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Preface: General Chair

In my welcome to participants in this year’s conference handbook, I especially welcomed those for
which it was their first ACL. I expressed the hope that the conference fulfilled their expectations and
remained in their memory as a great start. Trying to imagine the first experience of a present-day ACL,
the magnitude of the whole event may be a bit overwhelming - our field is on an expanding trajectory,
and even a selection of the best work fills a great number of parallel sessions over a number of days;
plus, there are the workshops and tutorials to quench many topical thirsts. This ACL again promises to
be a next peak in a progressive development.

ACL Conferences are the product of many people working together, kindly offering their services to the
community at large. ACL-2016 is no exception to this. I would like to thank each and every person
who has volunteered their time to make the event possible. I am deeply impressed with the sense of
community that organizing an ACL brings about.

Priscilla Rasmussen, the ACL Business Manager, and the 2015 ACL Executive Committee (Chris
Manning, Pushpak Bhattacharyya, Joakim Nivre, Graeme Hirst, Dragomir Radev, Gertjan van Nood,
Min-Yen Kan, Herman Ney, and Yejin Choi) have been instrumental in setting ACL-2016 in motion and
in guiding the ACL-2016 team along the path from concept to execution. Without the collective memory
and hands-on guidance of the committee, an ACL conference will never happen.

The ACL-2016 team was formidable in building all the components of the conference and connecting
them together in an impressive programme: Katrin Erk and Noah Smith (Programme Committee
Chairs); Valia Kordoni, Markus Egg (Local Arrangements Chairs) who brought together a fantastic local
organization team; Sabine Schulte im Walde and Jun Zhao (Workshop Chairs), Alexandra Birch and
Willem Zuidema (Tutorial Chairs); Hai Zhao, Yusuke Miyao, and Yannick Versley (Publication Chairs);
Tao Lei, He He, and Will Roberts (Student Research Workshop Chairs), Yang Liu, Chris Biemann, and
Gosse Bouma (Faculty Advisors for the Student Research Workshop), Marianna Apidianaki and Sameer
Pradhan (Demonstration Chairs), Barbara Plank (Publicity Chair), Florian Kunneman and Matt Post
(Conference Handbook Team), and Yulia Grishina (Student Volunteer Coordinator).

The Program Chairs selected outstanding invited speakers: Mark Steedman (University of Edinburgh)
and Amber Boydstun (University of California, Davis).

I am deeply grateful to our sponsors for their generous contributions, allowing the conference not to
become prohibitively expensive: Google, Baidu, Amazon (Platinum Sponsors); Bloomberg, Facebook,
eBay, Elsevier, Microsoft Research, and Maluuba (Gold Sponsors); Huawei Technologies, Zalando SE
(Silver Sponsors); Nuance, Grammarly, Voicebox, Yandex, and Textkernel (Bronze Sponsors).

Finally, I would like to express my deep appreciation for the hard work carried out by all area chairs,
workshop organizers, tutorial presenters, and the massive army of reviewers. Kudos to all.

Welcome to ACL-2016!

Antal van den Bosch
General Chair






Preface: Program Committee Co-Chairs

Welcome to the 54th Annual Meeting of the Association for Computational Linguistics! This year, ACL
received 825 long paper submissions (a new record) and 463 short paper submissions.! Of the long papers,
231 were accepted for presentation at ACL—116 as oral presentations and 115 as poster presentations.
97 short papers were accepted—49 as oral and 48 as poster presentations. In addition, ACL also features
25 presentations of papers accepted in the Transactions of the Association for Computational Linguistics
(TACL). With 353 paper presentations at the main conference, this is the largest ACL program to date.

In keeping with the tremendous growth of our field, we introduced some changes to the conference. Oral
presentations were shortened to fifteen (twelve) minutes for long (short) papers, plus time for questions.
While this places a greater demand on speakers to be concise, we believe it is worth the effort, allowing
far more work to be presented orally. We also took advantage of the many halls available at Humboldt
University and expanded the number of parallel talks during some conference sessions.

We introduced a category of outstanding papers to help recognize the highest quality work in the community
this year. The 11 outstanding papers (9 long, 2 short, 0.85% of submissions) represent a broad spectrum of
exciting contributions; they are recognized by especially prominent placement in the program. From these,
a best paper and an IBM-sponsored best student paper have been selected; those will be announced in the
awards session on Wednesday afternoon.

Following other recent ACL conferences, submissions were reviewed under different categories and using
different review forms for empirical/data-driven, theoretical, applications/tools, resources/evaluation, and
survey papers. We introduced special fields in the paper submission form for authors to explicitly note
the release of open-source implementations to enable reproducibility, and to note freely available datasets.
We also allowed authors to submit appendices of arbitrary length for details that would enable replication;
reviewers were not expected to read this material.

Another innovation we explored during the review period was the scheduling of short paper review before
long paper review. While this was planned to make the entire review period more compact (fitting between
the constraints of NAACL 2016 and EMNLP 2016 at either end), we found that reviewing short papers first
eliminated many of the surprises for the long paper review process.

We sought to follow recently-evolved best practices in planning the poster sessions, so that the many high-
quality works presented in that format will be visible and authors and attendees benefit from the interactions
during the two poster sessions.

ACL 2016 will have two distinguished invited speakers: Amber Boydstun (Associate Professor of Political
Science at the University of California, Davis) and Mark Steedman (Professor of Cognitive Science at the
University of Edinburgh). We are grateful that they accepted our invitations and look forward to their
presentations.

There are many individuals we wish to thank for their contributions to ACL 2016, some multiple times:

'These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations (9 short
and 21 long papers) or that were withdrawn prior to review (approximately 59 short and 52 long papers).
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e The 38 area chairs who recruited reviewers, led the discussion about each paper, carefully assessed
each submission, and authored meta-reviews to guide final decisions: Miguel Ballesteros, David Bam-
man, Steven Bethard, Jonathan Berant, Gemma Boleda, Ming-Wei Chang, Wanxiang Che, Chris Dyer,
Ed Grefenstette, Hannaneh Hajishirzi, Minlie Huang, Mans Hulden, Heng Ji, Jing Jiang, Zornitsa
Kozareva, Marco Kuhlmann, Yang Liu, Annie Louis, Wei Lu, Marie-Catherine de Marneffe, Gerard
de Melo, David Mimno, Meg Mitchell, Daichi Mochihashi, Graham Neubig, Naoaki Okazaki, Simone
Ponzetto, Matthew Purver, David Reitter, Nathan Schneider, Hinrich Schuetze, Thamar Solorio, Lucia
Specia, Partha Talukdar, Ivan Titov, Lu Wang, Nianwen Xue, and Grace Yang.

e Our full program committee of 884 hard-working individuals who reviewed the conference’s 1,288
submissions (including secondary reviewers).

e The ACL coordinating committee members, especially Yejin Choi, Graeme Hirst, Chris Manning,
and Shiqi Zhao, who answered many questions as they arose during the year.

e TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with us
on TACL presentations at ACL.

e Ani Nenkova and Owen Rambow, program co-chairs of NAACL 2016, and Michael Strube, program
co-chair of ACL 2015, who were generous with advice.

e Yusuke Miyao, Yannick Versley, and Hai Zhao, our well-organized publication chairs, and the respon-
sive team at Softconf led by Rich Gerber.

e Valia Kordoni and the local organization team, especially webmaster Kostadin Cholakov.

e Antal van den Bosch, our general chair, who kept us coordinated with the rest of the ACL 2016 team
and offered guidance whenever we needed it.

e Antal van den Bosch, Claire Cardie, Pascale Fung, Ray Mooney, and Joakim Nivre, who carefully
reviewed papers under consideration for outstanding and best paper recognition.

e Priscilla Rasmussen, who knows everything about how to make ACL a success.

We hope that you enjoy ACL 2016 in Berlin!
ACL 2016 program co-chairs

Katrin Erk, University of Texas
Noah A. Smith, University of Washington
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Abstract

The topological field model is commonly
used to describe the regularities in German
word order. In this work, we show that
topological fields can be predicted reliably
using sequence labeling and that the pre-
dicted field labels can inform a transition-
based dependency parser.

1 Introduction

The topological field model (Herling, 1821; Erd-
mann, 1886; Drach, 1937; Hohle, 1986) has tra-
ditionally been used to account for regularities in
word order across different clause types of Ger-
man. This model assumes that each clause type
contains a left bracket (LK) and a right bracket
(RK), which appear to the left and the right of the
middle field (MF). Additionally, in a verb-second
declarative clause, the LK is preceded by the ini-
tial field (VF) with the RK optionally followed by
the final field (NF).! Table 1 gives examples of
topological fields in verb-second declarative (MC)
and verb-final relative (RC) clauses.

Certain syntactic restrictions can be described
in terms of topological fields. For instance, only
a single constituent is typically allowed in the VF,
while multiple constituents are allowed in the MF
and the NF. Many ordering preferences can also
be stated using the model. For example, in a main
clause, placing the subject in the VF and the direct
object in the MF is preferred over the opposite or-
der.

In parsing, topological field analysis is often
seen as a task that is embedded in parsing itself.
For instance, Kiibler (2005), Maier (2006), and
Cheung and Penn (2009) train PCFG parsers on

!The abbreviations are derived from the German terms

linke Klammer, rechte Klammer, Mittelfeld, Vorfeld, and
Nachfeld.

1

treebanks that annotate topological fields as inte-
rior nodes. It is perhaps not surprising that this ap-
proach works effectively for phrase structure pars-
ing, because topological fields favor annotations
that do not rely on crossing or discontinuous de-
pendencies (Telljohann et al., 2006).

However, the possible role of topological fields
in statistical dependency parsing (Kiibler et al.,
2009) has not been explored much. We will show
that statistical dependency parsing of German can
benefit from knowledge of clause structure as pro-
vided by the topological field model.

2 Motivation and corpus analysis

Transition-based dependency parsers (Nivre,
2003; Kiibler et al., 2009) typically use two tran-
sitions (LEFT_ARC and RIGHT_ARC) to introduce
a dependency relation between the token that
is on top of the processing stack and the next
token on the buffer of unprocessed tokens. The
decision to make an attachment, the direction
of attachment, and the label of the attachment
is made by a classifier. Consequently, a good
classifier is tasked to learn syntactic constraints,
ordering preferences, and selectional preferences.

Since transition-based dependency parsers pro-
cess sentences in one deterministic linear-time
left-to-right sweep, the classifier typically has lit-
tle global information. One popular approach
for reducing the effect of early attachment er-
rors is to retain some competition between alter-
native parses using a globally optimized model
with beam search (Zhang and Clark, 2008). Beam
search presents a trade-off between speed (smaller
beam) and higher accuracy (larger beam). More
recently, Dyer et al. (2015) have proposed to
use Long short-term memory networks (LSTMs)
to maintain (unbounded) representations of the
buffer of unprocessed words, previous parsing ac-
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VF LK MF RK NF
MC: In Tansania ist das Rad mehr verbreitet  als in Uganda
In Tansania  is the bike more common than in Uganda
RC: der fiinfmal mehr nach Bremerhaven liefert als Daewoo
who five-times more to Bremerhaven  delivers than Daewoo

Table 1: Topological fields of a verb-second clause and a verb-final clause.

tions, and constructed tree fragments.

We believe that in the case of German, the topo-
logical field model can provide a linguistically-
motivated approach for providing the parser with
more global knowledge of the sentence structure.
More concretely, if we give the transition classi-
fier access to topological field annotations, it can
learn regularities with respect to the fields wherein
the head and dependent of a particular dependency
relations lie.

In the remainder of this section, we provide a
short (data-driven) exploration of such regulari-
ties. Since there is a myriad of possible triples?
consisting of relation, head field, and dependent
field, we will focus on dependency relations that
virtually never cross a field and relations that
nearly always cross a field.

Table 2 lists the five dependency relation that
cross fields the least often in the TiiBa-D/Z tree-
bank (Telljohann et al., 2006; Versley, 2005) of
German newspaper text. Using these statistics, a
classifier could learn hard constraints with regard
to these dependency relations — they should never
be used to attach heads and dependents that are in
different fields.

Dependency label Cross-field (%)
Particles 0.00
Determiner 0.03
Adjective or attr. pronoun 0.04
Prepositional complement 0.04
Genetive attribute 0.07

Table 2: The five dependency relations that most
rarely cross fields in the TiiBa-D/Z.

Table 3 lists the five dependency relations that
cross fields most frequently.? These relations (vir-
tually) always cross fields because they are verbal
attachments and verbs typically form the LK and
RK. This information is somewhat informative,

>335 in the TiiBa-D/Z treebank.
3Dependency relations that connect two clauses are ex-
cluded.

since a classifier should clearly avoid to attach to-
kens within the same field using one of these re-
lations. However, we can gain more interesting
insights by looking at the dependents’ fields.

Dependency label Cross-field (%)
Expletive es 100.00
Separated verb prefix 100.00
Subject 100.00
Prepositional object 99.80
Direct object 99.51

Table 3: The five dependency relations that most
frequently cross fields in the TiiBa-D/Z.

Table 4 enumerates the three (where applicable)
most frequent head and dependent field combina-
tions of the five relations that always cross fields.
As expected, the head is always in the LK or RK.
Moreover, the dependents are in VF or MF in the
far majority of cases. The actual distributions pro-
vides some insights with respect to these depen-
dency relations. We will discuss the direct object,
prepositional object, and separated verb prefix re-
lations in some more detail.

Direct objects In German, direct objects can
be put in the VF. However, we can see that di-
rect object fronting only happens very rarely in
the TiiBa-D/Z. This is in line with earlier obser-
vations in corpus-based studies (c.f. Weber and
Miiller (2004)). Since the probability of having a
subject in the VF is much higher, the parser should
attach the head of a noun phrase in the VF as a sub-
ject, unless there is overwhelming evidence to the
contrary, such as case markers, verb agreement, or
other cues (Uszkoreit, 1984; Miiller, 1999).

Prepositional objects The dependency annota-
tion scheme used by the TiiBa-D/Z makes a dis-
tinction between prepositional phrases that are a
required complement of a verb (prepositional ob-
Jjects) and other prepositional phrases. Since a sta-
tistical dependency parser does not typically have
access to a valency dictionary, it has difficulty de-



Dependency label Head Dep %
Expletive es RK MF  44.23
RK VF 3299
LK VF 1343
Separated verb prefix LK RK  99.95
RK RK  00.05
Subject LK VF  36.40
LK MF  35.10
RK MF  20.11
Prepositional object =~ RK MF 51.04
LK MF  39.81
LK VF  04.11
Direct object RK MF 54.84
LK MF 35.64
RK LK 03.38

Table 4: The three most frequent head-dependent
field combinations of the five relations that always
cross fields.

ciding whether a prepositional phrase is a preposi-
tional object or not. Topological field information
can complement verb-preposition co-occurrence
statistics in deciding between these two different
relations. The prepositional object mainly occurs
in MF, while a prepositional phrase headed by the
LK is almost as likely to be in the VF as in the MF
(42.12% and 55.70% respectively).

Separated verb prefixes Some verbs in German
have separable prefixes. A complicating factor in
parsing is that such prefixes are often words that
can also be used by themselves. For example, in
(1-a) fest is a separated prefix of bindet (present
tense third person of festbinden), while in (1-b)
fest is an optional adverbial modifier of gebunden
(the past participle of binden).

Sie bindet das Pferd fest .
She ties  the horse tight .

b. DasBuchistfest gebunden .
The book is tightly bound

1 a.

Similarly to prepositional objects, a statistical
parser is handicapped by not having an extensive
lexicon. Again, topological fields can complement
co-occurence statistics. In (1-a), fest is in the RK.
As we can see in Table 4, the separated verb pre-
fix is always in the RK. In contrast, an adverbial
modifier as in (1-b) is rarely in the RK (0.35% of
the adverbs cases in the TiiBa-D/Z).

3 Predicting fields

As mentioned in Section 1, topological field an-
notation has often been performed as a part of
phrase structure parsing. In order to test our hy-
pothesis that topological field annotation could in-
form dependency parsing, it would be more ap-
propriate to use a syntax-less approach. Several
shallow approaches have been tried in the past.
For instance, Veenstra et al., (2002) compare three
different chunkers (finite state, PCFG, and clas-
sification using memory-based learning). Becker
and Frank (2002) predict topological fields using
a PCFG specifically tailored towards topological
fields. Finally, Liepert (2003) proposes a chunker
that uses support vector machines.

In the present work, we will treat the topolog-
ical field annotation as a sequence labeling task.
This is more useful in the context of dependency
parsing because it allows us to treat the topological
field as any other property of a token.

Topological field projection In order to obtain
data for training, validation, and evaluation, we
use the TiiBa-D/Z treebank. Topological fields
are only annotated in the constituency version of
the TiiBa-D/Z, where the fields are represented as
special constituent nodes. To obtain token-level
field annotations for the dependency version of the
treebank, we project the topological fields of the
constituency trees on the tokens. The recursive
projection function for projection is provided in
Appendix B. The function is initially called with
the root of the tree and a special unknown field
marker, so that tokens that are not dominated by a
topological field node (typically punctuation) also
receive the topological field feature.

We should point out that our current projection
method results in a loss of information when a
sentence contains multiple clauses. For instance,
an embedded clause is in a topological field of
the main clause, but also has its own topological
structure. In our projection method, the topologi-
cal field features of tokens in the embedded clause
reflect the topological structure of the embedded
clause.

Model Our topological field labeler uses a recur-
rent neural network. The inputs consist of con-
catenated word and part-of-speech embeddings.
The embeddings are fed to a bidirectional LSTM
(Graves and Schmidhuber, 2005), on which we
stack a regular LSTM (Hochreiter and Schmidhu-



ber, 1997), and finally an output layer with the
softmax activation function. The use of a recur-
rent model is motivated by the necessity to have
long-distance memory. For example, (2-a) con-
sists of a main clause with the LK wird and RK
begriint and an embedded clause wie geplant with
its own clausal structure. When the labeler en-
counters jetzt, it needs to ‘remember’ that it was
in the MF field of the main clause.

2) a.

Die neue Strecke wird , wie geplant ,
The new stretch is ,as planned,
jetzt begriint

now being-greened .

Moreover, the use of a bidirectional LSTM is mo-
tivated by the need for backwards-flowing infor-
mation to make some labeling decisions. For in-
stance, die Siegerin is in the VF of the verb-second
clause (3-a), while it is in the MF of the verb-
final clause (3-b). The labeller can only make such
choices by knowing the position of the finite verb.

3) a.

die Siegerin wurde disqualifiziert
die winner was disqualified

b.  die Siegerin zu disqualifizieren
the winner to disqualify

4 Parsing with topological fields

To evaluate the effectiveness of adding topo-
logical fields to the input, we use the publicly
available neural network parser described by De
Kok (2015). This parser uses an architecture that
is similar to that of Chen and Manning (2014).
However, it learns morphological analysis as an
embedded task of parsing. Since most inflectional
information that can be relevant for parsing Ger-
man is available in the prefix or suffix, this parser
learns morphological representations over charac-
ter embeddings of prefixes and suffixes.

We use the same parser configuration as that of
De Kok (2015), with the addition of topological
field annotations. We encode the topological fields
as one-hot vectors in the input of the parser. This
information is included for the four tokens on top
of the stack and the next three tokens on the buffer.

5 Evaluation and results

To evaluate the proposed topological field model,
we use the same partitioning of TiiBa-D/Z and the
word and tag embeddings as De Kok (2015). For
training, validation, and evaluation of the parser,
we use these splits as-is. Since we want to test the

parser with non-gold topological field annotations
as well, we swapped the training and validation
data for training our topological field predictor.

The parser was trained using the same hyper-
parameters and embeddings as in De Kok (2015).
Our topological field predictor is trained using
Keras (Chollet, 2015).* The hyperparameters that
we use are summarized in Appendix A. The topo-
logical field predictor uses the same word and tag
embeddings as the parser.

In Table 5, we show the accuracy of the topo-
logical field labeler. The use of a bi-directional
LSTM is clearly justified, since it outperforms the
stacked unidirectional LSTM by a wide margin.

Parser Accuracy (%)
LSTM + LSTM 93.33
Bidirectional LSTM + LSTM  97.24

Table 5: Topological field labeling accuracies.
The addition of backward flowing information im-
proves accuracy considerably.

Table 6 shows the labeled attachment scores
(LAS) for parsing with topological fields. As
we can see, adding gold topological field annota-
tions provides a marked improvement over pars-
ing without topological fields. Although the parser
does not achieve quite the same performance with
the output of the LSTM-based sequence labeler,
it is still a relatively large improvement over the
parser of De Kok (2015). All differences are sig-
nificant at p < 0.0001.

Parser LAS UAS

De Kok (2015) 89.49 91.88
Neural net + TFs 90.00 92.36
Neural net + gold TFs  90.42 92.76

Table 6: Parse results with topological fields and
gold topological fields. Parsers that use topolog-
ical field information outperform parsers without
access to such information.

6 Result analysis

Our motivation for introducing topological fields
in dependency parsing is to provide the parser with

“The software is available from: https://github.
com/danieldk/toponn

Using paired approximate randomization tests (Noreen,
1989).



a more global view of sentence structure (Sec-
tion 2). If this is indeed the case, we expect the
parser to improve especially for longer-distance
relations. Figure 1 shows the improvement in
LAS as a result of adding gold-standard topolog-
ical fields. We see a strong relation between the
relation length and the improvement in accuracy.
The introduction of topological fields clearly ben-
efits the attachment of longer-distance dependents.
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Figure 1: The improvement in labeled attachment
score as a result of adding gold topological fields
to the parser by dependency length.

Since the introduction of topological fields has
very little impact on short-distance relations, the
differences in the attachment of relations that vir-
tually never cross fields (Table 2) turn out to be
negligable. However, for the relations that cross
fields frequently, we see a marked improvements
(Table 7) for every relation except the preposi-
tional object. In hindsight, this difference should
not be surprising — the relations that never cross
fields are usually very local, while those that al-
most always cross fields tend to have longer dis-
tances and/or are subject to relatively free order-
ing.

Dependency label LAS A
Expletive es 2.71
Separated verb prefix 1.64
Subject 1.22
Prepositional object  -0.29
Direct object 1.59

Table 7: The LAS A of the parser with access to
gold standard topological fields compared to the
De Kok (2015) parser for the relations of Table 4.

Dependency label LAS A
Coordinating conjunction (clausal) 11.48
Parenthesis 8.31
Dependent clause 3.49
Conjunct 3.38
Sentence root’ 2.92
Expletive es 2.71
Sentence 2.64
Comparative 1.87
Separated verb prefix 1.64
Direct object 1.59

Table 8: The ten dependency relations with the
highest LAS A of the parser with access to gold
topological fields compared to the (de Kok, 2015)
parser.

The ten dependency relations with the highest
overall improvement in LAS are shown in Table 8.
Many of these relations are special when it comes
to topological field structure and were not dis-
cussed in Section 2. The relations parenthesis, de-
pendent clause, and sentence link two clauses; the
sentence root marks the root of the dependency
tree; and the coordinating conjunction (clausal)
relation attaches a token that is always in its own
field.® This confirms that the addition of topologi-
cal fields also improves the analysis of the overall
clausal structure.

7 Conclusion and outlook

In this paper, we have argued and shown that
access to topological field information can im-
prove the accuracy of transition-based dependency
parsers. In future, we plan to see how com-
petitive the bidirectional LSTM-based sequence
labeling approach is compared to existing ap-
proaches. Moreover, we plan to evaluate the use
of topological fields in the architecture proposed
by Dyer et al., (2015) to see how many of these
regularities that approach captures.
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A Hyperparameters

The topological field labeler was trained using
Keras (Chollet, 2015). Here, we provide a short
overview the hyperparameters that we used:

e Solver: rmsprop, this solver is recommended
by the Keras documentation for recurrent
neural networks. The solver is used with its
default parameters.

e Learning rate: the learning rate was deter-
mined by the function 0.01(1 + 0.02%)72,
where ¢ is the epoch. The intuition was to
start with some epochs with a high learning
rate, dropping the learning rate quickly. The
results were not drastically different when us-
ing a constant learning rate of 0.001.

e Epochs: The models was trained for 200
epochs, then we picked the model of the
epoch with the highest performance on the
validation data (27 epochs for the unidirec-
tional LSTM, 124 epochs for the bidirec-
tional LSTM).

e LSTM layers: all LSTM layers were trained
with 50 output dimensions. Increasing the
number of output dimensions did not provide
an improvement.

e Regularization: 10% dropout (Srivastava et
al., 2014) was used after each LSTM layer
for regularization. A stronger dropout did not
provide better performance.

B Topological field projection algorithm

Algorithm 1 Topological field projection.

function PROJECT(node,field)
if IS_TERMINAL_NODE(node) then
node.field « field
else
if IS_.TOPO_NODE(node) then
field < node.field
end if
for child € node do
PROJECT(child,field)
end for
end if
end function
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Abstract

The enormous scale of unlabeled text
available today necessitates scalable
schemes for representation learning in
natural language processing. For instance,
in this paper we are interested in classi-
fying the intent of a user query. While
our labeled data is quite limited, we have
access to virtually an unlimited amount
of unlabeled queries, which could be
used to induce useful representations: for
instance by principal component analysis
(PCA). However, it is prohibitive to even
store the data in memory due to its sheer
size, let alone apply conventional batch
algorithms. In this work, we apply the
recently proposed matrix sketching algo-
rithm to entirely obviate the problem with
scalability (Liberty, 2013). This algorithm
approximates the data within a specified
memory bound while preserving the
covariance structure necessary for PCA.
Using matrix sketching, we significantly
improve the user intent classification
accuracy by leveraging large amounts of
unlabeled queries.

1 Introduction

The large amount of high quality unlabeled data
available today provides an opportunity to im-
prove performance in tasks with limited supervi-
sion through a semi-supervised framework: learn
useful representations from the unlabeled data and
use them to augment supervised models. Un-
fortunately, conventional exact methods are no
longer feasible on such data due to scalability is-

8

sues. Even algorithms that are considered rela-
tively scalable (e.g., the Lanczos algorithm (Cul-
lum and Willoughby, 2002) for computing eigen-
value decomposition of large sparse matrices) fall
apart in this scenario, since the data cannot be
stored in the memory of a single machine. Con-
sequently, approximate methods are needed.

In this paper, we are interested in improving
the performance for sentence classification task by
leveraging unlabeled data. For this task, supervi-
sion is precious but the amount of unlabeled sen-
tences is essentially unlimited. We aim to learn
sentence representations from as many unlabeled
queries as possible via principal component anal-
ysis (PCA): specifically, learn a projection matrix
for embedding a bag-of-words vector into a low-
dimensional dense feature vector. However, it is
not clear how we can compute an effective PCA
when we are unable to even store the data in the
memory.

Recently, Liberty (2013) proposed a scheme,
called matrix sketching, for approximating a ma-
trix while preserving its covariance structure. This
algorithm, given a memory budget, deterministi-
cally processes a stream of data points while never
exceeding the memory bound. It does so by occa-
sionally computing singular value decomposition
(SVD) on a small matrix. Importantly, the algo-
rithm has a theoretical guarantee on the accuracy
of the approximated matrix in terms of its covari-
ance structure, which is the key quantity in PCA
calculation.

We propose to combine the matrix sketching al-
gorithm with random hashing to completely re-
move limitations on data sizes. In experiments, we
significantly improve the intent classification ac-
curacy by learning sentence representations from
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huge amounts of unlabeled sentences, outperform-
ing a strong baseline based on word embeddings
trained on 840 billion tokens (Pennington et al.,
2014).

2 Deterministic Matrix Sketching

PCA is typically performed to reduce the dimen-
sion of each data point. Let X € R"*¢ be a
data matrix whose n rows correspond to n data
points in R%. For simplicity, assume that X is pre-
processed to have zero column means. The key
quantity in PCA is the empirical covariance ma-
trix X ' X € R?*? (up to harmless scaling). It is
well-known that the m length-normalized eigen-
vectors uy ... u, € R of XTX corresponding
to the largest eigenvalues are orthogonal directions
along which the variance of the data is maximized.
Then if II € R¥™ be a matrix whose i-th col-
umn is u;, the PCA representation of X is given by
XTI. PCA has been a workhorse in representation
learning, e.g., inducing features for face recogni-
tion (Turk et al., 1991).

Frequently, however, the number of samples n
is simply too large to work with. As n tends to
billions and trillions, storing the entire matrix X
in memory is practically impossible. Processing
large datasets often require larger memory than
the capacity of a typical single enterprise server.
Clusters may enable a aggregating many boxes of
memory on different machines, to build distributed
memory systems achieving large memory capac-
ity. However, building and maintaining these in-
dustry grade clusters is not trivial and thus not ac-
cessible to everyone. It is critical to have tech-
niques that can process large data within a lim-
ited memory budget available in most typical en-
terprise servers.

One solution is to approximate the matrix with
some Y € R where | < n. Many matrix ap-
proximation techniques have been proposed, such
as random projection (Papadimitriou et al., 1998;
Vempala, 2005), sampling (Drineas and Kannan,
2003; Rudelson and Vershynin, 2007; Kim and
Snyder, 2013; Kim et al., 2015b), and hashing
(Weinberger et al., 2009). Most of these tech-
niques involve randomness, which can be undesir-
able in certain situations (e.g., when experiments
need to be exactly reproducible). Moreover, many
are not designed directly for the objective that we
care about: namely, ensuring that the covariance
matrices X ' X and Y'Y remain “similar”.

Input: data stream 7 . ..z, € RY, sketch size |
1. Initialize zero-valued Y € 0'*<,

2. Fori=1...n,

(a) Insert x; to the first zero-valued row of Y.
(b) If Y has no zero-valued row,
i. Compute SVD of Y = ULV " where & =
diag(o1...07) withoy > -+ > oy,
ii. Compute a diagonal matrix ¥ with at least
[1/2] zeros by setting

S = \/max (E?’j — 0%1/2]7())
iii. SetY =3V,

Output:Y € R™*? s.t.HXTX — YTYH2 <2|1X|[% /1

Figure 1: Matrix sketching algorithm by Liberty
(2013). In the output, X € R"™*4 denotes the data
matrix with rows 1 ... z,.

A recent result by Liberty (2013) gives a de-
terministic matrix sketching algorithm that tightly
preserves the covariance structure needed for
PCA. Specifically, given a sketch size [, the algo-
rithm computes Y € R*? such that

HXTX - YTYH2 <2XIE/ ()

This result guarantees that the error decreases
in O(1/1); in contrast, other approximation tech-
niques have a significantly worse convergence
bound of O(1//1).

The algorithm is pleasantly simple and is given
in Figure 1 for completeness. It processes one data
point at a time to update the sketch Y in an on-
line fashion. Once the sketch is “full”, its SVD is
computed and the rows that fall below a threshold
given by the median singular value are eliminated.
This operation ensures that every time SVD is per-
formed at least a half of the rows are discarded.
Consequently, we perform no more than O(2n/1)
SVDs on a small matrix Y € R*¢, The analy-
sis of the bound (1) is an extension of the “median
trick” for count sketching and is also surprisingly
elementary; we refer to Liberty (2013) for details.

3 Matrix Sketching for Sentence
Representations

Our goal is to leverage enormous quantities of un-
labeled sentences to augment supervised training



for intent classification. We do so by learning a
PCA projection matrix II from the unlabeled data
and applying it on both training and test sentences.
The matrix sketching algorithm in Figure 1 en-
ables us to compute IT on arbitrarily large data.

There are many design considerations for using
the sketching algorithm for our task.

3.1 Original sentence representations

We use a bag-of-words vector to represent a
sentence. Specifically, each sentence is a d-
dimensional vector 2 € R where d is the size
of the vocabulary and z; is the count of an n-gram
7 in the sentence (we use up to n = 3 in exper-
iments); we denote this representation by SENT.
In experiments, we also use a modification of this
representation, denoted by SENT+, in which we
explicitly define features over the first two words
in a query and also use intent predictions made by
a supervised model.

3.2 Random hashing

When we process an enormous corpus, it can be
computationally expensive just to obtain the vo-
cabulary size d in the corpus. We propose using
random hashing to avoid this problem. Specif-
ically, we pre-define the hash size H we want,
and then on encountering any word w we map
w — {1...H} using a fixed hash function. This
allows us to compute a bag-of-words vector for
any sentence without knowing the vocabulary size.
See Weinberger et al. (2009) for a justification of
the hashing trick for kernel methods (applicable in
our setting since PCA has a kernel (dual) interpre-
tation).

3.3 Parallelization

The sketching algorithm works in a sequential
manner, processing each sentence at a time. While
it leaves a small memory footprint, it can take pro-
hibitively long time to process a large corpus. Lib-
erty (2013) shows it is trivial to parallelize the al-
gorithm: one can compute several sketches in par-
allel and then sketch the conjoined sketches. The
theory guarantees that such layered sketches does
not degrade the bound (1). We implement this par-
allelization to obtain an order of magnitude speed-

up.
3.4 Final sentence representation:

Once we learn a PCA projection matrix II, we use
it in both training and test times to obtain a dense
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feature vector of a bag-of-words sentence repre-
sentation. Specifically, if z is the original bag-of-
words sentence vector, the new representation is
given by

xll
|| 11]|

x
|

where & is the vector concatenation operation.
This representational scheme is shown to be effec-
tive in previous work (e.g., see Stratos and Collins
(2015)).

S

2

xl’lEW ==
l

3.5 Experiment

To test our proposed method, we conduct in-
tent classification experiments (Hakkani-Tiir et al.,
2013; Celikyilmaz et al., 2011; Ji et al., 2014;
El-Kahky et al., 2014; Chen et al., 2016) across
a suite of 22 domains shown in Table 1. An in-
tent is defined as the type of content the user is
seeking. This task is part of the spoken language
understanding problem (Li et al., 2009; Tur and
De Mori, 2011; Kim et al., 2015c¢; Mesnil et al.,
2015; Kim et al., 2015a; Xu and Sarikaya, 2014;
Kim et al., 2015b; Kim et al., 2015d).

The amount of training data we used ranges
from 12k to 120k (in number of queries) across
different domains, the test data was from 2k to
20k. The number of intents ranges from 5 to 39
per domains. To learn a PCA projection matrix
from the unlabeled data, we collected around 17
billion unlabeled queries from search logs, which
give the original data matrix whose columns are
bag-of-n-grams vector (up to trigrams) and has di-
mensions approximately 17 billions by 41 billions,
more specifically,

X € R17’032’086’719X 40,986,835,008

We use a much smaller sketching matrix Y €
R1,000,000x1,000,000 ¢4 approximate X. Note that
column size is hashing size. We parallelized the
sketching computation over 1,000 machines; we
will call the number of machines parallelized over
“batch”. In all our experiments, we train a linear
multi-class SVM (Crammer and Singer, 2002).

3.6 Results of Intent Classification Task

Table 1 shows the performance of intent classifica-
tion across domains. For the baseline, SVM with-
out embedding (w/o Embed) achieved 91.99% ac-
curacy, which is already very competitive. How-
ever, the models with word embedding trained on



w/o Embed | 6B-50d 840B-300d SENT SENT+
alarm 97.25 97.68 97.5 97.68 97.74
apps 89.16 91.07 92.52 94.24 94.3
calendar 91.34 92.43 92.32 92.53 9243
communication 99.1 99.13 99.08 99.08 99.12
finance 90.44 90.84 90.72 90.76  90.82
flights 94.19 92.99 93.99 94.59  94.59
games 90.16 91.79 92.09 93.08 92.92
hotel 93.23 94.21 93.97 94.7 94.78
livemovie 90.88 92.64 92.8 9328 9337
livetv 83.14 85.02 84.67 8541  85.86
movies 93.27 94.01 93.97 9475  95.16
music 87.87 90.37 90.9 91.75 91.33
mystuff 94.2 94.4 94.51 94.51 94.95
note 97.62 98.36 98.36 98.49  98.52
ondevice 97.51 97.77 97.6 9777 97.84
places 97.29 97.68 97.68 98.01 97.75
reminder 98.72 98.96 98.94 98.96  98.96
sports 76.96 78.53 78.38 78.7 79.44
timer 91.1 91.79 91.33 9233 9261
travel 81.58 82.57 82.43 83.64  82.81
tv 91.42 94.11 9491 95.19 9547
weather 97.31 97.33 97.4 97.4 97.47
Average 91.99 92.89 93.00 9349 93,56

Table 1: Performance comparison between different embeddings style.

6 billion tokens (6B-50d) and 840 billion tokens
(840B-300d) (Pennington et al., 2014) achieved
92.89% and 93.00%, respectively. 50d and 300d
denote size of embedding dimension. To use word
embeddings as a sentence representation, we sim-
ply use averaged word vectors over a sentence,
normalized and conjoined with the original rep-
resentation as in (2). Surprisingly, when we use
sentence representation (SENT) induced from the
sketching method with our data set, we can boost
the performance up to 93.49%, corresponding to
a 18.78% decrease in error relative to a SVM
without representation. Also, we see that the ex-
tended sentence representation (SENT+) can get
additional gains.

As in Table 2 , we also measured performance
of our method (SENT+) as a function of the per-
centage of unlabeled data we used from total un-
labeled sentences. The overall trend is clear: as
the number of sentences are added to the data for
inducing sentence representation, the test perfor-
mance improves because of both better coverage
and better quality of embedding. We believe that
if we consume more data, we can boost up the per-
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formance even more.

3.7 Results of Parallelization

Table 3 shows the sketching results for vari-
ous batch size. To evaluate parallelization, we
first randomly generate a matrix R!-000,000x100
and it is sketched to R!09%100  And then we
sketch run with different batch size. The results
show that as the number of batch increases, we
can speed up dramatically, keeping residual value
HXTX — YTY‘ ‘2. It indeed satisfies the bound

value, || X||% /1, which was 100014503.16.

4 Conclusion

We introduced how to use matrix sketching al-
gorithm of (Liberty, 2013) for scalable semi-
supervised sentence classification. This algorithm
approximates the data within a specified mem-
ory bound while preserving the covariance struc-
ture necessary for PCA. Using matrix sketching,
we significantly improved the classification accu-
racy by leveraging very large amounts of unla-
beled sentences.



y \ 0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
apps | 89.16 89.83 90.04 90.26 90.88 91.9 9241 9241 9295 93.72 943
music | 87.87 89.12 89.61 904 90.83 9126 91.31 91.33 91.38 91.33 91.33
tv [ 9142 9228 9283 93.61 93.96 94.67 9491 9512 9534 9544 9547

Table 2: Performance for selected domains as the number of unlabeled data increases.

Batch Size [ [[XTX -V TY]|, [ time
1 1019779.69 100.21
2 1019758.22 50.31
4 1019714.19 26.50
5 1019713.43 21.67
8 1019679.67 14.53
10 1019692.67 12.13
16 1019686.35 8.53
20 1019709.03 7.35
25 1019650.51 6.40
40 1019703.24 4.97
50 1019689.33 4.48

Table 3: Results for corresponding batch size.
Second column indicates the norm of gap between
original and sketching matrix. Time represents the
running time for sketching methods, measured in
seconds.
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Abstract

Low-dimensional vector representations are
widely used as stand-ins for the text of words,
sentences, and entire documents. These em-
beddings are used to identify similar words
or make predictions about documents. In this
work, we consider embeddings for social me-
dia users and demonstrate that these can be
used to identify users who behave similarly or
to predict attributes of users. In order to cap-
ture information from all aspects of a user’s
online life, we take a multiview approach,
applying a weighted variant of Generalized
Canonical Correlation Analysis (GCCA) to a
collection of over 100,000 Twitter users. We
demonstrate the utility of these multiview em-
beddings on three downstream tasks: user en-
gagement, friend selection, and demographic
attribute prediction.

1 Introduction

Dense, low-dimensional vector representations (em-
beddings) have a long history in NLP, and recent work
on neural models have provided new and popular al-
gorithms for training representations for word types
(Mikolov et al., 2013; Faruqui and Dyer, 2014), sen-
tences (Kiros et al., 2015), and entire documents (Le
and Mikolov, 2014). These embeddings often have nice
properties, such as capturing some aspects of syntax or
semantics and outperforming their sparse counterparts
at downstream tasks.

While there are many approaches to generating em-
beddings of fext, it is not clear how to learn embeddings
for social media users. There are several different types
of data (views) we can use to build user representations:
the text of messages they post, neighbors in their local
network, articles they link to, images they upload, etc.
We propose unsupervised learning of representations of
users with a variant of Generalized Canonical Correla-
tion Analysis (GCCA) (Carroll, 1968; Van De Velden
and Bijmolt, 2006; Arora and Livescu, 2014; Rastogi
etal., 2015), a multiview technique that learns a single,
low-dimensional vector for each user best capturing in-
formation from each of their views. We believe this
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is more appropriate for learning user embeddings than
concatenating views into a single vector, since views
may correspond to different modalities (image vs. text
data) or have very different distributional properties.
Treating all features as equal in this concatenated vec-
tor is not appropriate.

We offer two main contributions: (1) an application
of GCCA to learning vector representations of social
media users that best accounts for all aspects of a user’s
online life, and (2) an evaluation of these vector repre-
sentations for a set of Twitter users at three different
tasks: user engagement, friend, and demographic at-
tribute prediction.

2 Twitter User Data

We begin with a description of our dataset, which
is necessary for understanding the data available to
our multiview model. We uniformly sampled 200,000
users from a stream of publicly available tweets from
the 1% Twitter stream from April 2015. To include
typical, English speaking users we removed users with
verified accounts, more than 10,000 followers, or non-
English profiles'. For each user we collected their
1,000 most recent tweets, and then filtered out non-
English tweets. Users without English tweets in Jan-
uary or February 2015 were omitted, yielding a total
of 102,328 users. Although limiting tweets to only
these two months restricted the number of tweets we
were able to work with, it also ensured that our data
are drawn from a narrow time window, controlling for
differences in user activity over time. This allows us
to learn distinctions between users, and not temporal
distinctions of content. We will use this set of users to
learn representations for the remainder of this paper.
Next, we expand the information available about
these users by collecting information about their so-
cial networks. Specifically, for each user mentioned
in a tweet by one of the 102,328 users, we collect up
to the 200 most recent English tweets for these users
from January and February 2015. Similarly, we col-
lected the 5,000 most recently added friends and fol-
lowers of each of the 102,328 users. We then sampled
10 friends and 10 followers for each user and collected

'TIdentified with 1a ngid (Lui and Baldwin, 2012).
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up to the 200 most recent English tweets for these users
from January and February 2015. Limits on the num-
ber of users and tweets per user were imposed so that
we could operate within Twitter’s API limits. This data
supports several of our prediction tasks, as well as the
four sources for each user: their tweets, tweets of men-
tioned users, friends and followers.

3 User Views

Our user dataset provides several sources of informa-
tion on which we can build user views: text posted by
the user (ego) and people that are mentioned, friended
or followed by the user and their posted text.

For each text source we can aggregate the many
tweets into a single document, e.g. all tweets written
by accounts mentioned by a user. We represent this
document as a bag-of-words (BOW) in a vector space
model with a vocabulary of the 20,000 most frequent
word types after stopword removal. We will consider
both count and TF-IDF weighted vectors.

A common problem with these high dimensional
representations is that they suffer from the curse of
dimensionality. A natural solution is to apply a di-
mensionality reduction technique to find a compact
representation that captures as much information as
possible from the original input. Here, we consider
principal components analysis (PCA), a ubiquitous
linear dimensionality reduction technique, as well as
word2vec (Mikolov et al., 2013), a technique to learn
nonlinear word representations.

We consider the following views for each user.
BOW: We take the bag-of-words (both count and TF-
IDF weighted) representation of all tweets made by
users in that view (ego, mention, friend, or follower)
following the above pre-processing.

BOW-PCA: We run PCA and extract the top princi-
pal components for each of the above views. We also
consider all possible combinations of views obtained
by concatenating views before applying PCA, and con-
catenating PCA-projected views. By considering all
possible concatenation of views, we ensure that this
method has access to the same information as multi-
view methods. Both the raw BOW and BOW-PCA rep-
resentations have been explored in previous work for
demographic prediction (Volkova et al., 2014; Al Za-
mal et al., 2012) and recommendation systems (Abel et
al., 2011; Zangerle et al., 2013).

Word2Vec: BOW-PCA is limited to linear representa-
tions of BOW features. Modern neural network based
approaches to learning word embeddings, including
word2vec continuous bag of words and skipgram mod-
els, can learn nonlinear representations that also cap-
ture local context around each word (Mikolov et al.,
2013). We represent each view as the simple average
of the word embeddings for all tokens within that view
(e.g., all words written by the ego user). Word em-
beddings are learned on a sample of 87,755,398 tweets
and profiles uniformly sampled from the 1% Twitter
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stream in April 2015 along with all the tweets/profiles
collected for our set of users — a total of over a billion
tokens. We use the word2vec tool, select either skip-
gram or continuous bag-of-words embeddings on dev
data for each prediction task, and train for 50 epochs.
We use the default settings for all other parameters.
NetSim: An alternative to text based representations
is to use the social network of users as a representation.
We encode a user’s social network as a vector by treat-
ing the users as a vocabulary, where users with simi-
lar social networks have similar vector representations
(NetSim). An n-dimensional vector then encodes the
user’s social network as a bag-of-words over this user
vocabulary. In other words, a user is represented by
a summation of the one-hot encodings of each neigh-
boring user in their social network. In this representa-
tion, the number of friends two users have in common
is equal to the dot product between their social network
vectors. We define the social network may be as one’s
followers, friends, or the union of both. The motiva-
tion behind this representation is that users who have
similar networks may behave in similar ways. Such
network features are commonly used to construct user
representations as well as to make user recommenda-
tions (Lu et al., 2012; Kywe et al., 2012).
NetSim-PCA: The PCA-projected representations
for each NetSim vector. This may be important for
computing similarity, since users are now represented
as dense vectors capturing linear correlations in the
friends/followers a user has. NetSim-PCA is to NetSim
as BOW-PCA is to BOW- we apply PCA directly to the
user’s social network as opposed to the BOW represen-
tations of users in that network.

Each of these views can be treated independently as
a user representation. However, different downstream
tasks may favor different views. For example, the
friend network is useful at recommending new friends,
whereas the ego tweet view may be better at predict-
ing what content a user will post in the future. Pick-
ing a single view may ignore valuable information as
views may contain complementary information, so us-
ing multiple views improves on a single view. One ap-
proach is to concatenate multiple views together, but
this further increases the size of the user embeddings.
In the next section, we propose an alternate approach
for learning a single embedding from multiple views.

4 Learning Multiview User Embeddings

We use Generalized Canonical Correlation Analysis
(GCCA) (Carroll, 1968) to learn a single embedding
from multiple views. GCCA finds G,U; that minimize:

arggg}z |G- X, Uil st.G'G=1 (1)
Tt

where X; € R™"*% corresponds to the data matrix for
the ith view, U; € R%** maps from the latent space
to observed view i, and G € R™** contains all user
representations (Van De Velden and Bijmolt, 2006).



Since each view may be more or less helpful for a
downstream task, we do not want to treat each view
equally in learning a single embedding. Instead, we
weigh each view differently in the objective:

arg gn[}lZleG — X,Ui|% st. G'G = T,w; >0 (2)

where w; explicitly expresses the importance of the ith
view in determining the joint embedding. The columns
of G are the eigenvectors of ), w; X; (X[ X;) 71X,
and the solution for U; = (X/X;) ' X!G. In our ex-
periments, we use the approach of Rastogi et al. (2015)
to learn G and Uj, since it is more memory-efficient
than decomposing the sum of projection matrices.

GCCA embeddings were learned over combinations
of the views in §3. When available, we also consider
GCCA-net, where in addition to the four text views, we
also include the follower and friend network views used
by NetSim-PCA. For computational efficiency, each of
these views was first reduced in dimensionality by pro-
jecting its BOW TF-IDF-weighted representation to a
1000-dimensional vector through PCA.> We add an
identity matrix scaled by a small amount of regulariza-
tion, 1078, to the per-view covariance matrices before
inverting, for numerical stability, and use the formula-
tion of GCCA reported in Van De Velden and Bijmolt
(2006), which ignores rows with missing data (some
users had no data in the mention tweet view and some
users accounts were private). We tune the weighting
of each view ¢, w; € {0.0,0.25,1.0}, discriminatively
for each task, although the GCCA objective is unsuper-
vised once the w; are fixed.

We also consider a minor modification of GCCA,
where G is scaled by the square-root of the singular val-
ues of Y . w; X; X/, GCCA-sv. This is inspired by pre-
vious work showing that scaling each feature of multi-
view embeddings by the singular values of the data ma-
trix can improve performance at downstream tasks such
as image or caption retrieval (Mroueh et al., 2015).
Note that if we only consider a single view, X, with
weight w; = 1, then the solution to GCCA-sv is iden-
tical to the PCA solution for data matrix X;, without
mean-centering.

When we compare representations in the fol-
lowing tasks, we sweep over embedding width
in {10, 20, 50, 100, 200, 300, 400, 500, 1000} for all
methods. This applies to GCCA, BOW-PCA, NetSim-
PCA, and Word2Vec. We also consider concatena-
tions of vectors for every possible subset of views:
singletons, pairs, triples, and all views. We tried ap-
plying PCA directly to the concatenation of all 1000-
dimensional BOW-PCA views, but this did not perform
competitively in our experiments.

2 We excluded count vectors from the GCCA experiments
for computational efficiency since they performed similarly
to TF-IDF representations in initial experiments.
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5 Experimental Setup

We selected three user prediction tasks to demonstrate
the effectiveness of the multi-view embeddings: user
engagement prediction, friend recommendation and
demographic characteristics inference. Our focus is to
show the performance of multiview embeddings com-
pared to other representations, not on building the best
system for a given task.

User Engagement Prediction The goal of user en-
gagement prediction is to determine which topics a user
will likely tweet about, using hashtag as a proxy. This
task is similar to hashtag recommendation for a tweet
based on its contents (Kywe et al., 2012; She and Chen,
2014; Zangerle et al., 2013). Purohit et al. (2011) pre-
sented a supervised task to predict if a hashtag would
appear in a tweet using features from the user’s net-
work, previous tweets, and the tweet’s content.

We selected the 400 most frequently used hashtags

in messages authored by our users and which first ap-
peared in March 2015, randomly and evenly dividing
them into dev and test sets. We held out the first 10
users who tweeted each hashtag as exemplars of users
that would use the hashtag in the future. We ranked all
other users by the cosine distance of their embedding
to the average embedding of these 10 users. Since em-
beddings are learned on data pre-March 2015, the hash-
tags cannot impact the learned representations. Perfor-
mance is measured using precision and recall at k, as
well as mean reciprocal rank (MRR), where a user is
marked as correct if they used the hashtag. Note that
this task is different than that reported in Purohit et al.
(2011), since we are making recommendations at the
level of users, not tweets.
Friend Recommendation The goal of friend rec-
ommendation/link prediction is to recommend/predict
other accounts for a user to follow (Liben-Nowell and
Kleinberg, 2007).

We selected the 500 most popular accounts — which
we call celebrities — followed by our users, randomly,
and evenly divided them into dev and test sets. We
randomly select 10 users who follow each celebrity
and rank all other users by cosine distance to the av-
erage of these 10 representations. The tweets of se-
lected celebrities are removed during embedding train-
ing so as not to influence the learned representations.
We use the same evaluation as user engagement pre-
diction, where a user is marked as correct if they follow
the given celebrity.

For both user engagement prediction and friend rec-
ommendation we z-score normalize each feature, sub-
tracting off the mean and scaling each feature indepen-
dently to have unit variance, before computing cosine
similarity. We select the approach and whether to z-
score normalize based on the development set perfor-
mance.

Demographic Characteristics Inference Our final
task is to infer the demographic characteristics of a user
(Al Zamal et al., 2012; Chen et al., 2015).



Micro Recall

Model Dim P@1000 R@1000 MRR

BOW 20000 0.009/0.005 0.241/0.157 0.006/0.006
BOW-PCA 500 0.011/0.008 0.312/0.29 0.007/0.009
NetSim NA 0.006/0.006 0.159/0.201 0.004/0.004
NetSim-PCA 300 0.010/0.008 0.293/0.299 0.006/0.006
Word2Vec 100 0.009/0.007 0.254/0.217 0.005/0.004
GCCA 100 0.012/0.009 0.357/0.325 0.011/0.008
GCCA-sv 500 0.012/0.010 0.359/0.334 0.010/0.011
GCCA-net 200 0.013/0.009 0.360/0.346 0.011/0.011
NetSize NA 0.001/0.001 0.012/0.012 0.000/0.000
Random NA 0.000/0.000 0.002/0.008 0.000/0.000

Table 1: Macro performance at user engagement prediction
on dev/test. Ranking of model performance was consistent
across metrics. Precision is low since few users tweet a given
hashtag. Values bolded by best test performance per metric.
Baselines (bottom): NetSize: a ranking of users by the size of
their local network; Random randomly ranks users.

Macro Precision
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Figure 1: The best-performing approaches on user engage-
ment prediction as a function of k£ (number of recommenda-
tions). The ordering of methods is consistent across k.

We use the dataset from Volkova et al. (2014,
Volkova (2015) which annotates 383 users for age
(old/young), 383 for gender (male/female), and 396 po-
litical affiliation (republican/democrat), with balanced
classes. Predicting each characteristic is a binary su-
pervised prediction task. Each set is partitioned into 10
folds, with two folds held out for test, and the other
eight for tuning via cross-fold validation. The pro-
vided dataset contained tweets from each user, men-
tioned users, friends and follower networks. It did not
contain the actual social networks for these users, so we
did not evaluate NetSim, NetSim-PCA, or GCCA-net at
these prediction tasks.

Each feature was z-score normalized before being
passed to a linear-kernel SVM where we swept over
10—4,...,10* for the penalty on the error term, C.

6 Results

User Engagement Prediction Table 1 shows results
for user engagement prediction and Figure 1 the preci-
sion and recall curves as a function of number of rec-
ommendations. GCCA outperforms other methods for
precision and recall at 1000, and does close to the best
in terms of MRR. Including network views (GCCA-
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Figure 2: Macro recall@1000 on user engagement prediction
for different combinations of text views. Each bar shows the
best-performing model swept over dimensionality. E: ego,
M: mention, Fr: friend, Fol: followertweet views.

Model Dim P@1000 R@1000 MRR
BOW 20000 0.133/0.153 0.043/0.048 | 0.000/0.001
BOW-PCA 20 0.311/0.314 0.101/0.102 | 0.001/0.001
NetSim NA 0.406/0.420 0.131/0.132 | 0.002/0.002
NetSim-PCA | 500 0.445/0.439 0.149/0.147 | 0.002/0.002
Word2Vec 200 0.260/0.249 0.084/0.080 | 0.001/0.001
Geea 50 0.269/0.276 0.089/0.091 | 0.001/0.001
GCCA-sv 500 0.445/0.439 0.149/0.147 | 0.002/0.002
GCCA-net 20 0.376/0.364 0.123/0.120 | 0.001/0.001
NeiSize NA 0.033/0.035 0.009/0.010 | 0.000/0.000
Random NA 0.034/0.036 0.010/0.010 | 0.000/0.000

Table 2: Macro performance for friend recommendation.

Performance of NetSim-PCA and GCCA-sv are identical
since the view weighting for GCCA-sv only selected solely
the friend view. Thus, these methods learned identical user
embeddings.

Model age gender politics

BOW 0.771/0.740 | 0.723/0.662 | 0.93400.975
BOW-PCA 0.784/0.649 | 0.719/0.662 | 0.908/0.900
BOW-PCA + BOW | 0.767/0.688 | 0.660/0.714 | 0.937/0.9875
GCcA 0.725/0.740 | 0.742/0.714 | 0.899/0.8125
GCCA + BOW 0.764/0.727 | 0.657/0.701 | 0.940/0.9625
GCCA-sv 0.709/0.636 | 0.699/0.714 | 0.871/0.850
GCCA-sv + BOW | 0.761/0.688 | 0.647/0.675 | 0.937/0.9625
Word2Vec 0.790/0.753 | 0.777/0.766 | 0.927/0.938

Table 3: Average CV/test accuracy for inferring demo-

graphic characteristics.

net and GCCA-sv) improves the performance further.
The best performing GCCA setting placed weight 1
on the ego tweet view, mention view, and friend view,
while BOW-PCA concatenated these views, suggesting
that these were the three most important views but that
GCCA was able to learn a better representation. Figure
2 compares performance of different view subsets for
GCCA and BOW-PCA, showing that GCCA uses infor-
mation from multiple views more effectively for pre-
dicting user engagement.

Friend Recommendation Table 2 shows results for
friend prediction and Figure 3 similarly shows that per-
formance differences between approaches are consis-
tent across k£ (number of recommendations.) Adding
network views to GCCA, GCCA-net, improves per-
formance, although it cannot contend with NetSim or



Figure 3: Performance on friend recommendation varying k.

NetSim-PCA, although GCCA-sv is able to meet the
performance of NetSim-PCA. The best GCCA placed
non-zero weight on the friend tweets view, and GCCA-
net only places weight on the friend network view;
the other views were not informative. BOW-PCA and
Word2Vec only used the friend tweet view. This sug-
gests that the friend view is the most important for
this task, and multiview techniques cannot exploit ad-
ditional views to improve performance. GCCA-sv per-
forms identically to GCCA-net, since it only placed
weight on the friend network view, learning identical
embeddings to GCCA-net.

Demographic Characteristics Prediction Table 3
shows the average cross-fold validation and test ac-
curacy on the demographic prediction task. GCCA +
BOW and BOW-PCA + BOW are the concatenation
of BOW features with GCCA and BOW-PCA, respec-
tively. The wide variation in performance is due to
the small size of the datasets, thus it’s hard to draw
many conclusions other than that GCCA seems to per-
form well compared to other linear methods. Word2Vec
surpasses other representations in two out of three
datasets.

It is difficult to compare the performance of the
methods we evaluate here to that reported in previous
work, (Al Zamal et al., 2012). This is because they re-
port cross-fold validation accuracy (not test), they con-
sider a wider range of hand-engineered features, differ-
ent subsets of networks, radial basis function kernels
for SVM, and find that accuracy varies wildly across
different feature sets. They report cross-fold validation
accuracy ranging from 0.619 to 0.805 for predicting
age, 0.560 to 0.802 for gender, and 0.725 to 0.932 for
politics.

7 Conclusion

We have proposed several representations of Twitter
users, as well as a multiview approach that combines
these views into a single embedding. Our multiview
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embeddings achieve promising results on three differ-
ent prediction tasks, making use of both what a user
writes as well as the social network. We found that each
task relied on different information, which our method
successfully combined into a single representation.
We plan to consider other means for learning user
representations, including comparing nonlinear dimen-
sionality reduction techniques such as kernel PCA
(Scholkopf et al., 1997) and deep canonical correlation
analysis (Andrew et al., 2013; Wang et al., 2015). Re-
cent work on learning user representations with mul-
titask deep learning techniques (Li et al., 2015), sug-
gests that learning a nonlinear mapping from observed
views to the latent space can learn high quality user
representations. One issue with GCCA is scalabil-
ity: solving for G relies on an SVD of a large ma-
trix that must be loaded into memory. Online variants
of GCCA would allow this method to scale to larger
training sets and incrementally update representations.
The PCA-reduced views for all 102,328 Twitter users
can be found here: http://www.dredze.com/
datasets/multiview_embeddings/.
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Abstract

This paper deals with a double-implicit prob-
lem in opinion mining and sentiment analysis.
We aim at identifying aspects and polarities of
opinionated statements not consisting of opin-
ion words and aspect terms. As a case study,
opinion words and aspect terms are first ex-
tracted from Chinese hotel reviews, and then
grouped into positive (negative) clusters and
aspect term clusters. We observe that an im-
plicit opinion and its neighbor explicit opinion
tend to have the same aspect and polarity. Un-
der the observation, we construct an implicit
opinions corpus annotated with aspect class
labels and polarity automatically. Aspect and
polarity classifiers trained by using this cor-
pus is used to recognize aspect and polarity of
implicit opinions.

I ntroduction

only the situation at which customers feel, bubals
infers the reason why they have such feelitgs.
plicit opinions are positive in (S1) and negatiie i
(S2), and the implied aspects are location and
cleanness.

(S1) [t EIEZ&EE - (There are many restau-
rants nearby.)

(S2) B AR %1 - (There are a lot of
ants in the room.)

The implicit opinions may be subjective in some
casesFor example, (S1) may be placed in negative
rating row in a hotel review. Its implicit interpee
tion will become “There are many restaurants
nearby, and thus the air pollution is severe aed th
smell of the air is very bad.”

People may describe a situation first, and then
reveal their attitudes and judgments. (S3) is an ex
ample. The first clause (only ten meters to the
subway entrance) describes a situation, while the
second clause (the location is good) is an explicit
opinion. In Chinese review, an explicit opinion can

Opinions are classified into explicit and implicitalso be specified before a situation descripti6a,) (
ones depending on the subjectivity and objectivitis an example. In both cases, the polarity and the
(Liu, 2012; Zhang and Liu, 2014). It is more chalaspect of the situation are consistent with thdse o
lenging to detect implicit opinions than explicitthe explicit opinions.

ones due to the lack of explicit opinion words in (S3) Z[#f# H A 1K » H# 4T o (Only

the sentences. Aspects refer to facets of thettargen meters to the subway entrance, good location.)
entities in opinions. They are also categorized int (S4) yrmE R4 » ]4547 2 & B = (FEEENS -
explicit and implicit ones depending on the occury geation is good, within walking distance of three
rences of aspect terms. Recognizing implicit agyrTs around.)

pects in implicit opinions is much more challeng- s paper aims at extracting implicit opinions
ing because both opinion words and aspect tergsq jgentifying their implicit aspects and polarity
are absent in opinionated statements.

Implicit opinions often describe the situations 3\t/iews, then transfer polarity and aspect from ex-

which persons concern in their reviews. (S1) an&

We will extract opinions from Chinese hotel re-

icit expressions to the corresponding implicit

(S2) are two examples selected from positive anginions, and train aspect and polarity classifiers
negative rating rows respectively in hotel reviewSya ayaluate the performance of polarity and as-

They do not mention any explicit opinion word
and aspect terms. The situation of
rants nearby” infers the convenience for eatin

while the situation of “a lot of ants” infers thatel
iness of a room. The implicit opinion describes not

» Sect recognition on implicit opinions.
many restal- Aimost all previous approaches identify implicit
&spects in explicit opinions. They extract opinion

words from opinionated sentences, regard them as

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 20-25,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



implicit aspect clues, and find aspects throughined by the cosine similarity of the review vector
opinion word-aspect term mapping. The lack ofnd the vector for each aspect node in the review
opinion words in implicit opinions results in no in hierarchy. Zeng and Li (2013) regard identification
dicators in mapping. To the best of our knowledg®f implicit features as a classification problemda
this paper is the first one to resolve a doublesonsider reviews for each clustered opinion-pair as
implicit problem in opinion mining and sentimenttraining set. Wang et al. (2013) employ five collo-
analysis. cation methods including frequency, PMI, fre-
This paper is organized as follows. Section guencyPMI, t-test and chi-square test to measure
gives a survey on implicit aspect recognition ithe association between opinion words and aspect
opinion mining and sentiment analysis. Section t&rms.
constructs an implicit opinions corpus labelled Cruz et al. (2014) manually annotate implicit
with aspect classes and polarity automatically- Seaspects and implicit aspect indicators (lIAl) on the
tion 4 presents classifiers for implicit polaritpgch customer review datasets in Hu and Liu (2004),
implicit aspect recognition. Section 5 shows andnd employ Conditional Random Fields to recog-

discusses the experimental results. nize IAl. Poria et al. (2014) identify implicit asgt
clues (IACs) in a document. Both approaches es-
2 Redated Work tablish IAI (IAC) and aspect mapping.

Mukherjee and Liu (2012) propose two statisti-

Hu and Liu (2004) present the first feature-basedy| models to deal with aspect categorization prob-
opinion summarization system. They point out &fgm_They use hotel reviews from tripadvisor.com,
plicit and implicit product features, and extragt € ang point out categorizing aspects is a subjective
plicit features by using association miner and pruRasi Total 9 major aspects based on commonsense
ing strategies. The opinionated sentences aIORHowledge, including Dining, Staff, Maintenance,
with their polarity are listed under individual pFo  cpeck In, Cleanliness, Comfort, Amenities, Loca-
uct features. Popescu and Etzioni (2005) introduggn and Value for Money, are considered. Kim et
an opinion extraction system OPINE. OPINE eXy (2013) further analyze general aspects and spe-
tracts explicit product features based on PoinBwigific aspects, and discuss how aspect structure is
Mutual Information. This work does not disCUSie|pful. Zhao et al. (2015) present a fine-grained
the implicit feature generation. Liu et al. (2005):,orpus for sentiment analysis.
present an association mining approach to extractoyr work is different from the previous ones in
both explicit and implicit features in their opinio 4yo-fold: (1) opinion is implicit, so that no opim
observer, but the implicit features discussed 0CClfords can be used as clues; and (2) aspect is im-
explicitly in an overt form, e.g., [MB] indicates ayicit, so that no aspect terms can be found. The d
product feature <memory>. rect opinion word and aspect mapping is not feasi-

Su et al. (2008) define an implicit feature as thgye i implicit polarity and implicit aspect recdgn
product feature which does not occur explicitlyion we focus on the construction of an implicit
but can be inferred from the surrounding opiniogpinions corpus for double-implicit recognition.
word. They propose a mutual reinforcement aprhe aspect categorization is not the major concern.
proach to cluster product features and opinion
words simultaneously, and extract implicit featureg Constructing I mplicit Opinions Corpus
based on opinion words. In the subsequent work,
different methodologies are proposed to identifyhis section first defines the implicit opiniongl
the association between opinion words and aspéetts a Chinese hotel dataset, identifies opinimh a
terms (called also product features), thus implicaspect clusters from the dataset, and construets im
aspects are inferred from opinion word-aspect terglicit opinion corpus labelled with aspect clasd an
mapping (Bagheri et al., 2013). polarity.

Zhen et al. (2011) propose a two-phase co-
occurrence association rule mining approach. Yu 8tl  Definitions of Implicit Opinions

al. (2011) generate a review hierarchy based on g8sentence in a review can be partitioned into sev-
pects. Implicit aspect of a review can be detegral segments separated by punctuation marks. The
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following show four possible types of segmentpolarity and aspect by polarity and aspect classifi
based on the occurrences of opinion words and &ss.

pect terms, where + and - denote occurrence andAt first glance, we do not need to perform the
non-occurrence. Segments of types (T1) and (T2)assification task on T4 segments since we can di-
contain explicit opinion words, while segments ofectly use polarity and aspect of T1 segments. The
types (T3) and (T4) contain no opinion wordsscenario is just for test purpose because we do not
They appear together with and without aspetiave large-scale manually-labelled data. In the lat

terms. ter experiments, we will also consider the cases of
(T1) (+opinion word, +aspect term) T4 segments existing individually in rating rows.
e.g. B EE (location is good) That will reflect the real situations.

(T2) (+opinion word, -aspect term)

e.g./R{HE (very cheap) 3.2 Extraction of Implicit Opinions

(T3) (-opinion word, +aspect term) Opinion words and aspect terms are the indicators
e.q. (I E (location) to define the four types (T1)-(T4). As a case study
(T4) (-opinion word,-aspect term) we collect a Chinese hotel review dataset from

e.q., BI3H Ff kb 8 0ns SR 4348 (Just  booking.com. It consists of 144,158 positive re-
two minutes to Yau Ma Tei MRT Station) views and 113,844 negative reviews about 20,973

Segments of either type can not only appear ifjotels frc_>m 49 international cities. Here only Chi-
dividually, but also can be combined with otheP€Se reviews are kept. We use Stanford NLP tools
types of segments to form a sentence. Segmentd®fegment, POS tag, and parse all the reviews.
types (T1) and (T2) are opinionated. Segments 0f_At first, we construct an opinion dictionary from
type (T3) are opinionated implicitly when they apthis dataset. Words of POS tags VA, VV, AD, and
pear in positive/negative rating row. Segments oo are candidates of opinion words. We adopt Chi-
type (T4) can be opinionated or non-opinionated. fduare test and p_0|nt—W|se mutual mformathn to
is interpreted as an opinionated segment cleafijfé" out less confident words from the candidate
when it is placed in rating row individually. set, r_especnvely. We examine the union of th_e_re-

(S5) is a sentence consisting of 5 segments B@iNing words manually and construct an opinion
types T3, T2, T1, T4 and T3, respectively. THe gdictionary consisting of 374 positive and 408 nega-

segment, i.e., feeling a little like shanty towissa V€ Opinion words. o
double-implicit opinion. Its polarity and aspect 'Nen, we construct an aspect dictionary based

(negative and environment) can be inferred frofi OPinion words. A word meeting the following
the 3¢ segment, i.e., the surrounding environmerfPUr conditions is regarded as an aspect term can-
is really bad. didate: (1) its POS is NN, (2) it occurs at les3d 1

(S5) frs BREEAE/ NEETHE] - [12 2242 ] » times, (3) it is accompanied with an opinion word

s o i —. within the same segment, and (4) their dependency
Y ’ ! |:I[:|lj N R . . . -
[r: (BAHTSTHEEE T 4] > [re ARSI @AEL (o We examine 183 proposed candidates

R [ FAEIZANUE] - (s hotel in the alley}  anally and construct an aspect dictionary con-
[t2 security is no problem] [r1 but the surround- sisting of 153 aspect terms.
ing environment is really bad][r+ feeling a litle  In an extreme case, a review does not contain
like shanty towns} [rsno hotels around]) any opinion words and aspect terms. It may be a
In this paper, we deal with opinionated segmengingle segment or multiple segments of type T4.
of type (T4). On the one hand, we extract pairs dteviews are listed under positive and negative rat-
segments of types T1-T4 or T4-T1 from a Chinegeg rows, so we know their polarity, but not aspect
hotel review dataset. The segments of type T4 willable 1 shows the statistics of such kinds of re-
be annotated with opinion words and aspect terigws in the hotel dataset. Interestingly, 2.07% of
extracted from their paired segments of type TDpositive reviews are pure T4, and 7.29% of nega-
The segments of type T4 along with their annotdive reviews are pure T4. That demonstrates dou-
tions form a training corpus. On the other hand, tible-implicit is a practical issue and customergiten
test segments of types (T4) will be labelled witio express negative opinions implicitly. The pure
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single |multiple| total | construct a training corpus automatically. We ran-

# pure T4 (positive reviews) 2,266 717] 2,983| domly sampled 1% of pairs of segments of type

# pure T4 (negative reviews$p,847 | 2,451 8,298 T1-T4 or T4-T1 in a training corpus (see Section 4)

Table 1: Statistics of pure T4 reviews. to verify whether our assumption holds. In this set

] T T3 T4 up, we discard clauses that contain parsing errors

total 1902353 161863 257831 303357 and those are too short to represent both aspects

ratio 21.01%| 17.68%| 28.17%| 33.14% and opinions. The result is promising. On average,

70.46% of the pairs follow the observation. In par-
ticular, the pairs keep the property more oftea (i.
T4 reviews set consisting of single segments onf§4.51%) when the polarity of T1 is negative.
is called PT4S hereafter.

Table 2 shows the statistics of segments of typé@s Double-I mplicit Opinion Analysis
T1, T2, T3, and T4. Only 21.01% of segments con- . _
tain both opinion words and aspect terms, and/e€ assign polarity and aspect of a T4-type seg-
33.14% of Segments do not contain any opiniorﬁ]ent in T41 dataset based on the information from
words and aspect terms. We further examine tH§ paired Tl-type segment. Negation in the T1-
type combinations of two successive segmentd/Pe segment will reverse the polarity. To avoid
There are 103 possible punctuation marks betwefata sparseness, 153 aspect terms are partitioned
any two segments, including common ones likéito 10 aspect classes based on common sense
“, o ow . wn and 17, and some special onesknowledge, including food, hotel, price, room, in-
ternet, staff, services, facilities, neighborhoadd

like “~~~". To avoid misinterpretation of the spe- e T s
cial marks, we considers only those segment paggneral. The criterion in the selection of the cate

linked by commas. Moreover, to obtain an autd?CY Of aspects is not the major concer in this pa
matically labelled dataset, the ambiguous sequenRg- For example, facilities and services may be
of segments, X-T4-Y, where X and Y of types T1Merged into the same aspegt category. The 31,136
T2, or T3, are removed. Total 31,136 T4-T1/T1-T£i?be”e{_j T4-type segments in T4l dataset are di-
segment pairs remain. They are used to derive ¥{j€d into training and test sets consisting of
implicit opinions corpus for learning and testing?>:5°2 and 7,784 segments, respectively.
polarity classifier and aspect classifiers. Thisada _F19uré 1 shows the segment length distribution
setis called T41 hereafter. of T41-train, T41l-test, T41, and PT4S datasets.
In most of the cases we observed, segment bfi€ length is measured by number of Chinese
type T2 or T3 does not pass its aspect or opirdon Y/Ords in a segment. X-axis and Y-axis denote

nearby segments of type T4. (S6) is an example §9th of segments and ratio, respectively. Seg-
a triple of segments of type T1-T4-T3, which innents in PT4S dataset are shorter than those in
troduces ambiguity between aspect and opinion as41 dataset. Segments of 2 and 3 words occupy

signment. The aspect of segment of type T1, i £8.61%. Table 3 shows the polarity distribution in

the equipment, competes with that of segment OitHese datasets. Because T41 dataset is divided into

type T3, the toilet. In this casethe safety deposit T4l-t'rain _an(_j Té_ll-te;t datasets upiformly,_t'heir
box, which is the undetected aspect of the segmdfglarity distribution is the same, i.e., positive:
of type T4, andhe toilet are two sub-aspects thie

Table2: Statistics of segment types.

" 0.3
equipment. The latter two clauses are supplemer
tary description of the first clause. 0.25 .
0.2 — i T41-train

(S6) sxlitibLicEs - PrbGAE N 4F (L - FEAm_EK
A& (The equipment is old, the safety depos| 015 +——+ ~ +———————— =T4l-test
box is hard to use, and the toilet sometimes stuc ———— T4l
while refilling.) % PT4S

This work bases on the postulation — say, an i
plicit opinion and its neighbor explicit opinion 123456 7 8>9
tending to have the same aspect and polarity,

Figure 1: Length distribution in experimental datasets.
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T41 | T41l-train| T41-test PT4S 1

positive 79.64% 79.63%| 79.68%| 27.93%

=0=—=T41-test BOW 1bf

negative 20.36% 20.37%| 20.32%| 72.07% 0.9
Table 3: Polarity distribution in experimental datasets. 0.8 %

o BOW | W2V | BOW | W2V | W2V 0.7 —8—PT4S BOW rbf
(%) linear | linear | RBF | RBF | CNN K TéL.test BOW liear
T41-test (p) | 78.55 | 73.67 | 81.54| 79.76 8504 06 - ——PT48 BOW bnear
PT4S (p) | 77.30 | 77.64 | 72.01 | 72.22| 67.96 _\':\
MicroAvg | 7791 [75.69 | 76.67 | 75.91| 76.32 0.5 1 | -
T4l-test (a) | 43.25 | 4150 | 46.35] 46.13 55.90 N
Table4: Accuracy of implicit polarity and aspect recoggnit 1234567 829

negative=4:1. Comparatively, positive:negative= Figure2: Accuracies of segments of different lengths.
1:2.58 in PT4S dataset. The two test sets bias §

ward different polaritie_s. — aspect for segments of very short length. Figure 1

We employ T41-train dataset to train binary POgepicts one-word segments occupy 5%-10%. One
larity classifier and 10-way aspect classifiersd an,ord segment like: 5" (Mong Kok) is ambigu-
test on T41-test dataset. We also explore T41 d&]s It we neglect such segments, the micro aver-
taset to train polarity classifier, and test on BT4_ ™ ’

i L .age accuracy in implicit polarity recognition using
datas_et. T4l testing evaluat_e_s both implicit pofari VM with linear kernel (BOW) is increased to
and implicit aspect recognition. Note the groun

0 ) )
truth is generated automatically. PT4S-testin|c_1.9.'94 %, and the accuracy In implicit aspect recog

A X ition (10-way classification) becomes 46.01%.
evaluates implicit polarity only based on the hu-

man-annotated ground truth. 5 Conclusion and Future Work
We consider bag of words (BOW) and word

vectors generated by word2vec (W2V) as featured) this paper, we address the double-implicit issue
where word vectors are pre-trained by using tH8 OPinion mining and sentiment analysis, and pro-
part-of-tagged Chinese sentences extracted frd?fSe @ protocol to derive a labelled corpus for im-
the ClueWeb09 dataset (CMU, 2009; Yu et alPlicit polarity and implicit aspect analysis. SVM
2012). Moreover, we adopt SVM with linear kerWith linear kernel (BOW) is robust in implicit po-
nel and SVM with RBF kernel learning algorithmdarity recognition. Ten-way classification for im-
in Scikit-Learn library (Pedregosa et al., 2011y a Plicit aspect recognition still has space to imgrov
run cross-validation multiple times on the training This work bases on the aspect-and-polarity-
set to facilitate a grid search on hyperparametef@nsfer postulation to construct a training corpus
with F-measure as the metric to optimize. automatically. We randomly sample T4 segments
Besides, we also explore Convolutional Neurdlom T4-T1 or T1-T4 pairs and check them manu-
Networks (CNN) (Kim, 2014). Table 4 summariz-ally. We_fmd that 70.45% of the pairs follow the
es the accuracy of implicit polarity and implict-a observatlorj. Thg experimental setup is rea_so_nable
pect recognition, where (p) and (a) after datastqr evaluation with PT4S dataset pecause it is I_a-
denote polarity and aspect performance of that da€lled by users themselves. To derive a more relia-
taset, respectively. CNN achieves the best implidX€ training set, distinguishing if T4 is non-
polarity and aspect recognition in T41-test datasétPinionated needs to be investigated further.
However, its implicit polarity accuracy is de- Moreover, we neglect the cases T4-X (X-T4),
creased to 67.96%. It may be due to overfiting iWhere X is either T2 or T3, in the selection of
small amount of training data. Different dropoufraining set. Itis also challenging when eitheinep
rates (Srivastava et al., 2014) can be explore@n word or aspect term is absent from the cue
SVM with linear kernel (BOW) gets the best micra>¢gment. In this paper, we provide some case stud-
average accuracy (77.91%) in implicit polarity€S of these scenarios, but how to utilize theiglart
recognition. information in implicit polarity and implicit aspec
Figure 2 shows the accuracies of the implicit pd€cognition is a future work.
larity recognition on segments of different lengths

Pis challenging to predict the implicit polarignd
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Abstract

Finding domain invariant features is crit-
ical for successful domain adaptation and
transfer learning. However, in the case of
unsupervised adaptation, there is a signif-
icant risk of overfitting on source training
data. Recently, a regularization for domain
adaptation was proposed for deep models
by (Ganin and Lempitsky, 2015). We build
on their work by suggesting a more appro-
priate regularization for denoising autoen-
coders. Our model remains unsupervised
and can be computed in a closed form.
On standard text classification adaptation
tasks, our approach yields the state of the
art results, with an important reduction of
the learning cost.

1 Introduction

Domain Adaptation problem arises each time
when we need to leverage labeled data in one or
more related source domains, to learn a classifier
for unseen data in a target domain. It has been
studied for more than a decade, with applications
in statistical machine translation, opinion mining,
part of speech tagging, named entity recognition
and document ranking (Daumé and Marcu, 2006;
Pan and Yang, 2010; Zhou and Chang, 2014).
The idea of finding domain invariant features
underpins numerous works in domain adapta-
tion. A shared representation eases prediction
tasks, and theoretical analyses uphold such hy-
potheses (Ben-David et al., 2007). For instance,
(Daumé and Marcu, 2006; Daumé, 2009) have
shown that replicating features in three main sub-
spaces (source, common and target) yields im-
proved accuracy as the classifier can subsequently
pick the most relevant common features. With
the pivoting technique (Blitzer et al., 2006; Pan
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et al., 2010), the bag of words features are pro-
jected on a subspace that captures the relations
between some central pivot features and the re-
maining words. Similarly, there are several ex-
tensions of topic models and matrix factorization
techniques where the latent factors are shared by
source and target collections (Chen and Liu, 2014;
Chen et al., 2013).

More recently, deep learning has been pro-
posed as a generic solution to domain adaptation
and transfer learning problems by demonstrating
their ability to learn invariant features. On one
hand, unsupervised models such as denoising au-
toencoders (Glorot et al., 2011) or models built
on word embeddings (Bollegala et al., 2015) are
shown to be effective for domain adaptation. On
the other hand, supervised deep models (Long et
al., 2015) can be designed to select an appropri-
ate feature space for classification. Adaptation to
a new domain can also be performed by fine tun-
ing the neural network on the target task (Chopra
et al., 2013). While such solutions perform rel-
atively well, the refinement may require a signif-
icant amount of new labeled data. Recent work
by (Ganin and Lempitsky, 2015) has proposed a
better strategy; they proposed to regularize inter-
mediate layers with a domain prediction task, i.e.
deciding whether an object comes from the source
or target domain.

This paper proposes to combine the domain pre-
diction regularization idea of (Ganin and Lempit-
sky, 2015) with the denoising autoencoders. More
precisely, we build on stacked Marginalized De-
noising Autoencoders (SMDA) (Chen et al., 2012),
which can be learned efficiently with a closed form
solution. We show that such domain adaptation
regularization keeps the benefits of the SMDA and
yields results competitive to the state of the art re-
sults of (Ganin and Lempitsky, 2015).

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 26-31,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



2 Target Regularized MDA

Stacked Denoising Autoencoders (sDA) (Vincent
et al., 2008) are multi-layer neural networks
trained to reconstruct input data from partial ran-
dom corruption. The random corruption, called
blank-out noise or dropout, consists in randomly
setting to zero some input nodes with probability
p; it has been shown to act as a regularizer (Wa-
ger et al,, 2013). The sDA is composed of a
set of stacked one-layer linear denoising autoen-
coder components, which consider a set of IV in-
put documents (represented by d-dimensional fea-
tures x,,) to be corrupted M times by random fea-
ture dropout and then reconstructed with a linear
mapping W € R%*¢ by minimizing the squared
reconstruction loss:

N M
L(W) = Z Z [1%n = Rnm W[

n=1m=1

(1)

As explicit corruption comes at a high com-
putational cost, (Chen et al., 2012) propose to
marginalize the loss (1) by considering the limit-
ing case when M — oo and reducing de facto the
learning cost. The main advantage of this method
is a closed form solution for W, which depends
only on the uncorrupted inputs (x,,) and the drop-
out probability. Several Marginalized Denoising
Autoencoders (MDA) can be then stacked together
to create a deep architecture where the representa-
tions of the (I — 1) layer serves as inputs to the
It Jayer!.

In the case of domain adaptation, the idea is to
apply MDA (or sMDA) to the union of unlabeled
source X* and target X' examples. Then, a stan-
dard learning algorithm such as SVM or Logistic
Regression is trained on the labeled source data us-
ing the new feature representations (x;, W) which
captures better the correlation between the source
and target data.

In Figure 1, we illustrate the effect of the MDA
it shows the relation between the word log docu-
ment frequency (x-axes) and the expansion mass
defined as the total mass of words transformed
into word 7 by MDA and represented by > | i Wii.
We can see that the mapping W learned by MDA
is heavily influenced by frequent words. In fact,
MDA behaves similarly to document expansion
on text documents: it adds new words with a

'Between layers, in general, a non linear function such as
tanh or ReLU is applied.
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Figure 1: Relation between log document fre-
quency and expansion mass. One dot represents
one word.

very small frequency and sometimes words with a
small negative weight. As the figure shows, MDA
promotes common words (despite the use of tf-idf
weighting scheme) that are frequent both in source
and target domains and hence aims to be domain
invariant.

This is in line with the work of (Ganin et al.,
2015). To strengthen the invariance effect, they
suggested a deep neural architecture which em-
beds a domain prediction task in intermediate lay-
ers, in order to capture domain invariant features.
In this paper we go a step further and refine this
argument by claiming that we want to be domain
invariant but also to be as close as possible to the
target domain distribution. We want to match the
target feature distribution because it is where the
classification takes place.

We therefore propose a regularization for the
denoising autoencoders, in particular for MDA,
with the aim to make source data resemble the tar-
get data and hence to ease the adaptation.

We describe here the case of two domains, but
it can be easily generalized to multiple domains.
Let D be the vector of size N indicating for each
document its domain, e.g. taking values of *—1’
for source and *+1’ for target examples. Let ¢ be
a linear classifier represented as a d dimensional
vector trained to distinguish between source and
target, e.g. aridge classifier that minimizes the loss
R(e,a) = |[D - XeT |2 + al[c][2

We guide the mapping W in such a way that
the denoised data points xW go towards the target
side, i.e. xWec'! = 1 for both source and target



samples. Hence, we can extend each term of the
loss (1) as follows:

1%n — Zpm W2+ M1 — % We |2 ()

The first term here represents the reconstruction
loss of the original input, like in MDA. In the sec-
ond term, X,,,, Wc ' is the domain classifier pre-
diction for the denoised objects forced to be close
to 1, the target domain indicator, and A > 0.

Let X be the concatenation of M replicated ver-
sion of the original data X, and X be the matrix
representation of the M corrupted versions. Tak-
ing into account the domain prediction term, the
loss can be written as:

Lr(W) =[|X = XW|? + AR - XWc'|]?,
3)
where R is a vector of size IV, indicating a desired
regularization objective, and R. its M -replicated
version. Loss (3) represents a generic form to cap-
ture three different ideas:

e If R = 1, the model incites the reconstructed
features moving towards target specific fea-
tures.

e If R = —D, the model aims to promote do-
main invariant features as in (Ganin et al.,
2015).

e If R = [0;1], where O values are used for
source data, the model penalizes the source
specific features.

Learning the mapping W. (Chen et al., 2012)
observed that the random corruption from equa-
tion (1) could be marginalized out from the re-
construction loss, yielding a unique and optimal
solution. Furthermore, the mapping W can be ex-
pressed in closed form as W = PQ™!, with:

Qi — Sijqiqj, if i#j,
S Sz-jqi, if = j,
P Sijd; 4)

where? ¢ = [1 —p,...,1 —p] € R?, pis the
dropout probability, and S = XX is the covari-
ance matrix of the uncorrupted data X.
The domain regularization term in (3) is
quadratic in W, the random corruption can still be
In contrast to (Chen et al., 2012), we do not add a bias

feature so that the domain and MDA have the same dimen-
sionality. Experiments shown no impact on the performance.
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marginalized out and the expectations obtained in
closed form. Indeed, the mapping W which mini-
mizes the expectation of 77 Lz (W) is the solution
of the following linear system?:

P+ X1 -p)X " Rc")(I+Aec")™! = QW.
)
In (5), parameter A controls the effect of the
proposed target regularization in the MDA and
the regularization on c is controlled by parame-
ter a. This approach preserves the good properties
of MDA, i.e. the model is unsupervised and can
be computed in closed form. In addition, we can
easily stack several layers together and add non-
linearities between layers.

3 Experiments

We conduct unsupervised domain adaptation ex-
periments on two standard collections: the Ama-
zon reviews (Blitzer et al., 2011) and the 20News-
group (Pan and Yang, 2010) datasets.

From the Amazon dataset we consider the four
most used domains: dvd (D), books (B), electron-
ics (E) and kitchen (K), and adopt the settings of
(Ganin et al., 2015) with the 5000 most frequent
common features selected for each adaptation task
and a tf-idf weighting. We then use the Logistic
Regression (LR) to classify the reviews.

Our previous experiments with MDA revealed
that the MDA noise probability p needs to be set
to high values (e.g. 0.9). A possible explanation is
that document representations are already sparse
and adding low noise has no effect on the features
already equal to zero. Figure 2 shows the average
accuracy for the twelve Amazon tasks, when we
vary the noise probability p.

In addition, we observed that a single layer
with a tanh activation function is sufficient to
achieve top performance; stacking several layers
and/or concatenating the outputs with the original
features yields no improvement but increases the
computational time.

The dropout probability p is fixed to 0.9 in all
experiments, for both the MDA baseline and our
model; we test the performance with a single layer
and a tanh activation function. Stacking several
layers is left for future experiments. Parameters
« and )\ are tuned on a grid of values* by cross
validation on the source data. In other words, we

3The derivation is not included due to space limitation.
*a € 1,1, 50,100, 150,200, 300], A € [.01,.1,1,10].
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Figure 2: Impact of the noise parameter p on the
average accuracy for the 12 Amazon adaptation
tasks. Both MDA and its extension with the reg-
ularization (MDA+TR) perform better with a high
dropout-out noise. Here MDA+TR is run with
fixed parameters oo = 100 and A = 1.

select the LR parameters and the parameters o, A
by cross validating the classification results using
only the “reconstructed” source data; for estimat-
ing W we used the source with an unlabeled tar-
get set (excluded at test time). This corresponds
to the setting used in (Ganin et al., 2015), with the
difference that they use SVM and reverse cross-
validation®.

Table 3 shows the results for twelve adapta-
tion tasks on the Amazon review dataset for the
four following methods. Columns 1 and 2 show
the LR classification results on the target set for
the single layer MDA and the proposed target
regularized MDA (MDA+TR). Column 3 reports
the SVM result on the target from (Ganin et al.,
2015). They used a 5 layers SsMDA where the
5 outputs are concatenated with input to generate
30,000 features, on which the SVM is then trained
and tested (G-sMDA). Finally, column 4 shows
the current state of the art results obtained with
Domain-Adversarial Training of Neural Networks
(DA_NN) instead of SVM (Ganin et al., 2015).

Despite a single layer and LR trained on the
source only, the MDA baseline (80.15% on aver-
age) is very close to the G-sMDA results obtained
with 5 layer sMDA and 6 times larger feature set
(80.18%). Furthermore, adding the target regular-
ization allows to significantly outperform in many

31t consists in using self training on the target validation
set and calibrating parameters on a validation set from the
source labeled data.
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S T | MDA | MDA+TR G-sMDA | DA_NN
D B | 8L 814 82.6 825
D K 84.1 85.3 84.2 84.9
D E| 760 81.1 73.9 80.9
B D 82.7 81.7 83.0 82.9
B K| 798 81.8 82.1 84.3
B E 75.9 79.3 76.6 80.4
K D| 785 79.0 78.8 78.9
K B 77.0 77.0 76.9 71.8
K E 87.2 874 86.1 85.6
E D 78.5 78.3 77.0 78.1
E B| 7133 75.1 76.2 77.4
E K 87.7 88.2 84.7 88.1
Avg 80.15 81.27 80.18 81.32
Table 1: Accuracies of MDA, MDA+TR, G-

sMDA and DA_NN on the Amazon review dataset.
Underline indicates improvement over the base-
line MDA, bold indicates the highest value.

cases the baseline and the state of the art DA_NN.
We note that our method has a much lower cost,
as it uses the closed form solution for the recon-
struction and a simple LR on the reconstructed
source data, instead of domain-adversarial train-
ing of deep neural networks.

We also look at the difference between the pre-
viously introduced expansion mass for the MDA
and MDA+TR. In the adaptation task from dvd (D)
to electronics (E), the words for which the mass
changed the most are the following®: worked,
to_use, speakers, i_have, work, mouse, bought, ca-
ble, works, quality, unit, ipod, price, _number.,
sound, card, phone, use, product, my. These words
are mostly target specific and the results confirm
that they get promoted by the new model.

Our model favors features which are more likely
to appear in target examples, while DA_NN seeks
domain invariant features. Despite this difference,
the two approaches achieve similar results. It is
surprising, and we argue that eventually both ap-
proaches penalize source specific features. To test
this hypothesis, we use MDA with R = [0;1]
(case 3) that penalizes source specific features and
we obtain again similar performances.

Finally, we test our approach on the 20News-
group adaptation tasks described in (Pan and
Yang, 2010). We first filter out rare words and
keep at most 10,000 features. Then, we apply both
MDA and MDA+TR as above. Table 3 shows re-
sults for ten adaptation tasks. As we can see, in all
cases the target regularization (MDA+TR) helps
improve the classification accuracy.

®1n ascending order of the differences.



Task MDA | MDA+TR
comp vs sci | 73.69 73.38
sci vs comp | 69.39 69.92
rec vs talk 72.54 85.10
talk vs rec 72.30 76.22
rec vs sci 77.25 82.70
SCi Vs rec 79.95 80.00
sci vs talk 78.94 79.26
talk vs sci 77.17 7791
comp vs rec | 89.84 89.66
rec vs comp | 89.92 90.29
Avg 78.1 80.40

Table 2: Accuracies of MDA and MDA+TR on
20Newsgroup adaptation tasks.

4 Conclusion

This paper proposes a domain adaptation regu-
larization for denoising autoencoders, in particu-
lar for marginalized ones. One limitation of our
model is the linearity assumption for the domain
classifier, but for textual data, linear classifiers are
the state of the art technique. As new words and
expressions become more frequent in a new do-
main, the idea of using the dropout regularization
that forces the reconstruction of initial objects to
resemble target domain objects is rewarding. The
main advantage of the new model is in the closed
form solution. It is also unsupervised, as it does
not require labeled target examples and yields per-
formance results comparable with the current state
of the art.
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Abstract

Recently, neural network approaches for
parsing have largely automated the combi-
nation of individual features, but still rely
on (often a larger number of) atomic fea-
tures created from human linguistic intu-
ition, and potentially omitting important
global context. To further reduce fea-
ture engineering to the bare minimum, we
use bi-directional LSTM sentence repre-
sentations to model a parser state with
only three sentence positions, which au-
tomatically identifies important aspects of
the entire sentence. This model achieves
state-of-the-art results among greedy de-
pendency parsers for English. We also in-
troduce a novel transition system for con-
stituency parsing which does not require
binarization, and together with the above
architecture, achieves state-of-the-art re-
sults among greedy parsers for both En-
glish and Chinese.

1 Introduction

Recently, neural network-based parsers have be-
come popular, with the promise of reducing the
burden of manual feature engineering. For ex-
ample, Chen and Manning (2014) and subsequent
work replace the huge amount of manual fea-
ture combinations in non-neural network efforts
(Nivre et al., 2006; Zhang and Nivre, 2011) by
vector embeddings of the atomic features. How-
ever, this approach has two related limitations.
First, it still depends on a large number of care-
fully designed atomic features. For example, Chen
and Manning (2014) and subsequent work such as
Weiss et al. (2015) use 48 atomic features from
Zhang and Nivre (2011), including select third-
order dependencies. More importantly, this ap-
proach inevitably leaves out some nonlocal in-
formation which could be useful. In particular,

32

though such a model can exploit similarities be-
tween words and other embedded categories, and
learn interactions among those atomic features, it
cannot exploit any other details of the text.

We aim to reduce the need for manual induction
of atomic features to the bare minimum, by us-
ing bi-directional recurrent neural networks to au-
tomatically learn context-sensitive representations
for each word in the sentence. This approach al-
lows the model to learn arbitrary patterns from the
entire sentence, effectively extending the general-
ization power of embedding individual words to
longer sequences. Since such a feature representa-
tion is less dependent on earlier parser decisions,
it is also more resilient to local mistakes.

With just three positional features we can build
a greedy shift-reduce dependency parser that is on
par with the most accurate parser in the published
literature for English Treebank. This effort is sim-
ilar in motivation to the stack-LSTM of Dyer et al.
(2015), but uses a much simpler architecture.

We also extend this model to predict phrase-
structure trees with a novel shift-promote-adjoin
system tailored to greedy constituency parsing,
and with just two more positional features (defin-
ing tree span) and nonterminal label embeddings
we achieve the most accurate greedy constituency
parser for both English and Chinese.

2 LSTM Position Features

Siib1 S23b2 f33b3 Sasba f53b5

h h h h
w1ty wasts w3sts waqsty ws;its

Figure 1: The sentence is modeled with an LSTM
in each direction whose input vectors at each time
step are word and part-of-speech tag embeddings.

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 32-37,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



The central idea behind this approach is exploiting
the power of recurrent neural networks to let the
model decide what apsects of sentence context are
important to making parsing decisions, rather than
relying on fallible linguistic information (which
moreover requires leaving out information which
could be useful). In particular, we model an in-
put sentence using Long Short-Term Memory net-
works (LSTM), which have made a recent resur-
gence after being initially formulated by Hochre-
iter and Schmidhuber (1997).

The input at each time step is simply a vector
representing the word, in this case an embedding
for the word form and one for the part-of-speech
tag. These embeddings are learned from random
initialization together with other network param-
eters in this work. In our initial experiments, we
used one LSTM layer in each direction (forward
and backward), and then concatenate the output
at each time step to represent that sentence posi-
tion: that word in the entire context of the sen-
tence. This network is illustrated in Figure 1.

ha hs

ARTaTAY

1t ”1 fz bl 133 I’s fis b4 fl h

wlgtl ’u'2';t2 ’w3';7~‘3 w4:z‘,4 w5£t5
Figure 2: In the 2-Layer architecture, the output
of each LSTM layer is concatenated to create the

positional feature vector.

It is also common to stack multiple such LSTM
layers, where the output of the forward and back-
ward networks at one layer are concatenated to
form the input to the next. We found that parsing
performance could be improved by using two bi-
directional LSTM layers in this manner, and con-
catenating the output of both layers as the posi-
tional feature representation, which becomes the
input to the fully-connected layer. This architec-
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input:  wgp...wp_1
axiom (e, 0): ()
shift <,S’ ,j> A j<n
(Slj, 7+1): A
. (Sls1ls0, J)
(S|s0, 7) : AU {s1"s0}
goal  (sg, n): A

Figure 3: The arc-standard dependency parsing
system (Nivre, 2008) (re~ omitted). Stack S is
a list of heads, j is the start index of the queue,
and sg and s; are the top two head indices on .S.

dependency | constituency
positional | $1,S80,q0 | S1, S0, 4o, S1.left, sg.left
labels - s0.{left, right, root, head}
s1.{left, right, root, head}

Table 1: Feature templates. Note that, remarkably,
even though we do labeled dependency parsing,
we do not include arc label as features.

ture is shown in Figure 2.

Intuitively, this represents the sentence position
by the word in the context of the sentence up to
that point and the sentence after that point in the
first layer, as well as modeling the “higher-order”
interactions between parts of the sentence in the
second layer. In Section 5 we report results us-
ing only one LSTM layer (“Bi-LSTM”) as well as
with two layers where output from each layer is
used as part of the positional feature (“2-Layer Bi-
LSTM”).

3 Shift-Reduce Dependency Parsing

We use the arc-standard system for dependency
parsing (see Figure 4). By exploiting the LSTM
architecture to encode context, we found that we
were able to achieve competitive results using only
three sentence-position features to model parser
state: the head word of each of the top two trees
on the stack (sg and s1), and the next word on the
queue (qp); see Table 1.

The usefulness of the head words on the stack
is clear enough, since those are the two words that
are linked by a dependency when taking a reduce
action. The next incoming word on the queue is
also important because the top tree on the stack
should not be reduced if it still has children which
have not yet been shifted. That feature thus allows



input:  wg...wWp—1
axiom (e, 0): ()
g
shift i j<n
(S14,7+1)
(St J5)
pro(X) oo
(S1X(), )
CITIP A
goal (s0, n)

Figure 4: Our shift-promote-adjoin system for
constituency parsing (adj~, omitted).

the model to learn to delay a right-reduce until the
top tree on the stack is fully formed, shifting in-
stead.

3.1 Hierarchical Classification

The structure of our network model after com-
puting positional features is fairly straightforward
and similar to previous neural-network parsing ap-
proaches such as Chen and Manning (2014) and
Weiss et al. (2015). It consists of a multilayer
perceptron using a single ReLU hidden layer fol-
lowed by a linear classifier over the action space,
with the training objective being negative log soft-
max.

We found that performance could be improved,
however, by factoring out the decision over struc-
tural actions (i.e., shift, left-reduce, or right-
reduce) and the decision of which arc label to as-
sign upon a reduce. We therefore use separate
classifiers for those decisions, each with its own
fully-connected hidden and output layers but shar-
ing the underlying recurrent architecture. This
structure was used for the results reported in Sec-
tion 5, and it is referred to as “Hierarchical Ac-
tions” when compared against a single action clas-
sifier in Table 3.

4 Shift-Promote-Adjoin
Constituency Parsing

To further demonstrate the advantage of our idea
of minimal features with bidirectional sentence
representations, we extend our work from depen-
dency parsing to constituency parsing. However,
the latter is significantly more challenging than the
former under the shift-reduce paradigm because:

34

o S Tshift (I) %pro (NP)
N 2pro(NP)  Tadj~
NP2 L VP 3shift (like)  ®pro (S)
[EEEPAN 4pro (VP)  Yadj
1T 3like NP Sshift (sports)
PRP VBP |6

Ssports

NNS

Figure 5: Shift-Promote-Adjoin parsing example.
Upward and downward arrows indicate promote
and (sister-)adjunction actions, respectively.

e we also need to predict the nonterminal labels

o the tree is not binarized (with many unary
rules and more than binary branching rules)

While most previous work binarizes the con-
stituency tree in a preprocessing step (Zhu et
al., 2013; Wang and Xue, 2014; Mi and Huang,
2015), we propose a novel “Shift-Promote-
Adjoin” paradigm which does not require any bi-
nariziation or transformation of constituency trees
(see Figure 5). Note in particular that, in our
case only the Promote action produces a new tree
node (with a non-terminal label), while the Ad-
join action is the linguistically-motivated “sister-
adjunction” operation, i.e., attachment (Chiang,
2000; Henderson, 2003). By comparison, in pre-
vious work, both Unary-X and Reduce-L/R-X ac-
tions produce new labeled nodes (some of which
are auxiliary nodes due to binarization). Thus our
paradigm has two advantages:

e it dramatically reduces the number of possi-
ble actions, from 3X + 1 or more in previ-
ous work to 3 + X, where X is the number
of nonterminal labels, which we argue would
simplify learning;

it does not require binarization (Zhu et al.,
2013; Wang and Xue, 2014) or compression
of unary chains (Mi and Huang, 2015)

There is, however, a more closely-related “shift-
project-attach” paradigm by Henderson (2003).
For the example in Figure 5 he would use the fol-
lowing actions:

shift(I), project(NP), project(S), shift(like),
project(VP), shift(sports), project(NP), attach,
attach.



The differences are twofold: first, our Promote ac-
tion is head-driven, which means we only promote
the head child (e.g., VP to S) whereas his Project
action promotes the first child (e.g., NP to S); and
secondly, as a result, his Attach action is always
right-attach whereas our Adjoin action could be ei-
ther left or right. The advantage of our method is
its close resemblance to shift-reduce dependency
parsing, which means that our constituency parser
is jointly performing both tasks and can produce
both kinds of trees. This also means that we use
head rules to determine the correct order of gold
actions.

We found that in this setting, we did need
slightly more input features. As mentioned, node
labels are necessary to distinguish whether a tree
has been sufficiently promoted, and are helpful in
any case. We used 8 labels: the current and im-
mediate predecessor label of each of the top two
stacks on the tree, as well as the label of the left-
and rightmost adjoined child for each tree. We also
found it helped to add positional features for the
leftmost word in the span for each of those trees,
bringing the total number of positional features to
five. See Table 1 for details.

5 Experimental Results

We report both dependency and constituency pars-
ing results on both English and Chinese.

All experiments were conducted with minimal
hyperparameter tuning. The settings used for
the reported results are summarized in Table 6.
Networks parameters were updated using gradi-
ent backpropagation, including backpropagation
through time for the recurrent components, using
ADADELTA for learning rate scheduling (Zeiler,
2012). We also applied dropout (Hinton et al.,
2012) (with p = 0.5) to the output of each LSTM
layer (separately for each connection in the case of
the two-layer network).

We tested both types of parser on the Penn Tree-
bank (PTB) and Penn Chinese Treebank (CTB-5),
with the standard splits for each of training, de-
velopment, and test sets. Automatically predicted
part of speech tags with 10-way jackknifing were
used as inputs for all tasks except for Chinese de-
pendency parsing, where we used gold tags, fol-
lowing the traditions in literature.
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5.1 Dependency Parsing: English & Chinese

Table 2 shows results for English Penn Tree-
bank using Stanford dependencies. Despite the
minimally designed feature representation, rela-
tively few training iterations, and lack of pre-
computed embeddings, the parser performed on
par with state-of-the-art incremental dependency
parsers, and slightly outperformed the state-of-
the-art greedy parser.

The ablation experiments shown in the Table 3
indicate that both forward and backward contexts
for each word are very important to obtain strong
results. Using only word forms and no part-of-
speech input similarly degraded performance.

Parser Dev Test
UAS LAS | UAS LAS
C&M2014 92.0 89.7 | 91.8 89.6
Dyer et al. 2015 93.2 909 |93.1 909
Weiss et al. 2015 - - 93.19 91.18
+ Percept./Beam - - 93.99 92.05
Bi-LSTM 93.31 91.01| 93.21 91.16
2-Layer Bi-LSTM | 93.67 91.48| 93.42 91.36

Table 2: Development and test set results for shift-
reduce dependency parser on Penn Treebank using
only (s1, Sg, qo) positional features.

Parser UAS LAS

Bi-LSTM Hierarchical’ | 93.31 91.01
1 - Hierarchical Actions | 92.94 90.96
1 - Backward-LSTM 91.12 88.72
1 - Forward-LSTM 91.85 88.39
T - tag embeddings 92.46 89.81

Table 3: Ablation studies on PTB dev set (wsj
22). Forward and backward context, and part-of-
speech input were all critical to strong performace.

Figure 6 compares our parser with that of Chen
and Manning (2014) in terms of arc recall for var-
ious arc lengths. While the two parsers perform
similarly on short arcs, ours significantly outpe-
forms theirs on longer arcs, and more interestingly
our accuracy does not degrade much after length
6. This confirms the benefit of having a global
sentence repesentation in our model.

Table 4 summarizes the Chinese dependency
parsing results. Again, our work is competitive
with the state-of-the-art greedy parsers.



— Bi-LSTM (this work)

0.95¢ - - Chen and Manning |]

0.90F

0.80f
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Figure 6: Recall on dependency arcs of various
lengths in PTB dev set. The Bi-LSTM parser is
particularly good at predicting longer arcs.

Parser Dev Test
UAS LAS | UAS LAS
C&M2014 84.0 824 | 839 824
Dyer et al. 2015 872 859 | 87.2 85.7
Bi-LSTM 85.84 85.24| 85.53 84.89
2-Layer Bi-LSTM | 86.13 85.51| 86.35 85.71

Table 4: Development and test set results for shift-
reduce dependency parser on Penn Chinese Tree-
bank (CTB-5) using only (s1, Sg, qo) position fea-
tures (trained and tested with gold POS tags).

5.2 Constituency Parsing: English & Chinese

Table 5 compares our constituency parsing re-
sults with state-of-the-art incremental parsers. Al-
though our work are definitely less accurate than
those beam-search parsers, we achieve the highest
accuracy among greedy parsers, for both English

and Chinese.!?

Parser b English Chinese
greedy beam | greedy beam

Zhu et al. (2013) 16 | 86.08 90.4 | 75.99 85.6

Mi & Huang (05) | 32 | 84.95 90.8 | 75.61 83.9

Vinyals et al. (05) | 10 | - 90.5 | - -

Bi-LSTM - | 89.75 - 79.44 -

2-Layer Bi-LSTM | - | 89.95 - 80.13 -

Table 5: Test F-scores for constituency parsing on
Penn Treebank and CTB-5.

!The greedy accuracies for Mi and Huang (2015) are from
Haitao Mi, and greedy results for Zhu et al. (2013) come from
duplicating experiments with code provided by those authors.

The parser of Vinyals et al. (2015) does not use an ex-
plicit transition system, but is similar in spirit since generat-
ing a right bracket can be viewed as a reduce action.
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Dependency | Constituency
Embeddings
Word (dims) 50 100
Tags (dims) 20 100
Nonterminals (dims) - 100
Pretrained No No
Network details
LSTM units (each direction) 200 200
ReLU hidden units 200 / decision 1000
Training
Training epochs 10 10
Minibatch size (sentences) 10 10
Dropout (LSTM output only) 0.5 0.5
L2 penalty (all weights) none 1x1078
ADADELTA p 0.99 0.99
ADADELTA ¢ 1x 1077 1x1077

Table 6: Hyperparameters and training settings.

6 Related Work

Because recurrent networks are such a natural fit
for modeling languages (given the sequential na-
ture of the latter), bi-directional LSTM networks
are becoming increasingly common in all sorts
of linguistic tasks, for example event detection in
Ghaeini et al. (2016). In fact, we discovered after
submission that Kiperwasser and Goldberg (2016)
have concurrently developed an extremely similar
approach to our dependency parser. Instead of ex-
tending it to constituency parsing, they also apply
the same idea to graph-based dependency parsing.

7 Conclusions

We have presented a simple bi-directional LSTM
sentence representation model for minimal fea-
tures in both incremental dependency and incre-
mental constituency parsing, the latter using a
novel shift-promote-adjoint algorithm. Experi-
ments show that our method are competitive with
the state-of-the-art greedy parsers on both parsing
tasks and on both English and Chinese.
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Abstract

We present a novel technique for train-
ing translation models for statistical ma-
chine translation by aligning source sen-
tences to their oracle-BLEU translations.
In contrast to previous approaches which
are constrained to phrase training, our
method also allows the re-estimation of re-
ordering models along with the translation
model. Experiments show an improve-
ment of up to 0.8 BLEU for our approach
over a competitive Arabic-English base-
line trained directly on the word-aligned
bitext using heuristic extraction. As an ad-
ditional benefit, the phrase table size is re-
duced dramatically to only 3% of the orig-
inal size.

1 Introduction

In phrase-based SMT, the phrase pairs in the trans-
lation model are traditionally trained by applying
a heuristic extraction method (Och and Ney, 2000)
which extracts phrase pairs based on consistency
of word alignments from a word-aligned bilingual
training data. The probabilities of the translation
model are then calculated based on the relative
frequencies of the extracted phrase pairs.

A notable shortcoming of this approach is that
the translation model probabilities thus calculated
from the training bitext can be unintuitive and un-
reliable (Marcu and Wong, 2002; Foster et al.,
2006) as they reflect only the distribution over the
phrase pairs observed in the training data.

However, from an SMT perspective it is im-
portant that the models reflect probability distri-
butions which are preferred by the decoding pro-
cess, i.e., phrase translations which are likely to
be used frequently to achieve better translations
should get higher scores and phrases which are
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less likely to be used should get low scores. In ad-
dition, the heuristic extraction algorithm generates
all possible, consistent phrases including overlap-
ping phrases. This means that translation proba-
bilities are distributed over a very large number of
phrase translation candidates most of which never
lead to the best possible translation of a sentence.

In this paper, we propose a novel solution which
is to re-estimate the models from the best BLEU
translation of each source sentence in the bitext.
An important contribution of our approach is that
unlike previous approaches such as forced align-
ment (Wuebker et al., 2010), reordering and lan-
guage models can also be re-estimated.

2 Related Work

The forced alignment technique of Wuebker et al.
(2010) forms the main motivation for our work. In
forced alignment, given a sentence pair (F, F), a
decoder determines the best phrase segmentation
and alignment which will result in a translation of
Finto E. The best segmentation is defined as the
one which maximizes the probability of translat-
ing the source sentence into the given target sen-
tence. At the end, the phrase table is re-estimated
using the phrase pair segmentations obtained from
forced decoding. Thus forced alignment is a re-
estimation technique where translation probabil-
ities are calculated based on their frequency in
best-scoring hypotheses instead of the frequencies
of all possible phrase pairs in the bitext. However,
one limitation of forced alignment is that only the
phrase translation model can be re-estimated since
it is restricted to align the source sentence to the
given target reference, thus fixing the choice of re-
ordering decisions.

A similar line of work is proposed by Lambert
et al. (2011) and Schwenk et al. (2011) who use a
self-enhancing strategy to utilize additional mono-
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Figure 1: (a) : Word alignment from EM training for Arabic (transliterated) -English sentence pair. (b):
Phrase segmentations and alignments from forced decoding. (c): Phrase segmentations and alignments
from oracle BLEU re-estimation. Blocks represent phrase boundaries.

lingual source language data by aligning it to its
target language translation obtained by using an
SMT system to rank sentence translation proba-
bilities. However, the main focus of their work
is translation model adaptation by augmenting the
bitext with additional training data and not the re-
estimation of the translation models trained on the
parallel data.

In this work, we propose that aligning source
sentences to their oracle BLEU translations pro-
vides a more realistic estimate of the models from
the decoding perspective instead of aligning them
to high quality human translations as in forced de-
coding.

Another relevant line of research relates tun-
ing (weight optimisation), where our work lies
between forced decoding (Wuebker et al., 2010)
and the bold updating approach of (Liang et al.,
2006). However, our approach specifically pro-
poses a novel method for training models using
oracle BLEU translations.

3 Model Re-estimation

The idea of our approach is to re-estimate the
models with n-best oracle-BLEU translations and
sentence alignments resulting from decoding the
source sentence. Given a source and its reference
translation, the oracle-BLEU translation is defined
as the translation output with highest BLEU score.
Oracle BLEU translations have been previously
used for different analytical purposes in SMT (Sri-
vastava et al., 2011; Dreyer et al., 2007; Wis-
niewski et al., 2010).

Figure 1 shows example of word alignment ob-
tained from EM training, segmentations and align-
ment obtained from forced decoding and oracle-
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BLEU re-estimation.

3.1 Oracle BLEU

Ideally, one would like to re-estimate translation
models directly from the n-best BLEU transla-
tions. However there are two problems in calcu-
lating BLEU for individual sentence: First, as dis-
cussed in (Chiang et al., 2008), BLEU is not de-
signed to be used for sentences in isolation where
it can exhibit rather volatile behavior. Hence, fol-
lowing their work and (Watanabe et al., 2007), we
calculate BLEU for a sentence in the context of a
exponentially-weighted moving average of previ-
ous translations. We briefly discuss the computa-
tion from (Chiang et al., 2008) as follows: Given
a source sentence f, and its reference translation
r, for an n-best translation e*, let c(e) be defined
as the vector of target length |e|, source length
|f], reference length |r|, and the number of n-gram
matches between e and r, then two pseudo docu-
ment parameters O and O are defined as:

0 —09 - (0+c(€")),0p —0.9-(0;+|f]) (D

O is an exponentially-weighted moving average
of the vectors from previous sentences and Oy is
the correction of source length with respect to the
previous sentences. Then the BLEU score for a
sentence pairs (f,r) and translation e* is defined
as:

B(e; f,r) = (Of +|f]) - BLEU(O + c(e%;7)) (2)

The second problem as discussed in Chiang et
al. (2008) is that due to noise in the training data,
a high-BLEU translation may contain certain rules
which are unlikely to be used by the model. Hence



following them, we use a weighted combination of
BLEU and model score to select the n-best list:

e* = argmazx.(B(e) — u- (B(e) — h(e).w)) (3)

where B(e) and h(e) are the BLEU and model
scores of the candidate translation and w is the
optimised weights for the models, p controls the
preference between BLEU and model scores to
determine oracle translations. We set u=0.5 to
balance between BLEU scores almost as high as
the max-BLEU translations, while staying close
to translations preferred by the model. We also
conducted a set of experiments with =0 (pure or
absolute BLEU) in order to verify the necessity
for the optimal combination. The lower scores
for this setting as compared to the baseline veri-
fied that using only the best BLEU translation in-
deed degrades the performance of the re-estimated
models. This finding for the optimal value of u
has also been established in (Chiang et al., 2008)
through a series of experiments.

3.2 Training

For obtaining the oracle-BLEU translations, we
first train the translation models from the bitext
using the standard pipeline of word alignment
and heuristic extraction. Along with the phrase
translation and language models, we also train
a bilingual language model (BiLM) (Niehues et
al., 2011; Garmash and Monz, 2014), as well as
lexicalized (Tillman, 2004) and hierarchical re-
ordering models (Galley and Manning, 2008). We
use a BiLM specifically as an instance of a re-
ordering model in order to determine the effect of
re-estimating re-ordering decisions from oracle-
BLEU translations.

We use the decoder trained on these models to
translate the training bitext. Along with the 1-
best translation (based on model scores), we also
store search graphs or lattices generated during
the translations process. Using the target sen-
tences, we convert the translation lattice to an
isomorphic oracle-BLEU lattice which has the
same set of nodes but the edges represent BLEU
score differences corresponding to each transition.
Finally, we extract n-best candidate translations
from the graphs ranked on BLEU score as de-
fined in Equation (3). Using the word alignments
from the initial phrase table, we extract the align-
ments between each source sentence and each of
their n-best oracle-BLEU translations. Finally, we

40

re-train the phrase translations, re-ordering and
BiLLM on these translations and alignments.

3.3 Avoiding over-fitting

Re-estimation of the translation models from the
n-best translation of the bitext could re-enforce
the probabilities of the low frequency phrase pairs
in the re-estimated models leading to over-fitting.
Within forced decoding, Wuebker et al. (2010) ad-
dress this problem by using a leave-one-out ap-
proach where they modify the phrase translation
probabilities for each sentence pair by remov-
ing the counts of all phrases that were extracted
from that particular sentence. However, in our ap-
proach, we do not impose a constraint to produce
the exact translation, instead we use the highest
BLEU translations which may be very different
from the references. Thus it is not strictly nec-
essary to apply leave-one-out in our approach as
a solution to over-fitting. Instead, we handle the
problem by simply removing all the phrase pairs
below a threshold count which in our case is 2,

Ginit = Pbaseline — ¢C(e,f)<2 4)

therefore removing phrase pairs with high proba-
bility but low frequency.

4 Experimental set up

Our experiments are carried out for an Arabic-
English parallel corpus of approximately 1 million
sentence pairs. We establish a baseline system by
training models on this bitext and then compare
this to a forced decoding implementation and to
oracle-BLEU re-estimation using the same bitext.

4.1 Baseline and forced decoding

The initial training corpus we use is a collection
of parallel sentences taken from OpenMT data
sources released by the LDC.

Phrase table, distortion models and the lexical
BiLLM are trained with initial alignments obtained
using GIZA++ (Och and Ney, 2003). The En-
glish 5-gram target language model is trained with
Kneser-Ney smoothing on news data of nearly
1.6B tokens. We use an in-house phrase-based
SMT system similar to Moses. For all settings
in this paper, weights were optimized on NIST’s
MTO04 data set using pairwise ranked optimization
(Hopkins and May, 2011).

For forced alignment we use the existing imple-
mentation within the Moses SMT toolkit (Koehn



Baseline 50.1

n=1 n=10 n=100
PT,. 50.1(0.0) 50.1(0.0) [50.0(-0.1)
PT;, 50.7%(+0.6) [ 50.5% (+0.4) | 50.0(-0.1)
BiLM,.. + PT;,, [50.9%(+0.8) [ 50.5%(+0.4) [ 49.6(-0.5)

Table 1: Performance of our oracle-BLEU re-
estimation with varying size n of n-best lists for
the MTO9 test set. 4 /¥ indicates a statistically sig-
nificant gain/drop atp < 0.01 and /" at p < 0.05.
Values in brackets show gains over the baseline.

et al., 2007) trained on the baseline phrase trans-
lation model. In order to increase the chances of
producing the exact reference, we follow Foster
and Kuhn (2012) and relax the standard decoding
parameters as follows: distortion limit=00, stack
size=2000, beam width=10e-30, and no threshold
pruning of the translation model.

4.2 Oracle BLEU re-estimation

To obtain oracle-BLEU translations, we first train
an initial SMT system and use it to decode the
bitext. This system is identical to the baseline
system except for the removal of low-frequency
phrase pairs from the baseline phrase table as de-
scribed in Section 3.3. To obtain the n-best oracle-
BLUE translations, we experiment with differ-
ent values of n, where n € {1,10,100}. From
these oracle-BLEU translations and alignments all
phrases that were used in the derivation of these n-
best sentences are extracted and the models are re-
estimated by re-calculating the translation proba-
bilities. Hierarchical and lexicalized re-ordering
models as well as the BiILM are re-trained using
the source sentences, oracle-BLEU translations
and word alignments. For testing the performance
of the re-estimated models, we tune different sys-
tems while replacing the baseline models with
the corresponding re-estimated models. We also
experiment with the interpolation of re-estimated
models with the respective baseline models. We
evaluate against 4 test sets: MT05, MT06, MTOS,
and MTO09. Case-insensitive 4-gram BLEU (Pa-
pineni et al., 2002) is used as evaluation metric.
Approximate randomization (Noreen., 1989; Rie-
zler and Maxwell, 2005) is used to detect statisti-
cally significant differences.

5 Results

We discuss the experimental results of our oracle-
BLEU re-estimation approach for different mod-
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els and settings and provide a comparison with the
baseline (heuristic training) and forced alignment.

Re-estimated models with three different values
of n € {1,10,100} were evaluated under three
settings: phrase table re-estimation, interpolation,
and BiLLM re-estimation. The best improvements
over the baseline are obtained by using only 1-best
(n= 1) alignments as shown in Table 1. Surpris-
ingly, this is in contrast with forced decoding as
discussed in Wuebker et al. (2010), where the best
improvements are obtained for n = 100.

Table 2 provides a comparison between BLEU
improvements achieved by forced decoding (n =
100 best) and our oracle-BLEU re-estimation ap-
proach (n = 1 best) over the baseline for different
models. One can see in Table 2 that while phrase
table re-estimation drops substantially for forced
decoding for all test sets (up to -1.4 for MT09),
oracle-BLEU phrase table re-estimation shows ei-
ther slight improvements or negligible drops com-
pared to the baseline. For the linear interpola-
tion of the re-estimated phrase table with the base-
line, forced decoding shows only a slight improve-
ment for MT06, MTO08 and MTO09 and still suffers
from a substantial drop for MTOS. On the other
hand, oracle-BLEU re-estimation shows consis-
tent improvements for all test sets with a maxi-
mum gain of up to 4+0.7 for MTO06. It is impor-
tant to note here that although linear interpolation
extinguishes the advantage of a smaller phrase ta-
ble size obtained by re-estimation, the improve-
ment achieved by interpolation for oracle-BLEU
re-estimation are significantly higher as compared
to forced decoding.

An important novelty of oracle-BLEU re-
estimation is that it also allows for re-training of
other models alongside the phrase table. Here
we provide the results for the re-estimation of
a BiLM. For all test sets, BiLM re-estimation
provides additional improvements over simple
phrase table interpolation, demonstrating that re-
estimation of re-ordering models can further im-
prove translation performance. The last row of
Table 2 shows that the re-estimated BiLM on its
own adds BLEU improvement of up to +0.5 (for
MTQ09). The highest BLEU improvement of +0.8
is achieved by using a re-estimated BiLM and an
interpolated phrase table. Note that re-estimation
of BiLLM or re-ordering models is not possible for
forced decoding due to the constraint of having to
match the exact reference. For an additional anal-



MTO05 MTO06 MTO08 MTO09
Baseline 58.5 47.9 47.3 50.1
FD OB FD OB FD OB FD OB
PT,. 57.4Y(-1.1) | 58.7°(+0.2) | 46.3(-0.7) |47.8Y(-0.1) {46.17(-1.2) [47.4°(+0.1) | 48.77 (-1.4) |50.1(0.0)
PT;. 58.2Y(-0.3) | 58.84(+0.3) |48.0(+0.1) | 48.6* (+0.7) | 47.5(+0.2) [47.74(+0.4) |50.4°(+0.3) | 50.7% (+0.6)
PT;,+ BiLM,.. - 59.24(+0.7) |- 48.5%(+0.6)] - 47.72(+0.4) |- 50.9%(+0.8)
PTyase + BiLM,. | - 58.6(+0.1) |- 48.2(+0.3) |- 472%(-0.1) |- 50.6(+0.5)

Table 2: BLEU scores for Forced decoding and Oracle BLEU re-estimation. PT..s, = Phrase table
re-estimation/interpolation/baseline, PTy,s. = Baseline Phrase table, BiLM,. = BiLM re-estimation,

FD=Forced decoding, OB=oracle-BLEU.

TEST
Baseline 51.0
FDro OB
PT,c 50.7V(-0.3) [51.0 (0.0)
PTin 51.5%(+0.5)[51.5%(+0.5)
PTin + BiLM, ¢ | - 51.6*(+0.6)

Table 3: BLEU scores for Oracle-Bleu and Forced
decoding with leave-one-out against concatena-
tion of MT03, MT05-MT09.

(% of baseline)
OB 100 5.07
OB¢ 4.16
OB, 3.28
FD 27.71
FDLO 7.6

Table 4: Phrase table sizes compared to base-
line for Oracle-BLUE re-estimation and Forced
decoding for different n-best list sizes, FDr g =
Forced decoding with leave-one-out.

ysis, we experimented with the interpolation of
both the re-estimated phrase table (forced decod-
ing and oracle-BLEU) with the baseline. How-
ever, improvements achieved with this interpola-
tion did not surpass the best result obtained for the
oracle-BLEU re-estimation.

Additionally, we also compare oracle-BLEU
re-estimation to forced decoding with leave-one-
out (Wuebker et al., 2010) by evaluating both
on a concatenation of 5 test sets (MTO03, MTO05-
MTO09). As shown in Table 3, even with leave-
one-out, forced decoding performance drops be-
low the baseline by -0.3 BLEU. In contrast, phrase
tables re-estimated from oracle-BLEU translation
achieves the same performance as the baseline.
When interpolated with the baseline phrase ta-
ble, both approaches show significant improve-
ments over the baseline. This implies that only
in combination with the original phrase table does
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forced-decoding with leave-one-out outperform
the baseline. On the other hand, oracle-BLEU
re-estimation by its own not only performs bet-
ter than forced decoding, but also gives a perfor-
mance equal to forced decoding with leave-one-
out when interpolated with baseline phrase table.
In addition to the BLEU improvements, our ap-
proach also results in a re-estimated phrase table
with a significantly reduced size as compared to
the baseline. As shown in Table 4, out of all
the settings, the minimum phrase table size after
oracle-BLEU re-estimation is only 3.28% of base-
line (i.e., a reduction of 96.72%) while it is 7.6%
for forced decoding.

6 Conclusions

In this paper, we proposed a novel technique for
improving the reliability of SMT models by model
re-estimation from oracle-BLEU translations of
the source sentences in the bitext. Our experimen-
tal results show BLEU score improvements of up
to +0.8 points for oracle-BLEU re-estimation over
a strong baseline along with a substantially re-
duced size of the re-estimated phrase table (3.3%
of the baseline). An important novelty of our ap-
proach is that it also allows for the re-estimation
of re-ordering models which can yield further im-
provements in SMT performance as demonstrated
by the re-estimation of a BiLM.
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Abstract

We present a natural language genera-
tor based on the sequence-to-sequence ap-
proach that can be trained to produce natu-
ral language strings as well as deep syntax
dependency trees from input dialogue acts,
and we use it to directly compare two-step
generation with separate sentence plan-
ning and surface realization stages to a
joint, one-step approach.

We were able to train both setups success-
fully using very little training data. The
joint setup offers better performance, sur-
passing state-of-the-art with regards to n-
gram-based scores while providing more
relevant outputs.

1 Introduction

In spoken dialogue systems (SDS), the task of nat-
ural language generation (NLG) is to convert a
meaning representation (MR) produced by the di-
alogue manager into one or more sentences in a
natural language. It is traditionally divided into
two subtasks: sentence planning, which decides
on the overall sentence structure, and surface re-
alization, determining the exact word forms and
linearizing the structure into a string (Reiter and
Dale, 2000). While some generators keep this di-
vision and use a two-step pipeline (Walker et al.,
2001; Rieser et al., 2010; Dethlefs et al., 2013),
others apply a joint model for both tasks (Wong
and Mooney, 2007; Konstas and Lapata, 2013).
We present a new, conceptually simple NLG
system for SDS that is able to operate in both
modes: it either produces natural language strings
or generates deep syntax dependency trees, which
are subsequently processed by an external surface
realizer (DusSek et al., 2015). This allows us to
show a direct comparison of two-step generation,
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where sentence planning and surface realization
are separated, with a joint, one-step approach.

Our generator is based on the sequence-to-
sequence (seq2seq) generation technique (Cho et
al., 2014; Sutskever et al., 2014), combined with
beam search and an n-best list reranker to suppress
irrelevant information in the outputs. Unlike most
previous NLG systems for SDS (e.g., (Stent et al.,
2004; Raux et al., 2005; Mairesse et al., 2010)), it
is trainable from unaligned pairs of MR and sen-
tences alone. We experiment with using much less
training data than recent systems based on recur-
rent neural networks (RNN) (Wen et al., 2015b;
Mei et al., 2015), and we find that our genera-
tor learns successfully to produce both strings and
deep syntax trees on the BAGEL restaurant infor-
mation dataset (Mairesse et al., 2010). It is able to
surpass n-gram-based scores achieved previously
by Dusek and Juréicek (2015), offering a simpler
setup and more relevant outputs.

We introduce the generation setting in Section 2
and describe our generator architecture in Sec-
tion 3. Section 4 details our experiments, Section 5
analyzes the results. We summarize related work
in Section 6 and offer conclusions in Section 7.

2 Generator Setting

The input to our generator are dialogue acts (DA)
(Young et al., 2010) representing an action, such
as inform or request, along with one or more at-
tributes (slots) and their values. Our generator op-
erates in two modes, producing either deep syn-
tax trees (Dusek et al., 2012) or natural language
strings (see Fig. 1). The first mode corresponds to
the sentence planning NLG stage as it decides the
syntactic shape of the output sentence; the result-
ing deep syntax tree involves content words (lem-
mas) and their syntactic form (formemes, purple in
Fig. 1). The trees are linearized to strings using a

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 45-51,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



inform(name=X-name,type=placetoeat,eattype=restaurant,
area=riverside,food=ltalian)

..
t-tree
zone=en

/‘ée
v:fi

X-name

[ restaurant
n:subj

n:obj

Italian river
adj:attr n:near+X

X is an lItalian restaurant near the river.
Figure 1: Example DA (top) with the correspond-
ing deep syntax tree (middle) and natural language
string (bottom)

surface realizer from the TectoMT translation sys-
tem (Dusek et al., 2015). The second generator
mode joins sentence planning and surface realiza-
tion into one step, producing natural language sen-
tences directly.

Both modes offer their advantages: The two-
step mode simplifies generation by abstracting
away from complex surface syntax and morphol-
ogy, which can be handled by a handcrafted,
domain-independent module to ensure grammat-
ical correctness at all times (Dusek and Jurcicek,
2015), and the joint mode does not need to model
structure explicitly and avoids accumulating errors
along the pipeline (Konstas and Lapata, 2013).

3 The Seq2seq Generation Model

Our generator is based on the seq2seq approach
(Cho et al., 2014; Sutskever et al., 2014), a type
of an encoder-decoder RNN architecture operat-
ing on variable-length sequences of tokens. We
address the necessary conversion of input DA
and output trees/sentences into sequences in Sec-
tion 3.1 and then describe the main seq2seq com-
ponent in Section 3.2. It is supplemented by a
reranker, as explained in Section 3.3.

3.1 Sequence Representation of DA, Trees,
and Sentences

We represent DA, deep syntax trees, and sentences
as sequences of tokens to enable their usage in the
sequence-based RNN components of our genera-
tor (see Sections 3.2 and 3.3). Each token is rep-
resented by its embedding — a vector of floating-
point numbers (Bengio et al., 2003).

To form a sequence representation of a DA,
we create a triple of the structure “DA type, slot,
value” for each slot in the DA and concatenate

the triples (see Fig. 3). The deep syntax tree out-
put from the seq2seq generator is represented in
a bracketed notation similar to the one used by
Vinyals et al. (2015, see Fig. 2). The inputs to the
reranker are always a sequence of tokens; struc-
ture is disregarded in trees, resulting in a list of
lemma-formeme pairs (see Fig. 2).

3.2 Seq2seq Generator

Our seq2seq generator with attention (Bahdanau et
al., 2015, see Fig. 3)1 starts with the encoder stage,
which uses an RNN to encode an input sequence

x = {x1,...,z,} into a sequence of encoder out-
puts and hidden states h = {hy,..., h,}, where
hy = lstm(z, hy—1), a non-linear function rep-

resented by the long-short-term memory (LSTM)
cell (Graves, 2013).

The decoder stage then uses the hidden states to
generate a sequence y = {y1, ..., Y} With a sec-
ond LSTM-based RNN. The probability of each
output token is defined as:

p(yt‘ylv s Y1, X) = SOftmaX((st © Ct)WY)

Here, s; is the decoder state where so = h,
and s; = Istm((y;—1 o ¢t)Wg, s¢—1), i.e., the de-
coder is initialized by the last hidden state and
uses the previous output token at each step. Wy
and Wy are learned linear projection matrices and
“o0” denotes concatenation. ¢; is the context vec-
tor — a weighted sum of the encoder hidden states
¢ = Z;‘Zl ayih;, where ay; corresponds to an
alignment model, represented by a feed-forward
network with a single tanh hidden layer.

On top of this basic seq2seq model, we im-
plemented a simple beam search for decoding
(Sutskever et al., 2014; Bahdanau et al., 2015). It
proceeds left-to-right and keeps track of log prob-
abilities of top n possible output sequences, ex-
panding them one token at a time.

3.3 Reranker

To ensure that the output trees/strings correspond
semantically to the input DA, we implemented a
classifier to rerank the n-best beam search outputs
and penalize those missing required information
and/or adding irrelevant one. Similarly to Wen et
al. (2015a), the classifier provides a binary deci-
sion for an output tree/string on the presence of
all dialogue act types and slot-value combinations
seen in the training data, producing a 1-hot vector.

'We use the implementation in the TensorFlow frame-
work (Abadi et al., 2015).



( <root> <root> ( ( X-name n:subj ) be v:fin ( ( Italian adj:attr ) restaurant n:obj ( river n:near+XxX))))
X-name n:subj be v:fin Italian adj:attr restaurant n:obj river n:near+X

Figure 2: Trees encoded as sequences for the seq2seq generator (top) and the reranker (bottom)
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is a
The input DA is converted to a similar 1-hot vec-
tor and the reranking penalty of the sentence is the
Hamming distance between the two vectors (see
Fig. 4). Weighted penalties for all sentences are
subtracted from their n-best list log probabilities.

We employ a similar architecture for the classi-
fier as in our seq2seq generator encoder (see Sec-
tion 3.2), with an RNN encoder operating on the
output trees/strings and a single logistic layer for
classification over the last encoder hidden state.
Given an output sequence representing a string or
atreey = {y1,...,yn} (cf. Section 3.1), the en-
coder again produces a sequence of hidden states
h = {hy,...,h,} where hy = lIstm(y;, hy—1).
The output binary vector o is computed as:

0; = sigmoid((h,, - Wgr + b))

Here, W is a learned projection matrix and b is a
corresponding bias term.

4 Experiments

We perform our experiments on the BAGEL data
set of Mairesse et al. (2010), which contains
202 DA from the restaurant information domain
with two natural language paraphrases each, de-
scribing restaurant locations, price ranges, food
types etc. Some properties such as restaurant
names or phone numbers are delexicalized (re-
placed with “X” symbols) to avoid data spar-
sity.2Unlike Mairesse et al. (2010), we do not use

2We adopt the delexicalization scenario used by Mairesse
et al. (2010) and Dusek and Jurcicek (2015).
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<GO> X is a restaurant

Seq2seq generator with attention

manually annotated alignment of slots and values
in the input DA to target words and phrases and
let the generator learn it from data, which simpli-
fies training data preparation but makes our task
harder. We lowercase the data and treat plural
-s as separate tokens for generating into strings,
and we apply automatic analysis from the Treex
NLP toolkit (Popel and Zabokrtsky, 2010) to ob-
tain deep syntax trees for training tree-based gen-
erator setups.3 Same as Mairesse et al. (2010), we
apply 10-fold cross-validation, with 181 training
DA and 21 testing DA. In addition, we reserve 10
DA from the training set for validation.*

To train our seq2seq generator, we use the
Adam optimizer (Kingma and Ba, 2015) to min-
imize unweighted sequence cross-entropy.” We
perform 10 runs with different random initializa-
tion of the network and up to 1,000 passes over the
training data,® validating after each pass and se-
lecting the parameters that yield the highest BLEU
score on the validation set. Neither beam search
nor the reranker are used for validation.

We use the Adam optimizer minimizing cross-
entropy to train the reranker as well.” We perform
a single run of up to 100 passes over the data,
and we also validate after each pass and select the
parameters giving minimal Hamming distance on
both validation and training set.’

3The input vocabulary size is around 45 (DA types, slots,
and values added up) and output vocabulary sizes are around
170 for string generation and 180 for tree generation (45
formemes and 135 lemmas).

“We treat the two paraphrases for the same DA as sepa-
rate instances in the training set but use them together as two
references to measure BLEU and NIST scores (Papineni et
al., 2002; Doddington, 2002) on the validation and test sets.

SBased on a few preliminary experiments, the learning
rate is set to 0.001, embedding size 50, LSTM cell size 128,
and batch size 20. Reranking penalty for decoding is 100.

®Training is terminated early if the top 10 so far achieved
validation BLEU scores do not change for 100 passes.

"We use the same settings as with the seq2seq generator.

8The validation set is given 10 times more importance.



Setup

BLEU NIST ERR

Mairesse et al. (2010)* ~67 - 0
Dusek and Jurcicek (2015) 59.89 5.231 30
Greedy with trees 55.29 5.144 20
+ Beam search (b. size 100) 58.59 5.293 28
+ Reranker (beam size 5) 60.77 5.487 24
(beam size 10) 60.93 5.510 25
(beam size 100) 60.44 5.514 19
Greedy into strings 52.54 5.052 37
+ Beam search (b. size 100) 55.84 5.228 32
+ Reranker (beam size 5) 61.18 5.507 27
(beam size 10) 62.40 5.614 21
(beam size 100) 62.76 5.669 19

Table 1: Results on the BAGEL data set
NIST, BLEU, and semantic errors in a sample of the output.

*Mairesse et al. (2010) use manual alignments in their work,
so their result is not directly comparable to ours. The zero
semantic error is implied by the manual alignments and the
architecture of their system.

5 Results

The results of our experiments and a comparison
to previous works on this dataset are shown in Ta-
ble 1. We include BLEU and NIST scores and the
number of semantic errors (incorrect, missing, and
repeated information), which we assessed manu-
ally on a sample of 42 output sentences (outputs
of two randomly selected cross-validation runs).
The outputs of direct string generation show
that the models learn to produce fluent sentences
in the domain style;9 incoherent sentences are rare,
but semantic errors are very frequent in the greedy
search. Most errors involve confusion of semanti-
cally close items, e.g., Italian instead of French
or riverside area instead of city centre (see Ta-
ble 2); items occurring more frequently are pre-
ferred regardless of their relevance. The beam
search brings a BLEU improvement but keeps
most semantic errors in place. The reranker is able
to reduce the number of semantic errors while in-
creasing automatic scores considerably. Using a
larger beam increases the effect of the reranker as
expected, resulting in slightly improved outputs.
Models generating deep syntax trees are also
able to learn the domain style, and they have virtu-
ally no problems producing valid trees.'” The sur-
face realizer works almost flawlessly on this lim-

The average sentence length is around 13 tokens.

19The generated sequences are longer, but have a very rigid
structure, i.e., less uncertainty per generation step. The av-
erage output length is around 36 tokens in the generated se-
quence or 9 tree nodes; surface realizer outputs have a similar
length as the sentences produced in direct string generation.
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v v

ited domain (Dusek and Jur¢icek, 2015), leaving
the seq2seq generator as the major error source.
The syntax-generating models tend to make dif-
ferent kinds of errors than the string-based mod-
els: Some outputs are valid trees but not entirely
syntactically fluent; missing, incorrect, or repeated
information is more frequent than a confusion of
semantically similar items (see Table 2). Seman-
tic error rates of greedy and beam-search decod-
ing are lower than for string-based models, partly
because confusion of two similar items counts as
two errors. The beam search brings an increase in
BLEU but also in the number of semantic errors.
The reranker is able to reduce the number of errors
and improve automatic scores slightly. A larger
beam leads to a small BLEU decrease even though
the sentences contain less errors; here, NIST re-
flects the situation more accurately.

A comparison of the two approaches goes in fa-
vor of the joint setup: Without the reranker, mod-
els generating trees produce less semantic errors
and gain higher BLEU/NIST scores. However,
with the reranker, the string-based model is able
to reduce the number of semantic errors while
producing outputs significantly better in terms of
BLEU/NIST.!! In addition, the joint setup does
not need an external surface realizer. The best re-
sults of both setups surpass the best results on this
dataset using training data without manual align-
ments (Dusek and Jurcicek, 2015) in both auto-
matic metrics'? and the number of semantic errors.

6 Related Work

While most recent NLG systems attempt to learn
generation from data, the choice of a particular
approach — pipeline or joint — is often arbitrary
and depends on system architecture or particular
generation domain. Works using the pipeline ap-
proach in SDS tend to focus on sentence planning,
improving a handcrafted generator (Walker et al.,
2001; Stent et al., 2004; Paiva and Evans, 2005)
or using perceptron-guided A* search (Dusek and
Jur¢icek, 2015). Generators taking the joint ap-
proach employ various methods, e.g., factored lan-
guage models (Mairesse et al., 2010), inverted
parsing (Wong and Mooney, 2007; Konstas and
Lapata, 2013), or a pipeline of discriminative clas-
sifiers (Angeli et al., 2010). Unlike most previous

"'The difference is statistically significant at 99% level ac-
cording to pairwise bootstrap resampling test (Koehn, 2004).
"2The BLEU/NIST differences are statistically significant.



Input DA

Reference

Greedy with trees
+ Beam search

+ Reranker
Greedy into strings
+ Beam search

inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near,
food="Chinese takeaway”, food=Japanese)

X is a Chinese takeaway and Japanese restaurant in the city centre near X.

X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]

X is a restaurant and japanese food and chinese takeaway.

X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.

X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]

X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]

+ Reranker X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference X is a French restaurant on the riverside.

Greedy with trees
+ Beam search

+ Reranker
Greedy into strings
+ Beam search

X is a restaurant providing french and continental and by the river.
X is a restaurant that serves french takeaway. [riverside]

X is a french restaurant in the riverside area.

X is a restaurant in the riverside that serves italian food. [French]
X is a restaurant in the riverside that serves italian food. [French]

+ Reranker X is a restaurant in the riverside area that serves french food.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference X is a French and Continental restaurant near X.

Greedy with trees
+ Beam search

+ Reranker
Greedy into strings
+ Beam search

+ Reranker

X is a french restaurant that serves french food and near X. [Continental]
X is a french restaurant that serves french food and near X. [Continental]
X is a restaurant serving french and continental food near X.

X is a french and continental style restaurant near X.

X is a french and continental style restaurant near X.

X is a restaurant providing french and continental food, near X.

Table 2: Example outputs of different generator setups (beam size 100 is used). Errors are marked in
color (missing, superfluous, repeated information, disfluency).

NLG systems, our generator is trainable from un-
aligned pairs of MR and sentences alone.

Recent RNN-based generators are most simi-
lar to our work. Wen et al. (2015a) combined
two RNN with a convolutional network reranker;
Wen et al. (2015b) later replaced basic sigmoid
cells with an LSTM. Mei et al. (2015) present
the only seq2seq-based NLG system known to
us. We extend the previous works by generating
deep syntax trees as well as strings and directly
comparing pipeline and joint generation. In ad-
dition, we experiment with an order-of-magnitude
smaller dataset than other RNN-based systems.

7 Conclusions and Future Work

We have presented a direct comparison of two-step
generation via deep syntax trees with a direct gen-
eration into strings, both using the same NLG sys-
tem based on the seq2seq approach. While both
approaches offer decent performance, their out-
puts are quite different. The results show the di-
rect approach as more favorable, with significantly
higher n-gram based scores and a similar number
of semantic errors in the output.

We also showed that our generator can learn
to produce meaningful utterances using a much
smaller amount of training data than what is typi-
cally used for RNN-based approaches. The result-
ing models had virtually no problems with produc-
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ing fluent, coherent sentences or with generating
valid structure of bracketed deep syntax trees. Our
generator was able to surpass the best BLEU/NIST
scores on the same dataset previously achieved
by a perceptron-based generator of Dusek and
Jur¢icek (2015) while reducing the amount of ir-
relevant information on the output.

Our generator is released on GitHub at the fol-
lowing URL.:

https://github.com/UFAL-DSG/tgen

We intend to apply it to other datasets for a broader
comparison, and we plan further improvements,
such as enhancing the reranker or including a bidi-
rectional encoder (Bahdanau et al., 2015; Mei et
al., 2015; Jean et al., 2015) and sequence level
training (Ranzato et al., 2015).
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Abstract

We consider two graph models of seman-
tic change. The first is a time-series model
that relates embedding vectors from one
time period to embedding vectors of pre-
vious time periods. In the second, we
construct one graph for each word: nodes
in this graph correspond to time points
and edge weights to the similarity of the
word’s meaning across two time points.
We apply our two models to corpora
across three different languages. We find
that semantic change ibnear in two
senses. Firstly, today’s embedding vectors
(= meaning) of words can be derived as
linear combinations of embedding vectors
of their neighbors in previous time peri-
ods. Secondly, self-similarity of words de-
cays linearly in time. We consider both
findings as new laws/hypotheses of se-
mantic change.

Introduction

In this work, we consider two graph models
of semantic change. Ouirst model is ady-
namic model in that the underlying paradigm is
a (time-)series of graphs. Each node in the se-
ries of graphs corresponds to one word, associ-
ated with which is a semantic embedding vec-
tor. We then ask how the embedding vectors in
one time period (graph) can be predicted from the
embedding vectors of neighbor words in previous
time periods. In particular, we postulate that there
is a linear functional relationship that couples a
word’s today’s meaning with its neighbor’'s mean-
ings in the past. When estimating the coefficients
of this model, we find that the linear form ap-
pears indeed very plausible. This functional form
then allows us to address further questions, such
as negative relationships between words — which
indicate semantic differentiation over time — as
well as projections into the future. We call our
secondgraph modetime-indexed self-similarity
graphs In these graphs, each node corresponds
to a time point and the link between two time
points indicates the semantic similarity of a spe-
cific word across the two time points under con-
sideration. The analysis of these graphs reveals

Meaning is not uniform, neither across space, Nofhat most words obey a law of linear semantic ‘de-
across time. Across space, different languagegay: semantic self-similarity decreases linearly
tend to exhibit different polysemous associations,er time.

for corresponding terms (Eger et al., 2015; Kulka-

rni et al., 2015b). Across time, several well- In our work, we capture semantics by means of
known examples of meaning change in Englishword embeddings derived from context-predicting
have been documented. For example, the wordeural network architectures, which have be-
gays meaning has shifted, during the 1970s, fromcome the state-of-the-art in distributional seman-
an adjectival meaning aheerfulat the beginning tics modeling (Baroni et al., 2014). Our approach
of the 20" century to its present meaninglddmo-  and results are partly independent of this repre-
sexual(Kulkarni et al., 2015a). Similarly, techno- sentation, however, in that we take a structural-
logical progress has led to semantic broadening abt approach: we derive new, ‘second-order em-
terms such agansmissionmouse or apple beddings’ by modeling the meaning of words by
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means of their semantic similarity relations to allt € 7. Here,7 is a set of time indices. Denote
other words in the vocabulary (de Saussure, 1916Gn embedding of a worad; at time periodt as
Rieger, 2003). Thus, future research may in prinw;(t) € R?. Since embeddings;(s), w;(t) for
ciple substitute the deep-learning architectures fotwo different time periods;, ¢t are generally not
semantics considered here by any other methodomparable, as they may lie in different coordi-
capable of producing semantic similarity valuesnate systems, we consider the vectér$t) =
between lexical units.

This work is structured as follows. I§2, we (sim(wi(t), wi(t)),...,sim(w;(t), w (), (1)
discuss related work. I§8.1 and 3.2, respectively,
we formally introduce the two graph models out-€ach of which lies inRIVl and wheresim is a
lined. |n§4’ we detail our experiments and gﬁ’ Slmllarlw function such as the cosine. We note

we conclude. that our structuralist definition ok ;(¢) is not un-
problematic, since the vectove, (t), ..., w)y(t)
2 Related work tend to be different across by our very postu-

Broadly speaking, one can distinguish two recen{ate’ S0 t htaf theret_ls nor:dentlty of these ‘refer-
NLP approaches to meaning change analysis. OR ¢ p‘((r)]mt s;hover Ime. O\fNe}[/Tr’ ats W? may a;-
the one hand;oarse-grainedrend analyses com- sume that the meanings ot at least a few words

pare the semantics of a word in one time pe_are stable over time, we strongly expect the vec-

riod with the meaning of the word in the preced_tors\?vi(t) to be suitable for our task of analysis

ing time period (Jatowt and Duh, 2014; Kulka- of meaning changés. For the remainder of this

mi et al, 2015a). Such coarse-grained modyvork, for convenience, we do not distinguish, in

els, by themselves, do not specify which re- terms of notation, betweem; () andw(¢).
spectsa word has changed (e.g., semantic broads 1 A linear model of semantic change

ening or narrowing), but just aim at capturingW wlat d sub iy test. the foll
whether meaning change has occurred. In con- ¢ postuiate, ‘and subsequently test, Ine Toflow-

trast, more fine-grained analyses typically senselY model of meaning dynamics which describes

. ._meaning chan ver time for words:
label word occurrences in corpora and then in- eaning change over time for words

vestigate changes in the corresponding meaning p

distributions (Rohrdantz et al., 2011; Mitra et w;(t)=> Y ol w;{t—n) (2)
al., 2014; Plitz et al., 2015; Zhang et al., 2015). n=1w;eVNN (w;)

Sense-labeling may be achieved by clustering of

the context vectors of words (Huang et al., 2012Whereay, € R, forn = 1,...,p, are coeffi-
Chen et al., 2014; Neelakantan et al., 2014) or bgients of meaning vectors;(t —n) andp > 1
applying LDA-based techniques where word con-s theorder of the model. The se¥ (w;) C V' de-
texts take the roles of documents and word sensd¥tes a set of ‘neighbors’ of word;.> This model
take the roles of topics (Rohrdantz et al., 2011says that the meaning of a woug at some time
Lau et al., 2012). Finally, there are studies thaiS determined by reference to the meanings of its
test particular meaning change hypotheses such d&eighbors’ in previous time periods, and that the
whether similar words tend to diverge in mean-underlying functional relationship imear.

ing over time (according to the ‘law of differentia-  We remark that the model described by Eq. (2)
tion’) (Xu and Kemp, 2015) and papers that intendiS @ time-series model, and, in particular, a
to detect corresponding terms across time (wordgector-autoregressive (VAR) model with special
with similar meanings/roles in two time periods ~ 15, iemative to our second-order embeddings is to

but potentially different lexical forms) (Zhang et project vectors from different time periods in a common
al., 2015). space (Mikolov et al., 2013a; Farugui and Dyer, 2014), which
' requires to find corresponding terms across time. Further,
one could also consider a ‘core’ vocabulary of semantically
3 Graph models stable words, e.g., in the spirit of Swadesh (1952), instéad
using all vocabulary words as reference.
LetV = {wy,... ’w\Vl} be the common vocabu- 2We also constrain the vectovs;(t), for all w; € V, to

lary (intersection) of all words in all time periods contain non-zero entries only for words N(w;).

2

53



structure. The model may also be seen irWe lemmatize and POS tag the data and likewise
the socio-economic context of so-called “opin-only consider nouns, verbs and adjectives, mak-
ion dynamic models” (Golub and Jackson, 2010;ing the same frequency constraints as in English.
Acemoglu and Ozdaglar, 2011; Eger, 2016).Finally, we use the PL (Migne, 1855) as data set
There it is assumed that agents are situatetbr Latin. Here,7 = {300,400,...,1300}. We

in network structures and continuously updateuse the same preprocessing, frequency, and word
their opinions/beliefs/actions according to theirclass constraints as for English and German.

ties with other agents. Model (2) substitutes Throughout, our datasets are well-balanced in
multi-dimensional embedding vectors for one-terms of size. For example, the English COHA

dimensional opinions. datasets contain about 24M-30M tokens for each
o S decade from 1900 to 2000, where the decades
3.2 Time-indexed self-similarity graphs 1990 and 2000 contain slighly more data than the

We track meaning change by considering a fullyearlier decades. The pre-1900 decades contain 18-
connected grapt'(w) for each wordw in V. The ~ 24M tokens, with only the decades 1810 and 1820

nodes ofG(w) are the time indice§, and there containing very little data (1M and 7M tokens,

is an undirected link between any twot € 7  respectively). The corpora are also balanced by

whose weight is given bgim(w(s), w(t)). We genre.

call the graphg7(w) time-indexed self-similarity
(TISS) graphsbegzasjse they indicate the (seman- 4.1 TISS graphs

tic) similarity of a given word with itself across We start with investigating the TISS graphs. Let
different time periods. Particular interest may lie D, represent how semantically similar a word

in weak linksin these graphs as they indicate lowiS across two time periods, on average, when
similarity between two different time periods, i.e., the distance between time periodstis Dy, =

semantic change across time. & wev D js—t=t, SiIM(W(s), w(t)), whereC' =
V|- {(s,t) | \s—t\ = to}| is a normalizer. Figure
4 Experiments 1 plots the value$,, for the time slice from 1810

to 2000, for the English data. We notice a clear
trend: self-similarity of a word tends to (almost
perfectly) linearly decrease with time distance. In

Data As corpus for English, we use the Corpus of
Historical American (COHAY. This covers texts
from the time period 1810 to 2000. We extract two
slices: the years 1900-2000 and 1810-2000. For 1 g :
both slices, each time peridds one decade, e.g.,  (gg 1810-2000——
T = {1810,1820,1830,...}.* For each slice, we 961 |
only keep words associated to the word classes .’ [ ( [ [ ( [ [

nouns, adjectives, and verbs. For computational ggg J J t+ 4l | [ [ [ [ ]
and estimation purposes, we also only consider ~ <[ J J J J J T4l [ [ ( { l 1
words that occur at least 100 times in each time 0-99F J J J J T4 [ 1
period. To induce word embeddings € R¢ for 0.88 J J J J J T [ [
each wordw € V, we use word2vec (Mikolov et 0.86 J J ]
al., 2013b) with default parametrizations. We do  0.84f J -

so for each time periot € 7 independently. We 0.82f 1
then use these embeddings to derive the new em- 0.800 5 '10 '15 20
beddings as in Eg. (1). Throughout, we use cosine

similarity assim measure. For German, we con-

sider a proprietary dataset of the German newspéa-igure 1:D,, (y-axis) as a function ofy (z-axis),
per SZ for which 7 = {1994,1995,...,2003}. values ofDy, (in green) and error-bars.

3 . . . .
nup:/feorpus.byu.edu/cohal. __fact, Table 1 below indicates that this trend holds
Each time period contains texts that were written in that

decade. across all our corpora, i.e., for different time scales
Shttp:/iwww.sueddeutsche.de/ and different languages: the linear ‘decay’ model
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fits the Dy, curves very well, with adjusteft? val- 70
ues substantially above 90% and consistently and

significantly negative coefficients. We believe that 60F ]
this finding may be considered a new statistical 50 | -
law of semantic change. a0 | 1
Corpus Lang. Time  Years Coeff. R? 30} i
interval
COHAEnglish Decade  1900-2000 —0.425 98.63 20t .
1810-2000 —0.405 96.03
Sz German Year 1994-2003 —0.678 98.64 10 .
PL Latin Century 400-1300 -—0.228 92.28 0 .
Table 1: Coefficients (%) in regression b, on 25 -2 -1€oeff-1in 0/’0'5 0 05
to, and adjusted?? values (%). SR
60 T T T T T
—/
The valuesD;, as a function oft, are aver- 50

ages over all words. Thus, it might be possible
that the average word’'s meaning decays linearly 40
in time, while the semantic behavior, over time, of 30
a large fraction of words follows different trends.
To investigate this, we consider the distribution 2q
of Dy, (w) = & D ls—t|=t, SIM(W(s), w(t)) over

fixed wordsw. HereC’ = |{(s,t)]|s — t| = to}]. 10
We consider the regression models

70 75 80 85 90 95 100
Dy, (w) = a - to + const. R2in%

for each wordw independently and assess the dis-
tribution of coefficientsy as well as the goodness- Figure 2: Distribution of Coefficients (top) and
of-fit values. Figure 2 shows — exemplarily for R? values (bottom) in regression of valuBg, (w)
the English 1900-2000 COHA data — that the co-on ty. The plots are histogramsj-axes are fre-
efficientsa are negative for almost all words. In quencies.
fact, the distribution is left-skewed with a mean

of around—0.4%. Moreover, the linear model is .
% selected words that have highest valugg,,, 5

always a good to very good fit of the data in that 'e omit a fine-grained semantic change analysis
R? values are centered around 85% and rarely faIYV g 9 ysis,

below 75%. We find similar patterns for all other
datasets considered here. This shows that not only
the average word’'s meaning decays linearly, but
almost all words’ (whose frequency mass exceeds
a particular threshold) semantics behaves this wayrable 2: Selected words with highest values

Next, we use our TISS graphs for the taskr,, in COHA for the time period 1900-2000.
of finding words that have undergone meaningdn brackets are the ranks of words, i.eushhas

change. To this end, we sort the gragghigs) by  the highest valud(,,), webthe 2nd highest, etc.
the ratiosRg(,) = D&tk where maxlink de-
notes maximal weight of a link in grap&'(w) _ _
and minlink is the minimal weight of a link in which could be conducted via the methods out-

graphG(w). We note that weak links may indi- lined in§2, bu_t nqtice a few cases. ‘Terrific’ has a
cate semantic change, but the stated ratio requiré@rge semantic discrepancy between the 1900s and

that ‘weakness'’ is seen relative to the strongest S€-etne top ten words with the lowest valugis;(.., areone,

mantic links in the TISS graphs. Table 2 presentswrite, have, who, come, only, even, know, hat, fact

bush (1), web (2), alan (3), implement (4)
jeff (5), gay (6), program (7), film (8),
focus (9), terrific (16), axis (36)

4
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AdjustedR>  Pred. Error Baseline
95.68: 2.80 0.402.234 0.44%.232
96.13t 1.83  0.549.333
95.242.78 0.37&.169 0.44%.187
95.75+ 2.67  0.515-.247
9472285 0.362.127 0.442.156
95.24 2.74  0.493%.190

the 1970s, when the word probably (had) changed VSL
from a negative to a more positive meaning. The
largest discrepancy for ‘web’ is between the 1940s 10
and the 2000s, when it probably came to be mas-
sively used in the context of the Internet. The high
Rg(w) value forw = ‘axis’ derives from compar-

ing its use in the 1900s with its use in the 1940sTable 3: English data, 1900-200&2 and predic-
when it probably came to be used in the contextion error in %.

of Nazi Germany and its allies. We notice that the

presented method can account for gradual, accu- _ _ _
mulating change, which is not possible for modeldNd aspect of the model in Eq. (2) is that it allows
that compare two succeeding time points such afor detecting wordsw; whose embeddings have

NRpNRDNR-

the model of Kulkarni et al. (2015a). negative coefficients,,; for a target wordv; (we
considerp = 1 in the remainder). Such nega-
4.2 Meaning dynamics network models tive coefficients may be seen as instantiations of

ghe ‘law of differentiation’: the two words’ mean-
Ings move, over time, in opposite directions in se-
mantic space. We find significantly negative re-
lationships between the following words, among
others: summit— foot, boy < woman, vow«
belief, negro— black. Instead of a detailed anal-
ysis, we mention that the Wikipedia entry for the
last pair indicates that the meanings of ‘negro’ and

two measures: adjustei?, which indicates the blath switched rplels betvv,een the early ar:d late
20" century. While ‘negro’ was once the “neu-

goodness-of-fit of a model, and prediction error.. "~ L

By prediction error, we measure the average EutgréII te_rm for the_ colored populanon in the US,
clidean distance between the true semantic vecIE acqylred negatlv? con’notatlons after the 1960s;
tor of a word in thefinal time periodty vs. the and vice versa for ‘black'.

predicted semantic vector, via the linear model i

Eg. (2), estimated on the data excluding the f

nal period. The indicated prediction error is the,, suggested two novel models of semantic
average over all words. We note the following: o,nge ~ First, TISS graphs allow for detecting
R” values are high (typically above 95%), indi- gradual, non-consecutive meaning change. They

cating that the linear semantic change m‘\);;gl Wenable to detect statistical trends of a possibly
have suggested fits the data well. Moreowf, yaneral nature. Second, our time-series models

values slightly increase between orger= 1 and 5y for investigating negative trends in mean-
p = 2; however, for prediction error this trend IS ing change (law of differentiation’) as well as
reversed. We also include a strong baseline thattorecasting into the future, which we leave for fu-
claims that word meanings do not change in the fiz ;.o \work. Both models hint at a linear behav-

nal periodt v but are the same asiy—1. Wenote i, ot semantic change, which deserves further in-
that the ordep = 1 model consistently improves oqtigation. We note that this linearity concerns
upon this baseline, by as much as 18%, depending,s ore yocabulary of languages (in our case,

upon parameter settings. _ words that occurred at least 100 times in each time
Negative relationshipsAnother very interest- period), and, in the case of TISS graphs, is an
"We exclude wordw from N;(w;n). We found that in- a'lverager'esult; partlgular words may ha\{e dras-
cludingw did not improve performance results. tic, non-linear meaning changes across time (e.g.,
®We experimented with ordegs> 3, but found them to  proper names referring to entirely different enti-
be inadequate. Typically, coefficients for laggedariables ties). However, our analysis also finds that most
are either zero or model predictions are way off, possibly : ’ y

indicating multi-collinearity. core words’ meanings decay linearly in time.

Finally, we estimate meaning dynamics models a
in Eq. (2), i.e., we estimate the coefficient§,
from our data sources. We let the neighbdyi&w)

of awordw as in Eq. (2) be the union (w.rt). over
sets Ny(w;n) denoting then > 1 semantically
most similar words (estimated by cosine similar-
ity on the original word2vec vectors) of word

in time periodt € 7.7 In Table 3, we indicate

25 Concluding remarks
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Abstract pair of words on its own. Many unsupervised sys-

We describe a model which jointly per-
forms word segmentation and induces
vowel categories from formant values.
Vowel induction performance improves
slightly over a baseline model which does
not segment; segmentation performance de-
creases slightly from a baseline using en-
tirely symbolic input. Our high joint perfor-
mance in this idealized setting implies that
problems in unsupervised speech recogni-
tion reflect the phonetic variability of real
speech sounds in context.

1 Introduction

In learning to speak their native language, a de-
veloping infant must acquire two related pieces of
information: a set of lexical items (along with the
contexts in which they are likely to occur), and a
set of phonetic categories. For instance, an English-
learning infant must learn that [i] and [1] are differ-
ent segments, differentiating between words like
beat and bit, while for a Spanish-learning infant,
[i] and [1]-like tokens represent realizations of the
same category. It is clear that these two tasks are
intimately related, and that models of language
acquisition must solve both together— but how?
This problem has inspired much recent work in
low-resource speech recognition (Lee et al., 2015;
Lee and Glass, 2012; Jansen and Church, 2011;
Varadarajan et al., 2008), with impressive results.
Nonetheless, many of these researchers conclude
that their systems learn too many phonetic cate-
gories, a problem they attribute to the presence
of contextual variants (allophones) of the differ-
ent sounds. For instance, the [a] in dog is likely
longer than the [a] in dock (Ladefoged and John-
son, 2010), but this difference is not phonologically
meaningful in English— it cannot differentiate any
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tems are claimed to erroneously learn these kinds
of differences as categorical ones.

Here, we attempt to model the problem in a more
controlled setting by extending work in cognitive
modeling of language acquisition. We present a
system which jointly acquires vowel categories and
lexical items from a mixed symbolic/acoustic rep-
resentation of the input. As is traditional in cogni-
tive models of vowel acquisition, it uses a single-
point formant representation of the vowel acous-
tics, and is tested on a simulated corpus in which
vowel acoustics are unaffected by context. We find
that, under these circumstances, vowel categories
and lexical items can be learned jointly with rel-
atively little decrease in accuracy from learning
either alone. Thus, our results support the hypothe-
sis that the more realistic problem is hard because
of contextual variability. As a secondary point, we
show that the results reflect problems with local
minima in the popular framework of hierarchical
Bayesian modeling.

2 Related work

This work aims to induce both a set of phonetic
vowel categories and a lexical representation from
unlabeled data. It extends the closely related model
of Feldman et al. (2013a), which performs the same
task, but with known word boundaries; this re-
quirement is a significant limitation on the model’s
cognitive plausibility. Our model infers a latent
word segmentation. Another extension, Frank et al.
(2014), uses semantic information to disambiguate
words, but still with known word boundaries.

A few models learn a lexicon while categoriz-
ing all sounds, instead of just vowels. Lee et al.
(2015) and Lee and Glass (2012) use hierarchical
Bayesian models to induce word and subword units.
These models are mathematically very similar to
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our own, differing primarily using more complex
acoustic representations and inducing categories
for all sounds instead of just vowels. Jansen and
Church (2011) learns whole-word Markov models,
then clusters their states into phone-like units us-
ing a spectral algorithm. Their system still learns
multiple allophonic categories for most sounds.

In the segmentation literature, several previous
systems learn lexical items from variable input (El-
sner et al., 2013; Daland and Pierrehumbert, 2011;
Rytting et al., 2010; Neubig et al., 2010; Fleck,
2008). However, these models use pre-processed
representations of the acoustics (phonetic transcrip-
tion or posterior probabilities from a phone rec-
ognizer) rather than inducing an acoustic category
structure directly. Elsner et al. (2013) and Neubig
et al. (2010) use Bayesian models and sampling
schemes similar to those presented here.

Acquisition models like Elsner et al. (2013),Ryt-
ting et al. (2010) and Fleck (2008) are designed to
handle phonological variability. In particular, they
are designed to cope with words which have mul-
tiple transcribed pronunciations ([wan] and [want]
for “want”); this kind of alternation can insert or
delete whole segments, or change a vowel sound
from one perceptual category to another. Such vari-
ability is common in spoken English (Pitt et al.,
2005) and presents a challenge for speech recogni-
tion (McAllaster et al., 1998).

In contrast, the system presented here models
phonetic variability within a single category. It
uses an untranscribed, continuous-valued represen-
tation for vowel sounds, so that different tokens
within a single category may differ from one an-
other. But it does so within an idealized dataset
which lacks phonological variants. Moreover, al-
though the phonetic input to the system is variable,
the variation is not predictable; tokens within the
category differ at random, independently from their
environment.

Several other models also learn phonetic cat-
egories from continuous input, either from real
or idealized datasets, without learning a lexicon.
Varadarajan et al. (2008) learn subword units by in-
crementally splitting an HMM model of the data to
maximize likelihood. Badino et al. (2014) perform
k-means clustering on the acoustic representation
learned by an autoencoder. Cognitive models using
formant values as input are common, many using
mixture of Gaussians (Vallabha et al., 2007; de
Boer and Kuhl, 2003). Because they lack a lexicon,
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these models have particular difficulty distinguish-
ing meaningful from allophonic variability.

3 Dataset and model

Our dataset replicates the previous idealized set-
ting for vowel category induction in cognitive
modeling, but in a corpus of unsegmented utter-
ances rather than a wordlist. We adapt a stan-
dard word segmentation corpus of child-directed
speech (Brent, 1999), which consists of 8000 utter-
ances from Bernstein-Ratner (1987), orthographi-
cally transcribed and then phonetically transcribed
using a pronunciation dictionary.

We add simulated acoustics (without contextual
variation) to each vowel in the Brent corpus. Fol-
lowing previous cognitive models of category in-
duction (Feldman et al., 2013b), we use the vowel
dataset given by Hillenbrand et al. (1995), which
gives formants for English vowels read in the con-
text h_d. We estimate a multivariate Gaussian dis-
tribution for each vowel, and, whenever a monoph-
thongal vowel occurs in the Brent corpus, we re-
place it with a pair of formants ( f1, f2) drawn from
the appropriate Gaussian. The ARPABET diph-
thongs “oy, aw, ay, em, en”, and all the consonants,
retain their discrete values. The first three words
of the dataset, orthographically “you want to”, are
rendered: y/380.53 1251.69] w[811.88 1431.96]n
1[532.91 1094.14].

3.1 Model

Our model merges the Feldman et al. (2013a) vowel
category learner with the Elsner et al. (2013) noisy-
channel framework for word segmentation, which
is in turn based on the segmentation model of Gold-
water et al. (2009). In generative terms, it defines
a sequential process for sampling a dataset. The
observations will be surface strings S, which are
divided into (latent) words X;—1.,,. We denote the
j-th character of word 7 as S;;. When §;; is a
vowel, the observed value is a real-valued formant
pair (f1, f2); when it is a consonant, it is observed
directly.

1. Draw a distribution over vowel categories,
7y ~ DP ()

2. Sample parameters for each -category,
fros Xp ~ NIW (o, A, v)

3. Draw a distribution over word strings, Gy ~
DP(O(O, CV(WW Pe, pstop)

4. Draw bigram transition distributions, G, ~

DP(OZl, GO)



5. Sample word sequences, X; ~ Gx,
6. Realize each vowel token in the surface string,
Sij ~ Normal(px,;,¥x;;)

The initial prior over word forms,
CV (Ty, De, Pstop) 18 the following: sample a
word length > 1 from Geom(psiop); for each
character in the word, choose to sample a con-
sonant with probability p. or a vowel otherwise;
sample all consonants uniformally, and all vowels
according to the (possibly-infinite) probability
vector m,.! In practice, we integrate out 7,
yielding a Chinese restaurant process in which the
distribution over vowels in a new word depend on
those used in already-seen words. Vowels which
occur in many word types are more likely to recur
(Goldwater et al., 2006; Teh et al., 2006).

The hyperparameters for the model are oy and
a1 (which control the size of the unigram and
bigram vocabularies), a,, (which weakly affects
the number of vowel categories), pg, n, A and v
(which affect the average location and dispersion
of vowel categories in formant space), and p. and
Dstop (Which weakly affect the length and composi-
tion of words). We set o and «; to their optimal
values for word segmentation (3000 and 100 (Gold-
water et al., 2009)) and «, to .001. In practice, no
value of «,, we tried would produce a useful num-
ber of vowels and so we fix the maximum number
of vowels (non-probabilistically) to n,; we explore
a variety of values of this parameter below. The
mean vector for the vowel category parameters is
set to [500, 1500] and the inverse precision matrix
to 5007, biasing vowel categories to be near the
center of the vowel space and have variances on the
order of hundreds of hertz. We set the prior degrees
of freedom v to 2.001. Since v can be interpreted
as a pseudocount determining the prior strength,
this means the prior influence is relatively weak for
reasonably-sized vowel categories. We set p. = .5
and psiop = .5; based on Goldwater et al. (2009),
we do not expect these parameters to be influential.

These hyperparameter values were mostly taken
from previous work. The vowel inverse precision
and degrees of freedom differ from those in Feld-
man et al. (2013a), since our approach requires
us to sample from the prior, but the uninformative
prior used there was too poor a fit for the data.
We chose a variance with units on the order of the
overall data variance, but did not tune it.

Feldman et al. (2013a) assumes a more complex distribu-

tion over consonants, while Goldwater et al. (2009) assumes
uniformity over all sounds.
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3.2 Inference

We conduct inference by Gibbs sampling, includ-
ing three sampling moves: block sampling of the
analyses of a single utterance, table label relabeling
of a lexical item (Johnson and Goldwater, 2009)
and resampling of the vowel category parameters
Wy and X,. We run 1000 iterations of utterance
resampling, with table relabeling every 10 itera-
tions.”>  Following previous work, we integrate
out the mixing weight distributions Gy, G; and
Ty, resulting in Chinese restaurant process distribu-
tions for unigrams, bigrams and vowel categories
in the lexicon (Teh et al., 2006). Unlike Feldman et
al. (2013a) and many other variants of the Infinite
Mixture of Gaussians (Rasmussen, 1999), we do
not integrate out u, and 3, since this would cre-
ate long-distance dependencies between different
tokens of the same vowel category within an utter-
ance and thus complicate the implementation of a
whole-utterance block sampling scheme.

To block sample the analyses of a single utter-
ance, we use beam sampling (Van Gael et al., 2008;
Huggins and Wood, 2014), an auxiliary-variable
sampling scheme in which we encode the model
as an (infeasibly large) finite-state transducer, then
sample cutoff variables which restrict our algorithm
to a finite subset of the transducer and sample a
trajectory within it. We then use a Metropolis-
Hastings acceptance test to correct for the discrep-
ancy between our finite-state encoding and the ac-
tual model probability caused by repetitions of a
lexical item within the same utterance.

Specifically, for each vowel s;;, we sample a
cutoff ¢;; ~ UJ0, P(si;|X;;)]. This cutoff indi-
cates the least probable category assignment we
will permit for the surface symbol s;;. This cutoff
constrains us to consider only a finite number of
vowels at each point; if there are not enough, we
can instantiate unseen vowels by sampling their p
and ¥ from the prior. We then construct the lattice
of possible word segmentations in which s;; is al-
lowed to correspond to any vowel in any lexical
entry, as long as all the consonants match up and
the vowel assignment density P(s;;|z;;) is greater
than the cutoff. We then propose a new trajectory
by sampling from this lattice. See Mochihashi et al.

2 Annealing is applied linearly, with inverse temperature
scaling from .1 to 1 for 800 iterations, then linearly from 1.0 to
2.0 to encourage a MAP solution. The Gaussian densities for
acoustic token emissions are annealed to inverse temperature
.3, to keep them comparable to the LM probabilities (Bahl et
al., 1980).



(2009) for details of the finite-state construction.

As in Feldman et al. (2013a), we use a table rela-
beling move (Johnson and Goldwater, 2009) which
changes the word type for a single table in the uni-
gram Chinese restaurant process by changing one
of the vowels. This recategorizes a large number of
tokens which share the same type (though not nec-
essarily all, since there may be multiple unigram
tables for the same word type). The implementa-
tion is tricky because of the bigram dependencies
between adjacent words, some of which may be
tokens of the same lexical item. Nonetheless, this
move is necessary because token-level sampling
has insufficient mobility to change the represen-
tation of a whole word type: if the sampler has
incorrectly assigned many tokens to the non-word
hav, moving any single token to the correct hav
will raise the transducer probability but also catas-
trophically lower the lexical probability by creating
a singleton lexical item.

Finally, because p, and X, are explicitly repre-
sented rather than integrated out, their values must
be resampled given the set of formant values as-
sociated with each vowel cluster. The use of a
conjugate (Normal-Inverse Wishart) prior makes
this simple, applying equations 250-254 in Murphy
(2007).

4 Results

Despite using multiple block moves, mobility is
a severe issue for the sampler; the inference pro-
cedure fails to merge together redundant vowel
categories even when doing so would raise the pos-
terior probability significantly. We demonstrate
this by running the sampler with various numbers
of vowel categories n,,. Posterior probabilities peak
around the true value of 12, but models with extra
categories always use the entire set.

With n,, setto 11 or 12 categories, quantitative
performance is relatively good, although segmen-
tation is not as good as the Goldwater et al. (2009)
segmenter without any acoustics. In fact, the sys-
tem slightly outperforms the Feldman et al. (2013a)
lexical-distributional model with gold-standard seg-
mentation. Results are shown in Table 1.

Word tokens are correctly segmented (both
boundaries correct) with an F-score of 67%3 (ver-
sus 74% in (Goldwater et al., 2009). Individual
boundaries are detected with an F-score of 82%

3The joint model scores are averaged over two sampler
runs.
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System SegeP R F VowP R F
Goldwater 76 72 74 - - -
Feldman - - - - - 76
joint, n,=12 64 69 67 87 80 83
joint, m,=11 65 70 67 85 84 85

Table 1: Segmentation and vowel clustering scores.

versus 87%. We also evaluate the lexical items,
checking whether words are correctly grouped as
well as segmented (for example, whether tokens of
“is” and “as” are separated). Feldman et al. (2013a)
evaluates the lexicon by computing a pairwise F-
score on tokens (positive class: clustered together).
Under this metric, their highest lexicon score for
English words is 93%. We compute this metric
on the subset of words for which the segmenta-
tion system performs correctly (it is not clear how
to count “misses” and “false alarms” for tokens
which were mis-segmented). On this subset, this
metric scores our system with n, = 12 at 91%,
which indicates that we correctly identify most of
the correctly segmented items.

We evaluate our phonetic clustering by comput-
ing the same pairwise F-score on pairs of vowel to-
kens. Our score is 83%:; the Feldman et al. (2013a)
model scores 76%. We conjecture that the improve-
ment results from the use of bigram context in-
formation to disambiguate between homophones.
Confusion between vowels (attached as supplemen-
tal material) is mostly reasonable. We find cross-
clusters for ah,ao, ey,ih, and uh,uw. The model’s
successful learning of the vowel categories demon-
strates that the high performance of cognitive mod-
els in this domain is not due solely to their access to
gold-standard word boundaries (see also Martin et
al. (2013)). We believe that the idealized acoustic
values (sampled from stationary Gaussians reflect-
ing laboratory production) are critical in allowing
these models to outperform those which use natural
speech.

Though solving the two tasks together is harder
than tackling either alone, these results nonethe-
less demonstrate comparable performance to other
models which have to cope with variability while
segmenting. Fleck (2008) reports only 44% seg-
mentation scores on transcribed English text in-
cluding phonological variability; the noisy channel
model of Elsner et al. (2013) yields a segmentation
token score of 67%.*

Besides generic task difficulty, we attribute the

“Word segmentation scores from Lee et al. (2015), learning
directly on acoustics, range between 16 and 20.



low scores to the model’s inability to mix, which
prevents it from merging similar vowel classes. Be-
cause table relabeling does not merge tables in the
CRP hierarchy, even if it replaces an uncommon
word with a more common one, the configurational
probability does not change. Thus the model’s spar-
sity preference cannot encourage such moves. The
prior on vowel categories, D P(p,), does encour-
age changes which reduce the number of lexical
types using a rare vowel, but relabeling a table can
rearrange at most a single sample from this prior
distribution and is easily outweighed by the likeli-
hood.

A hand analysis of one sampler run in which /1/
was split into two categories showed clear mixing
problems. Many common words, such as “it” and
“this”, appeared as duplicate lexical entries (e.g.
[11t] and [1pt]). These presumably captured some
chance variation within the category, but not an
actual linguistic feature.

We suspect that this mobility problem is also a
likely issue with models like Lee and Glass (2012)
which use deep Bayesian hierarchies and relatively
local inference moves. Since the problem occurs
even in this idealized setting, we expect it to exacer-
bate the problems caused by contextual variability
in more realistic experiments.

Some errors did result from the joint nature of
the task itself. We looked for reanalyses involv-
ing both a mis-segmentation and a vowel category
mistake. For instance, the model is capable of mis-
analyzing the word “milk” as “me” followed by the
phonotactically implausible sequence “lk”. Mis-
takes like these, in which the misanalysis creates a
word, are relatively rare as a proportion of the total.
The most common words created are “say”, “and”,
“shoe”, “it” and “a”. More commonly, misanaly-
ses of this type segment out single vowels or non-
words like [Tuk], [en], and [mo]. Some such errors
could be corrected by incorporating phonotactics
into the model (Johnson and Goldwater, 2009). In
general, the error patterns are neither particularly
interpretable nor cognitively very plausible. This
stands in contrast to the effects on word boundary
detection found in a model of phonological varia-
tion (Elsner et al., 2013).

5 Conclusion

The main result of our work is that joint word seg-
mentation and vowel clustering is possible, with
relatively high effectiveness, by merging models
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known to be successful in each setting indepen-
dently. The finding that success of this kind is
possible in an idealized setting reinforces an ar-
gument made in previous work: that much of the
difficulty in category acquisition is due to contex-
tual variation.

Both phonological and phonetic variability prob-
ably contribute to the difficulty of the real task.
Phonological processes such as reduction cre-
ate variant versions of words, splitting real lexi-
cal items and creating misleading minimal pairs.
Phonetic processes like coarticulation and com-
pensatory lengthening create predictible variation
within a category, encouraging the model to split
the category into allophones. In future work, we
hope to quantify the contributions of these sources
of error and work to address them explicitly within
the same model.
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Abstract

Event detection remains a challenge due
to the difficulty at encoding the word se-
mantics in various contexts. Previous
approaches heavily depend on language-
specific knowledge and pre-existing nat-
ural language processing (NLP) tools.
However, compared to English, not all
languages have such resources and tools
available. A more promising approach
is to automatically learn effective features
from data, without relying on language-
specific resources. In this paper, we de-
velop a hybrid neural network to cap-
ture both sequence and chunk information
from specific contexts, and use them to
train an event detector for multiple lan-
guages without any manually encoded fea-
tures. Experiments show that our approach
can achieve robust, efficient and accurate
results for multiple languages (English,
Chinese and Spanish).

1 Introduction

Event detection aims to extract event triggers
(most often a single verb or noun) and classify
them into specific types precisely. It is a cru-
cial and quite challenging sub-task of event ex-
traction, because the same event might appear in
the form of various trigger expressions and an ex-
pression might represent different event types in
different contexts. Figure 1 shows two examples.
In S1, “release” is a verb concept and a trigger for
“Transfer-Money” event, while in S2, “release ” is
a noun concept and a trigger for “Release-Parole”
event.

Most of previous methods (Ji et al., 2008; Liao
etal., 2010; Hong et al., 2011; Liet al., 2013; Liet
al., 2015b) considered event detection as a classi-
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NNP NNP MD VB NNS 1IN T\NP
S1: The European Unit will release 20 mllllon (euros) to Iraq.
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Figure 1: Event type and syntactic parser results
of an example sentence.

fication problem and designed a lot of lexical and
syntactic features. Although such approaches per-
form reasonably well, features are often derived
from language-specific resources and the output of
pre-existing natural language processing toolkits
(e,g., name tagger and dependency parser), which
makes these methods difficult to be applied to dif-
ferent languages. Sequence and chunk are two
types of meaningful language-independent struc-
tures for event detection. For example, in S2,
when predicting the type of a trigger candidate *
release”, the forward sequence information such
as “court” can help the classifier label “release”
as a trigger of a “Release-Parole” event. How-
ever, for feature engineering methods, it is hard
to establish a relation between “court” and ‘re-
lease”, because there is no direct dependency path
between them. In addition, considering S1, “Eu-
ropean Union” and “20 million euros” are two
chunks, which indicate that this sentence is related
to an organization and financial activities. These
cluese are very helpful to infer “release” as a trig-
ger of a “Transfer-Money” event. However, chun-
kers and parsers are only available for a few high-
resource languages and their performance varies a
lot.
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Figure 2: An illustration of our model for event trigger extraction (here the trigger candidate is “release’).
F, and B, are the output of Bi-LSTM and Cs, C5 are the output of CNN with convolutional filters with

widths of 2 and 3.

Recently, deep learning techniques have been
widely used in modeling complex structures and
proven effective for many NLP tasks, such as ma-
chine translation (Bahdanau et al., 2014), rela-
tion extraction (Zeng et al., 2014) and sentiment
analysis (Tang et al., 2015a). Bi-directional long
short-term memory (Bi-LSTM) model (Schuster
etal., 1997) is a two-way recurrent neural network
(RNN) (Mikolov et al., 2010) which can capture
both the preceding and following context informa-
tion of each word. Convolutional neural network
(CNN) (LeCun et al., 1995) is another effective
model for extracting semantic representations and
capturing salient features in a flat structure (Liu et
al., 2015), such as chunks. In this work, we de-
velop a hybrid neural network incorporating two
types of neural networks: Bi-LSTM and CNN, to
model both sequence and chunk information from
specific contexts. Taking advantage of word se-
mantic representation, our model can get rid of
hand-crafted features and thus be easily adapted
to multiple languages.

We evaluate our system on the event detection
task for various languages for which ground-truth
event detection annotations are available. In En-
glish event detection task, our approach achieved
73.4% F-score with average 3.0% absolute im-
provement compared to state-of-the-art. For Chi-
nese and Spanish, the experiment results are also
competitive. We demonstrate that our combined
model outperforms traditional feature-based meth-
ods with respect to generalization performance
across languages due to: (i) its capacity to model
semantic representations of each word by captur-
ing both sequence and chunk information. (ii) the
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use of word embeddings to induce a more general
representation for trigger candidates.

2 Our Approach

In this section, we introduce a hybrid neural net-
works, which combines Bi-directional LSTM (Bi-
LSTM) and convolutional neural networks to learn
a continuous representation for each word in a
sentence. This representation is used to predict
whether the word is an event trigger or not. Specif-
ically, we first use a Bi-LSTM to encode semantics
of each word with its preceding and following in-
formation. Then, we add a convolutional neural
network to capture structure information from lo-
cal contexts.

2.1 Bi-LSTM

In this section we describe a Bidirectional LSTM
model for event detection. Bi-LSTM is a type
of bidirectional recurrent neural networks (RNN),
which can simultaneously model word represen-
tation with its preceding and following informa-
tion. Word representations can be naturally con-
sidered as features to detect triggers and their
event types. As show in (Chen et al., 2015), we
take all the words of the whole sentence as the in-
put and each token is transformed by looking up
word embeddings. Specifically, we use the Skip-
Gram model to pre-train the word embeddings to
represent each word (Mikolov et al., 2013; Bah-
danau et al., 2014).

We present the details of Bi-LSTM for event
trigger extraction in Figure 2. We can see that
Bi-LSTM is composed of two LSTM neural net-
works, a forward LSTMg to model the preced-
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ing contexts, and a backward LSTMp to model
the following contexts respectively. The input
of LSTMF is the preceding contexts along with
the word as trigger candidate, and the input of
LSTMp is the following contexts plus the word
as trigger candidate. We run LSTM g from the be-
ginning to the end of a sentence, and run LSTMp
from the end to the beginning of a sentence. Af-
terwards, we concatenate the output F, of LSTM g
and B, of LSTMp as the output of Bi-LSTM. One
could also try averaging or summing the last hid-
den vectors of LSTMy and LSTMp as alterna-
tives.

2.2 Convolution Neural Network

As the convolutional neural network (CNN) is
good at capturing salient features from a sequence
of objects (Liu et al., 2015), we design a CNN
to capture some local chunks. This approach has
been used for event detection in previous studies
(Nguyen and Grishman, 2015; Chen et al., 2015).
Specifically, we use multiple convolutional filters
with different widths to produce local context rep-
resentation. The reason is that they are capable
of capturing local semantics of n-grams of various
granularities, which are proven powerful for event
detection. In our work, multiple convolutional fil-
ters with widths of 2 and 3 encode the semantics of
bigrams and trigrams in a sentence. This local in-
formation can also help our model fix some errors
due to lexical ambiguity.

An illustration of CNN with three convo-
lutional filters is given in Figure 3. Let
us denote a sentence consisting of n words
as {wi,ws, .. w;,...w,}, and each word w; is
mapped to its embedding representation e; € R%.
In addition, we add a position feature (PF), which
is defined as the relative distance between the cur-
rent word and the trigger candidate. A convolu-
tional filter is a list of linear layers with shared pa-
rameters. We feed the output of a convolutional
filter to a MaxPooling layer and obtain an output
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vector with fixed length.

2.3 Output

At the end, we concatenate the bidirectional se-
quence features: F' and B, which are learned from
the Bi-LSTM, and local context features: C5 and
Cs, which are the output of CNN with convolu-
tional filters with width of 2 and 3, as a single vec-
tor O = [F, B,Cq,Cs]. Then, we exploit a soft-
max approach to identify trigger candidates and
classify each trigger candidate as a specific event

type.

2.4 Training

In our model, the loss function is the cross-entropy
error of event trigger identification and trigger
classification. We initialize all parameters to form
a uniform distribution U (—0.01,0.01). We set the
widths of convolutional filters as 2 and 3. The
number of feature maps is 300 and the dimension
of the PFis 5. Table 1 illustrates the setting param-
eters used for three languages in our experiments
(Zeiler, 2012).

3 Experiments

In this section, we will describe the detailed exper-
imental settings and discuss the results. We eval-
uate the proposed approach on various languages
(English, Chinese and Spanish) with Precision (P),
Recall (R) and F-measure (F). Table 1 shows the
detailed description of the data sets used in our ex-
periments. We abbreviate our model as HNN (Hy-
brid Neural Networks).

3.1 Baseline Methods

We compare our approach with the following
baseline methods.

(1) MaxEnt, a basesline feature-based method,
which trains a Maximum Entropy classifier with
some lexical and syntactic features (Ji et al., 2008).

(2) Cross-Event (Liao et al., 2010), using
document-level information to improve the perfor-
mance of ACE event extraction.

(3) Cross-Entity (Hong et al., 2011), extracting
events using cross-entity inference.

(4) Joint Model (Li and Ji, 2014), a joint struc-
tured perception approach, incorporating multi-
level linguistic features to extract event triggers
and arguments at the same time so that local pre-
dictions can be mutually improved.



‘Word Embedding Gradient Learning Method Data Sets
Language corpus dim method parameters Corpus Train Dev Test
English NYT 300 SGD learning rate r = 0.03 ACE2005 529 30 40
Chinese Gigaword 300 Adadelta p=0.9578=1e S ACE2005 513 60 60
Spanish Gigaword 300 Adadelta p=009578=1e 6 ERE 93 12 12

Table 1: Hyperparameters and # of documents used in our experiments on three languages.

Trigger Identification | Trigger Classification
Model P R F P R F

MaxEnt 762 605 674 | 745 591 659
Cross-Event | N/A N/A  N/A | 6877 689 688
Cross-Entity | N/A  N/A  N/A 729 643 683
Joint Model 769 650 704 | 737 623 675
PR N/A NA NA | 689 720 704
CNN 804 677 735 | 756 636 69.1
RNN 732 635 674 | 673 599 642
LSTM 786 674 726 | 745 60.7 66.9
Bi-LSTM 80.1 694 743 | 816 623 70.6
HNN 80.8 715 759 | 846 649 734

Table 2: Comparison of different methods on En-
glish event detection.

(5) Pattern Recognition (Miao and Grishman,
2015), using a pattern expansion technique to ex-
tract event triggers.

(6) Convolutional Neural Network (Chen et al.,
2015), which exploits a dynamic multi-pooling
convolutional neural network for event trigger de-
tection.

3.2 Comparison On English

Table 2 shows the overall performance of all meth-
ods on the ACE2005 English corpus. We can
see that our approach significantly outperforms
all previous methods. The better performance of
HNN can be further explained by the following
reasons: (1) Compared with feature based meth-
ods, such as MaxEnt, Cross-Event, Cross-Entity,
and Joint Model, neural network based methods
(including CNN, Bi-LSTM, HNN) performs better
because they can make better use of word semantic
information and avoid the errors propagated from
NLP tools which may hinder the performance for
event detection. (2) Moreover, Bi-LSTM can cap-
ture both preceding and following sequence in-
formation, which is much richer than dependency
path. For example, in S2, the semantic of “court”
can be delivered to release by a forward sequence
in our approach. It is an important clue which can
help to predict “release” as a trigger for “Release-
FParole”. For explicit feature based methods, they
can not establish a relation between “court” and
“release”, because they belong to different clauses,
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and there is no direct dependency path between
them. While in our approach, the semantics of
“court” can be delivered to release by a forward
sequence. (3) Cross-entity system achieves higher
recall because it uses not only sentence-level in-
formation but also document-level information. It
utilizes event concordance to predict a local trig-
ger’s event type based on cross-sentence infer-
ence. For example, an “attack” event is more
likely to occur with “killed” or “die” event rather
than “marry” event. However, this method heav-
ily relies on lexical and syntactic features, thus
the precision is lower than neural network based
methods. (4) RNN and LSTM perform slightly
worse than Bi-LSTM. An obvious reason is that
RNN and LSTM only consider the preceding se-
quence information of the trigger, which may miss
some important following clues. Considering S1
again, when extracting the trigger “releases”, both
models will miss the following sequence “20 mil-
lion euros to Iraq”. This may seriously hinder the
performance of RNN and LSTM for event detec-
tion.

3.3 Comparison on Chinese

For Chinese, we follow previous work (Chen et al.,
2012) and employ Language Technology Platform
(Liu et al., 2011) to do word segmentation.

Table 3 shows the comparison results between
our model and the state-of-the-art methods (Li et
al., 2013; Chen et al., 2012). MaxEnt (Li et al.,
2013) is a pipeline model, which employs human-
designed lexical and syntactic features. Rich-C
is developed by Chen et al. (2012), which also
incorporates Chinese-specific features to improve
Chinese event detection. We can see that our
method outperforms methods based on human de-
signed features for event trigger identification and
achieves comparable F-score for event classifica-
tion.

3.4 Spanish Extraction

Table 4 presents the performance of our method
on the Spanish ERE corpus. The results show that



Trigger Identification | Trigger Classification

Model P R F P R F
MaxEnt 500 77.0 606 | 475 731 576
Rich-C 622 719 667 | 589 681 63.2
HNN 742 63.1 682 | 771 531 63.0

Table 3: Results on Chinese event detection.

HNN approach performed better than LSTM and
Bi-LSTM. It indicates that our proposed model
could achieve the best performance in multiple
languages than other neural network methods. We
did not compare our system with other systems
(Tanev et al., 2009), because they reported the re-
sults on a non-standard data set .

Trigger Identification | Trigger Classification
Model P R F P R F
LSTM 622 529 572 | 569 326 41.6
Bi-LSTM 762  63.1 687 | 615 422 50.1
HNN 814 652 716 | 663 478 555

Table 4: Results on Spanish event detection.

4 Related Work

Event detection is a fundamental problem in infor-
mation extraction and natural language process-
ing (Li et al., 2013; Chen et al., 2015), which
aims at detecting the event trigger of a sentence
(Ji et al., 2008). The majority of existing methods
regard this problem as a classification task, and
use machine learning methods with hand-crafted
features, such as lexical features (e.g., full word,
pos tag), syntactic features (e.g., dependency fea-
tures) and external knowledge features (WordNet).
There also exists some studies leveraging richer
evidences like cross-document (Ji et al., 2008),
cross-entity (Hong et al., 2011) and joint inference
(Li and Ji, 2014).

Despite the effectiveness of feature-based meth-
ods, we argue that manually designing feature
templates is typically labor intensive. Besides,
feature engineering requires expert knowledge and
rich external resources, which is not always avail-
able for some low-resource languages. Further-
more, a desirable approach should have the abil-
ity to automatically learn informative representa-
tions from data, so that it could be easily adapted
to different languages. Recently, neural network
emerges as a powerful way to learn text represen-
tation automatically from data and has obtained
promising performances in a variety of NLP tasks.
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For event detection, two recent studies (Nguyen
and Grishman, 2015; Chen et al., 2015) explore
neural network to learn continuous word represen-
tation and regard it as the feature to infer whether a
word is a trigger or not. Nguyen (2015) presented
a convolutional neural network with entity type in-
formation and word position information as extra
features. However, their system limits the con-
text to a fixed window size which leads the loss of
word semantic representation for long sentences.

We introduce a hybrid neural network to learn
continuous word representation. Compared with
feature-based approaches, the method here does
not require feature engineering and could be di-
rectly applied to different languages. Compared
with previous neural models, we keep the advan-
tage of convolutional neural network (Nguyen and
Grishman, 2015) in capturing local contexts. Be-
sides, we also incorporate a Bi-directional LSTM
to model the preceding and following information
of a word as it has been commonly accepted that
LSTM is good at capturing long-term dependen-
cies in a sequence (Tang et al., 2015b; Li et al.,
2015a).

5 Conclusions

In this work, We introduce a hybrid neural net-
work model, which incorporates both bidirectional
LSTMs and convolutional neural networks to cap-
ture sequence and structure semantic information
from specific contexts, for event detection. Com-
pared with traditional event detection methods,
our approach does not rely on any linguistic re-
sources, thus can be easily applied to any lan-
guages. We conduct experiments on various lan-
guages ( English, Chinese and Spanish. Empirical
results show our approach achieved state-of-the-
art performance in English and competitive results
in Chinese. We also find that bi-directional LSTM
is powerful for trigger extraction in capturing pre-
ceding and following contexts in long distance.
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Abstract

Syntactic parsers perform poorly in pre-
diction of Argument-Cluster Coordination
(ACC). We change the PTB representation
of ACC to be more suitable for learning
by a statistical PCFG parser, affecting 125
trees in the training set. Training on the
modified trees yields a slight improvement
in EVALB scores on sections 22 and 23.
The main evaluation is on a corpus of 4th
grade science exams, in which ACC struc-
tures are prevalent. On this corpus, we ob-
tain an impressive x2.7 improvement in
recovering ACC structures compared to a
parser trained on the original PTB trees.

1 Introduction

Many natural language processing systems make
use of syntactic representations of sentences.
These representations are produced by parsers,
which often produce incorrect analyses. Many of
the mistakes are in coordination structures, and
structures involving non-constituent coordination,
such as Argument Cluster Coordination, Right
Node-Raising and Gapping (Dowty, 1988), are es-
pecially hard.

Coordination is a common syntactic phenomena
and work has been done to improve coordination
structures predication in the general case (Hogan,
2007; Hara et al., 2009; Shimbo and Hara, 2007;
Okuma et al., 2009). In this work we focus on one
particular coordination structure: Argument Clus-
ter Coordination (ACC). While ACC are not com-
mon in the Penn TreeBank (Marcus et al., 1993),
they commonly appear in other corpora. For ex-
ample, in a dataset of questions from the Regents
4th grade science exam (the Aristo Challenge),
14% of the sentences include ACC.
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ACC is characterized by non-constituent se-
quences that are parallel in structure. For instance,
in “I bought John a microphone on Monday and
Richie a guitar on Saturday”, the conjunction is
between “John a microphone on Monday” and
“Richie a guitar on Saturday” which are both non-
constituents and include parallel arguments: the
NPs “John” and “Richie”; the NPs “a micro-
phone” and “a guitar”; and the PPs “on Monday”
and “on Saturday” .

Previous NLP research on the Argument Clus-
ters Coordination (Mouret, 2006) as well as the
Penn TreeBank annotation guidelines (Marcus et
al., 1993; Bies et al., 1995) focused mainly on
providing representation schemes capable of ex-
pressing the linguistic nuances that may appear in
such coordinations. The resulting representations
are relatively complex, and are not easily learn-
able by current day parsers, including parsers that
refine the grammar by learning latent annotations
(Petrov et al., 2006), which are thought to be more
agnostic to the annotations scheme of the trees. In
this work, we suggest an alternative, simpler rep-
resentation scheme which is capable of represent-
ing most of the Argument Cluster coordination
cases in the Penn Treebank, and is better suited
for training a parser. We show that by changing
the annotation of 125 trees, we get a parser which
is substantially better at handling ACC structures,
and is also marginally better at parsing general
sentences.

2 Arguments Cluster Coordination in
the Penn Tree Bank

Argument Cluster Coordinations are represented
in the PTB with two or more conjoined VPs,
where the first VP contains a verb and indexed ar-
guments, and the rest of the VPs lack a verb and
include arguments with indices corresponding to
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those of the first conjoined VP. For example, con-
sider the PTB representation of “The Q ratio was
only 65% in 1987 and 68.9% in 1988”:

VP

N

VP cc VP
|
and NP=1  PP=2
VBD NP-1 PP-2 7 <
‘ —~ 68.9 % in 1988
was only 65 %  in 1987

The main VP includes two conjoined VPs. The
first VP includes the verb was and two indexed ar-
guments: “only 65%” (1) and “in 1987” (2). The
second VP does not include a verb, but only two
arguments, that are co-indexed with the parallel ar-
gument at the first conjoined VP.

ACC structures in the PTB may include modi-
fiers that are annotated under the main VP, and the
conjoined VPs may includes arguments that are
not part of the cluster. These are annotated with
no index, i.e. “insurance costs” in [1a].

ACC structures are not common in the PTB.
The training set includes only 141 ACC structures
of which are conjoined by and or or. Some of
them are complex but most (78%) have the follow-
ing pattern (NT is used to denote non-terminals):

VP

A% cc VP

/\
and/or NT=1 NT=2

Verb NT-1 NT-2

These structures can be characterized as follows:
(1) the first token of the first conjoined VP is a
verb; (2) the indexed arguments are direct chil-
dren of the conjoined VPs; (3) the number of the
indexed arguments is the same for each conjoined
VP.

Almost all of these cases (98%) are symmetric:
each of the conjoined VPs has the same types of
indexed arguments. Non-symmetric clusters (e.g.
“He made [these gestures]}, ; [to the red group]%
and [for us]?D P [nothing]}vp”) exist but are less
common.

We argue that while the PTB representation for
ACC gives a clear structure and covers all the ACC
forms, it is not a good representation for learn-
ing PCFG parsers from. The arguments in the
clusters are linked via co-indexation, breaking the
context-free assumptions that PCFG parsers rely
on. PCFG parsers ignore the indexes, essentially
losing all the information about the ACC con-
struction. Moreover, ignoring the indexes result

in “weird” CFG rules such as VP — NP PP. Not
only that the RHS of these rules do not include a
verbal component, it is also a very common struc-
ture for NPs. This makes the parser very likely to
either mis-analyze the argument cluster as a noun-
phrase, or to analyze some NPs as (supposedly
ACC) VPs. The parallel nature of the construction
is also lost. To improve the parser performance for
ACC structures prediction, we suggest an alterna-
tive constituency representation for ACC phrases
which is easier to learn.

3 Alternative Representation for ACC

Our proposed representation for ACC respects the
context-free nature of the parser. In order to avoid
incorrect syntactic derivations and derivations that
allows conjoining of clusters with other phrases,
as well as to express the symmetry that occur in
many ACC phrases, we change the PTB represen-
tation for ACC as follows: (1) we move the verb
and non-indexed elements out of the first argu-
ment cluster to under the main VP; (2) each ar-
gument cluster is treated as a phrase, with new
non-terminal symbols specific to argument clus-
ters; (3) the conjunction of clusters also receives a
dedicated phrase level. For example see compari-
son between the original and new representations:

(1]

VP

N

VP cc VP
|
and NP1 PP=2
VBN PRT NP NP-1 PP-2 e
. ~ 30%  in California
driven up

insurance 20%
costs

in Maryland
(a) PTB representation
VP

VBN PRT NP
—_

insurance

ACCPHyp
| —
driven up
costs
ACCyp-pp cc
|

ACCyp-prp
NP1 pP2  amd NpZy pP=2
— —_

20% i 30% in

Maryland California

(b) Our modified tree

The main verb driven as well as the particle up
and the non-indexed argument insurance costs are
moved to the external VP. The two argument clus-
ters (formerly VPs) receive dedicated phrase la-
bels ACCx, where X reflects the syntactic types



of the indexed elements (e.g. ACCnp_pp for the
first cluster in [1b] above). The most common
cases are ACCnp_pp which appears in 41.6%
of the clusters, ACC4pjp—pp with 21.2% of the
clusters and ACCpp_pp with 5.3% of the clus-
ters.

Finally, we introduce a new phrase type
(ACCPHx) for the coordination of the two clus-
ters. Here X denotes the main element in the clus-
ters, determined heuristically by taking the first of
the following types that appear in any of the clus-
ters: NP, PP, ADJP, SBAR. Cases where the clus-
ters contains an ADVP element are usually special
(e.g. the following structure is missing “people” in
the second cluster: (NP 8000 people) (in Spain))
and ((NP 2000) (ADVP abroad))). For such cases,
we add “ADVP” to the ACCPH level label. Ta-
ble 1 lists the ACC P H level labels and their num-
ber of the appearances in the 125 modified trees.!

The representation is capable of representing
common cases of ACC where the cluster elements
are siblings. We similarly handle also some of the
more complex cases, in which an extra layer ap-
pears between an indexed argument and the con-
joined VP to host an empty element, such as in
the following case with an extra S layer above

single-B-3:
/’\ and /\

ADJP=1 PpP=2
T~
Vv B\ PP-2 single-B-plus by..

12 )t( d hx

NP

\
-NONE-

ADIP 1

—_
single-B-3

in which we remove the empty NP as well as the
extra S layer:

/\

\Y% B\ ACCPHpp
12 \t( d
ACCapsp-pp CcC ACCapsp-pp
I
ADJP PP ad apgp PP
- > —_
single-B-3  by... single-B-plus  by...

"Parsers that apply latent annotations to the grammar,
such as the Berkeley Parser (Petrov et al., 2006) we use in
our experiments, can potentially learn some of our proposed
refinements on their own. However, as we show in the ex-
periments section, the performance of the Berkeley Parser
on ACC structures significantly improve when applying our
transformations prior to training.
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Label # | Label #
ACCPHpyp 69 | ACCPHNp_aADpVP 6
ACCPHpp 36 | ACCPHpp_apyp 11
ACCPH pjp 2 | ACCPHgspar-apvp 1

Table 1: The labels for the new level in the ACC
trees. #: number of occurrences.

Limitations Our representation is similar to the
representation that was suggested for ACC by
Huddleston et al. (2002) in their comprehen-
sive linguistic description of the English gram-
mar. However, while it is capable of repre-
senting the common cases of ACC, it does not
cover some complex and rare cases encountered
in the PTB: (1) Argument-Cluster structures that
include errors such as missing indexed argument
and a wrong POS tag for the main verb; (2) ACC
constructions where the main verb is between
the indexed arguments such as the following:
“([About half]; invested [in government bonds]2)
and ([about 10%]; [in cash]2)”; (3) Argument-
Cluster structures that include an indexed phrase
which is not a direct child of the cluster head
and has non-empty siblings, such as in the follow-
ing case that includes an indexed argument (8%)
which is not directly under the conjoined VP and
has non-empty sibling (of): “see a raise [[of]
[8%]np—_1]pp in the first year] and [7%]np=1
in each of the following two years”.

Our changes are local and appear in small num-
ber of trees (0.003% of the PTB train set). We also
ignore more complex cases of ACC. Yet, training
the parser with the modified trees significantly im-
proves the parser results on ACC structures.

4 Experiments

We converted 125 trees with ACC structures in
the training sets (sections 2-21) of the PTB to
the new representation, and trained the Berkeley
parser (Petrov et al., 2006) with its default settings.

As the PTB test and dev sets have only 12 ACC
structures that are coordinated by and or or, we
evaluate the parser on Regents, a dataset in which
ACC structures are prevalent (details below). As
Regents does not include syntactic structures, we
focus on the ACC phenomena and evaluate the
parsers’ ability to correctly identify the spans of
the clusters and the arguments in them.

To verify that the new representation does not
harm general parsing performance, we also eval-



Dataset R P F1
Dev PTB Trees 90.88 90.89 90.88
Modified Trees 90.97 91.21 91.09
Test PTB Trees 90.36 90.79 90.57
Modified Trees 90.62 91.06 90.84

Table 2: Parsing results (EVALB) on PTB Sec-
tions 22 (DEV) and 23 (TEST).

PTB Trees Modified Trees
ACCprp 13.0 -
ACCour 24.1 64.8

Table 3: The parser Recall score in recover-
ing ACC conjunct spans on the Regents dataset.
ACCprpg: the set is annotated with the verb in-
side the first cluster. ACCpoprg: the set is anno-
tated following our approach.

uate the parer on the traditional development and
test sets (sections 22 and 23). As can be seen in
Table 2, the parser results are slightly better when
trained with the modified trees.?

4.1 Regents data-set

Regents — a dataset of questions from the Regents
4th grade science exam (the Aristo Challenge),3
includes 281 sentences with coordination phrases,
where 54 of them include Argument Cluster co-
ordination. We manually annotated the sentences
by marking the conjuncts spans for the constituent
coordination phrases, e.g.:

Wendy (ran 19 miles) and (walked 9 miles)

as well as the spans of each component of the
argument-cluster coordinations, including the in-
ner span of each argument:

Mary paid ([$11.08] [for berries]), ([$14.33] [for
apples]) , and ([$9.31] [for peaches])

The bracketing in this set follow our proposed
ACC bracketing, and we refer to it as ACCoyr.

We also created a version in which the bracket-
ing follow the PTB scheme, with the verb included
in span of the first cluster, e.g.:

Mary ([paid] [$11.08] [for berries]) , ([$14.33]
[for apples]), and ([$9.31] [for peaches])

We refer to this dataset as ACCprp.

2The same trend holds also if we exclude the 12 modified
trees from the evaluation sets.
*http://allenai.org/content/data/Regents.zip
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We evaluate the parsers’ ability to correctly re-
cover the components of the coordination struc-
tures by computing the percentage of gold anno-
tated phrases where the number of predicted con-
junct is correct and all conjuncts spans (round
brackets) are predicted correctly (Recall). For
example, consider the following gold annotated
phrase:

A restaurant served (9 pizzas during lunch) and (6
during dinner) today

A prediction of (“9 pizzas during lunch”, “6
during dinner today”) is considered as incorrect
because the second conjunct boundaries are not
matched to the gold annotation.

We compare the Recall score that the parser
achieves when it is trained on the modified trees
to the score when the parser is trained on the PTB
trees.

When evaluated on all coordination cases in the
Regents dataset (both ACC and other cases of con-
stituent coordination), the parser trained on the
modified trees was successful in recovering 54.3%
of the spans, compared to only 47% when trained
on the original PTB trees.

We now focus on specifically on the ACC
cases (Table 3). When evaluating the PTB-trained
parser on ACCprp, it correctly recovers only
13% of the ACC boundaries. Somewhat sur-
prisingly, the PTB-trained parser performs better
when evaluated against ACCoyp, correctly re-
covering 24.1% of the structures. This highlights
how unnatural the original ACC representation is
for the parser: it predicts the alternative represen-
tation more often than it predicts the one it was
trained on. When the parser is trained on the mod-
ified trees, results on ACCopgr jump to 64.8%,
correctly recovering x2.7 more structures.

The previous results were on recovering the
spans of the coordinated elements (the round
brackets in the examples above). When mea-
suring the Recall in recovering any of the argu-
ments themselves (the elements surrounded by
square brackets), the parser trained on the mod-
ified trees recovers 72.46% of the arguments in
clusters, compared to only 58.29% recovery by
the PTB-trained parser. We also measure in what
percentage of the cases in which both the cluster
boundaries (round brackets) were recovered cor-
rectly, all the internal structure (square brackets)
was recovered correctly as well. The score is 80%
when the parser trained on the modified trees com-



pared to 61.5% when it is trained on the PTB-trees.

Overall, the parser trained on the modified trees
significantly outperforms the one trained on the
original trees in all the evaluation scenarios.

Another interesting evaluation is the ability of
the parser that is trained on the modified trees to
determine whether a coordination is of Argument
Clusters type (that is, whether the predicted co-
ordination spans are marked with the ACCPH la-
bel).* The results are a Recall of 57.4% and Pre-
cision of 83.78%. When we further require that
both the head be marked as ACCPH and the in-
ternal structure be correct, the results are 48.14%
Recall and 70.27% Precision.

5 Conclusions

By focusing on the details of a single and rela-
tively rare syntactic construction, argument clus-
ters coordination, we have been able to signifi-
cantly improve parsing results for this construc-
tion, while also slightly improving general parsing
results. More broadly, while most current research
efforts in natural language processing and in syn-
tactic parsing in particular is devoted to the de-
sign of general-purpose, data-agnostic techniques,
such methods work on the common phenomena
while often neglecting the very long tail of impor-
tant constructions. This work shows that there are
gains to be had also from focusing on the details
of particular linguistic phenomena, and changing
the data such that it is easier for a “data agnostic”
system to learn.
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Abstract

In the translation industry, human transla-
tions are assessed by comparison with the
source texts. In the Machine Translation
(MT) research community, however, it is
a common practice to perform quality as-
sessment using a reference translation in-
stead of the source text. In this paper we
show that this practice has a serious issue
— annotators are strongly biased by the ref-
erence translation provided, and this can
have a negative impact on the assessment
of MT quality.

1 Introduction

Equivalence to the source text is the defining char-
acteristic of translation. One of the fundamental
aspects of translation quality is, therefore, its se-
mantic adequacy, which reflects to what extent the
meaning of the original text is preserved in the
translation. In the field of Machine Translation
(MT), on the other hand, it has recently become
common practice to perform quality assessment
using a human reference translation instead of the
source text. Reference-based evaluation is an at-
tractive practical solution since it does not require
bilingual speakers.

However, we believe this approach has a strong
conceptual flaw: the assumption that the task of
translation has a single correct solution. In real-
ity, except for very short sentences or very specific
technical domains, the same source sentence may
be correctly translated in many different ways.
Depending on a broad textual and real-world con-
text, the translation can differ from the source text
at any linguistic level — lexical, syntactic, seman-
tic or even discourse — and still be considered per-
fectly correct. Therefore, using a single translation
as a proxy for the original text may be unreliable.
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In the monolingual, reference-based evaluation
scenario, human judges are expected to recognize
acceptable variations between translation options
and assign a high score to a good MT, even if
it happens to be different from a particular hu-
man reference provided. In this paper we argue
that, contrary to this expectation, annotators are
strongly biased by the reference. They inadver-
tently favor machine translations (MTs) that make
similar choices to the ones present in the reference
translation. To test this hypothesis, we perform an
experiment where the same set of MT outputs is
manually assessed using different reference trans-
lations and analyze the discrepancies between the
resulting quality scores.

The results confirm that annotators are indeed
heavily influenced by the particular human trans-
lation that was used for evaluation. We discuss
the implications of this finding on the reliability
of current practices in manual quality assessment.
Our general recommendation is that, in order to
avoid reference bias, the assessment should be per-
formed by comparing the MT output to the origi-
nal text, rather than to a reference.

The rest of this paper is organized as follows.
In Section 2 we present related work. In Section 3
we describe our experimental settings. In Section
4 we focus on the effect of reference bias on MT
evaluation. In Section 5 we examine the impact of
the fatigue factor on the results of our experiments.

2 Related Work

It has become widely acceptable in the MT com-
munity to use human translation instead of (or
along with) the source segment for MT evalua-
tion. In most major evaluation campaigns (ARPA
(White et al.,, 1994), 2008 NIST Metrics for
Machine Translation Challenge (Przybocki et al.,
2008), and annual Workshops on Statistical Ma-

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 77-82,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



chine Translation (Callison-Burch et al., 2007,
Bojar et al., 2015)), manual assessment is ex-
pected to consider both MT fluency and adequacy,
with a human (reference) translation commonly
used as a proxy for the source text to allow for
adequacy judgement by monolingual judges.

The reference bias problem has been exten-
sively discussed in the context of automatic MT
evaluation. Evaluation systems based on string-
level comparison, such as the well known BLEU
metric (Papineni et al., 2002) heavily penalize po-
tentially acceptable variations between MT and
human reference. A variety of methods have been
proposed to address this issue, from using multiple
references (Dreyer and Marcu, 2012) to reference-
free evaluation (Specia et al., 2010).

Research in manual evaluation has focused on
overcoming annotator bias, i.e. the preferences
and expectations of individual annotators with re-
spect to translation quality that lead to low levels
of inter-annotator agreement (Cohn and Specia,
2013; Denkowski and Lavie, 2010; Graham et al.,
2013; Guzmadn et al., 2015). The problem of ref-
erence bias, however, has not been examined in
previous work. By contrast to automatic MT eval-
uation, monolingual quality assessment is consid-
ered unproblematic, since human annotators are
supposed to recognize meaning-preserving varia-
tions between the MT output and a given human
reference. However, as will be shown in what fol-
lows, manual evaluation is also strongly affected
by biases due to specific reference translations.

3 Settings

To show that monolingual quality assessment de-
pends on the human translation used as gold-
standard, we devised an evaluation task where
annotators were asked to assess the same set of
MT outputs using different references. As control
groups, we have annotators assessing MT using
the same reference, and using the source segments.

3.1 Dataset

MT data with multiple references is rare. We used
MTC-P4 Chinese-English dataset, produced by
Linguistic Data Consortium (LDC2006T04). The
dataset contains 919 source sentences from news
domain, 4 reference translations and MT outputs
generated by 10 translation systems. Human trans-
lations were produced by four teams of profes-
sional translators and included editor’s proofread-
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ing. All teams used the same translation guide-
lines, which emphasize faithfulness to the source
sentence as one of the main requirements.

We note that even in such a scenario, human
translations differ from each other. We measured
the average similarity between the four references
in the dataset using the Meteor evaluation met-
ric (Denkowski and Lavie, 2014). Meteor scores
range between 0 and 1 and reflect the proportion
of similar words occurring in similar order. This
metric is normally used to compare the MT out-
put with a human reference, but it can also be ap-
plied to measure similarity between any two trans-
lations. We computed Meteor for all possible com-
binations between the four available references
and took the average score. Even though Me-
teor covers certain amount of acceptable linguis-
tic variation by allowing for synonym and para-
phrase matching, the resulting score is only 0.33,
which shows that, not surprisingly, human transla-
tions vary substantially.

To make the annotation process feasible given
the resources available, we selected a subset of
100 source sentences for the experiment. To en-
sure variable levels of similarity between the MT
and each of the references, we computed sentence-
level Meteor scores for the MT outputs using each
of the references and selected the sentences with
the highest standard deviation between the scores.

3.2 Method

We developed a simple online interface to collect
human judgments. Our evaluation task was based
on the adequacy criterion. Specifically, judges
were asked to estimate how much of the meaning
of the human translation was expressed in the MT
output (see Figure 1). The responses were inter-
preted on a five-point scale, with the labels in Fig-
ure 1 corresponding to numbers from 1 (“None”)
to 5 (“All”).

For the main task, judgments were collected us-
ing English native speakers who volunteered to
participate. They were either professional trans-
lators or researchers with a degree in Computa-
tional Linguistics, English or Translation Stud-
ies. 20 annotators participated in this monolin-
gual task. Each of them evaluated the same set
of 100 MT outputs. Our estimates showed that
the task could be completed in approximately
one hour. The annotators were divided into four
groups, corresponding to the four available refer-



How much of the meaning of the human translation is also expressed in the machine translation?

i Machine translation:

Australia to Reopen Embassy in Manila

Translation 1/100 Next

Figure 1: Evaluation Interface

ences. Each group contained five annotators in-
dependently evaluating the same set of sentences.
Having multiple annotators in each group allowed
us to minimize the effect of individual annotators’
biases, preferences and expectations.

As a control group, five annotators (native
speakers of English, fluent in Chinese or bilingual
speakers) performed a bilingual evaluation task for
the same MT outputs. In the bilingual task, an-
notators were presented with an MT output and
its corresponding source sentence and asked how
much of the meaning of the source sentence was
expressed in the MT.

In total, we collected 2,500 judgments. Both
the data and the tool for collecting human
judgments are available at https://github.
com/mfomicheva/tradopad.git.

4 Reference Bias

The goal of the experiment is to show that depend-
ing on the reference translation used for evalua-
tion, the quality of the same MT output will be per-
ceived differently. However, we are aware that MT
evaluation is a subjective task. Certain discrepan-
cies between evaluation scores produced by dif-
ferent raters are expected simply because of their
backgrounds, individual perceptions and expecta-
tions regarding translation quality.

To show that some differences are related to
reference bias and not to the bias introduced by
individual annotators, we compare the agreement
between annotators evaluating with the same and
with different references. First, we randomly se-
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lect from the data 20 pairs of annotators who used
the same reference translations and 20 pairs of
annotators who used different reference transla-
tions. The agreement is then computed for each
pair. Next, we calculate the average agreement for
the same-reference and different-reference groups.
We repeat the experiment 100 times and report the
corresponding averages and confidence intervals.
Table 1 shows the results in terms of stan-
dard (Cohen, 1960) and linearly weighted (Cohen,
1968) Kappa coefficient (k).! We also report one-
off version of weighted k, which discards the dis-
agreements unless they are larger than one cate-

gory.

Kappa Diff. ref. ‘ Same ref. Source

Standard | .163£.01 | .197+.01 | 0.1904+.02
Weighted | .330+.01 | .373+.01 | 0.336+.02
One-off | .597+£.01 | .662+.01 | 0.6434.02

Table 1: Inter-annotator agreement for different-
references (Diff. ref.), same-reference (Same ref.)
and source-based evaluation (Source)

As shown in Table 1, the agreement is consis-
tently lower for annotators using different refer-
ences. In other words, the same MT outputs sys-
tematically receive different scores when differ-

'In MT evaluation, agreement is usually computed using
standard k both for ranking different translations and for scor-
ing translations on an interval-level scale. We note, however,
that weighted k is more appropriate for scoring, since it al-
lows the use of weights to describe the closeness of the agree-
ment between categories (Artstein and Poesio, 2008).



ent human translations are used for their evalua-
tion. Here and in what follows, the differences
between the results for the same-reference annota-
tor group and different-reference annotator group
were found to be statistically significant with p-
value < 0.01.

The agreement between annotators using the
source sentences is slightly lower than in the
monolingual, same-reference scenario, but it is
higher than in the case of the different-reference
group. This may be an indication that reference-
based evaluation is an easier task for annotators,
perhaps because in this case they are not required
to shift between languages. Nevertheless, the fact
that given a different reference, the same MT out-
puts receive different scores, undermines the reli-
ability of this type of evaluation.

Human score | BLEU score
Reference 1 1.980 0.1649
Reference 2 2.342 0.1369
Reference 3 2.562 0.1680
Reference 4 2.740 0.1058

Table 2: Average human scores for the groups of
annotators using different references and BLEU
scores calculated with the corresponding refer-
ences. Human scores range from 1 to 5, while
BLEU scores range from O to 1.

In Table 2 we computed average evaluation
scores for each group of annotators. Average
scores vary considerably across groups of anno-
tators. This shows that MT quality is perceived
differently depending on the human translation
used as gold-standard. For the sake of compari-
son, we also present the scores from the widely
used automatic evaluation metric BLEU. Not sur-
prisingly, BLEU scores are also strongly affected
by the reference bias. Below we give an example
of linguistic variation in professional human
translations and its effect on reference-based MT
evaluation.

Sre: At X — R EHAER?

MT: But all this is beyond the control of you.

R1: But all this is beyond your control.

R2: However, you cannot choose yoursely.

R3: However, not everything is up to you to
decide.

2Literally: “However these all totally beyond the control
of you.”
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R4: But you can’t choose that.

Although all the references carry the same mes-
sage, the linguistic means used by the translators
are very different. Most of these references are
high-level paraphrases of what we would consider
a close version of the source sentence. Annota-
tors are expected to recognize meaning-preserving
variation between the MT and any of the refer-
ences. However, the average score for this sen-
tence was 3.4 in case of Reference 1, and 2.0, 2.0
and 2.8 in case of the other three references, re-
spectively, which illustrates the bias introduced by
the reference translation.

5 Time Effect

It is well known that the reliability and consistency
of human annotation tasks is affected by fatigue
(Llora et al., 2005). In this section we examine
how this factor may gave influenced the evalua-
tion on the impact of reference bias and thus the
reliability of our experiment.

We measured inter-annotator agreement for the
same-reference and different-reference annotators
at different stages of the evaluation process. We
divided the dataset in five sets of sentences based
on the chronological order in which they were an-
notated (0-20, 20-40, ..., 80-100). For each slice
of the data we repeated the procedure reported in
Section 4. Figure 2 shows the results.

First, we note that the agreement is always
higher in the case of same-reference annotators.
Second, in the intermediate stages of the task
we observe the highest inter-annotator agreement
(sentences 20-40) and the smallest difference be-
tween the same-reference and different-reference
annotators (sentences 40-60). This seems to in-
dicate that the effect of reference bias is minimal
half-way through the evaluation process. In other
words, when the annotators are already acquainted
with the task but not yet tired, they are able to
better recognize meaning-preserving variation be-
tween different translation options.

To further investigate how fatigue affects the
evaluation process, we tested the variability of hu-
man scores in different (chronological) slices of
the data. We again divided the data in five sets
of sentences and calculated standard deviation be-
tween the scores in each set. We repeated this pro-
cedure for each annotator and averaged the results.
As can be seen in Figure 3, the variation between
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Figure 2: Inter-annotator agreement at different
stages of evaluation process

the scores is lower in the last stages of the evalua-
tion process. This could mean that towards the end
of the task the annotators tend to indiscriminately
give similar scores to any translation, making the
evaluation less informative.

1.1
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0.95

0.9

020 2040 40-60 60-80 80-100
Evaluated sentences

0.85

Figure 3: Average standard deviations between
human scores for all annotators at different stages
of evaluation process

6 Conclusions

In this work we examined the effect of reference
bias on monolingual MT evaluation. We com-
pared the agreement between the annotators who
used the same human reference translation and
those who used different reference translations.
We were able to show that in addition to the in-
evitable bias introduced by different annotators,
monolingual evaluation is systematically affected

B
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by the reference provided. Annotators consistently
assign different scores to the same MT outputs
when a different human translation is used as gold-
standard. The MTs that are correct but happen
to be different from a particular human translation
are inadvertently penalized during evaluation.

We also analyzed the relation between reference
bias and annotation at different times throughout
the process. The results suggest that annotators
are less influenced by specific translation choices
present in the reference in the intermediate stages
of the evaluation process, when they have already
familiarized themselves with the task but are not
yet fatigued by it. To reduce the fatigue effect, the
task may be done in smaller batches over time. Re-
garding the lack of experience, annotators should
receive previous training.

Quality assessment is instrumental in the devel-
opment and deployment of MT systems. If evalua-
tion is to be objective and informative, its purpose
must be clearly defined. The same sentence can
be translated in many different ways. Using a hu-
man reference as a proxy for the source sentence,
we evaluate the similarity of the MT to a partic-
ular reference, which does not necessarily reflect
how well the contents of the original is expressed
in the MT or how suitable it is for a given pur-
pose. Therefore, monolingual evaluation under-
mines the reliability of quality assessment. We
recommend that unless the evaluation is aimed for
a very specific translation task, where the number
of possible translations is indeed limited, the as-
sessment should be performed by comparing MT
to the original text.
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Abstract

This paper presents a cross-lingual pro-
jection technique for training class-based
language models. We borrow from pre-
vious success in projecting POS tags and
NER mentions to that of a trained class-
based language model. We use a CRF
to train a model to predict when a se-
quence of words is a member of a given
class and use this to label our language
model training data. We show that we can
successfully project the contextual cues
for these classes across pairs of languages
and retain a high quality class model in
languages with no supervised class data.
We present empirical results that show the
quality of the projected models as well
as their effect on the down-stream speech
recognition objective. We are able to
achieve over 70% of the WER reduction
when using the projected class models as
compared to models trained on human an-
notations.

1 Introduction

Class-based language modeling has a long history
of being used to improve the quality of speech
recognition systems (Brown et al., 1992; Knesser
and Ney, 1993). Recent work on class-based mod-
els has exploited named entity recognition (NER)
approaches to label language model training data
with class labels (Levit et al., 2014; Vasserman et
al., 2015), providing a means to assign words and
phrases to classes based on their context. These
contextually assigned classes have been shown
to improve speech recognition significantly over
grammar-based, deterministic class assignments.
In this work, we address the problem of la-
beling training data in order to build a class se-
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quence tagger. We borrow from the successes of
previous cross-lingual projection experiments for
labeling tasks (Yarowsky et al., 2001; Yarowsky
and Ngai, 2001; Burkett et al., 2010; Padé and
Lapata, 2009). We focus on numeric classes
(e.g., address numbers, dates, currencies, times,
etc.) as the sequence-based labeling approach has
been shown to be effective for identifying them.
Given a model trained from human-labeled data
in one language (we refer to this as the high-
resource language), we label translations of sen-
tences from another language (referred to as the
low-resource language). We show that we can
project the numeric entity boundaries and labels
across the aligned translations with a phrase-based
translation model. Furthermore, we show that if
we train a class labeling model on the projected
low-resource language and then use that to build a
class-based speech recognition system, we achieve
between 70% and 85% of the error reduction as
we would have achieved with human-labeled ex-
amples in the low-resource language.

We present empirical results projecting numeric
entity labels from English to Russian, Indonesian,
and Italian. We present full speech recognition
results for using human annotated data (the ideal
performance) and projected data with various sizes
of training data.

2 Related work

There is an increasingly large body of work based
on exploiting alignments between translations of
sentences in multiple languages (Yarowsky et al.,
2001; Yarowsky and Ngai, 2001; Burkett et al.,
2010; Das and Petrov, 2011). In this work we
employ the simple approach of projecting anno-
tations across alignments of translated sentences.
Our cross-lingual approach is closely related to
other NER projection approaches (Huang et al.,
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Induced annotations for Italian
DAY  MONTH TIME TIME TIME

’ aggiungi H evento H giovedi " settembre H ore ‘ n H

[rome L0

’ add ] ’ event H Thursday H September ‘
MONTH DAY

Annotations from existing English tagger

Induced annotations for Indonesian
OPERAND OPERAND OPERAND

roter | (e [ |[s0][ owe ][ e ][ oo

|

solo under

cheap H hotel two H hundred [ thousand

OPERAND OPERAND OPERAND

Annotations from existing English tagger

Figure 1: Examples of cross-lingual projection for
numeric entities.

2003; Moore, 2003); however, we have focused
on a limited class of entities which may explain
why the simple approach works reasonably well.

Our projection approach is most closely related
to that presented in (Yarowsky et al., 2001) and
(Pad6 and Lapata, 2009). In each of these, la-
bels over sequences of words are projected across
alignments directly from one language to the
other. While we follow a similar approach, our
goal is not necessarily to get the exact projection,
but to get a projection which allows us to learn
contextual cues for the classes we are labeling.
Additionally, we focus on the case where we are
generating the translated data rather that identify-
ing existing parallel data. Similar to (Yarowsky
and Ngai, 2001), we filter out poor alignments (de-
tails are described in Section 3.2).

3 Methodology

3.1 Training class taggers for language
modeling

We use a statistical sequence tagger to identify and
replace class instances in raw text with their la-
bel. For example, the tokens /0 thousand dollars
in the raw training text may be replaced with a
placeholder class symbol. The decision is context-
dependent: the tagger is able to resolve ambi-
guities among possible labels, or even leave the
text unchanged. Next, this modified text is used
to train a standard n-gram language model. Fi-
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Figure 2: This FST is a small excerpt of the full
grammar for TIME. Arc weights are not shown.

nally, all placeholders become non-terminals in
the language model and are expanded either stat-
ically or dynamically with stochastic finite-state
class grammars (see Figure 2 for an example).
Decorator tokens inside the grammars are used to
mark class instances in the word lattice so that
they can be converted (after recognition) to the de-
sired written forms using deterministic spoken-to-
written text-normalization rules.

3.2 Cross-lingual Projection Techniques

The starting point for cross-lingual projection is to
train a statistical sentence tagger of high quality in
a high-resource language, i.e., a language where
both a lot of training data and human annotators
are readily available. We use English in our exper-
iments.

To obtain annotated sentences in a low-resource
language, we translate unlabeled sentences into
the high-resource language. We use an in-house
phrase-based statistical machine translation sys-
tem (Koehn et al., 2003) which is trained with par-
allel texts extracted from web pages; described in
detail in Section 4.1 of (Nakagawa, 2015). The
translation system we use provides token-by-token
alignments as part of the output. This is achieved
by keeping alignments along with phrase-pairs
during the phrase extraction stage of training the
alignment system.

The high quality sentence tagger is applied to
the translated sentences. Then, using the align-
ments between the translated sentences, we map
class tags back to the low-resource language. See
Figure 1 for examples of actual mappings pro-
duced by this procedure.

With this approach, we can produce arbitrar-
ily large in-domain annotated training sets for
the low-resource language. These annotated sen-
tences are then used to train a class tagger for
the low-resource language. The main question is
whether the resulting class tagger is of sufficient
quality for our down-stream objective.



For the goal of training a class-based language
model in a low-resource language, one may con-
sider a different approach than the one just de-
scribed: instead of training a tagger in the low-
resource language, each sentence in the language
model training data could be translated to the high-
resource language, tagged using the statistical tag-
ger, and projected back to the low-resource lan-
guage. The primary reason for not pursuing this
approach is the size of the language model train-
ing data (tens of billions of sentences). Translat-
ing a corpus this large is prohibitive. As the high-
resource language tagger is trained on approxi-
mately 150K tokens, we believe that we have cov-
ered a large number of the predictive cues for the
set of classes.

Alignment details

When projecting the class labels back from a
translated sentence to the original sentence, vari-
ous subtle issues arise. We describe these and our
solutions for each in this section.

To tag a token in the low-resource language, we
see which tokens in the high-resource language
are aligned to it in the translation, and look at
their class tags. If all of these tokens have the
same class tag, we assign the same tag to the low-
resource language token. Otherwise, we use the
following rules:

e If some tokens have no class tag but others
have some class tag, we still assign the class
tag to the original token.

If multiple tokens with different class tags
map to the original token, we consider the
tagging ambiguous. In such a case, we sim-
ply skip the sentence and do not use it for
training the low-resource tagger. We can af-
ford to do so because there is no shortage of
unlabeled training sentences.

In a number of cases, we ignore sentence pairs
which may have contained alignments allowing us
to project labels, but also contained noise (e.g.,
spurious many-to-one alignments). We rejected
poor alignments 2%, 31% and 14% of the time for
Indonesian, Russian and Italian respectively. Date
and time expressions were often affected by these
noisy alignments.
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4 Empirical evaluation

4.1 Data

We trained an English conditional random field
(CRF) (Lafferty et al., 2001) tagger to be used in
all experiments in order to provide labels for the
sentences produced by translation. To train this
tagger we obtained a data set of 24,503 manually
labeled sentences (150K tokens) sampled from a
corpus of British English language model training
material. Each token is labeled with one of 17 pos-
sible tags. About 95% of the tokens are labeled
with a ‘none’ tag, meaning that the token is not in
any of the pre-determined non-lexical classes.

Separately, we obtained similar training sets
to create Italian, Indonesian and Russian taggers.
The models trained from these labeled data sets
were used only to create baseline systems for com-
parison with the cross-lingual systems.

To provide input into our cross-lingual projec-
tion procedure, we also sampled datasets of unla-
beled sentences of varying sizes for each evalua-
tion language, using the same sampling procedure
as used for the human-labeled sets.

Note that these tagger training sets have incon-
sistent sizes across languages (see Table 2) due to
the nature of the sampling procedure: Each train-
ing source is searched for sentences matching an
extensive list of patterns of numeric entities. Sen-
tences from each training source are collected up
to a source-specific maximum number (which may
not always be reached). We also apply a flattening
step to increase diversity of the sample.

4.2 CRF model

Our CRF tagger model was trained online using
a variant of the MIRA algorithm (Crammer and
Singer, 2003). Our feature set includes isolated
features (for word identity w;, word type d;, and
word cluster ¢;) as well as features for neighboring
words w;_2, W;—1, Wi+1, Wit2, Wi+3, heighbor-
ing clusters c;_2,¢;—1,Ci+1, Ci+2, Ci+3, pair fea-
tures (wy, di—1), (wi, diy1), (di, di—1), (di, dit1),
and domain-specific features (indicators for tokens
within a given numeric range, or tokens that end in
a certain number of zero digits). We also include
class bias features, which capture the class prior
distribution found in the training set.

4.3 Metrics

We use two manually transcribed test sets to eval-
uate the performance of our approach in the con-



Test Set Utts Words % Numeric words
NUM 1D 9,744 60,781 19%
NUMRU 10,988 59,933 22%
NUM 1T 8,685 48,195 18%
VS ID 9,841 36,276 2%
VS RU 12,467 49,403 3%
VSIT 12,625 47,867 2%

Table 1: NUM refers to the NUMERIC entities test
set and VS refers to the VOICE-SEARCH test set.

text of numeric transcription. The first test set
VOICE-SEARCH (approximately 48K words for
Italian and Russian, and approximately 36K words
for Indonesian) is a sample from general voice-
search traffic, and tracks any regressions that ap-
pear as a result of biasing too heavily toward the
selected classes. The other test set NUMERIC (ap-
proximately 48K words for Italian, and approxi-
mately 60K for Russian and Indonesian) contains
utterances we expect to benefit from class-based
modeling of numeric entities. See Table 1 for de-
tails on these test sets.

We report word-error-rate (WER) on each test
set for each model evaluated, including two base-
line systems (one built without classes at all and
another that has classes identified by a tagger
trained on human-labeled data). We also report
a labeled-bracket F1 score to show the perfor-
mance of the tagger independent of the speech-
recognition task. For each language, the test set
used for labeled-bracket F1 is a human-labeled
corpus of approximately 2K sentences that were
held out from the human-labeled corpora for the
baseline systems.

4.4 Results

The results in Table 2 show that all class-based
systems outperform the baseline in WER on the
NUMERIC test set, while performance on the
VOICE-SEARCH test set was mostly flat. The flat
performance on VOICE—-SEARCH is expected: as
seen in Table 1 this test set has a very low propor-
tion of words that are numeric in form. We pro-
vide results on this test set in order to confirm that
our approach does not harm general voice-search
queries. As for performance on the NUMERIC
test set, larger cross-lingual data sets led to better
performance for Russian and Italian, but caused
a slight regression for Indonesian. The trans-
lation system we use for these experiments has
been optimized for a general-purpose web search
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NUM VS
Model F1 WER WER
ID Baseline (no classes) - 20.0 10.1
ID Cross-lingual 15K 0.64 193 10.1
ID Cross-lingual 37K 0.65 194 10.1
ID Cross-lingual 77K 0.64 195 10.1
ID Human-labeled 0.83 19.1 10.1
RU Baseline (no classes) - 28.7 17.1
RU Cross-lingual 16K 037 264 17.0
RU Cross-lingual 98K 039 262 17.1
RU Human-labeled 0.87 253 16.8
IT Baseline (no classes) - 23.0 14.8
IT Cross-lingual 18K 0.55 19.7 148
IT Cross-lingual 104K 0.57 19.6 148
IT Human-labeled 0.88 19.0 148

Table 2: NUM refers to the NUMERIC entities test
set and VS refers to the VOICE—-SEARCH test set.
All NUM WER results are statistically significant
(p < 0.1%) using a paired random permutation
significance test.

translation task rather than for an academic task.
When evaluated on a test set matched to the trans-
lation task, performance for Russian-to-English
was considerably worse than for Indonesian-to-
English or Italian-to-English.

For Indonesian (ID), the human-labeled sys-
tem achieved a 4.5% relative WER reduction on
NUMERIC, while the best cross-lingual system
achieved a 3.5% relative reduction.

For Russian (RU), the human-labeled system
improved more, achieving an 11.8% relative re-
duction on NUMERIC, while the best cross-lingual
system achieved an 8.7% relative reduction.

Finally, for Italian (IT), the human-labeled sys-
tem gave an impressive 17.4% relative reduction
on NUMERIC, while the best cross-lingual system
achieved a 14.8% relative reduction on the same
test set.

Across the three languages, the cross-lingual
systems achieved relative error reductions on the
NUMERIC test set that were between 70% and
85% of the reduction achieved when using only
human-labeled data for training the class tagger.

4.5 Error Analysis

We noticed that the Russian cross-lingual-derived
training set was of lower quality than those of
the other languages, as seen in the labeled-bracket
F1 metric in Table 2. Looking more closely, we



noticed that the per-class F1 scores tended to be
lower for labels used for dates and times. This ob-
servation also concides with the observation that
the alignment procedure frequently ran into am-
biguity issues when aligning month, day and year
tokens between Russian and English, thus signifi-
cantly reducing the coverage of these labels in the
induced cross-lingual training set.

5 Conclusion

We presented a cross-lingual projection technique
for training class-based language models. We ex-
tend a previously successful sequence-modeling-
based class labeling approach for identifying
contextually-dependent class assignments by pro-
jecting labels from a high-resource language to a
low-resources language. This allows us to build
class-based language models in low-resource lan-
guages with no annotated data. Our empirical re-
sults show that we are able to achieve between
70% and 85% of the error reduction that we would
have obtained had we used human-labeled data.

While cross-lingual projection for sequence-
labeling techniques are well known in the com-
munity, our approach exploits the fact that we are
generating training data from the projection rather
than using the projected result directly. Further-
more, noise in the class-labeling system does not
cripple the language model as it learns a distribu-
tion over labels (including no label).

In future work, we will experiment with
alternative projection approaches including pro-
jecting the training data and translating from the
high-resource language to the low-resource lan-
guage. We also plan to experiment with different
projection approaches to address the ambiguity
issues we observed when aligning time and date
expressions.
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Abstract

Retrieving semantic similar short texts
is a crucial issue to many applications,
e.g., web search, ads matching, question-
answer system, and so forth. Most of the
traditional methods concentrate on how
to improve the precision of the similar-
ity measurement, while current real ap-
plications need to efficiently explore the
top similar short texts semantically re-
lated to the query one. We address the
efficiency issue in this paper by investi-
gating the similarity strategies and incor-
porating them into the FAST framework
(efficient FrAmework for semantic sim-
ilar Short Texts retrieval). We conduct
comprehensive performance evaluation on
real-life data which shows that our pro-
posed method outperforms the state-of-
the-art techniques.

1 Introduction

In this paper, we investigate the fast approach
of short texts retrieval, which is important to
many applications, e.g., web search, ads match-
ing, question-answer system, etc. (Yu et al., 2016;
Wang et al., 2015; Hua et al., 2015; Yang et al.,
2015; Wang et al., 2010; Wei et al., 2008; Cui et
al., 2005; Metzler et al., 2007; Ceccarelli et al.,
2011; Radlinski et al., 2008). The setting of the
problem is that users always ask for those most
semantically related to their queries from a huge
text collection. A common solution is applying
the state-of-the-art short texts similarity measure-
ment techniques (Islam and Inkpen, 2008; Li et al.,
2006; Mihalcea et al., 2006; Sahami and Heilman,
2006; Tsatsaronis et al., 2010; Mohler et al., 2011;
Wang et al., 2015), and then return the top-k ones

* Corresponding author.
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by sorting them with regard to the similarity score.
After surveying the previous approaches, we find
that almost all the methods concentrate on how
to improve the precision, i.e., effectiveness issue.
In addition, the data collections which they con-
ducted are rather small. However, the scale of the
problem has dramatically increased and the cur-
rent short texts similarity measurement techniques
could not handle when the data collection size be-
comes enormous. In this paper, we aim to address
the efficiency issue in the literature while keeping
their high precision. Moreover, we focus on the
top-k issue because users commonly do not care
about the individual similarity score but only the
sorted results. Furthermore, most of the previous
studies (Islam and Inkpen, 2008; Li et al., 2006;
Tsatsaronis et al., 2010; Wang et al., 2015) need
to set predefined threshold to filter out those dis-
similar texts which is rather difficult to determine
by users.

Different from long texts, short texts cannot al-
ways observe the syntax of a written language
and usually do not possess sufficient information
to support statistical based text processing tech-
niques, e.g., TF-IDF. This indicates that the tra-
ditional NLP techniques for long texts may not be
always appropriate to apply to short texts. The re-
lated works on short texts similarity measurement
can be classified into the following major cate-
gories, i.e., (1) inner resource based strategy (Li
et al., 2006; Islam and Inkpen, 2008); (2) outer
resource based strategy (Tsatsaronis et al., 2010;
Mihalcea et al., 2006; Islam and Inkpen, 2008;
Wang et al., 2015); and (3) hybrid based strat-
egy (Islam and Inkpen, 2008; Li et al., 2006; Wang
et al., 2015).

Naively testing the candidate short texts for top-
k similar short texts retrieval is inefficient when
directly using these strategies. To tackle the effi-
ciency problem, we propose an efficient strategy
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to evaluate as few candidates as possible. More-
over, our fast algorithm aims to output the results
progressively, i.e., the top-1 should be obtained
instantly. This scheme meets the demand of the
real world applications, especially for big data en-
vironment. We list our contribution of this paper
as follows: we propose a fast approach to tackle
the efficiency problem for retrieving top-k seman-
tic similar short texts; we present the optimized
techniques and improve the efficiency which min-
imizes the candidate number to be evaluated in
our framework. The results of four different set-
tings demonstrate that the efficiency of our fast
approach outperforms the state-of-the-art methods
while keeping effectiveness.

2 Preliminaries

Formally, for a given query short text g, retriev-
ing a set of k£ short texts T in a data collec-
tion Dg which are most semantically similar to
q, i.e., Vt € Tg and Vr € (Ds — Ts) will yield
sim(q,t) > sim(q,r). To obtain the similarity
score sim(q,t) between two short texts, we can
apply the current state-of-the-art strategies (Tsat-
saronis et al., 2010; Mihalcea et al., 2006; Islam
and Inkpen, 2008; Wang et al., 2015). In this pa-
per, we judiciously select some similarity metrics
which are assembled into a general framework to
tackle the efficiency problem. Most of the exist-
ing strategies of evaluating the similarity between
short texts are based on word similarity, because
of the intuitive idea that short text is composed of
words. As aresult, we introduce the representative
word similarity in the next section.

2.1 Selected Representative Similarity
Measurement Strategies

There are a number of semantic similarity
strategies having been developed in the previous
decades which are useful in some specific applica-
tions of NLP tasks. Recently, outer resources are
indispensable for short texts similarity measure-
ment (Tsatsaronis et al., 2010; Mihalcea et al.,
2006; Islam and Inkpen, 2008; Wang et al., 2015;
Hua et al., 2015). After extensively investigating
a number of similarity measurement strategies,
we judiciously explore two representative word
similarity measurement strategies which obtain
the best performance compared with human
judges.
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Knowledge based Strategy

Knowledge based strategy determines whether
two words are semantically similar by measur-
ing their shortest path in the predefined taxonomy.
The path between them can be calculated by ap-
plying word thesauri, e.g., WordNet. In this paper,
we take one representative metric which has been
proposed in (Leacock and Chodorow, 1998). Let’s
take two words w;,w; as an example, the similarity
is as follows:

_lnpaths(wi, wj)

2x D
where paths(w;, w;) is the shortest path between
two word concepts by using related strategy, e.g.,
node-counting strategy. D is the maximum depth
of such taxonomy (D is with different size in
either noun taxonomy or verb taxonomy).

Simy(w;, wj) =

Corpus based Strategy

Different from knowledge based strategy, corpus
based strategy cannot form a new entity which
means we can only apply statistical information
to determine the similarity between two words.
There are a few corpus based similarity measure-
ment strategies, e.g., PMI, LSA, HAL, and so
forth. In this paper, we select a representative
strategy which applies Wiki encyclopedia to map
Wiki texts into appropriate topics. Each Wiki topic
is represented as an attribute vector. The words in
the vector occur in the corresponding articles. En-
tries of these vectors are assigned weight which
quantifies the association between words and each
Wiki topic after applying vector based scheme,
e.g., TF-IDF. The similarity can be evaluated by
aggregating each word distributing on these top-
ics. In addition, a short text is a vector based
on topics with weight of each topic 7; formulated
as: ZwiETs v; - dj, where v; is TF-IDF weight of
w; and d; which quantifies the degree of associ-
ation of word w; with Wiki topic 7}. Here, the
Wiki topic could be concepts or topics generated
by other techniques, e.g., LDA, LSA, etc.

2.2 Semantic Similarity Measurement
between Two Short Texts

Semantic similarity between two short texts can
be measured by combining the words similarity in
a general framework. Therefore, the method of
combining the words similarities into a framework
may affect the efficiency and effectiveness of the
similarity score. In this paper, we integrate differ-



ent similarity strategies linearly and this method
has been proved that it has high precision by com-
paring with human judges (Li et al., 2006; Islam
and Inkpen, 2008). The scheme measures each
word pair of short texts and then constructs a sim-
ilarity score matrix. Finally, the similarity score
between two short texts is recursively executed by
aggregating the representative words.

3 A Fast Approach for Semantic Similar
Short Texts Retrieval

We propose a fast approach for retrieving the top-
k semantic similar short texts to a given query ¢ in
this section. The key idea of this scheme is to ac-
cess a rather small size of candidates in the whole
data collection. The scheme is conducted by build-
ing appropriate indices in offline procedure, i.e.,
preprocessing procedure. We illustrate the whole
framework in Figure 1. The figure tells us, to ef-
ficiently retrieve top-k similar short texts, our pro-
posed strategy only accesses as small as possible
part of candidates which are filled in grey color.

top-1 result: [ T2] Delicious sushi, tempura and sashimi near Okubo |
T

[ |
Knowledge based Similarity Metric Corpus based Similarity Metric

2| T2 | Delicious sushi, tempura and sashimi near Okubo.| | T1 | Anything after this wonderful lunch in Japan?
< | T3 | Very good food, but a little expensive. T2 | Delicious sushi, tempura and sashimi near Okubo.|
8
[ } 1 [ } 1

delicious lunch Japan delicious lunch Japan
o[ detciovs [ 2. lunch [ ... Japan | ... o |deiciovs [ T2,.. lunch | --- Japan | ...
gl nice [T2,.. food | T2,T3 | [ Nippon | ... W [wonderful T1,... sushi | T2,... || Nippon | ...
<[ good [T3,.. dish | . sushi_ | T2, <[ good [73,... | [tempura| T2, | [Shinjuku] .
2 wonderful T1,... sushi | 12,... | [tempura | T2,... B nice |T2, food | T2,T3 || Okubo [ T2,...
3| tasty tempura | T2, .. service | ... = tasty dish | ... service

Figure 1: The framework of proposed fast ap-
proach

3.1 Efficiently Aggregate Similarity Metrics

In this section, we present an efficient assembling
strategy to hasten the process of retrieving top-k
similar short texts (Fagin et al., 2001). A concrete
example to illustrate our proposal is presented in
Figure 1. For example, let the query short text
is: “Delicious lunch in Japan™. After preprocess-
ing (stemming and removing the stopwords), the
query is: delicious lunch Japan. From Figure 1,
we can see that there is a hierarchical structure in
our framework. Suppose that if we want to retrieve
top-1 short text from the whole data, the ranked list
(i.e., order list) of knowledge based similarity and
corpus based similarity are needed respectively.
From the analysis on the property of threshold al-
gorithm, the top-1 short text comes from these two

91

ranked lists instantly. However, we cannot know
such ranking directly because these two lists are
texts layer but each list has its sub layer, i.e., word
layer. In this paper, we apply two kinds of sim-
ilarity metrics. Therefore, there are two assem-
bling tasks, i.e., (1)assembling knowledge based
and corpus based similarities; and (2)assembling
words to texts. The words are query words and
each query word corresponds to a list which can
be found in Figure 1. Figure 1 also tells us for
each word, it has the corresponding list in which
all the words have been ranked based on the re-
latedness with such word. Since each word may
occur in several short texts, the proposed method
here should take the ID of each short text into con-
sideration (e.g., word “delicious” occurs T2, etc.).
We apply threshold algorithm to obtain the top
short texts based on each query word. Therefore,
the top-1 result comes from these two ranked lists
based on threshold algorithm. In this example, T2
is finally outputted as the top-1 value.

3.2 Ranking list on Similarity Strategies

From the description in Section 3.1, we can see
that the ranked list is crucial for using threshold
algorithm to retrieve top-k short texts. In this
section, we introduce the optimized method on
each similarity metric.

Ranking on Knowledge based strategy

Since WordNet is a representative knowledge
base, we apply the Leacock and Chodorow strat-
egy as a WordNet evaluator which optimized as an
efficient technique (Yang and Kitsuregawa, 2011).

Lemma 1 (Ordering in WordNet) Let q be the
query. Let P and S be two candidates that exist
in the same taxonomy of q, that is, T'p and Tj;,. The
shortest path between q and P (or S)is Lp in Tp
(or Lg in Tg). The maximum depth of Tp is Dp
(or Dg of Ts). P is more similar to () compared
with S. Thus, we have %’: > %5.

The lemma tells us that the similarity ordering be-
tween candidates in WordNet depends on the in-
tegration of the shortest path and the maximum
depth of the taxonomy. We access the related syn-
onyms set between two taxonomies successively
based on the value of % and obtain the top-k re-
sults in a progressive manner.

Ranking on Corpus based Strategy
We measure the similarity between short texts



by aggregating each word distribution on topics.
A short text is a valued vector based on topics,
where the weight of each topic 7; calculated as:
> w;eT, Vi * kj, where v; is TF-IDF weight of w;
and k; which quantifies the strength of association
of word w; with Wiki topic 7. Different from
the traditional approaches, we first calculate all the
similarity scores between each word in Wiki and
that between topics in the data collection to ob-
tain a set of lists during preprocessing. The topic
could be generated either by ESA or by LDA. Af-
ter that, we build a weighted inverted list where
each list presents a word with sorted correspond-
ing short texts according to the similarity score.
Therefore, for a given query text ¢, each word in
q corresponds to a list of short texts. As that, we
apply the threshold algorithm retrieve the top-k re-
sults by using this manner. This manner accesses
a small size of components of the data without ne-
cessity to evaluate every candidate short text.

After obtaining all the ranking lists, we can ap-
ply the threshold algorithm aforementioned to ef-
ficiently retrieve the top-k semantic similar short
texts either by equal weight scheme or weight tun-
ing strategy.

4 Experimental Evaluation

In this section, we conduct on three different
datasets to evaluate the performance of our ap-
proach. To evaluate the effectiveness, we test the
dataset which was used in (Li et al., 2006). For ef-
ficiency evaluation, we apply the BNC and MSC
datasets which are extracted from British National
Corpus and Microsoft Research Paraphrase Cor-
pus respectively. The baseline strategy is imple-
mented according to the state-of-the-art (linear as-
sembling strategy as (Islam and Inkpen, 2008)).
In our proposed strategy, we take four different
settings: (1) FASTg is the one that we apply the
ESA topic strategy; (2) FAST, employs the LDA
topic strategy in corpus based similarity with equal
weight; and (3) FASTg, and FAST},, are im-
plemented based on the former two ones, respec-
tively, with the tuned combinational weights.

4.1 Efficiency Evaluation

We evaluate the efficiency by using two real-life
datasets which have been denoted as BNC and
MSC. To test the effect of size of data collec-
tion, we select different size of these two datasets.
Firstly, we conducted experiments on the fixed
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size of data collection by using 4 settings of our
proposed approach. The results show that com-
paring with the baseline strategy, FAST i, FAST,
FASTg,, and FAST,, have promotion at 75.34%,
74.68%, 75.31% and 74.59% respectively. The
four settings have similar results which indicates
that the weight is not the crucial factor in our
proposed strategy. Table. 1 tells us the number
of candidates accessed. Our evaluation has been
conducted on different data collection size to test
the scalability of our proposed strategy. Since the
baseline strategy should access all the short texts
in each size of data collection, which means in 1k
size of BNC data collection, the baseline strategy
access all these 1k candidates. However, our pro-
posed strategies under different settings only ac-
cess small size candidates to obtain the results.
From the table, we can see that, our proposed strat-
egy can largely reduce the number of candidates
accessed in both data collections. In addition,
the number of candidates accessed has increases
not quickly which indicate our proposed approach
scales well. Therefore, the proposed strategy is ef-
ficient than the baseline strategy.

Strategies BNC (#Candidates accessed)
1k 5k 10k 20k
FASTE 215 1,368 1,559 1,974
FAST, 217 1,478 1,551 2,001
FAST g 225 1,511 1,621 2,043
FAST L., 225 1,521 1,603 2,025
Strategies MSC (#Candidates accessed)
10% 20% 50% 100%
FASTE 74 304 712 1,253
FAST,, 85 313 705 1,128
FAST ., 87 308 725 1,135
FAST . 81 309 712 1,076

Table 1: Number of candidates accessed in effi-
ciency evaluation

We also evaluate the effect of £ which is an
important factor for evaluating the efficiency of
an algorithm. The experiments conducted on a
fixed size of data collection which show that the
top-1 value has been outputted instantly by ap-
ply our proposed strategy while baseline strategy
should access all candidates. For the query time
of FASTF setting costs only 19.12s while base-
line strategy costs 897.5s for obtaining the top-1
value. FAST [, FAST g, and FAST,,, cost 20.13s,
21.21s and 20.32s respectively which confirms
that combinational weight is not an important fac-
tor in our proposed strategy.



4.2 Effectiveness Evaluation

We illustrate the results of the correlation coeffi-
cient with human ratings in Table. 2. Note here,
the baseline strategy is composed by knowledge
based strategy and corpus based strategy (ESA
method) with equal weight. From the table we
can see that, the FAST g has the same precision
as the baseline because our proposed strategy only
changes the order of the evaluated short texts but
not the similarity strategy. FAST, has better pre-
cision than FASTg because we select the best
LDA topic size to form Wiki topic. FASTg,, and
FAST},, have dynamically changed the combina-
tional weights and therefore, the performance of
them has been improved.

Baseline Proposed Strategies
FASTg | FAST, | FASTg,, | FAST.,,
0.72162 | 0.72162 | 0.73333 | 0.74788 0.74941

Table 2: Effectiveness evaluation on different
strategies

5 Conclusion

In this paper, we propose a fast approach to
tackle the efficiency problem of retrieving top-k
similar short texts which has not been extensively
studied before. We select two representative
similarity metrics, i.e., knowledge based and
corpus based similarity. Efficient strategies are
introduced to test as few candidates as possible
in the querying process. Four different settings
have been proposed to improve the effectiveness.
The comprehensive experiments demonstrate
the efficiency of the proposed techniques while
keeping the high precision. In the future, we will
investigate new methods to tackle efficiency issue
and take effect semantic similarity strategies to
obtain high performance.

Acknowledgment. We would like to thank
the anonymous reviewers for their insightful
comments. This work is partially supported
by Chinese National Fund of Natural Science
under Grant 61272221, 61472191, 61070089,
11431006, Jiangsu Province Fund of Social
Science under Grant 12YYAO002, the Natural
Science Research of Jiangsu Higher Education
Institutions of China under Grant 14KJB520022,
and the Science Foundation of TianJin under grant
14JCYBJC15700.

93

References

Diego Ceccarelli, Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, and Fabrizio Silvestri. 2011.
Caching query-biased snippets for efficient retrieval.
In Proceedings of the International Conference on
Extending Database Technology, EDBT/ICDT 11,
pages 93-104.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question answering passage re-
trieval using dependency relations. In Proceedings
of the International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,

SIGIR ’05, pages 400-407.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2001.
Optimal aggregation algorithms for middleware. In
Proceedings of the ACM SIGMOD symposium on
Principles of Database Systems, PODS ’01, pages
102-113.

Wen Hua, Zhongyuan Wang, Haixun Wang, Kai
Zheng, and Xiaofang Zhou. 2015. Short text under-
standing through lexical-semantic analysis. In 317st
IEEE International Conference on Data Engineer-

ing, ICDE’ 15, pages 495-506.

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data, 2(2):1-25.

C. Leacock and M. Chodorow. 1998. Combining lo-
cal context and wordnet similarity for word sense
identification. In WordNet: An Electronic Lexical
Database, pages 305-332. In C. Fellbaum (Ed.),
MIT Press.

Yuhua Li, David McLean, Zuhair Bandar, James
O’Shea, and Keeley A. Crockett. 2006. Sentence
similarity based on semantic nets and corpus statis-

tics. IEEE Transactions on Knowledge and Data
Engineering, 18(8):1138-1150.

Donald Metzler, Susan T. Dumais, and Christopher
Meek. 2007. Similarity measures for short seg-
ments of text. In Proceedings of the European Con-
ference on Information Retrieval, ECIR 07, pages
16-27.

Rada Mihalcea, Courtney Corley, and Carlo Strappa-
rava. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In Proceedings
of the AAAI Conference on Artificial Intelligence,
AAAT’06, pages 775-780.

Michael Mohler, Razvan C. Bunescu, and Rada Mihal-
cea. 2011. Learning to grade short answer questions
using semantic similarity measures and dependency
graph alignments. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Pro-
ceedings of the Conference, ACL'11, pages 752—
762.



Filip Radlinski, Andrei Broder, Peter Ciccolo, Evgeniy
Gabrilovich, Vanja Josifovski, and Lance Riedel.
2008. Optimizing relevance and revenue in ad
search: a query substitution approach. In Proceed-
ings of the International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, SIGIR 08, pages 403—410.

Mehran Sahami and Timothy D. Heilman. 2006. A
web-based kernel function for measuring the simi-
larity of short text snippets. In Proceedings of the In-
ternational Conference on World Wide Web, WWW
"06.

George Tsatsaronis, Iraklis Varlamis, and Michalis
Vazirgiannis. 2010. Text relatedness based on a
word thesaurus. Journal of Artificial Intelligence
Research, 37:1-39.

Kai Wang, Zhao-Yan Ming, Xia Hu, and Tat-Seng
Chua. 2010. Segmentation of multi-sentence ques-
tions: towards effective question retrieval in cqa ser-
vices. In Proceedings of the International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, SIGIR ’10, pages 387-394.

Peng Wang, Jiaming Xu, Bo Xu, Cheng-Lin Liu, Heng
Zhang, Fangyuan Wang, and Hongwei Hao. 2015.
Semantic clustering and convolutional neural net-
work for short text categorization. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Pro-
cessing, ACL ’15, pages 352-357.

Furu Wei, Wenjie Li, Qin Lu, and Yanxiang He. 2008.
Query-sensitive mutual reinforcement chain and its
application in query-oriented multi-document sum-
marization. In Proceedings of the International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR *08, pages
283-290.

Zhenglu Yang and Masaru Kitsuregawa. 2011. Ef-
ficient searching top-k semantic similar words. In
Proceedings of the International Joint Conference
on Artificial Intelligence, 1IJCAI’'11, pages 2373—
2378.

Shansong Yang, Weiming Lu, Dezhi Yang, Liang Yao,
and Baogang Wei. 2015. Short text understand-
ing by leveraging knowledge into topic model. In
The 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL/HLT’ 15,
pages 1232-1237.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2016. Understanding short texts through semantic
enrichment and hashing. IEEE Trans. Knowl. Data
Eng., 28(2):566-579.

94



Empty element recovery by spinal parser operations

Katsuhiko Hayashi and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{hayashi.katsuhiko, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper presents a spinal parsing al-
gorithm that can jointly detect empty ele-
ments. This method achieves state-of-the-
art performance on English and Japanese
empty element recovery problems.

1 Introduction

Empty categories, which are used in Penn Tree-
bank style annotations to represent complex syn-
tactic phenomena like constituent movement and
discontinuous constituents, provide important in-
formation for understanding the semantic structure
of sentences. Previous studies attempt empty ele-
ment recovery by casting it as linear tagging (Di-
enes and Dubey, 2003), PCFG parsing (Schmid,
2006; Cai et al., 2011) or post-processing of syn-
tactic parsing (Johnson, 2002; Gabbard et al.,
2006). To the best of our knowledge, the results
reported by (Cai et al., 2011) are the best yet re-
ported, so we pursue a method that uses syntactic
parsing to jointly solve the empty element recov-
ery problem.

Our proposal uses the spinal Tree Adjoining
Grammar (TAG) formalism of (Carreras et al.,
2008). The spinal TAG has a set of elementary
trees, called spines, each consisting of a lexical
anchor with a series of unary projections. Fig-
ure 1 displays (a) a head-annotated constituent tree
and (b) spines extracted from the tree. This pa-
per presents a transition-based algorithm together
with several operations to combine spines for con-
structing full parse trees with empty elements.
Compared with the PCFG parsing approaches, one
advantage of our method is its flexible feature
representations, which allow the incorporation of
constituency-, dependency- and spine-based fea-
tures. Of particular interest, the motivation for
our spinal TAG-based approach comes from the
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Figure 1: (a) an example of a constituent tree with
head annotations denoted by -H; (b) spinal ele-
mentary trees extracted from the parse tree (a).

intuition that features extracted from spines can
be expected to be useful for empty element recov-
ery in the same way as constituency-based vertical
higher-order conjunctive features are used in re-
cent post-processing methods (Xiang et al., 2013;
Takeno et al., 2015). Experiments on English and
Japanese datasets empirically show that our sys-
tem outperforms existing alternatives.

2 Spinal Tree Adjoining Grammars

We define here the spinal TAG G = (N, PT,T,LS)
where N is a set of nonterminal symbols, PT is
a set of pre-terminal symbols (or part-of-speech
tags), T is a set of terminal symbols (or words),
and LS is a set of lexical spines. Each spine, s,
has the form ng — n; — --- — ng_; — ng (k € N)
which satisfies the conditions:

e nop € T and n; € PT,
e Vi€ [2,k|,n; €N.

The height of spine s is 47(s) = k+ 1 and for some
position i € [0, k], the label at i is s(i) = n;. Tak-
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Figure 2: An example of parser operations: (a)
sister adjunction left (b) regular adjunction right
(c) insert left (d) combine right.

ing the leftmost spine s = We — PRP — NP in
Figure 1 (b), ht(s) =3 and s(1) = PRP.

The spinal TAG uses two operations, sister and
regular adjunctions, to combine spines. Both ad-
junctions also have left and right types. Fig-
ures 2 (a) and (b) show examples of sister adjunc-
tion left and regular adjunction right operations.
We use @# to illustrate node position on a spine,
explicitly. After a regular adjunction, the result-
ing tree has an additional node level which has a
copy of its original node at position @x, while a
sister adjunction simply inserts a spine into some
node of another spine. If adjunction left (or right)
inserts spine s1 into some node at @x on spine s>,
we call s, the head spine of s; and s; the left (or
right) child spine of s,'. This paper denotes sister
adjunction left and right as s1 © *s2, 52 @*s1, reg-
ular adjunction left and right as s; ®)*s5, 52 (@ %51,
respectively.

3 Arc-Standard Shift-Reduce Spinal
TAG Parsing

There are three algorithms for spinal TAG parsing,
(1) Eisner-Satta CKY (Carreras et al., 2008), (2)
arc-eager shift-reduce (Ballesteros and Carreras,
2015) and (3) arc-standard shift-reduce (Hayashi
et al., 2016) algorithms. This paper uses the arc-

! After adjunctions, the result forms a phrase consisting of
several spines. If a phrasal spine is also used in adjunction
operations as Figure 2 (b), we treat it as a lexical spine by
referring to its head spine.

standard shift-reduce algorithm since it provides a
more simple implementation.

A transition system for spinal TAG parsing is
the tuple S = (C,T,1,C,), where C is a set of con-
figurations, 7 is a set of transitions, which are par-
tial functions ¢ : C — C, [ is a total initialization
function mapping each input string to a unique
configuration, and C; C C is a set of terminal con-
figurations. A configuration is the tuple (o, 3,A)
where « is a stack of stack elements, f3 is a buffer
of elements from an input, and A is a set of parser
operations. A stack element s is a pair (s, j) where
s is a spine and j is a node index of s. We refer to
s and j of s as s.s and s. j, respectively.

Let x = (W /t1,...,Wp/ty) Vi€ [L,n], w, €T
and t; € PT) be a pos-tagged input sentence. The
arc-standard transition system by Hayashi et al.
(2016) can be defined as follows: its initialization
function is I(x) = ([], [W1/t1,...,Wn/ty],0), its set
of terminal configurations is G, = ([],[],A), and it
has the following transitions:

1. for each s € LS with s(0) = w; and s(1) = t;,
a shift transition of the form (o, w;/t;|3,A)
(alsi, B,A) where s; = (s5,2)%;

2-3. for each j with s;.j < j < ht(s].s), a sister
adjunction left transition of the form

(o|s2]s1,B,A) F (s, B,AU{s2.s©7s1.5})

and a regular adjunction left transition of the
form

(ols2]s1,B,A) F (s, B,AU {s2.5 ® /s1.5})
where s| = (s1.s, j);

4-5. for each j with sp.j < j < ht(sy.s), a sister
adjunction right transition of the form

(osals1, B,A) F (o]sh, B, AU {s2.5 Q7s;.5})

and a regular adjunction right transition of the
form

(o|s2]s1,B,A) F (o]s), B,AU {s2.5 @7s1.5})
where s} = (s2.5, j);

6. a finish transition of the form ([s],[],A) -

(0. 1,4)-

2To construct a full parse tree from A, our actual imple-
mentation attaches index i to spine s after shift transition.
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To reduce search errors, Hayashi et al. (2016) em-
ployed beam search with Dynamic Programming
of (Huang and Sagae, 2010). For experiments, we
also use this technique and discriminative model-
ing of (Hayashi et al., 2016).

4 Empty Element Recovery

4.1 Spinal TAG with Empty Elements

In this paper, we redefine the spinal TAG as G =
(N,PT,T,LS,*e* ET,ES), where *e* is a special
word, ET is a set of empty categories, and ES is
a set of empty spines. An empty spine s = ng —
— ny_1 — ng (k € N) has the same form
as lexical spines, but ng = *e* and n; € ET. The
height and label definitions are also the same as
those of lexical spines. For example, the rightmost
spine s = *e* — *T* — ADVP in Figure 1 (b) is
an empty spine with At (s) =3 and s(1) = *T*.

This paper extends empty spines to allow the
use of phrasal constituents that consist of only
empty elements, as a single spine. A phrasal
empty spine is a tuple (7,4), where 7 is a sequence
of (phrasal) empty spines specifying some sister
adjunctions between these spines and % is a head
spine in ¢t. The phrasal empty spine in Figure 3
consists of two empty spines *e* — 0 and *e*
— *T* — § — SBAR, where a sister adjunction
left is performed at the SBAR node of the latter
spine, which is a head spine in the phrase. To ap-
ply parser operations to a phrasal empty spine, we
use its head spine rather than itself. This paper de-
fines the height and label of a phrasal empty spine
as those of its head spine.

To recover empty elements, this paper intro-
duces two additional operations, insert and com-
bine, both of which have left and right types. Fig-
ures 2 (c¢) and (d) show insert left and combine
right operations. These operations are similar to
sister adjunctions in that the former simply inserts
some phrasal empty spine into some node of an-
other spine and the latter also inserts a spine into

ny—---

9-10.
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some node of a phrasal empty spine.

4.2 New Transitions

To handle empty spines in parsing process, we add
the following five transitions to the arc-standard
transition system of (Hayashi et al., 2016):

7-8. for each s € ES and each j with s1.j < j <
ht(s1.s), an insert left transition of the form

(G|SI7B¢A) t (G|S/1,ﬁ,AU{S@jSI.S})

and an insert right transition of the form

(ols1.8,4) F (ols},B,AU{51.5Qs})
where s} = (sy.s, j);

for each s € ES and each j with 2 < j < ht(s),
a combine left transition of the form

(o]s1,B,A) F (o]s], B,AU{s1.s©7s})

and a combine right transition of the form

(ols1.B.A) F (ols}. B,AU{sQs1.5})
where s} = (s, );

11. an idle transition of the form (ols;,,A) b

(G‘SUB’A);

Like unary and idle rules in shift-reduce CFG
parsing (Zhu et al., 2013), our current system pro-
hibits > b consecutive actions consisting of only
insert, combine and idle operations. Given an
input sentence with length n, after performing n
shift, n — 1 adjunction, b - (2n — 1) {insert, com-
bine or idle} actions, the system triggers the finish
action and terminates. For training, we make ora-
cle derivations using the stack-shortest strategy.

5 Related Work

To realize empty element recovery, other lexical-
ized TAG formalisms (Chen and Shanker, 2004;
Shen et al., 2008) attach some or all empty el-
ements directly to surface word lexicons. Our
framework, however, uses spinal TAG parser op-
erations as they provide more efficient parsing and
more compact sets of lexicons. It is remarkable
that this paper is the first study to present a shift-
reduce spinal TAG parsing algorithm to recover
empty elements.

Recent work has shown that empty element re-
covery can be effectively solved in conjunction



Tagger | Lattice | Proposed Typed-empty (t,i,i) All Brackets
M O M O M (0] Gold P R F1 P R F1
*ICH* | 2 5 2 2|31 43 78 Rule | 574 505 53.7 - - -
*RNR* | 0 3 0 4 4 5 6 Takenol5 | 60.4 50.6 55.1 - - -
k sk
EXP 10 12 0 019 26 30 Tagger | 63.1 347 448 | 729 68.6 70.7
Table 2: Result Analysis: M denotes the number Lattice | 641 522 575|737 706 721
of matches of system outputs (O) with the gold. Proposed | 65.3 57.6 61.2 | 743 728 73.6
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Figure 4: Scatter plot of parsing time against sen-
tence length, comparing with Hayashil 6, Berkeley
and Caill parsers.

with parsing (Schmid, 2006; Cai et al., 2011).
Schmid (2006) annotated a constituent tree with
slash features to recover a direct path from a filler
node to its trace. Cai et al. (2011) successfully in-
tegrated empty element recovery into lattice pars-
ing for latent PCFGs. Compared with PCFG pars-
ing, the spinal TAG parser provides a more flexible
feature representation.

6 Experiments

6.1 Experiments on the English Penn
Treebank

We used the Wall Street Journal (WSJ) part of the
English Penn Treebank: Sections 02-21 were used
for training, Section 22 for development, and Sec-
tion 23 for testing. We annotated trees with heads
by treep (Chiang and Bikel, 2002)* with the appli-
cation of Collins’s head rules. The 78524 lexical
and 115 phrasal empty spine types were obtained
from the training data*. The set of phrasal empty
spines covered all phrasal empty spines extracted
from the development data.

We used the Stanford part-of-speech tagger to
tag development and test data. To train the pro-
posed parsing model, we used the violation—fixing

3http://www3.nd.edu/~dchiang/software/
treep/treep.html

4Excluding words from lexical spines, there were 1080
lexical spine types.
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Table 3: Results on the Japanese Keyaki Treebank.

perceptron algorithm (Huang et al., 2012). For
training and testing, we set beam size to 16 and
max count b, introduced in Section 4.2, to 2. For
comparison with other systems in our environ-
ment, we also implemented two systems:

o Lattice is a method by Cai et al. (2011). We
also used blatt’, which is an extension of
the Berkeley parser, to parse word lattices in
which the special word *e* is encoded as de-
scribed in (Cai et al., 2011).

Tagger decides whether some empty cate-
gory is inserted at the front of a word or not,
with regularized logistic regression. To sim-
plify point-wise linear tagging, we combined
empty categories, those that appeared in the
same position of a sentence, into a single cat-
egory: thus the original 10 empty types in-
creased to 63.

Table 1 shows final results on Section 23. To
evaluate the accuracy of empty element recov-
ery, we calculated precision, recall and F1 scores
for (1) Labeled Empty Bracket (X/t,i,i), (2) La-
beled Empty Element (t,i,{), and (3) All Brack-
ets, where X € NT, t € ET and i is a posi-
tion of the empty element, using eevalb®. The
results clearly show that our proposed method
significantly outperforms the other systems. Ta-
ble 2 shows the main reason for the improvement
achieved by our method. The *ICH*, *RNR* and
*EXP* empty types are used to show the relation
between non-adjacent constituents, caused by syn-
tactic phenomena like Extraposition and Conjunc-
tion. Our method captures such complex relations
better with the help of the syntactic feature rich-
ness.

Table 1 reports the scores for non-empty brack-
ets to examine whether the joint method improves
the standard PARSEVAL scores. While the Lattice

Shttp://www.cs.bgu.ac.il/~yoavg/
software/blatt/

Shttp://www3.nd.edu/-dchiang/software/
eevalb.py



Johnson (X/t,i,i) Typed-empty (t,i,i) All Brackets Non-empty Brackets
P R Fl P R Fl1 P R Fl P R Fl
Schmid06 - - - 879 830 854 - - - - - -
Caill | 90.1 795 845|923 809 862 | 90.1 885 893 - - -
Tagger | 89.7 69.3 781 | 90.7 70.1 79.0 | 87.8 855 86.7 | 87.8 868 873
Lattice (Caill) | 89.8 792 842 | 914 80.6 857 | 90.2 887 895|902 895 898
Proposed | 90.3 81.7 85.8 | 91.8 832 873|908 89.7 903 | 90.8 903 90.6
Berkeley - - - - - - - - - 89.9 903 90.1
Hayashil6 - - - - - - 9.9 904 90.7

Table 1: Results on the English Penn Treebank (Section 23): to calculate the scores for Tagger, we
obtained a parse tree by supplying the 1-best Tagger output with the Berkeley parser trained on Sections
02-21 including empty elements (using the option “-useGoldPOS”).

method was less accurate than the vanilla Berke-
ley parser, the performance of our method could
be maintained with little loss in parsing accuracy.
Figure 4 shows the parse time in seconds for each
test sentence and that our empty element recovery
parser works in reasonable time.

6.2 Experiments on the Japanese Keyaki
Treebank

Finally, to show that our method works well on
other languages, we conduct experiments on the
Japanese Keyaki Treebank (Butler et al., 2012).
For this data, we modified blatt to keep function
labels And, in order to consider segmentation er-
rors, we also modified eevalb to calculate not word
but character span in a sentence. We follow the ex-
periments in (Takeno et al., 2015) and show the re-
sults in Table 3. Our method significantly outper-
forms the state-of-the-art post-processing method
in Japanese.

7 Conclusion and Future Work

Using spinal parsing for the joint recovery of
empty elements achieves state-of-the-art perfor-
mance in standard English and Japanese datasets.
We plan to extend our work to recover trace-filler
and frame semantic structures using the PropBank
data.
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Abstract

We investigate the effectiveness of se-
mantic generalizations/classifications for
capturing the regularities of the behavior
of verbs in terms of their metaphoric-
ity.  Starting from orthographic word
unigrams, we experiment with various
ways of defining semantic classes for
verbs (grammatical, resource-based, dis-
tributional) and measure the effectiveness
of these classes for classifying all verbs
in a running text as metaphor or non
metaphor.

1 Introduction

According to the Conceptual Metaphor theory
(Lakoff and Johnson, 1980), metaphoricity is a
property of concepts in a particular context of use,
not of specific words. The notion of a concept is a
fluid one, however. While write and wrote would
likely constitute instances of the same concept ac-
cording to any definition, it is less clear whether
eat and gobble would. Furthermore, the Con-
ceptual Metaphor theory typically operates with
whole semantic domains that certainly generalize
beyond narrowly-conceived concepts; thus, save
and waste share a very general semantic feature of
applying to finite resources — it is this meaning el-
ement that accounts for the observation that they
tend to be used metaphorically in similar contexts.

In this paper, we investigate which kinds of gen-
eralizations are the most effective for capturing
regularities of metaphor usage.

2 Related Work

Most previous supervised approaches to verb
metaphor classification evaluated their systems on
selected examples or in small-scale experiments
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(Tsvetkov et al., 2014; Heintz et al., 2013; Tur-
ney et al., 2011; Birke and Sarkar, 2007; Gedigan
et al., 20006), rather than using naturally occurring
continuous text, as done here. Beigman Klebanov
et al. (2014) and Beigman Klebanov et al. (2015)
are the exceptions, used as a baseline in the current
paper.

Features that have been used so far in super-
vised metaphor classification address concreteness
and abstractness, topic models, orthographic uni-
grams, sensorial features, semantic classifications
using WordNet, among others (Beigman Klebanov
et al., 2015; Tekiroglu et al., 2015; Tsvetkov et al.,
2014; Dunn, 2014; Heintz et al., 2013; Turney et
al., 2011). Of the feature sets presented in this pa-
per, all but WordNet features are novel.

3 Semantic Classifications

In the following subsections, we describe the dif-
ferent types of semantic classifications; Table 1
summarizes the feature sets.

Name Description #Features
U orthographic unigram varies
UL lemma unigram varies
VN-Raw VN frames 270
VN-Pred VN predicate 145
VN-Role VN thematic role 30
VN-RoRe VN them. role filler 128
WordNet ~ WN lexicographer files 15
Corpus distributional clustering 150

Table 1: Summary of feature sets. All features are
binary features indicating class membership.

3.1 Grammar-based

The most minimal level of semantic generalization
is that of putting together verbs that share the same
lemma (lemma unigrams, UL). We use NLTK
(Bird et al., 2009) for identifying verb lemmas.

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 101-106,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



3.2 Resource-based

VerbNet: The VerbNet database (Kipper et al.,
2006) provides a classification of verbs accord-
ing to their participation in frames — syntactic pat-
terns with semantic components, based on Levin’s
classes (Levin, 1993). Each verb class is anno-
tated with its member verb lemmas, syntactic con-
structions in which these participate (such as tran-
sitive, intransitive, diathesis alternations), seman-
tic predicates expressed by the verbs in the class
(such as motion or contact), thematic roles (such
as agent, patient, instrument), and restrictions on
the fillers of these semantic roles (such as pointed
instrument).

VerbNet can thus be thought of as providing a
number of different classifications over the same
set of nearly 4,000 English verb lemmas. The
main classification is based on syntactic frames, as
enacted in VerbNet classes. We will refer to them
as VN-Raw classes. An alternative classification
is based on the predicative meaning of the verbs;
for example, the verbs assemble and introduce are
in different classes based on their syntactic beha-
vior, but both have the meaning component of fo-
gether, marked in VerbNet as a possible value of
the Predicate variable. Similarly, shiver and faint
belong to different VerbNet classes in terms of
syntactic behavior, but both have the meaning el-
ement of describing an involuntary action. Using
the different values of the Predicate variable, we
created a set of VN-Pred classes. We note that the
same verb lemma can occur in multiple classes,
since different senses of the same lemma can have
different meanings, and even a single sense can
express more than one predicate. For example, the
verb stew participates in the following classes of
various degrees of granularity: cause (shared with
2,912 other verbs), use (with 700 other verbs), ap-
ply heat (with 49 other verbs), cooked (with 49
other verbs).

Each VerbNet class is marked with the thematic
roles its members take, such as agent or benefi-
ciary. Here again, verbs that differ in syntactic
behavior and in the predicate they express could
share thematic roles. For example, stew and prick
belong to different VerbNet classes and share only
the most general predicative meanings of cause
and use, yet both share a thematic role of instru-
ment. We create a class for each thematic role
(VN-Role).

Finally, VerbNet provides annotations of the re-
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strictions that apply to fillers of various thematic
roles. For example, verbs that have a thematic
role of instrument can have the filler restricted
to being inanimate, body part, concrete, pointy,
solid, and others. Across the various VerbNet
classes, there are 128 restricted roles (such as in-
strument_pointy). We used those to generate VN-
RoRe classes.

WordNet: We use lexicographer files to clas-
sify verbs into 15 classes based on their general
meaning, such as verbs of communication, con-
sumption, weather, and so on.

3.3 Corpus-based

We also experimented with automatically-
generated verb clusters as semantic classes. We
clustered VerbNet verbs using a spectral cluster-
ing algorithm and lexico-syntactic features. We
selected the verbs that occur more than 150 times
in the British National Corpus, 1,610 in total, and
clustered them into 150 clusters (Corpus).

We used verb subcategorization frames (SCF)
and the verb’s nominal arguments as features for
clustering, as they have proved successful in pre-
vious verb classification experiments (Shutova et
al., 2010). We extracted our features from the Gi-
gaword corpus (Graff et al., 2003) using the SCF
classification system of Preiss et al. (2007) to iden-
tify verb SCFs and the RASP parser (Briscoe et al.,
2006) to extract the verb’s nominal arguments.

Spectral clustering partitions the data relying
on a similarity matrix that records similarities be-
tween all pairs of data points. We use Jensen-
Shannon divergence (djg) to measure similarity
between feature vectors for two verbs, v; and vj,
and construct a similarity matrix Sj;:

Sij = exp(—dys(vi, vj)) (1)

The matrix S encodes a similarity graph G over
our verbs. The clustering problem can then be de-
fined as identifying the optimal partition, or cut, of
the graph into clusters. We use the multiway nor-
malized cut (MNCut) algorithm of Meila and Shi
(2001) for this purpose. The algorithm transforms
S into a stochastic matrix P containing transition
probabilities between the vertices in the graph as
P = D~'S, where the degree matrix D is a dia-
gonal matrix with D;; = Z;V:l S;j. It then com-
putes the K leading eigenvectors of P, where K is
the desired number of clusters. The graph is par-
titioned by finding approximately equal elements



in the eigenvectors using a simpler clustering al-
gorithm, such as k-means. Meila and Shi (2001)
have shown that the partition I derived in this way

minimizes the MNCut criterion:
K

MNCut(I) = Y [1 — P(I — I|I})],
k=1

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we ran the algorithm mul-
tiple times and used the partition that minimizes
the cluster distortion, that is, distances to cluster
centroid.

We tried expanding the coverage of VerbNet
verbs and the number of clusters using grid search
on the training data, with coverage grid ={2,500;
3,000; 4,000} and #clusters grid = {200; 250; 300;
350; 400}, but obtained no improvement in perfor-
mance over our original setting.

2)

4 Experiment setup

4.1 Data

We use the VU Amsterdam Metaphor Corpus
(Steen et al., 2010).! The corpus contains anno-
tations of all tokens in running text as metaphor or
non metaphor, according to a protocol similar to
MIP (Pragglejaz, 2007). The data come from the
BNC, across 4 genres: news (N), academic writing
(A), fiction (F), and conversation (C). We address
each genre separately. We consider all verbs apart
from have, be, and do.

We use the same training and testing partitions
as Beigman Klebanov et al. (2015). Table 2 sum-
marizes the data. 2

Data Training Testing
#T #1 9%M | #T #1
News | 49 3,513 42% | 14 1,230
Fict. 11 4,651 25% | 3 1,386
Acad. | 12 4905 31% | 6 1,260
Conv. | 18 4,181 15% | 4 2,002

Table 2: Summary of the data. #T = # of texts; #I
= # of instances; %M = percentage of metaphors.

4.2 Machine Learning Methods

Our setting is that of supervised machine learn-
ing for binary classification. We experimented
with a number of classifiers using VU-News train-
ing data, including those used in relevant prior
work: Logistic Regression (Beigman Klebanov et

Yavailable at http://metaphorlab.org/metcor/search/
’Data and features will be made available at
https://github.com/EducationalTestingService/metaphor.
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al., 2015), Random Forest (Tsvetkov et al., 2014),
Linear Support Vector Classifier. We found that
Logistic Regression was better for unigram fea-
tures, Random Forest was better for features using
WordNet and VerbNet classifications, whereas the
corpus-based features yielded similar performance
across classifiers. We therefore ran all evaluations
with both Logistic Regression and Random For-
est classifiers. We use the skll and scikit-learn
toolkits (Blanchard et al., 2013; Pedregosa et al.,
2011). During training, each class is weighted in
inverse proportion to its frequency. The optimiza-
tion function is F1 (metaphor).

5 Results

We first consider the performance of each type of
semantic classification separately as well as var-
ious combinations using cross-validation on the
training set. Table 3 shows the results with the
classifier that yields the best performance for the
given feature set.

Name N F A C | Av.
U .64 51 55 39| 52
UL .65 51 61 39| 54
VN-Raw .64 49 60 38 | .53
VN-Pred 62 47 58 39| 52
VN-Role .61 46 55 40 | 50
VN-RoRe 59 47 54 36| 49
WN .64 50 .60 .38 | .53
Corpus S59 49 53 36 | .49
VN-RawToCorpus .63 49 59 38 | .53
UL+WN .67 52 .63 40 | 56
UL+Corpus .66 53 .62 .39 | 55

Table 3: Performance (F1) of each of the feature
sets, xval on training data. U = unigram baseline.

Of all types of semantic classification, only the
grammatical one (lemma unigrams, UL) shows
an overall improvement over the unigram base-
line with no detriment for any of the genres.VN-
Raw and WordNet show improved performance
for Academic but lower performance on Fiction
than the unigram baseline. Other versions of
VerbNet-based semantic classifications are gener-
ally worse than VN-Raw, with some exceptions
for the Conversation genre. Distributional clus-
ters (Corpus) generally perform worse than the
resource-based classifications, even when the re-
source is restricted to the exact same set of verbs as
that covered in the Corpus clusters (compare Cor-
pus to VN-RawToCorpus).

The distributional features are, however, about
as effective as WordNet features when combined



with the lemma unigrams (UL); the combinations
improve the performance over UL alone for every
genre. We also note that the better performance
for these combinations is generally attained by the
Logistic Regression classifier. We experimented
with additional combinations of feature sets, but
observed no further improvements.

To assess the consistency of metaphoricity
behavior of semantic classes across genres, we
calculated correlations between the weights as-
signed by the UL+WN model to the 15 WordNet
features. All pairwise correlations between News,
Academic, and Fiction were strong (r > 0.7),
while Conversation had low to negative correlation
with other genres. The low correlations with Con-
versation was largely due to a highly discrepant
behavior of verbs of weather’ — these are con-
sistently used metaphorically in all genres apart
from Conversation. This discrepancy, however, is
not so much due to genre-specific differences in
behavior of the same verbs as to the difference
in the identity of the weather verbs that occur in
the data from the different genres. While burn,
pour, reflect, fall are common in the other genres,
the most common weather verb in Conversation is
rain, and none of its occurrences is metaphoric; its
single occurrence in the other genres is likewise
not metaphoric. More than a difference across
genres, this case underscores the complementarity
of lemma-based and semantic class-based infor-
mation — it is possible for weather verbs to tend
towards metaphoricity as a class, yet some verbs
might not share the tendency — verb-specific infor-
mation can help correct the class-based pattern.

5.1 Blind Test Benchmark

To compare the results against state-of-art, we
show the performance of Beigman Klebanov et
al. (2015) system (SOA’15) on the test data (see
Table 2 for the sizes of the test sets per genre).
Their system uses Logistic Regression classifier
and a set of features that includes orthographic
unigrams, part of speech tags, concreteness, and
difference in concreteness between the verb and its
direct object. Against this benchmark, we evaluate
the performance of the best combination identified
during the cross-validation runs, namely, UL+WN
feature set using Logistic Regression classifier.
We also show the performance of the resource-

3Removing verbs of weather propelled the correlations
with Conversation to a moderate range, r = 0.25-0.45 across
genres.
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lean model, UL+Corpus. The top three rows of
Table 4 show the results. The UL+WN model out-
performs the state of art for every genre; the im-
provement is statistically significant ( p<0.05).*
The improvement of UL+Corpus over SOA’15 is
not significant.

Following the observation of the similarity be-
tween weights of semantic class features across
genres, we also trained the three systems on all the
available training data across all genres (all data in
the Train column in Table 2), and tested on test
data for the specific genre. This resulted in perfor-
mance improvements for all systems in all genres,
including Conversation (see the bottom 3 rows in
Table 4). The significance of the improvement of
UL+WN over SOA’15 was preserved; UL+Corpus
now significantly outperformed SOA’15.

Feature Set N F A C | Av.
Train ~ SOA’'15 .64 47 71 43| .56
in UL+WN 68 49 72 44 | 58
genre  UL+Corpus .65 49 71 43 | .57
Train  SOA’1S .66 48 74 44| 58
onall UL+WN 69 50 77 45| .60
genres UL+Corpus .67 51 .76 .45 | .60

Table 4: Benchmark performance, F1 score.

6 Conclusion

The goal of this paper was to investigate
the effectiveness of semantic generaliza-
tions/classifications for metaphoricity classi-
fication of verbs. We found that generalization
from orthographic unigrams to lemmas is effec-
tive. Further, lemma unigrams and semantic class
features based on WordNet combine effectively,
producing a significant improvement over the
state of the art. We observed that semantic class
features were weighted largely consistently across
genres; adding training data from other genres is
helpful. Finally, we found that a resource-lean
model where lemma unigram features were
combined with clusters generated automatically
using a large corpus yielded a competitive perfor-
mance. This latter result is encouraging, as the
knowledge-lean system is relatively easy to adapt
to a new domain or language.

*“We used McNemar’s test of significance of difference
between correlated proportions (McNemar, 1947), 2-tailed.
We combined data from all genres into on a 2X2 matrix:
both SOA’15 and UL+WN correct in (1,1), both wrong
(0,0), SOA’15 correct UL+WN wrong (0,1), UL+WN correct
SOA’15 wrong (1,0)).
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Abstract

Over the past decade, e-Commerce has
rapidly grown enabling customers to pur-
chase products with the click of a button.
But to be able to do so, one has to under-
stand the semantics of a user query and
identify that in digital lifestyle tv, digital
lifestyle is a brand and ¢tv is a product.

In this paper, we develop a series of struc-
tured prediction algorithms for seman-
tic tagging of shopping queries with the
product, brand, model and product family
types. We model wide variety of features
and show an alternative way to capture
knowledge base information using embed-
dings. We conduct an extensive study over
37,000 manually annotated queries and
report performance of 90.92 F; indepen-
dent of the query length.

1 Introduction

Recent study shows that yearly e-Commerce sales
in the U.S. top 100 Billion (Fulgoni, 2014). This
leads to substantially increased interest in build-
ing semantic taggers that can accurately recognize
product, brand, model and product family types in
shopping queries to better understand and match
the needs of online shoppers.

Despite the necessity for semantic understand-
ing, yet most widely used approaches for prod-
uct retrieval categorize the query and the offer
(Kozareva, 2015) into a shopping taxonomy and
use the predicted category as a proxy for retrieving
the relevant products. Unfortunately, such proce-
dure falls short and leads to inaccurate product re-
trieval. Recent efforts (Manshadi and Li, 2009; Li,
2010) focused on building CRF taggers that recog-
nize basic entity types in shopping query such as
brands, types and models. (Li, 2010) conducted

a study over 4000 shopping queries and showed
promising results when huge knowledge bases are
present. (Pasca and Van Durme, 2008; Kozareva et
al., 2008; Kozareva and Hovy, 2010) focused on
using Hearst patterns (Hearst, 1992) to learn se-
mantic lexicons. While such methods are promis-
ing, they cannot be used to recognize all prod-
uct entities in a query. In parallel to the semantic
query understanding task, there have been seman-
tic tagging efforts on the product offer side. (Put-
thividhya and Hu, 2011) recognize brand, size and
color entities in eBay product offers, while (Kan-
nan et al., 2011) recognized similar fields in Bing
product catalogs.

Despite these efforts, to date there are three im-
portant questions, which have not been answered,
but we address in our work. (1) What is an alter-
native method when product knowledge bases are
not present? (2) Is the performance of the seman-
tic taggers agnostic to the query length? (3) Can
we minimize manual feature engineering for shop-
ping query log tagging using neural networks?

The main contributions of the paper are:

e Building semantic tagging framework for
shopping queries.

e Leveraging missing knowledge base entries
through word embeddings learned on large
amount of unlabeled query logs.

e Annotating 37,000 shopping queries with
product, brand, model and product family en-
tity types.

e Conducting a comparative and efficiency
study of multiple structured prediction algo-
rithms and settings.

e Showing that long short-term memory net-
works reaches the best performance of 90.92
F; and is agnostic to query length.
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2 Problem Formulation and Modeling

2.1 Task Definition

We define our task as given a shopping query
identify and classify all segments that are prod-
uct, brand, product family and model, where:
-Product is generic term(s) for goods not specific
to a particular manufacturer (e.g. shirts).

-Brand is the actual name of the product manu-
facturer (e.g. Calvin Klein).

-Product Family is a brand-specific grouping of
products sharing the same product (e.g. Samsung
Galaxy).

-Model is used by manufacturer to distinguish
variations (e.g. for the brand Lexus has IS prod-
uct family, which has model 200t and 300 F
Sport).

For modeling, we denote with 7
{L,ty,ta,...,tx} the whole label space,
where | indicates a word that is not a part of an
entity and ¢; stands for an entity category. The
tagging models have to recognize the following
types product, brand, model, product family and L
(other) using the BIO schema (Tjong Kim Sang,
2002).

We denote as x = (z1,z2,...,z)) a shopping
query of length M. The objective is to find the
best configuration y such that:

y = arg maxy p(y|x),

where y=(y1, y2, ...,yn) (N < M) are the shop-
ping query segments labeled with their corre-
sponding entity category. Each segment y; cor-
responds to a triple (b;, e;,t;) indicating the start
index b; and end index e; of the sequence followed
by the entity category t; € 7. When t; = L, the
segment contains only one word.

2.2 Structured Prediction Models

To tackle the shopping tagging problem of query
logs, we use Conditional Random Fields (Lafferty
etal., 2001, CRF)!, learning to search (Daumé III
et al., 2009, SEARN)Z, structured percep-
tron (Collins, 2002, STRUCTPERCEPTRON) and
a long short-term memory networks extended by
CRF layer (Hochreiter and Schmidhuber, 1997;
Graves, 2012, LSTM-CRF).

CREF: is a popular algorithms for sequence tag-
ging tasks (Lafferty et al., 2001). The objective is

'taku910.github.io/crfpp/
2github.com/JohnLangford/vowpal_wabbit
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to find the label sequence y = (yi,...,yns) that
maximizes

p(y|x) = 75 exp{X - f(y. %)},

where Zy(x) is the normalization factor, A is the
weight vector and f(y,x) is the extracted feature
vector for the observed sequence x.

SEARN is a powerful structured prediction al-
gorithm, which formulates the sequence labeling
problem as a search process. The objective is to

find the label sequence y = (y1, ..., yas) that max-
imizes

POY%) o 0 e eyt t) =]

where C'(e) is a cost sensitive multiclass classifier
and y are the ground-truth labels.
STRUCTPERCEPTRON is an extension of the
standard perceptron. In our setting we model a
segment-based search algorithm, where each unit
is a segment of x (e.g., (b;, €;)), rather than a sin-
gle word (e.g., ;). The objective is to find the
label sequence y = (y1, ..., yar) that maximizes

plylx) xw’ - f(x,y),

where f(x,y) represents the feature vector for in-
stance x along with the configuration y and w is
updated as w — w + f(x,¥) — f(x,¥).
LSTM-CRF The above algorithms heavily rely
on manually-crafted features to perform sequence
tagging. We decided to alleviate that by using
long short-term memory networks with a CRF
layer. Our model is similar to R-CRF (Mesnil et
al., 2015), but for the hidden recurrent layer we
use LSTM (Hochreiter and Schmidhuber, 1997,
Graves, 2012). We denote with h; the hidden vec-
tor produced by the LSTM cell at i-th token. Then
the conditional probability of y given a query x
becomes:

p(yx) = Zpy exp{3,(Wyhi + )}

where Wyii is the weight vector corresponding to
label y;, and meyF , 1s the transition score cor-
responding to y; and y;_1. During training, the
values of W", W, the LSTM layer and the input
word embeddings are updated through the stan-
dard back-propagation with AdaGrad algorithm.
We also concatenate pre-trained word embedding
and randomly initialized embedding (50-d) for the
knowledge-base types of each token and use this
information in the input layer. In our experiments,
we set the learning rate to 0.05 and take each query
as a mini-batch and run 5 epochs to finish training.

t
Wyi:yi—l



Features CRF SEARN STRUCTPERCEPTRON

P(%) R (%) F. P(%) R (%) Fi P(%) R (%) Fi
POS 39.86 35.51 37.56 | 3497 33,55 3425 | 33.03 24770 2827
KB 51.64 41.08 4576 | 41.96 3726 39.47 | 3570 3597 35.84
WE 6531 61.02 63.11 | 67.58 67.00 6729 | 71.29 68.12 69.67
LEX+ORTO+PSTNL + POS + KB 86.49 83.84 85.15 | 84.19 8430 84.24 | 88.88 86.87 87.87
LEX+ORTO+PSTNL + POS + WE 88.30 85.74 87.00 | 8432 84.15 84.24 | 87.85 85.69 86.76
LEX+ORTO+PSTNL + POS + KB+ WE | 88.86 86.29 87.55 | 84.30 8450 84.40 | 89.18 87.10 88.13

Table 1: Results from feature study.

2.3 Features

Lexical (LEX): are widely used /V-gram features.
We use unigrams of the current wg, previous w_1
and next w,; words, and bigrams w_jwy and
WoW41-

Orthographic (ORTO): are binary mutually non-
exclusive features that check if wp, w—1 and wyq
contain all-digits, any-digit, start-with-digit-end-
in-letter and start-with-letter-end-in-digit. They
are designed to capture model names like hero3
and m560.

Positional (PSTNL): are discrete features model-
ing the position of the words in the query. They
capture the way people tend to write products and
brands in the query.

Part-of-Speech (POS): capture nouns and proper
names to better recognize products and brands.
We use Stanford tagger (Toutanova et al., 2003).
Knowledgebase (KB): are powerful semantic fea-
tures (Tjong Kim Sang, 2002; Carreras et al.,
2002; Passos et al., 2014). We automatically
collected and manually validated 200K brands,
products, models and product families items ex-
tracted from Macy’s and Amazon websites.
WordEmbeddings (WE): While external knowl-
edge bases are great resource, they are expensive
to create and time-consuming to maintain. We use
word embeddings (Mikolov et al., 2013) 3asa
cheap low-maintenance alternative for knowledge
base construction. We train the embeddings over
2.5M unlabeled shopping queries. For each token
in the query, we use as features the 200 dimen-
sional embeddings of the top 5 most similar terms
returned by cosine similarity.

3 Experiments and Results

Data Set To the best of our knowledge, there is
no publicly available shopping query data anno-
tated with product, brand, model, product family
and other categories. To conduct our experiments,
we collect 2.5M shopping queries through click

3https://code.google.com/p/word2vec/
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logs (Hua et al., 2013). We randomly sampled
37,000 unique queries from the head, torso and
tail of a commercial web search engine and asked
two independent annotators to tag the data. We
measured the Kappa agreement of the editors and
found .92 agreement, which is sufficient to warrant
the goodness of the annotations.

We randomly split the data into 80% for training
and 20% for testing. Table 2 shows the distribution
of the entity categories in the data.

Product | Brand | Model | Prod. Family 1
Train | 21,688 | 10,417 | 4,394 6,697 47,517
Test | 5,413 2,659 | 1,099 1,716 11,780

Table 2: Entity category distribution.

We tune all parameters on the training set using
5-fold cross validation and report performance on
the test set. All results are calculated with the
CONLL evaluation script*.

Performance w.r.t. Features Table 1 shows the
performance of the different models and feature
combinations. We use the individual features as a
baseline. The obtained results show that these are
insufficient to solve such a complex task. We com-
pared the performance of the KB and WE features
when combined with (LEX+ORTO+PSTNL) infor-
mation. As we can see, both KB and WE reach
comparable performance. This study shows that
training embeddings on large in-domain data of
shopping queries is a reliable and cheap source
for knowledge base construction, when such in-
formation is not present. In our study the best
performance is reached when all features are com-
bined. Among all machine learning classifiers for
which we manually designed features, structured
perception reaches the best performance of 88.13
F; score.

In addition to the feature combination and
model comparison, we also study in Figure 1 the
training time of each model in log scale against its
F; score. SEARN is the fastest algorithm to train,

‘cnts.ua.ac.be/conll2000/chunking/
conlleval.txt



Categor CRF SEARN STRUCTPERCEPTRON LSTM-CRF
gory P% R®% F. |[P% R®% F. [P% R®% F [P®% R% F
brand 91.79 8793 89.82 | 89.3 89.3 893 | 93.99 91.20 9257 | 95.15 9229 93.70
model 86.28 80.71 83.40 | 80.7 789 79.8 | 8556 80.89 83.16 | 87.25 8590 86.57
product 87.85 88.16 88.00 | 83.4 85.0 842 | 87.90 8792 8791 | 91.94 90.98 91.46
product family | 89.27 8141 85.16 | 814 79.0 802 | 88.12 82.17 85.04 | 87.98 87.47 87.73
Overall 88.86 86.29 87.55 | 843 845 844 | 89.18 87.10 88.13 | 91.61 90.24 90.92
Table 3: Per category performance.
- the query length.
g 86 - 2500 1 # of queries [0 Structured Percetron
? — 1 LSTM_CRF Loo
; = —
- N 2000 r ] ~
84- D+>i v o 80
0 = _
1500 o
82 ' ' ) m 60 8
100 1000 10000 0
training time (second) 1000 B —
features 40 *
[J LEX+ORTO+PSTNL X LEX+ORTO+PSTNL+POS+KB
O LEX+ORTO+PSTNL+KB <>LEX+ORTO+PSTNL+POS+KB+WE 500! 20
A LEX+ORTO+PSTNL+KB+WE v LEX+ORTO+PSTNL+POS+WE W B
~+ LEX+ORTO+PSTNL+POS X LEX+ORTO+PSTNL+WE 0 B

models

CRF++ @ Searn StructPerceptron

Figure 1: Training time vs F; performance.

while CRF takes the longest time to train. Among
all STRUCTPERCEPTRON offers the best balance
between efficiency and performance in a real time
setting.

Performance w.r.t. Entity Category Table 3
shows the performance of the algorithms with the
manually designed features against the automati-
cally induced ones with LSTM-CRF. We show
the performance of each individual product en-
tity category. Compared to all models and set-
tings, LSTM-CRF reaches the best performance
of 90.92 F; score. The most challenging entity
types are product family and model, due to their
“wild” and irregular nature.

Performance w.r.t. Query Length Finally, we
also study the performance of our approach with
respect to the different query length. Figure 2
shows the F; score of the two best performing al-
gorithms LSTM-CRF and STRUCTPERCEPTRON
against the different query length in the test set.
Around 83% of the queries have length between 2
to 5 words, the rest are either very short or very
long ones. As it can be seen in Figure 2, inde-
pendent of the query length, our models reach the
same performance for short and long queries. This
shows that the models are robust and agnostic to
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1 2 3 4 5 6 7 8 9 10

query length

Figure 2: F performance with varying query length.

4 Conclusions and Future Work

In this work, we have defined the task of prod-
uct entity recognition in shopping queries. We
have studied the performance of multiple struc-
tured prediction algorithms to automatically rec-
ognize product, brand, model and product family
entities. Our comprehensive experimental study
and analysis showed that combining lexical, po-
sitional, orthographic, POS, knowledge base and
word embedding features leads to the best perfor-
mance. We showed that word embeddings trained
on large amount of unlabeled queries could sub-
stitute knowledge bases when they are missing
for specialized domains. Among all manually
designed feature classifiers STRUCTPERCEPTRON
reached the best performance. While among all
algorithms LSTM-CRF achieved the highest per-
formance of 90.92 F1 score. Our analysis showed
that our models reach robust performance inde-
pendent of the query length. In the future we plan
to tackle attribute identification to better under-
stand queries like “diamond shape emerald ring”,
where diamond shape is a cut and emerald is
a gemstone type. Such fine-grained information
could further enrich online shopping experience.
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Abstract

Recent work in learning vector-space em-
beddings for multi-relational data has fo-
cused on combining relational information
derived from knowledge bases with dis-
tributional information derived from large
text corpora. We propose a simple ap-
proach that leverages the descriptions of
entities or phrases available in lexical re-
sources, in conjunction with distributional
semantics, in order to derive a better ini-
tialization for training relational models.
Applying this initialization to the TransE
model results in significant new state-
of-the-art performances on the WordNet
dataset, decreasing the mean rank from the
previous best of 212 to 51. It also results
in faster convergence of the entity repre-
sentations. We find that there is a trade-
off between improving the mean rank and
the hits@ 10 with this approach. This illus-
trates that much remains to be understood
regarding performance improvements in
relational models.

1 Introduction

A surprising result of work on vector-space word
embeddings is that word representations that are
learned from a large training corpus display se-
mantic regularities in the form of linear vector
translations. For example, Mikolov et al. (2013b)
show that using their induced word vector repre-
sentations, king — man + woman ~ queen. Such a
structure is appealing because it provides an inter-
pretation to the distributional vector space through
lexical-semantic analogical inferences.
Concurrent to that work, Bordes et al. (2013)
proposed translating embeddings (TransE), which
takes a pre-existing semantic hierarchy as in-
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w2v GloVe
Dataset Total found% found%
WN 40943 9.7% 51.3%
FB15k 14951 4.0% 20.3%

Table 1: The percentage of WN and FB15k enti-
ties that can be found in the pre-trained word2vec
(W2V) and GloVe vectors. This does not include
the W2V embeddings trained with the FB15k vo-
cabulary?, which covers 93% of the FB15k enti-
ties.

put and embeds its structure into a vector space.
In their model, the linear relationship between
two entities that are in some semantic relation
to each other is an explicit part of the model’s
objective function. For example, given a rela-
tion such as won(Germany, FIFA Worldcup), the
TransE model learns vector representations for
won, Germany, and FIFA Worldcup such that
Germany + won =~ FIFA Worldcup.

A natural next step is to attempt to integrate the
two approaches in order to develop a representa-
tion that is informed by both unstructured text and
a structured knowledge base (Faruqui et al., 2015;
Xu et al., 2014; Fried and Duh, 2015; Yang et
al., 2015). However, existing work makes a cru-
cial assumption—that reliable distributional vec-
tors are available for all of the entities in the hier-
archy being modeled. Unfortunately, this assump-
tion does not hold in practice; when moving to a
new domain with a new knowledge base, for ex-
ample, there will likely be many entities or phrases
for which there is no distributional information in

This means that word2vec was trained in the usual way
on a large textual corpus, but the vocabulary was truncated to
include as many entities from Freebase as possible. Indeed,
this is the reason for the small overlap between W2V, GloVe,
and the relational databases: after training the word embed-

dings, the vocabulary must be truncated to a reasonable size,
which leaves out many entities from these datasets.
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the training corpus. This important problem is il-
lustrated in Table 1, where most of the entities
from WordNet and Freebase are seen to be miss-
ing from the distributional vectors derived using
Word2Vec and GloVe trained on the Google News
corpus. Even when the entities are found, they
may not have occurred enough times in the train-
ing corpus for their vector representation to be re-
liable. What is needed is a method to derive entity
representations that works well for both common
and rare entities.

Fortunately, knowledge bases typically con-
tain a short description or definition for each of
the entities or phrases they contain. For ex-
ample, in a medical dataset with many techni-
cal words, the Wikipedia pages, dictionary def-
initions, or medical descriptions via a site such
as medilexicon.com could be leveraged as
lexical resources. Similarly, when building lan-
guage models for social media, resources such as
urbandicionary.com could be used for in-
formation about slang words. For the WordNet
and Freebase datasets, we use entity descriptions
which are readily available (see Table 2).

In this paper, we propose a simple and efficient
procedure to convert these short descriptions into
a vector space representation, with the help of ex-
isting word embedding models. These vectors are
then used as the input to further training with the
TransE model, in order to incorporate structural
information. Our method provides a better initial-
ization for the TransE model, not just for the enti-
ties that do not appear in the data, but in fact for all
entities. This is demonstrated by achieving state-
of-the-art mean rank on an entity ranking task on
two very different data sets: WordNet synsets with
lexical semantic relations (Miller, 1995), and Free-
base named entities with general semantic rela-
tions (Bollacker et al., 2008).

2 Related Work

Dictionary definitions were the core component
of early methods in word sense disambiguation
(WSD), such as the Lesk algorithm (1986). Chen
et al. (2014) build on the use of synset glosses for
WSD by leveraging lexical resources. Our work
goes further to tie these glosses together with rela-
tional semantics, a connection that has not been
drawn in the literature before. The integration
of lexical resources into distributional semantics
has been studied in other lexical semantic tasks,
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WordNet Descriptions

photography#3 the occupation of taking and printing
photographs or making movies
transmutation#2 | a qualitative change

Freebase Descriptions

Stephen Harper | Stephen Joseph Harper is a Canadian
politician who is the 22nd and current
Prime Minister of Canada and the
Leader of the Conservative Party...

El Paso El Paso is the county seat of El Paso
County, Texas, United States, and lies

in far West Texas...

Table 2: Sample entity descriptions from Word-
Net and Freebase. As Freebase descriptions are
lengthy paragraphs, only the first sentence is
shown.

such as synonym expansion (Sinha and Mihalcea,
2009), relation extraction (Kambhatla, 2004), and
calculating the semantic distance between con-
cepts (Mohammad, 2008; Marton et al., 2009). We
aim to combine lexical resources and other seman-
tic knowledge, but we do so in the context of neu-
ral network-based word embeddings, rather than
in specific lexical semantic tasks.

Bordes et al. (2011) propose the Structured Em-
beddings (SE) model, which embeds entities into
vectors and relations into matrices. The relation
connection between two entities is modeled by the
projection of their embeddings into a different vec-
tor space. Rothe and Schiitze (2015) use Word-
net as a lexical resource to learn embeddings for
synsets and lexemes. Perhaps most related to our
work are previous relational models that initialize
their embeddings via distributional semantics cal-
culated from a larger corpus. Socher et al. (2013)
propose the Neural Tensor Network (NTN), and
Yang et al. (2015) the Bilinear model using this
technique. Other approaches modify the objective
function or change the structure of the model in
order to integrate distributional and relational in-
formation (Xu et al., 2014; Fried and Duh, 2015;
Toutanova and Chen, 2015). Faruqui et al. (2015)
retrofit word vectors after they are trained accord-
ing to distributional criteria. We propose a method
that does not necessitate post-processing of the
embeddings, and can be applied orthogonally to
the previously mentioned improvements.

3 Architecture of the Approach

3.1 The Transk Model

The Translating Embedding (TransE) model (Bor-
des et al., 2013) has become one of the most popu-



lar multi-relational models due to its relative sim-
plicity, scalability to large datasets, and (until re-
cently) state-of-the-art results. It assumes a sim-
ple additive interaction between vector represen-
tations of entities and relations. More precisely,
assume a given relationship triplet (h, [, t) is valid;
then, the embedding of the object ¢ should be very
close to the embedding of the subject h plus some
vector in R¥ that depends on the relation 3.

For each positive triplet (h,[,t) € S, a nega-
tive triplet (h/,1,t") € S’ is constructed by ran-
domly sampling an entity from F to replace either
the subject h or the object ¢ of the relationship.
The training objective of TransE is to minimize
the dissimilarity measure d(h + [,t) of a positive
triplet while ensuring that d(h" + [, t') for the cor-
rupted triplet remains large. This is accomplished
by minimizing the hinge loss over the training set:

=2 >

(h,Lt)ES (W l,t")eS!

where + is the hinge loss margin and [z] repre-
sents the positive portion of z. There is an ad-
ditional constraint that the Lo-norm of entity em-
beddings (but not relation embeddings) must be
1, which prevents the training process to trivially
minimize L by artificially increasing the norms of
entity embeddings.

3.2 Initializing Representations with Entity
Descriptions

We propose to leverage some external lexical re-
source to improve the quality of the entity vector
representations. In general, this could consist of
product descriptions in a product database, or in-
formation from a web resource. For the WordNet
and Freebase datasets, we use entity descriptions
which are readily available.

Although there are many ways to incorporate
this, we propose a simple method whereby the
entity descriptions are used to initialize the en-
tity representations of the model, which we show
to have empirical benefits. In particular, we
first decompose the description of a given en-
tity into a sequence of word vectors, and com-
bine them into a single embedding by averaging.
We then reduce the dimensionality using princi-
ple component analysis (PCA), which we found

3Note that we use h, [, € R* to denote both the entities
and relations, in addition to the vector representations of the
entities and relations

[y+d(h+1,t)—d(h'+1,t")] +

experimentally to reduce overfitting. We obtain
these word vectors using distributed representa-
tions computed using word2vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). Ap-
proximating compositionality by averaging vector
representations is simple, yet has some theoretical
justification (Tian et al., 2015) and can work well
in practice (Wieting et al., 2015).

Additional decisions need to be made concern-
ing which parts of the entity description to include.
In particular, if an entity description or word def-
inition is longer than several sentences, using the
entire description could cause a ‘dilution’ of the
desired embedding, as not all sentences will be
equally pertinent. We solve this by only consid-
ering the first sentence of any entity description,
which is often the most relevant one. This is nec-
essary for Freebase, where the description length
can be several paragraphs.

4 Experiments

4.1 Training and Testing Setup

We perform experiments on the WordNet
(WN) (Miller, 1995) and Freebase (FB15k) (Bol-
lacker et al., 2008) datasets used by the original
TransE model. TransE hyperparameters include
the learning rate A for stochastic gradient descent,
the margin ~ for the hinge loss, the dimension of
the embeddings k, and the dissimilarity metric d.
For the TransE model with random initialization,
we use the optimal hyperparameters from (Bordes
et al., 2013): for WN, A = 0.01, v = 2, k = 20,
and d = L;-norm; for FB15k, A = 0.01, v = 0.5,
k = 50, and d = Ls-norm. The values of k
were further tested to ensure that ¥ = 20 and
k = 50 were optimal. For the TransE model
with strategic initialization, we used different
embedding dimensions. The distributional vectors
used in the entity descriptions are of dimension
1000 for the word2vec vectors with Freebase
vocabulary, and dimension 300 in all other cases.
Dimensionality reduction with PCA was then
applied to reduce this to & = 30 for WN, and
k = 55 for FB15k, which were empirically found
to be optimal. PCA was necessary in this case as
pre-trained vectors from word2vec and GloVe are
not available for all dimension values.

We use the same train/test/validation split and
evaluation procedure as (Bordes et al., 2013): for
each test triplet (h, [, t), we remove entity 4 and
¢ in turn, and rank each entity in the dictionary
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WN FB15k
k Mean rank Hits@10 k Mean rank Hits@10
Raw  Filt Raw Filt Raw Filt Raw Filt
. SE (Bordes et al., 2011) — | 1,011 985 | 685% 80.5% || — | 273 162 | 288% 39.8%
2 TransD (unif) (Ji et al., 2015) — | 242 229 | 792% 92.5% || — | 211 67 | 494% 74.2%
£  TransD (bern) (Ji et al., 2015) — | 224 212 | 79.6% 922% || — | 194 91 | 534% 77.3%
& TransE random init. 20 266 254 | 76.1% 89.2% || 50 | 195 92 | 41.2%  55.2%
& TransE Freebase W2V init. — — — — — 50 195 91 41.3% 55.4%
= TransE W2V entity defs. (NS) 30 210 192 | 785% 92.1% || 55 | 195 91 41.6%  55.7%
€ TransE GloVe entity defs. (NS) || 30 63 51 64.6% 73.2% || 55 194 90 | 41.7%  55.8%
% TransE W2V entity defs. 30 191 179 | 77.8% 91.6% || 55 | 195 91 41.6%  55.6%
& TransE GloVe entity defs. 30 71 59 | 753% 88.0% || 55 | 193 90 | 41.8%  55.8%

Table 3: Comparison between random initialization and using the entity descriptions. ‘NS’ tag indicates
stopword removal from the entity descriptions‘TransE Freebase W2V init’ model uses word2vec pre-
trained with the Freebase vocabulary, and thus was not tested on WN.

Training Set Mean Rank on Wordnet

104

@@ random init.
94 word2vec init.
*—% GloVe init.

10°

10°

Training Set Mean Rank (log)

20 40 60 80 100
Number of Epochs

Training Set Mean Rank on Freebase

©®—® random init.
44 word2vec init.

Y% GloVe init.

Training Set Mean Rank (log)

0 50 100 150 200
Number of Epochs

Figure 1: Learning curves for the mean ranks on the training set for WordNet (left) and Freebase (right).

by similarity according to the model. We evalu-
ate using the original and most common metrics
for relational models: i) the mean of the predicted
ranks, and ii) hits@ [0, which represents the per-
centage of correct entities found in the top 10 list;
however, other metrics are possible, such as mean
reciprocal rank (MRR). We evaluate in both the
filtered setting, where other correct responses are
removed from the lists ranked by the model, and
the raw setting, where no changes are made.

We compare against the TransE model with ran-
dom initialization, and the SE model (Bordes et
al., 2011). We also compare against the state-of-
the-art TransD model (Ji et al., 2015). This model
uses two vectors to represent each entity and re-
lation; one to represent the meaning of the entity,
and one to construct a mapping matrix dynami-
cally. This allows for the representation of more
diverse entities.

4.2 Results and Analysis

Table 3 summarizes the experimental results, com-
pared to baseline and state-of-the-art relational
models. We see that the mean rank is greatly im-

proved for the TransE model with strategic ini-
tialization over random initialization. More sur-
prisingly, all of our models achieve state-of-the-art
performance for both raw and filtered data, com-
pared to the recently developed TransD model.
These results are highly significant with p < 1073
according to the Mann-Whitney U test. Thus,
even though our method is simple and straightfor-
ward to apply, it can still beat all attempts at more
complicated structural modifications to the TransE
model on this dataset. Further, the fact that our op-
timal embedding dimensions are larger (30 and 55
vs. 20 and 50) suggests that our initialization ap-
proach helps avoid overfitting.

For Freebase, our models slightly outperform
the TransE model with random initialization, with
p-values of 0.173 and 0.410 for initialization with
descriptions (including stopwords) using GloVe
and word2vec, respectively. We also see improve-
ments over the case of direct initialization with
word2vec. Further, we set a new state-of-the-art
for mean rank on the raw data, though the im-
provement is marginal.
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WordNet Relations
_hyponym
_derivationally_related form
_member_holonym

Freebase Relations
/award/award_nominee/award_nominations./award/
award_nomination/nominated_for
/broadcast/radio_station_owner/ radio_stations
/medicine/disease/notable_people_with _this_condition

Table 4: Sample relations from WordNet and Free-
base. The relations from Freebase are clearly
much more specific as they relate named entities.

Finally, we see in Figure 1 that the TransE
model converges more quickly during training
when initialized with our approach, compared to
random initialization. This is particularly true on
WordNet.

Mean rank and hits@10 discrepancy It is in-
teresting to note the relationship between the mean
rank and hits@ 10. By changing our model, we are
able to increase one at the expense of the other. For
example, using word2vec without stopwords gives
similar hits@ 10 to TransD with better mean rank,
while using GloVe further improves the mean rank
at a cost to hits@10. The exact nature of this trade-
off isn’t clear, and is an interesting avenue for fu-
ture work.

However, there are potential reasons for the
results discrepancy betweeen mean rank and
hits@10. We conjecture that our model helps
avoid ‘disasters’ where some correct entities are
ranked very low. For TransE with random initial-
ization, these disasters cause a large decrease in
mean rank, which is significantly improved by our
model. On the other hand, reducing the number of
correct entities that are poorly ranked may not sig-
nificantly affect the hits@10, since this only con-
siders entities near the top of the ranking.

Note also that using hits@10 to evaluate rela-
tional models is not ideal; a model can rank rea-
sonable alternative entities highly, but be penal-
ized because the target entity is not in the top 10.
For example, given “rabbit IS-A”, both “animal”
and “mammal” fit as target entities. This is al-
leviated by filtering, but is not completely elimi-
nated due to the sparsity of relations in the dataset
(which is the reason we require the link prediction
task). Thus, we believe the mean rank is a more
accurate measure of the performance of a model,
particularly on raw data.
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Dataset differences It is also interesting to note
the discrepancy between the results on the Word-
Net and Freebase datasets. Although using the
entity descriptions leads to a significantly lower
mean rank for the WordNet dataset, it only results
in a faster convergence rate for Freebase. How-
ever, the relations presented in these two datasets
are significantly different: WordNet relations are
quite general and are meant to provide links be-
tween concepts, while the Freebase relations are
very specific, and denote relationships between
named entities. This is shown in Table 4. It seems
that incorporating the definition of these named
entities does not improve the ability of the algo-
rithm to answer very specific relation questions.
This would be the case if the optimization land-
scape for the TransE model had fewer local min-
ima for Freebase than for WordNet, thus rendering
it less sensitive to the initial condition. It is also
possible that the TransE model is simply not pow-
erful enough to achieve a filtered mean rank lower
than 90, no matter the initialization strategy.

5 Conclusion and Future Work

We have shown that leveraging external lexical re-
sources, along with distributional semantics, can
lead to both a significantly improved optimum and
a faster rate of convergence when applied with the
TransE model for relational data. We established
new state-of-the-art results on WordNet, and ob-
tain small improvements to the state-of-the-art on
raw relational data for Freebase. Our method is
quite simple and could be applied in a straight-
forward manner to other models that take entity
vector representations as input. Further research
is needed to investigate whether performance on
other NLP tasks can be improved by leveraging
available lexical resources in a similar manner.

More complex methods initialization methods
could easily be devised, e.g. by using inverse doc-
ument frequency (idf) weighted averaging, or by
applying the work of Le et al. (2014) on para-
graph vectors. Alternatively, distributional seman-
tics could be used as a regularizer, similar to (Lab-
utov and Lipson, 2013), with learned embeddings
being penalized for how far they stray from the
pre-trained GloVe embeddings. However, even
with intuitive and straightforward methodology,
leveraging lexical resources can have a significant
impact on the results of models for multi-relational
data.
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Abstract

In unsupervised semantic role labeling,
identifying the role of an argument is usu-
ally informed by its dependency relation
with the predicate. In this work, we pro-
pose a neural model to learn argument
embeddings from the context by explic-
itly incorporating dependency relations as
multiplicative factors, which bias argu-
ment embeddings according to their de-
pendency roles. Our model outperforms
existing state-of-the-art embeddings in un-
supervised semantic role induction on the
CoNLL 2008 dataset and the SimLex999
word similarity task. Qualitative results
demonstrate our model can effectively bias
argument embeddings based on their de-
pendency role.

1 Introduction

Semantic role labeling (SRL) aims to identify
predicate-argument structures of a sentence. The
following example shows the arguments labeled
with the roles AO (typically the agent of an action)
and Al (typically the patient of an action), as well
as the predicate in bold.

[Little Willy 4,] broke [a window 41].

As manual annotations are expensive and time-
consuming, supervised approaches (Gildea and
Jurafsky, 2002; Xue and Palmer, 2004; Pradhan
et al., 2005; Punyakanok et al., 2008; Das et al.,
2010; Das et al., 2014) to this problem are held
back by limited coverage of available gold anno-
tations (Palmer and Sporleder, 2010). SRL per-
formance decreases remarkably when applied to
out-of-domain data (Pradhan et al., 2008).

Unsupervised SRL offer a promising alternative
(Lang and Lapata, 2011; Titov and Klementiev,
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2012; Garg and Henderson, 2012; Lang and La-
pata, 2014; Titov and Khoddam, 2015). It is com-
monly formalized as a clustering problem, where
each cluster represents an induced semantic role.
Such clustering is usually performed through man-
ually defined semantic and syntactic features de-
fined over argument instances. However, the rep-
resentation based on these features are usually
sparse and difficult to generalize.

Inspired by the recent success of distributed
word representations (Mikolov et al., 2013; Levy
and Goldberg, 2014; Pennington et al., 2014), we
introduce two unsupervised models that learn em-
beddings of arguments, predicates, and syntac-
tic dependency relations between them. The em-
beddings are learned by predicting each argument
from its context, which includes the predicate and
other arguments in the same sentence. Driven
by the importance of syntactic dependency rela-
tions in SRL, we explicitly model dependencies
as multiplicative factors in neural networks, yield-
ing more succinct models than existing represen-
tation learning methods employing dependencies
(Levy and Goldberg, 2014; Woodsend and Lap-
ata, 2015). The learned argument embeddings are
then clustered and are evaluated by the clusters’
agreement with ground truth labels.

On unsupervised SRL, our models outperform
the state of the art by Woodsend and Lapata (2015)
on gold parses and Titov and Khoddam (2015) on
automatic parses. Qualitative results suggest our
model is effective in biasing argument embeddings
toward a specific dependency relation.

2 Related Work

There has been growing interest in using neu-
ral networks and representation learning for su-
pervised and unsupervised SRL (Collobert et al.,
2011; Hermann et al., 2014; Zhou and Xu, 2015;
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Figure 1: (a): The SYMDEP model. (b): The ASYMDEP model. (c): An example of how embeddings

relate to the parse tree. In SYMDEP, the biasing
embeddings. In ASYMDEP, they are concentrated

FitzGerald et al., 2015). Closely related to our
work, Woodsend and Lapata (2015) concatenate
one hot features of dependency, POS-tag and a dis-
tributed representation for head word and project
the concatenation onto a dense feature vector
space. Instead of using dependency relations as
one-hot vectors, we explicitly model the multi-
plicative compositionality between arguments and
dependencies, and investigate two different com-
positionality configurations.

Our model is related to Levy and Goldberg
(2014) who use dependency relations in learn-
ing word embeddings. In comparison, our mod-
els separate the representation of dependency rela-
tions and arguments, thereby allow the same word
in different relations to share weights in order to
reduce model parameters and data sparsity.

3 Approach

Most unsupervised approaches to SRL perform
the following two steps: (1) identifying the ar-
guments of the predicate and (2) assigning argu-
ments to unlabeled roles, such as argument clus-
ters. Step (1) can be usually tackled with heuristic
rules (Lang and Lapata, 2014). In this paper, we
focus on tackling step (2) by creating clusters of
arguments that belongs to the same semantic role.
As we assume PropBank-style roles (Kingsbury
and Palmer, 2002), our models allocate a separate
set of role clusters for each predicate and assign its
arguments to the clusters. We evaluate the results
by the overlapping between the induced clusters
and PropBank-style gold labels.

The example below suggests that SRL requires
more than just lexical embeddings.

[A car 41] is hit by [another car 4,].

The A0 and A1 roles are very similar lexically, but
their dependency relations to the predicate differ.
To allow the same lexical embedding to shift ac-

of dependency is uniformly applied to all argument
on one side of the dot product.

cording to different relations to the predicate, we
propose the following models.

3.1 Models

Following the framework of CBOW (Mikolov et
al.,, 2013), our models predict an argument by
its context, which includes surrounding arguments
and the predicate.

Let v; be the embedding of the t™ argument
in a sentence, and u; the embedding of the ar-
gument when it is part of the context. Let
uP be the embedding of the predicate. u® =
{Wi—py. -, Ug—1,Upy1, - .., usi i } are the vectors
surrounding the ™ argument with a window of
size k.! The prediction of the t™ argument is:

p(viu?, uf) oc exp(f(ve)Tg(u?, u)) (1)

where f(-) and g(-) are two transformation func-
tions of the target argument embedding and con-
text vectors respectively.

We further associate a dependency relation with
each argument (explained in more details in §4.1).
Let matrix D; encode the biasing effect of the de-
pendency relation between the t" argument and
its predicate, and E; be the corresponding depen-
dency matrix for the ¢! argument if it is used as a
context. We define a ® operator:

VX Dt £ tanh (Dt'vt)

2
U @ Et = tanh (Etut) 5

where tanh(-) is the element-wise tanh function.
Eq. 2 composes an argument and its dependency
with a multiplicative nonlinear operation. The
multiplicative formulation encourages the decou-
pling of dependencies and arguments, which is

'To be precise, the embeddings are indexed by the argu-
ments, which are then indexed by their positions, like U, (y).

Here we omit w. The same convention applies to dependency
matrices, which are indexed by the dependency label first.
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useful in learning representations tightly focused
on lexical and relational semantics, respectively.
Symmetric-Dependency. In our first model,
we apply the dependency multiplication to all ar-
guments. We have
fi(v) = v @ Dy 3)
gl(up,uc):up®Ep+ Z u;,  E; (4)
u; U’
This model is named Symmetric-Dependency
(SYMDEP) for the symmetric use of ®. Since the
predicate does not have an dependency with itself,
we let EP = I. Generally, Vi, E; # 1.
Asymmetric-Dependency. An alternative
model is to concentrate the dependency relations’
effects by shifting the dependency of the predicted
argument from f(-) to g(-), thereby move all ®
operations to construct context vector:

g2 (u? u’) = (WREP+ Z w;,QE;)®@D; (5)

u;eEU’

fa(vr) = v (6)

This model is named Asymmetric-Dependency or
ASYMDEP. Figure 1 shows the two models side
by side. Note that Eq. 5 actually defines a feed-
forward neural network structure go(u?, u®) for
predicting arguments. Consider the prediction
function defined in Eq. 1, these two models will
be equivalent if we eliminate all nonlinearities in-
troduced by tanh(-).

3.2 Clustering Arguments

In the final step of semantic role induction, we
perform agglomerative clustering on the learned
embeddings of arguments. We first create a num-
ber of seed clusters based on syntactic positions
(Lang and Lapata, 2014), which are hierarchically
merged. Similar to Lang and Lapata (2011), we
define the similarity between clusters as the cosine
similarity (C'osSim) between the centroids with
a penalty for clustering two arguments from the
same sentence into the same role. Consider two
clusters C' and C’ with the centroids « and y re-
spectively, their similarity is:

S(C,C") = CosSim(x,y) —a-pen(C,C") (7)

where « is heuristically set to 1.
To compute the penalty, let V(C, C”) be the set
of arguments a; € C such that a; appears in the
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same sentence with another argument a; € .
We have

V(C,C)+ V('O

pen(C, C,) = |C| + |C’|

®)

where | - | is set cardinality. When this penalty is
large, the clusters C' and C’ will appear dissimilar,
so it becomes difficult to merge them into the same
cluster, preventing a; and a; from appearing in the
same cluster.

4 Experiments

We evaluate our models in unsupervised SRL and
compare the effectiveness our approach in model-
ing dependency relations with the previous work.

4.1 Setup

Our models are trained on 24 million tokens and
1 million sentences from the North American
News Text corpus (Graff, 1995). We use MATE
(Bjorkelund et al., 2009) to parse the dependency
tree and identify predicates and arguments. Em-
beddings of head words are the only feature we use
in clustering. Dependency matrices are restricted
to contain only diagonal terms. The vocabulary
sizes for arguments and predicates are 10K and
5K respectively. We hand-picked the dimension
of embeddings to be 50 for all models.

We take the first dependency relation on the
path from an argument’s head word to the predi-
cate as its dependency label, considering the de-
pendency’s direction. For example, the label for
the first car in Figure 1(c) is SBJ~!. We use neg-
ative sampling (Mikolov et al., 2013) to approx-
imate softmax in the objective function. For
SYMDEP, we sample both the predicted argument
and dependency. For ASYMDEP, we sample only
the argument. Models are trained using AdaGrad
(Duchi et al., 2011) with L2 regularization. All
embeddings are randomly initialized.>

Baselines. We compare against several baselines
using representation learning: CBOW and Skip-
Gram (Mikolov et al., 2013), GloVe (Pennington
etal., 2014), L&G (Levy and Goldberg, 2014) and
Arg2vec (Woodsend and Lapata, 2015). Similar to
ours, L&G and Arg2vec both encode dependency
relations in the embeddings. We train all models
on the same dataset as ours using publicly avail-

Resulted embeddings can be downloaded from https :
//bitbucket.org/luanyi/unsupervised-srl.



able code?, and then apply the same clustering al-
gorithm. Introduced by Lang and Lapata (2014),
SYNTF is a strong baseline that clusters arguments
based on purely syntactic cues: voice of the verb,
relative position to the predicate, syntactic rela-
tions, and realizing prepositions. The window size
for Arg2vec and our models are set to 1, while all
other embeddings are set to 2. We also employ
two state-of-the-art methods from Titov and Kle-
mentiev (2012) (T&K12) and Titov and Khoddam
(2015) (T&K15).

4.2 SRL Results

Following common practices (Lang and Lapata,
2014), we measure the overlap of induced seman-
tic roles and their gold labels on the CoNLL 2008
training data (Surdeanu et al., 2008). We report
purity (PU), collocation (CO), and their harmonic
mean (F1) evaluated on gold arguments in two set-
tings of gold parses and automatic parses from the
MaltParser (Nivre et al., 2007). Table 1 shows the
results.*

SYMDEP and ASYMDEP outperform all repre-
sentation learning baselines for SRL. T&K12 out-
performs our models on gold parsing because they
use a strong generative clustering method, which
shared parameters across verbs in the clustering
step. In addition, T&K15 incorporates feature-
rich latent structure learning. Nevertheless, our
models perform better with automatic parses, in-
dicating the robustness of our models under noise
in automatic parsing. Future work involves more
sophisticated clutering techniques (Titov and Kle-
mentiev, 2012) as well as incorporating feature-
rich models (Titov and Khoddam, 2015) to im-
prove performance further.

Table 1 shows that including dependency rela-
tions (L&G, Arg2vec, SYMDEP, and ASYMDEP)
improves performance. Additionally, our mod-
els achieve the best performance among those,
showing the strength of modeling dependencies
as multiplicative factors. Arg2vec learns word
embedings from the context features which are
concatenation of syntactic features (dependency
reations and POS tags) and word embedings. L&G
treats each word-dependency pair as a separate to-

3Except that Arg2vec is reimplemented since there is no
public code online.

“The numbers reported for Arg2vec with gold parsing
(80.7) is different from Woodsend and Lapata (2015) (80.9)
since we use a different clustering method and different train-
ing data.
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Gold parses Automatic parses
Model PU CO FlI |PU CO Fl
SYNTF | 81.6 781 798 | 770 715 741
Skip-Gram | 86.6 747 80.2 | 843 724 779
CBOW 84.6 749 794 | 840 715 772
GloVe 849 741 792 | 83.0 708 765
L&G 87.0 756 809 | 86.6 713 782
Arg2vec 84.0 777 80.7 | 869 714 784
SYMDEP 853 779 814 | 819 76.6 179.2
AsYMmMDEP | 85.6 783 81.8 | 829 752 789
T&K12 88.7 78.1 83.0 | 86.2 727 7838
T&K15 79.7 862 828 | - - -
SYMIDEP | 83.8 774 805 | 823 748 784

Table 1: Purity, collocation and F1 measures for
the CoNLL-2008 data set.

ken, leading to a large vocabulary (142k in our
dataset) and potentially data scarcity. In compar-
ison, SYMDEP and ASYMDEP formulate the de-
pendency as the weight matrix of the second non-
linear layer, leading to a deeper structure with less
parameters compared to previous work.
Qualitative results. Table 2 demonstrates the ef-
fectiveness of our models qualitatively. For exam-
ple, we identify that car is usually the subject of
crash and unload, and the object of sell and pur-
chase. In comparison, CBOW embeddings do not
reflect argument-predicate relations.

Ablation Study. To further understand the ef-
fects of the multiplicative representation on un-
supervised SRL, we create an ablated model
SYM1DEP, where we force all dependencies in
SYMDEP to use the same matrix. The network
has the same structure as SYMDEP, but the depen-
dency information is removed. Its performance on
SRL is shown at the bottom of Table 1. SYM1DEP
performs slightly worse than Arg2vec. This sug-
gests that the performance gain in SYMDEP can
be attributed to the use of dependency information
instead of the way of constructing context.

4.3 Word Similarity Results

As a further evaluation of the learned embed-
dings, we test if similarities between word em-
beddings agree with human annotation from Sim-
Lex999 (Hill et al., 2015). Table 3 shows
that SYMDEP outperforms Arg2vec on both
nouns and verbs, suggesting multiplicative depen-
dency relations are indeed effective. However,
ASYMDEP performs better than SYMDEP on noun
similarity but much worse on verb similarity. We
explore this further in an ablation study.



Argument

SYMDEP (SBJ)

SYMDEP (OBJ)

CBOW

car

crash, roar, capsize, land, lug, un-
load, bounce, ship

sell, purchase, buy, retrieve, board,

haul, lease, unload

train, splash, mail, shelter, jet, ferry,
drill, ticket

victim injure, die, protest, complain, insult, assault, stalk, avenge, harass, void, murder, kidnap, widow, mas-
weep, hospitalize, shout, suffer interview, housing, apprehend sacre, surge, sentence, defect

teacher teach, mentor, educate, note, rem-  hire, bar, recruit, practice, assault, coach, mentor, degree, master, guide,
inisce, say, learn, lecture enlist, segregate, encourage pilot, partner, captain

student learn, resurface, object, enroll, teach, encourage, educate, assault, graduate, degree, mortgage, engi-

note, protest, deem, teach

segregate, enroll, attend, administer

neer, mentor, pilot, partner, pioneer

Table 2: The 8 most similar predicates to a given argument in a given dependency role.

Model | Nouns  Verbs
L&G 31.4 27.2
Arg2vec 38.2 314
SYMDEP 39.2 36.5
ASYMDEP 39.7 15.3
ASYMIDEP | 33.2 24.2

Table 3: A POS-based analysis of the various em-
beddings. Numbers are the Spearman’s p scores
of each model on nouns and verbs of SimLex999.

Ablation Study. We create an ablated model
to explore the reason for ASYMDEP’s perfor-
mance on verb similarity. ASYMI1DEP is based
on ASYMDEP where we force all dependency re-
lations for the predicted argument v, to use the
same matrix D);. The aim of this experiment is to
check the negative influence of asymmetric depen-
dency matrix to verb embedding. The results are
shown at the bottom of Table 3. By keeping D;
dependency independent, performance on verbs is
significantly improved with the cost of noun per-
formance.

5 Conclusions

We present a new unsupervised semantic role la-
beling approach that learns embeddings of argu-
ments by predicting each argument from its con-
text and considering dependency relation as a mul-
tiplicative factor. Two proposed neural networks
outperform current state-of-the-art embeddings on
unsupervised SRL and the SimLex999 word simi-
larity task. As an effective model for dependency
relations, our multiplicative argument-dependency
factor models encourage the decoupling of argu-
ment and dependency representations. Disentan-
gling linguistic factors in similar manners may be
worth investigating in similar tasks such as frame
semantic parsing and event detection.
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Abstract

In order to capture rich language phenom-
ena, neural machine translation models
have to use a large vocabulary size, which
requires high computing time and large
memory usage. In this paper, we alleviate
this issue by introducing a sentence-level
or batch-level vocabulary, which is only a
very small sub-set of the full output vocab-
ulary. For each sentence or batch, we only
predict the target words in its sentence-
level or batch-level vocabulary. Thus,
we reduce both the computing time and
the memory usage. Our method simply
takes into account the translation options
of each word or phrase in the source sen-
tence, and picks a very small target vocab-
ulary for each sentence based on a word-
to-word translation model or a bilingual
phrase library learned from a traditional
machine translation model. Experimen-
tal results on the large-scale English-to-
French task show that our method achieves
better translation performance by 1 BLEU
point over the large vocabulary neural ma-
chine translation system of Jean et al.
(2015).

1 Introduction

Neural machine translation (NMT) (Bahdanau et
al., 2014) has gained popularity in recent two
years. But it can only handle a small vocabulary
size due to the computational complexity. In or-
der to capture rich language phenomena and have
a better word coverage, neural machine translation
models have to use a large vocabulary.

Jean et al. (2015) alleviated the large vocabu-
lary issue by proposing an approach that partitions
the training corpus and defines a subset of the full
target vocabulary for each partition. Thus, they
only use a subset vocabulary for each partition in
the training procedure without increasing compu-
tational complexity. However, there are still some
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drawbacks of Jean et al. (2015)’s method. First,
the importance sampling is simply based on the
sequence of training sentences, which is not lin-
guistically motivated, thus, translation ambiguity
may not be captured in the training. Second, the
target vocabulary for each training batch is fixed
in the whole training procedure. Third, the target
vocabulary size for each batch during training still
needs to be as large as 30k, so the computing time
is still high.

In this paper, we alleviate the above issues by
introducing a sentence-level vocabulary, which is
very small compared with the full target vocab-
ulary. In order to capture the translation am-
biguity, we generate those sentence-level vocab-
ularies by utilizing word-to-word and phrase-to-
phrase translation models which are learned from
a traditional phrase-based machine translation sys-
tem (SMT). Another motivation of this work is to
combine the merits of both traditional SMT and
NMT, since training an NMT system usually takes
several weeks, while the word alignment and rule
extraction for SMT are much faster (can be done
in one day). Thus, for each training sentence,
we build a separate target vocabulary which is the
union of following three parts:

e target vocabularies of word and phrase trans-
lations that can be applied to the current sen-
tence. (to capture the translation ambiguity)

e top 2k most frequent target words. (to cover
the unaligned target words)

e target words in the reference of the current
sentence. (to make the reference reachable)

As we use mini-batch in the training procedure,
we merge the target vocabularies of all the sen-
tences in each batch, and update only those re-
lated parameters for each batch. In addition, we
also shuffle the training sentences at the begin-
ning of each epoch, so the target vocabulary for
a specific sentence varies in each epoch. In the
beam search for the development or test set, we
apply the similar procedure for each source sen-
tence, except the third bullet (as we do not have

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 124-129,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics
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Figure 1: The attention-based NMT architecture.
<h—i and E) are bi-directional encoder states. c; is
the attention prob at time ¢, position j. Hy is the
weighted sum of encoding states. s; is the hidden
state. o; is an intermediate output state. A single
feedforward layer projects o, to a target vocabu-
lary V,, and applies softmax to predict the proba-
bility distribution over the output vocabulary.

the reference) and mini-batch parts. Experimen-
tal results on large-scale English-to-French task
(Section 5) show that our method achieves signifi-
cant improvements over the large vocabulary neu-
ral machine translation system.

2 Neural Machine Translation

As shown in Figure 1, neural machine translation
(Bahdanau et al., 2014) is an encoder-decoder net-
work. The encoder employs a bi-directional recur-
rent neural network to encode the source sentence
x = (x1,...,27), where [ is the sentence length,
into a sequence of hidden states h = (hq, ..., hy),
each h; is a concatenation of a left-to-right h; and
a right-to-left E

o [E] [T
' h fzi, Bicy)|

— —
where f and f are two gated recurrent units
(GRUL).

Given h, the decoder predicts the target transla-
tion by maximizing the conditional log-probability
of the correct translation y* = (v7, ...y}, ), where
m is the length of target sentence. At each time ¢,
the probability of each word y; from a target vo-
cabulary V is:

p(ye|h, yi_q..y7) oc exp(g(se, yi—1, Hye)), (1)
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where g is a multi layer feed-forward neural net-
work, which takes the embedding of the previous
word y; ;, the hidden state s;, and the context
state H; as input. The output layer of g is a tar-
get vocabulary V,, y; € V, in the training pro-
cedure. V, is originally defined as the full target
vocabulary V;, (Cho et al., 2014). We apply the
softmax function over the output layer, and get the
probability of p(y;|h, y; ;..y7). In Section 3, we
differentiate V, from V}, by adding a separate and
sentence-dependent V,, for each source sentence.
In this way, we enable to maintain a large V;, and
use a small V,, for each sentence.
The s; is computed as:

St = q(St—17 y;ﬁkflv Ct) (2)
l <
o= | o ﬁ")] , (3)
Zi:l (oui - h)

where ¢ is a GRU, ¢; is a weighted sum of h, the
weights, o, are computed with a feed-forward neu-
ral network r:

exp{r(si—1, hi, yi_1)}
S exp{r(si1, hi, yiy)}

3 Target Vocabulary

4

Qi =

The output of function g is the probability distri-
bution over the target vocabulary V,,. As V, is de-
fined as V,, in Cho et al. (2014), the softmax func-
tion over V, requires to compute all the scores for
all words in V,, and results in a high computing
complexity. Thus, Bahdanau et al. (2014) only
uses top 30k most frequent words for both V,, and
Vi, and replaces all other words as unknown words
(UNK).

3.1 Target Vocabulary Manipulation

In this section, we aim to use a large vocabulary
of V,, (e.g. 500k, to have a better word cover-
age), and, at the same, to reduce the size of V,
as small as possible (in order to reduce the com-
puting time). Our basic idea is to maintain a sep-
arate and small vocabulary V, for each sentence
so that we only need to compute the probability
distribution of g over a small vocabulary for each
sentence. Thus, we introduce a sentence-level vo-
cabulary V4 to be our V,, which depends on the
sentence x. In the following part, we show how
we generate the sentence-dependent V5.

The first objective of our method aims to cap-
ture the real translation ambiguity for each word,



and the target vocabulary of a sentence V, = V4
is supposed to cover as many as those possible
translation candidates. Take the English to Chi-
nese translation for example, the target vocabulary
for the English word bank should contain yinhdng
(a financial institution) and héan (sloping land) in
Chinese.

So we first use a word-to-word translation dic-
tionary to generate some target vocaularies for x.
Given a dictionary D(x) = [y1, Y2, ...|, Where x is
a source word, [y1,¥2, ...] is a sorted list of candi-
date translations, we generate a target vocabulary
V.P for a sentence x = (z1, ..., ;) by merging all
the candidates of all words x in x.

l

U D)

=1

VD

X

As the word-to-word translation dictionary only
focuses on the source words, it can not cover
the target unaligned functional or content words,
where the traditional phrases are designed for this
purpose. Thus, in addition to the word dictio-
nary, given a word aligned training corpus, we
also extract phrases P(zi..x;) = [y1,...,Yj),
where x1...x; is a consecutive source words, and
[y1, .., y;] is a list of target words'. For each sen-
tence x, we collect all the phrases that can be ap-
plied to sentence x, e.g. x1...x; i a sub-sequence
of sentence x.

U

Va;...x; Esubseq(x)

VXP = P(wzxj),

where subseq(x) is all the possible sub-sequence
of x with a length limit.

In order to cover target un-aligned functional
words, we need top n most common target words.

V.l =T(n).

Training: in our training procedure, our op-
timization objective is to maximize the log-
likelihood over the whole training set. In order
to make the reference reachable, besides VXD , VXP
and V,I', we also need to include the target words
in the reference y,

vi=1 w

Vy; €y

"Here we change the definition of a phrase in traditional
SMT, where the [y1, ...y;] should also be a consecutive target
words. But our task in this paper is to get the target vocabu-
lary, so we only care about the target word set, not the order.
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where x and y are a translation pair. So for each
sentence x, we have a target vocabulary Vx:

Vi =VPuvPuvIuvE

Then, we start our mini-batch training by ran-
domly shuffling the training sentences before each
epoch. For simplicity, we use the union of all V5
in a batch,

Vo=Vop = Vi, UVx, U V4,

where b is the batch size. This merge gives an
advantage that V} changes dynamically in each
epoch, which leads to a better coverage of param-
eters.

Decoding: different from the training, the target
vocabulary for a sentence x is

Vo, =Va=VPuvPuvl,
and we do not use mini-batch in decoding.

4 Related Work

To address the large vocabulary issue in NMT,
Jean et al. (2015) propose a method to use differ-
ent but small sub vocabularies for different parti-
tions of the training corpus. They first partition
the training set. Then, for each partition, they cre-
ate a sub vocabulary V),, and only predict and ap-
ply softmax over the vocabularies in V), in training
procedure. When the training moves to the next
partition, they change the sub vocabulary set ac-
cordingly.

Noise-contrastive estimation (Gutmann and Hy-
varinen, 2010; Mnih and Teh, 2012; Mikolov et
al., 2013; Mnih and Kavukcuoglu, 2013) and hi-
erarchical classes (Mnih and Hinton, 2009) are in-
troduced to stochastically approximate the target
word probability. But, as suggested by Jean et al.
(2015), those methods are only designed to reduce
the computational complexity in training, not for
decoding.

5 Experiments

5.1 Data Preparation

We run our experiments on English to French (En-
Fr) task. The training corpus consists of approx-
imately 12 million sentences, which is identical
to the set of Jean et al. (2015) and Sutskever et
al. (2014). Our development set is the concatena-
tion of news-test-2012 and news-test-2013, which



et VP v,p vPuvpP vPuvPuvr
x 10 20 50 10 20 50 10 20 50
train 73.6 | 82.1 | 878 | 935 || 86.6 | 89.4 | 937 | 92.7 | 942 | 96.2
development || 73.5 | 80.0 | 855 | 91.0 || 86.6 | 884 | 91.7 | 91.7 | 92.7 | 94.3

Table 1: The average reference coverage ratios (in word-level) on the training and development sets. We
use fixed top 10 candidates for each phrase when generating V,/’, and top 2k most common words for
V.. Then we check various top n (10, 20, and 50) candidates for the word-to-word dictionary for V..

has 6003 sentences in total. Our test set has 3003
sentences from WMT news-test 2014. We evalu-
ate the translation quality using the case-sensitive
BLEU-4 metric (Papineni et al., 2002) with the
multi-bleu.perl script.

Same as Jean et al. (2015), our full vocabu-
lary size is 500k, we use AdaDelta (Zeiler, 2012),
and mini-batch size is 80. Given the training set,
we first run the ‘fast_align’ (Dyer et al., 2013) in
one direction, and use the translation table as our
word-to-word dictionary. Then we run the reverse
direction and apply ‘grow-diag-final-and’ heuris-
tics to get the alignment. The phrase table is ex-
tracted with a standard algorithm in Moses (Koehn
et al., 2007).

In the decoding procedure, our method is very
similar to the ‘candidate list’ of Jean et al. (2015),
except that we also use bilingual phrases and we
only include top 2k most frequent target words.
Following Jean et al. (2015), we dump the align-
ments for each sentence, and replace UNKs with
the word-to-word dictionary or the source word.

5.2 Results
5.2.1 Reference Reachability

The reference coverage or reachability ratio is very
important when we limit the target vocabulary for
each source sentence, since we do not have the ref-
erence in the decoding time, and we do not want
to narrow the search space into a bad space. Ta-
ble 1 shows the average reference coverage ratios
(in word-level) on the training and development
sets. For each source sentence x, V' here is a
set of target word indexes (the vocabulary size is
500k, others are mapped to UNK). The average
reference vocabulary size VI for each sentence is
23.7 on the training set (22.6 on the dev. set). The
word-to-word dictionary V,” has a better cover-
age than phrases V., and when we combine the
three sets we can get better coverage ratios. Those
statistics suggest that we can not use each of them
alone due to the low reference coverage ratios.
The last three columns show three combinations,
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system train dev.
sentence \ mini-batch | sentence

Jean (2015)| 30k 30k 30k

Ours 2080 6153 2067

Table 2: Average vocabulary size for each sen-
tence or mini-batch (80 sentences). The full vo-
cabulary is 500k, all other words are UNKs.

all of which have higher than 90% coverage ratios.
As there are many combinations, training an NMT
system is time consuming, and we also want to
keep the output vocabulary size small (the setting
in the last column in Table 1 results in an average
11k vocabulary size for mini-batch 80), thus, in
the following part, we only run one combination
(top 10 candidates for both V,/” and V,P, and top
2k for V,I'), where the full sentence coverage ratio
is 20.7% on the development set.

5.2.2 Average Size of V,

With the setting shown in bold column in Ta-
ble 1, we list average vocabulary size of Jean et al.
(2015) and ours in Table 2. Jean et al. (2015) fix
the vocabulary size to 30k for each sentence and
mini-batch, while our approach reduces the vocab-
ulary size to 2080 for each sentence, and 6153 for
each mini-batch. Especially in the decoding time,
our vocabulary size for each sentence is about 14.5
times smaller than 30k.

5.2.3 Translation Results

The red solid line in Figure 2 shows the learn-
ing curve of our method on the development set,
which picks at epoch 7 with a BLEU score of
30.72. We also fix word embeddings at epoch
5, and continue several more epochs. The corre-
sponding blue dashed line suggests that there is no
significant difference between them.

We also run two more experiments: V.2 U VI
and V,F' UV.I separately (always have V,/? in train-
ing). The final results on the test set are 34.20
and 34.23 separately. Those results suggest that
we should use both the translation dictionary and
phrases in order to get better translation quality.



top n common words 50 200 500 | 1000 | 2000 | 10000
BLEU on dev. 30.61 | 30.65 | 30.70 | 30.70 | 30.72 | 30.69
avg. sizeof V, = V.V UVPUVI | 202 | 324 | 605 | 1089 | 2067 | 10029

Table 3: Given a trained NMT model, we decode the development set with various top n most common
target words. For En-Fr task, the results suggest that we can reduce the n to 50 without losing much in
terms of BLEU score. The average size of V, is reduced to as small as 202, which is significant lower

than 2067 (the default setting we use in our training).

31.5 T T T T T T T 1
31
30.5
30
29.5

BLEU

learning curve e
fixed world-erpbecljdings - x-

27

| I |
1 2 3 4 5 6 7 8 9 10 11
epoch

Figure 2: The learning curve on the development
set. An epoch means a complete update through
the full training set.

single system dev. | test
Moses from Cho et al. (2014) N/A | 33.30
candidate list 29.32 | 33.36

Jean Q013) | | UNK replace || 29.98 | 34.11
Ours voc. manipulation || 30.15 | 34.45
+UNK replace | 30.72 | 35.11
best from Durrani et al. (2014) || N/A | 37.03

Table 4: Single system results on En-Fr task.

Table 4 shows the single system results on En-
Fr task. The standard Moses in Cho et al. (2014)
on the test set is 33.3. Our target vocabulary ma-
nipulation achieves a BLEU score of 34.45 on the
test set, and 35.11 after the UNK replacement. Our
approach improves the translation quality by 1.0
BLEU point on the test set over the method of
Jean et al. (2015). But our single system is still
about 2 points behind of the best phrase-based sys-
tem (Durrani et al., 2014).

5.2.4 Decoding with Different Top n Most
Common Target Words

Another interesting question is what is the perfor-
mance if we vary the size top n most common
target words in V,/. As the training for NMT is
time consuming, we vary the size n only in the de-
coding time. Table 3 shows the BLEU scores on
the development set. When we reduce the n from
2000 to 50, we only loss 0.1 points, and the av-
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erage size of sentence level V, is reduced to 202,
which is significant smaller than 2067 (shown in
Table 2). But we should notice that we train our
NMT model in the condition of the bold column in
Table 2, and only test different n in our decoding
procedure only. Thus there is a mismatch between
the training and testing when n is not 2000.

5.2.5 Speed

In terms of speed, as we have different code bases”
between Jean et al. (2015) and us, it is hard to con-
duct an apple to apple comparison. So, for sim-
plicity, we run another experiment with our code
base, and increase 14, size to 30k for each batch
(the same size in Jean et al. (2015)). Results show
that increasing the V4, to 30k slows down the train-
ing speed by 1.5 times.

6 Conclusion

In this paper, we address the large vocabulary is-
sue in neural machine translation by proposing to
use a sentence-level target vocabulary V,,, which
is much smaller than the full target vocabulary V.
The small size of V,, reduces the computing time of
the softmax function in each predict step, while the
large vocabulary of V,, enable us to model rich lan-
guage phenomena. The sentence-level vocabulary
V, is generated with the traditional word-to-word
and phrase-to-phrase translation libraries. In this
way, we decrease the size of output vocabulary V,
under 3k for each sentence, and we speedup and
improve the large-vocabulary NMT system.
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Abstract

In this paper, we propose the TBCNN-
pair model to recognize entailment and
contradiction between two sentences. In
our model, a tree-based convolutional neu-
ral network (TBCNN) captures sentence-
level semantics; then heuristic matching
layers like concatenation, element-wise
product/difference combine the informa-
tion in individual sentences. Experimen-
tal results show that our model outper-
forms existing sentence encoding-based
approaches by a large margin.

1 Introduction

Recognizing entailment and contradiction be-
tween two sentences (called a premise and a hy-
pothesis) is known as natural language inference
(NLD) in MacCartney (2009). Provided with a
premise sentence, the task is to judge whether the
hypothesis can be inferred (entailment), or the
hypothesis cannot be true (contradiction).
Several examples are illustrated in Table 1.

NLI is in the core of natural language under-
standing and has wide applications in NLP, e.g.,
question answering (Harabagiu and Hickl, 2006)
and automatic summarization (Lacatusu et al.,
2006; Yan et al., 2011a; Yan et al., 2011b). More-
over, NLI is also related to other tasks of sen-
tence pair modeling, including paraphrase detec-
tion (Hu et al., 2014), relation recognition of dis-
course units (Liu et al., 2016), etc.

Traditional approaches to NLI mainly fall into
two groups: feature-rich models and formal rea-
soning methods. Feature-based approaches typ-
ically leverage machine learning models, but re-
quire intensive human engineering to represent
lexical and syntactic information in two sentences

*Equal contribution. Corresponding authors.
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Premise Two men on bicycles competing in a race.
People are riding bikes. E

Hypothesis | Men are riding bicycles on the streets. ¢
A few people are catching fish. N

Table 1: Examples of relations between a premise
and a hypothesis: Entailment, Contradiction, and
Neutral (irrelevant).

(MacCartney et al., 2006; Harabagiu et al., 2006).
Formal reasoning, on the other hand, converts a
sentence into a formal logical representation and
uses interpreters to search for a proof. However,
such approaches are limited in terms of scope and
accuracy (Bos and Markert, 2005).

The renewed prosperity of neural networks has
made significant achievements in various NLP ap-
plications, including individual sentence modeling
(Kalchbrenner et al., 2014; Mou et al., 2015) as
well as sentence matching (Hu et al., 2014; Yin
and Schiitze, 2015). A typical neural architecture
to model sentence pairs is the “Siamese” structure
(Bromley et al., 1993), which involves an underly-
ing sentence model and a matching layer to de-
termine the relationship between two sentences.
Prevailing sentence models include convolutional
networks (Kalchbrenner et al., 2014) and recur-
rent/recursive networks (Socher et al., 2011b). Al-
though they have achieved high performance, they
may either fail to fully make use of the syntacti-
cal information in sentences or be difficult to train
due to the long propagation path. Recently, we
propose a novel tree-based convolutional neural
network (TBCNN) to alleviate the aforementioned
problems and have achieved higher performance
in two sentence classification tasks (Mou et al.,
2015). However, it is less clear whether TBCNN
can be harnessed to model sentence pairs for im-
plicit logical inference, as is in the NLI task.

In this paper, we propose the TBCNN-pair
neural model to recognize entailment and con-
tradiction between two sentences. We lever-
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age our newly proposed TBCNN model to cap-
ture structural information in sentences, which
is important to NLI. For example, the phrase
“riding bicycles on the streets” in Table 1 can
be well recognized by TBCNN via the depen-
dency relations dobj(riding,bicycles)
and prep_on (riding, street). As we can
see, TBCNN is more robust than sequential con-
volution in terms of word order distortion, which
may be introduced by determinators, modifiers,
etc. A pooling layer then aggregates information
along the tree, serving as a way of semantic com-
positonality. Finally, two sentences’ information
is combined by several heuristic matching lay-
ers, including concatenation, element-wise prod-
uct and difference; they are effective in capturing
relationships between two sentences, but remain
low complexity.

To sum up, the main contributions of this pa-
per are two-fold: (1) We are the first to introduce
tree-based convolution to sentence pair modeling
tasks like NLI; (2) Leveraging additional heuris-
tics further improves the accuracy while remaining
low complexity, outperforming existing sentence
encoding-based approaches to a large extent, in-
cluding feature-rich methods and long short term
memory (LSTM)-based recurrent networks.!

2 Related Work

Entailment recognition can be viewed as a task of
sentence pair modeling. Most neural networks in
this field involve a sentence-level model, followed
by one or a few matching layers. They are some-
times called “Siamese” architectures (Bromley et
al., 1993).

Hu et al. (2014) and Yin and Schiitze (2015) ap-
ply convolutional neural networks (CNNs) as the
individual sentence model, where a set of feature
detectors over successive words are designed to
extract local features. Wan et al. (2015) build sen-
tence pair models upon recurrent neural networks
(RNNSs) to iteratively integrate information along
a sentence. Socher et al. (2011a) dynamically con-
struct tree structures (analogous to parse trees) by
recursive autoencoders to detect paraphrase be-
tween two sentences. As shown, inherent struc-
tural information in sentences is oftentimes impor-
tant to natural language understanding.

The simplest approach to match two sentences,

!Code is released on:
https://sites.google.com/site/tbcnninference/
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perhaps, is to concatenate their vector representa-
tions (Zhang et al., 2015; Hu et al., 2014, Arc-I).
Concatenation is also applied in our previous work
of matching the subject and object in relation clas-
sification (Xu et al., 2015; Xu et al., 2016). He
et al. (2015) apply additional heuristics, namely
Euclidean distance, cosine measure, and element-
wise absolute difference. The above methods op-
erate on a fixed-size vector representation of a sen-
tence, categorized as sentence encoding-based ap-
proaches. Thus the matching complexity is O(1),
i.e., independent of the sentence length. Word-by-
word similarity matrices are introduced to enhance
interaction. To obtain the similarity matrix, Hu et
al. (2014) (Arc-II) concatenate two words’ vectors
(after convolution), Socher et al. (2011a) compute
Euclidean distance, and Wan et al. (2015) apply
tensor product. In this way, the complexity is of
O(n?), where n is the length of a sentence; hence
similarity matrices are difficult to scale and less
efficient for large datasets.

Recently, Rocktischel et al. (2016) intro-
duce several context-aware methods for sentence
matching. They report that RNNs over a single
chain of two sentences are more informative than
separate RNNss; a static attention over the first sen-
tence is also useful when modeling the second one.
Such context-awareness interweaves the sentence
modeling and matching steps. In some scenarios
like sentence pair re-ranking (Yan et al., 2016), it
is not feasible to pre-calculate the vector represen-
tations of sentences, so the matching complexity is
of O(n). Rocktischel et al. (2016) further develop
a word-by-word attention mechanism and obtain a
higher accuracy with a complexity order of O(n?).

3 Our Approach

We follow the “Siamese” architecture (like most
work in Section 2) and adopt a two-step strategy to
classify the relation between two sentences. Con-
cretely, our model comprises two parts:

e A tree-based convolutional neural network
models each individual sentence (Figure 1a).
Notice that, the two sentences, premise and hy-
pothesis, share a same TBCNN model (with
same parameters), because this part aims to
capture general semantics of sentences.

A matching layer combines two sentences’ in-
formation by heuristics (Figure 1b). After in-
dividual sentence models, we design a sen-
tence matching layer to aggregate information.
We use simple heuristics, including concate-
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Figure 1: TBCNN-pair model. (a) Individ-
ual sentence modeling via tree-based convolution.
(b) Sentence pair modeling with heuristics, after
which a softmax layer is applied for output.

nation, element-wise product and difference,
which are effective and efficient.

Finally, we add a softmax layer for output.
The training objective is cross-entropy loss, and
we adopt mini-batch stochastic gradient descent,
computed by back-propagation.

3.1 Tree-Based Convolution

The tree-based convolutoinal neural network
(TBCNN) is first proposed in our previous work
(Mou et al., 2016) to classify program source
code; later, we further propose TBCNN variants
to model sentences (Mou et al., 2015). This sub-
section details the tree-based convolution process.

The basic idea of TBCNN is to design a set of
subtree feature detectors sliding over the parse tree
of a sentence; either a constituency tree or a depen-
dency tree applies. In this paper, we prefer the de-
pendency tree-based convolution for its efficiency
and compact expressiveness.

Concretely, a sentence is first converted to a
dependency parse tree.> Each node in the de-
pendency tree corresponds to a word in the sen-
tence; an edge a—b indicates a is governed by b.
Edges are labeled with grammatical relations (e.g.,
nsubj) between the parent node and its children
(de Marneffe et al., 2006). Words are represented
by pretrained vector representations, also known
as word embeddings (Mikolov et al., 2013a).

2Preprinted on arXiv on September 2014
(http://arxiv.org/abs/1409.5718v1)

3Parsed by the Stanford parser
(http://nlp.stanford.edu/software/lex-parser.shtml)

Now, we consider a set of two-layer subtree fea-
ture detectors sliding over the dependency tree. At
a position where the parent node is p with child

nodes cy, - - - , cn, the output of the feature detec-
tor, y, is n
y=f (pr +) Wegei+ b)
i=1

Let us assume word embeddings (p and ¢;) are
of n. dimensions; that the convolutional layer y is
nc-dimensional. W € R"*"e ig the weight ma-
trix; b € R"¢ is the bias vector. r[c;| denotes the
dependency relation between p and ¢;. f is the
non-linear activation function, and we apply ReLU
in our experiments.

After tree-based convolution, we obtain a set of
feature maps, which are one-one corresponding to
original words in the sentence. Therefore, they
may vary in size and length. A dynamic pooling
layer is applied to aggregate information along dif-
ferent parts of the tree, serving as a way of seman-
tic compositionality (Hu et al., 2014). We use the
max pooling operation, which takes the maximum
value in each dimension.

Then we add a fully-connected hidden layer to
further mix the information in a sentence. The ob-
tained vector representation of a sentence is de-
noted as h (also called a sentence embedding).
Notice that the same tree-based convolution ap-
plies to both the premise and hypothesis.

Tree-based convolution along with pooling en-
ables structural features to reach the output layer
with short propagation paths, as opposed to the
recursive network (Socher et al., 2011b), which
is also structure-sensitive but may suffer from the
problem of long propagation path. By contrast,
TBCNN is effective and efficient in learning such
structural information (Mou et al., 2015).

3.2 Matching Heuristics
In this part, we introduce how vector represen-
tations of individual sentences are combined to
capture the relation between the premise and hy-
pothesis. As the dataset is large, we prefer O(1)
matching operations because of efficiency con-
cerns. Concretely, we have three matching heuris-
tics:

e Concatenation of the two sentence vectors,

e Element-wise product, and

e Element-wise difference.
The first heuristic follows the most standard pro-
cedure of the “Siamese” architectures, while the
latter two are certain measures of “similarity” or
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“closeness.” These matching layers are further
concatenated (Figure 1b), given by

m = [hy; ho; hy — ho; hy o ho]

where h; € R" and hy € R" are the sentence
vectors of the premise and hypothesis, respec-
tively; “o” denotes element-wise product; semi-
colons refer to column vector concatenation. 1m €
R47e is the output of the matching layer.

We would like to point out that, with subse-
quent linear transformation, element-wise differ-
ence is a special case of concatenation. If we
assume the subsequent transformation takes the
form of Wlhy hs]", where W = [W; Ws] is
the weights for concatenated sentence representa-
tions, then element-wise difference can be viewed
as such that Wo(hl — hg) = [Wo —Wo] [hl hQ]T.
(W is the weights corresponding to element-wise
difference.) Thus, our third heuristic can be ab-
sorbed into the first one in terms of model ca-
pacity. However, as will be shown in the exper-
iment, explicitly specifying this heuristic signifi-
cantly improves the performance, indicating that
optimization differs, despite the same model ca-
pacity. Moreover, word embedding studies show
that linear offset of vectors can capture relation-
ships between two words (Mikolov et al., 2013b),
but it has not been exploited in sentence-pair rela-
tion recognition. Although element-wise distance
is used to detect paraphrase in He et al. (2015),
it mainly reflects “similarity” information. Our
study verifies that vector offset is useful in cap-
turing generic sentence relationships, akin to the
word analogy task.

4 Evaluation
4.1 Dataset

To evaluate our TBCNN-pair model, we used the
newly published Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015).*
The dataset is constructed by crowdsourced ef-
forts, each sentence written by humans. More-
over, the SNLI dataset is magnitudes of larger
than previous resources, and hence is particularly
suitable for comparing neural models. The tar-
get labels comprise three classes: Entailment,
Contradiction, and Neutral (two irrel-
evant sentences).  We applied the standard
train/validation/test split, contraining 550k, 10k,
and 10k samples, respectively. Figure 2 presents

*http://nlp.stanford.edu/projects/snli/
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| Statistics Mean Std |
# nodes 859 4.14
Max depth 393 1.13
Avg leafdepth  3.13  0.65
Avgnode depth  2.60 0.54

Table 2: Statistics of the Stanford Natural Lan-
guage Inference dataset where each sentence is
parsed into a dependency parse tree.
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Figure 2: Validation accuracy versus dropout rate
(full TBCNN-pair model).

additional dataset statistics, especially those rele-
vant to dependency parse trees.’

4.2 Hyperparameter Settings

All our neural layers, including embeddings, were
set to 300 dimensions. The model is mostly robust
when the dimension is large, e.g., several hundred
(Collobert and Weston, 2008). Word embeddings
were pretrained ourselves by word2vec on the
English Wikipedia corpus and fined tuned during
training as a part of model parameters. We applied
{5 penalty of 3 x 10~4; dropout was chosen by val-
idation with a granularity of 0.1 (Figure 2). We see
that a large dropout rate (> 0.3) hurts the perfor-
mance (and also makes training slow) for such a
large dataset as opposed to small datasets in other
tasks (Peng et al., 2015). Initial learning rate was
set to 1, and a power decay was applied. We used
stochastic gradient descent with a batch size of 50.

4.3 Performance

Table 3 compares our model with previous re-
sults. ~ As seen, the TBCNN sentence pair
model, followed by simple concatenation alone,
outperforms existing sentence encoding-based
approaches (without pretraining), including a
feature-rich method using 6 groups of human-
engineered features, long short term memory

SWe applied collapsed dependency trees, where preposi-
tions and conjunctions are annotated on the dependency rela-
tions, but these auxiliary words themselves are removed.



Test acc.| Matching
Model (%) |complexity
Unlexicalized features? 50.4
Lexicalized features® 78.2
Vector sum + MLP? 75.3
Vanilla RNN + MLP? 72.2
LSTM RNN + MLP? 776, 1)
CNN + cat 77.0
GRU w/ skip-thought pretraining” 81.4
TBCNN-pair + cat 79.3
TBCNN-pair + cat,o,- 82.1
Single-chain LSTM RNNs” 81.4 O(n)
+ static attention” 824
LSTM + word-by-word attention” 83.5] O(n?)

Table 3: Accuracy of the TBCNN-pair model in
comparison with previous results ("Bowman et al.,
2015; “Vendrov et al., 2015; "Rocktéschel et al.,
2015). “cat” refers to concatenation; “-” and “o”
denote element-wise difference and product, resp.

’ Model Variant | Valid Acc. Test Acc.
TBCNN+-o0 73.8 72.5
TBCNN+- 79.9 79.3
TBCNN+-cat 80.8 79.3
TBCNN+-cat,o 81.6 80.7
TBCNN+-cat,- 81.7 81.6
TBCNN+-cat,o,- 82.4 82.1

Table 4: Validation and test accuracies of

TBCNN-pair variants (in percentage).

(LSTM)-based RNNs, and traditional CNNs. This
verifies the rationale for using tree-based convolu-
tion as the sentence-level neural model for NLI.

Table 4 compares different heuristics of match-
ing. We first analyze each heuristic separately:
using element-wise product alone is significantly
worse than concatenation or element-wise differ-
ence; the latter two are comparable to each other.

Combining different matching heuristics im-
proves the result: the TBCNN-pair model with
concatenation, element-wise product and differ-
ence yields the highest performance of 82.1%. As
analyzed in Section 3.2, the element-wise differ-
ence matching layer does not add to model com-
plexity and can be absorbed as a special case into
simple concatenation. However, explicitly using
such heuristic yields an accuracy boost of 1-2%.
Further applying element-wise product improves
the accuracy by another 0.5%.

The full TBCNN-pair model outperforms all
existing sentence encoding-based approaches, in-

134

cluding a 1024d gated recurrent unit (GRU)-based
RNN with “skip-thought” pretraining (Vendrov et
al., 2015). The results obtained by our model
are also comparable to several attention-based
LSTMs, which are more computationally inten-
sive than ours in terms of complexity order.

4.4 Complexity Concerns

For most sentence models including TBCNN, the
overall complexity is at least O(n). However, an
efficient matching approach is still important, es-
pecially to retrieval-and-reranking systems (Yan
et al.,, 2016; Li et al., 2016). For example, in
a retrieval-based question-answering or conversa-
tion system, we can largely reduce response time
by performing sentence matching based on pre-
computed candidates’ embeddings. By contrast,
context-aware matching approaches as described
in Section 2 involve processing each candidate
given a new user-issued query, which is time-
consuming in terms of most industrial products.

In our experiments, the matching part (Fig-
ure 1b) counts 1.71% of the total time during pre-
diction (single-CPU, C++ implementation), show-
ing the potential applications of our approach
in efficient retrieval of semantically related sen-
tences.

5 Conclusion

In this paper, we proposed the TBCNN-pair model
for natural language inference. Our model re-
lies on the tree-based convolutional neural net-
work (TBCNN) to capture sentence-level seman-
tics; then two sentences’ information is com-
bined by several heuristics including concatena-
tion, element-wise product and difference. Ex-
perimental results on a large dataset show a high
performance of our TBCNN-pair model while re-
maining a low complexity order.
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