉: ∅

shift
〈S, j〉 : A

〈S|j, j + 1〉 : A
j < n

rex
〈S|s1|s0, j〉 : A

〈S|s0, j〉 : A ∪ {s1xs0}
goal 〈s0, n〉: A

Figure 3: The arc-standard dependency parsing
system (Nivre, 2008) (rey omitted). Stack S is
a list of heads, j is the start index of the queue,
and s0 and s1 are the top two head indices on S.

dependency constituency

positional s1, s0, q0 s1, s0, q0, s1.left, s0.left

labels - s0.{left, right, root, head}
s1.{left, right, root, head}

Table 1: Feature templates. Note that, remarkably,
even though we do labeled dependency parsing,
we do not include arc label as features.

ture is shown in Figure 2.
Intuitively, this represents the sentence position

by the word in the context of the sentence up to
that point and the sentence after that point in the
first layer, as well as modeling the “higher-order”
interactions between parts of the sentence in the
second layer. In Section 5 we report results us-
ing only one LSTM layer (“Bi-LSTM”) as well as
with two layers where output from each layer is
used as part of the positional feature (“2-Layer Bi-
LSTM”).

3 Shift-Reduce Dependency Parsing

We use the arc-standard system for dependency
parsing (see Figure 4). By exploiting the LSTM
architecture to encode context, we found that we
were able to achieve competitive results using only
three sentence-position features to model parser
state: the head word of each of the top two trees
on the stack (s0 and s1), and the next word on the
queue (q0); see Table 1.

The usefulness of the head words on the stack
is clear enough, since those are the two words that
are linked by a dependency when taking a reduce
action. The next incoming word on the queue is
also important because the top tree on the stack
should not be reduced if it still has children which
have not yet been shifted. That feature thus allows
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input: w0 . . . wn−1

axiom 〈ε, 0〉: ∅

shift
〈S, j〉

〈S | j, j + 1〉 j < n

pro(X)
〈S | t, j〉
〈S | X(t), j〉

adjx
〈S | t | X(t1...tk), j〉
〈S | X(t, t1...tk), j〉

goal 〈s0, n〉
Figure 4: Our shift-promote-adjoin system for
constituency parsing (adjy omitted).

the model to learn to delay a right-reduce until the
top tree on the stack is fully formed, shifting in-
stead.

3.1 Hierarchical Classification

The structure of our network model after com-
puting positional features is fairly straightforward
and similar to previous neural-network parsing ap-
proaches such as Chen and Manning (2014) and
Weiss et al. (2015). It consists of a multilayer
perceptron using a single ReLU hidden layer fol-
lowed by a linear classifier over the action space,
with the training objective being negative log soft-
max.

We found that performance could be improved,
however, by factoring out the decision over struc-
tural actions (i.e., shift, left-reduce, or right-
reduce) and the decision of which arc label to as-
sign upon a reduce. We therefore use separate
classifiers for those decisions, each with its own
fully-connected hidden and output layers but shar-
ing the underlying recurrent architecture. This
structure was used for the results reported in Sec-
tion 5, and it is referred to as “Hierarchical Ac-
tions” when compared against a single action clas-
sifier in Table 3.

4 Shift-Promote-Adjoin
Constituency Parsing

To further demonstrate the advantage of our idea
of minimal features with bidirectional sentence
representations, we extend our work from depen-
dency parsing to constituency parsing. However,
the latter is significantly more challenging than the
former under the shift-reduce paradigm because:

S

VP

NP

5sports
NNS

6

3like
VBP

4 7
NP

1I
PRP

2

9 8
1shift (I) 6pro (NP)
2pro (NP) 7adjy
3shift (like) 8pro (S)
4pro (VP) 9adjx
5shift (sports)

Figure 5: Shift-Promote-Adjoin parsing example.
Upward and downward arrows indicate promote
and (sister-)adjunction actions, respectively.

• we also need to predict the nonterminal labels

• the tree is not binarized (with many unary
rules and more than binary branching rules)

While most previous work binarizes the con-
stituency tree in a preprocessing step (Zhu et
al., 2013; Wang and Xue, 2014; Mi and Huang,
2015), we propose a novel “Shift-Promote-
Adjoin” paradigm which does not require any bi-
nariziation or transformation of constituency trees
(see Figure 5). Note in particular that, in our
case only the Promote action produces a new tree
node (with a non-terminal label), while the Ad-
join action is the linguistically-motivated “sister-
adjunction” operation, i.e., attachment (Chiang,
2000; Henderson, 2003). By comparison, in pre-
vious work, both Unary-X and Reduce-L/R-X ac-
tions produce new labeled nodes (some of which
are auxiliary nodes due to binarization). Thus our
paradigm has two advantages:

• it dramatically reduces the number of possi-
ble actions, from 3X + 1 or more in previ-
ous work to 3 + X , where X is the number
of nonterminal labels, which we argue would
simplify learning;

• it does not require binarization (Zhu et al.,
2013; Wang and Xue, 2014) or compression
of unary chains (Mi and Huang, 2015)

There is, however, a more closely-related “shift-
project-attach” paradigm by Henderson (2003).
For the example in Figure 5 he would use the fol-
lowing actions:

shift(I), project(NP), project(S), shift(like),
project(VP), shift(sports), project(NP), attach,
attach.
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The differences are twofold: first, our Promote ac-
tion is head-driven, which means we only promote
the head child (e.g., VP to S) whereas his Project
action promotes the first child (e.g., NP to S); and
secondly, as a result, his Attach action is always
right-attach whereas our Adjoin action could be ei-
ther left or right. The advantage of our method is
its close resemblance to shift-reduce dependency
parsing, which means that our constituency parser
is jointly performing both tasks and can produce
both kinds of trees. This also means that we use
head rules to determine the correct order of gold
actions.

We found that in this setting, we did need
slightly more input features. As mentioned, node
labels are necessary to distinguish whether a tree
has been sufficiently promoted, and are helpful in
any case. We used 8 labels: the current and im-
mediate predecessor label of each of the top two
stacks on the tree, as well as the label of the left-
and rightmost adjoined child for each tree. We also
found it helped to add positional features for the
leftmost word in the span for each of those trees,
bringing the total number of positional features to
five. See Table 1 for details.

5 Experimental Results

We report both dependency and constituency pars-
ing results on both English and Chinese.

All experiments were conducted with minimal
hyperparameter tuning. The settings used for
the reported results are summarized in Table 6.
Networks parameters were updated using gradi-
ent backpropagation, including backpropagation
through time for the recurrent components, using
ADADELTA for learning rate scheduling (Zeiler,
2012). We also applied dropout (Hinton et al.,
2012) (with p = 0.5) to the output of each LSTM
layer (separately for each connection in the case of
the two-layer network).

We tested both types of parser on the Penn Tree-
bank (PTB) and Penn Chinese Treebank (CTB-5),
with the standard splits for each of training, de-
velopment, and test sets. Automatically predicted
part of speech tags with 10-way jackknifing were
used as inputs for all tasks except for Chinese de-
pendency parsing, where we used gold tags, fol-
lowing the traditions in literature.

5.1 Dependency Parsing: English & Chinese

Table 2 shows results for English Penn Tree-
bank using Stanford dependencies. Despite the
minimally designed feature representation, rela-
tively few training iterations, and lack of pre-
computed embeddings, the parser performed on
par with state-of-the-art incremental dependency
parsers, and slightly outperformed the state-of-
the-art greedy parser.

The ablation experiments shown in the Table 3
indicate that both forward and backward contexts
for each word are very important to obtain strong
results. Using only word forms and no part-of-
speech input similarly degraded performance.

Parser
Dev Test

UAS LAS UAS LAS
C & M 2014 92.0 89.7 91.8 89.6
Dyer et al. 2015 93.2 90.9 93.1 90.9
Weiss et al. 2015 - - 93.19 91.18
+ Percept./Beam - - 93.99 92.05
Bi-LSTM 93.31 91.01 93.21 91.16
2-Layer Bi-LSTM 93.67 91.48 93.42 91.36

Table 2: Development and test set results for shift-
reduce dependency parser on Penn Treebank using
only (s1, s0, q0) positional features.

Parser UAS LAS
Bi-LSTM Hierarchical† 93.31 91.01
† - Hierarchical Actions 92.94 90.96
† - Backward-LSTM 91.12 88.72
† - Forward-LSTM 91.85 88.39
† - tag embeddings 92.46 89.81

Table 3: Ablation studies on PTB dev set (wsj
22). Forward and backward context, and part-of-
speech input were all critical to strong performace.

Figure 6 compares our parser with that of Chen
and Manning (2014) in terms of arc recall for var-
ious arc lengths. While the two parsers perform
similarly on short arcs, ours significantly outpe-
forms theirs on longer arcs, and more interestingly
our accuracy does not degrade much after length
6. This confirms the benefit of having a global
sentence repesentation in our model.

Table 4 summarizes the Chinese dependency
parsing results. Again, our work is competitive
with the state-of-the-art greedy parsers.
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Figure 6: Recall on dependency arcs of various
lengths in PTB dev set. The Bi-LSTM parser is
particularly good at predicting longer arcs.

Parser
Dev Test

UAS LAS UAS LAS
C & M 2014 84.0 82.4 83.9 82.4
Dyer et al. 2015 87.2 85.9 87.2 85.7
Bi-LSTM 85.84 85.24 85.53 84.89
2-Layer Bi-LSTM 86.13 85.51 86.35 85.71

Table 4: Development and test set results for shift-
reduce dependency parser on Penn Chinese Tree-
bank (CTB-5) using only (s1, s0, q0) position fea-
tures (trained and tested with gold POS tags).

5.2 Constituency Parsing: English & Chinese

Table 5 compares our constituency parsing re-
sults with state-of-the-art incremental parsers. Al-
though our work are definitely less accurate than
those beam-search parsers, we achieve the highest
accuracy among greedy parsers, for both English
and Chinese.1,2

Parser b
English Chinese

greedy beam greedy beam

Zhu et al. (2013) 16 86.08 90.4 75.99 85.6
Mi & Huang (05) 32 84.95 90.8 75.61 83.9
Vinyals et al. (05) 10 - 90.5 - -
Bi-LSTM - 89.75 - 79.44 -
2-Layer Bi-LSTM - 89.95 - 80.13 -

Table 5: Test F-scores for constituency parsing on
Penn Treebank and CTB-5.

1The greedy accuracies for Mi and Huang (2015) are from
Haitao Mi, and greedy results for Zhu et al. (2013) come from
duplicating experiments with code provided by those authors.

2The parser of Vinyals et al. (2015) does not use an ex-
plicit transition system, but is similar in spirit since generat-
ing a right bracket can be viewed as a reduce action.

Dependency Constituency
Embeddings
Word (dims) 50 100
Tags (dims) 20 100
Nonterminals (dims) - 100
Pretrained No No
Network details
LSTM units (each direction) 200 200
ReLU hidden units 200 / decision 1000
Training
Training epochs 10 10
Minibatch size (sentences) 10 10
Dropout (LSTM output only) 0.5 0.5
L2 penalty (all weights) none 1× 10−8

ADADELTA ρ 0.99 0.99
ADADELTA ε 1× 10−7 1× 10−7

Table 6: Hyperparameters and training settings.

6 Related Work

Because recurrent networks are such a natural fit
for modeling languages (given the sequential na-
ture of the latter), bi-directional LSTM networks
are becoming increasingly common in all sorts
of linguistic tasks, for example event detection in
Ghaeini et al. (2016). In fact, we discovered after
submission that Kiperwasser and Goldberg (2016)
have concurrently developed an extremely similar
approach to our dependency parser. Instead of ex-
tending it to constituency parsing, they also apply
the same idea to graph-based dependency parsing.

7 Conclusions

We have presented a simple bi-directional LSTM
sentence representation model for minimal fea-
tures in both incremental dependency and incre-
mental constituency parsing, the latter using a
novel shift-promote-adjoint algorithm. Experi-
ments show that our method are competitive with
the state-of-the-art greedy parsers on both parsing
tasks and on both English and Chinese.
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Abstract

We present a novel technique for train-
ing translation models for statistical ma-
chine translation by aligning source sen-
tences to their oracle-BLEU translations.
In contrast to previous approaches which
are constrained to phrase training, our
method also allows the re-estimation of re-
ordering models along with the translation
model. Experiments show an improve-
ment of up to 0.8 BLEU for our approach
over a competitive Arabic-English base-
line trained directly on the word-aligned
bitext using heuristic extraction. As an ad-
ditional benefit, the phrase table size is re-
duced dramatically to only 3% of the orig-
inal size.

1 Introduction

In phrase-based SMT, the phrase pairs in the trans-
lation model are traditionally trained by applying
a heuristic extraction method (Och and Ney, 2000)
which extracts phrase pairs based on consistency
of word alignments from a word-aligned bilingual
training data. The probabilities of the translation
model are then calculated based on the relative
frequencies of the extracted phrase pairs.

A notable shortcoming of this approach is that
the translation model probabilities thus calculated
from the training bitext can be unintuitive and un-
reliable (Marcu and Wong, 2002; Foster et al.,
2006) as they reflect only the distribution over the
phrase pairs observed in the training data.

However, from an SMT perspective it is im-
portant that the models reflect probability distri-
butions which are preferred by the decoding pro-
cess, i.e., phrase translations which are likely to
be used frequently to achieve better translations
should get higher scores and phrases which are

less likely to be used should get low scores. In ad-
dition, the heuristic extraction algorithm generates
all possible, consistent phrases including overlap-
ping phrases. This means that translation proba-
bilities are distributed over a very large number of
phrase translation candidates most of which never
lead to the best possible translation of a sentence.

In this paper, we propose a novel solution which
is to re-estimate the models from the best BLEU
translation of each source sentence in the bitext.
An important contribution of our approach is that
unlike previous approaches such as forced align-
ment (Wuebker et al., 2010), reordering and lan-
guage models can also be re-estimated.

2 Related Work

The forced alignment technique of Wuebker et al.
(2010) forms the main motivation for our work. In
forced alignment, given a sentence pair (F,E), a
decoder determines the best phrase segmentation
and alignment which will result in a translation of
F into E. The best segmentation is defined as the
one which maximizes the probability of translat-
ing the source sentence into the given target sen-
tence. At the end, the phrase table is re-estimated
using the phrase pair segmentations obtained from
forced decoding. Thus forced alignment is a re-
estimation technique where translation probabil-
ities are calculated based on their frequency in
best-scoring hypotheses instead of the frequencies
of all possible phrase pairs in the bitext. However,
one limitation of forced alignment is that only the
phrase translation model can be re-estimated since
it is restricted to align the source sentence to the
given target reference, thus fixing the choice of re-
ordering decisions.

A similar line of work is proposed by Lambert
et al. (2011) and Schwenk et al. (2011) who use a
self-enhancing strategy to utilize additional mono-
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(c)

Figure 1: (a) : Word alignment from EM training for Arabic (transliterated) -English sentence pair. (b):
Phrase segmentations and alignments from forced decoding. (c): Phrase segmentations and alignments
from oracle BLEU re-estimation. Blocks represent phrase boundaries.

lingual source language data by aligning it to its
target language translation obtained by using an
SMT system to rank sentence translation proba-
bilities. However, the main focus of their work
is translation model adaptation by augmenting the
bitext with additional training data and not the re-
estimation of the translation models trained on the
parallel data.

In this work, we propose that aligning source
sentences to their oracle BLEU translations pro-
vides a more realistic estimate of the models from
the decoding perspective instead of aligning them
to high quality human translations as in forced de-
coding.

Another relevant line of research relates tun-
ing (weight optimisation), where our work lies
between forced decoding (Wuebker et al., 2010)
and the bold updating approach of (Liang et al.,
2006). However, our approach specifically pro-
poses a novel method for training models using
oracle BLEU translations.

3 Model Re-estimation

The idea of our approach is to re-estimate the
models with n-best oracle-BLEU translations and
sentence alignments resulting from decoding the
source sentence. Given a source and its reference
translation, the oracle-BLEU translation is defined
as the translation output with highest BLEU score.
Oracle BLEU translations have been previously
used for different analytical purposes in SMT (Sri-
vastava et al., 2011; Dreyer et al., 2007; Wis-
niewski et al., 2010).

Figure 1 shows example of word alignment ob-
tained from EM training, segmentations and align-
ment obtained from forced decoding and oracle-

BLEU re-estimation.

3.1 Oracle BLEU

Ideally, one would like to re-estimate translation
models directly from the n-best BLEU transla-
tions. However there are two problems in calcu-
lating BLEU for individual sentence: First, as dis-
cussed in (Chiang et al., 2008), BLEU is not de-
signed to be used for sentences in isolation where
it can exhibit rather volatile behavior. Hence, fol-
lowing their work and (Watanabe et al., 2007), we
calculate BLEU for a sentence in the context of a
exponentially-weighted moving average of previ-
ous translations. We briefly discuss the computa-
tion from (Chiang et al., 2008) as follows: Given
a source sentence f, and its reference translation
r, for an n-best translation e∗, let c(e) be defined
as the vector of target length |e|, source length
|f|, reference length |r|, and the number of n-gram
matches between e and r, then two pseudo docu-
ment parameters O and Of are defined as:

O← 0.9 · (O + c(e∗)),Of ← 0.9 · (Of + |f |) (1)

O is an exponentially-weighted moving average
of the vectors from previous sentences and Of is
the correction of source length with respect to the
previous sentences. Then the BLEU score for a
sentence pairs (f,r) and translation e∗ is defined
as:

B(e; f, r) = (Of + |f |) ·BLEU(O + c(e∗; r)) (2)

The second problem as discussed in Chiang et
al. (2008) is that due to noise in the training data,
a high-BLEU translation may contain certain rules
which are unlikely to be used by the model. Hence
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following them, we use a weighted combination of
BLEU and model score to select the n-best list:

e∗ = argmaxe(B(e)− µ · (B(e)− h(e).w)) (3)

where B(e) and h(e) are the BLEU and model
scores of the candidate translation and w is the
optimised weights for the models, µ controls the
preference between BLEU and model scores to
determine oracle translations. We set µ=0.5 to
balance between BLEU scores almost as high as
the max-BLEU translations, while staying close
to translations preferred by the model. We also
conducted a set of experiments with µ=0 (pure or
absolute BLEU) in order to verify the necessity
for the optimal combination. The lower scores
for this setting as compared to the baseline veri-
fied that using only the best BLEU translation in-
deed degrades the performance of the re-estimated
models. This finding for the optimal value of µ
has also been established in (Chiang et al., 2008)
through a series of experiments.

3.2 Training

For obtaining the oracle-BLEU translations, we
first train the translation models from the bitext
using the standard pipeline of word alignment
and heuristic extraction. Along with the phrase
translation and language models, we also train
a bilingual language model (BiLM) (Niehues et
al., 2011; Garmash and Monz, 2014), as well as
lexicalized (Tillman, 2004) and hierarchical re-
ordering models (Galley and Manning, 2008). We
use a BiLM specifically as an instance of a re-
ordering model in order to determine the effect of
re-estimating re-ordering decisions from oracle-
BLEU translations.

We use the decoder trained on these models to
translate the training bitext. Along with the 1-
best translation (based on model scores), we also
store search graphs or lattices generated during
the translations process. Using the target sen-
tences, we convert the translation lattice to an
isomorphic oracle-BLEU lattice which has the
same set of nodes but the edges represent BLEU
score differences corresponding to each transition.
Finally, we extract n-best candidate translations
from the graphs ranked on BLEU score as de-
fined in Equation (3). Using the word alignments
from the initial phrase table, we extract the align-
ments between each source sentence and each of
their n-best oracle-BLEU translations. Finally, we

re-train the phrase translations, re-ordering and
BiLM on these translations and alignments.

3.3 Avoiding over-fitting
Re-estimation of the translation models from the
n-best translation of the bitext could re-enforce
the probabilities of the low frequency phrase pairs
in the re-estimated models leading to over-fitting.
Within forced decoding, Wuebker et al. (2010) ad-
dress this problem by using a leave-one-out ap-
proach where they modify the phrase translation
probabilities for each sentence pair by remov-
ing the counts of all phrases that were extracted
from that particular sentence. However, in our ap-
proach, we do not impose a constraint to produce
the exact translation, instead we use the highest
BLEU translations which may be very different
from the references. Thus it is not strictly nec-
essary to apply leave-one-out in our approach as
a solution to over-fitting. Instead, we handle the
problem by simply removing all the phrase pairs
below a threshold count which in our case is 2,

φinit = φbaseline − φC(e,f)<2 (4)

therefore removing phrase pairs with high proba-
bility but low frequency.

4 Experimental set up

Our experiments are carried out for an Arabic-
English parallel corpus of approximately 1 million
sentence pairs. We establish a baseline system by
training models on this bitext and then compare
this to a forced decoding implementation and to
oracle-BLEU re-estimation using the same bitext.

4.1 Baseline and forced decoding
The initial training corpus we use is a collection
of parallel sentences taken from OpenMT data
sources released by the LDC.

Phrase table, distortion models and the lexical
BiLM are trained with initial alignments obtained
using GIZA++ (Och and Ney, 2003). The En-
glish 5-gram target language model is trained with
Kneser-Ney smoothing on news data of nearly
1.6B tokens. We use an in-house phrase-based
SMT system similar to Moses. For all settings
in this paper, weights were optimized on NIST’s
MT04 data set using pairwise ranked optimization
(Hopkins and May, 2011).

For forced alignment we use the existing imple-
mentation within the Moses SMT toolkit (Koehn
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Baseline 50.1
n=1 n=10 n=100

PTre 50.1(0.0) 50.1(0.0) 50.0(-0.1)
PTin 50.7N(+0.6) 50.5N(+0.4) 50.0(-0.1)
BiLMre + PTin 50.9N(+0.8) 50.5N(+0.4) 49.6(-0.5)

Table 1: Performance of our oracle-BLEU re-
estimation with varying size n of n-best lists for
the MT09 test set. N/H indicates a statistically sig-
nificant gain/drop at p< 0.01 and M/O at p< 0.05.
Values in brackets show gains over the baseline.

et al., 2007) trained on the baseline phrase trans-
lation model. In order to increase the chances of
producing the exact reference, we follow Foster
and Kuhn (2012) and relax the standard decoding
parameters as follows: distortion limit=∞, stack
size=2000, beam width=10e-30, and no threshold
pruning of the translation model.

4.2 Oracle BLEU re-estimation
To obtain oracle-BLEU translations, we first train
an initial SMT system and use it to decode the
bitext. This system is identical to the baseline
system except for the removal of low-frequency
phrase pairs from the baseline phrase table as de-
scribed in Section 3.3. To obtain the n-best oracle-
BLUE translations, we experiment with differ-
ent values of n, where n ∈ {1, 10, 100}. From
these oracle-BLEU translations and alignments all
phrases that were used in the derivation of these n-
best sentences are extracted and the models are re-
estimated by re-calculating the translation proba-
bilities. Hierarchical and lexicalized re-ordering
models as well as the BiLM are re-trained using
the source sentences, oracle-BLEU translations
and word alignments. For testing the performance
of the re-estimated models, we tune different sys-
tems while replacing the baseline models with
the corresponding re-estimated models. We also
experiment with the interpolation of re-estimated
models with the respective baseline models. We
evaluate against 4 test sets: MT05, MT06, MT08,
and MT09. Case-insensitive 4-gram BLEU (Pa-
pineni et al., 2002) is used as evaluation metric.
Approximate randomization (Noreen., 1989; Rie-
zler and Maxwell, 2005) is used to detect statisti-
cally significant differences.

5 Results

We discuss the experimental results of our oracle-
BLEU re-estimation approach for different mod-

els and settings and provide a comparison with the
baseline (heuristic training) and forced alignment.

Re-estimated models with three different values
of n ∈ {1, 10, 100} were evaluated under three
settings: phrase table re-estimation, interpolation,
and BiLM re-estimation. The best improvements
over the baseline are obtained by using only 1-best
(n= 1) alignments as shown in Table 1. Surpris-
ingly, this is in contrast with forced decoding as
discussed in Wuebker et al. (2010), where the best
improvements are obtained for n = 100.

Table 2 provides a comparison between BLEU
improvements achieved by forced decoding (n =
100 best) and our oracle-BLEU re-estimation ap-
proach (n = 1 best) over the baseline for different
models. One can see in Table 2 that while phrase
table re-estimation drops substantially for forced
decoding for all test sets (up to -1.4 for MT09),
oracle-BLEU phrase table re-estimation shows ei-
ther slight improvements or negligible drops com-
pared to the baseline. For the linear interpola-
tion of the re-estimated phrase table with the base-
line, forced decoding shows only a slight improve-
ment for MT06, MT08 and MT09 and still suffers
from a substantial drop for MT05. On the other
hand, oracle-BLEU re-estimation shows consis-
tent improvements for all test sets with a maxi-
mum gain of up to +0.7 for MT06. It is impor-
tant to note here that although linear interpolation
extinguishes the advantage of a smaller phrase ta-
ble size obtained by re-estimation, the improve-
ment achieved by interpolation for oracle-BLEU
re-estimation are significantly higher as compared
to forced decoding.

An important novelty of oracle-BLEU re-
estimation is that it also allows for re-training of
other models alongside the phrase table. Here
we provide the results for the re-estimation of
a BiLM. For all test sets, BiLM re-estimation
provides additional improvements over simple
phrase table interpolation, demonstrating that re-
estimation of re-ordering models can further im-
prove translation performance. The last row of
Table 2 shows that the re-estimated BiLM on its
own adds BLEU improvement of up to +0.5 (for
MT09). The highest BLEU improvement of +0.8
is achieved by using a re-estimated BiLM and an
interpolated phrase table. Note that re-estimation
of BiLM or re-ordering models is not possible for
forced decoding due to the constraint of having to
match the exact reference. For an additional anal-
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MT05 MT06 MT08 MT09
Baseline 58.5 47.9 47.3 50.1

FD OB FD OB FD OB FD OB
PTre 57.4H(-1.1) 58.74(+0.2) 46.3(-0.7) 47.8H(-0.1) 46.1H(-1.2) 47.44(+0.1) 48.7H(-1.4) 50.1(0.0)
PTin 58.2O(-0.3) 58.8N(+0.3) 48.0(+0.1) 48.6N(+0.7) 47.5(+0.2) 47.7N(+0.4) 50.44(+0.3) 50.7N(+0.6)
PTin+ BiLMre - 59.2N(+0.7) - 48.5N(+0.6) - 47.7N(+0.4) - 50.9N(+0.8)
PTbase + BiLMre - 58.6(+0.1) - 48.2(+0.3) - 47.2H(-0.1) - 50.6(+0.5)

Table 2: BLEU scores for Forced decoding and Oracle BLEU re-estimation. PTre/in = Phrase table
re-estimation/interpolation/baseline, PTbase = Baseline Phrase table, BiLMre = BiLM re-estimation,
FD=Forced decoding, OB=oracle-BLEU.

TEST
Baseline 51.0

FDLO OB
PTre 50.7O(-0.3) 51.0 (0.0)
PTin 51.5N(+0.5) 51.5N(+0.5)
PTin + BiLMre - 51.6N(+0.6)

Table 3: BLEU scores for Oracle-Bleu and Forced
decoding with leave-one-out against concatena-
tion of MT03, MT05-MT09.

(% of baseline)
OB100 5.07
OB10 4.16
OB1 3.28
FD 27.71
FDLO 7.6

Table 4: Phrase table sizes compared to base-
line for Oracle-BLUE re-estimation and Forced
decoding for different n-best list sizes, FDLO =
Forced decoding with leave-one-out.

ysis, we experimented with the interpolation of
both the re-estimated phrase table (forced decod-
ing and oracle-BLEU) with the baseline. How-
ever, improvements achieved with this interpola-
tion did not surpass the best result obtained for the
oracle-BLEU re-estimation.

Additionally, we also compare oracle-BLEU
re-estimation to forced decoding with leave-one-
out (Wuebker et al., 2010) by evaluating both
on a concatenation of 5 test sets (MT03, MT05-
MT09). As shown in Table 3, even with leave-
one-out, forced decoding performance drops be-
low the baseline by -0.3 BLEU. In contrast, phrase
tables re-estimated from oracle-BLEU translation
achieves the same performance as the baseline.
When interpolated with the baseline phrase ta-
ble, both approaches show significant improve-
ments over the baseline. This implies that only
in combination with the original phrase table does

forced-decoding with leave-one-out outperform
the baseline. On the other hand, oracle-BLEU
re-estimation by its own not only performs bet-
ter than forced decoding, but also gives a perfor-
mance equal to forced decoding with leave-one-
out when interpolated with baseline phrase table.
In addition to the BLEU improvements, our ap-
proach also results in a re-estimated phrase table
with a significantly reduced size as compared to
the baseline. As shown in Table 4, out of all
the settings, the minimum phrase table size after
oracle-BLEU re-estimation is only 3.28% of base-
line (i.e., a reduction of 96.72%) while it is 7.6%
for forced decoding.

6 Conclusions

In this paper, we proposed a novel technique for
improving the reliability of SMT models by model
re-estimation from oracle-BLEU translations of
the source sentences in the bitext. Our experimen-
tal results show BLEU score improvements of up
to +0.8 points for oracle-BLEU re-estimation over
a strong baseline along with a substantially re-
duced size of the re-estimated phrase table (3.3%
of the baseline). An important novelty of our ap-
proach is that it also allows for the re-estimation
of re-ordering models which can yield further im-
provements in SMT performance as demonstrated
by the re-estimation of a BiLM.
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Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
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Abstract

We present a natural language genera-
tor based on the sequence-to-sequence ap-
proach that can be trained to produce natu-
ral language strings as well as deep syntax
dependency trees from input dialogue acts,
and we use it to directly compare two-step
generation with separate sentence plan-
ning and surface realization stages to a
joint, one-step approach.

We were able to train both setups success-
fully using very little training data. The
joint setup offers better performance, sur-
passing state-of-the-art with regards to n-
gram-based scores while providing more
relevant outputs.

1 Introduction

In spoken dialogue systems (SDS), the task of nat-
ural language generation (NLG) is to convert a
meaning representation (MR) produced by the di-
alogue manager into one or more sentences in a
natural language. It is traditionally divided into
two subtasks: sentence planning, which decides
on the overall sentence structure, and surface re-
alization, determining the exact word forms and
linearizing the structure into a string (Reiter and
Dale, 2000). While some generators keep this di-
vision and use a two-step pipeline (Walker et al.,
2001; Rieser et al., 2010; Dethlefs et al., 2013),
others apply a joint model for both tasks (Wong
and Mooney, 2007; Konstas and Lapata, 2013).

We present a new, conceptually simple NLG
system for SDS that is able to operate in both
modes: it either produces natural language strings
or generates deep syntax dependency trees, which
are subsequently processed by an external surface
realizer (Dušek et al., 2015). This allows us to
show a direct comparison of two-step generation,

where sentence planning and surface realization
are separated, with a joint, one-step approach.

Our generator is based on the sequence-to-
sequence (seq2seq) generation technique (Cho et
al., 2014; Sutskever et al., 2014), combined with
beam search and an n-best list reranker to suppress
irrelevant information in the outputs. Unlike most
previous NLG systems for SDS (e.g., (Stent et al.,
2004; Raux et al., 2005; Mairesse et al., 2010)), it
is trainable from unaligned pairs of MR and sen-
tences alone. We experiment with using much less
training data than recent systems based on recur-
rent neural networks (RNN) (Wen et al., 2015b;
Mei et al., 2015), and we find that our genera-
tor learns successfully to produce both strings and
deep syntax trees on the BAGEL restaurant infor-
mation dataset (Mairesse et al., 2010). It is able to
surpass n-gram-based scores achieved previously
by Dušek and Jurčı́ček (2015), offering a simpler
setup and more relevant outputs.

We introduce the generation setting in Section 2
and describe our generator architecture in Sec-
tion 3. Section 4 details our experiments, Section 5
analyzes the results. We summarize related work
in Section 6 and offer conclusions in Section 7.

2 Generator Setting

The input to our generator are dialogue acts (DA)
(Young et al., 2010) representing an action, such
as inform or request, along with one or more at-
tributes (slots) and their values. Our generator op-
erates in two modes, producing either deep syn-
tax trees (Dušek et al., 2012) or natural language
strings (see Fig. 1). The first mode corresponds to
the sentence planning NLG stage as it decides the
syntactic shape of the output sentence; the result-
ing deep syntax tree involves content words (lem-
mas) and their syntactic form (formemes, purple in
Fig. 1). The trees are linearized to strings using a
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t-tree
zone=en

X-name
n:subj

be
v:fin

Italian
adj:attr

restaurant
n:obj

river
n:near+X

inform(name=X-name,type=placetoeat,eattype=restaurant,
          area=riverside,food=Italian)

X is an Italian restaurant near the river.

Figure 1: Example DA (top) with the correspond-
ing deep syntax tree (middle) and natural language
string (bottom)

surface realizer from the TectoMT translation sys-
tem (Dušek et al., 2015). The second generator
mode joins sentence planning and surface realiza-
tion into one step, producing natural language sen-
tences directly.

Both modes offer their advantages: The two-
step mode simplifies generation by abstracting
away from complex surface syntax and morphol-
ogy, which can be handled by a handcrafted,
domain-independent module to ensure grammat-
ical correctness at all times (Dušek and Jurčı́ček,
2015), and the joint mode does not need to model
structure explicitly and avoids accumulating errors
along the pipeline (Konstas and Lapata, 2013).

3 The Seq2seq Generation Model

Our generator is based on the seq2seq approach
(Cho et al., 2014; Sutskever et al., 2014), a type
of an encoder-decoder RNN architecture operat-
ing on variable-length sequences of tokens. We
address the necessary conversion of input DA
and output trees/sentences into sequences in Sec-
tion 3.1 and then describe the main seq2seq com-
ponent in Section 3.2. It is supplemented by a
reranker, as explained in Section 3.3.

3.1 Sequence Representation of DA, Trees,
and Sentences

We represent DA, deep syntax trees, and sentences
as sequences of tokens to enable their usage in the
sequence-based RNN components of our genera-
tor (see Sections 3.2 and 3.3). Each token is rep-
resented by its embedding – a vector of floating-
point numbers (Bengio et al., 2003).

To form a sequence representation of a DA,
we create a triple of the structure “DA type, slot,
value” for each slot in the DA and concatenate

the triples (see Fig. 3). The deep syntax tree out-
put from the seq2seq generator is represented in
a bracketed notation similar to the one used by
Vinyals et al. (2015, see Fig. 2). The inputs to the
reranker are always a sequence of tokens; struc-
ture is disregarded in trees, resulting in a list of
lemma-formeme pairs (see Fig. 2).

3.2 Seq2seq Generator
Our seq2seq generator with attention (Bahdanau et
al., 2015, see Fig. 3)1 starts with the encoder stage,
which uses an RNN to encode an input sequence
x = {x1, . . . , xn} into a sequence of encoder out-
puts and hidden states h = {h1, . . . , hn}, where
ht = lstm(xt, ht−1), a non-linear function rep-
resented by the long-short-term memory (LSTM)
cell (Graves, 2013).

The decoder stage then uses the hidden states to
generate a sequence y = {y1, . . . , ym} with a sec-
ond LSTM-based RNN. The probability of each
output token is defined as:

p(yt|y1, . . . , yt−1,x) = softmax((st ◦ ct)WY )

Here, st is the decoder state where s0 = hn

and st = lstm((yt−1 ◦ ct)WS , st−1), i.e., the de-
coder is initialized by the last hidden state and
uses the previous output token at each step. WY

and WS are learned linear projection matrices and
“◦” denotes concatenation. ct is the context vec-
tor – a weighted sum of the encoder hidden states
ct =

∑n
i=1 αtihi, where αti corresponds to an

alignment model, represented by a feed-forward
network with a single tanh hidden layer.

On top of this basic seq2seq model, we im-
plemented a simple beam search for decoding
(Sutskever et al., 2014; Bahdanau et al., 2015). It
proceeds left-to-right and keeps track of log prob-
abilities of top n possible output sequences, ex-
panding them one token at a time.

3.3 Reranker
To ensure that the output trees/strings correspond
semantically to the input DA, we implemented a
classifier to rerank the n-best beam search outputs
and penalize those missing required information
and/or adding irrelevant one. Similarly to Wen et
al. (2015a), the classifier provides a binary deci-
sion for an output tree/string on the presence of
all dialogue act types and slot-value combinations
seen in the training data, producing a 1-hot vector.

1We use the implementation in the TensorFlow frame-
work (Abadi et al., 2015).
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( <root> <root> ( ( X-name n:subj ) be v:fin ( ( Italian adj:attr ) restaurant n:obj ( river n:near+X ) ) ) )

X-name n:subj be v:fin Italian adj:attr restaurant n:obj river n:near+X

Figure 2: Trees encoded as sequences for the seq2seq generator (top) and the reranker (bottom)

inform name X-name inform eattype restaurant <GO>    X          is          a   restaurant    .

X          is          a   restaurant    .    <STOP>

lstm lstm lstm lstm lstm lstm

lstm lstm lstm lstm lstm lstm

att

+

att att att att att

Figure 3: Seq2seq generator with attention
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Figure 4: The reranker
The input DA is converted to a similar 1-hot vec-
tor and the reranking penalty of the sentence is the
Hamming distance between the two vectors (see
Fig. 4). Weighted penalties for all sentences are
subtracted from their n-best list log probabilities.

We employ a similar architecture for the classi-
fier as in our seq2seq generator encoder (see Sec-
tion 3.2), with an RNN encoder operating on the
output trees/strings and a single logistic layer for
classification over the last encoder hidden state.
Given an output sequence representing a string or
a tree y = {y1, . . . , yn} (cf. Section 3.1), the en-
coder again produces a sequence of hidden states
h = {h1, . . . , hn} where ht = lstm(yt, ht−1).
The output binary vector o is computed as:

oi = sigmoid((hn ·WR + b)i)
Here, WR is a learned projection matrix and b is a
corresponding bias term.

4 Experiments

We perform our experiments on the BAGEL data
set of Mairesse et al. (2010), which contains
202 DA from the restaurant information domain
with two natural language paraphrases each, de-
scribing restaurant locations, price ranges, food
types etc. Some properties such as restaurant
names or phone numbers are delexicalized (re-
placed with “X” symbols) to avoid data spar-
sity.2Unlike Mairesse et al. (2010), we do not use

2We adopt the delexicalization scenario used by Mairesse
et al. (2010) and Dušek and Jurčı́ček (2015).

manually annotated alignment of slots and values
in the input DA to target words and phrases and
let the generator learn it from data, which simpli-
fies training data preparation but makes our task
harder. We lowercase the data and treat plural
-s as separate tokens for generating into strings,
and we apply automatic analysis from the Treex
NLP toolkit (Popel and Žabokrtský, 2010) to ob-
tain deep syntax trees for training tree-based gen-
erator setups.3 Same as Mairesse et al. (2010), we
apply 10-fold cross-validation, with 181 training
DA and 21 testing DA. In addition, we reserve 10
DA from the training set for validation.4

To train our seq2seq generator, we use the
Adam optimizer (Kingma and Ba, 2015) to min-
imize unweighted sequence cross-entropy.5 We
perform 10 runs with different random initializa-
tion of the network and up to 1,000 passes over the
training data,6 validating after each pass and se-
lecting the parameters that yield the highest BLEU
score on the validation set. Neither beam search
nor the reranker are used for validation.

We use the Adam optimizer minimizing cross-
entropy to train the reranker as well.7 We perform
a single run of up to 100 passes over the data,
and we also validate after each pass and select the
parameters giving minimal Hamming distance on
both validation and training set.8

3The input vocabulary size is around 45 (DA types, slots,
and values added up) and output vocabulary sizes are around
170 for string generation and 180 for tree generation (45
formemes and 135 lemmas).

4We treat the two paraphrases for the same DA as sepa-
rate instances in the training set but use them together as two
references to measure BLEU and NIST scores (Papineni et
al., 2002; Doddington, 2002) on the validation and test sets.

5Based on a few preliminary experiments, the learning
rate is set to 0.001, embedding size 50, LSTM cell size 128,
and batch size 20. Reranking penalty for decoding is 100.

6Training is terminated early if the top 10 so far achieved
validation BLEU scores do not change for 100 passes.

7We use the same settings as with the seq2seq generator.
8The validation set is given 10 times more importance.
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Setup BLEU NIST ERR
Mairesse et al. (2010)∗ ∼67 - 0
Dušek and Jurčı́ček (2015) 59.89 5.231 30
Greedy with trees 55.29 5.144 20
+ Beam search (b. size 100) 58.59 5.293 28
+ Reranker (beam size 5) 60.77 5.487 24

(beam size 10) 60.93 5.510 25
(beam size 100) 60.44 5.514 19

Greedy into strings 52.54 5.052 37
+ Beam search (b. size 100) 55.84 5.228 32
+ Reranker (beam size 5) 61.18 5.507 27

(beam size 10) 62.40 5.614 21
(beam size 100) 62.76 5.669 19

Table 1: Results on the BAGEL data set
NIST, BLEU, and semantic errors in a sample of the output.
∗Mairesse et al. (2010) use manual alignments in their work,
so their result is not directly comparable to ours. The zero
semantic error is implied by the manual alignments and the
architecture of their system.

5 Results

The results of our experiments and a comparison
to previous works on this dataset are shown in Ta-
ble 1. We include BLEU and NIST scores and the
number of semantic errors (incorrect, missing, and
repeated information), which we assessed manu-
ally on a sample of 42 output sentences (outputs
of two randomly selected cross-validation runs).

The outputs of direct string generation show
that the models learn to produce fluent sentences
in the domain style;9 incoherent sentences are rare,
but semantic errors are very frequent in the greedy
search. Most errors involve confusion of semanti-
cally close items, e.g., Italian instead of French
or riverside area instead of city centre (see Ta-
ble 2); items occurring more frequently are pre-
ferred regardless of their relevance. The beam
search brings a BLEU improvement but keeps
most semantic errors in place. The reranker is able
to reduce the number of semantic errors while in-
creasing automatic scores considerably. Using a
larger beam increases the effect of the reranker as
expected, resulting in slightly improved outputs.

Models generating deep syntax trees are also
able to learn the domain style, and they have virtu-
ally no problems producing valid trees.10 The sur-
face realizer works almost flawlessly on this lim-

9The average sentence length is around 13 tokens.
10The generated sequences are longer, but have a very rigid

structure, i.e., less uncertainty per generation step. The av-
erage output length is around 36 tokens in the generated se-
quence or 9 tree nodes; surface realizer outputs have a similar
length as the sentences produced in direct string generation.

ited domain (Dušek and Jurčı́ček, 2015), leaving
the seq2seq generator as the major error source.
The syntax-generating models tend to make dif-
ferent kinds of errors than the string-based mod-
els: Some outputs are valid trees but not entirely
syntactically fluent; missing, incorrect, or repeated
information is more frequent than a confusion of
semantically similar items (see Table 2). Seman-
tic error rates of greedy and beam-search decod-
ing are lower than for string-based models, partly
because confusion of two similar items counts as
two errors. The beam search brings an increase in
BLEU but also in the number of semantic errors.
The reranker is able to reduce the number of errors
and improve automatic scores slightly. A larger
beam leads to a small BLEU decrease even though
the sentences contain less errors; here, NIST re-
flects the situation more accurately.

A comparison of the two approaches goes in fa-
vor of the joint setup: Without the reranker, mod-
els generating trees produce less semantic errors
and gain higher BLEU/NIST scores. However,
with the reranker, the string-based model is able
to reduce the number of semantic errors while
producing outputs significantly better in terms of
BLEU/NIST.11 In addition, the joint setup does
not need an external surface realizer. The best re-
sults of both setups surpass the best results on this
dataset using training data without manual align-
ments (Dušek and Jurčı́ček, 2015) in both auto-
matic metrics12 and the number of semantic errors.

6 Related Work

While most recent NLG systems attempt to learn
generation from data, the choice of a particular
approach – pipeline or joint – is often arbitrary
and depends on system architecture or particular
generation domain. Works using the pipeline ap-
proach in SDS tend to focus on sentence planning,
improving a handcrafted generator (Walker et al.,
2001; Stent et al., 2004; Paiva and Evans, 2005)
or using perceptron-guided A* search (Dušek and
Jurčı́ček, 2015). Generators taking the joint ap-
proach employ various methods, e.g., factored lan-
guage models (Mairesse et al., 2010), inverted
parsing (Wong and Mooney, 2007; Konstas and
Lapata, 2013), or a pipeline of discriminative clas-
sifiers (Angeli et al., 2010). Unlike most previous

11The difference is statistically significant at 99% level ac-
cording to pairwise bootstrap resampling test (Koehn, 2004).

12The BLEU/NIST differences are statistically significant.
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Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near,
food=”Chinese takeaway”, food=Japanese)

Reference X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Greedy with trees X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]
+ Beam search X is a restaurant and japanese food and chinese takeaway.
+ Reranker X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.
Greedy into strings X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]
+ Beam search X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]
+ Reranker X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference X is a French restaurant on the riverside.
Greedy with trees X is a restaurant providing french and continental and by the river.
+ Beam search X is a restaurant that serves french takeaway. [riverside]
+ Reranker X is a french restaurant in the riverside area.
Greedy into strings X is a restaurant in the riverside that serves italian food. [French]
+ Beam search X is a restaurant in the riverside that serves italian food. [French]
+ Reranker X is a restaurant in the riverside area that serves french food.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference X is a French and Continental restaurant near X.
Greedy with trees X is a french restaurant that serves french food and near X. [Continental]
+ Beam search X is a french restaurant that serves french food and near X. [Continental]
+ Reranker X is a restaurant serving french and continental food near X.
Greedy into strings X is a french and continental style restaurant near X.
+ Beam search X is a french and continental style restaurant near X.
+ Reranker X is a restaurant providing french and continental food, near X.

Table 2: Example outputs of different generator setups (beam size 100 is used). Errors are marked in
color (missing, superfluous, repeated information, disfluency).

NLG systems, our generator is trainable from un-
aligned pairs of MR and sentences alone.

Recent RNN-based generators are most simi-
lar to our work. Wen et al. (2015a) combined
two RNN with a convolutional network reranker;
Wen et al. (2015b) later replaced basic sigmoid
cells with an LSTM. Mei et al. (2015) present
the only seq2seq-based NLG system known to
us. We extend the previous works by generating
deep syntax trees as well as strings and directly
comparing pipeline and joint generation. In ad-
dition, we experiment with an order-of-magnitude
smaller dataset than other RNN-based systems.

7 Conclusions and Future Work
We have presented a direct comparison of two-step
generation via deep syntax trees with a direct gen-
eration into strings, both using the same NLG sys-
tem based on the seq2seq approach. While both
approaches offer decent performance, their out-
puts are quite different. The results show the di-
rect approach as more favorable, with significantly
higher n-gram based scores and a similar number
of semantic errors in the output.

We also showed that our generator can learn
to produce meaningful utterances using a much
smaller amount of training data than what is typi-
cally used for RNN-based approaches. The result-
ing models had virtually no problems with produc-

ing fluent, coherent sentences or with generating
valid structure of bracketed deep syntax trees. Our
generator was able to surpass the best BLEU/NIST
scores on the same dataset previously achieved
by a perceptron-based generator of Dušek and
Jurčı́ček (2015) while reducing the amount of ir-
relevant information on the output.

Our generator is released on GitHub at the fol-
lowing URL:

https://github.com/UFAL-DSG/tgen

We intend to apply it to other datasets for a broader
comparison, and we plan further improvements,
such as enhancing the reranker or including a bidi-
rectional encoder (Bahdanau et al., 2015; Mei et
al., 2015; Jean et al., 2015) and sequence level
training (Ranzato et al., 2015).

Acknowledgments
This work was funded by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic
under the grant agreement LK11221 and core re-
search funding, SVV project 260 333, and GAUK
grant 2058214 of Charles University in Prague.
It used language resources stored and distributed
by the LINDAT/CLARIN project of the Ministry
of Education, Youth and Sports of the Czech Re-
public (project LM2015071). We thank our col-
leagues and the anonymous reviewers for helpful
comments.

49



References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefow-
icz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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Abstract

We consider two graph models of seman-
tic change. The first is a time-series model
that relates embedding vectors from one
time period to embedding vectors of pre-
vious time periods. In the second, we
construct one graph for each word: nodes
in this graph correspond to time points
and edge weights to the similarity of the
word’s meaning across two time points.
We apply our two models to corpora
across three different languages. We find
that semantic change islinear in two
senses. Firstly, today’s embedding vectors
(= meaning) of words can be derived as
linear combinations of embedding vectors
of their neighbors in previous time peri-
ods. Secondly, self-similarity of words de-
cays linearly in time. We consider both
findings as new laws/hypotheses of se-
mantic change.

1 Introduction

Meaning is not uniform, neither across space, nor
across time. Across space, different languages
tend to exhibit different polysemous associations
for corresponding terms (Eger et al., 2015; Kulka-
rni et al., 2015b). Across time, several well-
known examples of meaning change in English
have been documented. For example, the word
gay’s meaning has shifted, during the 1970s, from
an adjectival meaning ofcheerfulat the beginning
of the 20th century to its present meaning ofhomo-
sexual(Kulkarni et al., 2015a). Similarly, techno-
logical progress has led to semantic broadening of
terms such astransmission, mouse, or apple.

In this work, we consider two graph models
of semantic change. Ourfirst model is ady-
namic model in that the underlying paradigm is
a (time-)series of graphs. Each node in the se-
ries of graphs corresponds to one word, associ-
ated with which is a semantic embedding vec-
tor. We then ask how the embedding vectors in
one time period (graph) can be predicted from the
embedding vectors of neighbor words in previous
time periods. In particular, we postulate that there
is a linear functional relationship that couples a
word’s today’s meaning with its neighbor’s mean-
ings in the past. When estimating the coefficients
of this model, we find that the linear form ap-
pears indeed very plausible. This functional form
then allows us to address further questions, such
as negative relationships between words — which
indicate semantic differentiation over time — as
well as projections into the future. We call our
secondgraph modeltime-indexed self-similarity
graphs. In these graphs, each node corresponds
to a time point and the link between two time
points indicates the semantic similarity of a spe-
cific word across the two time points under con-
sideration. The analysis of these graphs reveals
that most words obey a law of linear semantic ‘de-
cay’: semantic self-similarity decreases linearly
over time.

In our work, we capture semantics by means of
word embeddings derived from context-predicting
neural network architectures, which have be-
come the state-of-the-art in distributional seman-
tics modeling (Baroni et al., 2014). Our approach
and results are partly independent of this repre-
sentation, however, in that we take a structural-
ist approach: we derive new, ‘second-order em-
beddings’ by modeling the meaning of words by
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means of their semantic similarity relations to all
other words in the vocabulary (de Saussure, 1916;
Rieger, 2003). Thus, future research may in prin-
ciple substitute the deep-learning architectures for
semantics considered here by any other method
capable of producing semantic similarity values
between lexical units.

This work is structured as follows. In§2, we
discuss related work. In§3.1 and 3.2, respectively,
we formally introduce the two graph models out-
lined. In §4, we detail our experiments and in§5,
we conclude.

2 Related work

Broadly speaking, one can distinguish two recent
NLP approaches to meaning change analysis. On
the one hand,coarse-grainedtrend analyses com-
pare the semantics of a word in one time pe-
riod with the meaning of the word in the preced-
ing time period (Jatowt and Duh, 2014; Kulka-
rni et al., 2015a). Such coarse-grained mod-
els, by themselves, do not specifyin which re-
spectsa word has changed (e.g., semantic broad-
ening or narrowing), but just aim at capturing
whether meaning change has occurred. In con-
trast, more fine-grained analyses typically sense-
label word occurrences in corpora and then in-
vestigate changes in the corresponding meaning
distributions (Rohrdantz et al., 2011; Mitra et
al., 2014; Plitz et al., 2015; Zhang et al., 2015).
Sense-labeling may be achieved by clustering of
the context vectors of words (Huang et al., 2012;
Chen et al., 2014; Neelakantan et al., 2014) or by
applying LDA-based techniques where word con-
texts take the roles of documents and word senses
take the roles of topics (Rohrdantz et al., 2011;
Lau et al., 2012). Finally, there are studies that
test particular meaning change hypotheses such as
whether similar words tend to diverge in mean-
ing over time (according to the ‘law of differentia-
tion’) (Xu and Kemp, 2015) and papers that intend
to detect corresponding terms across time (words
with similar meanings/roles in two time periods
but potentially different lexical forms) (Zhang et
al., 2015).

3 Graph models

Let V = {w1, . . . , w|V |} be the common vocabu-
lary (intersection) of all words in all time periods

t ∈ T . Here,T is a set of time indices. Denote
an embedding of a wordwi at time periodt as
wi(t) ∈ Rd. Since embeddingswi(s),wi(t) for
two different time periodss, t are generally not
comparable, as they may lie in different coordi-
nate systems, we consider the vectorsw̃i(t) =(

sim(wi(t),w1(t)), . . . , sim(wi(t),w|V |(t))
)
, (1)

each of which lies inR|V | and wheresim is a
similarity function such as the cosine. We note
that our structuralist definition of̃wi(t) is not un-
problematic, since the vectorsw1(t), . . . ,w|V |(t)
tend to be different acrosst, by our very postu-
late, so that there is non-identity of these ‘refer-
ence points’ over time. However, as we may as-
sume that the meanings of at least a few words
are stable over time, we strongly expect the vec-
tors w̃i(t) to be suitable for our task of analysis
of meaning changes.1 For the remainder of this
work, for convenience, we do not distinguish, in
terms of notation, betweenwi(t) andw̃i(t).

3.1 A linear model of semantic change

We postulate, and subsequently test, the follow-
ing model of meaning dynamics which describes
meaning change over time for wordswi:

wi(t) =
p∑

n=1

∑
wj∈V ∩N(wi)

αn
wj

wj(t − n) (2)

whereαn
wj

∈ R, for n = 1, . . . , p, are coeffi-
cients of meaning vectorswj(t− n) andp ≥ 1
is theorder of the model. The setN(wi) ⊆ V de-
notes a set of ‘neighbors’ of wordwi.2 This model
says that the meaning of a wordwi at some timet
is determined by reference to the meanings of its
‘neighbors’ in previous time periods, and that the
underlying functional relationship islinear.

We remark that the model described by Eq. (2)
is a time-series model, and, in particular, a
vector-autoregressive (VAR) model with special

1An alternative to our second-order embeddings is to
project vectors from different time periods in a common
space (Mikolov et al., 2013a; Faruqui and Dyer, 2014), which
requires to find corresponding terms across time. Further,
one could also consider a ‘core’ vocabulary of semantically
stable words, e.g., in the spirit of Swadesh (1952), insteadof
using all vocabulary words as reference.

2We also constrain the vectorswi(t), for all wi ∈ V , to
contain non-zero entries only for words inN(wi).

2
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structure. The model may also be seen in
the socio-economic context of so-called “opin-
ion dynamic models” (Golub and Jackson, 2010;
Acemoglu and Ozdaglar, 2011; Eger, 2016).
There it is assumed that agents are situated
in network structures and continuously update
their opinions/beliefs/actions according to their
ties with other agents. Model (2) substitutes
multi-dimensional embedding vectors for one-
dimensional opinions.

3.2 Time-indexed self-similarity graphs

We track meaning change by considering a fully
connected graphG(w) for each wordw in V . The
nodes ofG(w) are the time indicesT , and there
is an undirected link between any twos, t ∈ T
whose weight is given bysim(w(s),w(t)). We
call the graphsG(w) time-indexed self-similarity
(TISS) graphsbecause they indicate the (seman-
tic) similarity of a given word with itself across
different time periods. Particular interest may lie
in weak linksin these graphs as they indicate low
similarity between two different time periods, i.e.,
semantic change across time.

4 Experiments

Data As corpus for English, we use the Corpus of
Historical American (COHA).3 This covers texts
from the time period 1810 to 2000. We extract two
slices: the years 1900-2000 and 1810-2000. For
both slices, each time periodt is one decade, e.g.,
T = {1810, 1820, 1830, . . .}.4 For each slice, we
only keep words associated to the word classes
nouns, adjectives, and verbs. For computational
and estimation purposes, we also only consider
words that occur at least 100 times in each time
period. To induce word embeddingsw ∈ Rd for
each wordw ∈ V , we use word2vec (Mikolov et
al., 2013b) with default parametrizations. We do
so for each time periodt ∈ T independently. We
then use these embeddings to derive the new em-
beddings as in Eq. (1). Throughout, we use cosine
similarity assim measure. For German, we con-
sider a proprietary dataset of the German newspa-
per SZ5 for which T = {1994, 1995, . . . , 2003}.

3http://corpus.byu.edu/coha/.
4Each time period contains texts that were written in that

decade.
5http://www.sueddeutsche.de/

We lemmatize and POS tag the data and likewise
only consider nouns, verbs and adjectives, mak-
ing the same frequency constraints as in English.
Finally, we use the PL (Migne, 1855) as data set
for Latin. Here,T = {300, 400, . . . , 1300}. We
use the same preprocessing, frequency, and word
class constraints as for English and German.

Throughout, our datasets are well-balanced in
terms of size. For example, the English COHA
datasets contain about 24M-30M tokens for each
decade from 1900 to 2000, where the decades
1990 and 2000 contain slighly more data than the
earlier decades. The pre-1900 decades contain 18-
24M tokens, with only the decades 1810 and 1820
containing very little data (1M and 7M tokens,
respectively). The corpora are also balanced by
genre.

4.1 TISS graphs

We start with investigating the TISS graphs. Let
Dt0 represent how semantically similar a word
is across two time periods, on average, when
the distance between time periods ist0: Dt0 =
1
C

∑
w∈V

∑
|s−t|=t0

sim(w(s),w(t)), whereC =
|V | · |{(s, t) | |s− t| = t0}| is a normalizer. Figure
1 plots the valuesDt0 for the time slice from 1810
to 2000, for the English data. We notice a clear
trend: self-similarity of a word tends to (almost
perfectly) linearly decrease with time distance. In
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0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 5 10 15 20

1810-2000

Figure 1:Dt0 (y-axis) as a function oft0 (x-axis),
values ofDt0 (in green) and error-bars.

fact, Table 1 below indicates that this trend holds
across all our corpora, i.e., for different time scales
and different languages: the linear ‘decay’ model

3
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fits theDt0 curves very well, with adjustedR2 val-
ues substantially above 90% and consistently and
significantly negative coefficients. We believe that
this finding may be considered a new statistical
law of semantic change.

Corpus Lang. Time
interval

Years Coeff. R2

COHA English Decade 1900-2000−0.425 98.63
1810-2000 −0.405 96.03

SZ German Year 1994-2003 −0.678 98.64
PL Latin Century 400-1300 −0.228 92.28

Table 1: Coefficients (%) in regression ofDt0 on
t0, and adjustedR2 values (%).

The valuesDt0 as a function oft0 are aver-
ages over all words. Thus, it might be possible
that the average word’s meaning decays linearly
in time, while the semantic behavior, over time, of
a large fraction of words follows different trends.
To investigate this, we consider the distribution
of Dt0(w) = 1

C′
∑

|s−t|=t0
sim(w(s),w(t)) over

fixed wordsw. HereC ′ = |{(s, t) | |s− t| = t0}|.
We consider the regression models

Dt0(w) = α · t0 + const.

for each wordw independently and assess the dis-
tribution of coefficientsα as well as the goodness-
of-fit values. Figure 2 shows — exemplarily for
the English 1900-2000 COHA data — that the co-
efficientsα are negative for almost all words. In
fact, the distribution is left-skewed with a mean
of around−0.4%. Moreover, the linear model is
always a good to very good fit of the data in that
R2 values are centered around 85% and rarely fall
below 75%. We find similar patterns for all other
datasets considered here. This shows that not only
the average word’s meaning decays linearly, but
almost all words’ (whose frequency mass exceeds
a particular threshold) semantics behaves this way.

Next, we use our TISS graphs for the task
of finding words that have undergone meaning
change. To this end, we sort the graphsG(w) by
the ratiosRG(w) = maxlink

minlink , where maxlink de-
notes maximal weight of a link in graphG(w)
and minlink is the minimal weight of a link in
graphG(w). We note that weak links may indi-
cate semantic change, but the stated ratio requires
that ‘weakness’ is seen relative to the strongest se-
mantic links in the TISS graphs. Table 2 presents
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Figure 2: Distribution of Coefficientsα (top) and
R2 values (bottom) in regression of valuesDt0(w)
on t0. The plots are histograms:y-axes are fre-
quencies.

selected words that have highest valuesRG(w).
6

We omit a fine-grained semantic change analysis,

bush (1), web (2), alan (3), implement (4)
jeff (5), gay (6), program (7), film (8),
focus (9), terrific (16), axis (36)

Table 2: Selected words with highest values
RG(w) in COHA for the time period 1900-2000.
In brackets are the ranks of words, i.e.,bushhas
the highest valueRG(w), webthe 2nd highest, etc.

which could be conducted via the methods out-
lined in §2, but notice a few cases. ‘Terrific’ has a
large semantic discrepancy between the 1900s and

6The top ten words with the lowest valuesRG(w) areone,
write, have, who, come, only, even, know, hat, fact.

4
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the 1970s, when the word probably (had) changed
from a negative to a more positive meaning. The
largest discrepancy for ‘web’ is between the 1940s
and the 2000s, when it probably came to be mas-
sively used in the context of the Internet. The high
RG(w) value forw = ‘axis’ derives from compar-
ing its use in the 1900s with its use in the 1940s,
when it probably came to be used in the context
of Nazi Germany and its allies. We notice that the
presented method can account for gradual, accu-
mulating change, which is not possible for models
that compare two succeeding time points such as
the model of Kulkarni et al. (2015a).

4.2 Meaning dynamics network models

Finally, we estimate meaning dynamics models as
in Eq. (2), i.e., we estimate the coefficientsαn

wj

from our data sources. We let the neighborsN(w)
of a wordw as in Eq. (2) be the union (w.r.t.t) over
setsNt(w;n) denoting then ≥ 1 semantically
most similar words (estimated by cosine similar-
ity on the original word2vec vectors) of wordw
in time periodt ∈ T .7 In Table 3, we indicate
two measures: adjustedR2, which indicates the
goodness-of-fit of a model, and prediction error.
By prediction error, we measure the average Eu-
clidean distance between the true semantic vec-
tor of a word in thefinal time periodtN vs. the
predicted semantic vector, via the linear model in
Eq. (2), estimated on the data excluding the fi-
nal period. The indicated prediction error is the
average over all words. We note the following:
R2 values are high (typically above 95%), indi-
cating that the linear semantic change model we
have suggested fits the data well. Moreover,R2

values slightly increase between orderp = 1 and
p = 2; however, for prediction error this trend is
reversed.8 We also include a strong baseline that
claims that word meanings do not change in the fi-
nal periodtN but are the same as intN−1. We note
that the orderp = 1 model consistently improves
upon this baseline, by as much as 18%, depending
upon parameter settings.

Negative relationshipsAnother very interest-

7We exclude wordw from Nt(w; n). We found that in-
cludingw did not improve performance results.

8We experimented with ordersp ≥ 3, but found them to
be inadequate. Typically, coefficients for lagged-3 variables
are either zero or model predictions are way off, possibly
indicating multi-collinearity.

n p Adjusted-R2 Pred. Error Baseline
5 1 95.68± 2.80 0.402±.234 0.447±.232

2 96.13± 1.83 0.549±.333
10 1 95.24± 2.78 0.378±.169 0.445±.187

2 95.75± 2.67 0.515±.247
20 1 94.72± 2.85 0.362±.127 0.442±.156

2 95.27± 2.74 0.493±.190

Table 3: English data, 1900-2000.R2 and predic-
tion error in %.

ing aspect of the model in Eq. (2) is that it allows
for detecting wordswj whose embeddings have
negative coefficientsαwj for a target wordwi (we
considerp = 1 in the remainder). Such nega-
tive coefficients may be seen as instantiations of
the ‘law of differentiation’: the two words’ mean-
ings move, over time, in opposite directions in se-
mantic space. We find significantly negative re-
lationships between the following words, among
others: summit↔ foot, boy↔ woman, vow↔
belief, negro↔ black. Instead of a detailed anal-
ysis, we mention that the Wikipedia entry for the
last pair indicates that the meanings of ‘negro’ and
‘black’ switched roles between the early and late
20th century. While ‘negro’ was once the “neu-
tral” term for the colored population in the US,
it acquired negative connotations after the 1960s;
and vice versa for ‘black’.

5 Concluding remarks

We suggested two novel models of semantic
change. First, TISS graphs allow for detecting
gradual, non-consecutive meaning change. They
enable to detect statistical trends of a possibly
general nature. Second, our time-series models
allow for investigating negative trends in mean-
ing change (‘law of differentiation’) as well as
forecasting into the future, which we leave for fu-
ture work. Both models hint at a linear behav-
ior of semantic change, which deserves further in-
vestigation. We note that this linearity concerns
the core vocabulary of languages (in our case,
words that occurred at least 100 times in each time
period), and, in the case of TISS graphs, is an
averageresult; particular words may have dras-
tic, non-linear meaning changes across time (e.g.,
proper names referring to entirely different enti-
ties). However, our analysis also finds that most
core words’ meanings decay linearly in time.

5
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Abstract

We describe a model which jointly per-
forms word segmentation and induces
vowel categories from formant values.
Vowel induction performance improves
slightly over a baseline model which does
not segment; segmentation performance de-
creases slightly from a baseline using en-
tirely symbolic input. Our high joint perfor-
mance in this idealized setting implies that
problems in unsupervised speech recogni-
tion reflect the phonetic variability of real
speech sounds in context.

1 Introduction

In learning to speak their native language, a de-
veloping infant must acquire two related pieces of
information: a set of lexical items (along with the
contexts in which they are likely to occur), and a
set of phonetic categories. For instance, an English-
learning infant must learn that [i] and [I] are differ-
ent segments, differentiating between words like
beat and bit, while for a Spanish-learning infant,
[i] and [I]-like tokens represent realizations of the
same category. It is clear that these two tasks are
intimately related, and that models of language
acquisition must solve both together— but how?

This problem has inspired much recent work in
low-resource speech recognition (Lee et al., 2015;
Lee and Glass, 2012; Jansen and Church, 2011;
Varadarajan et al., 2008), with impressive results.
Nonetheless, many of these researchers conclude
that their systems learn too many phonetic cate-
gories, a problem they attribute to the presence
of contextual variants (allophones) of the differ-
ent sounds. For instance, the [a] in dog is likely
longer than the [a] in dock (Ladefoged and John-
son, 2010), but this difference is not phonologically
meaningful in English— it cannot differentiate any

pair of words on its own. Many unsupervised sys-
tems are claimed to erroneously learn these kinds
of differences as categorical ones.

Here, we attempt to model the problem in a more
controlled setting by extending work in cognitive
modeling of language acquisition. We present a
system which jointly acquires vowel categories and
lexical items from a mixed symbolic/acoustic rep-
resentation of the input. As is traditional in cogni-
tive models of vowel acquisition, it uses a single-
point formant representation of the vowel acous-
tics, and is tested on a simulated corpus in which
vowel acoustics are unaffected by context. We find
that, under these circumstances, vowel categories
and lexical items can be learned jointly with rel-
atively little decrease in accuracy from learning
either alone. Thus, our results support the hypothe-
sis that the more realistic problem is hard because
of contextual variability. As a secondary point, we
show that the results reflect problems with local
minima in the popular framework of hierarchical
Bayesian modeling.

2 Related work

This work aims to induce both a set of phonetic
vowel categories and a lexical representation from
unlabeled data. It extends the closely related model
of Feldman et al. (2013a), which performs the same
task, but with known word boundaries; this re-
quirement is a significant limitation on the model’s
cognitive plausibility. Our model infers a latent
word segmentation. Another extension, Frank et al.
(2014), uses semantic information to disambiguate
words, but still with known word boundaries.

A few models learn a lexicon while categoriz-
ing all sounds, instead of just vowels. Lee et al.
(2015) and Lee and Glass (2012) use hierarchical
Bayesian models to induce word and subword units.
These models are mathematically very similar to
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our own, differing primarily using more complex
acoustic representations and inducing categories
for all sounds instead of just vowels. Jansen and
Church (2011) learns whole-word Markov models,
then clusters their states into phone-like units us-
ing a spectral algorithm. Their system still learns
multiple allophonic categories for most sounds.

In the segmentation literature, several previous
systems learn lexical items from variable input (El-
sner et al., 2013; Daland and Pierrehumbert, 2011;
Rytting et al., 2010; Neubig et al., 2010; Fleck,
2008). However, these models use pre-processed
representations of the acoustics (phonetic transcrip-
tion or posterior probabilities from a phone rec-
ognizer) rather than inducing an acoustic category
structure directly. Elsner et al. (2013) and Neubig
et al. (2010) use Bayesian models and sampling
schemes similar to those presented here.

Acquisition models like Elsner et al. (2013),Ryt-
ting et al. (2010) and Fleck (2008) are designed to
handle phonological variability. In particular, they
are designed to cope with words which have mul-
tiple transcribed pronunciations ([wan] and [want]
for “want”); this kind of alternation can insert or
delete whole segments, or change a vowel sound
from one perceptual category to another. Such vari-
ability is common in spoken English (Pitt et al.,
2005) and presents a challenge for speech recogni-
tion (McAllaster et al., 1998).

In contrast, the system presented here models
phonetic variability within a single category. It
uses an untranscribed, continuous-valued represen-
tation for vowel sounds, so that different tokens
within a single category may differ from one an-
other. But it does so within an idealized dataset
which lacks phonological variants. Moreover, al-
though the phonetic input to the system is variable,
the variation is not predictable; tokens within the
category differ at random, independently from their
environment.

Several other models also learn phonetic cat-
egories from continuous input, either from real
or idealized datasets, without learning a lexicon.
Varadarajan et al. (2008) learn subword units by in-
crementally splitting an HMM model of the data to
maximize likelihood. Badino et al. (2014) perform
k-means clustering on the acoustic representation
learned by an autoencoder. Cognitive models using
formant values as input are common, many using
mixture of Gaussians (Vallabha et al., 2007; de
Boer and Kuhl, 2003). Because they lack a lexicon,

these models have particular difficulty distinguish-
ing meaningful from allophonic variability.

3 Dataset and model

Our dataset replicates the previous idealized set-
ting for vowel category induction in cognitive
modeling, but in a corpus of unsegmented utter-
ances rather than a wordlist. We adapt a stan-
dard word segmentation corpus of child-directed
speech (Brent, 1999), which consists of 8000 utter-
ances from Bernstein-Ratner (1987), orthographi-
cally transcribed and then phonetically transcribed
using a pronunciation dictionary.

We add simulated acoustics (without contextual
variation) to each vowel in the Brent corpus. Fol-
lowing previous cognitive models of category in-
duction (Feldman et al., 2013b), we use the vowel
dataset given by Hillenbrand et al. (1995), which
gives formants for English vowels read in the con-
text h d. We estimate a multivariate Gaussian dis-
tribution for each vowel, and, whenever a monoph-
thongal vowel occurs in the Brent corpus, we re-
place it with a pair of formants (f1, f2) drawn from
the appropriate Gaussian. The ARPABET diph-
thongs “oy, aw, ay, em, en”, and all the consonants,
retain their discrete values. The first three words
of the dataset, orthographically “you want to”, are
rendered: y[380.53 1251.69] w[811.88 1431.96]n
t[532.91 1094.14].

3.1 Model

Our model merges the Feldman et al. (2013a) vowel
category learner with the Elsner et al. (2013) noisy-
channel framework for word segmentation, which
is in turn based on the segmentation model of Gold-
water et al. (2009). In generative terms, it defines
a sequential process for sampling a dataset. The
observations will be surface strings S, which are
divided into (latent) words Xi=1:n. We denote the
j-th character of word i as Sij . When Sij is a
vowel, the observed value is a real-valued formant
pair (f1, f2); when it is a consonant, it is observed
directly.

1. Draw a distribution over vowel categories,
πv ∼ DP (αv)

2. Sample parameters for each category,
µv,Σv ∼ NIW (µ0,Λ, ν)

3. Draw a distribution over word strings, G0 ∼
DP (α0, CV (πv, pc, pstop)

4. Draw bigram transition distributions, Gx ∼
DP (α1, G0)
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5. Sample word sequences, Xi ∼ GXi−1

6. Realize each vowel token in the surface string,
Sij ∼ Normal(µXij ,ΣXij )

The initial prior over word forms,
CV (πv, pc, pstop) is the following: sample a
word length ≥ 1 from Geom(pstop); for each
character in the word, choose to sample a con-
sonant with probability pc or a vowel otherwise;
sample all consonants uniformally, and all vowels
according to the (possibly-infinite) probability
vector πv.1 In practice, we integrate out πv,
yielding a Chinese restaurant process in which the
distribution over vowels in a new word depend on
those used in already-seen words. Vowels which
occur in many word types are more likely to recur
(Goldwater et al., 2006; Teh et al., 2006).

The hyperparameters for the model are α0 and
α1 (which control the size of the unigram and
bigram vocabularies), αv (which weakly affects
the number of vowel categories), µ0, n, Λ and ν
(which affect the average location and dispersion
of vowel categories in formant space), and pc and
pstop (which weakly affect the length and composi-
tion of words). We set α0 and α1 to their optimal
values for word segmentation (3000 and 100 (Gold-
water et al., 2009)) and αv to .001. In practice, no
value of αv we tried would produce a useful num-
ber of vowels and so we fix the maximum number
of vowels (non-probabilistically) to nv; we explore
a variety of values of this parameter below. The
mean vector for the vowel category parameters is
set to [500, 1500] and the inverse precision matrix
to 500I , biasing vowel categories to be near the
center of the vowel space and have variances on the
order of hundreds of hertz. We set the prior degrees
of freedom ν to 2.001. Since ν can be interpreted
as a pseudocount determining the prior strength,
this means the prior influence is relatively weak for
reasonably-sized vowel categories. We set pc = .5
and pstop = .5; based on Goldwater et al. (2009),
we do not expect these parameters to be influential.

These hyperparameter values were mostly taken
from previous work. The vowel inverse precision
and degrees of freedom differ from those in Feld-
man et al. (2013a), since our approach requires
us to sample from the prior, but the uninformative
prior used there was too poor a fit for the data.
We chose a variance with units on the order of the
overall data variance, but did not tune it.

1Feldman et al. (2013a) assumes a more complex distribu-
tion over consonants, while Goldwater et al. (2009) assumes
uniformity over all sounds.

3.2 Inference

We conduct inference by Gibbs sampling, includ-
ing three sampling moves: block sampling of the
analyses of a single utterance, table label relabeling
of a lexical item (Johnson and Goldwater, 2009)
and resampling of the vowel category parameters
µv and Σv. We run 1000 iterations of utterance
resampling, with table relabeling every 10 itera-
tions.2 Following previous work, we integrate
out the mixing weight distributions G0, G1 and
πv, resulting in Chinese restaurant process distribu-
tions for unigrams, bigrams and vowel categories
in the lexicon (Teh et al., 2006). Unlike Feldman et
al. (2013a) and many other variants of the Infinite
Mixture of Gaussians (Rasmussen, 1999), we do
not integrate out µv and Σv, since this would cre-
ate long-distance dependencies between different
tokens of the same vowel category within an utter-
ance and thus complicate the implementation of a
whole-utterance block sampling scheme.

To block sample the analyses of a single utter-
ance, we use beam sampling (Van Gael et al., 2008;
Huggins and Wood, 2014), an auxiliary-variable
sampling scheme in which we encode the model
as an (infeasibly large) finite-state transducer, then
sample cutoff variables which restrict our algorithm
to a finite subset of the transducer and sample a
trajectory within it. We then use a Metropolis-
Hastings acceptance test to correct for the discrep-
ancy between our finite-state encoding and the ac-
tual model probability caused by repetitions of a
lexical item within the same utterance.

Specifically, for each vowel sij , we sample a
cutoff cij ∼ U [0, P (sij |Xij)]. This cutoff indi-
cates the least probable category assignment we
will permit for the surface symbol sij . This cutoff
constrains us to consider only a finite number of
vowels at each point; if there are not enough, we
can instantiate unseen vowels by sampling their µ
and Σ from the prior. We then construct the lattice
of possible word segmentations in which sij is al-
lowed to correspond to any vowel in any lexical
entry, as long as all the consonants match up and
the vowel assignment density P (sij |xij) is greater
than the cutoff. We then propose a new trajectory
by sampling from this lattice. See Mochihashi et al.

2Annealing is applied linearly, with inverse temperature
scaling from .1 to 1 for 800 iterations, then linearly from 1.0 to
2.0 to encourage a MAP solution. The Gaussian densities for
acoustic token emissions are annealed to inverse temperature
.3, to keep them comparable to the LM probabilities (Bahl et
al., 1980).
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(2009) for details of the finite-state construction.
As in Feldman et al. (2013a), we use a table rela-

beling move (Johnson and Goldwater, 2009) which
changes the word type for a single table in the uni-
gram Chinese restaurant process by changing one
of the vowels. This recategorizes a large number of
tokens which share the same type (though not nec-
essarily all, since there may be multiple unigram
tables for the same word type). The implementa-
tion is tricky because of the bigram dependencies
between adjacent words, some of which may be
tokens of the same lexical item. Nonetheless, this
move is necessary because token-level sampling
has insufficient mobility to change the represen-
tation of a whole word type: if the sampler has
incorrectly assigned many tokens to the non-word
hAv, moving any single token to the correct hæv
will raise the transducer probability but also catas-
trophically lower the lexical probability by creating
a singleton lexical item.

Finally, because µv and Σv are explicitly repre-
sented rather than integrated out, their values must
be resampled given the set of formant values as-
sociated with each vowel cluster. The use of a
conjugate (Normal-Inverse Wishart) prior makes
this simple, applying equations 250-254 in Murphy
(2007).

4 Results

Despite using multiple block moves, mobility is
a severe issue for the sampler; the inference pro-
cedure fails to merge together redundant vowel
categories even when doing so would raise the pos-
terior probability significantly. We demonstrate
this by running the sampler with various numbers
of vowel categories nv. Posterior probabilities peak
around the true value of 12, but models with extra
categories always use the entire set.

With nv set to 11 or 12 categories, quantitative
performance is relatively good, although segmen-
tation is not as good as the Goldwater et al. (2009)
segmenter without any acoustics. In fact, the sys-
tem slightly outperforms the Feldman et al. (2013a)
lexical-distributional model with gold-standard seg-
mentation. Results are shown in Table 1.

Word tokens are correctly segmented (both
boundaries correct) with an F-score of 67%3 (ver-
sus 74% in (Goldwater et al., 2009). Individual
boundaries are detected with an F-score of 82%

3The joint model scores are averaged over two sampler
runs.

System Seg P R F Vow P R F
Goldwater 76 72 74 - - -
Feldman - - - - - 76
joint, nv=12 64 69 67 87 80 83
joint, nv=11 65 70 67 85 84 85

Table 1: Segmentation and vowel clustering scores.

versus 87%. We also evaluate the lexical items,
checking whether words are correctly grouped as
well as segmented (for example, whether tokens of
“is” and “as” are separated). Feldman et al. (2013a)
evaluates the lexicon by computing a pairwise F-
score on tokens (positive class: clustered together).
Under this metric, their highest lexicon score for
English words is 93%. We compute this metric
on the subset of words for which the segmenta-
tion system performs correctly (it is not clear how
to count “misses” and “false alarms” for tokens
which were mis-segmented). On this subset, this
metric scores our system with nv = 12 at 91%,
which indicates that we correctly identify most of
the correctly segmented items.

We evaluate our phonetic clustering by comput-
ing the same pairwise F-score on pairs of vowel to-
kens. Our score is 83%; the Feldman et al. (2013a)
model scores 76%. We conjecture that the improve-
ment results from the use of bigram context in-
formation to disambiguate between homophones.
Confusion between vowels (attached as supplemen-
tal material) is mostly reasonable. We find cross-
clusters for ah,ao, ey,ih, and uh,uw. The model’s
successful learning of the vowel categories demon-
strates that the high performance of cognitive mod-
els in this domain is not due solely to their access to
gold-standard word boundaries (see also Martin et
al. (2013)). We believe that the idealized acoustic
values (sampled from stationary Gaussians reflect-
ing laboratory production) are critical in allowing
these models to outperform those which use natural
speech.

Though solving the two tasks together is harder
than tackling either alone, these results nonethe-
less demonstrate comparable performance to other
models which have to cope with variability while
segmenting. Fleck (2008) reports only 44% seg-
mentation scores on transcribed English text in-
cluding phonological variability; the noisy channel
model of Elsner et al. (2013) yields a segmentation
token score of 67%.4

Besides generic task difficulty, we attribute the
4Word segmentation scores from Lee et al. (2015), learning

directly on acoustics, range between 16 and 20.
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low scores to the model’s inability to mix, which
prevents it from merging similar vowel classes. Be-
cause table relabeling does not merge tables in the
CRP hierarchy, even if it replaces an uncommon
word with a more common one, the configurational
probability does not change. Thus the model’s spar-
sity preference cannot encourage such moves. The
prior on vowel categories, DP (pv), does encour-
age changes which reduce the number of lexical
types using a rare vowel, but relabeling a table can
rearrange at most a single sample from this prior
distribution and is easily outweighed by the likeli-
hood.

A hand analysis of one sampler run in which /I/
was split into two categories showed clear mixing
problems. Many common words, such as “it” and
“this”, appeared as duplicate lexical entries (e.g.
[I1t] and [I2t]). These presumably captured some
chance variation within the category, but not an
actual linguistic feature.

We suspect that this mobility problem is also a
likely issue with models like Lee and Glass (2012)
which use deep Bayesian hierarchies and relatively
local inference moves. Since the problem occurs
even in this idealized setting, we expect it to exacer-
bate the problems caused by contextual variability
in more realistic experiments.

Some errors did result from the joint nature of
the task itself. We looked for reanalyses involv-
ing both a mis-segmentation and a vowel category
mistake. For instance, the model is capable of mis-
analyzing the word “milk” as “me” followed by the
phonotactically implausible sequence “lk”. Mis-
takes like these, in which the misanalysis creates a
word, are relatively rare as a proportion of the total.
The most common words created are “say”, “and”,
“shoe”, “it” and “a”. More commonly, misanaly-
ses of this type segment out single vowels or non-
words like [luk], [eN], and [mO]. Some such errors
could be corrected by incorporating phonotactics
into the model (Johnson and Goldwater, 2009). In
general, the error patterns are neither particularly
interpretable nor cognitively very plausible. This
stands in contrast to the effects on word boundary
detection found in a model of phonological varia-
tion (Elsner et al., 2013).

5 Conclusion

The main result of our work is that joint word seg-
mentation and vowel clustering is possible, with
relatively high effectiveness, by merging models

known to be successful in each setting indepen-
dently. The finding that success of this kind is
possible in an idealized setting reinforces an ar-
gument made in previous work: that much of the
difficulty in category acquisition is due to contex-
tual variation.

Both phonological and phonetic variability prob-
ably contribute to the difficulty of the real task.
Phonological processes such as reduction cre-
ate variant versions of words, splitting real lexi-
cal items and creating misleading minimal pairs.
Phonetic processes like coarticulation and com-
pensatory lengthening create predictible variation
within a category, encouraging the model to split
the category into allophones. In future work, we
hope to quantify the contributions of these sources
of error and work to address them explicitly within
the same model.

Acknowledgements

This research was funded by NSF grants 1422987
and 1421695. We are grateful for the advice of
three anonymous reviewers, and to Sharon Gold-
water for distributing the baseline DPSeg system.

References
Leonardo Badino, Claudia Canevari, Luciano Fadiga,

and Giorgio Metta. 2014. An auto-encoder
based approach to unsupervised learning of subword
units. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on,
pages 7634–7638. IEEE.

Lalit Bahl, Raimo Bakis, Frederick Jelinek, and Robert
Mercer. 1980. Language-model/acoustic-channel-
model balance mechanism. Technical disclosure
bulletin Vol. 23, No. 7b, IBM, December.

Nan Bernstein-Ratner. 1987. The phonology of parent-
child speech. In K. Nelson and A. van Kleeck,
editors, Children’s Language, volume 6. Erlbaum,
Hillsdale, NJ.

Michael R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation and word discov-
ery. Machine Learning, 34:71–105, February.

Robert Daland and Janet B. Pierrehumbert. 2011.
Learning diphone-based segmentation. Cognitive
Science, 35(1):119–155.

Bart de Boer and Patricia Kuhl. 2003. Investigating
the role of infant-directed speech with a computer
model. Acoustic Research Letters On-Line, 4:129–
134.

63



Micha Elsner, Sharon Goldwater, Naomi Feldman, and
Frank Wood. 2013. A joint learning model of word
segmentation, lexical acquisition, and phonetic vari-
ability. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 42–54, Seattle, Washington, USA, October.
Association for Computational Linguistics.

Naomi H. Feldman, Thomas L. Griffiths, Sharon Gold-
water, and James L. Morgan. 2013a. A role for the
developing lexicon in phonetic category acquisition.
Psychological Review, 4:751–778.

Naomi H. Feldman, Emily B. Myers, Katherine S.
White, Thomas L. Griffiths, and James L. Mor-
gan. 2013b. Word-level information influences
phonetic learning in adults and infants. Cognition,
127(3):427–438.

Margaret M. Fleck. 2008. Lexicalized phonotac-
tic word segmentation. In Proceedings of ACL-08:
HLT, pages 130–138, Columbus, Ohio, June. Asso-
ciation for Computational Linguistics.

Stella Frank, Naomi Feldman, and Sharon Goldwater.
2014. Weak semantic context helps phonetic learn-
ing in a model of infant language acquisition. In
ACL (1), pages 1073–1083.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual dependencies in un-
supervised word segmentation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 673–680,
Sydney, Australia, July. Association for Computa-
tional Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context. Cog-
nition, 112(1):21–54.

James Hillenbrand, Laura A. Getty, Michael J. Clark,
and Kimberlee Wheeler. 1995. Acoustic character-
istics of American English vowels. The Journal of
the Acoustical society of America, 97:3099.

Jonathan Huggins and Frank Wood. 2014. Infi-
nite structured hidden semi-Markov models. arXiv
preprint arXiv:1407.0044, June.

Aren Jansen and Kenneth Church. 2011. Towards un-
supervised training of speaker independent acoustic
models. In INTERSPEECH, pages 1693–1692.

Mark Johnson and Sharon Goldwater. 2009. Improv-
ing nonparametric Bayesian inference: Experiments
on unsupervised word segmentation with adaptor
grammars. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Boulder, Colorado.

Peter Ladefoged and Keith Johnson. 2010. A course in
phonetics. Wadsworth Publishing.

Chia-ying Lee and James Glass. 2012. A nonparamet-
ric Bayesian approach to acoustic model discovery.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 40–49, Jeju Island, Korea,
July. Association for Computational Linguistics.

Chia-ying Lee, Timothy J O’Donnell, and James Glass.
2015. Unsupervised lexicon discovery from acous-
tic input. Transactions of the Association for Com-
putational Linguistics, 3:389–403.

Andrew Martin, Sharon Peperkamp, and Emmanuel
Dupoux. 2013. Learning phonemes with a proto-
lexicon. Cognitive Science, 37:103–124.

Don McAllaster, Lawrence Gillick, Francesco Scat-
tone, and Michael Newman. 1998. Fabricating con-
versational speech data with acoustic models: a pro-
gram to examine model-data mismatch. In ICSLP.

Daichi Mochihashi, Takeshi Yamada, and Naonori
Ueda. 2009. Bayesian unsupervised word segmen-
tation with nested pitman-yor language modeling.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 100–108, Suntec, Singapore,
August. Association for Computational Linguistics.

Kevin Murphy. 2007. Conjugate Bayesian analysis of
the gaussian distribution. Technical report, Univer-
sity of British Columbia.

Graham Neubig, Masato Mimura, Shinsuke Mori, and
Tatsuya Kawahara. 2010. Learning a language
model from continuous speech. In 11th Annual Con-
ference of the International Speech Communication
Association (InterSpeech 2010), pages 1053–1056,
Makuhari, Japan, 9.

Mark A. Pitt, Keith Johnson, Elizabeth Hume, Scott
Kiesling, and William Raymond. 2005. The Buck-
eye corpus of conversational speech: labeling con-
ventions and a test of transcriber reliability. Speech
Communication, 45(1):89–95.

Carl Edward Rasmussen. 1999. The infinite Gaussian
mixture model. In NIPS, volume 12, pages 554–
560.

Anton Rytting, Chris Brew, and Eric Fosler-Lussier.
2010. Segmenting words from natural speech: sub-
segmental variation in segmental cues. Journal of
Child Language, 37(3):513–543.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M.
Blei. 2006. Hierarchical Dirichlet processes.
Journal of the American Statistical Association,
101(476):1566–1581.

Gautam K. Vallabha, James L. McClelland, Ferran
Pons, Janet F. Werker, and Shigeaki Amano. 2007.
Unsupervised learning of vowel categories from
infant-directed speech. Proceedings of the National
Academy of Sciences, 104(33):13273–13278.

64



Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and
Zoubin Ghahramani. 2008. Beam sampling for the
infinite Hidden Markov model. In Proceedings of
the 25th International Conference on Machine learn-
ing, ICML ’08, pages 1088–1095, New York, NY,
USA. ACM.

Balakrishnan Varadarajan, Sanjeev Khudanpur, and
Emmanuel Dupoux. 2008. Unsupervised learning
of acoustic sub-word units. In Proceedings of the As-
sociation for Computational Linguistics: Short Pa-
pers, pages 165–168.

65



Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 66–71,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

A Language-Independent Neural Network for Event Detection

Xiaocheng Feng1, Lifu Huang2, Duyu Tang1, Bing Qin1, Heng Ji2, Ting Liu1

1 Harbin Institute of Technology, Harbin, China
{xcfeng, dytang, qinb, tliu}@ir.hit.edu.cn

2 Rensselaer Polytechnic Institute, Troy, USA
{huangl7, jih}@rpi.edu

Abstract

Event detection remains a challenge due
to the difficulty at encoding the word se-
mantics in various contexts. Previous
approaches heavily depend on language-
specific knowledge and pre-existing nat-
ural language processing (NLP) tools.
However, compared to English, not all
languages have such resources and tools
available. A more promising approach
is to automatically learn effective features
from data, without relying on language-
specific resources. In this paper, we de-
velop a hybrid neural network to cap-
ture both sequence and chunk information
from specific contexts, and use them to
train an event detector for multiple lan-
guages without any manually encoded fea-
tures. Experiments show that our approach
can achieve robust, efficient and accurate
results for multiple languages (English,
Chinese and Spanish).

1 Introduction

Event detection aims to extract event triggers
(most often a single verb or noun) and classify
them into specific types precisely. It is a cru-
cial and quite challenging sub-task of event ex-
traction, because the same event might appear in
the form of various trigger expressions and an ex-
pression might represent different event types in
different contexts. Figure 1 shows two examples.
In S1, “release” is a verb concept and a trigger for
“Transfer-Money” event, while in S2, “release ” is
a noun concept and a trigger for “Release-Parole”
event.

Most of previous methods (Ji et al., 2008; Liao
et al., 2010; Hong et al., 2011; Li et al., 2013; Li et
al., 2015b) considered event detection as a classi-

S2:   The court decides Anwar ‘s earliest release date   is April.

ccomp

det nsubj
poss

nnamodp’s cop
nsubj

DT NN  VBZ NNP     ’s        JJS             NN       NNS  VBZ NNP

S1:   The European   Unit   will  release   20   million   euros   to   Iraq.    

prep
drobj

num pobj

DT NNP  NNP MD      VB       CD       CD          NNS     IN    NNP

det
numauxnn

Person

Organization

Transfer-
Money

Number

Calendar

Release-
Parole

clues

clues

nsubj

Figure 1: Event type and syntactic parser results
of an example sentence.

fication problem and designed a lot of lexical and
syntactic features. Although such approaches per-
form reasonably well, features are often derived
from language-specific resources and the output of
pre-existing natural language processing toolkits
(e,g., name tagger and dependency parser), which
makes these methods difficult to be applied to dif-
ferent languages. Sequence and chunk are two
types of meaningful language-independent struc-
tures for event detection. For example, in S2,
when predicting the type of a trigger candidate “
release”, the forward sequence information such
as “court” can help the classifier label “release”
as a trigger of a “Release-Parole” event. How-
ever, for feature engineering methods, it is hard
to establish a relation between “court” and “re-
lease”, because there is no direct dependency path
between them. In addition, considering S1, “Eu-
ropean Union” and “20 million euros” are two
chunks, which indicate that this sentence is related
to an organization and financial activities. These
cluese are very helpful to infer “release” as a trig-
ger of a “Transfer-Money” event. However, chun-
kers and parsers are only available for a few high-
resource languages and their performance varies a
lot.
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The                   European                   Unit                     will                      release 20                     million                   euros …

SoftMax

LSTMB

LSTMF

Look up

BV FV C3C2Concatenate
with CNN

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Event Trigger
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. . . . . .   . . . . . .   . . . . . .   

Figure 2: An illustration of our model for event trigger extraction (here the trigger candidate is “release”).
Fv and Bv are the output of Bi-LSTM and C2, C3 are the output of CNN with convolutional filters with
widths of 2 and 3.

Recently, deep learning techniques have been
widely used in modeling complex structures and
proven effective for many NLP tasks, such as ma-
chine translation (Bahdanau et al., 2014), rela-
tion extraction (Zeng et al., 2014) and sentiment
analysis (Tang et al., 2015a). Bi-directional long
short-term memory (Bi-LSTM) model (Schuster
et al., 1997) is a two-way recurrent neural network
(RNN) (Mikolov et al., 2010) which can capture
both the preceding and following context informa-
tion of each word. Convolutional neural network
(CNN) (LeCun et al., 1995) is another effective
model for extracting semantic representations and
capturing salient features in a flat structure (Liu et
al., 2015), such as chunks. In this work, we de-
velop a hybrid neural network incorporating two
types of neural networks: Bi-LSTM and CNN, to
model both sequence and chunk information from
specific contexts. Taking advantage of word se-
mantic representation, our model can get rid of
hand-crafted features and thus be easily adapted
to multiple languages.

We evaluate our system on the event detection
task for various languages for which ground-truth
event detection annotations are available. In En-
glish event detection task, our approach achieved
73.4% F-score with average 3.0% absolute im-
provement compared to state-of-the-art. For Chi-
nese and Spanish, the experiment results are also
competitive. We demonstrate that our combined
model outperforms traditional feature-based meth-
ods with respect to generalization performance
across languages due to: (i) its capacity to model
semantic representations of each word by captur-
ing both sequence and chunk information. (ii) the

use of word embeddings to induce a more general
representation for trigger candidates.

2 Our Approach

In this section, we introduce a hybrid neural net-
works, which combines Bi-directional LSTM (Bi-
LSTM) and convolutional neural networks to learn
a continuous representation for each word in a
sentence. This representation is used to predict
whether the word is an event trigger or not. Specif-
ically, we first use a Bi-LSTM to encode semantics
of each word with its preceding and following in-
formation. Then, we add a convolutional neural
network to capture structure information from lo-
cal contexts.

2.1 Bi-LSTM
In this section we describe a Bidirectional LSTM
model for event detection. Bi-LSTM is a type
of bidirectional recurrent neural networks (RNN),
which can simultaneously model word represen-
tation with its preceding and following informa-
tion. Word representations can be naturally con-
sidered as features to detect triggers and their
event types. As show in (Chen et al., 2015), we
take all the words of the whole sentence as the in-
put and each token is transformed by looking up
word embeddings. Specifically, we use the Skip-
Gram model to pre-train the word embeddings to
represent each word (Mikolov et al., 2013; Bah-
danau et al., 2014).

We present the details of Bi-LSTM for event
trigger extraction in Figure 2. We can see that
Bi-LSTM is composed of two LSTM neural net-
works, a forward LSTMF to model the preced-
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Figure 3: CNN structure.

ing contexts, and a backward LSTMB to model
the following contexts respectively. The input
of LSTMF is the preceding contexts along with
the word as trigger candidate, and the input of
LSTMB is the following contexts plus the word
as trigger candidate. We run LSTMF from the be-
ginning to the end of a sentence, and run LSTMB

from the end to the beginning of a sentence. Af-
terwards, we concatenate the output Fv of LSTMF

andBv of LSTMB as the output of Bi-LSTM. One
could also try averaging or summing the last hid-
den vectors of LSTMF and LSTMB as alterna-
tives.

2.2 Convolution Neural Network

As the convolutional neural network (CNN) is
good at capturing salient features from a sequence
of objects (Liu et al., 2015), we design a CNN
to capture some local chunks. This approach has
been used for event detection in previous studies
(Nguyen and Grishman, 2015; Chen et al., 2015).
Specifically, we use multiple convolutional filters
with different widths to produce local context rep-
resentation. The reason is that they are capable
of capturing local semantics of n-grams of various
granularities, which are proven powerful for event
detection. In our work, multiple convolutional fil-
ters with widths of 2 and 3 encode the semantics of
bigrams and trigrams in a sentence. This local in-
formation can also help our model fix some errors
due to lexical ambiguity.

An illustration of CNN with three convo-
lutional filters is given in Figure 3. Let
us denote a sentence consisting of n words
as {w1, w2, ...wi, ...wn}, and each word wi is
mapped to its embedding representation ei ∈ Rd.
In addition, we add a position feature (PF), which
is defined as the relative distance between the cur-
rent word and the trigger candidate. A convolu-
tional filter is a list of linear layers with shared pa-
rameters. We feed the output of a convolutional
filter to a MaxPooling layer and obtain an output

vector with fixed length.

2.3 Output

At the end, we concatenate the bidirectional se-
quence features: F and B, which are learned from
the Bi-LSTM, and local context features: C2 and
C3, which are the output of CNN with convolu-
tional filters with width of 2 and 3, as a single vec-
tor O = [F,B,C2, C3]. Then, we exploit a soft-
max approach to identify trigger candidates and
classify each trigger candidate as a specific event
type.

2.4 Training

In our model, the loss function is the cross-entropy
error of event trigger identification and trigger
classification. We initialize all parameters to form
a uniform distribution U(−0.01, 0.01). We set the
widths of convolutional filters as 2 and 3. The
number of feature maps is 300 and the dimension
of the PF is 5. Table 1 illustrates the setting param-
eters used for three languages in our experiments
(Zeiler, 2012).

3 Experiments

In this section, we will describe the detailed exper-
imental settings and discuss the results. We eval-
uate the proposed approach on various languages
(English, Chinese and Spanish) with Precision (P),
Recall (R) and F-measure (F). Table 1 shows the
detailed description of the data sets used in our ex-
periments. We abbreviate our model as HNN (Hy-
brid Neural Networks).

3.1 Baseline Methods

We compare our approach with the following
baseline methods.

(1) MaxEnt, a basesline feature-based method,
which trains a Maximum Entropy classifier with
some lexical and syntactic features (Ji et al., 2008).

(2) Cross-Event (Liao et al., 2010), using
document-level information to improve the perfor-
mance of ACE event extraction.

(3) Cross-Entity (Hong et al., 2011), extracting
events using cross-entity inference.

(4) Joint Model (Li and Ji, 2014), a joint struc-
tured perception approach, incorporating multi-
level linguistic features to extract event triggers
and arguments at the same time so that local pre-
dictions can be mutually improved.
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Language
Word Embedding Gradient Learning Method Data Sets
corpus dim method parameters Corpus Train Dev Test

English NYT 300 SGD learning rate r = 0.03 ACE2005 529 30 40
Chinese Gigaword 300 Adadelta p = 0.95, δ = 1e−6 ACE2005 513 60 60
Spanish Gigaword 300 Adadelta p = 0.95, δ = 1e−6 ERE 93 12 12

Table 1: Hyperparameters and # of documents used in our experiments on three languages.

Model
Trigger Identification Trigger Classification

P R F P R F
MaxEnt 76.2 60.5 67.4 74.5 59.1 65.9
Cross-Event N/A N/A N/A 68.7 68.9 68.8
Cross-Entity N/A N/A N/A 72.9 64.3 68.3
Joint Model 76.9 65.0 70.4 73.7 62.3 67.5
PR N/A N/A N/A 68.9 72.0 70.4
CNN 80.4 67.7 73.5 75.6 63.6 69.1
RNN 73.2 63.5 67.4 67.3 59.9 64.2
LSTM 78.6 67.4 72.6 74.5 60.7 66.9
Bi-LSTM 80.1 69.4 74.3 81.6 62.3 70.6
HNN 80.8 71.5 75.9 84.6 64.9 73.4

Table 2: Comparison of different methods on En-
glish event detection.

(5) Pattern Recognition (Miao and Grishman,
2015), using a pattern expansion technique to ex-
tract event triggers.

(6) Convolutional Neural Network (Chen et al.,
2015), which exploits a dynamic multi-pooling
convolutional neural network for event trigger de-
tection.

3.2 Comparison On English

Table 2 shows the overall performance of all meth-
ods on the ACE2005 English corpus. We can
see that our approach significantly outperforms
all previous methods. The better performance of
HNN can be further explained by the following
reasons: (1) Compared with feature based meth-
ods, such as MaxEnt, Cross-Event, Cross-Entity,
and Joint Model, neural network based methods
(including CNN, Bi-LSTM, HNN) performs better
because they can make better use of word semantic
information and avoid the errors propagated from
NLP tools which may hinder the performance for
event detection. (2) Moreover, Bi-LSTM can cap-
ture both preceding and following sequence in-
formation, which is much richer than dependency
path. For example, in S2, the semantic of “court”
can be delivered to release by a forward sequence
in our approach. It is an important clue which can
help to predict “release” as a trigger for “Release-
Parole”. For explicit feature based methods, they
can not establish a relation between “court” and
“release”, because they belong to different clauses,

and there is no direct dependency path between
them. While in our approach, the semantics of
“court” can be delivered to release by a forward
sequence. (3) Cross-entity system achieves higher
recall because it uses not only sentence-level in-
formation but also document-level information. It
utilizes event concordance to predict a local trig-
ger’s event type based on cross-sentence infer-
ence. For example, an “attack” event is more
likely to occur with “killed” or “die” event rather
than “marry” event. However, this method heav-
ily relies on lexical and syntactic features, thus
the precision is lower than neural network based
methods. (4) RNN and LSTM perform slightly
worse than Bi-LSTM. An obvious reason is that
RNN and LSTM only consider the preceding se-
quence information of the trigger, which may miss
some important following clues. Considering S1
again, when extracting the trigger “releases”, both
models will miss the following sequence “20 mil-
lion euros to Iraq”. This may seriously hinder the
performance of RNN and LSTM for event detec-
tion.

3.3 Comparison on Chinese

For Chinese, we follow previous work (Chen et al.,
2012) and employ Language Technology Platform
(Liu et al., 2011) to do word segmentation.

Table 3 shows the comparison results between
our model and the state-of-the-art methods (Li et
al., 2013; Chen et al., 2012). MaxEnt (Li et al.,
2013) is a pipeline model, which employs human-
designed lexical and syntactic features. Rich-C
is developed by Chen et al. (2012), which also
incorporates Chinese-specific features to improve
Chinese event detection. We can see that our
method outperforms methods based on human de-
signed features for event trigger identification and
achieves comparable F-score for event classifica-
tion.

3.4 Spanish Extraction

Table 4 presents the performance of our method
on the Spanish ERE corpus. The results show that
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Model
Trigger Identification Trigger Classification

P R F P R F

MaxEnt 50.0 77.0 60.6 47.5 73.1 57.6
Rich-C 62.2 71.9 66.7 58.9 68.1 63.2
HNN 74.2 63.1 68.2 77.1 53.1 63.0

Table 3: Results on Chinese event detection.

HNN approach performed better than LSTM and
Bi-LSTM. It indicates that our proposed model
could achieve the best performance in multiple
languages than other neural network methods. We
did not compare our system with other systems
(Tanev et al., 2009), because they reported the re-
sults on a non-standard data set .

Model
Trigger Identification Trigger Classification

P R F P R F

LSTM 62.2 52.9 57.2 56.9 32.6 41.6
Bi-LSTM 76.2 63.1 68.7 61.5 42.2 50.1
HNN 81.4 65.2 71.6 66.3 47.8 55.5

Table 4: Results on Spanish event detection.

4 Related Work

Event detection is a fundamental problem in infor-
mation extraction and natural language process-
ing (Li et al., 2013; Chen et al., 2015), which
aims at detecting the event trigger of a sentence
(Ji et al., 2008). The majority of existing methods
regard this problem as a classification task, and
use machine learning methods with hand-crafted
features, such as lexical features (e.g., full word,
pos tag), syntactic features (e.g., dependency fea-
tures) and external knowledge features (WordNet).
There also exists some studies leveraging richer
evidences like cross-document (Ji et al., 2008),
cross-entity (Hong et al., 2011) and joint inference
(Li and Ji, 2014).

Despite the effectiveness of feature-based meth-
ods, we argue that manually designing feature
templates is typically labor intensive. Besides,
feature engineering requires expert knowledge and
rich external resources, which is not always avail-
able for some low-resource languages. Further-
more, a desirable approach should have the abil-
ity to automatically learn informative representa-
tions from data, so that it could be easily adapted
to different languages. Recently, neural network
emerges as a powerful way to learn text represen-
tation automatically from data and has obtained
promising performances in a variety of NLP tasks.

For event detection, two recent studies (Nguyen
and Grishman, 2015; Chen et al., 2015) explore
neural network to learn continuous word represen-
tation and regard it as the feature to infer whether a
word is a trigger or not. Nguyen (2015) presented
a convolutional neural network with entity type in-
formation and word position information as extra
features. However, their system limits the con-
text to a fixed window size which leads the loss of
word semantic representation for long sentences.

We introduce a hybrid neural network to learn
continuous word representation. Compared with
feature-based approaches, the method here does
not require feature engineering and could be di-
rectly applied to different languages. Compared
with previous neural models, we keep the advan-
tage of convolutional neural network (Nguyen and
Grishman, 2015) in capturing local contexts. Be-
sides, we also incorporate a Bi-directional LSTM
to model the preceding and following information
of a word as it has been commonly accepted that
LSTM is good at capturing long-term dependen-
cies in a sequence (Tang et al., 2015b; Li et al.,
2015a).

5 Conclusions

In this work, We introduce a hybrid neural net-
work model, which incorporates both bidirectional
LSTMs and convolutional neural networks to cap-
ture sequence and structure semantic information
from specific contexts, for event detection. Com-
pared with traditional event detection methods,
our approach does not rely on any linguistic re-
sources, thus can be easily applied to any lan-
guages. We conduct experiments on various lan-
guages ( English, Chinese and Spanish. Empirical
results show our approach achieved state-of-the-
art performance in English and competitive results
in Chinese. We also find that bi-directional LSTM
is powerful for trigger extraction in capturing pre-
ceding and following contexts in long distance.
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Abstract

Syntactic parsers perform poorly in pre-
diction of Argument-Cluster Coordination
(ACC). We change the PTB representation
of ACC to be more suitable for learning
by a statistical PCFG parser, affecting 125
trees in the training set. Training on the
modified trees yields a slight improvement
in EVALB scores on sections 22 and 23.
The main evaluation is on a corpus of 4th
grade science exams, in which ACC struc-
tures are prevalent. On this corpus, we ob-
tain an impressive ×2.7 improvement in
recovering ACC structures compared to a
parser trained on the original PTB trees.

1 Introduction

Many natural language processing systems make
use of syntactic representations of sentences.
These representations are produced by parsers,
which often produce incorrect analyses. Many of
the mistakes are in coordination structures, and
structures involving non-constituent coordination,
such as Argument Cluster Coordination, Right
Node-Raising and Gapping (Dowty, 1988), are es-
pecially hard.

Coordination is a common syntactic phenomena
and work has been done to improve coordination
structures predication in the general case (Hogan,
2007; Hara et al., 2009; Shimbo and Hara, 2007;
Okuma et al., 2009). In this work we focus on one
particular coordination structure: Argument Clus-
ter Coordination (ACC). While ACC are not com-
mon in the Penn TreeBank (Marcus et al., 1993),
they commonly appear in other corpora. For ex-
ample, in a dataset of questions from the Regents
4th grade science exam (the Aristo Challenge),
14% of the sentences include ACC.

ACC is characterized by non-constituent se-
quences that are parallel in structure. For instance,
in “I bought John a microphone on Monday and
Richie a guitar on Saturday”, the conjunction is
between “John a microphone on Monday” and
“Richie a guitar on Saturday” which are both non-
constituents and include parallel arguments: the
NPs “John” and “Richie”; the NPs “a micro-
phone” and “a guitar”; and the PPs “on Monday”
and “on Saturday”.

Previous NLP research on the Argument Clus-
ters Coordination (Mouret, 2006) as well as the
Penn TreeBank annotation guidelines (Marcus et
al., 1993; Bies et al., 1995) focused mainly on
providing representation schemes capable of ex-
pressing the linguistic nuances that may appear in
such coordinations. The resulting representations
are relatively complex, and are not easily learn-
able by current day parsers, including parsers that
refine the grammar by learning latent annotations
(Petrov et al., 2006), which are thought to be more
agnostic to the annotations scheme of the trees. In
this work, we suggest an alternative, simpler rep-
resentation scheme which is capable of represent-
ing most of the Argument Cluster coordination
cases in the Penn Treebank, and is better suited
for training a parser. We show that by changing
the annotation of 125 trees, we get a parser which
is substantially better at handling ACC structures,
and is also marginally better at parsing general
sentences.

2 Arguments Cluster Coordination in
the Penn Tree Bank

Argument Cluster Coordinations are represented
in the PTB with two or more conjoined VPs,
where the first VP contains a verb and indexed ar-
guments, and the rest of the VPs lack a verb and
include arguments with indices corresponding to
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those of the first conjoined VP. For example, con-
sider the PTB representation of “The Q ratio was
only 65% in 1987 and 68.9% in 1988”:

VP

VP

VBD

was

NP-1

only 65 %

PP-2

in 1987

CC

and

VP

NP=1

68.9 %

PP=2

in 1988

The main VP includes two conjoined VPs. The
first VP includes the verb was and two indexed ar-
guments: “only 65%” (1) and “in 1987” (2). The
second VP does not include a verb, but only two
arguments, that are co-indexed with the parallel ar-
gument at the first conjoined VP.

ACC structures in the PTB may include modi-
fiers that are annotated under the main VP, and the
conjoined VPs may includes arguments that are
not part of the cluster. These are annotated with
no index, i.e. “insurance costs” in [1a].

ACC structures are not common in the PTB.
The training set includes only 141 ACC structures
of which are conjoined by and or or. Some of
them are complex but most (78%) have the follow-
ing pattern (NT is used to denote non-terminals):

VP

VP

Verb NT-1 NT-2

CC

and/or

VP

NT=1 NT=2

These structures can be characterized as follows:
(1) the first token of the first conjoined VP is a
verb; (2) the indexed arguments are direct chil-
dren of the conjoined VPs; (3) the number of the
indexed arguments is the same for each conjoined
VP.

Almost all of these cases (98%) are symmetric:
each of the conjoined VPs has the same types of
indexed arguments. Non-symmetric clusters (e.g.
“He made [these gestures]1NP [to the red group]2PP

and [for us]2PP [nothing]1NP ”) exist but are less
common.

We argue that while the PTB representation for
ACC gives a clear structure and covers all the ACC
forms, it is not a good representation for learn-
ing PCFG parsers from. The arguments in the
clusters are linked via co-indexation, breaking the
context-free assumptions that PCFG parsers rely
on. PCFG parsers ignore the indexes, essentially
losing all the information about the ACC con-
struction. Moreover, ignoring the indexes result

in “weird” CFG rules such as VP→ NP PP. Not
only that the RHS of these rules do not include a
verbal component, it is also a very common struc-
ture for NPs. This makes the parser very likely to
either mis-analyze the argument cluster as a noun-
phrase, or to analyze some NPs as (supposedly
ACC) VPs. The parallel nature of the construction
is also lost. To improve the parser performance for
ACC structures prediction, we suggest an alterna-
tive constituency representation for ACC phrases
which is easier to learn.

3 Alternative Representation for ACC
Our proposed representation for ACC respects the
context-free nature of the parser. In order to avoid
incorrect syntactic derivations and derivations that
allows conjoining of clusters with other phrases,
as well as to express the symmetry that occur in
many ACC phrases, we change the PTB represen-
tation for ACC as follows: (1) we move the verb
and non-indexed elements out of the first argu-
ment cluster to under the main VP; (2) each ar-
gument cluster is treated as a phrase, with new
non-terminal symbols specific to argument clus-
ters; (3) the conjunction of clusters also receives a
dedicated phrase level. For example see compari-
son between the original and new representations:

[1]

VP

VP

VBN

driven

PRT

up

NP

insurance
costs

NP-1

20%

PP-2

in Maryland

CC

and

VP

NP=1

30%

PP=2

in California

(a) PTB representation

VP

VBN

driven

PRT

up

NP

insurance
costs

ACCPHNP

ACCNP−PP

NP-1

20%

PP-2

in
Maryland

CC

and

ACCNP−PP

NP=1

30%

PP=2

in
California

(b) Our modified tree

The main verb driven as well as the particle up
and the non-indexed argument insurance costs are
moved to the external VP. The two argument clus-
ters (formerly VPs) receive dedicated phrase la-
bels ACCX , where X reflects the syntactic types
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of the indexed elements (e.g. ACCNP−PP for the
first cluster in [1b] above). The most common
cases are ACCNP−PP which appears in 41.6%
of the clusters, ACCADJP−PP with 21.2% of the
clusters and ACCPP−PP with 5.3% of the clus-
ters.

Finally, we introduce a new phrase type
(ACCPHX ) for the coordination of the two clus-
ters. HereX denotes the main element in the clus-
ters, determined heuristically by taking the first of
the following types that appear in any of the clus-
ters: NP, PP, ADJP, SBAR. Cases where the clus-
ters contains an ADVP element are usually special
(e.g. the following structure is missing “people” in
the second cluster: ((NP 8000 people) (in Spain))
and ((NP 2000) (ADVP abroad))). For such cases,
we add “ADVP” to the ACCPH level label. Ta-
ble 1 lists theACCPH level labels and their num-
ber of the appearances in the 125 modified trees.1

The representation is capable of representing
common cases of ACC where the cluster elements
are siblings. We similarly handle also some of the
more complex cases, in which an extra layer ap-
pears between an indexed argument and the con-
joined VP to host an empty element, such as in
the following case with an extra S layer above
single-B-3:

VP

VP

VBN

rated

S

NP

-NONE-

ADJP-1

single-B-3

PP-2

by...

CC

and

VP

ADJP=1

single-B-plus

PP=2

by...

in which we remove the empty NP as well as the
extra S layer:

VP

VBN

rated

ACCPHPP

ACCADJP−PP

ADJP

single-B-3

PP

by...

CC

and

ACCADJP−PP

ADJP

single-B-plus

PP

by...

1Parsers that apply latent annotations to the grammar,
such as the Berkeley Parser (Petrov et al., 2006) we use in
our experiments, can potentially learn some of our proposed
refinements on their own. However, as we show in the ex-
periments section, the performance of the Berkeley Parser
on ACC structures significantly improve when applying our
transformations prior to training.

Label # Label #
ACCPHNP 69 ACCPHNP−ADV P 6
ACCPHPP 36 ACCPHPP−ADV P 11
ACCPHADJP 2 ACCPHSBAR−ADV P 1

Table 1: The labels for the new level in the ACC
trees. #: number of occurrences.

Limitations Our representation is similar to the
representation that was suggested for ACC by
Huddleston et al. (2002) in their comprehen-
sive linguistic description of the English gram-
mar. However, while it is capable of repre-
senting the common cases of ACC, it does not
cover some complex and rare cases encountered
in the PTB: (1) Argument-Cluster structures that
include errors such as missing indexed argument
and a wrong POS tag for the main verb; (2) ACC
constructions where the main verb is between
the indexed arguments such as the following:
“([About half]1 invested [in government bonds]2)
and ([about 10%]1 [in cash]2)”; (3) Argument-
Cluster structures that include an indexed phrase
which is not a direct child of the cluster head
and has non-empty siblings, such as in the follow-
ing case that includes an indexed argument (8%)
which is not directly under the conjoined VP and
has non-empty sibling (of ): “see a raise [[of]
[8%]NP−1]PP in the first year] and [7%]NP=1

in each of the following two years”.
Our changes are local and appear in small num-

ber of trees (0.003% of the PTB train set). We also
ignore more complex cases of ACC. Yet, training
the parser with the modified trees significantly im-
proves the parser results on ACC structures.

4 Experiments

We converted 125 trees with ACC structures in
the training sets (sections 2-21) of the PTB to
the new representation, and trained the Berkeley
parser (Petrov et al., 2006) with its default settings.

As the PTB test and dev sets have only 12 ACC
structures that are coordinated by and or or, we
evaluate the parser on Regents, a dataset in which
ACC structures are prevalent (details below). As
Regents does not include syntactic structures, we
focus on the ACC phenomena and evaluate the
parsers’ ability to correctly identify the spans of
the clusters and the arguments in them.

To verify that the new representation does not
harm general parsing performance, we also eval-
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Dataset R P F1

Dev
PTB Trees 90.88 90.89 90.88
Modified Trees 90.97 91.21 91.09

Test
PTB Trees 90.36 90.79 90.57
Modified Trees 90.62 91.06 90.84

Table 2: Parsing results (EVALB) on PTB Sec-
tions 22 (DEV) and 23 (TEST).

PTB Trees Modified Trees
ACCPTB 13.0 -
ACCOUR 24.1 64.8

Table 3: The parser Recall score in recover-
ing ACC conjunct spans on the Regents dataset.
ACCPTB: the set is annotated with the verb in-
side the first cluster. ACCOUR: the set is anno-
tated following our approach.

uate the parer on the traditional development and
test sets (sections 22 and 23). As can be seen in
Table 2, the parser results are slightly better when
trained with the modified trees.2

4.1 Regents data-set

Regents – a dataset of questions from the Regents
4th grade science exam (the Aristo Challenge),3

includes 281 sentences with coordination phrases,
where 54 of them include Argument Cluster co-
ordination. We manually annotated the sentences
by marking the conjuncts spans for the constituent
coordination phrases, e.g.:

Wendy (ran 19 miles) and (walked 9 miles)

as well as the spans of each component of the
argument-cluster coordinations, including the in-
ner span of each argument:

Mary paid ([$11.08] [for berries]) , ([$14.33] [for
apples]) , and ([$9.31] [for peaches])

The bracketing in this set follow our proposed
ACC bracketing, and we refer to it as ACCOUR.

We also created a version in which the bracket-
ing follow the PTB scheme, with the verb included
in span of the first cluster, e.g.:

Mary ([paid] [$11.08] [for berries]) , ([$14.33]
[for apples]) , and ([$9.31] [for peaches])

We refer to this dataset as ACCPTB .
2The same trend holds also if we exclude the 12 modified

trees from the evaluation sets.
3http://allenai.org/content/data/Regents.zip

We evaluate the parsers’ ability to correctly re-
cover the components of the coordination struc-
tures by computing the percentage of gold anno-
tated phrases where the number of predicted con-
junct is correct and all conjuncts spans (round
brackets) are predicted correctly (Recall). For
example, consider the following gold annotated
phrase:

A restaurant served (9 pizzas during lunch) and (6
during dinner) today

A prediction of (“9 pizzas during lunch”, “6
during dinner today”) is considered as incorrect
because the second conjunct boundaries are not
matched to the gold annotation.

We compare the Recall score that the parser
achieves when it is trained on the modified trees
to the score when the parser is trained on the PTB
trees.

When evaluated on all coordination cases in the
Regents dataset (both ACC and other cases of con-
stituent coordination), the parser trained on the
modified trees was successful in recovering 54.3%
of the spans, compared to only 47% when trained
on the original PTB trees.

We now focus on specifically on the ACC
cases (Table 3). When evaluating the PTB-trained
parser on ACCPTB , it correctly recovers only
13% of the ACC boundaries. Somewhat sur-
prisingly, the PTB-trained parser performs better
when evaluated against ACCOUR, correctly re-
covering 24.1% of the structures. This highlights
how unnatural the original ACC representation is
for the parser: it predicts the alternative represen-
tation more often than it predicts the one it was
trained on. When the parser is trained on the mod-
ified trees, results on ACCOUR jump to 64.8%,
correctly recovering ×2.7 more structures.

The previous results were on recovering the
spans of the coordinated elements (the round
brackets in the examples above). When mea-
suring the Recall in recovering any of the argu-
ments themselves (the elements surrounded by
square brackets), the parser trained on the mod-
ified trees recovers 72.46% of the arguments in
clusters, compared to only 58.29% recovery by
the PTB-trained parser. We also measure in what
percentage of the cases in which both the cluster
boundaries (round brackets) were recovered cor-
rectly, all the internal structure (square brackets)
was recovered correctly as well. The score is 80%
when the parser trained on the modified trees com-
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pared to 61.5% when it is trained on the PTB-trees.
Overall, the parser trained on the modified trees

significantly outperforms the one trained on the
original trees in all the evaluation scenarios.

Another interesting evaluation is the ability of
the parser that is trained on the modified trees to
determine whether a coordination is of Argument
Clusters type (that is, whether the predicted co-
ordination spans are marked with the ACCPH la-
bel).4 The results are a Recall of 57.4% and Pre-
cision of 83.78%. When we further require that
both the head be marked as ACCPH and the in-
ternal structure be correct, the results are 48.14%
Recall and 70.27% Precision.

5 Conclusions

By focusing on the details of a single and rela-
tively rare syntactic construction, argument clus-
ters coordination, we have been able to signifi-
cantly improve parsing results for this construc-
tion, while also slightly improving general parsing
results. More broadly, while most current research
efforts in natural language processing and in syn-
tactic parsing in particular is devoted to the de-
sign of general-purpose, data-agnostic techniques,
such methods work on the common phenomena
while often neglecting the very long tail of impor-
tant constructions. This work shows that there are
gains to be had also from focusing on the details
of particular linguistic phenomena, and changing
the data such that it is easier for a “data agnostic”
system to learn.
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Abstract

In the translation industry, human transla-
tions are assessed by comparison with the
source texts. In the Machine Translation
(MT) research community, however, it is
a common practice to perform quality as-
sessment using a reference translation in-
stead of the source text. In this paper we
show that this practice has a serious issue
– annotators are strongly biased by the ref-
erence translation provided, and this can
have a negative impact on the assessment
of MT quality.

1 Introduction

Equivalence to the source text is the defining char-
acteristic of translation. One of the fundamental
aspects of translation quality is, therefore, its se-
mantic adequacy, which reflects to what extent the
meaning of the original text is preserved in the
translation. In the field of Machine Translation
(MT), on the other hand, it has recently become
common practice to perform quality assessment
using a human reference translation instead of the
source text. Reference-based evaluation is an at-
tractive practical solution since it does not require
bilingual speakers.

However, we believe this approach has a strong
conceptual flaw: the assumption that the task of
translation has a single correct solution. In real-
ity, except for very short sentences or very specific
technical domains, the same source sentence may
be correctly translated in many different ways.
Depending on a broad textual and real-world con-
text, the translation can differ from the source text
at any linguistic level – lexical, syntactic, seman-
tic or even discourse – and still be considered per-
fectly correct. Therefore, using a single translation
as a proxy for the original text may be unreliable.

In the monolingual, reference-based evaluation
scenario, human judges are expected to recognize
acceptable variations between translation options
and assign a high score to a good MT, even if
it happens to be different from a particular hu-
man reference provided. In this paper we argue
that, contrary to this expectation, annotators are
strongly biased by the reference. They inadver-
tently favor machine translations (MTs) that make
similar choices to the ones present in the reference
translation. To test this hypothesis, we perform an
experiment where the same set of MT outputs is
manually assessed using different reference trans-
lations and analyze the discrepancies between the
resulting quality scores.

The results confirm that annotators are indeed
heavily influenced by the particular human trans-
lation that was used for evaluation. We discuss
the implications of this finding on the reliability
of current practices in manual quality assessment.
Our general recommendation is that, in order to
avoid reference bias, the assessment should be per-
formed by comparing the MT output to the origi-
nal text, rather than to a reference.

The rest of this paper is organized as follows.
In Section 2 we present related work. In Section 3
we describe our experimental settings. In Section
4 we focus on the effect of reference bias on MT
evaluation. In Section 5 we examine the impact of
the fatigue factor on the results of our experiments.

2 Related Work

It has become widely acceptable in the MT com-
munity to use human translation instead of (or
along with) the source segment for MT evalua-
tion. In most major evaluation campaigns (ARPA
(White et al., 1994), 2008 NIST Metrics for
Machine Translation Challenge (Przybocki et al.,
2008), and annual Workshops on Statistical Ma-
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chine Translation (Callison-Burch et al., 2007;
Bojar et al., 2015)), manual assessment is ex-
pected to consider both MT fluency and adequacy,
with a human (reference) translation commonly
used as a proxy for the source text to allow for
adequacy judgement by monolingual judges.

The reference bias problem has been exten-
sively discussed in the context of automatic MT
evaluation. Evaluation systems based on string-
level comparison, such as the well known BLEU
metric (Papineni et al., 2002) heavily penalize po-
tentially acceptable variations between MT and
human reference. A variety of methods have been
proposed to address this issue, from using multiple
references (Dreyer and Marcu, 2012) to reference-
free evaluation (Specia et al., 2010).

Research in manual evaluation has focused on
overcoming annotator bias, i.e. the preferences
and expectations of individual annotators with re-
spect to translation quality that lead to low levels
of inter-annotator agreement (Cohn and Specia,
2013; Denkowski and Lavie, 2010; Graham et al.,
2013; Guzmán et al., 2015). The problem of ref-
erence bias, however, has not been examined in
previous work. By contrast to automatic MT eval-
uation, monolingual quality assessment is consid-
ered unproblematic, since human annotators are
supposed to recognize meaning-preserving varia-
tions between the MT output and a given human
reference. However, as will be shown in what fol-
lows, manual evaluation is also strongly affected
by biases due to specific reference translations.

3 Settings

To show that monolingual quality assessment de-
pends on the human translation used as gold-
standard, we devised an evaluation task where
annotators were asked to assess the same set of
MT outputs using different references. As control
groups, we have annotators assessing MT using
the same reference, and using the source segments.

3.1 Dataset

MT data with multiple references is rare. We used
MTC-P4 Chinese-English dataset, produced by
Linguistic Data Consortium (LDC2006T04). The
dataset contains 919 source sentences from news
domain, 4 reference translations and MT outputs
generated by 10 translation systems. Human trans-
lations were produced by four teams of profes-
sional translators and included editor’s proofread-

ing. All teams used the same translation guide-
lines, which emphasize faithfulness to the source
sentence as one of the main requirements.

We note that even in such a scenario, human
translations differ from each other. We measured
the average similarity between the four references
in the dataset using the Meteor evaluation met-
ric (Denkowski and Lavie, 2014). Meteor scores
range between 0 and 1 and reflect the proportion
of similar words occurring in similar order. This
metric is normally used to compare the MT out-
put with a human reference, but it can also be ap-
plied to measure similarity between any two trans-
lations. We computed Meteor for all possible com-
binations between the four available references
and took the average score. Even though Me-
teor covers certain amount of acceptable linguis-
tic variation by allowing for synonym and para-
phrase matching, the resulting score is only 0.33,
which shows that, not surprisingly, human transla-
tions vary substantially.

To make the annotation process feasible given
the resources available, we selected a subset of
100 source sentences for the experiment. To en-
sure variable levels of similarity between the MT
and each of the references, we computed sentence-
level Meteor scores for the MT outputs using each
of the references and selected the sentences with
the highest standard deviation between the scores.

3.2 Method

We developed a simple online interface to collect
human judgments. Our evaluation task was based
on the adequacy criterion. Specifically, judges
were asked to estimate how much of the meaning
of the human translation was expressed in the MT
output (see Figure 1). The responses were inter-
preted on a five-point scale, with the labels in Fig-
ure 1 corresponding to numbers from 1 (“None”)
to 5 (“All”).

For the main task, judgments were collected us-
ing English native speakers who volunteered to
participate. They were either professional trans-
lators or researchers with a degree in Computa-
tional Linguistics, English or Translation Stud-
ies. 20 annotators participated in this monolin-
gual task. Each of them evaluated the same set
of 100 MT outputs. Our estimates showed that
the task could be completed in approximately
one hour. The annotators were divided into four
groups, corresponding to the four available refer-
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Figure 1: Evaluation Interface

ences. Each group contained five annotators in-
dependently evaluating the same set of sentences.
Having multiple annotators in each group allowed
us to minimize the effect of individual annotators’
biases, preferences and expectations.

As a control group, five annotators (native
speakers of English, fluent in Chinese or bilingual
speakers) performed a bilingual evaluation task for
the same MT outputs. In the bilingual task, an-
notators were presented with an MT output and
its corresponding source sentence and asked how
much of the meaning of the source sentence was
expressed in the MT.

In total, we collected 2,500 judgments. Both
the data and the tool for collecting human
judgments are available at https://github.
com/mfomicheva/tradopad.git.

4 Reference Bias

The goal of the experiment is to show that depend-
ing on the reference translation used for evalua-
tion, the quality of the same MT output will be per-
ceived differently. However, we are aware that MT
evaluation is a subjective task. Certain discrepan-
cies between evaluation scores produced by dif-
ferent raters are expected simply because of their
backgrounds, individual perceptions and expecta-
tions regarding translation quality.

To show that some differences are related to
reference bias and not to the bias introduced by
individual annotators, we compare the agreement
between annotators evaluating with the same and
with different references. First, we randomly se-

lect from the data 20 pairs of annotators who used
the same reference translations and 20 pairs of
annotators who used different reference transla-
tions. The agreement is then computed for each
pair. Next, we calculate the average agreement for
the same-reference and different-reference groups.
We repeat the experiment 100 times and report the
corresponding averages and confidence intervals.

Table 1 shows the results in terms of stan-
dard (Cohen, 1960) and linearly weighted (Cohen,
1968) Kappa coefficient (k).1 We also report one-
off version of weighted k, which discards the dis-
agreements unless they are larger than one cate-
gory.

Kappa Diff. ref. Same ref. Source
Standard .163±.01 .197±.01 0.190±.02
Weighted .330±.01 .373±.01 0.336±.02
One-off .597±.01 .662±.01 0.643±.02

Table 1: Inter-annotator agreement for different-
references (Diff. ref.), same-reference (Same ref.)
and source-based evaluation (Source)

As shown in Table 1, the agreement is consis-
tently lower for annotators using different refer-
ences. In other words, the same MT outputs sys-
tematically receive different scores when differ-

1In MT evaluation, agreement is usually computed using
standard k both for ranking different translations and for scor-
ing translations on an interval-level scale. We note, however,
that weighted k is more appropriate for scoring, since it al-
lows the use of weights to describe the closeness of the agree-
ment between categories (Artstein and Poesio, 2008).
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ent human translations are used for their evalua-
tion. Here and in what follows, the differences
between the results for the same-reference annota-
tor group and different-reference annotator group
were found to be statistically significant with p-
value < 0.01.

The agreement between annotators using the
source sentences is slightly lower than in the
monolingual, same-reference scenario, but it is
higher than in the case of the different-reference
group. This may be an indication that reference-
based evaluation is an easier task for annotators,
perhaps because in this case they are not required
to shift between languages. Nevertheless, the fact
that given a different reference, the same MT out-
puts receive different scores, undermines the reli-
ability of this type of evaluation.

Human score BLEU score
Reference 1 1.980 0.1649
Reference 2 2.342 0.1369
Reference 3 2.562 0.1680
Reference 4 2.740 0.1058

Table 2: Average human scores for the groups of
annotators using different references and BLEU
scores calculated with the corresponding refer-
ences. Human scores range from 1 to 5, while
BLEU scores range from 0 to 1.

In Table 2 we computed average evaluation
scores for each group of annotators. Average
scores vary considerably across groups of anno-
tators. This shows that MT quality is perceived
differently depending on the human translation
used as gold-standard. For the sake of compari-
son, we also present the scores from the widely
used automatic evaluation metric BLEU. Not sur-
prisingly, BLEU scores are also strongly affected
by the reference bias. Below we give an example
of linguistic variation in professional human
translations and its effect on reference-based MT
evaluation.

Src: 不过这一切都由不得你2

MT: But all this is beyond the control of you.
R1: But all this is beyond your control.
R2: However, you cannot choose yourself.
R3: However, not everything is up to you to
decide.

2Literally: “However these all totally beyond the control
of you.”

R4: But you can’t choose that.

Although all the references carry the same mes-
sage, the linguistic means used by the translators
are very different. Most of these references are
high-level paraphrases of what we would consider
a close version of the source sentence. Annota-
tors are expected to recognize meaning-preserving
variation between the MT and any of the refer-
ences. However, the average score for this sen-
tence was 3.4 in case of Reference 1, and 2.0, 2.0
and 2.8 in case of the other three references, re-
spectively, which illustrates the bias introduced by
the reference translation.

5 Time Effect

It is well known that the reliability and consistency
of human annotation tasks is affected by fatigue
(Llorà et al., 2005). In this section we examine
how this factor may gave influenced the evalua-
tion on the impact of reference bias and thus the
reliability of our experiment.

We measured inter-annotator agreement for the
same-reference and different-reference annotators
at different stages of the evaluation process. We
divided the dataset in five sets of sentences based
on the chronological order in which they were an-
notated (0-20, 20-40, ..., 80-100). For each slice
of the data we repeated the procedure reported in
Section 4. Figure 2 shows the results.

First, we note that the agreement is always
higher in the case of same-reference annotators.
Second, in the intermediate stages of the task
we observe the highest inter-annotator agreement
(sentences 20-40) and the smallest difference be-
tween the same-reference and different-reference
annotators (sentences 40-60). This seems to in-
dicate that the effect of reference bias is minimal
half-way through the evaluation process. In other
words, when the annotators are already acquainted
with the task but not yet tired, they are able to
better recognize meaning-preserving variation be-
tween different translation options.

To further investigate how fatigue affects the
evaluation process, we tested the variability of hu-
man scores in different (chronological) slices of
the data. We again divided the data in five sets
of sentences and calculated standard deviation be-
tween the scores in each set. We repeated this pro-
cedure for each annotator and averaged the results.
As can be seen in Figure 3, the variation between

80



0–20 20–40 40–60 60–80 80–100
0.25

0.3

0.35

0.4

Evaluated sentences

A
ve

ra
ge

W
ei

gh
te

d
k

Same reference
Different references

Figure 2: Inter-annotator agreement at different
stages of evaluation process

the scores is lower in the last stages of the evalua-
tion process. This could mean that towards the end
of the task the annotators tend to indiscriminately
give similar scores to any translation, making the
evaluation less informative.
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Figure 3: Average standard deviations between
human scores for all annotators at different stages
of evaluation process

6 Conclusions

In this work we examined the effect of reference
bias on monolingual MT evaluation. We com-
pared the agreement between the annotators who
used the same human reference translation and
those who used different reference translations.
We were able to show that in addition to the in-
evitable bias introduced by different annotators,
monolingual evaluation is systematically affected

by the reference provided. Annotators consistently
assign different scores to the same MT outputs
when a different human translation is used as gold-
standard. The MTs that are correct but happen
to be different from a particular human translation
are inadvertently penalized during evaluation.

We also analyzed the relation between reference
bias and annotation at different times throughout
the process. The results suggest that annotators
are less influenced by specific translation choices
present in the reference in the intermediate stages
of the evaluation process, when they have already
familiarized themselves with the task but are not
yet fatigued by it. To reduce the fatigue effect, the
task may be done in smaller batches over time. Re-
garding the lack of experience, annotators should
receive previous training.

Quality assessment is instrumental in the devel-
opment and deployment of MT systems. If evalua-
tion is to be objective and informative, its purpose
must be clearly defined. The same sentence can
be translated in many different ways. Using a hu-
man reference as a proxy for the source sentence,
we evaluate the similarity of the MT to a partic-
ular reference, which does not necessarily reflect
how well the contents of the original is expressed
in the MT or how suitable it is for a given pur-
pose. Therefore, monolingual evaluation under-
mines the reliability of quality assessment. We
recommend that unless the evaluation is aimed for
a very specific translation task, where the number
of possible translations is indeed limited, the as-
sessment should be performed by comparing MT
to the original text.

Acknowledgments

Marina Fomicheva was supported by funding from
IULA (UPF) and the FI-DGR grant program of the
Generalitat de Catalunya. Lucia Specia was sup-
ported by the QT21 project (H2020 No. 645452).
The authors would also like to thank the three
anonymous reviewers for their helpful comments
and suggestions.

References
Ron Artstein and Massimo Poesio. 2008. Inter-coder

Agreement for Computational Linguistics. Compu-
tational Linguistics, 34(4):555–596.
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Abstract

This paper presents a cross-lingual pro-
jection technique for training class-based
language models. We borrow from pre-
vious success in projecting POS tags and
NER mentions to that of a trained class-
based language model. We use a CRF
to train a model to predict when a se-
quence of words is a member of a given
class and use this to label our language
model training data. We show that we can
successfully project the contextual cues
for these classes across pairs of languages
and retain a high quality class model in
languages with no supervised class data.
We present empirical results that show the
quality of the projected models as well
as their effect on the down-stream speech
recognition objective. We are able to
achieve over 70% of the WER reduction
when using the projected class models as
compared to models trained on human an-
notations.

1 Introduction

Class-based language modeling has a long history
of being used to improve the quality of speech
recognition systems (Brown et al., 1992; Knesser
and Ney, 1993). Recent work on class-based mod-
els has exploited named entity recognition (NER)
approaches to label language model training data
with class labels (Levit et al., 2014; Vasserman et
al., 2015), providing a means to assign words and
phrases to classes based on their context. These
contextually assigned classes have been shown
to improve speech recognition significantly over
grammar-based, deterministic class assignments.

In this work, we address the problem of la-
beling training data in order to build a class se-

quence tagger. We borrow from the successes of
previous cross-lingual projection experiments for
labeling tasks (Yarowsky et al., 2001; Yarowsky
and Ngai, 2001; Burkett et al., 2010; Padó and
Lapata, 2009). We focus on numeric classes
(e.g., address numbers, dates, currencies, times,
etc.) as the sequence-based labeling approach has
been shown to be effective for identifying them.
Given a model trained from human-labeled data
in one language (we refer to this as the high-
resource language), we label translations of sen-
tences from another language (referred to as the
low-resource language). We show that we can
project the numeric entity boundaries and labels
across the aligned translations with a phrase-based
translation model. Furthermore, we show that if
we train a class labeling model on the projected
low-resource language and then use that to build a
class-based speech recognition system, we achieve
between 70% and 85% of the error reduction as
we would have achieved with human-labeled ex-
amples in the low-resource language.

We present empirical results projecting numeric
entity labels from English to Russian, Indonesian,
and Italian. We present full speech recognition
results for using human annotated data (the ideal
performance) and projected data with various sizes
of training data.

2 Related work

There is an increasingly large body of work based
on exploiting alignments between translations of
sentences in multiple languages (Yarowsky et al.,
2001; Yarowsky and Ngai, 2001; Burkett et al.,
2010; Das and Petrov, 2011). In this work we
employ the simple approach of projecting anno-
tations across alignments of translated sentences.
Our cross-lingual approach is closely related to
other NER projection approaches (Huang et al.,
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Figure 1: Examples of cross-lingual projection for
numeric entities.

2003; Moore, 2003); however, we have focused
on a limited class of entities which may explain
why the simple approach works reasonably well.

Our projection approach is most closely related
to that presented in (Yarowsky et al., 2001) and
(Padó and Lapata, 2009). In each of these, la-
bels over sequences of words are projected across
alignments directly from one language to the
other. While we follow a similar approach, our
goal is not necessarily to get the exact projection,
but to get a projection which allows us to learn
contextual cues for the classes we are labeling.
Additionally, we focus on the case where we are
generating the translated data rather that identify-
ing existing parallel data. Similar to (Yarowsky
and Ngai, 2001), we filter out poor alignments (de-
tails are described in Section 3.2).

3 Methodology

3.1 Training class taggers for language
modeling

We use a statistical sequence tagger to identify and
replace class instances in raw text with their la-
bel. For example, the tokens 10 thousand dollars
in the raw training text may be replaced with a
placeholder class symbol. The decision is context-
dependent: the tagger is able to resolve ambi-
guities among possible labels, or even leave the
text unchanged. Next, this modified text is used
to train a standard n-gram language model. Fi-

0 1
<time>

2

six

seven
eight

nine

3

ten

twenty

thirty
forty

5</time>

</time>

Figure 2: This FST is a small excerpt of the full
grammar for TIME. Arc weights are not shown.

nally, all placeholders become non-terminals in
the language model and are expanded either stat-
ically or dynamically with stochastic finite-state
class grammars (see Figure 2 for an example).
Decorator tokens inside the grammars are used to
mark class instances in the word lattice so that
they can be converted (after recognition) to the de-
sired written forms using deterministic spoken-to-
written text-normalization rules.

3.2 Cross-lingual Projection Techniques

The starting point for cross-lingual projection is to
train a statistical sentence tagger of high quality in
a high-resource language, i.e., a language where
both a lot of training data and human annotators
are readily available. We use English in our exper-
iments.

To obtain annotated sentences in a low-resource
language, we translate unlabeled sentences into
the high-resource language. We use an in-house
phrase-based statistical machine translation sys-
tem (Koehn et al., 2003) which is trained with par-
allel texts extracted from web pages; described in
detail in Section 4.1 of (Nakagawa, 2015). The
translation system we use provides token-by-token
alignments as part of the output. This is achieved
by keeping alignments along with phrase-pairs
during the phrase extraction stage of training the
alignment system.

The high quality sentence tagger is applied to
the translated sentences. Then, using the align-
ments between the translated sentences, we map
class tags back to the low-resource language. See
Figure 1 for examples of actual mappings pro-
duced by this procedure.

With this approach, we can produce arbitrar-
ily large in-domain annotated training sets for
the low-resource language. These annotated sen-
tences are then used to train a class tagger for
the low-resource language. The main question is
whether the resulting class tagger is of sufficient
quality for our down-stream objective.
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For the goal of training a class-based language
model in a low-resource language, one may con-
sider a different approach than the one just de-
scribed: instead of training a tagger in the low-
resource language, each sentence in the language
model training data could be translated to the high-
resource language, tagged using the statistical tag-
ger, and projected back to the low-resource lan-
guage. The primary reason for not pursuing this
approach is the size of the language model train-
ing data (tens of billions of sentences). Translat-
ing a corpus this large is prohibitive. As the high-
resource language tagger is trained on approxi-
mately 150K tokens, we believe that we have cov-
ered a large number of the predictive cues for the
set of classes.

Alignment details

When projecting the class labels back from a
translated sentence to the original sentence, vari-
ous subtle issues arise. We describe these and our
solutions for each in this section.

To tag a token in the low-resource language, we
see which tokens in the high-resource language
are aligned to it in the translation, and look at
their class tags. If all of these tokens have the
same class tag, we assign the same tag to the low-
resource language token. Otherwise, we use the
following rules:

• If some tokens have no class tag but others
have some class tag, we still assign the class
tag to the original token.

• If multiple tokens with different class tags
map to the original token, we consider the
tagging ambiguous. In such a case, we sim-
ply skip the sentence and do not use it for
training the low-resource tagger. We can af-
ford to do so because there is no shortage of
unlabeled training sentences.

In a number of cases, we ignore sentence pairs
which may have contained alignments allowing us
to project labels, but also contained noise (e.g.,
spurious many-to-one alignments). We rejected
poor alignments 2%, 31% and 14% of the time for
Indonesian, Russian and Italian respectively. Date
and time expressions were often affected by these
noisy alignments.

4 Empirical evaluation

4.1 Data
We trained an English conditional random field
(CRF) (Lafferty et al., 2001) tagger to be used in
all experiments in order to provide labels for the
sentences produced by translation. To train this
tagger we obtained a data set of 24,503 manually
labeled sentences (150K tokens) sampled from a
corpus of British English language model training
material. Each token is labeled with one of 17 pos-
sible tags. About 95% of the tokens are labeled
with a ‘none’ tag, meaning that the token is not in
any of the pre-determined non-lexical classes.

Separately, we obtained similar training sets
to create Italian, Indonesian and Russian taggers.
The models trained from these labeled data sets
were used only to create baseline systems for com-
parison with the cross-lingual systems.

To provide input into our cross-lingual projec-
tion procedure, we also sampled datasets of unla-
beled sentences of varying sizes for each evalua-
tion language, using the same sampling procedure
as used for the human-labeled sets.

Note that these tagger training sets have incon-
sistent sizes across languages (see Table 2) due to
the nature of the sampling procedure: Each train-
ing source is searched for sentences matching an
extensive list of patterns of numeric entities. Sen-
tences from each training source are collected up
to a source-specific maximum number (which may
not always be reached). We also apply a flattening
step to increase diversity of the sample.

4.2 CRF model
Our CRF tagger model was trained online using
a variant of the MIRA algorithm (Crammer and
Singer, 2003). Our feature set includes isolated
features (for word identity wi, word type di, and
word cluster ci) as well as features for neighboring
words wi−2, wi−1, wi+1, wi+2, wi+3, neighbor-
ing clusters ci−2, ci−1, ci+1, ci+2, ci+3, pair fea-
tures (wi, di−1), (wi, di+1), (di, di−1), (di, di+1),
and domain-specific features (indicators for tokens
within a given numeric range, or tokens that end in
a certain number of zero digits). We also include
class bias features, which capture the class prior
distribution found in the training set.

4.3 Metrics
We use two manually transcribed test sets to eval-
uate the performance of our approach in the con-
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Test Set Utts Words % Numeric words
NUM ID 9,744 60,781 19%
NUM RU 10,988 59,933 22%
NUM IT 8,685 48,195 18%
VS ID 9,841 36,276 2%
VS RU 12,467 49,403 3%
VS IT 12,625 47,867 2%

Table 1: NUM refers to the NUMERIC entities test
set and VS refers to the VOICE-SEARCH test set.

text of numeric transcription. The first test set
VOICE-SEARCH (approximately 48K words for
Italian and Russian, and approximately 36K words
for Indonesian) is a sample from general voice-
search traffic, and tracks any regressions that ap-
pear as a result of biasing too heavily toward the
selected classes. The other test set NUMERIC (ap-
proximately 48K words for Italian, and approxi-
mately 60K for Russian and Indonesian) contains
utterances we expect to benefit from class-based
modeling of numeric entities. See Table 1 for de-
tails on these test sets.

We report word-error-rate (WER) on each test
set for each model evaluated, including two base-
line systems (one built without classes at all and
another that has classes identified by a tagger
trained on human-labeled data). We also report
a labeled-bracket F1 score to show the perfor-
mance of the tagger independent of the speech-
recognition task. For each language, the test set
used for labeled-bracket F1 is a human-labeled
corpus of approximately 2K sentences that were
held out from the human-labeled corpora for the
baseline systems.

4.4 Results
The results in Table 2 show that all class-based
systems outperform the baseline in WER on the
NUMERIC test set, while performance on the
VOICE-SEARCH test set was mostly flat. The flat
performance on VOICE-SEARCH is expected: as
seen in Table 1 this test set has a very low propor-
tion of words that are numeric in form. We pro-
vide results on this test set in order to confirm that
our approach does not harm general voice-search
queries. As for performance on the NUMERIC
test set, larger cross-lingual data sets led to better
performance for Russian and Italian, but caused
a slight regression for Indonesian. The trans-
lation system we use for these experiments has
been optimized for a general-purpose web search

NUM VS
Model F1 WER WER
ID Baseline (no classes) - 20.0 10.1
ID Cross-lingual 15K 0.64 19.3 10.1
ID Cross-lingual 37K 0.65 19.4 10.1
ID Cross-lingual 77K 0.64 19.5 10.1
ID Human-labeled 0.83 19.1 10.1
RU Baseline (no classes) - 28.7 17.1
RU Cross-lingual 16K 0.37 26.4 17.0
RU Cross-lingual 98K 0.39 26.2 17.1
RU Human-labeled 0.87 25.3 16.8
IT Baseline (no classes) - 23.0 14.8
IT Cross-lingual 18K 0.55 19.7 14.8
IT Cross-lingual 104K 0.57 19.6 14.8
IT Human-labeled 0.88 19.0 14.8

Table 2: NUM refers to the NUMERIC entities test
set and VS refers to the VOICE-SEARCH test set.
All NUM WER results are statistically significant
(p < 0.1%) using a paired random permutation
significance test.

translation task rather than for an academic task.
When evaluated on a test set matched to the trans-
lation task, performance for Russian-to-English
was considerably worse than for Indonesian-to-
English or Italian-to-English.

For Indonesian (ID), the human-labeled sys-
tem achieved a 4.5% relative WER reduction on
NUMERIC, while the best cross-lingual system
achieved a 3.5% relative reduction.

For Russian (RU), the human-labeled system
improved more, achieving an 11.8% relative re-
duction on NUMERIC, while the best cross-lingual
system achieved an 8.7% relative reduction.

Finally, for Italian (IT), the human-labeled sys-
tem gave an impressive 17.4% relative reduction
on NUMERIC, while the best cross-lingual system
achieved a 14.8% relative reduction on the same
test set.

Across the three languages, the cross-lingual
systems achieved relative error reductions on the
NUMERIC test set that were between 70% and
85% of the reduction achieved when using only
human-labeled data for training the class tagger.

4.5 Error Analysis

We noticed that the Russian cross-lingual-derived
training set was of lower quality than those of
the other languages, as seen in the labeled-bracket
F1 metric in Table 2. Looking more closely, we
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noticed that the per-class F1 scores tended to be
lower for labels used for dates and times. This ob-
servation also concides with the observation that
the alignment procedure frequently ran into am-
biguity issues when aligning month, day and year
tokens between Russian and English, thus signifi-
cantly reducing the coverage of these labels in the
induced cross-lingual training set.

5 Conclusion

We presented a cross-lingual projection technique
for training class-based language models. We ex-
tend a previously successful sequence-modeling-
based class labeling approach for identifying
contextually-dependent class assignments by pro-
jecting labels from a high-resource language to a
low-resources language. This allows us to build
class-based language models in low-resource lan-
guages with no annotated data. Our empirical re-
sults show that we are able to achieve between
70% and 85% of the error reduction that we would
have obtained had we used human-labeled data.

While cross-lingual projection for sequence-
labeling techniques are well known in the com-
munity, our approach exploits the fact that we are
generating training data from the projection rather
than using the projected result directly. Further-
more, noise in the class-labeling system does not
cripple the language model as it learns a distribu-
tion over labels (including no label).

In future work, we will experiment with
alternative projection approaches including pro-
jecting the training data and translating from the
high-resource language to the low-resource lan-
guage. We also plan to experiment with different
projection approaches to address the ambiguity
issues we observed when aligning time and date
expressions.
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Abstract

Retrieving semantic similar short texts
is a crucial issue to many applications,
e.g., web search, ads matching, question-
answer system, and so forth. Most of the
traditional methods concentrate on how
to improve the precision of the similar-
ity measurement, while current real ap-
plications need to efficiently explore the
top similar short texts semantically re-
lated to the query one. We address the
efficiency issue in this paper by investi-
gating the similarity strategies and incor-
porating them into the FAST framework
(efficient FrAmework for semantic sim-
ilar Short Texts retrieval). We conduct
comprehensive performance evaluation on
real-life data which shows that our pro-
posed method outperforms the state-of-
the-art techniques.

1 Introduction

In this paper, we investigate the fast approach
of short texts retrieval, which is important to
many applications, e.g., web search, ads match-
ing, question-answer system, etc. (Yu et al., 2016;
Wang et al., 2015; Hua et al., 2015; Yang et al.,
2015; Wang et al., 2010; Wei et al., 2008; Cui et
al., 2005; Metzler et al., 2007; Ceccarelli et al.,
2011; Radlinski et al., 2008). The setting of the
problem is that users always ask for those most
semantically related to their queries from a huge
text collection. A common solution is applying
the state-of-the-art short texts similarity measure-
ment techniques (Islam and Inkpen, 2008; Li et al.,
2006; Mihalcea et al., 2006; Sahami and Heilman,
2006; Tsatsaronis et al., 2010; Mohler et al., 2011;
Wang et al., 2015), and then return the top-k ones

∗ Corresponding author.

by sorting them with regard to the similarity score.
After surveying the previous approaches, we find
that almost all the methods concentrate on how
to improve the precision, i.e., effectiveness issue.
In addition, the data collections which they con-
ducted are rather small. However, the scale of the
problem has dramatically increased and the cur-
rent short texts similarity measurement techniques
could not handle when the data collection size be-
comes enormous. In this paper, we aim to address
the efficiency issue in the literature while keeping
their high precision. Moreover, we focus on the
top-k issue because users commonly do not care
about the individual similarity score but only the
sorted results. Furthermore, most of the previous
studies (Islam and Inkpen, 2008; Li et al., 2006;
Tsatsaronis et al., 2010; Wang et al., 2015) need
to set predefined threshold to filter out those dis-
similar texts which is rather difficult to determine
by users.

Different from long texts, short texts cannot al-
ways observe the syntax of a written language
and usually do not possess sufficient information
to support statistical based text processing tech-
niques, e.g., TF-IDF. This indicates that the tra-
ditional NLP techniques for long texts may not be
always appropriate to apply to short texts. The re-
lated works on short texts similarity measurement
can be classified into the following major cate-
gories, i.e., (1) inner resource based strategy (Li
et al., 2006; Islam and Inkpen, 2008); (2) outer
resource based strategy (Tsatsaronis et al., 2010;
Mihalcea et al., 2006; Islam and Inkpen, 2008;
Wang et al., 2015); and (3) hybrid based strat-
egy (Islam and Inkpen, 2008; Li et al., 2006; Wang
et al., 2015).

Naively testing the candidate short texts for top-
k similar short texts retrieval is inefficient when
directly using these strategies. To tackle the effi-
ciency problem, we propose an efficient strategy
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to evaluate as few candidates as possible. More-
over, our fast algorithm aims to output the results
progressively, i.e., the top-1 should be obtained
instantly. This scheme meets the demand of the
real world applications, especially for big data en-
vironment. We list our contribution of this paper
as follows: we propose a fast approach to tackle
the efficiency problem for retrieving top-k seman-
tic similar short texts; we present the optimized
techniques and improve the efficiency which min-
imizes the candidate number to be evaluated in
our framework. The results of four different set-
tings demonstrate that the efficiency of our fast
approach outperforms the state-of-the-art methods
while keeping effectiveness.

2 Preliminaries

Formally, for a given query short text q, retriev-
ing a set of k short texts Ts in a data collec-
tion Ds which are most semantically similar to
q, i.e., ∀t ∈ Ts and ∀r ∈ (Ds − Ts) will yield
sim(q, t) ≥ sim(q, r). To obtain the similarity
score sim(q, t) between two short texts, we can
apply the current state-of-the-art strategies (Tsat-
saronis et al., 2010; Mihalcea et al., 2006; Islam
and Inkpen, 2008; Wang et al., 2015). In this pa-
per, we judiciously select some similarity metrics
which are assembled into a general framework to
tackle the efficiency problem. Most of the exist-
ing strategies of evaluating the similarity between
short texts are based on word similarity, because
of the intuitive idea that short text is composed of
words. As a result, we introduce the representative
word similarity in the next section.

2.1 Selected Representative Similarity
Measurement Strategies

There are a number of semantic similarity
strategies having been developed in the previous
decades which are useful in some specific applica-
tions of NLP tasks. Recently, outer resources are
indispensable for short texts similarity measure-
ment (Tsatsaronis et al., 2010; Mihalcea et al.,
2006; Islam and Inkpen, 2008; Wang et al., 2015;
Hua et al., 2015). After extensively investigating
a number of similarity measurement strategies,
we judiciously explore two representative word
similarity measurement strategies which obtain
the best performance compared with human
judges.

Knowledge based Strategy
Knowledge based strategy determines whether
two words are semantically similar by measur-
ing their shortest path in the predefined taxonomy.
The path between them can be calculated by ap-
plying word thesauri, e.g., WordNet. In this paper,
we take one representative metric which has been
proposed in (Leacock and Chodorow, 1998). Let’s
take two words wi,wj as an example, the similarity
is as follows:

Simk(wi, wj) = −ln
paths(wi, wj)

2 ∗D
where paths(wi, wj) is the shortest path between
two word concepts by using related strategy, e.g.,
node-counting strategy. D is the maximum depth
of such taxonomy (D is with different size in
either noun taxonomy or verb taxonomy).

Corpus based Strategy
Different from knowledge based strategy, corpus
based strategy cannot form a new entity which
means we can only apply statistical information
to determine the similarity between two words.
There are a few corpus based similarity measure-
ment strategies, e.g., PMI, LSA, HAL, and so
forth. In this paper, we select a representative
strategy which applies Wiki encyclopedia to map
Wiki texts into appropriate topics. Each Wiki topic
is represented as an attribute vector. The words in
the vector occur in the corresponding articles. En-
tries of these vectors are assigned weight which
quantifies the association between words and each
Wiki topic after applying vector based scheme,
e.g., TF-IDF. The similarity can be evaluated by
aggregating each word distributing on these top-
ics. In addition, a short text is a vector based
on topics with weight of each topic Ti formulated
as:

∑
wi∈Ts

vi · dj , where vi is TF-IDF weight of
wi and dj which quantifies the degree of associ-
ation of word wi with Wiki topic Tj . Here, the
Wiki topic could be concepts or topics generated
by other techniques, e.g., LDA, LSA, etc.

2.2 Semantic Similarity Measurement
between Two Short Texts

Semantic similarity between two short texts can
be measured by combining the words similarity in
a general framework. Therefore, the method of
combining the words similarities into a framework
may affect the efficiency and effectiveness of the
similarity score. In this paper, we integrate differ-
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ent similarity strategies linearly and this method
has been proved that it has high precision by com-
paring with human judges (Li et al., 2006; Islam
and Inkpen, 2008). The scheme measures each
word pair of short texts and then constructs a sim-
ilarity score matrix. Finally, the similarity score
between two short texts is recursively executed by
aggregating the representative words.

3 A Fast Approach for Semantic Similar
Short Texts Retrieval

We propose a fast approach for retrieving the top-
k semantic similar short texts to a given query q in
this section. The key idea of this scheme is to ac-
cess a rather small size of candidates in the whole
data collection. The scheme is conducted by build-
ing appropriate indices in offline procedure, i.e.,
preprocessing procedure. We illustrate the whole
framework in Figure 1. The figure tells us, to ef-
ficiently retrieve top-k similar short texts, our pro-
posed strategy only accesses as small as possible
part of candidates which are filled in grey color.
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Figure 1: The framework of proposed fast ap-
proach

3.1 Efficiently Aggregate Similarity Metrics
In this section, we present an efficient assembling
strategy to hasten the process of retrieving top-k
similar short texts (Fagin et al., 2001). A concrete
example to illustrate our proposal is presented in
Figure 1. For example, let the query short text
is: “Delicious lunch in Japan”. After preprocess-
ing (stemming and removing the stopwords), the
query is: delicious lunch Japan. From Figure 1,
we can see that there is a hierarchical structure in
our framework. Suppose that if we want to retrieve
top-1 short text from the whole data, the ranked list
(i.e., order list) of knowledge based similarity and
corpus based similarity are needed respectively.
From the analysis on the property of threshold al-
gorithm, the top-1 short text comes from these two

ranked lists instantly. However, we cannot know
such ranking directly because these two lists are
texts layer but each list has its sub layer, i.e., word
layer. In this paper, we apply two kinds of sim-
ilarity metrics. Therefore, there are two assem-
bling tasks, i.e., (1)assembling knowledge based
and corpus based similarities; and (2)assembling
words to texts. The words are query words and
each query word corresponds to a list which can
be found in Figure 1. Figure 1 also tells us for
each word, it has the corresponding list in which
all the words have been ranked based on the re-
latedness with such word. Since each word may
occur in several short texts, the proposed method
here should take the ID of each short text into con-
sideration (e.g., word “delicious” occurs T2, etc.).
We apply threshold algorithm to obtain the top
short texts based on each query word. Therefore,
the top-1 result comes from these two ranked lists
based on threshold algorithm. In this example, T2
is finally outputted as the top-1 value.

3.2 Ranking list on Similarity Strategies

From the description in Section 3.1, we can see
that the ranked list is crucial for using threshold
algorithm to retrieve top-k short texts. In this
section, we introduce the optimized method on
each similarity metric.

Ranking on Knowledge based strategy
Since WordNet is a representative knowledge
base, we apply the Leacock and Chodorow strat-
egy as a WordNet evaluator which optimized as an
efficient technique (Yang and Kitsuregawa, 2011).

Lemma 1 (Ordering in WordNet) Let q be the
query. Let P and S be two candidates that exist
in the same taxonomy of q, that is, TP and Tq. The
shortest path between q and P (or S) is LP in TP

(or LS in TS). The maximum depth of TP is DP

(or DS of TS). P is more similar to Q compared
with S. Thus, we have DP

LP
> DS

LS
.

The lemma tells us that the similarity ordering be-
tween candidates in WordNet depends on the in-
tegration of the shortest path and the maximum
depth of the taxonomy. We access the related syn-
onyms set between two taxonomies successively
based on the value of D

L and obtain the top-k re-
sults in a progressive manner.

Ranking on Corpus based Strategy
We measure the similarity between short texts
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by aggregating each word distribution on topics.
A short text is a valued vector based on topics,
where the weight of each topic Ti calculated as:∑

wi∈Ts
vi · kj , where vi is TF-IDF weight of wi

and kj which quantifies the strength of association
of word wi with Wiki topic Tj . Different from
the traditional approaches, we first calculate all the
similarity scores between each word in Wiki and
that between topics in the data collection to ob-
tain a set of lists during preprocessing. The topic
could be generated either by ESA or by LDA. Af-
ter that, we build a weighted inverted list where
each list presents a word with sorted correspond-
ing short texts according to the similarity score.
Therefore, for a given query text q, each word in
q corresponds to a list of short texts. As that, we
apply the threshold algorithm retrieve the top-k re-
sults by using this manner. This manner accesses
a small size of components of the data without ne-
cessity to evaluate every candidate short text.

After obtaining all the ranking lists, we can ap-
ply the threshold algorithm aforementioned to ef-
ficiently retrieve the top-k semantic similar short
texts either by equal weight scheme or weight tun-
ing strategy.

4 Experimental Evaluation

In this section, we conduct on three different
datasets to evaluate the performance of our ap-
proach. To evaluate the effectiveness, we test the
dataset which was used in (Li et al., 2006). For ef-
ficiency evaluation, we apply the BNC and MSC
datasets which are extracted from British National
Corpus and Microsoft Research Paraphrase Cor-
pus respectively. The baseline strategy is imple-
mented according to the state-of-the-art (linear as-
sembling strategy as (Islam and Inkpen, 2008)).
In our proposed strategy, we take four different
settings: (1) FASTE is the one that we apply the
ESA topic strategy; (2) FASTL employs the LDA
topic strategy in corpus based similarity with equal
weight; and (3) FASTEw and FASTLw are im-
plemented based on the former two ones, respec-
tively, with the tuned combinational weights.

4.1 Efficiency Evaluation

We evaluate the efficiency by using two real-life
datasets which have been denoted as BNC and
MSC. To test the effect of size of data collec-
tion, we select different size of these two datasets.
Firstly, we conducted experiments on the fixed

size of data collection by using 4 settings of our
proposed approach. The results show that com-
paring with the baseline strategy, FASTE , FASTL,
FASTEw and FASTLw have promotion at 75.34%,
74.68%, 75.31% and 74.59% respectively. The
four settings have similar results which indicates
that the weight is not the crucial factor in our
proposed strategy. Table. 1 tells us the number
of candidates accessed. Our evaluation has been
conducted on different data collection size to test
the scalability of our proposed strategy. Since the
baseline strategy should access all the short texts
in each size of data collection, which means in 1k
size of BNC data collection, the baseline strategy
access all these 1k candidates. However, our pro-
posed strategies under different settings only ac-
cess small size candidates to obtain the results.
From the table, we can see that, our proposed strat-
egy can largely reduce the number of candidates
accessed in both data collections. In addition,
the number of candidates accessed has increases
not quickly which indicate our proposed approach
scales well. Therefore, the proposed strategy is ef-
ficient than the baseline strategy.

Strategies BNC (#Candidates accessed)
1k 5k 10k 20k

FASTE 215 1,368 1,559 1,974
FASTL 217 1,478 1,551 2,001

FASTEw 225 1,511 1,621 2,043
FASTLw 225 1,521 1,603 2,025

Strategies MSC (#Candidates accessed)
10% 20% 50% 100%

FASTE 74 304 712 1,253
FASTL 85 313 705 1,128

FASTEw 87 308 725 1,135
FASTLw 81 309 712 1,076

Table 1: Number of candidates accessed in effi-
ciency evaluation

We also evaluate the effect of k which is an
important factor for evaluating the efficiency of
an algorithm. The experiments conducted on a
fixed size of data collection which show that the
top-1 value has been outputted instantly by ap-
ply our proposed strategy while baseline strategy
should access all candidates. For the query time
of FASTE setting costs only 19.12s while base-
line strategy costs 897.5s for obtaining the top-1
value. FASTL, FASTEs and FASTLw cost 20.13s,
21.21s and 20.32s respectively which confirms
that combinational weight is not an important fac-
tor in our proposed strategy.
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4.2 Effectiveness Evaluation
We illustrate the results of the correlation coeffi-
cient with human ratings in Table. 2. Note here,
the baseline strategy is composed by knowledge
based strategy and corpus based strategy (ESA
method) with equal weight. From the table we
can see that, the FASTE has the same precision
as the baseline because our proposed strategy only
changes the order of the evaluated short texts but
not the similarity strategy. FASTL has better pre-
cision than FASTE because we select the best
LDA topic size to form Wiki topic. FASTEw and
FASTLw have dynamically changed the combina-
tional weights and therefore, the performance of
them has been improved.

Baseline Proposed Strategies
FASTE FASTL FASTEw FASTLw

0.72162 0.72162 0.73333 0.74788 0.74941

Table 2: Effectiveness evaluation on different
strategies

5 Conclusion

In this paper, we propose a fast approach to
tackle the efficiency problem of retrieving top-k
similar short texts which has not been extensively
studied before. We select two representative
similarity metrics, i.e., knowledge based and
corpus based similarity. Efficient strategies are
introduced to test as few candidates as possible
in the querying process. Four different settings
have been proposed to improve the effectiveness.
The comprehensive experiments demonstrate
the efficiency of the proposed techniques while
keeping the high precision. In the future, we will
investigate new methods to tackle efficiency issue
and take effect semantic similarity strategies to
obtain high performance.
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Abstract

This paper presents a spinal parsing al-
gorithm that can jointly detect empty ele-
ments. This method achieves state-of-the-
art performance on English and Japanese
empty element recovery problems.

1 Introduction

Empty categories, which are used in Penn Tree-
bank style annotations to represent complex syn-
tactic phenomena like constituent movement and
discontinuous constituents, provide important in-
formation for understanding the semantic structure
of sentences. Previous studies attempt empty ele-
ment recovery by casting it as linear tagging (Di-
enes and Dubey, 2003), PCFG parsing (Schmid,
2006; Cai et al., 2011) or post-processing of syn-
tactic parsing (Johnson, 2002; Gabbard et al.,
2006). To the best of our knowledge, the results
reported by (Cai et al., 2011) are the best yet re-
ported, so we pursue a method that uses syntactic
parsing to jointly solve the empty element recov-
ery problem.

Our proposal uses the spinal Tree Adjoining
Grammar (TAG) formalism of (Carreras et al.,
2008). The spinal TAG has a set of elementary
trees, called spines, each consisting of a lexical
anchor with a series of unary projections. Fig-
ure 1 displays (a) a head-annotated constituent tree
and (b) spines extracted from the tree. This pa-
per presents a transition-based algorithm together
with several operations to combine spines for con-
structing full parse trees with empty elements.
Compared with the PCFG parsing approaches, one
advantage of our method is its flexible feature
representations, which allow the incorporation of
constituency-, dependency- and spine-based fea-
tures. Of particular interest, the motivation for
our spinal TAG-based approach comes from the
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Figure 1: (a) an example of a constituent tree with
head annotations denoted by -H; (b) spinal ele-
mentary trees extracted from the parse tree (a).

intuition that features extracted from spines can
be expected to be useful for empty element recov-
ery in the same way as constituency-based vertical
higher-order conjunctive features are used in re-
cent post-processing methods (Xiang et al., 2013;
Takeno et al., 2015). Experiments on English and
Japanese datasets empirically show that our sys-
tem outperforms existing alternatives.

2 Spinal Tree Adjoining Grammars

We define here the spinal TAG G = (N,PT,T,LS)
where N is a set of nonterminal symbols, PT is
a set of pre-terminal symbols (or part-of-speech
tags), T is a set of terminal symbols (or words),
and LS is a set of lexical spines. Each spine, s,
has the form n0 → n1 → ··· → nk−1 → nk (k ∈ N)
which satisfies the conditions:

• n0 ∈ T and n1 ∈ PT ,

• ∀i ∈ [2,k], ni ∈ N.

The height of spine s is ht(s) = k+1 and for some
position i ∈ [0,k], the label at i is s(i) = ni. Tak-
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Figure 2: An example of parser operations: (a)
sister adjunction left (b) regular adjunction right
(c) insert left (d) combine right.

ing the leftmost spine s = We → PRP → NP in
Figure 1 (b), ht(s) = 3 and s(1) = PRP.

The spinal TAG uses two operations, sister and
regular adjunctions, to combine spines. Both ad-
junctions also have left and right types. Fig-
ures 2 (a) and (b) show examples of sister adjunc-
tion left and regular adjunction right operations.
We use @# to illustrate node position on a spine,
explicitly. After a regular adjunction, the result-
ing tree has an additional node level which has a
copy of its original node at position @x, while a
sister adjunction simply inserts a spine into some
node of another spine. If adjunction left (or right)
inserts spine s1 into some node at @x on spine s2,
we call s2 the head spine of s1 and s1 the left (or
right) child spine of s2

1. This paper denotes sister
adjunction left and right as s1 ▷⃝ xs2, s2 ◁⃝ xs1, reg-
ular adjunction left and right as s1 ▶⃝ xs2, s2 ◀⃝ xs1,
respectively.

3 Arc-Standard Shift-Reduce Spinal
TAG Parsing

There are three algorithms for spinal TAG parsing,
(1) Eisner-Satta CKY (Carreras et al., 2008), (2)
arc-eager shift-reduce (Ballesteros and Carreras,
2015) and (3) arc-standard shift-reduce (Hayashi
et al., 2016) algorithms. This paper uses the arc-

1After adjunctions, the result forms a phrase consisting of
several spines. If a phrasal spine is also used in adjunction
operations as Figure 2 (b), we treat it as a lexical spine by
referring to its head spine.

standard shift-reduce algorithm since it provides a
more simple implementation.

A transition system for spinal TAG parsing is
the tuple S = (C,T, I,Ct), where C is a set of con-
figurations, T is a set of transitions, which are par-
tial functions t : C ⇀ C, I is a total initialization
function mapping each input string to a unique
configuration, and Ct ⊆C is a set of terminal con-
figurations. A configuration is the tuple (α,β ,A)
where α is a stack of stack elements, β is a buffer
of elements from an input, and A is a set of parser
operations. A stack element s is a pair (s, j) where
s is a spine and j is a node index of s. We refer to
s and j of s as s.s and s. j, respectively.

Let x = ⟨w1/t1, . . . ,wn/tn⟩ (∀i ∈ [1,n], wi ∈ T
and ti ∈ PT ) be a pos-tagged input sentence. The
arc-standard transition system by Hayashi et al.
(2016) can be defined as follows: its initialization
function is I(x) = ([], [w1/t1, . . . ,wn/tn], /0), its set
of terminal configurations is Ct = ([], [],A), and it
has the following transitions:

1. for each s ∈ LS with s(0) = wi and s(1) = ti,
a shift transition of the form (α,wi/ti|β ,A) ⊢
(α|s1,β ,A) where s1 = (s,2)2;

2-3. for each j with s1. j ≤ j < ht(s1.s), a sister
adjunction left transition of the form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ▷⃝ js1.s})

and a regular adjunction left transition of the
form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ▶⃝ js1.s})

where s′1 = (s1.s, j);

4-5. for each j with s2. j ≤ j < ht(s2.s), a sister
adjunction right transition of the form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ◁⃝ js1.s})

and a regular adjunction right transition of the
form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ◀⃝ js1.s})

where s′1 = (s2.s, j);

6. a finish transition of the form ([s], [],A) ⊢
([], [],A).

2To construct a full parse tree from A, our actual imple-
mentation attaches index i to spine s after shift transition.
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Figure 3: A phrasal empty spine shown on the
shaded region.

To reduce search errors, Hayashi et al. (2016) em-
ployed beam search with Dynamic Programming
of (Huang and Sagae, 2010). For experiments, we
also use this technique and discriminative model-
ing of (Hayashi et al., 2016).

4 Empty Element Recovery

4.1 Spinal TAG with Empty Elements

In this paper, we redefine the spinal TAG as G =
(N,PT,T,LS,*e*,ET,ES), where *e* is a special
word, ET is a set of empty categories, and ES is
a set of empty spines. An empty spine s = n0 →
n1 → ··· → nk−1 → nk (k ∈ N) has the same form
as lexical spines, but n0 = *e* and n1 ∈ ET . The
height and label definitions are also the same as
those of lexical spines. For example, the rightmost
spine s = *e* → *T* → ADVP in Figure 1 (b) is
an empty spine with ht(s) = 3 and s(1) = *T*.

This paper extends empty spines to allow the
use of phrasal constituents that consist of only
empty elements, as a single spine. A phrasal
empty spine is a tuple (t,h), where t is a sequence
of (phrasal) empty spines specifying some sister
adjunctions between these spines and h is a head
spine in t. The phrasal empty spine in Figure 3
consists of two empty spines *e* → 0 and *e*
→ *T* → S → SBAR, where a sister adjunction
left is performed at the SBAR node of the latter
spine, which is a head spine in the phrase. To ap-
ply parser operations to a phrasal empty spine, we
use its head spine rather than itself. This paper de-
fines the height and label of a phrasal empty spine
as those of its head spine.

To recover empty elements, this paper intro-
duces two additional operations, insert and com-
bine, both of which have left and right types. Fig-
ures 2 (c) and (d) show insert left and combine
right operations. These operations are similar to
sister adjunctions in that the former simply inserts
some phrasal empty spine into some node of an-
other spine and the latter also inserts a spine into

some node of a phrasal empty spine.

4.2 New Transitions
To handle empty spines in parsing process, we add
the following five transitions to the arc-standard
transition system of (Hayashi et al., 2016):

7-8. for each s ∈ ES and each j with s1. j ≤ j <
ht(s1.s), an insert left transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s ▷⃝ js1.s})

and an insert right transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s1.s ◁⃝ js})

where s′1 = (s1.s, j);

9-10. for each s∈ES and each j with 2≤ j < ht(s),
a combine left transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s1.s ▷⃝ js})

and a combine right transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s ◁⃝ js1.s})

where s′1 = (s, j);

11. an idle transition of the form (σ |s1,β ,A) ⊢
(σ |s1,β ,A);

Like unary and idle rules in shift-reduce CFG
parsing (Zhu et al., 2013), our current system pro-
hibits > b consecutive actions consisting of only
insert, combine and idle operations. Given an
input sentence with length n, after performing n
shift, n− 1 adjunction, b · (2n− 1) {insert, com-
bine or idle} actions, the system triggers the finish
action and terminates. For training, we make ora-
cle derivations using the stack-shortest strategy.

5 Related Work

To realize empty element recovery, other lexical-
ized TAG formalisms (Chen and Shanker, 2004;
Shen et al., 2008) attach some or all empty el-
ements directly to surface word lexicons. Our
framework, however, uses spinal TAG parser op-
erations as they provide more efficient parsing and
more compact sets of lexicons. It is remarkable
that this paper is the first study to present a shift-
reduce spinal TAG parsing algorithm to recover
empty elements.

Recent work has shown that empty element re-
covery can be effectively solved in conjunction
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Tagger Lattice Proposed
M O M O M O Gold

*ICH* 2 5 2 2 31 43 78
*RNR* 0 3 0 4 4 5 6
*EXP* 10 12 0 0 19 26 30

Table 2: Result Analysis: M denotes the number
of matches of system outputs (O) with the gold.
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Figure 4: Scatter plot of parsing time against sen-
tence length, comparing with Hayashi16, Berkeley
and Cai11 parsers.

with parsing (Schmid, 2006; Cai et al., 2011).
Schmid (2006) annotated a constituent tree with
slash features to recover a direct path from a filler
node to its trace. Cai et al. (2011) successfully in-
tegrated empty element recovery into lattice pars-
ing for latent PCFGs. Compared with PCFG pars-
ing, the spinal TAG parser provides a more flexible
feature representation.

6 Experiments

6.1 Experiments on the English Penn
Treebank

We used the Wall Street Journal (WSJ) part of the
English Penn Treebank: Sections 02–21 were used
for training, Section 22 for development, and Sec-
tion 23 for testing. We annotated trees with heads
by treep (Chiang and Bikel, 2002)3 with the appli-
cation of Collins’s head rules. The 78524 lexical
and 115 phrasal empty spine types were obtained
from the training data4. The set of phrasal empty
spines covered all phrasal empty spines extracted
from the development data.

We used the Stanford part-of-speech tagger to
tag development and test data. To train the pro-
posed parsing model, we used the violation–fixing

3http://www3.nd.edu/˜dchiang/software/
treep/treep.html

4Excluding words from lexical spines, there were 1080
lexical spine types.

Typed-empty (t,i,i) All Brackets
P R F1 P R F1

Rule 57.4 50.5 53.7 – – –
Takeno15 60.4 50.6 55.1 – – –

Tagger 63.1 34.7 44.8 72.9 68.6 70.7
Lattice 64.1 52.2 57.5 73.7 70.6 72.1

Proposed 65.3 57.6 61.2 74.3 72.8 73.6
Table 3: Results on the Japanese Keyaki Treebank.

perceptron algorithm (Huang et al., 2012). For
training and testing, we set beam size to 16 and
max count b, introduced in Section 4.2, to 2. For
comparison with other systems in our environ-
ment, we also implemented two systems:

• Lattice is a method by Cai et al. (2011). We
also used blatt5, which is an extension of
the Berkeley parser, to parse word lattices in
which the special word *e* is encoded as de-
scribed in (Cai et al., 2011).

• Tagger decides whether some empty cate-
gory is inserted at the front of a word or not,
with regularized logistic regression. To sim-
plify point-wise linear tagging, we combined
empty categories, those that appeared in the
same position of a sentence, into a single cat-
egory: thus the original 10 empty types in-
creased to 63.

Table 1 shows final results on Section 23. To
evaluate the accuracy of empty element recov-
ery, we calculated precision, recall and F1 scores
for (1) Labeled Empty Bracket (X/t,i,i), (2) La-
beled Empty Element (t,i,i), and (3) All Brack-
ets, where X ∈ NT , t ∈ ET and i is a posi-
tion of the empty element, using eevalb6. The
results clearly show that our proposed method
significantly outperforms the other systems. Ta-
ble 2 shows the main reason for the improvement
achieved by our method. The *ICH*, *RNR* and
*EXP* empty types are used to show the relation
between non-adjacent constituents, caused by syn-
tactic phenomena like Extraposition and Conjunc-
tion. Our method captures such complex relations
better with the help of the syntactic feature rich-
ness.

Table 1 reports the scores for non-empty brack-
ets to examine whether the joint method improves
the standard PARSEVAL scores. While the Lattice

5http://www.cs.bgu.ac.il/˜yoavg/
software/blatt/

6http://www3.nd.edu/˜dchiang/software/
eevalb.py
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Johnson (X/t,i,i) Typed-empty (t,i,i) All Brackets Non-empty Brackets
P R F1 P R F1 P R F1 P R F1

Schmid06 – – – 87.9 83.0 85.4 – – – – – –
Cai11 90.1 79.5 84.5 92.3 80.9 86.2 90.1 88.5 89.3 – – –

Tagger 89.7 69.3 78.1 90.7 70.1 79.0 87.8 85.5 86.7 87.8 86.8 87.3
Lattice (Cai11) 89.8 79.2 84.2 91.4 80.6 85.7 90.2 88.7 89.5 90.2 89.5 89.8

Proposed 90.3 81.7 85.8 91.8 83.2 87.3 90.8 89.7 90.3 90.8 90.3 90.6

Berkeley – – – – – – – – – 89.9 90.3 90.1
Hayashi16 – – – – – – – – – 90.9 90.4 90.7

Table 1: Results on the English Penn Treebank (Section 23): to calculate the scores for Tagger, we
obtained a parse tree by supplying the 1-best Tagger output with the Berkeley parser trained on Sections
02-21 including empty elements (using the option “-useGoldPOS”).

method was less accurate than the vanilla Berke-
ley parser, the performance of our method could
be maintained with little loss in parsing accuracy.
Figure 4 shows the parse time in seconds for each
test sentence and that our empty element recovery
parser works in reasonable time.

6.2 Experiments on the Japanese Keyaki
Treebank

Finally, to show that our method works well on
other languages, we conduct experiments on the
Japanese Keyaki Treebank (Butler et al., 2012).
For this data, we modified blatt to keep function
labels And, in order to consider segmentation er-
rors, we also modified eevalb to calculate not word
but character span in a sentence. We follow the ex-
periments in (Takeno et al., 2015) and show the re-
sults in Table 3. Our method significantly outper-
forms the state-of-the-art post-processing method
in Japanese.

7 Conclusion and Future Work

Using spinal parsing for the joint recovery of
empty elements achieves state-of-the-art perfor-
mance in standard English and Japanese datasets.
We plan to extend our work to recover trace-filler
and frame semantic structures using the PropBank
data.
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Abstract

We investigate the effectiveness of se-
mantic generalizations/classifications for
capturing the regularities of the behavior
of verbs in terms of their metaphoric-
ity. Starting from orthographic word
unigrams, we experiment with various
ways of defining semantic classes for
verbs (grammatical, resource-based, dis-
tributional) and measure the effectiveness
of these classes for classifying all verbs
in a running text as metaphor or non
metaphor.

1 Introduction

According to the Conceptual Metaphor theory
(Lakoff and Johnson, 1980), metaphoricity is a
property of concepts in a particular context of use,
not of specific words. The notion of a concept is a
fluid one, however. While write and wrote would
likely constitute instances of the same concept ac-
cording to any definition, it is less clear whether
eat and gobble would. Furthermore, the Con-
ceptual Metaphor theory typically operates with
whole semantic domains that certainly generalize
beyond narrowly-conceived concepts; thus, save
and waste share a very general semantic feature of
applying to finite resources – it is this meaning el-
ement that accounts for the observation that they
tend to be used metaphorically in similar contexts.

In this paper, we investigate which kinds of gen-
eralizations are the most effective for capturing
regularities of metaphor usage.

2 Related Work

Most previous supervised approaches to verb
metaphor classification evaluated their systems on
selected examples or in small-scale experiments

(Tsvetkov et al., 2014; Heintz et al., 2013; Tur-
ney et al., 2011; Birke and Sarkar, 2007; Gedigan
et al., 2006), rather than using naturally occurring
continuous text, as done here. Beigman Klebanov
et al. (2014) and Beigman Klebanov et al. (2015)
are the exceptions, used as a baseline in the current
paper.

Features that have been used so far in super-
vised metaphor classification address concreteness
and abstractness, topic models, orthographic uni-
grams, sensorial features, semantic classifications
using WordNet, among others (Beigman Klebanov
et al., 2015; Tekiroglu et al., 2015; Tsvetkov et al.,
2014; Dunn, 2014; Heintz et al., 2013; Turney et
al., 2011). Of the feature sets presented in this pa-
per, all but WordNet features are novel.

3 Semantic Classifications

In the following subsections, we describe the dif-
ferent types of semantic classifications; Table 1
summarizes the feature sets.

Name Description #Features
U orthographic unigram varies
UL lemma unigram varies
VN-Raw VN frames 270
VN-Pred VN predicate 145
VN-Role VN thematic role 30
VN-RoRe VN them. role filler 128
WordNet WN lexicographer files 15
Corpus distributional clustering 150

Table 1: Summary of feature sets. All features are
binary features indicating class membership.

3.1 Grammar-based

The most minimal level of semantic generalization
is that of putting together verbs that share the same
lemma (lemma unigrams, UL). We use NLTK
(Bird et al., 2009) for identifying verb lemmas.
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3.2 Resource-based

VerbNet: The VerbNet database (Kipper et al.,
2006) provides a classification of verbs accord-
ing to their participation in frames – syntactic pat-
terns with semantic components, based on Levin’s
classes (Levin, 1993). Each verb class is anno-
tated with its member verb lemmas, syntactic con-
structions in which these participate (such as tran-
sitive, intransitive, diathesis alternations), seman-
tic predicates expressed by the verbs in the class
(such as motion or contact), thematic roles (such
as agent, patient, instrument), and restrictions on
the fillers of these semantic roles (such as pointed
instrument).

VerbNet can thus be thought of as providing a
number of different classifications over the same
set of nearly 4,000 English verb lemmas. The
main classification is based on syntactic frames, as
enacted in VerbNet classes. We will refer to them
as VN-Raw classes. An alternative classification
is based on the predicative meaning of the verbs;
for example, the verbs assemble and introduce are
in different classes based on their syntactic beha-
vior, but both have the meaning component of to-
gether, marked in VerbNet as a possible value of
the Predicate variable. Similarly, shiver and faint
belong to different VerbNet classes in terms of
syntactic behavior, but both have the meaning el-
ement of describing an involuntary action. Using
the different values of the Predicate variable, we
created a set of VN-Pred classes. We note that the
same verb lemma can occur in multiple classes,
since different senses of the same lemma can have
different meanings, and even a single sense can
express more than one predicate. For example, the
verb stew participates in the following classes of
various degrees of granularity: cause (shared with
2,912 other verbs), use (with 700 other verbs), ap-
ply heat (with 49 other verbs), cooked (with 49
other verbs).

Each VerbNet class is marked with the thematic
roles its members take, such as agent or benefi-
ciary. Here again, verbs that differ in syntactic
behavior and in the predicate they express could
share thematic roles. For example, stew and prick
belong to different VerbNet classes and share only
the most general predicative meanings of cause
and use, yet both share a thematic role of instru-
ment. We create a class for each thematic role
(VN-Role).

Finally, VerbNet provides annotations of the re-

strictions that apply to fillers of various thematic
roles. For example, verbs that have a thematic
role of instrument can have the filler restricted
to being inanimate, body part, concrete, pointy,
solid, and others. Across the various VerbNet
classes, there are 128 restricted roles (such as in-
strument pointy). We used those to generate VN-
RoRe classes.

WordNet: We use lexicographer files to clas-
sify verbs into 15 classes based on their general
meaning, such as verbs of communication, con-
sumption, weather, and so on.

3.3 Corpus-based

We also experimented with automatically-
generated verb clusters as semantic classes. We
clustered VerbNet verbs using a spectral cluster-
ing algorithm and lexico-syntactic features. We
selected the verbs that occur more than 150 times
in the British National Corpus, 1,610 in total, and
clustered them into 150 clusters (Corpus).

We used verb subcategorization frames (SCF)
and the verb’s nominal arguments as features for
clustering, as they have proved successful in pre-
vious verb classification experiments (Shutova et
al., 2010). We extracted our features from the Gi-
gaword corpus (Graff et al., 2003) using the SCF

classification system of Preiss et al. (2007) to iden-
tify verb SCFs and the RASP parser (Briscoe et al.,
2006) to extract the verb’s nominal arguments.

Spectral clustering partitions the data relying
on a similarity matrix that records similarities be-
tween all pairs of data points. We use Jensen-
Shannon divergence (dJS) to measure similarity
between feature vectors for two verbs, vi and vj ,
and construct a similarity matrix Sij :

Sij = exp(−dJS(vi, vj)) (1)

The matrix S encodes a similarity graph G over
our verbs. The clustering problem can then be de-
fined as identifying the optimal partition, or cut, of
the graph into clusters. We use the multiway nor-
malized cut (MNCut) algorithm of Meila and Shi
(2001) for this purpose. The algorithm transforms
S into a stochastic matrix P containing transition
probabilities between the vertices in the graph as
P = D−1S, where the degree matrix D is a dia-
gonal matrix with Dii =

∑N
j=1 Sij . It then com-

putes theK leading eigenvectors of P , whereK is
the desired number of clusters. The graph is par-
titioned by finding approximately equal elements
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in the eigenvectors using a simpler clustering al-
gorithm, such as k-means. Meila and Shi (2001)
have shown that the partition I derived in this way
minimizes the MNCut criterion:

MNCut(I) =
K∑

k=1

[1− P (Ik → Ik|Ik)], (2)

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we ran the algorithm mul-
tiple times and used the partition that minimizes
the cluster distortion, that is, distances to cluster
centroid.

We tried expanding the coverage of VerbNet
verbs and the number of clusters using grid search
on the training data, with coverage grid ={2,500;
3,000; 4,000} and #clusters grid = {200; 250; 300;
350; 400}, but obtained no improvement in perfor-
mance over our original setting.

4 Experiment setup

4.1 Data
We use the VU Amsterdam Metaphor Corpus
(Steen et al., 2010).1 The corpus contains anno-
tations of all tokens in running text as metaphor or
non metaphor, according to a protocol similar to
MIP (Pragglejaz, 2007). The data come from the
BNC, across 4 genres: news (N), academic writing
(A), fiction (F), and conversation (C). We address
each genre separately. We consider all verbs apart
from have, be, and do.

We use the same training and testing partitions
as Beigman Klebanov et al. (2015). Table 2 sum-
marizes the data. 2

Data Training Testing
#T #I %M #T #I

News 49 3,513 42% 14 1,230
Fict. 11 4,651 25% 3 1,386
Acad. 12 4,905 31% 6 1,260
Conv. 18 4,181 15% 4 2,002

Table 2: Summary of the data. #T = # of texts; #I
= # of instances; %M = percentage of metaphors.

4.2 Machine Learning Methods
Our setting is that of supervised machine learn-
ing for binary classification. We experimented
with a number of classifiers using VU-News train-
ing data, including those used in relevant prior
work: Logistic Regression (Beigman Klebanov et

1available at http://metaphorlab.org/metcor/search/
2Data and features will be made available at

https://github.com/EducationalTestingService/metaphor.

al., 2015), Random Forest (Tsvetkov et al., 2014),
Linear Support Vector Classifier. We found that
Logistic Regression was better for unigram fea-
tures, Random Forest was better for features using
WordNet and VerbNet classifications, whereas the
corpus-based features yielded similar performance
across classifiers. We therefore ran all evaluations
with both Logistic Regression and Random For-
est classifiers. We use the skll and scikit-learn
toolkits (Blanchard et al., 2013; Pedregosa et al.,
2011). During training, each class is weighted in
inverse proportion to its frequency. The optimiza-
tion function is F1 (metaphor).

5 Results

We first consider the performance of each type of
semantic classification separately as well as var-
ious combinations using cross-validation on the
training set. Table 3 shows the results with the
classifier that yields the best performance for the
given feature set.

Name N F A C Av.
U .64 .51 .55 .39 .52
UL .65 .51 .61 .39 .54
VN-Raw .64 .49 .60 .38 .53
VN-Pred .62 .47 .58 .39 .52
VN-Role .61 .46 .55 .40 .50
VN-RoRe .59 .47 .54 .36 .49
WN .64 .50 .60 .38 .53
Corpus .59 .49 .53 .36 .49
VN-RawToCorpus .63 .49 .59 .38 .53
UL+WN .67 .52 .63 .40 .56
UL+Corpus .66 .53 .62 .39 .55

Table 3: Performance (F1) of each of the feature
sets, xval on training data. U = unigram baseline.

Of all types of semantic classification, only the
grammatical one (lemma unigrams, UL) shows
an overall improvement over the unigram base-
line with no detriment for any of the genres.VN-
Raw and WordNet show improved performance
for Academic but lower performance on Fiction
than the unigram baseline. Other versions of
VerbNet-based semantic classifications are gener-
ally worse than VN-Raw, with some exceptions
for the Conversation genre. Distributional clus-
ters (Corpus) generally perform worse than the
resource-based classifications, even when the re-
source is restricted to the exact same set of verbs as
that covered in the Corpus clusters (compare Cor-
pus to VN-RawToCorpus).

The distributional features are, however, about
as effective as WordNet features when combined
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with the lemma unigrams (UL); the combinations
improve the performance over UL alone for every
genre. We also note that the better performance
for these combinations is generally attained by the
Logistic Regression classifier. We experimented
with additional combinations of feature sets, but
observed no further improvements.

To assess the consistency of metaphoricity
behavior of semantic classes across genres, we
calculated correlations between the weights as-
signed by the UL+WN model to the 15 WordNet
features. All pairwise correlations between News,
Academic, and Fiction were strong (r > 0.7),
while Conversation had low to negative correlation
with other genres. The low correlations with Con-
versation was largely due to a highly discrepant
behavior of verbs of weather3 – these are con-
sistently used metaphorically in all genres apart
from Conversation. This discrepancy, however, is
not so much due to genre-specific differences in
behavior of the same verbs as to the difference
in the identity of the weather verbs that occur in
the data from the different genres. While burn,
pour, reflect, fall are common in the other genres,
the most common weather verb in Conversation is
rain, and none of its occurrences is metaphoric; its
single occurrence in the other genres is likewise
not metaphoric. More than a difference across
genres, this case underscores the complementarity
of lemma-based and semantic class-based infor-
mation – it is possible for weather verbs to tend
towards metaphoricity as a class, yet some verbs
might not share the tendency – verb-specific infor-
mation can help correct the class-based pattern.

5.1 Blind Test Benchmark
To compare the results against state-of-art, we
show the performance of Beigman Klebanov et
al. (2015) system (SOA’15) on the test data (see
Table 2 for the sizes of the test sets per genre).
Their system uses Logistic Regression classifier
and a set of features that includes orthographic
unigrams, part of speech tags, concreteness, and
difference in concreteness between the verb and its
direct object. Against this benchmark, we evaluate
the performance of the best combination identified
during the cross-validation runs, namely, UL+WN
feature set using Logistic Regression classifier.
We also show the performance of the resource-

3Removing verbs of weather propelled the correlations
with Conversation to a moderate range, r = 0.25-0.45 across
genres.

lean model, UL+Corpus. The top three rows of
Table 4 show the results. The UL+WN model out-
performs the state of art for every genre; the im-
provement is statistically significant ( p<0.05).4

The improvement of UL+Corpus over SOA’15 is
not significant.

Following the observation of the similarity be-
tween weights of semantic class features across
genres, we also trained the three systems on all the
available training data across all genres (all data in
the Train column in Table 2), and tested on test
data for the specific genre. This resulted in perfor-
mance improvements for all systems in all genres,
including Conversation (see the bottom 3 rows in
Table 4). The significance of the improvement of
UL+WN over SOA’15 was preserved; UL+Corpus
now significantly outperformed SOA’15.

Feature Set N F A C Av.
Train SOA’15 .64 .47 .71 .43 .56
in UL+WN .68 .49 .72 .44 .58
genre UL+Corpus .65 .49 .71 .43 .57
Train SOA’15 .66 .48 .74 .44 .58
on all UL+WN .69 .50 .77 .45 .60
genres UL+Corpus .67 .51 .76 .45 .60

Table 4: Benchmark performance, F1 score.

6 Conclusion

The goal of this paper was to investigate
the effectiveness of semantic generaliza-
tions/classifications for metaphoricity classi-
fication of verbs. We found that generalization
from orthographic unigrams to lemmas is effec-
tive. Further, lemma unigrams and semantic class
features based on WordNet combine effectively,
producing a significant improvement over the
state of the art. We observed that semantic class
features were weighted largely consistently across
genres; adding training data from other genres is
helpful. Finally, we found that a resource-lean
model where lemma unigram features were
combined with clusters generated automatically
using a large corpus yielded a competitive perfor-
mance. This latter result is encouraging, as the
knowledge-lean system is relatively easy to adapt
to a new domain or language.

4We used McNemar’s test of significance of difference
between correlated proportions (McNemar, 1947), 2-tailed.
We combined data from all genres into on a 2X2 matrix:
both SOA’15 and UL+WN correct in (1,1), both wrong
(0,0), SOA’15 correct UL+WN wrong (0,1), UL+WN correct
SOA’15 wrong (1,0)).
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Abstract

Over the past decade, e-Commerce has
rapidly grown enabling customers to pur-
chase products with the click of a button.
But to be able to do so, one has to under-
stand the semantics of a user query and
identify that in digital lifestyle tv, digital
lifestyle is a brand and tv is a product.

In this paper, we develop a series of struc-
tured prediction algorithms for seman-
tic tagging of shopping queries with the
product, brand, model and product family
types. We model wide variety of features
and show an alternative way to capture
knowledge base information using embed-
dings. We conduct an extensive study over
37, 000 manually annotated queries and
report performance of 90.92 F1 indepen-
dent of the query length.

1 Introduction

Recent study shows that yearly e-Commerce sales
in the U.S. top 100 Billion (Fulgoni, 2014). This
leads to substantially increased interest in build-
ing semantic taggers that can accurately recognize
product, brand, model and product family types in
shopping queries to better understand and match
the needs of online shoppers.

Despite the necessity for semantic understand-
ing, yet most widely used approaches for prod-
uct retrieval categorize the query and the offer
(Kozareva, 2015) into a shopping taxonomy and
use the predicted category as a proxy for retrieving
the relevant products. Unfortunately, such proce-
dure falls short and leads to inaccurate product re-
trieval. Recent efforts (Manshadi and Li, 2009; Li,
2010) focused on building CRF taggers that recog-
nize basic entity types in shopping query such as
brands, types and models. (Li, 2010) conducted

a study over 4000 shopping queries and showed
promising results when huge knowledge bases are
present. (Paşca and Van Durme, 2008; Kozareva et
al., 2008; Kozareva and Hovy, 2010) focused on
using Hearst patterns (Hearst, 1992) to learn se-
mantic lexicons. While such methods are promis-
ing, they cannot be used to recognize all prod-
uct entities in a query. In parallel to the semantic
query understanding task, there have been seman-
tic tagging efforts on the product offer side. (Put-
thividhya and Hu, 2011) recognize brand, size and
color entities in eBay product offers, while (Kan-
nan et al., 2011) recognized similar fields in Bing
product catalogs.

Despite these efforts, to date there are three im-
portant questions, which have not been answered,
but we address in our work. (1) What is an alter-
native method when product knowledge bases are
not present? (2) Is the performance of the seman-
tic taggers agnostic to the query length? (3) Can
we minimize manual feature engineering for shop-
ping query log tagging using neural networks?

The main contributions of the paper are:

• Building semantic tagging framework for
shopping queries.

• Leveraging missing knowledge base entries
through word embeddings learned on large
amount of unlabeled query logs.

• Annotating 37, 000 shopping queries with
product, brand, model and product family en-
tity types.

• Conducting a comparative and efficiency
study of multiple structured prediction algo-
rithms and settings.

• Showing that long short-term memory net-
works reaches the best performance of 90.92
F1 and is agnostic to query length.
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2 Problem Formulation and Modeling

2.1 Task Definition
We define our task as given a shopping query
identify and classify all segments that are prod-
uct, brand, product family and model, where:
-Product is generic term(s) for goods not specific
to a particular manufacturer (e.g. shirts).
-Brand is the actual name of the product manu-
facturer (e.g. Calvin Klein).
-Product Family is a brand-specific grouping of
products sharing the same product (e.g. Samsung
Galaxy).
-Model is used by manufacturer to distinguish
variations (e.g. for the brand Lexus has IS prod-
uct family, which has model 200t and 300 F
Sport).

For modeling, we denote with T =
{⊥, t1, t2, . . . , tK} the whole label space,
where ⊥ indicates a word that is not a part of an
entity and ti stands for an entity category. The
tagging models have to recognize the following
types product, brand, model, product family and⊥
(other) using the BIO schema (Tjong Kim Sang,
2002).

We denote as x = (x1, x2, . . . , xM ) a shopping
query of length M . The objective is to find the
best configuration ŷ such that:

ŷ = arg maxy p(y|x),

where y=(y1, y2, ..., yN ) (N ≤ M ) are the shop-
ping query segments labeled with their corre-
sponding entity category. Each segment yi cor-
responds to a triple 〈bi, ei, ti〉 indicating the start
index bi and end index ei of the sequence followed
by the entity category ti ∈ T . When ti = ⊥, the
segment contains only one word.

2.2 Structured Prediction Models

To tackle the shopping tagging problem of query
logs, we use Conditional Random Fields (Lafferty
et al., 2001, CRF)1, learning to search (Daumé III
et al., 2009, SEARN)2, structured percep-
tron (Collins, 2002, STRUCTPERCEPTRON) and
a long short-term memory networks extended by
CRF layer (Hochreiter and Schmidhuber, 1997;
Graves, 2012, LSTM-CRF).
CRF: is a popular algorithms for sequence tag-
ging tasks (Lafferty et al., 2001). The objective is

1taku910.github.io/crfpp/
2github.com/JohnLangford/vowpal_wabbit

to find the label sequence y = (y1, ..., yM ) that
maximizes

p(y|x) = 1
Zλ(x) exp{λ · f(y,x)},

where Zλ(x) is the normalization factor, λ is the
weight vector and f(y,x) is the extracted feature
vector for the observed sequence x.
SEARN is a powerful structured prediction al-
gorithm, which formulates the sequence labeling
problem as a search process. The objective is to
find the label sequence y = (y1, ..., yM ) that max-
imizes

p(y|x) ∝∑M
m=1 I[C(x,y1,...,ym−1)=ŷm],

whereC(•) is a cost sensitive multiclass classifier
and ŷ are the ground-truth labels.
STRUCTPERCEPTRON is an extension of the
standard perceptron. In our setting we model a
segment-based search algorithm, where each unit
is a segment of x (e.g., 〈bi, ei〉), rather than a sin-
gle word (e.g., xi). The objective is to find the
label sequence y = (y1, ..., yM ) that maximizes

p(y|x) ∝ w> · f(x,y),

where f(x,y) represents the feature vector for in-
stance x along with the configuration y and w is
updated as w← w + f(x, ŷ)− f(x,y).
LSTM-CRF The above algorithms heavily rely
on manually-crafted features to perform sequence
tagging. We decided to alleviate that by using
long short-term memory networks with a CRF
layer. Our model is similar to R-CRF (Mesnil et
al., 2015), but for the hidden recurrent layer we
use LSTM (Hochreiter and Schmidhuber, 1997;
Graves, 2012). We denote with hi the hidden vec-
tor produced by the LSTM cell at i-th token. Then
the conditional probability of y given a query x
becomes:

p(y|x) = 1
Z(h) exp{∑i(W

h
yi
hi +W t

yi,yi−1
)},

where W h
yi

is the weight vector corresponding to
label yi, and W t

yi,yi−1
is the transition score cor-

responding to yi and yi−1. During training, the
values of W h, W t, the LSTM layer and the input
word embeddings are updated through the stan-
dard back-propagation with AdaGrad algorithm.
We also concatenate pre-trained word embedding
and randomly initialized embedding (50-d) for the
knowledge-base types of each token and use this
information in the input layer. In our experiments,
we set the learning rate to 0.05 and take each query
as a mini-batch and run 5 epochs to finish training.
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Features CRF SEARN STRUCTPERCEPTRON
P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1

POS 39.86 35.51 37.56 34.97 33.55 34.25 33.03 24.70 28.27
KB 51.64 41.08 45.76 41.96 37.26 39.47 35.70 35.97 35.84
WE 65.31 61.02 63.11 67.58 67.00 67.29 71.29 68.12 69.67

LEX+ORTO+PSTNL + POS + KB 86.49 83.84 85.15 84.19 84.30 84.24 88.88 86.87 87.87
LEX+ORTO+PSTNL + POS + WE 88.30 85.74 87.00 84.32 84.15 84.24 87.85 85.69 86.76

LEX+ORTO+PSTNL + POS + KB + WE 88.86 86.29 87.55 84.30 84.50 84.40 89.18 87.10 88.13

Table 1: Results from feature study.

2.3 Features

Lexical (LEX): are widely used N -gram features.
We use unigrams of the current w0, previous w−1

and next w+1 words, and bigrams w−1w0 and
w0w+1.
Orthographic (ORTO): are binary mutually non-
exclusive features that check if w0, w−1 and w+1

contain all-digits, any-digit, start-with-digit-end-
in-letter and start-with-letter-end-in-digit. They
are designed to capture model names like hero3
and m560.
Positional (PSTNL): are discrete features model-
ing the position of the words in the query. They
capture the way people tend to write products and
brands in the query.
Part-of-Speech (POS): capture nouns and proper
names to better recognize products and brands.
We use Stanford tagger (Toutanova et al., 2003).
Knowledgebase (KB): are powerful semantic fea-
tures (Tjong Kim Sang, 2002; Carreras et al.,
2002; Passos et al., 2014). We automatically
collected and manually validated 200K brands,
products, models and product families items ex-
tracted from Macy’s and Amazon websites.
WordEmbeddings (WE): While external knowl-
edge bases are great resource, they are expensive
to create and time-consuming to maintain. We use
word embeddings (Mikolov et al., 2013) 3 as a
cheap low-maintenance alternative for knowledge
base construction. We train the embeddings over
2.5M unlabeled shopping queries. For each token
in the query, we use as features the 200 dimen-
sional embeddings of the top 5 most similar terms
returned by cosine similarity.

3 Experiments and Results

Data Set To the best of our knowledge, there is
no publicly available shopping query data anno-
tated with product, brand, model, product family
and other categories. To conduct our experiments,
we collect 2.5M shopping queries through click

3https://code.google.com/p/word2vec/

logs (Hua et al., 2013). We randomly sampled
37, 000 unique queries from the head, torso and
tail of a commercial web search engine and asked
two independent annotators to tag the data. We
measured the Kappa agreement of the editors and
found .92 agreement, which is sufficient to warrant
the goodness of the annotations.

We randomly split the data into 80% for training
and 20% for testing. Table 2 shows the distribution
of the entity categories in the data.

Product Brand Model Prod. Family ⊥
Train 21,688 10,417 4,394 6,697 47,517
Test 5,413 2,659 1,099 1,716 11,780

Table 2: Entity category distribution.

We tune all parameters on the training set using
5-fold cross validation and report performance on
the test set. All results are calculated with the
CONLL evaluation script4.

Performance w.r.t. Features Table 1 shows the
performance of the different models and feature
combinations. We use the individual features as a
baseline. The obtained results show that these are
insufficient to solve such a complex task. We com-
pared the performance of the KB and WE features
when combined with (LEX+ORTO+PSTNL) infor-
mation. As we can see, both KB and WE reach
comparable performance. This study shows that
training embeddings on large in-domain data of
shopping queries is a reliable and cheap source
for knowledge base construction, when such in-
formation is not present. In our study the best
performance is reached when all features are com-
bined. Among all machine learning classifiers for
which we manually designed features, structured
perception reaches the best performance of 88.13
F1 score.

In addition to the feature combination and
model comparison, we also study in Figure 1 the
training time of each model in log scale against its
F1 score. SEARN is the fastest algorithm to train,

4cnts.ua.ac.be/conll2000/chunking/
conlleval.txt
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Category CRF SEARN STRUCTPERCEPTRON LSTM-CRF
P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1

brand 91.79 87.93 89.82 89.3 89.3 89.3 93.99 91.20 92.57 95.15 92.29 93.70
model 86.28 80.71 83.40 80.7 78.9 79.8 85.56 80.89 83.16 87.25 85.90 86.57

product 87.85 88.16 88.00 83.4 85.0 84.2 87.90 87.92 87.91 91.94 90.98 91.46
product family 89.27 81.41 85.16 81.4 79.0 80.2 88.12 82.17 85.04 87.98 87.47 87.73

Overall 88.86 86.29 87.55 84.3 84.5 84.4 89.18 87.10 88.13 91.61 90.24 90.92

Table 3: Per category performance.
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Figure 1: Training time vs F1 performance.

while CRF takes the longest time to train. Among
all STRUCTPERCEPTRON offers the best balance
between efficiency and performance in a real time
setting.

Performance w.r.t. Entity Category Table 3
shows the performance of the algorithms with the
manually designed features against the automati-
cally induced ones with LSTM-CRF. We show
the performance of each individual product en-
tity category. Compared to all models and set-
tings, LSTM-CRF reaches the best performance
of 90.92 F1 score. The most challenging entity
types are product family and model, due to their
“wild” and irregular nature.

Performance w.r.t. Query Length Finally, we
also study the performance of our approach with
respect to the different query length. Figure 2
shows the F1 score of the two best performing al-
gorithms LSTM-CRF and STRUCTPERCEPTRON

against the different query length in the test set.
Around 83% of the queries have length between 2
to 5 words, the rest are either very short or very
long ones. As it can be seen in Figure 2, inde-
pendent of the query length, our models reach the
same performance for short and long queries. This
shows that the models are robust and agnostic to

the query length.
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Figure 2: F1 performance with varying query length.

4 Conclusions and Future Work

In this work, we have defined the task of prod-
uct entity recognition in shopping queries. We
have studied the performance of multiple struc-
tured prediction algorithms to automatically rec-
ognize product, brand, model and product family
entities. Our comprehensive experimental study
and analysis showed that combining lexical, po-
sitional, orthographic, POS, knowledge base and
word embedding features leads to the best perfor-
mance. We showed that word embeddings trained
on large amount of unlabeled queries could sub-
stitute knowledge bases when they are missing
for specialized domains. Among all manually
designed feature classifiers STRUCTPERCEPTRON

reached the best performance. While among all
algorithms LSTM-CRF achieved the highest per-
formance of 90.92 F1 score. Our analysis showed
that our models reach robust performance inde-
pendent of the query length. In the future we plan
to tackle attribute identification to better under-
stand queries like “diamond shape emerald ring”,
where diamond shape is a cut and emerald is
a gemstone type. Such fine-grained information
could further enrich online shopping experience.
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Abstract

Recent work in learning vector-space em-
beddings for multi-relational data has fo-
cused on combining relational information
derived from knowledge bases with dis-
tributional information derived from large
text corpora. We propose a simple ap-
proach that leverages the descriptions of
entities or phrases available in lexical re-
sources, in conjunction with distributional
semantics, in order to derive a better ini-
tialization for training relational models.
Applying this initialization to the TransE
model results in significant new state-
of-the-art performances on the WordNet
dataset, decreasing the mean rank from the
previous best of 212 to 51. It also results
in faster convergence of the entity repre-
sentations. We find that there is a trade-
off between improving the mean rank and
the hits@10 with this approach. This illus-
trates that much remains to be understood
regarding performance improvements in
relational models.

1 Introduction

A surprising result of work on vector-space word
embeddings is that word representations that are
learned from a large training corpus display se-
mantic regularities in the form of linear vector
translations. For example, Mikolov et al. (2013b)
show that using their induced word vector repre-
sentations, king−man + woman ≈ queen. Such a
structure is appealing because it provides an inter-
pretation to the distributional vector space through
lexical-semantic analogical inferences.

Concurrent to that work, Bordes et al. (2013)
proposed translating embeddings (TransE), which
takes a pre-existing semantic hierarchy as in-

W2V GloVe
Dataset Total found% found%
WN 40943 9.7% 51.3%
FB15k 14951 4.0% 20.3%

Table 1: The percentage of WN and FB15k enti-
ties that can be found in the pre-trained word2vec
(W2V) and GloVe vectors. This does not include
the W2V embeddings trained with the FB15k vo-
cabulary2, which covers 93% of the FB15k enti-
ties.

put and embeds its structure into a vector space.
In their model, the linear relationship between
two entities that are in some semantic relation
to each other is an explicit part of the model’s
objective function. For example, given a rela-
tion such as won(Germany,FIFA Worldcup), the
TransE model learns vector representations for
won, Germany, and FIFA Worldcup such that
Germany + won ≈ FIFA Worldcup.

A natural next step is to attempt to integrate the
two approaches in order to develop a representa-
tion that is informed by both unstructured text and
a structured knowledge base (Faruqui et al., 2015;
Xu et al., 2014; Fried and Duh, 2015; Yang et
al., 2015). However, existing work makes a cru-
cial assumption—that reliable distributional vec-
tors are available for all of the entities in the hier-
archy being modeled. Unfortunately, this assump-
tion does not hold in practice; when moving to a
new domain with a new knowledge base, for ex-
ample, there will likely be many entities or phrases
for which there is no distributional information in

2This means that word2vec was trained in the usual way
on a large textual corpus, but the vocabulary was truncated to
include as many entities from Freebase as possible. Indeed,
this is the reason for the small overlap between W2V, GloVe,
and the relational databases: after training the word embed-
dings, the vocabulary must be truncated to a reasonable size,
which leaves out many entities from these datasets.
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the training corpus. This important problem is il-
lustrated in Table 1, where most of the entities
from WordNet and Freebase are seen to be miss-
ing from the distributional vectors derived using
Word2Vec and GloVe trained on the Google News
corpus. Even when the entities are found, they
may not have occurred enough times in the train-
ing corpus for their vector representation to be re-
liable. What is needed is a method to derive entity
representations that works well for both common
and rare entities.

Fortunately, knowledge bases typically con-
tain a short description or definition for each of
the entities or phrases they contain. For ex-
ample, in a medical dataset with many techni-
cal words, the Wikipedia pages, dictionary def-
initions, or medical descriptions via a site such
as medilexicon.com could be leveraged as
lexical resources. Similarly, when building lan-
guage models for social media, resources such as
urbandicionary.com could be used for in-
formation about slang words. For the WordNet
and Freebase datasets, we use entity descriptions
which are readily available (see Table 2).

In this paper, we propose a simple and efficient
procedure to convert these short descriptions into
a vector space representation, with the help of ex-
isting word embedding models. These vectors are
then used as the input to further training with the
TransE model, in order to incorporate structural
information. Our method provides a better initial-
ization for the TransE model, not just for the enti-
ties that do not appear in the data, but in fact for all
entities. This is demonstrated by achieving state-
of-the-art mean rank on an entity ranking task on
two very different data sets: WordNet synsets with
lexical semantic relations (Miller, 1995), and Free-
base named entities with general semantic rela-
tions (Bollacker et al., 2008).

2 Related Work

Dictionary definitions were the core component
of early methods in word sense disambiguation
(WSD), such as the Lesk algorithm (1986). Chen
et al. (2014) build on the use of synset glosses for
WSD by leveraging lexical resources. Our work
goes further to tie these glosses together with rela-
tional semantics, a connection that has not been
drawn in the literature before. The integration
of lexical resources into distributional semantics
has been studied in other lexical semantic tasks,

WordNet Descriptions
photography#3 the occupation of taking and printing

photographs or making movies
transmutation#2 a qualitative change
Freebase Descriptions
Stephen Harper Stephen Joseph Harper is a Canadian

politician who is the 22nd and current
Prime Minister of Canada and the
Leader of the Conservative Party...

El Paso El Paso is the county seat of El Paso
County, Texas, United States, and lies
in far West Texas...

Table 2: Sample entity descriptions from Word-
Net and Freebase. As Freebase descriptions are
lengthy paragraphs, only the first sentence is
shown.

such as synonym expansion (Sinha and Mihalcea,
2009), relation extraction (Kambhatla, 2004), and
calculating the semantic distance between con-
cepts (Mohammad, 2008; Marton et al., 2009). We
aim to combine lexical resources and other seman-
tic knowledge, but we do so in the context of neu-
ral network-based word embeddings, rather than
in specific lexical semantic tasks.

Bordes et al. (2011) propose the Structured Em-
beddings (SE) model, which embeds entities into
vectors and relations into matrices. The relation
connection between two entities is modeled by the
projection of their embeddings into a different vec-
tor space. Rothe and Schütze (2015) use Word-
net as a lexical resource to learn embeddings for
synsets and lexemes. Perhaps most related to our
work are previous relational models that initialize
their embeddings via distributional semantics cal-
culated from a larger corpus. Socher et al. (2013)
propose the Neural Tensor Network (NTN), and
Yang et al. (2015) the Bilinear model using this
technique. Other approaches modify the objective
function or change the structure of the model in
order to integrate distributional and relational in-
formation (Xu et al., 2014; Fried and Duh, 2015;
Toutanova and Chen, 2015). Faruqui et al. (2015)
retrofit word vectors after they are trained accord-
ing to distributional criteria. We propose a method
that does not necessitate post-processing of the
embeddings, and can be applied orthogonally to
the previously mentioned improvements.

3 Architecture of the Approach

3.1 The TransE Model
The Translating Embedding (TransE) model (Bor-
des et al., 2013) has become one of the most popu-
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lar multi-relational models due to its relative sim-
plicity, scalability to large datasets, and (until re-
cently) state-of-the-art results. It assumes a sim-
ple additive interaction between vector represen-
tations of entities and relations. More precisely,
assume a given relationship triplet (h, l, t) is valid;
then, the embedding of the object t should be very
close to the embedding of the subject h plus some
vector in Rk that depends on the relation l3.

For each positive triplet (h, l, t) ∈ S, a nega-
tive triplet (h′, l, t′) ∈ S′ is constructed by ran-
domly sampling an entity from E to replace either
the subject h or the object t of the relationship.
The training objective of TransE is to minimize
the dissimilarity measure d(h + l, t) of a positive
triplet while ensuring that d(h′ + l, t′) for the cor-
rupted triplet remains large. This is accomplished
by minimizing the hinge loss over the training set:

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

[γ+d(h+l, t)−d(h′+l, t′)]+

where γ is the hinge loss margin and [x]+ repre-
sents the positive portion of x. There is an ad-
ditional constraint that the L2-norm of entity em-
beddings (but not relation embeddings) must be
1, which prevents the training process to trivially
minimize L by artificially increasing the norms of
entity embeddings.

3.2 Initializing Representations with Entity
Descriptions

We propose to leverage some external lexical re-
source to improve the quality of the entity vector
representations. In general, this could consist of
product descriptions in a product database, or in-
formation from a web resource. For the WordNet
and Freebase datasets, we use entity descriptions
which are readily available.

Although there are many ways to incorporate
this, we propose a simple method whereby the
entity descriptions are used to initialize the en-
tity representations of the model, which we show
to have empirical benefits. In particular, we
first decompose the description of a given en-
tity into a sequence of word vectors, and com-
bine them into a single embedding by averaging.
We then reduce the dimensionality using princi-
ple component analysis (PCA), which we found

3Note that we use h, l, t ∈ Rk to denote both the entities
and relations, in addition to the vector representations of the
entities and relations

experimentally to reduce overfitting. We obtain
these word vectors using distributed representa-
tions computed using word2vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). Ap-
proximating compositionality by averaging vector
representations is simple, yet has some theoretical
justification (Tian et al., 2015) and can work well
in practice (Wieting et al., 2015).

Additional decisions need to be made concern-
ing which parts of the entity description to include.
In particular, if an entity description or word def-
inition is longer than several sentences, using the
entire description could cause a ‘dilution’ of the
desired embedding, as not all sentences will be
equally pertinent. We solve this by only consid-
ering the first sentence of any entity description,
which is often the most relevant one. This is nec-
essary for Freebase, where the description length
can be several paragraphs.

4 Experiments

4.1 Training and Testing Setup

We perform experiments on the WordNet
(WN) (Miller, 1995) and Freebase (FB15k) (Bol-
lacker et al., 2008) datasets used by the original
TransE model. TransE hyperparameters include
the learning rate λ for stochastic gradient descent,
the margin γ for the hinge loss, the dimension of
the embeddings k, and the dissimilarity metric d.
For the TransE model with random initialization,
we use the optimal hyperparameters from (Bordes
et al., 2013): for WN, λ = 0.01, γ = 2, k = 20,
and d = L1-norm; for FB15k, λ = 0.01, γ = 0.5,
k = 50, and d = L2-norm. The values of k
were further tested to ensure that k = 20 and
k = 50 were optimal. For the TransE model
with strategic initialization, we used different
embedding dimensions. The distributional vectors
used in the entity descriptions are of dimension
1000 for the word2vec vectors with Freebase
vocabulary, and dimension 300 in all other cases.
Dimensionality reduction with PCA was then
applied to reduce this to k = 30 for WN, and
k = 55 for FB15k, which were empirically found
to be optimal. PCA was necessary in this case as
pre-trained vectors from word2vec and GloVe are
not available for all dimension values.

We use the same train/test/validation split and
evaluation procedure as (Bordes et al., 2013): for
each test triplet (h, l, t), we remove entity h and
t in turn, and rank each entity in the dictionary
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WN FB15k

k
Mean rank Hits@10

k
Mean rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt
Pr

ev
.m

od
el

s SE (Bordes et al., 2011) — 1,011 985 68.5% 80.5% — 273 162 28.8% 39.8%
TransD (unif) (Ji et al., 2015) — 242 229 79.2% 92.5% — 211 67 49.4% 74.2%
TransD (bern) (Ji et al., 2015) — 224 212 79.6% 92.2% — 194 91 53.4% 77.3%
TransE random init. 20 266 254 76.1% 89.2% 50 195 92 41.2% 55.2%
TransE Freebase W2V init. — — — — — 50 195 91 41.3% 55.4%

O
ur

m
od

el
s TransE W2V entity defs. (NS) 30 210 192 78.5% 92.1% 55 195 91 41.6% 55.7%

TransE GloVe entity defs. (NS) 30 63 51 64.6% 73.2% 55 194 90 41.7% 55.8%
TransE W2V entity defs. 30 191 179 77.8% 91.6% 55 195 91 41.6% 55.6%
TransE GloVe entity defs. 30 71 59 75.3% 88.0% 55 193 90 41.8% 55.8%

Table 3: Comparison between random initialization and using the entity descriptions. ‘NS’ tag indicates
stopword removal from the entity descriptions‘TransE Freebase W2V init’ model uses word2vec pre-
trained with the Freebase vocabulary, and thus was not tested on WN.

Figure 1: Learning curves for the mean ranks on the training set for WordNet (left) and Freebase (right).

by similarity according to the model. We evalu-
ate using the original and most common metrics
for relational models: i) the mean of the predicted
ranks, and ii) hits@10, which represents the per-
centage of correct entities found in the top 10 list;
however, other metrics are possible, such as mean
reciprocal rank (MRR). We evaluate in both the
filtered setting, where other correct responses are
removed from the lists ranked by the model, and
the raw setting, where no changes are made.

We compare against the TransE model with ran-
dom initialization, and the SE model (Bordes et
al., 2011). We also compare against the state-of-
the-art TransD model (Ji et al., 2015). This model
uses two vectors to represent each entity and re-
lation; one to represent the meaning of the entity,
and one to construct a mapping matrix dynami-
cally. This allows for the representation of more
diverse entities.

4.2 Results and Analysis
Table 3 summarizes the experimental results, com-
pared to baseline and state-of-the-art relational
models. We see that the mean rank is greatly im-

proved for the TransE model with strategic ini-
tialization over random initialization. More sur-
prisingly, all of our models achieve state-of-the-art
performance for both raw and filtered data, com-
pared to the recently developed TransD model.
These results are highly significant with p < 10−3

according to the Mann-Whitney U test. Thus,
even though our method is simple and straightfor-
ward to apply, it can still beat all attempts at more
complicated structural modifications to the TransE
model on this dataset. Further, the fact that our op-
timal embedding dimensions are larger (30 and 55
vs. 20 and 50) suggests that our initialization ap-
proach helps avoid overfitting.

For Freebase, our models slightly outperform
the TransE model with random initialization, with
p-values of 0.173 and 0.410 for initialization with
descriptions (including stopwords) using GloVe
and word2vec, respectively. We also see improve-
ments over the case of direct initialization with
word2vec. Further, we set a new state-of-the-art
for mean rank on the raw data, though the im-
provement is marginal.
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WordNet Relations
hyponym
derivationally related form
member holonym

Freebase Relations
/award/award nominee/award nominations./award/

award nomination/nominated for
/broadcast/radio station owner/ radio stations
/medicine/disease/notable people with this condition

Table 4: Sample relations from WordNet and Free-
base. The relations from Freebase are clearly
much more specific as they relate named entities.

Finally, we see in Figure 1 that the TransE
model converges more quickly during training
when initialized with our approach, compared to
random initialization. This is particularly true on
WordNet.

Mean rank and hits@10 discrepancy It is in-
teresting to note the relationship between the mean
rank and hits@10. By changing our model, we are
able to increase one at the expense of the other. For
example, using word2vec without stopwords gives
similar hits@10 to TransD with better mean rank,
while using GloVe further improves the mean rank
at a cost to hits@10. The exact nature of this trade-
off isn’t clear, and is an interesting avenue for fu-
ture work.

However, there are potential reasons for the
results discrepancy betweeen mean rank and
hits@10. We conjecture that our model helps
avoid ‘disasters’ where some correct entities are
ranked very low. For TransE with random initial-
ization, these disasters cause a large decrease in
mean rank, which is significantly improved by our
model. On the other hand, reducing the number of
correct entities that are poorly ranked may not sig-
nificantly affect the hits@10, since this only con-
siders entities near the top of the ranking.

Note also that using hits@10 to evaluate rela-
tional models is not ideal; a model can rank rea-
sonable alternative entities highly, but be penal-
ized because the target entity is not in the top 10.
For example, given “rabbit IS-A”, both “animal”
and “mammal” fit as target entities. This is al-
leviated by filtering, but is not completely elimi-
nated due to the sparsity of relations in the dataset
(which is the reason we require the link prediction
task). Thus, we believe the mean rank is a more
accurate measure of the performance of a model,
particularly on raw data.

Dataset differences It is also interesting to note
the discrepancy between the results on the Word-
Net and Freebase datasets. Although using the
entity descriptions leads to a significantly lower
mean rank for the WordNet dataset, it only results
in a faster convergence rate for Freebase. How-
ever, the relations presented in these two datasets
are significantly different: WordNet relations are
quite general and are meant to provide links be-
tween concepts, while the Freebase relations are
very specific, and denote relationships between
named entities. This is shown in Table 4. It seems
that incorporating the definition of these named
entities does not improve the ability of the algo-
rithm to answer very specific relation questions.
This would be the case if the optimization land-
scape for the TransE model had fewer local min-
ima for Freebase than for WordNet, thus rendering
it less sensitive to the initial condition. It is also
possible that the TransE model is simply not pow-
erful enough to achieve a filtered mean rank lower
than 90, no matter the initialization strategy.

5 Conclusion and Future Work

We have shown that leveraging external lexical re-
sources, along with distributional semantics, can
lead to both a significantly improved optimum and
a faster rate of convergence when applied with the
TransE model for relational data. We established
new state-of-the-art results on WordNet, and ob-
tain small improvements to the state-of-the-art on
raw relational data for Freebase. Our method is
quite simple and could be applied in a straight-
forward manner to other models that take entity
vector representations as input. Further research
is needed to investigate whether performance on
other NLP tasks can be improved by leveraging
available lexical resources in a similar manner.

More complex methods initialization methods
could easily be devised, e.g. by using inverse doc-
ument frequency (idf) weighted averaging, or by
applying the work of Le et al. (2014) on para-
graph vectors. Alternatively, distributional seman-
tics could be used as a regularizer, similar to (Lab-
utov and Lipson, 2013), with learned embeddings
being penalized for how far they stray from the
pre-trained GloVe embeddings. However, even
with intuitive and straightforward methodology,
leveraging lexical resources can have a significant
impact on the results of models for multi-relational
data.
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Abstract

In unsupervised semantic role labeling,
identifying the role of an argument is usu-
ally informed by its dependency relation
with the predicate. In this work, we pro-
pose a neural model to learn argument
embeddings from the context by explic-
itly incorporating dependency relations as
multiplicative factors, which bias argu-
ment embeddings according to their de-
pendency roles. Our model outperforms
existing state-of-the-art embeddings in un-
supervised semantic role induction on the
CoNLL 2008 dataset and the SimLex999
word similarity task. Qualitative results
demonstrate our model can effectively bias
argument embeddings based on their de-
pendency role.

1 Introduction

Semantic role labeling (SRL) aims to identify
predicate-argument structures of a sentence. The
following example shows the arguments labeled
with the roles A0 (typically the agent of an action)
and A1 (typically the patient of an action), as well
as the predicate in bold.

[Little Willy A0] broke [a window A1].

As manual annotations are expensive and time-
consuming, supervised approaches (Gildea and
Jurafsky, 2002; Xue and Palmer, 2004; Pradhan
et al., 2005; Punyakanok et al., 2008; Das et al.,
2010; Das et al., 2014) to this problem are held
back by limited coverage of available gold anno-
tations (Palmer and Sporleder, 2010). SRL per-
formance decreases remarkably when applied to
out-of-domain data (Pradhan et al., 2008).

Unsupervised SRL offer a promising alternative
(Lang and Lapata, 2011; Titov and Klementiev,

2012; Garg and Henderson, 2012; Lang and La-
pata, 2014; Titov and Khoddam, 2015). It is com-
monly formalized as a clustering problem, where
each cluster represents an induced semantic role.
Such clustering is usually performed through man-
ually defined semantic and syntactic features de-
fined over argument instances. However, the rep-
resentation based on these features are usually
sparse and difficult to generalize.

Inspired by the recent success of distributed
word representations (Mikolov et al., 2013; Levy
and Goldberg, 2014; Pennington et al., 2014), we
introduce two unsupervised models that learn em-
beddings of arguments, predicates, and syntac-
tic dependency relations between them. The em-
beddings are learned by predicting each argument
from its context, which includes the predicate and
other arguments in the same sentence. Driven
by the importance of syntactic dependency rela-
tions in SRL, we explicitly model dependencies
as multiplicative factors in neural networks, yield-
ing more succinct models than existing represen-
tation learning methods employing dependencies
(Levy and Goldberg, 2014; Woodsend and Lap-
ata, 2015). The learned argument embeddings are
then clustered and are evaluated by the clusters’
agreement with ground truth labels.

On unsupervised SRL, our models outperform
the state of the art by Woodsend and Lapata (2015)
on gold parses and Titov and Khoddam (2015) on
automatic parses. Qualitative results suggest our
model is effective in biasing argument embeddings
toward a specific dependency relation.

2 Related Work

There has been growing interest in using neu-
ral networks and representation learning for su-
pervised and unsupervised SRL (Collobert et al.,
2011; Hermann et al., 2014; Zhou and Xu, 2015;
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Figure 1: (a): The SYMDEP model. (b): The ASYMDEP model. (c): An example of how embeddings
relate to the parse tree. In SYMDEP, the biasing of dependency is uniformly applied to all argument
embeddings. In ASYMDEP, they are concentrated on one side of the dot product.

FitzGerald et al., 2015). Closely related to our
work, Woodsend and Lapata (2015) concatenate
one hot features of dependency, POS-tag and a dis-
tributed representation for head word and project
the concatenation onto a dense feature vector
space. Instead of using dependency relations as
one-hot vectors, we explicitly model the multi-
plicative compositionality between arguments and
dependencies, and investigate two different com-
positionality configurations.

Our model is related to Levy and Goldberg
(2014) who use dependency relations in learn-
ing word embeddings. In comparison, our mod-
els separate the representation of dependency rela-
tions and arguments, thereby allow the same word
in different relations to share weights in order to
reduce model parameters and data sparsity.

3 Approach

Most unsupervised approaches to SRL perform
the following two steps: (1) identifying the ar-
guments of the predicate and (2) assigning argu-
ments to unlabeled roles, such as argument clus-
ters. Step (1) can be usually tackled with heuristic
rules (Lang and Lapata, 2014). In this paper, we
focus on tackling step (2) by creating clusters of
arguments that belongs to the same semantic role.
As we assume PropBank-style roles (Kingsbury
and Palmer, 2002), our models allocate a separate
set of role clusters for each predicate and assign its
arguments to the clusters. We evaluate the results
by the overlapping between the induced clusters
and PropBank-style gold labels.

The example below suggests that SRL requires
more than just lexical embeddings.

[A car A1] is hit by [another car A0].

The A0 and A1 roles are very similar lexically, but
their dependency relations to the predicate differ.
To allow the same lexical embedding to shift ac-

cording to different relations to the predicate, we
propose the following models.

3.1 Models
Following the framework of CBOW (Mikolov et
al., 2013), our models predict an argument by
its context, which includes surrounding arguments
and the predicate.

Let vt be the embedding of the tth argument
in a sentence, and ut the embedding of the ar-
gument when it is part of the context. Let
up be the embedding of the predicate. uc =
{ut−k, . . . ,ut−1,ut+1, . . . ,ut+k} are the vectors
surrounding the tth argument with a window of
size k.1 The prediction of the tth argument is:

p(vt|up,uc) ∝ exp(f(vt)
ᵀg(up,uc)) (1)

where f(·) and g(·) are two transformation func-
tions of the target argument embedding and con-
text vectors respectively.

We further associate a dependency relation with
each argument (explained in more details in §4.1).
Let matrix Dt encode the biasing effect of the de-
pendency relation between the tth argument and
its predicate, and Et be the corresponding depen-
dency matrix for the tth argument if it is used as a
context. We define a ⊗ operator:

vt ⊗Dt , tanh (Dtvt)

ut ⊗Et , tanh (Etut) ,
(2)

where tanh(·) is the element-wise tanh function.
Eq. 2 composes an argument and its dependency
with a multiplicative nonlinear operation. The
multiplicative formulation encourages the decou-
pling of dependencies and arguments, which is

1To be precise, the embeddings are indexed by the argu-
ments, which are then indexed by their positions, like uw(t).
Here we omit w. The same convention applies to dependency
matrices, which are indexed by the dependency label first.
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useful in learning representations tightly focused
on lexical and relational semantics, respectively.

Symmetric-Dependency. In our first model,
we apply the dependency multiplication to all ar-
guments. We have

f1(vt) = vt ⊗Dt (3)

g1(up,uc) = up ⊗Ep +
∑

ui∈uc

ui ⊗Ei (4)

This model is named Symmetric-Dependency
(SYMDEP) for the symmetric use of ⊗. Since the
predicate does not have an dependency with itself,
we let Ep = I . Generally, ∀i,Ei 6= I .

Asymmetric-Dependency. An alternative
model is to concentrate the dependency relations’
effects by shifting the dependency of the predicted
argument from f(·) to g(·), thereby move all ⊗
operations to construct context vector:

g2(up,uc) = (up⊗Ep+
∑

ui∈uc

ui⊗Ei)⊗Dt (5)

f2(vt) = vt (6)

This model is named Asymmetric-Dependency or
ASYMDEP. Figure 1 shows the two models side
by side. Note that Eq. 5 actually defines a feed-
forward neural network structure g2(up,uc) for
predicting arguments. Consider the prediction
function defined in Eq. 1, these two models will
be equivalent if we eliminate all nonlinearities in-
troduced by tanh(·).
3.2 Clustering Arguments

In the final step of semantic role induction, we
perform agglomerative clustering on the learned
embeddings of arguments. We first create a num-
ber of seed clusters based on syntactic positions
(Lang and Lapata, 2014), which are hierarchically
merged. Similar to Lang and Lapata (2011), we
define the similarity between clusters as the cosine
similarity (CosSim) between the centroids with
a penalty for clustering two arguments from the
same sentence into the same role. Consider two
clusters C and C ′ with the centroids x and y re-
spectively, their similarity is:

S(C,C ′) = CosSim(x,y)−α ·pen(C,C ′) (7)

where α is heuristically set to 1.
To compute the penalty, let V (C,C ′) be the set

of arguments ai ∈ C such that ai appears in the

same sentence with another argument aj ∈ C ′.
We have

pen(C,C ′) =
|V (C,C ′)|+ |V (C ′, C)|

|C|+ |C ′| (8)

where | · | is set cardinality. When this penalty is
large, the clusters C and C ′ will appear dissimilar,
so it becomes difficult to merge them into the same
cluster, preventing ai and aj from appearing in the
same cluster.

4 Experiments

We evaluate our models in unsupervised SRL and
compare the effectiveness our approach in model-
ing dependency relations with the previous work.

4.1 Setup

Our models are trained on 24 million tokens and
1 million sentences from the North American
News Text corpus (Graff, 1995). We use MATE
(Björkelund et al., 2009) to parse the dependency
tree and identify predicates and arguments. Em-
beddings of head words are the only feature we use
in clustering. Dependency matrices are restricted
to contain only diagonal terms. The vocabulary
sizes for arguments and predicates are 10K and
5K respectively. We hand-picked the dimension
of embeddings to be 50 for all models.

We take the first dependency relation on the
path from an argument’s head word to the predi-
cate as its dependency label, considering the de-
pendency’s direction. For example, the label for
the first car in Figure 1(c) is SBJ−1. We use neg-
ative sampling (Mikolov et al., 2013) to approx-
imate softmax in the objective function. For
SYMDEP, we sample both the predicted argument
and dependency. For ASYMDEP, we sample only
the argument. Models are trained using AdaGrad
(Duchi et al., 2011) with L2 regularization. All
embeddings are randomly initialized.2

Baselines. We compare against several baselines
using representation learning: CBOW and Skip-
Gram (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), L&G (Levy and Goldberg, 2014) and
Arg2vec (Woodsend and Lapata, 2015). Similar to
ours, L&G and Arg2vec both encode dependency
relations in the embeddings. We train all models
on the same dataset as ours using publicly avail-

2Resulted embeddings can be downloaded from https:
//bitbucket.org/luanyi/unsupervised-srl.
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able code3, and then apply the same clustering al-
gorithm. Introduced by Lang and Lapata (2014),
SYNTF is a strong baseline that clusters arguments
based on purely syntactic cues: voice of the verb,
relative position to the predicate, syntactic rela-
tions, and realizing prepositions. The window size
for Arg2vec and our models are set to 1, while all
other embeddings are set to 2. We also employ
two state-of-the-art methods from Titov and Kle-
mentiev (2012) (T&K12) and Titov and Khoddam
(2015) (T&K15).

4.2 SRL Results

Following common practices (Lang and Lapata,
2014), we measure the overlap of induced seman-
tic roles and their gold labels on the CoNLL 2008
training data (Surdeanu et al., 2008). We report
purity (PU), collocation (CO), and their harmonic
mean (F1) evaluated on gold arguments in two set-
tings of gold parses and automatic parses from the
MaltParser (Nivre et al., 2007). Table 1 shows the
results.4

SYMDEP and ASYMDEP outperform all repre-
sentation learning baselines for SRL. T&K12 out-
performs our models on gold parsing because they
use a strong generative clustering method, which
shared parameters across verbs in the clustering
step. In addition, T&K15 incorporates feature-
rich latent structure learning. Nevertheless, our
models perform better with automatic parses, in-
dicating the robustness of our models under noise
in automatic parsing. Future work involves more
sophisticated clutering techniques (Titov and Kle-
mentiev, 2012) as well as incorporating feature-
rich models (Titov and Khoddam, 2015) to im-
prove performance further.

Table 1 shows that including dependency rela-
tions (L&G, Arg2vec, SYMDEP, and ASYMDEP)
improves performance. Additionally, our mod-
els achieve the best performance among those,
showing the strength of modeling dependencies
as multiplicative factors. Arg2vec learns word
embedings from the context features which are
concatenation of syntactic features (dependency
reations and POS tags) and word embedings. L&G
treats each word-dependency pair as a separate to-

3Except that Arg2vec is reimplemented since there is no
public code online.

4The numbers reported for Arg2vec with gold parsing
(80.7) is different from Woodsend and Lapata (2015) (80.9)
since we use a different clustering method and different train-
ing data.

Gold parses Automatic parses
Model PU CO F1 PU CO F1

SYNTF 81.6 78.1 79.8 77.0 71.5 74.1

Skip-Gram 86.6 74.7 80.2 84.3 72.4 77.9
CBOW 84.6 74.9 79.4 84.0 71.5 77.2
GloVe 84.9 74.1 79.2 83.0 70.8 76.5
L&G 87.0 75.6 80.9 86.6 71.3 78.2
Arg2vec 84.0 77.7 80.7 86.9 71.4 78.4
SYMDEP 85.3 77.9 81.4 81.9 76.6 79.2
ASYMDEP 85.6 78.3 81.8 82.9 75.2 78.9

T&K12 88.7 78.1 83.0 86.2 72.7 78.8
T&K15 79.7 86.2 82.8 - - -

SYM1DEP 83.8 77.4 80.5 82.3 74.8 78.4

Table 1: Purity, collocation and F1 measures for
the CoNLL-2008 data set.

ken, leading to a large vocabulary (142k in our
dataset) and potentially data scarcity. In compar-
ison, SYMDEP and ASYMDEP formulate the de-
pendency as the weight matrix of the second non-
linear layer, leading to a deeper structure with less
parameters compared to previous work.
Qualitative results. Table 2 demonstrates the ef-
fectiveness of our models qualitatively. For exam-
ple, we identify that car is usually the subject of
crash and unload, and the object of sell and pur-
chase. In comparison, CBOW embeddings do not
reflect argument-predicate relations.
Ablation Study. To further understand the ef-
fects of the multiplicative representation on un-
supervised SRL, we create an ablated model
SYM1DEP, where we force all dependencies in
SYMDEP to use the same matrix. The network
has the same structure as SYMDEP, but the depen-
dency information is removed. Its performance on
SRL is shown at the bottom of Table 1. SYM1DEP

performs slightly worse than Arg2vec. This sug-
gests that the performance gain in SYMDEP can
be attributed to the use of dependency information
instead of the way of constructing context.

4.3 Word Similarity Results

As a further evaluation of the learned embed-
dings, we test if similarities between word em-
beddings agree with human annotation from Sim-
Lex999 (Hill et al., 2015). Table 3 shows
that SYMDEP outperforms Arg2vec on both
nouns and verbs, suggesting multiplicative depen-
dency relations are indeed effective. However,
ASYMDEP performs better than SYMDEP on noun
similarity but much worse on verb similarity. We
explore this further in an ablation study.
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Argument SYMDEP (SBJ) SYMDEP (OBJ) CBOW

car crash, roar, capsize, land, lug, un-
load, bounce, ship

sell, purchase, buy, retrieve, board,
haul, lease, unload

train, splash, mail, shelter, jet, ferry,
drill, ticket

victim injure, die, protest, complain,
weep, hospitalize, shout, suffer

insult, assault, stalk, avenge, harass,
interview, housing, apprehend

void, murder, kidnap, widow, mas-
sacre, surge, sentence, defect

teacher teach, mentor, educate, note, rem-
inisce, say, learn, lecture

hire, bar, recruit, practice, assault,
enlist, segregate, encourage

coach, mentor, degree, master, guide,
pilot, partner, captain

student learn, resurface, object, enroll,
note, protest, deem, teach

teach, encourage, educate, assault,
segregate, enroll, attend, administer

graduate, degree, mortgage, engi-
neer, mentor, pilot, partner, pioneer

Table 2: The 8 most similar predicates to a given argument in a given dependency role.

Model Nouns Verbs

L&G 31.4 27.2
Arg2vec 38.2 31.4
SYMDEP 39.2 36.5
ASYMDEP 39.7 15.3

ASYM1DEP 33.2 24.2

Table 3: A POS-based analysis of the various em-
beddings. Numbers are the Spearman’s ρ scores
of each model on nouns and verbs of SimLex999.

Ablation Study. We create an ablated model
to explore the reason for ASYMDEP’s perfor-
mance on verb similarity. ASYM1DEP is based
on ASYMDEP where we force all dependency re-
lations for the predicted argument vt to use the
same matrix Di. The aim of this experiment is to
check the negative influence of asymmetric depen-
dency matrix to verb embedding. The results are
shown at the bottom of Table 3. By keeping Di

dependency independent, performance on verbs is
significantly improved with the cost of noun per-
formance.

5 Conclusions

We present a new unsupervised semantic role la-
beling approach that learns embeddings of argu-
ments by predicting each argument from its con-
text and considering dependency relation as a mul-
tiplicative factor. Two proposed neural networks
outperform current state-of-the-art embeddings on
unsupervised SRL and the SimLex999 word simi-
larity task. As an effective model for dependency
relations, our multiplicative argument-dependency
factor models encourage the decoupling of argu-
ment and dependency representations. Disentan-
gling linguistic factors in similar manners may be
worth investigating in similar tasks such as frame
semantic parsing and event detection.
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Abstract

In order to capture rich language phenom-
ena, neural machine translation models
have to use a large vocabulary size, which
requires high computing time and large
memory usage. In this paper, we alleviate
this issue by introducing a sentence-level
or batch-level vocabulary, which is only a
very small sub-set of the full output vocab-
ulary. For each sentence or batch, we only
predict the target words in its sentence-
level or batch-level vocabulary. Thus,
we reduce both the computing time and
the memory usage. Our method simply
takes into account the translation options
of each word or phrase in the source sen-
tence, and picks a very small target vocab-
ulary for each sentence based on a word-
to-word translation model or a bilingual
phrase library learned from a traditional
machine translation model. Experimen-
tal results on the large-scale English-to-
French task show that our method achieves
better translation performance by 1 BLEU
point over the large vocabulary neural ma-
chine translation system of Jean et al.
(2015).

1 Introduction

Neural machine translation (NMT) (Bahdanau et
al., 2014) has gained popularity in recent two
years. But it can only handle a small vocabulary
size due to the computational complexity. In or-
der to capture rich language phenomena and have
a better word coverage, neural machine translation
models have to use a large vocabulary.

Jean et al. (2015) alleviated the large vocabu-
lary issue by proposing an approach that partitions
the training corpus and defines a subset of the full
target vocabulary for each partition. Thus, they
only use a subset vocabulary for each partition in
the training procedure without increasing compu-
tational complexity. However, there are still some

drawbacks of Jean et al. (2015)’s method. First,
the importance sampling is simply based on the
sequence of training sentences, which is not lin-
guistically motivated, thus, translation ambiguity
may not be captured in the training. Second, the
target vocabulary for each training batch is fixed
in the whole training procedure. Third, the target
vocabulary size for each batch during training still
needs to be as large as 30k, so the computing time
is still high.

In this paper, we alleviate the above issues by
introducing a sentence-level vocabulary, which is
very small compared with the full target vocab-
ulary. In order to capture the translation am-
biguity, we generate those sentence-level vocab-
ularies by utilizing word-to-word and phrase-to-
phrase translation models which are learned from
a traditional phrase-based machine translation sys-
tem (SMT). Another motivation of this work is to
combine the merits of both traditional SMT and
NMT, since training an NMT system usually takes
several weeks, while the word alignment and rule
extraction for SMT are much faster (can be done
in one day). Thus, for each training sentence,
we build a separate target vocabulary which is the
union of following three parts:
• target vocabularies of word and phrase trans-

lations that can be applied to the current sen-
tence. (to capture the translation ambiguity)
• top 2k most frequent target words. (to cover

the unaligned target words)
• target words in the reference of the current

sentence. (to make the reference reachable)
As we use mini-batch in the training procedure,
we merge the target vocabularies of all the sen-
tences in each batch, and update only those re-
lated parameters for each batch. In addition, we
also shuffle the training sentences at the begin-
ning of each epoch, so the target vocabulary for
a specific sentence varies in each epoch. In the
beam search for the development or test set, we
apply the similar procedure for each source sen-
tence, except the third bullet (as we do not have
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Figure 1: The attention-based NMT architecture.←−
hi and

−→
hi are bi-directional encoder states. αtj is

the attention prob at time t, position j. Ht is the
weighted sum of encoding states. st is the hidden
state. ot is an intermediate output state. A single
feedforward layer projects ot to a target vocabu-
lary Vo, and applies softmax to predict the proba-
bility distribution over the output vocabulary.

the reference) and mini-batch parts. Experimen-
tal results on large-scale English-to-French task
(Section 5) show that our method achieves signifi-
cant improvements over the large vocabulary neu-
ral machine translation system.

2 Neural Machine Translation

As shown in Figure 1, neural machine translation
(Bahdanau et al., 2014) is an encoder-decoder net-
work. The encoder employs a bi-directional recur-
rent neural network to encode the source sentence
x = (x1, ..., xl), where l is the sentence length,
into a sequence of hidden states h = (h1, ..., hl),
each hi is a concatenation of a left-to-right

−→
hi and

a right-to-left
←−
hi ,

hi =

[←−
h i−→
h i

]
=

[←−
f (xi,

←−
h i+1)−→

f (xi,
−→
h i−1)

]
,

where
←−
f and

−→
f are two gated recurrent units

(GRU).
Given h, the decoder predicts the target transla-

tion by maximizing the conditional log-probability
of the correct translation y∗ = (y∗1, ...y∗m), where
m is the length of target sentence. At each time t,
the probability of each word yt from a target vo-
cabulary Vy is:

p(yt|h, y∗t−1..y
∗
1) ∝ exp(g(st, y

∗
t−1, Ht)), (1)

where g is a multi layer feed-forward neural net-
work, which takes the embedding of the previous
word y∗t−1, the hidden state st, and the context
state Ht as input. The output layer of g is a tar-
get vocabulary Vo, yt ∈ Vo in the training pro-
cedure. Vo is originally defined as the full target
vocabulary Vy (Cho et al., 2014). We apply the
softmax function over the output layer, and get the
probability of p(yt|h, y∗t−1..y

∗
1). In Section 3, we

differentiate Vo from Vy by adding a separate and
sentence-dependent Vo for each source sentence.
In this way, we enable to maintain a large Vy, and
use a small Vo for each sentence.

The st is computed as:

st = q(st−1, y
∗
t−1, ct) (2)

ct =

[∑l
i=1 (αti · ←−h i)∑l
i=1 (αti · −→h i)

]
, (3)

where q is a GRU, ct is a weighted sum of h, the
weights, α, are computed with a feed-forward neu-
ral network r:

αti =
exp{r(st−1, hi, y

∗
t−1)}∑l

k=1 exp{r(st−1, hk, y
∗
t−1)}

(4)

3 Target Vocabulary

The output of function g is the probability distri-
bution over the target vocabulary Vo. As Vo is de-
fined as Vy in Cho et al. (2014), the softmax func-
tion over Vo requires to compute all the scores for
all words in Vo, and results in a high computing
complexity. Thus, Bahdanau et al. (2014) only
uses top 30k most frequent words for both Vo and
Vy, and replaces all other words as unknown words
(UNK).

3.1 Target Vocabulary Manipulation
In this section, we aim to use a large vocabulary
of Vy (e.g. 500k, to have a better word cover-
age), and, at the same, to reduce the size of Vo

as small as possible (in order to reduce the com-
puting time). Our basic idea is to maintain a sep-
arate and small vocabulary Vo for each sentence
so that we only need to compute the probability
distribution of g over a small vocabulary for each
sentence. Thus, we introduce a sentence-level vo-
cabulary Vx to be our Vo, which depends on the
sentence x. In the following part, we show how
we generate the sentence-dependent Vx.

The first objective of our method aims to cap-
ture the real translation ambiguity for each word,
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and the target vocabulary of a sentence Vo = Vx

is supposed to cover as many as those possible
translation candidates. Take the English to Chi-
nese translation for example, the target vocabulary
for the English word bank should contain yı́nháng
(a financial institution) and héàn (sloping land) in
Chinese.

So we first use a word-to-word translation dic-
tionary to generate some target vocaularies for x.
Given a dictionary D(x) = [y1, y2, ...], where x is
a source word, [y1, y2, ...] is a sorted list of candi-
date translations, we generate a target vocabulary
V D
x for a sentence x = (x1, ..., xl) by merging all

the candidates of all words x in x.

V D
x =

l⋃
i=1

D(xi)

As the word-to-word translation dictionary only
focuses on the source words, it can not cover
the target unaligned functional or content words,
where the traditional phrases are designed for this
purpose. Thus, in addition to the word dictio-
nary, given a word aligned training corpus, we
also extract phrases P (x1...xi) = [y1, ..., yj ],
where x1...xi is a consecutive source words, and
[y1, ..., yj ] is a list of target words1. For each sen-
tence x, we collect all the phrases that can be ap-
plied to sentence x, e.g. x1...xi is a sub-sequence
of sentence x.

V P
x =

⋃
∀xi...xj∈subseq(x)

P (xi...xj),

where subseq(x) is all the possible sub-sequence
of x with a length limit.

In order to cover target un-aligned functional
words, we need top n most common target words.

V T
x = T (n).

Training: in our training procedure, our op-
timization objective is to maximize the log-
likelihood over the whole training set. In order
to make the reference reachable, besides V D

x , V P
x

and V T
x , we also need to include the target words

in the reference y,

V R
x =

⋃
∀yi∈y

yi,

1Here we change the definition of a phrase in traditional
SMT, where the [y1, ...yj ] should also be a consecutive target
words. But our task in this paper is to get the target vocabu-
lary, so we only care about the target word set, not the order.

where x and y are a translation pair. So for each
sentence x, we have a target vocabulary Vx:

Vx = V D
x ∪ V P

x ∪ V T
x ∪ V R

x

Then, we start our mini-batch training by ran-
domly shuffling the training sentences before each
epoch. For simplicity, we use the union of all Vx

in a batch,

Vo = Vb = Vx1 ∪ Vx2 ∪ ...Vxb
,

where b is the batch size. This merge gives an
advantage that Vb changes dynamically in each
epoch, which leads to a better coverage of param-
eters.

Decoding: different from the training, the target
vocabulary for a sentence x is

Vo = Vx = V D
x ∪ V P

x ∪ V T
x ,

and we do not use mini-batch in decoding.

4 Related Work

To address the large vocabulary issue in NMT,
Jean et al. (2015) propose a method to use differ-
ent but small sub vocabularies for different parti-
tions of the training corpus. They first partition
the training set. Then, for each partition, they cre-
ate a sub vocabulary Vp, and only predict and ap-
ply softmax over the vocabularies in Vp in training
procedure. When the training moves to the next
partition, they change the sub vocabulary set ac-
cordingly.

Noise-contrastive estimation (Gutmann and Hy-
varinen, 2010; Mnih and Teh, 2012; Mikolov et
al., 2013; Mnih and Kavukcuoglu, 2013) and hi-
erarchical classes (Mnih and Hinton, 2009) are in-
troduced to stochastically approximate the target
word probability. But, as suggested by Jean et al.
(2015), those methods are only designed to reduce
the computational complexity in training, not for
decoding.

5 Experiments

5.1 Data Preparation
We run our experiments on English to French (En-
Fr) task. The training corpus consists of approx-
imately 12 million sentences, which is identical
to the set of Jean et al. (2015) and Sutskever et
al. (2014). Our development set is the concatena-
tion of news-test-2012 and news-test-2013, which
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set V P
x

V D
x V P

x ∪ V D
x V P

x ∪ V D
x ∪ V T

x

10 20 50 10 20 50 10 20 50
train 73.6 82.1 87.8 93.5 86.6 89.4 93.7 92.7 94.2 96.2

development 73.5 80.0 85.5 91.0 86.6 88.4 91.7 91.7 92.7 94.3

Table 1: The average reference coverage ratios (in word-level) on the training and development sets. We
use fixed top 10 candidates for each phrase when generating V P

x , and top 2k most common words for
V T
x . Then we check various top n (10, 20, and 50) candidates for the word-to-word dictionary for V D

x .

has 6003 sentences in total. Our test set has 3003
sentences from WMT news-test 2014. We evalu-
ate the translation quality using the case-sensitive
BLEU-4 metric (Papineni et al., 2002) with the
multi-bleu.perl script.

Same as Jean et al. (2015), our full vocabu-
lary size is 500k, we use AdaDelta (Zeiler, 2012),
and mini-batch size is 80. Given the training set,
we first run the ‘fast align’ (Dyer et al., 2013) in
one direction, and use the translation table as our
word-to-word dictionary. Then we run the reverse
direction and apply ‘grow-diag-final-and’ heuris-
tics to get the alignment. The phrase table is ex-
tracted with a standard algorithm in Moses (Koehn
et al., 2007).

In the decoding procedure, our method is very
similar to the ‘candidate list’ of Jean et al. (2015),
except that we also use bilingual phrases and we
only include top 2k most frequent target words.
Following Jean et al. (2015), we dump the align-
ments for each sentence, and replace UNKs with
the word-to-word dictionary or the source word.

5.2 Results

5.2.1 Reference Reachability

The reference coverage or reachability ratio is very
important when we limit the target vocabulary for
each source sentence, since we do not have the ref-
erence in the decoding time, and we do not want
to narrow the search space into a bad space. Ta-
ble 1 shows the average reference coverage ratios
(in word-level) on the training and development
sets. For each source sentence x, V ∗x here is a
set of target word indexes (the vocabulary size is
500k, others are mapped to UNK). The average
reference vocabulary size V R

x for each sentence is
23.7 on the training set (22.6 on the dev. set). The
word-to-word dictionary V D

x has a better cover-
age than phrases V P

x , and when we combine the
three sets we can get better coverage ratios. Those
statistics suggest that we can not use each of them
alone due to the low reference coverage ratios.
The last three columns show three combinations,

system
train dev.

sentence mini-batch sentence
Jean (2015) 30k 30k 30k

Ours 2080 6153 2067

Table 2: Average vocabulary size for each sen-
tence or mini-batch (80 sentences). The full vo-
cabulary is 500k, all other words are UNKs.

all of which have higher than 90% coverage ratios.
As there are many combinations, training an NMT
system is time consuming, and we also want to
keep the output vocabulary size small (the setting
in the last column in Table 1 results in an average
11k vocabulary size for mini-batch 80), thus, in
the following part, we only run one combination
(top 10 candidates for both V P

x and V D
x , and top

2k for V T
x ), where the full sentence coverage ratio

is 20.7% on the development set.

5.2.2 Average Size of Vo

With the setting shown in bold column in Ta-
ble 1, we list average vocabulary size of Jean et al.
(2015) and ours in Table 2. Jean et al. (2015) fix
the vocabulary size to 30k for each sentence and
mini-batch, while our approach reduces the vocab-
ulary size to 2080 for each sentence, and 6153 for
each mini-batch. Especially in the decoding time,
our vocabulary size for each sentence is about 14.5
times smaller than 30k.

5.2.3 Translation Results
The red solid line in Figure 2 shows the learn-
ing curve of our method on the development set,
which picks at epoch 7 with a BLEU score of
30.72. We also fix word embeddings at epoch
5, and continue several more epochs. The corre-
sponding blue dashed line suggests that there is no
significant difference between them.

We also run two more experiments: V D
x ∪ V T

x

and V P
x ∪V T

x separately (always have V R
x in train-

ing). The final results on the test set are 34.20
and 34.23 separately. Those results suggest that
we should use both the translation dictionary and
phrases in order to get better translation quality.
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top n common words 50 200 500 1000 2000 10000
BLEU on dev. 30.61 30.65 30.70 30.70 30.72 30.69

avg. size of Vo = V P
x ∪ V D

x ∪ V T
x 202 324 605 1089 2067 10029

Table 3: Given a trained NMT model, we decode the development set with various top n most common
target words. For En-Fr task, the results suggest that we can reduce the n to 50 without losing much in
terms of BLEU score. The average size of Vo is reduced to as small as 202, which is significant lower
than 2067 (the default setting we use in our training).
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Figure 2: The learning curve on the development
set. An epoch means a complete update through
the full training set.

single system dev. test
Moses from Cho et al. (2014) N/A 33.30

Jean (2015)
candidate list 29.32 33.36

+UNK replace 29.98 34.11

Ours
voc. manipulation 30.15 34.45

+UNK replace 30.72 35.11
best from Durrani et al. (2014) N/A 37.03

Table 4: Single system results on En-Fr task.

Table 4 shows the single system results on En-
Fr task. The standard Moses in Cho et al. (2014)
on the test set is 33.3. Our target vocabulary ma-
nipulation achieves a BLEU score of 34.45 on the
test set, and 35.11 after the UNK replacement. Our
approach improves the translation quality by 1.0
BLEU point on the test set over the method of
Jean et al. (2015). But our single system is still
about 2 points behind of the best phrase-based sys-
tem (Durrani et al., 2014).

5.2.4 Decoding with Different Top n Most
Common Target Words

Another interesting question is what is the perfor-
mance if we vary the size top n most common
target words in V T

x . As the training for NMT is
time consuming, we vary the size n only in the de-
coding time. Table 3 shows the BLEU scores on
the development set. When we reduce the n from
2000 to 50, we only loss 0.1 points, and the av-

erage size of sentence level Vo is reduced to 202,
which is significant smaller than 2067 (shown in
Table 2). But we should notice that we train our
NMT model in the condition of the bold column in
Table 2, and only test different n in our decoding
procedure only. Thus there is a mismatch between
the training and testing when n is not 2000.

5.2.5 Speed

In terms of speed, as we have different code bases2

between Jean et al. (2015) and us, it is hard to con-
duct an apple to apple comparison. So, for sim-
plicity, we run another experiment with our code
base, and increase Vb size to 30k for each batch
(the same size in Jean et al. (2015)). Results show
that increasing the Vb to 30k slows down the train-
ing speed by 1.5 times.

6 Conclusion

In this paper, we address the large vocabulary is-
sue in neural machine translation by proposing to
use a sentence-level target vocabulary Vo, which
is much smaller than the full target vocabulary Vy.
The small size of Vo reduces the computing time of
the softmax function in each predict step, while the
large vocabulary of Vy enable us to model rich lan-
guage phenomena. The sentence-level vocabulary
Vo is generated with the traditional word-to-word
and phrase-to-phrase translation libraries. In this
way, we decrease the size of output vocabulary Vo

under 3k for each sentence, and we speedup and
improve the large-vocabulary NMT system.
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2Two code bases share the same architecture, initial states,
and hyper-parameters. We simulate Jean et al. (2015)’s work
with our code base in the both training and test procedures,
the final results of our simulation are 29.99 and 34.16 on dev.
and test sets respectively. Those scores are very close to Jean
et al. (2015).
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Abstract

In this paper, we propose the TBCNN-
pair model to recognize entailment and
contradiction between two sentences. In
our model, a tree-based convolutional neu-
ral network (TBCNN) captures sentence-
level semantics; then heuristic matching
layers like concatenation, element-wise
product/difference combine the informa-
tion in individual sentences. Experimen-
tal results show that our model outper-
forms existing sentence encoding-based
approaches by a large margin.

1 Introduction

Recognizing entailment and contradiction be-
tween two sentences (called a premise and a hy-
pothesis) is known as natural language inference
(NLI) in MacCartney (2009). Provided with a
premise sentence, the task is to judge whether the
hypothesis can be inferred (entailment), or the
hypothesis cannot be true (contradiction).
Several examples are illustrated in Table 1.

NLI is in the core of natural language under-
standing and has wide applications in NLP, e.g.,
question answering (Harabagiu and Hickl, 2006)
and automatic summarization (Lacatusu et al.,
2006; Yan et al., 2011a; Yan et al., 2011b). More-
over, NLI is also related to other tasks of sen-
tence pair modeling, including paraphrase detec-
tion (Hu et al., 2014), relation recognition of dis-
course units (Liu et al., 2016), etc.

Traditional approaches to NLI mainly fall into
two groups: feature-rich models and formal rea-
soning methods. Feature-based approaches typ-
ically leverage machine learning models, but re-
quire intensive human engineering to represent
lexical and syntactic information in two sentences

∗Equal contribution. †Corresponding authors.

Premise Two men on bicycles competing in a race.
People are riding bikes. E

Hypothesis Men are riding bicycles on the streets. C
A few people are catching fish. N

Table 1: Examples of relations between a premise
and a hypothesis: Entailment, Contradiction, and
Neutral (irrelevant).

(MacCartney et al., 2006; Harabagiu et al., 2006).
Formal reasoning, on the other hand, converts a
sentence into a formal logical representation and
uses interpreters to search for a proof. However,
such approaches are limited in terms of scope and
accuracy (Bos and Markert, 2005).

The renewed prosperity of neural networks has
made significant achievements in various NLP ap-
plications, including individual sentence modeling
(Kalchbrenner et al., 2014; Mou et al., 2015) as
well as sentence matching (Hu et al., 2014; Yin
and Schütze, 2015). A typical neural architecture
to model sentence pairs is the “Siamese” structure
(Bromley et al., 1993), which involves an underly-
ing sentence model and a matching layer to de-
termine the relationship between two sentences.
Prevailing sentence models include convolutional
networks (Kalchbrenner et al., 2014) and recur-
rent/recursive networks (Socher et al., 2011b). Al-
though they have achieved high performance, they
may either fail to fully make use of the syntacti-
cal information in sentences or be difficult to train
due to the long propagation path. Recently, we
propose a novel tree-based convolutional neural
network (TBCNN) to alleviate the aforementioned
problems and have achieved higher performance
in two sentence classification tasks (Mou et al.,
2015). However, it is less clear whether TBCNN
can be harnessed to model sentence pairs for im-
plicit logical inference, as is in the NLI task.

In this paper, we propose the TBCNN-pair
neural model to recognize entailment and con-
tradiction between two sentences. We lever-
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age our newly proposed TBCNN model to cap-
ture structural information in sentences, which
is important to NLI. For example, the phrase
“riding bicycles on the streets” in Table 1 can
be well recognized by TBCNN via the depen-
dency relations dobj(riding,bicycles)
and prep on(riding,street). As we can
see, TBCNN is more robust than sequential con-
volution in terms of word order distortion, which
may be introduced by determinators, modifiers,
etc. A pooling layer then aggregates information
along the tree, serving as a way of semantic com-
positonality. Finally, two sentences’ information
is combined by several heuristic matching lay-
ers, including concatenation, element-wise prod-
uct and difference; they are effective in capturing
relationships between two sentences, but remain
low complexity.

To sum up, the main contributions of this pa-
per are two-fold: (1) We are the first to introduce
tree-based convolution to sentence pair modeling
tasks like NLI; (2) Leveraging additional heuris-
tics further improves the accuracy while remaining
low complexity, outperforming existing sentence
encoding-based approaches to a large extent, in-
cluding feature-rich methods and long short term
memory (LSTM)-based recurrent networks.1

2 Related Work
Entailment recognition can be viewed as a task of
sentence pair modeling. Most neural networks in
this field involve a sentence-level model, followed
by one or a few matching layers. They are some-
times called “Siamese” architectures (Bromley et
al., 1993).

Hu et al. (2014) and Yin and Schütze (2015) ap-
ply convolutional neural networks (CNNs) as the
individual sentence model, where a set of feature
detectors over successive words are designed to
extract local features. Wan et al. (2015) build sen-
tence pair models upon recurrent neural networks
(RNNs) to iteratively integrate information along
a sentence. Socher et al. (2011a) dynamically con-
struct tree structures (analogous to parse trees) by
recursive autoencoders to detect paraphrase be-
tween two sentences. As shown, inherent struc-
tural information in sentences is oftentimes impor-
tant to natural language understanding.

The simplest approach to match two sentences,
1Code is released on:

https://sites.google.com/site/tbcnninference/

perhaps, is to concatenate their vector representa-
tions (Zhang et al., 2015; Hu et al., 2014, Arc-I).
Concatenation is also applied in our previous work
of matching the subject and object in relation clas-
sification (Xu et al., 2015; Xu et al., 2016). He
et al. (2015) apply additional heuristics, namely
Euclidean distance, cosine measure, and element-
wise absolute difference. The above methods op-
erate on a fixed-size vector representation of a sen-
tence, categorized as sentence encoding-based ap-
proaches. Thus the matching complexity is O(1),
i.e., independent of the sentence length. Word-by-
word similarity matrices are introduced to enhance
interaction. To obtain the similarity matrix, Hu et
al. (2014) (Arc-II) concatenate two words’ vectors
(after convolution), Socher et al. (2011a) compute
Euclidean distance, and Wan et al. (2015) apply
tensor product. In this way, the complexity is of
O(n2), where n is the length of a sentence; hence
similarity matrices are difficult to scale and less
efficient for large datasets.

Recently, Rocktäschel et al. (2016) intro-
duce several context-aware methods for sentence
matching. They report that RNNs over a single
chain of two sentences are more informative than
separate RNNs; a static attention over the first sen-
tence is also useful when modeling the second one.
Such context-awareness interweaves the sentence
modeling and matching steps. In some scenarios
like sentence pair re-ranking (Yan et al., 2016), it
is not feasible to pre-calculate the vector represen-
tations of sentences, so the matching complexity is
ofO(n). Rocktäschel et al. (2016) further develop
a word-by-word attention mechanism and obtain a
higher accuracy with a complexity order ofO(n2).

3 Our Approach
We follow the “Siamese” architecture (like most
work in Section 2) and adopt a two-step strategy to
classify the relation between two sentences. Con-
cretely, our model comprises two parts:
• A tree-based convolutional neural network

models each individual sentence (Figure 1a).
Notice that, the two sentences, premise and hy-
pothesis, share a same TBCNN model (with
same parameters), because this part aims to
capture general semantics of sentences.
• A matching layer combines two sentences’ in-

formation by heuristics (Figure 1b). After in-
dividual sentence models, we design a sen-
tence matching layer to aggregate information.
We use simple heuristics, including concate-
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Figure 1: TBCNN-pair model. (a) Individ-
ual sentence modeling via tree-based convolution.
(b) Sentence pair modeling with heuristics, after
which a softmax layer is applied for output.

nation, element-wise product and difference,
which are effective and efficient.

Finally, we add a softmax layer for output.
The training objective is cross-entropy loss, and
we adopt mini-batch stochastic gradient descent,
computed by back-propagation.

3.1 Tree-Based Convolution
The tree-based convolutoinal neural network
(TBCNN) is first proposed in our previous work
(Mou et al., 2016)2 to classify program source
code; later, we further propose TBCNN variants
to model sentences (Mou et al., 2015). This sub-
section details the tree-based convolution process.

The basic idea of TBCNN is to design a set of
subtree feature detectors sliding over the parse tree
of a sentence; either a constituency tree or a depen-
dency tree applies. In this paper, we prefer the de-
pendency tree-based convolution for its efficiency
and compact expressiveness.

Concretely, a sentence is first converted to a
dependency parse tree.3 Each node in the de-
pendency tree corresponds to a word in the sen-
tence; an edge a→b indicates a is governed by b.
Edges are labeled with grammatical relations (e.g.,
nsubj) between the parent node and its children
(de Marneffe et al., 2006). Words are represented
by pretrained vector representations, also known
as word embeddings (Mikolov et al., 2013a).

2Preprinted on arXiv on September 2014
(http://arxiv.org/abs/1409.5718v1)

3Parsed by the Stanford parser
(http://nlp.stanford.edu/software/lex-parser.shtml)

Now, we consider a set of two-layer subtree fea-
ture detectors sliding over the dependency tree. At
a position where the parent node is p with child
nodes c1, · · · , cn, the output of the feature detec-
tor, y, is

y = f

(
Wpp+

n∑
i=1

Wr[ci]ci + b

)
Let us assume word embeddings (p and ci) are

of ne dimensions; that the convolutional layer y is
nc-dimensional. W ∈ Rnc×ne is the weight ma-
trix; b ∈ Rnc is the bias vector. r[ci] denotes the
dependency relation between p and ci. f is the
non-linear activation function, and we apply ReLU
in our experiments.

After tree-based convolution, we obtain a set of
feature maps, which are one-one corresponding to
original words in the sentence. Therefore, they
may vary in size and length. A dynamic pooling
layer is applied to aggregate information along dif-
ferent parts of the tree, serving as a way of seman-
tic compositionality (Hu et al., 2014). We use the
max pooling operation, which takes the maximum
value in each dimension.

Then we add a fully-connected hidden layer to
further mix the information in a sentence. The ob-
tained vector representation of a sentence is de-
noted as h (also called a sentence embedding).
Notice that the same tree-based convolution ap-
plies to both the premise and hypothesis.

Tree-based convolution along with pooling en-
ables structural features to reach the output layer
with short propagation paths, as opposed to the
recursive network (Socher et al., 2011b), which
is also structure-sensitive but may suffer from the
problem of long propagation path. By contrast,
TBCNN is effective and efficient in learning such
structural information (Mou et al., 2015).

3.2 Matching Heuristics
In this part, we introduce how vector represen-
tations of individual sentences are combined to
capture the relation between the premise and hy-
pothesis. As the dataset is large, we prefer O(1)
matching operations because of efficiency con-
cerns. Concretely, we have three matching heuris-
tics:
• Concatenation of the two sentence vectors,
• Element-wise product, and
• Element-wise difference.

The first heuristic follows the most standard pro-
cedure of the “Siamese” architectures, while the
latter two are certain measures of “similarity” or
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“closeness.” These matching layers are further
concatenated (Figure 1b), given by

m = [h1;h2;h1 − h2;h1 ◦ h2]

where h1 ∈ Rnc and h2 ∈ Rnc are the sentence
vectors of the premise and hypothesis, respec-
tively; “◦” denotes element-wise product; semi-
colons refer to column vector concatenation. m ∈
R4nc is the output of the matching layer.

We would like to point out that, with subse-
quent linear transformation, element-wise differ-
ence is a special case of concatenation. If we
assume the subsequent transformation takes the
form of W [h1 h2]>, where W = [W1 W2] is
the weights for concatenated sentence representa-
tions, then element-wise difference can be viewed
as such that W0(h1−h2) = [W0 −W0][h1 h2]>.
(W0 is the weights corresponding to element-wise
difference.) Thus, our third heuristic can be ab-
sorbed into the first one in terms of model ca-
pacity. However, as will be shown in the exper-
iment, explicitly specifying this heuristic signifi-
cantly improves the performance, indicating that
optimization differs, despite the same model ca-
pacity. Moreover, word embedding studies show
that linear offset of vectors can capture relation-
ships between two words (Mikolov et al., 2013b),
but it has not been exploited in sentence-pair rela-
tion recognition. Although element-wise distance
is used to detect paraphrase in He et al. (2015),
it mainly reflects “similarity” information. Our
study verifies that vector offset is useful in cap-
turing generic sentence relationships, akin to the
word analogy task.

4 Evaluation
4.1 Dataset
To evaluate our TBCNN-pair model, we used the
newly published Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015).4

The dataset is constructed by crowdsourced ef-
forts, each sentence written by humans. More-
over, the SNLI dataset is magnitudes of larger
than previous resources, and hence is particularly
suitable for comparing neural models. The tar-
get labels comprise three classes: Entailment,
Contradiction, and Neutral (two irrel-
evant sentences). We applied the standard
train/validation/test split, contraining 550k, 10k,
and 10k samples, respectively. Figure 2 presents

4http://nlp.stanford.edu/projects/snli/

Statistics Mean Std
# nodes 8.59 4.14

Max depth 3.93 1.13
Avg leaf depth 3.13 0.65
Avg node depth 2.60 0.54

Table 2: Statistics of the Stanford Natural Lan-
guage Inference dataset where each sentence is
parsed into a dependency parse tree.

0 0.1 0.2 0.3
Dropout rate

76

78

80

82

84

Va
lid

at
io

n 
ac

c.
 (%

)

Figure 2: Validation accuracy versus dropout rate
(full TBCNN-pair model).

additional dataset statistics, especially those rele-
vant to dependency parse trees.5

4.2 Hyperparameter Settings

All our neural layers, including embeddings, were
set to 300 dimensions. The model is mostly robust
when the dimension is large, e.g., several hundred
(Collobert and Weston, 2008). Word embeddings
were pretrained ourselves by word2vec on the
English Wikipedia corpus and fined tuned during
training as a part of model parameters. We applied
`2 penalty of 3×10−4; dropout was chosen by val-
idation with a granularity of 0.1 (Figure 2). We see
that a large dropout rate (≥ 0.3) hurts the perfor-
mance (and also makes training slow) for such a
large dataset as opposed to small datasets in other
tasks (Peng et al., 2015). Initial learning rate was
set to 1, and a power decay was applied. We used
stochastic gradient descent with a batch size of 50.

4.3 Performance

Table 3 compares our model with previous re-
sults. As seen, the TBCNN sentence pair
model, followed by simple concatenation alone,
outperforms existing sentence encoding-based
approaches (without pretraining), including a
feature-rich method using 6 groups of human-
engineered features, long short term memory

5We applied collapsed dependency trees, where preposi-
tions and conjunctions are annotated on the dependency rela-
tions, but these auxiliary words themselves are removed.
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Model Test acc. Matching
(%) complexity

Unlexicalized featuresb 50.4

O(1)

Lexicalized featuresb 78.2
Vector sum + MLPb 75.3
Vanilla RNN + MLPb 72.2
LSTM RNN + MLPb 77.6
CNN + cat 77.0
GRU w/ skip-thought pretrainingv 81.4
TBCNN-pair + cat 79.3
TBCNN-pair + cat,◦,- 82.1
Single-chain LSTM RNNsr 81.4 O(n)
+ static attentionr 82.4

LSTM + word-by-word attentionr 83.5 O(n2)

Table 3: Accuracy of the TBCNN-pair model in
comparison with previous results (bBowman et al.,
2015; vVendrov et al., 2015; rRocktäschel et al.,
2015). “cat” refers to concatenation; “-” and “◦”
denote element-wise difference and product, resp.

Model Variant Valid Acc. Test Acc.
TBCNN+◦ 73.8 72.5
TBCNN+- 79.9 79.3
TBCNN+cat 80.8 79.3
TBCNN+cat,◦ 81.6 80.7
TBCNN+cat,- 81.7 81.6
TBCNN+cat,◦,- 82.4 82.1

Table 4: Validation and test accuracies of
TBCNN-pair variants (in percentage).

(LSTM)-based RNNs, and traditional CNNs. This
verifies the rationale for using tree-based convolu-
tion as the sentence-level neural model for NLI.

Table 4 compares different heuristics of match-
ing. We first analyze each heuristic separately:
using element-wise product alone is significantly
worse than concatenation or element-wise differ-
ence; the latter two are comparable to each other.

Combining different matching heuristics im-
proves the result: the TBCNN-pair model with
concatenation, element-wise product and differ-
ence yields the highest performance of 82.1%. As
analyzed in Section 3.2, the element-wise differ-
ence matching layer does not add to model com-
plexity and can be absorbed as a special case into
simple concatenation. However, explicitly using
such heuristic yields an accuracy boost of 1–2%.
Further applying element-wise product improves
the accuracy by another 0.5%.

The full TBCNN-pair model outperforms all
existing sentence encoding-based approaches, in-

cluding a 1024d gated recurrent unit (GRU)-based
RNN with “skip-thought” pretraining (Vendrov et
al., 2015). The results obtained by our model
are also comparable to several attention-based
LSTMs, which are more computationally inten-
sive than ours in terms of complexity order.

4.4 Complexity Concerns
For most sentence models including TBCNN, the
overall complexity is at least O(n). However, an
efficient matching approach is still important, es-
pecially to retrieval-and-reranking systems (Yan
et al., 2016; Li et al., 2016). For example, in
a retrieval-based question-answering or conversa-
tion system, we can largely reduce response time
by performing sentence matching based on pre-
computed candidates’ embeddings. By contrast,
context-aware matching approaches as described
in Section 2 involve processing each candidate
given a new user-issued query, which is time-
consuming in terms of most industrial products.

In our experiments, the matching part (Fig-
ure 1b) counts 1.71% of the total time during pre-
diction (single-CPU, C++ implementation), show-
ing the potential applications of our approach
in efficient retrieval of semantically related sen-
tences.

5 Conclusion

In this paper, we proposed the TBCNN-pair model
for natural language inference. Our model re-
lies on the tree-based convolutional neural net-
work (TBCNN) to capture sentence-level seman-
tics; then two sentences’ information is com-
bined by several heuristics including concatena-
tion, element-wise product and difference. Ex-
perimental results on a large dataset show a high
performance of our TBCNN-pair model while re-
maining a low complexity order.
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discussion. This research was supported by the
National Basic Research Program of China (the
973 Program) under Grant No. 2015CB352201
and the National Natural Science Foundation of
China under Grant Nos. 61232015, 61421091, and
61502014.

134



References
Johan Bos and Katja Markert. 2005. Combining shal-

low and deep NLP methods for recognizing textual
entailment. In Proceedings of the First PASCAL
Challenges Workshop on Recognising Textual En-
tailment, pages 65–68.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642.

Jane Bromley, James W Bentz, Léon Bottou, Is-
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Abstract

In this paper we improve over the hierarch-
ical Pitman-Yor processes language model
in a cross-domain setting by adding skip-
grams as features. We find that adding
skipgram features reduces the perplexity.
This reduction is substantial when models
are trained on a generic corpus and tested
on domain-specific corpora. We also
find that within-domain testing and cross-
domain testing require different backoff
strategies. We observe a 30-40% reduction
in perplexity in a cross-domain language
modelling task, and up to 6% reduction
in a within-domain experiment, for both
English and Flemish-Dutch.

1 Introduction

Since the seminal paper on hierarchical Bayesian
language models based on Pitman-Yor processes
(Teh, 2006), Bayesian language modelling has re-
gained an interest. Although Bayesian language
models are not new (MacKay and Peto, 1995),
previously proposed models were reported to be
inferior compared to other smoothing methods.
Teh’s work was the first to report on improve-
ments over interpolated Kneser-Ney smoothing
(Teh, 2006).

To overcome the traditional problems of over-
estimating the probabilities of rare occurrences
and underestimating the probabilities of unseen
events, a range of smoothing algorithms have
been proposed in the literature (Goodman, 2001).
Most methods take a heuristic-frequentist ap-
proach combining n-gram probabilities for vari-
ous values of n, using back-off schemes or inter-
polation.

Teh (2006) showed that MacKay and Peto’s
(1995) research on parametric Bayesian language
models with a Dirichlet prior could be extended
to give better results, but also that one of the
best smoothing methods, interpolated Kneser-Ney
(Kneser and Ney, 1995), can be derived as an ap-
proximation of the Hierarchical Pitman-Yor pro-
cess language model (HPYLM).

The success of the Bayesian approach to lan-
guage modelling is due to the use of statistical dis-
tributions such as the Dirichlet distribution, and
distributions over distributions, such as the Dirich-
let process and its two-parameter generalisation,
the Pitman-Yor process. Both are widely stud-
ied in the statistics and probability theory com-
munities. Interestingly, language modelling has
acquired the status of a “fruit fly” problem in these
communities, to benchmark the performance of
statistical models. In this paper we approach lan-
guage modelling from a computational linguistics
point of view, and consider the statistical methods
to be the tool with the future goal of improving
language models for extrinsic tasks such as speech
recognition.

We derive our model from Teh (2006), and pro-
pose an extension with skipgrams. A frequentist
approach to language modelling with skipgrams is
described by Pickhardt et al. (2014), who intro-
duce an approach using skip-n-grams which are
interpolated using modified Kneser-Ney smooth-
ing. In this paper we show that a Bayesian skip-n-
gram approach outperforms a frequentist skip-n-
gram model.

2 Method

Traditionally, the most widely used pattern in lan-
guage modelling is the n-gram, which represents
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a pattern of n contiguous words, of which we call
the first (n − 1) words the history or context, and
the nth word the focus word. The motivation for
using n-grams can be traced back to the distribu-
tional hypothesis of Harris (Harris, 1954; Sahl-
gren, 2008). Although n-grams are small patterns
without any explicit linguistic annotation, they are
surprisingly effective in many tasks, such as lan-
guage modelling in machine translation, automatic
speech recognition, and information retrieval.

One of the main limitations of n-grams is
their contiguity, because this limits the express-
ive power to relations between neighboring words.
Many patterns in language span a range that is
longer than the typical length of n; we call these
relations long-distance relations. Other patterns
may be within the range of n, but are still non-
contiguous; they skip over positions. Both types
of relations may be modelled with (syntactic)
dependencies, and modelling these explicitly re-
quires a method to derive a parser, e.g. a depend-
ency parser, from linguistically annotated data.

To be able to model long-distance and other
non-contiguous relations between words without
resorting to explicitly computing syntactic de-
pendencies, we use skipgrams. Skipgrams are
a generalisation of n-grams. They consist of n
tokens, but now each token may represent a skip
of at least one word, where a skip can match any
word. Let {m} be a skip of lengthm, then the {1}
house can match “the big house”, or “the yellow
house”, etc. We do not allow skips to be at the
beginning or end of the skipgram, so for n > 2
skipgrams are a generalisation of n-grams (Good-
man, 2001; Shazeer et al., 2015; Pickhardt et al.,
2014).

Pitman-Yor Processes (PYP) belong to the fam-
ily of non-parametric Bayesian models. Let W be
a fixed and finite vocabulary of V words. For each
wordw ∈W letG(w) be the probability ofw, and
G = [G(w)]w∈W be the vector of word probabil-
ities. Since word frequencies generally follow a
power-law distribution, we use a Pitman-Yor pro-
cess, which is a distribution over partitions with
power-law distributions. In the context of a lan-
guage model this means that for a space P (u),
with c(u·) elements (tokens), we want to parti-
tion P (u) in V subsets such that the partition is
a good approximation of the underlying data, in
which c(uw) is the size of subset w of P (u). We
assume that the training data is an sample of the

underlying data, and for this reason we seek to find
an approximation, rather than using the partitions
precisely as found in the training data.

Since we also assume that a power-law distribu-
tion on the words in the underlying data, we place
a PYP prior on G:

G ∼ PY(d, θ,G0),

with discount parameter 0 ≤ d < 1, a strength
parameter θ > −d and a mean vector G0 =
[G0(w)]w∈W . G0(w) is the a-priori probability of
word w, which we set uniformly: G0(w) = 1/V
for all w ∈ W . In general, there is no known ana-
lytic form for the density of PY(d, θ,G0) when
the vocabulary is finite. However, we are inter-
ested in the distribution over word sequences in-
duced by the PYP, which has a tractable form, and
is sufficient for the purpose of language modelling.

Let G and G0 be distributions over W , and
x1, x2, . . . be a sequence of words drawn i.i.d.
from G. The PYP is then described in terms of a
generative procedure that takes x1, x2, . . . to pro-
duce a separate sequence of i.i.d. draws y1, y2, . . .
from the mean distributionG0 as follows. The first
word x1 is assigned the value of the first draw y1

from G0. Let t be the current number of draws
from G0, ck the number of words assigned the
value of draw yk and c· =

∑t
k=1 ck the number of

draws from G0. For each subsequent word xc·+1,
we either assign it the value of a previous draw yk,
with probability ck−d

θ+c· , or assign it the value of a
new draw from G0 with probability θ+dt

θ+c· .
For an n-gram language model we use a hier-

archical extension of the PYP. The hierarchical
extension describes the probabilities over the cur-
rent word given various contexts consisting of up
to n − 1 words. Given a context u, let Gu(w)
be the probability of the current word taking on
value w. A PYP is used as the prior for Gu =
[Gu(w)]w∈W :

Gu ∼ PY(d|u|, θ|u|, Gπ(u)),

where π(u) is the suffix of u consisting of all
but the first word, and |u| being the length of u.
The priors are recursively placed with parameters
θ|π(u)|, d|π(u)| and mean vector Gπ(π(u)), until we
get to G∅:

G∅ ∼ PY(d0, θ0, G0),

with G0 being the uniformly distributed global
mean vector for the empty context ∅.
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3 Backoff Strategies

In this paper we investigate three backoff
strategies: ngram, limited, and full. ngram is the
traditional n-gram backoff method as described by
Teh (2006); limited and full are extensions that
also incorporate skipgram probabilities. The full
backoff strategy is similar to ngram in that it al-
ways backs off recursively to the word probabilit-
ies, while limited halts as soon as a probability is
known for a pattern. The backoff strategies can be
formalised as follows. For all strategies, we have
that p(w|u) = G0(w) if u = ∅. For ngram, the
other case is defined as:

p(w|u) =
cuw· − d|u|tuw·
θ|u| + cu··

+
θ|u| + d|u|tu··
θ|u| + cu··

p(w|π(u))

with cuw· being the number of uw tokens, and
cu·· the number of patterns starting with context
u. Similarly, tuwk is 1 if draw the kth from Gu

was w, 0 otherwise. tuw· then denotes if there is a
pattern uw, and tu·· is the number of types follow-
ing context u.

Now let σn be the operator that adds a skip
to a pattern u on the nth position if there is not
already a skip. Then σ(u) = [σn(u)]|u|n=2 is the
set of patterns with one skip more than the num-
ber of skips currently in u. The number of gen-
erated patterns is ς = |σ(u)|. We also introduce
the indicator function S, which for the full backoff
strategy always returns its argument: Suw(y) = y.
The full backoff strategy is defined as follows, with
ux = σx(u), and discount frequency δu = 1:

p(w|u) =
ς∑

m=1

{
1

ς + 1

[
cumw· − δumd|um|tumw·

δumθ|um| + cum··
+

Sumw

(
θ|um| + d|um|tum··
δumθ|um| + cum··

p(w|π(um))
)]}

+
1

ς + 1

[
cuw· − δud|u|tuw·
δuθ|u| + cu··

+

Suw

(
θ|u| + d|u|tu··
δuθ|u| + cu··

p(w|π(u))
)]

The limited backoff strategy is an extension of
the full backoff strategy that stops the recursion if
a test pattern uw has already occurred in the train-
ing data. This means that the count is not zero,

and hence at training time a probability has been
assigned to that pattern. S is the indicator function
which tells if a pattern has been seen during train-
ing: Suw(·) = 0 if count(uw) > 0, 1 otherwise;
and δu = V −∑w∈W Suw(·). Setting Suw(·) = 0
stops the recursion.

4 Data

In this section we give an overview of the data sets
we use for the English and Flemish-Dutch experi-
ments.

4.1 English Data

For the experiments on English we use four cor-
pora: two large generic mixed-domain corpora
and two smaller domain-specific corpora. We train
on the largest of the two mixed-domain corpora,
and test on all four corpora.

The first generic corpus is the Google 1 billion
words shuffled web corpus of 769 million tokens
(Chelba et al., 2013). For training we use sets 1
through 100, out of the 101 available training sets;
for testing we use all available 50 test sets (8M
tokens). The second generic corpus, used as test
data, is a Wikipedia snapshot (368M tokens) of
November 2013 as used and provided by Pickhardt
et al. (2014). The first domain-specific corpus is
from JRC-Acquis v3.0 (Steinberger et al., 2006),
which contains legislative text of the European
Union (8M tokens). The second domain-specific
corpus consists of documents from the European
Medicines Agency, EMEA (Tiedemann, 2009).
We shuffled all sentences, and selected 20% of
them as the test set (3M tokens).

Since the HPYLM uses a substantial amount of
memory, even with histogram-based sampling, we
cannot model the complete 1bw data set without
thresholding the patterns in the model. We used
a high occurrence threshold of 100 on the uni-
grams, yielding 99,553 types that occur above this
threshold. We use all n-grams and skipgrams that
occurred at least twice, consisting of the included
unigrams as focus words, with UNKs occupying
the positions of words not in the vocabulary. Note
that because these settings are different from mod-
els competing on this benchmark, the results in
this paper cannot be compared to those results.

4.2 Flemish-Dutch Data

For the experiments on Flemish-Dutch data, we
use the Mediargus corpus as training material. It
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contains 5 years of newspaper texts from 12 Flem-
ish newspapers and magazines, totaling 1.3 billion
words.

For testing we use the Flemish part of the
Spoken Dutch Corpus (CGN) (Oostdijk, 2000)
(3.2M words), divided over 15 components, ran-
ging from spontaneous speech to books read
aloud. CGN also contains two components which
are news articles and news, which from a domain
perspective are similar to the training data of Me-
diargus. We report on each component separately.

Similarly to the 1bw models, we used a thres-
hold on the word types, such that we have a sim-
ilar size of vocabulary (100k types), which we pro-
duced with a threshold of 250. We used the same
occurrence threshold of 2 on the n- and skipgrams.

5 Experimental Setup

We train 4-gram language model on the two train-
ing corpora, the Google 1 billion word benchmark
and the Mediargus corpus. We do not perform
any preprocessing on the data except tokenisation.
The models are trained with a HPYLM. We do not
use sentence beginning and end markers. The res-
ults for the ngram backoff strategy are obtained
by training without skipgrams; for limited and full
we added skipgram features during training.

At the core of our experimental framework we
use cpyp,1 which is an existing library for non-
parametric Bayesian modelling with PY priors
with histogram-based sampling (Blunsom et al.,
2009). This library has an example application to
showcase its performance with n-gram based lan-
guage modelling. Limitations of the library, such
as not natively supporting skipgrams, and the lack
of other functionality such as thresholding and dis-
carding of certain patterns, led us to extend the lib-
rary with Colibri Core,2 a pattern modelling lib-
rary. Colibri Core resolves the limitations, and to-
gether the libraries are a complete language model
that handles skipgrams: cococpyp.3

Each model is run for 50 iterations (without
an explicit burn-in phase), with hyperparameters
θ = 1.0 and γ = 0.8. The hyperparameters are
resampled every 30 iterations with slice sampling
(Walker, 2007). We test each model on different
test sets, and we collect their intrinsic perform-
ance by means of perplexity. Words in the test set

1https://github.com/redpony/cpyp
2http://proycon.github.io/

colibri-core/
3https://github.com/naiaden/cococpyp

Test ngram limited ↓% full ↓%
1bw 171 141 6 199 -16
jrc 1232 994 19 728 41
emea 1749 1304 25 1069 39
wp 724 635 12 542 25

Table 1: Results of the full and limited back-
off systems, trained on 1bw, tested on 1bw (in-
domain), and cross-domain sets jrc, emea, and wp.
↓% is the relative reduction in perplexity for the
column to its left.

Comp. ngram limited ↓% full ↓%
a 1280 1116 13 828 35
b 847 785 7 639 24
c 1501 1272 15 946 37
d 1535 1306 15 975 36
f 708 647 9 572 19
g 479 445 7 440 8
h 1016 916 10 718 29
i 1075 990 8 783 27
j 469 434 7 442 6
k 284 253 11 333 -17
l 726 639 12 629 13
m 578 538 7 512 11
n 895 794 11 664 26
o 1017 887 13 833 18

Table 2: Results of the full and limited backoff
systems, trained on Mediargus, tested on CGN.
Components range from spontaneous (a) to non-
spontaneous (o), with components j (news reports)
and k (news) being in-domain for the training
corpus, and the other components being out-of-
domain. ↓% is the relative reduction in perplexity
for the column to its left.

that were unseen in the training data are ignored in
computing the perplexity on test data.

6 Results

The results are reported in terms of perplexity, in
Table 1 for English, and in Table 2 for Flemish-
Dutch. We computed baseline perplexity scores
with SRILM (Stolcke, 2002) for 1bw. We used
an interpolated modified Kneser-Ney language
model, with Good-Turing discounting to mimic
our thresholding options. Although the models
are not comparable, this is arguably the closest ap-
proximation in SRILM of our HPYLM. For 1bw
the baseline is 147; for jrc, emea, and wp, 1391,
1430, and 1403 respectively. In some cases the
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baseline is better compared to the ngram back-
off strategy. With adding skipgrams we always
outperform the baseline, especially on the out-of-
domain test sets.

We find that with large data sets adding skip-
grams lowers the perplexity, for both languages, in
both within- and cross-domain experiments. For
English, we observe absolute perplexity reduc-
tions up to 680 (a relative reduction of 39%) in
a cross-domain setting, and absolute perplexity
reductions of 10 (relative reduction of 6%) in a
within-domain setting. For Flemish-Dutch we ob-
serve similar results with absolute reductions up
to 560 (relative reduction of 36%) and 31 (relative
reduction 11%), respectively.

If we consider the three backoff strategies in-
dividually, we can see the following effects on
both English and Flemish-Dutch data. In a within-
domain experiment limited backoff is the best
strategy. In a cross-domain setting, the full back-
off strategy yields the lowest perplexity and largest
perplexity reductions. In the first case, stopping
the backoff when there is a pattern probability
for the word and its context yields a more certain
probability than when the probability is diffused
by more uncertain backoff probabilities.

Upon inspection of the model sizes, we observe
that the skipgram model contains almost five times
as many parameters as the n-gram model. This
difference is explained by the addition of skip-
grams of length 3 and 4, and the bigrams and
unigrams derived from these skipgrams. Each 4-
gram can be deconstructed into three skipgrams
of length 4, and one of these skipgrams yields a
skipgram of length 3. Tests with ngram backoff
on skipgram models show that the performance is
worse compared to ngram backoff in pure n-gram
models because of the extra bigrams and unigrams
(ngram ignores the skipgrams). Yet, the exper-
imental results also indicate that with sufficient
data, skipgram models outperform n-gram mod-
els. Because the difference in parameters is only
noticeable in terms of memory, and it hardly im-
pacts the run-time, this makes the skipgram model
the favourable model.

7 Conclusions

In this paper we showed that by adding skipgrams,
a straightforward but powerful generalisation of n-
gram word patterns, we can reduce the perplex-
ity of a Bayesian language model, especially in a

cross-domain language modelling task. By chan-
ging the backoff strategy we can also improve on
a within-domain task. We found this effect in two
languages.
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Abstract

We release the Simple Paraphrase
Database, a subset of of the Paraphrase
Database (PPDB) adapted for the task
of text simplification. We train a super-
vised model to associate simplification
scores with each phrase pair, producing
rankings competitive with state-of-the-
art lexical simplification models. Our
new simplification database contains
4.5 million paraphrase rules, making it
the largest available resource for lexical
simplification.

1 Motivation

Language is complex, and the process of reading
and understanding language is difficult for many
groups of people. The goal of text simplification
is to rewrite text in order to make it easier to un-
derstand, for example, by children (De Belder and
Moens, 2010), language learners (Petersen and
Ostendorf, 2007), people with disabilities (Rello
et al., 2013; Evans et al., 2014), and even by
machines (Siddharthan et al., 2004). Automatic
text simplification (Napoles and Dredze, 2010;
Wubben et al., 2012; Xu et al., 2016) has the po-
tential to dramatically increase access to informa-
tion by making written documents available at all
reading levels.

Full text simplification involves many steps,
including grammatical restructuring and summa-
rization (Feng, 2008). One of the most basic
subtasks is lexical simplification (Specia et al.,
2012)– replacing complicated words and phrases
with simpler paraphrases. While there is active re-
search in the area of lexical simplification (Coster
and Kauchak, 2011a; Glavaš and Štajner, 2015;
Paetzold, 2015), existing models have been by-
and-large limited to single words. Often, how-

medical practitioner → doctor
legislative texts → laws
hypertension → high blood pressure
prevalent → very common
significant quantity → a lot
impact negatively → be bad

Table 1: In lexical simplification, it is often necessary to re-
place single words with phrases or phrases with single words.
The above are examples of such lexical simplifications cap-
tured by the Simple PPDB resource.

ever, it is preferable, or even necessary to para-
phrase a single complex word with multiple sim-
pler words, or to paraphrase multiple words with a
single word. For example, it is difficult to imagine
a simple, single-word paraphrase of hypertension,
but the three-word phrase high blood pressure is a
very good simplification (Table 1). Such phrasal
simplifications are overlooked by current lexical
simplification models, and thus are often unavail-
able to the end-to-end text simplification systems
that require them.

Recent research in data-driven paraphrasing has
produced enormous resources containing millions
of meaning-equivalent phrases (Ganitkevitch et
al., 2013). Such resources capture a wide range of
language variation, including the types of lexical
and phrasal simplifications just described. In this
work, we apply state-of-the-art machine learned
models for lexical simplification in order to iden-
tify phrase pairs from the Paraphrase Database
(PPDB) applicable to the task of text simplifica-
tion. We introduce Simple PPDB,1 a subset of the
Paraphrase Database containing 4.5 million sim-
plifying paraphrase rules. The large scale of Sim-
ple PPDB will support research into increasingly
advanced methods for text simplification.

1http://www.seas.upenn.edu/˜nlp/
resources/simple-ppdb.tgz
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2 Identifying Simplification Rules

2.1 Paraphrase Rules
The Paraphrase Database (PPDB) is currently
the largest available collection of paraphrases.
Each paraphrase rule in the database has an
automatically-assigned quality score between 1
and 5 (Pavlick et al., 2015). In this work, we use
the PPDB-TLDR2 dataset, which contains 14 mil-
lion high-scoring lexical and phrasal paraphrases,
and is intended to give a generally good tradeoff
between precision and recall. To preprocess the
data, we lemmatize all of the phrases, and remove
rules which differ only by morphology, punctu-
ation, or stop words, or which involve phrases
longer than 3 words. The resulting list contains
7.5 million paraphrase rules covering 625K unique
lemmatized words and phrases.

2.2 Lexical Simplification Model
Our goal is to build a model which can accurately
identify paraphrase rules that both 1) simplify the
input phrase and 2) preserve its meaning. That
is, we want to avoid a model which favors “sim-
ple” words (e.g. the, and) even when they capture
none of the meaning of the input phrase. We there-
fore train our model to make a three-way distinc-
tion between rules which simplify the input, rules
which make the input less simple, and rules which
generate bad paraphrases.

Data. We collect our training data in two phases.
First, we sample 1,000 phrases from the vocab-
ulary of the PPDB. We limit ourselves to words
which also appear at least once in the Newsela
corpus for text simplifcation (Xu et al., 2015),
in order to ensure that we focus our model on
the types of words for which the final resource is
most likely to be applied. For each of these 1,000
words/phrases, we sample up to 10 candidate para-
phrases from PPDB, stratified evenly across para-
phrase quality scores. We ask workers on Ama-
zon Mechanical Turk to rate each of the chosen
paraphrase rules on a scale from 1 to 5 to indi-
cate how well the paraphrase preserves the mean-
ing of the original phrase. We use the same an-
notation design used in Pavlick et al. (2015). We
have 5 workers judge each pair, omitting workers
who do not provide correct answers on the em-
bedded gold-standard pairs which we draw from
WordNet. For 62% of the paraphrase rules we had

2http://paraphrase.org/#/download

scored, the average human rating falls below 3, in-
dicating that the meaning of the paraphrase differs
substantially from that of the input. We assign all
of these rules to the “bad paraphrase” class.

We take the remaining 3,758 meaning-
preserving paraphrase rules (scored ≥3 in the
above annotation task) and feed them into a
second annotation task, in which we identify
rules that simplify the input. We use the same
annotation interface as in Pavlick and Nenkova
(2015), which asks workers to choose which of
the two phrases is simpler, or to indicate that
there is no difference in complexity. We collect 7
judgements per pair and take the majority label,
discarding pairs for which the majority opinion
was that there was no difference. We include each
rule in our training data twice, once as an instance
of a “simplifying” rule, and once in the reverse
direction as an instance of a “complicating” rule.

In the end, our training dataset contains 11,829
pairs, with the majority class being “bad para-
phrase” (47%), and the remaining split evenly
between “simplifying” and “complicating” para-
phrase rules (26% each).

Features. We use a variety of features that have
been shown in prior work to give good signal
about phrases’ relative complexity. The fea-
tures we include are as follows: phrase length
in words and in characters, frequency according
to the Google NGram corpus (Brants and Franz,
2006), number of syllables, the relative frequency
of usage in Simple Wikipedia compared to normal
Wikipedia (Pavlick and Nenkova, 2015), charac-
ter unigrams and bigrams, POS tags, and the aver-
aged Word2Vec word embeddings for the words in
the phrase (Mikolov et al., 2013). For each phrase
pair 〈e1, e2〉, for each feature f , we include f(e1),
f(e2) and f(e1)−f(e2).3 We also include the co-
sine similarity of the averaged word embeddings
and the PPDB paraphrase quality score as features.

We train a multi-class logistic regression
model4 to predict if the application of a paraphrase
rule will result in 1) simpler output, 2) more com-
plex output, or 3) non-sense output.

Performance. Table 2 shows the performance of
the model on cross-validation, compared to several
baselines. The full model achieves 60% accuracy,

3We do not compute the difference f(e1) − f(e2) for
sparse features, i.e. character ngrams and POS tags.

4http://scikit-learn.org/
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Acc Prec.
Random 47.1% 0.0%
Simple/Regular Wiki. Ratio 49.1% 47.6%
Length in Characters 51.4% 47.3%
Google Ngram Frequency 51.4% 44.2%
Number of Syllables 51.5% 45.3%
Supervised Model, W2V 54.7% 46.3%
Supervised Model, Full 60.4% 52.9%

Table 2: Accuracy on 10-fold cross-validation, and precision
for identifying simplifying rules. Folds are constructed so
that train and test vocabularies are disjoint.

5 points higher than the strongest baseline, a su-
pervised model which uses only word embeddings
as features.

2.3 Simple PPDB

We run the trained model described above over
all 7.5 million paraphrase rules. From the pre-
dictions, we construct Simple PPDB: a list of 4.5
million simplifying paraphrase rules. A rule in
Simple PPDB is represented as a triple, consist-
ing of a syntactic category, and input phrase, and
a simplified output phrase. Each rule is associated
with both a paraphrase quality score from 1 to 5
(taken from PPDB 2.0), and simplification con-
fidence score from 0 to 1.0 (our classifier’s con-
fidence in the prediction that the rule belongs to
the “simplifying” class). Note that ranking via
the confidence scores of a classification model has
not, to our knowledge, been explored in previous
work on lexical simplification. The remainder of
this paper evaluates the quality of the simplifica-
tion ranking. For an evaluation of the paraphrase
quality ranking, see Pavlick et al. (2015). Table 3
shows examples of some of the top ranked para-
phrases according to Simple PPDB’s simplifica-
tion score for several input phrases.

3 Evaluation

To evaluate Simple PPDB, we apply it in a set-
ting intended to emulate the way it is likely to be
used in practice. We use the Newsela Simplifica-
tion Dataset (Xu et al., 2015), a corpus of manu-
ally simplified news articles. This corpus is cur-
rently the cleanest available simplification dataset
and is likely to be used to train and/or evaluate the
simplification systems that we envision benefitting
most from Simple PPDB.

We draw a sample of 100 unique word types
(“targets”) from the corpus for which Simple

PPDB has at least one candidate simplification.
For each target, we take Simple PPDB’s full list
of simplification rules which are of high quality
according to the PPDB 2.0 paraphrase score5 and
which match the syntactic category of the target.
On average, Simple PPDB proposes 8.8 such can-
didate simplifications per target.

Comparison to existing methods. Our base-
lines include three existing methods for gener-
ating lists of candidates that were proposed in
prior work. The methods we test for generating
lists of candidate paraphrases for a given target
are: the WordNetGenerator, which pulls syn-
onyms from WordNet (Devlin and Tait, 1998;
Carroll et al., 1999), the KauchakGenerator,
which generates candidates based on automatic
alignments between Simple Wikipedia and normal
Wikipedia (Coster and Kauchak, 2011a), and the
GlavasGenerator, which generates candidates
from nearby phrases in vector space (Glavaš and
Štajner, 2015) (we use the pre-trained Word2Vec
VSM (Mikolov et al., 2013)).

For each generated list, we follow Horn et al.
(2014)’s supervised SVM Rank approach to rank
the candidates for simplicity. We reimplement the
main features of their model: namely, word fre-
quencies according to the Google NGrams cor-
pus (Brants and Franz, 2006) and the Simple
Wikipedia corpus, and the alignment probabili-
ties according to automatic word alignments be-
tween Wikipedia and Simple Wikipedia sentences
(Coster and Kauchak, 2011b). We omit the lan-
guage modeling features since our evaluation does
not consider the context in which the substitution
is to be applied.

All of these methods (the three generation meth-
ods and the ranker) are implemented as part of the
LEXenstein toolkit (Paetzold and Specia, 2015).
We use the LEXenstein implementations for the
results reported here, using off-the-shelf configu-
rations and treating each method as a black box.

Setup. We use each of the generate-and-rank
methods to produce a ranked list of simplification
candidates for each of the 100 targets drawn from
the Newsela corpus. When a generation method
fails to produce any candidates for a given tar-
get, we simply ignore that target for that partic-
ular method. This is to avoid giving Simple PPDB

5Heuristically, we define “high quality” as≥3.5 for words
and ≥4 for phrases.
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keenly omit employment opportunity remedied
most strongly leave out a new job set right
deeply delete it opportunity be fixed
strongly be removed business opportunity be corrected
eagerly forget about it the job to be resolved
very be ignored labour be solved

Table 3: Examples of top-ranked simplifications proposed by Simple PPDB for several input words. Often, the best simplifi-
cation for a single word is a multiword phrase, or vice-versa. These many-to-one mappings are overlooked when systems use
only length or frequency as a proxy for simplicity.

an unfair advantage, since, by construction, PPDB
will have full coverage of our list of 100 targets. In
the end, the GlavasGenerator is evaluated over 95,
the WordNetGenerator over 82, and the Kauchak-
Generator over 48. The results in Table 4 do not
change significantly if we restrict all systems to
the 48 targets which the KauchakGenerator is ca-
pable of handling. Since the GlavasGenerator is
capable of producing an arbitrary number of can-
didates for each target, we limit the length of each
of its candidate lists to be equal to the number
of candidates produced by Simple PPDB for that
same target.

Human judgments. For each of the proposed
rules from all four systems, we collect human
judgements on Amazon Mechanical Turk, using
the same annotation interface as before. That is,
we ask 7 workers to view each pair and indicate
which of the two phrases is simpler, or to indicate
that there is no difference. We take the majority la-
bel to be the true label for each rule. Workers show
moderate agreement on the 3-way task (κ = 0.4
± 0.03), with 14% of pairs receiving unanimous
agreement and 37% receiving the same label from
6 out of 7 annotators. We note that the κ metric
is likely a lower bound, as it punishes low agree-
ment on pairs for which there is little difference in
complexity, and thus the “correct” answer is not
clear (e.g. for the pair 〈matter, subject〉, 3 annota-
tors say that matter is simpler, 2 say that subject is
simpler, and 2 say there is no difference).

Results. Table 4 compares the different meth-
ods in terms of how well they rank simplifying
rules above non-simplifying rules. Simple PPDB’s
ranking of the relative simplicity achieves an av-
eraged precision of 0.72 (0.77 P@1), compared
to 0.70 (0.69 P@1) achieved by the Horn et al.
(2014) system– i.e. the KauchakGenerator+SVM
Ranker. We hypothesize that the performance
difference between these two ranking systems is

Avg. Prec. P@1
Glavas+SVR 0.21 0.13
Wordnet+SVR 0.53 0.50
Kauchak+SVR 0.70 0.69
Simple PPDB 0.72 0.77

Table 4: Precision of relative simplification rankings of three
existing lexical simplification methods compared to the Sim-
ple PPDB resource in terms of Average Precision and P@1
(both range from 0 to 1 and higher is better). All of the ex-
isting methods were evaluated using the implementations as
provided in the LEXenstein toolkit.

likely due to a combination of the additional fea-
tures applied in Simple PPDB’s model (e.g. word
embeddings) and the difference in training data
(Simple PPDB’s model was trained on 11K para-
phrase pairs with trinary labels, while the Horn et
al. (2014) model was trained on 500 words, each
with a ranked list of paraphrases). Table 5 pro-
vides examples of the top-ranked simplification
candidates proposed by each of the methods de-
scribed.

alarm
Glavas enrage, perturb, stun
WordNet horrify, dismay, alert, appall, appal
Kauchak pure, worry
PPDB worry, concern, alert

genuine
Glavas credible, sort, feign, phoney, good na-

turedness, sincere, sincerely, insincere,
bonafide

WordNet real, actual, unfeigned, literal, echt, true
Kauchak thermal
PPDB true, real, actual, honest, sincere

Table 5: Examples of candidate simplifications proposed by
Simple PPDB and by three other generate-and-rank methods.
Bold words were rated by humans to be simpler than the tar-
get word. Note that these candidates are judged on simplicity,
not on their goodness as paraphrases.

In addition, Simple PPDB offers the largest
coverage (Table 6). It has a total vocabulary of
624K unique words and phrases, and provides
the largest number of potential simplifications for
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Avg. PPs Total
per Input Vocab.

Glavas+SVR ∞ ∞
Kauchak+SVR 4.4 127K
Wordnet+SVR 6.7 155K
Simple PPDB 8.8 624K

Table 6: Overall coverage of three existing lexical simplifica-
tion methods compared to the Simple PPDB resource. Glavas
is marked as∞ since it generates candidates based on near-
ness in vector space, and in theory could generate as many
words/phrases as are in the vocabulary of the vector space.

each target– for the 100 targets drawn from the
Newsela corpus, PPDB provided an average of 8.8
candidates per target. The next best generator, the
WordNet-based system, produces only 6.7 candi-
dates per target on average, and has a total vocab-
ulary of only 155K words.

4 Conclusion

We have described Simple PPDB, a subset of the
Paraphrase Database adapted for the task of text
simplification. Simple PPDB is built by apply-
ing state-of-the-art machine learned models for
lexical simplification to the largest available re-
source of lexical and phrasal paraphrases, result-
ing in a web-scale resource capable of supporting
research in data-driven methods for text simplifi-
cation. We have shown that Simple PPDB offers
substantially increased coverage of both words
and multiword phrases, while maintaining high
quality compared to existing methods for lexical
simplification. Simple PPDB, along with the hu-
man judgements collected as part of its creation, is
freely available with the publication of this paper.6
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Abstract

Named entity recognition, and other in-
formation extraction tasks, frequently use
linguistic features such as part of speech
tags or chunkings. For languages where
word boundaries are not readily identified
in text, word segmentation is a key first
step to generating features for an NER
system. While using word boundary tags
as features are helpful, the signals that
aid in identifying these boundaries may
provide richer information for an NER
system. New state-of-the-art word seg-
mentation systems use neural models to
learn representations for predicting word
boundaries. We show that these same rep-
resentations, jointly trained with an NER
system, yield significant improvements in
NER for Chinese social media. In our ex-
periments, jointly training NER and word
segmentation with an LSTM-CRF model
yields nearly 5% absolute improvement
over previously published results.

1 Introduction

Entity mention detection, and more specifically
named entity recognition (NER) (Collins and
Singer, 1999; McCallum and Li, 2003; Nadeau
and Sekine, 2007; Jin and Chen, 2008; He et al.,
2012), has become a popular task for social media
analysis (Finin et al., 2010; Liu et al., 2011; Ritter
et al., 2011; Fromreide et al., 2014; Li et al., 2012;
Liu et al., 2012a). Many downstream applications
that use social media, such as relation extraction
(Bunescu and Mooney, 2005) and entity linking
(Dredze et al., 2010; Ratinov et al., 2011), rely
on first identifying mentions of entities. Not sur-
prisingly, accuracy of NER systems in social me-
dia trails state-of-the-art systems for news text and

other formal domains. While this gap is shrinking
in English (Ritter et al., 2011; Cherry and Guo,
2015), it remains large in other languages, such as
Chinese (Peng and Dredze, 2015; Fu et al., 2015).

One reason for this gap is the lack of robust
up-stream NLP systems that provide useful fea-
tures for NER, such as part-of-speech tagging or
chunking. Ritter et al. (2011) annotated Twitter
data for these systems to improve a Twitter NER
tagger, however, these systems do not exist for so-
cial media in most languages. Another approach
has been that of Cherry and Guo (2015) and Peng
and Dredze (2015), who relied on training unsu-
pervised lexical embeddings in place of these up-
stream systems and achieved state-of-the-art re-
sults for English and Chinese social media, respec-
tively. The same approach was also found helpful
for NER in the news domain (Collobert and We-
ston, 2008; Turian et al., 2010; Passos et al., 2014)

In Asian languages like Chinese, Japanese and
Korean, word segmentation is a critical first step
for many tasks (Gao et al., 2005; Zhang et al.,
2006; Mao et al., 2008). Peng and Dredze (2015)
showed the value of word segmentation to Chinese
NER in social media by using character positional
embeddings, which encoded word segmentation
information.

In this paper, we investigate better ways to in-
corporate word boundary information into an NER
system for Chinese social media. We combine the
state-of-the-art Chinese word segmentation sys-
tem (Chen et al., 2015) with the best Chinese so-
cial media NER model (Peng and Dredze, 2015).
Since both systems used learned representations,
we propose an integrated model that allows for
joint training learned representations, providing
more information to the NER system about hid-
den representations learned from word segmenta-
tion, as compared to features based on segmenta-
tion output. Our integrated model achieves nearly
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Figure 1: The joint model for Chinese word segmentation and NER. The left hand side is an LSTM module for word segmen-
tation, and the right hand side is a traditional feature-based CRF model for NER. Note that the linear chain CRF for NER has
both access to the feature extractor specifically for NER and the representations produced by the LSTM module for word seg-
mentation. The CRF in this version is a log-bilinear CRF, where it treats the embeddings and hidden vectors inputs as variables
and modifies them according to the objective function. As a result, it enables propagating the gradients back into the LSTM to
adjust the parameters. Therefore, the word segmentation and NER training share all the parameters of the LSTM module. This
facilitates the joint training.

a 5% absolute improvement over the previous best
results on both NER and nominal mentions for
Chinese social media.

2 Model

We propose a model that integrates the best Chi-
nese word segmentation system (Chen et al., 2015)
using an LSTM neural model that learns represen-
tations, with the best NER model for Chinese so-
cial media (Peng and Dredze, 2015), that supports
training neural representations by a log-bilinear
CRF. We begin with a brief review of each system.

2.1 LSTM for Word Segmentation

Chen et al. (2015) proposed a single layer, left
to right LSTM for Chinese word segmentation.
An LSTM is a recurrent neural network (RNN)
which uses a series of gates (input, forget and out-
put gate) to control how memory is propagated in
the hidden states of the model. For the Chinese
word segmentation task, each Chinese character
is initialized as a d dimensional vector, which the
LSTM will modify during its training. For each in-
put character, the model learns a hidden vector h.
These vectors are then used with a biased-linear
transformation to predict the output labels, which
in this case are Begin, Inside, End, and Singleton.
A prediction for position t is given as:

y(t) = Woh
(t) + bo (1)

where Wo is a matrix for the transformation pa-
rameters, bo is a vector for the bias parameters, and
h(t) is the hidden vector at position t. To model
the tag dependencies, they introduced the transi-
tion score Aij to measure the probability of jump-
ing from tag i ∈ T to tag j ∈ T .

We used the same model as Chen et al. (2015)
trained on the same data (segmented Chinese news
article). However, we employed a different train-
ing objective. Chen et al. (2015) employed a
max-margin objective, however, while they found
this objective yielded better results, we observed
that maximum-likelihood yielded better segmen-
tation results in our experiments1. Additionally,
we sought to integrate their model with a log-
bilinear CRF, which uses a maximum-likelihood
training objective. For consistency, we trained the
LSTM with a maximum-likelihood training objec-
tive as well. The maximum-likelihood CRF objec-
tive function for predicting segmentations is:

1Chen et al. (2015) preprocessed the data specifically for
Chinese word segmentation, such as replacing English char-
acters, symbols, dates and Chinese idioms as special sym-
bols. Our implementation discarded all these preprocessing
steps, which while it achieved nearly identical results on de-
velopment data (as inferred from their published figure), it
lagged in test accuracy by 2.4%. However, we found that
while these preprocessing steps improved segmentation, they
hurt NER results as they resulted in a mis-match between the
segmentation and NER input data. Since our focus is on im-
proving NER, we do not use their preprocessing steps in this
paper.
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Example pairs (ys,xs) are word segmented
sentences, k indexes examples, and i indexes
positions in examples. Ts(yk

i−1, y
k
i ) are stan-

dard transition probabilities learned by the CRF2.
The LSTM parameters Λs are used to produce
s(yk

i ;xk
s ,Λs), the emission probability of the la-

bel at position i for input sentence k, which is ob-
tained by taking a soft-max over (1). We use a
first-order Markov model.

2.2 Log-bilinear CRF for NER
Peng and Dredze (2015) proposed a log-bilinear
model for Chinese social media NER. They used
standard NER features along with additional fea-
tures based on lexical embeddings. By fine-tuning
these embeddings, and jointly training them with
a word2vec (Mikolov et al., 2013) objective, the
resulting model is log-bilinear.

Typical lexical embeddings provide a single
embedding vector for each word type. However,
Chinese text is not word segmented, making the
mapping between input to embedding vector un-
clear. Peng and Dredze (2015) explored several
types of representations for Chinese, including
pre-segmenting the input to obtain words, using
character embeddings, and a combined approach
that learned embeddings for characters based on
their position in the word. This final representa-
tion yielded the largest improvements.

We use the same idea but augmented it with
LSTM learned representations, and we enable in-
teraction between the CRF and the LSTM param-
eters. More details are described in (§2.3).

2.3 Using Segmentation Representations to
Improve NER

The improvements provided by character position
embeddings demonstrated by Peng and Dredze
(2015) indicated that word segmentation informa-
tion can be helpful for NER. Embeddings aside, a
simple way to include this information in an NER
system would be to add features to the CRF using
the predicted segmentation labels as features.

However, these features alone may overlook
useful information from the segmentation model.

2The same functionality as Aij in the model of Chen et
al. (2015).

Previous work showed that jointly learning dif-
ferent stages of the NLP pipeline helped for Chi-
nese (Liu et al., 2012b; Zheng et al., 2013). We
thus seek approaches for deeper interaction be-
tween word segmentation and NER models. The
LSTM word segmentor learns two different types
of representations: 1) embeddings for each charac-
ter and 2) hidden vectors for predicting segmenta-
tion tags. Compressing these rich representations
down to a small feature set imposes a bottleneck
on using richer word segmentation related infor-
mation for NER. We thus experiment with includ-
ing both of these information sources directly into
the NER model.

Since the log-bilinear CRF already supports
joint training of lexical embeddings, we can also
incorporate the LSTM output hidden vectors as
dynamic features using a joint objective function.

First, we augment the CRF with the LSTM pa-
rameters as follows:

Ln(yn;xn,Θ) =
1
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∑
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log

1
Z(xn)k

+
∑

j

ΛjFj(yk
n,x

k
n, ew,hw)

]
,

(3)

where k indexes instances, j positions, and

Fj(y
k,xk, ew,hw) =

n∑
i=1

fj(y
k
i−1, y

k
i ,xk, ew,hw, i)

represents the feature functions. These features
now depend on the embeddings learned by the
LSTM (ew) and the LSTM’s output hidden vectors
(hw). Note that by including hw alone we create
dependence on all LSTM parameters on which the
hidden states depend (i.e. the weight matrices).
We experiment with including input embeddings
and output hidden vectors independently, as well
as both parameters together. An illustration of the
integrated model is shown in Figure 1.

Joint Training In our integrated model, the
LSTM parameters are used for both predicting
word segmentations and NER. Therefore, we con-
sider a joint training scheme. We maximize a
(weighted) joint objective:

Ljoint(Θ) = λLs(ys;xs,Θ) + Ln(yn;xn,Θ)
(4)

where λ trades off between better segmentations
or better NER, and Θ includes all parameters used
in both models. Since we are interested in improv-
ing NER we consider settings with λ < 1.
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Named Entity Nominal Mention
Dev Test Dev Test

Method Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
1 CRF with baseline features 60.27 25.43 35.77 57.47 25.77 35.59 72.06 32.56 44.85 59.84 23.55 33.80
2 + Segment Features 62.34 27.75 38.40 58.06 27.84 37.63 58.50 38.87 46.71 47.43 26.77 34.23
3 P & D best NER model 57.41 35.84 44.13 57.98 35.57 44.09 72.55 36.88 48.90 63.84 29.45 40.38
4 + Segment Features 47.40 42.20 44.65 48.08 38.66 42.86 76.38 36.54 49.44 63.36 26.77 37.64
5 P & D w/ Char Embeddings 58.76 32.95 42.22 57.89 34.02 42.86 66.88 35.55 46.42 55.15 29.35 38.32
6 + Segment Features 51.47 40.46 45.31 52.55 37.11 43.50 65.43 40.86 50.31 54.01 32.58 40.64
7 Pipeline Seg. Repr. + NER 64.71 38.14 48.00 64.22 36.08 46.20 69.36 39.87 50.63 56.52 33.55 42.11
8 Jointly LSTM w/o feat. 59.22 35.26 44.20 60.00 35.57 44.66 60.10 39.53 47.70 56.90 31.94 40.91
9 Jointly Train Char. Emb. 64.21 35.26 45.52 63.16 37.11 46.75 73.55 37.87 50.00 65.33 31.61 42.61
10 Jointly Train LSTM Hidden 61.86 34.68 44.44 63.03 38.66 47.92 67.23 39.53 49.79 60.00 33.87 43.30
11 Jointly Train LSTM + Emb. 59.29 38.73 46.85 63.33 39.18 48.41 61.61 43.19 50.78 58.59 37.42 45.67

Table 1: NER results for named and nominal mentions on dev and test data.

3 Parameter Estimation

We train all of our models using stochastic gradi-
ent descent (SGD.) We train for up to 30 epochs,
stopping when NER results converged on dev data.
We use a separate learning rate for each part of
the joint objective, with a schedule that decays the
learning rate by half if dev results do not improve
after 5 consecutive epochs. Dropout is introduced
in the input layer of LSTM following Chen et al.
(2015). We optimize two hyper-parameters using
held out dev data: the joint coefficient λ in the in-
terval [0.5, 1] and the dropout rate in the interval
[0, 0.5]. All other hyper-parameters were set to the
values given by Chen et al. (2015) for the LSTM
and Peng and Dredze (2015) for the CRF.

We train the joint model using an alternating op-
timization strategy. Since the segmentation dataset
is significantly larger than the NER dataset, we
subsample the former at each iteration to be the
same size as the NER training data, with different
subsamples in each iteration. We found subsam-
pling critical and it significantly reduced training
time and allowed us to better explore the hyper-
parameter space.

We initialized LSTM input embeddings with
pre-trained character-positional embeddings
trained on 112,971,734 Weibo messages to ini-
tialize the input embeddings for LSTM. We used
word2vec (Mikolov et al., 2013) with the same
parameter settings as Peng and Dredze (2015) to
pre-train the embeddings.

4 Experiments and Analysis

4.1 Datasets

We use the same training, development and test
splits as Chen et al. (2015) for word segmentation
and Peng and Dredze (2015) for NER.

Word Segmentation The segmentation data is
taken from the SIGHAN 2005 shared task. We
used the PKU portion, which includes 43,963
word sentences as training and 4,278 sentences as
test. We did not apply any special preprocessing.

NER This dataset contains 1,890 Sina Weibo
messages annotated with four entity types (per-
son, organization, location and geo-political en-
tity), including named and nominal mentions. We
note that the word segmentation dataset is signifi-
cantly larger than the NER data, which motivates
our subsampling during training (§3).

4.2 Results and Analysis

Table 1 shows results for NER in terms of preci-
sion, recall and F1 for named (left) and nominal
(right) mentions on both dev and test sets. The
hyper-parameters are tuned on dev data and then
applied on test. We now explain the results.

We begin by establishing a CRF baseline (#1)
and show that adding segmentation features helps
(#2). However, adding those features to the full
model (with embeddings) in Peng and Dredze
(2015) (#3) did not improve results (#4). This is
probably because the character-positional embed-
dings already carry segmentation information. Re-
placing the character-positional embeddings with
character embeddings (#5) gets worse results than
(#3), but benefits from adding segmentation fea-
tures (#6). This demonstrates both that word seg-
mentation helps and that character-positional em-
beddings effectively convey word boundary infor-
mation.

We now consider our model of jointly training
the character embeddings (#9), the LSTM hidden
vectors (#10) and both (#11). They all improve
over the best published results (#3). Jointly train-
ing the LSTM hidden vectors (#10) does better
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than jointly training the embeddings (#9), proba-
bly because they carry richer word boundary in-
formation. Using both representations achieves
the single best result (#11): 4.3% improvement on
named and 5.3% on nominal mentions F1 scores.

Finally, we examine how much of the gain is
from joint training versus from pre-trained seg-
mentation representations. We first train an LSTM
for word segmentation, then use the trained em-
beddings and hidden vectors as inputs to the log-
bilinear CRF model for NER, and fine tune these
representations. This (#7) improved test F1 by
2%, about half of the overall improvements from
joint training.

5 Discussion

Huang et al. (2015) first proposed recurrent neural
networks stacked with a CRF for sequential tag-
ging tasks, as was applied to POS, chunking and
NER tasks. More recent efforts have been made
to add character level modeling and explore dif-
ferent types of RNNs (Lample et al., 2016; Ma
and Hovy, 2016; Yang et al., 2016). These meth-
ods have achieved state-of-the-art results for NER
on English news and several other Indo-European
languages. However, this work has not considered
languages that require word segmentation, nor do
they consider social media.

We can view our method as multi-task learn-
ing (Caruana, 1997; Ando and Zhang, 2005; Col-
lobert and Weston, 2008), where we are using
the same learned representations (embeddings and
hidden vectors) for two tasks: segmentation and
NER, which use different prediction and decod-
ing layers. Result #8 shows the effect of exclud-
ing the additional NER features and just sharing
a jointly trained LSTM3. While this does not per-
form as well as adding the additional NER features
(#11), it is impressive that this simple architec-
ture achieved similar F1 as the best results in Peng
and Dredze (2015). While we may expect both
NER and word segmentation results to improve,
we found the segmentation performances of the
best joint model tuned for NER lose to the stand
alone word segmentation model (F1 of 90.7% v.s.
93.3%). This lies in the fact that tuning λ means
choosing between the two tasks; no single setting
achieved improvements for both, which suggests
further work is needed on better model structures

3This reduces to the multi-task setting of Yang et al.
(2016).

and learning.
Second, our segmentation data is from the news

domain, whereas the NER data is from social me-
dia. While it is well known that segmentation sys-
tems trained on news do worse on social media
(Duan et al., 2012), we still show large improve-
ments in applying our model to these different do-
mains. It may be that we are able to obtain better
results in the case of domain mismatch because we
integrate the representations of the LSTM model
directly into our CRF, as opposed to only using the
predictions of the LSTM segmentation model. We
plan to consider expanding our model to explicitly
include domain adaptation mechanisms (Yang and
Eisenstein, 2015).
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Abstract

We introduce a new multilingual resource con-
taining judgments about nominal compound
compositionality in English, French and Por-
tuguese. It covers 3 × 180 noun-noun and
adjective-noun compounds for which we pro-
vide numerical compositionality scores for the
head word, for the modifier and for the com-
pound as a whole, along with possible para-
phrases. This resource was constructed by na-
tive speakers via crowdsourcing. It can serve
as basis for evaluating tasks such as lexical
substitution and compositionality prediction.

1 Introduction
Multiword expressions (MWEs) are notoriously chal-
lenging for NLP, due to their many potential levels of
idiosyncrasy, from lexical to semantic and pragmatic
to statistical (Sag et al., 2002; Ramisch, 2015). One
widely known problem is the semantic interpretation
of noun compounds, which in English are noun phrases
composed by a sequence of nouns. These MWEs often
lack a structure from which to identify implicit seman-
tic relations unambiguously. For instance, there is no
indication that a brick wall is a wall made of bricks,
while a cheese knife is not a knife made of cheese, but
rather a knife for cutting cheese (Girju et al., 2005).

Noun compounds are often idiomatic or non-
compositional. That is, the meaning of the whole
does not come directly from the meaning of the parts.
For instance, a black Friday is not any Friday that is
somehow black, but is the day following Thanksgiv-
ing Day in the United States. Moreover, the contribu-
tion of the semantics of each element for the meaning
of the compound may vary considerably (e.g. police
car vs. crocodile tears). Any NLP application that in-
tends to deal with phrasal semantics adequately must be
able to distinguish fairly compositional from fully id-
iomatic compounds. For example, automatically trans-
lating dead end literally into French (?fin morte) or Por-
tuguese (?fim morto) would drastically alter the mean-
ing of the original expression. In this paper we intro-
duce a resource with human judgments about the se-
mantics of compounds and their individual elements.

Eliciting quantitative judgments about composition-
ality from non-linguists may be too abstract, even with
accompanying guidelines and training. We propose a
more constrained way of obtaining these judgments,
with the participation of non-experts through crowd-
sourcing. We first focus the participants’ attention
on compound interpretation in context, by requesting
paraphrases in example sentences. Then, we inquire
about the degree to which the meaning of a given com-
pound arises from each of its elements. The assumption
is that if the interpretation of the compound comes from
both nouns (e.g. access road), then it is fully compo-
sitional, whereas if it is unrelated to both nouns (e.g.
nut case), then it is fully idiomatic. This indirect anno-
tation does not require expert knowledge and provides
reliable and stable data.

This paper presents a multilingual resource that
models compounds compositionality, including both
numerical scores and free paraphrases. Data is cur-
rently available for 180 compounds in 3 different lan-
guages: English, French and Portuguese. Such re-
sources are extremely valuable, as they enable the de-
velopment and evaluation of techniques for automatic
compositionality prediction and lexical substitution.
This paper is structured as follows: §2 discusses related
work; §3 discusses the target compounds, the annota-
tion schema and interface; §4 presents the results and
§5 the conclusions and future work.

2 Related Work
There are many proposals in the literature to represent
the semantics of nominal compounds. Lauer (1995)
argues that prepositions (such as from, for, in) pro-
vide information about the role of each noun in a com-
pound (e.g. olive oil is oil from olives). These preposi-
tions are explicitly part of some nominal compounds
in Romance languages (e.g. huile d’olive in French
and azeite de oliva in Portuguese). Girju et al. (2005)
present and compare several inventories of semantic
relations between nouns, from fine-grained to coarse
senses. These relations include syntactic and semantic
classes such as subject, instrument and location. Free
paraphrases have also been used to model noun com-
pound semantics. Nakov (2008) suggests using unsu-
pervised generation of paraphrases combined with web
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search engines to classify nominal compounds. This
was further extended in SemEval 2013, in a task where
free paraphrases were ranked according to their rele-
vance for explicitly describing the underlying semantic
relations in the compounds (Hendrickx et al., 2013).
For instance, for the MWE flu virus, paraphrases in-
volving the verbs cause, spread and create (virus that
causes/spreads/creates flu) were in the top of the rank.

Some authors model the meaning of compounds
using numerical compositionality scores: low values
mean completely idiomatic compounds while high val-
ues represent compositional ones. Separate scores can
be provided for the amount of meaning provided by
each individual word. For instance, olive oil could be
80% related to olives and 100% related to oil, whereas
dead end is 5% dead and 90% an end. Some datasets
that employ a numerical representation for different
types of MWE are:
• Baldwin and Villavicencio (2002): binary type-level

judgments for 3,078 English phrasal verbs, from
which 14% are considered idiomatic.

• McCarthy et al. (2003): type-based scores on a scale
from 0 to 10 provided by three experts for 116 En-
glish phrasal verbs.

• Reddy et al. (2011): average of 30 judgments on a
scale from 0 to 5 provided by native speakers via
crowdsourcing for 90 English noun compounds.

• Gurrutxaga and Alegria (2013): three-way classifi-
cation (idiom, collocation, free combination) pro-
vided by three experts for 1,200 Basque noun-verb
expressions.

• Roller et al. (2013): average of around 30 judgments
on a scale from 1 to 7 obtained through crowdsourc-
ing for 244 German noun compounds.

• Farahmand et al. (2015): individual binary judg-
ments for non-compositionality and conventionality
for 1,042 English noun compounds, annotated by 4
experts.

One possible source of divergence among annotators
is that some datasets do not take polysemy into ac-
count. Authors ask annotators to think about the most
common sense of an MWE without providing context.
Some of these datasets address this issue by providing
example sentences to attenuate this problem. We also
employ this strategy in our questionnaires. The most
similar datasets to ours are the ones presented by Reddy
et al. (2011) and Hendrickx et al. (2013). Our dataset
combines the methodology from both of these, extend-
ing it to French and Portuguese.

3 Dataset Construction
Although noun-noun compounds are rare in some lan-
guages mainly due to syntactic reasons, these lan-
guages present alternatives to this type of configura-
tion. In French (FR) and Brazilian Portuguese (PT), the
equivalents of English (EN) compounds of the form N1

N2 are usually:
1. N2 PREP N1, connecting the nouns through a

preposition and optional determiner; e.g. lung
cancer (EN) → cancer du poumon (FR), câncer
de pulmão (PT).

2. N2 ADJ1, using a denominal adjective which is
derived from N1; e.g. cell death (EN) → mort
cellulaire (FR), morte celular (PT).

We describe the construction of datasets for English,
French and Brazilian Portuguese. Given the two syn-
tactic forms above, we focus on N2 ADJ1 for French
and Portuguese, as its simpler structure resembles more
closely the English noun-noun compound structure,
and also because we have some ADJ1 N2 compounds in
English as well (e.g. sacred cow). We collectively call
our target constructions nominal compounds, as they
have nouns as head of the phrase.

For each language, data collection involves the fol-
lowing steps: (1) compound selection; (2) sentence se-
lection; and (3) questionnaire design.

Compound selection The initial set of idiomatic and
partially compositional candidates was constructed by
introspection, independently for each language, since
these may be harder to find in corpora because of
lower frequency. This list of compounds was comple-
mented by selecting entries from lists of frequent ad-
jective+noun and noun+noun pairs. These were au-
tomatically extracted through POS-sequence queries
using the mwetoolkit (Ramisch, 2015) from ukWaC
(Baroni et al., 2009), frWaC and brWaC (Boos et al.,
2014). We removed all compounds in which the com-
plement is not an adjective in Portuguese/French (e.g.
PT noun-noun abelha rainha), those in which the head
is not necessarily a noun (e.g. FR aller simple, as aller
is also a verb) and those in which the literal sense
is very common in the corpus (e.g. EN low blow).
For each language, we attempted to select a balanced
set of 60 idiomatic, 60 partially compositional and 60
fully compositional compounds by rough manual pre-
annotation.1

Sentence selection For each compound, we selected
3 sentences from a WaC corpus where the compound
is used with the same meaning. These sentences are
used during the data collection process (described later)
as disambiguating context for the annotators. We sort
them by sentence length, in order to favor shorter sen-
tences, and manually select 3 examples that satisfy
these criteria:
• The occurrence of the compound must have the

same meaning in all sentences.
• A sentence must contain enough context to enable

mental disambiguation of the compound.
• Inter-sentence variability can be used to provide

more information to the reader.

1We have not attempted to select equivalent compounds
for all three languages. A compound in a given language may
correspond to a single word in the other languages. Even
when it does translate as a compound, its POS pattern and
level of compositionality may be widely different.
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Figure 1: Evaluating compositionality regarding a compounds’ head.

Questionnaire design We collect data for each com-
pound through a separate HIT (Human Intelligence
Task). Each HIT page contains a list of instructions fol-
lowed by the questionnaire associated with that com-
pound. In the instructions, we briefly describe the task
and require that the users fill in an external identifica-
tion form, following Reddy et al. (2011). This form
provides us with demographics about the annotators,
ensuring that they are native speakers of the target lan-
guage. At the end of the form, they are also given extra
example questions with annotated answers for training.
After filling in the identification form, users can start
working on the task. This section of the HIT is struc-
tured in 5 subtasks:

1. Read the compound itself.
2. Read 3 sentences containing the compound.
3. Provide 2 to 3 synonym expressions for the target

compound seen in the sentences.
4. Using a Likert scale from 0 to 5, judge how

much of the meaning of the compound comes
from word1 (mod) and word2 (head) separately,
as shown in Figure 1.

5. Using a Likert scale from 0 to 5, judge how much
of the meaning of the compound (comp) comes
from its components.

We have been consciously careful about requiring
answers in an even-numbered scale (0–5 makes for 6
reply categories), as otherwise, undecided annotators
would be biased towards the middle score. As an addi-
tional help for the annotators, when the mouse hovers
over a reply to a multiple-choice question, we present
a guiding tooltip, as in Figure 1. We avoid incomplete
HITs by making Subtasks 3–5 mandatory.

The order of subtasks has also been taken into ac-
count. During a pilot test, we found that presenting the
multiple-choice questions (Subtasks 4–5) before ask-
ing for synonyms (Subtask 3) yielded lower agreement,
as users were often less self-consistent in the multiple-
choice questions (e.g. replying “non-compositional”
for Subtask 4 but “compositional” for Subtask 5), even
if they carefully selected their synonyms in response to
Subtask 3. Asking for synonyms prior to the multiple-
choice questions helps the user focus on the target
meaning for the compound and also have more ex-
amples (the synonyms) when considering the semantic
contribution of each element of the compound.

For EN and FR, annotators were recruited and paid
via Amazon Mechanical Turk. The quality of FR re-
sults was manually controlled by only accepting HITs

with reasonable paraphrases. During a pilot, we no-
ticed the lack of qualified PT native speakers on the
platform. For PT only, judgments were provided by
volunteers through a standalone web interface that sim-
ulated the HIT page.

4 Results
For each compound, we have collected judgments from
around 15 HITs. The average of these scores, for EN2,
FR and PT, are shown in Figure 2. The composition-
ality judgments for the compounds confirm that they
are balanced with respect to idiomaticity. Moreover,
there seems to be a greater agreement between the
score for the compound and that of its head (or mod-
ifier) for the two extremes (totally idiomatic and fully
compositional). For PT and FR, in particular, the com-
pound score seems to be a lower bound to each member
word’s score.

We also looked at the distribution of each of the
scores around the mean in terms of the standard devi-
ation (σ). Ideally, if all the annotators agreed on com-
positionality, σ should be low. We calculated for each
language the number of compounds, heads and mod-
ifiers with standard deviations greater than 1.5 (Table
1). The largest variations are for modifiers, which may
reflect their potentially accessory role in the meaning
of the compound in relation to the head.

EN FR PT
Pearson r head-compound 0.75 0.81 0.80
Pearson r mod-compound 0.74 0.89 0.84
compound σ > 1.5 22 41 30
head σ > 1.5 23 44 33
modifier σ > 1.5 35 55 34

Table 1: Pearson correlation r and number of cases of
high standard deviation σ.

Out of all human judges, 3 of them annotated a large
subset of 119 compounds in PT. For this subset, we re-
port inter-annotator agreement. Pairwise weighted κ
values range from .28 to .58 depending on the ques-
tion (head, mod or comp) and on the annotator pair.
Multi-rater α agreement (Artstein and Poesio, 2008)
values are α = .52 for head, α = .36 for mod and
α = .42 for comp scores. We have also calculated the
α score of an expert annotator with himself, performing
the same task a few weeks later. The score ranges from

2We include the 90 compounds from Reddy et al. (2011),
which are compatible with the new dataset.
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(c) Portuguese

Figure 2: Average compositionality for compounds, heads and modifiers.

0.59 for modifiers and compounds to 0.69 for heads.
This seems to confirm the hypothesis that modifiers are
harder to annotate than heads.

Table 2 presents the most controversial compounds,
along with the ones that had highest agreement (lowest
σ). The most consensual compounds are mostly 100%
compositional and sometimes 100% idiomatic. Low σ
values are consistent among the three questions, indi-
cating that some compounds are simply easier to judge
than others.

There are multiple reasons for divergences in the
judgment scores. For some MWEs, our sentences were
not enough for disambiguation; e.g. one of the fish story
sentences talked about a whale and prompted literal in-
terpretations of fish for some judges). Other differences
have been caused by the interpretation of uncommon
words; e.g. the PT noun olhado does not appear by it-
self very often; some judges seem to have interpreted
it as an adjective and thus concluded that mau-olhado
(evil eye, lit. bad-glance) has a fully non-compositional
head. Finally, some differences have been caused by
whether speakers had incorporated a new meaning into
their lexicon; e.g. EN speakers agreed on the level
of head and head+modifier compositionality for dirty
word, but disagreed when judging the modifier: it is

fully idiomatic for some, while just containing an un-
common sense of dirty for others.

5 Conclusions and Future Work

We presented a multilingual dataset of nominal com-
pounds containing human judgments about composi-
tionality. It contains 180 compounds for each of the 3
target languages: English, French and Portuguese. An-
notations are collected through crowdsourcing. Since
the task is performed by native speakers who may not
have a background in linguistics, it needs to be appro-
priately constrained not to require expert knowledge.
The resulting resource can be used for applications and
tasks involving some degree of semantic processing,
such as lexical substitution and text simplification. For
the cases where the numerical judgments alone are not
enough for a given task, our dataset also provides sets
of paraphrases, which serve as a symbolic counterpart
to those scores. The complete resource will be made
freely available.3 As future work, we plan to validate
these scores through compositionality prediction (Yaz-

3http://pageperso.lif.univ-mrs.
fr/~carlos.ramisch/?page=downloads/
compounds
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compound head mod comp
E

ng
lis

h
brass ring 3.9 ±2.0 3.7 ±1.9 3.7 ±1.8
fish story 4.8 ±0.4 1.5 ±1.8 1.7 ±1.8
tennis elbow 4.3 ±1.3 2.2 ±1.8 2.5 ±1.8
brick wall 3.5 ±1.9 3.2 ±2.2 3.8 ±1.7
dirty word 4.1 ±1.4 2.0 ±1.4 2.5 ±1.7
prison guard 4.8 ±0.4 4.9 ±0.3 4.9 ±0.3
graduate student 5.0 ±0.0 4.7 ±0.5 4.9 ±0.3
engine room 5.0 ±0.0 4.9 ±0.3 4.9 ±0.3
climate change 4.8 ±0.4 4.9 ±0.3 5.0 ±0.2
insurance company 4.9 ±0.5 5.0 ±0.0 5.0 ±0.0

Fr
en

ch

match nul 4.4 ±1.3 2.2 ±2.3 2.5 ±2.1
mort né 4.6 ±1.1 3.5 ±1.8 3.2 ±2.0
carte grise 4.5 ±0.9 3.2 ±2.0 3.1 ±1.9
second degré 1.7 ±1.9 2.4 ±2.1 1.4 ±1.9
grippe aviaire 4.6 ±1.4 3.8 ±1.9 3.6 ±1.9
eau chaude 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
eau potable 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
matière grasse 4.8 ±0.4 5.0 ±0.0 5.0 ±0.0
poule mouillée 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0
téléphone portable 4.9 ±0.5 4.9 ±0.3 5.0 ±0.0

Po
rt

ug
ue

se

pavio curto 1.6 ±1.8 1.1 ±1.9 1.9 ±2.3
sexto sentido 4.0 ±1.4 2.5 ±2.1 2.8 ±2.2
gelo-seco 3.2 ±1.6 3.2 ±1.8 3.0 ±2.1
mau-olhado 1.8 ±1.2 4.2 ±1.5 2.3 ±2.1
câmara fria 3.6 ±2.2 5.0 ±0.0 3.4 ±2.1
núcleo atômico 5.0 ±0.0 4.4 ±1.8 5.0 ±0.0
pão-duro 0.0 ±0.0 1.0 ±1.7 0.0 ±0.0
sentença judicial 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
tartaruga-marinha 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
vôo internacional 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0

Table 2: Most polemic and consensual compounds in
each language (average±σ score).

dani et al., 2015; Salehi et al., 2015) and by incorporat-
ing the scores and paraphrases into a machine transla-
tion system. We also envisage extending the dataset for
each of the languages and for additional languages.
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Abstract

We present an open web platform for de-
veloping, compiling, and running rule-
based speech to sign language translation
applications. Speech recognition is per-
formed using the Nuance Recognizer 10.2
toolkit, and signed output, including both
manual and non-manual components, is
rendered using the JASigning avatar sys-
tem. The platform is designed to make
the component technologies readily acces-
sible to sign language experts who are not
necessarily computer scientists. Transla-
tion grammars are written in a version
of Synchronous Context-Free Grammar
adapted to the peculiarities of sign lan-
guage. All processing is carried out on a
remote server, with content uploaded and
accessed through a web interface. Ini-
tial experiences show that simple transla-
tion grammars can be implemented on a
time-scale of a few hours to a few days
and produce signed output readily com-
prehensible to Deaf informants. Overall,
the platform drastically lowers the barrier
to entry for researchers interested in build-
ing applications that generate high-quality
signed language.

1 Introduction

While a considerable amount of linguistic research
has been carried out on sign languages to date,
work in automatic sign language processing is still
in its infancy. Automatic sign language process-
ing comprises applications such as sign language
recognition, sign language synthesis, and sign lan-
guage translation (Sáfár and Glauert, 2012). For
all of these applications, drawing on the expertise
of native signers, sign language linguists and sign
language interpreters is crucial. These different

types of sign language experts may exhibit varying
degrees of computer literacy. In the past, their con-
tribution to the development of systems that au-
tomatically translate into sign language has been
restricted mostly to the provision of transcribed
and/or annotated sign language data.

In this paper, we report on the development and
evaluation of a platform that allows sign language
experts with modest computational skills to play a
more active role in sign language machine trans-
lation. The platform enables these users to inde-
pendently develop and run applications translating
speech into synthesized sign language through a
web interface. Synthesized sign language is pre-
sented by means of a signing avatar. To the best of
our knowledge, our platform is the first to facilitate
low-threshold speech-to-sign translation, opening
up various possible use cases, e.g. that of com-
municating with a Deaf customer in a public ser-
vice setting like a hospital, train station or bank.1

By pursuing a rule-based translation approach, the
platform also offers new possibilities for empiri-
cal investigation of sign language linguistics: the
linguist can concretely implement a fragment of a
hypothesized sign language grammar, sign a range
of generated utterances through the avatar, and ob-
tain judgements from Deaf informants.

The remainder of this paper is structured as fol-
lows. Section 2 presents background and related
work. Section 3 describes the architecture of the
speech-to-sign platform. Section 4 reports on a
preliminary evaluation of the usability of the plat-
form and of translations produced by the platform.
Section 5 offers a conclusion and an outlook on fu-
ture research questions.

1We follow the widely recognized convention of using the
upper-cased word Deaf to describe members of the linguis-
tic community of sign language users and, in contrast, the
lower-cased word deaf to describe the audiological state of a
hearing loss (Morgan and Woll, 2002).
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2 Background and related work

There has been surprisingly little work to date on
speech to sign language translation. The best-
performing system reported in the literature still
appears to be TESSA (Cox et al., 2002), which
translated English speech into British Sign Lan-
guage (BSL) in a tightly constrained post office
counter service domain, using coverage captured
in 370 English phrasal patterns with associated
BSL translations. The system was evaluated in
a realistic setting in a British post office, with
three post office clerks on the hearing side of the
dialogues and six Deaf subjects playing the role
of customers, and performed creditably. Another
substantial project is the one described by San-
Segundo et al. (2008), which translated Spanish
speech into Spanish Sign Language; this, however,
does not appear to have reached the stage of be-
ing able to achieve reasonable coverage even of a
small domain, and the evaluation described in the
paper is restricted to comprehensibility of signs
from the manual alphabet.2

It is reasonable to ask why so little attention has
been devoted to what many people would agree is
an important and interesting problem, especially
given the early success of TESSA. Our own ex-
periences, and those of other researchers we have
talked to, suggest that the critical problem is the
high barrier to entry: in order to build a speech-
to-sign system, it is necessary to be able to com-
bine components for speech recognition, transla-
tion and sign language animation. The first two
technologies are now well-understood, and good
platforms are readily available. Sign language
animation is still, however, a niche subject, and
the practical problems involved in obtaining us-
able sign language animation components are non-
trivial. The fact that San-Segundo et al. (2008)
chose to develop their own animation component
speaks eloquently about the difficulties involved.

There are three approaches to sign language an-
imation: hand-crafted animation, motion captur-
ing and synthesis from form notation (Glauert,
2013). Hand-crafted animation consists of manu-
ally modeling and posing an avatar character. This
procedure typically yields high-quality results but
is very labor-intensive. A signing avatar may also

2Sign languages make use of a communication form
known as the manual alphabet (or, finger alphabet), in which
the letters of a spoken language word are fingerspelled, i.e.,
dedicated signs are used for each letter of the word.

be animated based on information obtained from
motion capturing, which involves recording a hu-
man’s signing. Although sign language anima-
tions obtained through motion capturing also tend
to be of good quality, the major drawback of this
approach is the long calibration time and extensive
postprocessing required.

Synthesis from form notation permits construc-
tion of a fully-fledged animation system that al-
lows synthesis of any signed form that can be de-
scribed through the associated notation. Avatar
signing synthesized from form notation is the most
flexible in that it is able to render dynamic content,
e.g. display the sign language output of a machine
translation system, present the contents of a sign
language wiki or an e-learning application, visual-
ize lexicon entries or present public transportation
information (Efthimiou et al., 2012; Kipp et al.,
2011). At the same time, this approach to sign
language animation typically results in the lowest
quality: controlling the appearance of all possible
sign forms that may be produced from a given no-
tation is virtually impossible.

The most comprehensive existing sign language
animation system based on synthesis from form
notation is undoubtedly JASigning (Elliott et al.,
2008; Jennings et al., 2010), a distant descen-
dant of the avatar system used in TESSA which
was further developed over the course of the eS-
IGN and DictaSign European Framework projects.
JASigning performs synthesis from SiGML (El-
liott et al., 2000), an XML-based representation
of the physical form of signs based on the well-
understood Hamburg Notation System for Sign
Languages (HamNoSys) (Prillwitz et al., 1989).
HamNoSys can be converted into SiGML in a
straightforward fashion. Unfortunately, despite its
many good and indeed unique properties, JASign-
ing is a piece of research software that in practice
has posed an insurmountable challenge to most
linguists without a computer science background.

The basic purpose of the Lite Speech2Sign
project can now be summarised in a sentence:
we wished to package JASigning together with
a state-of-the-art commercial speech recognition
platform and a basic machine translation frame-
work in a way that makes the combination easily
usable by sign language linguists who are not soft-
ware engineers. In the rest of the paper, we de-
scribe the result.
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3 The Lite Speech2Sign platform

The fact that the Lite Speech2Sign platform is in-
tended primarily for use by sign language experts
who may only have modest skills in computer sci-
ence has dictated several key design decisions. In
particular, 1) the formalism used is simple and
minimal and 2) no software need be installed on
the local machine: all processing (compilation, de-
ployment, testing) is performed on a remote server
accessed through the web interface.

3.1 Runtime functionality and formalism
At runtime, the basic processing flow is speech→
source language text → “sign table” → SiGML
→ signed animation. Input speech, source lan-
guage text and signed animation have their ob-
vious meanings, and we have already introduced
SiGML in the preceding section. At the input
end of the pipeline, speech recognition is carried
out using the Nuance Recognizer 10.2 platform,
equipped with domain-specific language models
compiled from the grammar. At the output end,
SiGML is converted into signed animation form
using the JASigning avatar system.

The “sign table”, the level which joins all these
pieces together, is an intermediate representa-
tion modelled on the diagrams typically used in
theoretical sign language linguistics to represent
signed utterances. A sign table is, concretely, a
matrix whose rows represent the different paral-
lel channels of signed language output (manual
activities, gaze, head movements, mouth move-
ments, etc). The only obligatory row is the one for
manual activities, which consists of a sequence of
“glosses”, each gloss referring to one manual ac-
tivity. There is one column for each gloss/manual
activity in the signed utterance.

The usefulness of this representation is depen-
dent on the appropriateness of the assumption that
sign language is timed so that each non-manual
activity can be assumed synchronous with some
manual activity. This has been shown to be true for
non-manual activities that serve linguistic func-
tions. Non-manual activities that serve purely af-
fective purposes, e.g., expressing anger or disgust,
are known to start slightly earlier than the sur-
rounding manual activities (Reilly and Anderson,
2002; Wilbur, 2000). A restriction imposed by
the low-level SiGML representation is that non-
manual activities cannot be extended across sev-
eral manual activities in a straightforward way;

include lsf_ch.csv
include visicast.txt

Domain
Name toy1
Client speech2sign_client
SourceLanguage french
TargetLanguages gloss head gaze \

eyebrows aperture mouthing
EndDomain

Utterance
Source je m’appelle $$name
Gloss MOI S_APPELER $$name
Head Nod Neutral Neutral
Gaze Neutral Neutral Neutral
Eyebrows Up Up Up
Aperture Wide Wide Wide
Mouthing mwe appel $$name
EndUtterance

TrPhrase $$name
Source claude
Gloss C L A U D E
Mouthing C L a u: d e
EndTrPhrase

TrPhrase $$name
Source marie
Gloss M A R I E
Mouthing L23 a R i e
EndTrPhrase

Figure 1: Toy speech2sign application definition.

however, workarounds have been introduced for
this (Ebling and Glauert, 2015). Experience with
SiGML has shown that it is capable of support-
ing signed animation of satisfactory quality (Smith
and Nolan, 2015).

The core translation formalism is a version
of Synchronous Context Free Grammar (SCFG;
(Aho and Ullman, 1969; Chiang, 2005)) adapted
to the peculiarities of sign language translation.
A complete toy application definition is shown in
Figure 1. The top-level Utterance rule trans-
lates French expressions of the form Je m’appelle
〈NAME〉 (“I am called 〈NAME〉”) to Swiss French
Sign Language (LSF-CH) expressions of a form
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that can be glossed as MOI S_APPELER 〈NAME〉
together with accompanying non-manual com-
ponents; for example, the manual activity MOI
(signed by pointing at one’s chest) is here per-
formed together with a head nod, raised eyebrows,
widened eyes, and a series of mouth movements
approximating the shapes used to say “mwe”.
The two TrPhrase rules translate the names
“Claude” and “Marie” into fingerspelled forms
with accompanying mouthings.

The mapping between the sign table and
SiGML levels is specified using three other types
of declarations, defined in the resource lexica
listed in the initial include lines. 1) Glosses
are associated with strings of HamNoSys sym-
bols; in this case, the resource lexicon used
is lsf_ch.csv, a CSV spreadsheet whose
columns are glosses and HNS strings for LSF-CH
signs. 2) Symbols in the non-manual rows (Head,
Gaze, etc) are mapped into the set of SiGML tags
supported by the avatar, according to the decla-
rations in the sign-language-independent resource
file visicast.txt. 3) The Mouthing line is
treated specially. Two types of mouthings are sup-
ported: “mouth pictures”, approximate mouthings
of phonemes, are written as SAMPA (Wells, 1997)
strings (e.g. mwe is a SAMPA string). It is also
possible to use the repertoire of “mouth gestures”
(mouth movements not related to spoken language
words, produced with teeth, jaw, lips, cheeks,
or tongue) supported by the avatar, again using
definitions taken from the visicast.txt re-
source file. For example, L23 denotes pursed lips
(Hanke, 2001).

The Domain unit at the top defines the name of
the translation app, the source language3 and sign
language channels, and the type of web client used
to display it.

3.2 Compile- and deploy-time functionality
The compilation process takes application de-
scriptions like the one above as input and trans-
forms them first into SCFG grammars, then into
GrXML grammars4, and finally into runnable Nu-
ance recognition grammars. The compiler also
produces tables of metadata listing associations

3Any recognition language supported by Nuance Recog-
nizer 10.2 can potentially be used as a source language; the
current version of the platform is loaded with language packs
for English, French, German, Italian, Japanese and Slove-
nian.

4GrXML is an open standard for writing speech recogni-
tion grammars.

between symbols and HamNoSys, SAMPA, and
SiGML constants.

Two main challenges needed to be addressed
when designing the compile-time functionality.
The first was to make the process of developing,
uploading, compiling, and deploying web-based
speech applications simple to invoke, so that these
operations could be performed without detailed
understanding of the underlying technology. The
second was to support development on a shared
server; here, it is critical to ensure that a developer
who uploads bad content is not able to break the
system for other users.

At an abstract level, the architecture is as fol-
lows. Content is divided into separate “names-
paces”, with each developer controlling one or
more namespaces; a namespace in turn contains
one or more translation apps. At the source level,
each namespace is a self-contained directory, and
each app a self-contained subdirectory.

From the developer’s point of view, the whole
upload/compile/deploy cycle reduces to a simple
progression across a dashboard with four tabs la-
beled “Select”, “Compile”, “Test”, and “Release”.
The developer starts the upload/compile/deploy
cycle by uploading one or more namespace direc-
tories over an FTP client and choosing one of them
from the “Select” tab.

The platform contains three separate servers,
respectively called compilation, staging, and de-
ployment. After selecting the app on the first
tab, the developer moves to the second one and
presses the “Compile” button to invoke the com-
pilation server. Successful compilation results
in a Nuance grammar recognition module and a
set of namespace-specific table entries; a separate
Nuance recognition grammar is created for each
namespace. As part of the compilation process,
a set of files is also created which list undefined
constants. These can be downloaded over the FTP
connection and are structured so as to make it easy
for the developer to fill in missing entries and add
the new content to the resource files.

When the app has compiled, the developer pro-
ceeds to the third, “Staging” tab, and presses the
“Test” button. This initiates a process which
copies the compiled recognition grammar, table
entries and metadata to appropriate places on the
staging server and registers the grammar as avail-
able for use by the recognition engine, after which
the developer can interactively test the application
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through the web interface. It is important that only
copying actions are performed by the “Staging”
server; experience shows that recompiling appli-
cations can often lead to problems if the compiler
changes after an application is uploaded.

When the developer is satisfied with the appli-
cation, they move to the fourth tab and press the
“Release” button. This carries out a second set of
copying operations which transfer the application
to the deployment server.

4 Initial experiences with the platform

The Lite Speech2Sign platform is undergoing ini-
tial testing; during this process, we have con-
structed half a dozen toy apps for the transla-
tion directions French → LSF-CH and German
→ Swiss German Sign Language, and one mod-
erately substantial app for French → LSF-CH.
Grammars written so far all have a flat structure.

Our central claims regarding the platform are
that it greatly simplifies the process of building a
speech-to-sign application and allows rapid con-
struction of apps which produce signed language
of adequate quality. To give some substance to
these statements, we tracked the construction of
a small French→ LSF-CH medical questionnaire
app and performed a short evaluation. The app
was built by a sign language expert whose main
qualifications are in sign language interpretation.
The expert began by discussing the corpus with
Deaf native signers, to obtain video-recorded ma-
terial on which to base development. They then
implemented rules and HNS entries, uploaded, de-
bugged, and deployed the content, and used the
deployed system to perform the evaluation.

Rule-writing typically required on the order of
ten to fifteen minutes per rule, using a method of
repeatedly playing the recorded video and enter-
ing first the gloss line and then the accompany-
ing non-manual lines. Uploading, debugging, and
deployment of the app was completely straight-
forward and took approximately one hour. The
most time-consuming part of the process was im-
plementing HNS entries for signs missing from
the current LSF-CH HNS lexicon. The time re-
quired per entry varied a great deal depending on
the sign’s complexity, but was typically on the or-
der of half an hour to two hours. This part of the
task will of course become less important as the
HNS lexicon resource becomes more complete.

The evaluation was carried out with five Deaf

subjects and based on recommendations for sign
language animation evaluation studies by Kacorri
et al. (2015). Each subject was first given a short
demographic questionnaire. Subjects were then
asked to watch seven outputs from the app and
echo them back, either in signed or mouthed form,
to check the comprensibility of the app’s signed
output. They then answered a second short ques-
tionnaire which asked for their overall impres-
sions. The result was encouraging: although none
of the subjects felt the signing was truly fluent and
human-like (a frequent comment was “artificial”),
they all considered it grammatically correct and
perfectly comprehensible.

5 Conclusions and further directions

Although the Lite Speech2Sign platform is de-
signed to appear very simple and most of its run-
time processing is carried out by the third-party
JASigning and Nuance components, it represents
a non-trivial engineering effort. The value it adds
is that it allows sign language linguists who may
have only modest computational skills to build
translation applications that produce synthesized
signed language, using a tool whose basic func-
tioning can be mastered in two or three weeks. By
including speech recognition, these applications
can potentially be useful in real situations.

In a research context, the platform opens up new
possibilities for investigation of the grammar of
signed languages. If the linguist wishes to inves-
tigate the productivity of a hypothesized syntac-
tic rule, they can quickly implement a grammar
fragment and produce a set of related signed utter-
ances, all signed uniformly using the avatar. Our
initial experiences, as described in Section 4, sug-
gest that rendering quality is sufficient to obtain
useful signer judgements.

Full documentation for Lite Speech2Sign is
available (Rayner, 2016). The platform is cur-
rently in alpha testing; we plan to open it up for
general use during Q3 2016. People interested in
obtaining an account may do so by mailing one of
the authors of this paper.
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Abstract

In word alignment certain source words
are only needed for fluency reasons and
do not have a translation on the target
side. Most word alignment models as-
sume a target NULL word from which
they generate these untranslatable source
words. Hypothesising a target NULL
word is not without problems, however.
For example, because this NULL word has
a position, it interferes with the distribu-
tion over alignment jumps. We present a
word alignment model that accounts for
untranslatable source words by generat-
ing them from preceding source words.
It thereby removes the need for a tar-
get NULL word and only models align-
ments between word pairs that are actu-
ally observed in the data. Translation ex-
periments on English paired with Czech,
German, French and Japanese show that
the model outperforms its traditional IBM
counterparts in terms of BLEU score.

1 Introduction

When the IBM models (Brown et al., 1993) were
designed, some way of accounting for words that
likely have no translation was needed. The mod-
ellers back then decided to introduce a NULL
word on the target (generating) side1. All words
on the source side without a proper target transla-
tion would then be generated by that NULL word.

While this solution is technically valid, it ne-
glects that those untranslatable words are required
for source fluency. Moreover, the NULL word,
although hypothetical in nature, does have a po-
sition. It is well-known that this NULL posi-

1The target side is often identified with English and the
source side is usually taken to be French.

tion is problematic for distortion-based alignment
models. Alignments to NULL demand a special
treatment as they would otherwise induce very
long jumps that one does not usually observe in
distortion-based alignment models. Examples of
this can be found in Vogel et al. (1996), who drop
the NULL word entirely and thus force all source
words to align lexically, and Och and Ney (2003),
who choose a fixed NULL probability.

In the present work, we introduce a family of
IBM-style alignment models that can express de-
pendencies between translated and untranslated
source words. The models do not use NULL
words and instead allow untranslatable source
words to be generated from translated words in
their context. This is achieved by modelling
source word collocations. From a technical point
of view the model can be seen as a mixture of an
alignment and a language model.

2 IBM models 1 and 2

Here, we quickly review the IBM alignment mod-
els 1 and 2 (Brown et al., 1993). We assume a ran-
dom variable E over the English (target) vocabu-
lary2, a variable F over the French (source) vocab-
ulary and a variable A over alignment links3. The
IBM models assign probabilities to alignment con-
figurations and source sentences given the target
side. Under the assumption that all source words
are conditionally independent given the alignment
links, these probabilities factorise as

P (fm
1 , a

m
1 |el0) = P (am

1 )
m∏

j=1

P (fj |eaj ) (1)

where xk
1 is a vector of outcomes x1, . . . , xk and

eaj denotes the English word that the French word
2Crucially, this vocabulary includes a NULL word.
3We denote realisations of random variables by the corre-

sponding lower case letters.

169



in the jth position (fj) is aligned to under am
1 .

In IBM model 1 P (am
1 ) is uniform. In IBM

model 2, all alignment links aj are assumed to
be independent and follow a categorical distribu-
tion. Here, we choose to parametrise this categori-
cal based on the distance between the two words to
be aligned, as has been done by Vogel et al. (1996)
and Liang et al. (2006). Thus, in our IBM model 2

P (am
1 ) =

m∏
j=1

P (aj) =
m∏

j=1

P

(
i−
⌊
jl

m

⌋)
(2)

where i is the position of the English word that aj

links to and the values l and m stand for the target
and source sentence lengths. Notice that there is a
target position i = 0 for the NULL word. Align-
ment to this NULL position often causes unusually
long alignment jumps.

3 Removing the NULL word

3.1 Model description
Our model consists of an alignment model com-
ponent (which is either IBM model 1 or 2 without
NULL words) and a language model component.
It also contains a random variable Z that indicates
which component to use. If Z = 0 we use the
alignment model, if Z = 1 we instead use the lan-
guage model. We generate each zj conditional on
fj−1. By making the outcome zj depend on fj−1,
we allow the model to capture the tendency of in-
dividual source words to be part of a collocation,
i.e. to be followed by a closely related word. A
similar strategy has been employed for topic mod-
elling by Griffiths et al. (2007).

When generating the source side, the model
does the following for each source word fj :

1. Depending on the previous source word fj−1,
draw zj .

2. If zj = 1, generate fj from fj−1 and choose
aj according to P (aj). Otherwise, if zj = 0,
generate fj from the target side and choose aj

according to the probability that it has under
the relevant alignment model without a target
NULL word.

Our model thus induces a joint probability dis-
tribution of the form

P (fm
1 , a

m
1 , z

m
1 |el1) (3)

= P (am
1 )

m∏
j=1

P (zj |fj−1)P (fj |eaj , fj−1, zj)

ffprv

az

θf

q

eSl
1

θe

θa

α

β

γ

s, r

Sm

Ve

Vf

Vf D

S

Figure 1: A graphical representation of our model
for S sentence pairs. We use Vf/e to denote the
source/target vocabulary sizes andD to denote the
number of possible alignment link configurations.
Furthermore, Sm/l is the number of source/target
words in the current sentence and fprv the source
word preceding the one that we currently generate.

where it is crucial to note that there is no E0

variable, standing for the NULL word, anymore.
Therefore, jumps to a NULL position do not need
to be modelled. Notice further that the formula-
tion of our model is general enough to be readily
extensible to an HMM alignment model (Vogel et
al., 1996).

Depending on the value of zj , Fj is distributed
either according to an alignment (4) or a language
model4 (5).

P (fj |eaj , fj−1, zj = 0) = P (fj |eaj ) (4)

P (fj |eaj , fj−1, zj = 1) = P (fj |fj−1) (5)

3.2 The full model
Our full model is a Bayesian model, meaning that
we treat all model parameters as random variables
that are drawn from prior distributions. A graphi-
cal depiction of the model can be found in Figure
1. We impose Dirichlet priors on the translation
(θe), language model (θf ) and distortion parame-
ters (θa). This has been done before and improved
the standard IBM models.

In order to be able to bias the model against us-
ing the language model component (5) too often
and instead make it prefer the alignment model
component (4), we impose a Beta prior on the
Bernoulli distributions over component choices.
In effect, the model will only explain a source
word with the language model if there is a lot of

4We use a bigram LM to avoid conditioning Z on longer
(n− 1)-grams.
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evidence that this word cannot be translated from
the target side. The full model can be summarised
as follows:

Fj |e, aj , zj = 0 ∼ Cat(θeaj ) Θeaj ∼ Dir(α)
Fj |fj−1, zj = 1 ∼ Cat(θfj−1

) Θfj−1
∼ Dir(β)

Zj |fj−1 ∼ Bernoulli(q) Q ∼ Beta(s, r) .

For IBM model 1, Aj is uniformly distributed
whereas for model 2 we have

A ∼ Cat(θa) Θa ∼ Dir(γ) .

3.3 Inference

We use a Gibbs sampler to perform inference of
the alignment and choice variables. Since our pri-
ors are conjugate to the model distributions, we
integrate over the model parameters, giving us a
collapsed sampler5. The sampler alternates be-
tween sampling alignment links A and component
choices Z.

The predictive posterior probabilities for Zj =
0 and Zj = 1 are given in Equations (6) and (7)
(up to proportionality). We use c(·) as a (con-
ditional) count function that counts how often an
outcome has been observed in a given context. We
furthermore use Vf to denote the French (source)
vocabulary size. To ease notation, we also in-
troduce the context set C−Xj which contains the
current values of all variables in our model except
Xj and the setH which simply contains all hyper-
parameters.

P
(
Zj = 0|C−Zj ,H

) ∝ (6)

(c(z = 0|fj−1) + s)P (aj)
c(fj |eaj , z = 0) + α

c(eaj |z = 0) + αVf

P
(
Zj = 1|C−Zj ,H

) ∝ (7)

(c(z = 1|fj−1) + r)
c(fj |fj−1, z = 1) + β

c(z = 1|fj−1) + βVf

When Zj = 0, the predictive probability for align-
ment link Aj is proportional to Equation (8).

P
(
aj |C−Zj ,−Aj , Zj = 0,H) ∝ (8)

P (aj)
c(fj |eaj , z = 0) + α

c(eaj |z = 0) + αVf

5Derivations of samplers similar to ours can be found in
the appendices of Mermer et al. (2013) and Griffiths et al.
(2007). We omit the derivation here for space reasons.

When Zj = 1, it is simply proportional to P (aj).
In the case of IBM model 1, P (aj) is a constant.
For IBM model 2, we use

P (aj) ∝ c
(
i−
⌊
jl

m

⌋)
+ γ .

where l and m are the target and source sentence
lengths. Notice that target positions start at 1 as
we do not use a NULL word.

Notice that a naı̈ve implementation of our sam-
pler is unpractically slow. We therefore augment
the sampler with an auxiliary variable (Tanner and
Wong, 1987) that uniformly chooses only one pos-
sible new assignment per sampled link. The sam-
pling complexity, which would normally be lin-
ear in the size of the target sentence, thus becomes
constant. In practice this speed up the sampler by
several orders of magnitude, making our aligner
as fast as Giza++. Unfortunately, this strategy also
slightly impairs the mobility of our sampler.

3.4 Decoding
Our samples contain assignments of the A and Z
variables. If for a word fj we have zj = 1, we
treat the word as not aligned. We then use maxi-
mum marginal decoding (Johnson and Goldwater,
2009) over alignment links to generate final word
alignments. This means that we align each source
word to the target word it has been aligned to most
often in the samples. If the word was unaligned in
most samples, we leave it unaligned in the output
alignment.

4 Experiments and results

We present translation experiments on English
paired with German, French, Czech and Japanese,
thereby covering four language families. We com-
pare our model and the Bayesian IBM models 1
and 2 of Mermer et al. (2013) against IBM model
2 as a baseline.

4.1 Experiments
Data We use the news commentary data from
the WMT 2014 translation task6 for German,
French and Czech paired with English. We use
newstest-2013 as development data and we use the
newstest-2014 for testing. We use all available
monolingual data from WMT 2014 for language
modelling. All data are truecased and sentences

6http://statmt.org/wmt14/
translation-task.html
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Model En-De En-Fr En-Cs En-Ja De-En Fr-En Cs-En Ja-En
Brown et al. (model 2) 14.56 27.16 13.74 25.78 18.12 26.69 18.77 23.29
Mermer et al. (model 1) -0.09 -0.64 +0.38 -0.13 +0.32 -0.92 +0.66 -0.31
Mermer et al. (model 2) +1.07 -0.17 +1.76 +0.39 +1.63 -1.04 +1.63 -0.21
This work (model 1) -0.03 -0.79 -0.42 +0.15 +0.29 -1.49 +0.45 -0.65
This work (model 2) +0.92 +1.32 +1.66 +1.69 +1.73 +2.01 +1.42 +2.24
Giza +0.96 +0.23 +1.58 +2.97 +2.27 +2.26 +1.96 +2.73
fastAlign +0.88 +0.70 +1.47 +1.97 +2.27 +1.90 +1.86 +2.63

(a) Directional: alignments obtained in target-to-source direction.
Model En-De En-Fr En-Cs En-Ja De-En Fr-En Cs-En Ja-En
Brown et al. (model 2) +0.84 +0.77 +1.14 +3.02 +1.80 +1.77 +1.15 +2.95
Mermer et al. (model 1) +0.52 +0.80 +1.30 +3.19 +1.51 +1.60 +1.77 +2.44
Mermer et al. (model 2) +0.63 +0.33 +1.94 +3.00 +2.02 +1.22 +2.34 +2.48
This work (model 1) +0.39 +0.23 +1.31 +3.33 +1.61 +0.98 +1.87 +2.56
This work (model 2) +1.07 +1.47 +2.08 +2.65 +2.30 +2.19 +2.13 +3.21
Giza +1.59 +0.87 +1.70 +4.24 +2.54 +2.08 +2.36 +3.94
fastAlign +1.39 +1.23 +1.87 +2.47 +2.44 +2.06 +2.21 +3.58

(b) Symmetrised: alignments obtained in both directions independently and heuristically symmetrised (grow-diag-final-and).

Table 1: Translation results from and into English. Alignments in the top (1a) and bottom (1b) tables
were obtained in the target-to-source direction and symmetrised, respectively. Differences are computed
with respect to the directional IBM model 2 in its original parameterisation (Brown et al., 1993). The
best Bayesian model in each column is boldfaced.

with more than 100 words discarded as is stan-
dardly done in SMT.

The Japanese training data consist of 200.000
randomly extracted sentence pairs from the
NTCIR-8 Patent Translation Task. The full data
are used for language modelling. We use the
NTCIR-7 dev sets for tuning and the NTCIR-9 test
set for testing.7

Training The maximum likelihood IBM model
2 is initialized with model 1 parameter estimates
and trained for 5 EM iterations. Following Mer-
mer and Saraçlar (2011), we initialize the Gibbs
samplers of all Bayesian models with the Viterbi
alignment from IBM model 1. We run each sam-
pler for 1000 iterations and take a sample after ev-
ery 25th iteration. We do not use burn-in.8

Hyperparameters All Bayesian models are
trained with α = 0.0001 and β = 0.0001 to
induce sparse lexical distributions. We also set
s = 1 and r = 0.1 when IBM1 is the align-
ment component in our model. This has the ef-
fect of biasing the model towards using the align-

7The Japanese data was provided to us by a colleague with
the pre-processing steps already performed, with sentences
shortened to at most 40 words. Our algorithm can handle sen-
tences of any length and there is actually no need to restrict
the sentence lengths.

8Burn-in is simply a heuristic that is not guaranteed to
improve the samples in any way. See http://users.
stat.umn.edu/˜geyer/mcmc/burn.html for fur-
ther details.

ment component. For the IBM2 version we even
set r = 0.01 since IBM2 is a more trustworthy
alignment model. For IBM2, we furthermore set
γ = 1 to obtain a flat distortion prior.

Observe that experiments presented here use
the same fixed hyperparameters for all language
pairs. We tried to add another level to our model
by imposing Gamma priors on the hyperparam-
eters. The hyperparameters were then inferred
using slice sampling after each Gibbs iteration.
When run on the German-English and Czech-
English data, this strategy increased the posterior
probability of the states visited by our sampler but
had no effect on BLEU. This may indicate that
either the hand-chosen hyperparameters are ade-
quate for the task or that the model generally per-
forms well for a large range of hyperparameters.

Translation We train Moses systems (Koehn
et al., 2007) with 5-gram language models with
modified Kneser-Ney-smoothing using KenLM
(Heafield et al., 2013) and orientation-based lex-
icalised reordering. We tune the systems with
MERT (Och, 2003) on the dev sets. We report the
BLEU score (Papineni et al., 2002) for all models
averaged over 5 MERT runs.

4.2 Results

We report the translation results in Tables (1a)
and (1b). Results of the full Giza++ pipeline and
fastAlign (Dyer et al., 2013) are reported as a com-
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parison standard. All symmetrised results were
obtained using the grow-diag-final-and
heuristic.

Using IBM2 as an alignment component, our
model mostly outperforms the standard IBM mod-
els and their Bayesian variants. Importantly, the
improvement that our model 2 achieves over its
model 1 variant is much larger than the difference
between the corresponding models of Mermer et
al. (2013). This indicates that our model makes
better use of the distortion distribution that is not
altered by NULL alignments. We also observe that
our model gains relatively little from symmetrisa-
tion, likely because it is a very strong model al-
ready. It is interesting that although our model 2
does not use fertility parameters or dependencies
between alignment links, it often approaches the
performance of Giza which does use these fea-
tures. Moreover, it also approaches the perfor-
mance of fastAlign which does not use fertility nor
dependencies between alignment links, but has a
stronger inductive bias with respect to distortion.

5 Discussion and future work

We have presented an IBM-style word alignment
model that does not need to hypothesise a NULL
word as it explains untranslatable source words by
grouping them with translated words. This also
leads to a cleaner handling of distortion probabili-
ties.

In our present work, we have only considered
IBM models 1 and 2. As we have mentioned al-
ready, our model can easily be extended with the
HMM alignment model. We are currently explor-
ing this possibility. Our models also allow sym-
metrisation (Liang et al., 2006) of all translation
and distortion parameters where before the NULL
distortion parameters had to be fixed. We therefore
plan to extend them towards model-based instead
of heuristic alignment symmetrisation.

A limitation of our model is that it is only ca-
pable of modelling left-to-right linear dependen-
cies in the source language. In languages like Ger-
man or English, however, where an adjective or
determiner is selected by the following noun, this
may not be appropriate to model selection biases
amongst neighbouring words. An interesting ex-
tension to our model is thus to add more structure
to it such that it will be able to capture more com-
plex source side dependencies.

Another concern is the inference in our model.

Using the auxiliary variable sampler, inference be-
comes very fast but may sacrifice performance.
This is why we are interested in improving the
inference method, e.g. by using a more mobile
sampler or by employing a variational Bayes algo-
rithm.

The software used in our experiments can
be downloaded from https://github.com/
philschulz/Aligner.
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Abstract

This work explores the use of unsu-
pervised morph segmentation along with
statistical language models for the task
of vocabulary expansion. Unsupervised
vocabulary expansion has large poten-
tial for improving vocabulary coverage
and performance in different natural lan-
guage processing tasks, especially in less-
resourced settings on morphologically rich
languages. We propose a combination of
unsupervised morph segmentation and sta-
tistical language models and evaluate on
languages from the Babel corpus. The
method is shown to perform well for all
the evaluated languages when compared to
the previous work on the task.

1 Introduction

Language modelling for different natural language
processing tasks like speech recognition, machine
translation or optical character recognition require
large training corpora to achieve good language
model estimates and high enough vocabulary cov-
erage. Sometimes such resources are not readily
available or easily acquirable. This is especially
the case for the many less-resourced languages.
In the case of morphologically rich languages,
these issues are emphasized, as words appear in
many forms, thus increasing the required vocabu-
lary size and the data sparsity. Automatic speech
recognition of spontaneous speech is a task with
some special characteristics, as speech transcrip-
tions are expensive to acquire. Taking all these
factors into account, the importance of making the
most out of the available resources becomes evi-
dent.

This work was done while the author was visiting the
Saarland University Spoken Language Systems group

Previous work on handling out-of-vocabulary
(OOV) words in automatic speech recognition
have included explicit OOV word modelling and
confidence measures (Hazen and Bazzi, 2001)
and hybrid word-subword language modelling for
OOV word detection (Yazgan and Saraçlar, 2004).
Speech recognition by directly using optimized
subword units has also (Kneissler and Klakow,
2001) proven a good approach for speech recog-
nition of a morphologically rich language.

In this work, we study unsupervised vocabu-
lary expansion for conversational speech recogni-
tion of morphologically rich languages in a less-
resourced setting. We expand the recognition vo-
cabulary, and thus lower the OOV rate, by generat-
ing new word forms. Two recent works also target
the unsupervised vocabulary expansion.

In (Rasooli et al., 2014), an unsupervised mor-
phological segmentation was inferred from the
training corpus using the Morfessor Categories-
MAP (Creutz and Lagus, 2007) method. The
prefix-stem-suffix structure estimated by the
model was then represented as a finite-state-
transducer for sampling new word forms. Differ-
ent reranking schemes using a bigram language
model and a letter trigraph language model were
evaluated.

The Kaldi speech recognition package (Povey
et al., 2011) includes an approach (Trmal et al.,
2014) for vocabulary expansion. In this approach,
the provided syllable segmented pronunciation
lexicon is used as the basis for the expansion. An
n-gram model is trained over the syllable segmen-
tation and syllabic words are generated from the
model. Finally a phoneme-to-grapheme mapping
is performed to obtain the grapheme form for the
words.

In our approach, statistical language models
are trained over a morph segmentation, which is
learned unsupervisedly from the data. Words are
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sampled from the language models and ordered
according to the probabilities given by the lan-
guage models. We evaluate the method on seven
morphologically rich languages from the Babel
(Harper, 2013) corpus and compare to the previ-
ously suggested approaches.

2 Suggested method

We present a combination of unsupervised morph
segmentation and statistical language models for
unsupervised vocabulary expansion. The sug-
gested approach operates in four steps: unsu-
pervised morph segmentation, statistical language
model training, sampling of new word types and
reranking of the sampled words. The phases are
described in more detail in the corresponding sub-
sections.

2.1 Unsupervised morph segmentation

Morfessor Baseline (Creutz and Lagus, 2002) is a
method for unsupervised morphological segmen-
tation. The algorithm optimizes a two-part min-
imum description length code, finding a balance
between the cost of encoding the training corpus
and the lexicon, as in Formula 1.

arg min
θ
L(x, θ) = arg minL(x|θ) + L(θ) (1)

The corpus encoding is based on a unigram
model. A so-called α-term may be used for fine-
tuning the corpus encoding cost. For the experi-
ments in this work, a recent Python implementa-
tion Morfessor 2.0 (Smit et al., 2014) was used.

2.2 Statistical language models over morphs

As statistical language models, two state-of-the-
art models were selected. These language models
were trained on a corpus, where one segmented
word was treated as what would in normal lan-
guage model training be a sentence. The train-
ing was done using log-weighted word frequen-
cies, thus some words appearing multiple times
in the training corpus. The rationale of the log-
weighting was to slightly emphasize the most
common words. As a last step, the order of the
training words was randomized.

The first model was a trigram model trained
with the modified Kneser-Ney smoothing (Kneser
and Ney, 1995) using three discounts per order.
The discount parameters could normally be op-
timized on a held-out-set, but here leave-one-out

estimates were used, as it is not clear what would
in this case constitute a reasonable held-out set.
The model was trained using the VariKN software
package (Siivola et al., 2007).

It has recently been shown, that the recurrent
neural network language models may efficiently
be trained using the backpropagation algorithm
(Mikolov et al., 2010), making it also an appealing
choice for language modelling. As the second lan-
guage model, a recurrent neural network language
model was trained using the RNNLM toolkit. The
words were treated as independent of the preceed-
ing words in both the model training and the word
sampling phases.

2.3 Sampling and reranking

The initial set of candidate words was obtained by
sampling separately from both the n-gram model
and the recurrent neural network language model.
These word lists were then merged. It is very im-
portant to rerank the obtained word list, as the goal
is to improve the OOV rate as much as possible
with introducing as little incorrect words as possi-
ble to the vocabulary. As the final estimate on the
word likelihood, the linear interpolation of these
two model scores was used. The linear interpola-
tion was applied morph-wise. The list of the sam-
pled words was sorted in descending order with
the linearly interpolated likelihood as the score.

3 Experiments

3.1 Training corpus

The vocabulary expansion experiments were con-
ducted on the Babel corpus (DARPA, 2013). The
experiments were run on the following set of
languages: Assamese, Bengali, Pashto, Tagalog,
Tamil, Turkish and Zulu. The training corpora
consist mainly of conversation transcriptions, but
also additional scripted data is provided. Including
the scripted training data in general helps to lower
the OOV rate. The OOV reduction rate reachable
by the vocabulary expansion then becomes, with
some exceptions, slightly slower. Statistics of the
datasets are in the Table 1.

As preprocessing, all special symbols were re-
moved from the texts. Asterisk symbols are used
to denote misspellings in cases where the real
word was identifiable. Asterisk symbols were re-
moved and the words included in the training cor-
pus. Dash symbols in the beginning and end of
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Language Training data Development data
Types Tokens Types Tokens Type OOV% Token OOV%

Assamese 8738 73284 7309 66357 49.75 8.36
Bengali 9507 81564 7844 70724 50.90 8.56
Pashto 7027 115225 6174 108273 44.91 4.26
Tagalog 6370 69791 5614 64506 55.61 8.13
Tamil 16284 76916 14279 70429 65.08 16.89
Turkish 12147 77310 9944 67171 57.25 12.53
Zulu 16008 65821 13848 57217 68.88 21.91

Table 1: Statistics of the datasets used in the experiments. The scripted training corpus is included.

a word are used to indicate hesitations. These
words were removed from the training corpus.
Only proper names were written in uppercase in
the transcriptions, so these words were kept intact.

3.2 Expansion model

As statistical language models, we evaluated a tri-
gram language model, a recurrent neural network
language model, and the linear interpolation of
these models. 10 million new distinct word types
were sampled from both the models separately.
These lists were then merged and reranked as ex-
plained in the Section 2.3.

The model parameters were optimized on se-
lected languages and these parameters were used
in all the experiments. For the recurrent neural net-
work language model, the number of classes was
set to 50 and the hidden layer size to 20. These
values were reasonably close to optimum for all
the languages.

The suitable α-value for the Morfessor Baseline
segmentation was studied. With the default value
of 1.0, the method seemed to suffer from a slight
undersegmentation. To encourage the method to
segment more, the α value was set to 0.8. This
setting was equal or better for all the evaluated lan-
guages.

When evaluating the language models as stan-
dalone models, the trigram model provided bet-
ter generation accuracy for 4 of the in total 7 lan-
guages and the recurrent neural network language
model for 3 of the languages. Linear interpolation
of the models was without exceptions the most ac-
curate model. The linear interpolation weight was
set to 0.5.

Figure 1 shows an example of the OOV rate de-
velopment as a function of the extended vocabu-
lary size for Turkish. The rapid improvement of
the OOV rate for small extensions and the superi-

Figure 1: Token-based OOV rate as a function of
the extended vocabulary size for Turkish

0 500000 1000000 1500000 2000000 2500000 3000000
Extended vocabulary size

0.04

0.06

0.08

0.10

0.12

O
O

V
 r

at
e

Trigram model
Recurrent neural network model
Linear interpolation

ority of the linearly interpolated model are charac-
teristics shared by all the languages.

3.3 Comparison to the previous work
We compared the approach to the previous results
in (Rasooli et al., 2014). They reported the results
for a vocabulary expansion of 50k best words. Ta-
ble 2 compares the type-based expansion results
and Table 3 the token-based expansion results.
Models for these comparisons were trained with
the scripted data included.

Language Rasooli et al. Suggested method
Assamese 28.46 31.93
Bengali 24.75 33.20
Pashto 19.43 32.95
Tagalog 16.81 21.27
Tamil - 16.27
Turkish 14.79 28.32
Zulu 13.87 21.18

Table 2: Type-based OOV reduction rates for the
50k best words
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Language Rasooli et al. Suggested method
Assamese 29.43 35.17
Bengali 25.61 35.16
Pashto 21.27 35.55
Tagalog 16.88 23.75
Tamil - 19.24
Turkish 17.82 31.89
Zulu 15.67 23.62

Table 3: Token-based OOV reduction rates for the
50k best words

Language Vocabulary size Kaldi Suggested
Assamese 845k 26.4 21.2
Bengali 834k 27.4 22.0
Pashto 494k 26.7 20.3
Tagalog 581k 37.5 33.2
Tamil 896k 45.2 38.0
Turkish 704k 37.1 28.4
Zulu 818k 40.7 37.0

Table 4: Type-based OOV rate comparison to
Kaldi

Language Vocabulary size Kaldi Suggested
Assamese 845k 4.3 3.5
Bengali 834k 4.6 3.6
Pashto 494k 2.4 1.9
Tagalog 581k 5.3 4.6
Tamil 896k 11.2 9.1
Turkish 704k 7.9 6.0
Zulu 818k 12.5 11.4

Table 5: Token-based OOV rate comparison to
Kaldi

We ran the Kaldi vocabulary expansion in the
limited language pack setting as in (Trmal et al.,
2014). In the default setting, around 1M dis-
tinct syllabic words are generated and converted
by a phoneme-to-grapheme mapping to obtain the
graphemic word form. Table 4 compares the type-
based expansion results and Table 5 the token-
based expansion results for a vocabulary expan-
sion of similar size (in graphemic words). The
scripted data was not used in training the models
for these comparisons.

3.4 OOV reduction and type to token ratio

The OOV reduction was evaluated as a function
of the type/token ratio. This analysis may provide
information about the properties of the evaluated

languages. The token-based analysis is in the Fig-
ure 2 and the type-based analysis in the Figure 3.
As the type/token ratio is dependent on the number
of tokens, these values are computed on a matched
number of tokens (65821) from the training cor-
pus. The plots show that there are similarities, but
also big differences between the languages. Most
notable exceptions seem to be Tamil and Tagalog.
For Tamil, the number of the most frequent words
was lower with a slightly more even tail of less
frequent words. For Tagalog, the average number
of morphs per word as estimated by the Morfessor
Baseline algorithm was 2.8, which was the highest
value among all the languages. Still, the number
of distinct word types in the training set was the
lowest. These properties seem to play a role in the
different vocabulary expansion characteristics.

Figure 2: Token-based OOV reduction rate for 50k
word expansion as a function of type/token ratio
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Figure 3: Type-based OOV reduction rate for 50k
word expansion as a function of type/token ratio
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4 Discussion

This work concerned the use of unsupervised mor-
phological segmentation and statistical language
models for the task of vocabulary expansion. Un-
supervised vocabulary expansion has large poten-
tial for reducing OOV-rates and improving results
in NLP tasks especially in less-resourced settings
for morphologically rich languages.

The suggested method was evaluated on some
of the morphologically rich languages of the Ba-
bel corpus in the limited language pack condition.
The performance of the method was evaluated in
terms of the improvement of the OOV-rate on the
development set. The suggested combination of
segmentation and interpolation of statistical lan-
guage models provided to our understanding the
best results on the task so far. Compared to (Ra-
sooli et al., 2014), our approach differed in that
the statistical language models were used directly
in the word generation phase. As opposed to (Tr-
mal et al., 2014), our approach operated purely on
the grapheme level.

It is perhaps noteworthy, that the methods are
not that different from what one would use in a
normal language modelling scenario for automatic
speech recognition. Morfessor Baseline (Creutz
and Lagus, 2002) has been seen to give good re-
sults in morph-based speech recognition (Creutz et
al., 2007) when used along with standard n-gram
models. If a larger training corpus is available, op-
timizing unigram likelihood more directly may be
a good choice (Varjokallio et al., 2013).

Morph segmentations provided by the Morfes-
sor Flatcat (Grönroos and Virpioja, 2014) -method
were also evaluated for this work, but Morfessor
Baseline was found to perform better. It is pos-
sible, that the tradeoff between the lexicon cost
and the corpus encoding cost, as given by the
Minimum Description Length -principle, is impor-
tant for the modelling accuracy in this type of a
less-resourced scenario. Morfessor Flatcat will in
most cases segment more accurately according to
the grammatical morph boundaries. This is likely
a more valuable property for statistical machine
translation than for the present task.

The linear interpolation of an n-gram model
and a recurrent neural network language model
provides at the moment state-of-the-art modelling
accuracy in many statistical language modelling
tasks. Some forms of class n-grams were also
evaluated for this work. Sampling from a class n-

gram provided many complementary word forms,
not easily generated by the other models. How-
ever, it became successively harder to improve the
OOV reduction rates by a combination of three
models.

This work concentrated only on methods for
expanding the vocabulary. Naturally some lan-
guage modelling methods are required to utilize
these generated words in speech recognition or
some other task. One possibility is to extend
the unknown symbol and improve the obtained
estimates via class n-gram models (Trmal et al.,
2014). Morph-based language models may be uti-
lized using a constrained vocabulary as suggested
in (Varjokallio and Kurimo, 2014). In this case
word-level pronunciation variants may be applied.
Performing the vocabulary expansion may also
provide insights into unlimited vocabulary speech
recognition (Kneissler and Klakow, 2001; Hir-
simäki et al., 2006) with morph language mod-
els. Finding units with consistent grapheme-to-
phoneme mapping may, however, be challenging
for some of the Babel languages.

Regarding the type of approaches considered in
this work, it is possible that advances in either un-
supervised morph segmentation or statistical lan-
guage models could bring about further improve-
ments in the expansion accuracy. Unsupervised
learning of morphological paradigms is also a po-
tential direction when seeking for improvements
in the task.

5 Conclusion

Unsupervised vocabulary expansion has great po-
tential for reducing out-of-vocabulary rates and
improving results in different natural language
processing tasks, including ASR. In this work,
an approach comprising of unsupervised morph
segmentation and statistical language models was
suggested. The model was evaluated on the Babel
languages and was shown to give large improve-
ments compared to the previous work on the task.
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Abstract

Here we seek to automatically identify
Hungarian patients suffering from mild
cognitive impairment (MCI) based on
linguistic features collected from their
speech transcripts. Our system uses ma-
chine learning techniques and is based on
several linguistic features like characteris-
tics of spontaneous speech as well as fea-
tures exploiting morphological and syn-
tactic parsing. Our results suggest that
it is primarily morphological and speech-
based features that help distinguish MCI
patients from healthy controls.

1 Background

Mild cognitive impairment (MCI) is a heteroge-
neous set of symptoms that are essential in the
early detection of Alzheimer’s Disease (AD) (Ne-
gash et al., 2007). Symptoms such as language
dysfunctions may occur even nine years before the
actual diagnosis (APA, 2000). Thus, the language
use of the patient may often indicate MCI well be-
fore the clinical diagnosis of dementia.

MCI is known to influence the (spontaneous)
speech of the patient via three main aspects. First,
verbal fluency declines, which results in longer
hesitations and a lower speech rate (Roark et al.,
2011). Second, the lexical frequency of words and
part-of-speech tags may also change significantly
as the patient has problems with finding words
(Croot et al., 2000). Third, the emotional respon-
siveness of the patient was also observed to change
in many cases (Lopez-de Ipiña et al., 2015).

For many patients, MCI is never recognized as
in the early stage of the disease it is not trivial
even for experts to detect cognitive impairment:
according to Boise et al. (2004), up to 50% of MCI

patients are never diagnosed with MCI. Although
there are well known tests such as the Mini Men-
tal Test, they are usually not sensitive enough to
reliably filter out MCI in its early stage. Tests on
linguistic memory prove more efficient in detect-
ing MCI, but they tend to yield a relatively high
number of false positive diagnoses (Roark et al.,
2011).

Although language abilities are impaired from
an early stage of the disease, evaluating the lan-
guage capacities of the patients has only received
marginal attention when diagnosing AD (Bayles,
1982). However, if diagnosed early, a proper med-
ical treatment may delay the occurrence of other
(more severe) symptoms of dementia to the latest
extent possible (Kálmán et al., 2013).

Here we seek to automatically identify Hungar-
ian patients suffering from mild cognitive impair-
ment based on their speech transcripts. Our sys-
tem uses machine learning techniques and is based
on several features like linguistic characteristics of
spontaneous speech as well as features exploiting
morphological and syntactic parsing.

Recently, several studies have reported results
on identifying different types of dementia with
NLP and speech recognition techniques. For in-
stance, automatic speech recognition tools were
employed in detecting aphasia (Fraser et al.,
2013b; Fraser et al., 2014; Fraser et al., 2013a)
and mild cognitive impairment (Lehr et al., 2012),
and Alzheimer’s Disease (Baldas et al., 2010; Satt
et al., 2014). Jarrold et al. (2014) distinguished
four types of dementia on the basis of spontaneous
speech samples. Lexical analysis of spontaneous
speech may also indicate different types of demen-
tia (Bucks et al., 2000; Holmes and Singh, 1996)
and may be exploited in the automatic detection
of patients suffering from dementia (Thomas et al.,
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2005). As for analyzing written language, changes
in the writing style of people may also refer to de-
mentia (Garrard et al., 2005; Hirst and Wei Feng,
2012; Le et al., 2011).

Concerning the automatic detection of MCI in
Hungarian subjects, Tóth et al. (2015) experi-
mented with speech recognition techniques. How-
ever, to the best of our knowledge, this is the first
attempt to identify MCI on the basis of written
texts, i.e. speech transcripts for Hungarian.

In the long run, we would like to develop a sys-
tem that can automatically detect linguistic symp-
toms of MCI in its early stage, so that the per-
son can get medical treatment as early as possible.
It should be noted, however, that our goal cannot
be an official diagnosis as diagnosing patients re-
quires medical experience. All we can do is imple-
ment a test supported by methods used in artificial
intelligence, which indicates whether the patient is
at risk and if so, s/he can turn to medical experts
who will provide the clinical diagnosis.

2 Data

In our experiments1, two short animated films
were presented to the patients at the memory am-
bulance of the University of Szeged. Patients were
asked to talk about the first film then about their
previous day, and lastly, about the second film.
Their speech productions were recorded and tran-
scribed by linguists, who explicitly marked speech
phenomena like hesitations and pauses in the tran-
scripts. These transcripts formed the basis of our
experiments, i.e. we exploited only written infor-
mation.

All of our 84 subjects were native speakers of
Hungarian, a morphologically rich language. For
each person, a clinical diagnosis was at our dis-
posal, i.e. it was clinically proved whether the pa-
tient suffers from MCI or not. On the basis of these
data, subjects were classified as either MCI patient
or healthy control at the university memorial. Ta-
ble 1 shows data on the subjects’ gender and di-
agnosis while Table 2 shows the mean values for
age and education (in terms of years attended at
school).

Speech transcripts reflect several characteristics
of spontaneous speech. On the one hand, they con-
tain several forms of hesitations and silent pauses,

1Our experiments conform to all operative rules and re-
strictions on data collection, anonymization and publication
according to the requirements in the European Union.

MCI Control Total
Male 16 13 29
Female 32 23 55
Total 48 36 84

Table 1: Subjects’ gender and diagnosis.

MCI Control Significance
age 73.08 69.28 0.0124
education 11.42 12.47

Table 2: Mean values of demographic features and
level of statistical significance in terms of p-value.

which are also marked in the transcripts, on the
other hand, they abound in phenomena typical of
spontaneous Hungarian speech such as phonolog-
ical deletion (mer instead of the standard form
mert “because” or ement instead of the standard
form elment “(he) left”) and lengthening (utánna
instead of the standard form utána “then”). There
are duplications (ez ezt “this this-ACC”) and ne-
ologisms created by the speaker (feltkáva, which
probably means főtt kávé “boiled coffee”).

Fillers also deserve special attention when
studying transcripts. Besides hesitations, we
treated words and phrases referring to some kind
of uncertainty together with indefinite pronouns
as fillers such as ilyen “such”, olyan “such”, izé
“thing, gadget”, és aztán “and then”, valamilyen
“some kind of”, valahogy “somehow”, valamerre
“somewhere”2. Thus, MCI patients often seem to
substitute content words with fillers or indefinite
pronouns, moreover, they also appear to use lots of
paraphrases, which also indicate uncertainty just
like egy ilyen bagolyszerűség a such owl-likeness
“something similar to an owl” or az olyan délelőtt
volt that such morning was “that happened some
time in the morning”.

3 Experiments

In order to determine the status of the subjects, we
experimented with machine learning tools. The
task was regarded as binary classification, i.e. sub-
jects were classified as either an MCI patient or a
healthy control, on the basis of a feature set de-
rived from their transcripts.

At first, transcripts were morphologically and
syntactically analysed with magyarlanc, a linguis-
tic preprocessing toolkit developed for Hungarian

2This words seem to have a lot in common with weasel
and hedge words, which refer to uncertainty (Vincze, 2013).
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(Zsibrita et al., 2013). For classification, we ex-
ploited morphological, syntactic and semantic fea-
tures extracted from the output of magyarlanc.

Each person was asked to recall three differ-
ent stories. As MCI is strongly related to mem-
ory deficit, we believe that the order of the tasks
might also influence performance, hence we opted
for processing each transcript separately. Thus, for
each person, features to be discussed below were
calculated separately for the three transcripts and
all of them were exploited in the system.

3.1 Feature set

In our experiments, we employed features of spon-
taneous speech and morphological and semantic
features derived from the transcripts and their au-
tomatic linguistic analyses. When defining our
features, we took into account the fact that the
speech of MCI patients may contain more pauses
and hesitations than that of healthy controls (Tóth
et al., 2015) and they are also supposed to have
a restricted vocabulary due to cognitive deficit,
which may affect the choice of words and the fre-
quency of parts of speech (Croot et al., 2000) and
might even yield neologisms. We also made use
of demographic features that were at our disposal.

Our feature set contained the following features:
Spontaneous speech based features:
number of filled and silent pauses; number and

rate of hesitations compared to the number of to-
kens; number of pauses that follow an article and
precede content words as this might reflect that
MCI patients may have difficulties with finding the
appropriate content words; number of lengthened
sounds (which we considered as a special form of
hesitation).

Morphological features:
number of tokens and words; number and rate

of distinct lemmas; number of punctuation marks;
number and rate of nouns, verbs, adjectives, pro-
nouns and conjunctions; number of first person
singular verbs as it might also be indicative how
often the patient reflects to him/herself; number
and rate of unanalyzed words, i.e. those with an
“unknown” POS tag, which might indicate neolo-
gisms created by the speaker on the spot.

Semantic features:
number and rate of fillers and uncertain words

compared to the number of all tokens; number
and rate of words/phrases related to memory ac-
tivity (e.g. nem emlékszem not remember-1SG “I

can’t remember”) as they directly signal prob-
lems with memory and recall; number of nega-
tion words; number and rate of content words and
function words; number of thematic words related
to the content of the films, based on manually con-
structed lists.

Demographic features:
gender; age; education.

The mean values for each feature are reported
in Table 3.

3.2 Statistical analysis of features

In order to reveal which features can most effec-
tively distinguish healthy controls from MCI pa-
tients, we carried out a statistical analysis of the
data (t-tests for each feature and transcript). For
most of the features, significant differences were
found between the two groups – p-values are listed
in Table 3. The age of the patients also indicates
significant differences: people who were at least
71 years old were more probable to suffer from
MCI than those who were younger at the time of
the experiment (p = 0.0124).

According to the data, each group of features
has a significant effect in distinguishing controls
and MCI patients. It is shown that it is mostly the
second transcript (the one including the narratives
about the subjects’ previous days) where signif-
icant differences may be found among MCI pa-
tients and the control group. However, significant
differences exist for the other two types of texts as
well.

3.3 Machine learning experiments

To automatically identify MCI patients, we ex-
ploited machine learning techniques, i.e. sup-
port vector machines (SVM) (Cortes and Vapnik,
1995) with the default settings of Weka (Hall et al.,
2009) and due to the small size of the dataset, we
applied leave-one-out cross validation. As a base-
line, majority labeling was used. For the evalua-
tion, the accuracy, precision, recall and F-measure
metrics were utilized.

In order to examine the effect of certain groups
of features, we carried out an ablation study,
i.e. we retrained the system without making use
of one specific group of features. The results and
differences are shown in Table 4.
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T1 T2 T3 Significance
Feature MCI control MCI control MCI control T1 T2 T3
token # 141.46 126.31 209.40 129.72 124.21 121.33 0.0017
sentence # 8.38 8.50 13.42 10.22 8.08 8.11
token % 22.40 18.42 20.01 16.04 20.19 19.25 0.0015
word # 115.54 101.53 168.65 101.39 100.27 99.36
lemma # 68.40 64.31 101.19 70.86 61.85 61.50 0.0017
lemma % 0.51 0.54 0.54 0.59 0.53 0.53 0.0214
verb # 21.71 21.31 36.63 24.11 19.56 19.97 0.0033
verb % 0.19 0.21 0.23 0.25 0.20 0.21 0.0009
noun # 23.98 25.42 33.23 23.00 21.69 21.97 0.0149
noun % 0.21 0.25 0.19 0.24 0.22 0.22 0.0004 0.0001
adjective # 6.13 3.75 9.50 5.47 4.77 5.50 0.0068 0.0051
adjective % 0.05 0.04 0.06 0.05 0.04 0.05 0.0067 0.0259
pronoun # 14.29 10.11 15.85 7.67 14.21 13.25 0.0082 0.0001
pronoun % 0.12 0.10 0.09 0.08 0.14 0.13 0.0053 0.0227
conjunction # 12.69 9.53 18.19 8.72 10.81 10.14 0.0345 0.0009
conjunction % 0.10 0.09 0.10 0.08 0.10 0.10 0.0417
Sg1 verb # 3.42 2.25 18.94 13.36 2.63 2.64 0.0341 0.0224
punctuation # 25.92 24.78 40.75 28.33 23.94 21.97 0.0062
unknown word # 0.31 0.19 0.31 0.11 0.08 0.08
unknown word % 0.21 0.25 0.12 0.10 0.07 0.07
filled pause # 3.65 2.44 3.92 1.56 2.35 1.44 0.0319
pause # 12.63 9.11 19.77 9.89 11.15 7.28 0.0008 0.0191
pause after article # 1.40 1.08 1.23 0.72 1.29 0.81 0.0449
lengthened sound # 24.35 20.39 35.44 19.89 19.94 18.22 0.0008
hesitation # 17.40 12.39 25.92 12.25 14.71 9.25 0.0362 0.0007 0.0047
hesitation % 12.93 9.32 12.67 10.19 12.06 7.55 0.0216 0.0010
uncertain word # 6.44 4.83 7.48 2.81 6.23 5.89 0.0003
uncertain word % 4.36 3.69 3.15 2.07 4.89 4.89 0.0087
memory word # 1.23 0.69 0.54 0.17 0.96 1.14 0.0211 0.0166
memory word % 0.93 0.56 0.28 0.12 0.72 0.83
film word 1 10.56 12.92 0.21 0.14 4.02 4.75 0.0325
film word 2 5.75 5.69 0.33 0.28 9.10 11.06 0.0291
content word % 0.60 0.63 0.69 0.72 0.60 0.61 0.0441 0.0042
function word % 0.39 0.37 0.31 0.28 0.40 0.39 0.0342 0.0041
negation # 2.42 1.39 3.50 1.47 2.13 2.17 0.0305 0.0034

Table 3: Mean values of features and level of statistical significance in terms of p-value. #: number,
%:ratio, T: transcript.
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MCI Control Total
Features P R F P R F P R F %
all included 72.0 75.0 73.5 64.7 61.1 62.9 68.9 69.0 68.9 69.1
w/o semantic 75.0 81.3 78.0 71.9 63.9 67.6 73.7 73.8 73.6 73.8

+3.0 +6.3 +4.5 +7.2 +2.8 +4.7 +4.8 +4.8 +4.7 +4.7
w/o demographic 70.0 72.9 71.4 61.8 58.3 60.0 66.5 66.7 66.5 66.7

-2.0 -2.1 -2.1 -2.9 -2.8 -2.9 -2.4 -2.3 -2.4 -2.4
w/o speech-based 70.8 70.8 70.8 61.1 61.1 61.1 66.7 66.7 66.7 66.7

-1.2 -4.2 -2.7 -3.6 0.0 -1.8 -2.2 -2.3 -2.2 -2.4
w/o morphological 72.3 70.8 71.6 62.2 63.9 63.0 68.0 67.9 67.9 67.9

+0.3 -4.2 -1.9 -2.5 +2.8 +0.1 -0.9 -1.1 -1.0 -1.2
only significant 81.4 72.9 76.9 68.3 77.8 72.7 75.8 75.0 75.1 75.0

+9.4 -2.1 +3.4 +3.6 +16.7 +9.8 +6.9 +6.0 +6.2 +5.9

Table 4: Results and differences. MCI: mild cognitive impairment, P: precision, R: recall, F: F-measure,
%: accuracy.

4 Results and Discussion

Using all the features, our system managed to
achieve an accuracy score of 69.1%, that is, 58
out of the 84 patients were correctly diagnosed.
12 patients were falsely diagnosed as healthy and
14 controls were falsely labeled as MCI patients.
Our results outperformed the baseline (57.14% in
terms of accuracy). The system got a high recall
value for MCI patients (75.0) but a lower one for
controls (61.1), which is encouraging in the light
of the fact that our main goal is to identify the
widest possible range of potential MCI patients,
who can turn to clinical experts to find out what
their clinical diagnosis is.

We also experimented with using only features
that displayed statistically significant differences
among controls and MCI patients (see Table 3).
Somewhat surprisingly, an accuracy of 75% could
be achieved in this way, which indicates that some
of our original features are superfluous and just
confused the system, and this result needs further
investigation.

An ablation study was also carried out to an-
alyze the added value of each feature group.
Speech-based, demographic and morphological
features unequivocally contributed to perfor-
mance. However, the effect of semantic features
seems less obvious as they harm performance
taken as a whole but some individual semantic fea-
tures are useful for the system, as shown by the re-
sults achieved with just using significant features.

When investigating the errors made by our sys-
tem, we found that MCI patients that spoke only
a few short sentences were often classified as
healthy controls. They had a lower number and
rate of hesitations and pauses, moreover, their
vocabulary contained fewer fillers and uncertain

words, and these features resemble those typical
of healthy controls. What is more, healthy sub-
jects who talked more also hesitated more, which
might be indicative of MCI. Furthermore, their use
of pronouns and conjunctions was also more sim-
ilar to those of MCI patients, hence the system
falsely predicted a positive diagnosis for them.

Due to the specific characteristics of the data
and the complexity of data collection – which
requires clinical experiments – our dataset can
be expanded only step by step. However, we
found statistically significant differences among
MCI patients and healthy controls concerning sev-
eral linguistic and speech-based features even in
our small dataset, which may be beneficial for our
future experiments and might be also exploited by
those who study spontaneous speech.

5 Conclusions

In this study, we introduced our system that au-
tomatically detects Hungarian patients suffering
from mild cognitive impairment on the basis of
their speech transcripts. The system is based on
features derived from morphological and syntactic
analysis as well as characteristics of spontaneous
speech. Both statistical and machine learning re-
sults revealed that morphological and spontaneous
speech-based features have an essential role in dis-
tinguishing MCI patients from healthy controls.

In the future, we would like to extend our
dataset with new transcripts. Also, we intend to
improve our machine learning system and inves-
tigate the role of semantic features. Lastly, we
would like to integrate features from automatic
speech recognition into our system so that tools
from both speech technology and natural language
processing can contribute to the automatic detec-
tion of mild cognitive impairment.
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Abstract

Recent work has revealed the potential of
using visual representations for bilingual
lexicon learning (BLL). Such image-based
BLL methods, however, still fall short
of linguistic approaches. In this paper,
we propose a simple yet effective multi-
modal approach that learns bilingual se-
mantic representations that fuse linguis-
tic and visual input. These new bilingual
multi-modal embeddings display signifi-
cant performance gains in the BLL task for
three language pairs on two benchmark-
ing test sets, outperforming linguistic-only
BLL models using three different types
of state-of-the-art bilingual word embed-
dings, as well as visual-only BLL models.

1 Introduction

Bilingual lexicon learning (BLL) is the task of
finding words that share a common meaning
across different languages. It plays an impor-
tant role in a variety of fundamental tasks in IR
and NLP, e.g. cross-lingual information retrieval
and statistical machine translation. The major-
ity of current BLL models aim to learn lexicons
from comparable data. These approaches work
by (1) mapping language pairs to a shared cross-
lingual vector space (SCLVS) such that words are
close when they have similar meanings; and (2)
extracting close lexical items from the induced
SCLVS. Bilingual word embedding (BWE) in-
duced models currently hold the state-of-the-art on
BLL (Hermann and Blunsom, 2014; Gouws et al.,
2015; Vulić and Moens, 2016).

Although methods for learning SCLVSs are pre-
dominantly text-based, this space need not be lin-
guistic in nature: Bergsma and van Durme (2011)
and Kiela et al. (2015) used labeled images from

the Web to learn bilingual lexicons based on visual
features, with features derived from deep convolu-
tional neural networks (CNNs) leading to the best
results (Kiela et al., 2015). However, vision-based
BLL does not yet perform at the same level as
state-of-the-art linguistic models. Here, we unify
the strengths of both approaches into one single
multi-modal vision-language SCLVS.

It has been found in multi-modal semantics
that linguistic and visual representations are often
complementary in terms of the information they
encode (Deselaers and Ferrari, 2011; Bruni et al.,
2014; Silberer and Lapata, 2014). This is the first
work to test the effectiveness of the multi-modal
approach in a BLL setting. Our contributions
are: We introduce bilingual multi-modal seman-
tic spaces that merge linguistic and visual com-
ponents to obtain semantically-enriched bilingual
multi-modal word representations. These repre-
sentations display significant improvements for
three language pairs on two benchmarking BLL
test sets in comparison to three different bilingual
linguistic representations (Mikolov et al., 2013;
Gouws et al., 2015; Vulić and Moens, 2016), as
well as over the uni-modal visual representations
from Kiela et al. (2015).

We also propose a weighting technique based
on image dispersion (Kiela et al., 2014) that gov-
erns the influence of visual information in fused
representations, and show that this technique leads
to robust multi-modal models which do not require
fine tuning of the fusion parameter.

2 Methodology

2.1 Linguistic Representations

We use three representative linguistic BWE mod-
els. Given a source and target vocabulary V S

and V T , BWE models learn a representation of
each word w ∈ V S ∪ V T as a real-valued vec-
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tor: wling = [f ling
1 , . . . , f ling

dl
], where f ling

k ∈
R is the value of the k-th cross-lingual feature
for w. Similarity between w, v ∈ V S ∪ V T

is computed through a similarity function (SF),
simling(w, v) = SF (wling,vling), e.g., cosine.

Type 1: M-EMB This type of BWE induc-
tion model assumes the following setup for learn-
ing the SCLVS (Mikolov et al., 2013; Faruqui
and Dyer, 2014; Dinu et al., 2015; Lazaridou et
al., 2015a): First, two monolingual spaces, RdS

and RdT , are induced separately in each language
using a standard monolingual embedding model.
The bilingual signal is provided in the form of
word translation pairs (xi, yi), where xi ∈ V S ,
yi ∈ V T , and xi ∈ RdS , yi ∈ RdT . Train-
ing is cast as a multivariate regression problem:
it implies learning a function that maps the source
language vectors to their corresponding target lan-
guage vectors. A standard approach (Mikolov et
al., 2013; Dinu et al., 2015) is to assume a linear
map W ∈ RdS×dT , which is learned through an
L2-regularized least-squares error objective. Any
previously unseen source language word vector
xu may be mapped into the target embedding
space RdT as Wxu. After mapping all vectors x,
x ∈ V S , the target space RdT serves as a SCLVS.

Type 2: G-EMB Another collection of BWE in-
duction models optimizes two monolingual objec-
tives jointly, with the cross-lingual objective act-
ing as a cross-lingual regularizer during training
(Gouws et al., 2015; Soyer et al., 2015). In a sim-
plified formulation (Luong et al., 2015), the ob-
jective is: γ(MonoS + MonoT ) + δBi. The mono-
lingual objectives MonoS and MonoT ensure that
similar words in each language are assigned sim-
ilar embeddings and aim to capture the seman-
tic structure of each language, whereas the cross-
lingual objective Bi ensures that similar words
across languages are assigned similar embeddings,
and ties the two monolingual spaces together into
a SCLVS. Parameters γ and δ govern the influence
of the monolingual and bilingual components.1

The bilingual signal used as the cross-lingual reg-
ularizer during the joint training is obtained from
sentence-aligned parallel data. We opt for the Bil-

1Setting γ = 0 reduces the model to the bilingual models
trained solely on parallel data (Hermann and Blunsom, 2014;
Chandar et al., 2014). γ = 1 results in the models from
Gouws et al. (2015) and Soyer et al. (2015). Although they
use the same data sources, all G-EMB models differ in the
choice of monolingual and cross-lingual objectives.

BOWA model from Gouws et al. (2015) as the rep-
resentative model to be included in the compar-
isons, due to its solid performance and robustness
in the BLL task (Luong et al., 2015), its reduced
complexity reflected in fast computations on mas-
sive datasets and its public availability.2

Type 3: V-EMB The third set of models re-
quires a different bilingual signal to induce a
SCLVS: document alignments. Vulić and Moens
(2016) created a collection of pseudo-bilingual
documents by merging every pair of aligned doc-
uments in the data, in a way that preserves im-
portant local information – which words appeared
next to which other words (in the same language),
and which words appeared in the same region of
the document (in different languages). This col-
lection was then used to train word embeddings
with monolingual skip-gram with negative sam-
pling using word2vec. With pseudo-bilingual
documents, the “context” of a word is redefined
as a mixture of neighboring words (in the origi-
nal language) and words that appeared in the same
region of the document (in the foreign language).
Bilingual contexts for each word in each pseudo-
bilingual document steer the final model towards
constructing a SCLVS.

2.2 Visual Representations

Only a few studies have tried to make use of the in-
tuition that words in different languages denoting
the same concepts are similarly grounded in the
perceptual system (bicycles resemble each other
irrespective of whether we call them bicyle, vélo,
fiets or Fahrrad, see Fig. 1) (Bergsma and van
Durme, 2011; Kiela et al., 2015). Although the
idea is promising, such visual methods are still
limited in comparison with linguistic ones, es-
pecially for more abstract concepts (Kiela et al.,
2015). Recent findings in multi-modal semantics
suggest that visual representations encode pieces
of semantic information complementary to lin-
guistic information derived from text (Deselaers
and Ferrari, 2011; Silberer and Lapata, 2014).

We compute visual representations in a similar
fashion to Kiela et al. (2015): For each word we
retrieve n images from Google image search (see
Fig. 1), and for each image we extract the pre-
softmax layer of an AlexNet (Krizhevsky et al.,
2012) that has been pre-trained on the ImageNet

2https://github.com/gouwsmeister/bilbowa
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Figure 1: Example images for several languages.

classification task (Deng et al., 2009; Russakovsky
et al., 2015) using Caffe (Jia et al., 2014).

Each image is thus represented as a 4096-
dimensional feature vector extracted from a con-
volutional neural network (CNN). We use two
methods for computing visual similarity: (1)
CNN-MAX produces a single visual vector by
taking the pointwise maximum across the n im-
age vector representations from the image set.
The representation of each word w ∈ V S ∪ V T

in a visual SCLVS is now a real-valued vector
wvis = [fvis

1 , . . . , fvis
dv

], where fvis
k ∈ R denotes

the score for the k-th visual cross-lingual fea-
ture for w within a dv-dimensional visual SCLVS
(dv = 4096). As before, similarity between two
words w, v ∈ V S ∪V T is computed by applying a
similarity function on their representations in the
visual SCLVS: simvis(w, v) = SF (wvis,vvis),
e.g. cosine. (2) CNN-AVGMAX: An alternative
strategy, introduced by Bergsma and van Durme
(2011), is to consider the similarities between in-
dividual images from the two sets and take the av-
erage of the maximum similarity scores as the final
similarity simvis(w, v).

2.3 Multi-Modal Representations
We experiment with two ways of fusing infor-
mation stemming from the linguistic and visual
modalities. Following recent work in multi-modal
semantics (Bruni et al., 2014; Kiela and Bottou,
2014), we construct representations by concate-
nating the centered and L2-normalized linguistic
and visual feature vectors:

wmm = α×wling || (1− α)×wvis (1)

where || denotes concatenation and α is a pa-
rameter governing the contributions of each uni-
modal representation. The final similarity may
again be computed by applying an SF on the multi-
modal representations. We call this method Early-
Fusion. Note that it is possible only with CNN-
MAX. The alternative is not to build a full multi-

modal (MM) representation, but instead to com-
bine the individual similarity scores from each
uni-modal SCLVS. The similarity sim(w, v) be-
tween two words w and v is:

α× simling(w, v) + (1− α)× simvis(w, v) =

= α× SF (wling,vling) + (1− α)× SF (wvis,vvis)

where α again controls for the importance of the
uni-modal scores in the final combined scores. We
call this method Late-Fusion3.

3 Experimental Setup

Task: Bilingual Lexicon Learning Given a
source language word ws, the task is to find a tar-
get language word wt closest to ws in the SCLVS,
and the resulting pair (ws, wt) is a bilingual lexi-
con entry. Performance is measured using the BLL
standard Top 1 accuracy (Acc1) metric (Gaussier
et al., 2004; Gouws et al., 2015).

Test Sets We work with three language pairs:
English-Spanish/Dutch/Italian (EN-ES/NL/IT),
and two benchmarking BLL test sets:
(1) BERGSMA500: consisting of a set of 500
ground truth noun pairs for the three language
pairs, it is considered a benchmarking test set in
prior work on BLL using vision (Bergsma and van
Durme, 2011)4. Translation direction in our tests
is EN → ES/IT/NL.
(2) VULIC1000: constructed to measure the gen-
eral performance of linguistic BLL models from
comparable Wikipedia data (Vulić and Moens,
2013), this is considered a benchmarking test set
for (linguistic) BLL models from comparable data
(Vulić and Moens, 2016)5. It comprises 1, 000
nouns in ES, IT, and NL, along with their one-
to-one ground-truth word translations in EN com-
piled semi-automatically. Translation direction is
ES/IT/NL→ EN .

Training Data and Setup We used standard
training data and suggested settings to learn
M/G/V-EMB model representations. M-EMB and
G-EMB were trained on the full cleaned and tok-
enized Wikipedias from the Polyglot website (Al-
Rfou et al., 2013). V-EMB was trained on the
full tokenized document-aligned Wikipedias from

3Under the assumption of having the centered and L2-
normalized feature vectors, and cos as SF, Early-Fusion may
be transformed into Late-Fusion with adapted weighting:
α2 × cos(wling,vling) + (1− α)2 × cos(wvis,vvis)

4http://www.clsp.jhu.edu/~sbergsma/LexImg/
5http://www.cl.cam.ac.uk/~dk427/bli.html
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Pair: B: EN→ES|V: ES→EN B: EN→IT|V: IT→EN B: EN→NL|V: NL→EN

Models M-EMB G-EMB V-EMB M-EMB G-EMB V-EMB M-EMB G-EMB V-EMB

Linguistic

d = 300 0.71 0.77 0.60 0.73 0.68 0.82 0.77 0.76 0.63 0.71 0.75 0.79 0.77 0.76 0.59 0.75 0.74 0.79

Visual

CNN-Max 0.51 0.35 0.51 0.35 0.51 0.35 0.54 0.22 0.54 0.22 0.54 0.22 0.56 0.33 0.56 0.33 0.56 0.33
CNN-AvgMax 0.55 0.38 0.54 0.38 0.54 0.38 0.56 0.25 0.56 0.25 0.56 0.25 0.60 0.34 0.60 0.34 0.60 0.34

Multi-modal with global α

Max-E-0.5 0.76 0.79 0.66 0.79 0.71 0.83 0.83 0.75 0.72 0.70 0.80 0.80 0.85 0.80 0.69 0.78 0.80 0.81
Max-E-0.7 0.75 0.80 0.62 0.76 0.70 0.85 0.81 0.77 0.66 0.73 0.78 0.82 0.84 0.80 0.61 0.79 0.80 0.82
Max-L-0.7 0.76 0.80 0.64 0.78 0.71 0.85 0.82 0.77 0.69 0.73 0.80 0.82 0.85 0.82 0.64 0.79 0.81 0.83

Avg-L-0.5 0.77 0.78 0.68 0.79 0.73 0.83 0.84 0.77 0.75 0.70 0.81 0.79 0.86 0.80 0.76 0.78 0.83 0.81
Avg-L-0.7 0.77 0.81 0.66 0.79 0.72 0.85 0.83 0.78 0.72 0.75 0.80 0.83 0.86 0.83 0.70 0.81 0.81 0.83

Multi-modal with image dispersion (ID) weighting

Max-E-ID 0.76 0.80 0.66 0.78 0.71 0.84 0.81 0.77 0.69 0.73 0.80 0.81 0.84 0.80 0.64 0.79 0.81 0.82
Max-L-ID 0.77 0.80 0.66 0.78 0.72 0.85 0.82 0.77 0.70 0.73 0.80 0.81 0.84 0.82 0.65 0.79 0.81 0.82
Avg-L-ID 0.77 0.81 0.67 0.79 0.73 0.84 0.83 0.78 0.74 0.73 0.80 0.83 0.85 0.82 0.72 0.80 0.82 0.82

Table 1: Summary of theAcc1 scores on BERGSMA500 (regular font) and VULIC1000 (italic) across all
BLL runs. M/G/V-EMB denotes the BWE linguistic model. Other settings are in the form Y-Z-0.W: (1)
Y denotes the visual metric, (2) Z denotes the fusion model: E is for Early-Fusion, L is for Late-Fusion,
and (3) 0.W denotes the α value. Highest scores per column are in bold.

LinguaTools6. The 100K most frequent words
were retained for all models.

We followed related work (Mikolov et al., 2013;
Lazaridou et al., 2015a) for learning the mapping
W in M-EMB: starting from the BNC word fre-
quency list (Kilgarriff, 1997), the 6, 318 most fre-
quent EN words were translated to the three other
languages using Google Translate. The lists were
subsequently cleaned, removing all pairs that con-
tain IT/ES/NL words occurring in the test sets and
least frequent pairs, to build the final 3×5K train-
ing pairs. We trained two monolingual SGNS
models, using SGD with a global learning rate
of 0.025. For G-EMB, as in the original work
(Gouws et al., 2015), the bilingual signal for
the cross-lingual regularization was provided in
the first 500K sentences from Europarl.v7 (Tiede-
mann, 2012). We used SGD with a global learning
rate 0.15. For V-EMB, monolingual SGNS was
trained on pseudo-bilingual documents using SGD
with a global learning rate 0.025. All BWEs were
trained with d = 300.7 Other parameters are: 15
epochs, 15 negatives, subsampling rate 1e−4. We
report results with two α standard values: 0.5 and
0.7 (more weight assigned to the linguistic part).

4 Results and Discussion

Table 1 summarizes Acc1 scores, focusing on
interesting comparisons across different dimen-

6http://linguatools.org/tools/corpora/
7Similar trends were observed with all models and d =

64, 500. We also vary the window size from 4 to 16 in steps of
4, and always report the best scoring linguistic embeddings.

sions8. There is a marked difference in per-
formance on BERGSMA500 and VULIC1000:
visual-only BLL models on VULIC1000 perform
two times worse than linguistic-only BLL models.
This is easily explained by the increased abstract-
ness of test words in VULIC1000 in comparison
to BERGSMA5009, which highlights the need for
a multi-modal approach.

Multi-Modal vs. Uni-Modal The multi-modal
models outperform both linguistic and visual
models across all setups and combinations on
BERGSMA500. On VULIC1000 multi-modal
models again outperform their uni-modal compo-
nents in both modalities. In the latter case, im-
provements are dependent on the amount of vi-
sual information included in the model, as gov-
erned by α. Since the dataset also contains highly
abstract words, the inclusion of visual informa-
tion may be detrimental to performance. These
models outperform the uni-modal models across
a wide variety of settings: they outperform the
three linguistic-only BLL models that held best re-
portedAcc1 scores on the evaluation set (Vulić and
Moens, 2016). The largest improvements are sta-
tistically significant according to McNemar’s test,
p < 0.01. We find improvements on both test sets
for all three BWE types.

The relative ranking of the visual metrics intro-

8Similar rankings of different models are also visible with
more lenient Acc10 scores, not reported for brevity.

9The average image dispersion value (Kiela et al., 2014),
which indicates abstractness, on VULIC1000 is 0.711 com-
pared to 0.642 on BERGSMA500.
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duced in Kiela et al. (2015) extends to the MM
setting: Late-Fusion with CNN-AVGMAX is the
most effective MM BLL model on average, but all
other tested MM configurations also yield notable
improvements.

Concreteness To measure concreteness, we use
an unsupervised data-driven method, shown to
closely mirror how concrete a concept is: image
dispersion (ID) (Kiela et al., 2014). ID is defined
as the average pairwise cosine distance between
all the image representations/vectors {i1 . . . in} in
the set of images for a given word w:

id(w) =
2

n(n− 1)

∑
j<k≤n

1− ij · ik
|ij ||ik| (2)

Intuitively, more concrete words display more
coherent visual representations and consequently
lower ID scores (see Footnote 9 again). The low-
est improvements on VULIC1000 are reported for
the IT-EN language pair, which is incidentally the
most abstract test set.

There is some evidence that abstract concepts
are also perceptually grounded (Lakoff and John-
son, 1999), albeit in a more complex way, since
abstract concepts will relate more varied situations
(Barsalou and Wiemer-Hastings, 2005). Conse-
quently, uni-modal visual representations are not
powerful enough to capture all the semantic in-
tricacies of such abstract concepts, and the lin-
guistic components are more beneficial in such
cases. This explains an improved performance
with α = 0.7, but also calls for a more intelligent
decision mechanism on how much perceptual in-
formation to include in the multi-modal models.
The decision should be closely related to the de-
gree of a concept’s concreteness, e.g., eq. (2).

Image Dispersion Weighting The intuition that
the inclusion of visual information may lead to
negative effects in MM modeling has been ex-
ploited by Kiela et al. (2014) in their work on
image-dispersion filtering: Although the filtering
method displays some clear benefits, its short-
coming lies in the fact that it performs a binary
decision which can potentially discard valuable
perceptual information for less concrete concepts.
Here, we introduce a weighting scheme where the
perceptual information is weighted according to
its ID value. Early-Fusion is now computed as:

wmm = α(id)×wling || (1− α(id))×wvis

Late-Fusion model becomes:

α(id)× SF (wling,vling) + (1− α(id))× SF (wvis,vvis)

α(id) denotes a weight that is proportional to the
ID score of the source language word w: we opt
for a simple approach and specify α(id) = id(w).
Instead of having one global parameter α, the ID
weighting adjusts the amount of information lo-
cally according to each concept’s concreteness.

The results are summarised in Table 1. All
multi-modal models with ID-based weighting are
outperforming their uni-modal components. The
ID-weighted BLL models reach (near-)optimal
BLL results across a variety of language-vision
combinations without any fine-tuning.

5 Conclusion

We have presented a novel approach to bilin-
gual lexicon learning (BLL) that combines lin-
guistic and visual representations into new bilin-
gual multi-modal (MM) models. Two simple yet
effective ways to fuse the linguistic and visual in-
formation for BLL have been described. Such
MM models outperform their linguistic and vi-
sual uni-modal component models on two stan-
dard benchmarking BLL test sets for three lan-
guage pairs. Comparisons with three different
state-of-the-art bilingual word embedding induc-
tion models demonstrate that the gains of MM
modeling are generally applicable.

As future work, we plan to analyse the ability of
multi-view representation learning algorithms to
yield fused multi-modal representations in bilin-
gual settings (Lazaridou et al., 2015b; Rastogi et
al., 2015; Wang et al., 2015), as well as to ap-
ply multi-modal bilingual spaces in other tasks
such as zero-short learning (Frome et al., 2013) or
cross-lingual MM information search and retrieval
following paradigms from monolingual settings
(Pereira et al., 2014; Vulić and Moens, 2015).

The inclusion of perceptual data, as this pa-
per reveals, seems especially promising in bilin-
gual settings (Rajendran et al., 2016; Elliott et al.,
2016), since the perceptual information demon-
strates the ability to transcend linguistic borders.
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Abstract

In this paper we study how to identify per-
suasive posts in the online forum discus-
sions, using data from Change My View
sub-Reddit. Our analysis confirms that
the users’ voting score for a comment is
highly correlated with its metadata infor-
mation such as published time and author
reputation. In this work, we propose and
evaluate other features to rank comments
for their persuasive scores, including tex-
tual information in the comments and so-
cial interaction related features. Our ex-
periments show that the surface textual
features do not perform well compared to
the argumentation based features, and the
social interaction based features are effec-
tive especially when more users partici-
pate in the discussion.

1 Introduction

With the popularity of online forums such as ide-
bate1 and convinceme2 , researchers have been
paying increasing attentions to analyzing per-
suasive content, including identification of argu-
ing expressions in online debates (Trabelsi and
Zaıane, 2014), recognition of stance in ideolog-
ical online debates (Somasundaran and Wiebe,
2010; Hasan and Ng, 2014; Ranade et al., 2013b),
and debate summarization (Ranade et al., 2013a).
However, how to automatically determine if a text
is persuasive is still an unsolved problem.

Text quality and popularity evaluation has been
studied in different domains in the past few
years (Louis and Nenkova, 2013; Tan et al., 2014;
Park et al., 2016; Guerini et al., 2015). However,

1http://idebate.org/
2http://convinceme.net

quality evaluation of argumentative text in the on-
line forum has some unique characterisitcs. First,
persuasive text contains argument that is not com-
mon in other genres. Second, beside the text it-
self, the interplay between a comment and what it
responds to is crucial. Third, the community re-
action to the comment also needs to be taken into
consideration.

In this paper, we propose several sets of features
to capture the above mentioned characteristics for
persuasive comment identification in the online fo-
rum. We constructed a dataset from a sub-forum
of Reddit3, namely change my view (CMV)4 . We
first analyze the corpus and show the correlation
between the human voting score for an argumen-
tative comment and its entry order and author rep-
utation. Then for the comment ranking task, we
propose three sets of features including surface
text features, social interaction based features and
argumentation based features. Our experimental
results show that the argumentation based features
work the best in the early stage of the discussion
and the effectiveness of social interaction features
increases when the number of comments in the
discussion grows.

2 Dataset and Task

2.1 Data

On CMV, people initiate a discussion thread with
a post expressing their thoughts toward a specific
topic and other users reply with arguments from
the opposite side in order to change the initiator’s
mind. The writing quality on CVM is quite good
since the discussions are monitored by modera-
tors. Besides commenting, users can vote on dif-
ferent replies to indicate which one is more per-
suasive than others. The total amount of upvotes

3https://www.reddit.com
4https://www.reddit.com/r/changemyview
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Thread # 1,785
Comment # 374,472
Comment # / Thread # 209.79
Author # 32,639
Unique Author # / Thread # 70.67
Delta Awarded Thread # 886 (49.6%)
Delta Awarded Comment # 2,056 (0.5%)

Table 1: Statistics of the CMV dataset.

minus the down votes is called karma, indicating
the persuasiveness of the reply. Users can also
give delta to a comment if it changes their orig-
inal mind about the topic. The comment is then
named delta awarded comment (DAC), and the
thread containing a DAC is noted as delta awarded
thread.

We use a corpus collected from CMV.5 The
original corpus contains all the threads published
between Jan. 2014 and Jan. 2015. We kept the
threads with more than 100 comments to form our
experimental dataset6. The basic statistics of the
dataset can be seen in Table 1.

Figure 1a shows the distribution of the karma
scores in the dataset. We can see that the karma
score is highly skewed, similar to what is reported
in (Jaech et al., 2015). 42% of comments obtain
a karma score of exactly one (i.e., no votes be-
yond the author), and around 15% of comments
have a score less than one. Figure 1b and 1c show
the correlation of the karma score with two meta-
data features, author reputation7 and entry order,
respectively. We can see the karma score of a com-
ment is highly related to its entry order. In gen-
eral, the earlier a comment is posted, the higher
karma score it obtains. The average score is less
than one when it is posted after 30 comments. Fig-
ure 1c shows that authors of comments with higher
karma scores tend to have higher reputation on av-
erage.

2.2 Task

Tan et al. (2016) explored the task of mind change
by focusing on delta awarded comments using
their CMV data. However, the percentage of delta
awarded comments is quite low, as shown in Ta-
ble 1 (the percentage of comments obtained delta
is as low as 0.5%). In addition, a persuasive com-
ment is not necessarily delta awarded. It can be

5The data was shared with us by researchers at the Uni-
versity of Washington.

6Please contact authors about sharing the data set.
7This is the number of deltas the author has received.

of high quality but does not change other people’s
mind. Our research thus uses the karma score
of a comment, instead of delta, as the reference
to represent the persuasiveness of the comment.
Our analysis also shows that delta awarded com-
ments generally have high karma scores (78.7% of
DACs obtain a higher karma score than the median
value in each delta awarded thread), indicating the
karma score is correlated with the delta value.

Using karma scores as ground truth, Jaech et
al. (2015) proposed a comment ranking task on
several sub-forums of Reddit. In order to reduce
the impact of timing, they rank each set of 10
connective comments. However, their setting is
not suitable for our task. First, at the later stage
of the discussion, comments posted connectively
in terms of time can belong to different sub-trees
of the discussion, and thus can be viewed or re-
acted with great difference. Second, as shown in
Figure 1b, comments entered in later stage obtain
little attention from audience. This makes their
karma scores less reliable as the ground-truth of
persuasiveness.

To further control the factor of timing, we define
the task as ranking the first-N comments in each
thread. The final karma scores of these N com-
ments are used to determine their reference rank
for evaluation. We study two setups for this rank-
ing task. First we use information until the time
point when the thread contains only these N com-
ments. Second we allow the system to access more
comments than N . Our goal is to investigate if we
can predict whether a comment is persuasive and
how the community reacts to a comment in the fu-
ture.

3 Methods

3.1 Ranking Model

A pair-wise learning-to-rank model (Ranking
SVM (Joachims, 2002)) is used in our task. We
first construct the training set including pairs of
comments. In each pair, the first comment is more
persuasive than the second one. Considering that
two samples with similar karma scores might not
be significantly different in terms of their persua-
siveness, we propose to use a modified score to
form training pairs in order to improve the learn-
ing efficacy. We group comments into 7 buckets
based on their karma scores, [-∞, 0], (0, 1], (1, 5],
(5, 10], (10, 20], (20, 50] and (50, +∞]. We then
use the bucket number (0 - 6) of each comment
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Figure 1: Karma value distributions in the CMV dataset.

Feature Category Feature Name Feature Description

Surface Text Features

length # of the words, sentences and paragraphs in c.
url # of urls contained in c.
unique # of words # of unique words in c.
punctuation # of punctuation marks in c.
unique # of POS # of unique POS tags in c.

Social Interaction Features

tree size The tree size generated by c and rc.
reply num The number of replies obtained by c and rc.
tree height The height of the tree generated by by c and rc.
Is root reply Is c a root reply of the post?
Is leaf Is c a leaf of the tree generated by rc?
location The position of c in the tree generated by rc.

Argumentation Related Features

connective words Number of connective words in c.
modal verbs Number of modal verbs included in c.
argumentative sentence Number and percentage of argumentative sentences.
argument relevance Similarity with the original post and parent comment.
argument originality Maximum similarity with comments published earlier.

Table 2: Feature list (c: the comment; rc: the root comment of c.)

as its modified score. We use all the formed pairs
to train our ranker. In order to be consistent, we
use the first-N comments in the training threads to
construct the training samples to predict the rank
for the first-N comments in a test thread.

3.2 Features
We propose several key features that we hypoth-
esize are predictive of persuasive comments. The
full feature list is given in Table 2.

• Surface Text Features8: In order to capture the
basic textual information, we use the comment
length and content diversity represented as the
number of words, POS tags, URLs, and punctu-
ation marks. We also explored unigram features
and named entity based features, but they did
not improve system performance and are thus
not included.

• Social Interaction Features: We hypothesize
that if a comment attracts more social attention
8Stanford CoreNLP (Manning et al., 2014) was used to

preprocess the text (i.e., comment splitting, sentence tok-
enization, POS tagging and NER recognition.).

from the community, it is more likely to be per-
suasive, therefore we propose several social in-
teraction features to capture the community re-
action to a comment. Besides the reply tree gen-
erated by the comment, we also consider the re-
ply tree generated by the root comment9 for fea-
ture computing. The tree size is the number of
comments in the reply tree. The position of c is
its level in the reply tree (the level of root node
is zero).

• Argumentation Related Features: We believe
a comment’s argumentation quality is a good in-
dicator of its persuasiveness. In order to cap-
ture the argumentation related information, we
propose two sub-groups of features based on
the comment itself and the interplay between
the comment and other comments in the discus-
sion. a) Local features: we trained a binary
classifier to classify sentences as argumentative
and non-argumentative using features proposed
in (Stab and Gurevych, 2014). We then use the
number and percentage of argumentative sen-
9It is a comment that replies to the original post directly.
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Approach NDCG@1 NDCG@5 NDCG@10
random 0.258 0.440 0.564
author 0.382 0.567 0.664
entry-order 0.460 0.600 0.689
LTRtext 0.372 0.558 0.658
LTRsocial 0.475† 0.650† 0.718†

LTRarg 0.475† 0.652† 0.725†

LTRtext+social 0.494† 0.666† 0.733†

LTRtext+arg 0.485† 0.654† 0.729†

LTRsocial+arg 0.502†‡ 0.674†‡ 0.740†

LTRT+S+A 0.508†‡ 0.676†‡ 0.743†‡

LTRall 0.521†‡ 0.685†‡ 0.752†‡

Table 3: Performance of first-10 comments rank-
ing (T+S+A: the combination of the three sets of
features we proposed; all: the combination of two
meta-data features and our features; bold: the best
performance in each column; †: the approach is
significantly better than both metadata baselines
(p <0.01); ‡: the approach is significantly better
than LTR approaches using a single category of
features (p <0.01).).

tences predicted by the classifier as features.
Besides, we include some features used in the
classifier directly (i.e. number of connective
words10 and modal verbs). b) Interactive fea-
tures: for these features, we consider the simi-
larity of a comment and its parent comment, the
original post, and all the previously published
comments. We use cosine similarity computed
based on the term frequency vector representa-
tion. Intuitively a comment needs to be relevant
to the discussed topic and possibly have some
original convincing opinions or arguments to re-
ceive a high karma score.

4 Experimental Results

We use 5-fold cross-validation in our experiments.
Normalized discounted cumulative gain (NDCG)
score (Järvelin and Kekäläinen, 2000) is used as
the evaluation metric for our First-N comments
ranking task. In this study, N is10.

4.1 Experiment I: Using N Comments for
Ranking

Table 3 shows the results for first-10 comments
ranking using information from only these 10
comments. As shown in Figure 1, metadata fea-
tures, entry order and author’s reputation are cor-
related with the karma score of a comment. We

10We constructed a list of connective words including 55
entries (e.g., because, therefore etc.).

thus use these two values as baselines. We also
include the performance of the random baseline
for comparison11 . For our ranking based models
(LTR∗), we compare using the three sets of fea-
tures described in Section. 3.2 (noted as text, so-
cial and arg respectively), individually or in com-
bination. We report NDCG scores for position 1,
5 and 10 respectively. The followings are some
findings.

• Both metadata based baselines generate signif-
icantly12 better results compared to the random
baseline. Baseline entry-order performs much
better than author, suggesting that the entry or-
der is more indicative for the karma score of a
comment.

• The surface text features are least effective
among the three sets of features, and the per-
formance using them is even worse than the
two metadata baselines. This might be because
the general writing quality of the comments in
CMV is high because of the policy of the forum.
Therefore, the surface text features we used are
not very discriminative for comment ranking.
A further analysis of features in this category
shows that length is the most effective feature.

• Argumentation based features have the best per-
formance among the three categories. Its per-
formance is significantly better than surface text
features, consistent with our expectation that ar-
gumentation related features are useful for per-
suasiveness evaluation. Our additional experi-
ments show that interactive features are more
effective than local features. This might be be-
cause the argumentation features and models
we use are not perfect. Future research is still
needed to better represent argumentation infor-
mation in the text.

• When combining two categories of features,
the performance of the ranker increases con-
sistently. The performance can be further im-
proved by combining all the three categories of
features we proposed (the improvement com-
pared to using a single feature category is signif-
icant). The best results are achieved by LTRall,
i.e., combining two metadata features and fea-
tures we proposed.
11The performance of random baseline is high because of

the tie of reference karma scores.
12Significance is computed by two tailed t-test.
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4.2 Experiment II: Using Varying Numbers
of Comments for Ranking

With the evolving discussion, there will be more
comments joining the thread providing more in-
formation for social interaction based features. In
order to show the impact of different features at
different discussion stage, we conduct another ex-
periment by ranking first-10 comments with vary-
ing numbers of comments in the test thread for fea-
ture computing. The result of the experiment is
shown in Figure 2. The performance of LTRtext

and LTRarg remain the same since their feature
values are not affected by the new coming com-
ments. The performance of LTRsocial increases
consistently when the number of comments grows,
and it outperforms LTRarg when the number of
comments is more than 20. LTRT+S+A has always
the best performance, benefiting from the combi-
nation of different types of features.

5 Related Work

Our work is most related to two lines of work,
including text quality evaluation and research on
Reddit.com.

Text quality: Text quality and popularity eval-
uation has been studied in different domains in the
past few years. Louis and Nenkova (2013) imple-
mented features to capture aspects of great writing
in science journalism domain. Tan et al. (2014)
looked into the effect of wording while predict-
ing the popularity of social media content. Park et
al. (2016) developed an interactive system to as-
sist human moderators to select high quality news.
Guerini et al. (2015) modeled a notion of euphony
and explored the impact of sounds on different

forms of persuasiveness. Their research focused
on the phonetic aspect instead of language usage.

Reddit based research: Reddit has been used
recently for research on social news analysis
and recommendation (e.g., (Buntain and Golbeck,
2014)). Researchers also analyzed the language
use on Reddit. Jaech et al. (2015) studied how
language use affects community reaction to com-
ments in Reddit. Tan et al. (2016) analyzed the
interaction dynamics and persuasion strategies in
CMV.

6 Conclusion

In this paper, we studied the impact of different
sets of features on the identification of persuasive
comments in the online forum. Our experiment re-
sults show that argumentation based features work
the best in the early stage of the discussion, while
the effectiveness of social interaction based fea-
tures increases when the number of comments in
the thread grows.

There are three major future directions for this
research. First, the approach for argument mod-
eling in this paper is lexical based, which limits
the effectiveness of argumentation related features
for our task. It is thus crucial to study more ef-
fective ways for argument modeling. Second, we
will explore persuasion behavior of the argumen-
tative comments and study the correlation between
the strength of the argument and different persua-
sion behaviors. Third, we plan to automatically
construct an argumentation corpus including pairs
of arguments from two opposite sides of the topic
from CMV, and use this for automatic disputing
argument generation.
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Abstract

We demonstrate the value of collecting se-
mantic parse labels for knowledge base
question answering. In particular, (1)
unlike previous studies on small-scale
datasets, we show that learning from la-
beled semantic parses significantly im-
proves overall performance, resulting in
absolute 5 point gain compared to learn-
ing from answers, (2) we show that with an
appropriate user interface, one can obtain
semantic parses with high accuracy and at
a cost comparable or lower than obtaining
just answers, and (3) we have created and
shared the largest semantic-parse labeled
dataset to date in order to advance research
in question answering.

1 Introduction

Semantic parsing is the mapping of text to a mean-
ing representation. Early work on learning to build
semantic parsers made use of datasets of questions
and their associated semantic parses (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007). Recent work on
semantic parsing for knowledge base question-
answering (KBQA) has called into question the
value of collecting such semantic parse labels,
with most recent KBQA semantic parsing systems
being trained using only question-answer pairs in-
stead of question-parse pairs. In fact, there is ev-
idence that using only question-answer pairs can
yield improved performance as compared with ap-
proaches based on semantic parse labels (Liang et
al., 2013). It is also widely believed that collect-
ing semantic parse labels can be a “difficult, time
consuming task” (Clarke et al., 2010) even for do-
main experts. Furthermore, recent focus has been
more on the final task-specific performance of a

system (i.e., did it get the right answer for a ques-
tion) as opposed to agreement on intermediate rep-
resentations (Berant et al., 2013; Kwiatkowski et
al., 2013), which allows for KBQA datasets to be
built with only the answers to each question.

In this work, we re-examine the value of se-
mantic parse labeling and demonstrate that seman-
tic parse labels can provide substantial value for
knowledge base question-answering. We focus on
the task of question-answering on Freebase, using
the WEBQUESTIONS dataset (Berant et al., 2013).

Our first contribution is the construction of the
largest semantic parse dataset for KB question-
answering to date. In order to evaluate the costs
and benefits of gathering semantic parse labels, we
created the WEBQUESTIONSSP dataset1, which
contains semantic parses for the questions from
WEBQUESTIONS that are answerable using Free-
base. In particular, we provide SPARQL queries
for 4,737 questions. The remaining 18.5% of the
original WEBQUESTIONS questions are labeled as
“not answerable”. This is due to a number of
factors including the use of a more stringent as-
sessment of “answerable”, namely that the ques-
tion be answerable via SPARQL rather than by
returning or extracting information from textual
descriptions. Compared to the previous seman-
tic parse dataset on Freebase, Free917 (Cai and
Yates, 2013), our WEBQUESTIONSSP is not only
substantially larger, but also provides the semantic
parses in SPARQL with standard Freebase entity
identifiers, which are directly executable on Free-
base.

Our second contribution is a demonstration that
semantic parses can be collected at low cost. We
employ a staged labeling paradigm that enables ef-
ficient labeling of semantic parses and improves
the accuracy, consistency and efficiency of ob-

1Available at http://aka.ms/WebQSP.
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taining answers. In fact, in a simple comparison
with using a web browser to extract answers from
freebase.com, we show that we can collect se-
mantic parse labels at a comparable or even faster
rate than simply collecting answers.

Our third contribution is an empirical demon-
stration that we can leverage the semantic parse
labels to increase the accuracy of a state-of-the-art
question-answering system. We use a system that
currently achieves state-of-the-art performance on
KBQA and show that augmenting its training with
semantic parse labels leads to an absolute 5-point
increase in average F1.

Our work demonstrates that semantic parse la-
bels can provide additional value over answer la-
bels while, with the right labeling tools, being
comparable in cost to collect. Besides accuracy
gains, semantic parses also have further benefits in
yielding answers that are more accurate and con-
sistent, as well as being updatable if the knowl-
edge base changes (for example, as facts are added
or revised).

2 Collecting Semantic Parses

In order to verify the benefits of having labeled
semantic parses, we completely re-annotated the
WEBQUESTIONS dataset (Berant et al., 2013)
such that it contains both semantic parses and the
derived answers. We chose to annotate the ques-
tions with the full semantic parses in SPARQL,
based on the schema and data of the latest and last
version of Freebase (2015-08-09).

Labeling interface Writing SPARQL queries
for natural language questions using a text editor is
obviously not an efficient way to provide semantic
parses even for experts. Therefore, we designed a
staged, dialog-like user interface (UI) to improve
the labeling efficiency. Our UI breaks the po-
tentially complicated structured-labeling task into
separate, but inter-dependent sub-tasks. Given a
question, the UI first presents entities detected in
the questions using an entity linking system (Yang
and Chang, 2015), and asks the user to pick an en-
tity in the question as the topic entity that could
lead to the answers. The user can also suggest a
new entity if none of the candidates returned by
the entity linking system is correct. Once the en-
tity is selected, the system then requests the user
to pick the Freebase predicate that represents the
relationship between the answers and this topic
entity. Finally, additional filters can be added to

further constrain the answers. One key advantage
of our UI design is that the annotator only needs to
focus on one particular sub-task during each stage.
All of the choices made by the labeler are used to
automatically construct a coherent semantic parse.
Note that the user can easily go back and forth to
each of these three stages and change the previous
choices, before pressing the final submit button.

Take the question “who voiced meg on fam-
ily guy?” for example. The labeler will be pre-
sented with two entity choices: Meg Griffin
and Family Guy, where the former links “meg”
to the character’s entity and the latter links to the
TV show. Depending on the entity selected, legiti-
mate Freebase predicates of the selected entity will
be shown, along with the objects (either proper-
ties or entities). Suppose the labeler chooses Meg
Griffin as the topic entity. He should then pick
actor as the main relationship, meaning the an-
swer should be the persons who have played this
role. To accurately describe the question, the la-
beler should add additional filters like the TV se-
ries is Family Guy and the performance type is
voice in the final stage2.

The design of our UI is inspired by recent work
on semantic parsing that has been applied to the
WEBQUESTIONS dataset (Bast and Haussmann,
2015; Reddy et al., 2014; Berant and Liang, 2014;
Yih et al., 2015), as these approaches use a sim-
pler and yet more restricted semantic representa-
tion than first-order logic expressions. Following
the notion of query graph in (Yih et al., 2015),
the semantic parse is anchored to one of the enti-
ties in the question as the topic entity and the core
component is to represent the relation between the
entity and the answer, referred as the inferential
chain. Constraints, such as properties of the an-
swer or additional conditions the relation needs
to hold, are captured as well. Figure 1 shows an
example of these annotated semantic parse com-
ponents and the corresponding SPARQL query.
While it is clear that our UI does not cover compli-
cated, highly compositional questions, most ques-
tions in WEBQUESTIONS can be covered3.

Labeling process In order to ensure the data
quality, we recruit five annotators who are famil-
iar with design of Freebase. Our goal is to provide

2Screenshots are included in the supplementary material.
3We manually edited the SPARQL queries for about 3.1%

of the questions in WEBQUESTIONS that are not expressible
by our UI.
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Family Guy

in-tv-program actorMeg Griffin xy0

 who voiced meg on family guy? 

Topic Entity:  Meg Griffin (m.035szd)

Inf. Chain:  in-tv-program – actor
Constraints: (1) y0 – series – Family Guy (m.019nnl)

(2) y0 – performance-type – Voice (m.02nsjvf)

Voice

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?x
WHERE {
  ns:m.035szd ns:tv.tv_character.appeared_in_tv_program ?y0 .
  ?y0 ns:tv.regular_tv_appearance.actor ?x ;
        ns:tv.regular_tv_appearance.series ns:m.019nnl ;
        ns:tv.regular_tv_appearance.special_performance_type 

ns:m.02nsjvf .
}

(a)

(b)

(c)

(d)

Figure 1: Example semantic parse of the ques-
tion (a) “who voiced meg on family guy?” The
three components in (b) record the labels collected
through our dialog-like user interface, and can be
mapped deterministically to either the correspond-
ing query graph (c) or the SPARQL query (d).

correct semantic parses for each of the legitimate
and unambiguous questions in WEBQUESTIONS.
Our labeling instructions (included in the supple-
mentary material) follow several key principles.
For instance, the annotators should focus on giv-
ing the correct semantic parse of a question, based
on the assumption that it will result in correct an-
swers if the KB is complete and correct.

Among all the 5,810 questions in WEB-
QUESTIONS, there are 1,073 questions that the an-
notators cannot provide the complete parses to find
the answers, due to issues with the questions or
Freebase. For example, some questions are am-
biguous and without clear intent (e.g., “where did
romans go?”). Others are questions that Freebase
is not the appropriate information source (e.g.,
“where to watch tv online for free in canada?”).

3 Using Semantic Parses

In order to compare two training paradigms, learn-
ing from question-answer pairs and learning from
semantic parses, we adopt the Staged Query
Graph Generation (STAGG) algorithm (Yih et al.,
2015), which achieves the highest published an-
swer prediction accuracy on the WEBQUESTIONS

dataset. STAGG formulates the output semantic
parse in a query graph representation that mimics

the design of a graph knowledge base. It searches
over potential query graphs for a question, iter-
atively growing the query graph by sequentially
adding a main topic entity, then adding an in-
ferential chain and finally adding a set of con-
straints. During the search process, each candi-
date query graph is judged by a scoring function
on how likely the graph is a correct parse, based
on features indicating how each individual com-
ponent matches the original question, as well as
some properties of the whole query graph. Exam-
ple features include the score output by the entity
linking system, the match score of the inferential
chain to the relation described in the question from
a deep neural network model, number of nodes
in the candidate query graph, and the number of
matching words in constraints. For additional de-
tails see (Yih et al., 2015).

When question-answer pairs are available, we
create a set of query graphs connecting entities in
the question to the answers in the training set, as
in (Yih et al., 2015). We score the quality of a
query graph by using the F1 score between the an-
swer derived from the query graph and the answer
in the training set. These scores are then used in a
learning-to-rank approach to predict high-quality
query graphs.

In the case that semantic parses are available,
we change the score that we use for evaluating
the quality of a query graph. In particular, we
assign the query graph score to be zero when-
ever the query graph is not a subgraph consis-
tent with the semantic parse label and to be the
F1 score described above otherwise. The hope is
that by leveraging the semantic parse, we can sig-
nificantly reduce the number of incorrect query
graphs used during training. For instance, the
predicate music.artist.track was incor-
rectly predicted as the inferential chain for the
question “what are the songs that justin bieber
write?”, where a correct parse should use the re-
lation music.composer.compositions.

4 The Value of Semantic Parses

In this section, we explore the costs of collect-
ing semantic parse labels and the benefits of using
them.

4.1 Benefits of Semantic Parses

Leveraging the new dataset, we study whether a
semantic parser learned using full parses instead
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Training Signals Prec. Rec. Avg. F1 Acc.
Answers 67.3 73.1 66.8 58.8

Sem. Parses 70.9 80.3 71.7 63.9

Table 1: The results of two different model train-
ing settings: answers only vs. semantic parses.

of just question-answer pairs can answer questions
more accurately, using the knowledge base. Be-
low, we describe our basic experimental setting
and report the main results.

Experimental setting We followed the same
training/testing splits as in the original WEB-
QUESTIONS dataset, but only used questions with
complete parses and answers for training and eval-
uation in our experiments. In the end, 3,098 ques-
tions are used for model training and 1,639 ques-
tions are used for evaluation4. Because there can
be multiple answers to a question, precision, re-
call and F1 are computed for each individual ques-
tion. The average F1 score is reported as the main
evaluation metric. In addition, we also report the
true accuracy – a question is considered answered
correctly only when the predicted answers exactly
match one of the answer sets.

Results Table 1 shows the results of two differ-
ent models: learning from question-answer pairs
vs. learning from semantic parses. With the la-
beled parses, the average F1 score is 4.9-point
higher (71.7% vs. 66.8%). The stricter metric,
complete answer set accuracy, also reflects the
same trend, where the accuracy of training with
labeled parses is 5.1% higher than using only the
answers (63.9% vs. 58.8%).

While it is expected that training using the anno-
tated parses could result in a better model, it is still
interesting to see the performance gap, especially
when the evaluation is on the correctness of the an-
swers rather than the parses. We examined the out-
put answers to the questions where the two models
differ. Although the setting of using answers only
often guesses the correct relations connecting the
topic entity and answers, it can be confused by re-
lated, but incorrect relations as well. Similar phe-
nomena also occur on constraints, which suggests
that subtle differences in the meaning are difficult

4The average F1 score of the original STAGG’s output
to these 1,639 questions is 60.3%, evaluated using WEB-
QUESTIONS. Note that the number is not directly comparable
to what we report in Table 1 because many of the labeled an-
swers in WEBQUESTIONS are either incorrect or incomplete.

Labeling Methods Ans. Ans. Sem. Parses
Annotator MTurkers Experts Experts
Avg. time/Question Unknown 82 sec 21 sec
Labeling Correctness 66% 92% 94%

Table 2: Comparing labeling methods on 50 sampled ques-
tions.

to catch if the semantic parses are automatically
generated using only the answers.

4.2 Costs of Semantic Parses
Our labeling process is very different from that
of the original WEBQUESTIONS dataset, where
the question is paired with answers found on the
Freebase Website by Amazon MTurk workers. To
compare these two annotation methods, we sam-
pled 50 questions and had one expert label them
using two schemes: finding answers using the
Freebase Website and labeling the semantic parses
using our UI. The time needed, as well as the cor-
rectness of the answers are summarized in Table 2.

Interestingly, in this study we found that it ac-
tually took less time to label these questions with
semantic parses using our UI, than to label with
only answers. There could be several possible ex-
planations. First, as many questions in this dataset
are actually “simple” and do not need complicated
compositional structured semantic parses, our UI
can help make the labeling process very efficient.
By ranking the possible linked entities and likely
relations, the annotators are able to pick the cor-
rect component labels fairly easily. In contrast,
simple questions may have many legitimate an-
swers. Enumerating all of the correct answers can
take significantly longer than authoring a semantic
parse that computes them.

When we compare the annotation quality be-
tween labeling semantic parses and answers, we
find that the correctness5 of the answers are about
the same (92% vs 94%). In the original WEB-
QUESTIONS dataset, only 66% of the answers are
completely correct. This is largely due to the
low accuracy (42.9%) of the 14 questions contain-
ing multiple answers. This indicates that to en-
sure data quality, more verification is needed when
leveraging crowdsourcing.

5 Discussion

Unlike the work of (Liang et al., 2013; Clarke et
al., 2010), we demonstrate that semantic parses

5We considered a label to be correct only if the de-
rived/labeled answer set is completely accurate.
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can improve over state-of-the-art knowledge base
question answering systems. There are a number
of potential differences that are likely to contribute
to this finding. Unlike previous work, we compare
training with answers and training with semantic
parses while making only minimal changes in a
state-of-the-art training algorithm. This enables
a more direct evaluation of the potential benefits
of using semantic parses. Second, and perhaps
the more significant difference, is that our evalu-
ation is based on Freebase which is significantly
larger than the knowledge bases used in the pre-
vious work. We suspect that the gains provided
by semantic parse labels are due a significant re-
duction in the number of paths between candidate
entities and answers when we limit to semantically
valid paths. However, in domains where the num-
ber of potential paths between candidate entities
and answers is small, the value of collecting se-
mantic parse labels might also be small.

Semantic parsing labels provide additional ben-
efits. For example, collecting semantic parse la-
bels relative to a knowledge base can ensure that
the answers are more faithful to the knowledge
base and better captures which questions are an-
swerable by the knowledge base. Moreover, by
creating semantic parses using a labeling system
based on the target knowledge base, the correct-
ness and completeness of answers can be im-
proved. This is especially true for question that
have large answer sets. Finally, semantic labels
are more robust to changes in knowledge base
facts because answers can be computed via exe-
cution of the semantic representation for the ques-
tion. For instance, the answer to “Who does Chris
Hemsworth have a baby with?” might change if
the knowledge base is updated with new facts
about children but the semantic parse would not
need to change.

Notice that besides being used for the full
semantic parsing task, our WEBQUESTIONSSP
dataset is a good test bed for several important se-
mantic tasks as well. For instance, the topic en-
tity annotations are beneficial to training and test-
ing entity linking systems. The core inferential
chains alone are quality annotations for relation
extraction and matching. Specific types of con-
straints are useful too. For example, the temporal
semantic labels are valuable for identifying tem-
poral expressions and their time spans. Because
our dataset specifically focuses on questions, it

complements existing datasets in these individual
tasks, as they tend to target at normal corpora of
regular sentences.

While our labeling interface design was aimed
at supporting labeling experts, it would be valu-
able to enable crowdsourcing workers to provide
semantic parse labels. One promising approach is
to use a more dialog-driven interface using natu-
ral language (similar to (He et al., 2015)). Such
UI design is also crucial for extending our work
to handling more complicated questions. For in-
stance, allowing users to traverse longer paths in a
sequential manner will increase the expressiveness
of the output parses, both in the core relation and
constraints. Displaying a small knowledge graph
centered at the selected entities and relations may
help users explore alternative relations more effec-
tively as well.
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Abstract

Relation classification is an important se-
mantic processing task in the field of nat-
ural language processing (NLP). State-of-
the-art systems still rely on lexical re-
sources such as WordNet or NLP systems
like dependency parser and named entity
recognizers (NER) to get high-level fea-
tures. Another challenge is that important
information can appear at any position in
the sentence. To tackle these problems,
we propose Attention-Based Bidirectional
Long Short-Term Memory Networks(Att-
BLSTM) to capture the most important se-
mantic information in a sentence. The ex-
perimental results on the SemEval-2010
relation classification task show that our
method outperforms most of the existing
methods, with only word vectors.

1 Introduction

Relation classification is the task of finding seman-
tic relations between pairs of nominals, which is
useful for many NLP applications, such as infor-
mation extraction (Wu and Weld, 2010), question
answering (Yao and Van Durme, 2014). For in-
stance, the following sentence contains an exam-
ple of the Entity-Destination relation between the
nominals Flowers and chapel.
⟨e1⟩ Flowers ⟨/e1⟩ are carried into the ⟨e2⟩

chapel ⟨/e2⟩.
⟨e1⟩, ⟨/e1⟩, ⟨e2⟩, ⟨/e2⟩ are four position indica-

tors which specify the starting and ending of the
nominals (Hendrickx et al., 2009).

Traditional relation classification methods that
employ handcrafted features from lexical re-
sources, are usually based on pattern matching,
and have achieved high performance (Bunescu

∗Correspondence author: zhenyu.qi@ia.ac.cn

and Mooney, 2005; Mintz et al., 2009; Rink and
Harabagiu, 2010). One downside of these meth-
ods is that many traditional NLP systems are uti-
lized to extract high-level features, such as part of
speech tags, shortest dependency path and named
entities, which consequently results in the increase
of computational cost and additional propagation
errors. Another downside is that designing fea-
tures manually is time-consuming, and performing
poor on generalization due to the low coverage of
different training datasets.

Recently, deep learning methods provide an ef-
fective way of reducing the number of handcrafted
features (Socher et al., 2012; Zeng et al., 2014).
However, these approaches still use lexical re-
sources such as WordNet (Miller, 1995) or NLP
systems like dependency parsers and NER to get
high-level features.

This paper proposes a novel neural network Att-
BLSTM for relation classification. Our model uti-
lizes neural attention mechanism with Bidirection-
al Long Short-Term Memory Networks(BLSTM)
to capture the most important semantic informa-
tion in a sentence. This model doesn’t utilize any
features derived from lexical resources or NLP
systems.

The contribution of this paper is using BLST-
M with attention mechanism, which can automat-
ically focus on the words that have decisive effect
on classification, to capture the most important se-
mantic information in a sentence, without using
extra knowledge and NLP systems. We conduct
experiments on the SemEval-2010 Task 8 dataset,
and achieve an F1-score of 84.0%, higher than
most of the existing methods in the literature.

The remainder of the paper is structured as fol-
lows. In Section 2, we review related work about
relation classification. Section 3 presents our Att-
BLSTM model in detail. In Section 4, we describe
details about the setup of experimental evaluation

207



and the experimental results. Finally, we have our
conclusion in Section 5.

2 Related Work

Over the years, various methods have been pro-
posed for relation classification. Most of them are
based on pattern matching and apply extra NLP
systems to derive lexical features. One related
work is proposed by Rink and Harabagiu (2010),
which utilizes many features derived from exter-
nal corpora for a Support Vector Machine(SVM)
classifier.

Recently, deep neural networks can learn under-
lying features automatically and have been used
in the literature. Most representative progress
was made by Zeng et al. (2014), who utilized
convolutional neural networks(CNN) for relation
classification. While CNN is not suitable for
learning long-distance semantic information, so
our approach builds on Recurrent Neural Net-
work(RNN) (Mikolov et al., 2010).

One related work was proposed by Zhang and
Wang (2015), which employed bidirectional RN-
N to learn patterns of relations from raw text da-
ta. Although bidirectional RNN has access to
both past and future context information, the range
of context is limited due to the vanishing gradi-
ent problem. To overcome this problem, Long
short-Term memory(LSTM) units are introduced
by Hochreiter and Schmidhuber (1997).

Another related work is SDP-LSTM model pro-
posed by Yan et al. (2015). This model leverages
the shortest dependency path(SDP) between two
nominals, then it picks up heterogeneous informa-
tion along the SDP with LSTM units. While our
method regards the raw text as a sequence.

Finally, our work is related to BLSTM mod-
el proposed by Zhang et al. (2015). This mod-
el utilizing NLP tools and lexical resources to
get word, position, POS, NER, dependency parse
and hypernym features, together with LSTM u-
nits, achieved a comparable result to the state-of-
the-art. However, comparing to the complicated
features that employed by Zhang et al. (2015),
our method regards the four position indicators
⟨e1⟩, ⟨/e1⟩, ⟨e2⟩, ⟨/e2⟩ as single words, and trans-
forms all words to word vectors, forming a simple
but competing model.

3 Model

In this section we propose Att-BLSTM model in
detail. As shown in Figure 1, the model proposed
in this paper contains five components:

(1) Input layer: input sentence to this model;
(2) Embedding layer: map each word into a low

dimension vector;
(3) LSTM layer: utilize BLSTM to get high lev-

el features from step (2);
(4) Attention layer: produce a weight vector,

and merge word-level features from each time step
into a sentence-level feature vector, by multiplying
the weight vector;

(5) Output layer: the sentence-level feature vec-
tor is finally used for relation classification.

These components will be presented in detail in
this section.

3.1 Word Embeddings
Given a sentence consisting of T words S =
{x1, x2, . . . , xT }, every word xi is converted in-
to a real-valued vector ei. For each word in S,
we first look up the embedding matrix Wwrd ∈
Rdw |V |, where V is a fixed-sized vocabulary, and
dw is the size of word embedding. The matrix
Wwrd is a parameter to be learned, and dw is a
hyper-parameter to be chosen by user. We trans-
form a word xi into its word embedding ei by us-
ing the matrix-vector product:

ei = Wwrdvi (1)

where vi is a vector of size |V | which has value
1 at index ei and 0 in all other positions. Then the
sentence is feed into the next layer as a real-valued
vectors embs = {e1, e2, . . . , eT } .

3.2 Bidirectional Network
LSTM units are firstly proposed by Hochreiter and
Schmidhuber (1997) to overcome gradient vanish-
ing problem. The main idea is to introduce an
adaptive gating mechanism, which decides the de-
gree to which LSTM units keep the previous s-
tate and memorize the extracted features of the
current data input. Then lots of LSTM variants
have been proposed. We adopt a variant intro-
duced by Graves et al. (2013), which adds weight-
ed peephole connections from the Constant Error
Carousel (CEC) to the gates of the same memory
block. By directly employing the current cell state
to generate the gate degrees, the peephole connec-
tions allow all gates to inspect into the cell (i.e.
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Figure 1: Bidirectional LSTM model with Attention

the current cell state) even when the output gate is
closed (Graves, 2013).

Typically, four components composite the
LSTM-based recurrent neural networks: one in-
put gate it with corresponding weight matrix
Wxi,Whi, Wci, bi; one forget gate ft with corre-
sponding weight matrix Wxf ,Whf ,Wcf , bf ; one
output gate ot with corresponding weight matrix
Wxo,Who, Wco, bo, all of those gates are set to
generate some degrees, using current input xi, the
state hi−1 that previous step generated , and cur-
rent state of this cell ci−1 (peephole), for the deci-
sions whether to take the inputs, forget the memo-
ry stored before, and output the state generated lat-
er. Just as these following equations demonstrate:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ(Wxfxt+Whfht−1+Wcfct−1 + bf) (3)

gt = tanh(Wxcxt+Whcht−1+Wccct−1+bc) (4)

ct = itgt + ftct−1 (5)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (6)

ht = ot tanh(ct) (7)

Hence, current cell state ct will be generated by
calculating the weighted sum using both previous
cell state and current information generated by the
cell (Graves, 2013).

For many sequence modelling tasks, it is benefi-
cial to have access to future as well as past contex-
t. However, standard LSTM networks process se-
quences in temporal order, they ignore future con-
text. Bidirectional LSTM networks extend the uni-
directional LSTM networks by introducing a sec-

ond layer, where the hidden to hidden connection-
s flow in opposite temporal order. The model is
therefore able to exploit information both from the
past and the future.

In this paper, we use BLSTM. As also shown in
Figure 1, the network contains two sub-networks
for the left and right sequence context, which are
forward and backward pass respectively. The out-
put of the ith word is shown in the following equa-
tion:

hi = [
−→
hi ⊕←−hi ] (8)

Here, we use element-wise sum to combine the
forward and backward pass outputs.

3.3 Attention

Attentive neural networks have recently demon-
strated success in a wide range of tasks ranging
from question answering, machine translations,
speech recognition, to image captioning (Herman-
n et al., 2015; Bahdanau et al., 2014; Chorows-
ki et al., 2015; Xu et al., 2015). In this section,
we propose the attention mechanism for relation
classification tasks. Let H be a matrix consisting
of output vectors[h1, h2, . . . , hT ] that the LSTM
layer produced, where T is the sentence length.
The representation r of the sentence is formed by
a weighted sum of these output vectors:

M = tanh(H) (9)

α = softmax(wT M) (10)

r = HαT (11)
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Model Feature Set F1
SVM POS, prefixes, morphological, WordNet, dependency parse,

(Rink and Harabagiu, 2010) Levin classed, ProBank, FramNet, NomLex-Plus, 82.2
Google n-gram, paraphrases, TextRunner

CNN WV (Turian et al., 2010) (dim=50) 69.7
(Zeng et al., 2014) + PF + WordNet 82.7

RNN WV (Turian et al., 2010) (dim=50) + PI 80.0
(Zhang and Wang, 2015) WV (Mikolov et al., 2013) (dim=300) + PI 82.5

SDP-LSTM WV (pretrained by word2vec) (dim=200), syntactic parse 82.4
(Yan et al., 2015) + POS + WordNet + grammar relation embeddings 83.7

BLSTM WV (Pennington et al., 2014) (dim=100) 82.7
(Zhang et al., 2015) + PF + POS + NER + WNSYN + DEP 84.3

BLSTM WV (Turian et al., 2010) (dim=50) + PI 80.7
Att-BLSTM WV (Turian et al., 2010) (dim=50) + PI 82.5

BLSTM WV (Pennington et al., 2014) (dim=100) + PI 82.7
Att-BLSTM WV (Pennington et al., 2014) (dim=100) + PI 84.0

Table 1: Comparison with previous results. WV, PF, PI stand for word vectors, position features and
position indicators respectively.

where H ∈ Rdw×T , dw is the dimension of the
word vectors, w is a trained parameter vector and
wT is a transpose. The dimension of w, α, r is
dw, T, dw separately.

We obtain the final sentence-pair representation
used for classification from:

h∗ = tanh(r) (12)

3.4 Classifying

In this setting, we use a softmax classifier to pre-
dict label ŷ from a discrete set of classes Y for a
sentence S. The classifier takes the hidden state
h∗ as input:

p̂ (y|S) = softmax
(
W (S)h∗ + b(S)

)
(13)

ŷ = arg max
y

p̂ (y|S) (14)

The cost function is the negative log-likelihood
of the true class labels ŷ:

J (θ) = − 1
m

m∑
i=1

ti log(yi) + λ∥θ∥2F (15)

where t ∈ ℜm is the one-hot represented ground
truth and y ∈ ℜm is the estimated probability for
each class by softmax (m is the number of tar-
get classes), and λ is an L2 regularization hyper-
parameter. In this paper, we combine dropout with
L2 regularization to alleviate overfitting.

3.5 Regularization

Dropout, proposed by (Hinton et al., 2012), pre-
vents co-adaptation of hidden units by randomly
omitting feature detectors from the network dur-
ing forward propagation. We employ dropout on
the embedding layer, LSTM layer and the penulti-
mate layer.

We additionally constrain L2-norms of the
weight vectors by rescaling w to have ∥w∥ = s,
whenever ∥w∥ > s after a gradient descent step,
as shown in equation 15. Training details are fur-
ther introduced in Section 4.1.

4 Experiments

4.1 Dataset and Experimental Setup

Experiments are conducted on SemEval-2010
Task 8 dataset (Hendrickx et al., 2009). This
dataset contains 9 relationships (with two direc-
tions) and an undirected Other class. There are
10,717 annotated examples, including 8,000 sen-
tences for training, and 2,717 for testing. We
adopt the official evaluation metric to evaluate our
systems, which is based on macro-averaged F1-
score for the nine actual relations (excluding the
Other relation) and takes the directionality into
consideration.

In order to compare with the work by Zhang
and Wang (2015), we use the same word vectors
proposed by Turian et al. (2010) (50-dimensional)
to initialize the embedding layer. Additionally, to
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compare with the work by Zhang et al. (2015),
we also use the 100-dimensional word vectors pre-
trained by Pennington et al. (2014).

Since there is no official development dataset,
we randomly select 800 sentence for validation.
The hyper-parameters for our model were tuned
on the development set for each task. Our model
was trained using AdaDelta (Zeiler, 2012) with a
learning rate of 1.0 and a minibatch size 10. The
model parameters were regularized with a per-
minibatch L2 regularization strength of 10−5. We
evaluate the effect of dropout embedding layer,
dropout LSTM layer and dropout the penultimate
layer, the model has a better performance, when
the dropout rate is set as 0.3, 0.3, 0.5 respective-
ly. Other parameters in our model are initialized
randomly.

4.2 Experimental Results

Table 1 compares our Att-BLSTM with other
state-of-the-art methods of relation classification.

SVM: This is the top performed system in
SemEval-2010. Rink and Harabagiu (2010) lever-
aged a variety of handcrafted features, and use
SVM as the classifier. They achieved an F1-score
of 82.2%.

CNN: Zeng et al. (2014) treated a sentences as
a sequential data and exploited the convolution-
al neural network to learn sentence-level features;
they also used a special position vector to repre-
sent each word. Then the sentence-level and lex-
ical features were concatenated into a single vec-
tor and fed into a softmax classifier for prediction.
This model achieves an F1-score of 82.7%.

RNN: Zhang and Wang (2015) employed bidi-
rectional RNN networks with two different di-
mension word vectors for relation classification.
They achieved an F1-score of 82.8% using 300-
dimensional word vectors pre-trained by Mikolov
et al. (2013), and an F1-score of 80.0% using
50-dimensional word vectors pre-trained by Turi-
an et al. (2010). Our model with the same 50-
dimensional word vectors achieves an F1-score of
82.5%, about 2.5 percent more than theirs.

SDP-LSTM: Yan et al. (2015) utilized four d-
ifferent channels to pick up heterogeneous along
the SDP, and they achieved an F1-score of 83.7%.
Comparing with their model, our model regarding
the raw text as a sequence is simpler.

BLSTM: Zhang et al. (2015) employed many
features derived from NLP tools and lexical re-

sources with bidirectional LSTM networks to
learn the sentence level features, and they achieved
state-of-the-art performance on the SemEval-2010
Task 8 dataset. Our model with the same word
vectors achieves a very similar result (84.0%), and
our model is more simple.

Our proposed Att-BLSTM model yields an F1-
score of 84.0%. It outperforms most of the exist-
ing competing approaches, without using lexical
resources such as WordNet or NLP systems like
dependency parser and NER to get high-level fea-
tures.

5 Conclusion

In this paper, we propose a novel neural network
model, named Att-BLSTM, for relation classifica-
tion. This model does not rely on NLP tools or
lexical resources to get, it uses raw text with posi-
tion indicators as input. The effectiveness of Att-
BLSTM is demonstrated by evaluating the model
on SemEval-2010 relation classification task.
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Abstract

As a first step towards agents learning to
communicate about their visual environ-
ment, we propose a system that, given vi-
sual representations of a referent (CAT)
and a context (SOFA), identifies their dis-
criminative attributes, i.e., properties that
distinguish them (has_tail). More-
over, although supervision is only pro-
vided in terms of discriminativeness of
attributes for pairs, the model learns to
assign plausible attributes to specific ob-
jects (SOFA-has_cushion). Finally,
we present a preliminary experiment con-
firming the referential success of the pre-
dicted discriminative attributes.

1 Introduction

There has recently been renewed interest in devel-
oping systems capable of genuine language under-
standing (Hermann et al., 2015; Hill et al., 2015).
In this perspective, it is important to think of an
appropriate general framework for teaching lan-
guage to machines. Since we use language pri-
marily for communication, a reasonable approach
is to develop systems within a genuine commu-
nicative setup (Steels, 2003; Mikolov et al., 2015).
Out long-term goal is thus to develop communi-
ties of computational agents that learn how to use
language efficiently in order to achieve commu-
nicative success (Vogel et al., 2013; Foerster et al.,
2016).

Within this general picture, one fundamental as-
pect of meaning where communication is indeed
crucial is the act of reference (Searle, 1969; Ab-
bott, 2010), the ability to successfully talk to oth-
ers about things in the external world. A specific
instantiation of reference studied in this paper is
that of referring expression generation (Dale and

is_roundis_metal is_greenmade_of_wood

Figure 1: Discriminative attributes predicted by
our model. Can you identify the intended refer-
ent? See Section 6 for more information

Reiter, 1995; Mitchell et al., 2010; Kazemzadeh
et al., 2014). A necessary condition for achieving
successful reference is that referring expressions
(REs) accurately distinguish the intended referent
from any other object in the context (Dale and
Haddock, 1991). Along these lines, we present
here a model that, given an intended referent and a
context object, predicts the attributes that discrim-
inate between the two. Some examples of the be-
haviour of the model are presented in Figure 1.

Importantly, and distinguishing our work from
earlier literature on generating REs (Krahmer and
Van Deemter, 2012): (i) the input objects are
represented by natural images, so that the agent
must learn to extract relevant attributes from real-
istic data; and (ii) no direct supervision on the at-
tributes of a single object is provided: the training
signal concerns their discriminativeness for object
pairs (that is, during learning, the agent might be
told that has_tail is discriminative for 〈CAT,
SOFA〉, but not that it is an attribute of cats). We
use this “pragmatic” signal since it could later be
replaced by a measure of success in actual com-
munication between two agents (e.g., whether a
second agent was able to pick the correct referent
given a RE).

2 Discriminative Attribute Dataset

We generated the Discriminative Attribute
Dataset, consisting of pairs of (intended) referents
and contexts, with respect to which the referents
should be identified by their distinctive attributes.
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〈referent, visual instances discriminative
context〉 attributes

〈CAT, SOFA 〉 has tail, has cushion,
...

〈CAT, APPLE〉 has legs, is green, ...

Table 1: Example training data

Our starting point is the Visual Attributes for
Concepts Dataset (ViSA) (Silberer et al., 2013),
which contains per-concept (as opposed to per-
image) attributes for 500 concrete concepts (CAT,
SOFA, MILK) spanning across different categories
(MAMMALS, FURNITURE), annotated with 636
general attributes. We disregarded ambiguous
concepts (e.g., bat), thus reducing our working set
of concepts C to 462 and the number of attributes
V to 573, as we eliminated any attribute that did
not occur with concepts in C. We extracted on
average 100 images annotated with each of these
concepts from ImageNet (Deng et al., 2009). Fi-
nally, each image i of concept c was associated
to a visual instance vector, by feeding the image
to the VGG-19 ConvNet (Simonyan and Zisser-
man, 2014), as implemented in the MatConvNet
toolkit (Vedaldi and Lenc, 2015), and extracting
the second-to-last fully-connected (fc) layer as its
4096-dimensional visual representation vci .

We split the target concepts into training, val-
idation and test sets, containing 80%, 10% and
10% of the concepts in each category, respec-
tively. This ensures that (i) the intersection be-
tween train and test concepts is empty, thus al-
lowing us to test the generalization of the model
across different objects, but (ii) there are instances
of all categories in each set, so that it is possible
to generalize across training and testing objects.
Finally we build all possible combinations of con-
cepts in the training split to form pairs of refer-
ents and contexts 〈cr, cc〉 and obtain their (binary)
attribute vectors pcr and pcc from ViSA, result-
ing in 70K training pairs. From the latter, we de-
rive, for each pair, a concept-level “discriminative-
ness” vector by computing the symmetric differ-
ence dcr,cc = (pcr − pcc) ∪ (pcc − pcr). The
latter will contain 1s for discriminative attributes,
0s elsewhere. On average, each pair is associ-
ated with 20 discriminative attributes. The final
training data are triples of the form 〈cr, cc,dcr,cc〉
(the model never observes the attribute vectors of
specific concepts), to be associated with visual in-

stances of the two concepts. Table 1 presents some
examples.

Note that ViSA contain concept-level attributes,
but images contain specific instances of concepts
for which a general attribute might not hold. This
introduces a small amount of noise. For example,
is_green would in general be a discriminative
attribute for apples and cats, but it is not for the
second sample in Table 1. Using datasets with per-
image attribute annotations would solve this issue.
However, those currently available only cover spe-
cific classes of concepts (e.g., only clothes, or ani-
mals, or scenes, etc.). Thus, taken separately, they
are not general enough for our purposes, and we
cannot merge them, since their concepts live in dif-
ferent attribute spaces.

3 Discriminative Attribute Network

The proposed Discriminative Attribute Network
(DAN) learns to predict the discriminative at-
tributes of referent object cr and context cc without
direct supervision at the attribute level, but relying
only on discriminativeness information (e.g., for
the objects in the first row of Table 1, the gold vec-
tor would contain 1 for has_tail, but 0 for both
is_green and has_legs). Still, the model is
implicitly encouraged to embed objects into a con-
sistent attribute space, to generalize across the dis-
criminativeness vectors of different training pairs,
so it also effectively learns to annotate objects with
visual attributes.

Figure 2 presents a schematic view of DAN,
focusing on a single attribute. The model is pre-
sented with two concepts 〈CAT, SOFA〉, and ran-
domly samples a visual instance of each. The in-
stance visual vectors v (i.e., ConvNet second-to-
last fc layers) are mapped into attribute vectors of
dimensionality |V | (cardinality of all available at-
tributes), using weights Ma ∈ R4096×|V | shared
between the two concepts. Intuitively, this layer
should learn whether an attribute is active for a
specific object, as this is crucial for determining
whether the attribute is discriminative for an ob-
ject pair. In Section 5, we present experimental
evidence corroborating this hypothesis.

In order to capture the pairwise interactions be-
tween attribute vectors, the model proceeds by
concatenating the two units associated with the
same visual attribute v across the two objects (e.g.,
the units encoding information about has_tail)
and pass them as input to the discriminative layer.
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Figure 2: Schematic representation of DAN. For
simplicity, the prediction process is only illus-
trated for has_tail

The discriminative layer processes the two units
by applying a linear transformation with weights
Md ∈ R2×h, followed by a sigmoid activation
function, finally deriving a single value by another
linear transformation with weights MD ∈ Rh×1.
The output d̂v encodes the predicted degree of
discriminativeness of attribute v for the specific
reference-context pair. The same process is ap-
plied to all attributes v ∈ V , to derive the esti-
mated discriminativeness vector d̂, using the same
shared weights Md and MD for each attribute.

To learn the parameters θ of the model (i.e. Ma,
Md and MD), given training data 〈cr, cc,dcr,cc〉,
we minimize MSE between the gold vector dcr,cc

and model-estimated d̂cr,cc . We trained the model
with rmsprop and with a batch size of 32. All hy-
perparameters (including the hidden size h which
was set to 60) were tuned to maximize perfor-
mance on the validation set.

4 Predicting Discriminativeness

We evaluate the ability of the model to predict
attributes that discriminate the intended referent
from the context. Precisely, we ask the model to
return all discriminative attributes for a pair, in-
dependently of whether they are positive for the
referent or for the context (given images of a cat
and a building, both +is_furry and −made_
of_bricks are discriminative of the cat).

Test stimuli We derive our test stimuli from the
VisA test split (see Section 2), containing 2000
pairs. Unlike in training, where the model was
presented with specific visual instances (i.e., sin-
gle images), for evaluation we use visual concepts
(CAT, BED), which we derive by averaging the
vectors of all images associated to an object (i.e.,
deriving CAT from all images of cats), due to lack

Model Precision Recall F1
DAN 0.66 0.49 0.56

attribute+sym. difference 0.64 0.48 0.55
no attribute layer 0.63 0.33 0.43
Random baseline 0.16 0.16 0.16

Table 2: Predicting discriminative features

of gold information on per-image attributes.

Results We compare DAN against a random
baseline based on per-attribute discriminativeness
probabilities estimated from the training data and
an ablation model without attribute layer. We test
moreover a model that is trained with supervi-
sion to predict attributes and then deterministically
computes the discriminative attributes. Specifi-
cally, we implemented a neural network with one
hidden layer, which takes as input a visual in-
stance, and it is trained to predict its gold attribute
vector, casting the problem as logistic regression,
thus relying on supervision at the attribute level.
Then, given two paired images, we let the model
generate their predicted attribute vectors and com-
pute the discriminative attributes by taking the
symmetric difference of the predicted attribute
vectors as we do for DAN. For the DAN and its ab-
lation, we use a 0.5 threshold to deem an attribute
discriminative, without tuning.

The results in Table 2 confirm that, with ap-
propriate supervision, DAN performs discrimina-
tiveness prediction reasonably well – indeed, as
well as the model with similar parameter capac-
ity requiring direct supervision on an attribute-by-
attribute basis, followed by the symmetric differ-
ence calculation. Interestingly, allowing the model
to embed visual representations into an interme-
diate attribute space has a strong positive effect
on performance. Intuitively, since DAN is eval-
uated on novel concepts, the mediating attribute
layer provides more high-level semantic informa-
tion helping generalization, at the expense of extra
parameters compared to the ablation without at-
tribute layer.

5 Predicting Attributes

Attribute learning is typically studied in su-
pervised setups (Ferrari and Zisserman, 2007;
Farhadi et al., 2009; Russakovsky and Fei-Fei,
2010). Our model learns to embed visual ob-
jects in an attribute space through indirect supervi-
sion about attribute discriminativeness for specific
<referent, context> pairs. Attributes are never
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explicitly associated to a specific concept during
training. The question arises of whether discrim-
inativeness pushes the model to learn plausible
concept attributes. Note that the idea that the se-
mantics of attributes arises from their distinctive
function within a communication system is fully in
line with the classic structuralist view of linguistic
meaning (Geeraerts, 2009).

To test our hypothesis, we feed DAN the same
test stimuli (visual concept vectors) as in the pre-
vious experiment, but now look at activations in
the attribute layer. Since these activations are real
numbers whereas gold values (i.e., the visual at-
tributes in the ViSA dataset) are binary, we use
the validation set to learn the threshold to deem
an attribute active, and set it to 0.5 without tun-
ing. Note that no further training and no extra su-
pervision other than the discriminativeness signal
are needed to perform attribute prediction. The re-
sulting binary attribute vector p̂c for concept c is
compared against the corresponding gold attribute
vector pc.

Results We compare DAN to the random base-
line and to an explicit attribute classifier similar
to the one used in the previous experiment, i.e., a
one-hidden-layer neural network trained with lo-
gistic regression to predict the attributes. We re-
port moreover the best F1 score of Silberer et
al. (2013), who learn a SVM for each visual at-
tribute based on HOG visual features. Unlike in
our setup, in theirs, images for the same con-
cept are used both for training and to derive vi-
sual attributes (our setup is “zero-shot” at the con-
cept level, i.e., we predict attributes of concepts
not seen in training). Thus, despite the fact that
they used presumably less accurate pre-CNN vi-
sual features, the setup is much easier for them,
and we take their performance to be an upper
bound on ours.

DAN reaches, and indeed surpasses, the perfor-
mance of the model with direct supervision at the
attribute level, confirming the power of discrimi-
nativeness as a driving force in building semantic
representations. The comparison with Silberer’s
model suggests that there is room for improve-
ment, although the noise inherent in concept-level
annotation imposes a relatively low bound on re-
alistic performance.

Model Precision Recall F1
DAN 0.58 0.64 0.61

direct supervision 0.56 0.60 0.58
Silberer et. al. 0.70 0.70 0.70

Random baseline 0.13 0.12 0.12

Table 3: Predicting concept attributes

6 Evaluating Referential Success

We finally ran a pilot study testing whether DAN’s
ability to predict discriminative attributes at the
concept level translates into producing features
that would be useful in constructing successful ref-
erential expressions for specific object instances.

Test stimuli Our starting point is the ReferIt
dataset (Kazemzadeh et al., 2014), consisting
of REs denoting objects (delimited by bounding
boxes) in natural images. We filter out any 〈RE,
bounding box〉 pair whose RE does not overlap
with our attribute set V and annotate the remaining
ones with the overlapping attribute, deriving data
of the form 〈RE, bounding box, attribute〉.
For each intended referent of this type, we sample
as context another 〈RE, bounding box〉 pair such
that (i) the context RE does not contain the ref-
erent attribute, so that the latter is a likely
discriminative feature; (ii) referent and context
come from different images, so that their bound-
ing boxes do not accidentally overlap; (iii) there
is maximum word overlap between referent and
contexts REs, creating a realistic referential ambi-
guity setup (e.g., two cars, two objects in similar
environments). Finally we sample maximally 20
〈referent, context〉 pairs per attribute, result-
ing in 790 test items. For each referent and context
we extract CNN visual vectors from their bound-
ing boxes, and feed them to DAN to obtain their
discriminative attributes. Note that we used the
ViSA-trained DAN for this experiment as well.

Results For 12% of the test 〈referent, context〉
pairs, the discriminative attribute is con-
tained in the set of discriminative attributes pre-
dicted by DAN. A random baseline estimated from
the distribution of attributes in the ViSA dataset
would score 15% recall. This baseline however
on average predicts 20 discriminative attributes,
whereas DAN activates, only 4. Thus, the base-
line has a trivial recall advantage.

In order to evaluate whether in general the dis-
criminative attributes activated by DAN would
lead to referential success, we further sampled a
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subset of 100 〈referent, context〉 test pairs. We
presented them separately to two subjects (one
a co-author of this study) together with the at-
tribute that the model activated with the largest
score (see Figure 1 for examples). Subjects were
asked to identify the intended referent based on
the attribute. If both agreed on the same referent,
we achieved referential success, since the model-
predicted attribute sufficed to coherently discrim-
inate between the two images. Encouragingly,
the subjects agreed on 78% of the pairs (p<0.001
when comparing against chance guessing, accord-
ing to a 2-tailed binomial test). In cases of dis-
agreement, the predicted attribute was either too
generic or very salient in both objects, a behaviour
observed especially in same-category pairs (e.g.,
is_round in Figure 1).

7 Concusion

We presented DAN, a model that, given a ref-
erent and a context, learns to predict their dis-
criminative features, while also inferring visual at-
tributes of concepts as a by-product of its train-
ing regime. While the predicted discriminative
attributes can result in referential success, DAN
is currently lacking all other properties of refer-
ence (Grice, 1975) (salience, linguistic and prag-
matic felicity, etc). We are currently working to-
wards adding communication (thus simulating a
speaker-listener scenario (Golland et al., 2010))
and natural language to the picture.
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Abstract

We describe an efficient neural network
method to automatically learn sentiment
lexicons without relying on any manual
resources. The method takes inspiration
from the NRC method, which gives the
best results in SemEval13 by leveraging
emoticons in large tweets, using the PMI
between words and tweet sentiments to de-
fine the sentiment attributes of words. We
show that better lexicons can be learned
by using them to predict the tweet senti-
ment labels. By using a very simple neu-
ral network, our method is fast and can
take advantage of the same data volume as
the NRC method. Experiments show that
our lexicons give significantly better accu-
racies on multiple languages compared to
the current best methods.

1 Introduction

Sentiment lexicons contain the sentiment polar-
ity and/or the strength of words or phrases (Bac-
cianella et al., 2010; Taboada et al., 2011; Tang et
al., 2014a; Ren et al., 2016a). They have been used
for both rule-based (Taboada et al., 2011) and un-
supervised (Turney, 2002; Hu and Liu, 2004; Kir-
itchenko et al., 2014) or supervised (Mohammad
et al., 2013; Tang et al., 2014b; Vo and Zhang,
2015) machine-learning-based sentiment analysis.
As a result, constructing sentiment lexicons is one
important research task in sentiment analysis.

Many approaches have been proposed to con-
struct sentiment lexicons. Traditional methods
manually label the sentiment attributes of words
(Hu and Liu, 2004; Wilson et al., 2005; Taboada
et al., 2011). One benefit of such lexicons is high
quality. On the other hand, the methods are time-
consuming, requiring language and domain exper-

tise. Recently, statistical methods have been ex-
ploited to learn sentiment lexicons automatically
(Esuli and Sebastiani, 2006; Baccianella et al.,
2010; Mohammad et al., 2013). Such methods
leverage knowledge resources (Bravo-Marquez et
al., 2015) or labeled sentiment data (Tang et al.,
2014a), giving significantly better coverage com-
pared to manual lexicons.

Among the automatic methods, Mohammad et
al. (2013) proposed to use tweets with emoticons
or hashtags as training data. The main advantage
is that such training data are abundant, and manual
annotation can be avoided. Despite that emoticons
or hashtags can be noisy in indicating the senti-
ment of a tweet, existing research (Go et al., 2009;
Pak and Paroubek, 2010; Agarwal et al., 2011;
Kalchbrenner et al., 2014; Ren et al., 2016b) has
shown that effectiveness of such data when used
to supervise sentiment classifiers.

Mohammad et al. (2013) collect sentiment lexi-
cons by calculating pointwise mutual information
(PMI) between words and emoticons. The result-
ing lexicons give the best results in a SemEval13
benchmark (Nakov et al., 2013). In this paper,
we show that a better lexicon can be learned by
directly optimizing the prediction accuracy, tak-
ing the lexicon as input and emoticon as the out-
put. The correlation between our method and the
method of Mohammad et al. (2013) is analogous
to the “predicting” vs “counting” correlation be-
tween distributional and distributed word repre-
sentations (Baroni et al., 2014).

We follow Esuli and Sebastiani (2006) in us-
ing two simple attributes to represent each sen-
timent word, and take inspiration from Mikolov
et al. (2013) in using a very simple neural net-
work for sentiment prediction. The method can
leverage the same data as Mohammad et al.
(2013) and therefore benefits from both scale
and annotation independence. Experiments show

219



that the neural model gives the best results on
standard benchmarks across multiple languages.
Our code and lexicons are publicly available at
https://github.com/duytinvo/acl2016.

2 Related work

Existing methods for automatically learning sen-
timent lexicons can be classified into three main
categories. The first category augments existing
lexicons with sentiment information. For exam-
ple, Esuli and Sebastiani (2006) and Baccianella
et al. (2010) use a tuple (pos, neg, neu) to rep-
resent each word, where pos, neg and neu stand
for possibility, negativity and neutrality, respec-
tively, training these attributes by extracting fea-
tures from WordNet. These methods rely on the
taxonomic structure of existing lexicons, which
are limited to specific languages.

The second approach expands existing lexicons,
which are typically manually labeled. For exam-
ple, Tang et al. (2014a) apply a neural network to
learn sentiment-oriented embeddings from a small
amount of annotated tweets, and then expand a
set of seed sentiment words by measuring vector
space distances between words. Bravo-Marquez et
al. (2015) extend an existing lexicon by classifying
words using manual features. These methods are
also limited to domains and languages with man-
ual resources.

The third line of methods constructs lexicons
from scratch by accumulating statistical informa-
tion over large data. Turney (2002) proposes to es-
timate the sentiment polarity of words by calculat-
ing PMI between seed words and search hits. Mo-
hammad et al. (2013) improve the method by com-
puting sentiment scores using distance-supervised
data from emoticon-baring tweets instead of seed
words. This approach can be used to automatically
extract multilingual sentiment lexicons (Salameh
et al., 2015; Mohammad et al., 2015) without us-
ing manual resources, which makes it more flex-
ible compared to the first two methods. We con-
sider it as our baseline.

We use the same data source as Mohammad
et al. (2013) to train lexicons. However, rather
than relying on PMI, we take a machine-learning
method in optimizing the prediction accuracy of
emoticons using the lexicons. To leverage large
data, we use a very simple neural network to train
the lexicons.

Figure 1: Our model.

3 Baseline

Mohammad et al. (2013) employ emoticons and
relevant hashtags contained in a tweet as the senti-
ment label of the tweet. Given a set of tweets with
their labels, the sentiment score (SS) for a token w
was computed as:

SS(w) = PMI(w, pos)− PMI(w, neg), (1)

where pos represents the positive label and neg
represents the negative label. PMI stands for
pointwise mutual information, which is

PMI(w, pos) = log2

freq(w, pos) ∗N
freq(w) ∗ freq(pos)

(2)

Here freq(w , pos) is the number of times the term
w occurs in positive tweets, freq(w) is the total
frequency of term w in the corpus, freq(pos) is
the total number of tokens in positive tweets, and
N is the total number of tokens in the corpus.
PMI (w ,neg) is calculated in a similar way. Thus,
Equation 1 is equal to:

SS(w) = log2

freq(w, pos) ∗ freq(neg)
freq(w, neg) ∗ freq(pos)

(3)

4 Model

We follow Esuli and Sebastiani (2006), using pos-
itivity and negativity attributes to define lexicons.
In particular, each word takes the formw = (n, p),
where n denotes negativity and p denotes positiv-
ity (n, p ∈ R). As shown in Figure 1, given a
tweet tw = w1, w2, ..., wn, a simple neural net-
work is used to predict its two-dimensional senti-
ment label y, where [1,0] for negative and [0,1] for
positive tweets. The predicted sentiment probabil-
ity y of a tweet is computed as:

h =
∑

i

(wi) (4)
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Language #pos #neg #Tweets
English 4.5M 4.5M 9M
Arabic 400k 400k 800k

Table 1: Emoticon-based training data.

y = softmax (hW ) (5)

where W is fixed to the diagonal matrix (W ∈
R2x2).

We follow Go et al. (2009) in defining the sen-
timent labels of tweets via emoticons. Each token
is first initialized by random negative and positive
attribute scores in [-0.25,0.25], and then trained
by supervised learning. The cross-entropy error
is employed as the objective function:

loss(tw) = −
∑

ŷ. log(y) (6)

Backpropagation is applied to learn (n, p) for each
token. Optimization is done using stochastic gra-
dient descent over shuffled mini-batches, with the
AdaDelta update rule (Zeiler, 2012). All mod-
els are trained over 5 epochs with a batch size of
50. Due to its simplicity, the method is very fast,
training a sentiment lexicon over 9 million tweets
within 35 minutes per epoch on an Intelr core™
i7-3770 CPU @ 3.40 GHz.

5 Sentiment Classification

The resulting lexicon can be used in both unsu-
pervised and supervised sentiment classifiers. The
former is implemented by summing the sentiment
scores of all tokens contained in a given document
(Taboada et al., 2011; Kiritchenko et al., 2014). If
the total sentiment score is larger than 0, the doc-
ument is classified as positive. Here only one pos-
itivity attribute is required to represent a lexicon,
and we use the contrast between the positivity and
negativity attributes (p− n) as the score.

The supervised method makes use of sentiment
lexicons as features for machine learning classifi-
cation. Given a document D, we follow Zhu et al.
(2014) and extract the following features:

• The number of sentiment tokens in D, where
sentiment tokens are word tokens whose sen-
timent scores are not zero in a lexicon;

• The total sentiment score of a document:∑
wi∈D SS(wi);

• The maximal score: maxwi∈DSS(wi);

Type #pos #neg #Tweets

Supervised
train 3009 1187 4196
dev 483 283 766
test 1313 490 1803

Unsupervised 4805 1960 6765

Table 2: Statistics of the Semeval13.

• The total scores of positive and negative
words in D;

• The sentiment score of the last token in D.

Again we use SS(wi) = pwi − nwi as the sen-
timent score of each word wi, because the meth-
ods are based on a single sentiment score value for
each word.

6 Experiments

6.1 Experimental Settings

Training data: To automatically obtain train-
ing data, we use the Twitter Developers API1 to
crawl emoticon tweets2 of English and Arabic
from February 2014 to September 2014. We fol-
low Go et al. (2009), removing all emoticons used
to collect training data from the tweets, and Tang
et al. (2014b), ignoring tweets which are less than
7 tokens. A Twitter tokenizer (Gimpel et al., 2011)
is applied to preprocess all tweets. Rare words that
occur less than 5 times in the vocabulary are re-
moved. HTTP links and username are replaced by
〈http〉 and 〈user〉, respectively. The statistics of
training data is shown in Table 1.

Sentiment classifier: We use LibLinear3 (Fan
et al., 2008) as the supervised classifier on bench-
mark datasets. The parameter c is tuned by making
a grid search (Hsu et al., 2003) on the accuracy of
development set on the English dataset and five-
fold cross validation on the Arabic dataset.

Evaluation: We follow Kiritchenko et al.
(2014) in employing precision (P), recall (R) and
F1 score (F) to evaluate unsupervised classifica-
tion. We follow Hsu et al. (2003) and use accuracy
(acc), the tuning criterion, to evaluate supervised
classification.

Code and lexicons: We make the Python
implementation of our models and the
resulting sentiment lexicons available at
https://github.com/duytinvo/acl2016

1https://dev.twitter.com/
2:), : ), :-), :D, =) for positive and :(, : (, :-( for negative
3https://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Lexicons Unsup Sup
P R F Acc

WEKA ED 61 55.9 55.4 73.8
STS 66.4 52.5 47.7 73.7

HIT 75.3 73.3 74.1 78.5

NRC Hashtag 70.3 71.4 70.8 77.4
Emoticon 73.2 74.6 73.8 79.9

nnLexicon 74.4 77.3 75.3 81.3

Table 3: Results on SemEval13 (English).

Labels Balanced Unbalanced
train dev test train dev test

#pos

481 159 159

481 159 159
#neg 1012 336 336
#mix 500 166 166
#obj 4015 1338 1338

#Tweets 1924 636 636 6008 1999 1999

Table 4: Standard splits of ASTD.

6.2 English Lexicons

The Twitter benchmark of SemEval13 (Nakov et
al., 2013) is used as the English test set. In or-
der to evaluate both unsupervised and supervised
methods, we follow Tang et al. (2014b) and Kir-
itchenko et al. (2014), removing neutral tweets.
The statistics is shown in Table 2. We compare our
lexicon with the lexicons of NRC4 (Mohammad et
al., 2013), HIT5 (Tang et al., 2014a) and WEKA6

(Bravo-Marquez et al., 2015). As shown in Table
3, using the unsupervised sentiment classification
method (unsup) in Section 5, our lexicon gives sig-
nificantly better result in comparison with count-
based lexicons of NRC. Under both settings, our
lexicon yields the best results compared to other
methods.

6.3 Arabic Lexicons

We employ the standard Arabic Twitter dataset
ASTD (Nabil et al., 2015), which consists of about
10,000 tweets with 4 labels: objective (obj), neg-
ative (neg), positive (pos) and mixed subjective
(mix). The standard splits of ASTD are shown in
Table 4. We follow Nabil et al. (2015) by merg-
ing training and validating data for learning model.
We compare our lexicon with only the lexicons of
NRC7 (Salameh et al., 2015), because the meth-
ods of Tang et al. (2014a) and Bravo-Marquez et
al. (2015) depend on manual resources, which are

4http://saifmohammad.com/WebPages/Abstracts/NRC-
SentimentAnalysis.htm

5http://ir.hit.edu.cn/∼dytang/
6http://www.cs.waikato.ac.nz/∼fjb11/
7http://saifmohammad.com/WebPages/ArabicSA.html

Lexicons Balanced Unbalanced

NRC Hashtag 31.9 63.4
Emoticon 31.4 65.3

nnLexicon 33.3 66.5

Table 5: Results on ASTD (Arabic).

Words nnLexicon NRC
bad -1.122 -1.295
worse -1.626 -1.417
worst -2.256 -1.875
busy -0.520 -0.003
busier -0.609 0.106∗

busiest -1.254 -0.712
suitable 0.502 -0.040∗

satisfy 0.570 -0.173∗

lazy -0.462 0.224∗

scummy -0.852 0.049∗

old wine 0.453 0.552
old meat -0.172 0.014∗

strong memory 0.081 -0.083∗

strong snowstorm -0.554 0.182∗

Table 6: Example sentiment scores, where ∗ de-
notes incorrect polarity.

not available. As shown in Table 5, our lexicon
consistently gives the best performance on both
the balanced and unbalanced datasets, showing the
advantage of “predicting” over “counting”.

6.4 Analysis

Table 6 shows examples of our predicting-based
lexicon and the counting-based lexicon of Mo-
hammad et al. (2013). First, both lexicons can
correctly reflect the strength of emotional words
(e.g. bad, worse, worst), which demonstrates that
our method can learn statistical relevance as effec-
tively as PMI. Second, we find many cases where
our lexicon gives the correct polarity (e.g. suit-
able, lazy) but the lexicon of Mohammad et al.
(2013) does not. To quantitatively compare the
lexicons, we calculated the accuracies of their po-
larities (i.e. sign) by using the manually-annotated
lexicon of Hu and Liu (2004) as the gold stan-
dard. We take the intersection between the au-
tomatic lexicons and the lexicon of Hu and Liu
(2004) as the test set, which contains 3270 words.
The polarity accuracy of our lexicon is 78.2%, in
contrast to 76.9% by the lexicon of Mohammad
et al. (2013), demonstrating the relative strength
of our method. Third, by having two attributes
(n, p) instead of one, our lexicon is better in com-
positionality (e.g. SS(strong memory) > 0,
SS(strong snowstorm) < 0).
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7 Conclusion

We constructed a sentiment lexicon for short text
automatically using an efficient neural network,
showing that prediction-based training is better
than counting-based training for learning from
large tweets with emoticons. In standard evalu-
ations, the method gave better accuracies across
multiple languages compared to the state-of-the-
art counting-based method.
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Abstract 

Dimensional sentiment analysis aims to 
recognize continuous numerical values in 
multiple dimensions such as the valence-
arousal (VA) space. Compared to the cate-
gorical approach that focuses on sentiment 
classification such as binary classification 
(i.e., positive and negative), the dimensional 
approach can provide more fine-grained 
sentiment analysis. This study proposes a 
regional CNN-LSTM model consisting of 
two parts: regional CNN and LSTM to pre-
dict the VA ratings of texts. Unlike a con-
ventional CNN which considers a whole 
text as input, the proposed regional CNN 
uses an individual sentence as a region, di-
viding an input text into several regions 
such that the useful affective information in 
each region can be extracted and weighted 
according to their contribution to the VA 
prediction. Such regional information is se-
quentially integrated across regions using 
LSTM for VA prediction. By combining the 
regional CNN and LSTM, both local (re-
gional) information within sentences and 
long-distance dependency across sentences 
can be considered in the prediction process. 
Experimental results show that the proposed 
method outperforms lexicon-based, regres-
sion-based, and NN-based methods pro-
posed in previous studies. 

1 Introduction 

Sentiment analysis has been useful in the devel-
opment of online applications for customer re-
views and public opinion analysis (Pang and Lee 
2008; Calvo and D'Mello 2010; Liu 2012; Feld-
man 2013). In sentiment representation, the cate-

gorical approach represents emotional states as 
several discrete classes such as binary (i.e., posi-
tive and negative) or as multiple categories such 
as Ekman’s (1992) six basic emotions (anger, 
happiness, fear, sadness, disgust, and surprise). 
Classification algorithms can then be used to 
identify sentiment categories from texts.  

The dimensional approach represents emo-
tional states as continuous numerical values in 
multiple dimensions such as the valence-arousal 
(VA) space (Russell, 1980). The dimension of 
valence refers to the degree of positive and nega-
tive sentiment, whereas the dimension of arousal 
refers to the degree of calm and excitement. Both 
dimensions range from 1 (highly negative or 
calm) to 9 (highly positive or excited) based on 
the self-assessment manikin (SAM) annotation 
scheme (Bradley et al. 1994). For example, the 
following passage consisting of three sentences 
is associated with a valence-arousal rating of (2.5, 
7.8), which displays a high degree of negativity 
and arousal. 

(r1) A few days ago I checked into a franchise 
hotel. 

(r2) The front desk service was terrible, and 
they didn’t know much about local attrac-
tions. 

(r3) I would not recommend this hotel to a 
friend. 

Such high-arousal negative (or high-arousal posi-
tive) texts are usually of interest and could priori-
tized in product review systems. Dimensional 
sentiment analysis can accomplish this by recog-
nizing the VA ratings of texts and rank them ac-
cordingly, thus providing more intelligent and fi-
ne-grained sentiment applications. 
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Figure 1: System architecture of the proposed regional CNN-LSTM model. 

Research on dimensional sentiment analysis 
has addressed VA recognition at both the word-
level (Wei et al., 2011; Malandrakis et al., 2011; 
Yu et al., 2015) and the sentence-level (Paltoglou 
et al., 2013; Malandrakis et al., 2013). At the 
word-level, Wei et al. (2011) used linear regres-
sion to transfer VA ratings from English affec-
tive words to Chinese words. Malandrakis et al. 
(2011) used a kernel function to combine the 
similarity between words for VA prediction. Yu 
et al. (2015) used a weighted graph model to it-
eratively determine the VA ratings of affective 
words. At the sentence level, Paltoglou et al. 
(2013) adopted a lexicon-based method to calcu-
late the VA ratings of texts by averaging the VA 
ratings of affective words in the texts using a 
weighted arithmetic/geometric mean. 
Malandrakis et al. (2013) proposed a regression 
method that extracted n-gram with affective rat-
ings as features to predict VA values for texts.  

Recently, word embedding (Mikolov et al., 
2013a; Mikolov et al., 2013b) and deep neural 
networks (NN) such as convolutional neural 
networks (CNN) (Kim, 2014; Kalchbrenner et al., 
2014), recurrent neural networks (RNN) (Graves, 
2012; Irsoy and Cardie, 2014) and long short-
term memory (LSTM) (Wang et al., 2015; Liu et 
al., 2015) have been successfully employed for 

categorical sentiment analysis. In general, CNN 
is capable of extracting local information but 
may fail to capture long-distance dependency. 
LSTM can address this limitation by sequentially 
modeling texts across sentences. Such NN-based 
and word embedding methods have not been well 
explored for dimensional sentiment analysis. 

This study proposes a regional CNN-LSTM 
model consisting of two parts, regional CNN and 
LSTM, to predict the VA ratings of texts. We 
first construct word vectors for vocabulary words 
using word embedding. The regional CNN is 
then used to build text vectors for the given texts 
being predicted based on the word vectors. Un-
like a conventional CNN which considers a 
whole text as input, the proposed regional CNN 
uses individual sentences as regions, dividing an 
input text into several regions such that the use-
ful affective information in different regions can 
be extracted and weighted according to their con-
tribution to the VA prediction. For example, in 
the aforementioned example text, it would be 
useful for the system to emphasize the two sen-
tences/regions (r2) and (r3) containing negative 
affective information. Finally, such regional in-
formation is sequentially integrated across re-
gions using LSTM for VA prediction. By com-
bining the regional CNN and LSTM, both local 
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(regional) information within sentences and long-
distance dependency across sentences can be 
considered in the prediction process. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed regional CNN-
LSTM model. Section 3 reports the evaluation 
results of the proposed method against lexicon-
based, regression-based, and NN-based methods. 
Conclusions are finally drawn in Section 4. 

2 Regional CNN-LSTM Model 

Figure 1 shows the overall framework of the 
proposed regional CNN-LSTM model. First, the 
word vectors of vocabulary words are trained 
from a large corpus using the word2vec toolkit. 
For each given text, the regional CNN model us-
es a sentence as a region to divide the given text 
into R regions, i.e. r1,…, ri, rj, rk,…, rR. In each 
region, useful affective features can be extracted 
once the word vectors sequentially pass through 
a convolutional layer and max pooling layer. 
Such local (regional) features are then sequen-
tially integrated across regions using LSTM to 
build a text vector for VA prediction. 

2.1 Convolutional Layer 

In each region, a convolutional layer is first used 
to extract local n-gram features. All word em-
beddings are stacked in a region matrix 

d VM ×∈ , where |V| is the vocabulary size of a 
region, and d is the dimensionality of word vec-
tors. For example, in Fig.1, the word vectors in 
the regions ri={wri 

1 , wri 
2 ,…,wri 

I }, rj={wrj 
1 ,wrj 

2 ,…, wrj 
J } 

and rk={wrk 
1 ,wrk 

2 ,…, wrk 
K } are combined to form 

the region matrices xri, xrj, and xrk. In each region, 
we use L convolutional filters to learn local n-
gram features. In a window of ω words xn:n+ω-1, a 
filter Fl (1≤l≤L) generates the feature map yl 

n as 
follows, 

 : 1( )l l l
n n ny f W bω+ −= +x   (1) 

where  is a convolutional operator, dW ω×∈
and b respectively denote the weight matrix and 
bias, ω is the length of the filter, d is the dimen-
sion of the word vector, and f is the ReLU func-
tion. When a filter gradually traverses from x1:ω-1 
to xN+ω-1:N, we get the output feature maps 

1 2 1, , ,l l l l
Ny y y ω− += …y of filter Fl. Given varying 

text lengths in the regions, yl may have different 
dimensions for different texts. Therefore, we de-
fine the maximum length of the CNN input in the 

corpora as the dimension N. If the input length is 
shorter than N, then several random vectors with 
a uniform distribution U(-0.25, 0.25) will be ap-
pended. 

2.2 Max-pooling Layer 

Max-pooling subsamples the output of the con-
volutional layer. The most common way to do 
pooling it to apply a max operation to the result 
of each filter. There are two reasons to use a 
max-pooling layer here. First, by eliminating 
non-maximal values, it reduces computation for 
upper layers. Second, it can extract the local de-
pendency within different regions to keep the 
most salient information. The obtained region 
vectors are then fed to a sequential layer. 

2.3 Sequential Layer 

To capture long-distance dependency across re-
gions, the sequential layer sequentially integrates 
each region vector into a text vector. Due to the 
problem of gradients vanishing or exploding in 
RNN (Bengio et al., 1994), LSTM is introduced 
in the sequential layer for vector composition. 
After the LSTM memory cell sequentially 
traverses through all regions, the last hidden state 
of the sequential layer is regarded as the text rep-
resentation for VA prediction. 

2.4 Linear Decoder 

Since the values in both the valence and arousal 
dimensions are continuous, the VA prediction 
task requires a regression. Instead of using a 
softmax classifier, a linear activation function 
(also known as a linear decoder) is used in the 
output layer, defined as, 

 d t dy W b= +x   (2) 

where xt is the text vector learned from the se-
quential layer, y is the degree of valence or 
arousal of the target text, and Wd and bd respec-
tively denote the weight and bias associated with 
the linear decoder. 

The regional CNN-LSTM model is trained by 
minimizing the mean squared error between the 
predicted y and actual y. Given a training set of 
text matrix X={x(1), x(2),…, x(m)}, and their VA 
ratings set y={y(1), y(2), …, y(m)}, the loss function 
is defined as 

 
2( ) ( )

1

1( , ) ( )
2

m
i i

i
L h y

m =

= −∑X y x   (3) 
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In the training phase, a back propagation (BP) 
algorithm with stochastic gradient descent (SGD) 
is used to learn model parameters. Details of the 
BP algorithm can be found in (LeCun et al., 
2012). 

3 Experiments 

This section evaluates the performance of the 
proposed regional CNN-LSTM model against 
lexicon-based, regression-based, and NN-based 
methods. 

Datasets. This experiment used two affective 
corpora. i) Stanford Sentiment Treebank (SST) 
(Socher et al., 2013) contains 8,544 training texts, 
2,210 test texts, and 1,101 validation texts. Each 
text was rated with a single dimension (valence) 
in the range of (0, 1). ii) Chinese Valence-
Arousal Texts (CVAT) (Yu et al., 2016) consists 
of 2,009 texts collected from social forums, 
manually rated with both valence and arousal 
dimensions in the range of (1, 9) using the SAM 
annotation scheme (Bradley et al. 1994). The 
word vectors for English and Chinese were re-
spectively trained using the Google News and 
Chinese wiki dumps (zhwiki) datasets. The di-
mensionality for both word vectors are 300. 

Experimental Settings. Two lexicon-based 
methods were used for comparison: weighted 
arithmetic mean (wAM) and weighted geometric 
mean (wGM) (Paltoglou et al., 2013), along with 
two regression-based methods: average values 
regression (AVR) and maximum values regres-
sion (MVR) (Malandrakis et al., 2013). The va-
lence ratings of English and Chinese words were 
respectively taken from the Extended ANEW 
(Warriner et al., 2013) and Chinese Valence-
Arousal Words (CVAW) lexicons (Yu et al., 

2016). A conventional CNN, RNN and LSTM 
were also implemented for comparison.  

Metrics. Performance was evaluated using the 
root mean square error (RMSE), mean absolute 
error (MAE), and Pearson correlation coefficient 
(r), defined as 

 Root mean square error (RMSE) 

( )2

1

n

i i
i

RMSE A P n
=

= −∑              (4) 

 Mean absolute error (MAE) 

1

1 | |
n

i i
i

MAE A P
n =

= −∑                   (5) 

 Pearson correlation coefficient (r) 

1

1 ( )( )
1

n
i i

i A P

A A P Pr
n σ σ=

− −
=

− ∑            (6) 

where Ai is the actual value, Pi is the predicted 
value, n is the number of test samples, A  and P  
respectively denote the arithmetic mean of A and 
P, and σ is the standard deviation. A lower 
RMSE or MAE and a higher r value indicates 
better prediction performance. A t-test was used 
to determine whether the performance difference 
was statistically significant. 

SST (English) 
Valence RMSE MAE r 

Lexicon-wAM 2.018 1.709 0.350 
Lexicon-wGM 1.985 1.692 0.385 

Regression-AVR 1.856 1.542 0.455 
Regression-MVR 1.868 1.551 0.448 

CNN 1.489 1.184 0.706 
RNN 1.976 1.715 0.401 

LSTM 1.444 1.151 0.717 
Regional CNN-LSTM 1.341* 0.987* 0.778* 

 * Regional CNN-LSTM vs LSTM significantly different (p<0.05) 

Table 1: Comparative results of different methods in SST. 

CVAT (Chinese) 
Valence RMSE MAE r 

Lexicon - wAM 1.884 1.632 0.406 
Lexicon - wGM 1.843 1.597 0.418 

Regression-AVR 1.685 1.374 0.476 
Regression-MVR 1.697 1.392 0.468 

CNN 1.093 0.880 0.645 
RNN 1.424 1.262 0.493 

LSTM 1.135 0.939 0.641 
Regional CNN-LSTM 1.026* 0.842* 0.781* 

Arousal RMSE MAE r 
Lexicon-wAM 1.232 0.985 0.268 
Lexicon-wGM 1.243 0.996 0.263 

Regression-AVR 1.154 0.862 0.286 
Regression-MVR 1.128 0.842 0.289 

CNN 0.991 0.788 0.453 
RNN 1.024 0.816 0.290 

LSTM 0.945 0.751 0.472 
Regional CNN-LSTM 0.874* 0.689* 0.557* 

 * Regional CNN-LSTM vs LSTM significantly different (p<0.05) 

Table 2. Comparative results of different methods in CVAT. 
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Comparative Results. Tables 1 and 2 respec-
tively present the comparative results of the re-
gional CNN-LSTM against several methods for 
VA prediction of texts in both English and Chi-
nese corpora. For the lexicon-based methods, 
wGM outperformed wAM, which is consistent 
with the results presented in (Paltoglou et al., 
2013). Instead of using the VA ratings of words 
to directly measure those of texts, the regression-
based methods learned the correlations between 
the VA ratings of words and texts, thus yielding 
better performance. Once the word embedding 
and deep learning techniques were introduced, 
the performance of NN-based methods (except 
RNN) jumped dramatically. In addition, the pro-
posed regional CNN-LSTM outperformed the 
other NN-based methods, indicating the effec-
tiveness of sequentially integrating the regional 
information across regions. Another observation 
is that the Pearson correlation coefficient of pre-
diction in arousal is lower than that for the va-
lence prediction, indicating that arousal is more 
difficult to predict. 

4 Conclusion 

This study presents a regional CNN-LSTM mod-
el to predict the VA ratings of texts. By capturing 
both local (regional) information within sentenc-
es and long-distance dependency across sentenc-
es, the proposed method outperformed regres-
sion- and conventional NN-based methods pre-
sented in previous studies. Future work will fo-
cus on the use of a parser to identify regions so 
that the structural information can be further in-
corporated to improve the prediction perfor-
mance. 
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Abstract

In all previous work on deep multi-task
learning we are aware of, all task super-
visions are on the same (outermost) layer.
We present a multi-task learning architec-
ture with deep bi-directional RNNs, where
different tasks supervision can happen at
different layers. We present experiments
in syntactic chunking and CCG supertag-
ging, coupled with the additional task of
POS-tagging. We show that it is consis-
tently better to have POS supervision at
the innermost rather than the outermost
layer. We argue that this is because “low-
level” tasks are better kept at the lower
layers, enabling the higher-level tasks to
make use of the shared representation of
the lower-level tasks. Finally, we also
show how this architecture can be used for
domain adaptation.

1 Introduction

We experiment with a multi-task learning (MTL)
architecture based on deep bi-directional recurrent
neural networks (bi-RNNs) (Schuster and Paliwal,
1997; Irsoy and Cardie, 2014). MTL can be seen
as a way of regularizing model induction by shar-
ing representations (hidden layers) with other in-
ductions (Caruana, 1993). We use deep bi-RNNs
with task supervision from multiple tasks, sharing
one or more bi-RNNs layers among the tasks. Our
main contribution is the novel insight that (what
has historically been thought of as) low-level tasks
are better modeled in the low layers of such an ar-
chitecture. This is in contrast to previous work on
deep MTL (Collobert et al., 2011; Luong et al.,
2015) , in which supervision for all tasks happen
at the same (outermost) layer. Multiple-tasks su-
pervision at the outermost layer has a strong tradi-

tion in neural net models in vision and elsewhere
(Caruana, 1993; Zhang and Zhang, 2014; Yim et
al., 2015). However, in NLP it is natural to think
of some levels of analysis as feeding into others,
typically with low-level tasks feeding into high-
level ones; e.g., POS tags as features for syntactic
chunking (Sang and Buchholz, 2000) or parsing
(Nivre et al., 2007). Our architecture can be seen
as a seamless way to combine multi-task and cas-
caded learning. We also show how the proposed
architecture can be applied to domain adaptation,
in a scenario in which we have high-level task su-
pervision in the source domain, and lower-level
task supervision in the target domain.

As a point of comparison, Collobert et al.
(2011) improved deep convolutional neural net-
work models of syntactic chunking by also having
task supervision from POS tagging at the outer-
most level. In our work, we use recurrent instead
of convolutional networks, but our main contribu-
tion is observing that we obtain better performance
by having POS task supervision at a lower layer.
While Collobert et al. (2011) also experiment with
NER and SRL, they only obtain improvements
from MTL with POS and syntactic chunking. We
show that similar gains can be obtained for CCG
supertagging.

Our contributions (i) We present a MTL archi-
tecture for sequence tagging with deep bi-RNNs;
(ii) We show that having task supervision from all
tasks at the outermost level is often suboptimal;
(iii) we show that this architecture can be used for
domain adaptation.

2 Sequence tagging with deep bi-RNNs

Notation We use x1:n to denote a sequence of
n vectors x1, · · · , xn. Fθ(·) is a function param-
eterized with parameters θ. We write FL(·) as a
shortcut to FθL

– an instantiation of F with a spe-
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cific set of parameters θL. We use ◦ to denote a
vector concatenation operation.

Deep bi-RNNs We use a specific flavor of Re-
current Neural Networks (RNNs) (Elman, 1990)
called long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997). For brevity,
we treat RNNs as a black-box abstraction, and
LSTMs as an instance of the RNN interface. For
further details on RNNs and LSTMs, see (Gold-
berg, 2015; Cho, 2015). We view RNN as a pa-
rameterized function RNNθ(x1:n) mapping a se-
quence of n input vectors x1:n, xi ∈ Rdin to a an
output vector hn ∈ Rdout . The output vector hn
is conditioned on all the input vectors x1:n, and
can be thought of as a summary of x1:n. The RNN
can be applied to all prefixes x1:i, 1 ≤ i ≤ n of
x1:n, resulting in n output vectors h1:n, where h1:i

summarizes x1:i.
A deep RNN (or k-layer RNN) is composed of k

RNN functions RNN1, · · · , RNNk that feed into
each other: the output h`1:n of RNN` becomes the
input of RNN`+1. Stacking RNNs in this way
was empirically shown to be effective.

A bidirectional RNN (Schuster and Paliwal,
1997; Irsoy and Cardie, 2014) is composed of two
RNNs, RNNF and RNNR, one reading the se-
quence in its regular order, and the other reading it
in reverse. Concretely, given a sequence x1:n and
a desired index i, the function BIRNNθ(x1:n, i)
is defined as:

BIRNNθ(x1:n, i) = vi = hF,i ◦ hR,i
hF,i = RNNF (x1, x2, · · · , xi)
hR,i = RNNR(xn, xn−1, · · · , xi)

The vector vi = BIRNN(x1:n, i) is then a rep-
resentation of the ith item in x1:n, taking into ac-
count both the entire history x1:i and the entire fu-
ture xi:n.

Finally, in a deep bidirectional RNN, both
RNNF and RNNR are k-layer RNNs, and
BIRNN `(x1:n, i) = v`i = h`F,i ◦ h`R,i.
Greedy sequence tagging with deep bi-RNNs
In a sequence tagging task, we are given an in-
put w1, · · · , wn and need to predict an output
y1, · · · , yn, yi ∈ [1, · · · , |L|], where L is a label
set of interest; i.e., in a POS tagging task, L is
the part-of-speech tagset, and yi is the pos-tag for
word wi.

If we take the inputs x1:n to correspond to a
sequence of sentence words w1, · · · , wn, we can

think of vi = BIRNN(x1:n, i) as inducing an in-
finite window around a focus word wi. We can
then use vi as an input to a multiclass classifica-
tion function f(vi), to assign a tag ŷi to each input
location i. The tagger is greedy: the tagging de-
cisions are independent of each other. However,
as shown below and in other recent work using
bi-RNNs for sequence tagging, we can still pro-
duce competitive tagging accuracies, because of
the richness of the representation vi that takes the
entire input sequence into account.

For a k-layer bi-RNN tagger we get:

tag(w1:n, i) = ŷi = f(vki )

vki = BIRNNk(x1:n, i)
x1:n = E(w1), E(w2), · · · , E(wn)

where E as an embedding function mapping each
word in the vocabulary into a demb-dimensional
vector, and vki is the output of the kth BIRNN layer
as defined above.

All the parameters (the embedding vectors for
the different vocabulary items, the parameters of
the different RNNs and the parameters of the clas-
sification function f ) are trained jointly in order
to minimize the tagging loss over a sentence. The
embedding vectors are often initialized using vec-
tors that were pre-trained in a semi-supervised
manner.

This sequence tagging architecture was intro-
duced to NLP by Irsoy and Cardie (2014). A
similar architecture (with an RNN instead of bi-
RNN) was applied to CCG supertagging by Xu et
al (2015).

MTL in deep bi-RNNs In a multi-task learn-
ing (MTL) setting, we have several prediction
tasks over the same input space. For example,
in sequence tagging, the input may be the words
in the sentence, and the different tasks can be
POS-tagging, named entity recognition, syntactic
chunking, or CCG supertagging. Note that the
different tasks do not have to be traditional NLP
tasks, but also, say, two POS-annotated corpora
with slightly different guidelines. Each task has
its own output vocabulary (a task specific tagset),
but all of them map the length n input sequence
into a length n output sequence.

Intuitively, although NLP tasks such as POS
tagging, syntactic chunking and CCG supertag-
ging are different than each other, they also share
lot of substructure, e.g., knowing that a word is a
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verb can help in determining its CCG supertag and
the syntactic chunk it participate in. We would
therefore like for these models to share parame-
ters.

The common approach is to share parameters
across most of the network. In the k-layers deep
bi-RNN tagger described above this is naturally
achieved by sharing the bi-RNN part of the net-
work across tasks, but training a specialized clas-
sification tagger ft(vki ) for each task t.

This encourages the deep bi-RNN to learn a rep-
resentation vki that is useful for prediction of the
different tasks, allowing them to share parameters.

Supervising different tasks on different layers
Previous work in NLP on cascaded learning such
as Shen and Sarkar (2005) suggests there is some-
times a natural order among the different tasks:
some tasks may benefit more from other tasks,
than the other way around. This suggests having
task supervision for low-level tasks at the lower bi-
RNN layers. This also enables task-specific deep
learning of the high-level tasks.

Instead of conditioning all tasks on the outer-
most bi-RNN layer, we associate an RNN level
`(t) with each task t, and let the task specific clas-
sifier feed from that layer, e.g., pos tag(w1:n, i) =
fpos(v

`(pos)
i ). This enables a hierarchy a task with

cascaded predictions, as well as deep task-specific
learning for high-level tasks. This means there
will be layers shared by all tasks and layers that
are specific to some tasks:

pos tag(w1:n, i) = fpos(v
`(pos)
i )

chunk tag(w1:n, i) = fchunk(v
`(chunk)
i )

ccg tag(w1:n, i) = fccg(v
`(ccg)
i )

v`i = BIRNN `(x1:n, i)
x1:n = E(w1), E(w2), · · · , E(wn)

The Multi-task training protocol We assume
T different training set, D1, · · · , DT , where
each Dt contains pairs of input-output sequences
(w1:n, y

t
1:n), wi ∈ V , yti ∈ Lt. The input vo-

cabulary V is shared across tasks, but the output
vocabularies (tagset) Lt are task dependent.

At each step in the training process we choose
a random task t, followed by a random training
instance (w1:n, y

t
1:n) ∈ Dt. We use the tag-

ger to predict the labels ŷti , suffer a loss with re-
spect to the true labels yti and update the model
parameters. Notice that a task t is associated

with a bi-RNN level `(t). The update for a sam-
ple from task t affects the parameters of ft and
BIRNN1, · · · , BIRNN `(t), but not the param-
eters of ft′ 6=t or BIRNN j>`(t).

Implementation details Our implementation is
based the CNN library1 for dynamic neural net-
works. We use CNN’s LSTM implementation as
our RNN variant. The classifiers ft() take the form
of a linear transformation followed by a softmax
ft(v) = arg maxi softmax(W (t)v+bt)[i], where
the weights matrix W (t) and bias vector b(t) are
task-specific parameters. We use a cross-entropy
loss summed over the entire sentence. The net-
work is trained using back-propagation and SGD
with batch-sizes of size 1, with the default learn-
ing rate. Development data is used to determine
the number of iterations.

We initialize the embedding layer E with pre-
trained word embeddings. We use the Senna em-
beddings2 in our domain adaptation experiments,
but these embeddings may have been induced
from data including the test data of our main ex-
periments, so we use the Polyglot embeddings in
these experiments.3 We use the same dimension-
ality for the hidden layers as in our pre-trained em-
beddings.

3 Experiments and Results

We experiment with POS-tagging, syntactic
chunking and CCG supertagging. See examples
of the different tasks below:

WORDS Vinken , 61 years old

POS NNP , CD NNS JJ
CHUNKS B-NP I-NP I-NP I-NP I-NP
CCG N , N/N N (S[adj]\ NP)\ NP

In-domain MTL In these experiments, POS,
Chunking and CCG data are from the English
Penn Treebank. We use sections 0–18 for training
POS and CCG supertagging, 15–18 for training
chunking, 19 for development, 20 for evaluating
chunking, and 23 for evaluating CCG supertag-
ging. These splits were motivated by the need for
comparability with previous results.4

1http://www.github.com/clab/cnn
2http://ronan.collobert.com/senna/
3http://polyglot.readthedocs.org
4In CCG supertagging, we follow common practice and

only evaluate performance with respect to the 425 most fre-
quent labels. For this reason, we also do not calculate any
loss from not predicting the other labels during training (but
we do suffer a loss for tokens tagged with a different label
during evaluation).
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LAYERS DOMAINS
CHUNKS POS BROADCAST (6) BC-NEWS (8) MAGAZINES (1) WEBLOGS (6)

BI-LSTM
3 - 88.98 91.84 90.09 90.36
3 3 88.91 91.84 90.95 90.43
3 1 89.48 92.03 91.53 90.78

Table 1: Domain adaptation results for chunking across four domains (averages over micro-F1s for
individual files). The number in brackets is # files per domain in OntoNotes 4.0. We use the two first
files in each folder for POS supervision (for train+dev).

We do MTL training for either (POS+chunking)
or (POS+CCG), with POS being the lower-level
task. We experiment three architectures: single
task training for higher-level tasks (no POS layer),
MTL with both tasks feeding off of the outer layer,
and MTL where POS feeds off of the inner (1st)
layer and the higher-level task on the outer (3rd)
layer. OUr main results are below:

POS CHUNKS CCG

BI-LSTM
- 95.28 91.04
3 95.30 92.94
1 95.56 93.26

Our CHUNKS results are competitive with state-
of-the-art. Suzuki and Isozaki (2008), for ex-
ample, reported an F1-score of 95.15% on the
CHUNKS data. Our model also performs consid-
erably better than the MTL model in Collobert et
al. (2011) (94.10%). Note that our relative im-
provements are also bigger than those reported by
Collobert et al. (2011). Our CCG super tagging
results are also slighly better than a recently re-
ported result in Xu et al. (2015) (93.00%). Our
results are significantly better (p < 0.05) than our
baseline, and POS supervision at the lower layer is
consistently better than standard MTL.

Additional tasks? We also experimented with
NER (CoNLL 2003), super senses (SemCor), and
the Streusle Corpus of texts annotated with MWE
brackets and super sense tags. In none of these
cases, MTL led to improvements. This suggests
that MTL only works when tasks are sufficiently
similar, e.g., all of syntactic nature. Collobert et
al. (2011) also observed a drop in NER perfor-
mance and insignificant improvements for SRL.
We believe this is an important observation, since
previous work on deep MTL often suggests that
most tasks benefit from each other.

Domain adaptation We experiment with do-
main adaptation for syntactic chunking, based on
OntoNotes 4.0. We use WSJ newswire as our

source domain, and broadcast, broadcasted news,
magazines, and weblogs as target domains. We as-
sume main task (syntactic chunking) supervision
for the source domain, and lower-level POS su-
pervision for the target domains. The results in
Table 1 indicate that the method is effective for do-
main adaptation when we have POS supervision
for the target domain. We believe this result is
worth exploring further, as the scenario in which
we have target-domain training data for low-level
tasks such as POS tagging, but not for the task we
are interested in, is common. The method is ef-
fective only when the lower-level POS supervision
is applied at the lower layer, supporting the im-
portance of supervising different tasks at different
layers.

Rademacher complexity is the ability of mod-
els to fit random noise. We use the procedure in
Zhu et al. (2009) to measure Rademacher com-
plexity, i.e., computing the average fit to k random
relabelings of the training data. The subtask in our
set-up acts like a regularizer, increasing the induc-
tive bias of our model, preventing it from learning
random patterns in data. Rademacher complex-
ity measures the decrease in ability to learn such
patterns. We use the CHUNKS data in these exper-
iments. A model that does not fit to the random
data, will be right in 1/22 cases (with 22 labels).
We report the Rademacher complexities relative to
this.

LSTM(-3) LSTM(3-3) LSTM(1-3)

1.298 1.034 0.990

Our deep single task model increases perfor-
mance over this baseline by 30%. In contrast, we
see that when we predict both POS and the tar-
get task at the top layer, Rademacher complexity
is lower and close to a random baseline. Interest-
ingly, regularization seems to be even more effec-
tive, when the subtask is predicted from a lower
layer.
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4 Conclusion

MTL and sharing of intermediate representations,
allowing supervision signals of different tasks to
benefit each other, is an appealing idea. However,
in case we suspect the existence of a hierarchy be-
tween the different tasks, we show that it is worth-
while to incorporate this knowledge in the MTL
architecture’s design, by making lower level tasks
affect the lower levels of the representation.
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Abstract

In this paper, we propose a method for re-
ferring to the real world to improve named
entity recognition (NER) specialized for a
domain. Our method adds a stacked auto-
encoder to a text-based deep neural net-
work for NER. We first train the stacked
auto-encoder only from the real world in-
formation, then the entire deep neural net-
work from sentences annotated with NEs
and accompanied by real world informa-
tion. In our experiments, we took Japanese
chess as the example. The dataset consists
of pairs of a game state and commentary
sentences about it annotated with game-
specific NE tags. We conducted NER ex-
periments and showed that referring to the
real world improves the NER accuracy.

1 Introduction

In recent years there has been a surge of inter-
est in relating natural language to the real world.
And more and more language resources accom-
panied by nonlinguistic data are becoming avail-
able. Typical examples are image descriptions
(Yang et al., 2011; Ushiku et al., 2011) and video
(Hashimoto et al., 2014). Ferraro et al. (2015)
summarized many other image and video datasets.
These datasets allow us to attempt the task of con-
necting language expressions to the real world,
which is called symbol grounding (Harnad, 1990).
Bruni et al. (2014) proposed methods for acquiring
multimodal representations by applying SVD to
distributional semantics and bag-of-visual-words
(BoVW). Ngiam et al. (2011) proposed unsu-
pervised multimodal learning based on deep re-
stricted boltzmann machines (RBMs). In the field
of natural language processing (NLP) research,

∗This work was done when the first author was at Ehime
University.

Kiela et al. (2015) proposed to acquire bilingual
lexicon based on visual similarity. Ramisa et al.
(2015) describe a method for predicting a preposi-
tion referring to positions in the image.

In this paper, we propose a method for enhanc-
ing a named entity (NE) recognizer referring to the
real world. Because of the lack of datasets con-
sisting of sentences annotated with the general NE
tags such as names of people, organizations, and
times (Sang and Meulder, 2003), with accompa-
nying real world data, we take game states as the
counterpart of the language and the NE tag set spe-
cialized for game commentaries such as defense
formations and opening names (Mori et al., 2016).
Similar to bio-medical NEs (Settles, 2004; Tateisi
et al., 2002), these NEs are useful for applications
in the game domain. Our method could be used
to improve automatic game commentary systems
(Kameko et al., 2015b; Chen et al., 2010) or to
build a state search method that uses natural lan-
guage queries instead of state notations (Ganguly
et al., 2014). In addition to these interesting ap-
plications, game states have another advantage for
NLP research. They are much easier to recognize
than images and video, which allows us to concen-
trate on the NLP problem.

In order to incorporate the real world, i.e. game
states, into NE recognition (NER), we propose to
use deep neural networks (DNNs), which have
been reported to be successful in various NLP
tasks such as word embedding (Bengio et al.,
2003; Mikolov et al., 2013b; Pennington et al.,
2014; Mikolov et al., 2013a), part-of-speech tag-
ging (Tsuboi, 2014), parsing (Socher et al., 2010;
Socher et al., 2012; Socher et al., 2013a), parsing
(Socher et al., 2013a), NER (Hammerton, 2003) ,
sentiment analysis (Socher et al., 2013b) and ma-
chine translation (Neubig et al., 2015). First we
build a normal NE recognizer by referring only
to the text information based on DNN. Each unit
of its output layer corresponds to a BIO tag for
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the word (see Section 3). We use post processing
based on the Viterbi algorithm to choose the best
tag sequence by discarding inconsistent ones. This
design allows us to train the model from partially
annotated sentences, in which only some words
are annotated with NE tags (Sasada et al., 2015).
Next we extend the text-based DNN with a mod-
ule that refers to game states. This module is a
stacked-auto-encoder (SAE) (Bengio et al., 2007)
and we first train it only from game states. The
pre-training allows the model to learn game state
embedding which abstracts game state informa-
tion. Then we fine-tune the entire DNN for NER,
consisting of both text-based DNN and SAE. As
we show in later section of this paper, we end up
with an NE recognizer that refers to real world in-
formation in addition to text information, which
increases its accuracy.

2 Related Work

There are several lines of multimodal learning in
the fields of pattern recognition and NLP. Most
learn multimodal representations by solving un-
supervised learning tasks or pseudo-supervised
learning tasks, but there were only a few studies
that directly learned multimodal representations
for target tasks in NLP. Our method incorporates
multimodal information in DNNs for NER.

Bruni et al. (2014) proposed methods for acquir-
ing multimodal representations by applying SVD
to distributional semantics and BoVW. Lopopolo
and van Miltenburg (2015) proposed a similar
method for acquiring sound-based distributional
semantics. Textual vectors are acquired by us-
ing latent semantic analysis (LSA) and auditory
vectors are acquired by the bag-of-audio-words
(BoAW) method. The multimodal representa-
tions are acquired by applying SVD. Ngiam et al.
(2011) and Srivastava and Salakhutdinov (2012)
proposed unsupervised learning methods based on
deep RBMs for learning multimodal representa-
tions in hidden layers. Providing paired infor-
mation such as text-image pairs or audio-video
pairs to RBMs, shared representations are learned
in their hidden layers. Ngiam et al. (2011) also
used deep auto-encoders for learning RBMs. Af-
ter acquiring multimodal representations, they can
be used as inputs for other supervised learning
tasks, such as speech recognition and image re-
trieval, where standard linear classifiers are used
for solving the tasks. Silberer and Lapata (2014)

proposed a deep learning method for learning
multimodal representations by solving pseudo-
supervised tasks to predict the input’s object label,
such as ’boat,’ given textual and visual attribute-
based representations for the object. Their ob-
jective function is the weighted sum of the auto-
encoding error and the classification error. Though
their model is for supervised learning, Multi-
modal representations are learned In their exper-
iments, the acquired multimodal representations
were used for evaluating the word similarity task
and word clustering task.

Lazaridou et al. (2015) extend word2vec
(Mikolov et al., 2013a; Mikolov et al., 2013b) to
incorporate visual information for acquiring mul-
timodal representations. Word embedding meth-
ods including word2vec are often used for vari-
ous NLP tasks instead of one hot representations,
and were shown to improve the performance of
NLP systems. Word embeddings are mappings
from a word to a low-dimensional real vectors
that represents word meanings and relations be-
tween words. Word2vec is a method for ac-
quiring word embeddings from a neural network
which solves a pseudo-supervised task to predict
surrounding words. Kiela and Clark (2015) ex-
tend word2vec to incorporate bag-of-audio-words
(BoAW). Gupta et al. (2015) have shown that word
embeddings contain much information for predict-
ing attributes. Herbelot and Vecchi (2015) pro-
posed a method for predicting general quantifiers
such as some for predicate-subject pairs.

Similar to this paper Kameko et al. (2015a) pro-
posed a method for word segmentation using game
states and DNNs. The main differences between
their method and ours is that i) they use game
states to build a term dictionary for word seg-
mentation, but our method directly incorporates
a game state to improve NER, and ii) they used
manually developed features to extract game states
while we automatically acquire game states by us-
ing pre-training.

3 Game Commentary Corpus

The game we chose for the experiments is
Japanese chess, called shogi in Japanese. It is a
two-player board game with professional players.
The board has 9×9 squares and games are played
with 40 pieces of 14 different types. Unlike chess,
players can reuse captured pieces. In computer
science terms, it is a deterministic perfect informa-
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Tag Meaning
Hu Human
Tu Turn
Po Position
Pi Piece
Ps Piece specifier
Mc Move compliment
Pa Piece attribute
Pq Piece quantity
Re Region
Ph Phase
St Strategy
Ca Castle
Me Move eval.
Mn Move name
Ee Eval. element
Ev Evaluation
Ti Time
Ac Player action
Ap Piece action
Ao Other action
Ot Other notion

Table 1: The named entity tag set.

tion game, so we can completely specify a game
state by the positions of the pieces on the board
and the captured pieces held by on both sides.

Many matches between professional players
have been recorded, and many game states have
commentaries made for fans by other professional
players.

A game commentary corpus1 (Mori et al., 2016)
defines 21 types of NEs, which are called shogi-
NEs, as listed in Table 1. The words in the com-
mentary sentences in the corpus are annotated with
BIO-style tags. B, I, and O stand for beginning,
intermediate, and others, respectively. B or I are
used for representing the beginning or intermedi-
ate words of an NE as extension like Hu-B. And O
is used for representing words that are not part of
any NEs. Therefore there are 43 = 21×2+1 BIO
tags.

The main idea of this paper is that the game
state, i.e. the real world, provides information on
the texts that describe it. In the next section, we
propose a method for utilizing this information in
the NER task.

1http://www.ar.media.kyoto-u.ac.jp/
data/game/
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Figure 1: Deep neural networks for shogi NER.

Text features
wi−2, wi−1, wi, wi+1, wi+2

wi−2wi−1, wi−1wi, wiwi+1, wi+1wi+2

wi−2wi−1wi, wiwi+1wi+2

c(wi−2), c(wi−1), c(wi), c(wi+1), c(wi+2)
pos(wi−2), pos(wi−1), pos(wi), pos(wi+1),
pos(wi+2)

Table 2: Text features for DNN/CRF NER.

4 Utilizing Real World Information in a
Named Entity Recognizer

Figure 1 shows the overall architecture of our
DNN for NER. The left part is the DNN for text-
based NER and the bottom right part is an addi-
tional DNN for referring to the real world.

4.1 Text-based NER

The text-based NER refers to the text only
through the standard features for NER (Sang and
Meulder, 2003) listed in Table 2. They con-
sist of word n-grams in the window wi+2

i−2 =
wi−2wi−1wiwi+1wi+2, where wi is the word to be
labelled, the part-of-speech tags pos(w) and the
character type c(w)2 of a word w in the window
wi+2

i−2. Each feature corresponds to a unit at the
bottom left in Figure 1 (f t

1 . . . f t
n).

Each unit aligned at the top of Figure 1 corre-
sponds to a BIO tag. Thus there are 43 units in the
shogi NE case. The last layer is the softmax func-
tion and we choose the tag of the highest unit value

2In the target language in the experiments, Japanese, the
types are hiragana, katakana, kanji, number, symbol, and
combinations of them.
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Figure 2: Game state features.

for the input word. As we mentioned in Section 1,
this design makes it possible to use partially anno-
tated data.3 It can, however, generate inconsistent
BIO tag sequences, e.g., an NE starting with an I
tag. We use a best path search module based on the
Viterbi algorithm while limiting the search space
into valid tag sequences (Sasada et al., 2015).

4.2 NER Referring to the Real World

To enable our NE recognizer to refer to the real
world, we add a network to the DNN for text-
based NER as shown in the bottom right in Fig-
ure 1. The input layer corresponds to the game
state features depicted in Figure 2 (f r

1 . . . f r
m). For

shogi they are nine-by-nine binary features which
represent the positions of pieces on the board for
each piece type and each player. Thus we have
m = 2, 268 (= 9 × 9 × 14 × 2) features for
the pieces on the board and 14 (= 7 × 2) integer
features which represent the number of captured
pieces for each type and each player.

To incorporate the game state features we pro-
pose using an SAE (Bengio et al., 2007) to ab-
stract the game state information instead of di-
rectly adding the units for these features to the
text-based NER. To build the SAE, we first pre-
pare a three-layer neural network (with one hid-
den layer) as depicted on the left side of Figure
3 and train it providing the same game states to
both input and output layers. With this process we
can obtain the best reduced representations for the
game states as the hidden layer that reconstructs
the input game state features at the output layer.

3Tsuboi et al. (2008) extended conditional random fields
to be trained from partially annotated data. One can extend
sequence labeling DNN (RNN or LSTM) in a similar way.
This is, however, clearly out of the scope of this paper.

Usage #Sentences #NEs #Words #Game
states

Pretraining - - - 213,195
Training 1,546 7,922 27,025 391
Test 492 2,365 7,161 156

Table 3: Game commentary corpus specifications.

Layer 0 1 2 3 4 5
Dimension 2,282 1,000 500 200 100 50

Table 4: Dimensions of the SAE layers.

Then we duplicate the hidden layer and put an-
other hidden layer of smaller dimension between
them (see the network in the middle of Figure 3)
and train it in the same manner. This time the out-
put layer is the duplicated former hidden layer and
we train the new hidden layer by minimizing the
difference between the duplicated former hidden
layers. We repeat this process for a fixed number
of times as shown on the right side of Figure 3.
This process is called pre-training. Note that dur-
ing pre-training only game states are used.

After the pre-training, we cut off the top layer
to obtain a network with a trapezoid shape whose
top layer abstracts game states (a1 . . . al in Figure
1). Then we join it to the DNN for the text-based
NER as shown in Figure 1. Finally, we fine-tune
it from both game states and texts annotated with
NE tags. Note that we also tune parameters in the
pre-trained SAE.

5 Experimental Evaluation

In this section we describe the NER experiments
we conducted to evaluate our method.

5.1 Experimental Settings
The corpus we used is the game commentary cor-
pus (Mori et al., 2016) described in Section 3
briefly. Table 3 shows its specifications. Table 4
shows the number of dimensions in each layer for
game state embeddings in pre-training. We set the
number of layers in the SAE (Subsection 4.2) to
four, with which we could maximize the accuracy
on the development set held-out from the training
data.

5.2 Models for Comparison
The baseline is text-based NER based on DNN as
described in Subsection 4.1. In addition, we tested
NER based on conditional random fields (CRFs)
(Lafferty et al., 2001) with the same text features,
because NER is a sequence labeling problem and
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Figure 3: Building stacked-auto-encoder.

Method BIO
Accu. Prec. Recall F-meas.

CRFs 89.76% 90.58% 76.87% 83.17
DNN 90.87% 89.27% 79.49% 84.10
DNN + R 91.30% 89.13% 80.76% 84.74

Table 5: NER results.

CRFs are the standard method used to solve it
(McCallum and Li, 2003). We compared these
baselines and our NER that refers to the real world
(DNN+R) as described in Subsection 4.2. Its SAE
was trained on 213,195 game states.

5.3 Results and Discussion

Table 5 shows the results. From the F-measures
we see that DNN is better than CRFs. This is
consistent with many works which apply DNN
to NLP problems. A comparison between DNN
and DNN+R tells us that we can achieve a further
improvement by referring to real world informa-
tion. The difference in BIO accuracies between
them is statistically significant (McNemar’s test,
p < 0.01). Therefore we can say that our method
successfully integrates real world information into
text information to build a better solution to the
NER problem.

When we take a close look at the precision and
recall, DNN+R and DNN balance them better than
CRFs. CRFs recognized shogi-NEs with high pre-
cision but with low recall. The NER results tell
that CRFs tended to output O tags when they were
not confident to classify correct shogi-NE tags.
DNN+R and DNN can classify BIO tags more
accurately than CRFs as can be seen in BIO ac-
curacies in Table 5. As a consequence DNN+R
and DNN confidently recognize more shogi-NEs,
which makes their recall higher than that of CRFs.

From Table 5 we see that DNN+R is better

than DNN. Followings are examples of shogi-NEs
which DNN+R successfully recognized but DNN
failed: Ot tag for “tataki,” which means dropping
a pawn in front of a piece of the opponent, and Mn
tag for “tsumero” (threatmate). By referring to the
game state, DNN+R was better at understanding
the game situation and resulted better performance
than DNN, the text-based NER.

6 Conclusion

In this paper, we proposed a method for referring
to the real world to improve NER in a specialized
domain. Our method adds an SAE to a text-based
DNN for NER. We first pre-train the SAE using
only real world information, and then we train the
entire DNN from sentences annotated with NEs
and accompanied by real world information.

In our experiments, we used shogi (Japanese
chess) as the example. The dataset consists of
pairs of a game state and commentary sentences
on it annotated with 21 shogi NE tags. We con-
ducted NER experiments and showed that refer-
ring to the real world improves NER accuracy.

Our method has the potential to be applied to
various NER problems, such as general NER with
pictures and financial NER with stock charts, by
changing the SAE features. An interesting area of
future work is preparing datasets in these domains
and testing our method on them.
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Abstract

Finding quality descriptions on the web,
such as those found in Wikipedia arti-
cles, of newer companies can be difficult:
search engines show many pages with
varying relevance, while multi-document
summarization algorithms find it difficult
to distinguish between core facts and other
information such as news stories. In this
paper, we propose an entity-focused, hy-
brid generation approach to automatically
produce descriptions of previously unseen
companies, and show that it outperforms a
strong summarization baseline.

1 Introduction

As new companies form and grow, it is impor-
tant for potential investors, procurement depart-
ments, and business partners to have access to a
360-degree view describing them. The number
of companies worldwide is very large and, for
the vast majority, not much information is avail-
able in sources like Wikipedia. Often, only fir-
mographics data (e.g. industry classification, lo-
cation, size, and so on) is available. This cre-
ates a need for cognitive systems able to aggre-
gate and filter the information available on the web
and in news, databases, and other sources. Provid-
ing good quality natural language descriptions of
companies allows for easier access to the data, for
example in the context of virtual agents or with
text-to-speech applications.

In this paper, we propose an entity-focused sys-
tem using a combination of targeted (knowledge
base driven) and data-driven generation to create
company descriptions in the style of Wikipedia de-
scriptions. The system generates sentences from
RDF triples, such as those found in DBPedia and
Freebase, about a given company and combines

these with sentences on the web that match learned
expressions of relationships. We evaluate our hy-
brid approach and compare it with a targeted-only
approach and a data-driven-only approach, as well
as a strong multi-document summarization base-
line. Our results show that the hybrid approach
performs significantly better than either approach
alone as well as the baseline.

The targeted (TD) approach to company de-
scription uses Wikipedia descriptions as a model
for generation. It learns how to realize RDF re-
lations that have the company as their subject:
each relation contains a company/entity pair and
it is these pairs that drive both content and expres-
sion of the company description. For each com-
pany/entity pair, the system finds all the ways in
which similar company/entity pairs are expressed
in other Wikipedia company descriptions, clus-
tering together sentences that express the same
company/entity relation pairs. It generates tem-
plates for the sentences in each cluster, replacing
the mentions of companies and entities with typed
slots and generates a new description by insert-
ing expressions for the given company and entity
in the slots. All possible sentences are generated
from the templates in the cluster, the resulting sen-
tences are ranked and the best sentence for each
relation selected to produce the final description.
Thus, the TD approach is a top-down approach,
driven to generate sentences expressing the rela-
tions found in the company’s RDF data using real-
izations that are typically used on Wikipedia.

In contrast, the data-driven (DD) approach uses
a semi-supervised method to select sentences from
descriptions about the given company on the web.
Like the TD approach, it also begins with a
seed set of relations present in a few companies’
DBPedia entries, represented as company/entity
pairs, but instead of looking at the corresponding
Wikipedia articles, it learns patterns that are typ-
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ically used to express the relations on the web.
In the process, it uses bootstrapping (Agichtein
and Gravano, 2000) to learn new ways of ex-
pressing the relations corresponding to each com-
pany/entity pair, alternating with learning new
pairs that match the learned expression patterns.
Since the bootstrapping process is driven only by
company/entity pairs and lexical patterns, it has
the potential to learn a wider variety of expressions
for each pair and to learn new relations that may
exist for each pair. Thus, this approach lets data
for company descriptions on the web determine
the possible relations and patterns for expressing
those relations in a bottom-up fashion. It then uses
the learned patterns to select matching sentences
from the web about a target company.

2 Related Work

The TD approach falls into the generation pipeline
paradigm (Reiter and Dale, 1997), with content
selection determined by the relation in the com-
pany’s DBpedia entry while microplanning and
realization are carried out through template gen-
eration. While some generation systems, partic-
ularly in early years, used sophisticated gram-
mars for realization (Matthiessen and Bateman,
1991; Elhadad, 1991; White, 2014), in recent
years, template-based generation has shown a
resurgence. In some cases, authors focus on doc-
ument planning and sentences in the domain are
stylized enough that templates suffice (Elhadad
and Mckeown, 2001; Bouayad-Agha et al., 2011;
Gkatzia et al., 2014; Biran and McKeown, 2015).
In other cases, learned models that align database
records with text snippets and then abstract out
specific fields to form templates have proven suc-
cessful for the generation of various domains (An-
geli et al., 2010; Kondadadi et al., 2013). Others,
like us, target atomic events (e.g., date of birth,
occupation) for inclusion in biographies (Filatova
and Prager, 2005) but the templates used in other
work are manually encoded.

Sentence selection has also been used for ques-
tion answering and query-focused summarization.
Some approaches focus on selection of relevant
sentences using probabilistic approaches (Daumé
III and Marcu, 2005; Conroy et al., 2006), semi-
supervised learning (Wang et al., 2011) and graph-
based methods (Erkan and Radev, 2004; Otter-
bacher et al., 2005). Yet others use a mixture of
targeted and data-driven methods for a pure sen-

tence selection system (Blair-Goldensohn et al.,
2003; Weischedel et al., 2004; Schiffman et al.,
2001). In our approach, we target both relevance
and variety of expression, driving content by se-
lecting sentences that match company/entity pairs
and inducing multiple patterns of expression. Sen-
tence selection has also been used in prior work on
generating Wikipedia overall articles (Sauper and
Barzilay, 2009). Their focus is more on learning
domain-specific templates that control the topic
structure of an overview, a much longer text than
we generate.

3 Targeted Generation

The TD system uses a development set of 100
S&P500 companies along with their Wikipedia
articles and DBPedia entries to form templates.
For each RDF relation with the company as the
subject, it identifies all sentences in the corre-
sponding article containing the entities in the re-
lation. The specific entities are then replaced with
their relation to create a template. For example,
“Microsoft was founded by Bill Gates and Paul
Allen” is converted to “〈company〉 was founded
by 〈founder〉,” with conjoined entities collapsed
into one slot. Many possible templates are created,
some of which contain multiple relations (e.g.,
“〈company〉, located in 〈location〉, was founded
by 〈founder〉”). In this way the system learns how
Wikipedia articles express relations between the
company and its key entities (founders, headquar-
ters, products, etc).

At generation time, we fill the template slots
with the corresponding information from the RDF
entries of the target company. Conjunctions are
inserted when slots are filled by multiple entities.
Continuing with our example, we might now pro-
duce the sentence “Palantir was founded by Peter
Thiel, Alex Karp, Joe Lonsdale, Stephen Cohen,
and Nathan Gettings” for target company Palan-
tir. Preliminary results showed that this method
was not adequate - the data for the target com-
pany often lacked some of the entities needed to
fill the templates. Without those entities the sen-
tence could not be generated. As Wikipedia sen-
tences tend to have multiple relations each (high
information density), many sentences containing
important, relevant facts were discarded due to
phrases that mentioned lesser facts we did not have
the data to replace. We therefore added a post-
processing step to remove, if possible, any phrases
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from the sentence that could not be filled; other-
wise, the sentence is discarded.

This process yields many potential sentences
for each relation, of which we only want to choose
the best. We cluster the newly generated sen-
tences by relation and score each cluster. Sen-
tences are scored according to how much informa-
tion about the target company they contain (num-
ber of replaced relations). Shorter sentences are
also weighted more as they are less likely to con-
tain extraneous information, and sentences with
more post-processing are scored lower. The high-
est scored sentence for each relation type is added
to the description as those sentences are the most
informative, relevant, and most likely to be gram-
matically correct.

4 Data-Driven Generation

The DD method produces descriptions using sen-
tences taken from the web. Like the TD approach,
it aims to produce sentences realizing relations be-
tween the input company and other entities. It uses
a bootstrapping approach (Agichtein and Gravano,
2000) to learn patterns for expressing the relations.
It starts with a seed set of company/entity pairs,
representing a small subset of the desired rela-
tions, but unlike previous approaches, can gener-
ate additional relations as it goes.

Patterns are generated by reading text from the
web and extracting those sentences which con-
tain pairs in the seed set. The pair’s entities
are replaced with placeholder tags denoting the
type of the entity, while the words around them
form the pattern (the words between the tags are
selected as well as words to the left and right
of the tags). Each pattern thus has the form
“〈L〉〈T1〉〈M〉〈T2〉〈R〉,” where L, M, and R are re-
spectively the words to the left of, between, and
to the right of the entities. T1 is the type of the
first entity, and T2 the type of the second. Like
the TD algorithm, this is essentially a template
based approach, but the templates in this case are
not aligned to a relation between the entity and the
company; only the type of entity (person, location,
organization, etc) is captured by the tag.

New entity pairs are generated by matching the
learned patterns against web text. A sentence is
considered to match a pattern if it has the same
entity types in the same order and its L, M, and R
words fuzzy match the corresponding words in the

pattern.1 The entities are therefore assumed to be
related since they are expressed in the same way
as the seed pair. Unlike the TD approach, the ac-
tual relationship between the entities is unknown
(since the only data we use is the web text, not the
structured RDF data); all we need to know here is
that a relationship exists.

We alternate learning the patterns and generat-
ing entity pairs over our development set of 100
companies. We then take all the learned patterns
and find matching sentences in the Bing search re-
sults for each company in the set of target compa-
nies.2 Sentences that match any of the patterns are
selected and ranked by number of matches (more
matches means greater probability of strong rela-
tion) before being added to the description.

4.1 Pruning and Ordering

After selecting the sentences for the description,
we perform a post-processing step that removes
noise and redundancy. To address redundancy, we
remove those sentences which were conveyed pre-
viously in the description using exactly the same
wording. Thus, sentences which are equal to or
subsets of other sentences are removed. We also
remove sentences that come from news stories;
analysis of our results on the development set indi-
cated that news stories rarely contain information
that is relevant to a typical Wikipedia description.
To do this we use regular expressions to capture
common newswire patterns (e.g., [CITY, STATE:
sentence]). Finally, we remove incomplete sen-
tences ending in “. . . ”, which sometimes appear
on websites which themselves contain summaries.

We order the selected sentences using a scoring
method that rewards sentences based on how they
refer to the company. Sentences that begin with
the full company name get a starting score of 25,
sentences that begin with a partial company name
start with a score of 15, and sentences that do not
contain the company name at all start at -15 (if
they contain the company name in the middle of
the sentece, they start at 0). Then, 10 points are
added to the score for each keyword in the sen-
tence (keywords were selected from the most pop-
ulous DBPedia predicates where the subject is a
company). This scoring algorithm was tuned on
the development set. The final output is ordered in

1We use a threshold on the cosine similarity of the texts
to determine whether they match.

2We excluded Wikipedia results to better simulate the
case of companies which do not have a Wikipedia page
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descending order of scores.

5 Hybrid system

In addition to the two approaches separately, we
also generated hybrid output from a combination
of the two. In this approach, we start with the DD
output; if (after pruning) it has fewer than three
sentences, we add the TD output and re-order.

The hybrid approach essentially supplements
the large, more noisy web content of the DD out-
put with the small, high-quality but less diverse
TD output. For companies that are not consumer-
facing or are relatively young, and thus have a rel-
atively low web presence - our target population -
this can significantly impact the description.

6 Experiments

To evaluate our approach, we compare the three
versions of our output - generated by the TD, DD,
and hybrid approach - against multi-document
summaries generated (from the same search re-
sults used by our DD approach) by TextRank (Mi-
halcea and Tarau, 2004). For each one of the ap-
proaches as well as the baseline, we generated de-
scriptions for all companies that were part of the
S&P500 as of January 2016. We used our devel-
opment set of 100 companies for tuning, and the
evaluation results are based on the remaining 400.

We conducted two types of experiments. The
first is an automated evaluation, where we use
the METEOR score (Lavie and Agarwal, 2007)
between the description generated by one of our
approaches or by the baseline and the first sec-
tion of the Wikipedia article for the company.
In Wikipedia articles, the first section typically
serves as an introduction or overview of the most
important information about the company. ME-
TEOR scores capture the content overlap between
the generated description and the Wikipedia text.
To avoid bias from different text sizes, we set the
same size limit for all descriptions when compar-
ing them. We experimented with three settings:
150 words, 500 words, and no size limit.

In addition, we conducted a crowd-sourced
evaluation on the CrowdFlower platform. In this
evaluation, we presented human annotators with
two descriptions for the same company, one de-
scribed by our approach and one by the baseline,
in random order. The annotators were then asked
to choose which of the two descriptions is a better
overview of the company in question (they were

150 words 500 words no limit
TextRank 13.7 12.8 6.3
DD 15.0 14.5 14.0
TD 11.3 11.3 11.3
Hybrid 15.5 14.6 14.2

Table 1: First experiment results: average ME-
TEOR scores for various size limits

% best Avg. score
TextRank 25.79 2.82
Hybrid 74.21 3.81

Table 2: Second experiment results: % of compa-
nies for which the approach was chosen as best by
the human annotators, and average scores given

provided a link to the company’s Wikipedia page
for reference) and give a score on a 1-5 scale to
each description. For quality assurance, each pair
of descriptions was processed by three annota-
tors, and we only included in the results instances
where all three agreed. Those constituted 44% of
the instances. In this evaluation we only used the
hybrid version, and we limited the length of both
the baseline and our output to 150 words to reduce
bias from a difference in lengths and keep the de-
scriptions reasonably short for the annotators.

7 Results

The results of the automated evaluation are shown
in Table 1. Our DD system achieves higher ME-
TEOR scores than the TextRank baseline under all
size variations, while TD by itself is worse in most
cases. In all cases the combined approach achieves
a better result than the DD system by itself.

The results of the human evaluation are shown
in Table 2. Here the advantage of our approach
becomes much more visible: we clearly beat the
baseline both in terms of how often the annotators
chose our output to be better (almost 75% of the
times) and in terms of the average score given to
our descriptions (3.81 on a 1− 5 point scale).

All results are statistically significant, but the
difference in magnitude between the results of
the two experiments are striking: we believe that
while the TextRank summarizer extracts sentences
which are topically relevant and thus achieve re-
sults close to ours in terms of METEOR, the more
structured entity-focused approach we present
here is able to extract content that seems much
more reasonable to humans as a general descrip-
tion. One example is shown in Figure 1.

Right from the start, we see that our system out-
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performs TextRank. Our first sentence introduces
the company and provides a critical piece of his-
tory about it, while TextRank does not even im-
mediately name it. The hybrid generation output
has a more structured output, going from the ori-
gins of the company via merger, to its board, and
finally its products. TextRank’s output, in compar-
ison, focuses on the employee experience and only
mentions products at the very end. Our system is
much more suitable for a short description of the
company for someone unfamilar with it.

TextRank: The company also emphasizes stretch assign-
ments and on-the-job learning for development, while its for-
mal training programs include a Masters in the Business of
Activision(or “MBActivision”) program that gives employ-
ees a deep look at company operations and how its games are
made, from idea to development to store shelves. How easy
is it to talk with managers and get the information I need?
Will managers listen to my input? At Activision Blizzard, 78
percent of employees say they often or almost always experi-
ence a free and transparent exchange of ideas and information
within the organization. Gaming is a part of day-to-day life at
Activision Blizzard, and the company often organizes internal
tournaments for Call of Duty, Hearthstone: Heroes of War-
craft, Destiny, Skylanders and other titles. What inspires em-
ployees’ company spirit here Do people stand by their teams’
work What impact do people have outside the organization.

Hybrid: Activision Blizzard was formed in 2007 from a
merger between Activision and Vivendi Games (as well as
Blizzard Entertainment, which had already been a division of
Vivendi Games.) Upon merger, Activision Blizzard’s board
of directors initially formed of eleven members: six directors
designated by Vivendi, two Activision management directors
and three independent directors who currently serve on Ac-
tivision’s board of directors. It’s comprised of Blizzard En-
tertainment, best known for blockbuster hits including World
of Warcraft, Hearthstone: Heroes of Warcraft, and the War-
craft, StarCraft, and Diablo franchises, and Activision Pub-
lishing, whose development studios (including Infinity Ward,
Toys for Bob, Sledgehammer Games, and Treyarch, to name
just a few) create blockbusters like Call of Duty, Skylanders,
Guitar Hero, and Destiny.

Figure 1: Descriptions for Activision Blizzard

8 Conclusion

We described two approaches to generating com-
pany descriptions as well as a hybrid approach.
We showed that our output is overwhelmingly pre-
ferred by human readers, and is more similar to
Wikipedia introductions, than the output of a state-
of-the-art summarization algorithm.

These complementary methods each have their
advantages and disadvantages: the TD approach
ensures that typical expressions in Wikipedia com-
pany descriptions - known to be about the fun-
damental relations of a company - will occur in

the generated output. However, since it modifies
them, it risks generating ungrammatical sentences
or sentences which contain information about an-
other company. The latter can occur because the
sentence is uniquely tied to the original. For in-
stance, the following Wikipedia sentence fragment
– “Microsoft is the world’s largest software maker
by revenue” - is a useful insight about the com-
pany, but our system would not be able to correctly
modify that to fit any other company.

In contrast, by selecting sentences from the web
about the given company, the DD approach en-
sures that the resulting description will be both
grammatical and relevant. It also results in a wider
variety of expressions and a greater number of sen-
tences. However, it can include nonessential facts
that appear in a variety of different web venues.
It is not surprising, therefore, that the hybrid ap-
proach performs better than either by itself.

While in this paper we focus on company de-
scriptions, the system can be adapted to generate
descriptions for other entities (e.g. Persons, Prod-
ucts) by updating the seed datasets for both ap-
proaches (to reflect the important facts for the de-
sired descriptions) and retuning for best accuracy.
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Abstract

We present a new annotation method for
collecting data on relation inference in
context. We convert the inference task to
one of simple factoid question answering,
allowing us to easily scale up to 16,000
high-quality examples. Our method cor-
rects a major bias in previous evaluations,
making our dataset much more realistic.

1 Introduction

Recognizing entailment between natural-language
relations (predicates) is a key challenge in many
semantic tasks. For instance, in question answer-
ing (QA), it is often necessary to “bridge the lex-
ical chasm” between the asker’s choice of words
and those that appear in the answer text. Relation
inference can be notoriously difficult to automat-
ically recognize because of semantic phenomena
such as polysemy and metaphor:

Q: Which drug treats headaches?

A: Aspirin eliminates headaches.

In this context, “eliminates” implies “treats” and
the answer is indeed “aspirin”. However, this rule
does not always hold for other cases – “eliminates
patients” has a very different meaning from “treats
patients”. Hence, context-sensitive methods are
required to solve relation inference.

Many methods have tried to address relation
inference, from DIRT (Lin and Pantel, 2001)
through Sherlock (Schoenmackers et al., 2010) to
the more recent work on PPDB (Pavlick et al.,
2015b) and RELLY (Grycner et al., 2015). How-
ever, the way these methods are evaluated remains
largely inconsistent. Some papers that deal with
phrasal inference in general (Beltagy et al., 2013;
Pavlick et al., 2015a; Kruszewski et al., 2015) use

an extrinsic task, such as a recent recognizing tex-
tual entailment (RTE) benchmark (Marelli et al.,
2014). By nature, extrinsic tasks incorporate a va-
riety of linguistic phenomena, making it harder to
analyze the specific issues of relation inference.

The vast majority of papers that do focus on re-
lation inference perform some form of post-hoc
evaluation (Lin and Pantel, 2001; Szpektor et al.,
2007; Schoenmackers et al., 2010; Weisman et
al., 2012; Lewis and Steedman, 2013; Riedel et
al., 2013; Rocktäschel et al., 2015; Grycner and
Weikum, 2014; Grycner et al., 2015; Pavlick et al.,
2015b). Typically, the proposed algorithm gen-
erates several inference rules between two rela-
tion templates, which are then evaluated manu-
ally. Some studies evaluate the rules out of con-
text (is the rule “X eliminates Y ”→“X treats Y ”
true?), while others apply them to textual data and
evaluate the validity of the rule in context (given
“aspirin eliminates headaches”, is “aspirin treats
headaches” true?). Not only are these post-hoc
evaluations oblivious to recall, their “human in the
loop” approach makes them expensive and virtu-
ally impossible to accurately replicate.

Hence, there is a real need for pre-annotated
datasets for intrinsic evaluation of relation infer-
ence in context. Zeichner et al. (2012) constructed
such a dataset by applying DIRT-trained inference
rules to sampled texts, and then crowd-annotating
whether each original text (premise) entails the
text generated from applying the inference rule
(hypothesis). However, this process is biased; by
using DIRT to generate examples, the dataset is
inherently blind to the many cases where relation
inference exists, but is not captured by DIRT.

We present a new dataset for evaluating rela-
tion inference in context, which is unbiased to-
wards one method or another, and natural to anno-
tate. To create this dataset, we design a QA setting
where annotators are presented with a single ques-
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Figure 1: A screenshot from our annotation task.

tion and several automatically-retrieved text frag-
ments. The annotators’ goal is to mark which of
the text fragments provide a potential answer to
the question (see Figure 1). Since the entities in
the text fragments are aligned with those in the
question, this process implicitly annotates which
relations entail the one in the question. For exam-
ple, in Figure 1, if “[US PRESIDENT] increased
taxes” provides an answer to “Which US president
raised taxes?”, then “increased” implies “raised”
in that context. Because this task is so easy to an-
notate, we were able to scale up to 16,371 anno-
tated examples (3,147 positive) with 91.3% preci-
sion for only $375 via crowdsourcing.

Finally, we evaluate a collection of existing
methods and common practices on our dataset,
and observe that even the best combination of
methods cannot recall more than 25% of the pos-
itive examples without dipping below 80% preci-
sion. This places into perspective the huge amount
of relevant cases of relation inference inherently
ignored by the bias in (Zeichner et al., 2012).
Moreover, this result shows that while our anno-
tation task is easy for humans, it is difficult for
existing algorithms, making it an appealing chal-
lenge for future research on relation inference.
Our code1 and data2 are publicly available.

2 Relation Inference Datasets

To the best of our knowledge, there are only
three pre-annotated datasets for evaluating rela-
tion inference in context.3 Each example in
these datasets consists of two binary relations,
premise and hypothesis, and a label indicat-

1http://bitbucket.org/omerlevy/
relation_inference_via_qa

2http://u.cs.biu.ac.il/˜nlp/resources/
downloads/relation_inference_via_qa

3It is worth noting the lexical substitution datasets (Mc-
Carthy and Navigli, 2007; Biemann, 2013; Kremer et al.,
2014) also capture instances of relation inference. However,
they do not focus on relations and are limited to single-word
substitutions. Furthermore, the annotators are tasked with
generating substitutions, whereas we are interested in judg-
ing (classifying) an existing substitution.

ing whether the hypothesis is inferred from the
premise. These relations are essentially Open IE
(Banko et al., 2007) assertions, and can be repre-
sented as (subject, relation, object) tuples.

Berant et al. (2011) annotated inference
between typed relations (“[DRUG] eliminates
[SYMPTOM]”→“[DRUG] treats [SYMP-
TOM]”), restricting the definition of “context”.
They also used the non-standard type-system
from (Schoenmackers et al., 2010), which limits
the dataset’s applicability to other corpora. Levy
et al. (2014) annotated inference between in-
stantiated relations sharing at least one argument
(“aspirin eliminates headaches”→“drugs treat
headaches”). While this format captures a more
natural notion of context, it also conflates the
task of relation inference with that of entity
inference (“aspirin”→“drug”). Both datasets were
annotated by experts.

Zeichner et al. (2012) annotated inference be-
tween instantiated relations sharing both argu-
ments:

aspirin eliminates headaches→ aspirin treats headaches

aspirin eliminates headaches 9 aspirin murders headaches

This format provides a broad definition of context
on one hand, while isolating the task of relation
inference. In addition, methods that can be evalu-
ated on this type of data, can also be directly em-
bedded into downstream applications, motivating
subsequent work to use it as a benchmark (Mela-
mud et al., 2013; Abend et al., 2014; Lewis, 2014).
We therefore create our own dataset in this format.

The main drawback of Zeichner et al.’s process
is that it is biased towards a specific relation infer-
ence method, DIRT (Lin and Pantel, 2001). Essen-
tially, Zeichner et al. conducted a post-hoc eval-
uation of DIRT and recorded the results. While
their approach does not suffer from the major dis-
advantages of post-hoc evaluation – cost and ir-
replicability – it ignores instances that do not be-
have according to DIRT’s assumptions. These in-
visible examples amount to an enormous chunk
of the inference performed when answering ques-
tions, which are covered by our approach (see §4).

3 Collection & Annotation Process

Our data collection and annotation process is de-
signed to achieve two goals: (1) to efficiently sam-
ple premise-hypothesis pairs in an unbiased man-
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ner; (2) to allow for cheap, consistent, and scalable
annotations based on an intuitive QA setting.

3.1 Methodology Overview

We start by collecting factoid questions.
Each question is captured as a tuple
q = (qtype, qrel, qarg), for example:

Which
qtype

food
qrel

is included in
qarg

chocolate ?

In addition to “Which?” questions, this template
captures other WH-questions such as “Who?”
(qtype = person).

We then collect a set of candidate answers
for each question q. A candidate answer is
also represented as a tuple (aanswer, arel, aarg) or
(aarg, arel, aanswer), for example:

aarg

chocolate
arel

is made from
aanswer

the cocoa bean

We collect answer candidates according to the
following criteria:

1. aarg = qarg

2. aanswer is a type of qtype

3. arel 6= qrel

These criteria isolate the task of relation inference
from additional inference tasks, because they en-
sure that a’s arguments are entailing q’s. In addi-
tion, the first two criteria ensure that enough can-
didate answers actually answer the question, while
the third discards trivial cases. In contrast to (Ze-
ichner et al., 2012) and post-hoc evaluations, these
criteria do not impose any bias on the relation pair
arel, qrel. Furthermore, we show in §3.2 that both
a and q are both independent naturally-occurring
texts, and are not machine-generated by applying
a specific set of inference rules.

For each (a, q) pair, Mechanical Turk annota-
tors are asked whether a provides an answer to q.
This natural approach also enables batch annota-
tion; for each question, several candidate answers
can be presented at once without shifting the anno-
tator’s focus. To make sure that the annotators do
not use their world knowledge about aanswer, we
mask it during the annotation phase and replace it
with qtype (see Figure 1 and §3.3).

Finally, we instantiate qtype with aanswer, so
that each (a, q) pair fits Zeichner’s format: instan-
tiated predicates sharing both arguments.

3.2 Data Collection

We automatically collected 30,703 pairs of ques-
tions and candidate answers for annotation. Our
process is largely inspired by (Fader et al., 2014).

Questions We collected 573 questions by manu-
ally converting questions from TREC (Voorhees
and Tice, 2000), WikiAnswers (Fader et al., 2013),
WebQuestions (Berant et al., 2013), to our “Which
qtype qrel qarg?” format. Though many questions
did fit our format, a large portion of them were
about sports and celebrities, which were not appli-
cable to our choice of corpus (Google books) and
taxonomy (WordNet).4

Corpus QA requires some body of knowledge
from which to retrieve candidate answers. We
follow Fader et al. (2013; 2014), and use a col-
lection of Open IE-style assertions (Banko et al.,
2007) as our knowledge base. Specifically, we
used hand-crafted syntactic rules5 to extract over
63 million unique subject-relation-object triplets
from Google’s Syntactic N-grams (Goldberg and
Orwant, 2013). The assertions may include multi-
word phrases as relations or arguments, as illus-
trated earlier. This process yields some ungram-
matical or out-of-context assertions, which are
later filtered during annotation (see §3.3).

Answer Candidates In §3.1 we defined three cri-
teria for matching an answer candidate to a ques-
tion, which we now translate into a retrieval pro-
cess. We begin by retrieving all assertions where
one of the arguments (subject or object) is equal
to qarg, ignoring stopwords and inflections. The
matching argument is named aarg, while the other
(non-matching) argument becomes aanswer.

To implement the second criterion (aanswer is
a type of qtype) we require a taxonomy T , as
well as a word-sense disambiguation (WSD) al-
gorithm to match natural-language terms to enti-
ties in T . In this work, we employ WordNet’s hy-
pernymy graph (Fellbaum, 1998) as T and Lesk
(Lesk, 1986) for WSD (both via NLTK (Bird et al.,
2009)). While automatic WSD is prone to some
errors, these cases are usually annotated as non-
sensical in the final phase.

Lastly, we remove instances where arel = qrel.6

4This is the only part in our process that might introduce
some bias. However, this bias is independent of existing re-
lation inference methods such as DIRT.

5See supplementary material for a detailed description.
6Several additional filters were applied to prune non-

grammatical assertions (see supplementary material).
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3.3 Crowdsourced Annotation

Masking Answers We noticed that exposing
aanswer to the annotator may skew the annota-
tion; rather than annotating whether arel implies
qrel in the given context, the annotator might an-
notate whether aanswer answers q according to her
general knowledge. For example:

Q: Which country borders Ethiopia?

A: Eritrea invaded Ethiopia.

An annotator might be misled by knowing in ad-
vance that Eritrea borders Ethiopia. Although an
invasion typically requires land access, it does not
imply a shared border, even in this context; “Italy
invaded Ethiopia” also appears in our corpus, but
it is not true that “Italy borders Ethiopia”.

Effectively, what the annotator might be doing
in this case is substituting qtype (“country”) with
aanswer (“Eritrea”) and asking herself if the as-
sertion (aanswer, qrel, qarg) is true (“Does Eritrea
border Ethiopia?”). As demonstrated, this ques-
tion may have a different answer from the infer-
ence question in which we are interested (“If a
country invaded Ethiopia, does that country bor-
der Ethiopia?”). We therefore mask aanswer dur-
ing annotation by replacing it with qtype as a place-
holder:

A: [COUNTRY] invaded Ethiopia.

This forces the annotator to ask herself whether
arel implies qrel in this context, i.e. does invading
Ethiopia imply sharing a border with it?

Labels Each annotator was given a single ques-
tion with several matching candidate answers (20
on average), and asked to mark each candidate an-
swer with one of three labels:

3 The sentence answers the question.

7 The sentence does not answer the question.

? The sentence does not make sense,
or is severely non-grammatical.

Figure 1 shows several annotated examples. The
third annotation (?) was useful in weeding out
noisy assertions (23% of candidate answers).

Aggregation Overall, we created 1,500 question-
naires,7 spanning a total of 30,703 (a, q) pairs.
Each questionnaire was annotated by 5 differ-

7Each of our 573 questions had many candidate answers.
These were split into smaller chunks (questionnaires) of less
than 25 candidate answers each.

ent people, and aggregated using the unanimous-
up-to-one (at least 4/5) rule. Examples that did
not exhibit this kind of inter-annotator agreement
were discarded, and so were examples which were
determined as nonsensical/ungrammatical (anno-
tated with ?). After aggregating and filtering, we
were left with 3,147 positive (3) and 13,224 neg-
ative (7) examples.8

To evaluate this aggregation rule, we took a ran-
dom subset of 32 questionnaires (594 (a, q) pairs)
and annotated them ourselves (expert annotation).
We then compared the aggregated crowdsourced
annotation on the same (a, q) pairs to our own.
The crowdsourced annotation yielded 91.3% pre-
cision on our expert annotations (i.e. only 8.7%
of the crowd-annotated positives were expert-
annotated as negative), while recalling 86.2% of
expert-annotated positives.

4 Performance of Existing Methods

To provide a baseline for future work, we test
the performance of two inference-rule resources
and two methods of distributional inference on our
dataset, as well as a lemma-similarity baseline.9

4.1 Baselines

Lemma Baseline We implemented a baseline that
takes into account four features from the premise
relation (arel) and the hypothesis relation (qrel) af-
ter they have been lemmatized: (1) Does arel con-
tain all of qrel’s content words? (2) Do the re-
lations share a verb? (3) Does the relations’ ac-
tive/passive voice match their arguments’ align-
ments? (4) Do the relations agree on negation?
The baseline will classify the example as positive
if all features are true.

PPDB 2.0 We used the largest collection of
paraphrases (XXXL) from PPDB (Pavlick et al.,
2015b). These paraphrases include argument slots
for cases where word order changes (e.g. pas-
sive/active).

Entailment Graph We used the publicly-
available inference rules derived from Berant et
al.’s (2011) entailment graph. These rules con-
tain typed relations and can also be applied in a
context-sensitive manner. However, ignoring the

8This harsh filtering process is mainly a result of poor an-
notator quality. See supplementary material for a detailed de-
scription of the steps we took to improve annotator quality.

9To recreate the embeddings, see supplementary material.
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types and applying the inference rules out of con-
text worked better on our dataset, perhaps because
Berant et al.’s taxonomy was learned from a dif-
ferent corpus.

Relation Embeddings Similar to DIRT (Lin and
Pantel, 2001), we create vector representations for
relations, which are then used to measure relation
similarity. From the set of assertions extracted
in §3.2, we create a dataset of relation-argument
pairs, and use word2vecf (Levy and Goldberg,
2014) to train the embeddings. We also tried to use
the arguments’ embeddings to induce a context-
sensitive measure of similarity, as suggested by
Melamud et al. (2015); however, this method did
not improve performance on our dataset.

Word Embeddings Using Google’s Syntactic
N-grams (Goldberg and Orwant, 2013), from
which candidate answers were extracted, we
trained dependency-based word embeddings with
word2vecf (Levy and Goldberg, 2014). We used
the average word vector to represent multi-word
relations, and cosine to measure their similarity.

4.2 Results

Under the assumption that collections of inference
rules are more precision-oriented, we also try dif-
ferent combinations of rule-based and embedding-
based methods by first applying the rules and then
calculating the embedding-based similarity only
on instances that were not identified as positive
by the rules. Since the embeddings produce a
similarity score, not a classification, we plot all
methods’ performance on a single precision-recall
curve (Figure 2).

All methods used the lemma baseline as a first
step to identify positive examples; without it, per-
formance drops dramatically. This is probably
more of a dataset artifact than an observation about
the baselines; just like we filtered examples where
arel 6= qrel, we could have used a more aggressive
policy and removed all pairs that share lemmas.

It seems that most methods provide little value
beyond the lemma baseline – the exception being
Berant et al.’s (2011) entailment graph. Unify-
ing the entailment graph with PPDB (and, implic-
itly, the lemma baseline) slightly improves perfor-
mance, and provides a significantly better starting
point for the method based on word embeddings.
Even so, performance is still quite poor in absolute
terms, with less than 25% recall at 80% precision.

Figure 2: The performance of existing methods on our
dataset. All methods are run on top of the lemma baseline.
All Rules is the union of PPDB and the entailment graph.
Rules + W Embs is a combination of All Rules and our word
embeddings.

4.3 The Ramifications of Low Recall

These results emphasize the huge false-negative
rate of existing methods. This suggests that a mas-
sive amount of inference examples, which are nec-
essary for answering questions, are inherently ig-
nored in (Zeichner et al., 2012) and post-hoc eval-
uations. Our dataset remedies this bias, and poses
a new challenge for future research on relation in-
ference.
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Abstract

This paper addresses an automatic clas-
sification of preposition types in Ger-
man, comparing hard and soft cluster-
ing approaches and various window- and
syntax-based co-occurrence features. We
show that (i) the semantically most sali-
ent preposition features (i.e., subcategor-
ised nouns) are the most successful, and
that (ii) soft clustering approaches are re-
quired for the task but reveal quite differ-
ent attitudes towards predicting ambiguity.

1 Introduction

In the last decades, an impressive number of se-
mantic classifications has been developed, both
regarding manual lexicographic and/or cognitive
classifications such as WordNet (Fellbaum, 1998),
FrameNet (Fillmore et al., 2003), VerbNet (Kip-
per Schuler, 2006) and PrepNet/The Preposition
Project (Litkowski and Hargraves, 2005; Saint-
Dizier, 2005), as well as regarding computational
classifications for nouns (Hindle, 1990; Pereira et
al., 1993; Snow et al., 2006), verbs (Merlo and
Stevenson, 2001; Korhonen et al., 2003; Schulte
im Walde, 2006) and adjectives (Hatzivassiloglou
and McKeown, 1993; Boleda et al., 2012).

Semantic classifications are of great interest to
computational linguistics, specifically regarding
the pervasive problem of data sparseness in the
processing of natural language. Such classifica-
tions have been used in applications such as word
sense disambiguation (Dorr and Jones, 1996; Ko-
homban and Lee, 2005; McCarthy et al., 2007),
parsing (Carroll et al., 1998; Carroll and Fang,
2004), machine translation (Prescher et al., 2000;
Koehn and Hoang, 2007; Weller et al., 2014),
and information extraction (Surdeanu et al., 2003;
Venturi et al., 2009).

Regarding prepositions, comparably little ef-
fort in computational semantics has gone beyond
a specific choice of prepositions (such as spa-
tial prepositions), towards a systematic classifica-
tion of preposition senses, as in The Preposition
Project (Litkowski and Hargraves, 2005). Dis-
tributional approaches towards preposition mean-
ing and sense distinction have only recently star-
ted to explore salient preposition features, but with
few exceptions (such as Baldwin (2006)) these ap-
proaches focused on token-based classification of
preposition senses (Ye and Baldwin, 2006; O’Hara
and Wiebe, 2009; Tratz and Hovy, 2009; Hovy et
al., 2010; Hovy et al., 2011).

This paper addresses an automatic classification
of preposition types in German, comparing vari-
ous clustering approaches. We aim for an unsuper-
vised setting that does not require predefined ex-
pensive resources, such as a token-based annota-
tion of preposition senses. Our task is challenging,
because (i) prepositions are notoriously ambigu-
ous, (ii) the interpretation of out-of-context pre-
position type classification is more difficult than
context-embedded token interpretation, (iii) there
are no established lexical resources for type-based
semantic classification other than for English, and
(iv) there are no established evaluation measures
for ambiguous linguistic classifications. We ac-
cept the challenges, identify salient preposition
features, and demonstrate the inevitability to ap-
ply soft (rather than hard) clustering in order to
explore linguistic ambiguity.

2 Experiments

2.1 Preposition Data

In the absence of any large-scale semantic hier-
archical type classification, the German grammar
book by Helbig and Buscha (1998) represents
our gold standard. We selected those preposition
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Class Size
lokal ’local’ 27
modal ’modal’ 24
temporal ’temporal’ 21
kausal ’causal’ 5
distributiv ’distributive’ 6
final ’final’ 4
urheber ’creator’ 3
konditional ’conditional’ 3
ersatz ’replacement’ 2
restriktiv ’restrictive’ 2
partitiv ’partitive’ 2
kopulativ ’copulative’ 2

Table 1: Preposition classes.

classes that contained more than one preposition,
and deleted prepositions that appeared <10,000
times in our web corpus containing 880 million
words (cf. Section 2.2). This selection process
resulted in 12 semantic classes covering between
2 and 27 prepositions each (cf. Table 1), and
a more fine-grained version that sub-divided the
three largest classes ’local’, ’modal’ and ’tem-
poral’ into 6/10/7 sub-classes, respectively, and
resulted in a total of 32 classes.12 The preposi-
tions in the fine-grained version exhibit ambiguity
rates of 1 (monosemous) up to 10. Out of the 49
preposition types, 23 are polysemous (46.9%).

2.2 Preposition Features
The corpus-based features for the German pre-
positions were induced from the SdeWaC corpus
(Faaß and Eckart, 2013), a cleaned version of the
German web corpus deWaC (Baroni et al., 2009)
containing approx. 880 million words. We com-
pare three categories of distributional features:

(1) bag-of-words window co-occurrence fea-
tures: we apply a standard bag-of-words
model (BOW) relying on a window of 2 words
to the left and to the right, and a continuous
bag-of-words model (CBOW) using negative
sampling with K=15 (Mikolov et al., 2013);

(2) direct syntactic dependency: we compare the
most salient preposition-related dependencies:
preposition-subcategorised nouns (nouns-dep,
e.g., in Buch ‘in book’), preposition-
subcategorising nouns (nouns-gov, e.g.,
Buch von ‘book by’), and preposition-
subcategorising verbs (verbs-gov, e.g., reisen
nach ‘to travel to’);

1While we also conducted experiments using the coarse-
grained class distribution in Table 1, the experiments in this
paper focus on the fine-grained inventory.

2The gold standard was previously used in Springorum et
al. (2013) and in Köper and Schulte im Walde (2014).

(3) 2nd-order syntactic co-occurrence: adject-
ives that modify nouns subcategorised by the
prepositions, and adverbs that modify verbs
subcategorising the prepositions.

The dependency information was extracted from
a parsed version of the SdeWaC using Bo-
hnet’s MATE dependency parser (Bohnet, 2010;
Scheible et al., 2013). All but the CBOW fea-
tures were weighted according to positive point-
wise mutual information.

2.3 Clustering Approaches

As we wanted to explore hard vs. soft clustering
approaches on the same task, we chose k-Means
as a standard hard clustering approach (relying on
WEKA’s spherical k-Means implementation), and
compared it to various soft clustering approaches.

We transfered the hard k-Means cluster ana-
lyses to soft cluster analyses, using two alternat-
ive methods. (1) The prep-based soft k-Means
method (Springorum et al., 2013) calculated the
mean cosine distance d̄ for each preposition p to
the centroids zc of the clusters c, and assigned
a preposition to a specific cluster if its distance
to the respective cluster centroid was below a
threshold t multiplied with the mean distance,
with t = 0.05, 0.1, 0.15, . . . , 0.95. Additionally,
(2) we propose a hard-to-soft clustering transfer
prob-based soft k-Means that converts the cosine
distances between the prepositions and the hard
cluster centroids to membership probabilities.

Instead of transferring a hard clustering to a soft
clustering we also directly applied soft clustering
approaches: (1) The fuzzy c-Means algorithm ex-
tends k-means by a cluster membership function
for each preposition, fm ∈ [0, 1]. (2) We applied
Latent Semantic Clustering (LSC), an instance
of the Expectation-Maximisation (EM) algorithm
(Baum, 1972) for unsupervised training on un-
annotated data (Rooth et al., 1999). The cluster
analyses define two-dimensional soft clusters (in
our case: preposition–feature clusters) with cluster
membership probabilities, which are able to gener-
alise over hidden data. (3) We used Non-negative
matrix factorization (NMF), a factorisation ap-
proach with an inherent (soft) clustering property
(Ding et al., 2005).

All variants of our hard-to-soft clustering
approaches and the direct soft clustering ap-
proaches (except for k-Means/prep)3 resulted in a

3k-Means/prep directly provides binary membership.
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preposition–cluster membership matrix with val-
ues ∈ [0, 1]. We transfered the real member-
ship values to binary membership by applying a
threshold t to decide about the cluster member-
ship, again with t = 0.05, 0.1, 0.15, . . . , 0.95. For
each clustering approach and for each number of
clusters k we then identified the best threshold.

2.4 Evaluation
We chose the fuzzy extension of B-Cubed (Bagga
and Baldwin, 1998) as evaluation measure, be-
cause it is (a) a pair-wise evaluation, which is con-
sidered as most suitable for soft clustering eval-
uations, and (b) distinguishes between homogen-
eity and completeness of a clustering, and thus
resembles an evaluation by precision and recall.
Amigó et al. (2009) demonstrated the strengths of
B-Cubed, and a similar version has been used in
SemEval 2013 for Word Sense Induction (Jurgens
and Klapaftis, 2013).

Pair-wise precision P determines the homogen-
eity of a cluster analysis, by calculating for each
individual preposition p the amount of preposi-
tions p′ in the same cluster c that also belong to
the same gold-standard class g, cf. Equation (1).
Pair-wise recall R determines the completeness of
a cluster analysis, by calculating for each indi-
vidual preposition p the amount of prepositions p′

in the same gold-standard class g that also belong
to the same cluster c, cf. Equation (2). The over-
all B-Cubed precision and recall scores are the av-
erages over all preposition-wise scores. We com-
bined precision and recall by their harmonic mean,
the f-score.

P (p, p′) =
min(|c(p) ∩ c(p′)|, |g(p) ∩ g(p′)|

|c(p) ∩ c(p′)| (1)

R(p, p′) =
min(|c(p) ∩ c(p′)|, |g(p) ∩ g(p′)|

|g(p) ∩ g(p′)| (2)

2.5 Baselines
We created two baselines for our preposition clus-
terings: The hard baseline was computed for
every number of clusters k=[5, 40]. For each k,
each preposition was randomly assigned to one of
the k clusters, and the resulting hard cluster ana-
lysis was evaluated. The hard cluster assignments
were repeated 1,000 times for each k, and the over-
all evaluation score for k clusters is the average
score of the 1,000 runs. The soft baseline was also
created by random assignment across 1,000 runs
for each k, but –integrating the fuzzy component–

each preposition was assigned to n clusters, with
n a random number between 1 and the number
of gold-standard classes for that specific preposi-
tion. Note that this baseline is more informed than
an entirely random baseline, because the informa-
tion about the number of gold-standard classes for
each preposition is very helpful. For example, the
baseline assigns monosemous prepositions to only
one cluster, and prepositions with three senses to a
random integer in [1, 3].

3 Results

Figure 1 compares the fuzzy B-Cubed f-score val-
ues across the hard and soft clustering approaches,
relying on the preposition-subcategorised nouns
as one of the best features (cf. Figure 2 below).
The plot demonstrates that (i) the hard k-Means
clustering approach is the only one resulting in
f-scores below the soft baseline, while (ii) the
vast majority of soft clustering results lies above
the soft baseline. Furthermore, (iii) there is a
clear tendency for all soft clustering approaches
to provide the best f-scores for similar values of k
clusters: 15 ≤ k ≤ 19. The overall best result is
reached by NMF for a clustering with 17 clusters.

Figure 2 compares the f-scores across feature
types, relying on NMF as the best clustering
approach. The plot confirms that (i) –across
features–, the vast majority of soft clustering res-
ults lies above the soft baseline. In addition, (ii) in
the previously most successful range for 15 ≤ k ≤
19 clusters, the preposition-subcategorised nouns
represent the best features. (iii) The best cluster
analyses relying on window vs. syntax features
are similarly successful, and outperform 2nd-order
co-occurrence features.

We checked the overall best cluster analysis
(NMF, k = 17, nouns-dep) on the predicted de-
gree of ambiguity (cf. Figure 3): for 23 out of the
26 monosemous prepositions, we correctly pre-
dicted one preposition sense; for 7 out of the 23
polysemous prepositions, we predicted the cor-
rect number of senses; for 9 out of the 23 poly-
semous prepositions, we predicted less senses than
the gold standard defines; and for 7 out of the
23 polysemous prepositions, we predicted more
senses than the gold standard defines.

Our best soft-clustering approach to the prepos-
ition classification task thus demonstrates its use-
fulness through quantitative B-Cubed evaluation
and through reliable predictions of ambiguity.
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Figure 1: Fuzzy B-Cubed f-score using the subcategorised noun feature set (nouns-dep), across
soft clustering approaches.
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Figure 3: Predicting polysemy across prepositions (NMF, k = 17, nouns-dep).
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4 Discussion

While the results in the previous section demon-
strate the success of the type-based clustering,
we were interested in two specific questions: (i)
Where do the differences in the quality of the
cluster analyses come from? (ii) Do the best
cluster analyses present linguistically reliable and
useful semantic classes?

From a quantitative point of view, both ques-
tions have been addressed by the evaluation meas-
ure, fuzzy B-Cubed, which we chose for reasons
outlined in Section 2.4. One should keep in mind,
however, that there is an ongoing discussion about
cluster comparison and cluster evaluation (Meila,
2007; Rosenberg and Hirschberg, 2007; Vinh and
Bailey, 2010; Utt et al., 2014), which demonstrates
uncertainty about an optimal measure, and which
concerns us, expecially regarding the linguistic as-
pects of soft clustering. In the following, we there-
fore provide qualitative analyses and discussions
of the cluster approaches and analyses.

Ambiguity rate of soft-clustering approaches:
We looked into the best cluster analysis for each
soft-clustering approach, and checked the ambi-
guities. While the number of preposition types in
the cluster analyses is similar across approaches
(between 44 and 48), the ambiguity rate (i.e.,
the number of cluster assignments per preposi-
tion type) and the number of ambiguous prepos-
ition types (i.e., the number of prepositions as-
signed to more than one cluster) differ strongly.
For example, k-Means/prob and NMF perform an
average of 3.1/3.7 assignments for each preposi-
tion, in comparison to 2.2–2.4 assignments by the
other approaches. On the other hand, while k-
Means/prob defines almost all preposition types
(43 out of 48) as ambiguous, NMF only defines 28
out of 46 prepositions as ambiguous. NMF (best
approach) thus shows a high ambiguity rate, but
only 60% of the prepositions are ambiguous.

Cluster sizes: Looking into the actual cluster
analyses reveals that the sizes and the structures
within the individual clusters differ strongly. The
best k-Means/prep and k-Means/prob analyses
(k = 16, F = 0.33, and k = 19, F = 0.34), for
example, each contain 7 large clusters with 10–25
prepositions. All other clusters contain only 1–3
prepositions. In comparison, the best NMF ana-
lysis (k = 17, F = 0.43) contains only one cluster
with three prepositions, and all other clusters but

one contain ≥ 5 and ≤ 14 prepositions. The
cluster sizes of the best NMF analysis are there-
fore more homogeneous than for other clustering
approaches.

Optimal k: While fuzzy B-Cubed determined
the numbers of clusters [15, 19] as optimal for the
soft-clustering approaches, we also looked into the
NMF cluster analysis with k = 32, with NMF as
the best approach and 32 as the number of gold
standard classes. The clusters are, again, very sim-
ilar in size, including only one singleton and only
one cluster with 9 prepositions. All other clusters
contain 2 − 6 prepositions. The smaller cluster
sizes allow manual evaluations. We can indeed
find reliable semantic clusters, such as {an, auf,
hinter, in, mit, nach, neben, um, vor}, where 7 out
of 9 prepositions belong to the gold-standard class
local: not target-oriented containing a total of 12
prepositions.

5 Conclusion

We presented variants of hard and soft clus-
tering approaches across several sets of pre-
position features, to automatically classify pre-
position types into semantic classes. While
type-based classifications for highly ambiguous
word classes are a computational challenge, our
best approach (NMF-based classification with 17
clusters) reached an f-score of 0.43. The clus-
tering experiments showed that (i) the semantic-
ally most salient preposition features are indeed
the most successful, and that (ii) the clustering of
highly ambiguous words requires soft rather than
hard clustering approaches.

Most interestingly, a qualitative analysis
zoomed into the assignment behaviour of the
soft clustering approaches, and revealed different
attitudes towards predicting ambiguity. NMF as
the best approach predicted a high ambiguity rate
but only for a restricted proportion of 60% of the
preposition types. Furthermore, the distribution
of cluster sizes was less skewed than for other
approaches.
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Abstract

Decision-making is often dependent on
uncertain data, e.g. data associated with
confidence scores or probabilities. We
present a comparison of different informa-
tion presentations for uncertain data and,
for the first time, measure their effects
on human decision-making. We show
that the use of Natural Language Genera-
tion (NLG) improves decision-making un-
der uncertainty, compared to state-of-the-
art graphical-based representation meth-
ods. In a task-based study with 442 adults,
we found that presentations using NLG
lead to 24% better decision-making on av-
erage than the graphical presentations, and
to 44% better decision-making when NLG
is combined with graphics. We also show
that women achieve significantly better re-
sults when presented with NLG output
(an 87% increase on average compared to
graphical presentations).

1 Introduction

Natural Language Generation (NLG) technology
can achieve comparable results to commonly used
data visualisation techniques for supporting accu-
rate human decision-making (Gatt et al., 2009). In
this paper, we investigate whether NLG technol-
ogy can also be used to support decision-making
when the underlying data is uncertain. Current
data-to-text systems assume that the underlying
data is precise and correct – an assumption which
is heavily criticised by other disciplines concerned
with decision support, such as medicine (Gigeren-
zer and Muir Gray, 2011), environmental mod-
elling (Beven, 2009), climate change (Manning
et al., 2004), or weather forecasting (Kootval,
2008). However, simply presenting numerical ex-

pressions of risk and uncertainty is not enough.
Psychological studies on decision making have
found that a high percentage of people do not
understand and can’t act upon numerical uncer-
tainty (Cokely et al., 2012; Galesic and Garcia-
Retamero, 2010). For example, only 28% of Ger-
mans and 25% of Americans are able to answer the
question: “Which of the following numbers rep-
resents the biggest risk of getting a disease: 1 in
100, 1 in 1000, 1 in 10?” (Galesic and Garcia-
Retamero, 2010).

So far, the NLG community has investigated
the conversion of numbers into language (Power
and Williams, 2012) and the use of vague ex-
pressions (van Deemter, 2009). In this work,
we explore how to convert numerical representa-
tions of uncertainty into Natural Language so as to
maximise confidence and correct outcomes of hu-
man decision-making. We consider the exemplar
task of weather forecast generation. We initially
present two NLG strategies which present the un-
certainty in the input data. The two strategies are
based on (1) the World Meteorological Organisa-
tion (WMO) (Kootval, 2008) guidelines and (2)
commercial forecast presentations (e.g. from BBC
presenters). We then evaluate the strategies against
a state-of-the-art graphical system (Stephens et
al., 2011), which presents the uncertain data in a
graphical way. Figure 1 shows an example of this
baseline graphical presentation. We use a game-
based setup (Gkatzia et al., 2015) to perform task-
based evaluation, to investigate the effect that the
different information presentation strategies have
on human decision-making.

Weather forecast generation is a common topic
within the NLG community, e.g. (Konstas and La-
pata, 2012; Angeli et al., 2010; Belz and Kow,
2010; Sripada et al., 2005). Previous approaches
have not focused on how to communicate uncer-
tain information or the best ways of referring to
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Figure 1: Graphics for temperature data.

probabilities of meteorological phenomena to oc-
cur. In addition, their evaluation is based on user
ratings of grammatically, semantic correctness,
fluency, coherence or via post-edit evaluation. Al-
though these metrics are indicative of the quality
of the text produced, they do not measure the im-
pact the texts might have in people’s comprehen-
sion of uncertainty or on their ability to make de-
cisions based on the information conveyed.

Our contributions to the field are as follows: (1)
We study a principled mapping of uncertainty to
Natural Language and provide recommendations
and data for future NLG systems; (2) We intro-
duce a game-based data collection environment
which extends task-based evaluation by measuring
the impact of NLG on decision-making (measur-
ing user confidence and game/task success); and
(3) We show that effects of the different represen-
tations vary for different user groups, so that user
adaptation is necessary when generating multi-
modal presentations of uncertain information.

2 The Extended Weather Game

In this section, we present our extended version
of the MetOffice’s Weather Game (Stephens et al.,
2011). The player has to choose where to send an
ice-cream vendor in order to maximise sales, given
weather forecasts for four weeks and two loca-
tions. These forecasts describe (1) predicted rain-
fall (Figure 2) and (2) temperature levels together

Likelihood of oc-
currence

Lexicalisation

p >0.99 “extremely likely”
0.90 ≤ p ≤ 0.99 “very likely”
0.70 ≤ p ≤ 0.89 “likely”
0.55 ≤ p ≤ 0.69 “probable - more likely than not”
0.45 ≤ p ≤ 0.54 “equally likely as not”
0.30 ≤ p ≤ 0.44 “possible - less likely than not”
0.10 ≤ p ≤ 0.29 “unlikely”
0.01 ≤ p ≤ 0.09 “very unlikely”
p<0.01 “extremely unlikely”

Table 1: WMO-based mapping of likelihoods.

with their likelihoods in three ways: (a) through
graphical representations (which is the version of
the original game), (b) through textual forecasts,
and (c) through combined graphical and textual
forecasts. We generated the textual format us-
ing two rule-based NLG approaches as described
in the next section. Users are asked to initially
choose the best destination for the ice-cream ven-
dor and then they are asked to state how confident
they are with their choice. Based on their deci-
sions and their confidence levels, the participants
are finally presented with their “monetary gain”.
For example, the higher the likelihood of sunshine,
the higher the monetary gain if the player has de-
clared that s/he is confident that it is not going to
rain and it doesn’t actually rain. In the opposite
scenario, the player would lose money. The de-
cision on whether rain occurred is estimated by
sampling the probability distribution. At the end
of the game, users were scored according to their
“risk literacy” following the Berlin Numeracy Test
(Cokely et al., 2012). Further details are presented
in (Gkatzia et al., 2015).

3 Natural Language Generation from
Uncertain Information

We developed two NLG systems, WMO-based
and NATURAL, using SimpleNLG (Gatt and Re-
iter, 2009), which both generate textual descrip-
tions of rainfall and temperature data addressing
the uncertain nature of forecasts.
WMO-based: This is a rule-based system which
uses the guidelines recommended by the WMO
(Kootval, 2008) for reporting uncertainty, as
shown in Table 1. Consider for instance a fore-
cast of sunny intervals with 30% probability of
rain. This WMO-based system will generate the
following forecast: “Sunny intervals with rain be-
ing possible - less likely than not”.
NATURAL: This system imitates forecasters and
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Figure 2: Screenshot of the Extended Weather Game (Rainfall: Graphics and WMO condition).

their natural way of reporting weather. The rules
used in this system have been derived by observ-
ing the way that experts (e.g. BBC weather re-
porters) produce forecasts. For the previous exam-
ple (sunny intervals with 30% probability of rain),
this system will generate the following forecast:
“Mainly dry with sunny spells”.

4 Evaluation

In order to investigate what helps people to better
understand and act upon uncertainty in informa-
tion presentations, we use five conditions within
the context of the Extended Weather Game:

1. Graphics only: This representation shows
the users only the graphical representation of
the weather forecasts. For this condition we
used the graphs that scored best in terms of
human comprehension from (Stephens et al.,
2011).

2. Multi-modal Representations:
− Graphics and NATURAL: This is
a multi-modal representation consisting of
graphics (as described in the previous con-
dition) and text produced by the NATURAL
system.
− Graphics and WMO-based: This is also
a multi-modal representation consisting of
graphics and text produced by the WMO-
based system.

3. NLG only:
− NATURAL only: This is a text-only rep-
resentation as described above.
− WMO-based system only: This is also a
text-only representation.

5 Data

We recruited 442 unique players (197 females1,
241 males, 4 non-disclosed) using social me-
dia. We collected 450 unique game instances
(just a few people played the game twice). The
anonymised data will be released as part of this
submission.

6 Results

In order to investigate which representations as-
sist people in decision-making under uncertainty,
we analysed both the players’ scores (in terms of
monetary gain) and their predictions for rainfall
with regard to their confidence scores. As we de-
scribed in Section 2, the game calculates a mone-
tary gain based on both the decisions and the con-
fidence of the player, i.e. the decision-making abil-
ity of the player. Regarding confidence, we asked
users to declare how confident they are on a 10-
point scale. In our analysis we therefore focus on
both confidence and score at the game.

1Women made up 44.5% of the subjects.
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Monetary gains Confidence
Graphs only 81.15 78.5%
Multi-modal 117.51 83.7%
NLG only 101.33 66%

Table 2: Average Monetary gains and Confidence
scores (All Adults).

6.1 Results for all adults

Multi-modal vs. Graphics-only: We found that
use of multi-modal representations leads to gain-
ing significantly higher game scores (i.e. better
decision-making) than the Graphics-only repre-
sentation (p = 0.03, effect = +36.36). This is a
44% average increase in game score.
Multi-modal vs. NLG-only: However, there is no
significant difference between the NLG only and
the multi-modal representation, for game score.
NLG vs. Graphics-only: We found that the NLG
representations resulted in a 24.8% increase in av-
erage task score (i.e. better decision-making) com-
pared to the Graphics-only condition, see Table 2:
an average score increase of over 20 points. There
was no significant difference found between the
WMO and NATURAL NLG conditions.
Confidence: For confidence, the multi-modal rep-
resentation is significantly more effective than
NLG only (p < 0.01, effect = 17.7%). However,
as Table 2 shows, although adults did not feel very
confident when presented with NLG only, they
were able to make better decisions compared to
being presented with graphics only.
Demographic factors: We further found that
prior experience on making decisions based on
risk, familiarity with weather models, and cor-
rect literacy test results are predictors of the play-
ers’ understanding of uncertainty, which is trans-
lated in both confidence and game scores. In con-
trast, we found that the education level, the gender,
or being native speaker of English does not con-
tribute to players’ confidence and game scores.

6.2 Results for Females

We found that females score significantly higher
at the decision task when exposed to either of the
NLG output presentations, when compared to the
graphics-only presentation (p < 0.05, effect =
+53.03). This is an increase of 87%, also see
Table 3. In addition, the same group of users
scores significantly higher when presented with
the multi-modal output as compared to graphics
only (p = 0.05, effect =60.74%). Interestingly, for

Monetary gains Confidence
Graphs only 60.83 74.6%
Multi-modal 118.41 81.3%
NLG only 113.86 65.8%

Table 3: Average Monetary gains and Confidence
scores (Females).

this group, the multi-modal presentation adds lit-
tle more in effectiveness of decision-making than
the NLG-only condition, but the multi-modal pre-
sentations do enhance their confidence (+15%).
We furthermore found that educated (i.e. holding
a BSc or higher degree) females, who also cor-
rectly answered the risk literacy test, feel signif-
icantly more confident when presented with the
multi-modal representations than with NLG only
(p = 0.01, effect = 16.7%).

6.3 Results for Males

We found that males obtained similar game scores
with all the types of representation. This suggests
that the overall improved scores (for All Adults)
presented above, are largely due to the beneficial
effects of NLG for women. In terms of confidence,
males are more likely to be more confident if they
are presented with graphics only (81% of the time)
or a multi-modal representation (85% of the time)
(p = 0.01).

7 Conclusions and Future Work

We present results from a game-based study on
how to generate descriptions of uncertain data –
an issue which so far has been unexplored by
data-to-text systems. We find that there are sig-
nificant gender differences between multi-modal,
NLG, and graphical versions of the task, where for
women, use of NLG results in a 87% increase in
task success over graphics. Multimodal presenta-
tions lead to a 44% increase for all adults, com-
pared to graphics. People are also more confident
of their judgements when using the multimodal
representations. These are significant findings, as
previous work has not distinguished between gen-
ders when comparing different representations of
data, e.g. (Gatt et al., 2009). It also confirms re-
search on gender effects in multi-modal systems,
as for example reported in (Foster and Oberlan-
der, 2006; Rieser and Lemon, 2008; Weiss et al.,
2012). The results are also related to educational
research, which shows that women perform bet-
ter in verbal-logical tasks than visual-spatial tasks
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(Zhu, 2007). An interesting investigation for fu-
ture research is the interplay between uncertainty,
risk-taking behaviour and gender, as for example
reported in (Sarin and Wieland, 2016).
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Abstract

Text from social media provides a set of
challenges that can cause traditional NLP
approaches to fail. Informal language,
spelling errors, abbreviations, and special
characters are all commonplace in these
posts, leading to a prohibitively large vo-
cabulary size for word-level approaches.
We propose a character composition
model, tweet2vec, which finds vector-
space representations of whole tweets by
learning complex, non-local dependencies
in character sequences. The proposed
model outperforms a word-level baseline
at predicting user-annotated hashtags as-
sociated with the posts, doing significantly
better when the input contains many out-
of-vocabulary words or unusual character
sequences. Our tweet2vec encoder is pub-
licly available1.

1 Introduction

We understand from Zipf’s Law that in any nat-
ural language corpus a majority of the vocabu-
lary word types will either be absent or occur in
low frequency. Estimating the statistical proper-
ties of these rare word types is naturally a diffi-
cult task. This is analogous to the curse of di-
mensionality when we deal with sequences of to-
kens - most sequences will occur only once in the
training data. Neural network architectures over-
come this problem by defining non-linear compo-
sitional models over vector space representations
of tokens and hence assign non-zero probability
even to sequences not seen during training (Ben-
gio et al., 2003; Kiros et al., 2015). In this work,
we explore a similar approach to learning dis-
tributed representations of social media posts by

1https://github.com/bdhingra/tweet2vec

composing them from their constituent characters,
with the goal of generalizing to out-of-vocabulary
words as well as sequences at test time.

Traditional Neural Network Language Models
(NNLMs) treat words as the basic units of lan-
guage and assign independent vectors to each
word type. To constrain memory requirements,
the vocabulary size is fixed before-hand; therefore,
rare and out-of-vocabulary words are all grouped
together under a common type ‘UNKNOWN’.
This choice is motivated by the assumption of ar-
bitrariness in language, which means that surface
forms of words have little to do with their semantic
roles. Recently, (Ling et al., 2015) challenge this
assumption and present a bidirectional Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) for composing word vectors from
their constituent characters which can memorize
the arbitrary aspects of word orthography as well
as generalize to rare and out-of-vocabulary words.

Encouraged by their findings, we extend their
approach to a much larger unicode character set,
and model long sequences of text as functions
of their constituent characters (including white-
space). We focus on social media posts from
the website Twitter, which are an excellent test-
ing ground for character based models due to the
noisy nature of text. Heavy use of slang and
abundant misspellings means that there are many
orthographically and semantically similar tokens,
and special characters such as emojis are also im-
mensely popular and carry useful semantic infor-
mation. In our moderately sized training dataset
of 2 million tweets, there were about 0.92 mil-
lion unique word types. It would be expensive
to capture all these phenomena in a word based
model in terms of both the memory requirement
(for the increased vocabulary) and the amount of
training data required for effective learning. Ad-
ditional benefits of the character based approach
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include language independence of the methods,
and no requirement of NLP preprocessing such as
word-segmentation.

A crucial step in learning good text representa-
tions is to choose an appropriate objective function
to optimize. Unsupervised approaches attempt to
reconstruct the original text from its latent rep-
resentation (Mikolov et al., 2013; Bengio et al.,
2003). Social media posts however, come with
their own form of supervision annotated by mil-
lions of users, in the form of hashtags which link
posts about the same topic together. A natural as-
sumption is that the posts with the same hashtags
should have embeddings which are close to each
other. Hence, we formulate our training objective
to maximize cross-entropy loss at the task of pre-
dicting hashtags for a post from its latent represen-
tation.

We propose a Bi-directional Gated Recurrent
Unit (Bi-GRU) (Chung et al., 2014) neural net-
work for learning tweet representations. Treat-
ing white-space as a special character itself, the
model does a forward and backward pass over the
entire sequence, and the final GRU states are lin-
early combined to get the tweet embedding. Pos-
terior probabilities over hashtags are computed
by projecting this embedding to a softmax out-
put layer. Compared to a word-level baseline this
model shows improved performance at predicting
hashtags for a held-out set of posts. Inspired by
recent work in learning vector space text represen-
tations, we name our model tweet2vec.

2 Related Work

Using neural networks to learn distributed repre-
sentations of words dates back to (Bengio et al.,
2003). More recently, (Mikolov et al., 2013) re-
leased word2vec - a collection of word vectors
trained using a recurrent neural network. These
word vectors are in widespread use in the NLP
community, and the original work has since been
extended to sentences (Kiros et al., 2015), doc-
uments and paragraphs (Le and Mikolov, 2014),
topics (Niu and Dai, 2015) and queries (Grbovic
et al., 2015). All these methods require storing an
extremely large table of vectors for all word types
and cannot be easily generalized to unseen words
at test time (Ling et al., 2015). They also require
preprocessing to find word boundaries which is
non-trivial for a social network domain like Twit-
ter.

In (Ling et al., 2015), the authors present a
compositional character model based on bidirec-
tional LSTMs as a potential solution to these prob-
lems. A major benefit of this approach is that large
word lookup tables can be compacted into char-
acter lookup tables and the compositional model
scales to large data sets better than other state-
of-the-art approaches. While (Ling et al., 2015)
generate word embeddings from character repre-
sentations, we propose to generate vector repre-
sentations of entire tweets from characters in our
tweet2vec model.

Our work adds to the growing body of work
showing the applicability of character models for a
variety of NLP tasks such as Named Entity Recog-
nition (Santos and Guimarães, 2015), POS tag-
ging (Santos and Zadrozny, 2014), text classifica-
tion (Zhang et al., 2015) and language modeling
(Karpathy et al., 2015; Kim et al., 2015).

Previously, (Luong et al., 2013) dealt with
the problem of estimating rare word representa-
tions by building them from their constituent mor-
phemes. While they show improved performance
over word-based models, their approach requires
a morpheme parser for preprocessing which may
not perform well on noisy text like Twitter. Also
the space of all morphemes, though smaller than
the space of all words, is still large enough that
modelling all morphemes is impractical.

Hashtag prediction for social media has been
addressed earlier, for example in (Weston et al.,
2014; Godin et al., 2013). (Weston et al., 2014)
also use a neural architecture, but compose text
embeddings from a lookup table of words. They
also show that the learned embeddings can gener-
alize to an unrelated task of document recommen-
dation, justifying the use of hashtags as supervi-
sion for learning text representations.

3 Tweet2Vec

Bi-GRU Encoder: Figure 1 shows our model
for encoding tweets. It uses a similar structure to
the C2W model in (Ling et al., 2015), with LSTM
units replaced with GRU units.

The input to the network is defined by an al-
phabet of characters C (this may include the en-
tire unicode character set). The input tweet is bro-
ken into a stream of characters c1, c2, ...cm each
of which is represented by a 1-by-|C| encoding.
These one-hot vectors are then projected to a char-
acter space by multiplying with the matrix PC ∈
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Figure 1: Tweet2Vec encoder for social media text

R|C|×dc , where dc is the dimension of the char-
acter vector space. Let x1, x2, ...xm be the se-
quence of character vectors for the input tweet af-
ter the lookup. The encoder consists of a forward-
GRU and a backward-GRU. Both have the same
architecture, except the backward-GRU processes
the sequence in reverse order. Each of the GRU
units process these vectors sequentially, and start-
ing with the initial state h0 compute the sequence
h1, h2, ...hm as follows:

rt = σ(Wrxt + Urht−1 + br),
zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh),

ht = (1− zt)� ht−1 + zt � h̃t.

Here rt, zt are called the reset and update gates
respectively, and h̃t is the candidate output state
which is converted to the actual output state ht.
Wr,Wz,Wh are dh × dc matrices and Ur, Uz, Uh

are dh × dh matrices, where dh is the hidden state
dimension of the GRU. The final states hf

m from
the forward-GRU, and hb

0 from the backward GRU
are combined using a fully-connected layer to the
give the final tweet embedding et:

et = W fhf
m +W bhb

0 (1)

Here W f ,W b are dt × dh and b is dt × 1 bias
term, where dt is the dimension of the final tweet
embedding. In our experiments we set dt = dh.
All parameters are learned using gradient descent.

Softmax: Finally, the tweet embedding is
passed through a linear layer whose output is the
same size as the number of hashtags L in the data
set. We use a softmax layer to compute the poste-
rior hashtag probabilities:

P (y = j|e) =
exp(wT

j e+ bj)∑L
i=1 exp(w

T
i e+ bj)

. (2)

Objective Function: We optimize the cate-
gorical cross-entropy loss between predicted and
true hashtags:

J =
1
B

B∑
i=1

L∑
j=1

−ti,jlog(pi,j) + λ‖Θ‖2. (3)

Here B is the batch size, L is the number of
classes, pi,j is the predicted probability that the i-
th tweet has hashtag j, and ti,j ∈ {0, 1} denotes
the ground truth of whether the j-th hashtag is in
the i-th tweet. We use L2-regularization weighted
by λ.

4 Experiments and Results

4.1 Word Level Baseline

Since our objective is to compare character-based
and word-based approaches, we have also imple-
mented a simple word-level encoder for tweets.
The input tweet is first split into tokens along
white-spaces. A more sophisticated tokenizer may
be used, but for a fair comparison we wanted to
keep language specific preprocessing to a min-
imum. The encoder is essentially the same as
tweet2vec, with the input as words instead of char-
acters. A lookup table stores word vectors for the
V (20K here) most common words, and the rest
are grouped together under the ‘UNK’ token.

4.2 Data

Our dataset consists of a large collection of global
posts from Twitter2 between the dates of June 1,
2013 to June 5, 2013. Only English language posts
(as detected by the lang field in Twitter API) and
posts with at least one hashtag are retained. We
removed infrequent hashtags (< 500 posts) since
they do not have enough data for good general-
ization. We also removed very frequent tags (>
19K posts) which were almost always from auto-
matically generated posts (ex: #androidgame)
which are trivial to predict. The final dataset con-
tains 2 million tweets for training, 10K for valida-
tion and 50K for testing, with a total of 2039 dis-
tinct hashtags. We use simple regex to preprocess
the post text and remove hashtags (since these are
to be predicted) and HTML tags, and replace user-
names and URLs with special tokens. We also re-
moved retweets and convert the text to lower-case.

2https://twitter.com/
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Tweets Word model baseline tweet2vec

ninety-one degrees.
#initialsofsomeone..
#nw #gameofthrones

#summer #loveit
#sun

self-cooked scramble egg. yum!! !url
#music #cheap
#cute

#yummy #food
#foodporn

can’t sleeeeeeep
#gameofthrones
#heartbreaker

#tired #insomnia

oklahoma!!!!!!!!!!! champions!!!!!
#initialsofsomeone..
#nw #lrt

#wcws #sooners
#ou

7 % of battery . iphones die too quick .
#help #power
#money #s

#fml #apple #bbl
#thestruggle

i have the cutest nephew in the world !url
#nephew #cute
#family

#socute #cute
#puppy

Table 1: Examples of top predictions from the models. The correct hashtag(s) if detected are in bold.

word tweet2vec
dt, dh 200 500
Total Parameters 3.91M 3.90M
Training Time / Epoch 1528s 9649s

Table 2: Model sizes and training time/epoch

4.3 Implementation Details

Word vectors and character vectors are both set to
size dL = 150 for their respective models. There
were 2829 unique characters in the training set and
we model each of these independently in a charac-
ter look-up table. Embedding sizes were chosen
such that each model had roughly the same num-
ber of parameters (Table 2). Training is performed
using mini-batch gradient descent with Nesterov’s
momentum. We use a batch size B = 64, initial
learning rate η0 = 0.01 and momentum parame-
ter µ0 = 0.9. L2-regularization with λ = 0.001
was applied to all models. Initial weights were
drawn from 0-mean gaussians with σ = 0.1 and
initial biases were set to 0. The hyperparame-
ters were tuned one at a time keeping others fixed,
and values with the lowest validation cost were
chosen. The resultant combination was used to
train the models until performance on validation
set stopped increasing. During training, the learn-
ing rate is halved everytime the validation set pre-
cision increases by less than 0.01 % from one
epoch to the next. The models converge in about
20 epochs. Code for training both the models is
publicly available on github.

4.4 Results

We test the character and word-level variants by
predicting hashtags for a held-out test set of posts.
Since there may be more than one correct hashtag
per post, we generate a ranked list of tags for each

Model
Precision

@1
Recall
@10

Mean
Rank

Full test set (50K)
word 24.1% 42.8% 133

tweet2vec 28.4% 48.5% 104
Rare words test set (2K)

word 20.4% 37.2% 167
tweet2vec 32.9% 51.3% 104

Frequent words test set (2K)
word 20.9% 41.3% 133

tweet2vec 23.9% 44.2% 112

Table 3: Hashtag prediction results. Best numbers
for each test set are in bold.

post from the output posteriors, and report aver-
age precision@1, recall@10 and mean rank of the
correct hashtags. These are listed in Table 3.

To see the performance of each model on posts
containing rare words (RW) and frequent words
(FW) we selected two test sets each containing
2,000 posts. We populated these sets with posts
which had the maximum and minimum number
of out-of-vocabulary words respectively, where
vocabulary is defined by the 20K most frequent
words. Overall, tweet2vec outperforms the word
model, doing significantly better on RW test set
and comparably on FW set. This improved perfor-
mance comes at the cost of increased training time
(see Table 2), since moving from words to charac-
ters results in longer input sequences to the GRU.

We also study the effect of model size on the
performance of these models. For the word model
we set vocabulary size V to 8K, 15K and 20K re-
spectively. For tweet2vec we set the GRU hidden
state size to 300, 400 and 500 respectively. Fig-
ure 2 shows precision 1 of the two models as the
number of parameters is increased, for each test
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(a) Full Test Set (b) Rare Words Test Set (c) Frequent Words Test Set

Figure 2: Precision @1 v Number of model parameters for word model and tweet2vec.

Dataset # Hashtags word tweet2vec

small 933 28.0% 33.1%
medium 2039 24.1% 28.4%

large 5114 20.1% 24.6%

Table 4: Precision @1 as training data size and
number of output labels is increased. Note that the
test set is different for each setting.

set described above. There is not much variation in
the performance, and moreover tweet2vec always
outperforms the word based model for the same
number of parameters.

Table 4 compares the models as complexity of
the task is increased. We created 3 datasets (small,
medium and large) with an increasing number of
hashtags to be predicted. This was done by vary-
ing the lower threshold of the minimum number
of tags per post for it to be included in the dataset.
Once again we observe that tweet2vec outperforms
its word-based counterpart for each of the three
settings.

Finally, table 1 shows some predictions from
the word level model and tweet2vec. We selected
these to highlight some strengths of the character
based approach - it is robust to word segmenta-
tion errors and spelling mistakes, effectively inter-
prets emojis and other special characters to make
predictions, and also performs comparably to the
word-based approach for in-vocabulary tokens.

5 Conclusion

We have presented tweet2vec - a character level
encoder for social media posts trained using super-
vision from associated hashtags. Our result shows
that tweet2vec outperforms the word based ap-
proach, doing significantly better when the input
post contains many rare words. We have focused
only on English language posts, but the character

model requires no language specific preprocessing
and can be extended to other languages. For fu-
ture work, one natural extension would be to use
a character-level decoder for predicting the hash-
tags. This will allow generation of hashtags not
seen in the training dataset. Also, it will be in-
teresting to see how our tweet2vec embeddings
can be used in domains where there is a need
for semantic understanding of social media, such
as tracking infectious diseases (Signorini et al.,
2011). Hence, we provide an off-the-shelf en-
coder trained on medium dataset described above
to compute vector-space representations of tweets
along with our code on github.
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Abstract

Constrained translation has improved sta-
tistical machine translation (SMT) by
combining it with translation memory
(TM) at sentence-level. In this paper, we
propose using a constrained word lattice,
which encodes input phrases and TM con-
straints together, to combine SMT and TM
at phrase-level. Experiments on English–
Chinese and English–French show that
our approach is significantly better than
previous combination methods, including
sentence-level constrained translation and
a recent phrase-level combination.

1 Introduction

The combination of statistical machine translation
(SMT) and translation memory (TM) has proven
to be beneficial in improving translation quality
and has drawn attention from many researchers
(Biçici and Dymetman, 2008; He et al., 2010;
Koehn and Senellart, 2010; Ma et al., 2011; Wang
et al., 2013; Li et al., 2014). Among various
combination approaches, constrained translation
(Koehn and Senellart, 2010; Ma et al., 2011) is
a simple one and can be readily adopted.

Given an input sentence, constrained translation
retrieves similar TM instances and uses matched
segments to constrain the translation space of the
input by generating a constrained input. Then an
SMT engine is used to search for a complete trans-
lation of the constrained input.

Despite its effectiveness in improving SMT,
previous constrained translation works at the
sentence-level, which means that matched seg-
ments in a TM instance are either all adopted or
all abandoned regardless of their individual qual-
ity (Wang et al., 2013). In this paper, we propose
a phrase-level constrained translation approach

which uses a constrained word lattice to encode
the input and constraints from the TM together and
allows a decoder to directly optimize the selection
of constraints towards translation quality (Section
2).

We conduct experiments (Section 3) on
English–Chinese (EN–ZH) and English–French
(EN–FR) TM data. Results show that our method
is significantly better than previous combination
approaches, including sentence-level constrained
methods and a recent phrase-level combination
method. Specifically, it improves the BLEU (Pap-
ineni et al., 2002) score by up to +5.5% on EN–ZH
and +2.4% on EN–FR over a phrase-based base-
line (Koehn et al., 2003) and decreases the TER
(Snover et al., 2006) error by up to -4.3%/-2.2%,
respectively.

2 Constrained Word Lattice

A word lattice G = (V,E,Σ, φ, ψ) is a directed
acyclic graph, where V is a set of nodes, including
a start point and an end point, E ⊆ V × V is a
set of edges, Σ is a set of symbols, a label function
φ : E → Σ and a weight function ψ : E → R.1

A constrained word lattice is a special case of a
word lattice, which extends Σ with extra symbols
(i.e. constraints).

A constraint is a target phrase which will ap-
pear in the final translation. Constraints can be ob-
tained in two ways: addition (Ma et al., 2011) and
subtraction (Koehn and Senellart, 2010).2 Figure
1 exemplifies the differences between them.

The construction of a constrained lattice is very
similar to that of a word lattice, except that we
need to label some edges with constraints. The
general process is:

1In this paper, edge weights are set to 1.
2Addition means that constraints are added from a TM tar-

get to an input, while subtraction means that some constraints
are removed from the TM target.
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Figure 1: An example of generating a constrained input in two ways: addition and subtraction. While
addition replaces an input phrase with a target phrase from a TM instance (an example is marked by
lighter gray), subtraction removes mismatched target words and inserts mismatched input words (darker
gray). Constraints are specified by <>. Sentences are taken from Koehn and Senellart (2010).

1. Building an initial lattice for an input sen-
tence. This produces a chain.

2. Adding phrasal constraints into the lattice
which produces extra nodes and edges.

Figure 2 shows an example of a constrained lattice
for the sentence in Figure 1.

In the rest of this section, we explain how to use
addition and subtraction to build a constrained lat-
tice and the decoder for translating the lattice. No-
tations we use in this section are: an input f and a
TM instance 〈f ′, e′, A〉where f ′ is the TM source,
e′ is the TM target and A is a word alignment be-
tween f ′ and e′.

2.1 Addition

In addition, matched input words are directly re-
placed by their translations from a retrieved TM,
which means that addition follows the word order
of an input sentence. This property makes it easy
to obtain constraints for an input phrase.

For an input phrase f , we firstly find its matched
phrase f ′ from f ′ via string edits3 between f and
f ′, so that f = f ′. Then, we extract its translation
e′ from e′, which is consistent with the alignment
A (Och and Ney, 2004).

To build a lattice using addition, we directly add
a new edge to the lattice which covers f and is
labeled by e′. For example, dash-dotted lines in
Figure 2 are labeled by constraints from addition.

3String edits, as used in the Levenshtein distance (Leven-
shtein, 1966), include match, substitution, deletion, and in-
sertion with a priority in this paper: match > substitution
> deletion > insertion.

2.2 Subtraction

In subtraction, mismatched input words in f are
inserted into e′ and mismatched words in e′ are
removed. The inserted position is determined by
A. The advantage of subtraction is that it keeps
the word order of e′. This is important since the
reordering of target words is one of the fundamen-
tal problems in SMT, especially for language pairs
which have a high degree of syntactic reordering.

However, this property makes it hard to build
a lattice from subtraction, as – different from the
addition – subtraction does not directly produce
a constraint for an input phrase. Thus, for some
generated constraints, there is not a specific cor-
responding phrase in the input. In addition, when
adding a constraint to the lattice, we need to con-
sider its context so that the lattice keeps target
word order.

To solve this problem, in this paper we propose
to segment an input sentence into a sequence of
phrases according to information from a matched
TM (i.e. the string edit and word alignment) and
then create a constrained input for each phrase and
add them to the lattice.

Formally, we produce a monotonic segmen-
tation,

〈
f1, f

′
1, e
′
1

〉 · · · 〈fN , f
′
N , e

′
N

〉
, for each

sentence triple: 〈f, f ′, e′〉. Each
〈
f i, f

′
i, e
′
i

〉
tu-

ple is obtained in two phases: (1) According to
the alignment A, f ′i and e′i are produced. (2)
Based on string edits between f and f ′, f i is rec-
ognized. The resulting tuple is subject to several
restrictions:

1. Each < f ′i, e′i > is consistent with the word
alignment A and at least one word in f ′i is
aligned to words in e′i.
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Figure 2: An example of constructing a constrained word lattice for the sentence in Figure 1. Dash-dotted
lines are generated by addition and dotted lines are generated by subtraction. Constraints are specified
by <>.

2. Each boundary word in f ′i is either the first
word or the last word of f ′ or aligned to at
least one word in e′, so that mismatched in-
put words in f i which are unaligned can find
their position in the current tuple.

3. The string edit for the first word of f i, where
i 6= 1, is not “deletion”. That means the first
word is not an extra input word. This is be-
cause, in subtraction, the inserted position of
a mismatched unaligned word depends on the
alignment of the word before it.

4. No smaller tuples may be extracted without
violating restrictions 1–3. This allows us to
obtain a unique segmentation where each tu-
ple is minimal.

After obtaining the segmentation, we create a
constrained input for each f i using subtraction
and add it to the lattice by creating a path cover-
ing f i. The path contains one or more edges, each
of which is labeled either by an input word or a
constraint in the constrained input.

2.3 Decoding

The decoder for integrating word lattices into the
phrase-based model (Koehn et al., 2003) works
similarly to the phrase-based decoder, except that
it tracks nodes instead of words (Dyer et al., 2008):
given the topological order of nodes in a lattice,
the decoder builds a translation hypothesis from
left to right by selecting a range of untranslated
nodes.

The decoder for a constrained lattice works sim-
ilarly except that, for a constrained edge, the de-
coder can only build its translation directly from
the constraint. For example, in Figure 2, the trans-
lation of the edge “1 → 5” is “, le texte du
deuxième alinéa”.

EN–ZH Sentences W/S (EN) W/S (ZH)

Train 84,871 13.5 13.8
Dev 734 14.3 14.5
Test 943 17.4 17.4

EN–FR Sentences W/S (EN) W/S (FR)

Train 751,548 26.9 29.3
Dev 2,665 26.8 29.2
Test 2,655 27.1 29.4

Table 1: Summary of English–Chinese (EN–ZH)
and English–French (EN–FR) datasets

3 Experiment

In our experiments, a baseline system PB is built
with the phrase-based model in Moses (Koehn et
al., 2007). We compare our approach with three
other combination methods. ADD combines PB
with addition (Ma et al., 2011), while SUB com-
bines PB with subtraction (Koehn and Senellart,
2010). WANG combines SMT and TM at phrase-
level during decoding (Wang et al., 2013; Li et
al., 2014). For each phrase pair applied to trans-
late an input phrase, WANG finds its correspond-
ing phrase pairs in a TM instance and then ex-
tracts features which are directly added to the log-
linear framework (Och and Ney, 2002) as sparse
features. We build three systems based on our ap-
proach: CWLadd only uses constraints from addi-
tion; CWLsub only uses constraints from subtrac-
tion; CWLboth uses constraints from both.

Table 1 shows a summary of our datasets. The
EN–ZH dataset is a translation memory from
Symantec. Our EN–FR dataset is from the pub-
licly available JRC-Acquis corpus.4 Word align-
ment is performed by GIZA++ (Och and Ney,
2003) with heuristic function grow-diag-final-and.

4http://ipsc.jrc.ec.europa.eu/index.
php?id=198
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Systems EN–ZH EN–FR
BLEU↑ TER↓ BLEU↑ TER↓

PB 44.3 40.0 65.7 25.9
Sentence-Level Combination

ADD 45.6* 39.2* 64.2 27.2
SUB 49.4* 36.3* 64.2 27.3

Phrase-Level Combination

WANG 44.7* 39.3* 66.1* 25.7*
CWLadd 49.8* 35.7* 68.1* 23.7*
CWLSub 51.4* 33.7* 68.6* 23.4*
CWLboth 51.2* 33.8* 68.3* 23.6*

Table 2: Experimental results of comparing our
approach (CWLx) with previous work. All scores
reported are an average of 3 runs. Scores with ∗

are significantly better than that of the baseline PB
at p < 0.01. Bold scores are significantly better
than that of all previous work at p < 0.01.

We use SRILM (Stolcke, 2002) to train a 5-gram
language model on the target side of our train-
ing data with modified Kneser-Ney discounting
(Chen and Goodman, 1996). Batch MIRA (Cherry
and Foster, 2012) is used to tune weights. Case-
insensitive BLEU [%] and TER [%] are used to
evaluate translation results.

3.1 Results

Table 2 shows experimental results on EN–ZH and
EN–FR. We find that our method (CWLx) signif-
icantly improves the baseline system PB on EN–
ZH by up to +5.5% BLEU score and by +2.4%
BLEU score on EN–FR. In terms of TER, our sys-
tem significantly decreases the error by up to -
4.3%/-2.2% on EN–ZH and EN–FR, respectively.

Although, compared to the baseline PB, ADD
and SUB work well on EN–ZH, they reduce the
translation quality on EN–FR. By contrast, their
phrase-level countparts (CWLadd and CWLsub)
bring consistent improvements over the baseline
on both language pairs. This suggests that a com-
bination approach based on constrained word lat-
tices is more effective and robust than sentence-
level constrained translation. Compared to system
WANG, our method produces significantly better
translations as well. In addition, our approach is
simpler and easier to adopt than WANG.

Compared with CWLadd, CWLsub produces
better translations. This may suggest that, for a
constrained word lattice, subtraction generates a
better sequence of constraints than addition since
it keeps target words and the word order. However,

Ranges Sentence W/S (EN)

[0.8, 1.0) 198 16.4
[0.6, 0.8) 195 14.7
[0.4, 0.6) 318 16.8
(0.0, 0.4) 223 21.5

(a) English–Chinese

Ranges Sentences W/S (EN)

[0.9, 1.0) 313 32.5
[0.8, 0.9) 258 28.3
[0.7, 0.8) 216 28.4
[0.6, 0.7) 156 33.3
[0.5, 0.6) 171 34.1
[0.4, 0.5) 168 34.3
[0.3, 0.4) 277 40.3
(0.0, 0.3) 360 54.7

(b) English–French

Table 3: Composition of test subsets based
on fuzzy match scores on English–Chinese and
English–French data.

combining them together (i.e. CWLboth) does not
bring a further improvement. We assume the rea-
son for this is that addition and subtraction share
parts of the constraints generated from the same
TM. For example, in Figure 2, the edge “1 → 5”
based on addition and the edge “11 → 7” based
on subtraction are labeled by the same constraint.

3.2 Influence of Fuzzy Match Scores
Since a fuzzy match scorer5 is used to select the
best TM instance for an input and thus is an impor-
tant factor for combining SMT and TM, it is inter-
esting to know what impact it has on the transla-
tion quality of various approaches. Table 3 shows
statistics of each test subset on EN–ZH and EN–
FR where sentences are grouped by their fuzzy
match scores.

Figure 3 shows BLEU scores of systems eval-
uated on these subsets. We find that BLEU
scores increasingly grow when match scores be-
come higher. While ADD achieves better BLEU
scores than SUB on lower fuzzy ranges, SUB per-
forms better than ADD on higher fuzzy scores. In
addition, our approaches (CWLx) are better than
the baseline on all ranges but show much more im-
provement on ranges with higher fuzzy scores.

5In this paper, we use a lexical fuzzy match score (Koehn
and Senellart, 2010) based on Levenshtein distance to find
the best match.
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Figure 3: BLEU scores of systems evaluated on
sentences which fall into different ranges accord-
ing to fuzzy match scores on EN–ZH and EN–FR.
All scores are averaged over 3 runs.

4 Conclusion

In this paper, we propose a constrained word lat-
tice to combine SMT and TM at phrase-level.
This method uses a word lattice to encode all
possible phrasal constraints together. These con-
straints come from two sentence-level constrained
approaches, including addition and subtraction.
Experiments on English–Chinese and English–
French show that compared with previous com-
bination methods, our approach produces signifi-
cantly better translation results.

In the future, we would like to consider gener-
ating constraints from more than one fuzzy match
and using fuzzy match scores or a more sophisti-
cated function to weight constraints. It would also
be interesting to know if our method will work bet-
ter when discarding fuzzy matches with very low
scores.
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Abstract

We present a neural network based auto-
matic post-editing (APE) system to im-
prove raw machine translation (MT) out-
put. Our neural model of APE (NNAPE)
is based on a bidirectional recurrent neu-
ral network (RNN) model and consists of
an encoder that encodes an MT output into
a fixed-length vector from which a de-
coder provides a post-edited (PE) trans-
lation. APE translations produced by
NNAPE show statistically significant im-
provements of 3.96, 2.68 and 1.35 BLEU
points absolute over the original MT,
phrase-based APE and hierarchical APE
outputs, respectively. Furthermore, human
evaluation shows that the NNAPE gener-
ated PE translations are much better than
the original MT output.

1 Introduction

For many applications the performance of state-
of-the-art MT systems is useful but often far from
perfect. MT technologies have gained wide ac-
ceptance in the localization industry. Computer
aided translation (CAT) has become the de-facto
standard in large parts of the translation industry
which has resulted in a surge of demand for pro-
fessional post-editors. This, in turn, has resulted
in substantial quantities of PE data which can be
used to develop APE systems.

In the context of MT, “post-editing” (PE) is de-
fined as the correction performed by humans over
the translations produced by an MT system (Veale
and Way, 1997), often with minimal amount of
manual effort (TAUS Report, 2010) and as a pro-
cess of modification rather than revision (Loffler-
Laurian, 1985).

MT systems primarily make two types of errors
– lexical and reordering errors. However, due to
the statistical and probabilistic nature of modelling
in statistical MT (SMT), the currently dominant
MT technology, it is non-trivial to rectify these er-
rors in the SMT models. Post-edited data are of-
ten used in incremental MT frameworks as addi-
tional training material. However, often this does
not fully exploit the potential of these rich PE data:
e.g., PE data may just be drowned out by a large
SMT model. An APE system trained on human
post-edited data can serve as a MT post-processing
module which can improve overall performance.
An APE system can be considered as an MT sys-
tem, translating predictable error patterns in MT
output into their corresponding corrections.

APE systems assume the availability of source
language input text (SLIP ), target language MT
output (TLMT ) and target language PE data
(TLPE). An APE system can be modelled as
an MT system between SLIP TLMT and TLPE .
However, if we do not have access to SLIP , but
have sufficiently large amounts of parallel TLMT -
TLPE data, we can still build an APE model be-
tween TLMT and TLPE .

Translations provided by state-of-the-art MT
systems suffer from a number of errors including
incorrect lexical choice, word ordering, word in-
sertion, word deletion, etc. The APE work pre-
sented in this paper is an effort to improve the
MT output by rectifying some of these errors. For
this purpose we use a deep neural network (DNN)
based approach. Neural MT (NMT) (Kalchbren-
ner and Blunsom, 2013; Cho et al., 2014a; Cho
et al., 2014b) is a newly emerging approach to
MT. On the one hand DNNs represent language in
a continuous vector space which eases the mod-
elling of semantic similarities (or distance) be-
tween phrases or sentences, and on the other hand
it can also consider contextual information, e.g.,
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utilizing all available history information in decid-
ing the next target word, which is not an easy task
to model with standard APE systems.

Unlike phrase-based APE systems (Simard et
al., 2007a; Simard et al., 2007b; Pal, 2015; Pal
et al., 2015), our NNAPE system builds and
trains a single, large neural network that accepts
a ‘draft’ translation (TLMT ) and outputs an im-
proved translation (TLPE).

The remainder of the paper is organized as fol-
lows. Section 2 gives an overview of relevant re-
lated work. The proposed NNAPE system is de-
scribed in detail in Section 3. We present the ex-
perimental setup in Section 4. Section 5 presents
the results of automatic and human evaluation to-
gether with some analysis. Section 6 concludes
the paper and provides avenues for future work.

2 Related Work

APE has proved to be an effective remedy to
some of the inaccuracies in raw MT output. APE
approaches cover a wide methodological range.
Simard et al. (2007a) and Simard et al. (2007b)
applied SMT for post-editing, handling the repeti-
tive nature of errors typically made by rule-based
MT systems. Lagarda et al. (2009) used statis-
tical information from the trained SMT models
for post-editing of rule-based MT output. Rosa
et al. (2012) and Mareček et al. (2011) applied a
rule-based approach to APE on the morphologi-
cal level. Denkowski (2015) developed a method
for real time integration of post-edited MT output
into the translation model by extracting a gram-
mar for each input sentence. Recent studies have
even shown that the quality of MT plus PE can
exceed the quality of human translation (Fiederer
and OBrien, 2009; Koehn, 2009; DePalma and
Kelly, 2009) as well as the productivity (Zampieri
and Vela, 2014) in some cases.

Recently, a number of papers have presented the
application of neural networks in MT (Kalchbren-
ner and Blunsom, 2013; ?; Cho et al., 2014b; Bah-
danau et al., 2014). These approaches typically
consist of two components: an encoder encodes
a source sentence and a decoder decodes into a
target sentence.

In this paper we present a neural network based
approach to automatic PE (NNAPE). Our NNAPE
model is inspired by the MT work of Bah-
danau et al. (2014) which is based on bidirectional
recurrent neural networks (RNN). Unlike Bah-

danau et al. (2014), we use LSTMs rather than
GRUs as hidden units. RNNs allow process-
ing of arbitrary length sequences, however, they
are susceptible to the problem of vanishing and
exploding gradients (Bengio et al., 1994). To
tackle vanishing gradients in RNNs, two archi-
tectures are generally used: gated recurrent units
(GRU) (Cho et al., 2014b) and long-short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997). According to empirical studies (Chung et
al., 2014; Józefowicz et al., 2015) both architec-
tures yield comparable performance. GRUs tend
to train faster than LSTMs. On the other hand,
given sufficient amounts of training data, LSTMs
may lead to better results. Since our task is mono-
lingual and we have more than 200K sentence
pairs for training, we use a full LSTM (as the hid-
den units) to model our NNAPE system.

The model takes TLMT as input and provides
TLPE as output. To the best of our knowledge the
work presented in this paper is the first approach
to APE using neural networks.

3 Neural Network based APE

The NNAPE system is based on a bidirectional
(forward-backward) RNN based encoder-decoder.

3.1 A Bidirectional RNN APE
Encoder-Decoder

Our NNAPE model encodes a variable-length se-
quence of TLMT (e.g. x = x1, x2, x3...xm) into
a fixed-length vector representation and then de-
codes a given fixed-length vector representation
back into a variable-length sequence of TLPE

(e.g. y = y1, y2, y3...yn). Input and output se-
quence lengths, m and n, may differ.

A Bidirectional RNN encoder consists of for-
ward and backward RNNs. The forward RNN en-
coder reads in each x sequentially from x1 to xm

and at each time step t, the hidden state ht of the
RNN is updated by using a non-linear activation
function f (Equation 1), an elementwise logistic
sigmoid with an LSTM unit.

ht = f(ht−1, xt) (1)

Similarly, the backward RNN encoder reads the
input sequence and calculates hidden states in re-
verse direction (i.e. xm to x1 and hm to h1 respec-
tively). After reading the entire input sequence,
the hidden state of the RNN is provided a sum-
mary c context vector (‘C’ in Figure 1) of the
whole input sequence.
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Figure 1: Generating the tth TLPE word yt for a
given TLMT (x) by our NNAPE System.

The decoder is another RNN trained to generate
the output sequence by predicting the next word yt

given the hidden state ηt and the context vector ct
(c.f., Figure1). The hidden state of the decoder at
time t is computed as given below.

P (yt|y1, ...yt−1, x) = f(ηt, yt−1, ct) (2)

ηt = f(ηt−1, yt−1, ct) (3)

The context vector ct can be computed as

ct =
m∑

i=1

αtihi (4)

Here, αti, is the weight of each hi and can be com-
puted as

αti =
exp(eti)∑m

j=1 exp(etj)
(5)

where eti = a(ηt−1, hi) is an alignment model
which provides a matching score between the in-
puts around position i and the output at position
t. The alignment score is based on the ith annota-
tion hi of the input sentence and the RNN hidden
state ηt−1. The alignment model itself is a feed-
forward neural network which directly computes a
soft alignment that allows the gradient of the cost
function to be backpropagated through. The gra-
dient is used to train the alignment model as well
as the TLMT –TLPE translation model jointly.

The alignment model is computed m× n times
as follows:

a(ηt−1, hi) = vT
a tanh(Waηt−1 + Uahi) (6)

where Wa ∈ Rnh×nh , Ua ∈ Rnh×2nh and va ∈
Rnh are the weight matrices of nh hidden units.

4 Experiments

We evaluate the model on an English–Italian APE
task, which is detailed in the following subsec-
tions.

4.1 Data

The training data used for the experiments was de-
veloped in the MateCat1 project and consists of
312K TLMT –TLPE parallel sentences. The par-
allel sentences are (English to) Italian MT out-
put and their corresponding (human) post-edited
Italian translations. Google Translate (GT) is the
MT engine which provided the original Italian
TLMT output. The data includes sentences from
the Europarl corpus as well as news commen-
taries. Since the data contains some non-Italian
sentences, we applied automatic language identifi-
cation (Shuyo, 2010) in order to select only Italian
sentences. Automatic cleaning and pre-processing
of the data was carried out by sorting the entire
parallel training corpus based on sentence length,
filtering the parallel data on maximum allowable
sentence length of 80 and sentence length ratio
of 1:2 (either direction), removing duplicates and
applying tokenization and punctuation normaliza-
tion using Moses (Koehn et al., 2007) scripts. Af-
ter cleaning the corpus we obtained a sentence-
aligned TLMT –TLPE parallel corpus containing
213,795 sentence pairs. We randomly extracted
1000 sentence pairs each for the development set
and test set from the pre-processed parallel cor-
pus and used the remaining (211,795) as the train-
ing corpus. The training data features 57,568 and
61,582 unique word types in TLMT and TLPE ,
respectively. We chose the 40,000 most frequent
words from both TLMT and TLPE to train our
NNAPE model. The remaining words which
are not among the most frequent words are re-
placed by a special token ([UNK]). The model was
trained for approximately 35 days, which is equiv-
alent to 2,000,000 updates with GPU settings.

4.2 Experimental Settings

Our bidirectional RNN Encoder-Decoder contains
1000 hidden units for the forward backward RNN
encoder and 1000 hidden units for the decoder.

1https://www.matecat.com/
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The network is basically a multilateral neural net-
work with a single maxout unit as hidden layer
(Goodfellow et al., 2013) to compute the condi-
tional probability of each target word. The word
embedding vector dimension is 620 and the size
of the maxout hidden layer in the deep output is
500. The number of hidden units in the alignment
model is 1000. The model has been trained on
a mini-batched stochastic gradient descent (SGD)
with ‘Adadelta’ (Zeiler, 2012). The main rea-
son behind the use of ‘Adadelta’ is to automat-
ically adapt the learning rate of each parameter
(ε = 10−6 and ρ = 0.95). Each SGD update di-
rection is computed using a mini-batch of 80 sen-
tences.

We compare our NNAPE system with state-of-
the-art phrase-based (Simard et al., 2007b) as well
as hierarchical phrase-based APE (Pal, 2015) sys-
tems. We also compare the output provided by
our system against the original GT output. For
building the phrase-based and hierarchical phrase-
based APE systems, we set maximum phrase
length to 7. A 5-gram language model built using
KenLM (Heafield, 2011) was used for decoding.
System tuning was carried out using both k-best
MIRA (Cherry and Foster, 2012) and Minimum
Error Rate Training (MERT) (Och, 2003) on the
held-out development set (devset). After parame-
ters were tuned, decoding was carried out on the
held out test set.

5 Evaluation

The performance of the NNAPE system was eval-
uated using both automatic and human evaluation
methods, as described below.

5.1 Automatic Evaluation

The output of the NNAPE system on the 1000
sentences testset was evaluated using three MT
evaluation metrics: BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and Meteor (Denkowski
and Lavie, 2011). Table 1 provides a comparison
of our neural system performance against the base-
line phrase-based APE (S1), baseline hierarchical
phrase-based APE (S2) and the original GT output.
We use a, b, c, and d to indicate statistical signif-
icance over GT, S1, S2 and our NNAPE system
(NN), respectively. For example, the S2 BLEU
score 63.87a,b in Table 1 means that the improve-
ment provided by S2 in BLEU is statistically sig-
nificant over Google Translator and phrase-based

APE. Table 1 shows that S1 provides statistically
significant (0.01 < p < 0.04) improvements over
GT across all metrics. Similarly S2 yields statis-
tically significant (p < 0.01) improvements over
both GT and S1 across all metrics. The NN sys-
tem performs best and results in statistically sig-
nificant (p < 0.01) improvements over all other
systems across all metrics. A systematic trend
(NN > S2 > S1 > GT ) can be observed in Ta-
ble 1 and the improvements are consistent across
the different metrics. The relative performance
gain achieved by NN over GT is highest in TER.

System BLEU TER METEOR
GT (a) 61.26 30.94 72.73
S1 (b) 62.54a 29.49a 73.21a

S2 (c) 63.87a,b 28.67a,b 73.63a,b

NN (d) 65.22a,b,c 27.56a,b,c 74.59a,b,c

Table 1: Automatic evaluation.

5.2 Human Evaluation

Human evaluation was carried out by four profes-
sional translators, native speakers of Italian, with
professional translation experience between one
and two years. Since human evaluation is very
costly and time consuming, it was carried out on a
small portion of the test set consisting of 145 ran-
domly sampled sentences and only compared NN
with the original GT output. We used a polling
scheme with three different options. Translators
choose which of the two (GT or NN) outputs is
the better translation or whether there is a tie (‘un-
certain’). To avoid any bias towards any particular
system, the order in which two system outputs are
presented is randomized so that the translators do
not know which system they are contributing their
votes to.

We analyzed the outcome of the voting pro-
cess (4 translators each giving 145 votes) and
found that the winning NN system received 285
(49.13%) votes compared to 99 (17.07%) votes
received by the GT system, while the rest of the
votes (196, 33.79%) go to the ‘uncertain’ option.
We measured pairwise inter-annotator agreement
between the translators by computing Cohen’s κ
coefficient (Cohen, 1960) reported in Table 2. The
overall κ coefficient is 0.330. According to (Lan-
dis and Koch, 1977) this correlation coefficient
can be interpreted as fair.
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Cohen’s κ T1 T2 T3 T4
T1 - 0.141 0.424 0.398
T2 0.141 - 0.232 0.540
T3 0.424 0.232 - 0.248
T4 0.398 0.540 0.248 -

Table 2: Pairwise correlation between translators
in the evaluation process.

5.3 Analysis

The results of the automatic evaluation show that
NNAPE has advantages over the phrase-based and
hierarchical APE approaches. On manual inspec-
tion we found that the NNAPE system drastically
reduced the preposition insertion and deletion er-
ror in Italian GT output and was also able to han-
dle the improper use of prepositions and determin-
ers (e.g. “states” → “dei stati”, “the states” →
“gli stati”). The use of a bidirectional RNN neu-
ral model makes the model sensitive towards con-
texts. Moreover, NNAPE captures global reorder-
ing by capturing contextual features which helps
to reduce word ordering errors to some extent.

6 Conclusion and Future Work

The NNAPE system provides statistically sig-
nificant improvements over existing state-of-the-
art APE models and produces significantly bet-
ter translations than GT which is very difficult
to beat. This enhancement in translation qual-
ity through APE should reduce human PE effort.
Human evaluation revealed that the NNAPE gen-
erated PE translations contain less lexical errors,
NNAPE rectifies erroneous word insertions and
deletions, and improves word ordering.

In future, we would like to test our system in a
real-life translation scenario to analyze productiv-
ity gains in a commercial environment. We also
want to extend the APE system by incorporating
source language knowledge into the network and
compare LSTM against GRU hidden units.
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and Yoshua Bengio. 2014. Empirical Evalua-
tion of Gated Recurrent Neural Networks on Se-
quence Modeling. Technical Report Arxiv report
1412.3555, Université de Montréal.
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Abstract

We address the problem of automatically
cleaning a large-scale Translation Mem-
ory (TM) in a fully unsupervised fash-
ion, i.e. without human-labelled data.
We approach the task by: i) designing
a set of features that capture the similar-
ity between two text segments in differ-
ent languages, ii) use them to induce re-
liable training labels for a subset of the
translation units (TUs) contained in the
TM, and iii) use the automatically labelled
data to train an ensemble of binary clas-
sifiers. We apply our method to clean a
test set composed of 1,000 TUs randomly
extracted from the English-Italian version
of MyMemory, the world’s largest public
TM. Our results show competitive perfor-
mance not only against a strong baseline
that exploits machine translation, but also
against a state-of-the-art method that relies
on human-labelled data.

1 Introduction

Translation Memories (TMs) are one of the main
sources of knowledge supporting human transla-
tion with the so-called Computer-assisted Transla-
tion (CAT) tools. A TM is a database that stores
(source, target) segments called translation units
(TUs). These segments can be sub-sentential frag-
ments, full sentences or even paragraphs in two
languages and, ideally, they are perfect transla-
tions of each other. Their use in a CAT framework
is based on computing a “fuzzy match” score be-
tween an input sentence to be translated and the
left-hand side (the source) of each TU stored in
the TM. If the score is above a certain threshold,
the right-hand side (the target) is presented to the
user as a translation suggestion. When translating

a document with a CAT tool, the user can store
each translated (source, target) pair in the TM for
future use. Each newly added TU contributes to
the growth of the TM which, as time goes by, will
become more and more useful to the user. Due
to such constant growth, in which they evolve in-
corporating users style and terminology, the so-
called private TMs represent an invaluable asset
for individual translators and translation compa-
nies. Collaboratively-created public TMs grow in
a less controlled way (e.g. incorporating poten-
tially noisy TUs supplied by anonymous contribu-
tors or automatically extracted from the Web) but
still remain a practical resource for the translators’
community at large.

Together with the quantity, the quality of the
stored material is a crucial factor that determines
the usefulness of the TM and, all in all, its value.
For this reason, the growth of the TM should go
hand in hand with its continuous maintenance.
This problem is usually addressed through man-
ual (hence costly) revision, or by applying simple
(hence approximate) automatic filtering routines.
Advanced automatic methods for tidying up an ex-
isting TM would contribute to reduce management
costs, increase its quality, speed-up and simplify
the daily work of human translators.

Focusing on TM maintenance, we explore an
automatic method to clean a large-scale TM by
identifying the TUs in which the target is a poor
translation of the source. Its main strength is
the reliance on a fully unsupervised approach,
which makes it independent from the availability
of human-labelled data. As it allows us to avoid
the burden of acquiring a (possibly large) set of
annotated TUs, our method is cost-effective and
highly portable across languages and TMs. This
contrasts with supervised strategies like the one
presented in (Barbu, 2015) or those applied in
closely-related tasks such as cross-lingual seman-
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ENGLISH ITALIAN
(EN translation)

a traditional costumes of Iceland costumi tradizionali dell’islanda
(traditional costumes of iceland)

b Active substances: per dose of 2 ml: Principi attivi Per ogni dose da 2 ml:
(Active substances Per dose of 2 ml:)

c The length of time of ... La durata delperiodo di ...
(The length oftime of ...)

d ... 4 weeks after administration ... ... 4 settimane dopo la somministarzione ...
(... 4 weeks after somministarzione ...)

e 5. ensure the organization of ... 5.
5.

f Read package leaflet Per lo smaltimento leggere il foglio illustrativo
For disposal read the package leaflet

g beef chuck roast chuck carne assada
?chuck meat ?assada

h is an integral part of the contract risultato della stagione
(result of the season)

Table 1: Examples of problematic translation units mined from the English-Italian version of MyMemory.

tic textual similarity,1 cross-lingual textual entail-
ment (Negri et al., 2013), and quality estimation
(QE) for MT (Specia et al., 2009; Mehdad et al.,
2012; C. de Souza et al., 2014; Turchi et al., 2014;
C. de Souza et al., 2015). Also most of the previ-
ous approaches to bilingual data mining/cleaning
for statistical MT rely on supervised learning
(Resnik and Smith, 2003; Munteanu and Marcu,
2005; Jiang et al., 2009). Unsupervised solutions,
like the one proposed by Cui et al. (2013) usually
rely on redundancy-based approaches that reward
parallel segments containing phrase pairs that are
frequent in a training corpus. This idea is well-
motivated in the SMT framework but scarcely ap-
plicable in the CAT scenario, in which it is crucial
to manage and reward rare phrases as a source of
useful suggestions for difficult translations.

2 The problem

We consider as “problematic TUs” those contain-
ing translation errors whose correction during the
translation process can reduce translators’ produc-
tivity. Table 1 provides some examples extracted
from the English-Italian training data recently re-
leased for the NLP4TM 2016 shared task on clean-
ing translation memories.2 As can be seen in the
table, TU quality can be affected by a variety of
problems. These include: 1. minor formatting er-
rors like the casing issue in example (a), the cas-
ing+punctuation issue in (b) and the missing space
in (c), 2. misspelling errors like the one in (d),3 3.
missing or extra words in the translation, as in (e)

1http://alt.qcri.org/semeval2016/task1/
2http://rgcl.wlv.ac.uk/nlp4tm2016/shared-task/
3“somministARzione” instead of “somministRAzione”.

and (f), 4. situations in which the translation is
awkward (due to mistranslations and/or untrans-
lated terms) like in (g) or it is completely unrelated
to the source sentence like in (h).

Especially in the case of collaboratively-created
public TMs, these issues are rather frequent. For
instance, in the NLP4TM shared task training
data (randomly sampled from MyMemory) the in-
stances affected by any of these error types are
about 38% of the total.

3 Method

Our unsupervised TM cleaning method ex-
ploits the independent views of three groups of
similarity-based features. These allow us to in-
fer a binary label for a subset of the TUs stored
in a large-scale TM. The inferred labels are used
to train an ensemble of binary classifiers, special-
ized to capture different aspects of the general no-
tion of translation quality. Finally, the ensemble
of classifiers is used to label the rest of the TM.
To minimize overfitting issues, each base classi-
fier exploits features that are different from those
used to infer the label of the training instances.

3.1 General workflow
Given a TM to be cleaned, our approach consists
of two main steps: i) label inference and ii) train-
ing of the base classifiers.

Label inference. The first step aims to infer a re-
liable binary label (1 or 0, respectively for “good”
and “bad”) for a subset Z of unlabelled TUs ran-
domly selected from the input TM. To this aim, the
three groups of features described in §3.2 (say A,
B, C) are first organised into combinations of two

288



groups (i.e. AB, AC, BC). As the features are dif-
ferent in nature, each combination reflects a par-
ticular “view” of the data, which is different from
the other combinations.

Then, for each TU in Z, we extract the fea-
tures belonging to each combination. Being de-
signed and normalized to return a similarity score
in the [0-1] interval, the result of feature extrac-
tion is a vector of numbers whose average value
can be computed to sort each TU from the best
(avg. close to 1, indicating a high similarity be-
tween source and target) to the worst (avg. close to
0). This is done separately for each feature com-
bination, so that the independent views they pro-
vide will produce three different ranked lists for
the TUs in Z.

Finally, the three ranked lists are processed to
obtain different sets of positive/negative examples,
whose variable size depends on the amount of TUs
taken from the top and the bottom of the lists.

Training of the base classifiers. Each of the
three inferred annotations of Z (say z1, z2, z3) re-
flects the specific view of the two groups of fea-
tures used to obtain it (i.e. AB for z1, AC for z2,
BC for z3). Based on each view, we train a binary
classifier using the third group of features (i.e. C
for z1, B for z2, A for z3). This results in three
base classifiers: Â, B̂ and Ĉ that, in spite of the
same shared purpose, are by construction different
from each other. This allows us to create an en-
semble of base classifiers and to minimize the risk
of overfitting, in which we would have incurred
by training one single classifier with the same fea-
tures (A,B,C) used as labelling criterion.

3.2 Features
Our features capture different aspects of the sim-
ilarity between the source and the target of a TU.
The degree of similarity is mapped into a numeric
score in the [0-1] interval. The full set consists of
31 features, which are organized in three groups.4

Basic features (8). This group represents a
slightly improved variant of those proposed by
Barbu (2015). They aim to capture translation
quality by looking at surface aspects, such as the
possible mismatches in the number of dates, num-
bers, URLs and XML tags present in the source
and target segments.5 The consistency between

4Implemented in TMop: https://github.com/hlt-mt/TMOP
5Being these feature very sparse, we collapsed them into

a single one, which is set to 1 if any feature has value 1.

the actual source and target languages and those
indicated in the TM is also verified. Language
identification, carried out with the Langid tool
(Lui and Baldwin, 2012), is a highly predictive
feature since sometimes the two languages are in-
verted or even completely different. Other features
model the similarity between source and target by
computing the direct and inverse ratio between the
number of characters and words, as well as the av-
erage word length in the two segments. Finally,
two features look at the presence of uncommon
character or word repetitions.

QE-derived features (18). This group contains
features borrowed from the closely-related task of
MT quality estimation, in which the complexity of
the source, the fluency of the target and the ade-
quacy between source and target are modeled as
quality indicators. Focusing on the adequacy as-
pect, we exploit a subset of the features proposed
by Camargo de Souza et al. (2013). They use word
alignment information to link source and target
words and capture the quantity of meaning pre-
served by the translation. For each segment of a
TU, word alignment information is used to calcu-
late: i) the proportion of aligned and unaligned
word n-grams (n=1,2), ii) the ratio between the
longest aligned/unaligned word sequence and the
length of the segment, iii) the average length of
the aligned/unaligned word sequences, and iv) the
position of the first/last unaligned word, normal-
ized by the length of the segment. Word align-
ment models were trained on the whole TM, using
MGIZA++ (Gao and Vogel, 2008).

Word embeddings (5). This is a newly devel-
oped group of features that rely on cross-lingual
word embeddings to identify “good” and “bad”
TUs. Cross-lingual word embeddings provide a
common vector representation for words in dif-
ferent languages and allow us to build features
that look at the same time at the source and tar-
get segments. Cross-lingual word embeddings are
computed using the method proposed in (Søgaard
et al., 2015). Differently from the original pa-
per, which takes advantage of bilingual documents
as atomic concepts to bridge the two languages,
we use the TUs contained in the whole TM to
build the embeddings. Given a TU and a 100-
dimensional vector representation of each word in
the source and target segments, the new features
are: i) the cosine similarity between source and
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target segment vectors obtained by averaging (or
using the median) the source and target word vec-
tors; ii) the average embedding alignment score
obtained by computing the cosine similarity be-
tween each source word and all the target words
and averaging over the largest cosine score of each
source word; iii) the average cosine similarity be-
tween source/target word alignments; iv) a score
that merges features (ii) and (iii) by complement-
ing word alignments (obtained using MGIZA++)
with the alignments obtained from word embed-
ding and averaging all the alignment weights.

4 Experiments

Data. We experiment with the English-Italian
version of MyMemory,6 the world’s largest public
TM. This collaboratively built TM contains about
11M TUs coming from heterogeneous sources:
aggregated private TMs or automatically extracted
from the web/corpora, and anonymous contribu-
tions of (source, target) bi-segments. Being large
and free, the TM is of great utility for profes-
sional translators. Its uncontrolled sources, how-
ever, call for accurate cleaning methods (e.g. to
make it more accurate, smaller and manageable).
From the TM we randomly extracted: i) subsets of
variable size to automatically obtain training data
for the base classifiers and ii) a collection of 2,500
TUs manually annotated with binary labels. Data
annotation was done by two Italian native speakers
properly trained with the same guidelines prepared
by the TM owner for periodic manual revisions.
After agreement computation (Cohen’s kappa is
0.7838), a reconciliation ended up with about 65%
positive and 35% negative examples. This pool is
randomly split in two parts. One (1,000 instances)
is used as test set for our evaluation. The other
(1,500 instances) is used to replicate the approach
of Barbu (2015) used as term of comparison.

Learning algorithm. Our base classifiers are
trained with the Extremely Randomized Trees al-
gorithm (Geurts et al., 2006), optimized using 10-
fold cross-validation in a randomized search pro-
cess and combined in a majority voting schema.

Evaluation metric. To handle the imbalanced
(65%-35%) data distribution, and equally reward
the correct classification on both classes, we eval-
uate performance in terms of balanced accuracy

6https://mymemory.translated.net/

(BA), computed as the average of the accuracies
on the two classes (Brodersen et al., 2010).

Terms of comparison. We evaluate our ap-
proach against two terms of comparison, both
stronger than the trivial random baseline achieving
a BA of 50.0%. The first competitor (MT-based)
is a translation-based solution that exploits Bing
translator7 to render the source segment of a TU
in the same language of the target. Then, the sim-
ilarity between the translated source and the tar-
get segment is measured in terms of Translation
Edit Rate (TER (Snover et al., 2006)). The TU
is marked as “good” if the TER is smaller than
0.4 (“bad” otherwise). This value is chosen based
on the findings of Turchi et al. (2013), which sug-
gests that only for TER values lower than 0.4 hu-
man translators consider MT suggestions as good
enough for being post-editable. In our scenario we
hence assume that “good” TUs are those featuring
a small TER distance between the target and an
automatic translation of the source.

The second competitor (Barbu15) is the su-
pervised approach proposed by Barbu (2015),
which leverages human-labelled data to train an
SVM binary classifier. To the best of our knowl-
edge, it represents the state-of-the-art in this task.
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Figure 1: BA results as a function of Z and k.

5 Results and Discussion

The result of the “label inference” step described
in §3.1 is a set of automatically labelled TUs to
train the base classifiers. Positive and negative
examples are respectively the top and the bottom
k elements extracted from a list of TUs (of size
Z) ranked according to the inferred similarity be-
tween source and target. In this process, the size

7https://www.bing.com/translator/

290



of the list and the value of k clearly have influence
on the separability between the training instances
belonging to the two classes. Long lists and small
values of k will result in highly polarized training
data, with a very high similarity between the in-
stances assigned to each class and feature values
respectively close to 1 and 0. Vice-versa, short
lists and large values of k will result in less sepa-
rable training data, with higher variability in the
points assigned to each class and in the respec-
tive feature values. In light of this trade-off, we
analyse performance variations as a function of:
i) the amount (Z) of data considered to initialise
the label inference step, and ii) the amount (k) of
training instances used to learn the base classifiers.
For the first dimension, we consider four values:
50K (a value compatible with the size of most
of the existing TMs), 100K, 500K and 1M units
(a value compatible only with a handful of large-
scale TMs). For the second dimension we ex-
periment with four balanced training sets, respec-
tively containing: 1.5K (the same amount used in
(Barbu, 2015)), 5K, 10K and 15K instances.

Figure 1 illustrates the performance of our TM
cleaning method for different values of Z and k.
Each of the four dashed learning curves refers to
one of the four chosen values of Z. BA varia-
tions for the same line are obtained by increasing
the number of training instances k and averaging
over three random samples of size Z. As can be
seen from the figure, the results obtained by our
classifiers trained with the inferred data always
outperform the MT-based system and, in one
case (Z=50K, k=15K), also the Barbu15 classi-
fier trained with human labelled data.8 Consid-
ering that all our training data are collected with-
out any human intervention, hence eliminating the
burden and the high costs of the annotation pro-
cess, this is an interesting result.

Overall, for the same value of k, smaller values
of Z consistently show higher performance. At the
same time, for the same value of Z, increasing k
consistently yields higher results. Such improve-
ments, however, are less evident when the pool
of TUs used for the label inference step is larger
(Z>100K). These observations confirm the intu-
ition that classifiers’ performance is highly influ-
enced by the relation between the amount and the
polarization of the training data. Indeed, looking

8Improvements are statistically significant with ρ < 0.05,
measured by approximate randomization (Noreen, 1989).

at the average feature values used to infer the pos-
itive and negative instances, we noticed that, for
the considered values of k, these scores are closer
to 0 and 1 for the 1M curve than for the 50K curve.
In the former case, highly polarized training data
limit the generalisation capability of the base clas-
sifiers (and their ability, for instance, to correctly
label the borderline test instances), which results
in lower BA results.

Nevertheless, it’s worth remarking that our
larger value of k (15K) represents 30% of the data
in the case of Z=50K, but just 1.5% of the data
in case of Z=1M. This suggests that for large val-
ues of Z, more training points would be probably
needed to introduce enough variance in the data
and improve over the almost flat curves shown in
Figure 1. Exploring this possibility was out of the
scope of this initial analysis but would be doable
by applying scalable algorithms capable to man-
age larger quantities of training data (up to 300K,
in the case of Z=1M). For the time being, a sta-
tistically significant improvement of ∼1 BA point
over a supervised method in the most normal con-
ditions (Z=50K) is already a promising step.

6 Conclusion

We presented a fully unsupervised method to re-
move useless TUs from a large-scale TM. Focus-
ing on the identification of wrongly translated seg-
ments, we exploited the independent views of dif-
ferent sets of features to: i) infer a binary label
for a certain amount of TUs, and ii) use the au-
tomatically labelled units as training data for an
ensemble of binary classifiers. Such independent
labelling/training routines exploit the “wisdom of
the features” to bypass the need of human anno-
tations and obtain competitive performance. Our
results are not only better than a strong MT-based
baseline, but they also outperform a state-of-the-
art approach relying on human-labelled data.
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Souza, and Matteo Negri. 2014. Adaptive Qual-
ity Estimation for Machine Translation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 710–720, Baltimore, Maryland, USA,
June.

292



Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 293–298,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Exponentially Decaying Bag-of-Words Input Features for Feed-Forward
Neural Network in Statistical Machine Translation

Jan-Thorsten Peter, Weiyue Wang, Hermann Ney
Human Language Technology and Pattern Recognition, Computer Science Department

RWTH Aachen University, 52056 Aachen, Germany
{peter,wwang,ney}@cs.rwth-aachen.de

Abstract

Recently, neural network models have
achieved consistent improvements in sta-
tistical machine translation. However,
most networks only use one-hot encoded
input vectors of words as their input.
In this work, we investigated the ex-
ponentially decaying bag-of-words input
features for feed-forward neural network
translation models and proposed to train
the decay rates along with other weight pa-
rameters. This novel bag-of-words model
improved our phrase-based state-of-the-art
system, which already includes a neural
network translation model, by up to 0.5%
BLEU and 0.6% TER on three different
translation tasks and even achieved a simi-
lar performance to the bidirectional LSTM
translation model.

1 Introduction

Neural network models have recently gained much
attention in research on statistical machine trans-
lation. Several groups have reported strong im-
provements over state-of-the-art baselines when
combining phrase-based translation with feed-
forward neural network-based models (FFNN)
(Schwenk et al., 2006; Vaswani et al., 2013;
Schwenk, 2012; Devlin et al., 2014), as well
as with recurrent neural network models (RNN)
(Sundermeyer et al., 2014). Even in alternative
translation systems they showed remarkable per-
formance (Sutskever et al., 2014; Bahdanau et al.,
2015).

The main drawback of a feed-forward neural
network model compared to a recurrent neural
network model is that it can only have a limited

context length on source and target sides. Using
the Bag-of-Words (BoW) model as additional in-
put of a neural network based language model,
(Mikolov et al., 2015) have achieved very simi-
lar perplexities on automatic speech recognition
tasks in comparison to the long short-term mem-
ory (LSTM) neural network, whose structure is
much more complex. This suggests that the bag-
of-words model can effectively store the longer
term contextual information, which could show
improvements in statistical machine translation as
well. Since the bag-of-words representation can
cover as many contextual words without further
modifying the network structure, the problem of
limited context window size of feed-forward neu-
ral networks is reduced. Instead of predefining
fixed decay rates for the exponentially decaying
bag-of-words models, we propose to learn the de-
cay rates from the training data like other weight
parameters in the neural network model.

2 The Bag-of-Words Input Features

The bag-of-words model is a simplifying repre-
sentation applied in natural language processing.
In this model, each sentence is represented as the
set of its words disregarding the word order. Bag-
of-words models are used as additional input fea-
tures to feed-forward neural networks in addition
to the one-hot encoding. Thus, the probability of
the feed-forward neural network translation model
with an m-word source window can be written as:

p(eI1 | fJ
1 ) ≈

I∏
i=1

p(ei | f bi+∆m

bi−∆m
, fBoW,i) (1)

where ∆m = m−1
2 and bi is the index of the single

aligned source word to the target word ei. We ap-
plied the affiliation technique proposed in (Devlin
et al., 2014) for obtaining the one-to-one align-
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ments. The bag-of-words input features fBoW,i can
be seen as normalized n-of-N vectors as demon-
strated in Figure 1, where n is the number of words
inside each bag-of-words.

[0 1 0 0 · · · 0 0] [0 0 0 1 · · · 0 0] [0 0 1 0 · · · 0 0] [1n 0 0 0 · · · 1
n

1
n] [0 0 1

n 0 · · · 1
n 0]

original word features bag-of-words input features

Figure 1: The bag-of-words input features along
with the original word features. The input vectors
are projected and concatenated at the projection
layer. We omit the hidden and output layers for
simplification, since they remain unchanged.

2.1 Contents of Bag-of-Words Features

Before utilizing the bag-of-words input features
we have to decide which words should be part of
it. We tested multiple different variants:

1. Collecting all words of the sentence in one bag-
of-words except the currently aligned word.

2. Collecting all preceding words in one bag-of-
words and all succeeding words in a second
bag-of-words.

3. Collecting all preceding words in one bag-of-
words and all succeeding words in a second
bag-of-words except those already included in
the source window.

All of these variants provide the feed-forward
neural network with an unlimited context in both
directions. The differences between these setups
only varied by 0.2% BLEU and 0.1% TER. We
choose to base further experiments on the last vari-
ant since it performed best and seemed to be the
most logical choice for us.

2.2 Exponentially Decaying Bag-of-Words

Another variant is to weight the words within
the bag-of-words model. In the standard bag-
of-words representation these weights are equally
distributed for all words. This means the bag-of-
words input is a vector which marks if a word is
given or not and does not encode the word or-
der. To avoid this problem, the exponential decay
approach proposed in (Clarkson and Robinson,
1997) has been adopted to express the distance of

contextual words from the current word. There-
fore the bag-of-words vector with decay weights
can be defined as following:

f̃BoW,i =
∑

k∈SBoW

d|i−k|f̃k (2)

where

i, k Positions of the current word and words
within the BoW model respectively.

f̃BoW,i The value vector of the BoW input fea-
ture for the i-th word in the sentence.

f̃k One-hot encoded feature vector of the k-
th word in the sentence.

SBoW Indices set of the words contained in the
BoW. If a word appears more than once
in the BoW, the index of the nearest one
to the current word will be selected.

d Decay rate with float value ranging from
zero to one. It specifies how fast weights
of contextual words decay along with dis-
tances, which can be learned like other
weight parameters of the neural network.

Instead of using fixed decay rate as in (Irie et al.,
2015), we propose to train the decay rate like other
weight parameters in the neural network. The ap-
proach presented by (Mikolov et al., 2015) is com-
parable to the corpus decay rate shown here, ex-
cept that their work makes use of a diagonal ma-
trix instead of a scalar as decay rate. In our ex-
periments, three different kinds of decay rates are
trained and applied:

1. Corpus decay rate: all words in vocabulary
share the same decay rate.

2. Individual decay rate for each bag-of-words:
each bag-of-words has its own decay rate given
the aligned word.

3. Individual decay rate for each word: each word
uses its own decay rate.

We use the English sentence
“friends had been talking about this fish for a long time”
as an example to clarify the differences between
these variants. A five words contextual window
centered at the current aligned word fish has
been applied: {about, this, fish, for, a}.
The bag-of-words models are used to collect all
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other source words outside the context window:
{friends, had, been, talking} and {long,
time}. Furthermore, there are multiple choices
for assigning decay weights to all these words in
the bag-of-words feature:

Sentence: friends had been talking about this fish for a long time

Distance: 6 5 4 3 3 4

1. Corpus decay rate: d

Weights: d6 d5 d4 d3 d3 d4

2. Bag-of-words individual decay rate: d = dfish

Weights: d6
fish d5

fish d4
fish d3

fish d3
fish d4

fish

3. Word individual decay rate:
d ∈ {dfriends, dhad, dbeen, dtalking, dlong, dtime}

Weights: d6
friends d

5
had d

4
been d3

talking d3
long d

4
time

3 Experiments

3.1 Setup

Experiments are conducted on the IWSLT 2013
German→English, WMT 2015 German→English
and DARPA BOLT Chinese→English translation
tasks. GIZA++ (Och and Ney, 2003) is applied
for aligning the parallel corpus. The translation
quality is evaluated by case-insensitive BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
metric. The scaling factors are tuned with MERT
(Och, 2003) with BLEU as optimization criterion
on the development sets. The systems are evalu-
ated using MultEval (Clark et al., 2011). In the
experiments the maximum size of the n-best lists
applied for reranking is 500. For the translation
experiments, the averaged scores are presented on
the development set from three optimization runs.

Experiments are performed using the Jane
toolkit (Vilar et al., 2010; Wuebker et al., 2012)
with a log-linear framework containing following
feature functions:

• Phrase translation probabilities both directions

• Word lexicon features in both directions

• Enhanced low frequency counts
(Chen et al., 2011)

• 4-gram language model

• 7-gram word class language model
(Wuebker et al., 2013)

• Word and phrase penalties

• Hierarchical reordering model
(Galley and Manning, 2008)

Additionally, a neural network translation model,
similar to (Devlin et al., 2014), with following
configurations is applied for reranking the n-best
lists:

• Projection layer size 100 for each word

• Two non-linear hidden layers with 1000 and 500
nodes respectively

• Short-list size 10000 along with 1000 word
classes at the output layer

• 5 one-hot input vectors of words

Unless otherwise stated, the investigations on bag-
of-words input features are based on this neural
network model. We also integrated our neural net-
work translation model into the decoder as pro-
posed in (Devlin et al., 2014). The relative im-
provements provided by integrated decoding and
reranking are quite similar, which can also be con-
firmed by (Alkhouli et al., 2015). We therefore
decided to only work in reranking for repeated ex-
perimentation.

3.2 Exponentially Decaying Bag-of-Words

As shown in Section 2.2, the exponential decay
approach is applied to express the distance of con-
textual words from the current word. Thereby the
information of sequence order can be included into
bag-of-words models. We demonstrated three dif-
ferent kinds of decay rates for words in the bag-
of-words input feature, namely the corpus general
decay rate, the bag-of-words individual decay rate
and the word individual decay rate.

Table 1 illustrates the experimental results of
the neural network translation model with ex-
ponentially decaying bag-of-words input features
on IWSLT 2013 German→English, WMT 2015
German→English and BOLT Chinese→English
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IWSLT WMT BOLT
test eval11 newstest2013 test

BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%]

Baseline + NNTM 31.9 47.5 36.7 43.0 28.8 53.8 17.4 67.1
+ BoW Features 32.0 47.3 36.9 42.9 28.8 53.5∗ 17.5 67.0

+ Fixed DR (0.9) 32.2∗ 47.3 37.0∗ 42.6∗† 29.0 53.5∗ 17.7∗ 66.8∗

+ Corpus DR 32.1 47.3 36.9 42.7∗ 29.1∗† 53.5∗ 17.7∗ 66.7∗†

+ BoW DR 32.4∗† 47.0∗† 37.2∗† 42.4∗† 29.2∗† 53.2∗† 17.9∗† 66.6∗†
+ Word DR 32.3∗† 47.0∗ 37.1∗ 42.7∗ 29.1∗† 53.4∗ 17.8∗† 66.7∗†

Baseline + LSTM 32.2∗ 47.4 37.1∗ 42.5∗† 29.0 53.3∗ 17.6 66.8∗

Table 1: Experimental results of translations using exponentially decaying bag-of-words models with
different kinds of decay rates. Improvements by systems marked by ∗ have a 95% statistical significance
from the baseline system, whereas † denotes the 95% statistical significant improvements with respect to
the BoW Features system (without decay weights). We experimented with several values for the fixed
decay rate (DR) and 0.9 performed best. The applied RNN model is the LSTM bidirectional translation
model proposed in (Sundermeyer et al., 2014).

translation tasks. Here we applied two bag-of-
words models to separately contain the preced-
ing and succeeding words outside the context win-
dow. We can see that the bag-of-words feature
without exponential decay weights only provides
small improvements. After appending the de-
cay weights, four different kinds of decay rates
provide further improvements to varying degrees.
The bag-of-words individual decay rate performs
the best, which gives us improvements by up to
0.5% on BLEU and up to 0.6% on TER. On these
tasks, these improvements even help the feed-
forward neural network achieve a similar perfor-
mance to the popular long short-term memory re-
current neural network model (Sundermeyer et al.,
2014), which contains three LSTM layers with
200 nodes each. The results of the word individual
decay rate are worse than that of the bag-of-words
decay rate. One reason is that in word individual
case, the sequence order can still be missing. We
initialize all values for the tunable decay rates with
0.9. In the IWSLT 2013 German→English task,
the corpus decay rate is tuned to 0.578. When in-
vestigating the values of the trained bag-of-words
individual decay rate vector, we noticed that the
variance of the value for frequent words is much
lower than for rare words. We also observed that
most function words, such as prepositions and
conjunctions, are assigned low decay rates. We
could not find a pattern for the trained value vec-
tor of the word individual decay rates.

3.3 Comparison between Bag-of-Words and
Large Context Window

The main motivation behind the usage of the bag-
of-words input features is to provide the model
with additional context information. We compared
the bag-of-words input features to different source
side windows to refute the argument that simply
increasing the size of the window could achieve
the same results. Our experiments showed that in-
creasing the source side window beyond 11 gave
no more improvements while the model that used
the bag-of-words input features is able to achieve
the best result (Figure 2). A possible explanation
for this could be that the feed-forward neural net-
work learns its input position-dependent. If one
source word is moved by one position the feed-
forward neural network needs to have seen a word
with a similar word vector at this position dur-
ing training to interpret it correctly. The likeli-
hood of precisely getting the position decreases
with a larger distance. The bag-of-words model
on the other hand will still get the same input only
slightly stronger or weaker on the new distance
and decay rate.

4 Conclusion

The aim of this work was to investigate the influ-
ence of exponentially decaying bag-of-words in-
put features with trained decay rates on the feed-
forward neural network translation model. Ap-
plying the standard bag-of-words model as an ad-
ditional input feature in our feed-forward neural
network translation model only yields slight im-
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Figure 2: The change of BLEU scores
on the eval11 set of the IWSLT 2013
German→English task along with the source
context window size. The source windows are
always symmetrical with respect to the aligned
word. For instance, window size five denotes that
two preceding and two succeeding words along
with the aligned word are included in the window.
The average sentence length of the corpus is about
18 words. The red line is the result of using a
model with bag-of-words input features and a
bag-of-words individual decay rate.

provements, since the original bag-of-words rep-
resentation does not include information about the
ordering of each word. To avoid this problem, we
applied the exponential decay weight to express
the distances between words and propose to train
the decay rate as other weight parameters of the
network. Three different kinds of decay rates are
proposed, the bag-of-words individual decay rate
performs best and provides improvements by av-
eragely 0.5% BLEU on three different translation
tasks, which is even able to outperform a bidirec-
tional LSTM translation model on the given tasks.
By contrast, applying additional one-hot encoded
input vectors or enlarging the network structure
can not achieve such good performances as bag-
of-words features.
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Abstract

We investigate the use of hierarchical
phrase-based SMT lattices in end-to-end
neural machine translation (NMT). Weight
pushing transforms the Hiero scores for
complete translation hypotheses, with the
full translation grammar score and full n-
gram language model score, into posteri-
ors compatible with NMT predictive prob-
abilities. With a slightly modified NMT
beam-search decoder we find gains over
both Hiero and NMT decoding alone, with
practical advantages in extending NMT to
very large input and output vocabularies.

1 Introduction

We report on investigations motivated by the idea
that the structured search spaces defined by syn-
tactic machine translation approaches such as Hi-
ero (Chiang, 2007) can be used to guide Neural
Machine Translation (NMT) (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015). NMT and Hiero
have complementary strengths and weaknesses
and differ markedly in how they define probabil-
ity distributions over translations and what search
procedures they use.

The NMT encoder-decoder formalism provides
a probability distribution over translations y = yT1
of a source sentence x as (Bahdanau et al., 2015)

P (yT1 |x) =
T∏
t=1

P (yt|yt−1
1 ,x) =

T∏
t=1

g(yt−1, st, ct)

(1)
where st = f(st−1, yt−1, ct) is a decoder state
variable and ct is a context vector depending on
the source sentence and the attention mechanism.

This posterior distribution is potentially very
powerful, however it does not easily lend itself

to sophisticated search procedures. Decoding is
done by ‘beam search to find a translation that ap-
proximately maximizes the conditional probabil-
ity’ (Bahdanau et al., 2015). Search looks only
one word ahead and no deeper than the beam.

Hiero defines a synchronous context-free gram-
mar (SCFG) with rules: X → 〈α, γ〉, where α
and γ are strings of terminals and non-terminals in
the source and target languages. A target language
sentence y can be a translation of a source lan-
guage sentence x if there is a derivation D in the
grammar which yields both y and x: y = y(D),
x = x(D). This defines a regular language Y
over strings in the target language via a projection
of the sentence to be translated: Y = {y(D) :
x(D) = x} (Iglesias et al., 2011; Allauzen et al.,
2014). Scores are defined over derivations via a
log-linear model with features {φi} and weights
λ. The decoder searches for the translation y(D)
in Y with the highest derivation score S(D) (Chi-
ang, 2007, Eq. 24) :

ŷ = y

 argmax
D:x(D)=x

PG(D)PLM (y(D))λLM︸ ︷︷ ︸
S(D)

 (2)

where PLM is an n-gram language model and
PG(D) ∝∏(X→〈γ,α〉)∈D

∏
i φi(X → 〈γ, α〉)λi .

Hiero decoders attempt to avoid search er-
rors when combining the translation and lan-
guage model for the translation hypotheses (Chi-
ang, 2007; Iglesias et al., 2009). These procedures
search over a vast space of translations, much
larger than is considered by the NMT beam search.
However the Hiero context-free grammars that
make efficient search possible are weak models of
translation. The basic Hiero formalism can be ex-
tended through ‘soft syntactic constraints’ (Venu-
gopal et al., 2009; Marton and Resnik, 2008) or by
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adding very high dimensional features (Chiang et
al., 2009), however the translation score assigned
by the grammar is still only the product of prob-
abilities of individual rules. From the modelling
perspective, this is an overly strong conditional in-
dependence assumption. NMT clearly has the po-
tential advantage in incorporating long-term con-
text into translation scores.

NMT and Hiero differ in how they ‘consume’
source words. Hiero applies the translation rules to
the source sentence via the CYK algorithm, with
each derivation yielding a complete and unam-
biguous translation of the source words. The NMT
beam decoder does not have an explicit mecha-
nism for tracking source coverage, and there is ev-
idence that may lead to both ‘over-translation’ and
‘under-translation’ (Tu et al., 2016).

NMT and Hiero also differ in their internal rep-
resentations. The NMT continuous representa-
tion captures morphological, syntactic and seman-
tic similarity (Collobert and Weston, 2008) across
words and phrases. However, extending these rep-
resentations to the large vocabularies needed for
open-domain MT is an open area of research (Jean
et al., 2015a; Luong et al., 2015; Sennrich et al.,
2015; Chitnis and DeNero, 2015). By contrast,
Hiero (and other symbolic systems) can easily use
translation grammars and language models with
very large vocabularies (Heafield et al., 2013; Lin
and Dyer, 2010). Moreover, words and phrases
can be easily added to a fully-trained symbolic
MT system. This is an important consideration
for commercial MT, as customers often wish to
customise and personalise SMT systems for their
own application domain. Adding new words and
phrases to an NMT system is not as straightfor-
ward, and it is not clear that the advantages of the
continuous representation can be extended to the
new additions to the vocabularies.

NMT has the advantage of including long-range
context in modelling individual translation hy-
potheses. Hiero considers a much bigger search
space, and can incorporate n-gram language mod-
els, but a much weaker translation model. In this
paper we try to exploit the strengths of each ap-
proach. We propose to guide NMT decoding using
Hiero. We show that restricting the search space of
the NMT decoder to a subset of Y spanned by Hi-
ero effectively counteracts NMT modelling errors.
This can be implemented by generating translation
lattices with Hiero, which are then rescored by the

NMT decoder. Our approach addresses the lim-
ited vocabulary issue in NMT as we replace NMT
OOVs with lattice words from the much larger Hi-
ero vocabulary. We also find good gains from neu-
ral and Kneser-Ney n-gram language models.

2 Syntactically Guided NMT (SGNMT)

2.1 Hiero Predictive Posteriors
The Hiero decoder generates translation hypothe-
ses as weighted finite state acceptors (WFSAs), or
lattices, with weights in the tropical semiring. For
a translation hypothesis y(D) arising from the Hi-
ero derivation D, the path weight in the WFSA
is − logS(D), after Eq. 2. While this representa-
tion is correct with respect to the Hiero translation
grammar and language model scores, having Hi-
ero scores at the path level is not convenient for
working with the NMT system. What we need are
predictive probabilities in the form of Eq. 1.

The Hiero WFSAs are determinised and min-
imised with epsilon removal under the tropical
semiring, and weights are pushed towards the ini-
tial state under the log semiring (Mohri and Riley,
2001). The resulting transducer is stochastic in the
log semiring, i.e. the log sum of the arc log prob-
abilities leaving a state is 0 (= log 1). In addi-
tion, because the WFSA is deterministic, there is
a unique path leading to every state, which corre-
sponds to a unique Hiero translation prefix. Sup-
pose a path to a state accepts the translation prefix
yt−1
1 . An outgoing arc from that state with symbol
y has a weight that corresponds to the (negative
log of the) conditional probability

PHiero(yt = y|yt−1
1 ,x). (3)

This conditional probability is such that for a Hi-
ero translation yT1 = y(D) accepted by the WFSA

PHiero(yT1 ) =
T∏
t=1

PHiero(yt|yt−1
1 ,x) ∝ S(D).

(4)
The Hiero WFSAs have been transformed so that
their arc weights have the negative log of the con-
ditional probabilities defined in Eq. 3. All the
probability mass of this distribution is concen-
trated on the Hiero translation hypotheses. The
complete translation and language model scores
computed over the entire Hiero translations are
pushed as far forward in the WFSAs as possible.
This is commonly done for left-to-right decoding
in speech recognition (Mohri et al., 2002).
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2.2 NMT–Hiero Decoding
As above, suppose a path to a state in the WFSA
accepts a Hiero translation prefix yt−1

1 , and let yt
be a symbol on an outgoing arc from that state. We
define the joint NMT+Hiero score as

logP (yt|yt−1
1 ,x) =

λHiero logPHiero(yt|yt−1
1 ,x) +

λNMT

{
logPNMT (yt|yt−1

1 ,x) yt ∈ ΣNMT

logPNMT (unk|yt−1
1 ,x) yt 6∈ ΣNMT

(5)

Note that the NMT-HIERO decoder only con-
siders hypotheses in the Hiero lattice. As dis-
cussed earlier, the Hiero vocabulary can be much
larger than the NMT output vocabulary ΣNMT . If
a Hiero translation contains a word not in the NMT
vocabulary, the NMT model provides a score and
updates its decoder state as for an unknown word.

Our decoding algorithm is a natural extension of
beam search decoding for NMT. Due to the form
of Eq. 5 we can build up hypotheses from left-to-
right on the target side. Thus, we can represent
a partial hypothesis h = (yt1, hs) by a transla-
tion prefix yt1 and an accumulated score hs. At
each iteration we extend the current hypotheses by
one target token, until the best scoring hypothesis
reaches a final state of the Hiero lattice. We re-
fer to this step as node expansion, and in Sec. 3.1
we report the number of node expansions per sen-
tence, as an indication of computational cost.

We can think of the decoding algorithm as
breath-first search through the translation lattices
with a limited number of active hypotheses (a
beam). Rescoring is done on-the-fly: as the de-
coder traverses an edge in the WFSA, we update
its weight by Eq. 5. The output-synchronous char-

Train set Dev set Test set
en de en de en de

# sentences 4.2M 6k 2.7k
# word tokens 106M 102M 138k 138k 62k 59k
# unique words 647k 1.5M 13k 20k 9k 13k
OOV (Hiero) 0.0% 0.0% 0.8% 1.6% 1.0% 2.0%
OOV (NMT) 1.6% 5.5% 2.5% 7.5% 3.1% 8.8%

en fr en fr en fr
# sentences 12.1M 6k 3k
# word tokens 305M 348M 138k 155k 71k 81k
# unique words 1.6M 1.7M 14k 17k 10k 11k
OOV (Hiero) 0.0% 0.0% 0.6% 0.6% 0.4% 0.4%
OOV (NMT) 3.5% 3.8% 4.5% 5.3% 5.0% 5.3%

Table 1: Parallel texts and vocabulary coverage on
news-test2014.

acteristic of beam search enables us to compute
the NMT posteriors only once for each history
based on previous calculations.

Alternatively, we can think of the algorithm as
NMT decoding with revised posterior probabil-
ities: instead of selecting the most likely sym-
bol yt according the NMT model, we adjust the
NMT posterior with the Hiero posterior scores and
delete NMT entries that are not allowed by the lat-
tice. This may result in NMT choosing a different
symbol, which is then fed back to the neural net-
work for the next decoding step.

3 Experimental Evaluation

We evaluate SGNMT on the WMT news-test2014
test sets (the filtered version) for English-German
(En-De) and English-French (En-Fr). We also re-
port results on WMT news-test2015 En-De.

The En-De training set includes Europarl v7,
Common Crawl, and News Commentary v10. Sen-
tence pairs with sentences longer than 80 words
or length ratios exceeding 2.4:1 were deleted, as
were Common Crawl sentences from other lan-
guages (Shuyo, 2010). The En-Fr NMT system
was trained on preprocessed data (Schwenk, 2014)
used by previous work (Sutskever et al., 2014;
Bahdanau et al., 2015; Jean et al., 2015a), but
with truecasing like our Hiero baseline. Follow-
ing (Jean et al., 2015a), we use news-test2012 and
news-test2013 as a development set. The NMT vo-
cabulary size is 50k for En-De and 30k for En-Fr,
taken as the most frequent words in training (Jean
et al., 2015a). Tab. 1 provides statistics and shows
the severity of the OOV problem for NMT.

The BASIC NMT system is built using the
Blocks framework (van Merriënboer et al., 2015)
based on the Theano library (Bastien et al., 2012)
with standard hyper-parameters (Bahdanau et al.,
2015): the encoder and decoder networks consist
of 1000 gated recurrent units (Cho et al., 2014).
The decoder uses a single maxout (Goodfellow et
al., 2013) output layer with the feed-forward at-
tention model (Bahdanau et al., 2015).

The En-De Hiero system uses rules which en-
courage verb movement (de Gispert et al., 2010).
The rules for En-Fr were extracted from the full
data set available at the WMT’15 website using a
shallow-1 grammar (de Gispert et al., 2010). 5-
gram Kneser-Ney language models (KN-LM) for
the Hiero systems were trained on WMT’15 par-
allel and monolingual data (Heafield et al., 2013).
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(Jean et al., 2015a, Tab. 2) SGNMT
Setup BLEU Setup BLEU
BASIC NMT 16.46 BASIC NMT 16.31
NMT-LV 16.95 HIERO 19.44
+ UNK Replace 18.89 NMT-HIERO 20.69
– – + Tuning 21.43
+ Reshuffle 19.40 + Reshuffle 21.87
+ Ensemble 21.59

(a) English-German

(Jean et al., 2015a, Tab. 2) SGNMT
Setup BLEU Setup BLEU
BASIC NMT 29.97 BASIC NMT 30.42
NMT-LV 33.36 HIERO 32.86
+ UNK Replace 34.11 NMT-HIERO 35.37
– – + Tuning 36.29
+ Reshuffle 34.60 + Reshuffle 36.61
+ Ensemble 37.19

(b) English-French

Table 2: BLEU scores on news-test2014 calculated with multi-bleu.perl. NMT-LV refers to the
RNNSEARCH-LV model from (Jean et al., 2015a) for large output vocabularies.

Search Vocab. NMT Grammar KN-LM NPLM # of node exp- BLEU BLEU
space scores scores scores scores ansions per sen. (single) (ensemble)

1 Lattice Hiero X X – 21.1 (Hiero)
2 Lattice Hiero X X X – 21.7 (Hiero)
3 Unrestricted NMT X 254.8 19.5 21.8
4 100-best Hiero X 2,233.6

(DFS: 832.1)

22.8 23.3
5 100-best Hiero X X X 22.9 23.4
6 100-best Hiero X X X X 22.9 23.3
7 1000-best Hiero X 21,686.2

(DFS: 6,221.8)

23.3 23.8
8 1000-best Hiero X X X 23.4 23.9
9 1000-best Hiero X X X X 23.5 24.0

10 Lattice NMT X 243.3 20.3 21.4
11 Lattice Hiero X 243.3 23.0 24.2
12 Lattice Hiero X X 243.3 23.0 24.2
13 Lattice Hiero X X 240.5 23.4 24.5
14 Lattice Hiero X X X 243.9 23.4 24.4
15 Lattice Hiero X X X X 244.3 24.0 24.4
16 Neural MT – UMontreal-MILA (Jean et al., 2015b) 22.8 25.2

Table 3: BLEU English-German news-test2015 scores calculated with mteval-v13a.pl.

Our SGNMT system1 is built with the Pyfst inter-
face 2 to OpenFst (Allauzen et al., 2007).

3.1 SGNMT Performance
Tab. 2 compares our combined NMT+Hiero de-
coding with NMT results in the literature. We use
a beam size of 12. In En-De and in En-Fr, we find
that our BASIC NMT system performs similarly
(within 0.5 BLEU) to previously published results
(16.31 vs. 16.46 and 30.42 vs. 29.97).

In NMT-HIERO, decoding is as described in
Sec. 2.2, but with λHiero = 0. The decoder
searches through the Hiero lattice, ignoring the
Hiero scores, but using Hiero word hypotheses in
place of any UNKs that might have been produced
by NMT. The results show that NMT-HIERO is
much more effective in fixing NMT OOVs than
the ‘UNK Replace’ technique (Luong et al., 2015);
this holds in both En-De and En-Fr.

For the NMT-HIERO+TUNING systems, lattice
MERT (Macherey et al., 2008) is used to optimise
λHiero and λNMT on the tuning sets. This yields
further gains in both En-Fr and En-De, suggesting

1http://ucam-smt.github.io/sgnmt/html/
2https://pyfst.github.io/

that in addition to fixing UNKs, the Hiero predic-
tive posteriors can be used to improve the NMT
translation model scores.

Tab. 3 reports results of our En-De system with
reshuffling and tuning on news-test2015. BLEU
scores are directly comparable to WMT’15 re-
sults 3. By comparing row 3 to row 10, we see that
constraining NMT to the search space defined by
the Hiero lattices yields an improvement of +0.8
BLEU for single NMT. If we allow Hiero to fix
NMT UNKs, we see a further +2.7 BLEU gain
(row 11). The majority of gains come from fix-
ing UNKs, but there is still improvement from the
constrained search space for single NMT.

We next investigate the contribution of the Hi-
ero system scores. We see that, once lattices
are generated, the KN-LM contributes more to
rescoring than the Hiero grammar scores (rows 12-
14). Further gains can be achieved by adding a
feed-forward neural language model with NPLM
(Vaswani et al., 2013) (row 15). We observe that
n-best list rescoring with NMT (Neubig et al.,
2015) also outperforms both the Hiero and NMT

3http://matrix.statmt.org/matrix/systems list/1774

302



Figure 1: Performance with NPLM over beam size
on English-German news-test2015. A beam of 12
corresponds to row 15 in Tab. 3.

Determini- Minimi- Weight Sentences
sation sation pushing per second

X 2.51
X X 1.57
X X X 1.47

Table 4: Time for lattice preprocessing operations
on English-German news-test2015.

baselines, although lattice rescoring gives the best
results (row 9 vs. row 15). Lattice rescoring with
SGNMT also uses far fewer node expansions per
sentence. We report n-best rescoring speeds for
rescoring each hypothesis separately, and a depth-
first (DFS) scheme that efficiently traverses the n-
best lists. Both these techniques are very slow
compared to lattice rescoring. Fig. 1 shows that
we can reduce the beam size from 12 to 5 with
only a minor drop in BLEU. This is nearly 100
times faster than DFS over the 1000-best list.

Cost of Lattice Preprocessing As described in
Sec. 2.1, we applied determinisation, minimisa-
tion, and weight pushing to the Hiero lattices in
order to work with probabilities. Tab. 4 shows that
those operations are generally fast4.

Lattice Size For previous experiments we set
the Hiero pruning parameters such that lattices had
8,510 nodes on average. Fig. 2 plots the BLEU
score over the lattice size. We find that SGNMT
works well on lattices of moderate or large size,
but pruning lattices too heavily has a negative ef-
fect as they are then too similar to Hiero first best
hypotheses. We note that lattice rescoring involves
nearly as many node expansions as unconstrained
NMT decoding. This confirms that the lattices at
8,510 nodes are already large enough for SGNMT.

4Testing environment: Ubuntu 14.04, Linux 3.13.0, single
Intel R© Xeon R© X5650 CPU at 2.67 GHz

Figure 2: SGNMT performance over lattice size
on English-German news-test2015. 8,510 nodes
per lattice corresponds to row 14 in Tab. 3.

Local Softmax In SGNMT decoding we have
the option of normalising the NMT translation
probabilities over the words on outgoing words
from each state rather than over the full 50,000
words translation vocabulary. There are ∼4.5 arcs
per state in our En-De’14 lattices, and so avoiding
the full softmax could cause significant computa-
tional savings. We find this leads to only a modest
0.5 BLEU degradation: 21.45 BLEU in En-De’14,
compared to 21.87 BLEU using NMT probabili-
ties computed over the full vocabulary.

Modelling Errors vs. Search Errors In our En-
De’14 experiments with λHiero = 0 we find
that constraining the NMT decoder to the Hiero
lattices yields translation hypotheses with much
lower NMT probabilities than unconstrained BA-
SIC NMT decoding: under the NMT model, NMT
hypotheses are 8,300 times more likely (median)
than NMT-HIERO hypotheses. We conclude (ten-
tatively) that BASIC NMT is not suffering only
from search errors, but rather that NMT-HIERO

discards some hypotheses ranked highly by the
NMT model but lower in the evaluation metric.

4 Conclusion

We have demonstrated a viable approach to Syn-
tactically Guided Neural Machine Translation for-
mulated to exploit the rich, structured search space
generated by Hiero and the long-context transla-
tion scores of NMT. SGNMT does not suffer from
the severe limitation in vocabulary size of basic
NMT and avoids any difficulty of extending dis-
tributed word representations to new vocabulary
items not seen in training data.
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Abstract

We automatically predict properties of
wines on the basis of smell and flavor de-
scriptions from experts’ wine reviews. We
show wine experts are capable of describ-
ing their smell and flavor experiences in
wine reviews in a sufficiently consistent
manner, such that we can use their descrip-
tions to predict properties of a wine based
solely on language. The experimental re-
sults show promising F-scores when using
lexical and semantic information to predict
the color, grape variety, country of origin,
and price of a wine. This demonstrates,
contrary to popular opinion, that wine ex-
perts’ reviews really are informative.

1 Introduction

Describing smells and flavors is something the av-
erage person is not particularly good at. If people
are asked to identify familiar smells such as cinna-
mon and chocolate, they are only able to correctly
name the smell around 50% of the time (Cain,
1979; Olofsson and Gottfried, 2015). In compari-
son to the elaborate vocabulary we have for visual
and auditory phenomena, English and other lan-
guages spoken in Western societies appear to have
few words to describe smells and flavors (Levin-
son and Majid, 2014; Majid and Burenhult, 2014).
Instead, speakers often refer to the source as the
name of the smell (‘it smells like banana’).

Flavor is a complex experience that combines
the multisensory sensations of taste, touch and
smell. Flavor descriptions contain basic taste de-
scriptors (e.g., sweet, sour, salty, bitter), with

metaphorical (e.g., ‘elegant’) and source-based
terminology (e.g., ‘it tastes buttery’).

The lack of vocabulary for smells and flavors
contrasts starkly with the interest people in the
West have for flavors and fragrances, and what
they are willing to spend on such products. The
flavor and fragrance industry is estimated to be
worth over $20 billion in 20151. In this context,
experts’ recommendations are used by the pub-
lic in order to help them make decisions about
purchases. But are the expert recommendations
meaningful, given the limitations of language for
smells and flavors?

We are interested in the relation between lan-
guage and sensory information, and how this in-
formation is put into words. We focus on de-
scriptions produced by a select group of people
who have considerable experience naming smells
and flavors, i.e., sommeliers and wine journalists.
Through their descriptions, wine experts can in-
fluence consumers’ purchasing patterns (McCoy,
2006; Horverak, 2009), suggesting their descrip-
tions are written in an informative manner. In this
paper we aim to discover whether we can extract
the properties of a wine based on the tasting notes
written by a wine expert. This should be possible
if wine experts are capable of translating their sen-
sory experiences into words in a consistent man-
ner.

Previous experimental studies provide a mixed
picture as to whether wine experts’ language is
consistent. Some studies find similar levels of
agreement in smell descriptions generated by wine
experts and those generated by novices (Lawless,
1984; Parr et al., 2002), and wine experts use more

1http://www.leffingwell.com/top_10.htm
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metaphorical descriptions to describe wine (Ca-
ballero and Suárez-Toste, 2010; Paradis and Eeg-
Olofsson, 2013), which potentially are not as in-
formative about properties of the wine itself. In
contrast, others find wine experts use more spe-
cific vocabulary (Zucco et al., 2011; Sezille et al.,
2014), and find that wine experts are, in fact, more
consistent than non-experts, when they describe
wines (Croijmans and Majid, 2016).

We examined the following wine properties and
aimed to predict these solely on the basis of the re-
view content: color, grape variety, price, and coun-
try of origin. The outcomes of this investigation
are interesting for two reasons. First, we test the
ability of experts to review wines with consistent
language using naturalistic materials. Most pre-
vious studies about wine experts and their review-
ing consistency are performed in experimental set-
tings and cover some dozens of wine reviews (see
for example (Gawel and Godden, 2008; Hopfer
and Heymann, 2014)). With automatic analysis
we are able to scale up to a much larger and more
representative set of reviews.

Second, we gather new insights into the specific
vocabulary and type of lexical descriptors used to
describe smells and flavors, and what words are
most distinctive for different wine characteristics.
Market analyses (Vigar-Ellis et al., 2015) show
that consumers increasingly select wines based
on information provided by experts, for example
through expert descriptions and recommender sys-
tems, and that wine apps become ever more pop-
ular. This is a positive development, as research
suggests that informed consumers are able to ben-
efit more from the loose relationship between price
and quality in wine (Oczkowski and Doucoulia-
gos, 2014).

In the long run, as we are training automatic
systems to predict wine properties, we could use
such systems for automatic metadata prediction
and error correction in wine review databases.
These systems are also a first step towards a
recommender system for wines based on review
content and flavor descriptions. Current recom-
mender systems such as the mobile apps Vivino2

or Delectable3 work with metadata and user-based
filtering, i.e. the principle of ‘other users also
bought . . .’. So there is potential here for content-
based recommender systems to be developed.

2Vivino: http://www.vivino.com
3Delectable: http://www.delectable.com

2 Related work

The relationship between wines and wine reviews
has been studied from many different perspec-
tives, aside from those discussed in the previous
section. Economically, the relationship between
price, wine quality and wine ratings is interesting
as a high rating by a famous wine expert can make
a substantial difference to product sales (McCoy,
2006). Goldstein and colleagues (2008) inves-
tigated whether a jury of wine experts vs non-
experts can taste the difference between expen-
sive and cheap wines, and found while wine ex-
perts could distinguish the difference, non-experts
could not. Lecocq and Visser (2006) investigated
what wine properties determine wine prices. They
showed wine experts based their overall wine
quality ratings on sensory information, and that
expert ratings together with features such as re-
gion, vintage and designation explained price dif-
ferences for a subset of French red wines. The
relationship between the chemical substances in a
wine and wine quality have also been the focus of
research (Chen et al., 2009; Cortez et al., 2009).

Brochet and Dubourdieu (2001) conducted a
lexical analysis of four corpora of wine reviews
from a cognitive linguistic perspective and con-
cluded wine reviews are not only describing sen-
sory properties of the wine, but also include ideal-
istic and hedonistic information from wine proto-
types based on previous experiences. Anthropolo-
gists have noted that wine experts form their own
discourse community with a particular style and
vocabulary (Silverstein, 2006). In this research we
aim to discover stylistic and lexical patterns with
which we can relate wine reviews to wine proper-
ties automatically.

3 Data set

The website http://www.winemag.com/,
owned by Wine Enthusiast Companies, hosts a
substantial catalog of wine descriptions. We
downloaded the available reviews4 and gathered
a total of 76,585 wine reviews. The catalog data
is structured and contains information about the
wine such as the producer, appellation region and
country, grape variety, color, alcohol percentage,
price, and where to buy it. The expert who writes
the wine review also rates the wine by assigning it
a score between 80 and 100. The reviews are writ-

4Downloading took place in February 2015
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ten by 33 different experts, and can be considered
concise, with an average length of 39 words.

Wine reviews have a distinct style and vocabu-
lary, which tends to focus on smell and flavor de-
scriptions, as shown in example reviews 1 and 2
from our data. As noted previously, wine experts
use creative metaphors to characterize the smell
and flavor of a wine, as well as source-based de-
scriptions. The metaphors perhaps add variation to
otherwise dull or repetitive descriptions (Paradis
and Eeg-Olofsson, 2013; Suárez Toste, 2007).

1. There is not a great deal of dolcetto grown in the North-
west, but this is the best version I’ve yet seen. Its
vivid, spicy fruit core expresses the soil, the plant and
the grape in equal proportion. Sappy flavors of spiced
plum and wild berry hold the fort; it’s built like a race
car, sleek and stylish, with a powerful, tannic frame.

2. Here’s a fragrant and very aromatic Grillo with
cheerful notes of peach, passion fruit and mango. The
wine has an easy approach and would pair perfectly
with appetizers or finger foods.

4 Methodology

In our classification experiments, we evaluated
the viability of predicting the following four wine
properties: color, grape variety, price, and country
of origin. Wines can be categorized into three dif-
ferent colors: white, red and rosé. The database
of winemag.com is not complete in all metadata
fields. We excluded reviews with missing meta-
data from our experiments, and performed this se-
lection separately for each metadata field. For in-
stance, we excluded 5,328 wines without a color
label in the color labeling experiment.

For grape variety we only considered those
wines that were produced from a single grape
and for which we had at least 200 reviews in the
training set, leading to 33 categories. We disre-
garded all wines with grape blends, as these can
have different ratios of different grape varieties.
When different names were used for the same
grape, we normalized these to the same category;
e.g., Pinot Gris (French) and Pinot Grigio (Italian)
were mapped together manually.

The sample contained wines from 47 different
countries, ranging from South Korea (3 wines)
to USA (31,401 wines). Even though price itself
is an objective value, a division into cheap and
expensive prices is a rather subjective choice. We
tested two alternatives: a discretization where
cheap wine costs less than $10 and expensive
wine at least $100; and a more relaxed version

where cheap means less then $15 and expensive
at least $50. Wines between these prices were left
out in both price experiments.

We pre-processed the data set automatically
with the Stanford toolkit (Manning et al., 2014):
we tokenized, PoS-tagged and lemmatized the re-
views. For the classification experiments, we split
the randomized data set into an 80% training and
20% test set. As information sources, we use both
lexical and semantic features. A first experimen-
tal setup merely uses a bag-of-words (BoW) repre-
sentation of the wine reviews. To construct these
BoW features, we lowercased all lemmas in the
review and selected only the content words (PoS-
tag noun, verb or adjective) that occurred at least
twice in the training set.

As the reviews are short and only contain about
23 content words on average, we decided to also
add semantic features to reduce data sparsity. As
shown by Kusner and colleagues (2015), seman-
tic representations such as Latent Semantic In-
dexing and Latent Dirichlet Allocation (LDA) can
outperform a BoW representation. For our sec-
ond experimental setup, we combined our set of
BoW features with (1) 100 topics generated with
Latent Dirichlet Allocation (Blei, 2012), and (2)
100 clusters based on word embeddings gener-
ated with Word2Vec (Mikolov et al., 2013). We
ran initial experiments with exemplar-based clas-
sification and experimented with different cluster
(Word2Vec) and topic (LDA) sizes of 100, 500,
1000, 2000 on the training set. For LDA (McCal-
lum, 2002), we also varied the threshold to assign
a topic only to a text when it covered 1%, 2%, or
5% of the text. The best results were obtained with
100 topics and a proportion threshold of 1%. We
used these settings throughout our experiments.
Two examples of LDA topics are shown here:

LDA42 color rosé strawberry raspberry pink flavor aroma
wine light red cherry pale rise dry fresh

LDA49 flavor acidity wine crisp dry clean lime peach citrus
lemon fruit pineapple white vanilla

To create the word embeddings we ran
Word2Vec on the training corpus, applying the
BoW model, a context size of 8, and a word vec-
tor dimensionality of 200 features. In a next step,
K-means clustering (with k = 100) was applied
on the resulting word vectors. As an example, we
show part of the terms contained by cluster 20,
which all have the connotation of ”dark/intense”:
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Property #test Bag-of-Word combined: combined
instances features BoW+LDA+W2V optimised

color 14,213 90.7 94.3 97.6
country 15,317 44.4 58.0 78.2
price big difference 1,135 60.9 61.0 94.6
price small difference 4,922 65.0 80.8 90.6
variety 9,946 30.5 36.6 70.6

Table 1: F-scores per task for Bag-of-Word features, a combination of BoW, LDA and Word2Vec clus-
ters, and combined & optimised LIBSVM parameters.

Word2Vec20 asphalt black-fruit blackness burly dark deep
inky masculine muscular purple roasted saturated sun-
baked superconcentrated

The Word2Vec clusters were then implemented
as binary features, meaning that for each instance
containing a word occurring in one of the clusters,
the respective cluster is coded by “1” in the feature
vector, while the other cluster features are coded as
“0”.

As a classifier, we used LIBSVM (Chang and
Lin, 2011), with the RBF kernel and optimized pa-
rameters c and g per prediction task. The parame-
ters for SVM were optimized by means of a Grid
search on a randomized subset (5,000 instances)
of the training data, resulting in the following pa-
rameter settings:

• color: c = 8.0, g = 0.0078125

• variety: c =8.0, g =0.0078125
• country: c =32.0, g=0.00048828125
• price big difference: c =8.0, g=0.03125
• price small difference: c =8.0, g=0.0078125

5 Results

Table 1 presents the classification results per wine
property for three system flavors: (1) feature vec-
tors including BoW, (2) feature vectors combin-
ing BoW features, LDA and Word2Vec clusters,
and (3) combined feature vectors trained with an
SVM classifier with optimized hyperparameters c
and g. The results confirm the initial hypothesis
that adding semantic information helps the classi-
fier. In addition, optimizing the c and g parameters
for the LIBSVM RBF kernel results in markedly
higher classification scores.

To get some insight into what terms are impor-
tant for these classification results, we computed
chi-square feature weights on the training set of
examples for the different tasks. The top-10 fea-
tures with highest chi-square values are shown in
Table 25.

Figure 1: More training material leads to better
individual F-scores, as shown for the 10 most fre-
quent country classes.

The classifier for color achieves a rather high F-
score, as illustrated in Table 3. The rosé category
is the odd one out with a markedly lower F-score.
There are two main reasons for this. First, rosé
is a low-frequency class compared to the other
two classes. Second, rosé wine is made from red
grapes, but the grapes are processed in a differ-
ent way to red wines. Therefore, we expect to
find a certain amount of overlap between red and
rosé. When we examine the confusion matrix of
the classifiers’ predictions on the test set, we see
that, indeed, most errors are due to misclassifying
rosé as red wine.

One could argue color prediction from wine re-
views is trivial where the wine color is actually
mentioned in the review. Therefore, we also per-
formed an additional experiment with a BoW fea-
ture set (with optimized SVM parameters) where
the words red, white, and rosé were removed. This
affected the overall F-score by 2.2 points, with the

5The variety features are all grape names. For the country
features: prokubac is a Serbian grape variety, meoru is a Ko-
rean grape that grows at mount Jiri. Yves refers to a French
producer. Calatrasus is an erroneous lemma form predicted
by the Stanford toolkit for the Italian wine producer Calatrasi.
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color rosé, cherry, tannin, apple, peach, citrus, pear, blush, black, pineapple, chardonnay
variety aglianico, barbera, prosecco, viognier, moscato, malbec, sirah, carmenère, chenin, zin, franc
country korea, jiri, rose-like, meoru, morocco, serbian, yves, calatrasus, chocolate-cherry, prokupac
price year, tannin, age, rich, blackberry, black, vineyard, cellar, currant, vintage, simple

Table 2: Top 10 features based on Chi-Square measures on the training set.

class #number prec recall f-score
red 9296 97.7 99.0 98.4
white 4582 97.6 97.1 97.4
rose 335 94.5 66.3 77.9

Table 3: Results with optimized and combined
SVM for color classification on the test set.

decrease due mostly to the performance drop of
the rosé class from an F-score of 76.0 to 31.7.

For the property country we see that more train-
ing material has a positive effect on the individual
scores, as visualized in Figure 1.

For grape varieties we find individual F-scores
varying between 82.4 (Chardonnay grape) and
30.8 (Grenache). The Tempranillo grape, for ex-
ample, is known for its rather neutral profile,
and as a consequence it is often used in blends.
The classifier could only distinguish the Tem-
panillo variety at a moderate rate (F-score 47.5),
and the confusion matrix showed it is confused
with Cabernet Sauvignon, Malbec, Pinot Noir,
and Syrah. Varieties that were relatively easy to
predict were Grüner Veltliner (F-score 74.3) and
Nebbiolo (F-score 78.6). These grapes are rather
strictly bound to geographic areas (Nebbiolo is
from the region Piemonte, Italy and Grüner Velt-
liner is a typical Austrian grape). Cabernet Sauvi-
gnon (F-score 68.4) and Syrah (F-score 65.2) are
common grapes for which we had many training
examples, but they were often wrongly predicted
as labels, leading to low precision. We are aware
the location of wineries can strongly influence the
sensory properties of a wine. The higher scores
for grape varieties which are clearly tied to a par-
ticular region further confirms this.

With regard to the price, the more relaxed ver-
sion (price big difference) does not seem to bene-
fit from adding semantic features. An analysis of
the classification output revealed the trained SVM
model nearly always predicts the majority class for
both the BoW and combined features, whereas the
optimised version predicts both classes with an F-
score of 94.6%. In future research, we intend to

recast the price classification as a regression task.

6 Conclusions

We have demonstrated that wine experts are capa-
ble of describing wines in a sufficiently consistent
manner that we can use their descriptions to pre-
dict the properties of a wine based solely on its
review. Using existing NLP tools and techniques,
we were able to produce classifiers that could pre-
dict the color, grape variety, price and country of
origin of thousands of wines with high F-scores.

This study is a first step in a larger investiga-
tion into the relationship between expert language
and sensory descriptions. We are particularly in-
terested in lexical descriptors used for smells and
flavors, and aim to study the specific terminology
at the phrase level. It would also be informative
to know to what extent the wines were classified
on the basis of smell and flavor descriptions per
se, as opposed to other information provided in
the reviews, such as vineyard or producer descrip-
tions, for example. The present models cannot ad-
dress this. In addition, it is interesting to investi-
gate questions of genre and style. For example, we
could ask to what extent does the writing style of
an author, or the wine ratings, affect these results.
Finally, we expect there are differences in the way
wines are described in different countries and dif-
ferent languages. Ultimately a multilingual, multi-
national comparison of wine reviews could un-
cover further insights into the human linguistic po-
tential for describing complex smells and flavors.
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Abstract

Writing style allows NLP tools to adjust
to the traits of an author. In this paper,
we explore the relation between stylistic
and syntactic features and authors’ age and
income. We confirm our hypothesis that
for numerous feature types writing style
is predictive of income even beyond age.
We analyze the predictive power of writ-
ing style features in a regression task on
two data sets of around 5,000 Twitter users
each. Additionally, we use our validated
features to study daily variations in writing
style of users from distinct income groups.
Temporal stylistic patterns not only provide
novel psychological insight into user behav-
ior, but are useful for future research and
applications in social media.

1 Introduction

The widespread use of social media enables re-
searchers to examine human behavior at a scale
hardly imaginable before. Research in text profil-
ing has recently shown that a diverse set of user
traits is predictable from language use. Examples
range from demographics such as age (Rao et al.,
2010), gender (Burger et al., 2011; Bamman et
al., 2014), popularity (Lampos et al., 2014), oc-
cupation (Preoţiuc-Pietro et al., 2015a) and loca-
tion (Eisenstein et al., 2010) to psychological traits
such as personality (Schwartz et al., 2013) or men-
tal illness (De Choudhury et al., 2013) and their
interplay (Preotiuc-Pietro et al., 2015). To a large
extent, the prominent differences captured by text
are topical: adolescents post more about school, fe-
males about relationships (Sap et al., 2014) and
sport fans about their local team (Cheng et al.,

∗ Project carried out during a research stay at the Univer-
sity of Pennsylvania

2010). Writing style and readability offer a dif-
ferent insight into who the authors are. This can
help applications such as cross-lingual adaptations
without direct translation, for text simplification
closely matching the reader’s age, level of educa-
tion and income or tailored to the specific moment
the document is presented. Recently, Hovy and
Søgaard (2015) have shown that the age of the
authors should be taken into account when build-
ing and using part-of-speech taggers. Likewise,
socioeconomic factors have been found to influ-
ence language use (Labov, 2006). Understanding
these biases and their underlying factors in detail
is important to develop NLP tools without socio-
demographic bias.

Writing style measures have initially been cre-
ated to be applied at the document level, where
they are often used to assess the quality of a docu-
ment (Louis and Nenkova, 2013) or a summariza-
tion (Louis and Nenkova, 2014) , or even to predict
the success of a novel (Ashok et al., 2013). In con-
trast to these document-level studies, we adopt a
user-centric approach to measuring stylistic differ-
ences. We examine writing style of users on Twitter
in relation to their age and income. Both attributes
should be closely related to writing style: users of
older age write on average more standard-conform
(up to a certain point), and higher income is an indi-
cator of education and conscientiousness (Judge et
al., 1999), which determines writing style. Indeed,
many features that aim to measure the complexity
of the language use have been developed in order
to study human cognitive abilities, e.g., cognitive
decline (Boyé et al., 2014; Le et al., 2011).

The relationship between age and language has
been extensively studied by psychologists, and
more recently by computational linguists in various
corpora, including social media. Pennebaker et al.
(2003) connect language use with style and per-
sonality, while Schler et al. (2006) automatically
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classified blogs text into three classes based on
self-reported age using part-of-speech features. Jo-
hannsen et al. (2015) uncover some consistent age
patterns in part-of-speech usage across languages,
while Rosenthal and McKeown (2011) studies the
use of Internet specific phenomena such as slang,
acronyms and capitalisation patterns. Preoţiuc-
Pietro et al. (2016) study differences in paraphrase
choice between older and younger Twitter users
as a measure of style. Nguyen et al. (2013) ana-
lyzed the relationship between language use and
age, modelled as a continuous variable. They found
similar language usage trends for both genders,
with increasing word and tweet length with age,
and an increasing tendency to write more gram-
matically correct, standardized text. Such findings
encourage further research in the area of measuring
readability, which not only facilitates adjusting the
text to the reader (Danescu-Niculescu-Mizil et al.,
2011), but can also play an important role in iden-
tifying authorial style (Pitler and Nenkova, 2008).
Davenport and DeLine (2014) report negative cor-
relation between tweet readability (i.e., simplicity)
and the percentage of people with college degree in
the area. Eisenstein et al. (2011) employ language
use as a socio-demographic predictor.

In this paper we analyze two data sets of millions
of tweets produced by thousands of users annotated
with their age and income. We define a set of fea-
tures ranging from readability and style to syntactic
features. We use both linear and non-linear ma-
chine learning regression methods to predict and
analyze user income and age. We show that writing
style measures give large correlations with both
age and income, and that writing style is predictive
of income even beyond age. Finally, Twitter data
allows the unique possibility to study the variation
in writing with time. We explore the effects of time
of day in user behavior dependent in part on the
socio-demographic group.

2 Data

We study two large data sets of tweets. Each data
set consists of users and their historical record of
tweet content, profile information and trait level fea-
tures extracted with high precision from their pro-
file information. All data was tokenized using the
Trendminer pipeline (Preoţiuc-Pietro et al., 2012),
@-mentions and URL’s collapsed, automatically fil-
tered for English using the langid.py tool (Lui and
Baldwin, 2012) and part-of-speech tagged using

the ArkTweet POS tagger (Gimpel et al., 2011).

Income (D1) First, we use a large data set con-
sisting of 5,191 Twitter users mapped to their in-
come through their occupational class. This data
set, introduced in (Preoţiuc-Pietro et al., 2015a;
Preoţiuc-Pietro et al., 2015b), relies on a standard-
ised job classification taxonomy (the UK Standard
Occupational Classification) to extract job-related
keywords, search user profile fields for users hav-
ing those jobs and map them to their mean UK
income, independently of user location. The final
data set consists of 10,796,836 tweets.

Age (D2) The age data set consists of 4,279
users mapped to their age from (Volkova and
Bachrach, 2015). The final data set consists of
574,095 tweets.

3 Features

We use a variety of features to capture the language
behavior of a user. We group these features into:

Surface We measure the length of tweets in
words and characters, and the length of words. As
shorter words are considered more readable (Gun-
ning, 1969; Pitler and Nenkova, 2008), we also
measure the ratio of words longer than five letters.
We further calculate the type-token ratio per user,
which indicates the lexical density of text and is
considered to be a readability predictor (Oakland
and Lane, 2004). Additionally we capture the num-
ber of positive and negative smileys in the tweet
and the number of URLs.

Readability After filtering tweets to contain
only words, we use the most prominent readabil-
ity measures per user: the Automatic Readabil-
ity Index (Senter and Smith, 1967), the Flesch-
Kincaid Grade Level (Kincaid et al., 1975), the
Coleman-Liau Index (Coleman and Liau, 1975),
the Flesch Reading Ease (Flesch, 1948), the LIX In-
dex (Anderson, 1983), the SMOG grade (McLaugh-
lin, 1969) and the Gunning-Fog Index (Gunning,
1969). The majority of those are computed using
the average word and sentence lengths and number
of syllables per sentence, combined with weights.

Syntax Researchers argue about longer sen-
tences not necessarily being more complex in terms
of syntax (Feng et al., 2009; Pitler and Nenkova,
2008). However, advanced sentence parsing on
Twitter remains a challenging task. We thus limit
ourselves in this study to the part-of-speech (POS)
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(a) ARI Readability Index. (b) Pronouns.

(c) Interjections. (d) Named Entities.

Figure 1: Temporal patterns for groups of lowest (blue) and highest (orange) income users in our data set.
X-axis shows the course of 24 hours in normalized time of day. Y-axis shows a normalized difference of
the hourly means from the overall mean feature value. Width of a line shows the standard error.

information. In previous work on writing style
(Pennebaker et al., 2003; Argamon et al., 2009;
Rangel et al., 2014), a text with more nouns and
articles as opposed to pronouns and adverbs is con-
sidered more formal. We thus measure the ratio of
each POS using the universal tagset (Petrov et al.,
2012).

Style We implemented a contextuality measure,
based on the work of Heylighen and Dewaele
(2002), which assesses explicitness of the text
based on the POS used and serves as a proxy for
formality. Using Stanford Named Entity Recog-
nizer (Finkel et al., 2005), we measure the propor-
tion of named entities (3-classed) to words, as their
presence potentially decreases readability (Bein-
born et al., 2012), and netspeak aspects such as the
proportion of elongations (wooow) and words with
numbers (good n8). We quantify the number of
hedges (Hyland, 2005) and abstract words1 used,
and the ratio of standalone numbers stated per user
as these are indicators of specificity (Pennebaker
et al., 2003; Pitler and Nenkova, 2008). We also
capture the ratio of hapax legomena, and of su-
perlatives and plurals using Stanford POS Tagger

1www.englishbanana.com

(Toutanova et al., 2003) using the Twitter model.

4 Temporal Patterns in Style

Social media data offers the opportunity to interpret
the features in a richer context, including time or
space. In our income data set, a timestamp is avail-
able for each message. Golder and Macy (2011)
showed user-level diurnal and seasonal patterns
of mood across the world using Twitter data, sug-
gesting that individuals awaken in a good mood
that deteriorates as the day progresses. In this
work we explore user-level daily temporal trends in
style for the 1500 highest- and 1500 lowest-income
users (mean income ≥ £35,000 vs mean income
≤ £25,000). In Figure 1 we present normalized
temporal patterns for a selected set of features.

While the difference between groups is most
striking, we also observe some consistent daily
patterns. These display an increase in readabil-
ity (Figure 1a) starting in the early hours of the
morning, peaking at 10AM and then decreasing
constantly throughout the day, which is in accor-
dance with the mood swings reported by Golder
and Macy (2011). The proportion of pronouns (Fig-
ure 1b) and interjections (Figure 1c) follows the
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exact opposite pattern, with a peak in frequency
during nights. This suggests that the language gets
more contextual (Heylighen and Dewaele, 2002)
towards the end of the day. Finally, named enti-
ties (Figure 1d) display a very distinctive pattern,
with a constant increase starting mornings, which
increases throughout the day. While the first three
patterns mirror the active parts of the day, coincid-
ing with regular working hours, the latter pattern
is possibly associated with mentions of venues or
news. An increase in usage of named entities in
the evening is steeper for low-income users - we
hypothesize that this phenomenon could be rea-
soned by a stronger association of named entities
with leisure in this user group. Overall, we notice
a similarity between income groups, which, de-
spite strongly separated, follow similar – perhaps
universal – patterns.

5 Analysis

We view age and income as continuous variables
and model them in a regression setup. This is in
contrast to most previous studies on age as a cate-
gorical variable (Rangel et al., 2014) to allow for
finer grained predictions useful for downstream ap-
plications which use exact values of user traits, as
opposed to being limited to broad classes such as
young vs. old. We apply linear regression with
Elastic Net regularization (Zou and Hastie, 2005)
and support vector regression with an RBF kernel
(as a non-linear counterpart) for comparison (Vap-
nik, 1998). We report Pearson correlation results
on 10-fold cross-validation. We also study if our
features are predictive of income above age, by con-
trolling for age assigned by a state-of-the-art model
trained on social media data (Sap et al., 2014). Sim-
ilar results have been obtained with log-scaling the
income variable. Table 1 presents our prediction re-
sults. The strength of the correlation to the income
and age, together with the sign of the correlation
coefficient, are visually displayed in Figure 2.

As expected, all features correlate with age and
income in the same direction. However, some fea-
tures and groups are more predictive of one or the
other (depicted above or below the principal di-
agonal in Figure 2). Most individual surface fea-
tures correlate with age stronger than with income,
with the exception of punctuation and, especially,
words longer than 5 characters. The correlation
of each readability measure is remarkably stronger
with high income than with age, despite the fact

Features Income (D1) Age (D2) Income-Age (D1)
Readability Lin RSVM Lin RSVM Lin RSVM
ARI .282 .311 .269 .318 .230 .263
Flesch-Kincaid .285 .319 .263 .310 .234 .284
Coleman-Liau .230 .197 .203 .265 .202 .289
Flesch RE .277 .345 .186 .295 .239 .318
FOG .291 .309 .222 .270 .238 .267
SMOG .288 .339 .240 .263 .234 .301
LIX .208 .286 .215 .268 .177 .245
ALL .301 .380 .278 .329 .249 .354
Syntax Lin RSVM Lin RSVM Lin RSVM
Nouns .155 .200 .278 .302 .078 .150
Verbs .044 .071 (.046) .104 .093 .114
Pronouns .264 .297 .148 .180 .114 .127
Adverbs .115 .110 .077 .111 .135 .131
Adjectives (.030) .149 .162 .200 (.046) .139
Determiners (.040) .070 .135 .154 .103 .121
Interjections .123 .188 .084 .122 .059 .139
ALL .323 .258 .319 .229 .299 .267
Style Lin RSVM Lin RSVM Lin RSVM
Named entities .241 .288 .282 .293 .255 .281
Contextuality (.044) .204 .287 .310 (.030) .134
Abstract words .108 .120 .141 .183 .125 .139
Hedging (.019) .079 (.015) .000 .(000) .083
Specific (num) .093 .011 .072 .176 .059 .124
Elongations .097 .160 .072 .073 .056 .114
Hapax legom. .056 .066 .160 .219 .064 .067
ALL .279 .347 .306 .134 .296 .312
Surface Lin RSVM Lin RSVM Lin RSVM
# char. / token .085 .144 .104 .148 .051 .101
# tokens / tweet .158 .159 .228 .237 .115 .116
# char. / tweet .214 .261 .262 .278 .153 .169
# words >5 char. .139 .191 (.009) .087 .112 .163
Type/token ratio .099 .132 .090 .180 .100 .126
Punctuation .218 .123 .093 .086 .057 .084
Smileys .064 .113 .146 .144 (.030) .090
URLs .084 .128 .187 .194 (.040) .077
ALL .379 .330 .294 .307 .352 .126

Table 1: Predictive performance (Pearson corre-
lation) for Income, Age and Income controlled
for predicted age using linear (Lin) and non-linear
(RSVM) learning methods. The last line of each
sub-table shows the results for all features from
that block together, while individual rows display
individual performance for the predictive features.
Numbers in bold represent the highest correlations
from the specific block of features and data set.
All correlations are significant on p < 0.001 level
except for those in brackets.

these are to a large extent based on the surface fea-
tures. Notably, Flesch Reading Ease – previously
reported to correlate with education levels at a com-
munity level (Davenport and DeLine, 2014) and
with the usage of pronouns (Štajner et al., 2012) –
is highly indicative for income. On the syntactic
level we observe that increased use of nouns, de-
terminers and adjectives is correlated higher with
age as opposed to income, while a high ratio of
pronouns and interjections is a good predictor of
lower income but, only to a lesser extent, younger
age, with which it is traditionally associated (Schler
et al., 2006). From the stylistic features, the con-
textuality measure stands out as being correlated
with increase in age, in line with Heylighen and De-
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Figure 2: Predictive performance (Pearson correla-
tion) for Income and Age. Individual points display
univariate correlations (including sign) of the most
predictive features.

waele (2002), but is almost orthogonal to income.
Similarly, the frequency of named entities is corre-
lated with higher income, while elongations have
stronger association with younger age. Our results
show, that based on the desired application, one
can exploit these differences to tailor the style of a
document without altering the topic to suit either
age or income individually.

6 Conclusions and Future Work

Using two large data sets from thousands of users,
annotated with their age and income, we pre-
sented the first study which analyzes these vari-
ables jointly, in relation to writing style. We have
shown that the stylistic measures not only obtain
significant correlations with both age and income,
but are predictive of income beyond age. Moreover,
we explored temporal patterns in user behavior on
Twitter, discovering intriguing trends in writing
style. While the discovery of these patterns pro-
vides useful psychosocial insight, it additionally
hints to future research and applications that piggy-
back on author profiling in social media e.g., taking
the message timestamp into account for stylistic
features may yield improved results in user socio-
demographic predictions. Likewise, utilizing addi-
tional proxies to control for income and education
may lead to improvements in user age prediction.
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Maité Boyé, Thi Mai Tran, and Natalia Grabar. 2014.
Nlp-oriented contrastive study of linguistic pro-
ductions of alzheimer and control people. In
LNCS 8686 Springer, Advances in Natural Lan-
guage Processing, editor, POLTAL, pages 412–424.

D. John Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating Gender on
Twitter. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
EMNLP.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you Tweet: A Content-based
Approach to Geo-locating Twitter Users. In Pro-
ceedings of the 19th ACM Conference on Informa-
tion and Knowledge Management, CIKM.

Meri Coleman and TL Liau. 1975. A Computer
Readability Formula Designed for Machine Scoring.
Journal of Applied Psychology, 60(2).

Cristian Danescu-Niculescu-Mizil, Michael Gamon,
and Susan Dumais. 2011. Mark my Words!: Lin-
guistic Style Accommodation in Social Media. In
Proceedings of the 20th International Conference on
World Wide Web, WWW.

317



James RA Davenport and Robert DeLine. 2014.
The Readability of Tweets and their Geographic
Correlation with Education. arXiv preprint
arXiv:1401.6058.

Munmun De Choudhury, Michael Gamon, Scott
Counts, and Eric Horvitz. 2013. Predicting Depres-
sion via Social Media. In Proceedings of the Seventh
International AAAI Conference on Weblogs and So-
cial Media, ICWSM.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP.

Jacob Eisenstein, Noah A Smith, and Eric P Xing.
2011. Discovering Sociolinguistic Associations
with Structured Sparsity. In Proceedings of the
49th annual meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL.

Lijun Feng, Noémie Elhadad, and Matt Huenerfauth.
2009. Cognitively Motivated Features for Readabil-
ity Assessment. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-Local Informa-
tion into Information extraction Systems by Gibbs
Sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics,
ACL.

Rudolf Flesch. 1948. A New Readability Yardstick.
The Journal of Applied Psychology, 32(3).

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In Proceedings of the 49th annual meeting of the As-
sociation for Computational Linguistics, ACL.

Scott A. Golder and Michael W. Macy. 2011. Diur-
nal and Seasonal Mood Vary with Work, Sleep, and
Daylength Across Diverse Cultures. Science, 333.

Robert Gunning. 1969. The Fog index after Twenty
Years. Journal of Business Communication, 6(2).

Francis Heylighen and Jean-Marc Dewaele. 2002.
Variation in the Contextuality of Language: An Em-
pirical Measure. Foundations of Science, 7(3).

Dirk Hovy and Anders Søgaard. 2015. Tagging Perfor-
mance Correlates with Author Age. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics, ACL.

Ken Hyland. 2005. Stance and Engagement: A Model
of Interaction in Academic Discourse. Discourse
Studies, 7(2):173–192.

Anders Johannsen, Dirk Hovy, and Anders Sogaard.
2015. Cross-lingual syntactic variation over age and
gender. In CONNL.

Timothy A. Judge, Chad A. Higgins, Carl J. Thoresen,
and Murray R. Barrick. 1999. The big five personal-
ity traits, general mental ability, and carreer success
across the life span. Personnel Psychology, 52.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation
of New Readability Formulas (Automated Readabil-
ity Index, Fog Count and Flesch Reading Ease For-
mula) for Navy Enlisted Personnel. Technical re-
port, Naval Technical Training Command Milling-
ton TN Research Branch.

William Labov. 2006. The Social Stratification of En-
glish in New York City. Cambridge University Press.

Vasileios Lampos, Nikolaos Aletras, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2014. Predicting and Char-
acterising User Impact on Twitter. In Proceedings of
the 14th Conference of the European Chapter of the
Association for Computational Linguistics, EACL,
pages 405–413.

Xuan Le, Ian Lancashire, Graeme Hirst, and Regina
Jokel. 2011. Longitudinal Detection of Dementia
through Lexical and Syntactic Changes in Writing:
A Case Study of Three British Novelists. Literary
and Linguistic Computing, 26(4).

Annie Louis and Ani Nenkova. 2013. What makes
Writing Great? First Experiments on Article Qual-
ity Prediction in the Science Journalism Domain.
Transactions of the Association for Computational
Linguistics.

Annie Louis and Ani Nenkova. 2014. Verbose,
Laconic or Just Right: A Simple Computational
Model of Content Appropriateness under Length
Constraints. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, EACL.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
Off-the-Shelf Language Identification Tool. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL.

G Harry McLaughlin. 1969. SMOG Grading: A New
Readability Formula. Journal of Reading, 12(8).

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and
Theo Meder. 2013. ‘How Old do you Think I am?’;
A Study of Language and Age in Twitter. In Pro-
ceedings of the Seventh International AAAI Confer-
ence on Weblogs and Social Media, ICWSM.

Thomas Oakland and Holly B Lane. 2004. Language,
Reading, and Readability Formulas: Implications
for Developing and Adapting Tests. International
Journal of Testing, 4(3):239–252.

318



J.W. Pennebaker, Matthias R. Mehl, and K.G. Nieder-
hoffer. 2003. Psychological Aspects of Natural Lan-
guage Use: Our Words, Our Selves. Annual Review
of Psychology, 54(1).

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2012. A Universal Part-of-Speech Tagset. In Pro-
ceedings of the Eighth International Conference on
Language Resources and Evaluation, LREC.

Emily Pitler and Ani Nenkova. 2008. Revisiting Read-
ability: A Unified Framework for Predicting Text
Quality. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP.

Daniel Preoţiuc-Pietro, Sina Samangooei, Trevor Cohn,
Nick Gibbins, and Mahesan Niranjan. 2012. Trend-
miner: An Architecture for Real Time Analysis of
Social Media Text. In Workshop on Real-Time Anal-
ysis and Mining of Social Streams, ICWSM, pages
38–42.

Daniel Preoţiuc-Pietro, Vasileios Lampos, and Niko-
laos Aletras. 2015a. An Analysis of the User Occu-
pational Class through Twitter Content. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics, ACL.

Daniel Preoţiuc-Pietro, Svitlana Volkova, Vasileios
Lampos, Yoram Bachrach, and Nikolaos Aletras.
2015b. Studying user income through language, be-
haviour and affect in social media. PLoS ONE.

Daniel Preoţiuc-Pietro, Wei Xu, and Lyle Ungar. 2016.
Discovering User Attribute Stylistic Differences via
Paraphrasing. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI.

Daniel Preotiuc-Pietro, Johannes Eichstaedt, Gregory
Park, Maarten Sap, Laura Smith, Victoria Tobolsky,
H Andrew Schwartz, and Lyle H Ungar. 2015. The
Role of Personality, Age and Gender in Tweeting
about Mental Illnesses. In Proceedings of the Work-
shop on Computational Linguistics and Clinical Psy-
chology: From Linguistic Signal to Clinical Reality,
NAACL.

Francisco Rangel, Paolo Rosso, Irina Chugur, Martin
Potthast, Martin Trenkmann, Benno Stein, Ben Ver-
hoeven, and Walter Daelemans. 2014. Overview
of the 2nd Author Profiling Task at PAN 2014. In
Proceedings of the Conference and Labs of the Eval-
uation Forum (Working Notes), CLEF.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying Latent User At-
tributes in Twitter. In Proceedings of the 2nd In-
ternational Workshop on Search and Mining User-
generated Contents, SMUC.

Sara Rosenthal and Kathleen McKeown. 2011. Age
Prediction in Blogs: A Study of Style, Content, and
Online Behavior in Pre-and Post-Social Media Gen-
erations. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics,
ACL.

Maarten Sap, Gregory Park, Johannes Eichstaedt, Mar-
garet Kern, David Stillwell, Michal Kosinski, Lyle
Ungar, and H Andrew Schwartz. 2014. Develop-
ing Age and Gender Predictive Lexica over Social
Media. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP.

Jonathan Schler, Moshe Koppel, Shlomo Argamon,
and James Pennebaker. 2006. Effects of Age and
Gender on Blogging. In Proceedings of 2006 AAAI
Spring Symposium on Computational Approaches
for Analyzing Weblogs.

H Andrew Schwartz, Johannes C Eichstaedt, Mar-
garet L Kern, Lukasz Dziurzynski, Stephanie M
Ramones, Megha Agrawal, Achal Shah, Michal
Kosinski, David Stillwell, Martin EP Seligman, and
Lyle H Ungar. 2013. Personality, Gender, and
Age in the Language of Social Media: The Open-
Vocabulary Approach. PLoS ONE.

R.J. Senter and E.A. Smith. 1967. Automated Read-
ability Index. Aerospace Medical Research Labora-
tories.
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Abstract

Optimism is linked to various personal-
ity factors as well as both psychological
and physical health, but how does it re-
late to the way a person tweets? We an-
alyze the online activity of a set of Twit-
ter users in order to determine how well
machine learning algorithms can detect a
person’s outlook on life by reading their
tweets. A sample of tweets from each user
is manually annotated in order to estab-
lish ground truth labels, and classifiers are
trained to distinguish between optimistic
and pessimistic users. Our results sug-
gest that the words in people’s tweets pro-
vide ample evidence to identify them as
optimists, pessimists, or somewhere in be-
tween. Additionally, several applications
of these trained models are explored.

1 Introduction

Optimists believe that future events are going to
work out for the best; pessimists expect the worst
(Carver et al., 2010). Research has shown that op-
timism is correlated with many positive life out-
comes including improvements in life expectancy
(Diener and Chan, 2011), physical health (Peter-
son and Bossio, 2001), and mental health (Achat et
al., 2000). Previously, it was found that optimism
and pessimism are differentiable but related: pes-
simism was principally associated with neuroti-
cism and negative affect while optimism was pri-
marily associated with extraversion and positive
affect (Marshall et al., 1992). Another study found
that optimism was correlated with personality fac-
tors, including extraversion, emotional stability,
conscientiousness, and agreeableness (Sharpe et
al., 2011).

It is clear that optimism relates to a wide vari-
ety of psychological and social variables, but how
might optimism influence the way a person uti-
lizes a social media platform? What features dis-
tinguish optimistic users from pessimistic ones?
In order to answer these questions, we must first
establish a means by which we can measure peo-
ple’s levels of optimism and pessimism. The Life
Orientation Test (LOT) is commonly used to as-
sess the degree to which a person is an optimist
(Scheier and Carver, 1985). This short survey
asks respondents to evaluate their own agreement
with a number of short statements using a five-
point scale. However, distributing such a sur-
vey over a large population requires both time
and a form of incentive. Recent work has shown
that open-ended text samples can be computation-
ally analyzed to provide a more comprehensive
view of a person’s personal values than can be
achieved using a more constrained, forced choice
survey (Boyd et al., 2015). Furthermore, we know
that language use is an independent and meaning-
ful way of exploring personality (Pennebaker and
King, 1999), and personality is correlated with op-
timism (Sharpe et al., 2011). Given a large enough
text corpus, it may therefore be possible to build
computational models that can automatically rec-
ognize optimism itself by looking at the words
people use. The vast amount of publicly available
social media data provides an excellent source of
data that can be used to build models of users’ psy-
chological traits, as was done in previous studies
that trained machines to predict aspects of person-
ality from tweets (Golbeck et al., 2011; Sumner et
al., 2012).

A tool that could identify optimists and pes-
simists by analyzing their text would aid in large
scale studies of optimism among social media or
other web users by providing a large number of
subjects to analyze. This would open the door to
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massive studies of the relationships between opti-
mism, pessimism, and a range of online behaviors.
On the other hand, an optimism classification sys-
tem could help improve the social platform itself.
For example, by learning more about the psycho-
logical traits of its users, Twitter could improve its
“who to follow” suggestions so that they reflect
people who have a similar outlook on life.

2 Data and Method

As a data source, we chose Twitter because it
is widely used and is ripe with short pieces of
text (i.e., tweets) containing people’s everyday
thoughts, observations, and conversations. We
used Twitter’s basic search function to look for
users whose tweets include words and phrases that
indicate that they might identify as optimistic or
pessimistic. Looking for phrases such as “I am op-
timistic” within a user’s tweets to find potentially
optimistic users, we identified 714 candidates.
Finding pessimistic Twitter users proved more dif-
ficult because users would not usually tweet some-
thing negative such as “I am pessimistic” and
present themselves in an unflattering way. We in-
stead searched for keywords such as “hate,” “un-
fair,” and “disgust,” which may indicate a pes-
simistic nature. This led to 640 potential pes-
simists. For each user, we crawled their 2,000
most recent tweets (or all their tweets if the user
had less than 2,000). In order to verify that the ac-
counts identified were owned mostly by individ-
ual users (as opposed to organizations), we man-
ually inspected a random sample of 50 accounts
and found only one that appeared to be related to
an organization.

Using the collected data set, which we expected
would be more representative of optimistic or pes-
simistic nature than the norm based on the con-
tent of their tweets, we selected a fraction of the
users to create a ground truth set for our task. We
used Amazon Mechanical Turk (MTurk)1 to ob-
tain human annotatations for a subset of our cor-
pus. We randomly selected 500 users who were
retrieved by the optimistic queries and 500 users
found when searching for pessimists. For each
user, we randomly selected 15 tweets for a total of
15,000 tweets to be labeled on a scale of −3 (very
pessimistic) to 3 (very optimistic) by five indepen-
dent annotators. Before labeling began, we pro-
vided clear definitions of optimism and pessimism

1http://www.mturk.com

to the annotators.
In order to pick the tweets from each user that

had a stronger emotional signal, we took advan-
tage of the “positive emotions” and “negative emo-
tions” word categories included in the Linguistic
Inquiry and Word Count Tool (Pennebaker et al.,
2001).2 If any of the original 15 tweets did not
contain at least one word from either category, the
tweet was removed and a new tweet was chosen at
random to replace it. This process was repeated
until we had a set of 15 tweets per user with-
out skewing that user’s true distribution of positive
and negative tweets.

During the MTurk annotation, to identify work-
ers who were quickly selecting options without
even reading the tweets, we added a “check” ques-
tion that asked the workers to choose a specific
value for that question. All the workers who did
not correctly answer this “check” question were
removed from the annotation. When a worker’s
annotations had to be thrown out, the tweets were
put back onto MTurk for reannotation. Addition-
ally, we compared the scores of each annotator
with the average score and removed workers who
deviated significantly from the others. The final
agreement (Krippendorf’s alpha) between the five
annotators was measured at 0.731, assuming an in-
terval scale.

For each individual tweet, we assigned a la-
bel of “optimistic,” “pessimistic,” or “neutral”.
Any tweet with an average score greater than one
(slightly optimistic or higher in the annotation
task) was considered an “optimistic” tweet, and
those with an average score less than one (slightly
pessimistic or lower) were given the “pessimistic”
class label. The tweets with average MTurk anno-
tation scores between -1 and 1 were considered to
be “neutral.”

We also assigned a class label to each user. To
accomplish this, we calculated the average of the
assigned scores, sorted the Twitter users by their
level of optimism, and considered the top 25% of
users as optimists, the bottom 25% as pessimists,
and the remaining ones as neutral.

Before moving on, we decided to investigate the
online behaviors and attributes of the optimistic
and pessimistic users in our new data set. A sum-
mary of some of the differences between the two
groups is shown in Table 1. Interestingly the opti-
mists have more followers and are following more

2The 2007 version of LIWC was used
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Optimistic Pessimistic
mean followers 6238 1840
mean following 1898 1156
mean tweets 12156 28190
median followers 972 572
median following 718 443
median tweets 5687 17451
std. dev of tweets 17952 37851
min number of tweets 108 28
max number of tweets 99344 231220
tweet rate 10.24 19.184
favorite count 4314.34 8761.2
listed count 112.62 10.23

Table 1: Statistics for the most extreme 100 opti-
mistic & 100 pessimistic users.

other users than the more pessimistic users. On
the other hand, the pessimists tend to tweet much
more frequently, with a mean and median num-
ber of tweets both more than twice as large as the
optimist group. This is not just a factor of the
pessimists having been around longer to build up
a history of tweets- we also compute the “tweet
rate” for each user by dividing their total number
of tweets by the total number of days since the ac-
tivation of their Twitter account. Looking at this
variable, we see that the average number of tweets
per day is much higher for the pessimists. Opti-
mists are also included in more lists, while pes-
simists choose to label things as a “favorite” more
often.

In order to build computational models to dif-
ferentiate between the optimistic and pessimistic
users, we use five different methods from the
scikit-learn python library3: Naive Bayes (NB),
Nearest Neighbor (NN), Decision Tree (DT), Ran-
dom Forest Classifier (RFC), Gradient Boosting
Classifier (GBC) and Stochastic Gradient Descent
(SGD). The default parameters are used for each.
The preprocessing method was the same for all
different classifiers: the text was preprocessed by
removing mentions (@), web links, and the phrase
RT. We also used the Emoji unicode tables to re-
place all Emoji unicodes to their corresponding
meanings (e.g., “<smiling-face>”). We tried per-
forming classification both with and without re-
moving stopwords to see what the effect was. For
all different classifiers, we tested with different
settings: with and without stopwords; and adding
a user’s profile information as additional features
or not.

3http://scikit-learn.org/stable/
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Figure 1: Tweet level classification accuracy for
the two-way and three-way classification prob-
lems.

3 Results

We first evaluate the ability of our classifiers
to distinguish between optimistic and pessimistic
tweets (two-way classification) or among opti-
mistic, pessimistic, and neutral tweets (three-
way classification). We randomly selected 1,000
tweets from each class. Figure 1 shows the ten-
fold cross validation results obtained using the six
classifiers. During each classification, we made
sure that tweets from the same user were not
shared between the training and testing folds. In
both cases, the best setting was using the Naive
Bayes classifier and not including profile informa-
tion as features. Stopword removal had no notice-
able effect. Note that the majority baseline is a
score of 50% in the two-class case, while it is 33%
in the three-class case.

For additional insight, Table 2 shows some of
the top features for the optimistic and pessimistic
class, sorted by the probability of the feature given
the class. We can see that, as one might ex-
pect, the useful words for detecting optimists are
generally very positive, while the pessimistic fea-
tures are negative and sprinkled with profanity.
Since we formulated the problem as a three-way
classification, it is reasonable that some words
may have high scores for both optimistic and pes-
simistic classes. These words distinguish opti-
mism/pessimism from the neutral class.

We perform our next evaluation at the user level,
which means that we consider all tweets from
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Optimism Pessimism
love, so, that, be fuck, that, not, so

have, good, am, this like, am, do, hate
on, your, not, day have, be, this, just
like, just, do, will up, life, on, shit
can, get, what, at no, people, can, what

great, make, up, much feel, your, about, I’m
best, we, if, go go, know, get, even

was, from, thing, out want, at, was, off
look, thank, know,he out, kill, if, done

Table 2: Most discriminating features collected
by the Naive Bayes classifier for the three-class
tweet-level prediction setting.
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Figure 2: Accuracy on the user-level prediction
task for different data sizes.

a user as a single document. The classification
is performed using a randomly selected set of
100, 200, 300, and 400 users from the annotated
set (each set adds 100 new users to the previous
group). In each case, the 25% users with high-
est annotation score are considered the optimistic
group, 25% users with lowest annotation score as
pessimist group, and the other 50% of users is the
neutral group. The results of the ten-fold cross val-
idation are shown in Figure 2. In this setting, the
Gradient Boosting Classifier usually outperforms
the others and achieves an accuracy of 73.33% on
the 400 user data set.

We also sought to discover how accurate the
classifiers would be if the objective was simply
to identify the top N optimists or pessimists. For
example, if we wanted to find the 10 users out
of a group with the greatest number of optimistic
tweets, how accurately could this be done? To
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Figure 3: Cumulative classification accuracy on
the top N users sorted by Naive Bayes predicted
probabilities

City Neutral Users Optimists Pessimists
Chicago 20.65% 39.27% 40.08%
Los Angeles 14.55% 31.87% 53.58%
New York 20.74% 40.63% 38.63%

Table 3: Predicted optimism & pessimism in three
major cities

carry out this analysis, we sorted the users by the
probabilities that they belonged to either the op-
timistic class or the pessimistic class as predicted
by a Naive Bayes classifier (Figure 3). Then, we
compute the accuracy for the top N optimists and
pessimists. As we can see, it is possible to predict
the most pessimistic 14 users with perfect accu-
racy. On the other hand, some of the most likely
optimistic users actually belonged to another class
based on the ground truth labels. With a larger
number of users to classify, it becomes easier to
correctly label optimists than pessimists.

4 Applications

What kinds of things can we learn with a tool for
classifying optimists and pessimists? First, we
look at groups of users from three major cities in
the United States: Chicago, Los Angeles, and New
York. We found users who listed their location as
one of these three cities (494 users from Chicago,
433 from Los Angeles, 480 from New York), then
collected 2,000 tweets from each user. Using our
best models from the user-level experiments, we
obtain predictions for the optimism/pessimism of
the users. The breakdown of predicted optimists,
pessimists, and neutral users is listed in Table 3.
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Chicago and New York are fairly balanced with
roughly 40% of people falling into each category
(leaving 20% as neutral). However, pessimists
were predicted much more often than optimists in
Los Angeles.

For a second sample application, we went
to the official twitter accounts of six presiden-
tial candidates: Hillary Clinton, Donald Trump,
Marco Rubio, Martin O’Malley, Bernie Sanders
and Ben Carson. We randomly picked approxi-
mately 500 followers of each of the candidates and
predicted the optimism/pessimism of them (Table
4).4 While these scores are only estimates, we
see that O’Malley’s followers tend to be the users
who posted a greater number of optimistic tweets,
while the users who tweeted lots of pessimistic
tweets are those keeping up-to-date with Rubio’s
campaign. Overall, we see that most of the fol-
lowers of these candidates are optimistic.

Candidate Neutral Users Optimists Pessimists
Clinton 31.52% 49.22% 19.26%
Trump 36.20% 39.46% 24.32%
Rubio 30.00% 49.41% 20.59%
O’Malley 29.22% 64.51% 6.26%
Sanders 44.62% 44.42% 10.96%
Carson 31.54% 49.90% 18.56%

Table 4: Predicted optimism & pessimism of those
following some of the candidates for the 2016
Presidential election.

5 Conclusions and Future Work

We have shown that we can use Twitter to collect
a data set5 of optimistic and pessimistic users, and
predict the most (top 25%) optimistic/pessimistic
users with greater than 70% accuracy. The opti-
mistic users on Twitter tended to have more so-
cial connections, but tweet less often than the pes-
simists. In the future, we hope to explore the social
effects of optimism, such as the degree to which
optimistic users follow one another and whether or
not optimistic comments receive more “favorites”
and retweets. Finally, we would like to compare
the optimism and pessimism scores that our model
predicts with those received when taking the LOT
in order to compare the text-based analysis with a
widely used tool for measuring optimism.

4data collected late December, 2015
5The data set introduced in this paper is avail-

able at http://lit.eecs.umich.edu/research/
downloads.
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Abstract

Access to data is critical to any machine
learning component aimed at training an
accurate predictive model. In reality, data
is often a subject of technical and legal
constraints. Data may contain sensitive
topics and data owners are often reluc-
tant to share them. Instead of access to
data, they make available decision mak-
ing procedures to enable predictions on
new data. Under the black box classifier
constraint, we build an effective domain
adaptation technique which adapts classi-
fier predictions in a transductive setting.
We run experiments on text categorization
datasets and show that significant gains
can be achieved, especially in the unsuper-
vised case where no labels are available in
the target domain.

1 Introduction

While huge volumes of unlabeled data are gener-
ated and made available in various domains, the
cost of acquiring data labels remains high. Do-
main Adaptation problems arise each time when
one leverage labeled data in one or more related
source domains, to learn a classifier for unseen
data in a target domain which is related, but not
identical. The majority of domain adaptation
methods makes an assumption of largely avail-
able source collections; this allows to measure
the discrepancy between distributions and either
build representations common to both target and
sources, or directly reuse source instances for a
better target classification (Xu and Sun, 2012).

Numerous approaches have been proposed to
address domain adaptation for statistical machine
translation (Koehn and Schroeder, 2007), opin-
ion mining, part of speech tagging and document

ranking (Daumé, 2009), (Pan and Yang, 2010),
(Zhou and Chang, 2014). Most effective tech-
niques include feature replication (Daumé, 2009),
pivot features (Blitzer et al., 2006), (Pan et al.,
2010) and finding topic models shared by source
and target collections (Chen and Liu, 2014). Do-
main adaptation has equally received a lot of at-
tention in computer vision (Gopalan et al., 2015)
where domain shift is a consequence of changing
conditions, such as background, location and pose,
etc.

More recently, domain adaptation has been
tackled with word embedding techniques or deep
learning. (Bollegala et al., 2015) proposed an un-
supervised method for learning domain-specific
word embedding while (Yang and Eisenstein,
2014) relied on word2vec models (Mikolov et
al., 2013) to compute feature embedding. Deep
learning has been considered as a generic solu-
tion to domain adaptation (Vincent et al., 2008;
Glorot et al., 2011), (Chopra et al., 2013) and
transfer learning problems (Long et al., 2015).
For instance, denoising autoencoders are success-
ful models which find common features between
source and target collection. They are trained to
reconstruct input data from partial random corrup-
tion and can be stacked into a multi-layered net-
work where the weights are fine-tuned with back-
propagation (Vincent et al., 2008) or marginalized
out (Chen et al., 2012).

Domain adaptation is also very attractive for
service companies operating customer business
processes as it can reduce annotation costs. For
instance, opinion mining components deployed in
a service solution can be customized to a new cus-
tomer and adapted with few annotations in order
to achieve a contractual performance.

But, in reality, the simplifying assumption of
having access to source data rarely holds and lim-
its therefore the application of existing domain
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adaptation methods. Source data are often a sub-
ject of legal, technical and contractual constraints
between data owners and data customers. Often,
customers are reluctant to share their data. In-
stead, they often put in place decision making pro-
cedures. This allows to obtain predictions for new
data under a black box scenario. Note that this
scenario is different from the differential privacy
setting (Dwork and Roth, 2014) in the sense that
no queries to the raw source database are allowed
whereas, in our case, only requests for predict-
ing labels of target documents are permitted. This
makes privacy preserving machine learning meth-
ods inapplicable here (Chaudhuri and Monteleoni,
2008), (Agrawal and Srikant, 2000).

In addition, black boxes systems are frequent in
natural language processing applications. For in-
stance, Statistical Machine Translation (SMT) sys-
tems are often used as black box to extract fea-
tures (Specia et al., 2009). Similarly, the prob-
lem of adapting SMT systems for cross lingual
retrieval has been addressed in (Nikoulina et al.,
2012) where target document collections cannot
be accessed and the retrieval engine works as a
black box.

In this paper we address the problem of adapt-
ing classifiers trained on the source data and avail-
able as black boxes. The case of available source
classifiers has been studied by (Duan et al., 2009)
to regularize supervised target classifiers, but we
consider here a transductive setting, where the
source classifiers are used to predict class scores
for a set of available target instances.

We then apply the denoising principle (Vin-
cent et al., 2008) and consider these predictions
on target instances as corrupted by the domain
shift from the source to target. More precisely,
we use the stacked Marginalized Denoising Au-
toencoders (Chen et al., 2012) to reconstruct the
predictions by exploiting the correlation between
the target features and the predicted scores. This
method has the advantage of coping with unsuper-
vised cases where no labels in the target domain is
available. We test the prediction denoising method
on two benchmark text classification datasets and
demonstrate its capacity to significantly improve
the classification accuracy.

2 Transductive Prediction Adaptation

The domain adaptation problem consists of lever-
aging the source labeled and target unlabeled data

to derive a hypothesis performing well on the
target domain. To achieve this goal, most DA
methods compute correlation between features in
source and target domains. With no access to
source data, we argue that the above principle can
be extended to the correlation between target fea-
tures and the source class decisions. We tune
an adaptation trick by considering predicted class
scores as augmented features for target data. In
other words, we use the source classifiers as a
pivot to transfer knowledge from source to target.
In addition, one can exploit relations between the
predictions scores and the target feature distribu-
tion to provide adapted predictions.

2.1 Marginalized Denoising Autoencoder

The stacked Marginalized Denoising Autoencoder
(sMDA) is a version of the multi-layer neural net-
work trained to reconstruct input data from partial
random corruption (Vincent et al., 2008) proposed
by (Chen et al., 2012), where the random corrup-
tion is marginalized out yielding the optimal re-
construction weights in the closed form.

The basic building block of the method is a one-
layer linear denoising autoencoder where a set of
N input documents xn are corrupted M times
by random feature dropout with the probability
p. It is then reconstructed with a linear mapping
W : Rd → Rd by minimizing the squared recon-
struction loss1:

L(W) =
N∑

n=1

M∑
m=1

||xn −Wx̃nm||2. (1)

Let X̄ be the concatenation ofM replicated ver-
sion of the original data and X̃ be the matrix rep-
resentation of the M corrupted versions.

Then, the solution of (1) can be expressed as
the closed-form solution for ordinary least squares
W = PQ−1 with Q = X̃X̃> and P = X̄X̃>,
where the solution depends on the re-sampling of
x1, . . . ,xN and which features are randomly cor-
rupted.

It is preferable to consider all possible corrup-
tions of all possible inputs when the denoising
transformation W is computed, i.e. letting m →
∞. By the weak law of large numbers, the ma-
trices P and Q converge to their expected values
E[Q],E[P] as more copies of the corrupted data

1A constant is added to the input, xn = [xn; 1], and an
appropriate bias, never corrupted, is incorporated within W.
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are created. In the limit, one can derive their ex-
pectations and express the corresponding mapping
for W in a closed form as W = E[P] E[Q]−1,
where:

E[Q]ij =
[

Sijqiqj , if i 6= j,
Sijqi, if i = j,

and E[P]ij = Sijqj where q = [1 − p, . . . , 1 −
p, 1] ∈ Rd+1 and S = XX> is the covariance ma-
trix of the uncorrupted data. This closed form de-
noising layer with a unique noise p is referred in
the following as marginalized denoising autoen-
coder (MDA).

It was shown by (Chen et al., 2012) that MDA
can be applied with success to domain adaptation
where the source set Xs and target set Xt are con-
catenated to form X and the mapping W can ex-
ploit the correlation between source and target fea-
tures. The case of fully available source and target
data is referred as a dream case in the evaluation
section.

2.2 Prediction Adaptation

Without access to Xs, MDA cannot be directly ap-
plied to [Xs; Xt]. Instead, we augment the fea-
ture set Xt with the class predictions represented
as vector fs(xt) of class predictions Ps(Y =
y|xt

n), n = 1, . . . , N . Let ut
n = [xt

n; fs(xt
n)]

be the target instance augmented with the source
classifier predictions and U = [ut

1u
t
2 . . .u

t
N ] be

the input to the MDA. Then we compute the op-
timal mapping W∗ = minW ||U −WŨ||2 that
takes into account the correlation between the tar-
get features xt and class predictions f s(xt). The
reconstructed class predictions can be obtained as
W∗

[1:N,d+1:d+C] · fs(xt), where C is the number
of classes, and used to label the target data. Al-
gorithm 1 summarizes all steps of the transductive
prediction adaptation for a single source domain;
the generalization to multiple sources is straight-
forward2.

3 Experimental results

We test our approach on two standard domain
adaptation datasets: the Amazon reviews (AMT)
and the 20Newsgroups (NG). The AMT dataset
consists of products reviews with 2 classes (posi-
tive and negative) represented by tf-idf normalized

2It requires concatenating the class predictions from dif-
ferent sources at step 1 and averaging the reconstructed pre-
dictions per class at step 3.

Algorithm 1 Transductive prediction adaptation.
Require: Unlabeled target dataset Xt ∈ RN×d.
Require: Class predictions fs(xt) = [Ps(Y =

1|xt
i), . . . , Ps(Y = C|xt

n)] ∈ RC .
1: Compose U ∈ RN×(d+C) with ut

n =
[xt

n; fs(xt
n)].

2: Use MDA with noise level p to estimate
W∗ = minW ||U−WŨ||2.

3: Get the denoised class predictions for xt as
yt = W∗

[1:N,d+1:d+C] · fs(xt).
4: Label xt with c∗ = argmaxc{yt

c|yt}.
5: return Labels for Xt.

bag-of-words, used in previous studies on domain
adaptation (Blitzer et al., 2011). We consider the
10,000 most frequent features and four domains
used in the studies: kitchen (k), dvd (d), books (b)
and electronics (e) with roughly 5,000 documents
per domain. We use all the source dataset as train-
ing and test on the whole target dataset. We set
the MDA noise level p to high values (e.g. 0.9),
as document representations are sparse and adding
low noise have no effect on the features already
equal to zero.

In Table 1, we show the performance of the
Transductive Prediction Adaptation (TPA) on 12
adaptation tasks in the AMT dataset. The first
column shows the accuracies for the dream case
where the standard MDA is applied to both source
and target data. The second column shows the
baseline results (fs(Xt)) obtained directly as class
predictions by the source classifier. The classifica-
tion model is an l2 regularized Logistic Regres-
sion3 cross-validated with regularized parameter
C ∈ [0.0001, 0.001, 0.1, 1, 10, 50, 100].

The two last columns show the results obtained
with two versions of TPA (results are underlined
when improving over the baseline and in bold
when yielding the highest values). In the first ver-
sion, target instances xt

n contains only features
(words and bigrams) appearing in the source docu-
ments and used to make the predictions f(xt

n). In
the second version, denoted as TPAe, we extend
TPA with words unseen in the source documents.
If the extension part is denoted vt

n, we obtain an
augmented representation ut

n = [xt
n; vt

n; f(xt
n)]

as input to MDA.

3We also experimented with other classifiers, such as
SVM , Multinomial Naive Bayes, and obtained similar im-
provement after applying TPA. Results are not shown due to
the space limitation.
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Table 1: TPA results on the AMT dataset.
S → T MDA∗ fs(Xt) TPA TPAe
d→ b 84.59 81.36 82.61 83.19
e→ b 78.07 73.87 75.93 79.95
k → b 78.75 73.50 75.02 78.39
b→ d 85.07 82.54 83.56 84.32
e→ d 79.99 76.46 77.67 81.60
k → d 80.76 77.58 79.16 81.92
b→ e 80.32 76.44 78.54 81.81
d→ e 83.70 78.65 80.75 82.89
k → e 89.05 87.55 88.38 88.50
b→ k 84.00 79.46 81.44 85.21
d→ k 86.08 80.83 83.15 86.14
e→ k 90.76 89.97 91.10 90.86
Avg 83.4 79.85 81.44 83.73

As we can see, both TPA and TPAe signifi-
cantly outperform the baseline fs(Xt) obtained
with no adaptation. Furthermore, extending TPA
with words present in target documents only al-
lows to further improve the classification accuracy
in most cases. Finally, TPAe often outperforms
the dream case and also on average (note however
that MDA∗ uses the features common to source
and target documents as input).

To understand the effect of prediction adapta-
tion we analyze the book → electronics adapta-
tion task. In the mapping W, we sort the weights
corresponding to the correlation between the posi-
tive class and the target features. Features with the
highest weights (up-weighted by TPA) are great,

my, sound, easy, excellent, good, easy to, best, yo, a great,

when, well, the best. On contrary, the words that got
the smallest weight (down-weighted by TPA) are
no, was, number, don’t, after, money, if, work, bad, get, buy.

As TPA is totally unsupervised, we run addi-
tional experiments to understand its practical use-
fulness. We compare TPA to the case of weakly
annotated target data, where few target examples
are labelled and used for training a target classi-
fier. Trained with 40, 100 and 200 target exam-
ples, a logistic regression yields an average accu-
racy of 64.63%, 68.01% and 75.13% over 12 tasks
and a Multinomial Naives Bayes reports 65.82%,
71.49% and 76%, respectively. Even with 200
labeled target documents, the target versus tar-
get classification results are significantly below
the 79.8% average accuracy of the baseline source
classifier.

All these values are therefore significantly be-
low the 83.73% obtained with TPAe. This strongly
supports the domain adaptation scenario, when a
sentiment analysis classifier trained on a larger
source set and adapted to target documents can

do better than a classifier trained on a small set
of labeled target documents. Furthermore, we
have seen that the baseline can be significantly im-
proved by TPA and even more by TPAe without
the need of even a small amount of manual label-
ing of the target set.

The second group of evaluation tests is on the
20Newsgroup dataset. It contains around 20,000
documents of 20 classes and represents a stan-
dard testbed for text categorization. For the do-
main adaptation, we follow the setting described
in (Pan et al., 2012). We filter out rare words (ap-
pearing less than 3 times) and keep at most 10,000
features for each task with a tf-idf termweight-
ing. As all documents are organized as a hi-
erarchy, the domain adaptation tasks are defined
on category pairs with sources and targets cor-
responding to subcategories. For example, for
the ’comp vs sci’ task, subcategories such as
comp.sys.ibm.pc.hardware and sci.crypt are set as
source domains and comp.sys.ibm.mac.hardware
and sci.med as targets, respectively.

In our experiments we consider 5 adaptation
tasks on category pairs ( ’comp vs sci’,’rec vs talk’,
’rec vs sci’, ’sci vs talk’ and ’comp vs rec’ as in
(Pan et al., 2012) ), and run the baseline, TPA and
TPAe methods. For each category pair, we addi-
tionally inverse the source and target roles; this
explains two sets of experimental results for each
pair. We show the evaluation results in Table 2. It
is easy to observe again the significant improve-
ment over the baseline fs(xt

n) and the positive ef-
fect of including the unseen words in the TPA.

Table 2: TPA results on the 20Newsgroup dataset.
class pair fs(Xt) TPA TPAe

’comp vs sci’ 71.06 80.24 80.43
65.4 71.6 71.98

’rec vs talk’ 65.66 68.01 70.18
69.93 75.84 77.2

’rec vs sci’ 76.02 85.97 86.42
74.17 81.14 82.71

’sci vs talk’ 76.1 80.22 81.3
74.92 80.07 80.19

’comp vs rec’ 86.63 91.56 92.06
86.97 92.67 93.34

Avg 74.69 80.73 81.58

4 Conclusion

In this paper we address the domain adaptation
scenario without access to source data and where
source classifiers are available as black boxes. In
the transductive setting, the source classifiers can
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predict class scores for target instances, and we
consider these predictions as corrupted by domain
shift. We use the Marginalized Denoising Autoen-
coders (Chen et al., 2012) to reconstruct the pre-
dictions by exploiting the ”correlation” between
the target features and the predicted scores. We
test the transductive prediction adaptation on two
known benchmarks and demonstrate that it can
significantly improve the classification accuracy,
comparing to the baseline and to the case of full
access to source data. This is an encouraging re-
sult because it demonstrates that domain adapta-
tion can still be effective despite the absence of
source data. Lastly, in the future, we would like to
explore the adaptation of other language process-
ing components, such as named entity recognition,
with our method.
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Abstract

Microblogging sites have emerged as ma-
jor platforms for bloggers to create and
consume posts as well as to follow other
bloggers and get informed of their updates.
Due to the large number of users, and the
huge amount of posts they create, it be-
comes extremely difficult to identify rel-
evant and interesting blog posts.

In this paper, we propose a novel con-
vex collective matrix completion (CCMC)
method that effectively utilizes user-item
matrix and incorporates additional user ac-
tivity and topic-based signals to recom-
mend relevant content. The key advantage
of CCMC over existing methods is that it
can obtain a globally optimal solution and
can easily scale to large-scale matrices us-
ing Hazan’s algorithm. To the best of our
knowledge, this is the first work which ap-
plies and studies CCMC as a recommen-
dation method in social media. We con-
duct a large scale study and show signif-
icant improvement over existing state-of-
the-art approaches.

1 Introduction

The usage of social media sites has significantly
increased over the years. Every minute people up-
load thousands of new videos on YouTube, write
blogs on Tumblr1, take pictures on Flickr and In-
stagram, and send messages on Twitter and Face-
book. This has lead to an information overload
that makes it hard for people to search and dis-
cover relevant information.

Social media sites have attempted to mitigate
this problem by allowing users to follow, or sub-
scribe to updates from specific users. However, as

1www.tumblr.com

the number of followers grows over time, the in-
formation overload problem returns. One possible
solution to this problem is the usage of recommen-
dation systems, which can display to users items
and followers that are related to their interests and
past activities.

Over time recommender methods have signifi-
cantly evolved. By observing the history of user-
item interactions, the systems learn the prefer-
ences of the users and use this information to ac-
curately filter through vast amount of items and
allowing the user to quickly discover new, inter-
esting and relevant items such as movies, clothes,
books and posts. There is a substantial body
of work on building recommendation systems for
discovering new items, following people in social
media platforms, predicting what people like (Pu-
rushotham et al., 2012; Chua et al., 2013; Kim et
al., 2013). However, these models either do not
consider the characteristics of user-item adoption
behaviors or cannot scale to the magnitude of data.

It is important to note that the problem of rec-
ommending blog posts differs from the traditional
collaborative filtering settings, such as the Net-
flix rating prediction problem in two main as-
pects. First, the interactions between the users
and blogs are binary in the form of follows and
there is no explicit rating information available
about the user’s preference. The follow informa-
tion can be represented as an unidirectional un-
weighted graph and popular proximity measures
based on the structural properties of the graph have
been applied to the problem (Yin et al., 2011).
Second, the blog recommendation inherently has
richer side information additional to the conven-
tional user-item matrix (i.e. follower graph).

In Tumblr, text data includes a lot of informa-
tion, since posts have no limitation in length, com-
pared to other microblogging sites such as Twit-
ter. While such user generated content charac-
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terizes various blogs, user activity is a more di-
rect and informative signal of user preference as
users can explicitly express their interests by lik-
ing and reblogging a post. This implies that users
who liked or reblogged the same posts are likely
to follow similar blogs. The challenge is how to
combine multiple sources of information (text and
activity) at the same time. For the purpose, we
propose a novel convex collective matrix comple-
tion (CCMC) social media recommender model,
which can scale to million by million matrix using
Hazan’s algorithm (Gunasekar et al., 2015).
Our contributions are as follows:
• We propose a novel CCMC based Tumblr blog

post recommendation model.
• We represent users and blogs with an exten-

sive set of side information sources such as the
user/blog activity and text/tags.
• We conduct extensive experimental evaluations

on Tumblr data and show that our approach sig-
nificantly outperforms existing methods.

2 Convex Collective Matrix Completion

In this section, we formulate the Tumblr blog post
recommendation task as collective matrix factor-
ization problem and we describe our large-scale
convect collective matrix completion method with
Hazan’s algorithm (Gunasekar et al., 2015).

2.1 Model Description

LetX1 ∈ {0, 1}nr1×nc1 denote the user-blog (fol-
lower) matrix, where nr1 is the number of users
and nc1 is the number of blogs. In this matrix,
if the user i likes blog j, the (i, j)th element is
set to 1. In addition to the user-blog matrix, we
have other auxiliary matrices denoted by X2 ∈
Rnr2×nc2 and X3 ∈ Rnr3×nc3 . For example, if
we have an user activity matrix, we can use it as
X2, where nr2 = nr1 and nc2 is the number of
activities. Moreover, if we have the content infor-
mation of articles, we can use them as X3. In this
case, nc1 = nc3 is the number of blogs, and nr3 is
the number of topics in LDA. Note that, X1 tends
to be a sparse matrix, whileX2 andX3 tend to be
denser matrices. The final goal is to factorize X1

with the help of the auxiliary matrices X2 and/or
X3. First, we form a large matrix M by concate-
nating all matrices [Xv]Vv=1 and then factorizing
M together with the regularizations.

In this paper, we adopt a convex approach
(Bouchard et al., 2013; Gunasekar et al., 2015).

For example, for V = 3 , the matrix M is given
as

M =


· X1 X2 ·
X>1 · · X3

X>2 · · ·
· X>3 · ·

 . (1)

This framework is called convex collective ma-
trix completion (CMC) (Singh and Gordon, 2008).
The key advantage of the CCMC approach is that
the sparse user-blog matrix X1 is factorized pre-
cisely with the help of the dense matrices X2

and/or X3. Moreover, it has been recently shown
that the sample complexity of the CCMC algo-
rithm can be smaller than that of the simple matrix
factorization approach (i.e., only factorize X1)
(Gunasekar et al., 2015). Finally, the CCMC
method can easily incorporate multiple sources of
information. Over time if Tumblr provides new
signals or if we decide to incorporate new features,
CCMC can easily adopt them. Therefore, we be-
lieve that CCMC is very suitable for solving the
Tumblr recommendation task.

2.2 CCMC-Hazan Algorithm

One of the key challenges of CCMC for Tum-
blr data is the scalability, since Tumblr has more
than million users and hundred millions of blog
posts. The original CCMC approach adopts Sin-
gular Value Thresholding (SVT) to solve the prob-
lem, and it works for small scale problems. How-
ever, SVT needs to solve N × N dimensional
eigenvalue decomposition on each iteration, and
thus it is not feasible to deal directly with the
Tumblr data. Recently, Gunasekar et al. pro-
posed an Atomic norm minimization algorithm for
CCMC (Gunasekar et al., 2015) using the approx-
imate SDP solver of Hazan (Hazan, 2008; Jaggi
and Sulovsky, 2010). The optimization problem is
given as

min
Z�0

V∑
v=1

‖PΩv(Xv − Pv(Z))‖2F

s.t. tr(Z) ≤ η, (2)

where ‖X‖F is the Frobenius norm of matrixX ,
PΩv , which extracts the elements in the set, Ωv is
the set of non-zero indexes ofXv, Pv(Z) = Zv ∈
Rnrv×ncv , and η ≥ 0 is a regularization parameter.
The Hazan’s algorithm for CMF is summarized in
Algorithm 1.

333



Algorithm 1 CCMC with Hazan’s Algorithm of
(2)

Parameters: T (Number of iterations)
Rescale loss: f̂η(Z) =

∑
v ‖PΩv (Xv − Pv(ηZ))‖2F

Initialize Z(1)

for all t = 1, 2 . . . , T = 4
ε

do
Compute u(t) = approxEV

(−∇f̂η(Z(t)), 1
t2

)2

αt := 2
2+t

Z(t+1) = Z(t) + αtu
(t)u(t)>

end forreturn [Pv(Z
(T ))]Vv=1

The advantage of CCMC-Hazan is that it needs
to compute only a top eigenvector on each itera-
tion. Practically, on each iteration t in Algorithm
1, we just need to compute an 1

t2
-approximate

largest eigenvalue of the sparse matrix with |Ω|
non-zero elements, which needs O( |Ω|t ) compu-
tation using Lanczos algorithm. On the other
hand, the original CCMC algorithms adopt Sin-
gular Value Thresholding (SVT) method, which
converges much faster than CCMC-Hazan. How-
ever, the SVT approach has to compute all eigen-
values in each iteration. Thus, CCMC-Hazan is
more suited for large-scale dataset than CCMC-
SVT. The details of CMC with Hazan’s algorithm,
please refer to (Gunasekar et al., 2015).

3 Task Definition

We define our task as given a set of users and their
Tumblr post adoption behavior over a period of
time, the goal is to build a model that can discover
and recommend relevant Tumblr posts to the users.

3.1 Evaluation Setup and Data
We set up our Tumblr post evaluation framework
by considering the posting or reblogging of an
item j by a user i as an adopted item, and other-
wise as unadopted. We present each user with top
k items sorted by their predicted adoption score
and evaluate how many of the recommended items
(posts) were actually adopted by the users.

For our post recommendation study, we used
Tumblr data from July until September. We used
the data from July to August for training, and
tested on the data from September. This experi-
mental set up simulates A/B testing.

From the derived data, we sampled 15, 000 ac-
tive users and 35, 000 posts resulting in 5 million
user-item adoptions for training and 8.6 million
user-item adoptions for testing.

2approxEV(X, ε
)

computes the approximate top eigen
vector of X upto ε error.

In post recommendation our CCMC-Hazan
method uses an user-item matrix X1 ∈
{0, 1}15000×35000 and an item-topic matrix X2 ∈
R35000×1000. To learn the topics we use Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). We
represent a document as a collection of post de-
scription, captions and hashtags. We use 1000
topics for our experiments. Figure 1 shows some
examples of the learned topics from the Tumblr
posts.

Figure 1: LDA.

3.2 Evaluation Metrics

To evaluate the performance of our collaborative
matrix factorization approach for Tumblr post rec-
ommendation, we calculate precision (P), recall
(R) and normalized discounted cumulative gain
(nDCG) for top-k recommended posts.

-P@k as the fraction of adopted items by
each user in top-k items in the list. We aveage
precision@k across all users.

-R@k as the fraction of adopted items that are
successfully discovered in top-k ranked list out
of all adopted items by each user. We average
recall@k across all users.

-nDCG@k computes the weighted score of
adopted items based on the position in the top-k
list. We average nDCG@k of all users.
We set k to 10 since recommending too many
posts is unrealistic. While nDCG@k uses the po-
sition of correct answer in the top-k ranked list,
it does not penalize for unadopted posts or miss-
ing adopted posts in the top-k ranked list. There-
fore, to judge the performance of the algorithms,
one has to consider all three metrics together. In-
tuitively a good performing model is the one that
has high P@k, R@k and nDCG@k.

3.3 Comparison Against State-of-art Models

In addition to evaluating the performance of our
algorithm on Tumblr post recommendation, we
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also conducted a comparative study against exist-
ing state-of-the-art models.
Item-based3 The item-based model recommends
items that are similar to what the users have al-
ready adopted (Karypis, 2001). The model does
not use textual information and only uses adopted
items to compute the similarity between the items.
The similarity metric is the Tanimoto Coefficient,
which is used to handle binary ratings.
User-based The user-based model recommends
items that are adopted by other users with simi-
lar taste (Herlocker et al., 1999). The model does
not use textual information and only uses adopted
items to compute the similarity between the users.
Similar to the item-based recommendation, we use
the Tanimoto Coefficient. We choose top k items
using k-Nearest Neighbor of similar users.
MC4 Alternating least squares (ALS) is ma-
trix completion (MC) based collaborative filter-
ing model, which was originally introduced to
model user-movie rating prediction using mean-
square loss function with weighted λ regulariza-
tion (Zhou et al., 2008). The model does not use
textual information or signals for adopted items.
PMC5 Probabilistic Matrix Completion
(Salakhutdinov and Mnih, 2008) is a proba-
bilistic linear model with Gaussian observation
noise that handles very large data sets and is
robust to sparse user-item matrix. Similar to
MC, PMC models the user-item adoption as the
product of two K-dimensional lower-rank user
and item hidden variables. The model does not
use textual information, but unlike the previous
methods it uses information on unadopted items.
CF Collaborative Filtering model with softmax
function (Guadagni and Little, 1983; Manski,
1975; McFadden, 1974) captures the adoption and
un-adoption behavior of users on items in social
media. The model does not use textual informa-
tion, but it uses signals on unadopted items. CF
allows us to study the gain of performance in post
recommendation when softmax function is used
instead of the objective functions used in MC and
PMC.
CTR Collaborative Topic Regression (Wang and
Blei, 2011) was originally introduced to recom-
mend scientific articles. It combines collabora-
tive filtering PMC and probabilistic topic model-

3https://mahout.apache.org
4www.graphlab.org
5http://www.cs.cmu.edu/ chongw/citeulike/

Method PRC@10 RCL@20 AUC
Item-based 0.24 0.08 0.42
User-based 0.32 0.11 0.51
MC 0.31 0.11 0.52
PMC 0.35 0.12 0.55
CF 0.36 0.13 0.56
CTR 0.39 0.14 0.59
CCMC-Hazan 0.41 0.16 0.61

Table 1: Tumblr Post Recommendation Results

ing LDA. It captures two K-dimensional lower-
rank user and item hidden variables from user-item
adoption matrix and the content of the items. This
model uses textual information and signal for un-
adopted items.

3.4 Results

Table 1 shows the obtained results of the proposed
CCMC-Hazan method against the remaining rec-
ommendation models. The simple user and item
based recommendations have the lowest perfor-
mance. This shows that for accurate post rec-
ommendation using direct post and user informa-
tion is insufficient and one needs stronger context
driven signals. This is shown in the performance
of the CF and CTR methods, which model context
information with LDA and perform better than the
rest of the models.

However, when we compare the performance
of our collaborative matrix completion method,
we can see that the rest of the models have sig-
nificantly lower performance. The main reasons
are due to the dense information of CCMC-Hazan
method and the fact that our method optimizes a
convex function whereas the MC, CF and CTF
models can get stuck in local optima.

4 Conclusions

Recommending blog posts is one of the major
tasks for user engagement and revenue generation
in online microblogging sites such as Tumblr. In
this paper, we propose a convex collective matrix
completion based recommendation method that
effectively utilizes the user-item matrix as well
as rich side information from users and/or items.
We evaluate the proposed method on real-world
dataset collected from Tumblr. Extensive exper-
iments demonstrate the effectiveness of the pro-
posed method in comparison to existing state-of-
the-art approaches.
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Abstract

We present a new, structured approach to
text simplification using conditional ran-
dom fields over top-down traversals of
dependency graphs that jointly predicts
possible compressions and paraphrases.
Our model reaches readability scores com-
parable to word-based compression ap-
proaches across a range of metrics and hu-
man judgements while maintaining more
of the important information.

1 Introduction

Sentence-level text simplification is the problem
of automatically modifying sentences so that they
become easier to read, while maintaining most of
the relevant information in them. This can benefit
applications as pre-processing for machine trans-
lation (Bernth, 1998) and assisting technologies
for readers with reduced literacy (Carroll et al.,
1999; Watanabe et al., 2009; Rello et al., 2013).

Sentence-level text simplification ignores sen-
tence splitting and reordering, and typically fo-
cuses on compression (deletion of words) and
paraphrasing or lexical substitution (Cohn and
Lapata, 2008). We include paraphrasing and lexi-
cal substitution here, while previous work in sen-
tence simplification has often focused exclusively
on deletion. Approaches that address compres-
sion and paraphrasing (or more tasks) integrally
include (Zhu et al., 2010; Narayan and Gardent,
2014; Mandya et al., 2014).

Simplification beyond deletion is motivated by
Pitler’s (2010) observation that abstractive sen-
tence summaries written by humans often “include
paraphrases or synonyms (‘said’ versus ‘stated’)
and use alternative syntactic constructions (‘gave
John the book’ versus ‘gave the book to John’).”
Such lexical or syntactic alternations may con-

tribute strongly to the readability of a sentence if
they replace difficult words with shorter or more
familiar ones, in particular for low-literacy readers
(Rello et al., 2013). Our joint approach to deletion
and paraphrasing works against the limitation that
abstractive simplifications “are not capable of be-
ing generated by [...] most sentence compression
algorithms” (Pitler, 2010).

Furthermore, a central concern in text simplifi-
cation is to ensure the grammaticality of the out-
put, especially with low-proficiency readers as the
target audience. Our approach to this problem is to
remove or paraphrase entire syntactic units in the
original sentence, thus avoiding to remove phrase
heads without removing their arguments or mod-
ifiers. Like Filippova and Strube (2008), we rely
on dependency structures rather than constituent
structures, which promises more robust syntactic
analysis and allows us to operate on discontinuous
syntactic units.

Contributions We present a sentence simplifi-
cation model which is, to the best of our knowl-
edge, the first model that uses structured predic-
tion over dependency trees and models compres-
sion and paraphrasing jointly. Our model uses
Viterbi decoding rather than scoring of all can-
didates and outputs probabilities reflecting model
confidence.

2 Data

We use the publicly available Google compres-
sion data set,1 which consists of 10,000 English
sentence triples with (1) the original sentence as
present in the body of an online news article, (2)
a headline based on the original sentence, and (3)
a compression that is automatically derived from
the original such that it only contains word forms

1http://storage.googleapis.com/
sentencecomp/compressiondata.json
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Figure 1: An example simplification tree

present in the original, preserving their order. The
following sentence triple exemplifies these differ-
ent versions:

(1) In official documents released earlier this
month it appears the Queen of England
used the wrong name for the Republic of
Ireland when writing to president Patrick
Hillery.

(2) Queen elizabeth ii used wrong name for
Republic

(3) The Queen of England used the wrong
name for the Republic of Ireland.

The data is pre-processed with the Stanford
CoreNLP tools (Manning et al., 2014), retrieving
lemmas, parts-of-speech, named entities and de-
pendency trees. We reserve the first 200 sentences
from the data set for evaluation, the next 200 for
tuning parameters (including the used PPDB ver-
sions, see next paragraph), and use the remaining
9,600 sentences for training our model.

Deletion and paraphrase targets As our ap-
proach operates on dependency trees, aiming to
prune or paraphrase subtrees from the dependency
tree of a sentence, we identify deleted or para-
phrased subtrees, marking their heads with a cor-
responding label. A subtree receives a Delete label
if none of the words subsumed by this subtree oc-
cur in the compressed version of the sentence.

We identify paraphrased subsequences in an
original sentence by looking up the subsequence
string in the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013) and testing if one of its pos-
sible paraphrases occurs in the headline version of
the sentence in question. The Paraphrase Database
1.0 is a set of phrasal and lexical pairs that were
automatically acquired from bilingual parallel cor-
pora, and thus contain a portion of flawed para-
phrase pairs. The database comes in a number
of different sizes, where small editions are re-
stricted to high-precision paraphrases with rela-
tively high paraphrase probabilities. As the two
smallest editions of PPDB only yield a very low
number of paraphrase targets (less than 100 in the

entire Google compression data set), we opt to em-
ploy a medium-sized version of the resource (size
‘L’) and find a total of 510 phrasal and lexical
paraphrases in the corpus.

3 Method

We assume that text simplification is a genera-
tive process on syntactic dependency graphs with
a paraphrase dictionary. A dependency graph
G = (V,A) is a labeled directed graph in
the standard graph-theoretic sense and consists
of nodes, V , and arcs, A, such that for sen-
tence S = w0w1 . . . wn and label set R, V ⊆
{w0, w1, . . . , wn}, and A ⊆ V × R × V hold,
and if (wi, r, wj) ∈ A then (wi, r

′, wj) 6= A for
all r′ 6= r. We restrict the dependency graphs
to the class of trees, i.e., for (wi, r, wj) ∈ A, if
(wk, r, wj) ∈ A then k = i.

The generative process traverses the tree in a
top-down fashion, deleting or paraphrasing sub-
trees (see Figure 1). Note that elements in sub-
trees dominated by a deleted node are automati-
cally deleted (analogously for paraphrases).

For each dependency tree G = (V,A) in a
training set of T sentences, we derive an in-
put sequence of K-dimensional feature vectors
x = x1, . . . , xn and an output sequence of
y = y1, . . . , yn. Our tree-to-string simplification
model is a second-order linear-chain conditional
random field (CRF)

p(y|x) =
1

Z(x)

n∏
i=1

exp{
K∑

k=1

θkfk(yt, yt−1, xt)}

with yi = Delete if and only if xi represents the
least upper bound in G covering a deleted span
in the training data, and yi = Paraphrase if and
only if xi represents the least upper bound in G
covering a paraphrased span in the training data.
For example, if the entire sentence is deleted, and
(w0, r, wi) ∈ A, then yi = Delete (but yj = Leave
for j 6= i).

This encoding means that theoretically we can
predict to paraphrase a subtree that is dominated
by a node which is in turn predicted to be deleted
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(or vice versa). However, once an operation is car-
ried out on a subtree, none of its dominated nodes
are considered in the remainder of the top-down
simplification process. Giving preference to op-
erations at higher-level syntactic environments in
this manner serves as a mechanism to resolve am-
biguities in the decision process by taking a wider
context into account.

Furthermore, predicting a node to get para-
phrased at the right corner of a deleted subtree
can potentially influence labeling decisions out-
side this subtree as a consequence of the dynamic-
program Viterbi decoding. We acknowledge that
this is a theoretical drawback of the presented ap-
proach, but given that we do not observe any such
dependency graphs in our data, we do not expect
this to be a serious problem in most cases.

Whenever our model predicts that a subtree be
paraphrased, we look up the respective token se-
quence in PPDB and replace it with the candi-
date paraphrase (if available) that maximises the
product of frequency and translation probability
according to PPDB.

Features for CRF model We train a second-
order CRF model using MarMoT (Mueller et al.,
2013), an efficient higher-order CRF implementa-
tion. The model computes its observational prob-
abilities from features based on properties of the
subtree root token (incl. POS, language model
probability, NE mention, word difficulty), of the
internal structure of the subtree (incl. number of
children, depth, length of sequence), and of the
external grammatical structure (incl. dependency
relation, parent POS, distance from parent, posi-
tion in sentence).

4 Evaluation

Baselines In the following experiments, we
compare our approach to state-of-the-art ap-
proaches to sentence compression and joint com-
pression/paraphrasing. For the first of these two
categories, we consider the LSTM system de-
scribed in Filippova et al. (2015) as well as the
results reported therein for the MIRA system (Mc-
Donald, 2006). As a joint approach, we consider
Reluctant Trimmer (RT), a simplification system
that employs synchronous dependency grammars
(Mandya et al., 2014). Since the LSTM system re-
quires great amounts of training data, which were
not available to us, we cannot reproduce its out-

Recall Precision F1

Reluctant Trimmer

to
ke

ns

Delete 54.60 20.23 29.52
Paraphrase 01.67 66.67 03.27
Leave 52.27 78.54 54.60

Tree Labeling

su
bt

re
es Delete 43.31 67.54 52.77

Paraphrase 23.85 50.89 32.48
Leave 94.29 84.82 89.30

to
ke

ns

Delete 49.67 77.16 60.44
Paraphrase 21.16 51.52 30.00
Leave 80.33 50.91 62.32

Table 1: Performance on joint deletion and para-
phrasing detection for our tree labeling system
(evaluating both on entire subtrees and token level)
as well as for the RT baseline (tokens only).
Note that RT is trained on the (Simple) English
Wikipedia, not on the Google compressions, and
therefore the results may not be directly compara-
ble.

put and therefore limit our comparison of human
rankings to the eleven output examples provided
in the paper.

F-Scores We first evaluate our tree labeling
model (TL) on its ability to predict subtree dele-
tion and paraphrasing (i.e. whether a subtree
should be paraphrased, independent of the actual
replacement). The results for this evaluation setup,
as well as word-level performance, are listed in
Table 1 and compared to RT. Note that for dele-
tion and paraphrasing, our model consistently has
higher precision than recall, thus generating more
confident simplifications and less ungrammatical
output.

Automated Readability Scores Table 2 reports
the compression ratio (CR, percentage of retained
words) as well as automated readability scores that
our model achieves on the test set and compares it
to the output of the RT baseline. Our system man-
ages to compress the original texts by more than
one third, but the gold simplifications (headlines
and compressions) are still considerably shorter.

Our approach improves readability as mea-
sured by the Flesch Reading Ease score2 (Flesch,

2The negative value that the headlines receive for this met-
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Data version CR↓ Flesch↑ Dale-C.↓

Original — 49.15 9.55
Headlines 0.32* -80.77* 17.61*
Compressions 0.40* 70.80* 9.56
TL output 0.62* 56.25* 9.30*
RT output 0.86* 60.65* 9.27*

Table 2: Compression ratios and automatic read-
ability scores for the Google compression data set,
compared to the system output. Readability is in-
dicated by a high Flesh Reading Ease score and a
low Dale-Chall score. * indicates differences com-
pared to the original sentences that are significant
at p < 10−3.

System Readability Informativeness
MIRA 4.31 3.55
LSTM 4.51 3.78
TL 4.14 4.01

RT (11) 3.09 4.12
LSTM (11) 4.23 3.42
TL (11) 4.21 4.15

Table 3: Mean readability and informativeness rat-
ings for the first 200 sentences in the Google data
(upper) and for the 11 sample sentences listed in
Filippova et al. (2015) (lower).

1948) and the Dale-Chall formula (Dale and Chall,
1948). The former score measures textual diffi-
culty as a function of sentence length and the num-
ber of syllables per word, while the latter aims to
estimate a US school grade level at which a text
can be well understood, based on a vocabulary list.
Both metrics deem the output of our system eas-
ier to read than the original texts, while the Dale-
Chall formula also rates our system better than the
gold simplifications.

Human Readability Ratings Following Filip-
pova et al. (2015) in their evaluation setup for
the sake of comparability, we ask raters to as-
sign scores on a one-to-five Likert scale to the first
200 sentences from the Google compression data
paired with the output of our system. Each pair
is rated by three native or near-native speakers of
English.

The raters are asked to evaluate the sentence

ric is due to an over-representation of longer words in head-
lines.

pairs for readability and informativeness. The
former, following Filippova et al. (2015), “cov-
ers the grammatical correctness, comprehensibil-
ity and fluency of the output.” The latter metric
pertains to the relation between the original sen-
tence and the system output as it “measures the
amount of important content preserved in the com-
pression.”

Table 3 compares the performance of our model
to the figures reported in Filippova et al. (2015) for
their LSTM model and McDonald’s (2006) system
(MIRA). For a comparison with the same judges,
we repeat the evaluation with the 11 sample out-
put compressions listed in Filippova et al. (2015)as
well as the respective output from Reluctant Trim-
mer; see the lower part of Table 3. The results
suggest that, compared to the compression-only
LSTMs, our approach yields comparable perfor-
mance in terms of readability, while maintaining
more of the central information in the original sen-
tences. Compared to RT, our system does con-
siderably better in terms of readability and retains
slightly more of the important information.

5 Related Work

Several approaches to sentence compression have
been presented in the last decade. Knight and
Marcu (2002) and Turner and Charniak (2005) ap-
ply noisy channel models, using language models
to control for grammaticality. McDonald (2006)
introduces a different approach, discriminatively
training a scoring function, informed by syntac-
tic features, to score all possible subtrees of a
sentence. His work was inspired by Riezler et
al. (2003) scoring substrings generated from LFG
parses. A third approach to sentence compression
is sequence labeling, which has been explored by
Elming et al. (2013) using linear-chain CRFs with
syntactic features, and more recently by Filippova
et al. (2015) and Klerke et al. (2016) using recur-
rent neural networks with LSTM cells.

Most recent approaches to sentence compres-
sion make use of syntactic analysis, either by
operating directly on trees (Riezler et al., 2003;
Nomoto, 2007; Filippova and Strube, 2008; Cohn
and Lapata, 2008; Cohn and Lapata, 2009) or by
incorporating syntactic information in their model
(McDonald, 2006; Clarke and Lapata, 2008).
Recently, however, Filippova et al. (2015) pre-
sented an approach to sentence compression using
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Original Sentence & Simplifications
O OG&E is warning customers about a prepaid debit card scam that is targeting utility customers

across the county.
C OG&E is warning customers about a scam.
R OG&E is warning customers about a debit card scam that is targeting utility customers across

the country.
T OG&E is warning customers regarding a prepaid debit card scam.
O The husband of murdered Melbourne woman Jill Meagher will return to Ireland later this

month “to clear his head” while fighting for parole board changes.
C The husband of murdered woman Jill Meagher will return to Ireland.
R The husband of Melbourne woman Jill Meagher will return to Ireland this month to clear his

head fighting for parole board changes.
T The husband of murdered Melbourne woman Jill Meagher will return to Ireland.
O A research project has found that taxi drivers often don’t know what the speed limit is.
C Taxi drivers don’t know the speed limit is.
R A research project has found that drivers often do not know what the speed limit is.
T A project has found taxi drivers don’t know what the speed limit is.

Table 4: Example output for original sentences (O) as generated by the Reluctant Trimmer baseline (R)
and our tree labeling system (T), as well as the headline-generated Google compressions (C).

LSTMs with word embeddings, with no syntactic
features. We return to working directly on trees,
presenting a tree-to-string model of sentence sim-
plification. Our model has interesting similarities
to (Riezler et al., 2003), but uses Viterbi decod-
ing rather than scoring of all candidates. Also,
it follows Cohn and Lapata (2008) in going be-
yond most of these models, modeling compression
and paraphrasing.

For lexical simplification, most systems typi-
cally use pre-compiled dictionaries (Devlin, 1999;
Inui et al., 2003) and select the synonym candidate
with the highest frequency. More recently, Baeza-
Yates et al. (2015) introduced an algorithm for lex-
ical simplification in Spanish that selects the best
synonym candidate in a context-sensitive fashion.

Cohn and Lapata (2008), Woodsend and Lap-
ata (2011) and Mandya et al. (2014) present joint
approaches to compression and paraphrasing that
are based on (quasi-) synchronous grammars, and
similarly Zhu et al. (2010) take a syntax-based
approach, but employ a probabilistic model of
various simplification operations. Napoles et al.
(2011) do not use syntactic information, but in-
stead employ a character-based metric to compress
and paraphrase.

6 Conclusion

We presented a new approach to sentence sim-
plification that uses linear-chain conditional ran-

dom fields over dependency graphs to jointly pre-
dict compression and paraphrasing of entire syn-
tactic units. The objective of our model is to
delete or paraphrase entire subtrees in dependency
graphs as a strategy to avoid ungrammatical out-
put. Our approach makes innovative use of a
three-fold parallel monolingual corpus that fea-
tures headlines and compressions to learn para-
phrases and deletions, respectively. Human eval-
uation shows that our approach leads to readabil-
ity figures that are comparable to previous state-
of-the-art approaches to the more basic sentence
compression task, and better than previous work
on joint compression and paraphrasing. While
our model does rely on syntactic analysis, it only
needs a tiny fraction (less than 0.5%) of the train-
ing data used by Filippova et al. (2015).
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Abstract

We present a named entity recogni-
tion (NER) system for tagging fiction:
LitNER. Relative to more traditional ap-
proaches, LitNER has two important
properties: (1) it makes no use of hand-
tagged data or gazetteers, instead it boot-
straps a model from term clusters; and (2)
it leverages multiple instances of the same
name in a text. Our experiments show it to
substantially outperform off-the-shelf su-
pervised NER systems.

1 Introduction

Much of the work on applying NLP to the anal-
ysis of literature has focused on literary fig-
ures/characters in the text, e.g. in the context of so-
cial network analysis (Elson et al., 2010; Agarwal
et al., 2013; Ardanuy and Sporleder, 2015) or anal-
ysis of characterization (Bamman et al., 2014).
Named entity recognition (NER) of person names
is generally the first step in identifying characters;
locations are also a prevalent NE type, and can be
useful when tracking different plot threads (Wal-
lace, 2012), or trends in the settings of fiction.

There are not, to our knowledge, any NER
systems that are specifically targeted at litera-
ture, and most related work has used Stanford
CoreNLP as an off-the-shelf solution (Bamman
et al., 2014; Vala et al., 2015). In this paper, we
show that it is possible to take advantage of the
properties of fiction texts, in particular the repeti-
tion of names, to build a high-performing 3-class
NER system which distinguishes people and lo-
cations from other capitalized words and phrases.
Notably, we do this without any hand-labelled

data whatsoever, bootstrapping a text-level context
classifier from a low-dimensional Brown cluster-
ing of the Project Gutenberg corpus.

2 Related work

The standard approach to NER is to treat it as a
supervised sequential classification problem, typ-
ically using conditional random fields or similar
models, based on local context features as well
as properties of the token itself. Relevant to the
present work is the fact that, despite there being
some work on enforcing tag consistency across
multiple instances of the same token (Finkel et al.,
2005) and the use of non-local features (Ratinov
and Roth, 2009) to improve supervised sequential
models, the consensus seems to be that this non-
local information has a relatively modest effect on
performance in standard datasets, and as a result
off-the-shelf NER systems in practice treat each
sentence as a separate document, with multiple in-
stances of the same token in different sentences
viewed as entirely independent classification prob-
lems. We also note that although supervised NER
is the norm, there is a smaller body of work in
semi-supervised and unsupervised approaches to
NER and semantic lexicon induction, for instance
pattern bootstrapping (Nadeau et al., 2006; Thelen
and Riloff, 2002; McIntosh et al., 2011) as well as
generative approaches (Elsner et al., 2009).

In the context of literature, the most closely re-
lated task is character identification (Vala et al.,
2015), which is itself an intermediate task for char-
acter speech identification (He et al., 2013), analy-
sis of characterization (Bamman et al., 2014), and
analysis of social networks (Elson et al., 2010;
Agarwal et al., 2013; Ardanuy and Sporleder,
2015). In addition to NER, character identifica-
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tion also involves clustering multiple aliases of the
same character, and discarding person names that
don’t correspond to characters. Vala et al. (2015)
identify some of the failures of off-the-shelf NER
with regards to character identification, and at-
tempt to fix them; their efforts are focused, how-
ever, on characters that are referred to by descrip-
tion rather than names or aliases.

3 Method

3.1 Corpus preparation and segmentation

The corpus we use for building and testing our
NER system is the 2010 image of the (US)
Project Gutenberg corpus,1 a reasonably compre-
hensive collection of out-of-copyright English lit-
erary texts, to our knowledge the largest that is
publicly available in a machine-readable, full-text
format. We access the texts via the GutenTag
tool (Brooke et al., 2015), which allows both filter-
ing of texts by genre as well as within-text filtering
to remove Project Gutenberg copyright informa-
tion, front and back matter (e.g. table of contents),
and headers. We focus here only on fiction texts
(i.e. novels and short stories); other kinds of liter-
ature (e.g. plays) are rare in the corpus and have
very different properties in terms of the distribu-
tion of names. The final corpus size is 10844 texts.

GutenTag also provides an initial segmenta-
tion of tokens into potential names, using a sim-
ple rule-based system which segments contiguous
capitalized words, potentially with common inter-
vening function words like of as well as leading
the (e.g. the King of Westeros). It largely (but
not entirely) overcomes the problem of sentence-
initial capitalization in English by generalizing
over an entire text; as long as a capitalized word
or phrase appears in a non-sentence initial po-
sition at least once in a text, it will be tagged
in the sentence-initial position as well. To im-
prove precision, the name tagger in the version of
GutenTag used for this paper (0.1.3) has lower
bounds on token count (at least 10) and an upper
bound on the length of names (no longer than 3
words). For this work, however, we remove those
restrictions to maximize recall. Though not our
primary concern, we return to evaluate the quality
of the initial segmentation in Section 5.

1http://www.gutenberg.org

3.2 Brown clustering

The next step is to induce Brown clusters (Brown
et al., 1992) over the pre-segmented corpus (in-
cluding potential names), using the tool of Liang
(2005). Briefly, Brown clusters are formed us-
ing an agglomerative hierarchical cluster of terms
based on their immediate context, placing terms
into categories to maximize the probability of con-
secutive terms over the entire corpus. Note that
using information from Brown clusters is a well
established technique in NER, but more typically
as features within a supervised framework (Miller
et al., 2004; Liang, 2005; Ritter et al., 2011); we
are unaware of any work using them directly as
a source of bootstrapped training examples. We
used default settings except for the number of clus-
ters (c): 50. The rationale for such a small cluster
size—the default is 1000, and NER systems which
use Brown clusters as features do better with even
more (Derczynski et al., 2015)—is that we want
to have clusters that correspond to major noun cat-
egories (e.g. PERSON and LOCATION), which we
consider the next most fundamental division be-
yond part-of-speech; 50 was selected because it is
roughly comparable to the size of the Penn Tree-
bank tagset (Marcus et al., 1993). We did not tune
this number, except to observe that larger num-
bers (e.g. 100 or 200) resulted in increasingly frag-
mented clusters for our entities of interest.

To automatically extract a seed list of peo-
ple and locations, we ranked the clusters by the
total (token) count of names (as identified by
GutenTag), and took the first cluster to be PER-
SON, and the second to be LOCATION; all other
clusters are considered OTHER, our third, catch-
all category. Alternatively, we could have set c
higher and manually grouped the clusters based on
the common words in the clusters, adding a thin
layer of supervision to the process; with a low c,
however, this was unnecessary since the composi-
tion and ranking of the clusters conformed exactly
to our expectations. The top-5 clusters by token
count of names are given in Table 1.2 Note the
presence of the multiword name New York in the
second cluster, as a result of the segmentation.

The most common words in the first two clus-
ters are mostly what we would expect, though
there is a bit of noise, e.g. Him included as a
place. The other clusters are messier, but still in-

2Note that each cluster generally includes large numbers
of non-names, which we ignore.
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Count Top-10 name types
17.2M Tom, Jack, Dick, Mary, John

Harry, Peter, Frank, George, Jim
2.5M London, England, Paris, New York, France

Him, America, Rome, Europe, Boston
1.8M English, French, Lord, Indian, American

German, Christian, Indians, King, Italian
0.5M Sir, Doctor, Colonel, Madam, Major

Professor, Dieu, Squire, Heavens, Sire
0.5M Christmas, Spanish, British, Irish, Roman

Latin, Chinese, European, Dutch, Scotch

Table 1: Top-5 Brown clusters derived from PG
corpus, by token count of names

terpretable: e.g. Cluster 4 is a collection of terms
of address. Note that although we do not con-
sider an term like Doctor to be a person name,
Doctor Smith or the Doctor would be; in many
literary contexts characters are referred to by an
alias, and failure to deal properly with these sit-
uations is a significant problem with off-the-shelf
NER systems in literature (Vala et al., 2015). In
any case, Brown clustering works fairly well for
common names, but for rarer ones, the cluster-
ing is haphazard. Fiction, though, has many rare
names and locations, since authors will often in-
vent them. Another problem with Brown clus-
tering is that ignores possible sense distinctions:
for instance, Florence is both a city and a person
name. To avoid confusion, authors will generally
preserve one-sense-per-document, but this is not
true at the corpus level.

3.3 Text-level context classifier

The central element of our NER system is a text-
level classifier of names based on context. By
text-level, we mean that it assumes one-sense-per-
document, classifying a name for an entire doc-
ument, based on all instances of the name in the
document (Gale et al., 1992). It is trained on
the (text-level) “instances” of relatively common
names (appearing more than 100 times in the cor-
pus) from the 3 NE label types derived based on
the Brown clustering. That is, to build a training
set, we pass through the corpus and each time we
come across a common name in a particular doc-
ument, we build a feature vector corresponding to
all the contexts in that document, with the label
taken from the clustering. Our rationale here is
that the challenging part of NER in literature is
names that appear only in one text; by limiting
our context for common words to a single text,

we simulate the task for rarer words. Mary is a
common name, and may be a major character in
one text, but a minor one in another; hence, we
build a classifier that deals with both context-rich
and context-poor situations. The noisy training set
thus constructed has about 1 million examples.

Our feature set consists of filtered word fea-
tures in a 2-word window (w−2w−1w0w+1w+2)
around the token occurrences w0 of a target type
in a given text, made up of position-indexed uni-
grams (w−2, w−1, w+1 and w+2) and bigrams
(w−2w−1, w+1w+2 and w−1w+1), excluding uni-
grams when a subsuming bigram feature matched
(e.g. if we match trust in, we do not add trust and
in). For this we used the name-segmented corpus,
and when one of the words in the context was also
a name, we take the category from the Brown clus-
tering as the word (so w2 for London in from Lon-
don to New York is LOCATION, not New). Across
multiple tokens of the same type, we count the
same context only once, creating a binary feature
vector which was normalized by dividing by the
count of all non-zero entries once all contexts were
collected. To be included as features, the n-grams
had to occur with ≥ 10 different w0 target word
types. Note that given our bootstrapping setup,
the word type itself cannot be used directly as a
feature.

For classification, we use logistic regression
from scikit-learn (Pedregosa et al., 2011) trained
with SGD using L2 regularization (C = 1).3 The
only non-standard setting that we use is the “bal-
anced” option, which weights classes by the in-
verse of their count in the training set, countering
the preference for the majority class; we do this
because our bootstrapped distribution is an unre-
liable reflection of the true distribution, and also
because it makes it a fairer comparison to off-the-
shelf models with no access to this distribution.

3.4 Improved phrase classification
Relative to (true) supervised models, our boot-
strapped model suffers from being able to use only
context, and not the identity of the name itself.
In the case of names which are phrases, this is
troubling because there are many generalizations
to be made; for instance names ending with City
are locations. Our final model addresses this fail-
ing somewhat by using more information from our

3Using cross-validation over the training data, we tested
other solvers, L1 regularization, and settings of the C param-
eter, but saw no appreciable improvement in performance.

346



Brown clustering: from each of the initial and fi-
nal words across all names, we extract a set of
words Ws that appear at least ten times in position
s ∈ S, S = {initial, final} across all phrases.
Let c(w, t, s) be the the number of times a word
w ∈ Ws appears in the corpus at position s in
phrases which were Brown clustered into the en-
tity type t ∈ T , and p(t|r) be the original prob-
ability of phrase r being type t as determined by
the logistic regression classifier. For our two ho-
mogenous entity types (PERSON and LOCATION),
we calculate a new score p′:

p′(t|r) = p(t|r) +
∑
s∈S

( c(rs, t, s)∑
t′∈T c(rs, t′, s)

−
∑

w′∈Ws

c(w′,t,s)∑
t′∈T c(w′,t′,s)

|Ws|
)

(1)

The first term in the outermost summation in
Equation 1 is the proportion of occurrences of the
given expression in position s which correspond
to type t. To avoid applying too much weight to
the homogeneous classes, the second term in the
summation subtracts the average number of occur-
rences in the given position for all words in Ws.
As such, the total effect on the score can be neg-
ative. Note that if rs /∈ Ws, no modification is
made, and for the OTHER type p′(t|r) = p(t|r).
Once we have calculated p′(t|r) for each class, we
choose the t with the highest p′(t|r).

4 Evaluation

Our interest is in a general NER system for liter-
ature. Though there are a few novels which have
been tagged for characters (Vala et al., 2015), we
wanted to test our system relative to a much wider
range of fiction. To this end, we randomly sampled
texts, sentences, and then names within those sen-
tences from our name-segmented Project Guten-
berg corpus to produce a set of 1000 examples.
These were tagged by a single annotator, an En-
glish native speaker with a PhD in English Liter-
ature. The annotator was presented with the sen-
tence and the pre-segmented name of interest, and
asked (via written instructions) to categorize the
indicated name into PERSON, LOCATION, OTHER,
UNCERTAIN due to ambiguity, or segmentation er-
ror. We ran a separate two-annotator agreement
study over 200 examples which yielded a Cohen’s
Kappa of 0.84, suggesting high enough reliability
that a single annotator was sufficient. The class

System Acc FM
All PERSON baseline .696 —
OpenNLP .435 .572
LingPipe .528 .536
Stanford CoreNLP .786 .751
Brown clusters .803 .672
LitNER sentence +phrase .757 .671
LitNER text −phrase .855 .771
LitNER text +phrase .871 .792

Table 2: Performance of NER systems

distribution for the main annotation was 66.9%
PERSON, 10.2% LOCATION, 19.0% OTHER, 2.4%
UNCERTAIN, and 1.5% segmentation error. For
the main evaluation, we excluded both UNCER-
TAIN examples and segmentation errors, but had
our annotator provide correct segmentation for the
15 segmentation errors and carried out a separate
comparison on these.

We compare our system to a selection
of publicly available, off-the-shelf NER sys-
tems: OpenNLP,4 LingPipe,5 and Stanford
CoreNLP (Finkel et al., 2005), as well as the
initial Brown clustering. OpenNLP allowed us
to classify only PERSON and LOCATION, but for
Stanford CoreNLP and LingPipe we used
the existing 3-entity systems, with the ORGANI-
ZATION tag collapsed into OTHER (as it was in our
guidelines; instances of ORGANIZATION are rare
in literature). Since the exact segmentation guide-
lines likely varied across these systems—in par-
ticular, we found that Stanford CoreNLP of-
ten left off the title in names such as Mr. Smith—
and we didn’t want to focus on these issues, we
did not require exact matches of our name seg-
mentation; instead, we consider the entire name as
PERSON or LOCATION if any of the tokens were
tagged as such (names with both tags were con-
sidered OTHER). For our system (LitNER), we
test a version where only the immediate sentence
context is used (“sentence”), and versions based
on text context (“text”) with or without our phrase
improvement (“±phrase”).

We evaluate using two standard metrics: accu-
racy (“Acc”), and macroaveraged F-score (“FM”).

5 Results

The results in Table 2 show that our system eas-
ily bests the off-the-shelf systems when it is given

4https://opennlp.apache.org/
5http://alias-i.com/lingpipe
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the contextual information from the entire text; the
difference is more stark for accuracy (+0.085 ab-
solute), though consistent for FM (+0.041 abso-
lute). Stanford CoreNLP is the only compet-
itive off-the-shelf system—the other two are far
too conservative when encountering names they
haven’t seen before. LitNER is also clearly better
than the Brown clusters it was trained on, partic-
ularly for FM (+0.120 absolute). With regards to
different options for LitNER, we see a major ben-
efit from considering all occurrences of the name
in the texts rather than just the one we are testing
on (Section 3.3), and a more modest benefit from
using the information on parts of phrases taken
from the Brown clustering (Section 3.4).

For the segmentation errors, we compared
our corrected segmentations with the segmen-
tation provided by the CRF-based Stanford
CoreNLP system, our best competitor. Only 2 of
the 15 were segmented correctly by Stanford
CoreNLP. This potential 0.002 improvement is
tiny compared to the 0.085 difference in accuracy
between the two systems.

6 Discussion

Aspects of the method presented here could the-
oretically be applied to NER in other genres and
other languages, but one important point we wish
to make is that our approach clearly takes advan-
tage of specific properties of (English) literature.
The initial rule-based segmentation, for instance,
depends on reliable capitalization of names, which
is often not present in social media, or in most non-
European languages. We have found more subtle
genre effects as well: for comparison, we applied
the preliminary steps of our approach to another
corpus of published texts which is of compara-
ble (token) size to the Project Gutenberg corpus,
namely the Gigaword newswire corpus (Graff and
Cieri, 2003), and noted degraded performance for
both segmentation and Brown clustering. With re-
spect to the former, the obvious issue is consid-
erably more complex proper nouns phrases such
as governmental organizations and related titles.
For the latter, there were several clusters in the top
10 (including the first one) which corresponded to
LOCATION, while the first (fairly) clean PERSON

cluster was the 15th largest; in general, individual
people, organizations, and other groupings of peo-
ple (e.g. by country of origin) were not well dis-
tinguished by Brown clustering in the Gigaword

corpus, at least not with the same low number of
clusters that worked well in the Project Gutenberg
corpus.

Also less than promising is the potential for
using text-level classification in other genres:
whereas the average number of token occurrences
of distinct name types within a single text in the
Project Gutenberg corpus is 5.9, this number is
just 1.6 for the much-shorter texts of the Giga-
word corpus. Except in cases where it is possible
to collapse texts into appropriately-sized groups
where the use of a particular name is likely to be
both common and consistent—an example might
be a collection of texts written by a single au-
thor, which in social media such as Twitter seems
to obey the classic one-sense-per-discourse rule
(Gella et al., 2014)—it’s not clear that this ap-
proach can be applied successfully in cases where
texts are relatively short, which is a far more com-
mon situation. We also note that relying primarily
on contextual classification while eschewing re-
sources such as gazetteers makes much less sense
outside the context of fiction; we would expect rel-
atively few fictitious entities in most genres.
LitNER tags names into only two main classes,

PERSON and LOCATION, plus a catch-all OTHER.
This coarse-grained tag set reflects not only the
practical limitations of the method, but also where
we believe automatic methods have potential to
provide useful information for literary analysis.
The other clusters in Table 1 reflect word cate-
gories which are relatively closed-class and much
less central to the fictional narratives as character
and setting; we don’t see a compelling case for
tagging them. When these and non-entities are ex-
cluded from OTHER, what remains is eclectic, in-
cluding names referring to small groups of people
(e.g. families), animals, gods, ships, and titles of
other works of literature.

7 Conclusion

In this paper, we have presented LitNER, an NER
system targeted specifically at fiction. Our results
show that a simple classifier, trained only with
noisy examples derived in an unsupervised fash-
ion, can easily beat a general-purpose supervised
system, provided it has access to the full context
of the text. Finally, we note that the NER tagging
provided by LitNER has been integrated into the
GutenTag tool (as of version 0.1.4).6

6See http://www.projectgutentag.org
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Abstract
Online reviews are a growing market, but
it is struggling with fake reviews. They un-
dermine both the value of reviews to the
user, and their trust in the review sites.
However, fake positive reviews can boost
a business, and so a small industry produc-
ing fake reviews has developed. The two
sides are facing an arms race that involves
more and more natural language process-
ing (NLP). So far, NLP has been used
mostly for detection, and works well on
human-generated reviews. But what hap-
pens if NLP techniques are used to gen-
erate fake reviews as well? We investi-
gate the question in an adversarial setup,
by assessing the detectability of differ-
ent fake-review generation strategies. We
use generative models to produce reviews
based on meta-information, and evalu-
ate their effectiveness against deception-
detection models and human judges. We
find that meta-information helps detection,
but that NLP-generated reviews condi-
tioned on such information are also much
harder to detect than conventional ones.

1 Introduction
Online reviews written by customers are a boom-
ing market. Several companies cater to a wide
variety of audiences, supplying—among others—
reviews for restaurants (Yelp), travel (TripAdvi-
sor), businesses (Trustpilot), and specialized com-
munities, such as beer (RateBeer). While the rev-
enue of the providers is in the billions of dollars,
the currency this industry is built on is consumer
trust. The majority of consumers uses such re-
views to inform themselves before buying.1 On-

1http://www.business2community.com/
infographics/impact-online-reviews-

line review companies therefore put considerable
effort into maintaining this trust, by addressing
the greatest threat to consumer trust (and therefore
income)—fake reviews.

Identifying fake reviews is a natural fit for NLP,
since they presumably contain linguistic cues that
indicate their nature. Indeed, a number of previ-
ous works have dealt with the detection of fake
reviews (Jindal and Liu, 2007; Badaskar et al.,
2008; Mackiewicz, 2008; Jindal et al., 2010; Ott
et al., 2011; Fornaciari and Poesio, 2014). How-
ever, in those cases, human writers were produc-
ing reviews to fool a human audience, not an NLP
model. The detection models were therefore able
to exploit the regularities resulting from the writ-
ers’ tendency to follow a pattern to minimize their
effort.

Writing fake reviews has become a lucrative
business (Streitfeld, 2012), and so there is now an
arms race going on between producers and detec-
tors (Roberts, 2012). What if fake review writ-
ers become aware of the ways to game a detection
algorithm?2 As NLP technology becomes more
common, we should expect to also see fake re-
views generated by NLP models. This pits tech-
nology against technology.

In this paper, we explore the impact fake review
generation has on NLP models’ ability to detect
them, and an ethical challenge in our development
of NLP technology: the fact that it can be used for
both sides (Hovy and Spruit, 2016).

Our contributions We set up an adversarial
evaluation approach inspired by (Smith, 2012), us-
ing graphical models to build various language
models that generate fake reviews, with and with-
out recurrence to meta-information. We then test

customers-buying-decisions-infographic-
01280945

2Similarly, some members of the Mechanical Turk com-
munity have adapted to the presence of assessment tools.
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Figure 1: Age distribution of gaming reviews for
men and women in the US

how well a logistic regression model can distin-
guish real from fake reviews from both models
under two settings (the model has access to meta-
information or not), and how well human judges
can detect fake reviews generated by the model
with meta-information.

Our results indicate that fake review generation
could be a serious problem for detection mecha-
nisms that solely rely on textual features.

2 Data
We use data extracted from the American and
British versions of the review site Trustpilot.3 It
comprises reviews for a variety of online busi-
nesses, as well as information about users’ age and
gender.4 We extracted all reviews that contained
the full set of meta-information. We lower-case
and tokenize by words, but leave reviews intact,
rather than splitting them up into sentences. This
results in 120,976 review instances. We reserve
10,000 for evaluation purposes, and use the rest
to induce our adversarial generative models, and
to derive features for the detection model (see be-
low).

3 Review Generation Models
The basic approach is a simple Markov chain with
a sufficiently large horizon to generate fluent re-
views. Such an n-gram language model (LM) is
a function that assigns probability to any sentence
S, where S is a sequence w0, w1, · · · , wn, and

P (S) =
N∏
i

P (wi|wi−n:i−1)

w0 is a special (sequence of) start token(s), n is
the size of the Markov horizon, and wi−1:i−(n−1)

3www.trustpilot.com
4For a more detailed description of the data, see Hovy et

al. (2015).

a)
Start W1 W2 Wn…

G A Cγ

N
Wib)

Start W1 W2 Wn…

G A Cγ

N
Wi

Figure 2: Regular n-gram Markov chain LM
(top) and conditioned LM (bottom). γ based on
empirically-observed gender distribution in data

is the sequence of preceding words in context. The
model is depicted in Figure 2 a). Since this is a
generative model, it can not only be used to assign
probability to observed sentences, but also gener-
ate new sentences based on the model parameters.

However, extra-linguistic information, if avail-
able, can improve classification performance
(Volkova et al., 2013; Hovy, 2015), and fake-
review detection models often also exploit meta-
information about the author and their behavior
(Lim et al., 2010), looking for irregularities. We
therefore use a generative story that assumes that
people of different age and gender review different
things, which in turn influences the type of busi-
ness reviewed, and the choice of words. This as-
sumption is borne out in the data (cf. Figure 1).

We extend this model by conditioning on latent
variables age (A), gender (G), and review category
(C).5 In the generative story of this model, we first
draw a user from one of the two genders in our
data, select an age based on gender-specific age
distributions, and choose a review category depen-
dent on the two previous variables. We then then
generate a sentence conditioned on all of these set-
tings and the Markov horizon. Our model is de-
picted as plate diagram in Figure 2 b) (we omit the
start token and the Markov horizon for clarity). It
can formally be written as:

P (S|G,A,C) =P (G) · P (A|G) · P (C|G,A)

·
N∏
i

P (wi|wi−n:i−1, C,G,A)

5These factors could of course be extended to cover other
information, including ratings. We do not condition on rat-
ings here, but a commercial system for fake reviews would
presumably be restricted to positive scores.
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CATEGORY AGE GROUP SEX TEXT

Hotels 30–45 F
i ordered a new toner for our printer and after price matching
the best i could find they also honoured a free delivery on top .

Computer
Accessories

45–60 M this is a company that takes customer care seriously . we re-
ceived really impressive service when we contacted the com-
pany .

Table 1: Generated examples from unconditional (top) and conditional (bottom) LM.

We can now use either model to generate fake
reviews. In both cases, we use a Markov hori-
zon of 6 words, i.e., a 7-gram model. For the
unconditioned LM, meta-information is generated
at random. This simulates a fake-review writer
who is unaware of the context effects, but knows
that companies might take profile information into
account. Two examples are shown in Figure 1.
Both examples are fluent, but the unconditioned
one suffers from two problems: somewhat stream-
of-consciousness-like sentences and a for human
readers obvious mismatch between the category
and the discussed topic.

Conditional LMs, on the other hand, suffer from
a certain sparsity: the more meta-information we
condition on, the sparser the n-gram counts be-
come. They are therefore more likely to faithfully
re-generate the training data. We use interpolation
between genders, but this could also be addressed
with a wide variety of techniques (Chen and Good-
man, 1998).

Even though the classifier does not have access
to the training data, we want to make the task as
difficult as possible, so we remove all duplicates,
as well as any generated reviews that do not end in
a punctuation mark, that exceed 200 words, or that
have a category not contained in our real-review
test set, and select from the rest by lowest entropy.

4 Experiments
In our experiments, we pit an adversary (i.e., the
two LMs we experiment with) against a judge (a
classifier or human annotator). The goal of the ad-
versary is to produce fake reviews that convince
the judge.

4.1 Logistic Regression Model

As classifier, we use a logistic regression model,
regularized with L2 norm, and fit it on a data set
of 10,000 true reviews and a varying amount of
fake reviews. In one setting, we use 1600 fake re-
views , based on current estimates of 16% (Luca

and Zervas, 2015). In a second setting, we use
10,000 fake reviews, a scenario where 50% of all
reviews are fake. Given the ease of generating fake
reviews with the models presented here, the rate
could quickly go up in the future, so this ration
gives a bound on how much our detection models
could decline.

The base features of the classifier are word n-
grams, with n ranging from 1 to 4. Depend-
ing on the setting, we also add meta-information
features, including combinations of the n-grams
with each category (e.g., category=Hotels
& word="soft bed"), and the average PMI
score for the words in the sentence and each cate-
gory (e.g., PMI(Hotels, soft bed)). That
way, we hope to capture mismatches between the
stated category and the review content.

We measure F1 performance over 5-fold strati-
fied cross-validation.

Initially, we would like to establish whether
conditioning LMs on demographic information
has any effect on detection. For this purpose,
we compare the performance of the logistic
regression model on (1) a test set including fake
reviews generated by an unconditioned 7-gram
LM and (2) a test set whose fake reviews have
been conditioned on meta-information. In both
cases, the detector has only access to the base
features, i.e., ignores demographic information.
This is equivalent to a situation where the judge
can only see the text, not the meta information.

As mentioned before, though, many companies
employ meta-information in order to capture fake
reviews, and if a spammer knew this, they could
simply generate some meta-information. The
question is: does this meta-information have to
follow a coherent generative story? Intuitively, we
expect the answer to be “yes”: we would be sur-
prised to see a teenager review retirement homes.
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To test this assumption, we compare the per-
formance of the classifier when having access to
the base features plus meta-information under two
settings: (3) with each piece of meta-information
generated independently at random, and (4) with
meta-information generated as part of our genera-
tive process.

4.2 Human Judges

The first experiment tests the detectability of fake
reviews by statistical means. How hard is it for
humans, though, to distinguish the fake reviews
generated by this model from real reviews, and do
they exploit meta-information?

To answer these questions, we also conduct a
human judges study on Crowdflower6. We se-
lect 200 items at random (100 real reviews and
100 from the conditional model, half of each with
meta-information), and ask annotators to rate them
as real or fake. Judges were not informed about
the nature of the reviews, only advised to use their
best judgement. The task involved 8 test questions
to bar bad annotators from entering. 76 unique
judges participated, and rated the task as relatively
difficult (3.5/5).

5 Results
Bear in mind that this is an adversarial setup: we
are trying to improve the fake reviews to “trick”
the judge into producing as many false positives
as possible. A low F1-score thus means that the
respective LM has managed to fool the classifier.
Table 2 shows the results. Note also that the fake
reviews are generated independent of the classifi-
cation model, i.e., the generative LM does not take
the classification model into account.

5.1 Logistic Regression Model

In order to assess whether the differences in per-
formance are statistically significant, we conduct
a bootstrap sampling test (Efron and Tibshirani,
1993) with 10,000 repetitions on the overall pre-
dictions.

The numbers are generally in a high range,
which is encouraging, since it means that our mod-
els can detect fake reviews fairly reliably. How-
ever, we also see that the conditional models in-
troduced here quickly become significantly harder
to detect than the regular LM.

Adding meta-information leads to sometimes
small, but always significant increases in perfor-

6https://crowdflower.com

16% FAKE

JUDGE COND. LM REG. LM p < 0.01

words only 88.27 87.89 no
+meta-info 88.92 92.42 yes

p < 0.01 yes yes

50% FAKE

words only 75.52 72.78 yes
+meta-info 77.40 88.43 yes

p < 0.01 yes yes

Table 2: Model performance (F1) with different
amounts of information on reviews generated by
regular or conditional model under two conditions

mance. This effect is especially pronounced in
the regular LMs, since the detection model is able
to pick up on the mismatch between category and
text content.

As the number of fake reviews grows, though,
detection gets more difficult, and the rift between
the two generation models becomes more appar-
ent: at 50% fake reviews, the conditional LM is
almost twice as hard to detect as the regular LM
when using meta-information.

Feature Analysis Finally, we analyze the fea-
tures (word-based and meta-information) to find
the most predictive elements of fake reviews. For
each feature, we average over all folds of our
cross-validation. Features which are selected fre-
quently, irrespective of the exact training condi-
tions, can be assumed to be robust predictors.

Unsurprisingly, the most predictive features are
PMI(gender, ·) and PMI(category,
·), followed by gender- and age-specific
words (gender=M & word="delivery",
age-group=3 & word="."), category-
specific words (category=Package
Service & word="parcel"), and indi-
vidual words (service, easy, quick)

For the unconditional models, the PMI-category
coefficients dominate other features in a power-
law distribution, while for the conditional model,
the PMI-age score is only slightly ahead.

5.2 Human Judges

The general tendency among human judges was to
assume reviews are real: overall, 87% of the indi-
vidual answers judged a review to be real. That
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is, only a minority of judges suspected fraud, irre-
spective of whether they had access to the meta-
information or not. Whatever signal the logistic
regression model picks up seems to be more sub-
tle than what the average human can perceive.

This tendency plays out in the F1 scores (see
Table 3): human judges have a much lower detec-
tion rate than the logistic regression model, even
though the availability of meta-information im-
proves performance here as well.

These results hold whether we treat each vote as
an individual item or aggregating the five votes for
each instance by an item-response model (Hovy et
al., 2013). In the latter case, the performance for
both conditions and the average increases, more
so for the instances without meta-information, but
still not reaching the same level.

ACCESS TO RAW AGGREGATED

words only 63.90 65.77
+meta-info 65.31 66.66

avg. 64.65 66.22

Table 3: Human performance (F1) with different
amounts of information on reviews generated by
conditional model

6 Related Work
Reviews are a rich source of studies for NLP, and
a variety of recent papers (McAuley et al., 2012;
Danescu-Niculescu-Mizil et al., 2013; Reschke et
al., 2013; Jurafsky et al., 2014; Hovy et al., 2015)
have explored it.

Badaskar et al. (2008) also use real and fake re-
views and LMs, but in almost exactly the opposite
setup: they select features that have high discrim-
inative power in distinguishing real from fake re-
views to include in their LMs. However, they use a
review corpus that is more than an order of magni-
tude smaller, focus on tri- and quad-gram features,
and do not take meta-information into account.

The work of Fornaciari and Poesio (2014) is
similar in that they also deal with fake review de-
tection. However, they do not use an adversarial
setup, but focus on the use of an item-response
model to detect fake-review writers. Their corpus
is considerably smaller than ours, but the detection
rate they report is similar to the one we find when
not using meta-information.

To our knowledge, only Lappas (2012) has
taken the view from the adversary’s point of view,

although the paper does not generate fake reviews,
but assesses the presence of several defined mea-
sures of meretriciousness.

7 Conclusion
We have investigated the detectability of fake re-
views generated with meta-information. We find
that (1) using access to meta-information can sig-
nificantly improve the detection of fake reviews,
and (2) generated reviews conditioned on meta-
information are considerably harder to detect than
the ones generated without. We also see that sta-
tistical models fare better than human judges. Our
results indicate the viability of an adversarial setup
to test detection tasks, but also highlight the fact
that NLP techniques can be used for either side.
We should therefore be more vigilant and willing
to play devil’s advocate, pitting potential models
as adversaries against our solutions.
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Abstract

Neural Machine Translation (MT) has
reached state-of-the-art results. However,
one of the main challenges that neural MT
still faces is dealing with very large vo-
cabularies and morphologically rich lan-
guages.

In this paper, we propose a neural MT
system using character-based embeddings
in combination with convolutional and
highway layers to replace the standard
lookup-based word representations. The
resulting unlimited-vocabulary and affix-
aware source word embeddings are tested
in a state-of-the-art neural MT based on
an attention-based bidirectional recurrent
neural network. The proposed MT scheme
provides improved results even when the
source language is not morphologically
rich. Improvements up to 3 BLEU points
are obtained in the German-English WMT
task.

1 Introduction

Machine Translation (MT) is the set of algorithms
that aim at transforming a source language into
a target language. For the last 20 years, one of
the most popular approaches has been statistical
phrase-based MT, which uses a combination of
features to maximise the probability of the tar-
get sentence given the source sentence (Koehn et
al., 2003). Just recently, the neural MT approach
has appeared (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015) and obtained state-of-the-art results.

Among its different strengths neural MT does
not need to pre-design feature functions before-
hand; optimizes the entire system at once because

it provides a fully trainable model; uses word em-
beddings (Sutskever et al., 2014) so that words (or
minimal units) are not independent anymore; and
is easily extendable to multimodal sources of in-
formation (Elliott et al., 2015). As for weaknesses,
neural MT has a strong limitation in vocabulary
due to its architecture and it is difficult and com-
putationally expensive to tune all parameters in the
deep learning structure.

In this paper, we use the neural MT baseline
system from (Bahdanau et al., 2015), which fol-
lows an encoder-decoder architecture with atten-
tion, and introduce elements from the character-
based neural language model (Kim et al., 2016).
The translation unit continues to be the word, and
we continue using word embeddings related to
each word as an input vector to the bidirectional
recurrent neural network (attention-based mecha-
nism). The difference is that now the embeddings
of each word are no longer an independent vec-
tor, but are computed from the characters of the
corresponding word. The system architecture has
changed in that we are using a convolutional neu-
ral network (CNN) and a highway network over
characters before the attention-based mechanism
of the encoder. This is a significant difference
from previous work (Sennrich et al., 2015) which
uses the neural MT architecture from (Bahdanau
et al., 2015) without modification to deal with sub-
word units (but not including unigram characters).

Subword-based representations have already
been explored in Natural Language Process-
ing (NLP), e.g. for POS tagging (Santos and
Zadrozny, 2014), name entity recognition (San-
tos and aes, 2015), parsing (Ballesteros et al.,
2015), normalization (Chrupala, 2014) or learning
word representations (Botha and Blunsom, 2014;
Chen et al., 2015). These previous works show
different advantages of using character-level in-
formation. In our case, with the new character-
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based neural MT architecture, we take advantage
of intra-word information, which is proven to be
extremely useful in other NLP applications (San-
tos and Zadrozny, 2014; Ling et al., 2015a), es-
pecially when dealing with morphologically rich
languages. When using the character-based source
word embeddings in MT, there ceases to be un-
known words in the source input, while the size
of the target vocabulary remains unchanged. Al-
though the target vocabulary continues with the
same limitation as in the standard neural MT sys-
tem, the fact that there are no unknown words
in the source helps to reduce the number of un-
knowns in the target. Moreover, the remaining un-
known target words can now be more successfully
replaced with the corresponding source-aligned
words. As a consequence, we obtain a significant
improvement in terms of translation quality (up to
3 BLEU points).

The rest of the paper is organized as follows.
Section 2 briefly explains the architecture of the
neural MT that we are using as a baseline sys-
tem. Section 3 describes the changes introduced in
the baseline architecture in order to use character-
based embeddings instead of the standard lookup-
based word representations. Section 4 reports the
experimental framework and the results obtained
in the German-English WMT task. Finally, sec-
tion 5 concludes with the contributions of the pa-
per and further work.

2 Neural Machine Translation

Neural MT uses a neural network approach to
compute the conditional probability of the tar-
get sentence given the source sentence (Cho et
al., 2014; Bahdanau et al., 2015). The approach
used in this work (Bahdanau et al., 2015) fol-
lows the encoder-decoder architecture.First, the
encoder reads the source sentence s = (s1, ..sI)
and encodes it into a sequence of hidden states
h = (h1, ..hI). Then, the decoder generates a
corresponding translation t = t1, ..., tJ based on
the encoded sequence of hidden states h. Both en-
coder and decoder are jointly trained to maximize
the conditional log-probability of the correct trans-
lation.

This baseline autoencoder architecture is im-
proved with a attention-based mechanism (Bah-
danau et al., 2015), in which the encoder uses
a bi-directional gated recurrent unit (GRU). This
GRU allows for a better performance with long

sentences. The decoder also becomes a GRU and
each word tj is predicted based on a recurrent hid-
den state, the previously predicted word tj−1, and
a context vector. This context vector is obtained
from the weighted sum of the annotations hk,
which in turn, is computed through an alignment
model αjk (a feedforward neural network). This
neural MT approach has achieved competitive re-
sults against the standard phrase-based system in
the WMT 2015 evaluation (Jean et al., 2015).

3 Character-based Machine Translation

Word embeddings have been shown to boost the
performance in many NLP tasks, including ma-
chine translation. However, the standard lookup-
based embeddings are limited to a finite-size vo-
cabulary for both computational and sparsity rea-
sons. Moreover, the orthographic representation
of the words is completely ignored. The standard
learning process is blind to the presence of stems,
prefixes, suffixes and any other kind of affixes in
words.

As a solution to those drawbacks, new alterna-
tive character-based word embeddings have been
recently proposed for tasks such as language mod-
eling (Kim et al., 2016; Ling et al., 2015a), pars-
ing (Ballesteros et al., 2015) or POS tagging (Ling
et al., 2015a; Santos and Zadrozny, 2014). Even
in MT (Ling et al., 2015b), where authors use the
character transformation presented in (Ballesteros
et al., 2015; Ling et al., 2015a) both in the source
and target. However, they do not seem to get clear
improvements. Recently, (Luong and Manning,
2016) propose a combination of word and char-
acters in neural MT.

For our experiments in neural MT, we selected
the best character-based embedding architecture
proposed by Kim et al. (Kim et al., 2016) for lan-
guage modeling. As the Figure 1 shows, the com-
putation of the representation of each word starts
with a character-based embedding layer that as-
sociates each word (sequence of characters) with
a sequence of vectors. This sequence of vectors
is then processed with a set of 1D convolution
filters of different lengths (from 1 to 7 charac-
ters) followed with a max pooling layer. For each
convolutional filter, we keep only the output with
the maximum value. The concatenation of these
max values already provides us with a representa-
tion of each word as a vector with a fixed length
equal to the total number of convolutional ker-
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nels. However, the addition of two highway layers
was shown to improve the quality of the language
model in (Kim et al., 2016) so we also kept these
additional layers in our case. The output of the
second Highway layer will give us the final vec-
tor representation of each source word, replacing
the standard source word embedding in the neural
machine translation system.
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Figure 1: Character-based word embedding

In the target size we are still limited in vocabu-
lary by the softmax layer at the output of the net-
work and we kept the standard target word em-
beddings in our experiments. However, the results
seem to show that the affix-aware representation of
the source words has a positive influence on all the
components of the network. The global optimiza-
tion of the integrated model forces the translation
model and the internal vector representation of the
target words to follow the affix-aware codification
of the source words.

4 Experimental framework

This section reports the data used, its preprocess-
ing, baseline details and results with the enhanced
character-based neural MT system.

4.1 Data

We used the German-English WMT data1 includ-
ing the EPPS, NEWS and Commoncrawl. Pre-
processing consisted of tokenizing, truecasing,
normalizing punctuation and filtering sentences
with more than 5% of their words in a language

1http://www.statmt.org/wmt15/translation-task.html

other than German or English. Statistics are shown
in Table 1.

L Set S W V OOV
De Train 3.5M 77.7M 1.6M -

Dev 3k 63.1k 13.6k 1.7k
Test 2.2k 44.1k 9.8k 1.3k

En Train 3.5M 81.2M 0.8M -
Dev 3k 67.6k 10.1k 0.8k
Test 2.2k 46.8k 7.8k 0.6k

Table 1: Corpus details. Number of sentences (S),
words (W), vocabulary (V) and out-of-vocabulary-
words (OOV) per set and language (L). M standing
for millions, k standing for thousands.

4.2 Baseline systems

The phrase-based system was built using Moses
(Koehn et al., 2007), with standard parameters
such as grow-final-diag for alignment, Good-
Turing smoothing of the relative frequencies, 5-
gram language modeling using Kneser-Ney dis-
counting, and lexicalized reordering, among oth-
ers. The neural-based system was built using the
software from DL4MT2 available in github. We
generally used settings from previous work (Jean
et al., 2015): networks have an embedding of 620
and a dimension of 1024, a batch size of 32, and
no dropout. We used a vocabulary size of 90 thou-
sand words in German-English. Also, as proposed
in (Jean et al., 2015) we replaced unknown words
(UNKs) with the corresponding source word using
the alignment information.

4.3 Results

Table 3 shows the BLEU results for the baseline
systems (including phrase and neural-based, NN)
and the character-based neural MT (CHAR). We
also include the results for the CHAR and NN
systems with post-processing of unknown words,
which consists in replacing the UNKs with the cor-
responding source word (+Src), as suggested in
(Jean et al., 2015). BLEU results improve by al-
most 1.5 points in German-to-English and by more
than 3 points in English-to-German. The reduction
in the number of unknown words (after postpro-
cessing) goes from 1491 (NN) to 1260 (CHAR)
in the direction from German-to-English and from
3148 to 2640 in the opposite direction. Note the

2http://dl4mt.computing.dcu.ie/
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1 SRC Berichten zufolge hofft Indien darber hinaus auf einen Vertrag zur Verteidigungszusammenarbeit zwischen den beiden Nationen .
Phrase reportedly hopes India , in addition to a contract for the defence cooperation between the two nations .
NN according to reports , India also hopes to establish a contract for the UNK between the two nations .
CHAR according to reports , India hopes to see a Treaty of Defence Cooperation between the two nations .
REF India is also reportedly hoping for a deal on defence collaboration between the two nations .

2 SRC der durchtrainierte Mainzer sagt von sich , dass er ein “ ambitionierter Rennradler “ ist .
Phrase the will of Mainz says that he a more ambitious .
NN the UNK Mainz says that he is a “ ambitious , . “
CHAR the UNK in Mainz says that he is a ’ ambitious racer ’ .
REF the well-conditioned man from Mainz said he was an “ ambitious racing cyclist . “

3 SRC die GDL habe jedoch nicht gesagt , wo sie streiken wolle , so dass es schwer sei , die Folgen konkret vorherzusehen .
Phrase the GDL have , however , not to say , where they strike , so that it is difficult to predict the consequences of concrete .
NN however , the UNK did not tell which they wanted to UNK , so it is difficult to predict the consequences .
CHAR however , the UNK did not say where they wanted to strike , so it is difficult to predict the consequences .
REF the GDL have not said , however , where they will strike , making it difficult to predict exactly what the consequences will be .

4 SRC die Premierminister Indiens und Japans trafen sich in Tokio .
Phrase the Prime Minister of India and Japan in Tokyo .
NN the Prime Minister of India and Japan met in Tokyo
CHAR the Prime Ministers of India and Japan met in Tokyo
REF India and Japan prime ministers meet in Tokyo

5 SRC wo die Beamten es aus den Augen verloren .
Phrase where the officials lost sight of
NN where the officials lost it out of the eyes
CHAR where officials lose sight of it
REF causing the officers to lose sight of it

Table 2: Translation examples.

De->En En->De
Phrase 20.99 17.04
NN 18.83 16.47
NN+Src 20.64 17.15
CHAR 21.40 19.53
CHAR+Src 22.10 20.22

Table 3: De-En BLEU results.

number of out-of-vocabulary words of the test set
is shown in Table 1.

The character-based embedding has an impact
in learning a better translation model at various
levels, which seems to include better alignment,
reordering, morphological generation and disam-
biguation. Table 2 shows some examples of the
kind of improvements that the character-based
neural MT system is capable of achieving com-
pared to baseline systems. Examples 1 and 2 show
how the reduction of source unknowns improves
the adequacy of the translation. Examples 3 and 4
show how the character-based approach is able to
handle morphological variations. Finally, example
5 shows an appropriate semantic disambiguation.

5 Conclusions

Neural MT offers a new perspective in the way
MT is managed. Its main advantages when com-
pared with previous approaches, e.g. statistical
phrase-based, are that the translation is faced with
trainable features and optimized in an end-to-end
scheme. However, there still remain many chal-
lenges left to solve, such as dealing with the limi-

tation in vocabulary size.
In this paper we have proposed a modification to

the standard encoder/decoder neural MT architec-
ture to use unlimited-vocabulary character-based
source word embeddings. The improvement in
BLEU is about 1.5 points in German-to-English
and more than 3 points in English-to-German.

As further work, we are currently studying dif-
ferent alternatives (Chung et al., 2016) to extend
the character-based approach to the target side of
the neural MT system.
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Abstract

Bilingual models that capture the seman-
tics of sentences are typically only eval-
uated on cross-lingual transfer tasks such
as cross-lingual document categorization
or machine translation. In this work, we
evaluate the quality of the monolingual
representations learned with a variant of
the bilingual compositional model of Her-
mann and Blunsom (2014), when viewing
translations in a second language as a se-
mantic annotation as the original language
text. We show that compositional objec-
tives based on phrase translation pairs out-
perform compositional objectives based
on bilingual sentences and on monolingual
paraphrases.

1 Introduction

The effectiveness of new representation learning
methods for distributional word representations
(Baroni et al., 2014) has brought renewed interest
to the question of how to compose semantic rep-
resentations of words to capture the semantics of
phrases and sentences. These representations offer
the promise of capturing phrasal or sentential se-
mantics in a general fashion, and could in principle
benefit any NLP applications that analyze text be-
yond the word level, and improve their ability to
generalize beyond contexts seen in training.

While most prior work has focused either on
composing words into short phrases (Mitchell and
Lapata, 2010; Baroni and Zamparelli, 2010; Her-
mann et al., 2012; Fyshe et al., 2015), or on super-
vised task-specific composition functions (Socher
et al., 2013; Iyyer et al., 2015; Rocktäschel et al.,
2015; Iyyer et al., 2014; Tai et al., 2015, inter
alia), Wieting et al. (2016) recently showed that

a simple composition architecture (vector averag-
ing) can yield sentence models that consistently
perform well in semantic textual similarity tasks
in a wide range of domains, and outperform more
complex sequence models (Tai et al., 2015). Inter-
estingly, these models are trained using PPDB, the
paraphrase database (Ganitkevitch et al., 2013),
which was learned from bilingual parallel corpora.

In bilingual settings, there are also a few ex-
amples of bilingual sentence models (Zou et al.,
2013; Hermann and Blunsom, 2014; Lauly et
al., 2014; Gouws et al., 2014). However, they
have only been evaluated in cross-lingual trans-
fer settings (e.g., cross-lingual document classifi-
cation, or machine translation), which do not di-
rectly evaluate the quality of the sentence-level se-
mantic representations learned.

In this work, we directly evaluate the usefulness
of modeling semantic equivalence using composi-
tional models of translated texts for detecting se-
mantic textual similarity in a single language. For
instance, in addition to using translated texts to
model cross-lingual transfer from English to a for-
eign language, we can view English translations as
a semantic annotation of the foreign text, and eval-
uate the usefulness of the resulting foreign repre-
sentations. While learning representations in lan-
guages other than English is a pressing practical
problem, this paper will focus on evaluating En-
glish sentence representations learned on English
semantic similarity tasks to facilitate comparison
with prior work.

Our results show that sentence representations
learned using a bilingual compositional objective
outperform representations learned using mono-
lingual evidence, whether compositional or not. In
addition, phrasal translations yield better represen-
tations than full sentence translations, even when
applied to sentence-level tasks.
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Table 1: Positive and negative examples for each of the 3 types of supervision considered

Bilingual Sentences +
thus, in fact, we might say that

he hurried ahead of the decision
by our fellow member.

as que podramos decir
, de hecho, que se adelant a
la decisin de nuestro colega.

-
thus, in fact, we might say that

he hurried ahead of the decision
by our fellow member.

seor presidente, la votacin
sobre sellafield ha sido una novedad

en el parlamento europeo .
English paraphrases + by our fellow member by our colleague

- by our fellow member of the committee’s work
+ slowly than anticipated slowly than expected

Bilingual phrases + by our fellow member de nuestro colega diputado
- by our fellow member miles de personas de todo
+ book and buy airline tickets reserva y adquisicin de billetes
+ the air fare advertised should show el precio del billete anunciado debera indicar
+ a book by the american writer noam un libro del escritor norteamericano noam

2 Models

Inspired by the bilingual model of (Hermann and
Blunsom, 2014), and paraphrase model of (Wiet-
ing et al., 2016), representations for multi-word
segments are built with a simple bag-of-word ad-
ditive combination of word representations, which
are trained to minimize the distance between se-
mantically equivalent segments.

2.1 Three Views of Semantic Equivalence

The different types of semantic equivalence used
for training are illustrated in Table 1.

Parallel Sentences occur naturally, and provide
training examples that are more consistent with
downstream applications. However, they can be
noisy due to automatic sentence alignment and
one-to-many mappings, and bag-of-word repre-
sentations of sentence meaning are likely to be in-
creasingly noisier as segments get longer.

Monolingual Paraphrases are invaluable re-
sources, but rarely occur naturally , and creat-
ing paraphrase resources therefore requires con-
siderable effort. Ganitkevitch et al. (2013)
automatically-created paraphrase resources for
many languages using parallel corpora.

Parallel Phrases or phrasal translations might
provide a tighter definition of semantic equiva-
lence than longer sentence pairs, but phrase pairs
have to be extracted automatically based on word
alignments, an automatic and noisy process.

2.2 Models and Learning Objectives
Our main model is based on the bilingual com-
position model of Hermann and Blunsom (2014),
which learns a word embedding matrix W from a
training set X of aligned sentence pairs 〈x1, x2〉.
Each of x1 and x2 is represented as a bag-of-
words, i.e. a superset of column indices in
W . Each aligned pair 〈x1, x2〉 is augmented
with k randomly selected sentences that are
not aligned to x1, and another k that are not
aligned to x2. Given this augmented example
〈x1, x2, x̄

1
1, ..., x̄

k
1, x̄

1
2, ..., x̄

k
2〉, the model training

objective is defined as follows:

Jbi(W ) =
λ

2
||W ||2F +

∑
〈x1,x2,x̄1,x̄2〉

k∑
i=1

[δ + ||g(x1)− g(x2)||2
− ||g(x1)− g(x̄i

2)||2]h
[δ + ||g(x1)− g(x2)||2
− ||g(x2)− g(x̄i

1)||2]h (1)

where g(x) =
∑

i∈xW:i, [.]h is the hinge func-
tion (i.e. [v]h = max(0, v)) whose margin is given
by δ and λ is a regularization parameter.

The paraphrase-based model of Wieting et al.
(2016) shares the same structure as the bilingual
model above, but differs in the nature of seg-
ments used to define semantic equivalence (sen-
tence pairs vs. paraphrases), the distance function
used (Euclidean distance vs. cosine similarity), as
well as the negative sampling strategies, and word
embeddings initialization and regularization. We
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Table 2: Training conditions: three types of semantic equivalence for composed representations.
Condition # examples Avg. length Provenance
Bilingual Sentences 1.9M 28 Europarl-v7 (Koehn, 2005)
Bilingual phrases 3M 5 + Moses phrase extraction (Koehn et al., 2007)
Monolingual phrases 3M 3 PPDB XL (Ganitkevitch et al., 2013)

provide empirical comparisons with the Wieting
et al. (2016) embeddings, and also define a sim-
plified version of that objective, Jpa, to allow for
controlled comparisons with Jbi.
Jpa uses random initialization and penalizes

large values in W with a ||W ||2F regularization
term1. The choice of distance function (Euclidean
distance or cosine similarity) and of the negative
sampling strategy2 are viewed as tunable hyperpa-
rameters.

3 Experiments

3.1 Evaluating Sentence Representations
Following Wieting et al. (2016), the models above
are evaluated on the four Semantic Textual Simi-
larity (STS) datasets (Agirre et al., 2012; Agirre et
al., 2013; Agirre et al., 2014; Agirre et al., 2015),
which provide pairs of English sentences from dif-
ferent domains (e.g., Tweets, news, webforums,
image captions), annotated with human judgments
of similarity on a 1 to 5 scale. Systems have to out-
put a similarity score for each pair. Systems are
evaluated using the Pearson correlation between
gold and predicted rankings.

The Sentences Involving Compositional
Knowledge (SICK) test set (Marelli et al., 2014)
provides a complementary evaluation. It consists
of sentence pairs annotated with semantic relat-
edness scores. While STS examples were simply
drawn from existing NLP datasets, SICK exam-
ples were constructed to avoid non-compositional
phenomena such as multiword expressions,
named entities and world knowledge.

3.2 Experimental Conditions
At training time we learn word embeddings for
each combination of objective (Section 2.2) and

1In contrast, Wieting et al. (2016) initialize W with high-
quality but resource intensive embeddings – they are trained
using word-level PPDB paraphrases, tuned on SimLex-999,
and regularized to penalize deviations from initial GloVe em-
beddings (Pennington et al., 2014).

2MAX (use the unaligned phrase of minimum distance)
or MIX (use MAX with probability 0.5 and sample randomly
otherwise)

type of training examples (Table 2), using modi-
fied implementations of open-source implementa-
tions for Jbi (Hermann and Blunsom, 2014) and
Jpa (Wieting et al., 2016). This results in six
model configurations. Each was trained for 10
epochs using tuned hyperparameters.

At tuning time we use the SMT-europarl sub-
set of STS-2012. We consider mini-batch sizes
of {25, 50, 100}, δ ∈ {1, 10, 100} with Euclidean
distance, δ ∈ {0.4, 0.6, 0.8} with cosine similarly,
and λ ∈ {1, 10−3, 10−5, 10−7, 10−9}. In Jbi, we
consider k ∈ {1, 5, 10, 15}, and in Jpa we tuned
over the sampling strategy ∈ {MIX,MAX} and
the distance function used. To speed up tuning for
Jpa, we follow Wieting et al. (2016), by limiting
training to 100k pairs, and tuning to 5 epochs.

Tuning results confirmed the importance of neg-
ative sampling and distance function in our mod-
els: in Jbi, increasing k consistently helps the
bilingual models, whereas the correlation score for
monolingual models degrade for k > 10. In Jpa,
MAX always outperforms MIX . Euclidean dis-
tance was consistently chosen for bilingual sen-
tences and monolingual phrases, while cosine sim-
ilarity was chosen for bilingual phrases.

At test time we construct sentence-level embed-
dings by averaging the representations of words in
each sentence, and compute cosine similarity to
capture the similarity between sentences.

4 Findings

Table 3 reports the Pearson correlation scores
achieved for each approach and dataset.

Bilingual phrases yield the best models in
controlled settings

Overall, the best representations are obtained us-
ing bilingual phrase pairs and the Jbi objective.
They outperform all other compositional models
for all tasks, except for one subset of STS-2015.

The best objective for a given type of train-
ing example varies: Jpa generally yields better
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Table 3: Pearson correlation scores obtained on the English STS sets (with per year averages) and on
semantic-relatedness task (SICK). The left columns report results based on new representations learned
in this work, while the 2 rightmost columns report reference results from prior work (Wieting et al.,
2016).

Monolingual Phrases Bilingual Phrases Bilingual Sentences Reference Results
Jbi Jpa Jbi Jpa Jbi Jpa Paragram GloVe

MSRpar 0.28 0.42 0.54 0.38 0.54 0.36 0.44 0.47
MSRvid 0.33 0.55 0.71 0.38 0.71 0.19 0.77 0.64
SMT-eur 0.39 0.41 0.49 0.46 0.47 0.47 0.48 0.46
SMT-news 0.40 0.50 0.59 0.40 0.58 0.38 0.63 0.50
OnWN 0.52 0.57 0.64 0.62 0.46 0.62 0.71 0.55
2012 Avg 0.39 0.49 0.59 0.45 0.54 0.41 0.61 0.53
headline 0.56 0.66 0.70 0.58 0.66 0.61 0.74 0.64
OnWN 0.55 0.53 0.75 0.34 0.48 0.25 0.72 0.63
FNWN 0.35 0.29 0.41 0.32 0.25 0.16 0.47 0.34
2013 Avg 0.49 0.49 0.62 0.41 0.46 0.34 0.58 0.42
deft forum 0.35 0.47 0.51 0.36 0.36 0.33 0.53 0.27
deft news 0.59 0.68 0.77 0.59 0.76 0.58 0.75 0.68
headline 0.56 0.63 0.73 0.58 0.67 0.58 0.72 0.60
images 0.58 0.73 0.73 0.59 0.66 0.49 0.80 0.61
OnWN 0.65 0.62 0.80 0.55 0.55 0.47 0.81 0.58
tweet news 0.59 0.66 0.73 0.64 0.56 0.69 0.77 0.51
2014 Avg 0.55 0.63 0.71 0.55 0.59 0.52 0.73 0.54
forums 0.35 0.42 0.55 0.48 0.50 0.45 0.66 0.31
students 0.66 0.66 0.73 0.73 0.65 0.69 0.77 0.63
headline 0.64 0.60 0.79 0.64 0.73 0.66 0.76 0.62
belief 0.46 0.71 0.68 0.67 0.48 0.61 0.77 0.41
images 0.52 0.71 0.75 0.62 0.67 0.56 0.82 0.68
2015 Avg 0.53 0.63 0.70 0.63 0.59 0.60 0.76 0.53
SICK 0.53 0.62 0.66 0.57 0.63 0.54 0.72 0.66

results with monolingual phrases, while Jbi per-
forms better with bilingual examples. Bilingual
phrases seem to benefit from larger number of ran-
domly selected negative samples and from using
the Euclidean distance rather than cosine similar-
ity. The best bilingual compositional representa-
tions are better than non-compositional Glove em-
beddings (Pennington et al., 2014), but worse than
compositional Paragram embeddings (Wieting et
al., 2016). However, Paragram initialization re-
quires large amounts of text and human word simi-
larity judgments for tuning, while our models were
initialized randomly.

Table 4: Undertrained word ratios (tokens seen
fewer than 100 times during training) are uncor-
related with performance in Table 3.

Dataset Monolingual
Phrases

Bilingual
Phrases

Bilingual
Sentences

2012 Avg 0.15 0.17 0.09
2013 Avg 0.16 0.17 0.11
2014 Avg 0.19 0.22 0.11
2015 Avg 0.15 0.19 0.11

SICK 0.2 0.25 0.15

Bilingual sentences vs. bilingual phrases

Why do bilingual phrases outperform the bilingual
sentences they are extracted from? In this section,
we verify that this is not explained by systematic
biases in the distribution of training examples.

First, Table 4 shows that bilingual sentences
have the smallest ratios of undertrained words, and
are therefore not penalized by rare words more
than bilingual phrases3.

Second, we see that the rankings are not bi-
ased due to memorization of the phrases seen dur-
ing training. Rankings of models does not change
when testing on unseen word sequences, as shown
by SICK results with models trained using Jbi on
a filtered training set that contains none of the bi-
grams observed at test time (Table 5).

Third, the advantage of bilingual phrases over
bilingual sentences is not due to the larger number
of training examples. 1.9M (and even 1M ) bilin-

3Further, more than 80% of words that appear in both
bilingual sentences and bilingual phrases occur in 460 (in
average) more bilingual sentences than in bilingual phrases.
The remaining 20% were found to be the rare words (e.g. za-
zvorkova, woldesmayat, yellow-bellies) that hardly occur in
test sets.
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Table 5: Impact of memorization: Pearson corre-
lation scores on SICK with training sets with and
without filtering out training pairs that contain any
bigrams that appear in SICK. Number of training
pairs (# Pairs) is shown in millions.

Not Filtered Filtered
# Pairs Score # Pairs Score

Monoling. Phrases 3M 0.52 2.3M 0.54
Bilingual Phrases 3M 0.67 2.1M 0.65
Bilingual Sentences 1.9M 0.66 0.47M 0.58

gual phrase pairs still outperform the 1.9M bilin-
gual sentence pairs on all subsets (See Table 6).

Taken together, these additional results sup-
port our initial intuition that the main advantage
of bilingual phrases over bilingual sentences is
that phrase pairs have stronger semantic equiva-
lence than sentence pairs, since phrase pairs are
shorter and are constructed by identifying strongly
aligned subsets of sentence pairs.

Monolingual vs. bilingual phrases
Based on the analysis thus far, we hypothesize that
paraphrase pairs with overlapping tokens make
the compositional training objective less useful.
Around 40% of the paraphrase training pairs differ
only by one token. With Euclidean distance in the
training objective, overlapping tokens cancel each
other out of the composition term. For example,
the pair 〈healthy and stable, healthy and steady〉
yields the compositional term

||(healthy + and+ stable)−
(healthy + and+ steady)||2
= ||stable− steady||2

In contrast, overlap cannot occur in the bilin-
gual setting, and all words within bilingual phrases
contribute to the compositional objective. Fur-
thermore, bilingual pairs provide a more explicit
semantic signal as translations can disambiguate
polysemous words (Diab, 2004; Carpuat and Wu,
2007) and help discover synonyms by pivoting
(Callison-Burch, 2007; Yao et al., 2012).

All these factors might contribute to the ability
of training with bilingual phrases of taking advan-
tage of larger number of negative samples k.

5 Conclusion

We conducted the first evaluation of compositional
representations learned using bilingual supervi-

Table 6: Impact of training set size: Average Pear-
son correlation per test set with different numbers
(in millions) of bilingual phrase pairs, compared
to the full set of bilingual sentences and monolin-
gually pretrained GloVe.

Bilingual Phrases Sent.
0.5M 1M 1.9M 3M 1.9M GloVe

2012 0.55 0.58 0.59 0.59 0.54 0.53
2013 0.59 0.61 0.61 0.62 0.46 0.42
2014 0.69 0.71 0.71 0.71 0.59 0.54
2016 0.68 0.69 0.70 0.70 0.61 0.53
SICK 0.62 0.64 0.65 0.66 0.63 0.66

sion on monolingual textual similarity tasks.

Phrase and sentence representations are con-
structed by composing word representations using
a simple additive composition function. We con-
sidered two training objective that encourage the
resulting representations to distinguish English-
Spanish segment pairs that are semantically equiv-
alent or not. The resulting English sentence repre-
sentations consistently outperform compositional
models trained to detect monolingual paraphrases
on five different English semantic textual similar-
ity tasks from SemEval.

Bilingual phrase pairs are consistently the best
evidence of semantic equivalence in our experi-
ments. They yield better results than the sentence
pairs they are extracted from, despite the noise in-
troduced by the automatic extraction process.

Furthermore the composed representations out-
perform non-compositional word representations
derived from monolingual co-occurrence statis-
tics. While sizes of monolingual vs. bilingual cor-
pora are not directly comparable, it is remarkable
that representations learned with only 500k bilin-
gual phrase pairs outperform GloVe embeddings
trained on 840B tokens.

Since our best models still underperform Para-
gram vectors, which require a more sophisticated
initialization process, we will turn to improving
our initialization strategies in future work. Nev-
ertheless, current results provide further evidence
of the usefulness of compositional text represen-
tations, even with a simple bag-of-word additive
composition function, and of bilingual translation
pairs as a strong signal of semantic equivalence.
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Abstract

Traditional event detection methods heav-
ily rely on manually engineered rich fea-
tures. Recent deep learning approaches al-
leviate this problem by automatic feature
engineering. But such efforts, like tra-
dition methods, have so far only focused
on single-token event mentions, whereas
in practice events can also be a phrase.
We instead use forward-backward recur-
rent neural networks (FBRNNs) to detect
events that can be either words or phrases.
To the best our knowledge, this is one
of the first efforts to handle multi-word
events and also the first attempt to use
RNNs for event detection. Experimental
results demonstrate that FBRNN is com-
petitive with the state-of-the-art methods
on the ACE 2005 and the Rich ERE 2015
event detection tasks.

1 Introduction

Automatic event extraction from natural text is
an important and challenging task for natural lan-
guage understanding. Given a set of ontologized
event types, the goal of event extraction is to iden-
tify the mentions of different event types and their
arguments from natural texts. In this paper we fo-
cus on the problem of extracting event mentions,
which can be in the form of a single word or mul-
tiple words. In the current literature, events have
been annotated in two different forms:

• Event trigger: a single token that is consid-
ered to signify the occurrence of an event.
Here a token is not necessarily a word, for
example, in order to capture a death event,
the phrase “kick the bucket” is concatenated
into a single token “kick the bucket”. This

scheme has been used in the ACE and Light
ERE data and has been followed in most stud-
ies on event extraction.

• Event nugget: a word or a phrase of multi-
ple words that most clearly expresses the oc-
currence of an event. This scheme is recently
introduced to remove the limitation of single-
token event triggers and has been adopted by
the rich ERE data for event annotation.

Existing event extraction work often heavily relies
on a rich set of hand-designed features and utilizes
existing NLP toolkits and resources (Ji and Grish-
man, 2008; Patwardhan and Riloff, 2009; Liao and
Grishman, 2010; McClosky et al., 2011; Huang
and Riloff, 2012; Li et al., 2013a; Li et al., 2013b;
Li et al., 2014). Consequently, it is often challeng-
ing to adapt prior methods to multi-lingual or non-
English settings since they require extensive lin-
guistic knowledge for feature engineering and ma-
ture NLP toolkits for extracting the features with-
out severe error propagation.

By contrast, deep learning has recently emerged
as a compelling solution to avoid the afore-
mentioned problems by automatically extracting
meaningful features from raw text without relying
on existing NLP toolkits. There have been some
limited attempts in using deep learning for event
detection (Nguyen and Grishman, 2015; Chen et
al., 2015) which apply Convolutional Neural Net-
works (CNNs) to a window of text around poten-
tial triggers to identify events. These efforts out-
perform traditional methods, but there remain two
major limitations:

• So far they have, like traditional methods,
only focused on the oversimplified scenario
of single-token event detection.

• Such CNN-based approaches require a fixed
size window. In practice it is often unclear
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Figure 1: The Proposed Forward-Backward Recurrent Neural Network (FBRNN) Model, with the ex-
ample sentence “an unknown man had [broken into] a house last November” and event nugget candidate
“broken into”

how large this window needs to be in order to
capture necessary context to make decision
for an event candidate.

Recurrent Neural Networks (RNNs), by con-
trast, is a natural solution to both problems above
because it can be applied to inputs of variable
length which eliminates both the requirement of
single-token event trigger and the need for a
fixed window size. Using recurrent nodes with
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Units
(GRU) (Cho et al., 2014), RNN is potentially ca-
pable of selectively deciding the relevant context
to consider for detecting events.

In this paper we present a forward-backward re-
current neural network (FBRNN) to extract (pos-
sibly multi-word) event mentions from raw text.
Although RNNs have been studied extensively in
other NLP tasks (Cross and Huang, 2016; Tai
et al., 2015; Socher et al., 2014; Paulus et al.,
2014), to the best of our knowledge, this is the
first work to use RNNs for event detection. This
is also one of the first efforts to handle multi-word
event nuggets. Experimental results confirm that
FBRNN is competitive compared to the state-of-
the-art on the ACE 2005 dataset and the Rich ERE
2015 event detection task.

2 Proposed Model

Let x = [w0, w1, ..., wn] be a sentence. We first go
over each word and phrase and heuristically ex-

tract a set of event candidates. The task is then
to predict for each candidate given the sentence
whether it is an event and, if so, its type. Figure 1
demonstrates our proposed model for this task.

For each event candidate, which consists of
a continuous span of texts [wi, ..., wj ], we split
the sentence into three parts: the left con-
text [w0, ..., wi−1], the event nugget candidate
[wi, ..., wj ] and the right context [wj+1, ..., wn].
For instance, for event candidate “broken into”
and given sentence “an unknown man had broken
into a house last November”; [an, unknown, man,
had], [broken, into] and [a, house, last, Novem-
ber] are the left context, the event nugget candidate
and the right context respectively. For each part,
we learn a separate RNN to produce a represen-
tation. Before feeding the data into the network,
each word is represented as a real-valued vector
that is formed by concatenating a word embedding
with a branch embedding, which we describe be-
low:

• Word embedding: Several studies have in-
vestigated methods for representing words as
real-valued vectors in order to capture the
hidden semantic and syntactic properties of
words (Collobert and Weston, 2008; Mikolov
et al., 2013). Such embeddings are typically
learned from large unlabeled text corpora,
consequently can serve as good initializa-
tions. In our work, we initialize the word em-
bedding with the pretrained 300-diemension
word2vec (Mikolov et al., 2013).
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• Branch embedding: The relative position
of a word to the current event nugget candi-
date may contain useful information toward
how the word should be used or interpreted
in identifying events. It is thus a common
practice to include an additional embedding
for each word that characterizes its relative
position to the event nugget candidate. In
this work, to reduce the complexity of our
model and avoid overfitting, we only learn
embeddings for three different positions: the
left branch, the nugget branch and the right
branch respectively. This is illustrated using
three different colors in Figure 1.

Now each word is represented as a real-valued
vector, formed by concatenating its word and
branch embeddings. The sequence of words in
the left, nugget and right branches will each pass
through a separate Recurrent Neural Network. For
the left and nugget branches, we process the words
from left to right, and use the opposite direction
(from right to left) for the right context, thus the
name Forward-Backward RNN (FBRNN).

The output of each recurrent neural network is a
fixed size representation of its input. We concate-
nate the representations from the three branches
and pass it through a fully connected neural net-
work with a softmax output node that classifies
each event candidate as an event of specific type
or a non-event. Note that in cases where an event
candidate can potentially belong to multiple event
types, one can replace the softmax output node
with a set of binary output nodes or a sigmoid to
allow for multi-label prediction for each event can-
didate.

To avoid overfitting, we use dropout (Hinton
et al., 2012; Srivastava et al., 2014) with rate
of 0.5 for regularization. The weights of the re-
current neural networks as well as the fully con-
nected neural network are learned by minimizing
the log-loss on the training data via the Adam
optimizer (Kingma and Ba, 2015) which per-
forms better that other optimization methods like
AdaDelta (Zeiler, 2012), AdaGrad (Duchi et al.,
2011), RMSprop and SGD. During training, the
word and branch embeddings are updated to learn
effective representations for this specific task.

3 Experiments

In this section, we first empirically examine some
design choices for our model and then compare

the proposed model to the current state-of-the-art
on two different event detection datasets.

3.1 Datasets, candidate generation and
hyper-parameters

We experiment on two different corpora, ACE
2005 and Rich ERE 2015.

• ACE 2005: The ACE 2005 corpus is anno-
tated with single-token event triggers and has
eight event types and 33 event subtypes that,
along with the “non-event” class, constitutes
a 34-class classification problem. In our ex-
periments we used the same train, develop-
ment and test sets as the previous studies on
this dataset (Nguyen and Grishman, 2015; Li
et al., 2013b). Candidate generation for this
corpus is based on a list of candidate event
trigger words created from the training data
and the PPDB paraphrase database. Given a
sentence, we go over each token and extract
the tokens that appear in this high-recall list
as event candidates, which we then classify
with our proposed FBRNN model.

• Rich ERE 2015: The Rich ERE 2015 cor-
pus was released in the TAC 2015 competi-
tion and annotated at the nugget level, thus
addressing phrasal event mentions. The Rich
ERE 2015 corpus has nine event types and
38 event subtypes, forming a 39-class clas-
sification problem (considering “non-event”
as an additional class). We utilized the same
train and test sets that have been used in the
TAC 2015 event nugget detection competi-
tion. A subset of the provided train set was
set aside as our development set. To gener-
ate event nugget candidates, we first followed
the same strategy that we used for the ACE
2005 dataset experiment to identify single-
token event candidates. We then expand the
single-token event candidates using a heuris-
tic rule based on POS tags.

There are a number of hyper-parameters for our
model, including the dimension of the branch em-
bedding, the number of recurrent layers in each
RNN, the size of the RNN outputs, the dropout
rates for training the networks. We tune these pa-
rameters using the development set.

3.2 Exploration of different design choices
We first design some experiments to evaluate the
impact of the following design choices:
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Configurations P R F1

LSTM +branch 59.82 48.39 53.50
-branch 58.50 44.82 50.76

GRU +branch 63.72 47.68 54.55
-branch 64.56 43.93 52.28

Table 1: Performance on the development set with
different configurations on Rich ERE 2015.

Methods P R F1
Sentence level in Ji and - - 59.7Grishman (2008)

MaxEnt with local - - 64.7features in Li et al. (2013b)
Joint beam search with local - - 63.7features in Li et al. (2013b)

Joint beam search with
- - 65.6local and global features in

Li et al. (2013b)
CNN (Nguyen, 2015) 71.9 63.8 67.6

FBRNN 66.8 68.0 67.4

Table 2: Comparison with reported performance
by event detection systems without using gold en-
tity mentions and types on the ACE 2005 corpus.

i) Different RNN structures: LSTM and GRU
are two popular recurrent network structures
that are capable of extracting long-term de-
pendencies in different ways. Here we com-
pare their performance for event detection.

ii) The effect of branch embedding: A word can
present different role and concept when it is
in a nugget branch or other branches. Here
we would examine the effect of including
branch embedding.

Table 1 shows the results of our model with dif-
ferent design choices on the development set of
the Rich ERE 2015 corpus. We note that the per-
formance of GRU is slightly better than that of
LSTM. We believe this is because GRU is a less
complex structure compared to LSTM, thus less
prone to overfitting given the limited training data
for our task. From the results we can also see that
the branch embedding performs a crucial role for
our model, producing significant improvement for
both LSTM and GRU.

Based on the results presented above, for the re-
maining experiments we will focus on GRU struc-
ture with branch embeddings.

3.3 Results on ACE 2005

Many prior studies employ gold-standard en-
tity mentions and types from manual annotation,

Methods P R F1
1st 75.23 47.74 58.41
2nd 73.95 46.61 57.18
3th 73.68 44.94 55.83
4th 73.73 44.57 55.56
5th 71.06 43.50 53.97

FBRNN 71.58 48.19 57.61

Table 3: Performance of FBRNN compared with
reported top results in TAC competition (Mita-
mura et al., 2015) on Rich ERE 2015.

which would not be available in reality during
testing. Nguyen and Grishman (2015) examined
the performance of a number of traditional sys-
tems (Li et al., 2013b) in a more realistic setting,
where entity mentions and types are acquired from
an automatic high-performing name tagger and in-
formation extraction system. In Table 2 we com-
pare the performance of our system with these re-
sults reported by Nguyen and Grishman (2015).

We first note that the deep learning methods
(CNN and FBRNN) achieve significantly better F1
performance compared to traditional methods us-
ing manually engineered features (both local and
global). Compared to CNN, our FBRNN model
achieved better recall but the precision is lower.
For the overall F1 measure, our model is compa-
rable with the CNN model.

3.4 Results on Rich ERE 2015

Table 3 reports the test performance of our model
and shows that it is competitive with the top-
ranked results obtained in the TAC 2015 event
nugget detection competition. It is interesting to
note that FBRNN is again winning in recall, but
losing in precision, a phenomenon that is consis-
tently observed in both corpora and a topic worth
a closer look for future work.

Finally, in Rich ERE test data, approximately
9% of the events are actually multi-labeled. Our
current model uses softmax output layer and is
thus innately incapable of making multi-label pre-
dictions. Despite this limitation, FBRNN achieved
competitive result on Rich ERE with only 0.8%
difference from the best reported system in the
TAC 2015 competition.

4 Conclusions

This paper proposes a novel language-independent
event detection method based on RNNs which can
automatically extract effective features from raw
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text to detect event nuggets. We conducted two
experiments to compare FBRNN with the state-of-
the-art event detection systems on the ACE 2005
and Rich ERE 2015 corpora. These experiments
demonstrate that FBRNN achieves competitive re-
sults compared to the current state-of-the-art.
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Abstract

We describe the Iraq Body Count Cor-
pus (IBC-C) dataset, the first substan-
tial armed conflict-related dataset which
can be used for conflict analysis. IBC-
C provides a ground-truth dataset for con-
flict specific named entity recognition, slot
filling, and event de-duplication. IBC-
C is constructed using data collected by
the Iraq Body Count project which has
been recording incidents from the ongoing
war in Iraq since 2003. We describe the
dataset’s creation, how it can be used for
the above three tasks and provide initial
baseline results for the first task (named
entity recognition) using Hidden Markov
Models, Conditional Random Fields, and
Recursive Neural Networks.

1 Introduction

Many reports about armed conflict related inci-
dents are published every day. However, these re-
ports on the deaths and injuries of civilians and
combatants often get forgotten or go unnoticed for
long periods of time. Automatically extracting ca-
sualty counts from such reports would help better
track ongoing conflicts and understand past ones.

One popular approach of discovering incidents
is to identify them from textual reports and extract
casualty, and other, information from them. This
can either be done by hand or automatically. The
Iraq Body Count (IBC) project has been directly
recording casualties since 2003 for the ongoing
conflict in Iraq (IBC, 2016; Hicks et al., 2011).
IBC staff collect reports, link them to unique in-
cidents, extract casualty information, and save the
information on a per incident basis as can be seen
in Table 2.

Direct recording by hand is a slow process and
notable efforts to do so have tended to lag behind
the present. Information extraction systems capa-
ble of automating this process must explicitly or
implicitly successfully solve three tasks: (1) find
and extract casualty information in reports (2) de-
tect events mentioned in reports (3) deduplicate
detected events into unique events which we call
incidents. The three tasks correspond to named
entity recognition, slot filling, and de-duplication.

In this work we introduce the report based IBC-
C dataset.1 Each report can contain one or more
sections; each section, one or more sentences;
each sentence, one or more words. Each word is
tagged with one of nine entity tags in the inside-
outside-beginning (IOB) style. A visual represen-
tation of the dataset can be seen in Figure 1 and its
statistics in Table 1.

To the best of our knowledge apart from the
significantly smaller MUC-3 and MUC-4 datasets
(which aren’t casualty-specific) there are no other
publicly available datasets made specifically for
tasks (1), (2) or (3). The IBC-C dataset can be
used to train supervised models for all three tasks.

We provide baseline results for task (1) which
we posit as a sequence-classification problem and
solve using an HMM, a CRF, and an RNN.

Since the 1990s the conflict analysis and
NLP/IE communities have diverged. With the
IBC-C dataset we hope to bring the two commu-
nities closer again.

2 Related Work

Extracting information from conflict related re-
ports has been a topic of interest at various times
for both the conflict analysis, information extrac-
tion, and natural language processing communi-

1More information about the IBC-C dataset can be found
on: http://andrejzg.github.io/ibcc/
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Report

Killed: 5
Injured: 2
Location: Baghdad

Killed: 22
Injured: 10
Location: Tikrit

Killed: 13
Injured: 5
Location: Baghdad
Date: March 12th

Killed: 1
Injured: 0
Location: Fallujah
Date: Last week

Figure 1: The IBC-C dataset visualised. A re-
port is split into one or more non overlapping sec-
tions. A section is comprised of sentences which
are comprised of words. Each section is linked to
exactly one incident which in turn can be linked to
one or more sections.

ties.
The 1990s saw a series of message understand-

ing conferences (MUCs) of which MUC-3 and
MUC-4 are closely related to our work and contain
reports of terrorist incidents in Central and South
America. MUC data is most often used for slot
filling and although MUC-3 and MUC-4 contain
more slots than IBC-C they are at the same time
much smaller (MUC4 contains 1,700 reports) and
cannot be used for incident de-duplication.

Although various ACE, CoNNL, and TAC-KBP
tasks contain within them conflict-related reports,
none of them are specific to conflict and haven’t
been studied for conflict-related information ex-
traction specifically.

Studies more directly related to our dataset in-
clude work by Tanev and Piskorski (Tanev et al.,
2008) who use pattern matching to count casu-
alties. They report a 93% accuracy on count-
ing the wounded. However, they have access to
only 29 unique conflict events. Other non-casualty
conflict-related work in the domain also suffers
from a lack of data, for example, (King and Lowe,
2003) only deal with 711 reports.

Despite work in the NLP and IE communities,
the conflict analysis community is still reliant on

Element Count
incidents 9,184
sections 18,379
reports 16,405
sentences 35,295
words 857,465
KNUM 13,597
INUM 6,689
KSUB 14,395
ISUB 1,036
KOTHER 1,192
IOTHER 495
LOCATION 25,251
DATE 4,765
WEAPON 35,617

Table 1: Dataset statistics. Fully capitalised words
indicate named entity tags.

datasets created by hand. These include IBC (IBC,
2016), ACLED (Raleigh et al., 2010), EDACS
(Chojnacki et al., 2012), UCDP (Gleditsch et al.,
2002), and GTD (GTD, 2015).

To the best of our knowledge there are no efforts
to fully automate casualty counting. However, ef-
forts using NLP/IE tools to automate incident de-
tection do exist but their ability to de-deduplicate
incidents has been called into question (Weller and
McCubbins, 2014).

Three notable such efforts originating in the
conflict analysis community are GDELT (Lee-
taru and Schrodt, 2013), ICEWS (Obrien, 2010),
and OEDA (Schrodt, 2016). All three use pat-
tern matching software such as TABARI (Schrodt,
2001) and to categorise reports using the CAMEO
coding scheme (Schrodt et al., 2008).

3 Creating the IBC-C Dataset

3.1 Preprocessing

The Iraq Body Count project (IBC) has been
recording conflict-related incidents from the Iraq
war since 2003. An incident is a unique event re-
lated to war or other forms of violence which led
to the death or injury of people. An example can
be seen in Table 2.

The recording of incidents by the IBC works
as follows: IBC staff first collect relevant reports
before highlighting sections of them which they
deem relevant to individual incidents. Parts of
the report outside the highlighted sections are dis-
carded. Sections can be seen in Figure 1. Because
of the way IBC staff highlight sections there are no
overlapping sections in the IBC-C dataset. Events
are then recognised from the highlighted sections
and de-duplicated into incidents. A final descrip-
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Incident ID Start date End date
d3473 22 Mar 2003 22 Mar 2003

Min killed Max killed Min injured
2 2 8

Max injured Location Cause of death
9 Khurmal Suicide car bomb

Sources Town Province
BBC 23 Mar
DPA 23 Mar Khurmal Sulaymaniyah

Alt. province District Alt district
/ Halabja /

Killed Subjects
Person 1, Person 2, ...

Injured Subjects
Person 3, Person 4, ...

Report Sections
BBC: “On Saturday Person 1 died in Khurmal ...”

DPA: “2 people died yesterday afternoon...”

Table 2: An example of an incident hand coded
by IBC staff. Min and max values represent the
minimum and maximum figures quoted in report
sections linked to the incident.

tion of the incident (e.g. death and injury counts,
location and date) is agreed upon after multiple
rounds of human checking.

In the preprocessing step we gathered all inci-
dents which occurred between March 20th, 2003
and December 31st, 2013. We removed spuri-
ous incidents (e.g. where the minimum number
killed is larger than the maximum number killed)
and cleaned the section text by removing all for-
matting and changing all written-out numbers into
their numeric form (e.g. ‘three’ to 3).

3.2 Annotation

Using the information extracted by the IBC (see
Table 2) we annotated each section word with one
of ten tags: KNUM and INUM for numbers repre-
senting the number killed and injured respectively;
KSUB and ISUB for named individuals were killed
or injured; KOTHER and IOTHER for unnamed
people who were killed or injured (for example
“The doctor was injured yesterday.”); LOCATION
for the location in which an incident occurred;
WEAPON for any weapons used in an attack;
DATE for words which identify when the incident
happened; and, O for all other words.

Our data generation process can be thought of
as a form of distant supervision (Mintz et al.,
2009) where we use agreed upon knowledge about
an incident to label words contained within its
sections instead of having hand-labeled individual
words. This inevitably introduces errors which we
try to mitigate using a filtration step where we re-
move ambiguous data.

Incident FiltrationPreprocessing + Annotation

IBC data

IBC-C dataset

Section FiltrationSentence Filtration

Figure 2: A visualisation of the different steps
taken to create the dataset.

3.3 Filtration

Simply annotating words based on the information
in Table 2 can lead to wrong annotations. For ex-
ample, if two people were recorded as having died
in an incident, then, if another number two appears
in the same sentence, this might lead to a wrong
annotation. The sentence, “2 civilians were killed
after 2 rockets hit the compound” could lead to the
second ‘2’ being annotated as a KNUM. The ac-
tual cardinality of a number makes little difference
to a sequence classifier compared to the difference
a misannotated number would make. To min-
imise such misannotations we remove sentences
and reports which do not pass all filtration criteria.
Our filtration criteria consist of boolean functions
over sentences, sections and incidents which re-
turn false if a test isn’t passed.

The goal of filtration is to remove as much am-
biguously labelled data as possible without bias-
ing against any particular set of linguistic forms.
There is thus a tradeoff which must be struck be-
tween linguistic richness and the quality of anno-
tation.

In our case we found that simple combinations
of pattern matching and semantic functions, as in
3, worked well. No syntactic functions were used.

3.3.1 Incident Filtration
Incidents are filtered using a single criterion: if the
minimum number of people killed or injured does
not equal the maximum number of people killed
or injured, respectively, (Table 2) then the inci-
dent is removed. We do this so as to minimise any
ambiguity in our named entity tagging (the only
task for which we provide baseline results). This
has the adverse effect of removing any incidents
where reports mention different casualty counts.
To compile a dataset which disregards this crite-
rion, or considers a permissible window of casual-
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+ + - + - + 30,204
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+ - + + - - 1,498
+ - - + + - 4,282
+ - - + - - 4,648
- + - + + + 2,757
- + - + - - 67,402
- + - - + + 3,360
- + - - - + 43,006
- - - + + + 7,573
- - - + - + 47,736
- - - - + + 19,749
- - - - - + 125,010

Table 3: Filtration criteria. An example of a set of
boolean functions (columns one through five) ap-
plied to sentences to filter out ambiguous KNUM
annotations. Sentences which we wish to allow are
identified by a ‘+’ in the toConsider column. Sen-
tence counts are given in the last column. Only
rows with non-zero counts are shown. Shaded
rows indicate sentences which are ambiguous are
shaded and identified by a ‘-’. We show only the
KNUM table due to lack of space.

ties, a parameter in our dataset generating program
may be changed.

3.3.2 Sentence Filtration

Filtering sentences is by far the hardest step. It
is here where we must be careful to not bias
against any linguistic forms. A separate set of
boolean functions are applied to each sentence for
the KNUM and INUM entity tags. An example for
the KNUM tag can be seen in Table 3. Every sen-
tence passes through four boolean functions (the
first four columns) and is then labeled as either
having passed or failed the test (fifth column). The
fifth column was decided upon by us in advance.

In the case of Table 3: hasKNUM indicates
whether the sentence contains a word tagged as
KNUM; isKillSentence indicates whether any of
its words are connected to death or killing (by
matching them against a list of predefined words);

hasOneTaggedAsKNUM indicates whether the
number ‘1’ is tagged as a KNUM (remember that
we convert written out numbers such as ‘three’
to ‘3’ and that ‘one’, and thus ‘1’, can also be
a pronoun); hasNumber indicates whether a sen-
tence has a number; and, otherKNUMsInSection
indicates whether there are other words tagged as
KNUM in the section.

3.3.3 Report Filtration

Report filtering is simple and again done using
only one rule. If any sentence a report contains
fails to pass a single sentence-level test, then the
whole report is removed.

3.4 Tasks

3.4.1 Named Entity Recognition

Each word in the IBC-C dataset is tagged with one
of nine (excluding O) entity tags as can be seen in
Table 1 which can be thought of as subsets of more
common named entity tags such as person or loca-
tion. The dataset can be used to train a supervised
NER model for conflict-specific named entity tags.
This is important for relationship extraction which
relies on good named entity tags.

3.4.2 Slot Filling and Relationship Extraction

Each IBC-C event can be thought of as a 9-slot
event template where each slot is named after an
entity tag. The important thing to keep in mind is
that a report may contain more than one section so
just correctly recognising the entities isn’t enough
to solve the slot filling task. Instead, if a report
mentions two events then two separate templates
must be created and their slots filled.

A common sub-problem of slot filling is rela-
tionship extraction. Because we know which in-
cident every section refers to, generating ground-
truth relationships is trivial because we may be
sure that an entity which appears in one of the
sections is related to every other entity in that
same section. For example, finding a KSUB
and a LOCATION means that we can build a
killed in(KSUB, LOCATION) relationship.

3.4.3 Event De-duplication

Since the IBC-C dataset preserves the links be-
tween sections and incidents it may be used as
a ground-truth training set for training event de-
duplication models.
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HMM CRF 13-window RNN 13-window
Tag Precision Recall F1 Precision Recall F1 Precision Recall F1

KNUM 0.63 0.86 0.73 0.91 0.94 0.92 0.90 0.85 0.88
INUM 0.50 0.39 0.44 0.95 0.93 0.94 0.87 0.91 0.89
KSUB 0.73 0.68 0.70 0.82 0.76 0.79 0.86 0.53 0.66
ISUB 0.00 0.00 0.00 0.89 0.24 0.38 0.80 0.06 0.12

KOTHER 0.39 0.19 0.25 0.83 0.54 0.66 0.41 0.36 0.38
IOTHER 0.00 0.00 0.00 0.80 0.61 0.69 0.55 0.50 0.52

LOCATION 0.75 0.70 0.73 0.85 0.77 0.80 0.86 0.70 0.77
DATE 0.75 0.64 0.69 0.75 0.64 0.69 0.41 0.30 0.35

WEAPON 0.98 0.89 0.93 0.98 0.90 0.94 0.97 0.87 0.92
Overall 0.57 0.53 0.55 0.88 0.73 0.78 0.74 0.57 0.61

Table 4: Results for various models

4 Experiments

Baseline results were computed for the named en-
tity recognition task using an 80:20 tag split across
sentences (we ignore report or section bound-
aries). We compare three different sequence-
classification models as seen in Table 4: a Hid-
den Markov Model (Zhou and Su, 2002), a Con-
ditional Random Field (McCallum and Li, 2003),
and a Elman-style Recursive Neural Network sim-
ilar to the one used in (Mesnil et al., 2013).

For the HMM we use bigram features in combi-
nation with the current word and the current base
named entity features2. We trained the HMM in
CRF form using LBFGS.

For the CRF we find that using bigram fea-
tures and a 13-word window, across words and
base named entities, gives us the best result. We
train the CRF using LBFGS. All CRF training,
including the HMM, was done using CRFSuite
(Okazaki, 2007).

For the Elman-style recurrent network we use
randomly initialised 100 dimensional word vec-
tors as input, the network has 100 hidden units,
and we use a 13-word context window again. The
RNN was implemented using Theano (Bastien et
al., 2012). We train the RNN using stochastic gra-
dient descent on a single GPU.

4.1 Evaluation

The first thing which strikes us is how low the
ISUB scores are. The CRF returns a recall score of
0.24. At the same time, the precision is relatively
high at 0.89. Low recall indicates a lot of false
negative classifications - i.e. there were many in-
jured people who were mistakingly tagged as un-
injured. A high precision rate means a low false

2Base named entities such as PERSON and LOCATION
were found using Stanford’s named entity recogniser (Finkel
et al., 2005).

positive rate - i.e. most uninjured people were cor-
rectly tagged as uninjured. In short, the classifier
was too generous with tagging people as having
been injured. Looking at the dataset we realise
that in contrast to KSUBS, words which we asso-
ciate with injury such as “wounded” or “injured”
are often very far away from an ISUB. Increasing
the window size with the CRF didn’t help (such
large features are often never expressed during the
test phase).

Low recall scores across multiple tags indi-
cate that long-distance dependencies determine a
word’s classification. K/INUM recall is excep-
tionally high because K/INUMs are usually sur-
rounded by words such as “killed”. We were sur-
prised to see the RNN perform relatively poorly
and expected it to be able to factor in long-distance
dependencies. We believe this has more to do with
our hyper-parameter settings than deficiencies in
the actual model.

5 Conclusion

We present IBC-C, a new dataset for armed con-
flict analysis which can be used for entity recogni-
tion, slot filling, and incident de-duplication.
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Abstract

Uncovering thematic structures of SNS
and blog posts is a crucial yet challeng-
ing task, because of the severe data spar-
sity induced by the short length of texts
and diverse use of vocabulary. This hin-
ders effective topic inference of traditional
LDA because it infers topics based on
document-level co-occurrence of words.
To robustly infer topics in such contexts,
we propose a latent concept topic model
(LCTM). Unlike LDA, LCTM reveals top-
ics via co-occurrence of latent concepts,
which we introduce as latent variables to
capture conceptual similarity of words.
More specifically, LCTM models each
topic as a distribution over the latent con-
cepts, where each latent concept is a local-
ized Gaussian distribution over the word
embedding space. Since the number of
unique concepts in a corpus is often much
smaller than the number of unique words,
LCTM is less susceptible to the data spar-
sity. Experiments on the 20Newsgroups
show the effectiveness of LCTM in deal-
ing with short texts as well as the capabil-
ity of the model in handling held-out doc-
uments with a high degree of OOV words.

1 Introduction

Probabilistic topic models such as Latent Dirich-
let allocation (LDA) (Blei et al., 2003), are widely
used to uncover hidden topics within a text corpus.
LDA models each document as a mixture of top-
ics where each topic is a distribution over words.
In essence, LDA reveals latent topics in a corpus
by implicitly capturing document-level word co-
occurrence patterns (Wang and McCallum, 2006).

In recent years, Social Networking Services and
blogs have become increasingly prevalent due to

the explosive growth of the Internet. Uncover-
ing the themantic structures of these posts is cru-
cial for tasks like market review, trend estimation
(Asur and Huberman, 2010) and so on. How-
ever, compared to more conventional documents,
such as news articles and academic papers, ana-
lyzing the thematic content of blog posts can be
challenging, because of their typically short length
and the use of diverse vocabulary by various au-
thors. These factors can substantially decrease the
chance of topically related words co-occurring in
the same post, which in turn hinders effective topic
inference in conventional topic models. Addition-
ally, sometimes small corpus size can further exac-
erbate topic inference, since word co-occurrence
statistics becomes more sparse as the number of
documents decreases.

Recently, word embedding models, such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) have gained much attention
with their ability to form clusters of conceptually
similar words in the embedding space. Inspired
by this, we propose a latent concept topic model
(LCTM) that infers topics based on document-
level co-occurrence of references to the same con-
cept. More specifically, we introduce a new la-
tent variable, termed a latent concept to capture
conceptual similarity of words, and redefine each
topic as a distribution over the latent concepts.
Each latent concept is then modeled as a localized
Gaussian distribution over the embedding space.
This is illustrated in Figure 1, where we denote
the centers of the Gaussian distributions as con-
cept vectors. We see that each concept vector
captures a representative concept of surrounding
words, and the Gaussian distributions model the
small variation between the latent concepts and
the actual use of words. Since the number of
unique concepts that are referenced in a corpus
is often much smaller than the number of unique
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Figure 1: Projected latent concepts on the word
embedding space. Concept vectors are annotated
with their representative concepts in parentheses.

words, we expect topically-related latent concepts
to co-occur many times, even in short texts with
diverse usage of words. This in turn promotes
topic inference in LCTM.

LCTM further has the advantage of using con-
tinuous word embedding. Traditional LDA as-
sumes a fixed vocabulary of word types. This
modeling assumption prevents LDA from han-
dling out of vocabulary (OOV) words in held-out
documents. On the other hands, since our topic
model operates on the continuous vector space, it
can naturally handle OOV words once their vector
representation is provided.

The main contributions of our paper are as fol-
lows: We propose LCTM that infers topics via
document-level co-occurrence patterns of latent
concepts, and derive a collapsed Gibbs sampler
for approximate inference. We show that LCTM
can accurately represent short texts by outperform-
ing conventional topic models in a clustering task.
By means of a classification task, we furthermore
demonstrate that LCTM achieves superior perfor-
mance to other state-of-the-art topic models in
handling documents with a high degree of OOV
words.

The remainder of the paper is organized as fol-
lows: related work is summarized in Section 2,
while LCTM and its inference algorithm are pre-
sented in Section 3. Experiments on the 20News-
groups are presented in Section 4, and a conclu-
sion is presented in Section 5.

2 Related Work

There have been a number of previous studies on
topic models that incorporate word embeddings.
The closest model to LCTM is Gaussian LDA

(Das et al., 2015), which models each topic as
a Gaussian distribution over the word embedding
space. However, the assumption that topics are
unimodal in the embedding space is not appropri-
ate, since topically related words such as ‘neural’
and ‘networks’ can occur distantly from each other
in the embedding space. Nguyen et al. (2015) pro-
posed topic models that incorporate information
of word vectors in modeling topic-word distribu-
tions. Similarly, Petterson et al. (Petterson et al.,
2010) exploits external word features to improve
the Dirichlet prior of the topic-word distributions.
However, both of the models cannot handle OOV
words, because they assume fixed word types.

Latent concepts in LCTM are closely related
to ‘constraints’ in interactive topic models (ITM)
(Hu et al., 2014). Both latent concepts and con-
straints are designed to group conceptually simi-
lar words using external knowledge in an attempt
to aid topic inference. The difference lies in their
modeling assumptions: latent concepts in LCTM
are modeled as Gaussian distributions over the
embedding space, while constraints in ITM are
sets of conceptually similar words that are interac-
tively identified by humans for each topic. Each
constraint for each topic is then modeled as a
multinomial distribution over the constrained set
of words that were identified as mutually related
by humans. In Section 4, we consider a variant of
ITM, whose constraints are instead inferred using
external word embeddings.

As regards short texts, a well-known topic
model is Biterm Topic Model (BTM) (Yan et
al., 2013). BTM directly models the genera-
tion of biterms (pairs of words) in the whole cor-
pus. However, the assumption that pairs of co-
occurring words should be assigned to the same
topic might be too strong (Chen et al., 2015).

3 Latent Concept Topic Model

3.1 Generative Model
The primary difference between LCTM and the
conventional topic models is that LCTM describes
the generative process of word vectors in docu-
ments, rather than words themselves.

Suppose α and β are parameters for the Dirich-
let priors and let vd,i denote the word embedding
for a word type wd,i. The generative model for
LCTM is as follows.

1. For each topic k

(a) Draw a topic concept distribution ϕk ∼
Dirichlet(β).
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(a) LDA. (b) LCTM.

Figure 2: Graphical representation.

2. For each latent concept c

(a) Draw a concept vector µc ∼
N (µ, σ2

0I).

3. For each document d

(a) Draw a document topic distribution
θd ∼ Dirichlet(α).

(b) For the i-th word wd,i in document d

i. Draw its topic assignment zd,i ∼
Categorical(θd).

ii. Draw its latent concept assignment
cd,i ∼ Categorical(ϕzd,i

).
iii. Draw a word vector vd,i ∼

N (µcd,i
, σ2I).

The graphical models for LDA and LCTM are
shown in Figure 2. Compared to LDA, LCTM
adds another layer of latent variables to indicate
the conceptual similarity of words.

3.2 Posterior Inference
In our application, we observe documents consist-
ing of word vectors and wish to infer posterior dis-
tributions over all the hidden variables. Since there
is no analytical solution to the posterior, we derive
a collapsed Gibbs sampler to perform approximate
inference. During the inference, we sample a la-
tent concept assignment as well as a topic assign-
ment for each word in each document as follows:

p(zd,i = k | cd,i = c,z−d,i, c−d,i,v)

∝
(
n−d,i

d,k + αk

)
· n−d,i

k,c + βc

n−d,i
k,· +

∑
c′ βc′

, (1)

P (cd,i = c | zd,i = k,vd,i, z
−d,i, c−d,i,v−d,i)

∝
(
n−d,i

k,c + βc

)
· N (vd,i|µc, σ

2
cI), (2)

where nd,k is the number of words assigned to
topic k in document d, and nk,c is the number of
words assigned to both topic k and latent concept
c. When an index is replaced by ‘·’, the number is

obtained by summing over the index. The super-
script −d,i indicates that the current assignments
of zd,i and cd,i are ignored. N (·|µ,Σ) is a mul-
tivariate Gaussian density function with mean µ

and covariance matrix Σ. µc and σ2
c in Eq. (2)

are parameters associated with the latent concept
c and are defined as follows:

µc =
1

σ2 + n−d,i
·,c σ2

0

σ2µ + σ2
0 ·

∑
(d′,i′)∈A

−d,i
c

vd′,i′

 ,

(3)

σ2
c =

(
1 +

σ2
0

n−d,i
·,c σ2

0 + σ2

)
σ2, (4)

where A−d,i
c ≡ {(d′, i′) | cd′,i′ = c ∧ (d′, i′) ̸=

(d, i)} (Murphy, 2012). Eq. (1) is similar to the
collapsed Gibbs sampler of LDA (Griffiths and
Steyvers, 2004) except that the second term of
Eq. (1) is concerned with topic-concept distribu-
tions. Eq. (2) of sampling latent concepts has an
intuitive interpretation: the first term encourages
concept assignments that are consistent with the
current topic assignment, while the second term
encourages concept assignments that are consis-
tent with the observed word. The Gaussian vari-
ance parameter σ2 acts as a trade-off parameter
between the two terms via σ2

c . In Section 4.2, we
study the effect of σ2 on document representation.

3.3 Prediction of Topic Proportions

After the posterior inference, the posterior means
of {θd}, {ϕk} are straightforward to calculate:

θd,k =
nd,k + αk

nd,· +
∑

k′ αk′
, ϕk,c =

nk,c + βc

nk,· +
∑

c′ βc′
. (5)

Also posterior means for {µc} are given by
Eq. (3). We can then use these values to predict
a topic proportion θdnew of an unseen document
dnew using collapsed Gibbs sampling as follows:

p(zdnew,i = k | vdnew,i,v
−dnew,i,z−dnew,i,ϕ,µ)

∝
(
n−dnew,i

dnew,k + αk

)
·
∑

c

ϕk,c

N (vdnew,i|µc, σ
2
c )∑

c′ N (vdnew,i|µc′ , σ
2
c′)

.

(6)

The second term of Eq. (6) is a weighted average
of ϕk,c with respect to latent concepts. We see that
more weight is given to the concepts whose corre-
sponding vectors µc are closer to the word vec-
tor vdnew,i. This to be expected because statistics
of nearby concepts should give more information
about the word. We also see from Eq. (6) that the
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topic assignment of a word is determined by its
embedding, instead of its word type. Therefore,
LCTM can naturally handle OOV words once their
embeddings are provided.

3.4 Reducing the Computational Complexity

From Eqs. (1) and (2), we see that the computa-
tional complexity of sampling per word is O(K +
SD), where K, S and D are numbers of topics, la-
tent concepts and embedding dimensions, respec-
tively. Since K ≪ S holds in usual settings, the
dominant computation involves the sampling of
latent concept, which costs O(SD) computation
per word.

However, since LCTM assumes that Gaussian
variance σ2 is relatively small, the chance of a
word being assigned to distant concepts is negli-
gible. Thus, we can reasonably assume that each
word is assigned to one of M ≪ S nearest con-
cepts. Hence, the computational complexity is
reduced to O(MD). Since concept vectors can
move slightly in the embedding space during the
inference, we periodically update the nearest con-
cepts for each word type.

To further reduce the computational complexity,
we can apply dimensional reduction algorithms
such as PCA and t-SNE (Van der Maaten and Hin-
ton, 2008) to word embeddings to make D smaller.
We leave this to future work.

4 Experiments

4.1 Datasets and Models Description

In this section, we study the empirical perfor-
mance of LCTM on short texts. We used the
20Newsgroups corpus, which consists of discus-
sion posts about various news subjects authored
by diverse readers. Each document in the corpus is
tagged with one of twenty newsgroups. Only posts
with less than 50 words are extracted for training
datasets. For external word embeddings, we used
50-dimensional GloVe1 that were pre-trained on
Wikipedia. The datasets are summarized in Ta-
ble 1. See appendix A for the detail of the dataset
preprocessing.

We compare the performance of the LCTM to
the following six baselines:

• LFLDA (Nguyen et al., 2015), an extension
of Latent Dirichlet Allocation that incorpo-
rates word embeddings information.

1Downloaded at
http://nlp.stanford.edu/projects/glove/

Dataset Doc size Vocab size Avg len
400short 400 4729 31.87
800short 800 7329 31.78
1561short 1561 10644 31.83
held-out 7235 37944 140.15

Table 1: Summary of datasets.

• LFDMM (Nguyen et al., 2015), an extension
of Dirichlet Multinomial Mixtures that incor-
porates word embeddings information.

• nI-cLDA, non-interactive constrained Latent
Dirichlet Allocatoin, a variant of ITM (Hu et
al., 2014), where constraints are inferred by
applying k-means to external word embed-
dings. Each resulting word cluster is then re-
garded as a constraint. See appendix B for
the detail of the model.

• GLDA (Das et al., 2015), Gaussian LDA.

• BTM (Yan et al., 2013), Biterm Topic Model.

• LDA (Blei et al., 2003).

In all the models, we set the number of topics
to be 20. For LCTM (resp. nI-ITM), we set the
number of latent concepts (resp. constraints) to
be 1000. See appendix C for the detail of hyper-
parameter settings.

4.2 Document Clustering
To demonstrate that LCTM results in a superior
representation of short documents compared to the
baselines, we evaluated the performance of each
model on a document clustering task. We used
a learned topic proportion as a feature for each
document and applied k-means to cluster the doc-
uments. We then compared the resulting clus-
ters to the actual newsgroup labels. Clustering
performance is measured by Adjusted Mutual In-
formation (AMI) (Manning et al., 2008). Higher
AMI indicates better clustering performance. Fig-
ure 3 illustrates the quality of clustering in terms
of Gaussian variance parameter σ2. We see that
setting σ2 = 0.5 consistently obtains good clus-
tering performance for all the datasets with vary-
ing sizes. We therefore set σ2 = 0.5 in the later
evaluation. Figure 4 compares AMI on four topic
models. We see that LCTM outperforms the topic
models without word embeddings. Also, we see
that LCTM performs comparable to LFLDA and
nl-cLDA, both of which incorporate information
of word embeddings to aid topic inference. How-
ever, as we will see in the next section, LCTM can
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Figure 3: Relationship between σ2 and AMI.

Figure 4: Comparisons on clustering performance
of the topic models.

better handle OOV words in held-out documents
than LFLDA and nl-cLDA do.

4.3 Representation of Held-out Documents
with OOV words

To show that our model can better predict topic
proportions of documents containing OOV words
than other topic models, we conducted an exper-
iment on a classification task. In particular, we
infer topics from the training dataset and predicted
topic proportions of held-out documents using col-
lapsed Gibbs sampler. With the inferred topic
proportions on both training dataset and held-out
documents, we then trained a multi-class classi-
fier (multi-class logistic regression implemented
in sklearn2 python module) on the training dataset
and predicted newsgroup labels of the held-out
documents.

We compared classification accuracy using
LFLDA, nI-cLDA, LDA, GLDA, LCTM and a
variant of LCTM (LCTM-UNK) that ignores OOV
in the held-out documents. A higher classifica-
tion accuracy indicates a better representation of
unseen documents. Table 2 shows the propor-
tion of OOV words and classification accuracy

2See http://scikit-learn.org/stable/.

Training Set 400short 800short 1561short
OOV prop 0.348 0.253 0.181
Method Classification Accuracy
LCTM 0.302 0.367 0.416
LCTM-UNK 0.262 0.340 0.406
LFLDA 0.253 0.333 0.410
nI-cLDA 0.261 0.333 0.412
LDA 0.215 0.293 0.382
GLDA 0.0527 0.0529 0.0529
Chance Rate 0.0539 0.0539 0.0539

Table 2: Proportions of OOV words and classifi-
cation accuracy in the held-out documents.

of the held-out documents. We see that LCTM-
UNK outperforms other topic models in almost
every setting, demonstrating the superiority of
our method, even when OOV words are ignored.
However, the fact that LCTM outperforms LCTM-
UNK in all cases clearly illustrates that LCTM can
effectively make use of information about OOV to
further improve the representation of unseen docu-
ments. The results show that the level of improve-
ment of LCTM over LCTM-UNK increases as the
proportion of OOV becomes greater.

5 Conclusion

In this paper, we have proposed LCTM that is
well suited for application to short texts with di-
verse vocabulary. LCTM infers topics according
to document-level co-occurrence patterns of la-
tent concepts, and thus is robust to diverse vocab-
ulary usage and data sparsity in short texts. We
showed experimentally that LCTM can produce a
superior representation of short documents, com-
pared to conventional topic models. We addition-
ally demonstrated that LCTM can exploit OOV to
improve the representation of unseen documents.
Although our paper has focused on improving per-
formance of LDA by introducing the latent con-
cept for each word, the same idea can be readily
applied to other topic models that extend LDA.
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A Dataset Preprocessing

We preprocessed the 20Newsgroups as follows:
We downloaded bag-of-words representation of
the corpus available online3. Stop words4 and
words that were not covered in the GloVe were
both removed. After the preprocessing, we ex-
tracted short texts containing less than 50 words
for training datasets. We created three training
datasets with varying numbers of documents, and
one held-out dataset. Each dataset was balanced
in terms of the proportion of documents belonging
to each newsgroup.

B Non-Interactive Contained LDA
(nI-cLDA)

We describe nI-cLDA, a variant of interactive
topic model (Hu et al., 2014). nl-cLDA is non-
interactive in the sense that constraints are inferred
from the word embeddings instead of being in-
teractively identified by humans. In particular,
we apply k-means to word embeddings to cluster
words. Each resulting cluster is then regarded as
a constraint. In general, constraints can be differ-
ent from topic to topic. Let rk,w be a constraint of
topic k which word w belongs to. The generative
process of nl-cLDA is as follows. It is essentially
the same as (Hu et al., 2014)

1. For each topic k

(a) Draw a topic constraint distribution
ϕk ∼ Dirichlet(β).

(b) For each constraint s of topic k
i. Draw a constraint word distribution

πk,s ∼ Dirichlet(γ).

2. For each document d

(a) Draw a document topic distribution
θd ∼ Dirichlet(α).

(b) For the i-th word wd,i in document d

i. Draw its topic assignment zd,i ∼
Categorical(θd).

3http://qwone.com/˜jason/20Newsgroups/
4Available at http://www.nltk.org/
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ii. Draw its constraint ld,i ∼
Categorical(ϕzd,i

).
iii. Draw a word wd,i ∼

Categorical(πzd,i,ld,i
).

Let V be the set of vocabulary. We note
that πk,s is a multinomial distribution over Wk,s,
which is a subset of V , defined as Wk,s ≡ {w ∈
V | rk,w = s}. Wk,s represents a constrained set
of words that are conceptually related to each other
under topic k.

In our application, we observe documents and
constraints for each topic, and wish to infer poste-
rior distributions over all the hidden variables. We
apply collapsed Gibbs sampling for the approxi-
mate inference. For the detail of the inference, see
(Hu et al., 2014).

C Hyperparameter Settings

For all the topic models, we used symmetric
Dirichlet priors. The hyperparameters were set
as follows: for our model (LCTM and LCTM-
UNK), nI-cLDA and LDA, we set α = 0.1 and
β = 0.01. For nl-cLDA, we set the parameter of
Dirichlet prior for constraint-word distribution (γ
in appendix B) as 0.1. Also for our model, we
set, σ2

0 = 1.0 and µ to be the average of word
vectors. We randomly initialized the topic assign-
ments in all the models. Also, we initialized the la-
tent concept assignments using k-means clustering
on the word embeddings. The k-means clustering
was implemented using sklearn5 python module.
We set M (number of nearest concepts to sample
from) to be 300, and updated the nearest concepts
every 5 iterations. For LFLDA, LFDMM, BTM
and Gaussian LDA, we used the original imple-
mentations available online6 and retained the de-
fault hyperparameters.

We ran all the topic models for 1500 iterations
for training, and 500 iterations for predicting held-
out documents.

5See http://scikit-learn.org/stable/.
6LFTM: https://github.com/datquocnguyen/LFTM

BTM: https://github.com/xiaohuiyan/BTM
GLDA: https://github.com/rajarshd/Gaussian LDA
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Abstract

This paper studies the effect of limited pre-
cision data representation and computa-
tion on word embeddings. We present a
systematic evaluation of word embeddings
with limited memory and discuss method-
s that directly train the limited precision
representation with limited memory. Our
results show that it is possible to use and
train an 8-bit fixed-point value for word
embedding without loss of performance
in word/phrase similarity and dependency
parsing tasks.

1 Introduction

There is an accumulation of evidence that the
use of dense distributional lexical representations,
known as word embeddings, often supports bet-
ter performance on a range of NLP tasks (Ben-
gio et al., 2003; Turian et al., 2010; Collobert et
al., 2011; Mikolov et al., 2013a; Mikolov et al.,
2013b; Levy et al., 2015). Consequently, word
embeddings have been commonly used in the last
few years for lexical similarity tasks and as fea-
tures in multiple, syntactic and semantic, NLP ap-
plications.

However, keeping embedding vectors for hun-
dreds of thousands of words for repeated use could
take its toll both on storing the word vectors on
disk and, even more so, on loading them into
memory. For example, for 1 million words, load-
ing 200 dimensional vectors takes up to 1.6 GB
memory on a 64-bit system. Considering applica-
tions that make use of billions of tokens and mul-
tiple languages, size issues impose significant lim-
itations on the practical use of word embeddings.

This paper presents the question of whether it is
possible to significantly reduce the memory need-
s for the use and training of word embeddings.

Specifically, we ask “what is the impact of repre-
senting each dimension of a dense representation
with significantly fewer bits than the standard 64
bits?” Moreover, we investigate the possibility of
directly training dense embedding vectors using
significantly fewer bits than typically used.

The results we present are quite surprising. We
show that it is possible to reduce the memory con-
sumption by an order of magnitude both when
word embeddings are being used and in training.
In the first case, as we show, simply truncating
the resulting representations after training and us-
ing a smaller number of bits (as low as 4 bits
per dimension) results in comparable performance
to the use of 64 bits. Moreover, we provide t-
wo ways to train existing algorithms (Mikolov
et al., 2013a; Mikolov et al., 2013b) when the
memory is limited during training and show that,
here, too, an order of magnitude saving in mem-
ory is possible without degrading performance.
We conduct comprehensive experiments on ex-
isting word and phrase similarity and relatedness
datasets as well as on dependency parsing, to e-
valuate these results. Our experiments show that,
in all cases and without loss in performance, 8
bits can be used when the current standard is 64
and, in some cases, only 4 bits per dimension
are sufficient, reducing the amount of space re-
quired by a factor of 16. The truncated word
embeddings are available from the papers web
page at https://cogcomp.cs.illinois.
edu/page/publication_view/790.

2 Related Work

If we consider traditional cluster encoded word
representation, e.g., Brown clusters (Brown et al.,
1992), it only uses a small number of bits to track
the path on a hierarchical tree of word clusters
to represent each word. In fact, word embedding
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generalized the idea of discrete clustering repre-
sentation to continuous vector representation in
language models, with the goal of improving the
continuous word analogy prediction and general-
ization ability (Bengio et al., 2003; Mikolov et al.,
2013a; Mikolov et al., 2013b). However, it has
been proven that Brown clusters as discrete fea-
tures are even better than continuous word em-
bedding as features for named entity recognition
tasks (Ratinov and Roth, 2009). Guo et al. (Guo
et al., 2014) further tried to binarize embeddings
using a threshold tuned for each dimension, and
essentially used less than two bits to represen-
t each dimension. They have shown that bina-
rization can be comparable to or even better than
the original word embeddings when used as fea-
tures for named entity recognition tasks. More-
over, Faruqui et al. (Faruqui et al., 2015) showed
that imposing sparsity constraints over the em-
bedding vectors can further improve the represen-
tation interpretability and performance on sever-
al word similarity and text classification bench-
mark datasets. These works indicate that, for some
tasks, we do not need all the information encoded
in “standard” word embeddings. Nonetheless, it is
clear that binarization loses a lot of information,
and this calls for a systematic comparison of how
many bits are needed to maintain the expressivity
needed from word embeddings for different tasks.

3 Value Truncation

In this section, we introduce approaches for word
embedding when the memory is limited. We trun-
cate any value x in the word embedding into an n
bit representation.

3.1 Post-processing Rounding

When the word embedding vectors are given, the
most intuitive and simple way is to round the num-
bers to their n-bit precision. Then we can use the
truncated values as features for any tasks that word
embedding can be used for. For example, if we
want to round x to be in the range of [−r, r], a
simple function can be applied as follows.

Rd(x, n) =
{
bxc if bxc ≤ x ≤ bxc+ ε

2bxc+ ε if bxc+ ε
2
< x ≤ bxc+ ε

(1)
where ε = 21−nr. For example, if we want to use
8 bits to represent any value in the vectors, then we
only have 256 numbers ranging from -128 to 127

for each value. In practice, we first scale all the
values and then round them to the 256 numbers.

3.2 Training with Limited Memory
When the memory for training word embedding
is also limited, we need to modify the training
algorithms by introducing new data structures to
reduce the bits used to encode the values. In
practice, we found that in the stochastic gradien-
t descent (SGD) iteration in word2vec algorithm-
s (Mikolov et al., 2013a; Mikolov et al., 2013b),
the updating vector’s values are often very small
numbers (e.g., < 10−5). In this case, if we direct-
ly apply the rounding method to certain precisions
(e.g., 8 bits), the update of word vectors will al-
ways be zero. For example, the 8-bit precision is
2−7 = 0.0078, so 10−5 is not significant enough
to update the vector with 8-bit values. Therefore,
we consider the following two ways to improve
this.

Stochastic Rounding. We first consider us-
ing stochastic rounding (Gupta et al., 2015) to
train word embedding. Stochastic rounding intro-
duces some randomness into the rounding mech-
anism, which has been proven to be helpful when
there are many parameters in the learning system,
such as deep learning systems (Gupta et al., 2015).
Here we also introduce this approach to update
word embedding vectors in SGD. The probability
of rounding x to bxc is proportional to the prox-
imity of x to bxc:

Rs(x, n) =
{
bxc w.p. 1− x−bxc

ε

bxc+ ε w.p. x−bxc
ε

. (2)

In this case, even though the update values are not
significant enough to update the word embedding
vectors, we randomly choose some of the values
being updated proportional to the value of how
close the update value is to the rounding precision.

Auxiliary Update Vectors. In addition to the
method of directly applying rounding to the val-
ues, we also provide a method using auxiliary
update vectors to trade precision for more space.
Suppose we know the range of update value in S-
GD as [−r′, r′], and we use additional m bits to
store all the values less than the limited numeri-
cal precision ε. Here r′ can be easily estimated
by running SGD for several examples. Then the
real precision is ε′ = 21−mr′. For example, if
r′ = 10−4 and m = 8, then the numerical pre-
cision is 7.8 ·10−7 which can capture much higher
precision than the SGD update values have. When
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(a) CBOW model with 25 dimensions.

(b) Skipgram model with 25 dimensions.

(c) CBOW model with 200 dimensions.

(d) Skipgram model with 200 dimensions.

Figure 1: Comparing performance on multiple similarity tasks, with different values of truncation.
The y-axis represents the Spearman’s rank correlation coefficient for word similarity datasets, and the
cosine value for paraphrase (bigram) datasets (see Sec. 4.2).

the cumulated values in the auxiliary update vec-
tors are greater than the original numerical preci-
sion ε, e.g., ε = 2−7 for 8 bits, we update the o-
riginal vector and clear the value in the auxiliary
vector. In this case, we can have final n-bit values
in word embedding vectors as good as the method
presented in Section 3.1.

4 Experiments on Word/Phrase
Similarity

In this section, we describe a comprehensive study
on tasks that have been used for evaluating word
embeddings. We train the word embedding algo-
rithms, word2vec (Mikolov et al., 2013a; Mikolov
et al., 2013b), based on the Oct. 2013 Wikipedi-

a dump.1 We first compare levels of truncation
of word2vec embeddings, and then evaluate the s-
tochastic rounding and the auxiliary vectors based
methods for training word2vec vectors.

4.1 Datasets

We use multiple test datasets as follows.
Word Similarity. Word similarity datasets

have been widely used to evaluate word embed-
ding results. We use the datasets summarized
by Faruqui and Dyer (Faruqui and Dyer, 2014):
wordsim-353, wordsim-sim, wordsim-rel, MC-30,
RG-65, MTurk-287, MTurk-771, MEN 3000, YP-
130, Rare-Word, Verb-143, and SimLex-999.2 We
compute the similarities between pairs of words

1https://dumps.wikimedia.org/
2http://www.wordvectors.org/
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Table 1: The detailed average results for word similarity and paraphrases of Fig. 1.
Average CBOW Skipgram

Original Binary 4-bits 6-bits 8-bits Original Binary 4-bits 6-bits 8-bits
wordsim (25) 0.5331 0.4534 0.5223 0.5235 0.5242 0.4894 0.4128 0.4333 0.4877 0.4906
wordsim (200) 0.5818 0.5598 0.4542 0.5805 0.5825 0.5642 0.5588 0.4681 0.5621 0.5637

bigram (25) 0.3023 0.2553 0.3164 0.3160 0.3153 0.3110 0.2146 0.2498 0.3050 0.3082
bigram (200) 0.3864 0.3614 0.2954 0.3802 0.3858 0.3565 0.3562 0.2868 0.3529 0.3548

and check the Spearman’s rank correlation coeffi-
cient (Myers and Well., 1995) between the com-
puter and the human labeled ranks.

Paraphrases (bigrams). We use the paraphrase
(bigram) datasets used in (Wieting et al., 2015),
ppdb all, bigrams vn, bigrams nn, and bigram-
s jnn, to test whether the truncation affects phrase
level embedding. Our phrase level embedding is
based on the average of the words inside each
phrase. Note that it is also easy to incorporate
our truncation methods into existing phrase em-
bedding algorithms. We follow (Wieting et al.,
2015) in using cosine similarity to evaluate the
correlation between the computed similarity and
annotated similarity between paraphrases.

4.2 Analysis of Bits Needed

We ran both CBOW and skipgram with negative
sampling (Mikolov et al., 2013a; Mikolov et al.,
2013b) on the Wikipedia dump data, and set the
window size of context to be five. Then we per-
formed value truncation with 4 bits, 6 bits, and 8
bits. The results are shown in Fig. 1, and the num-
bers of the averaged results are shown in Table 1.
We also used the binarization algorithm (Guo et
al., 2014) to truncate each dimension to three val-
ues; these experiments are is denoted using the
suffix “binary” in the figure. For both CBOW and
skipgram models, we train the vectors with 25 and
200 dimensions respectively.

The representations used in our experiments
were trained using the whole Wikipedia dump. A
first observation is that, in general, CBOW per-
forms better than the skipgram model. When us-
ing the truncation method, the memory required
to store the embedding is significantly reduced,
while the performance on the test datasets remains
almost the same until we truncate down to 4 bit-
s. When comparing CBOW and skipgram models,
we again see that the drop in performance with 4-
bit values for the skipgram model is greater than
the one for the CBOW model. For the CBOW
model, the drop in performance with 4-bit values
is greater when using 200 dimensions than it is

when using 25 dimensions. However, when using
skipgram, this drop is slightly greater when using
25 dimensions than 200.

We also evaluated the binarization ap-
proach (Guo et al., 2014). This model uses
three values, represented using two bits. We
observe that, when the dimension is 25, the bina-
rization is worse than truncation. One possible
explanation has to do merely with the size of
the space; while 325 is much larger than the size
of the word space, it does not provide enough
redundancy to exploit similarity as needed in the
tasks. Consequently, the binarization approach
results in worse performance. However, when
the dimension is 200, this approach works much
better, and outperforms the 4-bit truncation. In
particular, binarization works better for skipgram
than for CBOW with 200 dimensions. One
possible explanation is that the binarization
algorithm computes, for each dimension of the
word vectors, the positive and negative means of
the values and uses it to split the original values
in that dimension, thus behaving like a model that
clusters the values in each dimension. The success
of the binarization then indicates that skipgram
embeddings might be more discriminative than
CBOW embeddings.

4.3 Comparing Training Methods

We compare the training methods for the CBOW
model in Table 2. For stochastic rounding, we s-
cale the probability of rounding up to make sure
that small gradient values will still update the val-
ues. Both stochastic rounding and truncation with
auxiliary update vectors (shown in Sec. 3.2) re-
quire 16 bits for each value in the training phase.
Truncation with auxiliary update vectors finally
produces 8-bit-value based vectors while stochas-
tic rounding produces 16-bit-value based vectors.
Even though our auxiliary update algorithm uses
smaller memory/disk to store vectors, its perfor-
mance is still better than that of stochastic round-
ing. This is simply because the update values in
SGD are too small to allow the stochastic round-
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Table 2: Comparing the training CBOW
models: We set the average value of the original
word2vec embeddings to be 1, and the values in
the table are relative to the original embeddings
baselines. “avg. (w.)” represents the average
values of all word similarity datasets. “avg. (b.)”
represents the average values of all bigram phrase
similarity datasets. “Stoch. (16 b.)” represents
the method using stochastic rounding applied
to 16-bit precision. “Trunc. (8 b.)” represents
the method using truncation with 8-bit auxiliary
update vectors applied to 8-bit precision.

Stoch. (16 b.) Trunc. (8 b.)
25 avg. (w.) 0.990 0.997

dim avg. (b.) 0.966 0.992
200 avg. (w.) 0.994 1.001
dim avg. (b.) 0.991 0.999

ing method to converge. Auxiliary update vectors
achieve very similar results to the original vectors,
and, in fact, result in almost the same vectors as
produced by the original truncation method.

5 Experiments on Dependency Parsing

We also incorporate word embedding results into
a downstream task, dependency parsing, to eval-
uate whether the truncated embedding results are
still good features compared to the original fea-
tures. We follow the setup of (Guo et al., 2015)
in a monolingual setting3. We train the parser
with 5,000 iterations using different truncation set-
tings for word2vec embedding. The data used to
train and evaluate the parser is the English data
in the CoNLL-X shared task (Buchholz and Mar-
si, 2006). We follow (Guo et al., 2015) in using
the labeled attachment score (LAS) to evaluate the
different parsing results. Here we only show the
word embedding results for 200 dimensions, since
empirically we found 25-dimension results were
not as stable as 200 dimensions.

The results shown in Table 3 for dependency
parsing are consistent with word similarity and
paraphrasing. First, we see that binarization for
CBOW and skipgram is again better than the trun-
cation approach. Second, for truncation results,
more bits leads to better results. With 8-bits, we
can again obtain results similar to those obtained

3https://github.com/jiangfeng1124/
acl15-clnndep

Table 3: Evaluation results for dependency
parsing (in LAS).

Bits CBOW Skipgram
Original 88.58% 88.15%
Binary 89.25% 88.41%
4-bits 87.56% 86.46%
6-bits 88.62% 87.98%
8-bits 88.63% 88.16%

from the original word2vec embedding.

6 Conclusion
We systematically evaluated how small can the
representation size of dense word embedding be
before it starts to impact the performance of NLP
tasks that use them. We considered both the final
size of the size we provide it while learning it. Our
study considers both the CBOW and the skipgram
models at 25 and 200 dimensions and showed that
8 bits per dimension (and sometimes even less) are
sufficient to represent each value and maintain per-
formance on a range of lexical tasks. We also pro-
vided two ways to train the embeddings with re-
duced memory use. The natural future step is to
extend these experiments and study the impact of
the representation size on more advanced tasks.
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Abstract

Classification of temporal textual data se-
quences is a common task in various do-
mains such as social media and the Web.
In this paper we propose to use Hawkes
Processes for classifying sequences of
temporal textual data, which exploit both
temporal and textual information. Our ex-
periments on rumour stance classification
on four Twitter datasets show the impor-
tance of using the temporal information of
tweets along with the textual content.

1 Introduction

Sequence classification tasks are often associated
with temporal information, where the timestamp
is available for each of the data instances. For
instance, in sentiment classification of reviews
in forums, opinions of users are associated with
a timestamp, indicating the time at which they
were posted. Similarly, in an event detection
task in Twitter, tweets being posted on a con-
tinuous basis need to be analysed and classi-
fied in order to detect the occurrence of some
event. Nevertheless, traditional sequence classi-
fication approaches (Song et al., 2014; Gorrell and
Bontcheva, 2016) ignore the time information in
these textual data sequences. In this paper, we
aim to consider the continuous time information
along with the textual information for classifying
sequences of temporal textual data. In particular,
we consider the problem of rumour stance classi-
fication in Twitter, where tweets provide temporal
information associated with the textual tweet con-
tent.

Rumours spread rapidly through social media,
creating widespread chaos, increasing anxiety in
society and in some cases even leading to riots.
For instance, during an earthquake in Chile in

2010, rumours circulating on Twitter stated that
a volcano had become active and there was a
tsunami warning, which were later proven false.
Denials and corrections of these viral pieces of in-
formation might often come late and without the
sufficient effect to prevent the harm that the ru-
mours can produce (Lewandowsky et al., 2012).
This posits the importance of carefully analysing
tweets associated with rumours and the stance ex-
pressed in them to prevent the spread of malicious
rumours. Determining the stance of rumour tweets
can in turn be effectively used for early detection
of the spread of rumours, as well as for flagging ru-
mours as being potentially false when a large num-
ber of people are found to be countering them. The
rumour stance classification task has been previ-
ously defined as that in which a classifier needs to
determine whether each of the tweets is support-
ing, denying or questioning a rumour (Qazvinian
et al., 2011). Here we add a fourth label, com-
menting, which is assigned to tweets that do not
add anything to the veracity of a rumour.

In this paper, we propose to use Hawkes Pro-
cesses (Hawkes, 1971), commonly used for mod-
elling information diffusion in social media (Yang
and Zha, 2013; De et al., 2015), for the task of
rumour stance classification. Hawkes Processes
(HP) are a self-exciting temporal point process
ideal for modelling the occurrence of tweets in
Twitter (Zhao et al., 2015). The model assumes
that the occurrence of a tweet will influence the
rate at which future tweets will arrive. Figure 1
shows the behaviour of the intensity functions as-
sociated with a multivariate Hawkes Process. Note
the intensity spikes at the points of tweet occur-
rences. In applications such as stance classifica-
tion, different labels can influence one another.
This can be modelled effectively using the mutu-
ally exciting behaviour of Hawkes Processes. In
the end, we demonstrate how the information gar-
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Figure 1: Intensities of the Hawkes Process for
an example Ferguson rumour. Tweet occurrences
over time are denoted at the bottom of the figure
by different symbols. Intensity for comments is
high throughout the rumour lifespan.

nered from rumour dynamics can be beneficial to
stance classification of tweets around rumours.

Little work has been done on stance classifica-
tion of rumour tweets. Qazvinian et al. (2011) in-
troduced a system for classifying rumour tweets
and Lukasik et al. (2015a) considered this problem
in a setting where the tweets associated with a new
emerging rumour is the target for classification.
Both works ignored the temporal information. On
the other hand, research has been done on model-
ing dynamics of rumour propagation (Lukasik et
al., 2015b). Here, we show how using information
about dynamics of rumour propagation is impor-
tant to the problem of rumour stance classification.

The novel contributions of this paper are: 1. De-
veloping a Hawkes Process model for time sen-
sitive sequence classification. 2. Demonstrating
on real world data how temporal dynamics con-
veys important information for stance classifica-
tion. 3. Establishing the new state of the art
method for rumour stance classification. 4. Broad-
ening the set of labels considered in previous work
to include a new label commenting.

Software used for experiments can be found
at https://github.com/mlukasik/
seqhawkes.

2 Problem definition

We consider a collection D of rumours,
D = {R1, · · · , R|D|}. Each rumour
Ri contains a set of tweets discussing it,
Ri = {d1, · · · , dni}. Each tweet is represented
as a tuple dj = (tj ,Wj ,mj , yj), which includes
the following information: tj is the posting time
of the tweet, Wj is the text message, mj is the
rumour category and yj is the label, yj ∈ Y =
{supporting, denying, questioning, commenting}.

We define the stance classification task as that
in which each tweet dj needs to be classified
into one of the four categories, yj ∈ Y , which
represents the stance of the tweet dj with respect
to the rumour Ri it belongs to.

We consider the Leave One Out (LOO) setting,
introduced by Lukasik et al. (2015a), where for
each rumour Ri ∈ D we construct the test set
equal to Ri and the training set equal to D \ Ri.
The final performance scores we report in the pa-
per are averaged across all rumours. This repre-
sents a realistic scenario where a classifier has to
deal with a new, unseen rumour.

3 Data

We consider four Twitter rumour datasets with
tweets annotated for stance (Zubiaga et al., 2016).1

The authors relied on a slightly different scheme
for the annotation, given that they annotated tree-
structured conversation threads where a source
tweet initiates a rumour and a number of replies
follow responding to it. Given this structure, the
source tweet of a Twitter conversation is anno-
tated as supporting, denying or underspecified,
and each subsequent tweet is annotated as agreed,
disagreed, appeal for more information (question-
ing) or commenting with respect to the source
tweet. We convert these labels into our set of
four including supporting, denying, questioning
and commenting, which extends the set of three
labels used before in the literature (Qazvinian et
al., 2011; Lukasik et al., 2015a) adding the new
label commenting. To perform this conversion,
we first remove rumours where the source tweet
is annotated as underspecified, keeping the rest
of source tweets as supporting or denying. For
the subsequent tweets, we keep their label as is
for the tweets that are questioning or comment-
ing. To convert those tweets that agree or disagree
into supporting or denying, we apply the follow-
ing set of rules: (1) if a tweet agrees to a support-
ing source tweet, we label it supporting, (2) if a
tweet agrees to a denying source tweet, we label
it denying, (3) if a tweet disagrees to a supporting
source tweet, we label it denying and (4) if a tweet
disagrees to a denying tweet, we label it support-
ing. The latter enables to infer stance with respect
to the rumour from the original annotations that in-
stead refer to agreement with respect to the source.

1While the authors annotated and released 9 datasets, here
we make use of 4 sufficiently large datasets.
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Dataset Rumours Tweets Supporting Denying Questioning Commenting

Ottawa shooting 58 782 161 76 64 481
Ferguson riots 46 1017 161 82 94 680
Charlie Hebdo 74 1053 236 56 51 710
Sydney siege 71 1124 89 223 99 713

Table 1: Statistics and distribution of labels for the four datasets used in our experiments. Each dataset
consists of multiple rumours, and the rest of the columns offer the aggregated counts for all rumours
within that dataset.

Figure 2 shows examples of tweets taken from the
dataset along with our inferred annotations.

We summarise the statistics of the resulting
dataset in Table 1. Note that the commenting la-
bel accounts for the majority of the tweets.

4 Model

Hawkes Processes are a probabilistic framework
for modelling self-exciting phenomena, which has
been used for modelling memes and their spread
across social networks (Yang and Zha, 2013).
They have been used to model the generation of
tweets over a continuous time domain (Zhao et al.,
2015). The frequency of tweets generated by them
is determined by an underlying intensity function
which considers the influence from past tweets.
The intensity function models the self-exciting na-
ture by adding up the influence from past tweets.
We use a multi-variate Hawkes process for mod-
elling the mutually exciting phenomena between
the tweet labels. In this section we describe how
we apply the Hawkes Process framework for ru-
mour stance classification.

Intensity Function In the intensity function for-
mulation, we assume that all previous tweets asso-
ciated with a rumour influence the occurrence of
a new tweet. This allows to use information on
all the other tweets that have been posted about a
rumour. We consider the intensity function to be
summation of base intensity and the intensities as-
sociated with all the previous tweets,

λy,m(t)=µy+
∑
t`<t

I(m` = m)αy`,yκ(t− t`), (1)

where the first term represents the constant base
intensity of generating label y. The second term
represents the influence from the tweets that hap-
pen prior to time of interest. The influence from
each tweet decays over time and is modelled
using an exponential decay term κ(t − t`) =

ω exp(−ω(t− t`)). The matrix α of size |Y |×|Y |
encodes the degrees of influence between pairs of
labels assigned to the tweets, e.g. a questioning la-
bel may influence the occurrence of a rejecting la-
bel in future tweets differently from how it would
influence a commenting label.

Likelihood function The parameters governing
the intensity function are learnt by maximizing the
likelihood of generating the tweets. The complete
likelihood function is given by

L(t,y,m,W ) = (2)
N∏
n=1

p(Wn|yn)×
[ N∏
n=1

λyn,mn(tn)
]
×p(ET ),

where the first term provides the likelihood of gen-
erating text given the label and is modelled as a
multinomial distribution conditioned on the label,

p(Wn|yn) =
V∏
v=1

βWnv
ynv , (3)

where V is the vocabulary size and β is the matrix
of size |Y | × V specifying the language model for
each label. The second term provides the likeli-
hood of occurrence of tweets at times t1, . . . , tn
and the third term provides the likelihood that
no tweets happen in the interval [0, T ] except at
times t1, . . . , tn. We estimate the parameters of
the model by maximizing the log-likelihood,

l(t,y,m,W ) =−
|Y |∑
y=1

|D|∑
m=1

∫ T

0
λy,m(s)ds+

N∑
n=1

log λyn,mn(tn) +
N∑
n=1

V∑
v=1

Wnv log βynv.

(4)

The integral term in Equation (4) is easily com-
puted for the intensity function since the exponen-
tial decay function and the constant function are
easily integrable.
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Rumour 1 - u1: We understand there are two gunmen and up to a dozen hostages inside the cafe
under siege at Sydney.. ISIS flags remain on display #7News [supporting]
Rumour 1 - u2: @u1 sorry - how do you know it’s an ISIS flag? Can you actually confirm that?
[questioning]
Rumour 2 - u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier
after today’s shooting #StandforCanada –PICTURE– [supporting]
Rumour 2 - u2: @u1 This photo was taken this morning, before the shooting. [denying]
Rumour 2 - u3: @u1 More on situation at Martin Place in Sydney, AU –LINK– [commenting]

Figure 2: Examples of rumour tweets associated with two different rumours.

Note that β is independent from the dynamics
part, and a closed form solution after applying
Laplacian smoothing takes form

βyv =
∑N

n=1 I(yn = y)Wnv + 1∑N
n=1

∑V
v=1 I(yn = y)Wnv + V

.

In one approach to µ and α optimization (HP
Approx.) we approximate the log term in Equation
(4) by taking the log inside the summation terms in
Equation (1). This approximation leads to closed
form updates for µ and α,

µy =
∑N

n=1 I(yn = y)
T |D| ,

αij =
∑N

n=1

∑n
l=1 I(ml=mn)I(yl = i)I(yn=j)∑N
k=1 I(yk = i)K(T − tk)

,

where K(T − tk) = 1− exp(−ω(T − tk)) arises
from the integration of κ(t− tk).

In a different approach (HP Grad.) we find pa-
rameters using joint gradient based optimization
over µ and α, using derivatives of log-likelihood
dl
dµ and dl

dα . In optimization, we operate in the log-
space of the parameters in order to ensure posi-
tivity, and employ L-BFGS approach to gradient
search. Moreover, we initialize parameters with
those found by the HP Approx. method.

Similar to Yang and Zha (2013), we fix the de-
cay parameter ω, in our case to 0.1.

Prediction We predict the most likely label for
each test tweet as the label which maximises the
likelihood of occurrence of the tweet from Equa-
tion (2), or the approximated likelihood in case of
HP Approx. The likelihood considers both the tex-
tual information and the temporal dynamics in pre-
dicting the label for the tweet. The predicted labels
are then considered while predicting the labels for
next tweets in the test data. Thus, we follow a
greedy sequence classification approach.

5 Experiments

We conduct experiments using the rumour datasets
described in Table 1. We consider our Hawkes
Process model described in Section 4 as well as
a set of baseline and benchmark approaches.

5.1 Baselines

We compare our model against baselines:
Language Model considers only the textual in-

formation through multinomial distribution
defined in Equation (3).

Majority vote classifier based on the training la-
bel distribution.

Naive Bayes models the text using a multinomial
likelihood and a prior over label frequen-
cies (Manning et al., 2008).

Note that Multinomial, Majority vote and Naive
Bayes approaches are special cases of our Hawkes
Process model for classification, where a particu-
lar subset of parameters is fixed to 0.

5.2 Benchmark models

We compare our model against the following com-
petitive benchmark models:
SVM Support Vector Machines with the cost co-

efficient selected via nested cross-validation.
GP Gaussian Processes have been shown by

Lukasik et al. (2015a) to work well, partic-
ularly in supervised settings where a multi-
task learning kernel has been used to learn
correlations across different rumours. Here
we use a single task kernel (linear) as we con-
sider the fully unsupervised setting.

CRF Conditional Random Field (Lafferty et al.,
2001) over temporally ordered sequences us-
ing both text and neighbouring label features.
The model is trained using `2 penalized log-
likelihood where the regularisation parame-
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Ottawa Ferguson Charlie Hebdo Sydney Siege

Acc F1 Acc F1 Acc F1 Acc F1

Majority vote 61.51 19.04 66.86 20.04 67.53 20.15 63.43 19.41
SVM 64.58 35.39 66.86 20.04 69.90 35.11 67.26 37.74
GP 62.28 42.41 64.31 32.90 70.66 44.09 65.04 42.24
Lang. model 53.20 42.66 49.56 34.35 63.44 42.84 51.60 41.51
NB 61.76 40.64 62.05 31.29 70.18 39.69 62.01 38.56
CRF 64.58 33.07 67.35 28.11 71.89 40.12 67.44 35.74
HP Approx. 67.77 32.29 68.44 25.99 72.93 32.56 68.59 32.49
HP Grad. 63.43 42.40 63.23 33.14 71.79 41.91 62.99 39.45

Table 2: Accuracy and F1 scores for different methods across datasets. HP Approx. is the best method
according to accuracy, whereas Language model and GP are both strong methods according to F1.

ters are chosen using cross-validation.

5.3 Results

The results are shown in Table 2. We report accu-
racy (Acc) and macro average of F1 scores across
all labels (F1). Each metric is calculated over
combined sequences of labels from all rumours,
thus conducting a micro average over rumours.

We can observe that in terms of accuracy, HP
Approx. beats all other methods. Notice that Lan-
guage model is the worst model for this metric.
On the other hand, in terms of F1 score, Lan-
guage model and GP become the best methods,
with HP Approx. method not performing as well
anymore. Overall, different metrics yield very dif-
ferent rankings of methods. Nevertheless, we can
notice that HP Grad. outperforms NB under all
metrics on all datasets. This is the case also for
GP baseline, which turns out to be very competi-
tive according to F1 score. As we mentioned be-
fore, HP can be viewed as a NB classifier with a
time-dependent prior. This shows, that the tempo-
ral dynamics based prior provided by HP is more
helpful than the simple frequency based prior from
NB according to all considered metrics.

In Figure 1 we show an illustration of the in-
tensity function of the HP Grad. model for ru-
mour #1 from the Ferguson dataset. Notice the
self-exciting property, with spikes in the inten-
sity functions for different labels at times when
tweets occur. Moreover, spikes occur even when
a tweet from a different label is posted, for ex-
ample around 1 hour and 50 minutes into the ru-
mour lifespan a questioning tweet is posted which
causes a spike in intensity for commenting tweets.

Another issue is the approximation used in HP

Approx. which might lead to violation of the
Hawkes Process mutual-excitation property. In
particular, we noticed that in some scenarios oc-
currences of tweets cause decrease in the intensity
value rather than spikes. However, the accuracy
metric which has been used in previous work for
this task (Lukasik et al., 2015a) yielded by this
method turns out to be the best, although when
measuring F1 the relative ordering changes with
the GP performing best (Lukasik et al., 2015a)
closely followed by other techniques including HP
Grad. which is competitive on all datasets.

6 Conclusions

We proposed a novel model based on Hawkes
Processes for sequence classification of stances
in Twitter which takes into account temporal in-
formation in addition to text. Using four Twit-
ter datasets and experimenting on rumour stance
classification of tweets, we have shown that HP
is a competitive approach, which outperforms a
range of strong benchmark methods by providing
the multinomial language model with an informa-
tive prior based on temporal dynamics. Our exper-
iments posit the importance of making use of tem-
poral information available in tweets, which along
with the textual content provide valuable informa-
tion for the model to perform well on the task.
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Abstract

There are different definitions of what a
troll is. Certainly, a troll can be somebody
who teases people to make them angry, or
somebody who offends people, or some-
body who wants to dominate any single
discussion, or somebody who tries to ma-
nipulate people’s opinion (sometimes for
money), etc. The last definition is the one
that dominates the public discourse in Bul-
garia and Eastern Europe, and this is our
focus in this paper.

In our work, we examine two types of
opinion manipulation trolls: paid trolls
that have been revealed from leaked “rep-
utation management contracts” and “men-
tioned trolls” that have been called such
by several different people. We show that
these definitions are sensible: we build
two classifiers that can distinguish a post
by such a paid troll from one by a non-troll
with 81-82% accuracy; the same classi-
fier achieves 81-82% accuracy on so called
mentioned troll vs. non-troll posts.

1 Introduction

The practice of using Internet trolls for opinion
manipulation has been reality since the rise of In-
ternet and community forums. It has been shown
that user opinions about products, companies and
politics can be influenced by opinions posted by
other online users in online forums and social net-
works (Dellarocas, 2006). This makes it easy for
companies and political parties to gain popularity
by paying for “reputation management” to peo-
ple that write in discussion forums and social net-
works fake opinions from fake profiles.

∗This research started in the Sofia University.

Opinion manipulation campaigns are often
launched using “personal management software”
that allows a user to open multiple accounts and to
appear like several different people. Over time,
some forum users developed sensitivity about
trolls, and started publicly exposing them. Yet, it
is hard for forum administrators to block them as
trolls try formally not to violate the forum rules.
In our work, we examine two types of opinion
manipulation trolls: paid trolls that have been re-
vealed from leaked “reputation management con-
tracts”1 and “mentioned trolls” that have been
called such by several different people.

2 Related Work

Troll detection was addressed using analysis of
the semantics in posts (Cambria et al., 2010) and
domain-adapting sentiment analysis (Seah et al.,
2015). There are also studies on general troll be-
havior (Herring et al., 2002; Buckels et al., 2014).

Astroturfing and misinformation have been ad-
dressed in the context of political elections us-
ing mapping and classification of massive streams
of microblogging data (Ratkiewicz et al., 2011).
Fake profile detection has been studied in the con-
text of cyber-bullying (Galán-Garcı́a et al., 2014).

A related research line is on offensive language
use (Xu and Zhu, 2010). This is related to cyber-
bullying, which has been detected using sentiment
analysis (Xu et al., 2012), graph-based approaches
over signed social networks (Ortega et al., 2012;
Kumar et al., 2014), and lexico-syntactic features
about user’s writing style (Chen et al., 2012).

1The independent Bulgarian media Bivol published a
leaked contract described the following services in favor of
the government:“Monthly posting online of 250 comments
by virtual users with varied, typical and evolving profiles
from different (non-recurring) IP addresses to inform, pro-
mote, balance or counteract. The intensity of the provided
online presence will be adequately distributed and will cor-
respond to the political situation in the country.” See https:
//bivol.bg/en/category/b-files-en/b-files-trolls-en
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Object Count
Publications 34,514
Comments 1,930,818
-of which replies 897,806
User profiles 14,598
Topics 232
Tags 13,575

Table 1: Statistics about our dataset.

Label Comments
Paid troll comments 650
Mentioned troll comments 578
Non-troll comments 650+578

Table 2: Comments selected for experiments.

Trustworthiness of statements on the Web is an-
other relevant research direction (Rowe and But-
ters, 2009). Detecting untruthful and deceptive in-
formation has been studied using both psychology
and computational linguistics (Ott et al., 2011).

A related problem is Web spam detection, which
has been addressed using spam keyword spotting
(Dave et al., 2003), lexical affinity of arbitrary
words to spam content (Hu and Liu, 2004), fre-
quency of punctuation and word co-occurrence (Li
et al., 2006). See (Castillo and Davison, 2011) for
an overview on adversarial web search.

In our previous work, we focused on finding
opinion manipulation troll users (Mihaylov et al.,
2015a) and on modeling the behavior of exposed
vs. paid trolls (Mihaylov et al., 2015b). Here, we
go beyond user profile and we try to detect indi-
vidual troll vs. non-troll comments in a news com-
munity forum based on both text and metadata.

3 Data

We crawled the largest community forum in Bul-
garia, that of Dnevnik.bg, a daily newspaper (in
Bulgarian) that requires users to be signed in order
to read and comment. The platform allows users
to comment on news, to reply to other users’ com-
ments and to vote on them with thumbs up/down.
We crawled the Bulgaria, Europe, and World cate-
gories for the period 01-Jan-2013 to 01-Apr-2015,
together with comments and user profiles: 34,514
publications on 232 topics with 13,575 tags and
1,930,818 comments (897,806 of them replies) by
14,598 users; see Table 1. We then extracted com-
ments by paid trolls vs. mentioned trolls vs. non-
trolls; see Table 2.

Paid troll comments: We collected them from
the leaked reputation management documents,
which included 10,150 paid troll comments: 2,000
in Facebook, and 8,150 in news community fo-
rums. The latter included 650 posted in the forum
of Dnevnik.bg, which we used in our experiments.

Mentioned troll comments: We further col-
lected 1,140 comments that have been replied to
with an accusation of being troll comments. We
considered a comment as a potential accusation if
(i) it was a reply to a comment, and (ii) it con-
tained words such as troll or murzi(lka).2 Two an-
notators checked these comments and found 578
actual accusations. The inter-annotator agreement
was substantial: Cohen’s Kappa of 0.82. More-
over, a simple bag-of-words classifier could find
these 578 accusations with an F1-score of 0.85.
Here are some examples (translated):

Accusation: “To comment from “Prorok Ilia”: I can see
that you are a red troll by the words that you are using”

Accused troll’s comment: This Boyko3 is always in your
mind! You only think of him. We like Boko the Potato (the
favorite of the Lamb), the way we like the Karlies.

Paid troll’s comment: in the previous protests, the entire
country participated, but now we only see the paid fans of
GERB.4 These are not true protests, but chaotic happenings.

Non-troll comments are those posted by users
that have at least 100 comments in the forum and
have never been accused of being trolls. We se-
lected 650 non-troll comments for the paid trolls,
and other 578 for the mentioned trolls as follows:
for each paid or mentioned troll comment, we se-
lected a non-troll comment at random from the
same thread. Thus, we have two separate non-troll
sets of 650 and of 578 comments.

4 Features

We train a classifier to distinguish troll (paid or
mentioned) vs. non-troll comments using the fol-
lowing features:

Bag of words. We use words and their frequen-
cies as features, after stopword filtering.5

Bag of stems. We further experiment with bag
of stems, where we stem the words with the Bul-
Stem stemmer (Nakov, 2003a; Nakov, 2003b).

Word n-grams. We also experiment with 2-
and 3-word n-grams.

2Commonly believed in Bulgaria to mean troll in Russian
(which it does not).

3The Bulgarian Prime Minister Mr. Boyko Borisov.
4Boyko Borisov’s party GERB had fallen down due to

protests and here is being accused of organizing protests in
turn against the new Socialist government that replaced it.

5http://members.unine.ch/jacques.
savoy/clef/bulgarianST.txt
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Char n-grams. We further use character n-
grams, where for each word token we extract all n
consecutive characters. We use n-grams of length
3 and 4 only as other values did not help.

Word prefix. For each word token, we extract
the first 3 or 4 consecutive characters.

Word suffix. For each word token, we take the
last 3 or 4 consecutive characters.

Emoticons. We extract the standard HTML-
based emoticons used in the forum of Dnevnik.bg.

Punctuation count. We count the number of
exclamation marks, dots, and question marks, both
single and elongated, the number of words, and the
number of ALL CAPS words.

Metadata. We use the time of comment posting
(worktime: 9:00-19:00h vs. night: 21:00-6:00h),
part of the week (workdays: Mon-Fri vs. week-
end: Sat-Sun), and the rank of the comment di-
vided by the number of comments in the thread.

Word2Vec clusters. We trained word2vec
on 80M words from 34,514 publications and
1,930,818 comments in our forum, obtaining
268,617 word vectors, which we grouped into
5,372 clusters using K-Means clustering, and then
we use these clusters as features.

Sentiment. We use features derived from
MPQA Subjectivity Lexicon (Wilson et al., 2005)
and NRC Emotion Lexicon (Mohammad and Tur-
ney, 2013) and the lexicon of Hu and Liu (2004).
Originally these lexicons were built for English,
but we translated them to Bulgarian using Google
Translate. Then, we reused the sentiment analysis
pipeline from (Velichkov et al., 2014), which we
adapted for Bulgarian.

Bad words. We use the number of bad words in
the comment as a feature. The words come from
the Bad words list v2.0, which contains 458 bad
words collected for a filter of forum or IRC chan-
nels in English.6 We translated this list to Bul-
garian using Google Translate and we removed
duplicates to obtain Bad Words Bg 1. We fur-
ther used the above word2vec model to find the
three most similar words for each bad word in
Bad Words Bg 1, and we constructed another lex-
icon: Bad Words Bg 3.7 Finally, we generate two
features: one for each lexicon.

6http://urbanoalvarez.es/blog/2008/04/
04/bad-words-list/

7https://github.com/tbmihailov/
gate-lang-bulgarian-gazetteers/ - GATE
resources for Bulgarian, including sentiment lexicons, bad
words lexicons, politicians’ names, etc.

Mentions. We noted that trolls use diminutive
names or humiliating nicknames when referring
to politicians that they do not like, but use full or
family names for people that they respect. Based
on these observations, we constructed several lex-
icons with Bulgarian politician names, their varia-
tions and nicknames (see footnote 7), and we gen-
erated a mention count feature for each lexicon.

POS tag distribution. We also use features
based on part of speech (POS). We tag using
GATE (Cunningham et al., 2011) with a simpli-
fied model trained on a transformed version of the
BulTreeBank-DP (Simov et al., 2002). For each
POS tag type, we take the number of occurrences
in the text divided by the total number of tokens.
We use both fine-grained and course-grained POS
tags, e.g., from the POS tag Npmsi, we generate
three tags: Npmsi, N and Np.

Named entities. We also use the occurrence of
named entities as features. For extracting named
entities such as location, country, person name,
date unit, etc., we use the lexicons that come
with Gate’s ANNIE (Cunningham et al., 2002)
pipeline, which we translated to Bulgarian. In fu-
ture work, we plan to use a better named entity
recognizer based on CRF (Georgiev et al., 2009).

5 Experiments and Evaluation

We train and evaluate an L2-regularized Logistic
Regression with LIBLINEAR (Fan et al., 2008) as
implemented in SCIKIT-LEARN (Pedregosa et al.,
2011), using scaled and normalized features to the
[0;1] interval. As we have perfectly balanced sets
of 650 positive and 650 negative examples for paid
troll vs. non-trolls and 578 positive and 578 neg-
ative examples for mentioned troll vs. non-trolls,
the baseline accuracy is 50%. Below, we report
F-score and accuracy with cross-validation.

Table 3, shows the results for experiments to
distinguish comments by mentioned trolls vs. such
by non-trolls, using all features, as well as when
excluding individual feature groups. We can see
that excluding character n-grams, word suffixes
and word prefixes from the features, as well as ex-
cluding bag of words with stems or stop words,
yields performance gains; the most sizable gain is
when excluding char n-grams, which yields one
point of improvement. Excluding bad words us-
age and emoticons also improves the performance
but insignificantly, which might be because they
are covered by the bag of words features.

401



Features F Acc
All − char n-grams 79.24 78.54
All − word suff 78.58 78.20
All − word preff 78.51 78.02
All − bow stems 78.32 77.85
All − bow with stop 78.25 77.77
All − bad words 78.10 77.68
All − emoticons 78.08 77.76
All − mentions 78.06 77.68
All 78.06 77.68
All − (bow, no stop) 78.04 77.68
All − NE 77.98 77.59
All − sentiment 77.95 77.51
All − POS 77.80 77.33
All − w2v clusters 77.79 77.25
All − word 3-grams 77.69 77.33
All − word 2-grams 77.62 77.25
All − punct 77.29 76.90
All − metadata 70.77 70.94
Baseline 50.00 50.00

Table 3: Mentioned troll vs. non-troll com-
ments. Ablation excluding feature groups.

Excluding any of the other features hurts per-
formance, the two most important features to keep
being metadata (as it allows us to see the time
of posting), and bag of words without stopwords
(which looks at the vocabulary choice that men-
tioned trolls use differently from regular users).

Table 4 shows the results for telling apart com-
ments by paid trolls vs. such by non-trolls, using
cross-validation and ablation with the same fea-
tures as for the mentioned trolls. There are several
interesting observations we can make. First, we
can see that the overall accuracy for finding paid
trolls is slightly higher, namely 81.02, vs. 79.24
for mentioned trolls. The most helpful feature
again is metadata, but this time it is less helpful
(excluding it yields a drop of 5 points vs. 8 points
before). The least helpful feature again are char-
acter n-grams. The remaining features fall in be-
tween, and most of them yield better performance
when excluded, which suggests that there is a lot
of redundancy in the features.

Next, we look at individual feature groups. Ta-
ble 5 shows the results for comments by men-
tioned trolls vs. such by non-trolls. We can see
that the metadata features are by far the most im-
portant: using them alone outperforms the results
when using all features by 3.5 points.

Features F Acc
All − char n-grams 81.08 81.77
All − word suff 81.00 81.77
All − word preff 80.83 81.62
All − bow with stop 80.67 81.54
All − sentiment 80.63 81.46
All − word 2-grams 80.62 81.46
All − w2v clusters 80.54 81.38
All − word 3-grams 80.46 81.38
All − punct 80.40 81.23
All − mentions 80.40 81.31
All 80.40 81.31
All − bow stems 80.37 81.31
All − emoticons 80.33 81.15
All − bad words 80.09 81.00
All − NE 80.00 80.92
All − POS 79.77 80.69
All − (bow, no stop) 79.46 80.38
All − metadata 75.37 76.62
Baseline 50.00 50.00

Table 4: Paid troll vs. non-troll comments. Ab-
lation excluding feature groups.

The reason could be that most troll comments
are replies to other comments, while those by non-
trolls are mostly not replies. Adding other fea-
tures such as sentiment-based features, bad words,
POS, and punctuation hurts the performance sig-
nificantly. Features such as bad words are at the
very bottom: they do not apply to all comments
and thus are of little use alone; similarly for men-
tions and sentiment features, which are also quite
weak in isolation. These results suggest that men-
tioned trolls are not that different from non-trolls
in terms of language use, but have mainly different
behavior in terms of replying to other users.

Table 6 shows a bit different picture for com-
ments by paid trolls vs. such by non-trolls. The
biggest difference is that metadata features are not
so useful. Also, the strongest feature set is the
combination of sentiment, bad words distribution,
POS, metadata, and punctuation. This suggests
that paid trolls are smart to post during time in-
tervals and days of the week as non-trolls, but
they use comments with slightly different senti-
ment and bad word use than non-trolls. Fea-
tures based on words are also very helpful because
paid trolls have to defend pre-specified key points,
which limits their vocabulary use, while non-trolls
are free to express themselves as they wish.

402



Features F Acc
All 78.06 77.68
Only metadata 84.14 81.14
Sent,bad,pos,NE,meta,punct 77.79 76.73
Only bow, no stop 73.41 73.79
Only bow with stop 73.41 73.44
Only bow stems 72.43 72.49
Only word preff 71.11 71.62
Only w2v clusters 69.85 70.50
Only word suff 69.17 68.95
Only word 2-grams 68.96 69.29
Only char n-grams 68.44 68.94
Only word 3-grams 64.74 67.21
Only POS 64.60 65.31
Sent,bad,pos,NE 63.68 64.10
Only sent,bad 63.66 64.44
Only emoticons 63.30 64.96
Sent,bad,ment,NE 63.11 64.01
Only punct 63.09 64.79
Only sentiment 62.50 63.66
Only NE 62.45 64.27
Only mentions 62.41 64.10
Only bad words 62.27 64.01
Baseline 50.00 50.00

Table 5: Mentioned troll comments vs. non-troll
comments. Results for individual feature groups.

6 Discussion

Overall, we have seen that our classifier for telling
apart comments by mentioned trolls vs. such by
non-trolls performs almost equally well for paid
trolls vs. non-trolls, where the non-troll comments
are sampled from the same threads that the troll
comments come from. Moreover, the most and
the least important features ablated from all are
also similar. This suggests that mentioned trolls
are very similar to paid trolls (except for their re-
ply rate, time and day of posting patterns).

However, using just mentions might be a “witch
hunt”: some users could have been accused of be-
ing “trolls” unfairly. One way to test this is to look
not at comments, but at users and to see which
users were called trolls by several different other
users. Table 7 shows the results for distinguishing
users with a given number of alleged troll com-
ments from non-troll users; the classification is
based on all comments by the corresponding users.
We can see that finding users who have been called
trolls more often is easier, which suggests they
might be trolls indeed.

Features F Acc
All 80.40 81.31
Sent,bad,pos,NE,meta,punct 78.04 78.15
Only bow, no stop 75.95 76.46
Only word 2-grams 75.55 74.92
Only bow with stop 75.27 75.62
Only bow stems 75.25 76.08
Only w2v clusters 74.20 74.00
Only word preff 74.01 74.77
Sent,bad,pos,NE 73.89 73.85
Only metadata 73.79 72.54
Only char n-grams 73.02 74.23
Only POS 72.94 72.69
Only word suff 72.03 72.69
Only word 3-grams 69.20 68.00
Only punct 66.80 65.00
Only NE 66.54 64.77
Sent,bad,ment,NE 66.04 64.92
Only sentiment 64.28 62.62
Only mentions 63.28 61.46
Only sent,bad 63.14 61.54
Only emoticons 62.95 61.00
Only bad words 62.22 60.85
Baseline 50.00 50.00

Table 6: Paid troll vs. non-troll comments. Re-
sults for individual feature groups.

5 10 15 20
Acc 80.70 81.08 83.41 85.59
Diff +8.46 +18.51 +30.81 +32.26

Table 7: Mentioned troll vs. non-troll users (not
comments!). Experiments with different number
of minimum mentions for January, 2015. ‘Diff” is
the difference from the majority class baseline.

7 Conclusion and Future Work

We have presented experiments in predicting
whether a comment is written by a troll or not,
where we define troll as somebody who was called
such by other people. We have shown that this is a
useful definition and that comments by mentioned
trolls are similar to such by confirmed paid trolls.

Acknowledgments. This research is part of
the Interactive sYstems for Answer Search (Iyas)
project, which is developed by the Arabic Lan-
guage Technologies (ALT) group at the Qatar
Computing Research Institute (QCRI), Hamad bin
Khalifa University (HBKU), part of Qatar Founda-
tion in collaboration with MIT-CSAIL.

403



References
Erin E Buckels, Paul D Trapnell, and Delroy L Paulhus.

2014. Trolls just want to have fun. Personality and
individual Differences, 67:97–102.

Erik Cambria, Praphul Chandra, Avinash Sharma, and
Amir Hussain. 2010. Do not feel the trolls. In Pro-
ceedings of the 3rd International Workshop on So-
cial Data on the Web, SDoW ’10, Shanghai, China.

Carlos Castillo and Brian D. Davison. 2011. Adversar-
ial web search. Found. Trends Inf. Retr., 4(5):377–
486, May.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social me-
dia to protect adolescent online safety. In Proceed-
ings of the 2012 International Conference on Pri-
vacy, Security, Risk and Trust and of the 2012 In-
ternational Conference on Social Computing, PAS-
SAT/SocialCom ’12, pages 71–80, Amsterdam,
Netherlands.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
an architecture for development of robust HLT
applications. In Proceedings of 40th Annual
Meeting of the Association for Computational
Linguistics, ACL ’02, pages 168–175, Philadelphia,
Pennsylvania, USA.

Hamish Cunningham, Diana Maynard, and Kalina
Bontcheva. 2011. Text Processing with GATE.
Gateway Press CA.

Kushal Dave, Steve Lawrence, and David M Pennock.
2003. Mining the peanut gallery: Opinion extrac-
tion and semantic classification of product reviews.
In Proceedings of the 12th International World Wide
Web conference, WWW ’03, pages 519–528, Bu-
dapest, Hungary.

Chrysanthos Dellarocas. 2006. Strategic manip-
ulation of internet opinion forums: Implications
for consumers and firms. Management Science,
52(10):1577–1593.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-
brary for large linear classification. J. Mach. Learn.
Res., 9:1871–1874, June.
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Abstract

Phrase table pruning is the act of re-
moving phrase pairs from a phrase table
to make it smaller, ideally removing the
least useful phrases first. We propose a
phrase table pruning method that formu-
lates the task as a submodular function
maximization problem, and solves it by
using a greedy heuristic algorithm. The
proposed method can scale with input size
and long phrases, and experiments show
that it achieves higher BLEU scores than
state-of-the-art pruning methods.

1 Introduction

A phrase table, a key component of phrase-based
statistical machine translation (PBMT) systems,
consists of a set of phrase pairs. A phrase pair is a
pair of source and target language phrases, and is
used as the atomic translation unit. Today’s PBMT
systems have to store and process large phrase ta-
bles that contain more than 100M phrase pairs,
and their sheer size prevents PBMT systems for
running in resource-limited environments such as
mobile phones. Even if a computer has enough
resources, the large phrase tables increase turn-
around time and prevent the rapid development of
MT systems.

Phrase table pruning is the technique of remov-
ing ineffective phrase pairs from a phrase table
to make it smaller while minimizing the perfor-
mance degradation. Existing phrase table pruning
methods use different metrics to rank the phrase
pairs contained in the table, and then remove low-
ranked pairs. Metrics used in previous work are
frequency, conditional probability, and Fisher’s
exact test score (Johnson et al., 2007). Zens et
al. (2012) evaluated many phrase table pruning
methods, and concluded that entropy-based prun-

ing method (Ling et al., 2012; Zens et al., 2012)
offers the best performance. The entropy-based
pruning method uses entropy to measure the re-
dundancy of a phrase pair, where we say a phrase
pair is redundant if it can be replaced by other
phrase pairs. The entropy-based pruning method
runs in time linear to the number of phrase-pairs.
Unfortunately, its running time is also exponential
to the length of phrases contained in the phrase
pairs, since it contains the problem of finding an
optimal phrase alignment, which is known to be
NP-hard (DeNero and Klein, 2008). Therefore,
the method can be impractical if the phrase pairs
consist of longer phrases.

In this paper, we introduce a novel phrase ta-
ble pruning method that formulates and solves
the phrase table pruning problem as a submodu-
lar function maximization problem. A submodular
function is a kind of set function that satisfies the
submodularity property. Generally, the submod-
ular function maximization problem is NP-hard,
however, it is known that (1 − 1/e) optimal solu-
tions can be obtained by using a simple greedy al-
gorithm (Nemhauser et al., 1978). Since a greedy
algorithm scales with large inputs, our method can
be applicable to large phrase tables.

One key factor of the proposed method is its
carefully designed objective function that evalu-
ates the quality of a given phrase table. In this pa-
per, we use a simple monotone submodular func-
tion that evaluates the quality of a given phrase
table by its coverage of a training corpus. Our
method is simple, parameter free, and does not
cause exponential explosion of the computation
time with longer phrases. We conduct experiments
with two different language pairs, and show that
the proposed method shows higher BLEU scores
than state-of-the-art pruning methods.
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2 Submodular Function Maximization

Let Ω be a base set consisting of M elements, and
g : 2Ω 7→ R be a set function that upon the input of
X ⊆ Ω returns a real value. If g is a submodular
function, then it satisfies the condition

g(X ∪ {x})− g(X) ≥ g(Y ∪ {x})− g(Y ) ,

where X,Y ∈ 2Ω, X ⊆ Y , and x ∈ Ω \ Y . This
condition represents the diminishing return prop-
erty of a submodular function, i.e., the increase in
the value of the function due to the addition of
item x to Y is always smaller than that obtained
by adding x to any subset X ⊆ Y . We say a sub-
modular function is monotone if g(Y ) ≥ g(X)
for any X,Y ∈ 2Ω satisfying X ⊆ Y . Since a
submodular function has many useful properties,
it appears in a wide range of applications (Kempe
et al., 2003; Lin and Bilmes, 2010; Kirchhoff and
Bilmes, 2014).

The maximization problem of a monotone sub-
modular function under cardinality constraints is
formulated as

Maximize g(X)

Subject to X ∈ 2Ω and |X| ≤ K ,

where g(X) is a monotone submodular function
and K is the parameter that defines maximum car-
dinality. This problem is known to be NP-hard, but
a greedy algorithm can find an approximate solu-
tion whose score is certified to be (1 − 1/e) opti-
mal (Nemhauser et al., 1978). Algorithm 1 shows
a greedy approximation method the can solve the
submodular function maximization problem under
cardinality constraints. This algorithm first sets
X ← ∅, and adds item x∗ ∈ Ω \ X that maxi-
mizes g(X ∪ {x∗})− g(X) to X until |X| = K.

Assuming that the evaluation of g(X) can be
performed in constant time, the running time of
the greedy algorithm is O(MK) because we need
O(M) evaluations of g(X) for selecting x∗ that
maximizes g(X ∪ {x∗}) − g(X), and these eval-
uations are repeated K times. If we naively apply
the algorithm to situations where M is very large,
then the algorithm may not work in reasonable
running time. However, an accelerated greedy
algorithm can work with large inputs (Minoux,
1978; Leskovec et al., 2007), since it can dras-
tically reduce the number of function evaluations
from MK. We applied the accelerated greedy al-
gorithm in the following experiments, and found it

Algorithm 1 Greedy algorithm for maximizing a
submodular function
Input: Base set Ω, cardinality K
Output: X ∈ 2Ω satisfying |X| = K.

1: X ← ∅
2: while |X| < K do
3: x∗ ← arg max

x∈Ω\X
g(X ∪ {x})− g(X)

4: X ← X ∪ {x∗}
5: output X

could solve the problems in 24 hours. Moreover,
further enhancement can be achieved by apply-
ing distributed algorithms (Mirzasoleiman et al.,
2013) and stochastic greedy algorithms (Mirza-
soleiman et al., 2015).

3 Phrase Table Pruning

We first define some notations. Let Ω =
{x1, . . . , xM} be a phrase table that has M phrase
pairs. Each phrase pair, xi, consists of a source
language phrase, pi, and a target language phrase,
qi, and is written as xi = 〈pi, qi〉. Phrases pi and
qi are sequences of words pi = (pi1, . . . , pi|pi|)
and qi = (qi1, . . . , qi|qi|), where pij represents the
j-th word of pi and qij represents the j-th word
of qi. Let ti be the i-th translation pair contained
in the training corpus, namely ti = 〈fi, ei〉, where
fi and ei are source and target sentences, respec-
tively. Let N be the number of translation pairs
contained in the corpus. fi and ei are represented
as sequences of words fi = (fi1, . . . , fi|fi|) and
ei = (ei1, . . . , ei|ei|), where fij is the j-th word of
sentence fi and eij is the j-th word of sentence ei.

Definition 1. Let xj = 〈pj , qj〉 be a phrase pair
and ti = 〈fi, ei〉 be a translation pair. We say xj

appears in ti if pj is contained in fi as a subse-
quence and qj is contained in ei as a subsequence.
We say phrase pair xj covers word fik if xj ap-
pears in 〈fi, ei〉 and fik is contained in the subse-
quence that equals pj . Similarly, we say xj covers
eik if xj appears in 〈fi, ei〉 and eik is contained in
the subsequence that equals qj .

Using the above definitions, we describe here
our phrase-table pruning algorithm; it formulates
the task as a combinatorial optimization problem.
Since phrase table pruning is the problem of find-
ing a subset of Ω, we formulate the problem as a
submodular function maximization problem under
cardinality constraints, i.e., the problem is finding

407



X ⊆ Ω that maximizes objective function g(X)
while satisfying the condition |X| = K, where
K is the size of pruned phrase table. If g(X) is
a monotone submodular function, we can apply
Algorithm 1 to obtain an (1 − 1/e) approximate
solution. We use the following objective function.

g(X) =
N∑

i=1

|fi|∑
k=1

log [c(X, fik) + 1]

+
N∑

i=1

|ei|∑
k=1

log [c(X, eik) + 1] ,

where c(X, fik) is the number of phrase pairs con-
tained in X that cover fik, the k-th word of the i-
th source sentence fi. Similarly, c(X, eik) is the
number of phrase pairs that cover eik.

Example 1. Consider phrase table X holding
phrase pairs x1 = 〈(das Haus), (the house)〉,
x2 = 〈(Haus), (house)〉, and x3 =
〈(das Haus), (the building)〉. If a corpus
consists of a pair of sentences f1 = “das Haus ist
klein” and e1 = “this house is small”, then x1 and
x2 appear in 〈f1, e1〉 and word f12 = “Haus” is
covered by x1 and x2. Hence c(X, f12) = 2.

This objective function basically gives high
scores to X if it contains many words of the train-
ing corpus. However, since we take the logarithm
of cover counts c(X, fik) and c(X, eik), g(X) be-
comes high when X covers many different words.
This objective function prefers to select phrase
pairs that frequently appear in the training corpus
but with low redundantly. This objective function
prefers pruned phrase tableX that contains phrase
pairs that frequently appear in the training corpus,
with no redundant phrase pairs. We prove the sub-
modularity of the objective function below.

Proposition 1. g(X) is a monotone submodular
function.

Proof. Apparently, every c(X, fik) and c(X, eik)
is a monotone function ofX , and it satisfies the di-
minishing return property since c(X ∪{x}, fik)−
c(X, fik) = c(Y ∪ {x}, fik) − c(Y, fik) for any
X ⊆ Y and x 6∈ Y . If function h(X) is mono-
tone and submodular, then φ(h(X)) is also mono-
tone and submodular for any concave function
φ : R 7→ R. Since log(X) is concave, every
log[c(X, fik)+1] and log[c(X, eik)+1] is a mono-
tone submodular function. Finally, if h1, . . . , hn

are monotone and submodular, then
∑

i hi is also

monotone and submodular. Thus g(X) is mono-
tone and submodular.

Computation costs If we know all counts
c(X, fik) and c(X, eik) for all fik, eik, then g(X∪
{x}) can be evaluated in time linear with the num-
ber of words contained in the training corpus1.
Thus our algorithm does not cause exponential
explosion of the computation time with longer
phrases.

4 Evaluation

4.1 Settings

We conducted experiments on the Chinese-
English and Arabic-English datasets used in NIST
OpenMT 2012. In each experiment, English was
set as the target language. We used Moses (Koehn
et al., 2007) as the phrase-based machine transla-
tion system. We used the 5-gram Kneser-Ney lan-
guage model trained separately using the English
GigaWord V5 corpus (LDC2011T07), a monolin-
gual corpus distributed at WMT 2012, and Google
Web 1T 5-gram data (LDC2006T13). Word
alignments are obtained by running giza++ (Och
and Ney, 2003) included in the Moses sys-
tem. As the test data, we used 1378 segments
for the Arabic-English dataset and 2190 seg-
ments for the Chinese-English dataset, where all
test segments have 4 references (LDC2013T07,
LDC2013T03). The tuning set consists of about
5000 segments gathered from MT02 to MT06
evaluation sets (LDC2010T10, LDC2010T11,
LDC2010T12, LDC2010T14, LDC2010T17). We
set the maximum length of extracted phrases to 7.
Table 1 shows the sizes of phrase tables. Follow-
ing the settings used in (Zens et al., 2012), we
reduce the effects of other components by using
the same feature weights obtained by running the
MERT training algorithm (Och, 2003) on full size
phrase tables and tuning data to all pruned tables.
We run MERT for 10 times to obtain 10 differ-
ent feature weights. The BLEU scores reported
in the following experiments are the averages of
the results obtained by using these different fea-
ture weights.

We adopt the entropy-based pruning method
used in (Ling et al., 2012; Zens et al., 2012) as
the baseline method, since it shows best BLEU

1Running time can be further reduced if we compute the
set of words covered by each phrase pair xi before executing
the greedy algorithm.
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Language Pair Number of phrase pairs
Arabic-English 234M

Chinese-English 169M

Table 1: Phrase table sizes.

scores as per (Zens et al., 2012). We used the pa-
rameter value of the entropy-based method sug-
gested in (Zens et al., 2012). We also compared
with the significance-based method (Johnson et
al., 2007), which uses Fisher’s exact test to calcu-
late significance scores of phrase pairs and prunes
less-significant phrase pairs.

4.2 Results

Figure 1 and Figure 2 show the BLEU scores of
pruned tables. The horizontal axis is the number of
phrase pairs contained in a table, and the vertical
axis is the BLEU score. The values in the figure
are difference of BLEU scores between the pro-
posed method and the baseline method that shows
higher score. In the experiment with the Arabic-
English dataset, both methods can remove 80% of
phrase pairs without losing 1 BLEU point, and the
proposed method shows better performance than
the baseline methods for all table sizes. The differ-
ence in BLEU scores becomes larger when table
sizes are small. In the experiment on the Chinese-
English dataset, both methods can remove 80% of
phrase pairs without losing 1 BLEU point, and the
proposed method also shows comparable or better
performance. The difference in BLEU scores also
becomes larger when table sizes are small.

Figure 3 shows phrase table sizes in the bina-
rized and compressed phrase table format used in
Moses (Junczys-Dowmunt, 2012). The horizon-
tal axis is the number of phrase pairs contained in
the table, and the vertical axis is phrase table size.
We can see that there is a linear relationship be-
tween phrase table sizes and the number of phrase
pairs. The original phrase table requires 2.8GB
memory. In contrast, the 90% pruned table only
requires 350MB of memory. This result shows the
effectiveness of phrase table pruning on reducing
resource requirements in practical situations.

5 Related Work

Previous phrase table pruning methods fall into
two groups. Self-contained methods only use
resources already used in the MT system, e.g.,
training corpus and phrase tables. Entropy-based
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Figure 1: BLEU score as a function of the number
of phrase pairs (Arabic-English).

100 101 102 103

Phrase pairs [M]

18

20

22

24

26

28

B
LE

U
[%

]
0.40

0.39

0.32
0.09

0.10 -0.14 -0.03 0.00

Proposed
Entropy
Fisher

Figure 2: BLEU score as a function of the number
of phrase pairs (Chinese-English).

methods (Ling et al., 2012; Zens et al., 2012), a
significance-based method (Johnson et al., 2007),
and our method are self-contained methods. Non
self-contained methods exploit usage statistics for
phrase pairs (Eck et al., 2007) and additional bilin-
gual corpora (Chen et al., 2009). Since self con-
tained methods require additional resources, it is
easy to apply to existing MT systems.

Effectiveness of the submodular functions max-
imization formulation is confirmed in various NLP
applications including text summarization (Lin
and Bilmes, 2010; Lin and Bilmes, 2011)
and training data selection for machine transla-
tion (Kirchhoff and Bilmes, 2014). These methods
are used for selecting a subset that contains impor-
tant items but not redundant items. This paper can
be seen as applying the subset selection formula-
tion to the phrase table pruning problem.

6 Conclusion

We have introduced a method that solves the
phrase table pruning problem as a submodular
function maximization problem under cardinal-
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Figure 3: Moses compact phrase table size as a
function of the number of phrase pairs (Arabic-
English).

ity constraints. Finding an optimal solution of
the problem is NP-hard, so we apply a scalable
greedy heuristic to find (1 − 1/e) optimal solu-
tions. Experiments showed that our greedy al-
gorithm, which uses a relatively simple objec-
tive function, can achieve better performance than
state-of-the-art pruning methods.

Our proposed method can be easily extended by
using other types of submodular functions. The
objective function used in this paper is a simple
one, but it is easily enhanced by the addition of
metrics used in existing phrase table pruning tech-
niques, such as Fisher’s exact test scores and en-
tropy scores. Testing such kinds of objective func-
tion enhancements is an important future task.
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Abstract

Bidirectional long short-term memory (bi-
LSTM) networks have recently proven
successful for various NLP sequence mod-
eling tasks, but little is known about
their reliance to input representations, tar-
get languages, data set size, and label
noise. We address these issues and eval-
uate bi-LSTMs with word, character, and
unicode byte embeddings for POS tag-
ging. We compare bi-LSTMs to tradi-
tional POS taggers across languages and
data sizes. We also present a novel bi-
LSTM model, which combines the POS
tagging loss function with an auxiliary
loss function that accounts for rare words.
The model obtains state-of-the-art perfor-
mance across 22 languages, and works es-
pecially well for morphologically complex
languages. Our analysis suggests that bi-
LSTMs are less sensitive to training data
size and label corruptions (at small noise
levels) than previously assumed.

1 Introduction

Recently, bidirectional long short-term memory
networks (bi-LSTM) (Graves and Schmidhuber,
2005; Hochreiter and Schmidhuber, 1997) have
been used for language modelling (Ling et al.,
2015), POS tagging (Ling et al., 2015; Wang
et al., 2015), transition-based dependency pars-
ing (Ballesteros et al., 2015; Kiperwasser and
Goldberg, 2016), fine-grained sentiment analysis
(Liu et al., 2015), syntactic chunking (Huang et
al., 2015), and semantic role labeling (Zhou and
Xu, 2015). LSTMs are recurrent neural networks
(RNNs) in which layers are designed to prevent
vanishing gradients. Bidirectional LSTMs make a
backward and forward pass through the sequence

before passing on to the next layer. For further de-
tails, see (Goldberg, 2015; Cho, 2015).

We consider using bi-LSTMs for POS tagging.
Previous work on using deep learning-based meth-
ods for POS tagging has focused either on a sin-
gle language (Collobert et al., 2011; Wang et al.,
2015) or a small set of languages (Ling et al.,
2015; Santos and Zadrozny, 2014). Instead we
evaluate our models across 22 languages. In ad-
dition, we compare performance with represen-
tations at different levels of granularity (words,
characters, and bytes). These levels of represen-
tation were previously introduced in different ef-
forts (Chrupała, 2013; Zhang et al., 2015; Ling
et al., 2015; Santos and Zadrozny, 2014; Gillick
et al., 2016; Kim et al., 2015), but a comparative
evaluation was missing.

Moreover, deep networks are often said to re-
quire large volumes of training data. We investi-
gate to what extent bi-LSTMs are more sensitive
to the amount of training data and label noise than
standard POS taggers.

Finally, we introduce a novel model, a bi-LSTM
trained with auxiliary loss. The model jointly pre-
dicts the POS and the log frequency of the next
word. The intuition behind this model is that the
auxiliary loss, being predictive of word frequency,
helps to differentiate the representations of rare
and common words. We indeed observe perfor-
mance gains on rare and out-of-vocabulary words.
These performance gains transfer into general im-
provements for morphologically rich languages.

Contributions In this paper, we a) evaluate the
effectiveness of different representations in bi-
LSTMs, b) compare these models across a large
set of languages and under varying conditions
(data size, label noise) and c) propose a novel bi-
LSTM model with auxiliary loss (LOGFREQ).
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2 Tagging with bi-LSTMs

Recurrent neural networks (RNNs) (Elman, 1990)
allow the computation of fixed-size vector repre-
sentations for word sequences of arbitrary length.
An RNN is a function that reads in n vectors
x1, ..., xn and produces an output vector hn, that
depends on the entire sequence x1, ..., xn. The
vector hn is then fed as an input to some classi-
fier, or higher-level RNNs in stacked/hierarchical
models. The entire network is trained jointly such
that the hidden representation captures the impor-
tant information from the sequence for the predic-
tion task.

A bidirectional recurrent neural network (bi-
RNN) (Graves and Schmidhuber, 2005) is an ex-
tension of an RNN that reads the input sequence
twice, from left to right and right to left, and the
encodings are concatenated. The literature uses
the term bi-RNN to refer to two related architec-
tures, which we refer to here as “context bi-RNN”
and “sequence bi-RNN”. In a sequence bi-RNN
(bi-RNNseq), the input is a sequence of vectors
x1:n and the output is a concatenation (◦) of a for-
ward (f ) and reverse (r) RNN each reading the
sequence in a different directions:

v = bi-RNNseq(x1:n) = RNNf (x1:n) ◦ RNNr(xn:1)

In a context bi-RNN (bi-RNNctx), we get an addi-
tional input i indicating a sequence position, and
the resulting vectors vi result from concatenating
the RNN encodings up to i:

vi = bi-RNNctx(x1:n, i) = RNNf (x1:i) ◦ RNNr(xn:i)

Thus, the state vector vi in this bi-RNN encodes
information at position i and its entire sequential
context. Another view of the context bi-RNN is
of taking a sequence x1:n and returning the corre-
sponding sequence of state vectors v1:n.

LSTMs (Hochreiter and Schmidhuber, 1997)
are a variant of RNNs that replace the cells of
RNNs with LSTM cells that were designed to pre-
vent vanishing gradients. Bidirectional LSTMs
are the bi-RNN counterpart based on LSTMs.

Our basic bi-LSTM tagging model is a context
bi-LSTM taking as input word embeddings ~w. We
incorporate subtoken information using an hierar-
chical bi-LSTM architecture (Ling et al., 2015;
Ballesteros et al., 2015). We compute subtoken-
level (either characters~c or unicode byte~b) embed-
dings of words using a sequence bi-LSTM at the

lower level. This representation is then concate-
nated with the (learned) word embeddings vector
~w which forms the input to the context bi-LSTM at
the next layer. This model, illustrated in Figure 1
(lower part in left figure), is inspired by Balles-
teros et al. (2015). We also test models in which
we only keep sub-token information, e.g., either
both byte and character embeddings (Figure 1,
right) or a single (sub-)token representation alone.

Figure 1: Right: bi-LSTM, illustrated with ~b + ~c
(bytes and characters), for ~w + ~c replace ~b with
words ~w. Left: FREQBIN, our multi-task bi-
LSTM that predicts at every time step the tag and
the frequency class for the next token.

In our novel model, cf. Figure 1 left, we train
the bi-LSTM tagger to predict both the tags of the
sequence, as well as a label that represents the log
frequency of the next token as estimated from the
training data. Our combined cross-entropy loss
is now: L(ŷt, yt) + L(ŷa, ya), where t stands for
a POS tag and a is the log frequency label, i.e.,
a = int(log(freqtrain(w)). Combining this log
frequency objective with the tagging task can be
seen as an instance of multi-task learning in which
the labels are predicted jointly. The idea behind
this model is to make the representation predictive
for frequency, which encourages the model to not
share representations between common and rare
words, thus benefiting the handling of rare tokens.

3 Experiments

All bi-LSTM models were implemented in
CNN/pycnn,1 a flexible neural network library.
For all models we use the same hyperparameters,
which were set on English dev, i.e., SGD train-
ing with cross-entropy loss, no mini-batches, 20

1https://github.com/clab/cnn
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epochs, default learning rate (0.1), 128 dimensions
for word embeddings, 100 for character and byte
embeddings, 100 hidden states and Gaussian noise
with σ=0.2. As training is stochastic in nature, we
use a fixed seed throughout. Embeddings are not
initialized with pre-trained embeddings, except
when reported otherwise. In that case we use off-
the-shelf polyglot embeddings (Al-Rfou et al.,
2013).2 No further unlabeled data is considered
in this paper. The code is released at: https:
//github.com/bplank/bilstm-aux

Taggers We want to compare POS taggers un-
der varying conditions. We hence use three dif-
ferent types of taggers: our implementation of a
bi-LSTM; TNT (Brants, 2000)—a second order
HMM with suffix trie handling for OOVs. We use
TNT as it was among the best performing taggers
evaluated in Horsmann et al. (2015).3 We comple-
ment the NN-based and HMM-based tagger with
a CRF tagger, using a freely available implemen-
tation (Plank et al., 2014) based on crfsuite.

3.1 Datasets
For the multilingual experiments, we use the
data from the Universal Dependencies project
v1.2 (Nivre et al., 2015) (17 POS) with the canon-
ical data splits. For languages with token segmen-
tation ambiguity we use the provided gold seg-
mentation. If there is more than one treebank
per language, we use the treebank that has the
canonical language name (e.g., Finnish instead of
Finnish-FTB). We consider all languages that have
at least 60k tokens and are distributed with word
forms, resulting in 22 languages. We also re-
port accuracies on WSJ (45 POS) using the stan-
dard splits (Collins, 2002; Manning, 2011). The
overview of languages is provided in Table 1.

3.2 Results
Our results are given in Table 2. First of all, no-
tice that TNT performs remarkably well across the
22 languages, closely followed by CRF. The bi-
LSTM tagger (~w) without lower-level bi-LSTM
for subtokens falls short, outperforms the tradi-
tional taggers only on 3 languages. The bi-LSTM

2https://sites.google.com/site/rmyeid/
projects/polyglot

3They found TreeTagger was closely followed by Hun-
Pos, a re-implementation of TnT, and Stanford and ClearNLP
were lower ranked. In an initial investigation, we compared
Tnt, HunPos and TreeTagger and found Tnt to be consistently
better than Treetagger, Hunpos followed closely but crashed
on some languages (e.g., Arabic).

COARSE FINE COARSE FINE

ar non-IE Semitic he non-IE Semitic
bg Indoeuropean Slavic hi Indoeuropean Indo-Iranian
cs Indoeuropean Slavic hr Indoeuropean Slavic
da Indoeuropean Germanic id non-IE Austronesian
de Indoeuropean Germanic it Indoeuropean Romance
en Indoeuropean Germanic nl Indoeuropean Germanic
es Indoeuropean Romance no Indoeuropean Germanic
eu Language isolate pl Indoeuropean Slavic
fa Indoeuropean Indo-Iranian pt Indoeuropean Romance
fi non-IE Uralic sl Indoeuropean Slavic
fr Indoeuropean Romance sv Indoeuropean Germanic

Table 1: Grouping of languages.

model clearly benefits from character representa-
tions. The model using characters alone (~c) works
remarkably well, it improves over TNT on 9 lan-
guages (incl. Slavic and Nordic languages). The
combined word+character representation model is
the best representation, outperforming the baseline
on all except one language (Indonesian), provid-
ing strong results already without pre-trained em-
beddings. This model (~w + ~c) reaches the biggest
improvement (more than +2% accuracy) on He-
brew and Slovene. Initializing the word embed-
dings (+POLYGLOT) with off-the-shelf language-
specific embeddings further improves accuracy.
The only system we are aware of that evaluates on
UD is Gillick et al. (2016) (last column). However,
note that these results are not strictly comparable
as they use the earlier UD v1.1 version.

The overall best system is the multi-task bi-
LSTM FREQBIN (it uses ~w + ~c and POLYGLOT

initialization for ~w). While on macro average it
is on par with bi-LSTM ~w + ~c, it obtains the best
results on 12/22 languages, and it is successful in
predicting POS for OOV tokens (cf. Table 2 OOV
ACC columns), especially for languages like Ara-
bic, Farsi, Hebrew, Finnish.

We examined simple RNNs and confirm the
finding of Ling et al. (2015) that they performed
worse than their LSTM counterparts. Finally, the
bi-LSTM tagger is competitive on WSJ, cf. Ta-
ble 3.

Rare words In order to evaluate the effect of
modeling sub-token information, we examine ac-
curacy rates at different frequency rates. Figure 2
shows absolute improvements in accuracy of bi-
LSTM ~w + ~c over mean log frequency, for dif-
ferent language families. We see that especially
for Slavic and non-Indoeuropean languages, hav-
ing high morphologic complexity, most of the im-
provement is obtained in the Zipfian tail. Rare to-
kens benefit from the sub-token representations.
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BASELINES BI-LSTM using: ~w + ~c +POLYGLOT OOV ACC BTS
TNT CRF ~w ~c ~c+~b ~w + ~c bi-LSTM FREQBIN bi-LSTM FREQBIN

avg 94.61 94.27 92.37 94.29 94.01 96.08† 96.50 96.50 87.80 87.98 95.70

Indoeur. 94.70 94.58 92.72 94.58 94.28 96.24† 96.63 96.61 87.47 87.63 –
non-Indo. 94.57 93.62 91.97 93.51 93.16 95.70† 96.21 96.28 90.26 90.39 –
Germanic 93.27 93.21 91.18 92.89 92.59 94.97† 95.55 95.49 85.58 85.45 –
Romance 95.37 95.53 94.71 94.76 94.49 95.63† 96.93 96.93 85.84 86.07 –
Slavic 95.64 94.96 91.79 96.45 96.26 97.23† 97.42 97.43 91.48 91.69 –

ar 97.82 97.56 95.48 98.68 98.43 98.89 98.87 98.91 95.90 96.21 –
bg 96.84 96.36 95.12 97.89 97.78 98.25 98.23 90.06 90.06 90.56 97.84
cs 96.82 96.56 93.77 96.38 96.08 97.93 98.02 97.89 91.65 91.30 98.50
da 94.29 93.83 91.96 95.12 94.88 95.94 96.16 96.35 86.13 86.35 95.52
de 92.64 91.38 90.33 90.02 90.11 93.11 93.51 93.38 85.37 86.77 92.87
en 92.66 93.35 92.10 91.62 91.57 94.61 95.17 95.16 80.28 80.11 93.87
es 94.55 94.23 93.60 93.06 92.29 95.34 95.67 95.74 79.26 79.27 95.80
eu 93.35 91.63 88.00 92.48 92.72 94.91 95.38 95.51 83.55 84.30 –
fa 95.98 95.65 95.31 95.82 95.03 96.89 97.60 97.49 88.82 89.05 96.82
fi 93.59 90.32 87.95 90.25 89.15 95.18 95.74 95.85 88.35 88.85 95.48
fr 94.51 95.14 94.44 94.39 93.69 96.04 96.20 96.11 82.79 83.54 95.75
he 93.71 93.63 93.97 93.74 93.58 95.92 96.92 96.96 88.75 88.83 –
hi 94.53 96.00 95.99 93.40 92.99 96.64 96.97 97.10 83.98 85.27 –
hr 94.06 93.16 89.24 95.32 94.47 95.59 96.27 96.82 90.50 92.71 –
id 93.16 92.96 90.48 91.37 91.46 92.79 93.32 93.41 88.03 87.67 92.85
it 96.16 96.43 96.57 95.62 95.77 97.64 97.90 97.95 89.15 89.15 97.56
nl 88.54 90.03 84.96 89.11 87.74 92.07 92.82 93.30 78.61 75.95 –
no 96.31 96.21 94.39 95.87 95.75 97.77 98.06 98.03 93.56 93.75 –
pl 95.57 93.96 89.73 95.80 96.19 96.62 97.63 97.62 95.00 94.94 –
pt 96.27 96.32 94.24 95.96 96.2 97.48 97.94 97.90 92.16 92.33 –
sl 94.92 94.77 91.09 96.87 96.77 97.78 96.97 96.84 90.19 88.94 –
sv 95.19 94.45 93.32 95.57 95.5 96.30 96.60 96.69 89.53 89.80 95.57

Table 2: Tagging accuracies on UD 1.2 test sets. ~w: words, ~c: characters, ~b: bytes. Bold/†: best
accuracy/representation; +POLYGLOT: using pre-trained embeddings. FREQBIN: our multi-task model.
OOV ACC: accuracies on OOVs. BTS: best results in Gillick et al. (2016) (not strictly comparable).

Figure 2: Absolute improvements of bi-LSTM
(~w + ~c) over TNT vs mean log frequency.

Data set size Prior work mostly used large
data sets when applying neural network based
approaches (Zhang et al., 2015). We evaluate
how brittle such models are with respect to their
more traditional counterparts by training bi-LSTM
(~w + ~c without Polyglot embeddings) for increas-

WSJ Accuracy

Convnet (Santos and Zadrozny, 2014) 97.32
Convnet reimplementation (Ling et al., 2015) 96.80
Bi-RNN (Ling et al., 2015) 95.93
Bi-LSTM (Ling et al., 2015) 97.36

Our bi-LSTM ~w+~c 97.22

Table 3: Comparison POS accuracy on WSJ; bi-
LSTM: 30 epochs, σ=0.3, no POLYGLOT.

ing amounts of training instances (number of sen-
tences). The learning curves in Figure 3 show
similar trends across language families.4 TNT
is better with little data, bi-LSTM is better with
more data, and bi-LSTM always wins over CRF.
The bi-LSTM model performs already surpris-
ingly well after only 500 training sentences. For
non-Indoeuropean languages it is on par and above

4We observe the same pattern with more, 40, iterations.
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Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).
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Abstract

In this paper, we propose LexVec, a
new method for generating distributed
word representations that uses low-rank,
weighted factorization of the Positive
Point-wise Mutual Information matrix via
stochastic gradient descent, employing
a weighting scheme that assigns heav-
ier penalties for errors on frequent co-
occurrences while still accounting for neg-
ative co-occurrence. Evaluation on word
similarity and analogy tasks shows that
LexVec matches and often outperforms
state-of-the-art methods on many of these
tasks.

1 Introduction

Distributed word representations, or word em-
beddings, have been successfully used in many
NLP applications (Turian et al., 2010; Collobert
et al., 2011; Socher et al., 2013). Tradition-
ally, word representations have been obtained us-
ing count-based methods (Baroni et al., 2014),
where the co-occurrence matrix is derived directly
from corpus counts (Lin, 1998) or using associ-
ation measures like Point-wise Mutual Informa-
tion (PMI) (Church and Hanks, 1990) and Posi-
tive PMI (PPMI) (Bullinaria and Levy, 2007; Levy
et al., 2014).

Techniques for generating lower-rank represen-
tations have also been employed, such as PPMI-
SVD (Levy et al., 2015) and GloVe (Pennington
et al., 2014), both achieving state-of-the-art per-
formance on a variety of tasks.

Alternatively, vector-space models can be gen-
erated with predictive methods, which gener-
ally outperform the count-based methods (Baroni
et al., 2014), the most notable of which is Skip-
gram with Negative Sampling (SGNS, Mikolov

et al. (2013b)), which uses a neural network to
generate embeddings. It implicitly factorizes a
shifted PMI matrix, and its performance has been
linked to the weighting of positive and negative
co-occurrences (Levy and Goldberg, 2014).

In this paper, we present Lexical Vectors
(LexVec), a method for factorizing PPMI matri-
ces that combines characteristics of all these meth-
ods. On the one hand, it uses SGNS window
sampling, negative sampling, and stochastic gra-
dient descent (SGD) to minimize a loss function
that weights frequent co-occurrences heavily but
also takes into account negative co-occurrence.
However, since PPMI generally outperforms PMI
on semantic similarity tasks (Bullinaria and Levy,
2007), rather than implicitly factorize a shifted
PMI matrix (like SGNS), LexVec explicitly fac-
torizes the PPMI matrix.

This paper is organized as follows: First, we de-
scribe PPMI-SVD, GloVe, and SGNS (§2) before
introducing the proposed method, LexVec (§3),
and evaluating it on word similarity and analogy
tasks (§4). We conclude with an analysis of results
and discussion of future work.

We provide source code for the model at
https://github.com/alexandres/
lexvec.

2 Related Work

2.1 PPMI-SVD

Given a word w and a symmetric window of win
context words to the left and win to the right, the
co-occurrence matrix of elements Mwc is defined
as the number of times a target word w and the
context word c co-occurred in the corpus within
the window. The PMI matrix is defined as

PMIwc = log
Mwc M∗∗
Mw∗ M∗c

(1)
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where ’*’ represents the summation of the cor-
responding index. As this matrix is unbounded
in the inferior limit, in most applications it is
replaced by its positive definite version, PPMI,
where negative values are set to zero. The per-
formance of the PPMI matrix on word similarity
tasks can be further improved by using context-
distribution smoothing (Levy et al., 2015) and sub-
sampling the corpus (Mikolov et al., 2013b). As
word embeddings with lower dimensionality may
improve efficiency and generalization (Levy et al.,
2015), the improved PPMI∗ matrix can be factor-
ized as a product of two lower rank matrices.

PPMI∗wc 'WwW̃
>
c (2)

where Ww and W̃c are d-dimensional row vectors
corresponding to vector embeddings for the target
and context words. Using the truncated SVD of
size d yields the factorizationUΣT> with the low-
est possible L2 error (Eckert and Young, 1936).

Levy et al. (2015) recommend using W =
UΣp as the word representations, as suggested
by Bullinaria and Levy (2012), who borrowed the
idea of weighting singular values from the work
of Caron (2001) on Latent Semantic Analysis.
Although the optimal value of p is highly task-
dependent (Österlund et al., 2015), we set p = 0.5
as it has been shown to perform well on the word
similarity and analogy tasks we use in our experi-
ments (Levy et al., 2015).

2.2 GloVe
GloVe (Pennington et al., 2014) factors the loga-
rithm of the co-occurrence matrix M̂ that consid-
ers the position of the context words in the win-
dow. The loss function for factorization is

LGloV ewc =
1
2
f(M̂wc)(WwW̃

>
c +bw+b̃c−log M̂wc)2

(3)
where bw and b̃c are bias terms, and f is a weight-
ing function defined as

f(x) =

{
(x/xmax)β if x < xmax

1 otherwise
(4)

W and W̃ are obtained by iterating over all non-
zero (w, c) cells in the co-occurrence matrix and
minimizing eq. (3) through SGD.

The weighting function (in eq. (3)) penalizes
more heavily reconstruction error of frequent co-
occurrences, improving on PPMI-SVD’s L2 loss,

which weights all reconstruction errors equally.
However, as it does not penalize reconstruction er-
rors for pairs with zero counts in the co-occurrence
matrix, no effort is made to scatter the vectors for
these pairs.

2.3 Skip-gram with Negative Sampling
(SGNS)

SGNS (Mikolov et al., 2013b) trains a neural net-
work to predict the probability of observing a con-
text word c given a target word w, sliding a sym-
metric window over a subsampled training corpus
with the window size being sampled uniformly
from the range [1, win]. Each observed (w, c) pair
is combined with k randomly sampled noise pairs
(w,wi) and used to calculate the loss function

LSGNSwc = log σ(WwW̃c
>

)+
k∑
i=1

Ewi∼Pn(w) log σ(−WwW̃
>
wi

)
(5)

where Pn(w) is the distribution from which noise
words wi are sampled.1 We refer to this routine
which SGNS uses for selecting (w, c) pairs by
sliding a context window over the corpus for loss
calculation and SGD as window sampling.

SGNS is implicitly performing the weighted
factorization of a shifted PMI matrix (Levy and
Goldberg, 2014). Window sampling ensures
the factorization weights frequent co-occurrences
heavily, but also takes into account negative co-
occurrences, thanks to negative sampling.

3 LexVec

LexVec is based on the idea of factorizing the
PPMI matrix using a reconstruction loss func-
tion that does not weight all errors equally, un-
like SVD, but instead penalizes errors of frequent
co-occurrences more heavily, while still treating
negative co-occurrences, unlike GloVe. More-
over, given that using PPMI results in better per-
formance than PMI on semantic tasks, we pro-
pose keeping the SGNS weighting scheme by us-
ing window sampling and negative sampling, but
explicitly factorizing the PPMI matrix rather than
implicitly factorizing the shifted PMI matrix. The
LexVec loss function has two terms

1Following Mikolov et al. (2013b) it is the unigram distri-
bution raised to the 3/4 power.
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LLexV ec
wc =

1

2
(WwW̃c

> − PPMI∗wc)
2 (6)

LLexV ec
w =

1

2

k∑
i=1

Ewi∼Pn(w)(WwW̃wi

> − PPMI∗wwi
)2

(7)

We minimize eqs. (6) and (7) using two alternative
approaches:
Mini-Batch (MB): This variant executes gradient
descent in exactly the same way as SGNS. Every
time a pair (w, c) is observed by window sampling
and pairs (w,w1...k) drawn by negative sampling,
Ww, W̃c, and W̃w1...k

are updated by gradient de-
scent on the sum of eq.(6) and eq.(7). The global
loss for this approach is

LLexV ec =
∑
(w,c)

#(w, c) (LLexV ecwc + LLexV ecw )

(8)
where #(w, c) is the number of times (w, c) is ob-
served in the subsampled corpus.
Stochastic (St): Every context window is ex-
tended with k negative samples w1...k. Iterative
gradient descent of eq. (6) is then run on pairs
(w, cj), for j = 1, .., 2∗win and (w, ci), j =
1, .., k for each window. The global loss for this
approach is

LLexV ec
′

=
∑
(w,c)

#(w, c)LLexV ecwc +

∑
w

#(w)LLexV ecw

(9)

where #(w) is the number of times w is observed
in the subsampled corpus.

If a pair (w, c) co-occurs frequently, #(w, c)
will weigh heavily in both eqs. (8) and (9), giving
the desired weighting for frequent co-occurrences.
The noise term, on the other hand, has corrections
proportional to #(w) and #(wi), for each pair
(w,wi). It produces corrections in pairs that due
to frequency should be in the corpus but are not
observed, therefore accounting automatically for
negative co-occurrences.

4 Materials

All models were trained on a dump of Wikipedia
from June 2015, split into sentences, with punc-
tuation removed, numbers converted to words,
and lower-cased. Words with less than 100
counts were removed, resulting in a vocabulary of

302,203 words. All models generate embeddings
of 300 dimensions.

The PPMI* matrix used by both PPMI-SVD
and LexVec was constructed using smoothing of
α = 3/4 suggested in (Levy et al., 2015) and
an unweighted window of size 2. A dirty sub-
sampling of the corpus is adopted for PPMI* and
SGNS with threshold of t = 10−5 (Mikolov et al.,
2013b).2 Additionally, SGNS uses 5 negative
samples (Mikolov et al., 2013b), a window of size
10 (Levy et al., 2015), for 5 iterations with initial
learning rate set to the default 0.025. GloVe is run
with a window of size 10, xmax = 100, β = 3/4,
for 50 iterations and initial learning rate of 0.05
(Pennington et al., 2014).

In LexVec two window sampling alternatives
are compared: WSPPMI , which keeps the same
fixed size win = 2 as used to create the PPMI∗

matrix; or WSSGNS , which adopts identical
SGNS settings (win = 10 with size randomiza-
tion). We run LexVec for 5 iterations over the
training corpus.

All methods generate both word and context
matrices (W and W̃ ): W is used for SGNS, PPMI-
SVD andW +W̃ for GloVe (following Levy et al.
(2015), and W and W + W̃ for LexVec.

For evaluation, we use standard word simi-
larity and analogy tasks (Mikolov et al., 2013b;
Levy et al., 2014; Pennington et al., 2014; Levy
et al., 2015). We examine, in particular, if LexVec
weighted PPMI∗ factorization outperforms SVD,
GloVe (weighted factorization of log M̂ ) and
Skip-gram (implicit factorization of the shifted
PMI matrix), and compare the stochastic and mini-
batch approaches.

Word similarity tasks are:3 WS-353 Similar-
ity (WSim) and Relatedness (WRel) (Finkelstein
et al., 2001), MEN (Bruni et al., 2012), MTurk
(Radinsky et al., 2011), RW (Luong et al., 2013),
SimLex-999 (Hill et al., 2015), MC (Miller and
Charles, 1991), RG (Rubenstein and Goodenough,
1965), and SCWS (Huang et al., 2012), calculated
using cosine. Word analogy tasks are: Google
semantic (GSem) and syntactic (GSyn) (Mikolov
et al., 2013a) and MSR syntactic analogy dataset
(Mikolov et al., 2013c), using 3CosAdd and
3CosMul (Levy et al., 2014).

2Words with unigram relative frequency f > t are dis-
carded from the training corpus with probability pw = 1 −√

t/f .
3http://www.cs.cmu.edu/ mfaruqui/suite.html
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Method WSim WRel MEN MTurk RW SimLex-999 MC RG SCWS
PPMI-SVD .731 .617 .731 .627 .427 .303 .770 .756 .615

GloVe .719 .607 .736 .643 .400 .338 .725 .774 .573
SGNS .770 .670 .763 .675 .465 .339 .823 .793 .643

LexVec + MB + WSPPMI + (W + W̃ ) .770 .671 .755 .650 .455 .322 .824 .830 .623
LexVec + St. + WSPPMI + (W + W̃ ) .763 .671 .760 .655 .458 .336 .816 .827 .630

LexVec + MB + WSPPMI + W .748 .635 .741 .636 .456 .320 .827 .820 .632
LexVec + St. + WSPPMI + W .741 .622 .733 .628 .457 .338 .820 .808 .638

LexVec + MB + WSSGNS + (W + W̃ ) .768 .675 .755 .654 .448 .312 .824 .827 .626
LexVec + St. + WSSGNS + (W + W̃ ) .775 .673 .762 .654 .468 .339 .838 .848 .628

LexVec + MB + WSSGNS + W .745 .640 .734 .645 .447 .311 .814 .802 .624
LexVec + St. + WSSGNS + W .740 .628 .728 .640 .459 .339 .821 .818 .638

Table 1: Spearman rank correlation on word similarity tasks.

Method GSem
3CosAdd / 3CosMul

GSyn
3CosAdd / 3CosMul

MSR
3CosAdd / 3CosMul

PPMI-SVD .460 / .498 .445 / .455 .303 / .313
GloVe .818 / .813 .630 / .626 .539 / .547
SGNS .773 / .777 .642 / .644 .481 / .505

LexVec + MB + WSPPMI + (W + W̃ ) .775 / .792 .520 / .539 .371 / .413
LexVec + St + WSPPMI + (W + W̃ ) .794 / .807 .543 / .555 .378 / .408

LexVec + MB + WSPPMI + W .800 / .805 .584 / .597 .421 / .457
LexVec + St. + WSPPMI + W .787 / .782 .597 / .613 .445 / .475

LexVec + MB + WSSGNS + (W + W̃ ) .762 / .785 .520 / .534 .349 / .386
LexVec + St. + WSSGNS + (W + W̃ ) .792 / .809 .536 / .553 .362 / .396

LexVec + MB + WSSGNS + W .798 / .807 .573 / .580 .399 / .435
LexVec + St. + WSSGNS + W .779 / .778 .600 / .614 .434 / .463

Table 2: Results on word analogy tasks, given as percent accuracy.

5 Results

Results for word similarity and for the analogy
tasks are in tables 1 and 2, respectively. Com-
pared with PPMI-SVD, LexVec performs better
in all tasks. As they factorize the same PPMI∗

matrix, it is the loss weighting from window sam-
pling that is an improvement over L2 loss. As ex-
pected, due to PPMI, LexVec performs better than
SGNS in several word similarity tasks, but in ad-
dition it also does so on the semantic analogy task,
nearly approaching GloVe. LexVec generally out-
performs GloVe on word similarity tasks, possibly
due to the factorization of the PPMI matrix and
to window sampling’s weighting of negative co-
occurrences.

We believe LexVec fares well on semantic
analogies because its vector-space does a good job
of preserving semantics, as evidenced by its per-
formance on word similarity tasks. We believe the
poor syntactic performance is a result of the PPMI
measure. PPMI-SVD also struggled with syntac-
tic analogies more than any other task. Levy et al.
(2015) obtained similar results, and suggest that
using positional contexts as done by Levy et al.
(2014) might help in recovering syntactic analo-
gies.

In terms of configurations, WSSGNS performed
marginally better than WSPPMI . We hypothe-
size it is simply because of the additional com-
putation. While W and (W + W̃ ) are roughly
equivalent on word similarity tasks, W is bet-
ter for analogies. This is inline with results for
PPMI-SVD and SGNS models (Levy et al., 2015).
Both mini-batch and stochastic approaches result
in similar scores for all tasks. For the same pa-
rameter k of negative samples, the mini-batch ap-
proach uses 2 ∗ winWSPPMI

times more negative
samples than stochastic when using WSPPMI ,
and winWSSGNS

times more samples when us-
ing WSSGNS . Therefore, the stochastic approach
is more computationally efficient while delivering
similar performance.

6 Conclusion and Future Work

In this paper, we introduced LexVec, a method
for low-rank, weighted factorization of the PPMI
matrix that generates distributed word represen-
tations, favoring low reconstruction error on fre-
quent co-occurrences, whilst accounting for neg-
ative co-occurrences as well. This is in con-
trast with PPMI-SVD, which does no weight-
ing, and GloVe, which only considers positive co-
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occurrences. Finally, its PPMI factorization seems
to better capture semantics when compared to the
shifted PMI factorization of SGNS. As a result, it
outperforms PPMI-SVD and SGNS in a variety of
word similarity and semantic analogy tasks, and
generally outperforms GloVe on similarity tasks.

Future work will examine the use of positional
contexts for improving performance on syntactic
analogy tasks. Moreover, we will explore further
the hyper-parameter space to find globally optimal
values for LexVec, and will experiment with the
factorization of other matrices for developing al-
ternative word representations.
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Abstract

We introduce an approach to train lexical-
ized parsers using bilingual corpora ob-
tained by merging harmonized treebanks
of different languages, producing parsers
that can analyze sentences in either of
the learned languages, or even sentences
that mix both. We test the approach
on the Universal Dependency Treebanks,
training with MaltParser and MaltOpti-
mizer. The results show that these bilin-
gual parsers are more than competitive, as
most combinations not only preserve accu-
racy, but some even achieve significant im-
provements over the corresponding mono-
lingual parsers. Preliminary experiments
also show the approach to be promising on
texts with code-switching and when more
languages are added.

1 Introduction

The need of frameworks for analyzing content in
different languages has been discussed recently
(Dang et al., 2014), and multilingual dependency
parsing is no stranger to this challenge. Data-
driven parsing models (Nivre, 2006) can be trained
for any language, given enough annotated data.

On languages where treebanks are not available,
cross-lingual transfer can be used to train parsers
for a target language with data from one or more
source languages. Data transfer approaches (e.g.
Yarowsky et al. (2001), Tiedemann (2014)) map
linguistic annotations across languages through
parallel corpora. Instead, model transfer ap-
proaches (e.g. Naseem et al. (2012)) rely on cross-
linguistic syntactic regularities to learn aspects of
the source language that help parse an unseen lan-
guage, without parallel corpora.

Model transfer approaches have benefitted from
the development of multilingual resources that
harmonize annotations. Petrov et al. (2011)
proposed a universal tagset, and McDonald et
al. (2011) employed it to transfer delexicalized
parsers (Zeman and Resnik, 2008). More recently,
several projects have presented treebank collec-
tions of multiple languages with their annotations
standardized at the syntactic level, including Ham-
leDT (Zeman et al., 2012) and the Universal De-
pendency Treebanks (McDonald et al., 2013).

In this paper we also rely on these resources,
but with a different goal: we use universal anno-
tations to train bilingual dependency parsers that
effectively analyze unseen sentences in any of
the learned languages. Unlike delexicalized ap-
proaches for model transfer, our parsers exploit
lexical features. The results are encouraging: our
experiments show that, starting with a monolin-
gual parser, we can “teach” it an additional lan-
guage for free in terms of accuracy (i.e., without
significant accuracy loss on the original language,
in spite of learning a more complex task) in the
vast majority of cases.

2 Bilingual training

Universal Dependency Treebanks v2.0 (McDon-
ald et al., 2013) is a set of CoNLL-formatted tree-
banks for ten languages, annotated with common
criteria. They include two versions of PoS tags:
universal tags (Petrov et al., 2011) in the CPOSTAG

column, and a refined annotation with treebank-
specific information in the POSTAG column. Some
of the latter tags are not part of the core univer-
sal set, and they can denote linguistic phenomena
that are language-specific, or phenomena that not
all the corpora have annotated in the same way.

To train monolingual parsers (our baseline), we
used the official training-dev-set splits provided
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with the corpora. For the bilingual models, for
each pair of languages L1, L2; we simply merged
their training sets into a single file acting as a train-
ing set for L1∪L2, and we did the same for the de-
velopment sets. The test sets were not merged be-
cause comparing the bilingual parsers to monolin-
gual ones requires evaluating each bilingual parser
on the two corresponding monolingual test sets.

To build the models, we relied on MaltParser
(Nivre et al., 2007). Due to the large number of
language pairs that complicates manual optimiza-
tion, and to ensure a fair comparison, we used
MaltOptimizer (Ballesteros and Nivre, 2012), an
automatic optimizer for MaltParser models. This
system works in three phases: Phase 1 and 2
choose a parsing algorithm by analyzing the train-
ing set, and performing experiments with default
features. Phase 3 tunes the feature model and
algorithm parameters. We hypothesize that the
bilingual models will learn a set of features that
fits both languages, and check this hypothesis by
evaluating on the test sets.

We propose two training configurations: (1) a
treebank-dependent tags configuration where we
include the information in the POSTAG column
and (2) a universal tags only configuration, where
we do not use this information, relying only on
the CPOSTAG column. Information that could be
present in FEATS or LEMMA columns is not used
in any case. This methodology plans to answer
two research questions: (1) can we train bilingual
parsers with good accuracy by merging harmo-
nized training sets?, and (2) is it essential that the
tagsets for both languages are the same, or can we
still get accuracy gains from fine-grained PoS tags
(as in the monolingual case) even if some of them
are treebank-specific?

All models are freely available.1

3 Evaluation

To ensure a fair comparison between monolingual
and bilingual models, we chose to optimize the
models from scratch with MaltOptimizer, expect-
ing it to choose the parsing algorithm and feature
model which is most likely to obtain good results.
We observed that the selection of a bilingual pars-
ing algorithm was not necessarily related with the
algorithms selected for the monolingual models.
The system sometimes chose an algorithm for a
bilingual model that was not selected for any of

1http://grupolys.org/software/PARSERS/

the corresponding monolingual models.
In view of this, and as it is known that different

parsing algorithms can be more or less competitive
depending on the language (Nivre, 2008), we ran
a control experiment to evaluate the models set-
ting the same parsing algorithm for all cases, exe-
cuting only phase 3 of MaltOptimizer. We chose
the arc-eager parser for this experiment, as it was
the algorithm that MaltOptimizer chose most fre-
quently for the monolingual models in the previ-
ous configuration. The aim was to compare the
accuracy of the bilingual models with respect to
the monolingual ones, when there is no variation
on the parsing algorithm between them. The re-
sults of this control experiment are not shown for
space reasons, but they were very similar to those
of the original experiment.

3.1 Results on the Universal Treebanks

Table 1 compares the accuracy of bilingual models
to that of monolingual ones, under the treebank-
dependent tags configuration. Each table cell
shows the accuracy of a model, in terms of LAS

and UAS. Cells in the diagonal correspond to
monolingual models (the baseline), with the cell
located at row i and column i representing the re-
sult obtained by training a monolingual parser on
the training set of language Li, and evaluating it
on the test set of the same language Li. Each cell
outside the diagonal (at row i and column j, with
j 6= i) shows the results of training a bilingual
model on the training set for Li∪Lj , evaluated on
the test set of Li.

As we can see, in a large majority of cases,
bilingual parsers learn to parse two languages with
no statistically significant accuracy loss with re-
spect to the corresponding monolingual parsers
(p < 0.05 with Bikel’s randomized parsing eval-
uation comparator). This happened in 74 out of
90 cases when measuring UAS, or 69 out of 90 in
terms of LAS. Therefore, in most cases where we
are applying a parser to texts in a given language,
adding a second language comes for free in terms
of accuracy.

More strikingly, there are many cases where
bilingual parsers outperform monolingual ones,
even in this evaluation on purely monolingual
datasets. In particular, there are 12 cases where
a bilingual parser obtains statistically significant
gains in LAS over the monolingual baseline, and 9
cases with significant gains in UAS. This clearly
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de en es fr id it ja ko pt-br sv

de 78.27 78.01− 77.82− 77.83− 77.84− 78.10− 77.86− 77.94− 78.13− 78.60+

84.03 84.08+ 83.82− 83.55−− 83.85− 84.12+ 83.88− 83.63− 83.87− 84.38+

en 89.37+ 89.36 89.46+ 89.38+ 89.69++ 89.82++ 89.43+ 89.63++ 89.60++ 89.11−−

91.02+ 91.02 91.09+ 91.06+ 91.32++ 91.47++ 91.10+ 91.32++ 91.24+ 90.79−−

es 80.85+ 81.08++ 80.60 80.95+ 81.16+ 80.92+ 81.41++ 81.49++ 79.96− 81.26++

85.17+ 85.27++ 84.75 85.15+ 85.00+ 85.13+ 85.52++ 85.39++ 84.70− 85.42++

fr 79.01− 79.39+ 79.36+ 79.29 79.61+ 79.34+ 79.16− 79.36+ 79.09− 79.66+

84.17− 84.49+ 84.56+ 84.47 84.32− 84.41− 84.34− 84.72+ 83.98− 84.84+

id 75.72−− 77.19− 77.12− 77.15− 77.69 78.29+ 77.60− 76.68−− 77.45− 77.01−−

81.73−− 82.66−− 82.72− 82.66− 83.38 84.09+ 83.18− 82.16−− 82.96− 82.59−−

it 82.62−− 83.17−− 83.12−− 83.10−− 83.74−− 84.40 84.62+ 84.79+ 83.70− 84.55+

86.14−− 86.46−− 86.78− 86.69− 86.73−− 87.54 87.48− 87.46− 87.39− 87.23−

ja 76.53−− 76.24−− 76.61−− 76.32−− 75.18−− 77.05− 77.46 76.89− 76.69− 76.89−

83.77− 83.89− 84.26− 84.05−− 83.08−− 83.97− 84.34 83.65− 83.97− 84.17−

ko 86.13−− 88.30+ 87.91+ 88.49+ 85.86−− 88.72++ 87.14−− 87.83 86.75−− 88.68−

90.61−− 92.16+ 92.00− 92.35+ 90.19−− 92.55+ 91.89− 92.12 91.39−− 92.39−

pt-br 84.83− 85.06+ 84.99+ 84.97+ 85.10+ 85.43++ 84.95+ 85.12+ 84.88 85.25++

87.18− 87.19− 87.27+ 87.17− 87.35− 87.68++ 87.13− 87.35− 87.39 87.43++

sv 81.71−− 82.01−− 82.03− 81.92−− 82.34− 82.63+ 82.81+ 82.94++ 82.19− 82.48
86.01−− 86.39− 86.55− 86.28−− 86.69− 86.55− 86.92+ 86.83− 86.39− 86.92

Table 1: Performance on the Universal Dependency Treebanks test sets using the gold POSTAG information. For each cell,
its (row,column) pair indicates the language(s) with which the model was trained, with the row corresponding to the language
where it was evaluated. ‘ ++ ’ and ‘ + ’ indicate that the improvement in performance obtained by the bilingual model is
statistically significant or not, respectively. ‘ - - ’ and ‘ - ’ correspond to significant and not significant decreases in accuracy.

de en es fr id it ja ko pt-br sv

de 74.07 72.04−− 74.51+ 74.44+ 73.68− 73.76− 73.90− 74.30+ 74.29+ 74.76++

79.77 77.52−− 79.95+ 79.83+ 79.24− 79.44− 79.83+ 79.76− 79.71− 80.25+

en 88.46+ 88.35 88.65++ 88.39+ 88.61++ 88.68++ 88.65++ 88.61++ 88.65++ 88.50+

90.35+ 90.27 90.54++ 90.26− 90.47++ 90.53++ 90.49++ 90.43++ 90.55++ 90.43++

es 79.66−− 78.78−− 80.54 79.59−− 78.98−− 79.84−− 79.59−− 79.80−− 79.74−− 79.09−−

83.81−− 82.94−− 84.35 83.26−− 82.79−− 83.79−− 83.53−− 83.57− 83.76−− 83.28−−

fr 78.43+ 78.10− 78.63+ 78.40 77.79− 78.60+ 79.11+ 78.22− 78.56+ 78.83+

83.26− 82.77− 83.38− 83.40 82.85− 83.50+ 84.03+ 83.05− 83.45+ 83.73+

id 74.46−− 74.65−− 77.09−− 76.23−− 78.31 77.86− 77.10−− 75.58−− 76.90−− 78.34+

80.87−− 80.21−− 82.81−− 81.78−− 83.81 83.52− 82.68−− 81.20−− 82.50−− 83.83+

it 82.27−− 82.13−− 82.24−− 82.75−− 82.65−− 83.88 83.04−− 83.77− 83.07−− 83.47−

85.40−− 85.38−− 85.36−− 86.31−− 85.45−− 86.68 85.83−− 86.30− 86.21−− 86.33−

ja 69.41−− 68.88−− 69.28−− 69.24−− 69.73−− 70.22−− 70.87 69.73−− 69.24−− 70.02−

79.62−− 79.21−− 79.45−− 80.11−− 79.58−− 79.58−− 81.16 80.23− 79.37−− 80.47−−

ko 84.40−− 84.82−− 85.40−− 84.59−− 84.74−− 86.79− 86.21−− 87.52 86.29−− 86.40−−

89.61−− 90.00−− 90.77−− 89.88−− 90.00−− 91.39− 91.46−− 92.00 90.92−− 91.19−−

pt-br 83.40− 82.76−− 83.56− 83.72− 83.08−− 83.95+ 83.80− 84.16++ 83.83 84.28++
85.78− 85.01−− 85.82− 85.85− 85.38−− 86.15+ 85.93− 86.33+ 86.11 86.41++

sv 79.65−− 79.61−− 79.75−− 80.46− 80.94+ 81.06+ 81.19+ 81.11+ 80.89− 80.93
84.14−− 84.42−− 84.46−− 84.88− 85.14− 85.51+ 85.29− 85.14− 85.05− 85.32

Table 2: Performance on the Universal Dependency Treebanks test sets using the gold CPOSTAG information. The table is
laid out like Table 1.

surpasses the amount of significant gains to be ex-
pected by chance, and applying the Benjamini-
Hochberg procedure (Benjamini and Hochberg,
1995) to correct for multiple comparisons with a
maximum false discovery rate of 20% yields 8 sig-
nificant improvements in LAS and UAS. Therefore,
it is clear that there is synergy between datasets:
in some cases, adding annotated data in a different
language to our training set can actually improve
the accuracy that we obtain in the original lan-
guage. This opens up interesting research poten-
tial in using confidence criteria to select the data
that can help parsing in this way, akin to what
is done in self-training approaches (Chen et al.,
2008; Goutam and Ambati, 2011).

Comparing the results by language, we note that
the accuracy on the English and Spanish datasets
almost always improves when adding a second
treebank for training. Other languages that tend
to get improvements in this way are French and
Portuguese. There seems to be a rough trend to-
wards the languages with the largest training cor-
pora benefiting from adding a second language,
and those with the smallest corpora (e.g. Indone-
sian, Italian or Japanese) suffering accuracy loss,
likely because the training gets biased towards the
second language.

Training bilingual models containing a sig-
nificant number of non-overlapping treebank-
dependent tags tends to have a positive effect. En-
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glish and Spanish are two of the clearest exam-
ples of this. As shown in Table 3, which shows a
complete report of shared PoS tags for each pair of
languages under the treebank-dependent tags con-
figuration, English only shares 1 PoS tag with the
rest of the corpora under the said configuration,
except for Swedish, with up to 5 tags in common;
and the en-sv model is the only one suffering a
significant loss on the English test set. Similar be-
havior is observed on Spanish: sv (0), en (1), ja
(10) and ko (12) are the four languages with fewest
shared PoS tags, and those are the four that ob-
tained a significant improvement on the Spanish
evaluation; while with pt-br, with 15 shared PoS
tags, we lose accuracy. The validity of this hy-
pothesis is reinforced by an experiment where we
differentiate the universal tags by language by ap-
pending a language code to them (e.g. EN NOUN

for an English noun). An overall improvement was
observed with respect to the bilingual parsers with
non-disjoint sets of features.

de en es fr id it ja ko pt-br sv
de 16 1 14 14 14 13 10 12 14 0
en 45 1 1 1 1 1 1 1 5
es 24 14 14 13 10 12 15 0
fr 14 14 13 10 12 14 0
id 14 13 10 12 14 0
it 13 10 12 13 0
ja 763 10 10 0
ko 20 12 0
pt-br 15 0
sv 25

Table 3: Shared language-specific tags between pairs of
languages

While all these experiments have been per-
formed on sentences with gold PoS tags, prelim-
inary experiments assuming predicted tags instead
show analogous results: the absolute values of
LAS and UAS are slightly smaller across the board,
but the behavior in relative terms is the same, and
the bilingual models that improved over the mono-
lingual baseline in the gold experiments keep do-
ing so under this setting.

On the other hand, Table 2 shows the perfor-
mance of the monolingual and bilingual models
under the universal tags only configuration. The
bilingual parsers are also able to keep an ac-
ceptable accuracy with respect to the monolin-
gual models, but significant losses are much more
prevalent than under the treebank-dependent tags
configuration.

Putting both tables together, our experiments

clearly suggest that not only treebank-specific tags
do not impair the training of bilingual models, but
they are even beneficial, supporting the idea that
using partially treebank-dependent tagsets helps
multilingual parsing. We hypothesize that this
may be because complementing the universal in-
formation at the syntactic level with language-
specific information at the lower levels (lexical
and morphological) may help the parser identify
specific constructions of one language that would
not benefit from the knowledge learned from the
other, preventing it from trying to exploit spuri-
ous similarities between languages. This explana-
tion is coherent with work on delexicalized parser
transfer (Lynn et al., 2014) showing that better re-
sults can be obtained using disparate languages
than closely-related languages, as long as they
have common syntactic constructions. Thus, us-
ing universal PoS tags to train multilingual parsers
can be, surprisingly, counterproductive.

3.2 Parsing code-switched sentences
Our bilingual parsers also show robustness
on texts exhibiting code-switching. Unfortu-
nately, there are no syntactically annotated code-
switching corpora, so we could not perform a for-
mal evaluation. We did perform informal tests,
by running the Spanish-English bilingual parsers
on some such sentences. We observed that they
were able to parse the English and Spanish parts
of the sentences much better than monolingual
models. This required training a bilingual tag-
ger, which we did with the free distribution of the
Stanford tagger (Toutanova and Manning, 2000);
merging the Spanish and English corpora to train
a combined bilingual tagger. Under the univer-
sal tags only configuration, the multilingual tag-
ger obtained 98.00% and 95.88% over the mono-
lingual test sets. Using treebank-dependent tags
instead, it obtained 97.19% and 93.88% over the
monolingual test sets. Figure 1 shows an interest-
ing example on how using bilingual parsers (and
taggers) affects the parsing accuracy.

Table 4 shows the performance on a tiny code-
switching treebank built on top of ten normalized
tweets.2 This confirms that monolingual pipelines
perform poorly. Using a bilingual tagger helps im-
prove the performance, thanks to accurate tags for
both languages, but a bilingual parser is needed to

2The code-switching treebank follows the Universal Tree-
bank v2.0 annotations. It can be obtained by asking any of the
authors.
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Figure 1: Example with the en, es, en-es models. Dotted lines represent incorrectly-parsed dependencies. The corresponding
English sentence is: ‘We are working hard on putting available the best products of Spain, thank you’

Tagger Parser LAS UAS
en en 37.82 44.23
es es 27.56 41.03
en-es en 66.03 78.85
en-es es 67.95 77.56
en-es en-es 87.18 92.31

Table 4: Performance on a code-switching treebank com-
posed of 10 sentences.

push both LAS and UAS up to state-of-the-art lev-
els.

3.3 Adding more languages

To show that our approach works when more
languages are added, we created a quadrilingual
parser using the romanic languages and the fine
PoS tag set. The results (LAS/UAS) on the mono-
lingual sets were: 80.18/84.64 (es), 79.11/84.29
(fr), 82.16/86.15 (it) and 84.45/86.80 (pt). In all
cases, the performance is almost equivalent to the
monolingual parser.

Noah’s ARK group (Ammar et al., 2016) has
shown that this idea can be also adapted to univer-
sal parsing. Our models are a collection of weights
learned from mixing harmonized treebanks, that
accurately analyze sentences in any of the learned
languages and where it is possible to take advan-
tage of linguistic universals, but they are still de-
pendent on language-specific word forms. Instead,
Ammar et al. (2016) rely on multilingual word
clusters and multilingual word embeddings, learn-
ing a universal representation. They also support
incorporating language-specific information (e.g.
PoS tags) to keep learning language-specific be-
havior. To address syntactic differences between
languages (e.g. noun-adjective vs adjective-noun
structure) they can inform the parser about the in-
put language.

4 Conclusions and future work

To our knowledge, this is the first attempt to train
purely bilingual parsers to analyze sentences irre-
spective of which of the two languages they are
written in; as existing work on training a parser
on two languages (Smith and Smith, 2004) fo-
cused on using parallel corpora to transfer linguis-
tic knowledge between languages.

Our results reflect that bilingual parsers do not
lose accuracy with respect to monolingual parsers
on their corresponding language, and can even
outperform them, especially if fine-grained tags
are used. This shows that, thanks to universal de-
pendencies and shared syntactic structures across
different languages, using treebank-dependent tag
sets is not a drawback, but even an advantage.

The applications include parsing sentences of
different languages with a single model, improv-
ing the accuracy of monolingual parsing with
training sets from other languages, and success-
fully parsing sentences exhibiting code-switching.

As future work, our approach could bene-
fit from simple domain adaptation techniques
(Daumé III, 2009), to enrich the training set for
a target language by incorporating data from a
source language.
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H. Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815.

R. Goutam and B. R. Ambati. 2011. Exploring self
training for Hindi dependency parsing. In Proceed-
ings of 5th International Joint Conference on Natu-
ral Language Processing, pages 1452–1456, Chiang
Mai, Thailand, November. Asian Federation of Nat-
ural Language Processing.

T. Lynn, J. Foster, M. Dras, and L. Tounsi. 2014.
Cross-lingual transfer parsing for low-resourced lan-
guages: An Irish case study. In CLTW 2014. The
First Celtic Language Technology Workshop. Pro-
ceedings of the Workshop, pages 41–49, Dublin, Ire-
land.

R. McDonald, S. Petrov, and K. Hall. 2011. Multi-
source transfer of delexicalized dependency parsers.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages
62–72. Association for Computational Linguistics.

R. McDonald, J. Nivre, Y. Quirmbach-brundage,
Y. Goldberg, D. Das, K. Ganchev, K. Hall, S. Petrov,
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Abstract

Modern coreference resolution systems re-
quire linguistic and general knowledge
typically sourced from costly, manually
curated resources. Despite their intuitive
appeal, results have been mixed. In this
work, we instead implement fine-grained
surface-level features motivated by cogni-
tive theory. Our novel fine-grained feature
specialisation approach significantly im-
proves the performance of a strong base-
line, achieving state-of-the-art results of
65.29 and 61.13% on CoNLL-2012 using
gold and automatic preprocessing, with
system extracted mentions.

1 Introduction

Coreference resolution (Pradhan et al., 2011,
2012) is the task of clustering mentions in a docu-
ment according to their referent. For instance, we
need to resolve Ehud Barak, his, and he as corefer-
ential to understand the meaning of the excerpt:

Israeli Prime Minister Ehud Barak called his cabinet into

special session late Wednesday , to discuss what he called a

grave escalation of the level of violence ...

While knowledge-poor approaches establish a
reasonable baseline, they perform poorly when po-
sitional and surface form heuristics break down.
To address this, research has extracted world
knowledge from manually curated resources in-
cluding Wikipedia, Yago, Freebase, and FrameNet
(e.g. Uryupina et al., 2011; Rahman and Ng, 2011;
Ratinov and Roth, 2012; Hajishirzi et al., 2013;
Durrett and Klein, 2014). Despite their intuitive
appeal, results have been mixed. We instead focus
on linguistic knowledge which can be extracted
completely automatically, guided by insights from

Accessibility theory (Ariel, 2001). This result is
consistent with Wiseman et al. (2015) which sim-
ilarly finds performance gains above state-of-the-
art from extending simple, surface-level features.

We implement a mention classification scheme
based on the Accessibility hierarchy and use this
for feature specialisation, yielding state-of-the-art
results of 65.29 and 61.13% on CoNLL-2012 on
gold and automatic preprocessing, with system ex-
tracted mentions. Our approach is simple and ef-
fective, contributing to arguments for incorporat-
ing cognitive insights in computational modelling.

2 Accessibility Hierarchy

Accessibility theory (Ariel, 2001) builds on a body
of cognitively motivated theories of discourse pro-
cessing, notably Centering Theory (Grosz et al.,
1995). Where Centering describes pronoun in-
terpretation in terms of relative discourse en-
tity salience, Accessibility theory expands from
this, describing discourse entities as having corre-
sponding human memory nodes which fluctuate in
their degree of activation as the entity features in
a discourse. The surface form of a reference indi-
cates to the hearer how activated its corresponding
node is expected to be. That is, surface form is an
instruction for how to retrieve suitable referents,
guiding the resolution of coreference. Relative de-
gree of activation is captured in the theory’s hier-
archy of reference expression types, reproduced in
Figure 1. Section 4 proposes a mapping of this
hierarchy (derived for spoken Hebrew) to written
English.

The hierarchy encodes and expands the widely-
used rule of thumb that full names introduce an en-
tity (their referent has low accessibility; it has not
yet been discussed) and pronouns are anaphoric
(their referent is a highly accessible, active dis-
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Full name + modifier < Full name < Long definite description < Short definite description < Last name < First name <

Distal demonstrative + modifier < Proximate demonstrative + modifier < Distal demonstrative + NP < Proximate

demonstrative + NP < Distal demonstrative < Proximate demonstrative < Stressed pronoun + gesture < Stressed pronoun <

Unstressed pronoun < Cliticised pronoun < Verbal inflections < Zero

Figure 1: Accessibility hierarchy from Ariel (2001)

course entity); the accessibility of definite descrip-
tions is intermediate. In this work, we show that
the fine-grained categorisation in the Accessibil-
ity hierarchy can be leveraged to improve the dis-
criminative power of a strong system, compared
to coarser-grained typologies from previous work.
That is, this work contributes valuable empirical
support for the psycholinguistic theory.

3 Related Work

A particularly successful way to leverage men-
tion classification has been to specialise mod-
elling by mention type. Denis and Baldridge
(2008) learn five different models, one each for
proper name, definite nominal, indefinite nomi-
nal, third person pronoun, and non-third person
pronoun. Bengtson and Roth (2008) and Dur-
rett and Klein (2013) implement specialisation
at the level of features within a model, rather
than explicitly learning separate models. Bengt-
son and Roth (2008) prefix each base feature
generated with the type of the current mention,
one of proper name, nominal, or pronoun, for
instance nominal-head match:true. Dur-
rett and Klein (2013) extend from this by
learning a model over three versions of each
base feature: unprefixed, conjoined with the
type of the current mention, and conjoined
with concatenation of the types of the cur-
rent mention and candidate antecedent mention:
nominal+nominal-head match=true.

The success of Durrett and Klein is possi-
ble due to the large training dataset provided by
OntoNotes (Pradhan et al., 2007). In this work,
we successfully extend data-driven specialisation
still further: Section 4 shows how we can dis-
cover fine-grained patterns in reference expression
usage, and Section 5 how these patterns can be
used to significantly improve the performance of
a strong coreference system.

4 Accessibility Transitions in OntoNotes

In this section, we propose an implementation
of the Accessibility hierarchy for written En-

AR Description %
1 Multi-word name + modifier 7.7
2 Multi-word name 8.7
3 Long indefinite description 18.9
4 Short indefinite description 16.3
5 Long definite description 10.2
6 Short definite description 5.0
7 Single-word name 8.8
8 Distal demonstrative + modifier 0.2
9 Proximate demonstrative + modifier 0.0

10 Distal demonstrative + NP 0.7
11 Proximate demonstrative + NP 1.2
12 Distal demonstrative 0.8
13 Proximate demonstrative 0.5
14 Pronoun 21.0

- Zero -

Table 1: Accessibility rank values used in our ex-
periments, with their base distribution over ex-
tracted NPs.

glish and how this can be used to encode fine-
grained discourse transitions. We discover trends
in OntoNotes, over mentions automatically ex-
tracted from the DEV portion of English CoNLL-
2012 (Pradhan et al., 2011).

4.1 Mention classification

Our experiments start by classifying a mention’s
Accessibility rank value, AR. Table 1 gives the
schema we propose for written English, along with
the base distribution over extracted mentions. This
mapping is a simple ordinal numbering of Figure 1
with the following refinements.

We have generalised last name and first name
to single-word name (AR = 7) and full name to
multi-word name (AR = 2) to handle non-person
entities. Name modifiers are tokens without the
head NER label, excluding determiners, possessive
markers, and punctuation. We have introduced
indefinite descriptions above definite descriptions
since they are more likely to introduce discourse
entities than definite descriptions are. We label
any nominal started by the or a possessive pro-
noun as a definite; otherwise it is indefinite. Long
descriptions comprise more than one token when
possessive markers, punctuation, and articles are
excluded. Distals start with those or that while
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Table 2: Accessibility transitions (>0.05) CoNLL-2012 DEV.

proximates start with these or this.

4.2 Discourse Transitions

Discourse transitions are then AR tuples whose
values come from mentions aligned to the same
gold cluster. We chose 2-tuples, whose val-
ues come from mention-antecedent pairs, since
mention-pair models have dominated the research
space. However, we generate up to three pairs per
mention since antecedents are latent at the entity
level. That is, for he in the following, we generate
pairs (1, 14) and (14, 14).

Israeli Prime Minister Ehud BarakAR=1 called hisAR=14

cabinet into special session late Wednesday , to discuss what

heAR=14 called a grave escalation of the level of violence ...

The aggregated counts for each pair type are
represented in Table 2, with AR(antecedent) on
the vertical and AR(anaphor) on the horizontal.
The first column gives the proportion of cluster-
initial mentions of eachAR type (e.g. 21% of gold
clusters have a long indefinite description as their
first mention). Each row is normalised to sum to
1 so each row indicates the probability distribu-
tion for the expected next mention of a cluster. For
clarity, only values 0.05 and higher are shown.

We can see that commonly used rules of thumb
are borne out in this data, though with some ex-
tra granularity. Modified and multi-word names
reduce to single-word names, and both reduce to
pronouns. Single word names retain their men-
tion form and reduce to pronouns with roughly
equal probability. All mention types reduce to be
pronouns and, once reference has reduced to be
pronominal, there is a high likelihood (82%) that
this form will be retained.

Encouragingly, we can also see transitions in

Table 3: Proportion of singletons by AR.

Table 2 can not be expressed with the coarser-
grained typologies of prior work. Firstly, men-
tion article is important. Long indefinite descrip-
tions are more likely to start coreference clusters
than long definite descriptions (21% vs. 14%),
which are in turn much more likely to start clus-
ters than demonstratives. Mention length is also
important: short indefinite descriptions are more
likely to reduce to pronouns than long definite
descriptions and short definite descriptions have
a higher chance of being retained throughout the
discourse than long definite descriptions. Explor-
ing further, of coreferential pairs where both men-
tions are short definite descriptions, 86% are head
matched, compared to 60% of long definite de-
scriptions; 60% of short definite descriptions are
string matched, compared to 27% of long.

4.3 Anaphoricity

Table 3 gives the proportion of extracted mentions
which can not be aligned to gold mentions, by
AR value. Modelling these discourse singletons is
important for models jointly learning coreference
and anaphoricity (Webster and Curran, 2014).
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Gold Auto
MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

Fernandes et al. (2012) 72.18 59.17 55.72 62.36 70.51 57.58 53.86 60.65
Björkelund and Kuhn (2014) 73.80 62.00 59.06 64.95 70.72 58.58 55.61 61.63
LIMERIC Baseline 74.07 60.91 58.57 64.52 70.36 56.60 54.42 60.46
+ Fine-Grained Specialisation 74.73 61.72 59.43 65.29 70.72 57.40 55.26 61.13

Table 4: Performance on CoNLL-2012 TEST evaluated with gold and automatic annotations and system
extracted mentions.

After pronouns, demonstratives and proper
names have low proportion of singletons. Sin-
gle word names are less likely to be singletons
than modified and multi-word names. We high-
light two contributing factors. The first is that cer-
tain names, particularly the children of an apposi-
tion, are not markable in OntoNotes. The second
is that the burden of supplying disambiguation will
be more worthwhile for important entities.

Consistent with Recasens et al. (2013), indef-
inites are more likely to be singletons than defi-
nites, and long definites are more likely than short
definites. Since length and article are the key fac-
tors for AR typing, this is good evidence in favour
of using the hierarchy’s fine-grained classification.

5 Experiments

In this section, we show how fine-grained feature
specialisation can significantly improve the per-
formance of LIMERIC, a competitive coreference
resolution system. This strength demonstrates that
simple surface-form features have yet to be fully
utilised in current modelling, and that cognitive
theory can guide their development.

5.1 LIMERIC

The system we base our work on is LIMERIC

(Webster and Curran, 2014). We choose this sys-
tem due to its cognitive motivation and strong
performance. Importantly, this system already
uses the coarse-grained featurisation of Durrett
and Klein (2013), allowing us to directly measure
the impact of our proposed fine-grained featurisa-
tion.

We, however, improve it in a number of ways.
The biggest performance boosts came from using
MIRA (Margin Infused Relaxation Algorithm) up-
dates in place of standard perceptron updates and
implementing the full range of common features
from the literature. We also fix a number of bug
fixes and improve mention extraction. This im-

proved system forms our LIMERIC baseline in Ta-
ble 4.

5.2 Fine-Grained Feature Specialisation

We build on work in discourse transition prefix-
ing (particularly Durrett and Klein, 2013), which
expands the feature space of a learner by includ-
ing multiple versions of each generated feature.
LIMERIC previously used three versions of each
feature: one unprefixed, one prefixed with the cur-
rent mention’s type (one of name, nominal, or pro-
noun), and one prefixed with the concatenation of
the types of the current and candidate antecedents.
In this work, we introduce a fourth prefix, formed
by concatenating the AR of the current mention
with that of the closest mention in the candidate
antecedent cluster.

The power of such transition features is that
they allow us to learn, for instance, that pronoun to
name transitions are preferred when the anaphor is
distant from its antecedent and the name mention
is one token, or that head match is a particularly
strong indicator of coreferentiality between short
definite nominals: 6+6-head match=true.

5.3 Results

Table 4 tabulates system performance on CoNLL-
2012 TEST using system extracted mentions and
v8.01 of the official scorer (Pradhan et al., 2014).

Comparing feature specialisation against the
LIMERIC baseline, we can see that it yields sub-
stantial performance gains on all metrics and both
evaluation settings. Performance gains indicated
in bold are statistically significant for the conser-
vative p = 0.01 using bootstrap re-sampling1. Per-
formance gains indicated in italics are significant
at the standard threshold of p = 0.05.

We benchmark against the state-of-the-art by

1Since Specialisation is a development of LIMERIC, the
two models are not independent which means we would ex-
pect to see relatively high confidence values for relatively
small gains in score (see Berg-Kirkpatrick et al., 2012).
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comparing performance to the winner of the
shared task (Fernandes et al., 2012), as well as
the best documented system at the time of this
work (Björkelund and Kuhn, 2014). Fine-grained
feature specialisation improves LIMERIC’s perfor-
mance to push past that of Björkelund and Kuhn
(2014) when using gold preprocessing. Further-
more, on the difficult automatic setting, we out-
perform Fernandes et al. (2012) and are not signif-
icantly worse than Björkelund and Kuhn (2014).

On the link-based MUC and B3 metrics, our
recall gains are larger than our precision gains.
That is, specialisation enables coreference indica-
tors to accrue sufficient weight so as to promote
new coreference links, a known problem case for
modern systems. We found particularly enhanced
weight on features for relaxed string matching.

6 Conclusion

In this paper, we have found fine-grained patterns
in reference expression usage based on the Ac-
cessibility hierarchy and shown how these can be
used to significantly improve the performance of
a strong system, LIMERIC. Despite being simple
to implement, we achieve comparable or improved
performance than the best reported results, further-
ing arguments for incorporating cognitive insights
in computational modelling.

7 Acknowledgements

The authors thank their anonymous reviewers and
members of the Schwa Lab at the University of
Sydney for their insightful and helpful feedback.
The first author was supported by an Australian
Postgraduate Award scholarship.

References
Mira Ariel. 2001. Accessibility theory: An overview. Text

representation: Linguistic and psycholinguistic aspects,
pages 29–87.

Eric Bengtson and Dan Roth. 2008. Understanding the value
of features for coreference resolution. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 294–303. Association for Com-
putational Linguistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical significance
in nlp. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 995–
1005. Association for Computational Linguistics, Jeju Is-
land, Korea.

Anders Björkelund and Jonas Kuhn. 2014. Learning struc-
tured perceptrons for coreference resolution with latent

antecedents and non-local features. ACL, Baltimore, MD,
USA, June.

Pascal Denis and Jason Baldridge. 2008. Specialized mod-
els and ranking for coreference resolution. In Proceedings
of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 660–669. Association for Com-
putational Linguistics.

Greg Durrett and Dan Klein. 2013. Easy victories and uphill
battles in coreference resolution. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing.

Greg Durrett and Dan Klein. 2014. A joint model for entity
analysis: Coreference, typing, and linking. In Proceedings
of the Transactions of the Association for Computational
Linguistics.

Eraldo Fernandes, Cı́cero dos Santos, and Ruy Milidiú. 2012.
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Abstract

This paper presents a novel approach to
automated sentence completion based on
pointwise mutual information (PMI). Fea-
ture sets are created by fusing the various
types of input provided to other classes
of language models, ultimately allowing
multiple sources of both local and dis-
tant information to be considered. Fur-
thermore, it is shown that additional preci-
sion gains may be achieved by incorporat-
ing feature sets of higher-order n-grams.
Experimental results demonstrate that the
PMI model outperforms all prior models
and establishes a new state-of-the-art re-
sult on the Microsoft Research Sentence
Completion Challenge.

1 Introduction

Skilled reading is a complex cognitive process that
requires constant interpretation and evaluation of
written content. To develop a coherent picture,
one must reason from the material encountered
to construct a mental representation of meaning.
As new information becomes available, this repre-
sentation is continually refined to produce a glob-
ally consistent understanding. Sentence comple-
tion questions, such as those previously featured
on the Scholastic Aptitude Test (SAT), were de-
signed to assess this type of verbal reasoning abil-
ity. Specifically, given a sentence containing 1-2
blanks, the test taker was asked to select the cor-
rect answer choice(s) from the provided list of op-
tions (College Board, 2014). A sample sentence
completion question is illustrated in Figure 1.

To date, relatively few publications have fo-
cused on automatic methods for solving sentence
completion questions. This scarcity is likely at-
tributable to the difficult nature of the task, which

Certain clear patterns in the metamorphosis
of a butterfly indicate that the process is
——-.
(A) systematic
(B) voluntary
(C) spontaneous
(D) experimental
(E) clinical

Figure 1: An example sentence completion ques-
tion (The Princeton Review, 2007).

occasionally involves logical reasoning in addition
to both general and semantic knowledge (Zweig
et al., 2012b). Fundamentally, text completion is
a challenging semantic modeling problem, and so-
lutions require models that can evaluate the global
coherence of sentences (Gubbins and Vlachos,
2013). Thus, in many ways, text completion epito-
mizes the goals of natural language understanding,
as superficial encodings of meaning will be insuf-
ficient to determine which responses are accurate.

In this paper, a model based on pointwise mu-
tual information (PMI) is proposed to measure the
degree of association between answer options and
other sentence tokens. The PMI model considers
multiple sources of information present in a sen-
tence prior to selecting the most likely alternative.

The remainder of this report is organized as fol-
lows. Section 2 describes the high-level character-
istics of existing models designed to perform auto-
mated sentence completion. This prior work pro-
vides direct motivation for the PMI model, intro-
duced in Section 3. In Section 4, the model’s per-
formance on the Microsoft Research (MSR) Sen-
tence Completion Challenge and a data set com-
prised of SAT questions are juxtaposed. Finally,
Section 5 offers concluding remarks on this topic.
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2 Background

Previous research expounds on various architec-
tures and techniques applied to sentence comple-
tion. Below, models are roughly categorized on
the basis of complexity and type of input analyzed.

2.1 N-gram Models

Advantages of n-gram models include their abil-
ity to estimate the likelihood of particular token
sequences and automatically encode word order-
ing. While relatively simple and efficient to train
on large, unlabeled text corpora, n-gram models
are nonetheless limited by their dependence on lo-
cal context. In fact, such models are likely to over-
value sentences that are locally coherent, yet im-
probable due to distant semantic dependencies.

2.2 Dependency Models

Dependency models circumvent the sequentiality
limitation of n-gram models by representing each
word as a node in a multi-child dependency tree.
Unlabeled dependency language models assume
that each word is (1) conditionally independent of
the words outside its ancestor sequence, and (2)
generated independently from the grammatical re-
lations. To account for valuable information ig-
nored by this model, e.g., two sentences that dif-
fer only in a reordering between a verb and its ar-
guments, the labeled dependency language model
instead treats each word as conditionally indepen-
dent of the words and labels outside its ancestor
path (Gubbins and Vlachos, 2013).

In addition to offering performance superior to
n-gram models, advantages of this representation
include relative ease of training and estimation, as
well as the ability to leverage standard smoothing
methods. However, the models’ reliance on out-
put from automatic dependency extraction meth-
ods and vulnerability to data sparsity detract from
their real-world practicality.

2.3 Continuous Space Models

Neural networks mitigate issues with data sparsity
by learning distributed representations of words,
which have been shown to excel at preserving lin-
ear regularities among tokens. Despite drawbacks
that include functional opacity, propensity toward
overfitting, and elevated computational demands,
neural language models are capable of outper-
forming n-gram and dependency models (Gub-
bins and Vlachos, 2013; Mikolov et al., 2013;

Mnih and Kavukcuoglu, 2013).
Log-linear model architectures have been pro-

posed to address the computational cost associated
with neural networks (Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013). The continuous bag-of-
words model attempts to predict the current word
using n future and n historical words as context.
In contrast, the continuous skip-gram model uses
the current word as input to predict surrounding
words. Utilizing an ensemble architecture com-
prised of the skip-gram model and recurrent neu-
ral networks, Mikolov et al. (2013) achieved prior
state-of-the-art performance on the MSR Sentence
Completion Challenge.

3 PMI Model

This section describes an approach to sentence
completion based on pointwise mutual informa-
tion. The PMI model was designed to account for
both local and distant sources of information when
evaluating overall sentence coherence.

Pointwise mutual information is an
information-theoretic measure used to dis-
cover collocations (Church and Hanks, 1990;
Turney and Pantel, 2010). Informally, PMI
represents the association between two words, i
and j, by comparing the probability of observing
them in the same context with the probabilities of
observing each independently.

The first step toward applying PMI to the sen-
tence completion task involved constructing a
word-context frequency matrix from the train-
ing corpus. The context was specified to in-
clude all words appearing in a single sentence,
which is consistent with the hypothesis that it
is necessary to examine word co-occurrences at
the sentence level to achieve appropriate granu-
larity. During development/test set processing, all
words were converted to lowercase and stop words
were removed based on their part-of-speech tags
(Toutanova et al., 2003). To determine whether a
particular part-of-speech tag type did, in fact, sig-
nal the presence of uninformative words, tokens
assigned a hypothetically irrelevant tag were re-
moved if their omission positively affected perfor-
mance on the development portion of the MSR
data set. This non-traditional approach, selected
to increase specificity and eliminate dependence
on a non-universal stop word list, led to the re-
moval of determiners, coordinating conjunctions,
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Figure 2: The dependency parse tree for Question 17 in the MSR data set. Words that share a grammati-
cal relationship with the missing word rising are underscored. Following stop word removal, the feature
set for this question is [darkness, was, hidden].

pronouns, and proper nouns.1 Next, feature sets
were defined to capture the various sources of in-
formation available in a sentence. While feature
set number and type is configurable, composition
varies, as sets are dynamically generated for each
sentence at run time. Enumerated below are the
three feature sets utilized by the PMI model.

1. Reduced Context. This feature set con-
sists of words that remain following the pre-
processing steps described above.

2. Dependencies. Sentence words that share
a semantic dependency with the candidate
word(s) are included in this set (Chen and
Manning, 2014). Absent from the set of
dependencies are words removed during the
pre-processing phase. Figure 2 depicts an ex-
ample dependency parse tree along with fea-
tures provided to the PMI model.

3. Keywords. Providing the model with a col-
lection of salient tokens effectively increases
the tokens’ associated weights. An analo-
gous approach to the one described for stop
word identification was applied to discover
that common nouns consistently hold greater
significance than other words assigned hypo-
thetically informative part-of-speech tags.

Let X represent a word-context matrix with n
rows and m columns. Row xi: corresponds to word
i and column x:j refers to context j. The term x(i,j)
indicates how many times word i occurs in context
j. Applying PMI to X results in the n x m matrix Y,
where term y(i,j) is defined by (1). To avoid overly
penalizing words that are unrelated to the context,

1Perhaps counterintuitively, most proper nouns are unin-
formative for sentence completion, since they refer to specific
named entities (e.g. people, locations, organizations, etc.).

the positive variant of PMI is considered, in which
negative scores are replaced with zero (4).

P (i, j) =
x(i, j)∑n

i=1

∑m
j=1 x(i, j)

(1)

P (i∗) =
∑m

j=1 x(i, j)∑n
i=1

∑m
j=1 x(i, j)

(2)

P (∗j) =
∑n

i=1 x(i, j)∑n
i=1

∑m
j=1 x(i, j)

(3)

pmi(i, j) = max

{
0, log

(
P (i, j)

P (i∗)P (∗j)
)}

(4)

In addition, the discounting factor described by
Pantel and Lin (2002) is applied to reduce bias to-
ward infrequent words (7).

mincontext = min(
n∑

k=1

x(k, j),
m∑

k=1

x(i, k))

(5)

δ(i, j) =
x(i, j)

x(i, j) + 1
· mincontext

mincontext+ 1
(6)

dpmi(i, j) = pmi(i, j) · δ(i, j) (7)

similarity(i, S) =
∑
j∈S

dpmi(i, j) · γ (8)

The PMI model evaluates each possible re-
sponse to a sentence completion question by sub-
stituting each candidate answer, i, in place of the
blank and scoring the option according to (8).
This equation measures the semantic similarity be-
tween each candidate answer and all other words
in the sentence, S. Prior to being summed, individ-
ual PMI values associated with a particular word i

440



and context word j are multiplied by γ, which re-
flects the number of feature sets containing j. Ulti-
mately, the candidate option with the highest sim-
ilarity score is selected as the most likely answer.

Using the procedure described above, addi-
tional feature sets of bigrams and trigrams were
created and subsequently incorporated into the
semantic similarity assessment. This extended
model accounts for both word- and phrase-
level information by considering windowed co-
occurrence statistics.

4 Experimental Evaluation

4.1 Data Sets

Since its introduction, the Microsoft Research
Sentence Completion Challenge (Zweig and
Burges, 2012a) has become a commonly used
benchmark for evaluating semantic models. The
data is comprised of material from nineteenth-
century novels featured on Project Gutenberg.
Each of the 1,040 test sentences contains a single
blank that must be filled with one of five candidate
words. Associated candidates consist of the cor-
rect word and decoys with similar distributional
statistics.

To further validate the proposed method, 285
sentence completion problems were collected
from SAT practice examinations given from 2000-
2014 (College Board, 2014). While the MSR
data set includes a list of specified training texts,
there is no comparable material for SAT ques-
tions. Therefore, the requisite word-context ma-
trices were constructed by computing token co-
occurrence frequencies from the New York Times
portion of the English Gigaword corpus (Parker et
al., 2009).

4.2 Results

The overall accuracy achieved on the MSR and
SAT data sets reveals that the PMI model is able
to outperform prior models applied to sentence
completion. Table 1 provides a comparison of the
accuracy values attained by various architectures,
while Table 2 summarizes the PMI model’s per-
formance given feature sets of context words, de-
pendencies, and keywords. Recall that the n-gram
variant reflects how features are partitioned.

It appears that while introducing phrase-level
information obtained from higher-order n-grams
leads to gains in precision on the MSR data set,
the same cannot be stated for the set of SAT ques-

Language Model MSR
Random chance 20.00
N-gram [Zweig (2012b)] 39.00
Skip-gram [Mikolov (2013)] 48.00
LSA [Zweig (2012b)] 49.00
Labeled Dependency [Gubbins (2013)] 50.00
Dependency RNN [Mirowski (2015)] 53.50
RNNs [Mikolov (2013)] 55.40
Log-bilinear [Mnih (2013)] 55.50
Skip-gram + RNNs [Mikolov (2013)] 58.90
PMI 61.44

Table 1: Best performance of various models on
the MSR Sentence Completion Challenge. Values
reflect overall accuracy (%).

Features MSR SAT
Unigrams 58.46 58.95
Unigrams + Bigrams 60.87 58.95
Unigrams + Bigrams + Trigrams 61.44 58.95

Table 2: PMI model performance improvements
(% accurate) from incorporating feature sets of
higher-order n-grams.

tions. The most probable explanation for this
is twofold. First, informative context words are
much less likely to occur within 2-3 tokens of
the target word. Second, missing words, which
are selected to test knowledge of vocabulary, are
rarely found in the training corpus. Bigrams and
trigrams containing these infrequent terms are ex-
tremely uncommon. Regardless of sentence struc-
ture, the sparsity associated with higher-order n-
grams guarantees diminishing returns for larger
values of n. When deciding whether or not to in-
corporate this information, it is also important to
consider the significant trade-off with respect to
information storage requirements.

5 Conclusion

This paper described a novel approach to answer-
ing sentence completion questions based on point-
wise mutual information. To capture unique in-
formation stemming from multiple sources, sev-
eral features sets were defined to encode both lo-
cal and distant sentence tokens. It was shown that
while precision gains can be achieved by augment-
ing these feature sets with higher-order n-grams, a
significant cost is incurred as a result of the in-
creased data storage requirements. Finally, the su-
periority of the PMI model is demonstrated by its
performance on the Microsoft Research Sentence
Completion Challenge, during which a new state-
of-the-art result was established.
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Abstract

Using corpus data of spoken dialogue,
we examine the convergence of syntactic
complexity levels between interlocutors in
natural conversations, as it occurs within
spans of topic episodes. The findings of
general convergence in the Switchboard
and BNC corpora are compatible with an
information-theoretic model of dialogue
and with Interactive Alignment Theory.

1 Introduction

According to Interactive Alignment theory (Pick-
ering and Garrod, 2004), mutual understanding
in dialogue is helped by a variety of intercon-
nected adaptation processes. Over the course of a
conversation, interlocutors’ linguistic productions
assimilate at multiple levels, such as phonemes
(Pardo, 2006), lexical choice (Garrod and An-
derson, 1987), syntactic structures (Pickering and
Branigan, 1998; Branigan et al., 2000; Reitter
et al., 2006) and so on. The alignment at these
levels contributes to the establishment of aligned
situation models between speakers, which is the
ultimate goal of a successful conversation (Pick-
ering and Garrod, 2004; Reitter and Moore, 2007,
2014).

Alignment does not only refer to the mimicking
and repetition of particular linguistic structures;
it also includes the convergence at the statistical
and ensemble level, which is known as distribu-
tional matching (Abney et al., 2014). Speech rates
(Webb, 1969), probability distributions over syn-
tactic forms (Jaeger and Snider, 2008), power law
distributions of acoustic onset events (Abney et al.,
2014), and social intent of the speech act (Wang
et al., 2015) were all found to match between in-
terlocutors.

An aspect of accommodation that presumably
very much helps dialogue partners understand
each other’s language is syntactic complexity. De-
spite rich investigation of alignment in conversa-
tion, this property has been largely overlooked in
the analysis of dialogue.

The general concept of syntactic complexity
has, of course, been addressed in various ways. In
educational psychology and applied linguistics, it
is often defined as the degree of sophistication of
language forms. It has broad application in the
assessment of second language acquisition (Or-
tega, 2003; Lu, 2010, 2011), the readability test
(MacGinitie and Tretiak, 1971), and elementary
education (Abedi and Lord, 2001). In computa-
tional linguistics, previous studies have shown that
the syntactic complexity of a sentence is closely
related to the amount of information being trans-
mitted (Genzel and Charniak, 2002, 2003; Jaeger
and Levy, 2006; Jaeger, 2010). However, as far
as we know, syntactic complexity as a high level
feature of language production has not been inves-
tigated under the theoretical lens of the Interactive
Alignment Model (Pickering and Garrod, 2004).

Therefore, the focus of this study is to track the
syntactic complexity of different interlocutors as
the conversation develops. A convergence of sen-
tence complexity between interlocutors would be
compatible with two pertinent theories. The first
is the Interactive Alignment Model. The second
is the Uniform Information Density hypothesis
(Jaeger and Levy, 2006; Jaeger, 2010), as it applies
to syntactic structure. It postulates that speakers
will strive to keep information density approxi-
mately constant. In other words, if one interlocu-
tor decreased their rate of information transmis-
sion, the other one would increase it in response.
As far as syntactic complexity is proportional to
the amount of information, this would imply that if
one interlocutor changes their syntactic complex-
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(a) S
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MD

can

V

imagine
(b) S

I VP

VBP+RB+ADJP

’m not sure
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WHADVP

exactly where

S

NP

Dances with Wolves
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was filmed

Figure 1: Contrast the syntactic complexity of a
simple sentence (a) vs. a complex sentence (b).
The tree depth of (a) is 4, while the value of (b) is
7. The branching factor of (a) is 1.38, while the
value of (b) is 1.48

ity, their dialogue partner is likely to make the op-
posite change.

2 Methods

2.1 Corpus data
We use the Switchboard corpus (Godfrey et al.,
1992) and the British National Corpus (BNC)
(BNC, 2007) in this study. Switchboard contains
1126 conversations over the telephone, where each
conversation features exactly two native American
English speakers. From the BNC, we use only a
subset of the data that contains spoken conversa-
tions with exactly two participants so that the dia-
logue structures are consistent with Switchboard.

2.2 Metrics of syntactic complexity
We consider three candidate statistics to measure
the syntactic complexity of a sentence: sentence
length (number of words in a sentence), tree depth,
and branching factor. The first two are straight-
forward: syntactically complex sentences are typ-
ically used to express complex meanings, and thus
are more likely to contain more words than simple
ones. More complex syntactic structures, such as
relative clauses and noun clauses, also have deeper
parse trees (see Figure 1).

The third statistic, branching factor, is defined
as the average number of children of all non-leaf
nodes in the parse tree of a sentence. In contrast

to tree depth, it measures the width of a tree struc-
ture, thus a sentence with a larger branching factor
looks flatter.

These three statistics are inter-correlated. For
instance, tree depth has an almost linear corre-
lation with sentence length. To come up with a
measure that solely characterizes the complexity
of a sentence in terms of its tree structure, we nor-
malize tree depth and branching factor by exclud-
ing the effect of sentence length. We adopt the
method proposed by Genzel and Charniak (2002).
Let f be a complexity measure of a sentence (tree
depth or branching factor). We compute the aver-
age measure f̄(n) for sentences of the same length
n (n = 1, 2, . . . ):

f̄(n) = 1/|S(n)|
∑

s∈S(n)
f(s) (1)

where s denotes a sentence, and S(n) =
{s|l(s) = n} is the set of sentences of length n.
The normalized complexity measure is:

f ′(s) =
f(s)
f̄(n)

(2)

This normalized measure f ′ is not sensitive to
sentence length. This gives us five metrics of com-
plexity: sentence length (SL), tree depth (TD),
branching factor (BF), normalized tree depth
(NTD), and normalized branching factor (NBF).

2.3 Topic segmentation and speaker role
assignment

To verify the hypothesized convergence of a cer-
tain statistic between two speakers in dialogue,
one possible method is to measure whether the
difference in that statistic becomes smaller as the
conversation progresses. However, this design is
overly simplistic in this case for several reasons.
For instance, previous studies have found that sen-
tence complexity in written text increases with its
position (Genzel and Charniak, 2003); thus even if
we observed that the difference of complexity be-
comes smaller, a ceiling effect could be a simpler
explanation.

Additionally, the syntactic complexity of a sen-
tence largely depends on the amount of meaning
that is conveyed. Intuitively, when a speaker has a
large amount of information to express, she tends
to use more sophisticated syntactic constructions
Linking this consideration to another very com-
mon scenario in dialogue: one interlocutor leads
the conversation by steering the on-going topics,
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Figure 2: Sentence length (SL), tree depth (TD) and branching factor (BF) against within-topic sentence
position (the relative position of a sentence from the beginning of the topic episode), grouped by speaker
role, leader vs. follower. Shaded areas: bootstrapped 95% confidence intervals.

while the other participant follows along. Here,
we are not talking about the turn-taking mech-
anism in dialogue, which describes the shift at
the utterance level. Rather, we are describing the
shift at a higher level in conversation, the topic
level, which is formally referred to as topic shift
in Conversation Analysis (Ng and Bradac, 1993;
Linell, 1998). According to these related theories,
a complete conversation consists of several topic
episodes. Some speakers play a more active role
in leading the unfolding of new topic episodes,
while others play a more passive role by follow-
ing the topic shift. Beginning a new topic means
bringing in new information, thus it is reasonable
to infer that the interlocutor’s syntactic complex-
ity would partially depend on whether he is play-
ing the leader or the follower. Considering the
fact that the leader vs. follower roles are not fixed
among interlocutors (a previous leader could be a
follower later and vise versa), we should not exam-
ine the convergence of syntactic complexity within
the whole conversation. Rather, we want to zoom
in to the finer scale of topic episodes, in which the
interlocutors’ roles are relatively stable.

Based on these considerations, we use the Text-
Tiling algorithm (Hearst, 1997) to segment the
conversation into several topic episodes. This is
a sufficient topic segmentation method for our re-
search questions, though it is less sophisticated
compared to Bayesian models (Eisenstein and
Barzilay, 2008) or Hidden Markov Models (Blei
and Moreno, 2001).

Within each topic episode that resulted from the

segmentation operation, we assign roles to the two
speakers. This is based on which of the interlocu-
tors is leading this topic episode, as previously ex-
plained. We use two rules to determine this leader
and follower differentiation:

Rule I: If the topic episode starts in the middle
of the speaking turn of speaker A, then let A be the
leader of this topic.

Rule II: If the topic episode starts with a com-
plete speaking turn, then let the first speaker who
contributes a sentence greater than N words in
length in this episode be the leader.

Note that the purpose of Rule II is to select the
most probable topic leader, based on the intuition
that longer sentences are more likely to initiate a
new topic. Thus the determination of the N words
threshold here is totally empirical. We use N =
5 as the final threshold, because for N ≥ 5 our
experiments draw similar results.

3 Results

For each sentence in conversation, we compute
the five earlier-discussed metrics of syntactic com-
plexity: SL, TD, BF, NTD, and NBF.

For the first three metrics, SL, TD and BF,
we observe convergence between topic leaders
and followers, for both corpora (Fig. 2). Basi-
cally, topic leaders have higher syntactic complex-
ity measures at the early stage of a topic episode,
which drops gradually as the topic develops. The
converse holds for topic followers. We fit 12 linear
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Table 1: β coefficients of the fixed effect (within-topic position) of the linear mixed models.

group SL TD BF

Switchboard leader 0.363*** -0.129*** −1.82× 10−3***
Switchboard follower 0.188*** 0.104*** 2.141× 10−3***
BNC leader -0.166*** -0.030*** −1.88× 10−3***
BNC follower 0.012 9.45× 10−3*** 5.51× 10−4***

***p < 0.001
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Figure 3: Two normalized metrics of syntactic
complexity, tree depth (NTD) (a) and branching
factor (NBF) (b), vs. within-topic position of
sentences in Switchboard. Shaded areas: boot-
strapped 95% confidence intervals.

mixed models (3 metrics × 2 roles × 2 corpora)
using metrics as the respective response variables,
the within-topic position as a fixed effect, and a
random intercept grouped by individual speakers.
We find a positive effect of within-topic position
for leaders, and a reliably negative effect for fol-
lowers (except SL of BNC follower), which con-
firms the observation of convergence trend (See
Table 1).

For NTD and NBF, we observe convergence
patterns in Switchboard, but not reliably in BNC
(Figure 3). Linear mixed models are fit in sim-
ilar ways, and the β coefficients are: for NTD,
βleader = −2.2× 10−5, βfollower = 9.7× 10−4∗∗∗;
for NBF, βleader = 6.8× 10−5∗, βfollower =
−2.9× 10−4∗∗∗ (*** indicates p < 0.001, and *
indicates p < 0.05). Thus, a general trend seems
supported. As NBF is the only metric that is lower
in leaders and higher in followers, it could actually
be an index for syntactic simplicity.

4 Discussion and Conclusion

By segmenting a conversation into several topic
episodes, and then differentiating the interlocutors
in terms of their roles in initiating the topic, leader
or follower, we show that the syntactic complex-
ity of the two interlocutors converges within topic
episodes. The syntactic complexity of the topic
leader decreases, while the complexity of the topic
follower increases.

From an information-theoretical point of view,
the syntactic complexity of a sentence is closely
related to its amount of lexical information or neg-
ative entropy (Genzel and Charniak, 2002, 2003).
By starting a new topic in conversation, the lead-
ing speaker brings novelty to the existing con-
text, which often involves relatively long and com-
plex utterances. On the other hand, the follow-
ing speaker has to accommodate this change of
context, by first producing short acknowledging
phrases at the early stage, and gradually increase
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his contribution as the topic develops. Therefore,
the convergence of syntactic complexity within
a topic episode is a reflection of the process in
which two interlocutors contribute jointly to build
up common ground (Clark and Brennan, 1991)
with respect to a certain topic.

We find our results explained the theoretical
frameworks of common ground (Clark, 1996) and
the Interactive Alignment Model (IAM, Picker-
ing and Garrod, 2004), models which are some-
times characterized as opposing accounts of coor-
dination in dialogue. From the common-ground
perspective of language-as-activity, interlocutors
play different roles in dialogue, and the coordi-
nation between these roles facilitates the success-
ful unfolding of dialogue. Our account identifies
two such macro-level roles: topic leader vs. fol-
lower. From the perspective of Interactive Align-
ment, interactions between interlocutors in a di-
alogue are accompanied by the alignment of lin-
guistic elements at multiple levels, including syn-
tactic rules. Thus, the micro-level convergence
of syntactic complexity is predicted by the IAM.
Therefore, our findings point to the possibility of
a unified perspective that combines the two theo-
ries.

It is worth pointing out that we present some
novel ideas about the scope of convergence. Ex-
isting studies focus on the alignment effect that is
observable throughout the whole conversation. In
our case, the convergence of syntactic complexity
occurs within smaller scope: the topic episodes.
Note that the direction of convergence is dynamic:
a speaker of higher complexity in one episode
might be of lower complexity in the next episode,
depending on her role. The next questions aris-
ing from these patterns mirror those asked of other
types of alignment: is complexity alignment pur-
poseful, is it controlled by individual differences
or situational goals, and can it predict task suc-
cess? We leave these questions for future work.
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Abstract 

Nowadays, many scholarly messages are 

posted on Chinese microblogs and more 

and more researchers tend to find schol-

arly information on microblogs. In order 

to exploit microblogging to benefit scien-

tific research, we propose a scholarly mi-

croblog recommendation system in this 

study. It automatically collects and mines 

scholarly information from Chinese mi-

croblogs, and makes personalized rec-

ommendations to researchers. We pro-

pose two different neural network models 

which learn the vector representations for 

both users and microblog texts. Then the 

recommendation is accomplished based 

on the similarity between a user’s vector 

and a microblog text’s vector. We also 

build a dataset for this task. The two em-

bedding models are evaluated on the da-

taset and show good results compared to 

several baselines.  

1 Introduction 

Online social networks such as microblogs have 

drawn growing attention in recent years, and 

more and more researchers are involved in mi-

croblogging websites. Besides expressing their 

own emotions and exchanging their life experi-

ences just like other users, these researchers also 

write from time to time about their latest findings 

or recommend useful research resources on their 

microblogs, which may be insightful to other 

researchers in the same field. We call such mi-

croblog texts scholarly microblog texts. The vol-

ume of scholarly microblog texts is huge, which 

makes it time-consuming for a researcher to 

browse and find the ones that he or she is inter-

ested in. 

In this study, we aim to build a personalized 

recommendation system for recommending 

scholarly microblogs. With such a system a re-

searcher can easily obtain the scholarly mi-

croblogs he or she has interests in. The system 

first collects the latest scholarly microblogs by 

crawling from manually selected microblog users 

or by applying scholarly microblog classification 

methods, as introduced in (Yu and Wan, 2016).  

Second, the system models the relevance of each 

scholarly microblog to a researcher and make 

personalized recommendation. In this study, we 

focus on the second step of the system and aim to 

model the interest and preference of a researcher 

by embedding the researcher into a dense vector. 

We also embed each scholarly microblog into a 

dense vector, and thus the relevance of a scholar-

ly microblog to a researcher can be estimated 

based on their vector representations.  

In this paper, we propose two neural embed-

ding algorithms for learning the vector represen-

tations for both users (researchers) and mi-

croblog texts. By extending the paragraph vector 

representation method proposed by (Le and 

Mikolov, 2014), the vector representations are 

jointly learned in a single framework. By model-

ing the user preferences into the same vector 

space with the words and texts, we can obtain the 

similarity between them in a straightforward way, 

and use this relevance for microblog recommen-

dation. We build a real evaluation dataset from 

Sina Weibo. Evaluation results on the dataset 

show the efficacy of our proposed methods.   

2 Related Work 

There have been a few previous studies focusing 

on microblog recommendation. Chen et al. (2012) 

proposed a collaborative ranking model. Their 

approach takes advantage of collaborative filter-

ing based recommendation by collecting prefer-

ence information from many users. Their ap-

proach takes into account the content of the tweet, 

user’s social relations and certain other explicitly 

defined features. Ma et al. (2011) generated  rec-

ommendations by adding additional social regu-

larization terms in MF to constrain the user latent 

feature vectors to be similar to his or her friends' 

average latent features. Bhattacharya et al. (2014) 
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proposed a method benefiting from knowing the 

user’s topics of interest, inferring the topics of 

interest for an individual user. Their idea is to 

infer them from the topical expertise of the users 

whom the user follows. Khater and Elmongu 

(2015) proposed a dynamic personalized tweet 

recommendation system capturing the user’s in-

terests, which change over the time.  Their sys-

tem shows the messages that correspond to such 

dynamic interests.  Kuang et al. (2016) consid-

ered three major aspects in their proposed tweet 

recommending model, including the popularity 

of a tweet itself, the intimacy between the user 

and the tweet publisher, and the interest fields of 

the user. They also divided the users into three 

types by analyzing their behaviors, using differ-

ent weights for the three aspects when recom-

mending tweets for different types of users.  

    Most of the above studies make use of the re-

lationships between users, while in this study, we 

focus on leveraging only the microblog texts for 

addressing the task.  

3 Our Approach 

3.1 Task Definition 

We denote a set of users by  1 2 , , , mu u u u  ,  

and a set of microblog texts by

 1 2 , , , nd d d d  . We assume that a user 

tweeting, retweeting or commenting on a mi-

croblog text reflects that the user is interested in 

that microblog. Given tu u , we denote the set 

of microblogs that tu  is interested in by  td u .  

In our task, the entire sets of d  and u  are given, 

while given a user tu u , only a subset of 

 td u  is known. This subset is used as the train-

ing set, denoted as  td u . Our task aims to re-

trieve a subset 'd  of d , that 'd  is as similar to 

   t td u d u  as possible. 

In this section, we introduce one baseline 

method and then propose two different neural 

network methods for user and microblog embed-

ding. The baseline averages the vector represen-

tation of microblog texts into a user vector repre-

sentation. Our proposed two methods learn user 

vector representations jointly with word and text 

vectors, either indirectly or directly from word 

vectors. 

3.2 Paragraph Vector 

As our methods are mainly based on the Para-

graph Vector model proposed by (Le and 

Mikolov, 2014), we start by introducing this 

framework first.  

Paragraph Vector is an unsupervised frame-

work that learns continuous distributed vector 

representations for pieces of texts. In this ap-

proach, every paragraph is mapped to a unique 

vector, represented by a column in matrix D  and 

every word is also mapped to a unique vector, 

represented by a column in matrix W . This ap-

proach is similar to the Word2Vec approach pro-

posed in (Mikolov et al., 2013), except that a 

paragraph token is added to the paragraph and is 

treated as a special word. The paragraph vector is 

asked to contribute to the prediction work in ad-

dition to the word vectors in the context of the 

word to be predicted. The   paragraph vector and 

word vectors are averaged to predict the next 

word in a context. 

Formally speaking, given a paragraph 

 1 2,  , , ,i Td w w w  with id  as the paragraph 

token, k  as the window size, the Paragraph Vec-

tor model applies hierarchical softmax to maxim-

ize the average log probability 

1
log ( | , ,..., )t i t k t k

t

p w d w w
T

   

3.3 Averaging Microblog Text Vectors as 

User Vector 

An intuitive baseline approach to map a mi-

croblog user into a vector space is to build such 

representation from the vector representations of 

the microblogs he or she likes. 

We treat microblog texts as paragraphs, and 

then apply the Paragraph Vector model intro-

duced in Section 3.2 to learn vector representa-

tions of the microblog texts. After learning all 

vector representations of microblog texts, for 

each user, we average all vectors of microblog 

Figure 1. The proposed User2Vec#1 framework for 

learning user vector representation. In this frame-

work, the word vectors do not directly contribute to 

the user vectors.  
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texts he or she likes in the training set as the user 

vector.  

 

3.4 Learning User Vectors Indirectly From 

Word Vectors 

Besides the above-mentioned baseline approach 

we further consider to jointly learn the vectors of 

users and microblog texts. In this framework, 

every user is mapped to a vector represented in a 

column in matrix U , in addition to the mi-

croblog text matrix D  and the word matrixW . 

Given a microblog text 1 2,  , , ,i Td w w w , be-

sides predicting words in the microblog texts 

using the microblog token id  and words in the 

sliding window, we also try to predict id   using 

the users related to it. Denoting the set of all us-

ers related to id  in the training set as  

1 2
( ) { , ..., }

hi i i iu d u u u  , we maximize the aver-

age log probability 

1

1
[log ( | , ,..., ) log ( | ,..., )]

ht i t k t k i i i

t

p w d w w p d u u
T

  
 

The structure of this framework is shown in 

Figure 1. We name this framework User2Vec#1. 

3.5 Learning User Vectors Directly From 

Word Vectors 

In the above framework, the user vectors are 

learned only from microblog text vectors, not 

directly from word vectors. Another framework 

we proposed for learning user vector representa-

tion is to put user vectors and microblog vectors 

in the same layer. Unlike User2Vec#1, we do not 

use user vectors to predict microblog text vector. 

Instead, we directly add user vectors into the in-

put layer of word vector prediction task, along 

with the microblog text vector. 

In this framework, the average log probability 

we want to maximize is 

1

1
( log ( | , ,..., , ,..., )

ht i t k t k i i

t

p w d w w u u
T

   

In practical tasks, we modify the dataset by 

copying each microblog once for each user in 

𝑢̃(𝑑𝑖), and make each copied microblog text only 

relate to one user. All copies of the same mi-

croblog text share a same vector representation. 

The structure of the framework is shown in 

Figure 2. We name this framework User2Vec#2. 

 

 

 

 

3.6 Recommending Microblogs 

When recommending microblogs, given a mi-

croblog 
jd and a user ku  , we compute the cosine 

distance between their vector representations, 

and use the cosine distance to determine whether 

jd  should be recommended to ku  or not. 

4 Evaluation 

4.1 Data Preparation 

To evaluate our proposed user embedding meth-

ods in a scholarly microblog recommending sys-

tem, we built a dataset by crawling from the 

website Machine Learning Daily1.  

The Machine Learning Daily is a Chinese 

website which focuses on collecting and labeling 

scholarly microblogs related to machine learning, 

natural language processing, information retriev-

al and data mining on Sina Weibo. These mi-

croblog texts were collected by a combination of 

manual and automatic methods, and each mi-

croblog text is annotated with multiple tags by 

experts, yielding an excellent dataset for our ex-

periment. The microblog texts in our dataset can 

be written in a mixture of both Chinese and Eng-

lish. We removed stop words from   the raw texts, 

leaving 16,797 words in our corpus. The texts 

were then segmented with the Jieba Chinese text 

segmentation tool2. 

                                                 
1 http://ml.memect.com/ 
2 https://github.com/fxsjy/jieba 

Figure 2. The proposed User2Vec#2 framework for 

learning user vector representation. In this frame-

work, the word vectors contribute directly to the 

user vectors, along with the microblog text vectors. 
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After crawling the microblogs from the Ma-

chine Learning Daily, we used Sina Weibo API 

to retrieve the list of users who retweeted or 

commented on those microblogs. These retweet-

ing and commenting actions indicated that those 

users have interests in the microblogs they re-

tweeted or commented, and such microblogs 

were considered the gold-standard (positive) mi-

croblogs for the users in the recommendation 

system. Then we filtered out the users who have 

less than two hundred positive samples to avoid 

the data sparseness problem. This left us with 

711 users and 10,620 microblog texts in our cor-

pus. Each user was associated with 282.3 posi-

tive microblogs on average. 

4.2 Evaluation Setup 

Because there is no API that can directly grant us 

the access to the follower and followee list for 

each user without authorization on Sina Weibo, 

when evaluating the effectiveness of our methods, 

we randomly choose one hundred positive sam-

ples and another four hundred negative samples 

randomly selected from the crawled microblogs, 

to simulate the timeline of a user, and use this 

simulated timeline as the test dataset. The re-

maining positive samples are used for training. 

 We adopt two additional baselines: Bag-of-

Words and SVM on Bag-of-Words. For the Bag-

of-Words baseline, we use the Bag-of-Words 

vector of each microblog text as the microblog 

text vector, and average them to obtain user vec-

tors. For the SVM on Bag-of-Words baseline, we 

randomly choose the same amount of negative 

samples as that of positive samples for training. 

We use the Bag-of-Words vector of each mi-

croblog text as the features, and run the SVM 

algorithm implemented in LibSVM 3  once for 

every user. Note that the Average Embedding 

                                                 
3 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

method introduced in Section 3.3 is considered a 

strong baseline for comparison.  

For each method and each user, we sort the 

microblog texts according to their similarity with 

the user and select the top k microblog texts as 

recommendation results, where k varies from 10 

to 100.  

Besides precision and recall values, we also 

compute mean reciprocal rank (MRR) to meas-

ure the recommendation results in our experi-

ments, which is the average of the multiplicative 

inverse of the rank of the positive samples in the 

output of the recommending system, and then 

averaged again across all users. Note that when k 

is set to 100, the precision and recall value will 

be equal to each other. 

4.3 Evaluation Results 

The comparison results with respect to differ-

ent k are shown in Table 1. As we can see, the 

two proposed joint learning methods outperform 

the simple average embedding method and the 

two other baselines, indicating the effectiveness 

of the proposed methods. Moreover, User2Vec#2 

yields better results than User2Vec#1.We believe 

this is because in User2Vec#2, the word vectors 

have a direct contribution  to the user vectors, 

which improves the learning effect of the user 

 

k=10 k=20 k=50 k=100 

Preci-
sion 

Recall MRR 
Preci-
sion 

Recall MRR 
Preci-
sion 

Recall MRR 
Preci-
sion 

Recall MRR 

Bag-of-

Words 
0.5036 0.0504 0.0153 0.4917 0.0983 0.0185 0.4461 0.2231 0.0223 0.3204 0.3204 0.0246 

SVM on 
BoW 

0.5774 0.0577 0.0172 0.5662 0.1132 0.0212 0.5122 0.2561 0.0256 0.3675 0.3675 0.0282 

Average 

Embedding 
0.5963 0.0596 0.0183 0.5824 0.1165 0.0219 0.5266 0.2633 0.0264 0.3793 0.3793 0.0291 

User2Vec#1 0.6246 0.0625 0.0189 0.6055 0.1211 0.0228 0.5511 0.2756 0.0275 0.3953 0.3953 0.0304 

User2Vec#2 0.6652 0.0665 0.0201 0.6498 0.1300 0.0244 0.5883 0.2942 0.0295 0.4231 0.4231 0.0325 

Figure 3. Precision/Recall@k=100 w.r.t. vector di-

mension. 

Table 1. Overview of results. 
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vectors learnt in the framework. Furthermore, the 

precision/recall scores of the embedding methods 

(k=100) with respect to different vector dimen-

sions are shown in Figure 3. We can see that the 

dimension size has little impact on the recom-

mendation performance, and our proposed two 

methods always outperform the strong baseline. 

5   Conclusion 

In this paper, we proposed two neural embedding 

methods for learning the vector representations 

for both the users and the microblog texts. We 

tested their performance by applying them to 

recommending scholarly microblogs. In future 

work, we will investigate leveraging user rela-

tionships and temporal information to further 

improve the recommendation performance.  
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Abstract

We propose a novel vector representation
that integrates lexical contrast into distri-
butional vectors and strengthens the most
salient features for determining degrees of
word similarity. The improved vectors sig-
nificantly outperform standard models and
distinguish antonyms from synonyms with
an average precision of 0.66–0.76 across
word classes (adjectives, nouns, verbs).
Moreover, we integrate the lexical con-
trast vectors into the objective function of
a skip-gram model. The novel embed-
ding outperforms state-of-the-art models
on predicting word similarities in SimLex-
999, and on distinguishing antonyms from
synonyms.

1 Introduction

Antonymy and synonymy represent lexical se-
mantic relations that are central to the organization
of the mental lexicon (Miller and Fellbaum, 1991).
While antonymy is defined as the oppositeness be-
tween words, synonymy refers to words that are
similar in meaning (Deese, 1965; Lyons, 1977).
From a computational point of view, distinguish-
ing between antonymy and synonymy is impor-
tant for NLP applications such as Machine Trans-
lation and Textual Entailment, which go beyond a
general notion of semantic relatedness and require
to identify specific semantic relations. However,
due to interchangeable substitution, antonyms and
synonyms often occur in similar contexts, which
makes it challenging to automatically distinguish
between them.

Distributional semantic models (DSMs) offer a
means to represent meaning vectors of words and
to determine their semantic “relatedness” (Budan-
itsky and Hirst, 2006; Turney and Pantel, 2010).

They rely on the distributional hypothesis (Harris,
1954; Firth, 1957), in which words with similar
distributions have related meaning. For computa-
tion, each word is represented by a weighted fea-
ture vector, where features typically correspond to
words that co-occur in a particular context. How-
ever, DSMs tend to retrieve both synonyms (such
as formal–conventional) and antonyms (such as
formal–informal) as related words and cannot suf-
ficiently distinguish between the two relations.

In recent years, a number of distributional ap-
proaches have accepted the challenge to distin-
guish antonyms from synonyms, often in combi-
nation with lexical resources such as thesauruses
or taxonomies. For example, Lin et al. (2003)
used dependency triples to extract distributionally
similar words, and then in a post-processing step
filtered out words that appeared with the patterns
‘from X to Y’ or ‘either X or Y’ significantly of-
ten. Mohammad et al. (2013) assumed that word
pairs that occur in the same thesaurus category are
close in meaning and marked as synonyms, while
word pairs occurring in contrasting thesaurus cat-
egories or paragraphs are marked as opposites.
Scheible et al. (2013) showed that the distribu-
tional difference between antonyms and synonyms
can be identified via a simple word space model by
using appropriate features. Santus et al. (2014a)
and Santus et al. (2014b) aimed to identify the
most salient dimensions of meaning in vector rep-
resentations and reported a new average-precision-
based distributional measure and an entropy-based
measure to discriminate antonyms from synonyms
(and further paradigmatic semantic relations).

Lately, antonym–synonym distinction has also
been a focus of word embedding models. For ex-
ample, Adel and Schütze (2014) integrated coref-
erence chains extracted from large corpora into
a skip-gram model to create word embeddings
that identified antonyms. Ono et al. (2015) pro-

454



posed thesaurus-based word embeddings to cap-
ture antonyms. They proposed two models: the
WE-T model that trains word embeddings on the-
saurus information; and the WE-TD model that in-
corporated distributional information into the WE-
T model. Pham et al. (2015) introduced the multi-
task lexical contrast model (mLCM) by incorpo-
rating WordNet into a skip-gram model to opti-
mize semantic vectors to predict contexts. Their
model outperformed standard skip-gram models
with negative sampling on both general seman-
tic tasks and distinguishing antonyms from syn-
onyms.

In this paper, we propose two approaches that
make use of lexical contrast information in distri-
butional semantic space and word embeddings for
antonym–synonym distinction. Firstly, we incor-
porate lexical contrast into distributional vectors
and strengthen those word features that are most
salient for determining word similarities, assum-
ing that feature overlap in synonyms is stronger
than feature overlap in antonyms. Secondly, we
propose a novel extension of a skip-gram model
with negative sampling (Mikolov et al., 2013b)
that integrates the lexical contrast information into
the objective function. The proposed model opti-
mizes the semantic vectors to predict degrees of
word similarity and also to distinguish antonyms
from synonyms. The improved word embeddings
outperform state-of-the-art models on antonym–
synonym distinction and a word similarity task.

2 Our Approach

In this section, we present the two contributions
of this paper: a new vector representation that
improves the quality of weighted features to dis-
tinguish between antonyms and synonyms (Sec-
tion 2.1), and a novel extension of skip-gram mod-
els that integrates the improved vector representa-
tions into the objective function, in order to pre-
dict similarities between words and to identify
antonyms (Section 2.2).

2.1 Improving the weights of feature vectors

We aim to improve the quality of weighted feature
vectors by strengthening those features that are
most salient in the vectors and by putting less
emphasis on those that are of minor importance,
when distinguishing degrees of similarity be-
tween words. We start out with standard corpus
co-occurrence frequencies and apply local mutual

information (LMI) (Evert, 2005) to determine the
original strengths of the word features. Our score
weightSA(w, f) subsequently defines the weights
of a target word w and a feature f :

weightSA(w, f) = 1
#(w,u)

∑
u∈W (f)∩S(w) sim(w, u)

− 1
#(w′,v)

∑
w′∈A(w)

∑
v∈W (f)∩S(w′) sim(w′, v)

(1)

The new weightSA scores of a target word w and
a feature f exploit the differences between the av-
erage similarities of synonyms to the target word
(sim(w, u), with u ∈ S(w)), and the average
similarities between antonyms of the target word
(sim(w′, v), with w′ ∈ A(w) and v ∈ S(w′)).
Only those words u and v are included in the cal-
culation that have a positive original LMI score for
the feature f : W (f). To calculate the similarity
sim between two word vectors, we rely on cosine
distances. If a word w is not associated with any
synonyms or antonyms in our resources (cf. Sec-
tion 3.1), or if a feature does not co-occur with a
word w, we define weightSA(w, f) = 0.

The intuition behind the lexical contrast infor-
mation in our new weightSA is as follows. The
strongest features of a word also tend to repre-
sent strong features of its synonyms, but weaker
features of its antonyms. For example, the fea-
ture conception only occurs with synonyms of
the adjective formal but not with the antonym in-
formal, or with synonyms of the antonym infor-
mal. weightSA(formal, conception), which is
calculated as the average similarity between for-
mal and its synonyms minus the average similarity
between informal and its synonyms, should thus
return a high positive value. In contrast, a fea-
ture such as issue that occurs with many differ-
ent adjectives, would enforce a feature score near
zero for weightSA(formal, issue), because the
similarity scores between formal and its synonyms
and informal and its synonyms should not differ
strongly. Last but not least, a feature such as ru-
mor that only occurs with informal and its syn-
onyms, but not with the original target adjective
formal and its synonyms, should invoke a very low
value for weightSA(formal, rumor). Figure 1
provides a schematic visualization for computing
the new weightSA scores for the target formal.

Since the number of antonyms is usually much
smaller than the number of synonyms, we enrich
the number of antonyms: Instead of using the
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w=“formal”

f=“conception” f=“issue” f=“rumor”

Sw conventional( )={ ,

           methodical,

           precise,...}

Aw w( )= '=“informal”

Sw unconventional( ')={ ,

    irregular,

            unofficial,...}

weight
SA

(formal,conception)↑ weight
SA

(formal,issue)≈0 weight
SA

(formal,rumor)↓

Figure 1: Illustration of the weightSA scores for the adjective target formal. The feature conception
only occurs with formal and synonyms of formal, so weightSA(formal, conception) should return a
positive value; the feature rumor only occurs with the antonym informal and with synonyms of informal,
so weightSA(formal, rumor) should return a negative value; the feature issue occurs with both formal
and informal and also with synonyms of these two adjectives, so weightSA(formal, issue) should
return a feature score near zero.

direct antonym links, we consider all synonyms
of an antonym w′ ∈ A(w) as antonyms of w.
For example, the target word good has only two
antonyms in WordNet (bad and evil), in compar-
ison to 31 synonyms. Thus, we also exploit the
synonyms of bad and evil as antonyms for good.

2.2 Integrating the distributional lexical
contrast into a skip-gram model

Our model relies on Levy and Goldberg (2014)
who showed that the objective function for a
skip-gram model with negative sampling (SGNS)
can be defined as follows:

∑
w∈V

∑
c∈V
{#(w, c) log σ(sim(w, c))

+k#(w)P0(c) log σ(−sim(w, c))}
(2)

The first term in Equation (2) represents the co-
occurrence between a target word w and a context
c within a context window. The number of ap-
pearances of the target word and that context is
defined as #(w, c). The second term refers to the
negative sampling where k is the number of nega-
tively sampled words, and #(w) is the number of

appearances of w as a target word in the unigram
distribution P0 of its negative context c.

To incorporate our lexical contrast information
into the SGNS model, we propose the objective
function in Equation (3) to add distributional con-
trast followed by all contexts of the target word.
V is the vocabulary; σ(x) = 1

1+e−x is the sigmoid
function; and sim(w1, w2) is the cosine similarity
between the two embedded vectors of the corre-
sponding two words w1 and w2. We refer to our
distributional lexical-contrast embedding model as
dLCE.∑

w∈V

∑
c∈V
{(#(w, c) log σ(sim(w, c))

+k#(w)P0(c) log σ(−sim(w, c)))
+( 1

#(w,u)

∑
u∈W (c)∩S(w) sim(w, u)

− 1
#(w,v)

∑
v∈W (c)∩A(w) sim(w, v))}

(3)

Equation (3) integrates the lexical contrast in-
formation in a slightly different way compared to
Equation (1): For each of the target words w, we
only rely on its antonyms A(w) instead of using
the synonyms of its antonyms S(w′). This makes
the word embeddings training more efficient in
running time, especially since we are using a large
amount of training data.
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The dLCE model is similar to the WE-
TD model (Ono et al., 2015) and the mLCM
model (Pham et al., 2015); however, while the
WE-TD and mLCM models only apply the lexi-
cal contrast information from WordNet to each of
the target words, dLCE applies lexical contrast to
every single context of a target word in order to
better capture and classify semantic contrast.

3 Experiments

3.1 Experimental Settings

The corpus resource for our vector representations
is one of the currently largest web corpora: EN-
COW14A (Schäfer and Bildhauer, 2012; Schäfer,
2015), containing approximately 14.5 billion to-
kens and 561K distinct word types. As distri-
butional information, we used a window size of
5 tokens for both the original vector represen-
tation and the word embeddings models. For
word embeddings models, we trained word vec-
tors with 500 dimensions; k negative sampling
was set to 15; the threshold for sub-sampling was
set to 10−5; and we ignored all words that oc-
curred < 100 times in the corpus. The param-
eters of the models were estimated by backpropa-
gation of error via stochastic gradient descent. The
learning rate strategy was similar to Mikolov et
al. (2013a) in which the initial learning rate was
set to 0.025. For the lexical contrast information,
we used WordNet (Miller, 1995) and Wordnik1 to
collect antonyms and synonyms, obtaining a total
of 363,309 synonym and 38,423 antonym pairs.

3.2 Distinguishing antonyms from synonyms

The first experiment evaluates our lexical con-
trast vectors by applying the vector representa-
tions with the improved weightSA scores to the
task of distinguishing antonyms from synonyms.
As gold standard resource, we used the English
dataset described in (Roth and Schulte im Walde,
2014), containing 600 adjective pairs (300 antony-
mous pairs and 300 synonymous pairs), 700 noun
pairs (350 antonymous pairs and 350 synonymous
pairs) and 800 verb pairs (400 antonymous pairs
and 400 synonymous pairs). For evaluation, we
applied Average Precision (AP) (Voorhees and
Harman, 1999), a common metric in informa-
tion retrieval previously used by Kotlerman et al.

1http://www.wordnik.com

(2010) and Santus et al. (2014a), among others.
Table 1 presents the results of the first ex-

periment, comparing our improved vector rep-
resentations with the original LMI representa-
tions across word classes, without/with apply-
ing singular-value decomposition (SVD), respec-
tively. In order to evaluate the distribution of
word pairs with AP, we sorted the synonymous
and antonymous pairs by their cosine scores. A
synonymous pair was considered correct if it be-
longed to the first half; and an antonymous pairs
was considered correct if it was in the second
half. The optimal results would thus achieve an
AP score of 1 for SY N and 0 for ANT . The re-
sults in the tables demonstrate that weightSA sig-
nificantly2 outperforms the original vector repre-
sentations across word classes.

In addition, Figure 2 compares the medians
of cosine similarities between antonymous pairs
(red) vs. synonymous pairs (green) across word
classes, and for the four conditions (1) LMI, (2)
weightSA, (3) SVD on LMI, and (4) SVD on
weightSA. The plots show that the cosine sim-
ilarities of the two relations differ more strongly
with our improved vector representations in com-
parison to the original LMI representations, and
even more so after applying SVD.

3.3 Effects of distributional lexical contrast
on word embeddings

The second experiment evaluates the performance
of our dLCE model on both antonym–synonym
distinction and a word similarity task. The similar-
ity task requires to predict the degree of similarity
for word pairs, and the ranked list of predictions
is evaluated against a gold standard of human rat-
ings, relying on the Spearman rank-order correla-
tion coefficient ρ (Siegel and Castellan, 1988).

In this paper, we use the SimLex-999
dataset (Hill et al., 2015) to evaluate word
embedding models on predicting similarities. The
resource contains 999 word pairs (666 noun, 222
verb and 111 adjective pairs) and was explicitly
built to test models on capturing similarity rather
than relatedness or association. Table 2 shows
that our dLCE model outperforms both SGNS
and mLCM, proving that the lexical contrast
information has a positive effect on predicting
similarity.

2χ2,∗∗∗ p < .001,∗∗ p < .005, ∗p < .05

457



Adjectives Nouns Verbs
ANT SYN ANT SYN ANT SYN

LMI 0.46 0.56 0.42 0.60 0.42 0.62
weightSA 0.36∗∗ 0.75∗∗ 0.40 0.66 0.38∗ 0.71∗

LMI + SVD 0.46 0.55 0.46 0.55 0.44 0.58
weightSA + SVD 0.36∗∗∗ 0.76∗∗∗ 0.40∗ 0.66∗ 0.38∗∗∗ 0.70∗∗∗

Table 1: AP evaluation on DSMs.
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(a) Cosine scores between adjectives.
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(b) Cosine scores between nouns.
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(c) Cosine scores between verbs.

Figure 2: Differences between cosine scores for antonymous vs. synonymous word pairs.

SGNS mLCM dLCE
0.38 0.51 0.59

Table 2: Spearman’s ρ on SimLex-999.

Adjectives Nouns Verbs
SGNS 0.64 0.66 0.65
mLCM 0.85 0.69 0.71
dLCE 0.90 0.72 0.81

Table 3: AUC scores for identifying antonyms.

Therefore, the improved distinction between
synonyms (strongly similar words) and antonyms
(often strongly related but highly dissimilar
words) in the dLCE model also supports the dis-
tinction between degrees of similarity.

For distinguishing between antonyms and syn-
onyms, we computed the cosine similarities be-
tween word pairs on the dataset described in Sec-
tion 3.2, and then used the area under the ROC
curve (AUC) to evaluate the performance of dLCE
compared to SGNS and mLCM. The results in Ta-
ble 3 report that dLCE outperforms SGNS and
mLCM also on this task.

4 Conclusion

This paper proposed a novel vector representation
which enhanced the prediction of word similar-
ity, both for a traditional distributional semantics
model and word embeddings. Firstly, we signifi-
cantly improved the quality of weighted features
to distinguish antonyms from synonyms by us-
ing lexical contrast information. Secondly, we in-
corporated the lexical contrast information into a
skip-gram model to successfully predict degrees
of similarity and also to identify antonyms.
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Roland Schäfer and Felix Bildhauer. 2012. Building
large corpora from the web using a new efficient
tool chain. In Proceedings of the 8th International
Conference on Language Resources and Evaluation,
pages 486–493, Istanbul, Turkey.
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Abstract
We explore the applicability of machine
translation evaluation (MTE) methods to a
very different problem: answer ranking in
community Question Answering. In par-
ticular, we adopt a pairwise neural net-
work (NN) architecture, which incorpo-
rates MTE features, as well as rich syntac-
tic and semantic embeddings, and which
efficiently models complex non-linear in-
teractions. The evaluation results show
state-of-the-art performance, with sizeable
contribution from both the MTE features
and from the pairwise NN architecture.

1 Introduction and Motivation

In a community Question Answering (cQA) task,
we are given a question from a community forum
and a thread of associated text comments intended
to answer the given question; and the goal is to
rank the comments according to their appropriate-
ness to the question. Since cQA forum threads are
noisy (e.g., because over time people tend to en-
gage in discussion and to deviate from the original
question), as many comments are not answers to
the question, the challenge lies in learning to rank
all good comments above all bad ones.

Here, we adopt the definition and the datasets
from SemEval–2016 Task 3 (Nakov et al., 2016)
on “Community Question Answering”, focus-
ing on subtask A (Question-Comment Similarity)
only.1 See the task description paper and the task
website2 for more detail. An annotated example is
shown in Figure 1.

1SemEval-2016 Task 3 had two more subtasks: subtask B
on Question-Question Similarity, and subtask C on Question-
External Comment Similarity, which are out of our scope.
However, they could be potentially addressed within our gen-
eral MTE-NN framework, with minor variations.

2http://alt.qcri.org/semeval2016/task3/

In this paper, we tackle the task from a novel
perspective: by using ideas from machine trans-
lation evaluation (MTE) to decide on the qual-
ity of a comment. In particular, we extend our
MTE neural network framework from (Guzmán
et al., 2015), showing that it is applicable to the
cQA task as well. We believe that this neural net-
work is interesting for the cQA problem because:
(i) it works in a pairwise fashion, i.e., given two
translation hypotheses and a reference translation
to compare to, the network decides which transla-
tion hypothesis is better, which is appropriate for
a ranking problem; (ii) it allows for an easy incor-
poration of rich syntactic and semantic embedded
representations of the input texts, and it efficiently
models complex non-linear relationships between
them; (iii) it uses a number of machine translation
evaluation measures that have not been explored
for the cQA task before, e.g., TER (Snover et al.,
2006), METEOR (Lavie and Denkowski, 2009),
and BLEU (Papineni et al., 2002).

The analogy we apply to adapt the neural MTE
architecture to the cQA problem is the following:
given two comments c1 and c2 from the ques-
tion thread—which play the role of the two com-
peting translation hypotheses—we have to decide
whether c1 is a better answer than c2 to question
q—which plays the role of the translation refer-
ence. If we have a function f(q, c1, c2) to make
this decision, then we can rank the finite list of
comments in the thread by comparing all possible
pairs and by accumulating for each comment the
scores for it given by f .

From a general point of view, MTE and the cQA
task addressed in this paper seem similar: both
reason about the similarity of two competing texts
against a reference text in order to decide which
one is better. However, there are some profound
differences, which have implications on how each
task is solved.
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Figure 1: Annotated English question from the CQA-QL corpus. Shown are the first two comments only.

In MTE, the goal is to decide whether a hypoth-
esis translation conveys the same meaning as the
reference translation. In cQA, it is to determine
whether the comment is an appropriate answer to
the question. Furthermore, in MTE we can ex-
pect shorter texts, which are typically much more
similar. In contrast, in cQA, the question and the
intended answers might differ significantly both in
terms of length and in lexical content. Thus, it is
not clear a priori whether the MTE network can
work well to address the cQA problem. Here, we
show that the analogy is not only convenient, but
also that using it can yield state-of-the-art results
for the cQA task.

To validate our intuition, we present series of
experiments using the publicly available SemEval-
2016 Task 3 datasets, with focus on subtask A. We
show that a naı̈ve application of the MTE architec-
ture and features on the cQA task already yields
results that are largely above the task baselines.
Furthermore, by adapting the models with in-
domain data, and adding lightweight task-specific
features, we are able to boost our system to reach
state-of-the-art performance.

More interestingly, we analyze the contribution
of several features and parts of the NN architecture
by performing an ablation study. We observe that
every single piece contributes important informa-
tion to achieve the final performance. While task-
specific features are crucial, other aspects of the
framework are relevant as well: syntactic embed-
dings, machine translation evaluation measures,
and pairwise training of the network.

The rest of the paper is organized as follows:
Section 2 introduces some related work. Section 3
presents the overall architecture of our MTE-
inspired NN framework for cQA. Section 4 sum-
marizes the features we use in our experiments.
Section 5 describes the experimenal settings and
presents the results. Finally, Section 6 offers fur-
ther discussion and presents the main conclusions.

2 Related Work

Recently, many neural network (NN) models have
been applied to cQA tasks: e.g., question-question
similarity (Zhou et al., 2015; dos Santos et al.,
2015; Lei et al., 2016) and answer selection (Sev-
eryn and Moschitti, 2015; Wang and Nyberg,
2015; Shen et al., 2015; Feng et al., 2015; Tan
et al., 2015). Most of these papers concentrate on
providing advanced neural architectures in order
to better model the problem at hand. However, our
goal here is different: we extend and reuse an ex-
isting pairwise NN framework from a different but
related problem.

There is also work that uses machine translation
models as a features for cQA (Berger et al., 2000;
Echihabi and Marcu, 2003; Jeon et al., 2005; Sori-
cut and Brill, 2006; Riezler et al., 2007; Li and
Manandhar, 2011; Surdeanu et al., 2011; Tran et
al., 2015) e.g., a variation of IBM model 1, to com-
pute the probability that the question is a possible
“translation” of the candidate answer. Unlike that
work, here we port an entire MTE framework to
the cQA problem. A preliminary version of this
work was presented in (Guzmán et al., 2016).
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Figure 2: Overall architecture of the NN.

3 Neural Model for Answer Ranking

The NN model we use for answer ranking is de-
picted in Figure 2. It is a direct adaptation of our
feed-forward NN for MTE (Guzmán et al., 2015).
Technically, we have a binary classification task
with input (q, c1, c2), which should output 1 if
c1 is a better answer to q than c2, and 0 other-
wise. The network computes a sigmoid function
f(q, c1, c2) = sig(wT

v φ(q, c1, c2) + bv), where
φ(x) transforms the input x through the hidden
layer, wv are the weights from the hidden layer
to the output layer, and bv is a bias term.

We first map the question and the comments to
a fixed-length vector [xq,xc1 ,xc2 ] using syntactic
and semantic embeddings. Then, we feed this vec-
tor as input to the neural network, which models
three types of interactions, using different groups
of nodes in the hidden layer. There are two eval-
uation groups hq1 and hq2 that model how good
each comment ci is to the question q. The input to
these groups are the concatenations [xq,xc1 ] and
[xq,xc2 ], respectively. The third group of hidden
nodes h12, which we call similarity group, models
how close c1 and c2 are. Its input is [xc1 ,xc2 ]. This
might be useful as highly similar comments are
likely to be comparable in appropriateness, irre-
spective of whether they are good or bad answers
in absolute terms.

In summary, the transformation φ(q, c1, c2) =
[hq1,hq2,h12] can be written as

hqi = g(Wqi[xq,xci
] + bqi), i = 1, 2

h12 = g(W12[xc1 ,xc2 ] + b12),

where g(.) is a non-linear activation function (ap-
plied component-wise), W ∈ RH×N are the asso-
ciated weights between the input layer and the hid-
den layer, and b are the corresponding bias terms.

We use tanh as an activation function, rather
than sig, to be consistent with how the word em-
bedding vectors we use were generated.

The model further allows to incorporate exter-
nal sources of information in the form of skip arcs
that go directly from the input to the output, skip-
ping the hidden layer. These arcs represent pair-
wise similarity feature vectors between q and ei-
ther c1 or c2. In these feature vectors, we en-
code MT evaluation measures (e.g., TER, ME-
TEOR, and BLEU), cQA task-specific features, etc.
See Section 4 for detail about the features im-
plemented as skip arcs. In the figure, we indi-
cate these pairwise external feature sets as ψ(q, c1)
and ψ(q, c2). When including the external fea-
tures, the activation at the output is f(q, c1, c2) =
sig(wT

v [φ(q, c1, c2), ψ(q, c1), ψ(q, c2)] + bv).

4 Features

We experiment with three kinds of features: (i) in-
put embeddings, (ii) features from MTE (Guzmán
et al., 2015) and (iii) task-specific features from
SemEval-2015 Task 3 (Nicosia et al., 2015).

A. Embedding Features We used two types of
vector-based embeddings to encode the input texts
q, c1 and c2: (1) GOOGLE VECTORS: 300-
dimensional embedding vectors, trained on 100
billion words from Google News (Mikolov et al.,
2013). The encoding of the full text is just the
average of the word embeddings. (2) SYNTAX:
We parse the entire question/comment using the
Stanford neural parser (Socher et al., 2013), and
we use the final 25-dimensional vector that is pro-
duced internally as a by-product of parsing.

Also, we compute cosine similarity features
with the above vectors: cos(q, c1) and cos(q, c2).

B. MTE features We use the following MTE
metrics (MTFEATS), which compare the similar-
ity between the question and a candidate answer:
(1) BLEU (Papineni et al., 2002); (2) NIST (Dod-
dington, 2002); (3) TER v0.7.25 (Snover et al.,
2006). (4) METEOR v1.4 (Lavie and Denkowski,
2009) with paraphrases; (5) Unigram PRECISION;
(6) Unigram RECALL.

BLEUCOMP. We further use as features var-
ious components involved in the computation of
BLEU: n-gram precisions, n-gram matches, total
number of n-grams (n=1,2,3,4), lengths of the hy-
potheses and of the reference, length ratio between
them, and BLEU’s brevity penalty.
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C. Task-specific features First, we train
domain-specific vectors using WORD2VEC on all
available QatarLiving data, both annotated and
raw (QL VECTORS).

Second, we compute various easy task-
specific features (TASK FEATURES), most
of them proposed for the 2015 edition of the
task (Nicosia et al., 2015). This includes
some comment-specific features: (1) num-
ber of URLs/images/emails/phone numbers;
(2) number of occurrences of the string “thank”;3

(3) number of tokens/sentences; (4) aver-
age number of tokens; (5) type/token ratio;
(6) number of nouns/verbs/adjectives/adverbs/
pronouns; (7) number of positive/negative
smileys; (8) number of single/double/triple
exclamation/interrogation symbols; (9) number
of interrogative sentences (based on pars-
ing); (10) number of words that are not in
WORD2VEC’s Google News vocabulary.4 Also
some question-comment pair features: (1) ques-
tion to comment count ratio in terms of sen-
tences/tokens/nouns/verbs/adjectives/adverbs/pro-
nouns; (2) question to comment count ratio of
words that are not in WORD2VEC’s Google News
vocabulary. Finally, we also have two meta
features: (1) is the person answering the question
the one who asked it; (2) reciprocal rank of the
comment in the thread.

5 Experiments and Results

We experiment with the data from SemEval-2016
Task 3. The task offers a higher quality train-
ing dataset TRAIN-PART1, which includes 1,412
questions and 14,110 answers, and a lower-quality
TRAIN-PART2 with 382 questions and 3,790 an-
swers. We train our model on TRAIN-PART1 with
hidden layers of size 3 for 100 epochs with mini-
batches of size 30, regularization of 0.005, and a
decay of 0.0001, using stochastic gradient descent
with adagrad (Duchi et al., 2011); we use Theano
(Bergstra et al., 2010) for learning. We normal-
ize the input feature values to the [−1; 1] inter-
val using minmax, and we initialize the network
weights by sampling from a uniform distribution
as in (Bengio and Glorot, 2010). We train the
model using all pairs of good vs. bad comments,
in both orders, ignoring ties.

3When an author thanks somebody, this post is typically
a bad answer to the original question.

4Can detect slang, foreign language, etc., which would
indicate a bad answer.

System MAP AvgRec MRR

MTE-CQApairwise 78.20 88.01 86.93
MTE-CQAclassification 77.62 87.85 85.79
MTEvanilla 70.17 81.84 78.60
Baselinetime 59.53 72.60 67.83
Baselinerand 52.80 66.52 58.71

Table 1: Main results on the ranking task.

At test time, we get the full ranking by scoring
all possible pairs, and we accumulate the scores at
the comment level.

We evaluate the model on TRAIN-PART2 after
each epoch, and ultimately we keep the model that
achieves the highest accuracy;5 in case of a tie, we
prefer the parameters from an earlier epoch. We
selected the above parameter values on the DEV

dataset (244 questions and 2,440 answers) using
the full model, and we used them for all exper-
iments below, where we evaluate on the official
TEST dataset (329 questions and 3,270 answers).
We report mean average precision (MAP), which
is the official evaluation measure, and also average
recall (AvgRec) and mean reciprocal rank (MRR).

5.1 Results

Table 1 shows the evaluation results for three con-
figurations of our MTE-based cQA system. We
can see that the vanilla MTE system (MTEvanilla),
which only uses features from our original MTE
model, i.e., it does not have any task-specific fea-
tures (TASK FEATURES and QL VECTORS), per-
forms surprisingly well despite the differences in
the MTE and cQA tasks. It outperforms a ran-
dom baseline (Baselinerand) and a chronological
baseline that assumes that early comments are bet-
ter than later ones (Baselinetime) by large margins:
by about 11 and 17 MAP points absolute, respec-
tively. For the other two measures the results are
similar.

We can further see that adding the task-specific
features in MTE-CQApairwise improves the re-
sults by another 8 MAP points absolute. Finally,
the second line shows that adapting the network
to do classification (MTE-CQAclassification), giv-
ing it a question and a single comment as input,
yields a performance drop of 0.6 MAP points ab-
solute compared to the proposed pairwise learning
model. Thus, the pairwise training strategy is con-
firmed to be better for the ranking task, although
not by a large margin.

5We also tried Kendall’s Tau (τ ), but it performed worse.
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System MAP AvgRec MRR ∆MAP

MTE-CQA 78.20 88.01 86.93

−BLEUCOMP 77.83 87.85 86.32 -0.37
−MTFEATS 77.75 87.76 86.01 -0.45
−SYNTAX 77.65 87.65 85.85 -0.55
−GOOGLE VECT. 76.96 87.66 84.72 -1.24
−QL VECTORS 75.83 86.57 83.90 -2.37
−TASK FEATS. 72.91 84.06 78.73 -5.29

Table 2: Results of the ablation study.

Table 2 presents the results of an ablation study,
where we analyze the contribution of various fea-
tures and feature groups to the performance of the
overall system. For the purpose, we study ∆MAP,
i.e., the absolute drop in MAP when the feature
group is excluded from the full system.

Not surprisingly, the most important turn out
to be the TASK FEATURES (contributing over five
MAP points) as they handle important informa-
tion sources that are not available to the system
from other feature groups, e.g., the reciprocal rank
alone contributes about two points.

Next in terms of importance come word embed-
dings, QL VECTORS (contributing over 2 MAP
points), trained on text from the target forum,
QatarLiving. Then come the GOOGLE VECTORS

(contributing over one MAP point), which are
trained on 100 billion words, and thus are still
useful even in the presence of the domain-specific
QL VECTORS, which are in turn trained on four
orders of magnitude less data.

Interestingly, the MTE-motivated SYNTAX vec-
tors contribute half a MAP point, which shows the
importance of modeling syntax for this task. The
other two MTE features, MTFEATS and BLEU-
COMP, together contribute 0.8 MAP points. It is
interesting that the BLEU components manage to
contribute on top of the MTFEATS, which already
contain several state-of-the-art MTE measures, in-
cluding BLEU itself. This is probably because
the other features we have do not model n-gram
matches directly.

Finally, Table 3 puts the results in perspective.
We can see that our system MTE-CQA would
rank first on MRR, second on MAP, and fourth
on AvgRec in SemEval-2016 Task 3 competition.6

These results are also 5 and 16 points above the av-
erage and the worst systems, respectively.

6The full results can be found on the task website:
http://alt.qcri.org/semeval2016/task3/index.php?id=results

System MAP AvgRec MRR

1st (Filice et al., 2016) 79.19 88.82 86.42
MTE-CQA 78.20 88.01 86.93
2nd (Barrón-Cedeño et al., 2016) 77.66 88.05 84.93
3rd (Mihaylov and Nakov, 2016) 77.58 88.14 85.21
. . . . . . . . . . . .

Average 73.54 84.61 81.54
. . . . . . . . . . . .
12th (Worst) 62.24 75.41 70.58

Table 3: Comparative results with the best
SemEval-2016 Task 3, subtask A systems.

This is remarkable given the lightweight task-
specific features we use, and confirms the validity
of the proposed neural approach to produce state-
of-the-art systems for this particular cQA task.

6 Conclusion

We have explored the applicability of machine
translation evaluation methods to answer ranking
in community Question Answering, a seemingly
very different task, where the goal is to rank the
comments in a question-answer thread according
to their appropriateness to the question, placing all
good comments above all bad ones.

In particular, we have adopted a pairwise neu-
ral network architecture, which incorporates MTE
features, as well as rich syntactic and semantic em-
beddings of the input texts that are non-linearly
combined in the hidden layer. The evaluation
results on benchmark datasets have shown state-
of-the-art performance, with sizeable contribution
from both the MTE features and from the network
architecture. This is an interesting and encourag-
ing result, as given the difference in the tasks, it
was not a-priori clear that an MTE approach would
work well for cQA.

In future work, we plan to incorporate other
similarity measures and better task-specific fea-
tures into the model. We further want to explore
the application of this architecture to other seman-
tic similarity problems such as question-question
similarity, and textual entailment.
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Abstract

We provide a solution for elementary sci-
ence tests using instructional materials.
We posit that there is a hidden structure
that explains the correctness of an answer
given the question and instructional ma-
terials and present a unified max-margin
framework that learns to find these hid-
den structures (given a corpus of question-
answer pairs and instructional materials),
and uses what it learns to answer novel
elementary science questions. Our eval-
uation shows that our framework outper-
forms several strong baselines.

1 Introduction

We propose an approach for answering multiple-
choice elementary science tests (Clark, 2015) us-
ing the science curriculum of the student and other
domain specific knowledge resources. Our ap-
proach learns latent answer-entailing structures
that align question-answers with appropriate snip-
pets in the curriculum. The student curriculum
usually comprises of a set of textbooks. Each text-
book, in-turn comprises of a set of chapters, each
chapter is further divided into sections – each dis-
cussing a particular science concept. Hence, the
answer-entailing structure consists of selecting a
particular textbook from the curriculum, picking
a chapter in the textbook, picking a section in
the chapter, picking a few sentences in the sec-
tion and then aligning words/multi-word expres-
sions (mwe’s) in the hypothesis (formed by com-
bining the question and an answer candidate) to
words/mwe’s in the picked sentences. The answer-
entailing structures are further refined using ex-
ternal domain-specific knowledge resources such
as science dictionaries, study guides and semi-
structured tables (see Figure 1). These domain-

specific knowledge resources can be very useful
forms of knowledge representation as shown in
previous works (Clark et al., 2016).

Alignment is a common technique in many NLP
applications such as MT (Blunsom and Cohn,
2006), RTE (Sammons et al., 2009; MacCartney
et al., 2008; Yao et al., 2013; Sultan et al., 2014),
QA (Berant et al., 2013; Yih et al., 2013; Yao
and Van Durme, 2014; Sachan et al., 2015), etc.
Yet, there are three key differences between our
approach and alignment based approaches for QA
in the literature: (i) We incorporate the curriculum
hierarchy (i.e. the book, chapter, section bifurca-
tion) into the latent structure. This helps us jointly
learn the retrieval and answer selection modules of
a QA system. Retrieval and answer selection are
usually designed as isolated or loosely connected
components in QA systems (Ferrucci, 2012) lead-
ing to loss in performance – our approach mit-
igates this shortcoming. (ii) Modern textbooks
typically provide a set of review questions after
each section to help students understand the ma-
terial better. We make use of these review prob-
lems to further improve our model. These re-
view problems have additional value as part of
the latent structure is known for these questions.
(ii) We utilize domain-specific knowledge sources
such as study guides, science dictionaries or semi-
structured knowledge tables within our model.

The joint model is trained in max-margin fash-
ion using a latent structural SVM (LSSVM) where
the answer-entailing structures are latent. We train
and evaluate our models on a set of 8th grade
science problems, science textbooks and multiple
domain-specific knowledge resources. We achieve
superior performance vs. a number of baselines.

2 Method

Science QA as Textual Entailment: First, we
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Text: … Natural greenhouse gases include carbon dioxide, methane, water vapor, and ozone ... CFCs 
and some other man-made compounds are also greenhouse gases … 

 
 

 
 

Hypothesis: CO2, CH4, O3 and CFC gases cause the greenhouse effect 
Q: Which of the following gases cause the greenhouse effect?  !   A: CO2, CH4, O3 and CFC 
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Figure 1: An example answer-entailing struc-
ture. The answer-entailing structure consists of se-
lecting a particular textbook from the curriculum,
picking a chapter in the textbook, picking a sec-
tion in the chapter, picking sentences in the section
and then aligning words/mwe’s in the hypothesis
(formed by combining the question and an answer
candidate) to words/mwe’s in the picked sentences
or some related “knowledge” appropriately cho-
sen from additional knowledge stores. In this case,
the relation (greenhouse gases, cause, greenhouse
effect) and the equivalences (e.g. carbon diox-
ide = CO2) – shown in violet – are hypothesized
using external knowledge resources. The dashed
red lines show the word/mwe alignments from the
hypothesis to the sentences (some word/mwe are
not aligned, in which case the alignments are not
shown), the solid black lines show coreference
links in the text and the RST relation (elaboration)
between the two sentences. The picked sentences
do not have to be contiguous sentences in the text.
All mwe’s are shown in green.

consider the case when review questions are not
used. For each question qi ∈ Q, let Ai =
{ai1, . . . , aim} be the set of candidate answers to
the question 1. We cast the science QA problem as
a textual entailment problem by converting each
question-answer candidate pair (qi, ai,j) into a hy-
pothesis statement hij (see Figure 1)2. For each
question qi, the science QA task thereby reduces to
picking the hypothesis ĥi that has the highest like-
lihood of being entailed by the curriculum among
the set of hypotheses hi = {hi1, . . . , him} gener-
ated for that question. Let h∗i ∈ hi be the correct
hypothesis corresponding to the correct answer.
Latent Answer-Entailing Structures help the
model in providing evidence for the correct hy-
pothesis. As described before, the structure de-
pends on: (a) snippet from the curriculum hierar-
chy chosen to be aligned to the hypothesis, (b) ex-
ternal knowledge relevant for this entailment, and
(c) the word/mwe alignment. The snippet from
the curriculum to be aligned to the hypothesis is
determined by walking down the curriculum hier-
archy and then picking a set of sentences from the
section chosen. Then, a subset of relevant exter-
nal knowledge in the form of triples and equiva-
lences (called knowledge bits) is selected from our

1Candidate answers may be pre-defined, as in multiple-
choice QA, or may be undefined but easy to extract with a
degree of confidence (e.g., by using a pre-existing system)

2We use a set of question matching/rewriting rules to
achieve this transformation. The rules match each question
into one of a large set of pre-defined templates and applies a
unique transformation to the question & answer candidate to
achieve the hypothesis. Code provided in the supplementary.

reservoir of external knowledge (science dictio-
naries, cheat sheets, semi-structured tables, etc).
Finally, words/mwe’s in the hypothesis are aligned
to words/mwe’s in the snippet or knowledge bits.
Learning these alignment edges helps the model
determine which semantic constituents should be
compared to each other. These alignments are
also used to generate more effective features. The
choice of snippets, choice of the relevant external
knowledge and the alignments in conjunction form
the latent answer-entailing structure. Let zij rep-
resent the latent structure for the question-answer
candidate pair (qi, ai,j).
Max-Margin Approach: We treat science QA as
a structured prediction problem of ranking the hy-
pothesis set hi such that the correct hypothesis is
at the top of this ranking. We learn a scoring func-
tion Sw(h, z) with parameter w such that the score
of the correct hypothesis h∗i and the corresponding
best latent structure z∗i is higher than the score of
the other hypotheses and their corresponding best
latent structures. In fact, in a max-margin fashion,
we want that Sw(h∗i , z

∗
i ) > S(hij , zij) + 1 − ξi

for all hj ∈ h \ h∗ for some slack ξi. Writing the
relaxed max margin formulation:

min
||w||

1

2
||w||22 + C

∑
i

max
zij ,hij∈hi\h∗i

Sw(hij , zij) + ∆(h∗i , hij)

−C
∑

i

Sw(h∗i , z∗i ) (1)

We use 0-1 cost, i.e. ∆(h∗i , hij) = 1(h∗i 6= hij) If
the scoring function is convex then this objective
is in concave-convex form and hence can be
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solved by the concave-convex programming
procedure (CCCP) (Yuille and Rangarajan,
2003). We assume the scoring function to be
linear:Sw(h, z) = wTψ(h, z). Here, ψ(h, z) is a
feature map discussed later. The CCCP algorithm
essentially alternates between solving for z∗i ,
zij ∀j s.t. hij ∈ hi \ h∗i and w to achieve a local
minima. In the absence of information regarding
the latent structure z we pick the structure that
gives the best score for a given hypothesis i.e.
arg maxz Sw(h, z). The complete procedure is
given in the supplementary.
Inference and knowledge selection: We use
beam search with a fixed beam size (5) for
inference. We infer the textbook, chapter, section,
snippet and alignments one by one in this order. In
each step, we only expand the five most promising
(given by the current score) substructure candi-
dates so far. During inference, we select top 5
knowledge bits (triples, equivalences, etc.) from
the knowledge resources that could be relevant for
this question-answer. This is done heuristically by
picking knowledge bits that explain parts of the
hypothesis not explained by the chosen snippets.
Incorporating partially known structures:
Now, we describe how review questions can
be incorporated. As described earlier, modern
textbooks often provide review problems at the
end of each section. These review problems have
value as part of the answer-entailing structure
(textbook, chapter and section) is known for these
problems. In this case, we use the formulation
(equation 1) except that the max over z for the
review questions is only taken over the unknown
part of the latent structure.
Multi-task Learning: Question analysis is a key
component of QA systems. Incoming questions
are often of different types (counting, negation,
entity queries, descriptive questions, etc.). Dif-
ferent types of questions usually require different
processing strategies. Hence, we also extend of
our LSSVM model to a multi-task setting where
each question qi now also has a pre-defined as-
sociated type ti and each question-type is treated
as a separate task. Yet, parameters are shared
across tasks,which allows the model to exploit the
commonality among tasks when required. We use
the MTLSSVM formulation from Evgeniou and
Pontil (2004) which was also used in a reading
comprehension setting by Sachan et al. (2015).
In a nutshell, the approach redefines the LSSVM

feature map and shows that the MTLSSVM
objective takes the same form as equation 1 with
a kernel corresponding to the feature map. Hence,
one can simply redefine the feature map and reuse
LSSVM algorithm to solve the MTLSSVM.
Features: Our feature vector ψ(h, z) decomposes
into five parts, where each part corresponds to
a part of the answer-entailing structure. For the
first part, we index all the textbooks and score the
top retrieved textbook by querying the hypothesis
statement. We use tf-idf and BM25 scorers re-
sulting in two features. Then, we find the jaccard
similarity of bigrams and trigrams in the hypothe-
sis and the textbook to get two more features for
the first part. Similarly, for the second part we
index all the textbook chapters and compute the
tf-idf, BM25 and bigram, trigram features. For the
third part we index all the sections instead. The
fourth part has features based on the text snippet
part of the answer-entailing structure. Here
we do a deeper linguistic analysis and include
features for matching local neighborhoods in the
snippet and the hypothesis: features for matching
bigrams, trigrams, dependencies, semantic roles,
predicate-argument structure as well as the global
syntactic structure: a tree kernel for matching
dependency parse trees of entire sentences (Sri-
vastava and Hovy, 2013). If a text snippet contains
the answer to the question, it should intuitively be
similar to the question as well as to the answer.
Hence, we add features that are the element-wise
product of features for the text-question match
and text-answer match. Finally, we also have
features corresponding to the RST (Mann and
Thompson, 1988) and coreference links to enable
inference across sentences. RST tells us that
sentences with discourse relations are related to
each other and can help us answer certain kinds
of questions (Jansen et al., 2014). For example,
the “cause” relation between sentences in the text
can often give cues that can help us answer “why”
or “how” questions. Hence, we add additional
features - conjunction of the rhetorical structure
label from a RST parser and the question word
- to our feature vector. Similarly, the entity and
event co-reference relations allow us to reason
about repeating entities or events. Hence, we
replace an entity/event mention with their first
mentions if that results into a greater score. For
the alignment part, we induce features based
on word/mwe level similarity of aligned words:

469



(a) Surface-form match (Edit-distance), and (b)
Semantic word match (cosine similarity using
SENNA word vectors (Collobert et al., 2011) and
“Antonymy” ‘Class-Inclusion’ or ‘Is-A’ relations
using Wordnet). Distributional vectors for mwe’s
are obtained by adding the vector representations
of comprising words (Mitchell and Lapata, 2008).
To account for the hypothesized knowledge bits,
whenever we have the case that a word/mwe in
the hypothesis can be aligned to a word/mwe in a
hypothesized knowledge bit to produce a greater
score, then we keep the features for the alignment
with the knowledge bit instead.
Negation Negation is a concern for our approach
as facts usually align well with their negated
versions. To overcome this, we use a simple
heuristic. During training, if we detect negation
using a set of simple rules that test for the presence
of negation words (“not”, “n’t”, etc.), we flip the
partial order adding constraints that require that
the correct hypothesis to be ranked below all the
incorrect ones. During test phase if we detect
negation, we predict the answer corresponding to
the hypothesis with the lowest score.

3 Experiments

Dataset: We used a set of 8th grade science ques-
tions released as the training set in the Allen AI
Science Challenge3 for training and evaluating
our model. The dataset comprises of 2500 ques-
tions. Each question has 4 answer candidates, of
which exactly one is correct. We used questions 1-
1500 for training, questions 1500-2000 for devel-
opment and questions 2000-2500 for testing. We
also used publicly available 8th grade science text-
books available through ck12.org. The science
curriculum consists of seven textbooks on Physics,
Chemistry, Biology, Earth Science and Life Sci-
ence. Each textbook on an average has 18 chap-
ters, and each chapter in turn is divided into 12
sections on an average. Also, as described be-
fore, each section, on an average, is followed by
3-4 multiple choice review questions (total 1369
review questions). We collected a number of do-
main specific science dictionaries, study guides,
flash cards and semi-structured tables (Simple En-
glish Wiktionary and Aristo Tablestore) available
online and create triples and equivalences used as
external knowledge.

3https://www.kaggle.com/c/the-allen-ai-science-
challenge/

Question Category Example
Questions without
context: Which example describes a learned behavior in a dog?

Questions with
context:

When athletes begin to exercise, their heart rates and res-
piration rates increase. At what level of organization does
the human body coordinate these functions?

Negation Ques-
tions:

A teacher builds a model of a hydrogen atom. A red golf
ball is used for a proton, and a green golf ball is used for
an electron. Which is not accurate concerning the model?

Table 1: Example questions for Qtype classification

Baselines: We compare our framework with ten
baselines. The first two baselines (Lucene and
PMI) are taken from Clark et al. (2016). The
Lucene baseline scores each answer candidate ai

by searching for the combination of the ques-
tion q and answer candidate ai in a lucene-based
search engine and returns the highest scoring an-
swer candidate. The PMI baseline similarly scores
each answer candidate ai by computing the point-
wise mutual information to measure the strength
of the association between parts of the question-
answer candidate combine and parts of the CK12
curriculum. The next three baselines, inspired
from Richardson et al. (2013), retrieve the top two
CK12 sections querying q+ai in Lucene and score
the answer candidates using these documents. The
SW and SW+D baselines match bag of words con-
structed from the question and the answer answer
candidate to the retrieved document. The RTE
baseline uses textual entailment (Stern and Dagan,
2012) to score answer candidates as the likelihood
of being entailed by the retrieved document. Then
we also tried other approaches such as the RNN
approach described in Clark et al. (2016), Jacana
aligner (Yao et al., 2013) and two neural network
approaches, LSTM (Hochreiter and Schmidhuber,
1997) and QANTA (Iyyer et al., 2014) They form
our next four baselines. To test if our approach
indeed benefits from jointly learning the retrieval
and the answer selection modules, our final base-
line Lucene+LSSVM Alignment retrieves the top
section by querying q + ai in Lucene and then
learns the remaining answer-entailment structure
(alignment part of the answer-entailing structure
in Figure 1) using a LSSVM.
Task Classification for Multitask Learning:
We explore two simple question classification
schemes. The first classification scheme classi-
fies questions based on the question word (what,
why, etc.). We call this Qword classification.
The second scheme is based on the type of the
question asked and classifies questions into three
coarser categories: (a) questions without context,
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(b) questions with context and (c) negation ques-
tions. This classification is based on the observa-
tion that many questions lay down some context
and then ask a science concept based on this con-
text. However, other questions are framed without
any context and directly ask for the science con-
cept itself. Then there is a smaller, yet, important
subset of questions that involve negation that also
needs to be handled separately. Table 1 gives ex-
amples of this classification. We call this classifi-
cation Qtype classification4.
Results: We compare variants of our method5

where we consider our modification for negation
or not and multi-task LSSVMs. We consider both
kinds of task classification strategies and joint
training (JT). Finally, we compare our methods
against the baselines described above. We report
accuracy (proportion of questions correctly an-
swered) in our results. Figure 2 shows the results.
First, we can immediately observe that all the
LSSVM models have a better performance than
all the baselines. We also found an improvement
when we handle negation using the heuristic de-
scribed above6. MTLSSVMs showed a boost over
single task LSSVM. Qtype classification scheme
was found to work better than Qword classifica-
tion which simply classifies questions based on the
question word. The multi-task learner could bene-
fit even more if we can learn a better separation be-
tween the various strategies needed to answer sci-
ence questions. We found that joint training with
review questions helped improve accuracy as well.

Feature Ablation: As described before, our fea-
ture set comprises of five parts, where each part
corresponds to a part of the answer-entailing struc-
ture – textbook (z1), chapter (z2), section (z3),
snippets (z4), and alignment (z5). It is interesting
to know the relative importance of these parts in
our model. Hence, we perform feature ablation on
our best performing model - MTLSSVM(QWord,
JT) where we remove the five feature parts one
by one and measure the loss in accuracy. Figure

4We wrote a set of question matching rules (similar to the
rules used to convert question answer pairs to hypotheses) to
achieve this classification

5We tune the SVM regularization parameter C on the de-
velopment set. We use Stanford CoreNLP, the HILDA parser
(Feng and Hirst, 2014), and jMWE (Kulkarni and Finlayson,
2011) for linguistic preprocessing

6We found that the accuracy over test questions tagged
by our heuristic as negation questions went up from 33.64
percent to 42.52 percent and the accuracy over test questions
not tagged as negation did not decrease significantly
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Figure 2: Variations of our method vs several baselines on
the Science QA dataset. Differences between the baselines
and LSSVMs, the improvement due to negation, the im-
provements due to multi-task learning and joint-learning are
significant (p < 0.05) using the two-tailed paired T-test.
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Figure 3: Ablation on MTLSSVM(Qword, JT) model

3 shows that the choice of section and alignment
are important components of our model. Yet, all
components are important and removing any of
them will result in a loss of accuracy. Finally, in
order to understand the value of external knowl-
edge resources (K), we removed the component
that induces and aligns the hypothesis with knowl-
edge bits. This results in significant loss in perfor-
mance, estabishing the efficacy of adding in exter-
nal knowledge via our approach.

4 Conclusion

We addressed the problem of answering 8th grade
science questions using textbooks, domain spe-
cific dictionaries and semi-structured tables. We
posed the task as an extension to textual entail-
ment and proposed a solution that learns latent
structures that align question answer pairs with
appropriate snippets in the textbooks. Using do-
main specific dictionaries and semi-structured ta-
bles, we further refined the structures. The task re-
quired handling a variety of question types so we
extended our technique to multi-task setting. Our
technique showed improvements over a number of
baselines. Finally, we also used a set of associated
review questions, which were used to gain further
improvements.
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Abstract

Prominent semantic annotations take an
inclusive approach to argument span an-
notation, marking arguments as full con-
stituency subtrees. Some works, how-
ever, showed that identifying a reduced ar-
gument span can be beneficial for vari-
ous semantic tasks. While certain practi-
cal methods do extract reduced argument
spans, such as in Open-IE , these solutions
are often ad-hoc and system-dependent,
with no commonly accepted standards. In
this paper we propose a generic argument
reduction criterion, along with an anno-
tation procedure, and show that it can be
consistently and intuitively annotated us-
ing the recent QA-SRL paradigm.

1 Introduction

Representations of predicate-argument structure
need to determine the span of predicates and their
corresponding arguments. Surprisingly, there are
no accepted NLP-standards which specify what
the “right” span of an argument should be.

Semantic representations typically take an in-
clusive (or maximal) approach: PropBank anno-
tation (Palmer et al., 2005), for example, marks
arguments as full constituency subtrees. From
an application perspective, this maximal approach
ensures that all arguments are indeed embedded
within the annotated span, yet it is often not trivial
how to accurately recover them.

In contrast to this maximal-span approach,
Open-IE systems (Etzioni et al., 2008; Fader et al.,
2011) put emphasis on extracting readable stand-
alone propositions, typically producing shorter ar-
guments (see examples in Section 2.1). Several
recent works have exploited this property, using

Open-IE extractions as an intermediate represen-
tation within a larger framework.

Angeli et al. (2015) built an Open-IE system
which focuses on shorter argument spans. They
hypothesize that “shorter arguments [are] more
likely to be useful for downstream applications”,
and demonstrate this by using their system to ex-
tract facts about predefined entities in a state-of-
the-art Knowledge Base Population system.

Further, Stanovsky et al. (2015) compared the
performance of several off-the-shelf parsers in dif-
ferent semantic tasks. Most relevant to this work
is the comparison between Open-IE and SRL.
Specifically, they suggest that SRL’s longer argu-
ments introduce noise which hurts performance
for downstream tasks. This is sustained empiri-
cally by showing that extractions from Open-IE41

significantly outperform ClearNLP’s SRL (Choi,
2012) in textual similarity, analogies, and reading
comprehension tasks.2

While Open-IE extractors do provide a reduc-
tion of argument span, they lack consistency and
principled rigor – there is no clear definition for
the desired argument span, which is defined de-
facto by the different implementations. This lack
of a common system-independent definition, let
alone an annotation methodology, hinders the cre-
ation of gold standard argument-span annotation.

In this work we propose a concrete argument
span reduction criterion and an accompanying
annotation procedure, based on the recent QA-
SRL paradigm (He et al., 2015). We show that
this criterion can be consistently annotated with
high agreement, and that it is intuitive enough to
be obtained through crowd-sourcing.

As future work, we intend to apply the reduction
criterion to other types of predicates (e.g., nomi-

1http://knowitall.github.io/openie
2Open IE-4 is based on ClearNLPs SRL, allowing for a

direct comparison.
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nal and adjectival predication). Subsequently, we
would like to create a comprehensive annotated
resource, as a benchmark for the detection of re-
duced argument spans.

2 Background

2.1 Argument Span

As discussed in the Introduction, PropBank takes
an inclusive approach to annotating arguments, by
marking them as full constituency subtrees. For
example, given the sentence “Obama, the newly
elected president, flew to Russia”, PropBank will
mark “Obama, the newly elected president” as ARG0 of
the predicate flew.

However, in certain applications, such as ques-
tion answering or abstractive summarization, a re-
duced argument is preferred (i.e., “Obama”). No-
tably, different implementations of Open-IE pro-
vide an applicable generic way to reduce argument
span. Since there are no common guidelines for
this task, each Open-IE extractor produces differ-
ent argument spans. We cover briefly some of the
main differences in a few prominent Open-IE sys-
tems.

ReVerb (Fader et al., 2011) uses part-of-speech-
based regular expressions to decide whether a
word should be included within an argument span.
For example, they move certain light verb com-
pliments and prepositions from the argument to
the predicate slot (e.g., “gave a talk at”). OLLIE
(Mausam et al., 2012) learns lexical-syntactic pat-
terns and splits extractions across certain prepo-
sitions. For example, given “I flew from Paris to
Berlin”, OLLIE yields (I; flew; from Paris) and
(I; flew; to Berlin). More recently, (Angeli et al.,
2015) used natural logic to remove non-integral
parts of arguments (e.g., removing the underlined
non-restrictive prepositional phrase in “Heinz Fis-
cher of Austria”).

2.2 QA-SRL

SRL is typically perceived as answering argu-
ment role questions, such as who, what, to whom,
when, or where, regarding a target predicate. For
instance, PropBank’s ARG0 for the predicate say
answers the question “who said something?”.

QA-SRL (He et al., 2015) follows this per-
spective, and suggests that answering explicit role
questions is an intuitive means to solicit predicate-
argument structures from non-expert annotators.
Annotators are presented with a sentence in which

a target predicate3 was marked, and are requested
to annotate argument role questions (from a re-
stricted grammar) and corresponding answers.

For example, given the previous sentence and
the target predicate flew, an annotator can intu-
itively provide the following QA pairs: (1) Who
flew somewhere? Obama, and (2) Where did
someone fly? Russia.

The annotation guidelines further solicit multi-
ple shorter answers, each typically embedded in
the span of a maximal PropBank-style argument,
while providing a different answer to the (same)
argument role question.

In Section 4 we make use of QA-SRL’s frame-
work in order to produce annotations by our re-
duction argument criterion, which is defined in the
next section.

3 Argument Reduction

In this section, we propose annotation criteria and
process for obtaining minimal argument spans.
Given an original, non-reduced argument, we aim
to reduce it to a set of (one or more) smaller argu-
ments, which jointly specify the same answer to
the argument’s role question.

Formally, given a non-reduced argument a =
{w1, ..., wn}, along with its role question Q(a)
with respect to predicate p in sentence s, we
seek to find a set of minimally-scoped arguments,
M(a), such that:

(1) Each m ∈M(a) is a proper subset of a.

(2) Each m ∈ M(a) provides a different, inde-
pendently interpreted answer to Q(a).

(3) M(a) is equivalent to a, in the sense that
when taken jointly, M(a) specifies the same
answers as a does for Q(a).

(4) Each m ∈ M(a) is minimal, meaning it can-
not be further reduced without violating the
equivalence criterion (3).

Note that this definition relies on human judg-
ments, which are used to decide whether two ar-
guments provide the same or different answers.

Generally speaking, a non-minimal argument a
can be reduced in one of two ways:

(a) Removal of tokens from a, forming a smaller
argument.

3Currently these consist of automatically annotated verbs.
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(b) Splitting a, yielding multiple arguments.

In our context, we would like to apply these
two operations as long as they maintain the equiv-
alence criterion (3). We empirically observe that
the first case (removal) corresponds to the omis-
sion of non-restrictive modifiers, that is, modifiers
for which the content of the modifier presents a
separate, parenthetical unit of information about
the NP (Huddleston et al., 2002). For example, re-
visiting the sentence: “Obama, the newly elected
president, flew to Russia.”, the non-reduced argu-
ment “Obama, the newly elected president” can be re-
duced to the minimal argument “Obama”, as both
specify the same answer to the role question “who
flew to Russia?”.

In contrast, a restrictive modifier is an integral
part of the meaning of the containing NP, and
hence should not be removed, as in “She wore the
necklace that her mother gave her”.

The second reduction operation (splitting) cor-
responds to decoupling distributive coordinations,
that is, cases in which a predicate applies sepa-
rately to all of the elements in the coordination.
For example, in: “Obama and Clinton were born
in America.”, the non-reduced PropBank-style ar-
gument “Obama and Clinton” can be reduced to two
arguments {“Obama”, “Clinton”}. Each of these ar-
guments independently answers the role question
“Who was born in America?”, while jointly they
correspond to the longer, non-reduced argument.

Note that splitting a shorter distributive argu-
ment does not necessarily produce disjoint argu-
ments. For example, consider: “The tall boys and
girls were born in America.”, in which “The tall boys

and girls” would reduce to two overlapping argu-
ments: {“The tall boys”, “The tall girls”}.

In contrast, non-distributive conjuncts cannot be
split. These are cases in which the predicate ap-
plies to the conjuncts taken together, while apply-
ing it separately to each element changes the inter-
pretation of the clause. Consider for example the
reciprocal structure of: “Obama and Putin met in
Moscow”, in which we cannot split the argument
“Obama and Putin” since the predicate met implies
that Obama and Putin met with each other, which
will be lost if we split the argument to two inde-
pendent answers.

Based on these two operations, a set of mini-
mal arguments, M(a), can be obtained from a in
a top-down manner: first apply removal, if possi-

ble; then splitting, if possible.4 Next, apply recur-
sively to each of the smaller arguments, stopping
when none of the two reduction operations can be
applied.

This annotation process might yield different
sets of minimal arguments by different annotators,
depending on their decisions regarding the reduc-
tion steps. As we show empirically in the next sec-
tion, high agreement levels can be obtained, sup-
porting the validity of our proposed criterion.

4 Annotation Experiment

In this section we describe the compilation and
analysis of a small-scale expert annotation corpus.
Creating such corpus serves 3 goals: (1) It allows
us to test the applicability of the argument reduc-
ing procedure, (2) By comparing it with Propbank
we can examine how often, and in which cases, we
reduce arguments (Section 4.1), and (3) We can as-
sess the plausibility of crowd-sourcing argument
span annotation (Sections 4.2 and 4.3).

In order to achieve these goals, we sample 100
predicates of the Propbank corpus, which covered
260 arguments. To allow comparisons, we sample
predicates which were annotated by QA-SRL and
whose arguments were aligned by (He et al., 2015)
with a matching Propbank argument.5

Two expert annotators used the QA-SRL’s inter-
face to re-answer the original QA-SRL annotated
questions with minimally-scoped arguments, ac-
cording to the procedure described in Section 3.
Prior to annotating the expert dataset, the annota-
tors discussed the process and resolved conflicts
on a separate development set of 20 predicates.

Annotator agreement From an argument per-
spective, the annotators fully agreed on the span
of 94.6% of the arguments.

Looking into the word token level, we found
that for a given PropBank argument a =
(w1, ..., wn), the respective reduced arguments al-
ways constitute a subset of a. This allows us to
look at the annotation process as a list of n map-
ping decisions – for each wi, an annotator decides
whether he (1) Maps it to one or more of the argu-

4This order is arbitrary, chosen solely to provide a deter-
ministic process. Alternating the steps would yield an identi-
cal set.

5An annotated answer is judged to match the PropBank
argument if either (1) the gold argument head is within the
annotated answer span, or (2) the gold argument head is a
preposition and at least one of its children is within the an-
swer span.
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ments of M(a), or (2) Deletes it. The complete
annotation required each annotator to make 985
such mappings decisions. Word level agreement
between the annotators was calculated as the per-
cent of the decisions on which they agreed, and
found to be 97.1%.

Overall, the annotators achieved a high level of
agreement, suggesting that the reduction criterion
can be consistently applied by trained annotators.
An analysis of the few disagreements revealed that
the deviations between the annotators stem from
semantic ambiguities, where two legitimate read-
ings of the sentence led to different span annota-
tions.6

Finally, we compose the expert annotation
dataset from 247 arguments on which both anno-
tators fully agreed.

4.1 Comparison with Propbank
Comparing our annotation with PropBank showed
that we reduced roughly 24% of the arguments:
19% of the arguments were reduced by omitting
non-restrictive modifications and 5% of the argu-
ments were split across distributive co-ordinations
(see discussion on both types of reductions in Sec-
tion 3).

The average reduced argument shrunk by
roughly 58%. In general, these numbers sug-
gest that our annotation scheme targets commonly
recurring phenomena, and significantly deviates
from PropBank’s annotation of arguments.

4.2 Crowdsourcing
We created an Amazon Mechanical Turk7 project
to investigate the possible scalability of our anno-
tation using non-trained annotators.

Similarly to the setting used by the expert an-
notators, turkers were presented with a sentence,
followed by a list of questions regarding a target
predicate. The sentences, predicates and questions
were taken from the expert corpus, which aligns
between QA-SRL and Propbank.8

The guidelines for annotators refined those of
He et al. (2015), soliciting answers which follow

6For example, in “The American Stock Exchange said a
seat was sold for $ 160,000 , down $ 5,000 from the previ-
ous sale last Friday .”, one annotator did not reduce ARG1,
while the second annotator chose to restrict the span of the
argument to “a seat was sold for $ 160,00”, interpreting the
remaining part of the clause as an addition by the author.

7https://www.mturk.com
8To be clear, the annotators saw only the raw text and

questions from QA-SRL and were not exposed to the Prop-
Bank annotations.

Annotation Argument Word

Expert - IAA 94.6% 97.1%

QA-SRL - Expert 80% 88.5%
Our Crowdsourcing - Expert 89.1% 93.5%

Table 1: Agreement levels between the different
annotations: (1) IAA - Inter-Annotator agreement
between the expert annotators (2) Agreement of
QA-SRL corpus with our expert annotation and
(3) Our Crowdsourcing - agreement of the Ama-
zon Mechanical Turk annotations with our expert
annotation. See Section 4.

our formal criterion. In cases of multiple answers
referring to the same entity, annotators are asked to
provide the most specific answer, otherwise (if the
answers refer to different entities), the annotators
are asked to list all of the answers. Furthermore,
the annotators are requested to provide the shortest
answer they can, while preserving its correctness.

We chose annotations which were agreed upon
by at least two annotators. In cases where the three
annotators gave different answers (26% of the
time), we used a fourth annotator to arbitrate, and
calculated agreement using the same metrics dis-
cussed above. Cases where annotators disagreed
were mostly semantically ambigouos. For exam-
ple, given the sentence “Our pilot simply laughed ,
fired up the burner and with another blast of flame
lifted us , oh , a good 12 - inches above the water
level .” and the question “how much did someone
lift someone?”, one annotator replied 12 - inches
while another replied a good 12 - inches.

We found that the crowdsourcing annotations
to be of high quality, reaching 89.1% argument
agreement and 93.5% word agreement with our
expert annotation. These results suggest that the
annotation of argument span is efficiently and
accurately attainable using crowd-sourcing tech-
niques, with only subtle refinements over the orig-
inal QA-SRL guidelines.

4.3 Comparison with QA-SRL

Finally, we want to compare our crowdsourcing
annotation versus that of QA-SRL, with respect to
argument span. Using the previously mentioned
agreement metric, we find that QA-SRL agrees
with our expert dataset on 80% of the arguments
and 88.5% of the word-level decisions. Although
it is outperformed by our crowdsourcing annota-
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tion project, QA-SRL still manages to capture sig-
nificant amounts of the minimally-reduced argu-
ments. This is interesting, as the QA-SRL guide-
lines did not address this issue specifically, but in-
stead solicited annotators to provide “as many an-
swers as possible”. This suggests that the question
answering format intuitively prompts human an-
notators to reduce the span of their answers.

To conclude this section, the entire comparison
measurements are summarized in Table 1.

5 Conclusion and Future Work

In this work we proposed a concrete criterion for
specifying minimally-scoped arguments. While
this issue was applicably addressed by previous
work, it was not consistently defined or anno-
tated. Following this definition, we created an
expert annotation dataset over texts from Prop-
Bank, using the QA-SRL paradigm. This annota-
tion achieved high levels of inter-annotator agree-
ment, and was shown to be intuitive enough so
that it can be scaled to crowdsourcing annotation.
As future work, we plan to extend this annotation
project to larger volumes of text, and to additional
types of (non-verbal) predications, which will al-
low to develop learning-based methods that iden-
tify minimally-reduced argument span.
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Abstract

We present improvements to our in-
cremental proposition-based summariser,
which is inspired by Kintsch and van
Dijk’s (1978) text comprehension model.
Argument overlap is a central concept in
this summariser. Our new model replaces
the old overlap method based on distribu-
tional similarity with one based on lex-
ical chains. We evaluate on a new cor-
pus of 124 summaries of educational texts,
and show that our new system outper-
forms the old method and several state-
of-the-art non-proposition-based summar-
isers. The experiment also verifies that
the incremental nature of memory cycles
is beneficial in itself, by comparing it to a
non-incremental algorithm using the same
underlying information.

1 Introduction

Automatic summarisation is one of the big artifi-
cial intelligence challenges in a world of informa-
tion overload. Many summarisers, mostly extract-
ive, have been developed in recent years (Radev
et al., 2004; Mihalcea and Tarau, 2004; Wong et
al., 2008; Celikyilmaz and Hakkani-Tür, 2011).
Research is moving beyond extraction in various
directions: One could perform text manipulation
such as compression as a separate step after extrac-
tion (Knight and Marcu, 2000; Cohn and Lapata,
2008), or alternatively, one could base a summary
on an internal semantic representation such as the
proposition (Lehnert, 1981; McKeown and Radev,
1995).

One summarisation model that allows manip-
ulation of semantic structures of texts was pro-
posed by Kintsch and van Dijk (1978, henceforth
KvD). It is a model of human text processing,

where the text is turned into propositions and
processed incrementally, sentence by sentence.
The final summary is based on those propositions
whose semantic participants (arguments) are well-
connected to others in the text and hence likely to
be remembered by a human reading the text, under
the assumption of memory limitations.

Such a deep model is attractive because it
provides the theoretical possibility of perform-
ing inference and generalisation over propositions,
even if current NLP technology only supports
shallow versions of such manipulations. This
gives it a clear theoretical advantage over non-
propositional extraction systems whose informa-
tion units are individual words and their connec-
tions, e.g. centroids or random-walk models.

We present in this paper a new KvD-based
summariser that is word sense-aware, unlike our
earlier implementation (Fang and Teufel, 2014).
§2 explains the KvD model with respect to sum-
marisation. §3 and §4 explain why and how we
use lexical chains to model argument overlap, a
phenomenon which is central to KvD-style sum-
marisation. §6 presents experimental evidence
that our model of argument overlap is superior
to the earlier one. Our summariser additionally
beats several extractive state-of-the-art summar-
isers. We show that this advantage does not come
from our use of lexical chains alone, but also from
KvD’s incremental processing.

Our second contribution concerns a new cor-
pus of educational texts, presented in §5. Part
of the reason why we prefer a genre other than
news is the vexingly good performance of the lead
baseline in the news genre. Traditionally, many
summarisers struggled to beat this baseline (Lin
and Hovy, 2003). We believe that the problem is
partly due to the journalistic style, which calls for
an abstract-like lead. If we want to measure the
content selection ability of summarisers, alternat-
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×
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◦◦◦◦ ◦

××××

Figure 1: The KvD-inspired incremental summarisation model.

ive data sets are needed. Satisfyingly, we find that
on our corpus the lead baseline is surpassable by
intelligent summarisers.

2 The KvD Model

The KvD model is a cognitive account of human
text comprehension. In our KvD-inspired model
(Figure 1), the summariser constructs a list of pro-
positions as a meaning representation from a syn-
tactic parse of the input text. A batch of new pro-
positions (◦ in the figure) are processed for each
sentence. At the beginning of a memory cycle,
these new propositions are added to a coherence
tree, which represents the working memory. They
attach to the existing propositions on the tree with
which they have the strongest overlap in argu-
ments. At the end of a cycle, as a simulation of
limited memory, only a few important proposi-
tions are carried over to the next cycle, while the
others are “forgotten” (represented by×). This se-
lection is based on the location of propositions in
the tree, using the so-called leading edge strategy;
propositions that are on more recent edges, or that
are attached higher, are more likely to be retained.
The model attempts all future attachments using
only the propositions in working memory, and al-
lows to reuse forgotten ones only if this strategy
runs into problems (when a new proposition could
not otherwise be attached).

KvD suggest that the decision whether a pro-
position should be included in the final summary
depends on three factors: a) the number of cycles
where it was retained in working memory, b)
whether it is a generalisation, and c) whether it is
a meta-statement (or macro-proposition).

For its explanatory power and simplicity, the
model has been well-received not only in the fields
of cognitive psychology (Paivio, 1990; Lave,
1988) and education (Gay et al., 1976), but also
in the summarisation community (Moens et al.,
2003; Uyttendaele et al., 1998; Hahn and Reimer,

1984).
We presented the first computational prototype

of the model that follows the proposition-centric
processing closely (Fang and Teufel, 2014). Of
the factors mentioned above, only the first is mod-
elled in this summariser (called FT14). That is, we
use the frequency of a proposition being retained
in memory as the only indicator of its summary-
worthiness. This is a simplification due to the fact
that robust inference is beyond current NLP cap-
ability. Additionally, macro-propositions depend
on domain-specific schema, whereas our system
aims to be domain-independent.

Zhang et al. (2016) presented a summar-
iser based on a later cognitive model by Kintsch
(1998). Instead of modelling importance of pro-
positions directly, their summariser computes the
importance of words by spreading activation cyc-
lically, but extracts at proposition level.

Although the summariser presented in the cur-
rent paper, a newer version of FT14, is capable
of sub-sentential content selection, we present its
output in the form of extracted sentences that con-
tain the most summary-worthy propositions. This
is different from FT14, where we used a token-
based extraction method. A better output would
of course be an abstract based on the selected pro-
positions, but we currently do not have a language
generation module and can therefore evaluate only
the content selection ability of our summariser.

3 Argument Overlap

The central mechanism of the KvD model is ar-
gument overlap of propositions, and it is key to
successful content selection. This is because there
are often multiple propositions on the tree where
a new proposition could attach, of varying attract-
iveness. The task therefore boils down to ranking
attachments, for instance by the strength of over-
lap, and the position in the tree.

Figure 2 is an example of competing attachment
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Subtree 1:
DELIVER (GIFT, in: FORM)

RANDOMLY (DELIVER)

of (FORM, LIGHTNING)

of (FORM, FOREST FIRE)

of (FORM, LAVA)

BURNING (LAVA)

Subtree 2:
REVOLUTIONISE (DISCOVERY, FIRE-LIGHTING)

of (DISCOVERY, ELEMENT)

Subtree 3:
BE (IRON PYRITES, COMPOUND)

CONTAIN (COMPOUND, SULPHUR)

New:
TIP (PAPER, with: PHOSPHORUS)

PAPER: FORM?

PHOSPHORUS: ELEMENT?

PHOSPHORUS: SULPHUR?

Figure 2: Possible attachments of a new proposition.

sites. Three subtrees in the working memory are
shown, containing propositions that correspond to
the text pieces 1) [fire was] a gift randomly de-
livered in the form of lightning, forest fire or burn-
ing lava, 2) fire-lighting was revolutionised by
the discovery of the element, and 3) iron pyrites,
a compound that contains sulphur, respectively.
The new proposition corresponds to the text paper
tipped with phosphorus. It can attach in subtree
2, because phosphorus is a kind of element; it can
also attach in subtree 3, because both phosphorus
and sulphur are chemicals.

The definition of argument overlap is conceptu-
ally simple, namely reference of the arguments to
the same concept, which can be an entity, an event,
or a class of things. In KvD’s manual demonstra-
tion of the algorithm, the resolution of textual ex-
pressions to concepts relies on human intelligence.
A “perfect” coreference resolver is arguably all
we need, but coreference as currently defined ex-
cludes generics, abstract concepts, paraphrases,
bridging connections (Weischedel et al., 2007) and
several other relevant linguistic phenomena. This
means an insufficient number of possible overlaps
are found by current coreference systems, if no
further information is used. How exactly to model
argument overlap for a KvD summariser is there-
fore open to exploration.

We use other sources of information that ad-
dresses topicality and semantic relatedness, in
combination with coreference resolution. In FT14,
that source was the distributional similarity of
words, normalised with respect to their distract-
ors in context to achieve numerically comparable
overlap scores. In this paper, we argue that us-
ing the shared membership in lexical chains as the
other source provides a better basis for ranking ar-
gument overlap.

FT14’s overlap detection runs into problems in

the situation above (Figure 2). Under FT14’s
definition of argument overlap as distributional se-
mantic distance, the link between paper and form
is as strong as the other possibilities, which leads
to the attachment of the new proposition as a child
node of the root proposition of subtree 1 due to
higher tree level. This attachment uses the wrong
sense of the polysemous word form (“form/8 – a
printed document with spaces in which to write”).
In our new ranking of attachment sites, lexical
chains enable us to reject the spurious attachment,
as we will now explain.

4 Our Lexical Chain-Based System

In our new model, argument overlap is computed
using lexical chains (Barzilay and Elhadad, 1997),
a construct that combines the ideas of topicality
and word sense clusters. A lexical chain is an
equivalence class of expressions found in the text
whose presumed senses in context are related to
the same concept or topic. For the example in
the last section, in our system form is correctly re-
solved to sense 2, not sense 8, and as form/2
and paper/1 are not members of the same lex-
ical chain, the wrong attachment is prevented.

Lexical chain algorithms typically use Word-
Net (Miller, 1995) to provide the lexical relations
needed, whereby each synset (synonym set) rep-
resents a concept. Hypernyms and hyponyms are
related to the same topic, and they may be in a
coreference relationship with the concept. To a
lesser extent, the potential for coreference also
holds for siblings of a concept. WordNet relations
therefore give information about concept identity
and topical relatedness, both of which are aspects
of argument overlap.

We implemented Galley and McKeown’s (2003,
henceforth GM03) chaining algorithm, which im-
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proves over Barzilay and Elhadad’s and Silber and
McCoy’s (2002) chain definition by introducing
the limitation of “one sense per discourse”, i.e. by
enforcing that all occurrences of the same word
take the same sense in one document. Initially
designed to improve word sense disambiguation
accuracy, GM03’s method has been shown to im-
prove summarisation quality as well (Ercan and
Cicekli, 2008).

In GM03, the edge weight between possible
word senses of two word occurrences depends
on the lexical relation and the textual distance
between them. Each word is disambiguated by
choosing the sense that maximises the sum of
weights of the edges leaving all its occurrences.
Edges that are based on non-selected senses are
then discarded. Once the entire text has been pro-
cessed, each connected component of the graph
represents a lexical chain.

As far as nouns1 are concerned, we follow
GM03’s edge weights, but unlike GM03, we also
allow verbs to enter into chains. We do this in
order to model nominalised event references, and
to provide a sufficient number of possible connec-
tions. Table 1 provides the distance of relations;
weights of verb and derivation relations equal to
the weights of noun relations on the same row. In-
stead of assigning an overlap value of 1 to all pairs
of words in the same chain, the extent of overlap is
given as a∑e∈E de , where E is the set of edges in the
shortest path between the two words in the graph
of lexical relations, de the distance of the lexical
relation of e, and a an attenuation factor we set
at 0.7. This models the transition from concept
sameness to broader relatedness. We found empir-
ically that the introduction of verbs and the graded
overlap value using relation distance improves the
performance of our KvD summariser.

Lexical coverage of this algorithm is good:
WordNet covers 98.3% of all word occurrences al-
lowed into our lexical chains in the experiment in
§6, excluding those POS-tagged as proper nouns.
For unknown words, the system’s backoff strategy
is to form overlap only if the surface strings match.

The structuring of information in a memory tree
and the incremental addition of information, in-
cluding the concept of “forgetting”, are key claims
of the KvD model. But do these manipulations ac-
tually add any value beyond the information con-

1Following Silber and McCoy (2002), we create an addi-
tional chain for each named entity, in addition to those chains
defined by WordNet synsets.

Distance Noun Verb Derivation
0 synonymy
1 hypernymy synonymy noun-to-verb
2 sibling hypernymy

Table 1: Distance of lexical relations.

tained in a global network representing all connec-
tions between all propositions in the text? In such
a network without forgetting or discourse struc-
ture, standard graph algorithms could be used to
determine central propositions. This hypothesis is
tested in §6.

5 New Corpus of Texts and Summaries

We introduce new evaluation materials, created
from the reading sections of Academic Tests of the
Official IELTS Practice Materials (British Council
et al., 2012).

The IELTS is a standardised test of English pro-
ficiency for non-native speakers. The texts cover
various general topics, and resemble popular sci-
ence or educational articles. They are carefully
chosen to be of the same difficulty level, and
understandable by people of any cultural back-
ground. Unlike news text, they also presup-
pose less external knowledge, such as US politics,
which makes it easier to demonstrate the essence
of proposition-based summarisation.

Out of all 108 texts of volumes 1–9, we ran-
domly sampled 31. We then elicited 4 summar-
ies summary for each, written by 14 members of
our university, i.e., a total of 124 summaries.2 We
asked the summarisers to create natural-sounding
text, keeping the length strictly to 100± 2 words.
They were allowed but not encouraged to para-
phrase text.

6 Experiment

6.1 Systems and Baselines
We test 7 automatic summarisers against each
other on this evaluation corpus. Our summariser
(O) runs the KvD memory cycles and uses lexical
chains to determine argument overlap. It is not
directly comparable to FT14 due to the difference
in generation method, described in §2. In order
to be able to compare to FT14 nevertheless, we
created a version that uses our new sentence ex-
traction module together with an argument over-

2Max number of summaries per person 31, min num-
ber 2. The summaries are available for download at http:
//www.cl.cam.ac.uk/˜sht25.
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O D C M LR TR L
1 .376 .349 .351 .343 .341 .343 .341
2 .122 .094 .088 .092 .100 .094 .100
L .345 .320 .318 .308 .314 .309 .314
SU4 .154 .131 .129 .128 .132 .130 .132

Table 2: ROUGE F-scores by four metrics.

lap module very similar to FT14 but with an even
stronger model for semantic similarity, the cosine
similarity of word embeddings pre-trained using
word2vec (Mikolov et al., 2013) on part of the
Google News dataset (∼ 100 billion words), and
we call this system D.

Another variant, C, tests the hypothesis that
the recurrent KvD processing is not superior than
simpler network analysis. Summariser C con-
structs only one graph, where every two propos-
itions are connected by an edge whose length is
the reciprocal of their argument overlap, and uses
betweenness centrality to determine proposition
importance. We choose betweenness centrality be-
cause we found it to outperform other graph al-
gorithms, including closeness centrality and ei-
genvector centrality.

We also test against the lead baseline (L) and
three well-known lexical similarity-based single
document summarisers: MEAD (Radev et al.,
2004, M), TextRank (Mihalcea and Tarau, 2004,
TR), and LexRank (Erkan and Radev, 2004, LR).

Because the evaluation tool we use is sensit-
ive to text length, fair evaluation demands equal
length of all summaries tested. We obtain output
of exactly 100± 2 words from each summariser
by iteratively requesting longer summaries, and
unless this results in a sentence break within 2
tokens of the 100-word limit, we cut the imme-
diately longer output to exactly 100 words.

6.2 Results

For automated evaluation, we use ROUGE (Lin,
2004), which evaluates a summary by compar-
ing it against several gold standard summaries.
Table 2 shows our results in terms of ROUGE-
1, 2, L and SU4.3 The metrics are based on the
co-occurrence of unigrams, bigrams, longest com-
mon subsequences, and skip-bigrams (within dis-
tance of 4 and including unigrams), respectively.
Our summariser outperforms all other summar-
isers,4 and is the only summariser that beats the

3The scores of L and LR are very close, but not identical.
4We use the paired Wilcoxon test (two-tailed). Differ-

ences between O and each other summariser at p < 0.01. All

lead baseline.
The fact that our summariser beats D, our KvD

summariser using FT14-style distributional se-
mantics for argument overlap, is clear evidence
that our method of lexical chaining provides a su-
perior model of argument overlap. On this genre,
D performs indistinguishably from the other sum-
marisers. This is in line with our earlier find-
ings for FT14 on DUC (Over and Liggett, 2002)
news texts, where the token extraction-based sum-
mariser was comparable to extractive summarisers
but was outperformed by MEAD. In a qualitat-
ive analysis, we found that a main source of er-
ror in FT14’s system was that it favoured related
but semantically and pragmatically incompatible
terms over compatible paraphrases. This is a side-
effect of the use of co-occurrence, which relies
on syntagmatic rather than paradigmatic similar-
ities, and which is insensitive to word senses. As
a result, context-unaware distributional semantics
allows too many spurious overlaps.

The fact that summariser C is significantly
worse than our summariser shows that the idea
of incrementally maintaining a KvD-style struc-
tured memory is effective for summarisation, des-
pite the simplifications we had to make. This nat-
urally points to the direction of modelling incre-
mental memory updates for summarisation, which
also makes modelling with a recurrent neural net-
work plausible in the future.

The current experiment can be seen as a demon-
stration of the superiority of KvD proposition-
based content selection on a genre of common-
sense, naturally occurring texts. This was the case
even with a inferior “generation” method, namely
sentence extraction. Reading through the propos-
itions, we had the impression that they manage
to capture relevant information about the text in
a much shorter and more modular form than ex-
tracted sentences, although this cannot be demon-
strated with a surface-based methodology such as
ROUGE. Content selection is of course only the
first step of summarisation; we are currently work-
ing on a grammar-based re-generation from the se-
lected propositions.
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Abstract

Machine comprehension tests the sys-
tem’s ability to understand a piece of text
through a reading comprehension task.
For this task, we propose an approach us-
ing the Abstract Meaning Representation
(AMR) formalism. We construct mean-
ing representation graphs for the given
text and for each question-answer pair by
merging the AMRs of comprising sen-
tences using cross-sentential phenomena
such as coreference and rhetorical struc-
tures. Then, we reduce machine compre-
hension to a graph containment problem.
We posit that there is a latent mapping of
the question-answer meaning representa-
tion graph onto the text meaning represen-
tation graph that explains the answer. We
present a unified max-margin framework
that learns to find this mapping (given a
corpus of texts and question-answer pairs),
and uses what it learns to answer questions
on novel texts. We show that this approach
leads to state of the art results on the task.

1 Introduction

Learning to efficiently represent and reason with
natural language is a fundamental yet long-
standing goal in NLP. This has led to a series of
efforts in broad-coverage semantic representation
(or “sembanking”). Recently, AMR, a new seman-
tic representation in standard neo-Davidsonian
(Davidson, 1969; Parsons, 1990) framework has
been proposed. AMRs are rooted, labeled graphs
which incorporate PropBank style semantic roles,
within-sentence coreference, named entities and
the notion of types, modality, negation, quantifi-
cation, etc. in one framework.

In this paper, we describe an approach to use
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Text: ... Katie also has a dog, but he does not like Bows. ... His name is Sammy. ...

Hypothesis: Sammy is the name of Katie’s dog.
Question: What is the name of Katie’s dog. Answer: Sammy

Figure 1: Example latent answer-entailing structure from the MCTest
dataset. The question and answer candidate are combined to generate a hy-
pothesis. This hypothesis is AMR parsed to construct a hypothesis meaning
representation graph after some post-processing (§ 2.1). Similar processing
is done for each sentence in the passage as well. Then, a subset (not neces-
sarily contiguous) of these sentence meaning representation graphs is found.
These representation subgraphs are further merged using coreference informa-
tion, resulting into a structure called the relevant text snippet graph. Finally, the
hypothesis meaning representation graph is aligned to the snippet graph. The
dashed red lines show node alignments, solid red lines show edge alignments,
and thick solid black arrow shows the rhetorical structure label (elaboration).

AMR for the task of machine comprehension. Ma-
chine comprehension (Richardson et al., 2013)
evaluates a machine’s understanding by posing a
series of multiple choice reading comprehension
tests. The tests are unique as the answer to each
question can be found only in its associated texts,
requiring us to go beyond simple lexical solutions.
Our approach models machine comprehension as
an extension to textual entailment, learning to out-
put an answer that is best entailed by the pas-
sage. It works in two stages. First, we construct
a meaning representation graph for the entire pas-
sage (§ 2.1) from the AMR graphs of compris-
ing sentences. To do this, we account for cross-
sentence linguistic phenomena such as entity and
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Figure 2: The AMR parse for the hypothesis in Figure 1. The person nodes
are merged to achieve the hypothesis meaning representation graph.

event coreference, and rhetorical structures. A
similar meaning representation graph is also con-
structed for each question-answer pair. Once we
have these graphs, the comprehension task hence-
forth can be reduced to a graph containment prob-
lem. We posit that there is a latent subgraph of
the text meaning representation graph (called snip-
pet graph) and a latent alignment of the question-
answer graph onto this snippet graph that entails
the answer (see Figure 1 for an example). Then,
we propose a unified max-margin approach (§ 2.2)
that jointly learns the latent structure (subgraph
selection and alignment) and the QA model. We
evaluate our approach on the MCTest dataset and
achieve competitive or better results than a number
of previous proposals for this task.

2 The Approach

2.1 The Meaning Representation Graphs

We construct the meaning representation graph us-
ing individual sentences AMR graphs and merging
identical concepts (using entity and event corefer-
ence). First, for each sentence AMR, we merge
nodes corresponding to multi-word expressions
and nodes headed by a date entity (“date-entity”),
or a named entity (“name”) or a person entity
(“person”). For example, the hypothesis meaning
representation graph in Figure 1 was achieved by
merging the AMR parse shown in Figure 2.

Next, we select the subset of sentence AMRs
corresponding to sentences needed to answer the
question. This step uses cross-sentential phe-
nomena such as rhetorical structures1 and en-
tities/event coreference. The coreferent enti-
ties/event mentions are further merged into one
node resulting in a graph called the relevant text
snippet graph. A similar process is also per-

1Rhetorical structure theory (Mann and Thompson, 1988)
tells us that sentences with discourse relations are related to
each other. Previous works in QA (Jansen et al., 2014) have
shown that these relations can help us answer certain kinds of
questions. As an example, the “cause” relation between sen-
tences in the text can often give cues that can help us answer
“why” or “how” questions. Hence, the passage meaning rep-
resentation also remembers RST relations between sentences.

formed with the hypothesis sentences (generated
by combining the question and answer candidate)
as shown in Figure 1.

2.2 Max-Margin Solution

For each question qi ∈ Q, let ti be the corre-
sponding passage text and Ai = {ai1, . . . , aim}
be the set of candidate answers to the question.
Our solution casts the machine comprehension
task as a textual entailment task by converting
each question-answer candidate pair (qi, aij) into
a hypothesis statement hij . We use the question
matching/rewriting rules described in Cucerzan
and Agichtein (2005) to get the hypothesis state-
ments. For each question qi, the machine com-
prehension task reduces to picking the hypothe-
sis ĥi that has the highest likelihood of being en-
tailed by the text ti among the set of hypotheses
hi = {hi1, . . . , him} generated for the question
qi. Let h∗i ∈ hi be the hypothesis corresponding
to the correct answer.

As described, we use subgraph matching to help
us model the inference. We assume that the se-
lection of sentences to generate the relevant text
snippet graph and the mapping of the hypothe-
sis meaning representation graph onto the passage
meaning representation graph is latent and infer
it jointly along with the answer. We treat it as a
structured prediction problem of ranking the hy-
pothesis set hi such that the correct hypothesis h∗i
is at the top of this ranking. We learn a scoring
function Sw(t, h, z) with parameter w such that
the score of the correct hypothesis h∗i and corre-
sponding best latent structure z∗i is higher than the
score of the other hypotheses and corresponding
best latent structures. In a max-margin fashion, we
want that Sw(ti, h

∗
i , z
∗
i ) > S(ti, hij , zij) + 1− ξi

for all hj ∈ h \ h∗ for some slack ξi. Writing the
relaxed max margin formulation:

min
||w||

1

2
||w||22 + C

∑
i

max
zij ,hij∈hi\h∗i

Sw(ti, hij , zij) + ∆(h∗i , hij)

−C
∑

i

Sw(ti, h
∗
i , z∗i ) (1)

We use 0-1 cost, i.e. ∆(h∗i , hij) = 1(h∗i 6=
hij). If the scoring function is convex then this
objective is in concave-convex form and hence
can be solved by the concave-convex program-
ming procedure (CCCP) (Yuille and Rangara-
jan, 2003). We assume the scoring function to
be linear:Sw(t, h, z) = wTψ(t, h, z). Here,
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ψ(t, h, z) is a feature map discussed later. The
CCCP algorithm essentially alternates between
solving for z∗i , zij ∀j s.t. hij ∈ hi \ h∗i and w
to achieve a local minima. In the absence of in-
formation regarding the latent structure z we pick
the structure that gives the best score for a given
hypothesis i.e. arg maxz Sw(t, h, z).

2.3 Scoring Function and Inference
Now, we define the scoring function Sw(t, h, z).
Let the hypothesis meaning representation graph
be G′ = (V ′, E′). Our latent structure z decom-
poses into the selection (zs) of relevant sentences
that lead to the text snippet graph G, and the map-
ping (zm) of every node and edge in G′ onto G.
We define the score such that it factorizes over
the nodes and edges in G′. The weight vector w
also has three components ws, wv and we corre-
sponding to the relevant sentences selection, node
matches and edge matches respectively. An edge
in the graph is represented as a triple (v1, r, v2)
consisting of the enpoint vertices and relation r.

Sw(t, h, z) = wT
s f(G′, G, t, h, zs)

+
∑

v′∈V ′
wT

v f(v′, zm(v′)) +
∑

e′∈E′
wT

e f(e′, zm(e′))

Here, t is the text corresponding to the hypoth-
esis h, and f are parts of the feature map ψ to be
described later. z(v′) maps a node v′ ∈ V ′ to a
node in V . Similarly, z(e′) maps an edge e′ ∈ E′
to an edge in E.

Next, we describe the inference procedure i.e.
how to select the structure that gives the best score
for a given hypothesis. The inference is per-
formed in two steps: The first step selects the
relevant sentences from the text. This is done
by simply maximizing the first part of the score:
zs = arg maxzs

wT
s f(G′, G, t, h, zs). Here, we

only consider subsets of 1, 2 and 3 sentences as
most questions can be answered by 3 sentences
in the passage. The second step is formulated as
an integer linear program by rewriting the scoring
function. The ILP objective is:

∑
v′∈V ′

∑
v∈V

zv′,vw
T
v f(v′, v) +

∑
e′∈E′

∑
e∈E

ze′,ew
T
e f(e′, e)

Here, with some abuse of notation, zv′,v and
ze′,e are binary integers such that zv′,v = 1 iff z
maps v′ onto v else zv′,v = 0. Similarly, ze′,e = 1
iff z maps e′ onto e else ze′,e = 0. Additionally,
we have the following constrains to our ILP:

• Each node v′ ∈ V ′ (or each edge e′ ∈ E′) is
mapped to exactly one node v ∈ V (or one
edge e ∈ E). Hence:

∑
v∈V zv′,v = 1 ∀v′

and
∑

e∈E ze′,e = 1 ∀e′

• If an edge e′ ∈ E′ is mapped to an edge
e ∈ E, then vertices (v1

e′ , v
2
e′) that form the

end points of e′ must also be aligned to ver-
tices (v1

e , v
2
e) that form the end points of e.

Here, we note that AMR parses also have in-
verse relations such as “arg0-of”. Hence, we
resolve this with a slight modification. If nei-
ther or both relations (corresponding to edges
e′ and e) are inverse relations (case 1), we en-
force that v1

e′ align with v1
e and v2

e′ align with
v2
e . If exactly one of the relations is an in-

verse relation (case 2), we enforce that v1
e′

align with v2
e and v2

e′ align with v1
e . Hence,

we introduce the following constraints:

ze′e ≤ zv1
e′v

1
e

and ze′e ≤ zv2
e′v

2
e
∀e′.e in case 1

ze′e ≤ zv1
e′v

2
e

and ze′e ≤ zv2
e′v

1
e
∀e′.e in case 2

2.4 Features

Our feature function ψ(t, h, z) decomposes into
three parts, each corresponding to a part of the la-
tent structure.

The first part corresponds to relevant sentence
selection. Here, we include features for match-
ing local neighborhoods in the sentence subset and
the hypothesis: features for matching bigrams, tri-
grams, dependencies, semantic roles, predicate-
argument structure as well as the global syntac-
tic structure: a graph kernel for matching AMR
graphs of entire sentences (Srivastava and Hovy,
2013). Before computing the graph kernel, we re-
verse all inverse relation edges in the AMR graph.
Note that if a sentence subset contains the answer
to the question, it should intuitively be similar to
the question as well as to the answer. Hence,
we add features that are the element-wise prod-
uct of features for the subset-question match and
subset-answer match. In addition to features for
the exact word/phrase match of the snippet and the
hypothesis, we also add features using two para-
phrase databases: ParaPara (Chan et al., 2011) and
DIRT (Lin and Pantel, 2001). These databases
contain paraphrase rules of the form string1 →
string2. ParaPara rules were extracted through
bilingual pivoting and DIRT rules were extracted
using the distributional hypothesis. Whenever we
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have a substring in the text snippet that can be
transformed into another using any of these two
databases, we keep match features for the sub-
string with a higher score (according to the cur-
rent w) and ignore the other substring. Finally,
we also have features corresponding to the RST
(Mann and Thompson, 1988) links to enable infer-
ence across sentences. RST tells us that sentences
with discourse relations are related to each other
and can help us answer certain kinds of questions
(Jansen et al., 2014). For example, the “cause”
relation between sentences in the text can often
give cues that can help us answer “why” or “how”
questions. Hence, we have additional features -
conjunction of the rhetorical structure label from a
RST parser and the question word as well.

The second part corresponds to node matches.
Here, we have features for (a) Surface-form match
(Edit-distance), and (b) Semantic word match
(cosine similarity using SENNA word vectors
(Collobert et al., 2011) and “Antonymy” ‘Class-
Inclusion’ or ‘Is-A’ relations using Wordnet).

The third part corresponds to edge matches. Let
the edges be e = (v1, r, v2) and e′ = (v′1, r′, v′2)
for notational convenience. Here, we introduce
two features based on the relations - indicator that
the two relations are the same or inverse of each
other, indicator that the two relations are in the
same relation category – categories as described
in Banarescu et al. (2013). Then, we introduce
a number of features based on distributional rep-
resentation of the node pairs. We compute three
vertex vector compositions (sum, difference and
product) of the nodes for each edge proposed in
recent representation learning literature in NLP
(Mitchell and Lapata, 2008; Mikolov et al., 2013)
i.e. v1 � v2 and v′1 � v′2 for � = {+,−,×}.
Then, we compute the cosine similarities of the
resulting compositions producing three features.
Finally we introduce features based on the struc-
tured distributional semantic representation (Erk
and Padó, 2008; Baroni and Lenci, 2010; Goyal
et al., 2013) which takes the relations into account
while performing the composition. Here, we use a
large text corpora (in our experiments, the English
Wikipedia) and construct a representation matrix
M (r) ⊂ V × V for every relation r (V is the
vocabulary) where, the ijth element M (r)

ij has the
value log(1+x) where x is the frequency for the ith

and jth vocabulary items being in relation r in the
corpora. This allows us to compose the node and

relation representations and compare them. Here
we compute the cosine similarity of the compo-
sitions (v1)TM (r) and (v′1)TM (r′), the compo-
sitions M (r)v2 and M (r′)v′2 and their repective
sums (v1)TM (r) + M (r)v2 and (v′1)TM (r′) +
M (r′)v′2 to get three more features.

2.5 Negation and Multi-task Learning

Next, we borrow two ideas from Sachan et al.
(2015) namely, negation and multi-task learning,
treating different question types in the machine
comprehension setup as different tasks.

Handling negation is important for our model
as facts align well with their negated versions.
We use a simple heuristic. During training, if we
detect negation (using a set of simple rules that
test for presence of negation words (“not”, “n’t”,
etc.)), we flip the corresponding constraint, now
requiring that the correct hypothesis to be ranked
below all the incorrect ones. During test phase if
we detect negation, we predict the answer corre-
sponding to the hypothesis with the lowest score.

QA systems often include a question classifica-
tion component that divides the questions into se-
mantic categories based on the type of the ques-
tion or answers expected. This allows the model
to learn question type specific parameters when
needed. We experiment with three task classifi-
cations proposed by Sachan et al. (2015). First
is QClassification, which classifies the question,
based on the question word (what, why, what,
etc.). Next is the QAClassification scheme, which
classifies questions into different semantic classes
based on the possible semantic types of the an-
swers sought. The third scheme, TaskClassifica-
tion classifies the questions into one of 20 subtasks
for Machine Comprehension proposed in Weston
et al. (2015). We point the reader to Sachan et al.
(2015) for details on the multi-task model.

3 Experiments

Datasets: We use MCTest-500 dataset (Richard-
son et al., 2013), a freely available set of 500 sto-
ries (300 train, 50 dev and 150 test) and associated
questions to evaluate our model. Each story in
MCTest has four multiple-choice questions, each
with four answer choices. Each question has ex-
actly one correct answer. Each question is also
annotated as ‘single’ or ‘multiple’. The questions
annotated ‘single’ require just one sentence in the
passage to answer them. For ‘multiple’ questions
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it should not be possible to find the answer to the
question with just one sentence of the passage. In a
sense, ‘multiple’ questions are harder than ‘single’
questions as they require more complex inference.
We will present the results breakdown for ‘single’
or ‘multiple’ category questions as well.
Baselines: We compare our approach to the fol-
lowing baselines: (1-3) The first three baselines
are taken from Richardson et al. (2013). SW and
SW+D use a sliding window and match a bag of
words constructed from the question and the can-
didate answer to the text. RTE uses textual en-
tailment by selecting the hypothesis that has the
highest likelihood of being entailed by the pas-
sage. (4) LEX++, taken from Smith et al. (2015)
is another lexical matching method that takes
into account multiple context windows, question
types and coreference. (5) JACANA uses an off
the shelf aligner and aligns the hypothesis state-
ment with the passage. (6-7) LSTM and QANTA,
taken from Sachan et al. (2015), use neural net-
works (LTSMs and Recursive NNs, respectively).
(8) ATTENTION, taken from Yin et al. (2016),
uses an attention-based convolutional neural net-
work. (9) DISCOURSE, taken from Narasimhan
and Barzilay (2015), proposes a discourse based
model. (10-14) LSSVM, LSSVM+Negation,
LSSVM+Negation (MultiTask), taken from Sachan
et al. (2015) are all discourse aware latent struc-
tural svm models. LSSVM+Negation accounts
for negation. LSSVM+Negation+MTL further in-
coporates multi-task learning based on question
types. Here, we have three variants of multitask
learners based on the three question classification
strategies. (15) Finally, SYN+FRM+SEM, taken
from Wang et al. (2015) proposes a framework
with features based on syntax, frame semantics,
coreference and word embeddings.
Results: We compare our AMR subgraph contain-
ment approach2 where we consider our modifica-
tions for negation and multi-task learning as well
in Table 1. We can observe that our models have
a comparable performance to all the baselines in-
cluding the neural network approaches and all pre-
vious approaches proposed for this task. Further,
when we incorporate multi-task learning, our ap-
proach achieves the state of the art. Also, our ap-
proaches have a considerable improvement over
the baselines for ‘multiple’ questions. This shows

2We tune the SVM parameter C on the dev set. We use
Stanford CoreNLP, HILDA parser (Feng and Hirst, 2014) and
JAMR (Flanigan et al., 2014) for preprocessing.

Single Multiple All

A
M

R

Subgraph 67.28 65.24 66.16
Subgraph+Negation 69.48 66.46 67.83

+M
T

L QClassification 70.59 67.99 69.17
QAClassification 71.32 68.29 69.67

TaskClassification 72.05 68.90 70.33

B
as

el
in

es

SW 54.56 54.04 54.28
SW+D 62.99 58.00 60.26
RTE 69.85 42.71 55.01

LEX++ 69.12 63.34 65.96
JACANA Aligner 58.82 54.88 56.67

LSTM 62.13 58.84 60.33
QANTA 63.23 59.45 61.00

ATTENTION 54.20 51.70 52.90
DISCOURSE 68.38 59.90 63.75

LSSVM 61.12 66.67 64.15
LSSVM+Negation 63.24 66.15 64.83

+M
T

L QClassification 64.34 66.46 65.50
QAClassification 66.18 67.37 66.83

TaskClassification 67.65 67.99 67.83
SYN+FRM+SEM 72.05 67.94 69.94

Table 1: Comparison of variations of our method against several baselines on
the MCTest-500 dataset. The table shows accuracy on the test set of MCTest-
500. All differences between the baselines (except SYN+FRM+SEM) and our
approaches, and the improvements due to negation and multi-task learning are
significant (p < 0.05) using the two-tailed paired T-test.

the benefit of our latent structure that allows us to
combine evidence from multiple sentences. The
negation heuristic helps significantly, especially
for ‘single’ questions (majority of negation cases
in the MCTest dataset are for the “single” ques-
tions). The multi-task method which performs a
classification based on the subtasks for machine
comprehension defined in Weston et al. (2015)
does better than QAClassification that learns the
question answer classification. QAClassification
in turn performs better than QClassification that
learns the question classification only.

These results, together, provide validation for
our approach of subgraph matching over mean-
ing representation graphs, and the incorporation of
negation and multi-task learning.

4 Conclusion

We proposed a solution for reading comprehen-
sion tests using AMR. Our solution builds inter-
mediate meaning representations for passage and
question-answers. Then it poses the comprehen-
sion task as a subgraph matching task by learn-
ing latent alignments from one meaning represen-
tation to another. Our approach achieves compet-
itive or better performance than other approaches
proposed for this task. Incorporation of negation
and multi-task learning leads to further improve-
ments establishing it as the new state-of-the-art.

490



References
[Banarescu et al.2013] Laura Banarescu, Claire Bonial,

Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha
Palmer, and Nathan Schneider. 2013. Abstract
meaning representation for sembanking. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 178–186,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

[Baroni and Lenci2010] Marco Baroni and Alessandro
Lenci. 2010. Distributional memory: A general
framework for corpus-based semantics. Computa-
tional Linguistics, 36(4):673–721.

[Chan et al.2011] Tsz Ping Chan, Chris Callison-
Burch, and Benjamin Van Durme. 2011. Rerank-
ing bilingually extracted paraphrases using mono-
lingual distributional similarity. In Proceedings of
the GEMS 2011 Workshop on GEometrical Models
of Natural Language Semantics, pages 33–42.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
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Abstract

Cross-lingual word embeddings are used
for cross-lingual information retrieval or
domain adaptations. In this paper, we
extend Eigenwords, spectral monolin-
gual word embeddings based on canoni-
cal correlation analysis (CCA), to cross-
lingual settings with sentence-alignment.
For incorporating cross-lingual informa-
tion, CCA is replaced with its general-
ization based on the spectral graph em-
beddings. The proposed method, which
we refer to as Cross-Lingual Eigenwords
(CL-Eigenwords), is fast and scalable for
computing distributed representations of
words via eigenvalue decomposition. Nu-
merical experiments of English-Spanish
word translation tasks show that CL-
Eigenwords is competitive with state-
of-the-art cross-lingual word embedding
methods.

1 Introduction

There have been many methods proposed for word
embeddings. Neural network based models are
popular, and one of the most major approaches
is the skip-gram model (Mikolov et al., 2013b),
and some extended methods have also been devel-
oped (Levy and Goldberg, 2014a; Lazaridou et al.,
2015). The skip-gram model has many interest-
ing syntactic and semantic properties, and it can
be seen as the factorization of a word-context ma-
trix whose elements represent pointwise mutual
information (Levy and Goldberg, 2014b). How-
ever, word embeddings based on neural networks
(without neat implementation) can be very slow
in general, and it is sometimes difficult to under-
stand how they work. Recently, a simple spectral
method, called Eigenwords, for word embeddings
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Figure 1: PCA projections (PC1 and PC2) of CL-
Eigenwords of countries (bold) and its capitals
(italic) in Spanish (red) and English (blue). Word
vectors of the two languages match quite well,
although they are computed using sentence-level
alignment without knowing word-level alignment.
100-dim word representations are used for PCA
computation.

is proposed (Dhillon et al., 2012; Dhillon et al.,
2015). It is based on canonical correlation anal-
ysis (CCA) for computing word vectors by maxi-
mizing correlations between words and their con-
texts. Eigenword algorithms are fast and scalable,
yet giving good performance comparable to neural
network approaches for capturing the meaning of
words from their context.

The skip-gram model, originally proposed for
monolingual corpora, has been extended to cross-
lingual settings. Given two vector representa-
tions of two languages, a linear transformation be-
tween the two spaces is trained from a set of word
pairs for translation task (Mikolov et al., 2013a),
while other researchers use CCA for learning lin-
ear projections to a common vector space where
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translation pairs are strongly correlated (Faruqui
and Dyer, 2014). These methods require word-
alignment in the training data, while some multi-
lingual corpora have only coarse information such
as a set of sentence pairs or paragraph pairs. Re-
cently, extensions of the skip-gram model requir-
ing only sentence-alignment have been developed
by introducing cross-lingual losses in the objective
of the original models (Gouws et al., 2015; Coul-
mance et al., 2015; Shi et al., 2015).

In this paper, instead of the skip-gram model,
we extend Eigenwords (Dhillon et al., 2015)
to cross-lingual settings with sentence-alignment.
Our main idea is to replace CCA, which is applica-
ble to only two different kinds of data, with a gen-
eralized method (Nori et al., 2012; Shimodaira,
2016) based on spectral graph embeddings (Yan
et al., 2007) so that the Eigenwords can deal
with two or more languages for cross-lingual word
embeddings. Our proposed method, referred to
as Cross-Lingual Eigenwords (CL-Eigenwords),
requires only sentence-alignment for capturing
cross-lingual relationships. The method is very
simple in mathematics as well as computation; it
involves a generalized eigenvalue problem, which
can be solved by fast and scalable algorithms
such as the randomized eigenvalue decomposi-
tion (Halko et al., 2011).

Fig. 1 shows an illustrative example of cross-
lingual word vectors obtained by CL-Eigenwords.
Although only sentence-alignment is available in
the corpus, word-level translation is automatically
captured in the vector representations; the same
words (countries and capitals) in the two lan-
guages are placed in close proximity to each other;
greece is close to grecia and rome is close to roma.
In addition, the same kinds of relationships be-
tween word pairs share similar directions in the
vector space; the direction from sweden to stock-
holm is nearly parallel to the direction from finland
to helsinki.

We evaluate the word vectors obtained by
our method on the English-Spanish cross-lingual
translation task and compare the results with those
of state-of-the-art methods, showing that our pro-
posed method is competitive with those existing
methods. We use Europarl corpus for learning the
vector representation of words. Although the ex-
periments in this paper are conducted using bilin-
gual corpus, our method can be easily applied to
three or more languages.

2 Eigenwords (One Step CCA)

CCA (Hotelling, 1936) is a multivariate analysis
method for finding optimal projections of two sets
of data vectors by maximizing the correlations.
Applying CCA to pairs of raw word vector and
raw context vector, Eigenword algorithms attempt
to find low dimensional vector representations of
words (Dhillon et al., 2012). Here we explain the
simplest version of Eigenwords called One Step
CCA (OSCCA).

We have monolingual corpus consisting of T to-
kens; (ti)i=1,...,T , and the vocabulary consisting
of V word types; {vi}i=1,...,V . Each token ti is
drawn from this vocabulary. We define word ma-
trix V ∈ {0, 1}T×V whose i-th row encodes token
ti by 1-of-V representation; the j-th element is 1
if the word type of ti is vj , 0 otherwise.

Let h be the size of context window. We de-
fine context matrix C ∈ {0, 1}T×2hV whose i-th
row represents the surrounding context of token
ti with concatenated 1-of-V encoded vectors of
(ti−h, . . . , ti−1, ti+1, . . . , ti+h).

We apply CCA to T pairs of row vectors of V
and C. The objective function of CCA is con-
structed using V⊤V, V⊤C, C⊤C which rep-
resent occurrence and co-occurrence counts of
words and contexts. In Eigenwords, however, we
use CV V ∈ RV×V

+ , CV C ∈ RV×2hV
+ , CCC ∈

R2hV×2hV
+ with the following preprocessing of

these matrices before constructing the objective
function. First, centering-process of V and C is
omitted, and off-diagonal elements of C⊤C are
ignored for simplifying the computation of in-
verse matrices. Second, we take the square root
of the elements of these matrices for “squash-
ing” the heavy-tailed word count distributions. Fi-
nally, we obtain vector representations of words
as C−1/2

V V (u1, . . . , uK), where u1, . . . , uK ∈ RV

are left singular vectors of C−1/2
V V CV C C−1/2

CC cor-
responding to the K largest singular values. The
computation of SVD is fast and scalable using
recent idea of random projections (Halko et al.,
2011).

3 Cross-Lingual Eigenwords

In this section, we introduce Cross-Lingual
Eigenwords (CL-Eigenwords), a novel method
for cross-lingual word embeddings. Suppose
that we have parallel corpora that contain L lan-
guages. Schematic diagrams of Eigenwords and
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Figure 2: Eigenwords are CCA-based spectral
monolingual word embeddings. CL-Eigenwords
are CDMCA-based spectral cross-lingual word
embeddings, where the two (or more) languages
are linked by sentence-alignment.

CL-Eigenwords (with L = 2) are shown in Fig. 2.
In the same way as the monolingual Eigen-

words, we denote the word matrix and the context
matrix for ℓ-th language by V(ℓ) ∈ RT (ℓ)×V (ℓ)

+ and

C(ℓ) ∈ RT (ℓ)×2h(ℓ)V (ℓ)

+ respectively, where V (ℓ) is
the size of vocabulary, T (ℓ) is the number of to-
kens, and h(ℓ) is the size of context window. There
are D sentences (or paragraphs) in the multilin-
gual corpora, and each token is included in one
of the sentences. The sentence-alignment is repre-
sented in the matrix J(ℓ) ∈ RT (ℓ)×D

+ whose (i, j)-
element J

(ℓ)
i,j is set to 1 if the i-th token t

(ℓ)
i of ℓ-th

language corpus comes from the j-th sentence or
0 otherwise. We also define document matrix D
whose j-th row encodes j-th sentence by 1-of-D
representation; D = ID, where ID represents D-
dimensional identity matrix.

The goal of CL-Eigenwords is to construct vec-
tor representations of words of two (or more)
languages from multilingual corpora at the same
time. This problem is formulated as an example
of Cross-Domain Matching Correlation Analysis
(CDMCA) (Shimodaira, 2016), which deals with
many-to-many relationships between data vectors
from multiple sources. CDMCA is based on
the spectral graph embeddings (Yan et al., 2007),
and attempts to find optimal linear projections of
data vectors so that associated transformed vec-
tors are placed in close proximity to each other.
The strength of association between two vectors
is specified by a nonnegative real value called
matching weight. Since CDMCA includes CCA

and a variant of Latent Semantic Indexing (LSI)
(Deerwester et al., 1990) as special cases, CL-
Eigenwords can be interpreted as LSI-equipped
Eigenwords (See Appendix).

In CL-Eigenwords, the data vectors are given
as v

(ℓ)
i , c

(ℓ)
i ,di, namely, the i-th row vectors of

V(ℓ),C(ℓ),D, respectively. The matching weights
between row vectors of V(ℓ) and C(ℓ) are speci-
fied by the identity matrix IT (ℓ) because the data
vectors are in one-to-one correspondence. On the
other hand, the matching weights between row
vectors of V(ℓ) and D as well as those between
C(ℓ) and D are specified by J̃

(ℓ)
= b(ℓ)J(ℓ), the

sentence-alignment matrix multiplied by a con-
stant b(ℓ). Then we will find linear transformation
matrices A(ℓ)

V ,A(ℓ)
C ,AD, (ℓ = 1, 2, . . . , L) to K-

dimensional vector space by minimizing the ob-
jective function

L∑
ℓ=1

T (ℓ)∑
i=1

∥v(ℓ)
i A(ℓ)

V − c
(ℓ)
i A(ℓ)

C ∥2
2

+
L∑

ℓ=1

T (ℓ)∑
i=1

D∑
j=1

J̃
(ℓ)
i,j ∥v(ℓ)

i A(ℓ)
V − djAD∥2

2

+
L∑

ℓ=1

T (ℓ)∑
i=1

D∑
j=1

J̃
(ℓ)
i,j ∥c(ℓ)

i A(ℓ)
C − djAD∥2

2 (1)

with a scale constraint for projection matrices.
Note that the first term in (1) is equivalent to that
of CCA between words and contexts, namely the
objective of monolingual Eigenwords, and there-
fore word vectors of two languages are obtained
as row vectors of A(ℓ)

V (ℓ = 1, 2, . . . , L).
Hereafter, we assume L = 2 for notational sim-

plicity. A generalization to the case L > 2 is
straightforward; redefine X, W, A below by re-
peating the submatrices, such as V(ℓ) and C(ℓ), for
L times. For solving the optimization problem, we
define

X =


V(1) O O O O

O C(1) O O O

O O V(2) O O

O O O C(2) O
O O O O D

 ,

W =


O IT (1) O O J̃

(1)

IT (1) O O O J̃
(1)

O O O IT (2) J̃
(2)

O O IT (2) O J̃
(2)

J̃
(1)⊤

J̃
(1)⊤

J̃
(2)⊤

J̃
(2)⊤

O

 ,

A⊤ = (A(1)⊤
V ,A(1)⊤

C ,A(2)⊤
V ,A(2)⊤

C ,A⊤
D).
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1 – 1000 1 – 1000 5001 – 6000 5001 – 6000
es→ en en→ es es→ en en→ es

Method Time [min] P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5
Edit distance - 29.1 37.8 20.6 34.4 28.5 40.0 26.4 33.5
BilBOWA (40 dim.) ∗ 4.6 46.7 59.6 43.6 56.4 44.6 53.6 49.4 58.7
BilBOWA (100 dim.) ∗ 7.5 43.3 55.9 36.8 49.0 43.6 53.3 48.6 57.9
BilBOWA (200 dim.) ∗ 11.6 38.8 52.2 29.7 43.2 43.3 52.0 47.3 57.2
CL-LSI (40 dim.) 1.4 45.9 54.8 46.9 55.8 31.6 38.5 40.7 45.1
CL-LSI (100 dim.) 2.4 51.7 62.9 48.5 61.8 41.6 49.8 42.8 49.1
CL-LSI (200 dim.) 5.1 55.2 66.5 50.7 65.5 45.5 54.7 45.6 51.9
CL-Eigenwords (40 dim.) 9.5 54.7 66.2 53.3 65.7 40.3 49.2 44.7 50.0
CL-Eigenwords (100 dim.) 19.6 57.7 71.3 54.9 70.3 47.9 59.0 49.3 54.6
CL-Eigenwords (200 dim.) 37.5 58.7 72.4 56.2 72.2 51.6 62.4 50.6 55.7

Table 1: Computational times (in minutes) and word translation accuracies (in percent, higher is better)
evaluated by Precision@n using the 1,000 test words (the 1st to 1,000th most frequent words or the
5,001st to 6,000th most frequent words). Shown are for Spanish (es) to English (en) translation and
for English (en) to Spanish (es) translation. ∗ BilBOWA is executed on 3 threads, while CL-LSI and
CL-Eigenwords are executed on a single thread.

Also define H = X⊤WX, G = X⊤MX, M =
diag(W1). Then the optimization problem (1)
is equivalent to maximizing Tr(A⊤HA) with a
scale constraint A⊤GA = IK . Following the
Eigenwords implementation (Dhillon et al., 2015),
we replace H,G with H, G by ignoring the non-
diagonal elements of G and taking the square root
of elements in H,G. The optimization problem
is solved as a generalized eigenvalue problem, and
the word representations, as well as those for con-
texts and sentences, are obtained as row vectors
of Â = G−1/2(u1, . . . , uK), where u1, . . . , uK

are eigenvectors of (G−1/2)⊤HG−1/2 for the K
largest eigenvalues. We choose K so that all the
K eigenvalues are positive. As in the case of
monolingual Eigenwords, we can exploit fast im-
plementations such as the randomized eigenvalue
decomposition (Halko et al., 2011); our compu-
tation in the experiments is only approximation
based on the low-rank factorization with rank 2K.

For measuring similarities between two word
vectors x, y ∈ RK , we use the weighted cosine
similarity

sim(x,y) = (∥x∥2 · ∥y∥2)
−1

K∑
i=1

λixiyi,

where λi is the i-th largest eigenvalue.

4 Experiments

The implementation of our method is available on
GitHub1. Following the previous works (Mikolov
et al., 2013a; Gouws et al., 2015), we use only

1https://github.com/shimo-lab/kadingir

the first 500K lines of English-Spanish sentence-
aligned parallel corpus of Europarl (Koehn, 2005)
for numerical experiments.

4.1 Word Translation Tasks
Experiments are performed in similar settings
as the previous works based on the skip-gram
model (Mikolov et al., 2013a; Gouws et al., 2015).
We extract 1,000 test words with frequency rank
1–1000 or 5001–6000 from the source language,
and translate these words to the target language
using Google Translate, assuming they are the cor-
rect translations. Then, we evaluate the transla-
tion accuracies of each method with precision@n
as the fraction of correct translations for the test
words being in the top-n words of the target lan-
guage returned by each method.

4.2 Baseline Systems
We compare CL-Eigenwords with the following
three methods.

Edit distance Finding the nearest words mea-
sured by Levenshtein distance.

CL-LSI Cross-Language LSI (CL-LSI) (Littman
et al., 1998) is not originally for word embed-
dings. However, since this method can be used for
cross-lingual information retrieval, we select it as
one of our baselines. For each language, we con-
struct the term-document matrix of size V (ℓ) ×D
whose (i, j)-element represents the frequency of
i-th word in j-th sentence. Then LSI is applied to
the concatenated matrix of size (V (1)+V (2))×D.

BilBOWA BilBOWA (Gouws et al., 2015) is one
of the state-of-the-art methods for cross-lingual
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word embeddings based on the skip-gram model.
We obtain vector representations of words using
publicly available implementation.2

4.3 Results

In CL-Eigenwords, vocabulary size V (1) =
V (2) = 104, window size h(1) = h(2) = 2, the
constant b(1) = b(2) = 103. The dimensional-
ity of vector representations is K = 40, 100, or
200. Similarities of two vector representations
are measured by the unweighted cosine similar-
ity in CL-LSI and BilBOWA. Our experiments
were performed on a CentOS 7.2 server with In-
tel Xeon E5-2680 v3 CPU, 256GB of RAM and
gcc 4.8.5. The computation times and the result
accuracies of word translation tasks are shown in
Table 1. We observe that CL-Eigenwords is com-
petitive with BilBOWA and CL-LSI. In particu-
lar, CL-Eigenwords performed very well for the
most frequent words (ranks 1–1000) in this par-
ticular parameter setting. Furthermore, the com-
putation times of CL-Eigenwords are as short as
those of BilBOWA for achieving similar accura-
cies. Preliminary experiments also suggest that
CL-Eigenwords works well for semi-supervised
learning where sentence-alignment is specified
only partially; the word translation accuracies are
maintained well with aligned 240K lines and un-
aligned 260K lines.

5 Conclusion

We proposed CL-Eigenwords for incorporating
cross-lingual information into the monolingual
Eigenwords. Although our method is simple, ex-
perimental results of English-Spanish word trans-
lation tasks show that the proposed method is com-
petitive with other state-of-the-art cross-lingual
methods.
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Appendix

In this Appendix, we discuss the relationships be-
tween CL-LSI and CL-Eigenwords.

2https://github.com/gouwsmeister/
bilbowa

Figure 3: Cross-Language Latent Semantic Index-
ing (CL-LSI) does not use the context information.

Let V(1),V(2),D,J(1),J(2) be those defined in
Section 3. In CL-LSI, we consider the truncated
singular value decomposition of a word-document
matrix

B =
(
V(1)⊤J(1)

V(2)⊤J(2)

)
≈ AV ΛKA⊤

D

using the largest K singular values. Then row vec-
tors of AV are the vector representations of words
of CL-LSI.

CL-LSI can also be interpreted as an eigenvalue
decomposition of H = X⊤WX where

X =

(
V(1) O O

O V(2) O
O O D

)
,

W =

(
O O J(1)

O O J(2)

J(1)⊤ J(2)⊤ O

)

are redefined from those in Section 3 by remov-
ing submatrices related to contexts. The structure
of X and W is illustrated in Fig. 3. Similarly to
CL-Eigenwords of Section 3, but ignoring G, we
define A = (u1, . . . , uK) with the eigenvectors
of H for the largest K eigenvalues λ1, . . . , λK . It
then follows from

H =
(

O B
B⊤ O

)
that A⊤ = 2−1/2(A⊤

V ,A⊤
D) with the same AV

and AD obtained by the truncated singular value
decomposition. The eigenvalues are the same as
the singular values: diag(λ1, . . . , λK) = ΛK .
Therefore CL-LSI is interpreted as a variant of
CL-Eigenwords without the context information.
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Abstract

L2 learners often produce “ungrammat-
ical” word combinations such as, e.g.,
*give a suggestion or *make a walk. This
is because of the “collocationality” of one
of their items (the base) that limits the ac-
ceptance of collocates to express a spe-
cific meaning (‘perform’ above). We pro-
pose an algorithm that delivers, for a given
base and the intended meaning of a collo-
cate, the actual collocate lexeme(s) (make
/ take above). The algorithm exploits the
linear mapping between bases and collo-
cates from examples and generates a collo-
cation transformation matrix which is then
applied to novel unseen cases. The evalua-
tion shows a promising line of research in
collocation discovery.

1 Introduction

Collocations of the kind make [a] suggestion, at-
tend [a] lecture, heavy rain, deep thought, strong
tea, etc., are restricted lexical co-occurrences of
two syntactically bound lexical elements (Kilgar-
riff, 2006). The central role of collocations for sec-
ond language (henceforth, L2) learning has been
discussed in a series of theoretical and empiri-
cal studies (Hausmann, 1984; Bahns and Eldaw,
1993; Granger, 1998; Lewis and Conzett, 2000;
Nesselhauf, 2005; Alonso Ramos et al., 2010) and
is widely reflected in (especially English) learner
dictionaries. In computational lexicography, sev-
eral statistical measures have been used to retrieve
collocations from corpora, among them, mutual
information (Church and Hanks, 1989; Lin, 1999),
entropy (Kilgarriff, 2006), pointwise mutual infor-
mation (Bouma, 2010), and weighted pointwise

mutual information (Carlini et al., 2014).1 How-
ever, the needs of language learners go beyond
mere lists of collocations: the cited studies reveal
that language learners often build “miscolloca-
tions” (as, e.g., *give a suggestion or *have the cu-
riosity) to express the intended meaning. In other
words, they fail to observe, in Kilgarriff’s terms,
the “collocationality” restrictions of L2, which im-
ply that in language production, one of the ele-
ments of a collocation (the base) is freely cho-
sen, while the choice of the other (the collocate)
depends on the base (Hausmann, 1989; Cowie,
1994). For instance, to express the meaning of
‘do’ or ‘perform’, the base suggestion prompts
for the choice of make as collocate: make [a]
suggestion, while advice prompts for give: give
[an] advice; to express the meaning of ‘participate
in’, lecture prompts for attend: attend [a] lecture,
while operation prompts for assist: assist [an] op-
eration; to express the meaning of ‘intense’ in
connection with rain, the right collocate is heavy,
while ‘intense wind’ is strong wind. And so on.
The idiosyncrasy of collocations makes them also
language-specific. Thus, in English, you take [a]
walk, in Spanish you ‘give’ it (dar [un] paseo),
and in German and French you ‘make’ it ([einen]
Spaziergang machen, faire [une] promenade); in
English, rain is heavy, while in Spanish and Ger-
man it is ‘strong’ (fuerte lluvia/starker Regen).

In order to effectively support L2 learners, tech-
niques are thus needed that are able not only to
retrieve collocations, but also provide for a given
base (or headword) and a given semantic gloss of
a collocate meaning, the actual collocate lexeme.
In what follows, we present such a technique,
which is grounded in Mikolov et al. (2013c)’s
word embeddings, and which leverages the fact
that semantically related words in two different

1See (Pecina, 2008) for a detailed survey of such mea-
sures.
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vector representations are related by linear trans-
formation (Mikolov et al., 2013b). This prop-
erty has been exploited for word-based translation
Mikolov et al. (2013b), learning semantic hierar-
chies (hyponym-hypernym relations) in Chinese
(Fu et al., 2014), and modeling linguistic sim-
ilarities between standard (Wikipedia) and non-
standard language (Twitter) (Tan et al., 2015). In
our task, we learn a transition matrix over a small
number of collocation examples, where collocates
share the same semantic gloss, to apply then this
matrix to discover new collocates for any previ-
ously unseen collocation base. We discuss the out-
come of the experiments with ten different col-
locate glosses (including ‘do’ / ‘perform’, ‘in-
crease’, ‘decrease’, etc.), and show that for most
glosses, an approach that combines a stage of
the application of a gloss-specific transition ma-
trix with a pruning stage that is based on statisti-
cal evidence outperforms approaches that exploit
only one of these stages as well as a baseline
that is based on collocation retrieval exploiting the
embeddings property for drawing analogies, such
as, e.g., x ∼ applause ≡ heavy ∼ rain (imply-
ing x=thunderous) (Rodrı́guez-Fernández et al.,
2016).

2 Theoretical model

The semantic glosses of collocates across collo-
cations can be generalized into a generic seman-
tic typology modeled, e.g., by Mel’čuk (1996)’s
Lexical Functions. For instance, absolute, deep,
strong, heavy in absolute certainty, deep thought,
strong wind, and heavy storm can all be glossed
as ‘intense’; make, take, give, carry out in make
[a] proposal, take [a] step, give [a] hint, carry out
[an] operation can be glossed as ‘do’/‘perform’;
etc. Our goal is to capture the relation that holds
between the training bases and the collocates with
the same gloss, such that given a new base and
a gloss, we can retrieve its corresponding collo-
cate(s) with this gloss. Thus, given absolute cer-
tainty, deep thought, and strong wind as training
examples, storm as input base and ‘intense’ as
gloss, we aim at retrieving the collocate heavy. As
already mentioned above, our approach is based
on Mikolov et al. (2013b)’s linear transformation
model, which associates word vector representa-
tions between two analogous spaces. In Mikolov
et al.’s original work, one space captures words
in language L1 and the other space words in lan-

guage L2, such that the found relations are be-
tween translation equivalents. In our case, we de-
fine a base space B and a collocate space C in or-
der to relate bases with their collocates that have
the same meaning, in the same language. To ob-
tain the word vector representations in B and C,
we use Mikolov et al. (2013c)’s word2vec.2

The linear transformation model is constructed
as follows. Let T be a set of collocations whose
collocates share the semantic gloss τ , and let bti
and cti be the collocate respectively base of the
collocation ti ∈ T. The base matrix Bτ =
[bt1 , bt2 . . . btn ] and the collocate matrix Cτ =
[ct1 , ct2 . . . ctn ] are given by their corresponding
vector representations. Together, they constitute a
set of training examples Φτ , composed by vector
pairs {bti , cti}ni=1.

Φτ is used to learn a linear transformation ma-
trix Ψτ ∈ RB×C . Following the notation in (Tan et
al., 2015), this transformation can be depicted as:

BτΨτ = Cτ

We follow Mikolov et al.’s original approach
and compute Ψτ as follows:

min
Ψτ

|Φτ |∑
i=1

‖Ψτ bti − cti‖2

Hence, for any given novel base bjτ , we obtain a
novel list of ranked collocates by applying Ψτ bjτ
and filtering the resulting candidates by part of
speech and NPMI , an association measure that
is based on the pointwise mutual information, but
takes into account the asymmetry of the lexical de-
pendencies between a base and its collocate (Car-
lini et al., 2014):

NPMI =
PMI(collocate, base)
−log(p(collocate))

3 Experiments

3.1 Setup of the Experiments
We carried out experiments with 10 of the most
frequent semantic collocate glosses (listed in the
first column of Table 1). As is common in pre-
vious work on semantic collocation classification
(Moreno et al., 2013; Wanner et al., 2016), our
training set consists of a list of manually anno-
tated correct collocations. For this purpose, we

2https://code.google.com/archive/p/word2vec/
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Semantic gloss Example # instances
‘intense’ absolute certainty 586
‘weak’ remote chance 70
‘perform’ give chase 393
‘begin to perform’ take up a chase 79
‘stop performing’ abandon a chase 12
‘increase’ improve concentration 73
‘decrease’ limit [a] choice 73
‘create’, ‘cause’ pose [a] challenge 195
‘put an end’ break [the] calm 79
‘show’ exhibit [a] characteristic 49

Table 1: Semantic glosses and size of training set

randomly selected nouns from the Macmillan Dic-
tionary and manually classified their correspond-
ing collocates with respect to the glosses.3 Note
that there may be more than one collocate for each
base. Since collocations with different collocate
meanings are not evenly distributed in language
(e.g., speakers use more often collocations con-
veying the idea of ‘intense’ and ‘perform’ than
‘stop performing’), the number of instances per
gloss in our training data also varies significantly
(see Table 1).

Due to the asymmetric nature of collocations,
not all corpora may be equally suitable for the
derivation of word embedding representations for
both bases and collocates. Thus, we may hypoth-
esize that for modeling (nominal) bases, which
keep in collocations their literal meaning, a stan-
dard register corpus with a small percentage of
figurative meanings will be more adequate, while
for modeling collocates, a corpus which is poten-
tially rich in collocations is likely to be more ap-
propriate. In order to verify this hypothesis, we
carried out two different experiments. In the first
experiment, we used for both bases and collocates
vectors pre-trained on the Google News corpus
(GoogleVecs), which is available at word2vec’s
website. In the second experiment, the bases were
modeled by training their word vectors over a
2014 dump of the English Wikipedia, while for
modeling collocates, again, GoogleVecs has been
used. In other words, we assumed that Wikipedia
is a standard register corpus and thus better for
modelingB, while GoogleVecs is more suitable for
modeling C. The figures in Section 3.2 below will
give us a hint whether this assumption is correct.

3At this stage of our work, we considered only colloca-
tions that involve single word tokens for both the base and
the collocate. In other words, we did not take into account,
e.g., phrasal verb collocates such as stand up, give up or calm
down. We also left aside the problem of subcategorization in
collocations; cf., e.g., into in take [into] consideration.

For the calculation of NPMI during post-
processing, the British National Corpus (BNC)
was used.4

3.2 Evaluation

The outcome of each experiment was assessed by
verifying the correctness of each retrieved candi-
date from the top-10 candidates obtained for each
test base. A total of 10 bases was evaluated for
each gloss. The ground truth test set was created
in a similar fashion as the training set: nouns from
the Macmillan Dictionary were randomly chosen,
and their collocates manually classified in terms
of the different glosses, until a set of ten unseen
base–collocate pairs was obtained for each gloss.

For the outcome of each experiment, we com-
puted both precision (p) as the ratio of retrieved
collocates that match the targeted glosses to the
overall number of obtained collocates for each
base, and Mean Reciprocal Rank (MRR), which
rewards the position of the first correct result in a
ranked list of outcomes:

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

whereQ is a sample of experiment runs and ranki
refers to the rank position of the first relevant out-
come for the ith run. MRR is commonly used
in Information Retrieval and Question Answering,
but has also shown to be well suited for collocation
discovery; see, e.g., (Wu et al., 2010).

We evaluated four different configurations of
our technique against two baselines. The
first baseline (S1) is based on the regulari-
ties in word embeddings, with the vec(king) −
vec(man) + vec(woman) = vec(queen) exam-
ple as paramount case. In this context, we man-
ually selected one representative example for each
semantic gloss to discover collocates for novel
bases following the same schema; cf., e.g., for
the gloss ‘perform’ vec(take) − vec(walk) +
vec(suggestion) = vec(make) (where make is
the collocate to be discovered); see (Rodrı́guez-
Fernández et al., 2016) for details. The second
baseline (S2) is an extension of S1 in that its output

4As one of the reviewers pointed out, BNC might not be
optimal as a collocation reference corpus. On the one hand,
it does not capture collocations that might be idiosyncratic to
American English, and, on the other hand, it might be out-
dated (and thus not contain more recent collocations). It is
subject of future work to verify whether another representa-
tive corpus of English serves better.
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Precision (p) Mean Reciprocal Rank (MRR)
Semantic gloss S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
‘intense’ 0.08 0.43 0.04 0.50 0.24 0.72 0.18 0.35 0.35 0.15 0.66 0.82
‘weak’ 0.09 0.11 0.23 0.45 0.27 0.39 0.31 0.15 0.69 0.64 0.61 0.47
‘perform’ 0.05 0.17 0.01 0.06 0.13 0.40 0.22 0.32 0.01 0.35 0.70 0.79
‘begin to perform’ 0.03 0.08 0.24 0.30 0.22 0.38 0.17 0.05 0.61 0.64 0.70 0.71
‘stop performing’ 0.00 0.00 0.11 0.15 0.12 0.20 0.01 0.00 0.90 0.66 0.71 0.65
‘increase’ 0.16 0.53 0.31 0.43 0.35 0.53 0.47 0.72 0.78 0.86 0.86 0.90
‘decrease’ 0.07 0.05 0.28 0.25 0.27 0.28 0.18 0.04 0.57 0.38 0.37 0.30
‘create’, ‘cause’ 0.10 0.16 0.01 0.15 0.14 0.53 0.41 0.23 0.11 0.11 0.48 0.58
‘put an end’ 0.05 0.09 0.15 0.20 0.08 0.25 0.28 0.10 0.38 0.36 0.33 0.38
‘show’ 0.10 0.55 0.24 0.49 0.49 0.70 0.44 0.54 0.87 0.82 0.73 0.81

Table 2: Precision and MRR

Semantic gloss Base Retrieved candidates
‘intense’ caution extreme
‘weak’ change slight, little, modest, minor, noticeable, minimal, sharp, definite, small, big
‘perform’ calculation produce, carry
‘begin to perform’ cold catch, get, run, keep
‘stop performing’ career abandon, destroy, ruin, terminate, threaten, interrupt
‘increase’ capability enhance, increase, strengthen, maintain, extend, develop, upgrade, build, provide
‘decrease’ congestion reduce, relieve, cut, ease, combat
‘create’, ‘cause’ challenge pose
‘put an end’ ceasefire break
‘show’ complexity demonstrate, reveal, illustrate, indicate, reflect, highlight, recognize, explain

Table 3: Examples of retrieved collocations

is filtered with respect to the valid POS-patterns of
targeted collocations and NPMI .5

The four configurations of our technique that
we tested were: S3, which is based on the tran-
sition matrix for which GoogleVecs is used as ref-
erence vector space representation for both bases
and collocates; S4, which applies POS-pattern and
NPMI filters to the output of S3; S5, which is
equivalent to S3, but relies on a vector space rep-
resentation derived from Wikipedia for learning
bases projections and on a vector space represen-
tation from GoogleVecs for collocate projections;
and, finally, S6, where the S5 output is, again, fil-
tered by POS collocation patterns and NPMI .

4 Discussion

The results of the experiments are displayed in
Table 2. In general, the configurations S3 – S6
largely outperform the baselines, with the excep-
tion of the gloss ‘increase’, for which S2 equals
S6 as far as p is concerned. However, in this case
too MRR is considerably higher for S6, which
achieves the highest MMR scores for 6 and the
highest precision scores for 7 out of 10 glosses

5At the first glan ce, a state-of-the-art approach on cor-
rection of collocation errors by suggesting alternative co-
occurrences, such, as, e.g., (Dahlmeier and Ng, 2011; Park
et al., 2008; Futagi et al., 2008), might appear as a suitable
baseline. We discarded this option given that none of them
uses explicit fine-grained semantics.

(see the S6 columns in Table 2). In other words,
the full pipeline promotes good collocate candi-
dates to the first positions of the ranked result lists
and is also best in terms of accuracy.

Comparing S1, S3, S5 to S2, S4, and S6 , we
may conclude that the inclusion of a filtering mod-
ule (and, in particular, of anNPMI filtering mod-
ule) contributes substantially to the overall preci-
sion in nearly all cases (‘decrease’ being the only
exception). The comparison of the precision ob-
tained for configurations S3 and S5 also reveals
that for 7 glosses the strategy to model C and B
on different corpora paid off. This is different as
far as MRR is concerned. Further investigation is
needed for the examination of this discrepancy.

We can observe that certain glosses seem to ex-
hibit less linguistic variation, requiring a less pop-
ulated transformation function from bases to col-
locates. Consider the case of ‘show’, which gen-
erates with only 49 training pairs the second best
transition matrix, with p=0.70. It is also informa-
tive to contrast the performance on pairs of glosses
with opposite meanings, such as e.g., ‘begin to
perform’ vs. ‘stop performing’; ‘increase’ vs. ‘de-
crease’; ‘intense’ vs. ‘weak’; and finally ‘create,
cause’ vs. ‘put an end’. Better performance is
achieved consistently on the positive counterparts
(e.g. ‘begin to perform’ over ‘stop performing’).
A closer look at the output reveals that in these

502



Semantic gloss S6
‘intense’ 0.82
‘weak’ 0.45
‘perform’ 0.40
‘begin to perform’ 0.42
‘stop performing’ 0.22
‘increase’ 0.55
‘decrease’ 0.37
‘create’, ‘cause’ 0.59
‘put an end’ 0.43
‘show’ 0.85

Table 4: Precision of the coarse-grained evaluation
of the S6 configuration

cases positive glosses are persistently classified as
negative. Further research is needed to first under-
stand why this is the case and then to come up with
an improvement of the technique in particular on
the negative glosses.

The fact that for some of the glosses precision is
rather low may be taken as a hint that the proposed
technique is not suitable for the task of semantics-
oriented recognition of collocations. However, it
should be also stressed that our evaluation was
very strict: a retrieved collocate candidate was
considered as correct only if it formed a colloca-
tion with the base, and if it belonged to the tar-
get semantic gloss. In particular the first condi-
tion might be too rigorous, given that, in some
cases, there is a margin of doubt whether a com-
bination is a free co-occurrence or a collocation;
cf., e.g., huge challenge or reflect [a] concern,
which were rejected as collocations in our eval-
uation. Since for L2 learners such co-occurrences
may be also useful, we carried out a second eval-
uation in which all the suggested collocate candi-
dates that belonged to a target semantic gloss were
considered as correct, even if they did not form a
collocation.6 Cf. Table 4 for the outcome of this
evaluation for the S6 configuration. Only for ‘per-
form’ the precision remained the same as before.
This is because collocates assigned to this gloss
are support verbs (and thus void of own lexical se-
mantic content).

5 Conclusions

As already pointed out in Section 1, a substantial
amount of work has been carried out to automati-
cally retrieve collocations from corpora (Choueka,
1988; Church and Hanks, 1989; Smadja, 1993;

6Obviously, collocate candidates were considered as in-
correct if they formed incorrect collocations with the base.
Examples of such incorrect collocations are stop [the] calm
and develop [a] calculation.

Lin, 1999; Kilgarriff, 2006; Evert, 2007; Pecina,
2008; Bouma, 2010; Futagi et al., 2008; Gao,
2013). Most of this work is based on statistical
measures that indicate how likely the elements of
a possible collocation are to co-occur, while ignor-
ing the semantics of the collocations. Semantic
classification of collocations has been addressed,
for instance, in (Wanner et al., 2006; Gelbukh and
Kolesnikova., 2012; Moreno et al., 2013; Wanner
et al., 2016). However, to the best of our knowl-
edge, our work is the first to automatically retrieve
and typify collocations simultaneously. We have
illustrated our approach with 10 semantic colloca-
tion glosses. We believe that this approach is also
valid for the coverage of the remaining glosses
(Mel’čuk (1996) lists in his typology 64 glosses
in total).

Distributed vector representations (or word em-
beddings) (Mikolov et al., 2013c; Mikolov et
al., 2013a), which we use, have proven use-
ful in a plethora of NLP tasks, including se-
mantic similarity and relatedness (Huang et al.,
2012; Faruqui et al., 2015; Camacho-Collados
et al., 2015; Iacobacci et al., 2015), dependency
parsing (Duong et al., 2015), and Named Entity
Recognition (Tang et al., 2014). We show that
they also work for semantic retrieval of colloca-
tions. Only a small amount of collocations and
big unannotated corpora have been necessary to
perform the experiments. This makes our ap-
proach highly scalable and portable. Given the
lack of semantically tagged collocation resources
for most languages, our work has the potential to
become influential in the context of second lan-
guage learning. The datasets on which we per-
formed the experiments as well as the details con-
cerning the code and its use can be found at
http://www.taln.upf.edu/content/resources/765.
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Abstract

Incorporating lexical knowledge from se-
mantic resources (e.g., WordNet ) has
been shown to improve the quality of dis-
tributed word representations. This knowl-
edge often comes in the form of rela-
tional triplets (x, r, y) where words x and
y are connected by a relation type r. Ex-
isting methods either ignore the relation
types, essentially treating the word pairs
as generic related words, or employ rather
restrictive assumptions to model the rela-
tional knowledge. We propose a novel
approach to model relational knowledge
based on low-rank subspace regulariza-
tion, and conduct experiments on standard
tasks to evaluate its effectiveness.

1 Introduction

Distributed word representations, also known as
word embeddings, are low-dimensional vector
representations for words that capture semantic as-
pects (Bengio et al., 2003; Pennington et al., 2014;
Mikolov et al., 2013a). The algorithms for learn-
ing the word embeddings rely on distributional
hypothesis (Harris, 1954) that words occurring in
similar contexts tend to have similar meanings.
Word embeddings have been shown to capture
interesting linguistic regularities by simple vec-
tor arithmetic (e.g., v(king)-v(man)+v(woman)≈
v(queen)) (Mikolov et al., 2013c). They have also
been used to derive downstream features for vari-
ous NLP tasks, such as named entity recognition,
chunking, dependency parsing, sentiment analy-
sis, paraphrase detection and machine translation
(Turian et al., 2010; Dhillon et al., 2011; Bansal et
al., 2014; Maas et al., 2011; Socher et al., 2011;
Zou et al., 2013). Their promise as semantic word

representations has led to increasing research ef-
forts on improving their quality.

To this end, researchers have attempted to incor-
porate lexical knowledge into word embeddings
by using additional regularization or loss terms in
the learning objective. This lexical knowledge is
often available in the form of triplets {(wi, r, wj)},
where the words wi and wj are connected by rela-
tion type r. These methods can be broadly classi-
fied into two categories. First family of methods
use a (over-)generalized notion of similarity be-
tween words and ignore the type of relations, es-
sentially treating the two words as generic similar
words (Yu and Dredze, 2014; Faruqui et al., 2015;
Liu et al., 2015). This places an implicit restric-
tion on the types of relations that can be used with
these methods. Second family of methods model
each relation type by a distinct operator. Bordes et
al. (2013) assumed a distinct relation vector r for
every relation and minimize the distance between
the translated first word and the second word, i.e.,
d(wi + r,wj) for every triplet (wi, r, wj). Socher
et al. (2013) proposed a neural tensor network
which uses a distinct tensor operator for every re-
lation. These methods were used to learn entity
and relation embeddings from a large collection
of relation triplets for the task of knowledge base
completion. Since these methods did not use any
co-occurrence information from a text corpus, all
entities were required to appear at least once in
the training data, ruling out generalization to un-
seen entities1. More recently, Xu et al. (2014)
combined the training objective of SKIP-GRAM
(Mikolov et al., 2013a) with the training objec-
tive of (Bordes et al., 2013) to incorporate lexical

1There exists work on relation extraction and knowledge-
base completion that combines structured relation triplets and
logical rules with unstructured text using various forms of
latent variable models (Riedel et al., 2013; Chang et al., 2014;
Toutanova et al., 2015; Rocktäschel et al., 2015).
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knowledge into word embeddings. Fried and Duh
(2014) combine the training objective of (Bordes
et al., 2013) with that of neural language model
(Collobert et al., 2011) using alternating direction
method of multipliers (Boyd et al., 2011).

Constant translation model (Bordes et al., 2013;
Xu et al., 2014; Fried and Duh, 2014) (referred
as CTM from now on), although an important
step in modeling relational knowledge, makes a
rather restrictive assumption requiring all triplets
(wi, r, wj) pertaining to a relation type r to sat-
isfy wi + r ≈ wj , ∀(i, j). This restriction can
be severe when learning from a large text corpus
since vector representation of a word also needs
to respect a huge set of co-occurrence instances
with other words. CTM is also not suitable for
(i) modeling symmetric relations (e.g., synonyms,
antonyms), and (ii) modeling transitive relations
(e.g., synonyms, hypernyms). In this paper, we
propose a novel formulation for modeling the rela-
tional knowledge which addresses these issues by
relaxing the constant translation assumption and
modeling each relation by a low-rank subspace,
i.e., all the word pairs pertaining to a relation are
assumed to lie in a low-rank subspace. We demon-
strate effectiveness of the learned word represen-
tations on the tasks of knowledge-base completion
and word analogy.

2 Subspace-regularized word embedding

Although our proposed framework for relational
modeling is general enough to use with any ex-
isting word embedding method, we work with
Word2Vec model (Mikolov et al., 2013a) in this
paper for illustrating our ideas and later for em-
pirical evaluations. Word2Vec is a neural network
model trained on sequence of words and its hid-
den layer activations can be read out as the word
representations. Two variants were proposed in
(Mikolov et al., 2013a) – SKIP-GRAM, which
maximizes the log likelihood of the local context
words given the target word, and CBOW, which
maximizes the log likelihood of the target word
given its local context. More specifically, CBOW
maximizes the objective

1
T

T∑
t=1

log p(wt|wt+ct−c) =
1
T

T∑
t=1

exp(w′>t vt)∑
w∈V exp(w′>vt)

(1)

where wt+ct−c represents the words (or tokens) in
the local context window around the t’th word

(or token) and vt =
∑
−c≤i≤c,i 6=0 wt+i can be

seen as the average context vector. The vectors
w,w′ ∈ Rd denote the input and output embed-
dings for word w, respectively. The input embed-
dings are taken as the final word representations.
Negative sampling was proposed to efficiently op-
timize Eq. 1 (Mikolov et al., 2013b). We report
empirical results with CBOW since it was compu-
tationally faster than SKIP-GRAM while giving
similar results in our early explorations.

We assume access to relational knowledge in
the form of triplets Rk = {(wi, rk, wj)} ∀1 ≤
k ≤ m, where words wi and wj are connected by
relation rk and Rk is the set of all triplets corre-
sponding to relation rk with |Rk| = nk. This form
of knowledge is commonly available from Knowl-
edge Bases like WordNet (Fellbaum, 1998). Our
framework is suitable for both symmetric relations
where words can be interchanged (e.g., synonyms)
and asymmetric relations which have a directional
nature (e.g., hypernyms).

Let dij = (wj − wi) ∈ Rd denote the dif-
ference vector for the triplet (wi, rk, wj) which
points from the vector of word wi to that of word
wj . Let us construct a matrix Dk ∈ Rd×nk by
stacking the difference vectors corresponding to
all the triplets in relation rk, i.e.,

Dk = [· · ·dij · · · ]∀{(i, j) : (wi, rk, wj) ∈ Rk}.
(2)

To incorporate this relational knowledge into word
embeddings, we enforce an approximate low-rank
constraint on Dk assuming

Dk ≈ UkA>k , (3)

where Uk ∈ Rd×p, p � d is the relation ba-
sis whose linear span contains all the difference
vectors pertaining to relation rk. For p = 2, this
assumption implies that all the difference vectors
pertaining to a relation lie in a 2-D plane. For
p = 1, it reduces to Dk ≈ ukαTk , uk ∈ Rd,αk ∈
Rnk , implying that all the difference vectors for
a relation are collinear. In this paper, we mainly
study the rank-1 model (p=1) since it seems to
be a natural starting point for evaluating the idea
of subspace-regularized relational modeling. The
study of higher rank models will potentially re-
quire a careful exploration of various structural
regularizers for reconstruction matrix Ak as well
as a different evaluation scheme. We leave this
study for future work.
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Rank-1 subspace regularization can also be
motivated from the fact that word embeddings
are able to capture some linguistic regulari-
ties (Mikolov et al., 2013c) along certain direc-
tions in the vector space. For example, the dif-
ference vector for word pair (king, queen) is ap-
proximately aligned with the difference vector for
(man,woman), encoding the gender relation. The
direction of the difference vectors carries signifi-
cant information for these regularities which is ev-
ident from the success of cosine similarity metrics
in the word analogy problems (Levy et al., 2014).
CTM that assumes wi+uk = wj ∀(wi, rk, wj) ∈
R enforces an additional equal length constraint
on the difference vectors, which may be rather re-
strictive, especially when the word vectors are also
influenced by co-occurrence statistics (apart from
relational knowledge). Moreover, it may face fol-
lowing challenges in relational modeling:

• It does not have a natural interpretation
for modeling symmetric relations (e.g., syn-
onyms, antonyms) that allow interchangeabil-
ity of words in a given relation triplet (i.e.,
(wi, rk, wj) ⇐⇒ (wj , rk, wi)). Having a con-
stant translation of uk ∈ Rd from the first word
to the second word leads to contradiction.

• It is also not natural for modeling relations
with transitive property (i.e., (wi, rk, wj) ∧
(wj , rk, wl) =⇒ (wi, rk, wl)), again leading to
contradictions. Common examples of such re-
lations are synonyms and hypernyms.

The proposed rank-1 subspace relation model
naturally allows for modeling such relations by
doing away with the constant length restriction on
the difference vectors. Our empirical evaluations
verify that this relaxation indeed leads to improved
quality of word vectors with respect to capturing
linguistic regularities.

We incorporate the proposed relational model
into the learning objective for word vectors by reg-
ularizing the matrix of difference vectors towards
a rank-1 matrix. We impose a nonnegativity con-
straint on the reconstruction coefficients αk if re-
lation rk is asymmetric. This respects the unidi-
rectional nature of asymmetric relations. To en-
sure uniqueness of solution for uk and αk, we
constrain ‖uk‖2 = 1. Leaving αk completely free
can end up creating spurious relations between any
two words that are arbitrarily far but whose differ-
ence vector is directionally aligned with any of the

relation basis vectors {uk}mk=1. To avoid this, we
further impose a upper limit of c on the absolute
value of elements of αk. We minimize the follow-
ing joint objective for word vectors {wi}|V |i=1 and
relation parameters {uk,αk}mk=1:

− 1
T

T∑
t=1

log p(wt|wt+ct−c) +
λ

2 |R|
m∑
k=1

∥∥∥Dk − ukα>k
∥∥∥2

F

s.t. αk ≥ 0 ∀ asymmetric rk, ‖uk‖2 = 1, |(αk)l| ≤ c.
(4)

where Dk is the matrix of difference vectors as de-
fined earlier and λ is the regularization parameter.
The first term in the objective takes into account
the co-occurrence information text corpus while
the second term incorporates the relational knowl-
edge.

Optimizing for word vectors: We adopt parallel
asynchronous stochastic gradient descent (SGD)
with negative sampling approach of (Mikolov et
al., 2013b). The model parameters for optimiza-
tion are input embeddings (weights connecting
input and hidden layer) and output embeddings
(weights connecting hidden and output layer). In-
put embeddings are taken as the final word em-
beddings. Each computing thread works with a
predefined segment of the text corpus and updates
parameters that are stored in a shared memory. In
each gradient step of CBOW, a thread samples a tar-
get word and its local context window and updates
the parameters of the neural network. It can be
seen as sampling one of the ft(·), t = 1, 2, . . . , T
and taking a gradient step with it. A small num-
ber of random target words are also sampled for
the same context, treating them as negative ex-
amples for the gradient update. In the CBOW ar-
chitecture, representations for context words are
directly encoded as columns of the linear weight
matrix W ∈ Rd×|V | that maps input bag-of-words
layer to the hidden layer. The columns of W are
taken as the word embeddings for the correspond-
ing words in the vocabulary V . The reader is re-
ferred to (Mikolov et al., 2013b; Goldberg and
Levy, 2014) for more details on the optimization
procedure for CBOW. If a word appears in the set
of relation triplets R, our regularization term gets
activated. Since we place the regularizer only on
input embeddings, the following gradient updates
due to the regularization term act only on input
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embeddings.

wi ←− wi − η λ

|R|

 ∑
j:(wi,rk,wj)∈R

(
wi −wj + ukαkij

)

+
∑

j:(wj ,rk,wi)∈R

(
wi −wj − ukαkji

) ,
(5)

where η is the learning rate, and αkij
denotes

the element of αk corresponding to the column
of matrix Dk which contains difference vector
(wj − wi) (and similarly for αkji

). The modifi-
cations in the learning rate as the SGD progresses
are kept same as in the original implementation of
CBOW2.
Optimization for uk and αk: Instead of hav-
ing stochastic gradient updates, we adopt an
asynchronous batch update strategy for relation
basis {uk}mk=1 and reconstruction coefficients
{αk}mk=1. We launch one compute thread that
keeps solving the batch optimization problem for
{uk}mk=1 and {αk}mk=1 in an infinite loop until the
optimization for word embeddings finishes. The
batch optimization problem for a symmetric rela-
tion rk is:

min
uk,αk

∥∥∥Dk − ukα>k
∥∥∥2

F
, s.t. ‖uk‖2 = 1, |αk| ≤ c.

(6)

where Dk ∈ Rd×nk is the matrix of difference
vectors for all triplets corresponding to relation
rk as defined in Eq. 2. Without the absolute
value constraint on αk, this problem can be ex-
actly solved by SVD. We follow an alternating
optimization procedure for solving this problem.
We initialize uk to the top left singular vector of
Dk and then alternate between solving two least-
squares sub-problems for uk and αk respectively
with the corresponding constraints. For asymmet-
ric relations, there is an additional nonnegativ-
ity constraint on αk. We use projected gradient
descent to solve these constrained least-squares
problems.

3 Empirical Observations

We report preliminary evaluations of the proposed
model (termed as RELSUB) on the tasks of word
analogy and knowledge base completion. We use

2
https://code.google.com/p/word2vec/

Relation-type RELCONST RELSUB

capital-cities 48.15 59.26
currency 58.33 50.00

city-in-state 17.88 18.94
gender 44.44 50.00

similar-to 5.44 7.26
made-of 0 0

has-context 10.00 8.26
is-a 1.35 1.83

part-of 17.50 19.00
instance-of 8.40 12.98

derived-from 9.14 10.27
antonym 20.00 20.62
entails 0 4.35
causes 0 0

member-of 13.43 26.87
related-to 0 0
attribute 11.76 8.82

SEMANTIC 7.47 8.44
adjective-to-adverb 10.14 47.83

plural-verbs 61.25 71.77
plural-nouns 66.70 71.89
comparative 70.00 75.00
superlative 66.67 77.78
nationality 85.71 85.71
past-tense 42.20 66.84

present-participle 45.76 47.62
SYNTACTIC 54.88 65.38

TOTAL 24.61 29.03

Table 1: WordRep data: Accuracy on knowledge-
base completion

English Wikipedia for training which contains ap-
proximately 4.8 million articles and 2 billion to-
kens. We lowercase all the text and and tokenize
using Stanford NLP tokenizer.

We use two datasets for evaluating the proposed
method. Google word analogy data (Mikolov et
al., 2013a) contains 19544 analogy relations (14
relation types – 5 semantic, 9 syntactic) of the
form a:b::c:d constructed from 550 unique rela-
tion triplets. We use this data only for evaluation
(test phase). WordRep (Gao et al., 2014) contains
a large collection of relation triplets (44584 triplets
in total, 25 relation types – 18 semantic, 7 syntac-
tic) extracted from WordNet, Wikipedia and Dic-
tionary. For each relation type, we randomly split
the triplets in 4 : 1 ratio with larger split used for
training and smaller split used for test. We make
sure that there is no word overlap between train-
ing and test triplets. We also remove triplets con-
taining words from Google Analogy data from the
training set.

We compare the proposed RELSUB model with
two methods: (i) CBOW (Mikolov et al., 2013a),
and (ii) RELCONST which is based on constant
translation model for relations which was origi-
nally proposed in (Bordes et al., 2013) for embed-
ding knowledge-bases and was recently used by
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Relation-type CBOW RELCONST RELSUB
SEMANTIC 68.37 69.85 70.96
SYNTACTIC 66.69 65.42 65.96

TOTAL 67.48 67.43 68.22

Table 2: Google analogy data: Accuracy on word
analogy task

(Xu et al., 2014) for learning word embeddings.
Our objective for RELCONST is same as Eq. 4 ex-
cept that {αk}mk=1 are set equal to the vector of
all 1’s and norm constraint on uk are removed.
This enables us to directly test the merit of the pro-
posed rank-1 subspace relational model over that
of constant translational model in the same regu-
larization framework. Note that this objective is
similar in spirit to (Xu et al., 2014) in the sense
that it also uses a constant translation model for
relations. However, Xu et al. (Xu et al., 2014)
employ a maximum margin objective on the rela-
tion triplets as originally proposed in (Bordes et
al., 2013). It encourages the loss (measured in
terms of `2 distance) for true relation triplets to be
smaller than the loss for randomly corrupted re-
lation triplets. Instead of a maximum margin ob-
jective for relational knowledge, our model uses a
simpler regularization based objective. We could
not obtain the implementation of RC-NET (Xu et
al., 2014) due to copyright issues cited by its au-
thors. We also cannot compare with approaches
that use only knowledge-base for training (Faruqui
et al., 2015) since they do not learn or modify the
embeddings of unseen words and our evaluation
triplets do not overlap with training triplets.

We use the CBOW implementation in publicly
available Word2Vec code3 for our experiments.
Our vocabulary has 400k words and we use a
dimensionality of 300 for embeddings. For all
other parameters, we use default values that the
Word2Vec code comes with including a context
window size of 5 tokens to each side, 5 neg-
ative samples per positive sample for negative
sampling technique, etc. For both RELSUB and
RELCONST, we set the regularization parameter to
λ
|R| = 1e−4 in all our experiments. We set the up-
per limit c in Eq. 4 to 1. The parameters were not
fine tuned rigorously but these values seemed to
work reasonably well for us. We do total 5 epochs
of SGD over the text corpus for all methods.

In knowledge-base completion task, we want to
predict the missing word of a relation triplet. For a
triplet (x, r, y), we assume that x (first word) and

3
https://code.google.com/p/word2vec/

r (relation type) are observed and the task is to
predict the missing word y. We restrict the search
for the missing word to the most frequent 300k
words (75% of the vocabulary). The missing word
is predicted to be the closest word along the rank-1
subspace spanned by the relation vector (restricted
by c in Eq. 4). For RELCONST, the missing word
is predicted by translating the first word by the re-
lation vector and then searching for nearest word.
The accuracy results on WordRep data are shown
in Table 1. Relaxing the constant translation to
rank-1 subspace assumption results in significant
improvements on this task.

In the analogy task, we want to predict the miss-
ing word in an analogy tuple a:b::c:?. We use
the Google word-analogy data (Mikolov et al.,
2013a) for this evaluation. We observe consider-
able gains with RELSUB over CBOW for seman-
tic categories. The accuracy of knowledge reg-
ularized methods on syntactic categories is a lit-
tle worse than CBOW and only slightly better than
RELCONST, which is contrary to our observation
on the knowledge-base completion task. This is
due to the fact that analogy task uses the differ-
ence vector (b− a) instead of the learned relation
vector which is assumed to be unknown.

4 Concluding Remarks

We proposed a novel framework for modeling
relational knowledge in word embeddings using
rank-1 subspace regularization. Our model can
be seen as a generalization of the constant trans-
lational model for relations (Bordes et al., 2013;
Xu et al., 2014). In the future, we would like to
study the interplay between word frequencies and
the strength of regularization, and perform an ex-
haustive empirical evaluation. The study of higher
rank subspaces for relation modeling is also an im-
portant future direction.
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Abstract

We decompose a standard embedding
space into interpretable orthogonal sub-
spaces and a “remainder” subspace. We
consider four interpretable subspaces in
this paper: polarity, concreteness, fre-
quency and part-of-speech (POS) sub-
spaces. We introduce a new calculus
for subspaces that supports operations like
“−1 × hate = love” and “give me a neu-
tral word for greasy” (i.e., oleaginous).
This calculus extends analogy computa-
tions like “king−man+woman = queen”.
For the tasks of Antonym Classification
and POS Tagging our method outperforms
the state of the art. We create test sets for
Morphological Analogies and for the new
task of Polarity Spectrum Creation.

1 Introduction

Word embeddings are usually trained on an ob-
jective that ensures that words occurring in simi-
lar contexts have similar embeddings. This makes
them useful for many tasks, but has drawbacks for
others; e.g., antonyms are often interchangeable
in context and thus have similar word embeddings
even though they denote opposites. If we think
of word embeddings as members of a (commuta-
tive or Abelian) group, then antonyms should be
inverses of (as opposed to similar to) each other.
In this paper, we use DENSIFIER (Rothe et al.,
2016) to decompose a standard embedding space
into interpretable orthogonal subspaces, including
a one-dimensional polarity subspace as well as
concreteness, frequency and POS subspaces. We
introduce a new calculus for subspaces in which
antonyms are inverses, e.g., “−1 × hate = love”.
The formula shows what happens in the polarity
subspace; the orthogonal complement (all the re-

maining subspaces) is kept fixed. We show be-
low that we can predict an entire polarity spec-
trum based on the subspace, e.g., the four-word
spectrum hate, dislike, like, love. Similar to polar-
ity, we explore other interpretable subspaces and
do operations such as: given a concrete word like
friend find the abstract word friendship (concrete-
ness); given the frequent word friend find a less
frequent synonym like comrade (frequency); and
given the noun friend find the verb befriend (POS).

2 Word Embedding Transformation

We now give an overview of DENSIFIER; see
Rothe et al. (2016) for details. Let Q ∈ Rd×d

be an orthogonal matrix that transforms the orig-
inal word embedding space into a space in which
certain types of information are represented by a
small number of dimensions. The orthogonality
can be seen as a hard regularization of the trans-
formation. We choose this because we do not want
to add or remove any information from the origi-
nal embeddings space. This ensures that the trans-
formed word embeddings behave differently only
when looking at subspaces, but behave identically
when looking at the entire space. By choosing an
orthogonal and thus linear transformation we also
assume that the information is already encoded
linearly in the original word embedding. This is a
frequent assumption, as we generally use the vec-
tor addition for word embeddings.

Concretely, we learn Q such that the dimen-
sions Dp ⊂ {1, . . . , d} of the resulting space cor-
respond to a word’s polarity information and the
{1, . . . , d}\Dp remaining dimensions correspond
to non-polarity information. Analogously, the sets
of dimensions Dc, Df and Dm correspond to a
word’s concreteness, frequency and POS (or mor-
phological) information, respectively. In this pa-
per, we assume that these properties do not corre-

512



Figure 1: Illustration of the transformed embeddings. The horizontal axis is the polarity subspace.
All non-polarity information, including concreteness, frequency and POS, is projected into a two di-
mensional subspace for visualization (gray plane). A query word (bold) specifies a line parallel to the
horizontal axis. We then construct a cylinder around this line. Words in this cylinder are considered to
be part of the word spectrum.

late and therefore the ultradense subspaces do not
overlap. E.g.,Dp∩Dc = ∅. This might not be true
for other settings, e.g., sentiment and semantic in-
formation. As we are using only four properties
there is also a subspace which is in the orthogonal
complement of all trained subspaces. This sub-
space includes the not classified information, e.g.,
genre information in our case (e.g., “clunker” is a
colloquial word for “automobile”).

If ev ∈ Rd is the original embedding of word v,
the transformed representation is uv = Qev. We
use ∗ as a placeholder for polarity (p), concrete-
ness (c), frequency (f ) and POS/morphology (m)
and call d∗ = |D∗| the dimensionality of the ultra-
dense subspace of property ∗. For each ultradense
subspace, we create P ∗ ∈ Rd∗×d, an identity ma-
trix for the dimensions inD∗. Thus, the ultradense
(UD) representation u∗v ∈ Rd∗ of word v is defined
as:

u∗v := P ∗Qev (1)

For notational simplicity, u∗v will either refer to a
vector in Rd∗ or to a vector in Rd where all dimen-
sions /∈ D∗ are set to zero.

For training, the orthogonal transformation Q
we assume we have a lexicon resource. Let L∗6∼
be a set of word index pairs (v, w) with different
labels, e.g., positive/negative, concrete/abstract or
noun/verb. We want to maximize the distance for
pairs in this group. Thus, our objective is:

argmin
Q

∑
∗∈{p,c,f,m}

∑
(v,w)∈L∗6∼

−‖P ∗Q(ev − ew)‖

(2)

subject to Q being an orthogonal matrix. Another
goal is to minimize the distance of two words with
identical labels. Let L∗∼ be a set of word index
pairs (v, w) with identical labels. In contrast to
Eq. 2, we now want to minimize each distance.
Thus, the objective is given by:

argmin
Q

∑
∗∈{p,c,f,m}

∑
(v,w)∈L∗∼

‖P ∗Q(ev−ew)‖ (3)

subject toQ being an orthogonal matrix. For train-
ing Eq. 2 is weighted with α∗ and Eq. 3 with
1 − α∗. We do a batch gradient descent where
each batch contains the same number of positive
and negative examples. This means the number of
examples in the lexica – which give rise to more
negative than positive examples – does not influ-
ence the training.

3 Setup and Method

Eqs. 2/3 can be combined to train an orthogonal
transformation matrix. We use pretrained 300-
dimensional English word embeddings (Mikolov
et al., 2013) (W2V). To train the transformation
matrix, we use a combination of MPQA (Wil-
son et al., 2005), Opinion Lexicon (Hu and Liu,
2004) and NRC Emotion lexicons (Mohammad
and Turney, 2013) for polarity; BWK, a lexicon
of 40,000 English words (Brysbaert et al., 2014),
for concreteness; the order in the word embed-
ding file for frequency; and the training set of the
FLORS tagger (Schnabel and Schütze, 2014) for
POS. The application of the transformation ma-
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trix to the word embeddings gives us four sub-
spaces for polarity, concreteness, frequency and
POS. These subspaces and their orthogonal com-
plements are the basis for an embedding calculus
that supports certain operations. Here, we investi-
gate four such operations. The first operation com-
putes the antonym of word v:

antonym(v) = nn(uv − 2up
v) (4)

where nn : Rd → V returns the word whose em-
bedding is the nearest neighbor to the input. Thus,
our hypothesis is that antonyms are usually very
similar in semantics except that they differ on a
single “semantic axis,” the polarity axis.1 The sec-
ond operation is “neutral version of word v”:

neutral(v) = nn(uv − up
v) (5)

Thus, our hypothesis is that neutral words are
words with a value close to zero in the polarity
subspace. The third operation produces the polar-
ity spectrum of v:

spectrum(v) = {nn(uv + xup
v) | ∀x ∈ R} (6)

This means that we keep the semantics of the
query word fixed, while walking along the polar-
ity axis, thus retrieving different shades of polarity.
Figure 1 shows two example spectra. The fourth
operation is “word v with POS of word w”:

POSw(v) = nn(uv − um
v + um

w ) (7)

This is similar to analogies like king − man +
woman, except that the analogy is inferred by the
subspace relevant for the analogy.

We create word spectra for some manually cho-
sen words using the Google News corpus (W2V)
and a Twitter corpus. As the transformation was
orthogonal and therefore did not change the length
of a dimension, we multiply the polarity dimen-
sion with 30 to give it a high weight, i.e., paying
more attention to it. We then use Eq. 6 with a suf-
ficiently small step size for x, i.e., further reduc-
ing the step size does not increase the spectrum.
We also discard words that have a cosine distance
of more than .6 in the non-polarity space. Ta-
ble 1 shows examples. The results are highly do-
main dependent, with Twitter’s spectrum indicat-
ing more negative views of politicians than news.
While fall has negative associations, autumn’s are
positive – probably because autumn is of a higher
register in American English.

1See discussion/experiments below for exceptions

Corpus, Type Spectrum

News,
Polarity

hypocrite, politician, legislator, busi-
nessman, reformer, statesman, thinker
fall, winter, summer, spring, autumn
drunks, booze, liquor, lager, beer, beers,
wine, beverages, wines, tastings

Twitter,
Polarity

corrupt, coward, politician, journalist,
citizen, musician, representative
stalker, neighbour, gf, bf, cousin, frnd,
friend, mentor
#stupid, #problems, #homework,
#mylife, #reality, #life, #happiness

News,
Concreteness

imperialist, conflict, war, Iraq, Vietnam
War, battlefields, soldiers
love, friendship, dear friend, friends,
friend, girlfriend

News,
Frequency

redesigned, newer, revamped, new
intellect, insights, familiarity, skills,
knowledge, experience

Table 1: Example word spectra for polarity, con-
creteness and frequency on two different corpora.
Queries are bold.

dev set test set
P R F1 P R F1

Adel, 2014 .79 .65 .72 .75 .58 .66
our work .81 .90 .85 .76 .88 .82

Table 2: Results for Antonym Classification

4 Evaluation

4.1 Antonym Classification.

We evaluate on Adel and Schütze (2014)’s data;
the task is to decide for a pair of words whether
they are antonyms or synonyms. The set has 2,337
positive and negative pairs each and is split into
80% training, 10% dev and 10% test. Adel and
Schütze (2014) collected positive/negative exam-
ples from the nearest neighbors of the word em-
beddings to make it hard to solve the task using
word embeddings. We train an SVM (RBF kernel)
on three features that are based on the intuition de-
picted in Figure 1: the three cosine distances in:
the polarity subspace; the orthogonal complement;
and the entire space. Table 2 shows that improve-
ment of precision is minor (.76 vs. .75), but recall
and F1 improve by a lot (+.30 and +.16).

4.2 Polarity Spectrum Creation

consists of two subtasks. PSC-SET: Given a query
word how well can we predict a spectrum? PSC-
ORD: How good is the order in the spectrum?
Our gold standard is Word Spectrum, included in
the Oxford American Writer’s Thesaurus (OAWT)
and therefore also in MacOS. For each query word
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newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1 LSJU 89.11† 56.02† 91.43† 58.66† 94.15† 77.13† 88.92† 49.30† 88.68† 58.42† 96.83 90.25
2 SVM 89.14† 53.82† 91.30† 54.20† 94.21† 76.44† 88.96† 47.25† 88.64† 56.37† 96.63 87.96†

3 F 90.86 66.42† 92.95 75.29† 94.71 83.64† 90.30 62.15† 89.44 62.61† 96.59 90.37
4 F+W2V 90.51 72.26 92.46† 78.03 94.70 86.05 90.34 65.16 89.26 63.70† 96.44 91.36
5 F+UD 90.79 72.20 92.84 78.80 94.84 86.47 90.60 65.48 89.68 66.24 96.61 92.36

Table 3: Results for POS tagging. LSJU = Stanford. SVM = SVMTool. F=FLORS. We show three state-
of-the-art taggers (lines 1-3), FLORS extended with 300-dimensional embeddings (4) and extended with
UD embeddings (5). †: significantly better than the best result in the same column (α = .05, one-tailed
Z-test).

this dictionary returns a list of up to 80 words of
shades of meaning between two polar opposites.
We look for words that are also present in Adel
and Schütze (2014)’s Antonym Classification data
and retrieve 35 spectra. Each word in a spectrum
can be used as a query word; after intersecting the
spectra with our vocabulary, we end up with 1301
test cases.

To evaluate PSC-SET, we calculate the 10 near-
est neighbors of the m words in the spectrum and
rank the 10m neighbors by the distance to our
spectrum, i.e., the cosine distance in the orthog-
onal complement of the polarity subspace. We re-
port mean average precision (MAP) and weighted
MAP where each MAP is weighted by the num-
ber of words in the spectrum. As shown in Table 4
there is no big difference between both numbers,
meaning that our algorithm does not work better
or worse on smaller or larger spectra.

To evaluate PSC-ORD, we calculate Spear-
man’s ρ of the ranks in OAWT and the values on
the polarity dimension. Again, there is no signifi-
cant difference between average and weighted av-
erage of ρ. Table 4 also shows that the variance
of the measures is low for PSC-SET and high for
PSC-ORD; thus, we do well on certain spectra and
worse on others. The best one, beautiful↔ ugly,
is given as an example. The worst performing
spectrum is fat↔ skinny (ρ = .13) – presumably
because both extremes are negative, contradicting
our modeling assumption that spectra go from pos-
itive to negative. We test this hypothesis by sepa-
rating the spectrum into two subspectra. We then
report the weighted average correlation of the op-
timal separation. For fat ↔ skinny, this improves
ρ to .67.

PSC-SET: MAP PSC-ORD: ρ avg(ρ1, ρ2)

average .48 .59 .70
weighted avg. .47 .59 .70

variance .004 .048 .014
beautiful/ugly .48 .84 .84

fat/skinny .56 .13 .67
absent/present .43 .72 .76

Table 4: Results for Polarity Spectrum Creation:
MAP, Spearman’s ρ (one spectrum) and average ρ
(two subspectra)

4.3 Morphological Analogy.

The previous two subspaces were one-
dimensional. Now we consider a POS subspace,
because POS is not one-dimensional and cannot
be modeled as a single scalar quantity. We
create a word analogy benchmark by extracting
derivational forms from WordNet (Fellbaum,
1998). We discard words with ≥2 derivational
forms of the same POS and words not in the
most frequent 30,000. We then randomly se-
lect 26 pairs for every POS combination for
the dev set and 26 pairs for the test set.2 An
example of the type of equation we solve here is
prediction− predict + symbolize = symbol (from
the dev set). W2V embeddings are our baseline.

We can also rewrite the left side of the equation
as POS(prediction) + Semantics(symbolize); note
that this cannot be done using standard word em-
beddings. In contrast, our method can use mean-
ingful UD embeddings and Eq. 7 with POS(v) be-
ing um

v and Semantics(v) being uv − um
v . The dev

set indicates that a 8-dimensional POS subspace is
optimal and Table 5 shows that this method out-

2This results in an even number of 25 ∗ 26 = 650 ques-
tions per POS combination, 4∗2∗650 = 5200 in total (4 POS
combinations, where each POS can be used as query POS).
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W2V UD
A→B B→A A→B B→A

noun-verb 35.69 6.62 59.69† 50.46†

adj-noun 30.77 27.38 53.85† 43.85†

adj-verb 20.62 3.08 32.15† 24.77†

adj-adverb 45.38 35.54 46.46† 43.08†

all 25.63 44.29†

Table 5: Accuracy @1 on test for Morphological
Analogy. †: significantly better than the corre-
sponding result in the same row (α = .05, one-
tailed Z-test).

performs the baseline.

4.4 POS Tagging

Our final evaluation is extrinsic. We use FLORS
(Schnabel and Schütze, 2014), a state-of-the-art
POS tagger which was extended by Yin et al.
(2015) with word embeddings as additional fea-
tures. W2V gives us a consistent improvement on
OOVs (Table 3, line 4). However, training this
model requires about 500GB of RAM. When we
use the 8-dimensional UD embeddings (the same
as for Morphological Analogy), we outperform
W2V except for a virtual tie on news (Table 3, line
5). So we perform better even though we only use
8 of 300 dimensions! However, the greatest advan-
tage of UD is that we only need 100GB of RAM,
80% less than W2V.

5 Related Work

Yih et al. (2012) also tackled the problem of
antonyms having similar embeddings. In their
model, the antonym is the inverse of the en-
tire vector whereas in our work the antonym is
only the inverse in an ultradense subspace. Our
model is more intuitive since antonyms invert
only part of the meaning, not the entire mean-
ing. Schwartz et al. (2015) present a method that
switches an antonym parameter on or off (depend-
ing on whether a high antonym-synonym similar-
ity is useful for an application) and learn multiple
embedding spaces. We only need a single space,
but consider different subspaces of this space.

An unsupervised approach using linguistic pat-
terns that ranks adjectives according to their inten-
sity was presented by de Melo and Bansal (2013).
Sharma et al. (2015) present a corpus-independent
approach for the same problem. Our results (Ta-
ble 1) suggest that polarity should not be consid-

ered to be corpus-independent.
There is also much work on incorporating

the additional information into the original word
embedding training. Examples include (Botha
and Blunsom, 2014) and (Cotterell and Schütze,
2015). However, postprocessing has several ad-
vantages. DENSIFIER can be trained on a normal
work station without access to the original train-
ing corpus. This makes the method more flexible,
e.g., when new training data or desired properties
are available.

On a general level, our method bears some re-
semblance with (Weinberger and Saul, 2009) in
that we perform supervised learning on a set of de-
sired (dis)similarities and that we can think of our
method as learning specialized metrics for particu-
lar subtypes of linguistic information or particular
tasks. Using the method of Weinberger and Saul
(2009), one could learn k metrics for k subtypes
of information and then simply represent a wordw
as the concatenation of (i) the original embedding
and (ii) k representations corresponding to the k
metrics.3 In case of a simple one-dimensional type
of information, the corresponding representation
could simply be a scalar. We would expect this
approach to have similar advantages for practical
applications, but we view our orthogonal transfor-
mation of the original space as more elegant and it
gives rise to a more compact representation.

6 Conclusion

We presented a new word embedding calculus
based on meaningful ultradense subspaces. We
applied the operations of the calculus to Antonym
Classification, Polarity Spectrum Creation, Mor-
phological Analogy and POS Tagging. Our eval-
uation shows that our method outperforms pre-
vious work and is applicable to different types
of information. We have published test sets and
word embeddings at http://www.cis.lmu.
de/˜sascha/Ultradense/.
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Abstract

Recent comparative studies have demon-
strated the usefulness of dependency-
based contexts (DEPS) for learning dis-
tributed word representations for similar-
ity tasks. In English, DEPS tend to per-
form better than the more common, less
informed bag-of-words contexts (BOW).
In this paper, we present the first cross-
linguistic comparison of different context
types for three different languages. DEPS
are extracted from “universal parses” with-
out any language-specific optimization.
Our results suggest that the universal
DEPS (UDEPS) are useful for detecting
functional similarity (e.g., verb similarity,
solving syntactic analogies) among lan-
guages, but their advantage over BOW is
not as prominent as previously reported
on English. We also show that simple
“post-parsing” filtering of useful UDEPS
contexts leads to consistent improvements
across languages.

1 Introduction

Dense real-valued distributed representations of
words known as word embeddings (WEs) have be-
come ubiquitous in NLP, serving as invaluable fea-
tures in a broad range of NLP tasks, e.g., (Turian
et al., 2010; Collobert et al., 2011; Chen and
Manning, 2014). The omnipresent word2vec
skip-gram model with negative sampling (SGNS)
(Mikolov et al., 2013b) is still considered the state-
of-the-art word representation model, due to its
simplicity, fast training, as well as its solid and ro-
bust performance across a wide variety of seman-
tic tasks (Baroni et al., 2014; Levy et al., 2015).

The original implementation of SGNS learns
word representations from local bag-of-words

contexts (BOW). However, the underlying SGNS
model is equally applicable to other context types.

Recent comparative studies have demonstrated
the usefulness of dependency-based contexts
(DEPS) (Padó and Lapata, 2007) for the task. In
comparison with BOW, syntactic contexts steer
the induced semantic spaces towards functional
similarity (e.g., tiger:cat) rather than towards
topical similarity/relatedness (e.g., tiger:jungle).
DEPS-based embeddings outperform the less in-
formed BOW-based embeddings in a variety of
similarity tasks (Bansal et al., 2014; Levy and
Goldberg, 2014a; Hill et al., 2015; Melamud et
al., 2016). However, these studies have all fo-
cused solely on English. A comparison extend-
ing to additional languages is required before any
cross-lingual generalisations can be drawn.

Following recent initiatives on language-
agnostic and cross-linguistically consistent
universal natural language processing (i.e.,
universal POS (UPOS) tagging and dependency
(UD) parsing) (Nivre et al., 2015), this paper is
concerned with two important questions:

(Q1) Can one usefully replace the DEPS ex-
traction pipeline optimised for tools developed for
English with a pipeline that relies on language-
universal syntactic processing (UDEPS)?

(Q2) Are UDEPS universally better than BOW
for learning distributed word representations in
other languages?

Regarding Q1, the results show that it is pos-
sible to replace original DEPS with UDEPS for
English and to obtain benchmarking results with
only a slight drop in performance. As for Q2, the
framework is not equally effective in other lan-
guages, as suggested by the performance in Ital-
ian and German, which sheds new light on the
usefulness of BOW and dependency-based con-
texts. Further, the results reveal that even a sim-
ple preliminary “post-parsing” selection of use-
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ful UDEPS contexts leads to consistent improve-
ments across languages, especially in detecting
functional similarity.

This focused contribution is the first cross-
linguistic comparison of different context types for
learning word representations in three languages,
reaching beyond English. It also constitutes a first
completely language-universal and widely appli-
cable framework for UDEPS extraction.

2 Methodology

Universal Multilingual Resources The depar-
ture point in our experiments is the Universal
Dependencies project (McDonald et al., 2013;
Nivre et al., 2015) which develops cross-
linguistically consistent treebank annotation.1 The
annotation scheme leans on the universal Stan-
ford dependencies (de Marneffe et al., 2014) com-
plemented with the Google universal POS tagset
(Petrov et al., 2012) and the Interset interlingua for
morphological tagsets (Zeman and Resnik, 2008).
It provides a universal and consistent inventory
of categories for similar syntactic constructions
across languages.

The main aim of the “universal initiative” is
to facilitate cross-lingual and multilingual learn-
ing (e.g., multilingual parser development, typolo-
gies) by capturing structural similarities across
languages and by exploiting connections that ex-
ist naturally between them (Berg-Kirkpatrick and
Klein, 2010; McDonald et al., 2011; Cohen et al.,
2011; Naseem et al., 2012). Here, we test the abil-
ity of such a universal annotation scheme to en-
code potentially useful semantic knowledge cross-
linguistically; in this case, to yield more informed
UDEPS contexts for improved word embeddings.

The extraction of UDEPS as the new vari-
ant of dependency-based contexts is completely
language-agnostic on purpose: exactly the same
procedure is followed for each language in com-
parison in order to make the representation learn-
ing framework completely universal.

2.1 Context Types

Prequel: Representation Model For all the
context types, we opt for the standard and robust
choice in vector space modeling: SGNS (Mikolov
et al., 2013b; Levy et al., 2015). In all our ex-
periments we use word2vecf, a reimplementa-

1We use the latest Version 1.2 UD treebanks:
http://universaldependencies.org/

Australian scientist discovers stars with telescope

amod nsubj dobj case

nmod

Scienziato australiano scopre stelle con telescopio

amod

nsubj

dobj case

nmod

Australian scientist discovers stars with telescope

amod nsubj dobj case

nmod

case with

Figure 1: An example of extracting dependency-
based contexts from UD parses (UDEPS) in En-
glish and Italian. Top: the example sentence in
English taken from (Levy and Goldberg, 2014a),
now UD-parsed. Middle: the same sentence in
Italian, UD-parsed. Note the very similar struc-
ture of the two parses. Bottom: the intuition
behind UDEPS-ARC. The uninformative short-
range case arc between with and telescope is re-
moved, and another “pseudo-arc” now specifying
the exact link type (i.e., case_with) between dis-
covers and telescope is added.

tion of word2vec which is capable of learning
from arbitrary (word, context) pairs.2 Keeping
the representation model fixed across experiments
and varying only the context type allows us to at-
tribute any differences in results to a sole factor:
the context type.

BOW The English sentence from Fig. 1 is used
as the running example for all context types.
Given the target word w and the window size k,
the BOW context simply comprises all 2k word
pairs (w, v), where v is found in the window of k
words preceding w or k words following w, e.g.,
BOW with k = 2 extracts the following contexts
v for the word discovers from Fig. 1: Australian,
scientist, stars, with. Note that BOW may miss
valid longer-range contexts (e.g., telescope) while
including some accidental (e.g., Australian) or un-
informative ones (e.g., with).

POSIT A more informed variant of BOW is po-
sitional contexts. It includes extra information on
the actual sequential position of each context word
(Levy and Goldberg, 2014b). Given the same ex-
ample, POSIT with k = 2 extracts the following
contexts for discovers: Australian_-2, scientist_-

2https://bitbucket.org/yoavgo/word2vecf
For details concerning the implementation and learning, we
refer the interested reader to (Goldberg and Levy, 2014; Levy
and Goldberg, 2014a).
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1, stars_+2, with_+1. This context type has not
been studied systematically in relation to learning
WEs. POSIT suffers from the same issues with
locality as BOW, but its shallow positional anno-
tations may capture additional shallow syntactic
phenomena in the data. Therefore, POSIT may be
considered a link from BOW towards DEPS.3

UDEPS-NAIVE Given a corpus of parsed
sentences, for each target w with modifiers
m1, . . . ,mk and head h, w is paired with con-
text elements m1_r1, . . . ,mk_rk, h_r−1

h , where r
is the type of the UD relation between the head and
the modifier (e.g., amod), and r−1 denotes an in-
verse relation. A naive version of the UD-based
model extracts contexts from the parsed corpus
without any post-processing. The UDEPS-NAIVE
contexts of discovers are now: scientist_nsubj,
stars_dobj, telescope_nmod. They capture longer-
range relations (e.g., telescope) and filter “acci-
dental contexts” (e.g., Australian). In addition, the
typed dependencies reveal more than POSIT and
BOW about the nature of the relation in context.

UDEPS-ARC However, UDEPS-NAIVE also
produces uninformative context pairs such as
(telescope, with_case), and it does not specify the
type of e.g. the nmod relation between discovers
and telescope which are linked through the prepo-
sition with. Our intuition is that a simple post-hoc
intervention into the UDEPS context extraction
may yield even more focused contexts. UDEPS-
ARC leans on the idea of arc collapsing from prior
work (Levy and Goldberg, 2014a; Melamud et al.,
2016) that we now adjust to the UD annotation
scheme. The difference to UDEPS-NAIVE is as
follows: For each pair of words linked through
case (e.g., discovers and telescope), we introduce
a new “pseudo-arc” which is typed by the actual
case/preposition. This results in a new context for
discovers: telescope_case_with and also for tele-
scope: discovers_case_with−1 (Fig. 1). In addi-
tion, we remove the uninformative case arc and
its associated contexts: (with, telescope_case−1),
(telescope, with_case) from the training pairs.

3Results with another context type relying on substitute
vectors (Yatbaz et al., 2012; Melamud et al., 2015) are omit-
ted due to its subpar performance in our experiments as well
as across a variety of semantic tasks in a recent English-
focused study (Melamud et al., 2016).

Language Tagging Acc. LAS [UAS]
English (EN) 0.952 0.852 [0.875]
German (DE) 0.923 0.802 [0.850]
Italian (IT) 0.970 0.884 [0.907]

Table 1: Universal POS tagging accuracy scores
and labeled (LAS) vs unlabeled (UAS) attachment
scores of universal dependency parsing.

3 Experimental Setup

Evaluation Our cross-linguistic study is made
possible not only thanks to the “universal NLP”
initiative but also owing to the benchmarking eval-
uation sets for other languages beyond English
(i.e., IT, DE) that have very recently become avail-
able, e.g., (Leviant and Reichart, 2015). We
evaluate SGNS with different context types from
sect. 2.1 across the three languages on two bench-
marking tasks and datasets: (1) semantic similarity
on SimLex-999 (Hill et al., 2015) translated and
re-scored by native speakers in EN, DE, and IT
(Leviant and Reichart, 2015), and (2) word analo-
gies on the Google dataset (Mikolov et al., 2013a)
made available in IT (Berardi et al., 2015) and DE
(Köper et al., 2015) only recently.

WE Induction: Data All the word representa-
tions in comparison are induced from the Polyglot
Wikipedia data (Al-Rfou et al., 2013).4

UPOS Tagging and UD Parsing The
Wikipedia corpora were UPOS-tagged using
a state-of-the art system TurboTagger (Martins
et al., 2013).5 TurboTagger was trained using
suggested settings without any further parameter
fine-tuning (SVM MIRA with 20 iterations) on
the TRAIN+DEV portion of the UD treebank
annotated with UPOS tags. Following that,
the Wikipedia data were UD-parsed6 using the
graph-based Mate parser v3.61 (Bohnet, 2010)7

and the same regime: suggested settings on
the TRAIN+DEV UD treebank portion.8 The
performance of the models measured on the TEST

portion of the UD treebanks is reported in Tab. 1.
4https://sites.google.com/site/rmyeid/projects/polyglot
5http://www.cs.cmu.edu/ ark/TurboParser/
6Besides EN, DE, and IT, we also UPOS-tagged and UD-

parsed Wikipedias in NL, ES, and HR. We believe that the full
UPOS-tagged and UD-parsed Wikipedias in six languages
are a valuable asset for future research and we plan to make
the resource publicly available at:
http://ltl.mml.cam.ac.uk/resources/

7https://code.google.com/archive/p/mate-tools/
8We opted for the Mate parser due to its speed, simplic-

ity, and state-of-the-art performance according to very recent
parser evaluations (Choi et al., 2015).
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Figure 2: Results in the semantic similarity task on SimLex-999 for three languages using different
context types in the SGNS model. Solid lines denote the results on all words from SimLex-999, while
thinner dashed lines show results on the verb portion of SimLex-999 (222 verb pairs).

Language: English German Italian

TOT SEM SYN TOT SEM SYN TOT SEM SYN

UDEPS-NAIVE 0.351 0.231 0.446 0.183 0.101 0.276 0.169 0.033 0.282
UDEPS-ARC 0.376 0.247 0.478 0.199 0.091 0.319 0.177 0.033 0.296
DEPS-LEVY 0.390 0.183 0.548 - - - - - -

BOW-2 0.581 0.543 0.610 0.334 0.341 0.326 0.225 0.078 0.339
POSIT-2 0.485 0.336 0.607 0.219 0.173 0.271 0.208 0.052 0.330

Table 2: Acc@1 scores in the analogy solving task over semantic (SEM), syntactic (SYN) and all analo-
gies (TOT). SGNS with d = 300 for all context types. Similar trends are observed with other d-s.
DEPS-LEVY refers to pre-trained 300-dimensional EN WEs from (Levy and Goldberg, 2014a).

The results are consistent with prior work on the
UD treebanks, e.g., (Tiedemann, 2015).

Training Setup The SGNS preprocessing
scheme for English was replicated from (Levy
and Goldberg, 2014a) and extended to the other
two languages: all tokens were converted to
lowercase, and words and contexts that appeared
less than 100 times were filtered. Exactly the
same vocabularies were used with all context
types (approx. 185K distinct EN words, 163K
DE words, and 83K IT words). The word2vecf
SGNS was trained using standard settings: 15
epochs, 15 negative samples, global learning
rate 0.025, subsampling rate 1e − 4. All WEs
were trained with d = 50, 100, 300, 500, 600.
BOW-based WEs were trained with k = 2
(BOW-2), proven to be the (near-)optimal choice
across various semantic tasks in related work
(Levy and Goldberg, 2014a; Melamud et al.,
2016). The same k was used for POSIT-based
WEs (POSIT-2).

4 Results and Discussion

Fig. 2(a)-2(c) show the results on SimLex-999
(Spearman’s ρ) for WEs with different d-s, while
Tab. 2 displays the Acc@1 scores in the anal-

ogy solving task. English DEPS with arc collaps-
ing from prior work (Levy and Goldberg, 2014a)
(DEPS-LEVY, d = 300) obtain ρ of 0.372 on all
SimLex pairs, and 0.378 on verb pairs.9 A com-
parison with UDEPS-ARC reveals only a slight
drop in performance when switching to language-
agnostic UDEPS (see Fig. 2(a), Q1).10

However, the results are heavily dependent on
the actual language: the claims made for English
(i.e., DEPS ≥ BOW) do not extend to other lan-
guages (Q2). A comparison of results from Tab. 1
with the task evaluation also shows that excel-
lent tagging and parsing results do not guarantee
a strong task performance.

The results over the verb subset of SimLex also
reveal that claims established with English are not
necessarily general and true with other languages.
For instance, while it has been noted that model-
ing verb similarity is indeed a difficult problem in
English as evidenced by lower correlation scores
on SimLex (see Fig. 2(a) and e.g. (Schwartz et
al., 2015)), verbs are apparently easier to model in
Italian (Fig. 2(c)), and a real challenge in German,

9Note that the correlation scores for all models on the
re-annotated version of SimLex-999 (Leviant and Reichart,
2015) are lower than those on the original SimLex-999.

10The comparison is valid since DEPS-LEVY were trained
on exactly the same data with the same vocabulary.
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Syntactic Relation English German Italian

gram1-adjective-to-adverb P>B>A>N - P>B>A>N
gram2-opposite A>N>P>B A>B>P>N A>B>P>N
gram3-comparative P>B>A>N A>B>P>N P>A>N>B
gram4-superlative P>B>A>N A>N>B>P P>B>A>N
gram5-present-participle P>A>B>N A>N>P>B P>B>A>N
gram6-nationality-adjective B>P>A>N B>P>A>N B>P>A>N
gram7-past-tense A>P>N>B A>B>N>P A>B>P>N
gram8-plural B>P>A>N A>B>P>N A>P>N>B
gram9-plural-verbs P>A>B>N A>N>B>P A>N>P>B

Table 3: Rankings based on Acc1 scores over syn-
tactic analogy groups (from the Google dataset).
A=UDEPS-ARC, N=UDEPS-NAIVE, B=BOW-
2, P=POSIT-2. d = 300.

with extremely low correlation scores (Fig. 2(b)).
The results on the analogy task from Tab. 2 sug-

gest the evident advantage of more abundant (but
less informed) BOW contexts across all languages.
This finding is completely in line with the analyses
from prior work on English, e.g., Levy and Gold-
berg (2014a) report that “DEPS perform dramati-
cally worse than BOW contexts on analogy tasks”,
but without providing any exact numbers.

Nonetheless, the relative ranking of context
types over syntactic analogy sets as highlighted in
Tab. 3 marks the evident advantage of the more-
informed POSIT and UDEPS-ARC on analogies
referring to functional similarity. UDEPS-ARC
in German outperforms all other context types on
all syntactic analogies, except for the nationality-
adjective relation. The strongest performance of
UDEPS is detected with syntactic analogies where
two words in the analogy pair are perfectly re-
placeable in the given context (e.g., past-tense:
dancing-danced, sleeping-slept or opposite: sure-
unsure, honest-dishonest).

We can also see that POSIT displays a strong
performance in detecting functional similarity
across all three languages in both tasks (e.g., see
the results in Tab. 3 where they outperform BOW).
This finding reveals that POSIT should be in-
cluded as a strong baseline in any follow-up work.

We also analysed the influence of the train-
ing data size by learning EN WEs from the
EN Wikipedia comprising roughly 13M sentences
(same size as the IT Wikipedia). As Tab. 4 shows,
the absolute scores are naturally lower with less
training data, and we observe a decrease in the
performance of UDEPS. However, the decrease is
small: these results demonstrate that the reduced
performance of UDEPS in IT and DE cannot be
attributed solely to smaller training datasets and
sparsity of (word, context) pairs.

Finally, the consistent improvements of

Set/Model BOW-2 POSIT-2 NAIVE ARC

SimLex-all 0.286 0.289 0.271 0.279
SimLex-verbs 0.259 0.286 0.260 0.288

Table 4: Results on SimLex in English with SGNS
trained on a reduced EN training set containing the
same number of sentences as the entire IT training
set (≈ 13M sentences). d = 300.

UDEPS-ARC over UDEPS-NAIVE for all three
languages on both tasks show the importance of a
careful post-hoc selection of informative contexts.
Future work will delve deeper into the informative
context selection for the WE learning.

5 Conclusion and Future Work

We have presented the first comparison of differ-
ent context types for learning word embeddings
for multiple languages. Dependency-based con-
texts in different languages are for the first time
extracted from “universal” parses made possible
by the Universal Dependencies initiative, without
any language-specific optimisation.

In sum, our comparison provides no clear an-
swer to the question posed by the title of this pa-
per. However, it shows conclusively that different
context types yield semantic spaces with different
properties, and that the optimal context type de-
pends on the actual application and language. The
usefulness of universal dependency-based con-
texts is evident with a simple post-parsing context
extraction scheme in tasks oriented towards syn-
tactic/functional similarity.

This first cross-linguistic analysis covering only
a small set of languages from the same (Indo-
European) phylum also reveals that training word
embeddings in languages other than English is not
trivial, suggesting Anglo-centric assumptions that
do not extend to other languages (Bender, 2011).
It is therefore essential not to generalise results
on English to other languages without clear em-
pirical evidence. Yet, a broader cross-linguistic
study involving more languages from other fam-
ilies (with UD treebanks available) and additional
experimentation is warranted in order to better
guide research on “universal NLP” and language-
independent word representation learning.
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Abstract

Computational Argumentation has two
main goals - the detection and analysis of
arguments on the one hand, and the syn-
thesis of arguments on the other. Much at-
tention has been given to the former, but
considerably less to the latter.
A key component in synthesizing argu-
ments is the synthesis of claims. One way
to do so is by employing argumentation
mining to detect claims within an appro-
priate corpus. In general, this appears to
be a hard problem. Thus, it is interesting to
explore if - for the sake of synthesis - there
may be other ways to generate claims.
Here we explore such a method: we ex-
tract the predicate of simple, manually-
detected, claims, and attempt to generate
novel claims from them. Surprisingly, this
simple method yields fairly good results.

1 Introduction

When people argue, how do they come up with the
arguments they present, and can a machine emu-
late this? The motivation for this work comes from
this second question, for which the relevant field of
study is Computational Argumentation, an emerg-
ing field with roots in Computer Science, Mathe-
matics, Philosophy and Rhetorics. However, while
much attention is given in the field to the modeling
and analysis of arguments, automatic synthesis of
arguments receives considerably less.

So, how do people come up with arguments?
One way is to read-up on the topic and present
the arguments you find in the literature. Another
- if the topic at hand is within your field of ex-
pertise - is to communicate your opinion. Yet a
third way is to “recycle” arguments you are famil-
iar with and apply them to new domains. For ex-
ample, someone who’s concerned about the free

speech might use an argument like “it’s a viola-
tion of free speech” when discussing any one of
these topics: whether violent video games should
be banned, whether some Internet content should
be censored, or whether certain types of advertise-
ment should be restricted.

Argumentation Mining (Mochales Palau and
Moens, 2011) is analogous to the first option:
Given a corpus, it aims to detect arguments therein
(and the relations among them). Thus, it can be
used to suggest claims when a relevant corpus is
available. The second option is analogous to Natu-
ral Language Generation (NLG; (Reiter and Dale,
2000)), where applications such as recommender
systems synthesize arguments to explain their rec-
ommendations, as done for example in (Carenini
and Moore, 2006) .

These approaches yield good results when ap-
plied to specific domains. In an NLG applica-
tion, there is commonly a specific knowledge base
which the system communicates. The form and
content of arguments are derived and determined
by it and are thus limited to the knowledge therein.
Similarly, argument mining works well when an
argument-rich and topic-related corpus is available
- e.g. (Wyner et al., 2010) - but in general seems
to be hard (Levy et al., 2014). Thus, it is interest-
ing and challenging to synthesize arguments in an
open domain. To the best of our knowledge, this is
the first work that directly attempts to address this
task.

Modeling of arguments goes back to the an-
cient Greeks and Aristotle, and more modern work
starting perhaps most famously with the Toulmin
argument model (Toulmin, 1958). A common el-
ement in all such models is the claim (or conclu-
sion) being forwarded by the argument. Thus, a
natural first step in synthesizing arguments in a
general setting is being able to synthesize claims
in such a setting.

We suggest here a simple way for doing so,
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based on the aforementioned notion of argument
“recycling”. Specifically, that the predicate of a
claim - what it says on the topic at hand - may
be applicable to other topics as well. For exam-
ple, if we are familiar with the claim “banning vi-
olent video games is a violation of free speech”
in the context of the topic “banning violent video
games”, we could synthesize the claim “Internet
censorship is a violation of free speech” when pre-
sented with the topic “Internet Censorship”. The
challenge is then to determine whether the synthe-
sized claim is actually coherent and relevant to the
new topic, which we do using statistical Machine
Learning techniques, as described in Section 2.1.

This two-stages framework - generating text
and then selecting whether or not it is appropriate -
is reminiscent of Statistical NLG (SNLG; (Langk-
lide and Knight, 1998)). In an SNLG system, af-
ter the macro-planning and micro-planning stages
(see (Reiter and Dale, 2000)) are executed, and the
message to be communicated is determined, mul-
tiple candidate realizations are produced, and then
statistical methods are used to determine which of
these realizations is the best (based on a reference
corpus).

Our work differs from SNLG in that there are no
pre-determined messages. The generation stage
produces candidate content. Each candidate claim
is a different message, and the selection stage at-
tempts to identify those which are coherent and
relevant, rather than best realized. In other words,
while the classical NLG paradigm is to first se-
lect the content and then realize it in a natural lan-
guage, here our building blocks from the onset are
natural language elements, and statistical methods
are used to determine which content selections -
implied by combining them - are valid.

Finally, the notion that predicates of claims re-
garding one topic may be applicable to another
is reminiscent of the motivation for the work of
(Card et al., 2015), who observe that there are
commonalities (so called “framing dimensions”)
among the way different topics are framed in news
articles.

2 Algorithm

The claim synthesis algorithm is composed of
three components. The first is a pre-processing
component, in which the Predicate Lexicon is con-
structed. The second is the Generation Compo-
nent - the input to this component is a topic (and

the Predicate Lexicon), and the output is a list of
candidate claims. The final component is the Se-
lection Component, in which a classifier is used to
determine which (if any) of the candidate claims
are coherent and relevant for the topic. In what
follows we describe these three steps in greater de-
tail.

The Predicate Lexicon (PL) was constructed by
parsing manually-detected claims (Aharoni et al.,
2014) using the Watson ESG parser (McCord et
al., 2012), and considering those which have ex-
actly one verb. Then the verb and a concatena-
tion of its right-modifiers, termed here the pred-
icate, were extracted from each claim and added
to the PL if they contained at least one sentiment
word from the sentiment lexicon of (Hu and Liu,
2004). The sentiment criterion was added to se-
lect for predicates which have a clear stance with
respect to the topic. All in all, there are 1203 en-
tries in the PL used here.1

A key feature in filtering and selecting can-
didate claims is text similarity. The similarity
between text segments was defined based on
the constituent words’ word2vec embedding
(Mikolov et al., 2013): Consider two list of words,
l = w1, . . . , wn and l′ = w′1, . . . , w′n′ . Denote
by w2v(w,w′) the word2vec similarity between
w and w′ - the cosine of the angle between the
embeddings of w and w′. Then the similar-
ity between l and l′ is defined : sim(l, l′) =
1
n

∑
i=1,...,n maxj=1,...,n′ w2v(wi, w

′
j) +

1
n′
∑

j=1,...,n′ maxi=1,...,nw2v(w′j , wi) (words
without embeddings are ignored). Addition-
ally, if S is a set of text segments, define:
sim(l, S) = maxl′∈Ssim(l, l′).

Given a new topic t, the Generation Compo-
nent sorts the predicates p in the PL according to
sim(t, p), and takes the top k. It then constructs
k claim candidate sentences by setting the subject
of the sentence to be the topic t, and the predicate
to be one of these k. This may require some ma-
nipulation, as the plurality of the topic determines
the appropriate surface realization of the predicate
verb. We determine the topic’s plurality using the
Watson parser (McCord et al., 2012), and do the
surface realization with SimpleNLG (Gatt and Re-
iter, 2009) and the NIH lexicon2.

1data is avaiable at https://www.research.ibm.
com/haifa/dept/vst/mlta_data.shtml.

2UMLS Reference Manual [Internet]. Bethesda (MD):
National Library of Medicine (US); 2009 Sep-. 6, SPE-
CIALIST Lexicon and Lexical Tools. Available from:
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The Selection Component uses a logistic regres-
sion classifier to first predict which of the candi-
date claims generated by the Generation Compo-
nent are valid, and then to rank the valid candi-
dates according to the classifier’s score. It receives
two parameters, κ and τ . If the fraction of valid
candidates (according to the classifier) is less than
τ , then it selects none of them. This is designed
to allow the algorithm not to synthesize claims for
topics where the PL does not seem to yield a sub-
stantial number of valid claims. If the number of
valid candidates is at least τ , the top κ valid candi-
dates are returned (or all of them, if there are less
than κ).

2.1 Classification Features

To describe the classification features used, we
need to define - given a topic - the topic’s n-gram
Lexicon (n-TL). This is a list of n-grams which
are presumably related to the topic. Specifically,
given an n-gram, we assume its appearance in
Wikipedia articles follows a hyper-geometric dis-
tribution, and estimate the distribution’s parame-
ters by counting the n-gram’s appearance in a large
set of Wikipedia articles. With these parameters,
the p-value for its appearances in topic-related ar-
ticles is calculated. The n-TL is the list of n-grams
with Bonferroni-corrected p-value at most 0.05.
The topic-related articles were identified manually
(see (Aharoni et al., 2014)).

For a candidate claim c, denote its words by
w1, . . . , wm. Recall that c is composed of the
given topic, t, and a predicate p ∈ PL. Recall
also that pwas extracted from a manually-detected
claim cp. Denote by tp the topic for which cp was
detected, and by sp the subject of the claim sen-
tence cp. Denote by mt the number of words in
t.

For example, consider the second candidate
claim in Table 1, c = Truth and reconciliation
commissions are a source of conflict. There t =
truth and reconciliation commissions and p = are
a source of conflict. pwas extracted from the claim
cp = religion is a source of conflict in the labeled
data, which is associated with the topic atheism
(and the debatabase motion atheism is the only
way). Hence, tp = atheism and sp = religion.

The classification features we used are of three
types: One aims to identify predicates which are
inherently amenable to generation of claims, that

http://www.ncbi.nlm.nih.gov/books/NBK9680/

is, which state something fairly general about their
subject, and which are not very specific to the
topic in which the predicate was originally found
(e.g., low sim(p, tp)). The second aims to find
predicates which are relevant for the new topic for
which claims are synthesized (e.g., high sim(p,n-
TL)). Finally, we’d like the claim to be a valid and
plausible sentence, and so look for the frequency
of its words, and sub-phrases of it, in Wikipedia.

All in all 15 features were defined: m, the
number of words in c; Number of Lucene hits
for w1, . . . , wm (as a bag of words); Number of
Wikipedia sentences containing all w1, . . . , wm;
Largest k, such that the k-gram w1 . . . wk ap-
pears in Wikipedia; Number of times the 3-gram
wmtwmt+1wmt+2 appears in Wikipedia; Number
of times p appears in a claim candidate labeled
positive, and the number of times in one labeled
negative (claim candidates generated for t are ex-
cluded, see Section 3 for labeling details); Inclu-
sion of p’s verb in a manually-crafted list of “cau-
sation verbs”; sim(p,n-TL) , for n = 1, 2, 3;
sim(p, t); sim(p, tp); sim(sp, tp); sim(sp, t).

3 Experimental Setup

We generated claims for 67 topics, extracted from
debatabase motions (http://idebate.org)
for which we have previously annotated relevant
Wikipedia articles (for the benefit of the n-TLs
construction; see Section 2.1). Importantly, when
generating candidate claims for a topic, predicates
which originated from this topic were not used.

For each topic 28 candidate claims were gener-
ated, and in addition one manually-detected claim
(as per (Aharoni et al., 2014)) and one mock claim
were included for control. The mock claim was
constructed by setting the topic as the subject of
a sentence, and selecting a mock predicate at ran-
dom from a hand-crafted list.

These 67× 30 candidate claims were annotated
using Amazon’s Mechanical Turk (AMT). In each
HIT (Human Intelligence Task) we presented the
annotators with a debatabase motion and 10 can-
didate claims, and asked which of the claims is ap-
propriate for the motion (10 annotators per HIT).

After filtering out the less reliable annotators
based on mutual agreement and control questions,
a reasonable agreement was apparent (average
κ = 0.73). After this filtering 45 of the ini-
tial 82 annotators remained, as well as 955 of the
initial 2010 annotated candidate claims (discard-
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Claim Original
Subject

Label

Democratization con-
tributes to stability.

Nuclear
weapons

1

Truth and reconciliation
commissions are a source
of conflict.

Religion 1

Graduated response lacks
moral legitimacy.

The State 1

Nuclear weapons cause
lung cancer.

Smoking 0

A global language leads
to great exhaustion.

Great anar-
chy

0

Table 1: Examples of candidate claims (top-
ics in italics, predicates in bold), the subject
of the claim sentence which originated their
predicate, and their label.

ing claims with less than 5 valid annotators, those
without a clear majority decision, as well as the
control claims). See Table 1 for some examples.

We note that annotation tasks like this are in-
herently subjective ((Aharoni et al., 2014) report
κ = 0.4), so discarding candidates without a
clear majority decision can be seen as discarding
those for which the true label is not well defined.
Nonetheless, the reason for discarding most of the
candidate claims was annotator’s (lack of) reliabil-
ity, not ambiguity of the true label.

4 Experimental Results

Initially we thought to label a candidate claim as
either positive or negative examples, based on the
majority vote of the annotators. This lead to a
seemingly 52% of the candidates being “good”.
However, anecdotal examination of this majority
labeling suggested that the many annotators were
biased toward answering “good” - even on some of
the control questions which contained nonsensical
sentences. This, along side relatively low mean
agreement, raised the need for filtering mentioned
above. After filtering, 40% of the candidate claims
were taken to be positive examples. The accuracy
of the Selection Component was assessed using a
leave-one-out methodology, leaving out one topic
at each iteration. The overall accuracy achieved by
the classifier was 0.75 (Table 2 depicts the confu-
sion matrix).

We also examined the trade-off between the
number of selected candidate claims and the frac-
tion of them which are valid. Figure 1 depicts the

Predict /Label Pos Neg
Pos 288 (30%) 145 (15%)
Neg 96 (10%) 426 (45%)

Table 2: Confusion Matrix: Number of
claim candidates according to AMT annota-
tion (x-axis) and predicted label (y-axis).

average precision when varying the two Selection
Component parameters, κ and τ . For example,
at the most conservative setting, where the com-
ponent outputs at most one claim per topic, and
only for a topic for which at least half the candi-
date claims were predicted to be valid (31 of the
67 topics), the precision is 0.94. Recall that in the
entire dataset, 40% of the examples are positive.

Figure 1: Mean Precision (micro average):
Colors indicate different values of τ . In
parenthesis is the number of topics for which
claims were selected.

We note that this precision is significantly
higher than reported for claim detection (Levy et
al., 2014), where, for example, mean precision at
5 is 0.28 (in our case it is 0.7 − 0.8). One should
note, however, that this is not a fair comparison.
First, we permit the algorithm to discard some top-
ics. Second, here the definition of a valid claim is
less strict than in (Levy et al., 2014).

Examining the impact of individual features, we
first looked which of them, on their own, are most
correlated with the labels. These turned out to be
the number of times p appears in a claim candi-
date labeled positive and negative (Pearson’s cor-
relation 0.33 and -0.34 resp.). We then examined
which features received the most weight in the lo-
gistic regression classifier (trained over all data;
features were scaled to a [0, 1]). The top feature
was the number of sentences in which all words
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appear, and following it were the aforementioned
appearance counts in negative and positive exam-
ples.

5 Discussion and Work in Progress

The Generation Component can be thought of
as constructing sentences by using pre-defined
templates, of the form “<topic-slot> <extracted
predicate>”. These “generation templates” are
created by “mining” a corpus of manually-
detected claims and extracting the predicate from
them. They are then filled in during run-time, by
inserting a new topic in that slot. There are sev-
eral ways which we have started exploring to ex-
tend this paradigm - automatically identifying the
grammatical position of a“topic slot” in a corpus
claim rather than assuming it is the subject; using
unsupervised methods for mining the predicates
directly from Wikipedia; and generating candidate
claims by using several variants for the subject and
object, rather than just the topic and the PL entry.
Initial results are promising, but more work is re-
quired to achieve reasonable accuracy.

Another interesting alternative is to construct
the PL manually, rather than automatically. This
can be seen as analogous to Argumentation
Schemes (Walton et. al, 2008). Argumentation
Schemes can be thought of as templates for model-
ing arguments - defining a slot for a premise or two
(which may be implicit), a slot for a conclusion or
claim, and some fixed connecting text. While Ar-
gumentation Schemes are used for detecting (Wal-
ton, 2012) and analyzing argumentative structures,
in principle they can also be used to synthesize
them. In this sense, our work here can be seen
as applying the same concept at finer granularity -
at the claim level instead of the argument.

While at the onset we presented claim synthe-
sis as an alternative to argumentation mining for
the purpose of generating arguments, it is interest-
ing how the two augment each other. Specifically,
we have started looking at whether claim synthe-
sis can generate claims which do not appear in our
corpus (Aharoni et al., 2014), and whether match-
ing Evidence to claims (Rinott et. al, 2015) can
improve claim synthesis. Regarding the novelty
of synthesized claims, we looked at 18 synthesized
claims, labeled as valid for 3 topics - criminaliza-
tion of blasphemy, building high-rise for housing
and making physical education compulsory - and
compared them to the 94 manually detected claims

for these topics (each topic separately). Of the 18
claims, 5 appear to be novel.

A more circumvent method to assess novelty is
as follows - for each candidate claim we looked
for the most similar claim (for the same topic) in
our annotated data. We then computed Pearson’s
correlation between these similarity scores and the
labels of the candidate claim, getting a coefficient
of 0.29 (p-value=10−27). This is similar to the
correlation between for the strongest classification
features, suggesting again that many of the gener-
ated claims are not novel, yet similarity to anno-
tated claims on its own is not enough to determine
a candidate-claim’s validity.

Similarly, we examined whether having a
matching evidence in the annotated corpus
(matches were determined using the algorithm of
(Rinott et. al, 2015)), is indicative of a candidate-
claim’s validity. Computing correlation (over the
51 topic for which annotated evidence was avail-
able) gave a Pearson’s coefficient of 0.23. This
suggests that matching Evidence can be a power-
ful feature in improving our current classification
model.
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Abstract

We propose a framework to model hu-
man comprehension of discourse connec-
tives. Following the Bayesian pragmatic
paradigm, we advocate that discourse con-
nectives are interpreted based on a sim-
ulation of the production process by the
speaker, who, in turn, considers the ease of
interpretation for the listener when choos-
ing connectives. Evaluation against the
sense annotation of the Penn Discourse
Treebank confirms the superiority of the
model over literal comprehension. A fur-
ther experiment demonstrates that the pro-
posed model also improves automatic dis-
course parsing.

1 Introduction

A growing body of evidence shows that human
interpretation and production of natural language
are inter-related (Clark, 1996; Pickering and Gar-
rod, 2007; Zeevat, 2011; Zeevat, 2015). In par-
ticular, evidence shows that during interpretation,
listeners simulate how the utterance is produced;
and during language production, speakers simu-
late how the utterance will be perceived. One
explanation is that the human brain reasons by
Bayesian inference (Doya, 2007; Kilner et al.,
2007), which is, at the same time, a popular for-
mulation used in language technology.

In this work, we model how humans interpret
the sense of a discourse relation based on the
Bayesian pragmatic framework. Discourse rela-
tions are relations between units of texts that make
a document coherent. These relations are either

marked by discourse connectives (DCs), such as
‘but’, ‘as a result’, or implied implicitly, as in the
following examples:

1. He came late. In fact, he came at noon.

2. It is late. I will go to bed.

The explicit DC ‘in fact’ in Example (1) marks a
Specification relation. On the other hand, a Result
relation can be inferred between the two sentences
in Example (2) although there are not any explicit
markers. We say the two sentences (called argu-
ments) are connected by an implicit DC.

Discourse relations have a mixture of semantic
and pragmatic properties (Van Dijk, 1980; Lewis,
2006). For example, the sense of a discourse rela-
tion is encoded in the semantics of a DC (Exam-
ple (1)), yet the interpretation of polysemic DCs
(such as ‘since’, ‘as’) and implicit DCs relies on
the pragmatic context (Example (2)).

This work seeks to find out if Bayesian prag-
matic approaches are applicable to human com-
prehension of discourse relations. Our contribu-
tion includes: (i) an adaptation of the Bayesian
Rational Speech Acts model to DC interpretation
using a discourse-annotated corpus, the Penn Dis-
course Treebank; (ii) integration of the proposed
model with a state-of-the-art automatic discourse
parser to improve discourse sense classification.

2 Related work

There is increasing literature arguing that the hu-
man motor control and sensory systems make es-
timations based on a Bayesian perspective (Doya,
2007; Oaksford and Chater, 2009). For example, it
is proposed that the brain’s mirror neuron system
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recognizes a perceptual input by Bayesian infer-
ence (Kilner et al., 2007). Similarly, behavioural,
physiological and neurocognitive evidences sup-
port that the human brain reasons about the uncer-
tainty in natural languages comprehension by em-
ulating the language production processes (Galan-
tucci et al., 2006; Pickering and Garrod, 2013).

Analogous to this principle of Bayesian lan-
guage perception, a series of studies have devel-
oped the Grice’s Maxims (Grice, 1975) based on
game-theoretic approaches (Jäger, 2012; Frank
and Goodman, 2012; Goodman and Stuhlmüller,
2013; Goodman and Lassiter, 2014; Benz et al.,
2016). These proposals argue that the speaker and
the listener cooperate in a conversation by recur-
sively inferring the reasoning of each other in a
Bayesian manner. The proposed framework suc-
cessfully explains existing psycholinguistic theo-
ries and predict experimental results at various lin-
guistic levels, such as the perception of scalar im-
plicatures (e.g. ‘some’ meaning ‘not all’ in prag-
matic usage) and the production of referring ex-
pressions (Lassiter and Goodman, 2013; Bergen
et al., 2014; Kao et al., 2014; Potts et al., 2015;
Lassiter and Goodman, 2015). Recent efforts also
acquire and evaluate the models using corpus data
(Orita et al., 2015; Monroe and Potts, 2015).

Production and interpretation of discourse re-
lations is also a kind of cooperative communica-
tion between speakers and listeners (or authors and
readers). We hypothesize that the game-theoretic
account of Bayesian pragmatics also applies to
human comprehension of the meaning of a DC,
which can be ambiguous or even dropped.

3 Method

This section explains how we model the interpre-
tation of discourse relations by Bayesian pragmat-
ics. The model is based on the formal framework
known as Rational Speech Acts model (Frank and
Goodman, 2012; Lassiter and Goodman, 2015).
Section 3.1 explains the key elements of the RSA
model, and Section 3.2 illustrates how it is adapted
for discourse interpretation.

3.1 The Rational Speech Acts model

The Rational Speech Acts (RSA) model describes
the speaker and listener as rational agents who
cooperate towards efficient communication. It is
composed of a speaker model and a listener model.

In the speaker model, the utility function U de-

fines the effectiveness for the speaker to use utter-
ance d to express the meaning s in context C.

U(d; s, C) = lnPL(s|d,C)− cost(u) (1)

PL(s|d,C) is the probability that the listener
can interpret speaker’s intended meaning s. The
speaker selects an utterance which, s/he thinks,
is informative to the listener. The utility of d is
thus defined by its informativeness towards the in-
tended interpretation, which is quantified by nega-
tive surprisal (lnPL(s|d,C)), according to Infor-
mation Theory (Shannon, 1948). The utility is
modified by production cost (cost(d)), which is
related to articulation and retrieval difficulties, etc.
PS(d|s, C) is the probability for the speaker to

use utterance d for meaning s. It is proportional to
the soft-max of the utility of d.

PS(d|s, C) ∝ exp(α · U(d; s, C)) (2)

where α, the decision noise parameter, is set to 1.
On the other hand, the probability for the lis-

tener to infer meaning s from utterance d is de-
fined by Bayes’ rule.

PL(s|d,C) ∝ PS(d|s, C)PL(s) (3)

The listener infers the speaker’s intended mean-
ing by considering how likely, s/he thinks, the
speaker uses that utterance (PS(d|s, C)). The in-
ference is also related to the salience of the mean-
ing (PL(s)), a private preference of the listener.

To summarize, the speaker and listener emulate
the language processing of each other. However,
instead of unlimitted iterations (i.e. the speaker
thinks the listener thinks the speaker thinks..), the
inference is grounded on literal interpretation of
the utterance. Figure 1 illustrates the direction of
pragmatic inference between the speaker and lis-
tener in their minds.

Figure 1: Pragmatic listeners/speakers reason for 1
or more levels, but not the literal listener/speaker.

Our experiment compares the predictions of the
literal listener (L0), the pragmatic listener who
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reasons for one level (L1), and the pragmatic lis-
tener who reasons for two levels (L2). Previ-
ous works demonstrate that one level of reason-
ing is robust in modeling human’s interpretation of
scalar implicatures (Lassiter and Goodman, 2013;
Goodman and Stuhlmüller, 2013).

3.2 Applying the RSA model on discourse
relation interpretation

We use the listener model of RSA to model how
listeners interpret the sense a DC. Given the DC
d and context C in a text, the listener’s inter-
preted relation sense si is the sense that maximizes
PL(s|d,C). si is specifically defined as

si = arg max
s∈S

PL(s|d,C) (4)

where S is the set of defined relation senses.
The literal listener, L0, interprets a DC directly

by its most likely sense in the context. The proba-
bility is estimated by counting the co-occurrences
in corpus data, the Penn Discourse Treebank, in
which explicit and implicit DCs are labelled with
discourse relation senses.

PL0(s|d,C) =
count(s, d, C)
count(d,C)

(5)

More details about the annotation of PDTB will be
explained in Section 4.1.

As shown in Figure 1, the pragmatic speaker S1

estimates the utility of a DC by emulating the com-
prehension of the literal listener L0 (Eq. 1, 2). The
probability for the pragmatic speaker Sn to use DC
d to express meaning s is estimated as:

PSn(d|s, C)

=
exp(lnPLn−1(s|d,C)− cost(d))∑

d′∈D

exp(lnPLn−1(s|d′, C)− cost(d′))
(6)

where n ≥ 1. D is the set of annotated DCs, in-
cluding ‘null’, which stands for an implicit DC.

The cost function in Equation 6, cost(d), mea-
sures the production effort of the DC. As DCs are
mostly short words, we simply define the cost of
producing any explicit DC by a constant positive
value, which is tuned manually in the experiments.
On the other hand, the production cost for an im-
plicit DC is 0, since no word is produced .

In turn, the pragmatic listener L1 emulates the
DC production of the pragmatic speaker S1 (Eq.

3). The probability for the pragmatic listener Ln

to assign meaning s to DC d is estimated as:

PLn(s|d,C) =
PSn(d|s, C)PL(s)∑

s′∈S

PSn(d|s′, C)PL(s′) (7)

where n ≥ 1 and S is the set of defined sense. The
salience of a relation sense in Equation 7, PL(s), is
defined by the frequency of the sense in the corpus.

PL(s) =
count(s)∑

s′∈S

count(s′)
(8)

Lastly, we propose to define the context vari-
able C by the the immediately previous discourse
relation to resemble incremental processing. We
hypothesize that certain patterns of relation tran-
sitions are more expected and predictable. Dis-
course context in terms of relation sense, relation
form (explicit DC or not), and the sense-form pair
are compared in the experiments.

4 Experiment

This section describes experiments that evaluate
the model against discourse-annotated corpus. We
seek to answer the following questions: (1) Can
the proposed model explain the sense interpreta-
tion (annotation) of the DCs in the corpus? (2)
Is the DC interpretation refined by the context in
terms of previous discourse structure? (3) Does
the proposed model help automatic discourse pars-
ing? We first briefly introduce the corpus resource
we use, the Penn Discourse Treebank.

4.1 Penn Discourse Treebank
The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) is the largest available discourse-
annotated resource in English. The raw text are
collected from news articles of the Wall Street
Journals. On the PDTB, all explicit DCs are an-
notated with discourse senses, while implicit dis-
course senses are annotated between two adja-
cent sentences. Other forms of discourse relations,
such as ‘entity relations’, are also labeled. In total,
there are 5 form labels and 42 distinct sense labels,
some of which only occur very sparsely.

We thus use a simplified version of the annota-
tion, which has 2 form labels (Explicit and Non-
explicit DC) and 15 sense labels (first column of
Table 3), following the mapping convention of
the CONLL shallow discourse parsing shared task
(Xue et al., 2015). Sections 2-22 are used as the
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training set and the rest of the corpus, Sections 0,
1, 23 and 24, are combined as the test set. Sizes of
the data sets are summarized in Table 1.

Train Test Total
Explicit 15,402 3,057 18,459
Non-Exp 18,569 3,318 21,887
Total 33,971 6,375 40,346

Table 1: Sample count per data set

4.2 Does RSA explain DC interpretation?
The RSA model argues that a rational listener does
not just stick to the literal meaning of an utter-
ance. S/he should reason about how likely the
speaker will use that utterance, in the current con-
text, based on the informativeness and production
effort of the utterance. If the RSA model explains
DC interpretation as well, discourse sense predic-
tions made by the pragmatic listeners should out-
perform predictions by the literal listener.

In this experiment, we compare the DC inter-
pretation by the literal listener L0, and pragmatic
listeners L1 and L2. Given a DC d and the dis-
course context C for each test instance, the rela-
tion sense is deduced by maximizing the proba-
bility estimate PL(s|d,C). PL0(s|d,C) is simply
based on co-occurrences in the training data (Eq.
5). PL1(s|d,C) and PL2(s|d,C) are calculated by
Eq. 6 and 7, in which the salience of each sense is
also extracted from the training data (Eq. 8).

context C Explicit Non-Explicit
L0 constant (BL) .8767 .2616

prev. form .8754 .2616
prev. sense .8727 .2507
form-sense .8684 .2692

L1 constant .8853* .2616
prev. form .8830 .2616
prev. sense .8671 .2698*
form-sense .8621 .2671

L2 constant .8853* .2616
prev. form .8830 .2616
prev. sense .8671 .2616
form-sense .8621 .2616

Table 2: Accuracy of prediction by L0, L1 and
L2. Improvements above the baseline are bolded.
* means significant at p < 0.02 by McNemar Test.

Table 2 shows the accuracy of discourse sense
prediction by listeners L0, L1 and L2, when pro-
vided with various discourse contexts. Predictions

by L1, when they are differ from the predictions
by L0 under ‘constant’ context, are more accurate
than expected by chance. This provides support
that the RSA framework models DC interpreta-
tion. Overall, predictions of non-implicit senses
hardly differ among different models, since an im-
plicit DC is much less informative than an explicit
DC. Moreover, previous relation senses or forms
do not improve the accuracy, suggesting that a
more generalized formulation of contextual infor-
mation is required to refine discourse understand-
ing. It is also observed that predictions by L2 are
mostly the same as L1. This implies that the lis-
tener is unlikely to emulate speaker’s production
iteratively at deeper levels.

4.3 Insights on automatic discourse parsing
Next, we investigate if the proposed method helps
automatic discourse sense classification. A full
discourse parser typically consists of a pipeline of
classifiers: explicit and implicit DCs are first clas-
sified and then processed separately by 2 classi-
fiers (Xue et al., 2015). On the contrary, the prag-
matic listener of the RSA model considers if the
speaker would prefer a particular DC, explicit or
implicit, when expressing the intended sense.

In this experiment, we integrate the output of
an automatic discourse parser with the probabil-
ity prediction by the pragmatic listener L1. We
employ the winning parser of the CONLL shared
task (Wang and Lan, 2015). The parser is also
trained on Sections 2-22 of PDTB, and thus does
not overlap with our test set. The sense classi-
fication of the parser is based on a pool of lex-
icosyntactic features drawn from gold standard
arguments, DCs and automatic parsed trees pro-
duced by CoreNLP (Manning et al., 2014).

For each test sample, the parser outputs a prob-
ability estimate for each sense. We use these esti-
mates to replace the salience measure (PL(s)) (in
Eq. 8) and deduce P ′L1

(s|d,C), where C is the
previous relation form.

P ′L1
(s|d,C) =

PS1(d|s, C)Pparser(s)∑
s′∈S

PS1(d|s′, C)Pparser(s′) (9)

Table 3 compares the performance of the origi-
nal parser output and the prediction based on P ′L1

.
1This does not match with Table 1 as samples labeled with

2 senses are double counted. Multi-sense training samples
are splitted into multiple samples, each labelled with one of
the senses. In testing, a prediction is considered correct if it
matches with one of the multiple senses.
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discourse parser P ′L1
test

relation sense tags output output counts
Conjunction .7022 .7079 1479
Contrast .7382 .7152 1152
Entity .5174 .5249 862
Reason .4844 .5105 661
Restatement .2773 .2871 567
Result .4019 .4150 405
Instantiation .4346 .4357 282
Synchrony .6553 .7007 264
Condition .9087 .9302 238
Succession .7022 .7210 204
Precedence .7523 .7762 200
Concession .3048 .4382 146
Chosen alternative .5000 .5200 36
Alternative .8421 .8929 28
Exception 1.00 1.00 1
Accuracy / Total .5833 .5916 65251

Table 3: F1 scores of original parser output vs
parser output modified with P ′L1

. Higher scores
are bolded. The improvement in accuracy is sig-
nificant at p < 0.05 by McNemar Test.

Significant improvement in classification accuracy
is achieved and the F1 scores for most senses are
improved. This confirms the applicational poten-
tial of our model on automatic discourse parsing.

5 Conclusion

We propose a new framework to model the inter-
pretation of discourse relations based on Bayesian
pragmatics. Experimental results support the ap-
plicability of the model on human DC comprehen-
sion and automatic discourse parsing. As future
work, we plan to deduce a more general abstrac-
tion of the context governing DC interpretation. A
larger picture is to design a full, incremental dis-
course parsing algorithm that is motivated by the
psycholinguistic reality of human discourse pro-
cessing.
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Abstract

Traditional topic models do not account
for semantic regularities in language.
Recent distributional representations of
words exhibit semantic consistency over
directional metrics such as cosine simi-
larity. However, neither categorical nor
Gaussian observational distributions used
in existing topic models are appropriate to
leverage such correlations. In this paper,
we propose to use the von Mises-Fisher
distribution to model the density of words
over a unit sphere. Such a representation is
well-suited for directional data. We use a
Hierarchical Dirichlet Process for our base
topic model and propose an efficient infer-
ence algorithm based on Stochastic Vari-
ational Inference. This model enables us
to naturally exploit the semantic structures
of word embeddings while flexibly discov-
ering the number of topics. Experiments
demonstrate that our method outperforms
competitive approaches in terms of topic
coherence on two different text corpora
while offering efficient inference.1

1 Introduction

Prior work on topic modeling has mostly involved
the use of categorical likelihoods (Blei et al.,
2003; Blei and Lafferty, 2006; Rosen-Zvi et al.,
2004). Applications of topic models in the tex-
tual domain treat words as discrete observations,
ignoring the semantics of the language. Recent
developments in distributional representations of
words (Mikolov et al., 2013; Pennington et al.,

∗Authors contributed equally and listed alphabetically.
1Code is available at https://github.com/

Ardavans/sHDP.

2014) have succeeded in capturing certain seman-
tic regularities, but have not been explored exten-
sively in the context of topic modeling. In this pa-
per, we propose a probabilistic topic model with
a novel observational distribution that integrates
well with directional similarity metrics.

One way to employ semantic similarity is to
use the Euclidean distance between word vectors,
which reduces to a Gaussian observational distri-
bution for topic modeling (Das et al., 2015). The
cosine distance between word embeddings is an-
other popular choice and has been shown to be
a good measure of semantic relatedness (Mikolov
et al., 2013; Pennington et al., 2014). The von
Mises-Fisher (vMF) distribution is well-suited to
model such directional data (Dhillon and Sra,
2003; Banerjee et al., 2005) but has not been pre-
viously applied to topic models.

In this work, we use vMF as the observational
distribution. Each word can be viewed as a point
on a unit sphere with topics being canonical di-
rections. More specifically, we use a Hierarchi-
cal Dirichlet Process (HDP) (Teh et al., 2006), a
Bayesian nonparametric variant of Latent Dirich-
let Allocation (LDA), to automatically infer the
number of topics. We implement an efficient infer-
ence scheme based on Stochastic Variational Infer-
ence (SVI) (Hoffman et al., 2013).

We perform experiments on two different
English text corpora: 20 NEWSGROUPS and
NIPS and compare against two baselines - HDP
and Gaussian LDA. Our model, spherical HDP
(sHDP), outperforms all three systems on the mea-
sure of topic coherence. For instance, sHDP ob-
tains gains over Gaussian LDA of 97.5% on the
NIPS dataset and 65.5% on the 20 NEWSGROUPS

dataset. Qualitative inspection reveals consistent
topics produced by sHDP. We also empirically
demonstrate that employing SVI leads to efficient
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topic inference.

2 Related Work

Topic modeling and word embeddings Das et
al. (2015) proposed a topic model which uses a
Gaussian distribution over word embeddings. By
performing inference over the vector representa-
tions of the words, their model is encouraged to
group words that are semantically similar, lead-
ing to more coherent topics. In contrast, we pro-
pose to utilize von Mises-Fisher (vMF) distribu-
tions which rely on the cosine similarity between
the word vectors instead of euclidean distance.

vMF in topic models The vMF distribution has
been used to model directional data by plac-
ing points on a unit sphere (Dhillon and Sra,
2003). Reisinger et al. (2010) propose an admix-
ture model that uses vMF to model documents rep-
resented as vector of normalized word frequen-
cies. This does not account for word level seman-
tic similarities. Unlike their method, we use vMF
over word embeddings. In addition, our model is
nonparametric.

Nonparametric topic models HDP and its vari-
ants have been successfully applied to topic mod-
eling (Paisley et al., 2015; Blei, 2012; He et al.,
2013); however, all these models assume a cate-
gorical likelihood in which the words are encoded
as one-hot representation.

3 Model

In this section, we describe the generative process
for documents. Rather than one-hot representa-
tion of words, we employ normalized word em-
beddings (Mikolov et al., 2013) to capture seman-
tic meanings of associated words. Word n from
document d is represented by a normalized M -
dimensional vector xdn and the similarity between
words is quantified by the cosine of angle between
the corresponding word vectors.

Our model is based on the Hierarchical Dirich-
let Process (HDP). The model assumes a collec-
tion of “topics” that are shared across documents
in the corpus. The topics are represented by the
topic centers µk ∈ RM . Since word vectors are
normalized, the µk can be viewed as a direction on
unit sphere. Von Mises−Fisher (vMF) is a distri-
bution that is commonly used to model directional
data. The likelihood of the topic k for word xdn

D

xdn

zdn

⇡d �

µk, k

1

�⇤

↵

'dn

 k, �k

�

✓d

Nd

(µ0, C0)
(m,�)

Figure 1: Graphical representation of our spheri-
cal HDP (sHDP) model. The symbol next to each
random variable denotes the parameter of its vari-
ational distribution. We assume D documents in
the corpus, each document contains Nd words and
there are countably infinite topics represented by
(µk, κk).

is:

f(xdn;µk;κk) = exp
(
κkµ

T
k xdn

)
CM (κk)

where κk is the concentration of the topic k, the
CM (κk) := κ

M/2−1
k /

(
(2π)M/2IM/2−1(κk)

)
is

the normalization constant, and Iν(·) is the mod-
ified Bessel function of the first kind at order ν.
Interestingly, the log-likelihood of the vMF is pro-
portional to µTk xdn (up to a constant), which is
equal to the cosine distance between two vectors.
This distance metric is also used in Mikolov et al.
(2013) to measure semantic proximity.

When sampling a new document, a subset of
topics determine the distribution over words. We
let zdn denote the topic selected for the word n of
document d. Hence, zdn is drawn from a categori-
cal distribution: zdn ∼ Mult(πd), where πd is the
proportion of topics for document d. We draw πd
from a Dirichlet Process which enables us to esti-
mate the the number of topics from the data. The
generative process for the generation of new doc-
ument is as follows:

β ∼ GEM(γ) πd ∼ DP(α, β)

κk ∼ log-Normal(m,σ2) µk ∼ vMF(µ0, C0)
zdn ∼ Mult(πd) xdn ∼ vMF(µk, κk)

where GEM(γ) is the stick-breaking distribution
with concentration parameter γ, DP(α, β) is a
Dirichlet process with concentration parameter α
and stick proportions β (Teh et al., 2012). We use
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log-normal and vMF as hyper-prior distributions
for the concentrations (κk) and centers of the top-
ics (µk) respectively. Figure 1 provides a graphical
illustration of the model.

Stochastic variational inference In the rest of
the paper, we use bold symbols to denote the vari-
ables of the same kind (e.g., xd = {xdn}n,
z := {zdn}d,n). We employ stochastic variational
mean-field inference (SVI) (Hoffman et al., 2013)
to estimate the posterior distributions of the latent
variables. SVI enables us to sequentially process
batches of documents which makes it appropriate
in large-scale settings.

To approximate the posterior distribution of the
latent variables, the mean-field approach finds the
optimal parameters of the fully factorizable q (i.e.,
q(z, β,π,µ,κ) := q(z)q(β)q(π)q(µ)q(κ)) by
maximizing the Evidence Lower Bound (ELBO),

L(q) = Eq [log p(X, z, β,π,µ,κ)]− Eq [log q]

where Eq[·] is expectation with respect to q,
p(X, z, β,π,µ,κ) is the joint likelihood of the
model specified by the HDP model.

The variational distributions for z,π,µ have
the following parametric forms,

q(z) = Mult(z|ϕ)
q(π) = Dir(π|θ)
q(µ) = vMF(µ|ψ,λ),

where Dir denotes the Dirichlet distribution and
ϕ,θ,ψ and λ are the parameters we need to op-
timize the ELBO. Similar to (Bryant and Sud-
derth, 2012), we view β as a parameter; hence,
q(β) = δβ∗(β). The prior distribution κ does not
follow a conjugate distribution; hence, its poste-
rior does not have a closed-form. Since κ is only
one dimensional variable, we use importance sam-
pling to approximate its posterior. For a batch size
of one (i.e., processing one document at time), the
update equations for the parameters are:

ϕdwk ∝ exp{Eq[log vMF(xdw|ψk, λk)]
+ Eq[log πdk]}

θdk ← (1− ρ)θdk + ρ(αβk +D
W∑
n=1

ωwjϕdwk)

t← (1− ρ)t+ ρs(xd, ϕdk)
ψ ← t/‖t‖2, λ← ‖t‖2

where D, ωwj , W , ρ are the total number of docu-
ments, number of word w in document j, the total

number of words in the dictionary, and the step
size, respectively. t is a natural parameter for vMF
and s(xd, ϕdk) is a function computing the suffi-
cient statistics of vMF distribution of the topic k.
We use numerical gradient ascent to optimize for
β∗. For exact forms of Eq log[vMF(xdw|ψk, λk)]
and Eq[log πdk], see Appendix.

4 Experiments

Setup We perform experiments on two different
text corpora: 11266 documents from 20 NEWS-
GROUPS2 and 1566 documents from the NIPS cor-
pus3. We utilize 50-dimensional word embeddings
trained on text from Wikipedia using word2vec4.
The vectors are normalized to have unit `2-norm,
which has been shown to provide superior perfor-
mance (Levy et al., 2015)).

We evaluate our model using the measure of
topic coherence (Newman et al., 2010), which has
been shown to effectively correlate with human
judgement (Lau et al., 2014). For this, we com-
pute the Pointwise Mutual Information (PMI) us-
ing a reference corpus of 300k documents from
Wikipedia. The PMI is calculated using co-
occurence statistics over pairs of words (ui, uj)
in 20-word sliding windows:

PMI(ui, uj) = log
p(ui, uj)

p(ui) · p(uj)
Additionally, we also use the metric of normalized
PMI (NPMI) to evaluate the models in a similar
fashion:

NPMI(ui, uj) =
log p(ui,uj)

p(ui)·p(uj)

− log p(ui, uj)

We compare our model with two baselines: HDP
and the Gaussian LDA model. We ran G-LDA
with various number of topics (k).

Results Table 2 details the topic coherence av-
eraged over all topics produced by each model.
We observe that our sHDP model outperforms G-
LDA by 0.08 points on 20 NEWSGROUPS and by
0.17 points in terms of PMI on the NIPS dataset.
The NPMI scores also show a similar trend with
sHDP obtaining the best scores on both datasets.
We can also see that the individual topics inferred

2http://qwone.com/˜jason/20Newsgroups/
3http://www.cs.nyu.edu/˜roweis/data.

html
4https://code.google.com/p/word2vec/
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Gaussian LDA
vector shows network hidden performance net figure size
image feature learning term work references shown average

gaussian show model rule press introduction neurons present
equation motion neural word tion statistical point family

generalization action input means ing related large versus
images spike data words eq comparison neuron spread
gradient series function approximate performed source small median
theory final time derived em statistics fig physiology

dimensional robot set describe vol free cells children
1.16 0.4 0.35 0.29 0.25 0.25 0.21 0.2

Spherical HDP
neural function analysis press pattern problem noise algorithm
layer linear theory cambridge fig process gradient error

neurons functions computational journal temporal method propagation parameters
neuron vector statistical vol shape optimal signals computation

activation random field eds smooth solution frequency algorithms
brain probability simulations trans surface complexity feedback compute
cells parameter simulation springer horizontal estimation electrical binary
cell dimensional nonlinear volume vertical prediction filter mapping

synaptic equation dynamics review posterior solve detection optimization
1.87 1.73 1.51 1.44 1.41 1.19 1.12 1.03

Table 1: Examples of top words for the most coherent topics (column-wise) inferred on the NIPS dataset
by Gaussian LDA (k=40) and Spherical HDP. The last row for each model is the topic coherence (PMI)
computed using Wikipedia documents as reference.

Model
Topic Coherence

20 NEWS NIPS

pmi npmi pmi npmi
HDP 0.037 0.014 0.270 0.062

G-LDA (k=10) -0.061 -0.006 0.214 0.055
G-LDA (k=20) -0.017 0.001 0.215 0.052
G-LDA (k=40) 0.052 0.015 0.248 0.057
G-LDA (k=60) 0.082 0.021 0.137 0.034

sHDP 0.162 0.046 0.442 0.102

Table 2: Average topic coherence for various base-
lines (HDP, Gaussian LDA (G-LDA)) and sHDP.
k=number of topics. Best scores are shown in
bold.

by sHDP make sense qualitatively and have higher
coherence scores than G-LDA (Table 1). This sup-
ports our hypothesis that using the vMF likelihood
helps in producing more coherent topics. sHDP
produces 16 topics for the 20 NEWSGROUPS and
92 topics on the NIPS dataset.

Figure 2 shows a plot of normalized log-
likelihood against the runtime of sHDP and G-
LDA.5 We calculate the normalized value of log-
likelihood by subtracting the minimum value from
it and dividing it by the difference of maximum

5Our sHDP implementation is in Python and the G-LDA
code is in Java.
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Figure 2: Normalized log-likelihood (in percent-
age) over a training set of size 1566 documents
from the NIPS corpus. Since the log-likelihood
values are not comparable for the Gaussian LDA
and the sHDP, we normalize them to demon-
strate the convergence speed of the two inference
schemes for these models.

and minimum values. We can see that sHDP con-
verges faster than G-LDA, requiring only around
five iterations while G-LDA takes longer to con-
verge.

5 Conclusion

Classical topic models do not account for semantic
regularities in language. Recently, distributional
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representations of words have emerged that exhibit
semantic consistency over directional metrics like
cosine similarity. Neither categorical nor Gaussian
observational distributions used in existing topic
models are appropriate to leverage such correla-
tions. In this work, we demonstrate the use of the
von Mises-Fisher distribution to model words as
points over a unit sphere. We use HDP as the base
topic model and propose an efficient algorithm
based on Stochastic Variational Inference. Our
model naturally exploits the semantic structures
of word embeddings while flexibly inferring the
number of topics. We show that our method out-
performs three competitive approaches in terms of
topic coherence on two different datasets.
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Appendinx

Mean field update equations

In this section, we provide the mean field update
equations. The SVI update equations can be de-
rived from the mean field update (Hoffman et al.,
2013).

The following term is computed for the update
equations:

Eq[log vMF(xdn|µk, κk)] = Eq[logCM (κk)]+

Eq[κk]xTdnEq[µk]

where CM (·) is explained in Section 3. The
difficulty here lies in computing Eq[κk] and
Eq[CM (κk)]. However, κ is a scalar value. Hence,
to compute Eq[κk], we divide a reasonable interval
of κk into grids and compute the weight for each
grid point as suggested by Gopal and Yang (2014):

p(κk|· · ·) ∝ exp (nk logCM (κk)+

κk

(
D∑
d=1

Nd∑
n=1

[ϕdn]k 〈xdn,Eq[µk]〉
))
×

logNormal(κk|m,σ2)

where nk =
∑D

d=1

∑Nd
d=1 [ϕdn]k and [a]k denotes

the k’th element of vector a. After computing
the normalized weights, we can compute Eq[κk]
or expectation of any other function of κk (e.g.,
Eq[CM (κk)]). The rest of the terms can be com-
puted as follows:

Eq[µk] = Eq

[
IM/2(κk)
IM/2−1(κk)

]
ψk,

ψk = Eq[κk]

(
D∑
d=1

Nd∑
n=1

[ϕdn]kxdn

)
+ C0µ0

ψk ← ψk
‖ψk‖2 ,

[Eq[log(πd)]]k = Ψ([θd]k)−Ψ

(∑
k

[θd]k

)
,

[ϕdn]k ∝ exp (Eq[log vMF(xdn|µk, κk)] + Eq[log([πd]k)]) ,

[θd]k =α+
Nd∑
n=1

[ϕdn]k

Ψ(·) is the digamma function.

To find β∗, similar to Johnson and Willsky
(2014), we use the gradient expression of ELBO
with respect to β and take a truncated gradient step
on β ensuring β∗ ≥ 0.
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Abstract

Big data presents new challenges for un-
derstanding large text corpora. Topic mod-
eling algorithms help understand the un-
derlying patterns, or “topics”, in data. Re-
searchersauthor often read these topics in
order to gain an understanding of the un-
derlying corpus. It is important to evaluate
the interpretability of these automatically
generated topics. Methods have previ-
ously been designed to use crowdsourcing
platforms to measure interpretability. In
this paper, we demonstrate the necessity of
a key concept, coherence, when assessing
the topics and propose an effective method
for its measurement. We show that the
proposed measure of coherence captures a
different aspect of the topics than existing
measures. We further study the automa-
tion of these topic measures for scalabil-
ity and reproducibility, showing that these
measures can be automated.

1 Introduction

Big data poses new challenges in analyzing text
corpora. Topic modeling algorithms have recently
grown to popularity for their ability to help dis-
cover the underlying topics in a corpus. Topic
words are the words selected to represent a topic.
They have been shown to be useful in the ar-
eas of machine learning, text analysis (Grim-
mer and Stewart, 2013), and social media analy-
sis (O’Connor et al., 2010), among others. Topic
models can be used as predictive models to clas-
sify new documents in the context of the train-
ing corpus. They are evaluated by measuring their
predictive performance on a held-out set of docu-
ments. Topic models can also be inspected man-
ually by a human to understand the themes of

the underlying corpus. A widely adopted way is
suggested by (Chang et al., 2009): it measures
the quality of a topic by inspecting how far topic
words are from some random words. The idea is
that the quality of a topic can be measured by how
far topic words are from some random words. In
other words, if human evaluators can consistently
separate random words from topic words, these
topics are good, otherwise, they are not good. An
advantage of this measure is that it can be easily
implemented to deploy on a crowd-sourcing plat-
form like Amazon’s Mechanical Turk.

Assuming that random words represent random
topics, we can name the above method “between-
topic” measure. In this paper, we hypothesize
that this measure considers just one important as-
pect in assessing the quality of statistical topics.
Specifically, we investigate the topic interpretabil-
ity by examining the “coherence” of a topic gener-
ated by topic modeling algorithms, i.e., how close
topic words are within a topic. Thus, this mea-
sure is a “within-topic” measure. Two immedi-
ate challenging questions are: (1) without know-
ing ground truth of topic coherence, how can we
design an equally effective method like “between-
topic” measure for crowd-sourcing evaluation?
and (2) how different is this “within-topic” coher-
ence measure from the existing “between-topic”
measure? We elaborate how we answer these two
challenges by starting with some related work,
showing how the “between-topic” measure faces
difficulty in measuring coherence, and presenting
our proposal of a coherence measure.

2 Related Work

Topic modeling is pervasive, and has been widely
accepted across many communities such as ma-
chine learning and social sciences (Ramage et al.,
2009; Schmidt, 2012; Yang et al., 2011). One of
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the reasons for the wide appreciation of these al-
gorithms is their ability to find underlying topics
in enormous sets of data (Blei, 2012). More re-
cently topic modeling has been widely applied to
social media data (Kireyev et al., 2009; Joseph et
al., 2012; Morstatter et al., 2013), e.g. (Yin et al.,
2011; Hong et al., 2012; Pozdnoukhov and Kaiser,
2011) focus on identifying topics in geographical
Twitter datasets. In (Kumar et al., 2013; Mimno
et al., 2011), the authors had to employ subject-
matter experts to assess topic quality. These man-
ual topic labels can be supplemented with auto-
matic labeling algorithms (Maiya et al., 2013).
While these works attempt to ensure topic qual-
ity by employing domain experts, these are highly
domain-specific cases. The measures we discuss
going forward are more general, and can be ap-
plied to topic models trained with text data.

The most important point of comparison be-
tween our work and others lies in the Model Pre-
cision measure proposed in (Chang et al., 2009).
The insight of this measure is that a good topic
is one whose top few words are distant, or highly
separate, from randomly-selected words. Their
task works by showing several human participants,
or Turker, the top 5 words from a topic and one
randomly-chosen, low-ranking “intruded” word.
The humans are then asked to select the word that
they think was intruded. The measure then esti-
mates the topic’s quality by calculating the number
of times the humans correctly guessed the intruded
word. While Word Intrusion provides insight into
a topic’s interpretability, the key assumption is that
topic goodness comes only from the top words be-
ing separate from a randomly-selected word. This
measure does not offer any insight about the co-
herence of the top words. We propose a new mea-
sure which complements Word Intrusion by mea-
suring distance within a topic.

(Lau et al., 2014) built a machine learning algo-
rithm to automatically detect the intruded word in
a topic. Methods for evaluating topic models were
proposed in (Wallach et al., 2009). We investigate
the applicability of this measure in our work.

3 Model Precision Quandary

Model Precision works by asking the user to
choose the word that does not fit within the rest
of the set. We are measuring the top words in the
topic by comparing them to an outlier. While this
method has merit, it does not help us understand

the coherence within the top words for the topic.
A diagram illustrating this phenomenon is

shown in Figure 1. In Figure 1(a), we see a co-
herent topic. This topic is coherent because all 5 of
the top words are close together, while the intruded
word is far away. In Figure 1(b) we see a topic
that is less coherent because the fifth word lies at
a distance from the first four. In both cases, Model
Precision gives us the intruder word in the topic, as
seen in Figures 1(c), and 1(d). While this is the de-
sired performance of Model Precision, it leaves us
with no understanding of the coherence of the top
words of the topic. Results are masked by the out-
lier, and do not give information about the intra-
cluster distance, or coherence of the topic.

In light of this, we look for a way to separate
topics not just by their distance from an outlier,
but also by the distance within the top words in the
topic. The next section of this paper investigates a
method which can measure not just the intruder
word, but also the coherence of the top words in
the topic. In this way we separate topics such as
those shown in Figure 1 based on the coherence of
their top words.

4 Word Intrusion Choose Two

In this section we propose a new experiment that
measures the interpretability of the top words of
a topic. This experiment sets up the task as be-
fore: we select the top five words from a topic,
and inject one low-probability word. The key dif-
ference is that we ask the Turker to select two in-
truded words among the six.

The intuition behind this experiment is that the
Turkers’ first choice will be the intruded word,
just as in Model Precision. However, their second
choice is what makes the topic’s quality clear. In a
coherent topic the Turkers won’t be able to distin-
guish a second word as all of the words will seem
similar. A graphical representation of this phe-
nomenon is shown in Figure 1(e). In the case of
an incoherent, a strong “second-place” contender
will emerge as the Turkers identify a 2nd intruder
word, as in Figure 1(f).

4.1 Experimental Setup

To perform this experiment, we inject one low-
probability word for each topic, and we ask the
Turkers to select two words that do not fit within
the group. We show the six words to the Turker in
random order with the following prompt:
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(a) Coherent Topic (b) Less-Coherent Topic

(c) Coherent Topic: Model Precision (d) Less-Coherent Topic: Model Precision

(e) Coherent Topic: Model Precision Choose Two (f) Less-Coherent Topic: Model Precision Choose Two

Figure 1: Comparison between Model Precision, and Model Precision Choose Two for a toy topic.
Circles represent the top words and triangles represent intruded words. Model Precision Choose Two
can distinguish the less-coherent topic.

You will be shown six words. Four words belong to-
gether, and two of them do not. Choose two words that
do not belong in the group.

Coherent topics will cause the Turkers’ re-
sponses regarding the second intruded word to be
unpredictable. Thus, our measure of the good-
ness of the topic should be the predictability of
the Turkers’ second choice. We propose a new
measure called “Model Precision Choose Two”
to measure this. Model Precision Choose Two
(MPCT) measures this spread as the peakedness of
the probability distribution. We define MPCTm

k

for topic k on model m as:

MPCTm
k = H(pturk(wm

k,1), ..., pturk(wm
k,5)),

(1)
where H(·) is the Shannon entropy (Cover and
Thomas, 2006), wm

k is the vector of the top words
in topic k generated by model m, and pturk(wm

k,i)
is the probability that a Turker selects wm

k,i. This
measures the strength of the second-place candi-
date, with higher values indicating a smoother,
more even distribution, and lower values indicat-

ing Turkers gravitation towards a second word.
The intuition behind choosing entropy is that

it will measure the unpredictability in the Turker
selections. That is, if the Turkers are confused
about which second word to choose, then their
answers will be scattered amongst the remaining
five words. As a result, the entropy will be high.
Conversely, if the second word is obvious, the
Turkers will begin to congregate around that sec-
ond choice, meaning that their answers will be fo-
cused. As a result, the entropy will be low. Be-
cause entropy is able to measure the confusion of
the Turkers responses about the second word, we
use it directly in the design of our measure.

4.2 Data

The data used in this study consists of articles from
English Wikipedia. We sample 10,000 articles
uniformly at random from across the dataset. We
selected articles containing more than 50 words.
In preprocessing we stripped case, removed punc-
tuation, stopwords, and words consisting entirely
of numbers. This process yields a corpus con-
taining 10,000 documents, 4,200,174 tokens, and
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Table 1: Example topics showing the variance of
MPCT when MP = 1.0.

MPCT Top Five Words Intruded Word

0.202 canada, canadian, north, ontario, http shipping
0.373 language, century, word, english, greek drew
0.407 river, highway, road, north, route berea
0.569 born, children, family, life, father boatsman
0.795 design, engine, model, power, system resynthesized
0.946 railway, station, road, line, route anagarika
1.000 film, series, show, television, films bubblegrunge

196,219 types.
The topic modeling algorithm used is latent

Dirichlet allocation (LDA) (Blei et al., 2003). To
build the models used in the experiments, we
run LDA on the Wikipedia corpus using values
of K = {10, 25, 50, 100} with the Mallet pack-
age (McCallum, 2002). This yields 4 models and
185 total topics. The model generated by each
value of K is denoted by m in the equations.

4.3 Experimental Results

The results of this experiment, aggregated by
model, are shown in Figure 2. We see that as the
value of K increases, the median score for MPCT
stays roughly the same. We compute the Spear-
man’s ρ correlation coefficient (Spearman, 1904)
between the MP and MPCT measures, and find
that the measures have ρ = 0.09. This lack of cor-
relation indicates that this measure is assessing a
different dimension of the topics.

To help explain these results, we provide some
examples of topics that received different MPCT
scores with a perfect separateness (MP) score in
Table 1. We see that although all of the topics
have perfect scores along this dimension, their co-
hesiveness score varies. This is due to the Turkers’
agreement about the second intruded word.

5 Automating Model Precision
Choose Two

The crowdsourced experiments carried out in this
paper provide a complementary understanding of
how humans understand the topics that are gener-
ated using statistical topic models. One drawback
of these methods lies in the difficulty of repro-
ducing these experiments. This difficulty comes
from two sources: 1) the monetary cost of employ-
ing the Turkers to solve the HITs, and 2) the time
cost to build the surveys and to collect the results.
To overcome these issues, we propose automated
methods that can estimate the topics’ performance
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Figure 2: Model Precision Choose Two across the
four models used in this work. Higher scores are
better. We see that as K increases, the median
score does not improve noticeably.

along these different dimensions. These measures
can be used by future researchers to automatically
gauge their topics.

We test several automated measures for their
ability to predict the outcome of the crowdsourced
measures. To test these measures, we calculate the
Spearman’s ρ between the automated measure of
the topic and the crowdsourced measure. The au-
tomated measures we propose are as follows:

1. Topic Size: LDA assigns a topic label to each
token in the dataset. Topic size measures the
number of tokens assigned to the topic by the
LDA model, where more tokens indicates a
larger topic. This has been tested in (Mimno
et al., 2011).

2. Topic Entropy: The entropy of the entire
probability distribution for the topic. High
entropy indicates a flat distribution of proba-
bilities, while low entropy indicates a peaked
distribution around the first few words.

3. Mimno Co-Occurrence: Measures the fre-
quency of the top words co-occurring within
the same document. Proposed in (Mimno et
al., 2011), and measured as:

MCO(w) =
|w|∑
j=2

j−1∑
k=1

log
D(wj ,wk) + 1

D(wk)
,

(2)
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Table 2: Performance of automated measures in
approximating the crowdsourced experiments. All
values are Spearman’s ρ correlation coefficients
with the crowdsourced measure.

Automated Measure MPCT

1. Topic Size -0.572
2. Topic Entropy -0.539
3. Mimno -0.438
4. No. Word Senses -0.456
5. Avg. Pairwise JCD -0.844
6. Mean-Link JCD -0.434
7. NPMI -0.582

where w is the vector of the top 20 words
in the topic, and D(·) returns the number of
times the words co-occur in any document in
the corpus.

4. No. Word Senses: The total number of word
senses, according to WordNet, of the top five
words in the topic. This varies slightly from
the measure proposed in (Chang et al., 2009),
where the authors also consider the intruded
word. Because the intruded word is generally
far away, we exclude it from our calculation.

5. Avg. Pairwise Jiang-Conrath Distance:
The Jiang-Conrath (Jiang and Conrath, 1997)
distance (JCD) is a measure of semantic sim-
ilarity, or coherence, that considers the low-
est common subsumer according to Word-
Net. Here we compute the average JCD of
all

(5
2

)
= 10 pairs of the top five words

of the topic. This approach was introduced
by (Chang et al., 2009), however we modify
it slightly to only consider the top five words
in the topic.

6. Mean-Link JCD: Using the JCD measure
as before, we compute the average distance
from the intruded word to each of the top 5
words from the topic.

7. Normalized Pointwise Mutual Informa-
tion (NPMI): NPMI measures the associa-
tion between the top words in a topic. It
is normalized to yield a score of 1 in the
case of perfect association. This measure was
first introduced by (Bouma, 2009). We use
the calculation adapted for the problem of
estimating a topic’s performance introduced
in (Lau et al., 2014).

We calculate the correlation between all au-
tomated methods and MPCT, shown in Table 2.
MPCT is best predicted using the Avg. Pairwise
JCD measure. The implications of this result are
important: MPCT is best predicted by JCD, a mea-
sure that approximates the coherence of topics.
Furthermore the correlations are negative, indicat-
ing that a low average distance (and thus, a high
semantic similarity) indicates a high performance
along this automated measure.

6 Conclusion and Future Work

In this work we define a new measure for the per-
formance of statistical topic models. We show that
this measure gauges a different aspect of the top-
ics than the traditional model precision measure.
Finally, we identify automated measures that can
approximate the crowdsourced measures for both
interpretability and coherence. This measure can
be used by future researchers to complement their
analysis of statistical topics. The results from our
experiments indicate that Word Intrusion Choose
Two is different from Word Intrusion, with almost
no correlation between the two measures.

Furthermore, we propose automatic measures
that can replace the crowdsourced measures. This
is important as it allows for both scalability and
reproducibility, as experiments using crowdsourc-
ing are costly in terms of both time and money.
We find that measures based on the interpretabil-
ity of topics can best approximate the Model
Precision Choose Two measure, indicating that
this measure favors topics whose top words are
more semantically similar, furthering our claim
that this measure is assessing the coherence of the
topic. Code and data to reproduce Model Preci-
sion Choose Two can be found at http://bit.
ly/mpchoose2.

While model precision choose two offers a new
way to understand topics, there may be others
that could help to reveal other dimensions of topic
quality. Future work is to find other measures for
the semantic properties of topic modeling algo-
rithms. Furthermore, the automated measures we
discover to approximate the crowdsourced ones
may be incorporated into a topic modeling algo-
rithm that can better produce interpretable topics.
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Abstract

Scoring the quality of persuasive essays
is an important goal of discourse analy-
sis, addressed most recently with high-
level persuasion-related features such as
thesis clarity, or opinions and their targets.
We investigate whether argumentation fea-
tures derived from a coarse-grained argu-
mentative structure of essays can help pre-
dict essays scores. We introduce a set
of argumentation features related to ar-
gument components (e.g., the number of
claims and premises), argument relations
(e.g., the number of supported claims)
and typology of argumentative structure
(chains, trees). We show that these fea-
tures are good predictors of human scores
for TOEFL essays, both when the coarse-
grained argumentative structure is man-
ually annotated and automatically pre-
dicted.

1 Introduction

Persuasive essays are frequently used to assess stu-
dents’ understanding of subject matter and to eval-
uate their argumentation skills and language pro-
ficiency. For instance, the prompt for a TOEFL
(Test of English as a Foreign Language) persua-
sive writing task is:

Do you agree or disagree with the following

statement? It is better to have broad knowledge

of many academic subjects than to specialize in

one specific subject. Use specific reasons and ex-

amples to support your answer.

Automatic essay scoring systems generally use
features based on grammar usage, spelling, style,
and content (e.g., topics, discourse) (Attali and
Burstein, 2006; Burstein, 2003). However, recent

work has begun to explore the impact of high-
level persuasion-related features, such as opinions
and their targets, thesis clarity and argumentation
schemes (Farra et al., 2015; Song et al., 2014;
Ong et al., 2014; Persing and Ng, 2015). In this
paper, we investigate whether argumentation fea-
tures derived from a coarse-grained, general argu-
mentative structure of essays are good predictors
of holistic essay scores. We use the argumen-
tative structure proposed by Stab and Gurevych
(2014a): argument components (major claims,
claims, premises) and argument relations (sup-
port, attack). Figure 1(i) shows an extract from
an essay written in response to the above prompt,
labeled with a claim and two premises. The ad-
vantage of having a simple annotation scheme is
two-fold: it allows for more reliable human an-
notations and it enables better performance for ar-
gumentation mining systems designed to automat-
ically identify the argumentative structure (Stab
and Gurevych, 2014b).

The paper has two main contributions. First,
we introduce a set of argumentation features re-
lated to three main dimensions of argumentative
structure: 1) features related to argument compo-
nents such as the number of claims in an essay,
number of premises, fraction of sentences contain-
ing argument components; 2) features related to
argument relations such as the number and per-
centage of supported and unsupported claims; and
3) features related to the typology of argumenta-
tive structure such as number of chains (see Fig-
ure 1(ii) for and example of chain) and trees (Sec-
tion 3). On a dataset of 107 TOEFL essays man-
ually annotated with the argumentative structure
proposed by Stab and Gurevych (2014a) (Section
2), we show that using all the argumentation fea-
tures predicts essay scores that are highly corre-
lated with human scores (Section 3). We discuss
what features are correlated with high scoring es-
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Figure 1: (i) Essay extract showing a claim and two premises and (ii) the corresponding argumentative
structure (i.e., chain).

says vs. low scoring essays. Second, we show
that the argumentation features extracted based on
argumentative structures automatically predicted
by a state-of-the-art argumentation mining system
(Stab and Gurevych, 2014b) are also good predic-
tors of essays scores (Section 4).1

2 Data and Annotation

We use a set of 107 essays from TOEFL11 cor-
pus that was proposed for the first shared task of
Native Language Identification (Blanchard et al.,
2013). The essays are sampled from 2 prompts:
P1 (shown in the Introduction) and P3:

Do you agree or disagree with the following

statement? Young people nowadays do not give

enough time to helping their communities. Use

specific reasons and examples to support your

answer.

Each essay is associated with a score: high,
medium, or low. From prompt P1, we selected
25 high, 21 medium, and 16 low essays, while for
prompt P3 we selected 15 essays for each of the
three scores.

For annotation, we used the coarse-grained
argumentative structure proposed by Stab and
Gurevych (2014a): argument components (ma-
jor claim, claim, premises) and argument rela-
tions (support/attack). The unit of annotation is
a clause. Our annotated dataset, TOEFLarg,
includes 107 major claims, 468 claims, 603
premises, and 641 number of sentences that do
not contain any argument component. To mea-
sure the inter-annotator agreement we calculated
P/R/F1 measures, which are used to account for
fuzzy boundaries (Wiebe et al., 2005). The F1

1The annotated dataset, TOEFLarg , is available at
https://github.com/debanjanghosh/argessay ACL2016/

measure for overlap matches (between two anno-
tators) for argument components is 73.98% and for
argument relation is 67.56%.

3 Argumentation Features for Predicting
Essays Scores

A major contribution of this paper is a thorough
analysis of the key features derived from a coarse-
grained argumentative structure that are correlated
with essay scores. Based on our annotations, we
propose three groups of features (Table 1). The
first group consists of features related to argument
components (AC) such as the number of claims,
number of premises, fraction of sentences contain-
ing argument components. One hypothesis is that
an essay with a higher percentage of argumenta-
tive sentences will have a higher score. The sec-
ond group consists of features related to argument
relations (AR), such as the number and percentage
of supported claims (i.e., claims that are supported
by at least one premise) and the number and per-
centage of dangling claims (i.e., claims with no
supporting premises). In low scoring essays, test
takers often fail to justify their claims with proper
premises and this phenomenon is captured by the
dangling claims feature. In contrary, in high scor-
ing essays, it is common to find many claims that
are justified by premises. We also consider the
number of attack relations and attacks against the
major claim. Finally, the third group consists of
features related to the typology of argument struc-
tures (TS) such as the number of argument chains
(Chain), number of argument trees of height =
1 (Treeh=1) and the number of argument trees
of height > 1 (Treeh>1). We define an argu-
ment chain when a claim is supported by a chain
of premises. We define Treeh=1 as a tree struc-
ture of height 1 with more than one leaves, where
the root is a claim and the leaves are premises
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Figure 2: Typology of Argumentative Structure: Examples of (i) Treeh>1; (ii) Chain; (iii) Treeh=1

Feature
Group

Id Argumentation Feature Description

1 # of Claims
AC 2 # of Premises

3,4 # and fraction of sentences containing
argument components

5, 6 # and % of supported Claims
AR 7, 8 # and % of dangling Claims

9 # of Claims supporting Major Claim
10,
11

# of total Attacks and Attacks against
Major Claim

12 # of Argument Chains
TS 13 # of Argument Treeh=1

14 # of Argument Treeh>1

Table 1: Argumentation Features

or claims. Finally, Treeh>1 is a tree structure of
height > 1, where the root is a claim and the inter-
nal nodes and leaves are either supporting claims
or supporting premises. Figure 2 shows examples
of a Treeh>1 structure, a Chain structure, and
a Treeh=1 structure. The dark nodes represent
claims (C), lighter nodes can be either claims or
premises (C/P) and white nodes are premises (P).
Figure 1 shows an extract from an essays and the
corresponding Chain structure.

To measure the effectiveness of the above
features in predicting the holistic essay scores
(high/medium/low) we use Logistic Regression
(LR) learners and evaluate the learners using
quadratic-weighted kappa (QWK) against the hu-
man scores, a methodology generally used for es-
say scoring (Farra et al., 2015). QWK corrects for
chance agreement between the system prediction
and the human prediction, and it takes into ac-
count the extent of the disagreement between la-
bels. Table 2 reports the performance for the three
feature groups as well as their combination. Our
baseline feature (bl) is the number of sentences in
the essay, since essay length has been shown to
be generally highly correlated with essay scores
(Chodorow and Burstein, 2004). We found that all
three feature groups individually are strongly cor-
related with the human scores, much better than

Features Correlations
bl 0.535

AC 0.758
AR 0.671
TS 0.691

bl + AC 0.770
bl + AR 0.743
bl + TS 0.735

AC + AR + TS 0.784
bl + AC + AR + TS 0.803

Table 2: Correlation of LR (10 fold CV) with hu-
man scores.

the baseline feature, and the AC features have the
highest correlation. We also see that although the
number of claims and premises can affect the score
of an essay, the argumentative structures (i.e., how
the claims and premises are connected in an essay)
are also important. Combining all features gives
the highest QWK score (0.803).

We also looked at what features are associ-
ated with high scoring essays vs. low scoring es-
says. Based on the regression coefficients, we ob-
serve that the high “number and % of dangling
claims” are strong features for low scoring es-
says, whereas the “fraction of sentences contain-
ing argument components” (AC feature), “number
of supported claims” (AR feature), and “number
of Treeh=1 structures” and “number of Treeh>1

structures” (TS features) have the highest correla-
tion with high scoring essays. For example, in a
good persuasive essay, test takers are inclined to
use multiple premises (e.g., reasons or examples)
to support a claim, which is captured by the TS
and AR features. In addition, we notice that at-
tack relations are sparse, as was the case in Stab
and Gurevych (2014b) dataset and thus the coef-
ficients for attack relations features (#10, #11 in
Table 1) are negligible.

In summary, our findings contribute to research
on essay scoring, showing that argumentation fea-
tures are good predictors of essay scores, besides
spelling, grammar, and stylistic properties of text.
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4 Automatic Extraction of
Argumentation Features for Predicting
Essay Scores

To automatically generate the argumentation fea-
tures (Table 1), we first need to identify the argu-
mentative structures: argument components (ma-
jor claim, claim, and premise) and relations (sup-
port/attack). We use the approach proposed by
Stab and Gurevych (2014b).2 For argument com-
ponent identification, we categorize clauses to one
of the four classes (major claim (MC), claim (C),
premise (P ), and None). For argument relation
identification, given a pair of argument clauses
Arg1 and Arg2 the classifier decides whether the
pair holds a support (S) or non-support (NS)
relation (binary classification). For each essay,
we extract all possible combinations of Arg1 and
Arg2 from each paragraph as training data (654
S and 2503 NS instances; attack relations are
few and included in NS). We do not consider
relations that may span over multiple paragraphs
to reduce number of non-support instances. For
both tasks we use Lexical features (e.g., uni-
grams, bigrams, trigrams, modal verbs, adverbs,
word-pairs for relation identification), Structural
features (e.g., number of tokens/punctuations in
argument, as well as in the sentence containing
the argument, argument position in essay, para-
graph position (paragraph that contains the argu-
ment)), Syntactic features (e.g., production rules
from parse trees, number of clauses in the ar-
gument), and Indicators (discourse markers se-
lected from the three top-level Penn Discourse
Tree Bank (PDTB) relation senses: Comparison,
Contingency, and Expansion (Prasad et al., 2008)).

We use two settings for the classification ex-
periments using libSVM (Chang and Lin, 2011)
for both argument component and relation identi-
fication. In the first setting, we used the dataset
of 90 high quality persuasive essays from (Stab
and Gurevych, 2014b) (S&G) as training and use
TOEFLarg for testing (out-of-domain setting).
In the second setting (in-domain), we randomly
split the TOEFLarg into 80% training and 20%
for testing (sampled equally from each category
(MC, C, P , and None for argument compo-
nents; S and NS for relations)). Table 3 and 4
present the classification results for identifying ar-

2In future work, we plan to use the authors’ improved ap-
proach and larger dataset released after the acceptance of this
paper (Stab and Gurevych, 2016).

Feature Type MC C P None
All features 50.0 44.3 48.6 97.7

top100 60.8 36.2 54.1 97.7

Table 3: F1 for argument components (out-of-
domain setting)

Feature Type MC C P None
All features 78.6 53.2 64.0 96.1

top100 53.8 64.5 69.2 96.2

Table 4: F1 for argument components (in-domain
setting)

gument components in the first and second setting,
respectively. We ran experiments for all differ-
ent features groups and observe that with the ex-
ception of the P class, the F1 scores for all the
other classes is comparable to the results reported
by Stab and Gurevych (2014b). One explanation
of having lower performance on the P (premise)
category is that the S&G dataset used for train-
ing has higher quality essays, while 2/3 of our
TOEFLarg dataset consists of medium and low
scoring essays (the writing style for providing rea-
sons or example can differ between high and low
scoring essays). When we select the top 100 fea-
tures (“top100”) using Information Gain (Hall et
al., 2009) the F1 scores for the P class improves.
The results in Table 4 show that when training and
testing on same type of essays the results are bet-
ter for all categories except for MC when using
the “top100” setup.

Table 5 shows the results for relation identifi-
cation in the first setting (out-of-domain). The
F1 score of identifying support relations is 84.3%
(or 89% using top100), much higher than re-
ported by Stab and Gurevych (2014b). We ob-
tain similar results when training and testing on
TOEFLarg. We observe that two specific fea-
ture groups, Structural and Lexical, individu-
ally achieve high F1 scores and when combined
with other features, they assist the classifier in
reaching F1 scores in high 80s%. There can be
two explanations for this: 1) essays in TOEFLarg

have multiple short paragraphs where the posi-
tion features such as position of the arguments in
the essay and paragraph (Structural group) are
strong indicators for argument relations; and 2)
due to short paragraphs, the percentage of NS in-
stances are less than in the S&G dataset, hence the
Lexical features (i.e., word-pairs between Arg1
and Arg2) perform very well.
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Feature Type S NS
All features 84.3 95.0

top100 89.0 97.1

Table 5: F1 for argument relations (out-of-domain
setting)

Features Correlations
AC 0.669
AR 0.460
TS 0.311

AC + AR + TS 0.728
All features 0.737

Table 6: Correlation of LR (10 fold CV) with pre-
dicted results.

Based on the automatic identification of the ar-
gument components and relations, we generate the
argumentation features to see whether they still
predict essays scores that are highly correlated
with human scores. Since our goal is to compare
with the manual annotation setup, we use the first
setting, where we train on the S&G dataset and
test on our TOEFLarg dataset. We select the best
system setup (top100 for both tasks; Table 3 and
5). We ran Logistic Regression learners and eval-
uated their performance using QWK scores. Ta-
ble 6 shows that the argumentative features related
to argument relations (AR) and the typology of
argument structures (TS) extracted based on the
automatically predicated argumentative structure
perform worse compared to the scores based on
manual annotations (Table 2). Our error analy-
sis shows that this is due to the wrong prediction
of argument components, specifically wrongly la-
beling claims as premises (Table 3). AR and TS
features rely on correctly identifying the claims,
and thus a wrong prediction affects the features in
these two groups, even if the accuracy of supports
relations is high. This also explains why the argu-
ment components (AC) features still have a high
correlation with human scores (0.669). When we
extracted the argumentation features using gold-
standard argument components and predicted ar-
gument relations, the correlation of AR and TS
features improved to 0.576 and 0.504, respectively
and the correlation of all features reached 0.769.

5 Related Work

Researchers have begun to study the impact of fea-
tures specific to persuasive construct on student
essay scores (Farra et al., 2015; Song et al., 2014;
Ong et al., 2014; Persing and Ng, 2013; Persing

and Ng, 2015). Farra et al. (2015) investigate the
impact of opinion and target features on TOEFL
essays scores. Our work looks a step further by ex-
ploring argumentation features. Song et al. (2014)
show that adding features related to argumenta-
tion schemes (from manual annotation) as part of
an automatic scoring system increases the corre-
lation with human scores. We show that argu-
mentation features are good predictors of human
scores for TOEFL essays, both when the coarse-
grained argumentative structure is manually anno-
tated and automatically predicted. Persing and Ng
(2015) proposed a feature-rich approach for mod-
eling argument strength in student essays, where
the features are related to argument components.
Our work explores features related to argument
components, relations and typology of argument
structures, showing that argument relation features
show best correlation with human scores (based on
manual annotation).

6 Conclusion

We show that argumentation features derived from
a coarse-grained, argumentative structure of es-
says are helpful in predicting essays scores that
have a high correlation with human scores. Our
manual annotation study shows that features re-
lated to argument relations are particularly useful.
Our experiments using current methods for the au-
tomatic identification of argumentative structure
confirms that distinguishing between claim and
premises is a particularly hard task. This led to
lower performance in predicting the essays scores
using automatically generate argumentation fea-
tures, especially for features related to argument
relations and typology of structure. As future work
we plan to improve the automatic methods for
identifying argument components similar to Stab
and Gurevych (2016), and to use the dataset in-
troduced by Persing and Ng (2015) to investigate
how our argumentation features impact the argu-
ment strength score rather than the holistic essay
score.
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Abstract

Morphological reinflection is the task of
generating a target form given a source
form, a source tag and a target tag. We
propose a new way of modeling this
task with neural encoder-decoder models.
Our approach reduces the amount of re-
quired training data for this architecture
and achieves state-of-the-art results, mak-
ing encoder-decoder models applicable to
morphological reinflection even for low-
resource languages. We further present a
new automatic correction method for the
outputs based on edit trees.

1 Introduction

Morphological analysis and generation of previ-
ously unseen word forms is a fundamental prob-
lem in many areas of natural language process-
ing (NLP). Its accuracy is crucial for the success
of downstream tasks like machine translation and
question answering. Accordingly, learning mor-
phological inflection patterns from labeled data is
an important challenge.

The task of morphological reinflection (MRI)
consists of producing an inflected form for a given
source form, source tag and target tag. A spe-
cial case is morphological inflection (MI), the
task of finding an inflected form for a given
lemma and target tag. An English example is
“tree”+PLURAL→ “trees”. Prior work on MI and
MRI includes machine learning models and mod-
els that exploit the paradigm structure of the lan-
guage (Ahlberg et al., 2015; Dreyer, 2011; Nicolai
et al., 2015).

In this work, we propose the neural encoder-
decoder MED – Morphological Encoder-Decoder
– a character-level sequence-to-sequence attention
model that is a language-independent solution for

MRI. In contrast to prior work, we train a single
model that is trained on all source to target map-
pings of the language that are attested in the train-
ing set. This radically reduces the amount of train-
ing data needed for the encoder-decoder because
most MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The key enabler for this single-model approach
is a novel representation we use for MRI. We en-
code the input as a single sequence of (i) the mor-
phological tags of the source form, (ii) the mor-
phological tags of the target form and (iii) the se-
quence of letters of the source form. The output is
the sequence of letters of the target form. As the
decoder produces each letter, the attention mech-
anism can focus on the input letter sequence for
parts of the output that simply copy the input. For
other parts of the output, e.g., an inflectional end-
ing that is predicted using the target tags, the at-
tention mechanism can focus on the target mor-
phological tags. In more complex cases, simulta-
neous attention can be paid to subsequences of all
three input types – source tags, target tags and in-
put letter sequence. We can train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data. MED outperformed other systems
on the SIGMORPHON16 shared task1 for all ten
languages that were covered (Kann and Schütze,
2016; Cotterell et al., 2016).

We also present POET – Prefer Observed Edit
Trees – a new generic method for correcting the
output of an MRI system. The combination of
MED and POET is state-of-the-art or close to it on
a CELEX-based evaluation of MRI even though
this evaluation makes it difficult to exploit gener-

1ryancotterell.github.io/
sigmorphon2016/
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alizations across tag pairs.

2 Model Description

Neural network model. Our model is based on
the network architecture proposed by Bahdanau
et al. (2014) for machine translation.2 They de-
scribe the model in detail; unless we explicitly say
so in the description of our model below, we use
the same network configuration as Bahdanau et al.
(2014).

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of an RNN that reads an input sequence of
vectors x and encodes it into a fixed-length context
vector c, computing hidden states ht and c by

ht = f(xt, ht−1), c = q(h1, ..., hTx) (1)

with nonlinear functions f and q. The decoder is
trained to predict each output yt dependent on c
and previous predictions y1, ..., yt−1:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, c) (2)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (3)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based extension of this model that allows different
vectors ct for each step by automatic learning of
an alignment model. Additionally, they made the
encoder bidirectional: each hidden state hj at time
step j does not only depend on the preceding, but
also on the following input:

hj =
[−→
hT

j ;
←−
hT

j

]T

(4)

The formula for p(y) changes as follows:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, x) (5)

=
Ty∏
t=1

g(yt−1, st, ct) (6)

2Our implementation of MED is based on
github.com/mila-udem/blocks-examples/
tree/master/machine_translation.

with st being an RNN hidden state for time t
and ct being the weighted sum of the annota-
tions (h1, ..., hTx) produced by the encoder, using
the attention weights. Further descriptions can be
found in (Bahdanau et al., 2014).

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a letter in
our case, (Pascanu et al., 2014)). As MRI is less
complex than machine translation, we reduce the
number of hidden units and embedding size. Af-
ter initial experiments, we fixed the hyperparame-
ters of our system and did not further adapt them
to a specific task or language. Encoder and de-
coder RNNs have 100 hidden units each. For train-
ing, we use stochastic gradient descent, Adadelta
(Zeiler, 2012) and a minibatch size of 20. We ini-
tialize all weights in the encoder, decoder and the
embeddings except for the GRU weights in the de-
coder with the identity matrix as well as all biases
with zero (Le et al., 2015). We train all models
for 20,000 iterations. We settled on this number
in early experimentation because training usually
converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

Input and output format. We define the al-
phabet Σlang as the set of characters used in the
application language. As each morphological tag
consists of one or more subtags, e.g. “number“ or
“case“, we further define Σsrc and Σtrg as the set
of morphological subtags seen during training as
part of the source tag and target tag, respectively.
Let Sstart and Send be predefined start and end sym-
bols. Then each input of our system is of the for-
mat SstartΣsrc

+Σtrg
+Σlang

+Send. In the same way,
we define the output format as SstartΣlang

+Send.
A sample input for German is

<w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The
system should produce the corresponding output
<w> i s o l i e r t e </w>. The high-level
structure of MED can be seen in Figure 1.

POET. We now describe POET (Prefer Ob-
served Edit Trees), a new generic method for cor-
recting the output of an MRI system. We use it in
combination with MED in this paper, but it can in

556



Figure 1: Overview of MED

Figure 2: Edit tree for the inflected form abgesagt “canceled”
and its lemma absagen “to cancel”. The highest node con-
tains the length of the parts before and after the LCS. The left
node in the second row contains the length of the parts before
and after the LCS of abge and ab. The prefix sub indicates
that the node is a substitution operation.

principle be applied to any MRI system.
An edit tree e(σ, τ) specifies a transforma-

tion from a source string σ to a target string τ
(Chrupała, 2008). To compute e(σ, τ), we first
determine the longest common substring (LCS)
(Gusfield, 1997) between σ and τ and then recur-
sively model the prefix and suffix pairs of the LCS.
If the length of LCS is zero for (σ, τ), then e(σ, τ)
is simply the substitution operation that replaces σ
with τ . Figure 2 shows an example.

Let X be a training set for MRI. For each pair
(s, t) of tags, we define:

Es,t ={e′|∃x∈X : e′=e(x), s=S(x), t=T (x)}

where S(x) and T (x) are source and target tags
of x and e(x) is e(σ(x), τ(x)), the edit tree that
transforms the source form into the target form.

Let ρ be a target form predicted by the MRI
system for the source form σ and let s and t be
source and target tags. POET does not change ρ if
e(σ, ρ) ∈ Es,t. Otherwise it replaces ρ with τ :

τ :=
{
τ ′ if e(σ, τ ′) ∈ Es,t, |ρ, τ ′| = 1
ρ else

where |ρ, τ ′| is the Levenshtein distance. If there
are several forms τ ′ with edit distance 1, we select
the one with the most frequent edit tree. Ties are
broken randomly.

We observed that MED sometimes makes er-
rors that are close to the target, but differ by one

edit operation. Those errors are often not covered
by edit trees that are observed in the training data
whereas the correct form is. Thus, substituting a
form not supported by an observed edit tree with a
close one that is supported promises to reduce the
error rate.

The effectiveness of POET depends on a train-
ing set that is large enough to cover the possible
edit trees that can occur in reinflection in a lan-
guage. Thus, if the training set is not large enough
in this respect, then POET will not be beneficial.

3 Experiments

We compare MED with the three models of Dreyer
et al. (2008) as well as with two recently pro-
posed models: (i) discriminative string transduc-
tion (Durrett and DeNero, 2013; Nicolai et al.,
2015), the SIGMORPHON16 baseline, and (ii)
Faruqui et al. (2015)’s encoder-decoder model.3

We call the latter MODEL*TAG as it requires
training as many models as there are target tags.

We evaluate MED on two MRI tasks: CELEX
and SIGMORPHON16.

CELEX. This task is based on complete inflec-
tion tables for German extracted from CELEX.
For this experiment we follow Dreyer et al. (2008).
We use four pairs of morphological tags and corre-
sponding word forms from the German part of the
CELEX morphological database. The 4 different
transduction tasks are: 13SIA→ 13SKE, 2PIE→
13PKE, 2PKE → z and rP → pA.4 An example
for this task would be to produce the output ges-
teuert (target tag pA) for the source steuert (source
tag rP). To do so, the system has to learn that the
prefix ge-, which is used for many participles in
German, has to be added to the beginning of the
original word form.

We use the same data splits as Dreyer et al.
(2008), dividing the original 2500 samples for
each tag into five folds, each consisting of 500
training and 1000 development and 1000 test sam-
ples. We train a separate model for each fold and
report exact match accuracy, averaged over the five
folds, as our final result.

3For our experiments we ran the code available at
github.com/mfaruqui/morph-trans. We used the
enc-dec-attn model as overall results for the CELEX task
were better than with the sep-morph model.

413SIA=1st/3rd sg. ind. past; 13SKE=1st/3rd sg. sub-
junct. pres.; 2PIE=2nd pl. ind. pres.; 13PKE=1st/3rd pl.
subjunct. pres.; 2PKE=2nd. pl. subjunct. pres.; z=infinitive;
rP=imperative pl.; pA=past part.
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model 13
SI

A

2P
IE

2P
K

E

rP

D
re

ye
r backoff 82.8 88.7 74.7 69.9

lat-class 84.8 93.6 75.7 81.8
lat-region 87.5 93.4 87.4 84.9
baseline 77.6 95.1 82.5 69.6
MODEL*TAG 76.4 92.1 83.4 81.8
MED 82.3 94.4 86.8 83.9
MED+POET 83.9 95.0 87.6 84.0

Table 1: Exact match accuracy of MRI on CELEX. Re-
sults of (Dreyer et al., 2008)’s model are from their pa-
per; backoff: ngrams+x model; lat-class: ngrams+x+latent
class model; lat-region: ngrams+x+latent class+latent re-
gion model; baseline: SIGMORPHON16 baseline.

SIGMORPHON16. This task covers eight lan-
guages and does not provide complete paradigms,
but only a set of quadruples, each consisting of
word form, source tag, target tag and target form.
The main difference to CELEX is that the number
of tag pairs is large, resulting in much less training
data per tag pair. The number of tag pairs varies
by language with Georgian being an extreme case;
it has 28 tag pairs in dev that appear less than 10
times in train. For each language, we have around
12,800 training and 1600 development samples.
We report exact match accuracy on the develop-
ment set, as the final test data of the shared task is
not publically available yet.

4 Results

Table 1 gives CELEX results. MED+POET is bet-
ter than prior work on one task, close in perfor-
mance on two and worse by a small amount on the
third. Unlike Dreyer et al. (2008)’s models, MED
does not use any hand-crafted features. MED’s re-
sults are weakest on 13SIA. Typical errors on this
task include epenthesis (e.g., zirkle vs. zirkele) and
irregular verbs (e.g., abhing vs. abhängte).

For SIGMORPHON16, Table 2 shows that
MED outperforms the baseline for all eight lan-
guages. Absolute performance and variance is
probably influenced by type of morphology (e.g.,
templatic vs. agglutinative), regularity of the lan-
guage, number of different tag pairs and other fac-
tors. MED performs well even for complex and
diverse languages like Arabic, Finnish, Navajo
and Turkish, suggesting that the type of attention-
based encoder-decoder we use – single-model, us-
ing an explicit morphological representation – is a
good choice for MRI.

MED
baseline average ensemble

Arabic 58.8 83.1 (0.4) 88.8
Finnish 64.6 92.5 (0.8) 95.6
Georgian 91.5 95.7 (0.3) 97.3
German 87.7 92.1 (0.5) 95.1
Navajo 60.9 85.0 (1.1) 91.1
Russian 85.6 84.2 (0.3) 88.4
Spanish 95.6 96.3 (0.3) 97.5
Turkish 54.9 94.7 (1.3) 97.6

Table 2: Exact match accuracy of MRI on SIG-
MORPHON16; baseline: SIGMORPHON16 baseline;
MED/average: average of five MED models (standard devia-
tion in parentheses); MED/ensemble: majority voting of five
MED models.

We do not compare to MODEL*TAG here be-
cause it requires training a large number of indi-
vidual networks. This is a disadvantage compared
to MED both in terms of the number of models
that need to be trained and in terms of the effec-
tive use of the small number of training examples
that are available per tag pair.

POET improves the results for all tag pairs for
CELEX. However, initial experiments indicated
that it is not effective for SIGMORPHON16 be-
cause its training sets are not large enough.

5 Analysis

The main innovation of our work is that MED
learns a single model of all MRI patterns of a lan-
guage and thus can transfer what it has learned
from one tag pair to another tag pair. Using
CELEX, we now analyze how much our design
contributes to better performance by conducting
two experiments in which we gradually decrease
the training set in two different ways. (i) Large
general training set. We only reduce the number
of training examples available for a tag pair (s, t)
and retain all other training examples. (ii) Small
training set. We reduce the number of training ex-
amples available for all tag pairs, not just for one.

A typical example of the large general training
set scenario is that familiar second person forms
are rare in genres like encyclopedia and news. So
a training set derived from these genres will be
large, but it will have very few tag pairs whose
target tag is familiar second person.

A typical example of the small training set sce-
nario is that we are dealing with a low-resource
language.
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Figure 3: Results for the large general training set experi-
ment: effect of reducing the training set for only 2PIE →
13PKE on the accuracy for 2PIE → 13PKE for MED and
MODEL*TAG.
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Figure 4: Results for the small training set experiment: effect
of reducing the training set for all tag pairs on accuracy for
MED and MODEL*TAG.

In the following two experiments, we only re-
duce the training set and do not change the test
set.

Large general training set. We iteratively
halve the training data for 2PIE → 13PKE until
only 6.25% or 32 samples are left. Figure 3 shows
that MED performs well even if only 6.25% of the
training examples for the tag pair remain. In con-
trast, MODEL*TAG struggles to generalize cor-
rectly. This is due to the fact that we train one
single model for all tags, so it can learn from other
tags and transfer what it has learned to the tag pair
that has a small training set.

Small training set. Figure 4 shows results
for reducing the training data equally for all tags.
MED performs much better than the baseline for
less than 50% of the training data. This can be ex-
plained by the fact that MED learns from all given
data at once and thus is able to learn common pat-
terns that apply across different tag pairs.

6 Related Work

Earlier work on morphology includes morpholog-
ical segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998) and different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,

2013; Eskander et al., 2013; Nicolai et al., 2015).
Chrupała (2008) defined edit trees and Chrupała
(2008) and Müller et al. (2015) use them for mor-
phological tagging and lemmatization.

In the last years, RNN encoder-decoder models
and RNNs in general were applied to several NLP
tasks. For example, they proved to be useful for
machine translation (Cho et al., 2014; Sutskever et
al., 2014; Bahdanau et al., 2014), parsing (Vinyals
et al., 2015) and speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013).

MED bears some resemblance to Faruqui et al.
(2015)’s work. However, they train one network
for every tag pair; this can negatively impact per-
formance for low-resource languages and in gen-
eral when training data are limited. In contrast, we
train a single model for each language. This radi-
cally reduces the amount of training data needed
for the encoder-decoder because most MRI pat-
terns occur in many tag pairs, so what is learned
for one can be transferred to others. To be able
to model all tag pairs of the language together,
we introduce an explicit morphological represen-
tation that enables the attention mechanism of
the encoder-decoder to generalize MRI patterns
across tag pairs.

7 Conclusion and Future Work

We have presented MED, a language independent
neural sequence-to-sequence mapping approach,
and POET, a method based on edit trees for cor-
recting the output of an MRI system. MED ob-
tains results comparable to state-of-the-art systems
for CELEX and establishes the state-of-the-art for
SIGMORPHON16. POET improves results fur-
ther for large training sets. Our analysis showed
that MED outperforms a neural encoder-decoder
baseline system by a large margin, especially for
small training sets.

In future work, we would like to make POET
less dependent on the source tag and thus increase
its accuracy for small training sets. Second, we
will look into ways of taking advantage of ad-
ditional information sources including unlabeled
corpora.
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Center for Language Technology, University of Copenhagen, Denmark

anders@johannsen.com

Abstract

Most previous work on annotation projec-
tion has been limited to a subset of Indo-
European languages, using only a single
source language, and projecting annota-
tion for one task at a time. In contrast,
we present an Integer Linear Program-
ming (ILP) algorithm that simultaneously
projects annotation for multiple tasks from
multiple source languages, relying on par-
allel corpora available for hundreds of lan-
guages. When training POS taggers and
dependency parsers on jointly projected
POS tags and syntactic dependencies us-
ing our algorithm, we obtain better perfor-
mance than a standard approach on 20/23
languages using one parallel corpus; and
18/27 languages using another.

1 Introduction

Cross-language annotation projection for unsuper-
vised POS tagging and syntactic parsing was in-
troduced fifteen years ago (Yarowsky et al., 2001;
Hwa et al., 2005), and the best unsupervised de-
pendency parsers today rely on annotation projec-
tion (Rasooli and Collins, 2015).

Despite the maturity of the field, there is an in-
herent language bias in previous work on cross-
language annotation projection. Cross-language
annotation projection experiments require training
data in m source languages, a parallel corpus of
translations from the m source languages into the
target language of interest, as well as evaluation
data for the target language.1 Since the canonical
resource for parallel text is the Europarl Corpus
(Koehn, 2005), which covers languages spoken in
the European parliament, annotation projection is

1All previous work that we are aware of—with the possi-
ble exception of McDonald et al. (2011); but see Sections 2
and 5—uses only a single source (m = 1), but in our experi-
ments, we use multiple source languages.

typically limited to the subset of Indo-European
languages that have treebanks.

Previous work is also limited in another respect.
While treebanks typically contain multiple layers
of annotation, previous work has focused on pro-
jecting data for a single task.

We go significantly beyond previous work in
two ways: 1) by considering multi-source pro-
jection across languages in parallel corpora that
are available for hundreds of languages, includ-
ing many non-Indo-European languages; and 2)
by jointly projecting annotation for two mutually
dependent tasks, namely POS tagging and depen-
dency parsing. Using multiple source languages
makes our projections denser. In single source
projection, the source language may not contain
all syntactic phenomena of the target language; we
combat this by transferring syntactic information
from multiple source languages. Our work also
differs from previous work on annotation projec-
tion in projecting soft rather than hard constraints,
i.e., scores rather than labels and edges.

Contributions We present a novel ILP-based al-
gorithm for jointly projecting POS labels and de-
pendency annotations across word-aligned parallel
corpora. The performance of our algorithm com-
pares favorably to that of a state-of-the-art projec-
tion algorithm, as well as to multi-source delex-
icalized transfer. Our experiments include be-
tween 23 and 27 languages using two parallel cor-
pora that are available for hundreds of languages,
namely a collection of Bibles and Watchtower pe-
riodicals. Finally, we make both the parallel cor-
pora and the code publicly available.2

2 Projection algorithm

The projection algorithm is divided into two dis-
tinct steps. First, we project potential syntactic

2https://bitbucket.org/lowlands/
release
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edges and POS tags from all source languages into
an intermediate target graph, which is left deliber-
ately ambiguous. In the second step, we decode
the target graph by solving a constrained optimi-
sation problem, which simultaneously resolves all
ambiguities and produces a single dependency tree
with a fixed set of POS tags. Below we describe
both steps in more detail.

2.1 Cross-language sentence

The input to our projection algorithm is a cross-
language sentence, a data structure that ties to-
gether a collection of aligned sentences from a par-
allel corpus, i.e., sentences in many different lan-
guages that are determined to be translation equiv-
alents. One sentence of the set is designated as the
target while the rest are sources. We project syn-
tactic information from the sources to the target.

All source sentences are automatically parsed
with a graph-based dependency parser and labeled
with parts of speech. Instead of using the sin-
gle best dependency tree output by the parser, we
extract its scoring matrix, an ambiguous structure
that assigns a numeric score to each potential de-
pendency edge. The target sentence is not parsed
or POS-tagged. In fact, our approach is explicitly
designed to work for target languages where no
such resources are available. Only unsupervised
word alignments couple the target sentence with
each source sentence.

More formally, a cross-language sentence may
be represented as a graph G = (V,E), where
each vertex is a POS-tagged token of a sentence
in some language. With one target and n source
languages, the total set of tagged word vertices V
can be written as the union of sentence vertices:
V = V0∪ . . .∪Vn. The target sentence is Vt = V0,
while source sentences are Vs = V1 ∪ . . . ∪ Vn.

Two kinds of weighted edges connect the graph.
Edges that go between tagged tokens of a sentence
Vi represent potential dependency edges. Thus,
for the sentence i, the induced subgraph G[Vi] is
the (ambiguous) dependency graph. Edges con-
necting a source vertex to target vertex represent
word alignments. The set of alignment edges is
A ⊆ Vs × Vt.

To account for POS we introduce a vertex label-
ing function l : V 7→ Σ, where Σ is the POS vo-
cabulary. The source sentences are automatically
tagged, and for any source vertex the label func-
tion simply returns this tag. For the target sentence

the POS labels are unknown, which is to say that
every target token is ambiguous between |Σ| POS
tags. We represent this ambiguity in the graph by
creating a vertex for each possible combination of
target word and POS. Concretely, if a source sen-
tence i has n tokens, and the target sentence hasm
tokens, then |Vi| = n, and |Vs| = m|Σ|.

Alignments are constrained such that an align-
ment (u, v) ∈ Vs×Vt only exists if the source and
target token were linked by the automatic aligner
and l(u) = l(v), i.e., the POS tags match. This fil-
ters out potential source relations with dissimilar
syntax, a luxury that we are allowed in a multiple
source language setup.

2.2 Projecting to ambiguous target graph
The target graphG[Vt] starts out empty and is pop-
ulated with edges in the following way. We go
through the source sentences, looking for poten-
tial dependency edges where both endpoints are
aligned to the target sentence, and transferring the
edge whenever we find one. Technically, for every
source sentence i and for each edge in the source
graph (us, vs) ∈ G[Vi], we create an edge (ut, vt)
in the target iff both (us, ut) and (vs, vt) ∈ A.
The edge weight is the source edge score (as de-
termined by an automatic parser) weighted by the
joint alignment probability of (us, ut) and (vs, vt):

d(ut, vt) = max
us,vs

a(us, vs) a(us, ut) d(vs, vt).

For clarity, d refers to weights of dependency
edges, and a to alignment edge weights. Multi-
ple source sentences may project the same edge
to the target graph. When this happens we update
the target edge weight only if the new weight is
larger than the existing. The weight then reflects
the strongest evidence found for a given syntactic
relation across all source languages.

2.3 Decoding the target graph
We are now ready to decode the target graph. The
result of decoding is a dependency tree as well as
a labeling of the target sentences with POS tags.
Labeling with POS corresponds to selecting a sub-
set of the vertices Ṽ ⊂ Vt, such that exactly one
vertex is chosen for each token. Similarly the de-
coded dependency tree is a subset of the projected
target edges with the constraint that it must form
a tree over the vertices of Ṽ . The joint optimiza-
tion objective is to simultaneously select a set of
vertices Ṽ and edges Ẽ to maximize the score of
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the decoded tree. We solve this constrained opti-
mization problem by casting it as an integer linear
programming (ILP) problem.

The full specification of the ILP model is dis-
played as Figure 1. The model is optimized over
two types of binary decision variables mapping di-
rectly to the target graph representation discussed
in the previous section, plus additional flow vari-
ables that enforce tree structure. An edge vari-
able ei,k,j,l represents a target edge (i, j) where
the POS of i is k and the POS of j is l. For in-
stance, the variable e2,V,1,N represents a directed
edge from the second token (a verb) to the first (a
noun). An active vertex variable vi,k indicates that
the POS of token i is chosen as k.

Following Martins (2012), we constrain the
search space to spanning trees by using a single-
commodity-flow construction. In the commodity-
flow analogy, we imagine the root as a factory that
produces n commodities (for an n token sentence)
which are distributed along the edges of the tree.
Each token is a consumer that must receive and
pass on all except one commodity to its depen-
dents, i.e., the difference between incoming and
outgoing flow should be 1. Since all commodities
must be consumed, the outgoing flow for a leaf
node will be zero. Together with the requirement
that each token must have exactly one head, this
ensures all tokens are connected to the root in the
tree structure.

The last two constraint groups enforce edge and
POS consistency, and the selection of single POS
per token. Both are new to this work.

3 Data sources

Our projection requires parallel text, ideally span-
ning a large number of languages, and dependency
treebanks for the sources.

Treebanks To train the source-side taggers and
dependency parsers, and to evaluate the cross-
lingual taggers and parsers, we use the Universal
Dependencies (UD) version 1.2 treebanks with the
corresponding test sets.3

Parallel texts We exploit two sources of par-
allel text: the Edinburgh Multilingual Bible cor-
pus (EBC) (Christodouloupoulos and Steedman,
2014), and our own collection of online texts pub-
lished by the Wathctower Society (WTC).4 While

3http://hdl.handle.net/11234/1-1548
4https://www.jw.org/

ILP model

Edges ei,k,j,l ∈ {0, 1}
Vertices vi,k ∈ {0, 1}

Flow φi,k,j,l ∈ R+

Maximize
∑
i,k,j,l

ei,k,j,l wi,k,j,l

One parent per token∑
i,k,l

ei,k,j,l = 1 ∀j 6= 0

The root token (index 0) sends n flow∑
j,l

φ0,0,j,l = n

Each token consumes one unit of flow∑
i,k,l

φi,k,x,l −
∑
k,j,l

φx,k,j,l = 1 ∀x 6= 0

One POS per token∑
k

vi,k = 1 ∀i 6= 0

Active edges choose token POS

vi,k ≥ ei,k,j,l ∀i 6= 0, j, k, l
vi,l ≥ ei,k,j,l ∀i, j, k, l

Above, i, j, and x are token indices, while k and l refer
to POS. Quantification over these symbols in the equa-
tions are always with respect to a given target graph.

Figure 1: Specification of the ILP model. We list,
in order, the decision variables, the objective, and
the five groups of constraint templates.

the two collections span more than 100 languages,
we focus on the subsets that overlap with the UD
languages to facilitate evaluation. For EBC, that
amounts to 27 languages, and 23 for WTC.

Preprocessing We use simple sentence splitting
and tokenization models to segment the parallel
corpora.5 To sentence- and word-align the indi-
vidual language pairs, we use a Gibbs sampling-
based IBM1 alignment model called efmaral
(Östling, 2015). IBM1 has been shown to lead to
more robust alignments across typologically dis-
tant language pairs (Östling, 2015). We modify

5https://github.com/bplank/
multilingualtokenizer
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the aligner to output alignment probabilities. All
the source-side texts are POS-tagged and depen-
dency parsed using TnT (Brants, 2000) and Tur-
boParser (Martins et al., 2013). We use our own
fork of the arc-factored TurboParser to output the
edge weight matrices.6

4 Experiments

4.1 Setup

In our experiments, as in the preprocessing, we use
the TnT tagger and the arc-factored TurboParser,
which we train on the EBC and WTC texts with
projected and decoded annotations. We randomly
sample up to 20k sentences per training file in both
tagging and parsing. This 20k sampling limit ap-
plies to all systems.

We compare two cross-lingual projection-based
parsing systems, and one baseline system.

ILP The ILP-based joint projection algorithm
we presented in Section 2.

DCA Our implementation of the de facto stan-
dard annotation projection algorithm of Hwa et
al. (2005), as refined by Tiedemann (2014). In
contrast to our ILP approach, it uses heuristics to
ensure dependency tree constraints on a source-
target sentence pair basis. We gather all the pair-
wise projections into a target sentence graph and
then perform maximum spanning tree decoding
following Sagae and Lavie (2006).

DELEX The multi-source direct delexicalized
transfer baseline of McDonald et al. (2011). Each
source is represented by an approximately equal
number of sentences.

4.2 Results

Table 1 provides a summary of dependency pars-
ing scores. We report UAS scores over predicted
and gold POS. The predicted tags come from our
cross-lingual taggers. Our ILP approach consis-
tently outperforms DCA on both by a large margin
of 3-5 points UAS using predicted POS, and 5-10
points on gold POS. Note that DELEX is trained
on gold POS and therefore has an advantage in this

6https://github.com/andersjo/
TurboParser

8We do not include DELEX in the comparison for the gold
POS scenario only. In this particular scenario, DELEX is also
trained on gold POS, and thus biased: the cross-lingual tag-
gers do not have gold POS available for training, and the same
holds for DELEX and projected POS.

Approach

Predicted POS ILP DCA DELEX

EBC 51.62 (18) 48.39 (8) 42.44 (1)
WTC 53.58 (20) 48.40 (0) 47.35 (3)

Gold POS
EBC 65.43 (25) 59.94 (2) 64.13 (–)

WTC 66.51 (23) 55.73 (0) 66.68 (–)

Table 1: Macro-averaged UAS scores summariz-
ing our evaluation. EBC: Edinburgh Bible corpus,
WTC: Watchtower corpus. Numbers of languages
with top performance per system are reported in
brackets. All parsers use their respective EBC or
WTC taggers.8

setting. Relying on predicted POS and WTC data,
our ILP approach beats DCA for all the test lan-
guages. With EBC, we outperform DCA on 19
out of 27 languages.

In Table 2, we split the scores across the test
languages and parallel data sources, and we also
report the POS tagging accuracies. Our WTC tag-
gers are on average 3.5 points better than EBC tag-
gers, yielding the top score for 16/23 languages
from the overlap. Notably, on several non-Indo-
European languages, we observe significant im-
provements. For example, on Indonesian, DCA
improves over DELEX by 12 points UAS, while
ILP adds 6 more points on top. We observe a sim-
ilar pattern for Arabic and Estonian. We note that
DELEX tops ILP and DCA on only 1 EBC and 3
WTC languages, and by a narrow margin.

Analysis A projected parse is allowed to be a
composite of edges from many source languages.
To find out to what degree this actually happens,
we analyze all projections into English and Ger-
man on the WTC corpus.

For German the top four source languages are
Czech, Norwegian, French, and English, con-
tributing between 16% and 7% of all edges. For
English the top languages are Norwegian, Ital-
ian, Indonesian, and Swedish. Here, the top lan-
guage Norwegian is responsible for 42% of the
edges, while Swedish accounts for 13%. Only
the language projecting the highest scoring edge
is counted. On average, a German sentence has
edges from 4.1 source languages. The same num-
ber for English is slightly higher, at 4.5.

Manually annotated data We annotate a small
number of sentences in English from EBC and
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Dependency parsing

POS tagging EBC WTC

Language EBC WTC ILP DCA DELEX ILP DCA DELEX

Arabic 39.54 53.91 36.59 37.70 13.17 37.41 32.14 21.15
Basque 43.43 – 22.77 17.38 27.85 – – –

Bulgarian 76.45 68.27 50.6 60.03 57.83 49.68 37.18 48.37
Croatian 72.83 76.18 54.19 45.08 42.34 55.16 50.56 45.49

Czech 70.81 78.49 52.67 41.44 40.99 53.09 44.36 47.99
Danish 76.43 86.36 61.14 53.22 49.65 61.78 58.64 55.96
English 71.90 79.2 55.76 50.64 48.04 58.70 57.12 53.87

* Estonian 75.55 73.98 62.9 56.95 49.32 63.85 58.41 48.48
Farsi 64.94 25.67 23.53 42.37 28.93 20.34 12.26 19.48

Finnish 70.41 67.44 43.66 44.51 41.18 42.59 35.6 41.52
French 74.25 79.23 53.52 53.11 48.97 55.69 51.47 51.53

German 74.36 68.36 45.02 50.21 49.36 43.99 36.7 45.79
* Greek 56.52 75.75 62.59 37.73 37.11 62.43 52.95 54.90
Hebrew 43.65 – 30.25 39.76 19.06 – – –

Hindi 59.99 48.86 18.26 35.59 21.03 15.95 10.77 21.04
* Hungarian 71.57 71.42 49.74 44.97 43.07 44.17 42.33 46.66

Indonesian 63.30 75.61 51.99 23.53 31.18 58.01 52.29 39.67
Italian 79.28 83.82 63.13 58.66 53.94 64.88 63.57 58.06

* Latin 83.41 – 68.65 68.45 41.42 – – –
Norwegian 77.00 85.31 65.04 58.32 53.46 66.54 64.37 60.11

Polish 73.36 73.68 62.94 59.27 53.33 63.74 55.4 54.87
Portuguese 78.41 83.67 63.75 60.45 52.91 64.62 63.16 56.99

* Romanian 71.56 76.34 57.74 56.73 45.73 58.76 54.78 51.23
* Serbian 74.07 – 49.15 49.38 47.06 – – –

Slovene 75.68 78.11 59.17 53.66 50.55 59.79 54.8 52.53
Spanish 76.72 85.69 63.63 52.20 47.6 64.93 61.90 55.87
Swedish 78.26 84.80 65.24 55.21 50.85 66.15 62.45 57.48

Average 69.40 73.05 51.62 48.39 42.44 53.58 48.40 47.35
Best for 7 16 18 8 1 20 0 3

Table 2: Tagging and parsing (UAS) accuracy.
Scores are macro-averaged, and all parsers use
predicted POS from respective EBC or WTC tag-
gers. *: True target languages, not used as sources.

WTC, which gives us a way to directly evaluate
the projections without training parsers. On this
small test set of 2× 50 sentences, we obtain UAS
scores of 68% (WTC) and 62% (EBC). The POS
accuracies are 79% and 80%. All figures are com-
parable to the results from the indirect projection
evaluation.

5 Related work

In recent years, we note an increased interest for
work in cross-lingual processing, and particularly
in POS tagging and dependency parsing of low-
resource languages.

Yarowsky et al. (2001) proposed the idea of in-
ducing NLP tools via parallel corpora. Their con-
tribution started a line of work in annotation pro-
jection. Das and Petrov (2011) used graph-based
label propagation to yield competitive POS tag-
gers, while Hwa et al. (2005) introduced the pro-
jection of dependency trees. Tiedemann (2014)
further improved this approach to single-source
projection in the context of synthesizing depen-
dency treebanks (Tiedemann and Agić, 2016).
The current state of the art in cross-lingual de-
pendency parsing also involves exploiting large
parallel corpora (Ma and Xia, 2014; Rasooli and

Collins, 2015).
Transferring models by training parsers with-

out lexical features was first introduced by Zeman
and Resnik (2008). McDonald et al. (2011) and
Søgaard (2011) coupled delexicalization with con-
tributions from multiple sources, while McDonald
et al. (2013) were the first to leverage uniform rep-
resentations of POS and syntactic dependencies in
cross-lingual parsing.

Even more recently, Agić et al. (2015) exposed
a bias towards closely related Indo-European lan-
guages shared by most previous work on anno-
tation projection, while introducing a bias-free
projection algorithm for learning 100 POS tag-
gers from multiple sources. Their line of work is
non-trivially extended to multilingual dependency
parsing by Agić et al. (2016).

The work in annotation projection for cross-
lingual NLP invariably treats mutually dependent
layers of annotation separately. Our contribution
is distinct from these works by implementing the
first approach to joint projection of POS and de-
pendencies, while maintaining the outlook on pro-
cessing truly low-resource languages.

6 Conclusion

In our contribution, we addressed tagging and
parsing for low-resource languages through joint
cross-lingual projection of POS tags and syntac-
tic dependencies from multiple source languages.
Our novel approach to transferring the annotations
via word alignments is based on integer linear
programming, more specifically on a commodity-
flow formalization for spanning trees.

In our experiments with 27 treebanks from the
Universal Dependencies (UD) project, our ap-
proach compared very favorably to two competi-
tive cross-lingual systems: we provided the best
cross-lingual taggers and parsers for 18/27 and
20/23 languages, depending on the parallel cor-
pora used. We made no unrealistic assumptions
as to the availability of parallel texts and prepro-
cessing tools for the target languages. Our code
and data is freely available.9
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Abstract

Recently, many neural network models
have been applied to Chinese word seg-
mentation. However, such models focus
more on collecting local information while
long distance dependencies are not well
learned. To integrate local features with
long distance dependencies, we propose a
dependency-based gated recursive neural
network. Local features are first collect-
ed by bi-directional long short term mem-
ory network, then combined and refined to
long distance dependencies via gated re-
cursive neural network. Experimental re-
sults show that our model is a competitive
model for Chinese word segmentation.

1 Introduction

Word segmentation is an important pre-process
step in Chinese language processing. Most wide-
ly used approaches treat Chinese word segmenta-
tion (CWS) task as a sequence labeling problem in
which each character in the input sequence is as-
signed with a tag. Many previous approaches have
been effectively applied to CWS problem (Laf-
ferty et al., 2001; Xue and Shen, 2003; Sun et
al., 2012; Sun, 2014; Sun et al., 2013; Cheng et
al., 2015). However, these approaches incorpo-
rated many handcrafted features, thus restricting
the generalization ability of these models. Neural
network models have the advantage of minimiz-
ing the effort in feature engineering. Collobert et
al. (2011) developed a general neural network ar-
chitecture for sequence labeling tasks. Following
this work, neural network approaches have been
well studied and widely applied to CWS task with
good results (Zheng et al., 2013; Pei et al., 2014;
Ma and Hinrichs, 2015; Chen et al., 2015).

地面    积    了    厚厚    的    雪         

 

这    块    地    面积    还    真    不小 

 

“The ground is covered with thick snow ” 

“This area is really not small.” 

Figure 1: An illustration for the segmentation am-
biguity. The character “面” is labeled as “E” (end
of word) in the top sentence while labeled as “B”
(begin of word) in the bottom one even though
“面” has the same adjacent characters, “地” and
“积”.

However, these models focus more on collect-
ing local features while long distance dependen-
cies are not well learned. In fact, relying on the
information of adjacent words is not enough for
CWS task. An example is shown in Figure 1. The
character “面” has different tags in two sentences,
even with the same adjacent characters, “地” and
“ 积”. Only long distance dependencies can help
the model recognize tag correctly in this example.
Thus, long distance information is an importan-
t factor for CWS task.

The main limitation of chain structure for se-
quence labeling is that long distance dependencies
decay inevitably. Though forget gate mechanis-
m is added, it is difficult for bi-directional long
short term memory network (Bi-LSTM), a kind of
chain structure, to avoid this problem. In general,
tree structure works better than chain structure to
model long term information. Therefore, we use
gated recursive neural network (GRNN) (Chen et
al., 2015) which is a kind of tree structure to cap-
ture long distance dependencies.

Motivated by the fact, we propose the
dependency-based gated recursive neural network
(DGRNN) to integrate local features with long dis-
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tance dependencies. Figure 2 shows the structure
of DGRNN. First of all, local features are col-
lected by Bi-LSTM. Secondly, GRNN recursive-
ly combines and refines local features to capture
long distance dependencies. Finally, with the help
of local features and long distance dependencies,
our model generates the probability of the tag of
word.

The main contributions of the paper are as fol-
lows:

• We present the dependency-based gated re-
cursive neural network to combine local fea-
tures with long distance dependencies.

• To verify the effectiveness of the proposed
approach, we conduct experiments on three
widely used datasets. Our proposed model
achieves the best performance compared with
other state-of-the-art approaches.

2 Dependency-based Gated Recursive
Neural Network

In order to capture local features and long distance
dependencies, we propose dependency-based gat-
ed recursive neural network. Figure 2 illustrates
the structure of the model.

…
…

   

        

…
…

   

       

…
…

 

Window Context “This area is really not small.” 

块(Ci-2) 地(Ci-1) 面(Ci) 积(Ci+1) 还(Ci+2) 

Layer 1 

Layer 2 Cell 

Output Layer 

Cell Cell Cell 

Layer 3 Cell Cell Cell 

Figure 2: Architecture of DGRNN for Chinese
Word Segmentation. Cell is the basic unit of GRN-
N.

2.1 Collect Local Features

We use bi-directional long short term memory
(Bi-LSTM) with single layer to collect local fea-
tures. Bi-LSTM is composed of two directional

tanh sig sig 

tanh 

f(t) 

h(t) 

s(t) 

i(t) 

s(t-1) 

sig 

o(t) 

x(t) 
, h

(t-1) 

Figure 3: Structure of LSTM unit. The behavior
of the LSTM cell is controlled by three “gates”,
namely input gate i(t), forget gate f (t) and output
gate o(t).

long short term memory networks with single lay-
er, which can model word representation with con-
text information. Figure 3 shows the calculation
process of LSTM. The behavior of LSTM cell is
controlled by three “gates”, namely input gate i(t),
forget gate f (t) and output gate o(t). The input
of LSTM cell are x(t), s(t−1) and h(t−1). x(t) is
the character embeddings of input sentence. s(t−1)

and h(t−1) stand for the state and output of the for-
mer LSTM cell, respectively. The core of the L-
STM model is s(t), which is computed using the
former state of cell and two gates, i(t) and f (t). In
the end, the output of LSTM cell h(t) is calculated
making use of s(t) and o(t).

2.2 Refine Long Distance Dependencies

GRNN recursively combines and refines local fea-
tures to capture long distance dependencies. The
structure of GRNN is like a binary tree, where ev-
ery two continuous vectors in a sentence is com-
bined to form a new vector. For a sequence s with
length n, there are n layers in total. Figure 4 shows
the calculation process of GRNN cell. The core of
GRNN cell are two kinds of gates, reset gates, rL,
rR, and update gates z. Reset gates control how
to adjust the proportion of the input hi−1 and hi,
which results to the current new activation h

′
. By

the update gates, the activation of an output neu-
ron can be regarded as a choice among the current
new activation h

′
, the left child hi−1 and the right

child hi.

2.3 Loss Function

Following the work of Pei et al. (2014), we adop-
t the max-margin criterion as loss function. For
an input sentence c[1:n] with a tag sequence t[1:n],
a sentence-level score is given by the sum of net-
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Figure 4: The structure of GRNN cell.

work scores:

s(c[1:n], t[1:n], θ) =
n∑

i=1

fθ(ti|c[i−2:i+2]) (1)

where s(c[1:n], t[1:n], θ) is the sentence-level score.
n is the length of c[1:n]. fθ(ti|c[i−2:i+2]) is the s-
core output for tag ti at the ith character by the
network with parameters θ.

We define a structured margin loss ∆(yi, ŷ) for
predicting a tag sequence ŷ and a given correct
tag sequence yi:

∆(yi, ŷ) =
n∑

j=1

κ1{yi,j ̸= yi} (2)

where κ is a discount parameter. This leads to the
regularized objective function for m training ex-
amples:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
∥θ∥2 (3)

li(θ) = max
ŷ⊆Y (xi)

((s(xi, ŷ, θ)

+ ∆(yi, ŷ)) − s(xi, yi, θ)) (4)

where J(θ) is a loss function with parameters θ.
λ is regularization factor. By minimizing this ob-
ject, the score of the correct tag sequence yi is in-
creased and score of the highest scoring incorrect
tag sequence ŷ is decreased.

2.4 Amplification Gate and Training
A direct adaptive method for faster backpropaga-
tion learning method (RPROP) (Riedmiller and

Braun, 1993) was a practical adaptive learning
method to train large neural networks. We use
mini-batch version RPROP (RMSPROP) (Hinton,
2012) to minimize the loss function.

Intuitively, extra hidden layers are able to im-
prove accuracy performance. However, it is com-
mon that extra hidden layers decrease classifica-
tion accuracy. This is mainly because extra hidden
layers lead to the inadequate training of later lay-
ers due to the vanishing gradient problem. This
problem will decline the utilization of local and
long distance information in our model. To over-
come this problem, we propose a simple ampli-
fication gate mechanism which appropriately ex-
pands the value of gradient while not changing the
direction.

Higher amplification may not always perfor-
m better while lower value may bring about the
unsatisfied result. Therefore, the amplification
gate must be carefully selected. Large magnifi-
cation will cause expanding gradient problem. On
the contrary, small amplification gate will hardly
reach the desired effect. Thus, we introduce the
threshold mechanism to guarantee the robustness
of the algorithm, where gradient which is greater
than threshold will not be expanded. Amplifica-
tion gate of difference layer is distinct. For every
sample, the training procedure is as follows.

First, recursively calculate mt and vt which de-
pend on the gradient of time t− 1 or the square of
gradient respectively. β1 and β2 aim to control the
impact of last state.

mt = β1 · mt−1 + (1 − β1) · gt (5)

vt = β2 · vt−1 + (1 − β2) · g2
t (6)

Second, calculate ∆W (t) based on vt and
square of mt. ϵ and µ are smooth parameters.

M(w, t) = vt − m2
t (7)

∆W (t) =
ϵgt,i√

M(w, t) + µ
(8)

Third, update weight based on the amplification
gate and ∆W (t). The parameter update for the ith
parameter for the Θt,i at time step t with amplifi-
cation gate γ is as follows:

Θt,i = Θt,i − γ∆W (t) (9)
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Figure 5: Results for DGRNN with amplification gate (AG) on three development datasets.

3 Experiments

3.1 Data and Settings
We evaluate our proposed approach on three
datasets, PKU, MSRA and CTB6. The PKU and
MSRA data both are provided by the second In-
ternational Chinese Word Segmentation Bakeof-
f (Emerson, 2005) and CTB6 is from Chinese
TreeBank 6.01 (Xue et al., 2005). We randomly
divide the whole training data into the 90% sen-
tences as training set and the rest 10% sentences
as development set. All datasets are preprocessed
by replacing the Chinese idioms and the continu-
ous English characters. The character embeddings
are pre-trained on unlabeled data, Chinese Giga-
word corpus2. We use MSRA dataset to prepro-
cess model weights before training on CTB6 and
PKU datasets.

Following previous work and our experimen-
tal results, hyper parameters configurations are set
as follows: minibatch size n = 16, window size
w = 5, character embedding size d1 = 100, am-
plification gate range γ = [0, 4] and margin loss
discount κ = 0.2. All weight matrixes are diag-
onal matrixes and randomly initialized by normal
distribution.

3.2 Experimental Results and Discussions
We first compare our model with baseline meth-
ods, Bi-LSTM and GRNN on three datasets. The
results evaluated by F-score (F1 score) are report-
ed in Table 1.

• Bi-LSTM. First, the output of Bi-LSTM is
concatenated to a vector. Second, softmax
layer takes the vector as input and generates
each tag probability.

1https://catalog.ldc.upenn.edu/LDC2007T36
2https://catalog.ldc.upenn.edu/LDC2003T09

Model (Unigram) PKU MSRA CTB6
Bi-LSTM 95.0 95.8 95.2

GRNN 95.8 96.2 95.5
Pei et al. (2014) 94.0 94.9 *

Chen et al. (2015) 96.1 96.2 95.6
DGRNN 96.1 96.3 95.8

Table 1: Comparisons for DGRNN and other neu-
ral approaches based on traditional unigram em-
beddings.

Model PKU MSRA CTB6
Zhang et al. (2006) 95.1 97.1 *
Zhang et al. (2007) 94.5 97.2 *
Sun et al. (2009) 95.2 97.3 *
Sun et al. (2012) 95.4 97.4 *

Zhang et al. (2013) 96.1 97.4 *
DGRNN 96.1 96.3 95.8

Table 2: Comparisons for DGRNN and state-of-
the-art non-neural network approaches on F-score.

• GRNN. The structure of GRNN is recursive.
GRNN combines adjacent word vectors to
the more abstract representation in bottom-up
way.

Furthermore, we conduct experiments with am-
plification gate on three development datasets.
Figure 5 shows that amplification gate significant-
ly increases F-score on three datasets. Amplifi-
cation even achieves 0.9% improvement on CTB6
dataset. It is demonstrated that amplification gate
is an effective mechanism.

We compare our proposed model with previ-
ous neural approaches on PKU, MSRA and CT-
B6 test datasets. Experimental results are report-
ed in Table 1. It can be clearly seen that our
approach achieves the best results compared with

570



Dataset Model Result

MSRA
Bi-LSTM t = 5.94, p < 1 × 10−4

GRNN t = 1.22, p = 0.22

PKU
Bi-LSTM t = 15.54, p < 1 × 10−4

GRNN t = 4.43, p < 1 × 10−4

CTB6
Bi-LSTM t = 5.01, p < 1 × 10−4

GRNN t = 2.55, p = 2.48 × 10−2

Table 3: The t-test results for DGRNN and base-
lines.

other neural networks on traditional unigram em-
beddings. It is possible that bigram embeddings
may achieve better results. With the help of bi-
gram embeddings, Pei et al. (2014) can achieve
95.2% and 97.2% F-scores on PKU and MSRA
datasets and Chen et al. (2015) can achieve 96.4%,
97.6% and 95.8% F-scores on PKU, MSRA and
CTB6 datasets. However, performance varies a-
mong these bigram models since they have dif-
ferent ways of involving bigram embeddings. Be-
sides, the training speed would be very slow after
adding bigram embeddings. Therefore, we only
compare our model on traditional unigram embed-
dings.

We also compare DGRNN with other state-of-
the-art non-neural networks, as shown in Table 2.
Chen et al. (2015) implements the work of Sun
and Xu (2011) on CTB6 dataset and achieves
95.7% F-score. We achieve the best result on P-
KU dataset only with unigram embeddings. The
experimental results show that our model is a com-
petitive model for Chinese word segmentation.

3.3 Statistical Significance Tests

We use the t-test to intuitively show the improve-
ment of DGRNN over baselines. According to the
results shown in Table 3, we can draw a conclu-
sion that, by conventional criteria, this improve-
ment is considered to be statistically significant
between DGRNN with baselines, except for GRN-
N approach on MSRA dataset.

4 Conclusions

In this work, we propose dependency-based recur-
sive neural network to combine local features with
long distance dependencies, which achieves sub-
stantial improvement over the state-of-the-art ap-
proaches. Our work indicates that long distance
dependencies can improve the performance of lo-
cal segmenter. In the future, we will study alterna-

tive ways of modeling long distance dependencies.
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Abstract

Morphologically rich languages (MRL)
are languages in which much of the struc-
tural information is contained at the word-
level, leading to high level word-form
variation. Historically, syntactic parsing
has been mainly tackled using genera-
tive models. These models assume input
features to be conditionally independent,
making difficult to incorporate arbitrary
features. In this paper, we investigate the
greedy discriminative parser described in
(Legrand and Collobert, 2015), which re-
lies on word embeddings, in the context of
MRL. We propose to learn morphological
embeddings and propagate morphological
information through the tree using a recur-
sive composition procedure. Experiments
show that such embeddings can dramati-
cally improve the average performance on
different languages. Moreover, it yields
state-of-the art performance for a majority
of languages.

1 Introduction

Morphologically rich languages (MRL) are lan-
guages for which important information concern-
ing the syntactic structure is expressed through
word formation, rather than constituent-order pat-
terns. Unlike English, they can have complex
word structure as well as flexible word order. A
common practice when dealing with such lan-
guages is to incorporate morphological informa-
tion explicitly (Tsarfaty et al., 2013). However
this poses two problems to the classical generative
models: they assume input features to be condi-
tionally independent which makes the incorpora-

∗All research was conducted at the Idiap Research Insti-
tute, before Ronan Collobert joined Facebook AI Research

tion of arbitrary features difficult. Moreover, re-
fining input features leads to a data sparsity issue.

In the other hand, neural network-based mod-
els using continuous word representations as input
have been able to overcome the data sparsity prob-
lem inherent in NLP (Huang and Yates, 2009).
Furthermore, neural networks allow to incorporate
arbitrary features and learn complex non-linear
relations between them. Legrand and Collobert
(2015) introduced a greedy syntactic parser, based
on neural networks which relies on word embed-
dings. This model maintains a history of the previ-
ous node predictions, in the form of vector repre-
sentations, by leveraging a recursive composition
procedure.

In this paper, we propose to enhance this model
for syntactic parsing of MRL, by learning morpho-
logical embeddings. We take advantage of a re-
cursive composition procedure similar to the one
used in (Legrand and Collobert, 2015) to propa-
gate morphological information during the pars-
ing process. We evaluate our approach on the
SPMRL (Syntactic Parsing of MRL) Shared Task
2014 (Seddah et al., 2013) on nine different lan-
guages. Each of them comes with a set of morpho-
logical features allowing to augment words with
information such as their grammatical functions,
relation with other words in the sentence, prefixes,
affixes and lemmas. We show that integrating mor-
phological features allows to increase dramatically
the average performance and yields state-of-the-
art performance for a majority of languages.

1.1 Related work

Both the baseline (Berkeley parser) and the current
state-of-the-art model on the SPMRL Shared Task
2014 (Björkelund et al., 2014) rely on probabilistic
context free grammar (PCFG)-based features. The
latter uses a product of PCFG with latent annota-
tion based models (Petrov, 2010), with a coarse-to-
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Did you hear the falling bombs ?
VBD PRP VB DT VBG NNS .

NP NP(R1) (R2)

(a)

Did R1 hear R2 ?
VBD NP VB NP .

VP (R3)

(b)

Did R1 R3 ?
VBD NP VP .

SQ

(c)

IW : Did you hear the falling bombs ?

(a) IT : VBD PRP VB DT VBG NNS .

O : O S-NP O B-NP I-NP E-NP O

IW : Did R1 hear R2 .

(b) IT : VBD NP VB NP .

O : O O B-VP E-VP .

IW : Did R1 R3 ?

(c) IT : VDB NP VP .

O : B-SQ I-SQ I-SQ E-SQ

Figure 1: Greedy parsing algorithm (3 iterations), on the sentence “Did you hear the falling bombs ?”.
IW , IT and O stand for input words (or composed word representationsRi), input syntactic tags (parsing
or part-of-speech) and output tags (parsing), respectively. The tree produced after 3 greedy iterations can
be reconstructed as the following: (SQ (VBD Did) (NP (PRP you)) (VP (VB hear) (NP
(DT the) (VBG falling) (NNS bombs))) (. ?)).

fine decoding strategy. The output is then discrim-
inatively reranked (Charniak and Johnson, 2005)
to select the best analysis. In contrast, the parser
used in this paper constructs the parse tree in a
greedy manner and relies only on word, POS tags
and morphological embeddings.

Several other papers have reported results for
the SPMRL Shared Task 2014. (Hall et al., 2014)
introduced an approach where, instead of propa-
gating contextual information from the leaves of
the tree to internal nodes in order to refine the
grammar, the structural complexity of the gram-
mar is minimized. This is done by moving as
much context as possible onto local surface fea-
tures. This work was refined in (Durrett and Klein,
2015), taking advantage of continuous word rep-
resentations. The system used in this paper also
leverages words embeddings but has two major
differences. First, it proceeds step-by-step in a
greedy manner (Durrett and Klein, 2015) by using
structured inference (CKY). Second, it leverages a
compositional node feature which propagates in-
formation from the leaves to internal nodes, which
is exactly what is claimed not to be done.

(Fernández-González and Martins, 2015) pro-
posed a procedure to turn a dependency tree into
a constituency tree. They showed that encoding
order information in the dependency tree make it
isomorphic to the constituent tree, allowing any
dependency parser to produce constituents. Like
the parser we used, their parser do not need to
binarize the treebank as most of the others con-
stituency parsers. Unlike this system, we do not

use the dependency structure as an intermediate
representation and directly perform constituency
parsing over raw words.

2 Recurrent greedy parsing

In this paper, we used the model presented in
(Legrand and Collobert, 2015). It is a NN-based
model which performs parsing in a greedy recur-
rent way. It follows a bottom-up iterative pro-
cedure: the tree is built starting from the termi-
nal nodes (sentence words), as shown in Figure 1.
Each step can be seen as a sequence tagging task.
A BIOES1 prefixing scheme is used to rewrite this
chunk (here node) prediction problem into a word
tagging problem. Each iteration of the procedure
merges input constituents into new nodes by ap-
plying the following steps:

• Node tagger: a neural network sliding win-
dow is applied over the input sequence of
constituents (leaves or heads of trees pre-
dicted so far). This procedure (see Figure
2) outputs for each constituent a score si for
each BIOES-prefixed parsing tag t ∈ T (T
being the parsing tags ensemble).

• Dynamic programming: a coherent path of
BIOES tags is retrieved by decoding over a
constrained graph. This insures (for instance)
that a B-A can be followed only by a I-A or
a E-A (for all parsing tag A).

1(Begin, Intermediate, Other, End, Single)
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• Compositional procedure: new nodes are
created, merging input constituents, accord-
ing to the dynamic programming predictions.
A neural network composition module is then
used to compute vector representations for
the new nodes, according to the representa-
tions of the merged constituents, as well as
their corresponding tags (POS or parsing).

The procedure ends when the top node is pro-
duced.

3 Parsing Morphologically Rich
Languages

Xi−2Xi−1XiXi+1Xi+2

..
.

..
.

..
.

..
.

..
.Additional

features

Word
embeddings

.. POS tags

Concat

h(M1 × .)

M2 × .

s1 s2 st. . .

Figure 2: A constituent Xi (word or node previ-
ously predicted) is tagged by considering a fixed
size context window of size K (here K = 5). The
concatenated output of the compositional history
and constituent tags is fed as input to the tagger.
A standard two-layers neural network outputs a
score si for each BIOES-prefixed parsing tag. Ad-
ditional features can be easily fed to the network.
Each category is assigned a new lookup table con-
taining a vector of feature for every possible tag.

3.1 Morphological features

Morphological features enable the augmentation
of input tokens with information expressed at a
word level, such as grammatical function or rela-
tion to other words. For parsing MRL, they have
proven to be very helpful (Cowan and Collins,
2005). The SMPRL corpus provides a different
set of morphological features associated to the

Cgen3

Cgen2

...

hear n/a

...

the f

...

falling f

...

bombs f

g2

g4

Figure 3: Recursive composition of the morpho-
logical feature gender (male (m) / female (f) /
not applicable (n/a)). Cgeni are the correspond-
ing composition modules. The representation g2
is first computed using the 3-inputs module Cgen3 .
g4 is obtained by using the 2-inputs moduleCgen2 .

tree terminals (tokens) for every language. These
features include morphosyntactic features such as
case, number, gender, person and type, as well as
specific morphological information such as verbal
mood, proper/common noun distinction, lemma,
grammatical function. They also include many
language-specific features. For more details about
the morphological features available, the reader
can refer to (Seddah et al., 2013).

3.2 Morphological Embeddings
The parser from (Legrand and Collobert, 2015) re-
lies only on word and tag embeddings. Besides
these features, our model takes advantage of ad-
ditional morphological features. As illustrated in
Figure 2, each additional feature m is assigned
a different lookup table containing morphological
feature vectors of size dm. The output vectors of
the different morphological lookup-tables are sim-
ply concatenated to form the input of the next neu-
ral network layer.

3.3 Morphological composition
Morphological features are available only for
leaves. To propagate morphological information
to the nodes, we take advantage of a composi-
tion procedure similar to the one used in (Legrand
and Collobert, 2015) for words and POS. As il-
lustrated in Figure 3, every morphological feature
m is assigned a set on composition modules Cmi

which take as input i morphological embeddings
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Model Ara. Bas. Fre. Ger. Heb. Hun. Kor. Pol. Swe. AVG

Berkeley+POS 80.8 76.2 81.8 80.3 92.2 87.6 82.9 88.1 82.9 83.7
Berkeley RAW 79.1 69.8 80.4 79.0 87.3 81.4 73.3 79.5 78.9 78.7
(Björkelund et al., 2014) 82.2 90.0 84.0 82.1 91.6 92.6 86.5 88.6 85.1 87.0
Proposed approach 84.1 91.0 85.7 84.6 91.7 91.2 87.8 94.1 82.5 88.1

Table 1: Results for all languages in terms of F1-score, using gold POS and morphological tags. Berke-
ley+POS and Berkeley RAW are the two baseline system results provided by the organizers of the shared
task. Our experiments used an ensemble of 5 models, trained starting from different random initializa-
tions.

of dimension dm. Each composition module per-
form a matrix-vector operation followed by a non-
linearity

Cmi(x) = h(M i
m.x)

where M i
m ∈ Rdm×idm is a matrix of parame-

ters to be trained and h a pointwise non-linearity
function. x = [x1...xi] is the concatenation of the
corresponding input morphological embeddings.
Note that given a morphological feature we have
a different matrix of weight for every possible size
i. In practice most tree nodes do not merge more
than a few constituents and we only consider com-
position sizes < 5.

4 Experiments

4.1 Corpus

Experiments were conducted on the SPMRL cor-
pus provided for the Shared Task 2014 (Seddah et
al., 2013). It provides sentences and tree anno-
tations for 9 different languages (Arabic, Basque,
French, German, Hebrew, Hungarian, Korean,
Polish and Swedish) coming from various sources.
For each language, gold part-of-speech and mor-
phological tags are provided. Results for two base-
line baseline system are provided in order to eval-
uate our models.

4.2 Setup

The model was trained using a stochastic gradient
descent over the available training data. Hyper-
parameters were tuned on the provided validation
sets. The word embedding size and POS/parsing
tag size were set to DW = 100 and DT = 30, re-
spectively. The morphological tag embedding size
was set to 10. The window size of the tagger was
set to K = 7 and its number of hidden units to
300. All parameters were initialized randomly (in-
cluding the words embeddings). As suggested in

(Plaut and Hinton, 1987), the learning rate was di-
vided by the size of the input vector of each layer.
We applied the same dropout regularization as in
(Legrand and Collobert, 2015).

4.3 Results
Table 2 presents the influence of adding morpho-
logical features to the model. We observe signif-
icant improvement for every languages except for
Hebrew. On average, morphological features al-
lowed to overcome the original model by 2 F1-
score.

language Words + POS + morph
Arabic 80.7 82.9
Basque 82.7 90.6
French 81.1 85.0
German 81.5 83.1
Hebrew 91.6 91.5
Hungarian 89.6 90.3
Korean 86.1 86.7
Polish 93.2 93.7
Swedish 81.1 81.5
AVG 85.3 87.3

Table 2: Influence of the additional morphological
embeddings in terms of F1-score

Table 1 compares the performance in F1-score
(obtained with the provided EVALB SPMRL tool)
of different systems, using the provided gold POS
and morphological features. We compare our re-
sults with the two baselines provided with the
task: (1) Berkeley parser with provided POS Tags
(Berkeley+POS). (2) Berkeley Parser in raw mode
where the parser do its own POS tagging (Berke-
ley RAW). We also report the results of the current
state-of-the art model for this task (Björkelund et
al., 2014). We included the same voting procedure
as in citelegrand:2015, using 5 models trained
starting from different random initializations. At
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Model Ara. Bas. Fre. Ger. Heb. Hun. Kor. Pol. Swe. AVG

Berkeley+POS 78.7 74.7 79.8 78.3 85.4 85.2 78.6 86.7 80.6 80.9
Berkeley RAW 79.2 70.5 80.4 78.3 87.0 81.6 71.4 79.2 79.2 78.5
(Durrett and Klein, 2015) 80.2 85.4 81.2 80.9 88.6 90.7 82.2 93.0 83.4 85.1
(Fernández and Martins, 2015) n/a 85.9 78.7 78.7 89.0 88.2 79.3 91.2 82.8 84.2
(Björkelund et al., 2014) 81.3 87.9 81.8 81.3 89.5 91.8 84.3 87.5 84.0 85.5
Proposed approach 80.4 87.5 80.8 82.0 91.6 90.0 84.8 93.0 80.5 85.6

Table 3: Results for all languages in terms of F1-score using predicted POS and morphological tags.
Berkeley+POS and Berkeley RAW are the two baseline system results provided by the organizers of
the shared task. Our experiments used an ensemble of 5 models, trained starting from different random
initializations.

each iteration of the greedy parsing procedure,
the BIOES-tag scores are averaged and the new
node representations (words+POS and morpho-
logical composition) are computed for each model
by composing the sub-tree representations corre-
sponding to the given model, using its own com-
positional network. One can observe that the pro-
posed model outperforms the best model by 1.1
F1-score on average. Moreover, it yields state-of-
the art performance for 6 among the 9 available
languages.

Finally, Table 3 compares the performance of
different systems for a more realistic parsing sce-
nario where the gold POS and morphological tags
are unknown. For these experiments, we use the
same tags as in (Björkelund et al., 2014)2 obtained
using the freely available tool MarMoT (Mueller
et al., 2013). We compare our results with the
same model as for the the gold tags experiences.
Additionnaly, we compare our results with two
recent models reporting results for the SPMRL
Shared Task 2014. We see that the proposed model
yields state-of-the art performance for 4 out of 9
available languages.

5 Conclusion

In this paper, we proposed to extend the parser
introduced in (Legrand and Collobert, 2015) by
learning morphological embeddings. We take ad-
vantage of a recursive procedure to propagate mor-
phological information through the tree during the
parsing process. We showed that using the mor-
phological embeddings boosts the F1-score and
allows to outperform the current state-of-the-art
model on the SPMRL Shared Task 2014 corpus.
Moreover, our approach yields state-of-the art per-
formance for a majority of languages.

2The tags used are available here: http://cistern.
cis.lmu.de/marmot/models/CURRENT/
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Candito, Jinho D. Choi, Richárd Farkas, Jen-
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Abstract

For many of the world’s languages, there
are no or very few linguistically annotated
resources. On the other hand, raw text, and
often also dictionaries, can be harvested
from the web for many of these languages,
and part-of-speech taggers can be trained
with these resources. At the same time,
previous research shows that eye-tracking
data, which can be obtained without ex-
plicit annotation, contains clues to part-
of-speech information. In this work, we
bring these two ideas together and show
that given raw text, a dictionary, and eye-
tracking data obtained from naive partici-
pants reading text, we can train a weakly
supervised PoS tagger using a second-
order HMM with maximum entropy emis-
sions. The best model use type-level ag-
gregates of eye-tracking data and signifi-
cantly outperforms a baseline that does not
have access to eye-tracking data.

1 Introduction

According to Ethnologue, there are around 7,000
languages in the world.1 For most of these lan-
guages, no or very little linguistically annotated
resources are available. This is why over the
past decade or so, NLP researchers have focused
on developing unsupervised algorithms that learn
from raw text, which for many languages is widely
available on the web. An example is part-of-
speech (PoS) tagging, in which unsupervised ap-
proaches have been increasingly successful (see
Christodoulopoulos et al. (2010) for an overview).
The performance of unsupervised PoS taggers can
be improved further if dictionary information is
available, making it possible to constrain the PoS

1http://www.ethnologue.com/world

tagging process. Again, dictionary information
can be harvested readily from the web for many
languages (Li et al., 2012).

In this paper, we show that PoS tagging perfor-
mance can be improved further by using a weakly
supervised model which exploits eye-tracking data
in addition to raw text and dictionary informa-
tion. Eye-tracking data can be obtained by get-
ting native speakers of the target language to read
text while their gaze behavior is recorded. Read-
ing is substantially faster than manual annota-
tion, and competent readers are available for lan-
guages where trained annotators are hard to find
or non-existent. While high quality eye-tracking
equipment is still expensive, $100 eye-trackers
such as the EyeTribe are already on the market,
and cheap eye-tracking equipment is likely to be
widely available in the near future, including eye-
tracking by smartphone or webcam (Skovsgaard et
al., 2013; Xu et al., 2015).

Gaze patterns during reading are strongly in-
fluenced by the parts of speech of the words be-
ing read. Psycholinguistic experiments show that
readers are less likely to fixate on closed-class
words that are predictable from context. Read-
ers also fixate longer on rare words, on words that
are semantically ambiguous, and on words that are
morphologically complex (Rayner, 1998). These
findings indicate that eye-tracking data should be
useful for classifying words by part of speech,
and indeed Barrett and Søgaard (2015) show that
word-type-level aggregate statistics collected from
eye-tracking corpora can be used as features for
supervised PoS tagging, leading to substantial
gains in accuracy across domains. This leads us
to hypothesize that gaze data should also improve
weakly supervised PoS tagging.

In this paper, we test this hypothesis by ex-
perimenting with a PoS tagging model that uses
raw text, dictionary information, and eye-tracking
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zi-2 zi-1 zi

xi-2 xi-1 xi

Figure 1: Second-order HMM. In addition to
the transitional probabilities of the antecedent
state zi−1 in first-order HMMs, second-order mod-
els incorporate transitional probabilities from the
second-order antecedent state zi−2.

data, but requires no explicit annotation. We start
with a state-of-the-art unsupervised PoS tagging
model, the second-order hidden Markov model
with maximum entropy emissions of Li et al.
(2012), which uses only textual features. We aug-
ment this model with a wide range of features de-
rived from an eye-tracking corpus at training time
(type-level gaze features). We also experiment
with token-level gaze features; the use of these
features implies that eye-tracking is available both
at training time and at test time. We find that eye-
tracking features lead to a significant increase in
PoS tagging accuracy, and that type-level aggre-
gates work better than token-level features.

2 The Dundee Treebank

The Dundee Treebank (Barrett et al., 2015) is a
Universal Dependency annotation layer that has
recently been added to the world’s largest eye-
tracking corpus, the Dundee Corpus (Kennedy et
al., 2003). The English portion of the corpus con-
tains 51,502 tokens and 9,776 types in 2,368 sen-
tences. The Dundee Corpus is a well-known and
widely used resource in psycholinguistic research.
The corpus enables researchers to study the read-
ing of contextualized, running text obtained un-
der relatively naturalistic conditions. The eye-
movements in the Dundee Corpus were recorded
with a high-end eye-tracker, sampling at 1000 Hz.
The corpus contains the eye-movements of ten na-
tive English speakers as they read the same twenty
newspaper articles from The Independent. The
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Figure 2: Tagging accuracy on development data
(token-level) as a function of number of iterations
on baseline and full model.

corpus was augmented with Penn Treebank PoS
annotation by Frank (2009). When construct-
ing the Dundee Treebank, this PoS annotation
was checked and corrected if necessary. In the
present paper, we use Universal PoS tags (Petrov
et al., 2011), which were obtained by automati-
cally mapping the original Penn Treebank annota-
tion of the Dundee Treebank to Universal tags.

3 Type-constrained second-order HMM
PoS tagging

We build on the type-constrained second-order
hidden Markov model with maximum entropy
emissions (SHMM-ME) proposed by Li et al.
(2012). This model is an extension of the
first-order max-ent HMM introduced by Berg-
Kirkpatrick et al. (2010). Li et al. (2012) de-
rive type constraints from crowd-sourced tag dic-
tionaries obtained from Wiktionary. Using type
constraints means confining the emissions for a
given word to the tags specified by the Wiktionary
for that word. Li et al. (2012) report a con-
siderable improvement over state-of-the-art unsu-
pervised PoS tagging models by using type con-
straints. In our experiments, we use the tag dictio-
naries they made available2 to facilitate compari-
son. Li et al.’s model was evaluated across nine
languages and outperformed a model trained on
the Penn Treebank tagset, as well as a models that
use parallel text. We follow Li et al.’s approach, in-
cluding the mapping of the Penn Treebank tags to

2https://code.google.com/archive/p/
wikily-supervised-pos-tagger/
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w+1 fixation probability
w+1 fixation duration
w+2 fixation probability
w+2 fixation duration
w-2 fixation probability
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B
. Word length

BNC log frequency
w-1 BNC log frequency
BNC forward transitional log probability
BNC backward transitional log probability

N
O

G
A
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E

D
. Word length

Dundee log frequency
w-1 Dundee log frequency
Dundee forward transitional log probability
Dundee backward transitional log probability

Table 1: Features in feature selection groups.

the Universal PoS tags (Petrov et al., 2011). Fig-
ure 1 shows a graphical representation of a second-
order hidden Markov model.

Li et al. explore two aspects of type-constrained
HMMs for unsupervised PoS tagging: the use of a
second-order Markov model, and the use of textual
features modeled by maximum entropy emissions.
They find that both aspects improve tagging accu-
racy and report the following results for English
using Universal PoS tags on the Penn Treebank:
first-order HMM 85.4, first-order HMM with max-
ent emissions 86.1, second-order HMM 85.0, and
second-order HMM with max-ent emissions 87.1.
Li et al. employ a set of basic textual features for
the max-ent versions, which encode word identity,
presence of a hyphen, a capital letter, or a digit,
and word suffixes of two to three letters.

4 Experiments

Features Based on the eye-movement data in
the Dundee Corpus, we compute token-level val-
ues for 22 features pertaining to gaze and comple-

Features TA

NOGAZEDUN 81.03
NOGAZEBNC 80.69
BASIC 80.30
EARLY 79.96
LATE 79.87
REGFROM 79.62
CONTEXT 79.53

Best Group Comb (All) 81.37
Best Gaze-Only Comb (BASIC-LATE) 80.45

Table 2: Tagging accuracy on the development set
(token-level) for all individual feature groups, for
the best combination of groups and for the best
gaze-only combination of groups.

ment them with another nine non-gaze features.
Word length and word frequency are known to
correlate and interact with gaze features. We use
frequency counts from both a large corpus (the
British National Corpus, BNC) and the Dundee
Corpus itself. From these corpora, we also ob-
tain forward and backward transitional probabil-
ities, i.e., the conditional probabilities of a word
given the previous or next word.

All gaze features are averaged over the ten read-
ers and normalized linearly to a scale between 0
and 1. We divide the set of 31 features, which we
list in Table 1, into the following seven groups in
order to examine for their individual contribution:

1. EARLY measures of processing such as first-
pass fixation duration. Fixations on previous
words are included in this group due to pre-
view benefits. Early measures capture lexical
access and early syntactic processing.

2. LATE measures of processing such as number
of regressions to a word and re-fixation prob-
ability. These measures reflect late syntactic
processing and disambiguation in general.

3. BASIC word-level features, e.g., mean fixa-
tion duration and fixation probability. These
metrics do not belong explicitly to early or
late processing measures.

4. REGFROM includes a small selection of mea-
sures based on regressions departing from a
token. It also includes counts of long regres-
sions3. The token of departure of a regression

3defined as saccades going further back than wi−2
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System TA

Baseline (Li et al., 2012) 79.77

NoTextFeats 74.61
NoTextFeats + Best Group Comb (token) 79.56
NoTextFeats + Best Group Comb (type) 81.94*

Token-level features

Best Gaze Group (BASIC) 80.42*
Best Gaze-Only Comb (BASIC+LATE) 80.45*
Best Single Group (NOGAZEDUN) 80.61*
Best Group Comb (All) 81.00*

Type-averaged features

Best Gaze Group (BASIC) 81.28*
Best Gaze-Only Comb (BASIC+LATE) 81.38*
Best Group (NOGAZEDUN) 81.52*
Best Group Comb (All) 82.44*

Table 3: Tagging accuracy for the baseline, for
models with no text features and for our gaze-
enriched models using type and token gaze fea-
tures. Significant improvements over the baseline
marked by * (p< 10−3, McNemar’s test).

can have syntactic relevance, e.g., in garden
path sentences.

5. CONTEXT features of the surrounding to-
kens. This group contains features relating to
the fixations of the words in near proximity of
the token. The eye can only recognize words
a few characters to the left, and seven to eight
characters to the right of the fixation (Rayner,
1998). Therefore it is useful to know the fix-
ation pattern around the token.

6. NOGAZEBNC includes word length and
word frequency obtained from the British Na-
tional Corpus, as well as forward and back-
ward transitional probabilities. These were
computed using the KenLM language model-
ing toolkit (Heafield, 2011) with Kneser-Ney
smoothing for unseen bigrams.

7. NOGAZEDUN includes the same features as
NOGAZEBNC, but computed on the Dundee
Corpus. They were extracted using CMU-
Cambridge language modeling toolkit.4

Setup The Dundee Corpus does not include a
standard train-development-test split, so we di-

4http://www.speech.cs.cmu.edu/SLM/toolkit.html

Feature groups Accuracy ∆

All groups 81.00
−NOGAZEBNC 80.80 −0.20
−NOGAZEDUN 80.28 −0.52*
−BASIC 80.20 −0.08
−EARLY 79.78 −0.42*
−LATE 79.53 −0.25
−REGFROM 79.24 −0.29*
−CONTEXT (Baseline) 79.77 +0.53*

Table 4: Results of an ablation study over fea-
ture groups on the test set on token-level features.
Significant differences with previous model are
marked by * (p< 0.05, McNemar’s test).

vided it into a training set containing 46,879 to-
kens/1,896 sentences, a development set contain-
ing 5,868 tokens/230 sentences, and a test set of
5,832 tokens/241 sentences.

To tune the number of EM iterations required
for the SHMM-ME model, we ran several exper-
iments on the development set using 1 through
50 iterations. The result is fairly consistent for
both the baseline (the original model of Li et al.
(2012)) and the full model (which includes all fea-
ture groups in Table 1). Tagging accuracy as a
function of number of iterations is graphed in Fig-
ure 2. The best number of iterations on the full
model is five, which we will use for the remaining
experiments.

We perform a grid search over all combinations
of the seven feature groups, using five EM iter-
ations for training, evaluating the resulting mod-
els on token-level features of the development set.
We observe that the best single feature group is
NOGAZEDUN, the best single group of gaze fea-
tures is BASIC, the best gaze-only group combi-
nation is BASIC-LATE and the best group combi-
nation is obtained by including all seven feature
groups. Using all feature groups outperforms any
individual feature group on development data. The
performance of all the individual groups and of the
best group combinations can be seen in Table 2.
We run experiments on the test set and report re-
sults using the best single group (NOGAZEDUN),
the best single gaze group (BASIC), the best gaze-
only group combination (BASIC-LATE) and the
best group combination (all features).

Following Barrett and Søgaard (2015), we con-
trast the token-level gaze features with features ag-
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gregated at the type level. Type-level aggregation
was used by Barrett and Søgaard (2015) for super-
vised PoS tagging: A lexicon of word types was
created and the features values were averaged over
all occurrences of each type in the training data.

As our baseline, we train and evaluate the origi-
nal model proposed by Li et al. (2012) on the train-
test split described above, and compare it to the
models that make use of eye-tracking measures.

To get an estimate of the effect of the textual
features of Li et al., we train a model without these
features, labeled NOTEXTFEATS. We also aug-
ment this model with the best combination of fea-
ture groups.

Results The main results are presented in Ta-
ble 3. We first of all observe that both type-
and token-level gaze features lead to significant
improvements over Li et al. (2012), but type-
level features perform better than token-level. We
observe that the best individual feature group,
NOGAZEDUN, performs better than the best in-
dividual gaze feature group, BASIC and the best
gaze-only feature group, BASIC+LATE. This is
true on both type and token-level. Using the
best combination of feature groups (All features)
works best for both type- and token-level features.
Also when excluding the textual feature model
gaze helps and type-level features also work bet-
ter than token-level here.

A feature ablation study (see Table 4) supports
the hierarchical ordering of the features based on
the development set results (see Table 1).

5 Related Work

The proposed approach continues the work of Bar-
rett and Søgaard (2015) by augmenting an unsu-
pervised baseline PoS tagging model instead of a
supervised model. Our work also explores the po-
tentials of token-level features. Zelenina (2014)
is the only work we are aware of that uses gaze
features for unsupervised PoS tagging. Zelenina
(2014) employs gaze features to re-rank the output
of a standard unsupervised tagger. She reports a
small improvement with gaze features when evalu-
ating on the Universal PoS tagset, but finds no im-
provement when using the Penn Treebank tagset.

6 Discussion

The best individual feature group is NOGAZE-
DUN, indicating that just using word length and

word frequency, as well as transitional probabili-
ties, leads to a significant improvement in tagging
accuracy. However, performance increases further
when we add gaze features, which supports our
claim that gaze data is useful for weakly supervis-
ing PoS induction.

Type-level features work noticeably better than
token-level features, suggesting that access to eye-
tracking data at test time is not necessary. On the
contrary, our results support the more resource-
efficient set-up of just having eye-tracking data
available at training time. We assume that this
finding is due to the fact that eye-movement data
is typically quite noisy; averaging over all tokens
of a type reduces the noise more than just averag-
ing over the ten participants that read each token.
Thus token-level aggregation leads to more reli-
able feature values.

Our finding that the best model includes all
groups of gaze features, and that the best gaze-
only group combination works better than the best
individual gaze group suggest that different eye-
tracking features contain complementary informa-
tion. A broad selection of eye-movement features
is necessary for reliably identifying PoS classes.

7 Conclusions

We presented the first study of weakly super-
vised part-of-speech tagging with eye-tracking
data, using a type-constrained second-order hid-
den Markov model with max-ent emissions. We
performed experiments adding a broad selection
of eye-tracking features at training time (type-
level features) and at test time (token-level fea-
tures). We found significant improvements over
the baseline in both cases, but type averaging
worked better than token-level features. Our re-
sults indicate that using traces of human cognitive
processing, such as the eye-movements made dur-
ing reading, can be used to augment NLP models.
This could enable us to bootstrap better PoS tag-
gers for domains and languages for which man-
ually annotated corpora are not available, in par-
ticular once eye-trackers become widely available
through smartphones or webcams (Skovsgaard et
al., 2013; Xu et al., 2015).
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Abstract

The aim of this paper is to investigate suit-
able evaluation strategies for the task of
word-level quality estimation of machine
translation. We suggest various metrics
to replace F1-score for the “BAD” class,
which is currently used as main metric.
We compare the metrics’ performance on
real system outputs and synthetically gen-
erated datasets and suggest a reliable alter-
native to the F1-BAD score — the multi-
plication of F1-scores for different classes.
Other metrics have lower discriminative
power and are biased by unfair labellings.

1 Introduction

Quality estimation (QE) of machine translation
(MT) is a task of determining the quality of an au-
tomatically translated text without any oracle (ref-
erence) translation. This task has lately been re-
ceiving significant attention: from confidence es-
timation (i.e. estimation of how confident a partic-
ular MT system is on a word or a phrase (Gan-
drabur and Foster, 2003)) it evolved to system-
independent QE and is performed at the word level
(Luong et al., 2014), sentence level (Shah et al.,
2013) and document level (Scarton et al., 2015).

The emergence of a large variety of approaches
to QE led to need for reliable ways to com-
pare them. The evaluation metrics that have
been used to compare the performance of systems
participating in QE shared tasks1 have received
some criticisms. Graham (2015) shows that Pear-
son correlation better suits for the evaluation of
sentence-level QE systems than mean absolute er-
ror (MAE), often used for this purpose. Pearson
correlation evaluates how well a system captures

1http://statmt.org/wmt15/
quality-estimation-task.html

the regularities in the data, whereas MAE essen-
tially measures the difference between the true and
the predicted scores and in many cases can be min-
imised by always predicting the average score as
given by the training set labels.

Word-level QE is commonly framed as a bi-
nary task, i.e., the classification of every translated
word as “OK” or “BAD”. This task has been eval-
uated in terms of F1-score for the “BAD” class,
a metric that favours ‘pessimistic’ systems — i.e.
systems that tend to assign the “BAD” label to
most words. A trivial baseline strategy that assigns
the label “BAD” to all words can thus receive a
high score while being completely uninformative
(Bojar et al., 2014). However, no analysis of the
word-level metrics’ performance has been done
and no alternative metrics have been proposed that
are more reliable than the F1-BAD score.

In this paper we compare existing evaluation
metrics for word-level QE, suggest a number of al-
ternatives, and show that one of these alternatives
leads to more objective and reliable results.

2 Metrics

One of the reasons word-level QE is a challeng-
ing problem is the fact that “OK” and “BAD” la-
bels are not equally important: we are generally
more interested in finding incorrect words than in
assigning a suitable category to every single word.
An ideal metric should be oriented towards the re-
call for the “BAD” class. However, the case of
F1-BAD score shows that this is not the only re-
quirement: in order to be useful the metric should
not favour pessimistic labellings, i.e., all or most
words labelled as “BAD”. Below we describe pos-
sible alternatives to the F1-BAD score.

2.1 F1-score variants
Word-level F1-scores. Since F1-BAD score is
too pessimistic, an obvious solution would be to
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balance it with F1-score for the “OK” class. How-
ever, the widely used weighted average of F1-
scores for the two classes is not suitable as it will
be dominated by F1-OK due to labels imbalance.
Any reasonable MT system will nowadays gener-
ate texts where most words are correct, so the la-
bel distribution is very skewed towards the “OK”
class. Therefore, we suggest instead the multi-
plication of F1-scores for individual classes: it is
equal to zero if one of the components is zero, and
since both are in the [0,1] range, the overall result
will not exceed the value of any of the multipliers.

Phrase-level F1-scores. One of the features of
MT errors is their phrase-level nature. Errors are
not independent: one incorrect word can influence
the classification of its neighbours. If several ad-
jacent words are tagged as “BAD”, they are likely
to be part of an error which spans over a phrase.

Therefore, we also evaluate word-level F1-
scores and alternative metrics which are based on
correctly identified erroneous or error-free spans
of words. The phrase-level F1-score we suggest
is similar to the one used for the evaluation of
named entity recognition (NER) systems (Tjong
Kim Sang and De Meulder, 2003). There, pre-
cision is the percentage of named entities found
by a system that are correct, recall is the percent-
age of named entities present in the corpus that
are found by a system. For the QE task, instead
of named entities we have spans of erroneous (or
correct) words. Precision is the percentage of cor-
rectly identified spans among all the spans found
by a system, recall is the percentage of correctly
identified spans among the spans in the test data.

However, in NER the correct borders of a
named entity are of big importance, because fail-
ure to identify them results in an incorrect entity.
On the other hand, the actual borders of an error
span in QE are not as important: the primary goal
is to identify the erroneous region in the sentence,
the task of finding the exact borders of an error
cannot be solved unambiguously even by human
annotators (Wisniewski et al., 2013). In order to
take into account partially correct phrases (e.g. a
4-word “BAD” phrase where the first word was
tagged as “OK” by a system and the remaining
words were correctly tagged as “BAD”), we com-
pute the number of true positives as the sum of
percentages of words with correctly predicted tags
for every “OK” phrase. The number of true nega-
tives is defined analogously.

2.2 Other metrics

Matthews correlation coefficient. MCC (Pow-
ers, 2011) was used as a secondary metric in
WMT14 word-level QE shared task (Bojar et al.,
2014). It is determined as follows:

MCC =
TP × TN + FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP , TN , FP and FN are true positive,
true negative, false positive and false negative val-
ues, respectively.

This coefficient results in values in the [-1, 1]
range. If the reference and hypothesis labellings
agree on the majority of the examples, the final fig-
ure is dominated by the TP ×TN quantity, which
gets close to the value of the denominator. The
more false positives and false negatives the predic-
tor produces, the lower the value of the numerator.

Sequence correlation. The sequence correla-
tion score was used as a secondary evaluation met-
ric in the QE shared task at WMT15 (Bojar et al.,
2015). Analogously to the phrase-level F1-score,
it is based on the intersection of spans of correct
and incorrect words. It also weights the phrases
to give them equal importance and penalises the
difference in the number of phrases between the
reference and the hypothesis.

3 Metrics comparison

One of the most reliable ways of comparing met-
rics is to measure their correlation with human
judgements. However, for the word-level QE task,
asking humans to rate a system labelling or to
compare the outputs of two or more QE systems
is a very expensive process. A practical way of
getting the human judgements is the use of qual-
ity labels in downstream human tasks — i.e. tasks
where quality labels can be used as additional in-
formation and where they can influence human ac-
curacy or speed. One such a downstream task can
be computer-assisted translation, where the user
translates a sentence having automatic translation
as a draft, and word-level quality labels can high-
light incorrect parts in a sentence. Improvements
in productivity could show the degree of useful-
ness of the quality labels in this case. However,
such an experiment is also very expensive to be
performed. Therefore, we consider indirect ways
of comparing the metrics’ reliability based on pre-
labelled gold-standard test sets.
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3.1 Comparison on real systems
One of the purposes of system comparison is to
identify the best-performing system. Therefore,
we expect a good metric to be able to distinguish
between systems as well as possible. One of the
quality criteria for a metric will thus be the num-
ber of significantly different groups of systems the
metric can identify. Another criterion to evalu-
ate metrics is to compare the real systems’ perfor-
mance with synthetic datasets for which we know
the desirable behaviour of the metrics. If a metric
gives the expected scores to all artificially gener-
ated datasets, it detects some properties of the data
which are relevant to us, so we can expect it to
work adequately also on real datasets.

Here we compare the performance of six met-
rics:

• F1-BAD — F1-score for the “BAD” class.
• F1-mult — multiplication of F1-scores for

“BAD” and “OK” classes.
• phr F1-BAD — phrase-level F1-score for the

“BAD” class.
• phr F1-mult — multiplication of phrase-

level F1-scores.
• MCC — Matthews Correlation Coefficient.
• SeqCor — Sequence Correlation.

We used these metrics to rank all systems sub-
mitted to the WMT15 QE shared task 2 (word-
level QE).2 In addition to that, we test the per-
formance of the metrics on a number of syntheti-
cally created labellings that should be ranked low
in comparison to real system labellings:

• all-bad — all words are tagged as “BAD”.
• all-good — all words are tagged as “OK”.
• optimistic — 98% words are tagged as

“OK”, with only a small number of “BAD”
labels generated: this system should have
high precision (0.9) and low recall (0.1) for
the “BAD” label.
• pessimistic — 90% words are tagged as

“BAD”: this system should have high recall
(0.9) for the “BAD” label, but low recall (0.1)
for the “OK” label.
• random — labels are drawn randomly from

the label probability distribution.

We rank the systems according to all the met-
rics and compute the level of significance for every

2Systems that took part in the shared task are listed and
described in (Bojar et al., 2015).

pair of systems with randomisation tests (Yeh,
2000) with Bonferroni correction (Abdi, 2007).
In order to evaluate the metrics’ performance we
compute the system distinction coefficient d — the
probability of two systems being significantly dif-
ferent, which is defined as the ratio between the
number of significantly different pairs of systems
and all pairs of systems. We also compute d for
the top half and for the bottom half of the ranked
systems list separately in order to check how well
each metric can discriminate between better per-
forming and worse performing systems.3

The results are shown in Table 1. For every
synthetic dataset we show the number of real sys-
tem outputs that were rated lower than this dataset,
with the rightmost column showing the sum of this
figure across all the synthetic sets.

We can see that three metrics are better at distin-
guishing synthetic results from real systems: Se-
qCor and both multiplied F1-scores. In the case
of SeqCor this result is explained by the fact that
it favours longer spans of “OK” and “BAD” la-
bels and thus penalises arbitrary labellings. The
multiplications of F1-scores have two components
which penalise different labellings and balance
each other. This assumption is confirmed by the
fact that F1-BAD scores become too pessimistic
without the “OK” component: they both favour
synthetic systems with prevailing “BAD” labels.
Phrase-F1-BAD ranks these systems the highest:
all-bad and pessimistic outperform 16 out of 17
systems according to this metric.

MCC is, in contrast, too ‘optimistic’: the opti-
mistic dataset is rated higher than most of system
outputs. In addition to that, it is not good at distin-
guishing different systems: its system distinction
coefficient is the lowest among all metric. SeqCor
and phrase-F1-multiplied, despite identifying ar-
tificial datasets, cannot discriminate between real
systems: SeqCor fails with the top half systems,
phrase-F1-multiplied is bad at finding differences
in the bottom half of the list.

Overall, F1-multiplied is the only metric that
performs well both in the task of distinguishing

3dbottom is always greater than dtop in our experiments
because better performing systems tend to have closer scores
under all metrics and more often are not significantly differ-
ent from one another. When comparing two metrics, greater
d does not imply greater dtop and dbottom: we use Bonfer-
roni correction for which the significance level depends on
the number of compared values, so a difference which is sig-
nificant when comparing eight systems, for example, can be-
come insignificant when comparing 16 systems.
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d dtop dbottom all-bad all-good optimistic pessimistic random total
F1-BAD 0.79 0.61 0.81 4 - 1 4 1 10
F1-mult 0.81 0.57 0.75 - - 2 - 2 4
phr F1-BAD 0.86 0.61 0.78 16 - 1 16 - 33
phr F1-mult 0.75 0.54 0.47 - - 1 - - 1
MCC 0.63 0.61 0.34 - - 15 - - 15
SeqCor 0.77 0.39 0.75 - - 1 1 2 4

Table 1: Results for all metrics. Numbers in synthetic dataset columns denote the number of system
submissions that were rated lower than the corresponding synthetic dataset.

synthetic systems from real ones and in the task
of discriminating among real systems, despite the
fact that its d scores are not the best. However,
F1-BAD is not far behind: it has high values for
d scores and can identify synthetic datasets quite
often.

3.2 Comparison on synthetic datasets
The experiment described above has a notable
drawback: we evaluated metrics on the outputs of
systems which had been tuned to maximise the F1-
BAD score. This means that the system rankings
produced by other metrics may be unfairly consid-
ered inaccurate.

Therefore, we suggest a more objective met-
ric evaluation procedure which uses only synthetic
datasets. We generate datasets with different pro-
portion of errors, compute the metrics’ values and
their statistical significance and then compare the
metrics’ discriminative power. This procedure is
further referred to as repeated sampling, because
we sample artificial datasets multiple times.

Our goal is for the synthetic datasets to simulate
real systems’ output. We achieve this by using the
following procedure for synthetic data generation:

• Choose the proportion of errors to introduce
in the synthetic data.
• Collect all sequences that contain incorrect

labels from the outputs of real systems.
• Randomly choose the sequences from this set

until the overall number of errors reaches the
chosen threshold.
• Take the rest of segments from the gold-

standard labelling (so that they contain no er-
rors).

Thus our artificial datasets contain a specific
number of errors, and all of them come from real
systems. We can generate datasets with very small
differences in quality and identify metrics accord-
ing to which this difference is more significant.

Let us compare the discriminative power of
metrics m1 and m2. We choose two error thresh-
olds e1 and e2. Then we sample a relatively small
number (e.g. 100) of random datasets with e1 er-
rors. Then — 100 random datasets with e2 er-
rors. We compute the values for both metrics on
the two sets of random samples and for each met-
ric we test if the difference between the results for
the two sets is significant (we compute the statistic
significance using non-paired t-test with Bonfer-
roni correction). Since we sampled the synthetic
datasets a small number of times it is likely that
the metrics will not detect any significant differ-
ences between them. In this case we repeat the
process with a larger (e.g. 200) number of samples
and compare the p-values for two metrics again.
By gradually increasing the number of samples
at some point we will find that one of the met-
rics recognises the differences in scores as statisti-
cally significant, while another one does not. This
means that this metric has higher discriminative
power: it needs less samples to determine that the
systems they are different. The procedure is out-
lined in Algorithm 1.

In our experiments in order to make p-values
more stable we repeat each sampling round (sam-
pling of a set with ei errors 100, 200, etc. times)
1,000 times and use the average of p-values. We
used fixed sets of sample numbers: [100, 200, 500,
1000, 2000, 5000, 10,000] and error thresholds:
[30%, 30.01%, 30.05%, 30.1%, 30.2%]. The sig-
nificance level α is 0.05.

Since we compare all six metrics on five er-
ror thresholds, we have 10 p-values for each met-
ric at every sampling round. We analyse the re-
sults in the following way: for every difference in
the percentage of errors (e.g. thresholds of 30%
and 30.01% give 0.01% difference, thresholds of
30% and 30.2% — 0.2% difference), we define
the minimum number of samplings that a metric
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0.01 0.04 0.05 0.1 0.15 0.2
F1-mult 10000 2000 2000 500 200 100
MCC 10000 2000 2000 500 200 100
F1-BAD 10000 5000 2000 1000 500 200
phr F1-mult 10000 5000 5000 1000 500 200
SeqCor 10000 5000 5000 1000 500 500
phr F1-BAD 10000 10000 5000 1000 500 500

Table 2: Repeated sampling: the minimum number of samplings required to discriminate between sam-
ples with a different proportions of errors.

Result: mx ∈ {m1, m2}, where mx — metric
with the highest discriminative power
on error thresholds e1 and e2

N ← 100
α← significance level
while p-valm1 > α and p-valm2 > α do

s1 ← N random samples with e1 errors
s2 ← N random samples with e2 errors
p-valm1 ← t-test(m1(s1),m1(s2))
p-valm2 ← t-test(m2(s1),m2(s2))
if p-valm1 < α and p-valm2 > α then

return m1

else if p-valm1 > α and p-valm2 < α
then

return m2

else
N ← N + 100

end
Algorithm 1: Repeated sampling for metricsm1,
m2 and error thresholds e1, e2.

needs to observe significant differences between
datasets which differ in this number of errors. Ta-
ble 2 shows the results. Numbers in cells are min-
imum numbers of samplings. We do not show er-
ror differences greater than 0.2 because all metrics
identify them well. All metrics are sorted by dis-
criminative power from best to worst, i.e. metrics
at the top of the table require less samplings to tell
one synthetic dataset from another.

As in the previous experiment, here the discrim-
inative power of the multiplication of F1-scores is
the highest. Surprisingly, MCC performs equally
well. Similarly to the experiment with real sys-
tems, the F1-BAD metric performs worse than
the F1-multiply metric, but here their difference is
more salient. All phrase-motivated metrics show
worse results.

4 Conclusions

The aim of this paper was to compare evaluation
metrics for word and phrase-level quality estima-
tion and find an alternative for F1-BAD score,
which has been used as primary metric in recent
research but has a number of drawbacks, in partic-
ular tendency to overrate labellings with predomi-
nantly“BAD” instances.

We found that the multiplication of F1-BAD
and F1-OK scores is more stable against “pes-
simistic” labellings and has bigger discrimina-
tive power when comparing synthetic datasets.
However, other tested metrics, including advanced
phrase-based scores, could not outperform F1-
BAD.

This work should be seen as a proxy for
real user evaluation of word-level QE metrics,
which could be done on downstream tasks (e.g.
computer-assisted translation).

References
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Abstract
Medical sciences have long since estab-
lished an ethics code for experiments, to
minimize the risk of harm to subjects. Nat-
ural language processing (NLP) used to
involve mostly anonymous corpora, with
the goal of enriching linguistic analysis,
and was therefore unlikely to raise ethi-
cal concerns. As NLP becomes increas-
ingly wide-spread and uses more data
from social media, however, the situation
has changed: the outcome of NLP experi-
ments and applications can now have a di-
rect effect on individual users’ lives. Until
now, the discourse on this topic in the field
has not followed the technological devel-
opment, while public discourse was often
focused on exaggerated dangers. This po-
sition paper tries to take back the initiative
and start a discussion. We identify a num-
ber of social implications of NLP and dis-
cuss their ethical significance, as well as
ways to address them.

1 Introduction
After the Nuremberg trials revealed the atrocities
conducted in medical research by the Nazis, medi-
cal sciences established a set of rules to determine
whether an experiment is ethical. This involved
incorporating the principles of biomedical ethics
as a lingua franca of medical ethics (Beauchamp
and Childress, 2001).

These guidelines were designed to balance the
potential value of conducting an experiment while
preventing the exploitation of human subjects.
Today, any responsible research institution uses
these—or comparable—criteria to approve or re-
ject experiments before any research can be con-
ducted. The administrative body governing these
decisions is the Institutional Review Board (IRB).

IRBs mostly pertain to experiments that directly
involve human subjects, though, and so NLP and
other data sciences have not employed such guide-
lines. Work on existing corpora is unlikely to raise
any flags that would require an IRB approval.1

Data sciences have therefore traditionally been
less engaged in ethical debates of their subject,
even though this seems to be shifting, see for
instance Wallach (2014), Galaz et al. (2015),
or O’Neil (2016). The public outcry over the
“emotional contagion” experiment on Facebook
(Kramer et al., 2014) further suggests that data sci-
ences now affect human subjects in real time, and
that we might have to reconsider the application of
ethical considerations to our research (Puschmann
and Bozdag, 2014). NLP research not only in-
volves similar data sets, but also works with their
content, so it is time to start a discussion of the
ethical issues specific to our field.

Much of the ethical discussion in data sciences
to date, however, has centered around privacy con-
cerns (Tse et al., 2015). We do not deny the reality
and importance of those concerns, but they involve
aspects of digital rights management/access con-
trol, policy making, and security, which are not
specific to NLP, but need to be addressed in the
data sciences community as a whole. Steps to-
wards this have been taken by Russell et al. (2015).

Instead, we want to move beyond privacy in
our ethical analysis and look at the wider social
impact NLP may have. In particular, we want
to explore the impact of NLP on social justice,
i.e., equal opportunities for individuals and groups
(such as minorities) within society to access re-
sources, get their voice heard, and be represented
in society.

1With few exceptions, such as dialogue research (Joel
Tetreault, pers. comm.)
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Our contributions We believe ethical discus-
sions are more constructive if led by practition-
ers, since the public discussion of ethical aspects
of IT and data sciences is often loaded with fear
of the unknown and unrealistic expectations. For
example, in the public discourse about AI (Hsu,
2012; Eadicicco, 2015; Khatchadourian, 2015),
people either dismiss the entire approach, or ex-
aggerate the potential dangers (see Etzioni (2014)
for a practioner’s view point). This paper is an at-
tempt to take back the initiative for NLP.

At the same time, we believe that the field of
ethics can contribute a more general framework,
and so this paper is an interdisciplinary collabora-
tion between NLP and ethics researchers.

To facilitate the discussion, we also provide
some of the relevant terminology from the liter-
ature on ethics of technology, namely the concepts
of exclusion, overgeneralization, bias confirma-
tion, topic under- and overexposure, and dual use.

2 Does NLP need an ethics discussion?

As discussed above, the makeup of most NLP ex-
periments so far has not obviated a need for ethi-
cal considerations, and so, while we are aware of
individual discussions (Strube, 2015), there is lit-
tle discourse in the community yet. A search for
“ethic*” in the ACL anthology only yields three
results. One of the papers (McEnery, 2002) turns
out to be a panel discussion, another is a book re-
view, leaving only Couillault et al. (2014), who
devote most of the discussion to legal and quality
issues of data sets. We know social implications
have been addressed in some NLP curricula,2 but
until now, no discipline-wide discussion seems to
take place.

The most likely reason is that NLP research
has not directly involved human subjects.3 His-
torically, most NLP applications focused on fur-
ther enriching existing text which was not strongly
linked to any particular author (newswire), was
usually published publicly, and often with some
temporal distance (novels). All these factors cre-
ated a distance between text and author, which pre-
vented the research from directly affecting the au-
thors’ situation.

2Héctor Martı́nez Alonso, personal communication
3Except for annotation: there are a number of papers on

the status of crowdsource workers (Fort et al., 2011; Pavlick
et al., 2014).Couillault et al. (2014) also briefly discuss anno-
tators, but mainly in the context of quality control.

This situation has changed lately due to the in-
creased use of social media data, where authors are
current individuals, who can be directly affected
by the results of NLP applications. Couillault et al.
(2014) touch upon these issues under “traceabil-
ity” (i.e., whether individuals can be identified):
this is undesirable for experimental subjects, but
might be useful in the case of annotators.

Most importantly, though: the subject of NLP—
language—is a proxy for human behavior, and a
strong signal of individual characteristics. Peo-
ple use this signal consciously, to portray them-
selves in a certain way, but can also be identified as
members of specific groups by their use of subcon-
scious traits (Silverstein, 2003; Agha, 2005; Jo-
hannsen et al., 2015; Hovy and Johannsen, 2016).

Language is always situated (Bamman et al.,
2014), i.e., it is uttered in a specific situation at
a particular place and time, and by an individual
speaker with all the characteristics outlined above.
All of these factors can therefore leave an imprint
on the utterance, i.e., the texts we use in NLP carry
latent information about the author and situation,
albeit to varying degrees.

This information can be used to predict author
characteristics from text (Rosenthal and McKe-
own, 2011; Nguyen et al., 2011; Alowibdi et al.,
2013; Ciot et al., 2013; Liu and Ruths, 2013;
Volkova et al., 2014; Volkova et al., 2015; Plank
and Hovy, 2015; Preotiuc-Pietro et al., 2015a;
Preoţiuc-Pietro et al., 2015b), and the character-
istics in turn can be detected by and influence the
performance of our models (Mandel et al., 2012;
Volkova et al., 2013; Hovy, 2015).

As more and more language-based technologies
are becoming available, the ethical implications of
NLP research become more important. What re-
search is carried out, and its quality, directly affect
the functionality and impact of those technologies.

The following is meant to start a discussion ad-
dressing ethical issues that can emerge in (and
from) NLP research.

3 The social impact of NLP research

We have outlined the relation between language
and individual traits above. Language is also a
political instrument, though, and an instrument
of power. This influence stretches into politics
and everyday competition, for example for turn-
taking (Laskowski, 2010; Bracewell and Tomlin-
son, 2012; Prabhakaran and Rambow, 2013; Prab-
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hakaran et al., 2014; Tsur et al., 2015; Khouzami
et al., 2015, inter alia), .

The mutual relationships between language, so-
ciety, and the individual are also the source for
the societal impact factors of NLP: failing to rec-
ognize group membership (Section 3.1), implying
the wrong group membership (see Section 3.2),
and overexposure (Section 3.3). In the following,
we discuss sources of these problems in the data,
modeling, and research design, and suggest possi-
ble solutions to address them.

3.1 Exclusion

As a result of the situatedness of language, any
data set carries a demographic bias, i.e., latent
information about the demographics in it. Over-
fitting to these factors can have have severe ef-
fects on the applicability of findings. In psychol-
ogy, where most studies are based on western,
educated, industrialized, rich, and democratic re-
search participants (so-called WEIRD, Henrich et
al. (2010)), the tacit assumption that human nature
is so universal that findings on this group would
translate to other demographics has led to a heav-
ily biased corpus of psychological data. In NLP,
overfitting to the demographic bias in the training
data is due to the i.i.d. assumption. I.e., models
implicitly assume all language to be identical to
the training sample. They therefore perform worse
or even fail on data from other demographics.

Potential consequences are exclusion or demo-
graphic misrepresentation. This in itself already
represents an ethical problem for research pur-
poses, threatening the universality and objectiv-
ity of scientific knowledge (Merton, 1973). These
problems exacerbate, though, once they are ap-
plied to products. For instance, standard language
technology may be easier to use for white males
from California (as these are taken into account
while developing it) rather than women or citi-
zens of Latino or Arabic descent. This will re-
inforce already existing demographic differences,
and makes technology less user friendly for such
groups, cf. authors like Bourdieu and Passeron
(1990) have shown how restricted language, like
class specific language or scientific jargon, can
hinder the expression of outsiders’ voices from
certain practices. A lack of awareness or de-
creased attention for demographic differences in
research stages can therefore lead to issues of ex-
clusion of people along the way.

Concretely, the consequences of exclusion for
NLP research have recently been pointed out by
Hovy and Søgaard (2015) and Jørgensen et al.
(2015): current state-of-the-art NLP models score
a significantly lower accuracy for young people
and ethnic minorities vis-à-vis the modeled demo-
graphics.

Better awareness of these mechanism in NLP
research and development can help prevent prob-
lems further on. Potential counter-measures to de-
mographic bias can be as simple as downsampling
the over-represented group in the training data to
even out the distribution. The work by Moham-
mady and Culotta (2014) shows another approach,
by using existing demographic statistics as super-
vision. In general, measures to address overfitting
or imbalanced data can be used to correct for de-
mographic bias in data.

3.2 Overgeneralization

Exclusion is a side-effect of the data. Overgener-
alization is a modeling side-effect.

As an example, we consider automatic infer-
ence of user attributes, a common and interest-
ing NLP task, whose solution also holds promise
for many useful applications, such as recommen-
dation engines and fraud or deception detection
(Badaskar et al., 2008; Fornaciari and Poesio,
2014; Ott et al., 2011; Banerjee et al., 2014).

The cost of false positives seems low: we might
be puzzled or amused when receiving an email ad-
dressing us with the wrong gender, or congratulat-
ing us to our retirement on our 30th birthday.

In practice, though, relying on models that pro-
duce false positives may lead to bias confirmation
and overgeneralization. Would we accept the same
error rates if the system was used to predict sexual
orientation or religious views, rather than age or
gender? Given the right training data, this is just a
matter of changing the target variable.

To address overgeneralization, the guiding
question should be “would a false answer be worse
than no answer?” We can use dummy variables,
rather than take a tertium non datur approach to
classification, and employ measures such as er-
ror weighting and model regularization, as well as
confidence thresholds.

3.3 The problem of exposure

Topic overexposure creates biases Both exclu-
sion and overgeneralization can be addressed algo-
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Figure 1: ACL title keywords over time

rithmically, while topic overexposure originates
from research design.

In research, we can observe this effect in waves
of research topics that receive increased main-
stream attention, often to fall out of fashion or
become more specialized, cf. ACL papers with
“grammars” vs. “neural” in the title (Figure 1).

Such topic overexposure may lead to a psycho-
logical effect called availability heuristic (Tver-
sky and Kahneman, 1973): if people can recall
a certain event, or have knowledge about specific
things, they infer it must be more important. For
instance, people estimate the size of cities they
recognize to be larger than that of unknown cities
(Goldstein and Gigerenzer, 2002).

However, the same holds for individu-
als/groups/characteristics we research. The
heuristics become ethically charged when char-
acteristics such as violence or negative emotions
are more strongly associated with certain groups
or ethnicities (Slovic et al., 2007). If research
repeatedly found that the language of a certain
demographic group was harder to process, it could
create a situation where this group was perceived
to be difficult, or abnormal, especially in the
presence of existing biases. The confirmation of
biases through the gendered use of language, for
example, has also been at the core of second and
third wave feminism (Mills, 2012).

Overexposure thus creates biases which can
lead to discrimination. To some extent, the fran-
tic public discussion on the dangers of AI can be
seen as a result of overexposure (Sunstein, 2004).

There are no easy solutions to this problem,
which might only become apparent in hindsight.
It can help to assess whether the research direction

of a project feeds into existing biases, or whether
it overexposes certain groups.

Underexposure can negatively impact evalua-
tion. Similar to the WEIRD-situation in psy-
chology, NLP tends to focus on Indo-European
data/text sources, rather than small languages from
other language groups, for example in Asia or
Africa. This focus creates an imbalance in the
available amounts of labeled data. Most of the
exisitng labeled data covers only a small set of
languages. When analyzing a random sample of
Twitter data from 2013, we found that there were
no treebanks for 11 of the 31 most frequent lan-
guages, and even fewer semantically annotated
resources (the ACE corpus covers only English,
Arabic, Chinese, and Spanish).4

Even if there is a potential wealth of data
available from other languages, most NLP tools
are geared towards English (Schnoebelen, 2013;
Munro, 2013). The prevalence of resources for
English has created an underexposure to typolog-
ical variety: both morphology and syntax of En-
glish are global outliers. Would we have focused
on n-gram models to the same extent if English
was as morhpologically complex as, say, Finnish?

While there are many approaches to develop
multi-lingual and cross-lingual NLP tools for lin-
guistic outliers (Yarowsky and Ngai, 2001; Das
and Petrov, 2011; Søgaard, 2011; Søgaard et
al., 2015; Agić et al., 2015), there simply are
more commercial incentives to overexpose En-
glish, rather than other languages. Even if other
languages are equally (or more) interesting from a
linguistic and cultural point of view, English is one
of the most widely spoken language and therefore
opens up the biggest market for NLP tools. This
focus on English may be self-reinforcing: the ex-
istence of off-the-shelf tools for English makes it
easy to try new ideas, while to start exploring other
languages requires a higher startup cost in terms of
basic models, so researchers are less likely to work
on them.

4 Dual-use problems
Even if we address all of the above concerns and
do not intend any harm in our experiments, they
can still have unintended consequences that nega-
tively affect people’s lives (Jonas, 1984).

Advanced analysis techniques can vastly
improve search and educational applications

4Thanks to Barbara Plank for the analysis!
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(Tetreault et al., 2015), but can re-enforce pre-
scriptive linguistic norms when degrading on
non-standard language. Stylometric analysis
can shed light on the provenance of historic
texts (Mosteller and Wallace, 1963), but also
endanger the anonymity of political dissenters.
Text classification approaches help decode slang
and hidden messages (Huang et al., 2013), but
have the potential to be used for censorship. At
the same time, NLP can also help uncovering such
restrictions (Bamman et al., 2012). As recently
shown by Hovy (2016), NLP techniques can be
used to detect fake reviews, but also to generate
them in the first place.

All these examples indicate that we should be-
come more aware of the way other people ap-
propriate NLP technology for their own purposes.
The unprecedented scale and availability can make
the consequences of NLP technologies hard to
gauge.

The unintended consequences of research are
also linked to the incentives associated with fund-
ing sources. The topic of government and mili-
tary involvement in the field deserves special at-
tention in this respect. On the one hand, Anderson
et al. (2012) show how a series of DARPA-funded
workshops have been formative for ACL as a field
in the 1990s. On the other hand, there are schol-
ars who refuse military-related funding for moral
reasons.5

While this decision is up to the individual re-
searcher, the examples show that moral consider-
ations go beyond the immediate research projects.
We may not directly be held responsible for the
unintended consequences of our research, but we
can acknowledge the ways in which NLP can
enable morally questionable/sensitive practices,
raise awareness, and lead the discourse on it in an
informed manner. The role of the researcher in
such ethical discussions has recently been pointed
out by Rogaway (2015).

5 Conclusion
In this position paper, we outlined the potential so-
cial impact of NLP, and discussed ways for the
practitioner to address this. We also introduced
exclusion, overgeneralization, bias confirmation,
topic overexposure, and dual use. Countermea-
sures for exclusion include bias control techniques

5For a perspective in a related field see https:
//web.eecs.umich.edu/˜kuipers/opinions/
no-military-funding.html

like downsampling or priors; for overgeneraliza-
tion: dummy labels, error weighting, or confi-
dence thresholds. Exposure problems can only be
addressed by careful research design, and dual-use
problems seem hardly addressable on the level of
the individual researcher, but require the concerted
effort of our community.

We hope this paper can point out ethical consid-
erations for collecting our data, designing the ex-
perimental setup, and assessing the potential ap-
plication of our systems, and help start an open
discussion in the field about the limitations and
problems of our methodology.

Acknowledgements
The authors would like to thank Joel Tetrault,
Rachel Tatman, Joel C. Wallenberg, the members
of the COASTAL group, and the anonymous re-
viewers for their detailed and invaluable feedback.
The first author was funded under the ERC Start-
ing Grant LOWLANDS No. 313695. The second
author was funded by the Netherlands Organiza-
tion for Scientific Research under grant number
016.114.625.

References
Asif Agha. 2005. Voice, footing, enregisterment.

Journal of linguistic anthropology, pages 38–59.
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Abstract

Increasing amounts of digital data in his-
torical linguistics necessitate the develop-
ment of automatic methods for the detec-
tion of cognate words across languages.
Recently developed methods work well
on language families with moderate time
depths, but they are not capable of identi-
fying cognate morphemes in words which
are only partially related. Partial cog-
nacy, however, is a frequently recurring
phenomenon, especially in language fami-
lies with productive derivational morpho-
logy. This paper presents a pilot approach
for partial cognate detection in which net-
works are used to represent similarities be-
tween word parts and cognate morphemes
are identified with help of state-of-the-
art algorithms for network partitioning.
The approach is tested on a newly created
benchmark dataset with data from three
sub-branches of Sino-Tibetan and yields
very promising results, outperforming all
algorithms which are not sensible to par-
tial cognacy.

1 Introduction

In a very general notion, cognacy is similar to the
concept of homology in biology (Haggerty et al.
2014), denoting a relation between words which
share a common history (List 2014b). In clas-
sical linguistics, borrowings are often excluded
from this notion (Trask 2000). Quantitative ap-
proaches additionally distinguish cognates which
have retained, and cognates which have shifted
their meaning (Starostin 2013b). Further aspects
of cognacy are rarely distinguished, although they
are obvious and common. Words which go back to
the same ancestor form can for example have been

morphologically modified, such as French soleil
which does not go directly back to Latin sōl `sun'
but to sōliculus `small sun' which is itself a deriva-
tion of sōl (Meyer-Lübke 1911).

Variety Form Character Cognacy
Fúzhōu ŋuoʔ⁵ 月 1
Měixiàn ŋiat⁵ kuoŋ⁴⁴ 月光 1 2
Wēnzhōu ȵy²¹ kuɔ³⁵ vai¹³ 月光佛 1 2 3
Běijīng yɛ⁵¹ liɑŋ¹ 月亮 1 4

Table 1: Partial cognacy in Chinese dialects.

Another problem are words which have
been created from two or more morphemes via
processes of compounding. While these cases
are rather rare in the core vocabulary of Indo-
European languages, they are very frequent in
South-East Asian language families like Sino-
Tibetan or Austro-Asiatic. In 200 basic words
across 23 Chinese dialects (Ben Hamed and Wang
2006), for example, almost 50% of the nouns and
more than 30% of all words consist of two or more
morphemes (see the Sup. Material for details).

The presence of words consisting of more
than one morpheme challenges the notion that
words can either be cognate or not. It poses
problems for phylogenetic approaches which re-
quire binary presence-absence matrices as input
and model language evolution as cognate gain and
cognate loss (Atkinson and Gray 2006). This is il-
lustrated in Table 1 where words for `moon' in four
Chinese dialects (Hóu 2004) are compared, with
cognate elements being given the same color. If
we assign cognacy strictly, only matching those
words which are identical in all their elements
(Ben Hamed and Wang 2006), we would have to
label all words as being not cognate. If we assign
cognacy loosely (Satterthwaite-Phillips 2011), la-
beling all words as cognate when only they share
a common morpheme, we would have to label all
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words as cognate. No matter how we code in phy-
logenetic analyses, as long as we use binary states,
we will loose information (List 2016).

Partial cognacy is also a problem for cur-
rent cognate detection algorithms which compare
words in their entirety (List 2014b, Turchin et al.
2010). Given the frequency of compound words
in South-East Asian languages, it is not surprising
that the algorithms performmuch worse on diverse
South-East Asian language families, than they per-
form on other language families where compound-
ing is less frequent (List 2014b:197f).

This paper presents a new algorithm for cog-
nate detection which does not identify cognate
words but instead searches for cognate elements
in words. The algorithm takes multilingual word
lists as input and outputs statements regarding the
cognacy of morphemes, just as the ones shown in
the last column of Table 1, where identical numer-
ical IDs are given for all morphemes identified as
cognate.

Dataset Bai Chinese Tujia
Languages 9 18 5
Words 1028 3653 513
Concepts 110 180 109
Strict Cogn. 285 1231 247
Partial Cogn. 309 1408 348
Sounds 94 122 57
Source Wang, 2006 Běijīng

Dàxué,
1964

Starostin,
2013b

Table 2: Partial cognate detection gold standard

2 Materials

Three gold standard datasets from different
branches of Sino-Tibetan with different degrees
of diversity were prepared, including Bai dialects,
Chinese dialects, and Tujia dialects. All datasets
were taken from existing datasets with cognate
codings provided independently. To facilitate fur-
ther use of the data, all languages were linked to
Glottolog (Hammarström et al. 2015) and all con-
cepts were linked to the Concepticon (List et al.
2016a). Furthermore, phonetic transcriptions were
cleaned by segmenting phonetic entries into mean-
ingful sound units and unifying phonetic variants
representing the same pronunciation. Morpho-
logical segmentation was not required, since all
languages in our sample (and the majority of all
South-East Asian languages) have a morpheme-
syllabic structure in which each syllable denotes

one morpheme. Partial cognate judgments are
displayed with help of multiple integer IDs as-
signed to a word in the order of its morphemes,
as displayed above in Table 1. For the Chinese
dataset, partial cognate information was provided
in the source itself, for Bai and Tujia, it was
manually derived from the cognate judgments in
the sources. Detailed information regarding the
datasets is given in Table 2, and the full dataset
along with further information is given in the Sup.
Material.

3 Methods

The workflow for partial cognate detection con-
sists of three major steps. (1) In a first step, pair-
wise sequence similarities are determined between
all morphemes of all words in the same mean-
ing slot in a word list. (2) These similarities are
then used to create a similarity network in which
nodes represent morphemes and edges between
the nodes represent similarities between the mor-
phemes. (3) In a third step, an algorithm for net-
work partitioning is used to cluster the nodes of the
network into groups of cognate morphemes.

3.1 Sequence Similarity

There are various ways to determine the similar-
ity or distance between words and morphemes.
A general distinction can be made between
language-independent and language-specific ap-
proaches. The former determine the word simi-
larity independently of the languages to which the
words belong. As a result, the scores only depend
on the substantial and structural differences be-
tween words. Examples for language-independent
similarity measures are SCA distances, as pro-
duced by the Sound-Class-Based Phonetic Align-
ment algorithm (List 2012b), or PMI similarities
as produced by the Weighted String Alignment
algorithm (Jäger 2013). Language-specific ap-
proaches, on the other hand, are based on pre-
viously identified recurring correspondences be-
tween the languages from which the words are
taken (List 2014b: 48-50) and may differ across
languages.1 An example for language-specific
similarity measures is the LexStat algorithm, first
proposed in List (2012a) and later refined in List

1Comparing, for example, German Kuckuck with French
coucou and English cuckoo may yield quite different scores,
although the English and the French words are almost identi-
cal in pronunciation.
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Fúzhōu ŋuoʔ⁵

Měixiàn
ŋiat⁵ 0.44

kuoŋ⁴⁴ 0.78 0.78

Wēnzhōu
y²¹ȵ 0.30 0.35 0.67

ku ³ɔ ⁵ 0.80 0.85 0.27 0.67
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Figure 1: Similarity networks for partial cognate detection. A shows pairwise SCA distances computed
between all morphemes of Chinese dialect words for `moon'. Values shaded in gray are excluded follow-
ing filtering rules 1 and 2 (see text). B shows the initial similarity network with all nodes connected. C
shows the network after filtering, and D shows the network after applying the partitioning algorithm.

(2014b). As a general rule, language-specific ap-
proaches outperform language-independent ones,
provided the sample size is large enough (List
2014a).

Two similarity measures are used in this pa-
per, one language-independent, and one language-
specific one. The above-mentioned SCA method
for phonetic alignments (List 2012b, 2014b) re-
duces the phonetic space of sound sequences to
28 sound classes. Based on a scoring function
which defines transition scores between the sound
classes, phonetic sequences are aligned and simi-
larity and distance scores can be determined. The
LexStat approach List (2012a, 2014b) also uses
sound classes, but instead of using a pre-defined
scoring function, transition scores between sound
classes are determined with help of a permutation
test. In this test, words drawn from a random-
ized sample are repeatedly aligned with each other
in order to create a distribution of sound transi-
tions for unrelated languages. This distribution
is then compared with the actual distribution re-
trieved from aligned words in the word list, and a
language-specific scoring function is created List
(2014b). SCA is very fast in computation, but Lex-
Stat has a much higher accuracy. Both approaches
are freely available as part of the LingPy software
package (List and Forkel 2016).

3.2 Sequence Similarity Networks
Sequence similarity networks are tools for ex-
ploratory data analysis. In evolutionary biology
they are used to study complex evolutionary pro-
cesses (Méheust et al. 2016, Corel et al. 2016).
They represent sequences as nodes and connec-

tions between nodes represent similarities which
are usually determined from similarity scores ex-
ceeding a certain threshold (Alvarez-Ponce et al.
2013). Since evolutionary processes leave specific
traces in the network topology, they can be iden-
tified by applying techniques for network analy-
sis. In linguistics, sequence similarity networks
have been rarely applied (Lopez et al. 2013), al-
though they are applicable, provided that one uses
informed measures for phonetic similarity.

For the application of sequence similarity net-
works it is essential to decide when to draw an edge
between two nodes and when not. For the new ap-
proach to partial cognate detection, three filtering
criteria are applied. (1) No edges are drawn be-
tween morphemes which occur in the same word.
(2) Nomorpheme in oneword is linked to twomor-
phemes in another word, with the preference given
to morpheme pairs with the lowest phonetic dis-
tance applying a greedy strategy. (3) Edges are
only drawn when the phonetic distance between
the morphemes is beyond a certain threshold. The
application of the filtering criteria is illustrated in
Fig. 1 for the exemplary words shown in Table 1.

3.3 Network Partitioning
Cognate morphemes in a similarity network can
be found by partitioning the network into groups.
Many algorithms are available for this purpose, as
can be seen from evolutionary biology, where ho-
mology detection is frequently approached from a
network perspective (Vlasblom andWodak 2009).
Three different algorithms were tested for this
purpose. A flat version of the UPGMA algo-
rithm for hierarchical clustering (Sokal and Mich-
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ener 1958), which terminates when a certain user-
defined threshold is reached is originally underly-
ing the LexStat algorithm and was therefore also
included in this study. Markov Clustering (van
Dongen 2000) uses techniques for matrix multi-
plication to inflate and expand the edge weights
in a given network until weak edges have disap-
peared and a few clusters of connected nodes re-
main. Markov Clustering is very popular in bi-
ology and was shown to outperform the popular
Affinity Propagation algorithm (Frey and Dueck
2007) in the task of homolog detection in biology
(Vlasblom and Wodak 2009). As a third method,
we follow List et al. (2016b) in testing Infomap
(Rosvall and Bergstrom 2008), a method that was
originally designed to detect communities in com-
plex networks. Communities are groups that share
more links with each other than outside the group
(Newman and Girvan 2004). Infomap uses ran-
dom walks to find the best partition of a network
into communities. Infomap is not a classical par-
titioning algorithm, and we do not know of any
studies which tested its suitability for the task of
homolog detection in evolutionary biology, but ac-
cording to List et al. (2016b), Infomap shows a bet-
ter performance than UPGMA in automatic cog-
nate detection.

3.4 Analyses and Evaluation
All methods, be it classical or partial cognate de-
tection, require a user-defined threshold. Since our
gold standard data was too small to split it into
training and tests sets, we carried out an exhaus-
tive comparison of all methods on different thresh-
olds varying between 0.05 and 0.95 in steps of
0.05. B-cubed scores were chosen as an evaluation
measure for cognate detection (Bagga andBaldwin
1998), since they have been shown to yield sensi-
ble results (Hauer and Kondrak 2011).

With SCA and LexStat, two classical meth-
ods for cognate detection were tested List (2014b),
and their underlying models for phonetic similar-
ity (see Sec. 3.1) were used as basis for the par-
tial cognate detection algorithm. All in all, this
yielded four different methods: LexStat, LexStat-
Partial, SCA, and SCA-Partial. Since our new
algorithms yield partial cognates, while LexStat
and SCA yield ``complete" cognates, it is not pos-
sible to compare them directly. In order to al-
low for a direct comparison, partial cognate sets
were converted into ``complete" cognate sets us-
ing the above-mentioned strict coding approach

proposed by Ben Hamed and Wang (2006): only
those words in which all morphemes are cognate
were assigned to the cognate same set. With a total
of three different clustering algorithms (UPGMA,
Markov Clustering, and Infomap), we thus carried
out twelve tests on complete cognacy (three for
each of our four approaches), and six additional
tests on pure partial cognate detection, in which
we compared the suitability of SCA and LexStat
as string similarity measures.

LexStat
Cluster-Method T P R FS
UPGMA 0.60 0.9030 0.8743 0.8878
Markov 0.50 0.9123 0.8752 0.8933
Infomap 0.50 0.9131 0.8866 0.8995

SCA
Cluster-Method T P R FS
UPGMA 0.45 0.8595 0.8707 0.8648
Markov 0.45 0.8049 0.8097 0.8031
Infomap 0.35 0.8901 0.8573 0.8734

LexStat-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.90 0.9193 0.9638 0.9399
Markov 0.70 0.9275 0.9342 0.9298
Infomap 0.65 0.9453 0.9363 0.9404

SCA-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.60 0.9304 0.9045 0.9172
Markov 0.95 0.8153 0.8949 0.8446
Infomap 0.55 0.9104 0.9366 0.9223

LexStat-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.75 0.8920 0.8820 0.8867
Markov 0.60 0.8858 0.8724 0.8782
Infomap 0.60 0.8876 0.8844 0.8856

SCA-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.50 0.8597 0.8509 0.8552
Markov 0.50 0.8074 0.7621 0.7755
Infomap 0.35 0.8676 0.8439 0.8553

Table 3: General performance of the algorithms
on all datasets. The table shows for each of the 18
different methods the threshold (T) for which the
best B-Cubed F-Score was determined, as well as
the B-Cubed precision (P), recall (R), and F-score
(FS). The best result in each block is shaded in
gray.
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Figure 2: Comparing the results for the LexStat sequences similarities

3.5 Implementation
The code was implemented in Python, as part of
the LingPy library (Version 2.5, List and Forkel
(2016), http://lingpy.org). The Igraph soft-
ware package (Csárdi and Nepusz 2006) is needed
to apply the Infomap algorithm.

4 Results

The aggregated results of the test (thresholds, pre-
cision, recall, and F-scores) are given in Table
3, specific results for the comparison of LexStat
with LexStat-Partial are given in Table 3. In
general, one can clearly see that the partial cog-
nate detection algorithms outperform their non-
partial counterparts when applying the complete
cognacy measure. The differences are very strik-
ing, with LexStat-Partial outperforming its non-
partial counterpart by up to four points, and SCA-
Partial outperforming the classical SCA variant by
almost five points.2 In contrast, we do not find
strong differences in the performance of the cluster
algorithms. Infomap outperforms the other cluster
algorithms in almost all tests (all other aspects be-
ing equal), but the differences are not high enough
to make any further conclusions at this point.

When comparing the aggregated results for
the true evaluation of partial cognate detection (the
last two blocks in Figure 2), the scores are less high
than in the complete cognate analyses. Given that
we cannot detect any striking tendency, like a dras-
tic drop of precision or recall, this suggests that
the algorithms generally loose accuracy in the task
of ``true" partial cognate detection. This is surely
not surprising, since the task of detecting exactly
which morphemes in the data are historically re-
lated is much more complex than the task of de-
tecting which words are completely cognate.
2By one point, we mean 0.01 on the B-Cube scale.

In Figure 2, detailed analyses for the LexStat
analyses with complete cognate evaluation (the
first and the third block in Table 3) are shown for
each of the datasets, and throughout all thresholds
we tested. The superior performance of the par-
tial cognate detection variants is reflected in all
datasets. That the internal diversity of the Chi-
nese languages largely exceeds Bai and Tujia can
be seen from the generally lower scores which all
algorithms achieve for the datasets.

5 Discussion

This paper has presented a pilot approach for the
detection of partial cognates in multilingual word
lists. Although the results are very promising at
this stage, we can think of many points where
improvement is needed, and further studies are
needed to fully assess the potential of the cur-
rent approach. First, it should be tested on addi-
tional datasets, and ideally also on language fami-
lies other than Sino-Tibetan. Second, since our ap-
proach is very general, it can easily be adjusted to
employ different string similarity measures or dif-
ferent partitioning algorithms, and it would be in-
teresting to see whether alternative measures can
improve upon our current version.
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