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Preface: General Chair

Welcome to Jeju Island — where ACL makes a return to Asia!

As General Chair, I am indeed honored to pen the first words of ACL 2012 proceedings. In the
past year, research in computational linguistics has continued to thrive across Asia and all over the
world. On this occasion, I share with you the excitement of our community as we gather again at our
annual meeting. On behalf of the organizing team, it is my great pleasure to welcome you to Jeju
Island and ACL 2012.

In 2012, ACL turns 50. I feel privileged to chair the conference that marks such an important
milestone for our community. We have prepared special programs to commemorate the 50th
anniversary, including ‘Rediscovering 50 Years of Discovery’, a main conference workshop chaired
by Rafael Banchs with a program on ‘the People, the Contents, and the Anthology’, which recollects
some of the great moments in ACL history, and ‘ACL 50th Anniversary Lectures’ by Mark Johnson,
Aravind K. Joshi and a Lifetime Achievement Award Recipient.

A large number of people have worked hard to bring this annual meeting to fruition. It has
been an unforgettable experience for everyone involved. My deepest thanks go to the authors,
reviewers, volunteers, participants, and all members and chairs of the organizing committees. It is your
participation that makes a difference.

Program Chairs, Chin-Yew Lin and Miles Osborne, deserve our gratitude for putting an immense
amount of work to ensure that each of the 940 submissions was taken care of. They put together
a superb technical program like nobody else. Publication Chairs, Maggie Li and Michael White,
extended the publishing tools to take care of every detail and compiled all the books within an
impossible schedule. Tutorial Chair, Michael Strube, put together six tutorials that you can never
miss. Workshop Chairs, Massimo Poesio and Satoshi Sekine, working with their EACL and NAACL
counterparts, selected 11 quality workshops, many of which are new editions in their popular workshop
series. Demo Chair, Min Zhang, started a novel review process and selected 29 quality system
demos. Faculty Advisors, Kentaro Inui, Greg Kondrak, and Yang Liu, and Student Chairs, Jackie
Cheung, Jun Hatori, Carlos Henriquez and Ann Irvine, assembled an excellent program for the
Student Research Workshop with 12 accepted papers. Mentoring Chair, Joyce Chai, coordinated
the mentorship of 13 papers. Publicity Chairs, Jung-jae Kim and Youngjoong Ko, developed the
website, newsletters, and conference handbook that kept us updated all the time. Exhibition Chair,
Byeongchang Kim, coordinated more than 10 exhibitors with a strong industry presence. All the
events are now brought to us on Jeju Island by the Local Arrangements Chairs, Gary Lee and Jong
Park, and their team. I can never thank them enough for all the preparations they have made to host us
in such a spectacular place!

I would like to express my gratitude and appreciation to Kevin Knight, Chair of the ACL Conference
Coordination Committee, Dragomir Radev, ACL Secretary, and Priscilla Rasmussen, ACL Business
Manager, for their advice and guidance throughout the process.

The financial sponsors generously supported ACL 2012 in a meaningful way despite a challenging
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economic outlook. We are honored to have Baidu as the Platinum Sponsor, Elsevier and Google as
Gold Sponsors, Microsoft, KAIST and SK as Sliver Sponsors, 7 Bronze Sponsors, and 3 Supporters.
The Donald and Betty Walker Student Scholarship Fund and Asian Federation of Natural Language
Processing have supported our student travel grants. The sponsorship program was made possible by
the ACL sponsorship committee: Eiichiro Sumita, Haifeng Wang, Michael Gamon, Patrick Pantel,
Massimiliano Ciaramita, and Idan Szpektor.

Finally, I do hope that you have an enjoyable and productive time on Jeju Island, and that you
will leave with fond memories of ACL’s 50th Anniversary. With my best wishes for a successful
conference!

Haizhou Li
ACL 2012 General Chair
July 2012
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Preface: Programme Committee Co-Chairs

This year we received 571 valid long paper submissions and 369 short paper submissions. 19% of the
long papers and 20% of the short papers were accepted. As usual, some are presented orally and some
as posters. Taking unigram counts from accepted long paper titles, and ignoring function words, the
most popular word were:

entity 5
evaluation 5
hierarchical 5
information 5
joint 5
syntactic 5
topic 5
discriminative 6
lexical 6
statistical 6
chinese 7
dependency 7
machine 8
modeling 8
models 8
language 10
word 10
parsing 11
model 12
learning 14
translation 15

Some areas have grown over time and some have diminished. The most popular area for submissions
(as expected) was Machine Translation. We promoted Social Media as a new area.

Twenty nine Area Chairs worked with 665 reviewers, producing 1830 long paper reviews and
1187 short paper reviews. Everything ran to a tight schedule and there were no slippages. This would
not have been possible without our wonderful and diligent Area Chairs and Reviewers. Thanks!

We are delighted to have two keynote speakers, both of whom are very well known to the
language community: Aravind Joshi and Mark Johnson. They will give coordinated talks addressing
the 50th ACL anniversary: “Remembrance of ACLs past” and “Computational linguistics: Where do
we go from here?” The ACL Lifetime Achievement Award will be announced on the last day of the
conference.

Of the many papers, we selected two as being outstanding:
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Bayesian Symbol-Refined Tree Substitution Grammars for Syntactic Parsing
Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, Masaaki Nagata

String Re-writing Kernel
Fan Bu, Hang Li, Xiaoyan Zhu

They will be presented as best papers in a dedicated session.

We thank the General Conference Chair Haizhou Li, the Local Arrangements Committee headed by
Gary Geunbae Lee, Michael White and Maggie Li, the Publication Co-Chairs for coordinating and
putting the proceedings together and all other committee chairs for their work. MO is especially
thankful to Steve Clark for helpful tips on how to manage and run the whole process.

We hope you enjoy the conference!

Chin-Yew Lin, Microsoft Research Asia
Miles Osborne, University of Edinburgh
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Invited Talk
Remembrance of ACLs past

Aravind K. Joshi
Henry Salvatori Professor of Computer and Cognitive Science

University of Pennsylvania

Abstract
Besides briefly covering some highlights of the past 50 years of ACL from my perspective, I will try to
comment on (1) why some directions of research were pursued for a while and then dropped, sometimes
for a good reason and sometimes apparently for no reason, (2) why the relationship to Linguistics,
Psycholinguistics, and AI goes up and down, and (3) are there any leftovers that have the possibility of
being turned into delicious contributions!

Short Bio
After completing his undergraduate work in Electrical and Communication Engineering in India, Ar-
avind Joshi came to the University of Pennsylvania and obtained his Ph.D. in Electrical Engineering
in 1960. At present, he is the Henry Salvatori Professor of Computer and Cognitive Science at the
University of Pennsylvania.

Joshi has worked on several problems that overlap computer science and linguistics. More specifically,
he has worked on topics in mathematical linguistics as they relate to formal and linguistic adequacy
of different formalisms and their processing implications. He has also worked on several aspects of
theories of representation and inference in natural language, especially as they relate to discourse.

Joshi was the President of ACL in 1975 and was appointed as a Founding Fellow of ACL in 2011.
He was awarded the Lifetime Achievement Award of ACL in 2002, the David Rumelhart Prize of
the Cognitive Science Society in 2003 and the Franklin Medal for Computer and Cognitive Science,
Franklin Institute, Philadelphia, in 2005.
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Invited Talk
Computational linguistics: Where do we go from here?

Mark Johnson
Professor of Language Sciences (CORE)

Director, Centre for Language Sciences (CLaS)
Department of Computing Faculty of Science

Macquarie University
Sydney, Australia

“Prediction is very difficult, especially about the future” —Niels Bohr

Abstract
The very fact that we’re having a 50th annual meeting means that our field hasn’t been a complete
failure, but will there still be computational linguistics meetings in 50 years time? How do we fit into
the larger intellectual picture, and what would it take to make computational linguistics into a real
engineering discipline, or, for that matter, a scientific one? Prognosticating fearlessly (or perhaps just
foolishly) I’ll draw some lessons from the last 50 years about what the next few might hold.

Short Bio
Mark Johnson is a Professor of Language Science (CORE) in the Department of Computing at Mac-
quarie University. He was awarded a BSc (Hons) in 1979 from the University of Sydney, an MA in 1984
from the University of California, San Diego and a PhD in 1987 from Stanford University. He held a
postdoctoral fellowship at MIT from 1987 until 1988, and has been a visiting researcher at the Uni-
versity of Stuttgart, the Xerox Research Centre in Grenoble, CSAIL at MIT and the Natural Language
group at Microsoft Research. He has worked on a wide range of topics in computational linguistics, but
his main research area is parsing and its applications to text and speech processing. He was President
of the Association for Computational Linguistics in 2003, and was a professor from 1989 until 2009 in
the Departments of Cognitive and Linguistic Sciences and Computer Science at Brown University.
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Abstract

We introduce an approach to optimize a ma-
chine translation (MT) system on multiple
metrics simultaneously. Different metrics
(e.g. BLEU, TER) focus on different aspects
of translation quality; our multi-objective ap-
proach leverages these diverse aspects to im-
prove overall quality.

Our approach is based on the theory of Pareto
Optimality. It is simple to implement on top of
existing single-objective optimization meth-
ods (e.g. MERT, PRO) and outperforms ad
hoc alternatives based on linear-combination
of metrics. We also discuss the issue of metric
tunability and show that our Pareto approach
is more effective in incorporating new metrics
from MT evaluation for MT optimization.

1 Introduction

Weight optimization is an important step in build-
ing machine translation (MT) systems. Discrimi-
native optimization methods such as MERT (Och,
2003), MIRA (Crammer et al., 2006), PRO (Hop-
kins and May, 2011), and Downhill-Simplex (Nelder
and Mead, 1965) have been influential in improving
MT systems in recent years. These methods are ef-
fective because they tune the system to maximize an
automatic evaluation metric such as BLEU, which
serve as surrogate objective for translation quality.

However, we know that a single metric such as
BLEU is not enough. Ideally, we want to tune to-
wards an automatic metric that has perfect corre-
lation with human judgments of translation quality.

∗*Now at Nara Institute of Science & Technology (NAIST)

While many alternatives have been proposed, such a
perfect evaluation metric remains elusive.

As a result, many MT evaluation campaigns now
report multiple evaluation metrics (Callison-Burch
et al., 2011; Paul, 2010). Different evaluation met-
rics focus on different aspects of translation quality.
For example, while BLEU (Papineni et al., 2002)
focuses on word-based n-gram precision, METEOR
(Lavie and Agarwal, 2007) allows for stem/synonym
matching and incorporates recall. TER (Snover
et al., 2006) allows arbitrary chunk movements,
while permutation metrics like RIBES (Isozaki et
al., 2010; Birch et al., 2010) measure deviation in
word order. Syntax (Owczarzak et al., 2007) and se-
mantics (Pado et al., 2009) also help. Arguably, all
these metrics correspond to our intuitions on what is
a good translation.

The current approach of optimizing MT towards
a single metric runs the risk of sacrificing other met-
rics. Can we really claim that a system is good if
it has high BLEU, but very low METEOR? Simi-
larly, is a high-METEOR low-BLEU system desir-
able? Our goal is to propose a multi-objective op-
timization method that avoids “overfitting to a sin-
gle metric”. We want to build a MT system that
does well with respect to many aspects of transla-
tion quality.

In general, we cannot expect to improve multi-
ple metrics jointly if there are some inherent trade-
offs. We therefore need to define the notion of Pareto
Optimality (Pareto, 1906), which characterizes this
tradeoff in a rigorous way and distinguishes the set
of equally good solutions. We will describe Pareto
Optimality in detail later, but roughly speaking, a
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hypothesis is pareto-optimal if there exist no other
hypothesis better in all metrics. The contribution of
this paper is two-fold:

• We introduce PMO (Pareto-based Multi-
objective Optimization), a general approach for
learning with multiple metrics. Existing single-
objective methods can be easily extended to
multi-objective using PMO.

• We show that PMO outperforms the alterna-
tive (single-objective optimization of linearly-
combined metrics) in multi-objective space,
and especially obtains stronger results for met-
rics that may be difficult to tune individually.

In the following, we first explain the theory of
Pareto Optimality (Section 2), and then use it to
build up our proposed PMO approach (Section 3).
Experiments on NIST Chinese-English and PubMed
English-Japanese translation using BLEU, TER, and
RIBES are presented in Section 4. We conclude by
discussing related work (Section 5) and opportuni-
ties/limitations (Section 6).

2 Theory of Pareto Optimality

2.1 Definitions and Concepts
The idea of Pareto optimality comes originally from
economics (Pareto, 1906), where the goal is to char-
acterize situations when a change in allocation of
goods does not make anybody worse off. Here, we
will explain it in terms of MT:

Let h ∈ L be a hypothesis from an N-best list L.
We have a total of K different metrics Mk(h) for
evaluating the quality of h. Without loss of gen-
erality, we assume metric scores are bounded be-
tween 0 and 1, with 1 being perfect. Each hypoth-
esis h can be mapped to a K-dimensional vector
M(h) = [M1(h);M2(h); ...;MK(h)]. For exam-
ple, suppose K = 2, M1(h) computes the BLEU
score, and M2(h) gives the METEOR score of h.
Figure 1 illustrates the set of vectors {M(h)} in a
10-best list.

For two hypotheses h1, h2, we write M(h1) >
M(h2) if h1 is better than h2 in all metrics, and
M(h1) ≥ M(h2) if h1 is better than or equal
to h2 in all metrics. When M(h1) ≥ M(h2) and
Mk(h1) > Mk(h2) for at least one metric k, we say
that h1 dominates h2 and write M(h1) . M(h2).
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Figure 1: Illustration of Pareto Frontier. Ten hypotheses
are plotted by their scores in two metrics. Hypotheses
indicated by a circle (o) are pareto-optimal, while those
indicated by a plus (+) are not. The line shows the convex
hull, which attains only a subset of pareto-optimal points.
The triangle (4) is a point that is weakly pareto-optimal
but not pareto-optimal.

Definition 1. Pareto Optimal: A hypothesis h∗ ∈
L is pareto-optimal iff there does not exist another
hypothesis h ∈ L such that M(h) . M(h∗).

In Figure 1, the hypotheses indicated by circle
(o) are pareto-optimal, while those with plus (+) are
not. To visualize this, take for instance the pareto-
optimal point (0.4,0.7). There is no other point with
either (metric1 > 0.4 and metric2 ≥ 0.7), or (met-
ric1 ≥ 0.4 and metric2 > 0.7). On the other hand,
the non-pareto point (0.6,0.4) is “dominated” by an-
other point (0.7,0.6), because for metric1: 0.7 > 0.6
and for metric2: 0.6 > 0.4.

There is another definition of optimality, which
disregards ties and may be easier to visualize:

Definition 2. Weakly Pareto Optimal: A hypothesis
h∗ ∈ L is weakly pareto-optimal iff there is no other
hypothesis h ∈ L such that M(h) > M(h∗).

Weakly pareto-optimal points are a superset of
pareto-optimal points. A hypothesis is weakly
pareto-optimal if there is no other hypothesis that
improves all the metrics; a hypothesis is pareto-
optimal if there is no other hypothesis that improves
at least one metric without detriment to other met-
rics. In Figure 1, point (0.1,0.8) is weakly pareto-
optimal but not pareto-optimal, because of the com-
peting point (0.3,0.8). Here we focus on pareto-
optimality, but note our algorithms can be easily
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modified for weakly pareto-optimality. Finally, we
can introduce the key concept used in our proposed
PMO approach:

Definition 3. Pareto Frontier: Given an N-best list
L, the set of all pareto-optimal hypotheses h ∈ L is
called the Pareto Frontier.

The Pareto Frontier has two desirable properties
from the multi-objective optimization perspective:

1. Hypotheses on the Frontier are equivalently
good in the Pareto sense.

2. For each hypothesis not on the Frontier, there
is always a better (pareto-optimal) hypothesis.

This provides a principled approach to optimiza-
tion: i.e. optimizing towards points on the Frontier
and away from those that are not, and giving no pref-
erence to different pareto-optimal hypotheses.

2.2 Reduction to Linear Combination
Multi-objective problems can be formulated as:

arg max
w

[M1(h);M2(h); . . . ;Mk(h)] (1)

where h = Decode(w, f)

Here, the MT system’s Decode function, parame-
terized by weight vector w, takes in a foreign sen-
tence f and returns a translated hypothesis h. The
argmax operates in vector space and our goal is to
find w leading to hypotheses on the Pareto Frontier.

In the study of Pareto Optimality, one central
question is: To what extent can multi-objective prob-
lems be solved by single-objective methods? Equa-
tion 1 can be reduced to a single-objective problem
by scalarizing the vector [M1(h); . . . ;Mk(h)] with
a linear combination:

arg max
w

K∑
k=1

pkMk(h) (2)

where h = Decode(w, f)

Here, pk are positive real numbers indicating the rel-
ative importance of each metric (without loss of gen-
erality, assume

∑
k pk = 1). Are the solutions to

Eq. 2 also solutions to Eq. 1 (i.e. pareto-optimal)
and vice-versa? The theory says:

Theorem 1. Sufficient Condition: If w∗ is solution
to Eq. 2, then it is weakly pareto-optimal. Further,
if w∗ is unique, then it is pareto-optimal.

Theorem 2. No Necessary Condition: There may
exist solutions to Eq. 1 that cannot be achieved by
Eq. 2, irregardless of any setting of {pk}.

Theorem 1 is a positive result asserting that lin-
ear combination can give pareto-optimal solutions.
However, Theorem 2 states the limits: in partic-
ular, Eq. 2 attains only pareto-optimal points that
are on the convex hull. This is illustrated in Fig-
ure 1: imagine sweeping all values of p1 = [0, 1]
and p2 = 1− p1 and recording the set of hypotheses
that maximizes

∑
k pkMk(h). For 0.6 < p1 ≤ 1 we

get h = (0.9, 0.1), for p1 = 0.6 we get (0.7, 0.6),
and for 0 < p1 < 0.6 we get (0.4, 0.8). At no
setting of p1 do we attain h = (0.4, 0.7) which
is also pareto-optimal but not on the convex hull.1

This may have ramifications for issues like metric
tunability and local optima. To summarize, linear-
combination is reasonable but has limitations. Our
proposed approach will instead directly solve Eq. 1.

Pareto Optimality and multi-objective optimiza-
tion is a deep field with active inquiry in engineer-
ing, operations research, economics, etc. For the in-
terested reader, we recommend the survey by Mar-
ler and Arora (2004) and books by (Sawaragi et al.,
1985; Miettinen, 1998).

3 Multi-objective Algorithms

3.1 Computing the Pareto Frontier
Our PMO approach will need to compute the Pareto
Frontier for potentially large sets of points, so we
first describe how this can be done efficiently. Given
a set of N vectors {M(h)} from an N-best list L,
our goal is extract the subset that are pareto-optimal.

Here we present an algorithm based on iterative
filtering, in our opinion the simplest algorithm to
understand and implement. The strategy is to loop
through the list L, keeping track of any dominant
points. Given a dominant point, it is easy to filter
out many points that are dominated by it. After suc-
cessive rounds, any remaining points that are not fil-

1We note that scalarization by exponentiated-combination∑
k pkMk(h)q , for a suitable q > 0, does satisfy necessary

conditions for pareto optimality. However the proper tuning of q
is not known a priori. See (Miettinen, 1998) for theorem proofs.
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Algorithm 1 FindParetoFrontier
Input: {M(h)}, h ∈ L
Output: All pareto-optimal points of {M(h)}

1: F = ∅
2: while L is not empty do
3: h∗ = shift(L)
4: for each h in L do
5: if (M(h∗) . M(h)): remove h from L
6: else if (M(h) . M(h∗)): remove h from L; set

h∗ = h
7: end for
8: Add h∗ to Frontier Set F
9: for each h in L do

10: if (M(h∗) . M(h)): remove h from L
11: end for
12: end while
13: Return F

tered are necessarily pareto-optimal. Algorithm 1
shows the pseudocode. In line 3, we take a point h∗

and check if it is dominating or dominated in the for-
loop (lines 4-8). At least one pareto-optimal point
will be found by line 8. The second loop (lines 9-11)
further filters the list for points that are dominated by
h∗ but iterated before h∗ in the first for-loop.

The outer while-loop stops exactly after P iter-
ations, where P is the actual number of pareto-
optimal points in L. Each inner loop costs O(KN)
so the total complexity is O(PKN). Since P ≤ N
with the actual value depending on the probability
distribution of {M(h)}, the worst-case run-time is
O(KN2). For a survey of various Pareto algorithms,
refer to (Godfrey et al., 2007). The algorithm we de-
scribed here is borrowed from the database literature
in what is known as skyline operators.2

3.2 PMO-PRO Algorithm
We are now ready to present an algorithm for multi-
objective optimization. As we will see, it can be seen
as a generalization of the pairwise ranking optimiza-
tion (PRO) of (Hopkins and May, 2011), so we call
it PMO-PRO. PMO-PRO approach works by itera-
tively decoding-and-optimizing on the devset, sim-

2The inquisitive reader may wonder how is Pareto related
to databases. The motivation is to incorporate preferences into
relational queries(Börzsönyi et al., 2001). For K = 2 metrics,
they also present an alternative faster O(N logN) algorithm by
first topologically sorting along the 2 dimensions. All domi-
nated points can be filtered by one-pass by comparing with the
most-recent dominating point.

ilar to many MT optimization methods. The main
difference is that rather than trying to maximize a
single metric, we maximize the number of pareto
points, in order to expand the Pareto Frontier

We will explain PMO-PRO in terms of the
pseudo-code shown in Algorithm 2. For each sen-
tence pair (f, e) in the devset, we first generate an
N-best list L ≡ {h} using the current weight vector
w (line 5). In line 6, we evaluate each hypothesis
h with respect to the K metrics, giving a set of K-
dimensional vectors {M(h)}.

Lines 7-8 is the critical part: it gives a “la-
bel” to each hypothesis, based on whether it is
in the Pareto Frontier. In particular, first we call
FindParetoFrontier (Algorithm 1), which re-
turns a set of pareto hypotheses; pareto-optimal hy-
potheses will get label 1 while non-optimal hypothe-
ses will get label 0. This information is added to
the training set T (line 8), which is then optimized
by any conventional subroutine in line 10. We will
follow PRO in using a pairwise classifier in line 10,
which finds w∗ that separates hypotheses with labels
1 vs. 0. In essence, this is the trick we employ to
directly optimize on the Pareto Frontier. If we had
used BLEU scores rather than the {0, 1} labels in
line 8, the entire PMO-PRO algorithm would revert
to single-objective PRO.

By definition, there is no single “best” result
for multi-objective optimization, so we collect all
weights and return the Pareto-optimal set. In line 13
we evaluate each weight w on K metrics across the
entire corpus and call FindParetoFrontier
in line 14.3 This choice highlights an interesting
change of philosophy: While setting {pk} in linear-
combination forces the designer to make an a priori
preference among metrics prior to optimization, the
PMO strategy is to optimize first agnostically and
a posteriori let the designer choose among a set of
weights. Arguably it is easier to choose among so-
lutions based on their evaluation scores rather than
devising exact values for {pk}.

3.3 Discussion
Variants: In practice we find that a slight modifi-
cation of line 8 in Algorithm 2 leads to more sta-

3Note this is the same FindParetoFrontier algorithm as used
in line 7. Both operate on sets of points in K-dimensional
space, induced from either weights {w} or hypotheses {h}.
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Algorithm 2 Proposed PMO-PRO algorithm
Input: Devset, max number of iterations I
Output: A set of (pareto-optimal) weight vectors

1: Initialize w. LetW = ∅.
2: for i = 1 to I do
3: Let T = ∅.
4: for each (f, e) in devset do
5: {h} =DecodeNbest(w,f )
6: {M(h)}=EvalMetricsOnSentence({h}, e)
7: {f} =FindParetoFrontier({M(h)})
8: foreach h ∈ {h}:

if h ∈ {f}, set l=1, else l=0; Add (l, h) to T
9: end for

10: w∗=OptimizationSubroutine(T , w)
11: Add w∗ toW; Set w = w∗.
12: end for
13: M(w) =EvalMetricsOnCorpus(w,devset) ∀w ∈ W
14: Return FindParetoFrontier({M(w)})

ble results for PMO-PRO: for non-pareto hypothe-
ses h /∈ {f}, we set label l =

∑
k Mk(h)/K in-

stead of l= 0, so the method not only learns to dis-
criminate pareto vs. non-pareto but also also learns
to discriminate among competing non-pareto points.
Also, like other MT works, in line 5 the N-best list is
concatenated to N-best lists from previous iterations,
so {h} is a set with i ·N elements.

General PMO Approach: The strategy we out-
lined in Section 3.2 can be easily applied to other
MT optimization techniques. For example, by re-
placing the optimization subroutine (line 10, Algo-
rithm 2) with a Powell search (Och, 2003), one can
get PMO-MERT4. Alternatively, by using the large-
margin optimizer in (Chiang et al., 2009) and mov-
ing it into the for-each loop (lines 4-9), one can
get an online algorithm such PMO-MIRA. Virtually
all MT optimization algorithms have a place where
metric scores feedback into the optimization proce-
dure; the idea of PMO is to replace these raw scores
with labels derived from Pareto optimality.

4 Experiments

4.1 Evaluation Methodology

We experiment with two datasets: (1) The PubMed
task is English-to-Japanese translation of scientific

4A difference with traditional MERT is the necessity of
sentence-BLEU (Liang et al., 2006) in line 6. We use sentence-
BLEU for optimization but corpus-BLEU for evaluation here.

abstracts. As metrics we use BLEU and RIBES
(which demonstrated good human correlation in
this language pair (Goto et al., 2011)). (2) The
NIST task is Chinese-to-English translation with
OpenMT08 training data and MT06 as devset. As
metrics we use BLEU and NTER.

• BLEU = BP × (Πprecn)1/4. BP is brevity
penality. precn is precision of n-gram matches.

• RIBES = (τ + 1)/2 × prec1/4
1 , with Kendall’s

τ computed by measuring permutation between
matching words in reference and hypothesis5.

• NTER=max(1−TER, 0), which normalizes
Translation Edit Rate6 so that NTER=1 is best.

We compare two multi-objective approaches:

1. Linear-Combination of metrics (Eq. 2),
optimized with PRO. We search a range
of combination settings: (p1, p2) =
{(0, 1), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3), (1, 0)}.
Note (1, 0) reduces to standard single-metric
optimization of e.g. BLEU.

2. Proposed Pareto approach (PMO-PRO).

Evaluation of multi-objective problems can be
tricky because there is no single figure-of-merit.
We thus adopted the following methodology: We
run both methods 5 times (i.e. using the 5 differ-
ent (p1, p2) setting each time) and I = 20 iterations
each. For each method, this generates 5x20=100 re-
sults, and we plot the Pareto Frontier of these points
in a 2-dimensional metric space (e.g. see Figure 2).
A method is deemed better if its final Pareto Fron-
tier curve is strictly dominating the other. We report
devset results here; testset trends are similar but not
included due to space constraints.7

5from www.kecl.ntt.co.jp/icl/lirg/ribes
6from www.umd.edu/˜snover/tercom
7An aside: For comparing optimization methods, we believe

devset comparison is preferable to testset since data mismatch
may confound results. If one worries about generalization, we
advocate to re-decode the devset with final weights and evaluate
its 1-best output (which is done here). This is preferable to sim-
ply reporting the achieved scores on devset N-best (as done in
some open-source scripts) since the learned weight may pick
out good hypotheses in the N-best but perform poorly when
re-decoding the same devset. The re-decode devset approach
avoids being overly optimistic while accurately measuring op-
timization performance.

5



Train Devset #Feat Metrics
PubMed 0.2M 2k 14 BLEU, RIBES
NIST 7M 1.6k 8 BLEU, NTER

Table 1: Task characteristics: #sentences in Train/Dev, #
of features, and metrics used. Our MT models are trained
with standard phrase-based Moses software (Koehn and
others, 2007), with IBM M4 alignments, 4gram SRILM,
lexical ordering for PubMed and distance ordering for the
NIST system. The decoder generates 50-best lists each
iteration. We use SVMRank (Joachims, 2006) as opti-
mization subroutine for PRO, which efficiently handle all
pairwise samples without the need for sampling.

4.2 Results
Figures 2 and 3 show the results for PubMed and
NIST, respectively. A method is better if its Pareto
Frontier lies more towards the upper-right hand cor-
ner of the graph. Our observations are:

1. PMO-PRO generally outperforms Linear-
Combination with any setting of (p1, p2).
The Pareto Frontier of PMO-PRO dominates
that of Linear-Combination. This implies
PMO is effective in optimizing towards Pareto
hypotheses.

2. For both methods, trading-off between met-
rics is necessary. For example in PubMed,
the designer would need to make a choice be-
tween picking the best weight according to
BLEU (BLEU=.265,RIBES=.665) vs. another
weight with higher RIBES but poorer BLEU,
e.g. (.255,.675). Nevertheless, both the PMO
and Linear-Combination with various (p1, p2)
samples this joint-objective space broadly.

3. Interestingly, a multi-objective approach can
sometimes outperform a single-objective opti-
mizer in its own metric. In Figure 2, single-
objective PRO focusing on optimizing RIBES
only achieves 0.68, but PMO-PRO using both
BLEU and RIBES outperforms with 0.685.

The third observation relates to the issue of metric
tunability (Liu et al., 2011). We found that RIBES
can be difficult to tune directly. It is an extremely
non-smooth objective with many local optima–slight
changes in word ordering causes large changes in
RIBES. So the best way to improve RIBES is to
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Figure 2: PubMed Results. The curve represents the
Pareto Frontier of all results collected after multiple runs.
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Figure 3: NIST Results

not to optimize it directly, but jointly with a more
tunable metric BLEU. The learning curve in Fig-
ure 4 show that single-objective optimization of
RIBES quickly falls into local optimum (at iteration
3) whereas PMO can zigzag and sacrifice RIBES in
intermediate iterations (e.g. iteration 2, 15) leading
to a stronger result ultimately. The reason is the
diversity of solutions provided by the Pareto Fron-
tier. This finding suggests that multi-objective ap-
proaches may be preferred, especially when dealing
with new metrics that may be difficult to tune.

4.3 Additional Analysis and Discussions

What is the training time? The Pareto approach
does not add much overhead to PMO-PRO. While
FindParetoFrontier scales quadratically by size of
N-best list, Figure 5 shows that the runtime is triv-
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Figure 5: Avg. runtime per sentence of FindPareto

ial (0.3 seconds for 1000-best). Table 2 shows
the time usage breakdown in different iterations for
PubMed. We see it is mostly dominated by decod-
ing time (constant per iteration at 40 minutes on
single 3.33GHz processor). At later iterations, Opt
takes more time due to larger file I/O in SVMRank.
Note Decode and Pareto can be “embarrasingly par-
allelized.”

Iter Time Decode Pareto Opt Misc.
(line 5) (line 7) (line 10) (line 6,8)

1 47m 85% 1% 1% 13%
10 62m 67% 6% 8% 19%
20 91m 47% 15% 22% 16%

Table 2: Training time usage in PMO-PRO (Algo 2).
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Figure 6: Average number of Pareto points

hypotheses gives a rough indication of the diversity
of hypotheses that can be exploited by PMO. Fig-
ure 6 shows that this number increases gradually per
iteration. This perhaps gives PMO-PRO more direc-
tions for optimizing around potential local optimal.
Nevertheless, we note that tens of Pareto points is far
few compared to the large size of N-best lists used
at later iterations of PMO-PRO. This may explain
why the differences between methods in Figure 3
are not more substantial. Theoretically, the num-
ber will eventually level off as it gets increasingly
harder to generate new Pareto points in a crowded
space (Bentley et al., 1978).

Practical recommendation: We present the
Pareto approach as a way to agnostically optimize
multiple metrics jointly. However, in practice, one
may have intuitions about metric tradeoffs even if
one cannot specify {pk}. For example, we might
believe that approximately 1-point BLEU degra-
dation is acceptable only if RIBES improves by
at least 3-points. In this case, we recommend
the following trick: Set up a multi-objective prob-
lem where one metric is BLEU and the other is
3/4BLEU+1/4RIBES. This encourages PMO to ex-
plore the joint metric space but avoid solutions that
sacrifice too much BLEU, and should also outper-
form Linear Combination that searches only on the
(3/4,1/4) direction.

5 Related Work

Multi-objective optimization for MT is a relatively
new area. Linear-combination of BLEU/TER is

7



the most common technique (Zaidan, 2009), some-
times achieving good results in evaluation cam-
paigns (Dyer et al., 2009). As far as we known, the
only work that directly proposes a multi-objective
technique is (He and Way, 2009), which modifies
MERT to optimize a single metric subject to the
constraint that it does not degrade others. These
approaches all require some setting of constraint
strength or combination weights {pk}. Recent work
in MT evaluation has examined combining metrics
using machine learning for better correlation with
human judgments (Liu and Gildea, 2007; Albrecht
and Hwa, 2007; Gimnez and Màrquez, 2008) and
may give insights for setting {pk}. We view our
Pareto-based approach as orthogonal to these efforts.

The tunability of metrics is a problem that is gain-
ing recognition (Liu et al., 2011). If a good evalu-
ation metric could not be used for tuning, it would
be a pity. The Tunable Metrics task at WMT2011
concluded that BLEU is still the easiest to tune
(Callison-Burch et al., 2011). (Mauser et al., 2008;
Cer et al., 2010) report similar observations, in ad-
dition citing WER being difficult and BLEU-TER
being amenable. One unsolved question is whether
metric tunability is a problem inherent to the metric
only, or depends also on the underlying optimization
algorithm. Our positive results with PMO suggest
that the choice of optimization algorithm can help.

Multi-objective ideas are being explored in other
NLP areas. (Spitkovsky et al., 2011) describe a tech-
nique that alternates between hard and soft EM ob-
jectives in order to achieve better local optimum in
grammar induction. (Hall et al., 2011) investigates
joint optimization of a supervised parsing objective
and some extrinsic objectives based on downstream
applications. (Agarwal et al., 2011) considers us-
ing multiple signals (of varying quality) from online
users to train recommendation models. (Eisner and
Daumé III, 2011) trades off speed and accuracy of
a parser with reinforcement learning. None of the
techniques in NLP use Pareto concepts, however.

6 Opportunities and Limitations

We introduce a new approach (PMO) for training
MT systems on multiple metrics. Leveraging the
diverse perspectives of different evaluation metrics
has the potential to improve overall quality. Based

on Pareto Optimality, PMO is easy to implement
and achieves better solutions compared to linear-
combination baselines, for any setting of combi-
nation weights. Further we observe that multi-
objective approaches can be helpful for optimiz-
ing difficult-to-tune metrics; this is beneficial for
quickly introducing new metrics developed in MT
evaluation into MT optimization, especially when
good {pk} are not yet known. We conclude by draw-
ing attention to some limitations and opportunities
raised by this work:

Limitations: (1) The performance of PMO is
limited by the size of the Pareto set. Small N-best
lists lead to sparsely-sampled Pareto Frontiers, and
a much better approach would be to enlarge the hy-
pothesis space using lattices (Macherey et al., 2008).
How to compute Pareto points directly from lattices
is an interesting open research question. (2) The
binary distinction between pareto vs. non-pareto
points ignores the fact that 2nd-place non-pareto
points may also lead to good practical solutions. A
better approach may be to adopt a graded definition
of Pareto optimality as done in some multi-objective
works (Deb et al., 2002). (3) A robust evaluation
methodology that enables significance testing for
multi-objective problems is sorely needed. This will
make it possible to compare multi-objective meth-
ods on more than 2 metrics. We also need to follow
up with human evaluation.

Opportunities: (1) There is still much we do
not understand about metric tunability; we can learn
much by looking at joint metric-spaces and exam-
ining how new metrics correlate with established
ones. (2) Pareto is just one approach among many
in multi-objective optimization. A wealth of meth-
ods are available (Marler and Arora, 2004) and more
experimentation in this space will definitely lead to
new insights. (3) Finally, it would be interesting to
explore other creative uses of multiple-objectives in
MT beyond multiple metrics. For example: Can we
learn to translate faster while sacrificing little on ac-
curacy? Can we learn to jointly optimize cascaded
systems, such as as speech translation or pivot trans-
lation? Life is full of multiple competing objectives.
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Abstract

With a few exceptions, discriminative train-
ing in statistical machine translation (SMT)
has been content with tuning weights for large
feature sets on small development data. Ev-
idence from machine learning indicates that
increasing the training sample size results in
better prediction. The goal of this paper is to
show that this common wisdom can also be
brought to bear upon SMT. We deploy local
features for SCFG-based SMT that can be read
off from rules at runtime, and present a learn-
ing algorithm that applies `1/`2 regulariza-
tion for joint feature selection over distributed
stochastic learning processes. We present ex-
periments on learning on 1.5 million training
sentences, and show significant improvements
over tuning discriminative models on small
development sets.

1 Introduction

The standard SMT training pipeline combines
scores from large count-based translation models
and language models with a few other features and
tunes these using the well-understood line-search
technique for error minimization of Och (2003). If
only a handful of dense features need to be tuned,
minimum error rate training can be done on small
tuning sets and is hard to beat in terms of accuracy
and efficiency. In contrast, the promise of large-
scale discriminative training for SMT is to scale to
arbitrary types and numbers of features and to pro-
vide sufficient statistical support by parameter esti-
mation on large sample sizes. Features may be lex-
icalized and sparse, non-local and overlapping, or

be designed to generalize beyond surface statistics
by incorporating part-of-speech or syntactic labels.
The modeler’s goals might be to identify complex
properties of translations, or to counter errors of pre-
trained translation models and language models by
explicitly down-weighting translations that exhibit
certain undesired properties. Various approaches to
feature engineering for discriminative models have
been presented (see Section 2), however, with a few
exceptions, discriminative learning in SMT has been
confined to training on small tuning sets of a few
thousand examples. This contradicts theoretical and
practical evidence from machine learning that sug-
gests that larger training samples should be benefi-
cial to improve prediction also in SMT. Why is this?

One possible reason why discriminative SMT has
mostly been content with small tuning sets lies in
the particular design of the features themselves. For
example, the features introduced by Chiang et al.
(2008) and Chiang et al. (2009) for an SCFG model
for Chinese/English translation are of two types:
The first type explicitly counters overestimates of
rule counts, or rules with bad overlap points, bad
rewrites, or with undesired insertions of target-side
terminals. These features are specified in hand-
crafted lists based on a thorough analysis of a tuning
set. Such finely hand-crafted features will find suf-
ficient statistical support on a few thousand exam-
ples and thus do not benefit from larger training sets.
The second type of features deploys external infor-
mation such as syntactic parses or word alignments
to penalize bad reorderings or undesired translations
of phrases that cross syntactic constraints. At large
scale, extraction of such features quickly becomes
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(1) X → X1 hat X2 versprochen, X1 promised X2

(2) X → X1 hat mir X2 versprochen,
X1 promised me X2

(3) X → X1 versprach X2, X1 promised X2

Figure 1: SCFG rules for translation.

infeasible because of costly generation and storage
of linguistic annotations. Another possible reason
why large training data did not yet show the ex-
pected improvements in discriminative SMT is a
special overfitting problem of current popular online
learning techniques. This is due to stochastic learn-
ing on a per-example basis where a weight update on
a misclassified example may apply only to a small
fraction of data that have been seen before. Thus
many features will not generalize well beyond the
training examples on which they were introduced.

The goal of this paper is to investigate if and
how it is possible to benefit from scaling discrimi-
native training for SMT to large training sets. We
deploy generic features for SCFG-based SMT that
can efficiently be read off from rules at runtime.
Such features include rule ids, rule-local n-grams,
or types of rule shapes. Another crucial ingredi-
ent of our approach is a combination of parallelized
stochastic learning with feature selection inspired
by multi-task learning. The simple but effective
idea is to randomly divide training data into evenly
sized shards, use stochastic learning on each shard
in parallel, while performing `1/`2 regularization
for joint feature selection on the shards after each
epoch, before starting a new epoch with a reduced
feature vector averaged across shards. Iterative fea-
ture selection procedure is the key to both efficiency
and improved prediction: Without interleaving par-
allelized stochastic learning with feature selection
our largest experiments would not be feasible. Se-
lecting features jointly across shards and averaging
does counter the overfitting effect that is inherent
to stochastic updating. Our resulting models are
learned on large data sets, but they are small and
outperform models that tune feature sets of various
sizes on small development sets. Our software is
freely available as a part of the cdec1 framework.

1https://github.com/redpony/cdec

2 Related Work

The great promise of discriminative training for
SMT is the possibility to design arbitrarily expres-
sive, complex, or overlapping features in great num-
bers. The focus of many approaches thus has been
on feature engineering and on adaptations of ma-
chine learning algorithms to the special case of SMT
(where gold standard rankings have to be created
automatically). Examples for adapted algorithms
include Maximum-Entropy Models (Och and Ney,
2002; Blunsom et al., 2008), Pairwise Ranking Per-
ceptrons (Shen et al., 2004; Watanabe et al., 2006;
Hopkins and May, 2011), Structured Perceptrons
(Liang et al., 2006a), Boosting (Duh and Kirchhoff,
2008; Wellington et al., 2009), Structured SVMs
(Tillmann and Zhang, 2006; Hayashi et al., 2009),
MIRA (Watanabe et al., 2007; Chiang et al., 2008;
Chiang et al., 2009), and others. Adaptations of the
loss functions underlying such algorithms to SMT
have recently been described as particular forms
of ramp loss optimization (McAllester and Keshet,
2011; Gimpel and Smith, 2012).

All approaches have been shown to scale to large
feature sets and all include some kind of regulariza-
tion method. However, most approaches have been
confined to training on small tuning sets. Exceptions
where discriminative SMT has been used on large
training data are Liang et al. (2006a) who trained 1.5
million features on 67,000 sentences, Blunsom et
al. (2008) who trained 7.8 million rules on 100,000
sentences, or Tillmann and Zhang (2006) who used
230,000 sentences for training.

Our approach is inspired by Duh et al. (2010)
who applied multi-task learning for improved gen-
eralization in n-best reranking. In contrast to our
work, Duh et al. (2010) did not incorporate multi-
task learning into distributed learning, but defined
tasks as n-best lists, nor did they develop new algo-
rithms, but used off-the-shelf multi-task tools.

3 Local Features for Synchronous CFGs

The work described in this paper is based on the
SMT framework of hierarchical phrase-based trans-
lation (Chiang, 2005; Chiang, 2007). Transla-
tion rules are extracted from word-aligned paral-
lel sentences and can be seen as productions of a
synchronous CFG. Examples are rules like (1)-(3)
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shown in Figure 1. Local features are designed to be
readable directly off the rule at decoding time. We
use three rule templates in our work:

Rule identifiers: These features identify each rule
by a unique identifier. Such features corre-
spond to the relative frequencies of rewrites
rules used in standard models.

Rule n-grams: These features identify n-grams of
consecutive items in a rule. We use bigrams
on source-sides of rules. Such features identify
possible source side phrases and thus can give
preference to rules including them.2

Rule shape: These features are indicators that ab-
stract away from lexical items to templates that
identify the location of sequences of terminal
symbols in relation to non-terminal symbols,
on both the source- and target-sides of each
rule used. For example, both rules (1) and (2)
map to the same indicator, namely that a rule
is being used that consists of a (NT, term*, NT,
term*) pattern on its source side, and an (NT,
term*, NT) pattern on its target side. Rule (3)
maps to a different template, that of (NT, term*,
NT) on source and target sides.

4 Joint Feature Selection in Distributed
Stochastic Learning

The following discussion of learning methods is
based on pairwise ranking in a Stochastic Gradi-
ent Descent (SGD) framework. The resulting al-
gorithms can be seen as variants of the perceptron
algorithm. Let each translation candidate be repre-
sented by a feature vector x ∈ IRD where preference
pairs for training are prepared by sorting translations
according to smoothed sentence-wise BLEU score
(Liang et al., 2006a) against the reference. For a
preference pair xj = (x

(1)
j ,x

(2)
j ) where x

(1)
j is pre-

ferred over x
(2)
j , and x̄j = x

(1)
j − x

(2)
j , we consider

the following hinge loss-type objective function:

lj(w) = (−〈w, x̄j 〉)+
where (a)+ = max(0, a) , w ∈ IRD is a weight vec-
tor, and 〈·, ·〉 denotes the standard vector dot prod-
uct. Instantiating SGD to the following stochastic

2Similar “monolingual parse features” have been used in
Dyer et al. (2011).

subgradient leads to the perceptron algorithm for
pairwise ranking3 (Shen and Joshi, 2005):

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.

Our baseline algorithm 1 (SDG) scales pairwise
ranking to large scale scenarios. The algorithm takes
an average over the final weight updates of each
epoch instead of keeping a record of all weight up-
dates for final averaging (Collins, 2002) or for voting
(Freund and Schapire, 1999).

Algorithm 1 SGD: int I, T , float η
Initialize w0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . I − 1}: do
Decode ith input with wt,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wt,i,j+1 ← wt,i,j − η∇lj(wt,i,j)
end for
wt,i+1,0 ← wt,i,P

end for
wt+1,0,0 ← wt,I,0

end for

return 1
T

T∑
t=1

wt,0,0

While stochastic learning exhibits a runtime be-
havior that is linear in sample size (Bottou, 2004),
very large datasets can make sequential process-
ing infeasible. Algorithm 2 (MixSGD) addresses
this problem by parallelization in the framework of
MapReduce (Dean and Ghemawat, 2004).

Algorithm 2 MixSGD: int I, T, Z, float η
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
for all shards z ∈ {1 . . . Z}: parallel do

Initialize wz,0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . S − 1}: do
Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
wz,t+1,0,0 ← wz,t,S,0

end for
end for
Collect final weights from each machine,

return 1
Z

Z∑
z=1

(
1
T

T∑
t=1

wz,t,0,0

)
.

3Other loss functions lead to stochastic versions of SVMs
(Collobert and Bengio, 2004; Shalev-Shwartz et al., 2007;
Chapelle and Keerthi, 2010).
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Algorithm 2 is a variant of the SimuParallelSGD
algorithm of Zinkevich et al. (2010) or equivalently
of the parameter mixing algorithm of McDonald et
al. (2010). The key idea of algorithm 2 is to parti-
tion the data into disjoint shards, then train SGD on
each shard in parallel, and after training mix the final
parameters from each shard by averaging. The algo-
rithm requires no communication between machines
until the end.

McDonald et al. (2010) also present an iterative
mixing algorithm where weights are mixed from
each shard after training a single epoch of the per-
ceptron in parallel on each shard. The mixed weight
vector is re-sent to each shard to start another epoch
of training in parallel on each shard. This algorithm
corresponds to our algorithm 3 (IterMixSGD).

Algorithm 3 IterMixSGD: int I, T, Z, float η
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for

Collect weights v← 1
Z

Z∑
z=1

wz,t,S,0.

end for
return v

Parameter mixing by averaging will help to ease
the feature sparsity problem, however, keeping fea-
ture vectors on the scale of several million features
in memory can be prohibitive. If network latency
is a bottleneck, the increased amount of information
sent across the network after each epoch may be a
further problem.

Our algorithm 4 (IterSelSGD) introduces feature
selection into distributed learning for increased effi-
ciency and as a more radical measure against over-
fitting. The key idea is to view shards as tasks, and
to apply methods for joint feature selection from
multi-task learning to achieve small sets of features
that are useful across all tasks or shards. Our algo-
rithm represents weights in a Z-by-D matrix W =
[wz1 | . . . |wzZ ]T of stacked D-dimensional weight

vectors across Z shards. We compute the `2 norm of
the weights in each feature column, sort features by
this value, and keep K features in the model. This
feature selection procedure is done after each epoch.
Reduced weight vectors are mixed and the result is
re-sent to each shard to start another epoch of paral-
lel training on each shard.

Algorithm 4 IterSelSGD: int I, T, Z,K, float η
Partition data into Z shards, each of size S = I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Collect/stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm and
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

This algorithm can be seen as an instance of `1/`2
regularization as follows: Let wd be the dth column
vector of W, representing the weights for the dth
feature across tasks/shards. `1/`2 regularization pe-
nalizes weights W by the weighted `1/`2 norm

λ||W||1,2 = λ
D∑

d=1

||wd||2.

Each `2 norm of a weight column represents
the relevance of the corresponding feature across
tasks/shards. The `1 sum of the `2 norms en-
forces a selection among features based on these
norms. Consider for example the two 5-feature, 3-
task weight matrices in Figure 2. Assuming the
same loss for both matrices, the right-hand side ma-
trix is preferred because of a smaller `1/`2 norm
(12 instead of 18). This matrix shares features
across tasks which leads to larger `2 norms for some
columns (here ||w1||2 and ||w2||2) and forces other
columns to zero. This results in shrinking the ma-
trix to those features that are useful across all tasks.
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w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

wz1 [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
wz2 [ 0 0 3 0 0 ] [ 3 0 0 0 0 ]
wz3 [ 0 0 0 2 3 ] [ 2 3 0 0 0 ]

column `2 norm: 6 4 3 2 3 7 5 0 0 0
`1 sum: ⇒ 18 ⇒ 12

Figure 2: `1/`2 regularization enforcing feature selection.

Our algorithm is related to Obozinski et al.
(2010)’s approach to `1/`2 regularization where fea-
ture columns are incrementally selected based on the
`2 norms of the gradient vectors corresponding to
feature columns. Their algorithm is itself an exten-
sion of gradient-based feature selection based on the
`1 norm, e.g., Perkins et al. (2003).4 In contrast to
these approaches we approximate the gradient by us-
ing the weights given by the ranking algorithm itself.
This relates our work to weight-based recursive fea-
ture elimination (RFE) (Lal et al., 2006). Further-
more, algorithm 4 performs feature selection based
on a choice of meta-parameter of K features instead
of by thresholding a regularization meta-parameter
λ, however, these techniques are equivalent and can
be transformed into each other.

5 Experiments

5.1 Data, Systems, Experiment Settings

The datasets used in our experiments are versions
of the News Commentary (nc), News Crawl (crawl)
and Europarl (ep) corpora described in Table 1. The
translation direction is German-to-English.

The SMT framework used in our experiments
is hierarchical phrase-based translation (Chiang,
2007). We use the cdec decoder5 (Dyer et al.,
2010) and induce SCFG grammars from two sets of
symmetrized alignments using the method described
by Chiang (2007). All data was tokenized and
lowercased; German compounds were split (Dyer,
2009). For word alignment of the news-commentary
data, we used GIZA++ (Och and Ney, 2000); for
aligning the Europarl data, we used the Berke-
ley aligner (Liang et al., 2006b). Before train-
ing, we collect all the grammar rules necessary to

4Note that by definition of ||W||1,2, standard `1 regulariza-
tion is a special case of `1/`2 regularization for a single task.

5cdecmetaparameters were set to a non-terminal span limit
of 15 and standard cube pruning with a pop limit of 200.

translate each individual sentence into separate files
(so-called per-sentence grammars) (Lopez, 2007).
When decoding, cdec loads the appropriate file im-
mediately prior to translation of the sentence. The
computational overhead is minimal compared to the
expense of decoding. Also, deploying disk space
instead of memory fits perfectly into the MapRe-
duce framework we are working in. Furthermore,
the extraction of grammars for training is done in
a leave-one-out fashion (Zollmann and Sima’an,
2005) where rules are extracted for a parallel sen-
tence pair only if the same rules are found in other
sentences of the corpus as well.

3-gram (news-commentary) and 5-gram (Eu-
roparl) language models are trained on the data de-
scribed in Table 1, using the SRILM toolkit (Stol-
cke, 2002) and binarized for efficient querying using
kenlm (Heafield, 2011). For the 5-gram language
models, we replaced every word in the lm training
data with <unk> that did not appear in the English
part of the parallel training data to build an open vo-
cabulary language model.

HI

MID

LOW

Figure 3: Multipartite pairwise ranking.

Training data for discriminative learning are pre-
pared by comparing a 100-best list of transla-
tions against a single reference using smoothed per-
sentence BLEU (Liang et al., 2006a). From the
BLEU-reordered n-best list, translations were put
into sets for the top 10% level (HI), the middle
80% level (MID), and the bottom 10% level (LOW).
These level sets are used for multipartite ranking
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News Commentary(nc)
train-nc lm-train-nc dev-nc devtest-nc test-nc

Sentences 132,753 180,657 1057 1064 2007
Tokens de 3,530,907 – 27,782 28,415 53,989
Tokens en 3,293,363 4,394,428 26,098 26,219 50,443

Rule Count 14,350,552 (1G) – 2,322,912 2,320,264 3,274,771

Europarl(ep)
train-ep lm-train-ep dev-ep devtest-ep test-ep

Sentences 1,655,238 2,015,440 2000 2000 2000
Tokens de 45,293,925 – 57,723 56,783 59,297
Tokens en 45,374,649 54,728,786 58,825 58,100 60,240

Rule Count 203,552,525 (31.5G) – 17,738,763 17,682,176 18,273,078

News Crawl(crawl)
dev-crawl test-crawl10 test-crawl11

Sentences 2051 2489 3003
Tokens de 49,848 64,301 76,193
Tokens en 49,767 61,925 74,753

Rule Count 9,404,339 11,307,304 12,561,636

Table 1: Overview of data used for train/dev/test. News Commentary (nc) and Europarl (ep) training data and
also News Crawl (crawl) dev/test data were taken from the WMT11 translation task (http://statmt.org/
wmt11/translation-task.html). The dev/test data of nc are the sets provided with the WMT07 shared
task (http://statmt.org/wmt07/shared-task.html). Ep dev/test data is from WMT08 shared task
(http://statmt.org/wmt08/shared-task.html). The numbers in brackets for the rule counts of ep/nc
training data are total counts of rules in the per-sentence grammars.

where translation pairs are built between the ele-
ments in HI-MID, HI-LOW, and MID-LOW, but not
between translations inside sets on the same level.
This idea is depicted graphically in Figure 3. The
intuition is to ensure that good translations are pre-
ferred over bad translations without teasing apart
small differences.

For evaluation, we used the mteval-v11b.pl
script to compute lowercased BLEU-4 scores (Pa-
pineni et al., 2001). Statistical significance was
measured using an Approximate Randomization test
(Noreen, 1989; Riezler and Maxwell, 2005).

All experiments for training on dev sets were car-
ried out on a single computer. For grammar extrac-
tion and training of the full data set we used a 30
node hadoop Map/Reduce cluster that can handle
300 jobs at once. We split the data into 2290 shards
for the ep runs and 141 shards for the nc runs, each
shard holding about 1,000 sentences, which corre-
sponds to the dev set size of the nc data set.

5.2 Experimental Results

The baseline learner in our experiments is a pairwise
ranking perceptron that is used on various features
and training data and plugged into various meta-

M

x̄

BLEU[%] 23.0 25.0 27.0 29.0

Figure 4: Boxplot of BLEU-4 results for 100 runs of
MIRA on news commentary data, depicting median (M),
mean (x̄), interquartile range (box), standard deviation
(whiskers), outliers (end points).

algorithms for distributed processing. The percep-
tron algorithm itself compares favorably to related
learning techniques such as the MIRA adaptation of
Chiang et al. (2008). Figure 4 gives a boxplot depict-
ing BLEU-4 results for 100 runs of the MIRA imple-
mentation of the cdec package, tuned on dev-nc,
and evaluated on the respective test set test-nc.6 We
see a high variance (whiskers denote standard devi-
ations) around a median of 27.2 BLEU and a mean
of 27.1 BLEU. The fluctuation of results is due to
sampling training examples from the translation hy-

6MIRA was used with default meta parameters: 250 hypoth-
esis list to search for oracles, regularization strength C = 0.01
and using 15 passes over the input. It optimized IBM BLEU-4.
The initial weight vector was 0.
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Algorithm Tuning set Features #Features devtest-nc test-nc
MIRA dev-nc default 12 – 27.10

1

dev-nc default 12 25.88 28.0

dev-nc +id 137k 25.53 27.6†23

dev-nc +ng 29k 25.82 27.42†234

dev-nc +shape 51 25.91 28.1

dev-nc +id,ng,shape 180k 25.71 28.1534

2

train-nc default 12 25.73 27.86

train-nc +id 4.1M 25.13 27.19†134

train-nc +ng 354k 26.09 28.03134

train-nc +shape 51 26.07 27.913

train-nc +id,ng,shape 4.7M 26.08 27.8634

3

train-nc default 12 26.09 @2 27.94†

train-nc +id 3.4M 26.1 @4 27.97†12

train-nc +ng 330k 26.33 @4 28.3412

train-nc +shape 51 26.39 @9 28.312

train-nc +id,ng,shape 4.7M 26.42 @9 28.55124

4
train-nc +id 100k 25.91 @7 27.82†2

train-nc +ng 100k 26.42 @4 28.37†12

train-nc +id,ng,shape 100k 26.8 @8 28.81123

Table 2: BLEU-4 results for algorithms 1 (SGD), 2 (MixSGD), 3 (IterMixSDG), and 4 (IterSelSGD) on news-
commentary (nc) data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and
rule shape (shape). Statistical significance at p-level < 0.05 of a result difference on the test set to a different algo-
rithm applied to the same feature group is indicated by raised algorithm number. † indicates statistically significant
differences to best result across features groups for same algorithm, indicated in bold face. @ indicates the optimal
number of epochs chosen on the devtest set.

pergraph as is done in the cdec implementation of
MIRA. We found similar fluctuations for the cdec
implementations of PRO (Hopkins and May, 2011)
or hypergraph-MERT (Kumar et al., 2009) both of
which depend on hypergraph sampling. In contrast,
the perceptron is deterministic when started from a
zero-vector of weights and achieves favorable 28.0
BLEU on the news-commentary test set. Since we
are interested in relative improvements over a stable
baseline, we restrict our attention in all following ex-
periments to the perceptron.7

Table 2 shows the results of the experimental
comparison of the 4 algorithms of Section 4. The

7Absolute improvements would be possible, e.g., by using
larger language models or by adding news data to the ep train-
ing set when evaluating on crawl test sets (see, e.g., Dyer et al.
(2011)), however, this is not the focus of this paper.

default features include 12 dense models defined on
SCFG rules;8 The sparse features are the 3 templates
described in Section 3. All feature weights were
tuned together using algorithms 1-4. If not indicated
otherwise, the perceptron was run for 10 epochs with
learning rate η = 0.0001, started at zero weight vec-
tor, using deduplicated 100-best lists.

The results on the news-commentary (nc) data
show that training on the development set does not
benefit from adding large feature sets – BLEU re-
sult differences between tuning 12 default features

8negative log relative frequency p(e|f); log count(f ); log
count(e, f ); lexical translation probability p(f |e) and p(e|f)
(Koehn et al., 2003); indicator variable on singleton phrase e;
indicator variable on singleton phrase pair f, e; word penalty;
language model weight; OOV count of language model; num-
ber of untranslated words; Hiero glue rules (Chiang, 2007).
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Alg. Tuning set Features #Feats devtest-ep test-ep Tuning set test-crawl10 test-crawl11

1 dev-ep default 12 25.62 26.42† dev-crawl 15.39† 14.43†

dev-ep +id,ng,shape 300k 27.84 28.37 dev-crawl 17.84 16.834

4 train-ep +id,ng,shape 100k 28.0 @9 28.62 train-ep 19.121 17.331

Table 3: BLEU-4 results for algorithms 1 (SGD) and 4 (IterSelSGD) on Europarl (ep) and news crawl (crawl) test
data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and rule shape (shape).
Statistical significance at p-level < 0.05 of a result difference on the test set to a different algorithm applied to the
same feature group is indicated by raised algorithm number. † indicates statistically significant differences to best
result across features groups for same algorithm, indicated in bold face. @ indicates the optimal number of epochs
chosen on the devtest set.

and tuning the full set of 180,000 features are not
significant. However, scaling all features to the full
training set shows significant improvements for al-
gorithm 3, and especially for algorithm 4, which
gains 0.8 BLEU points over tuning 12 features on
the development set. The number of features rises
to 4.7 million without feature selection, which iter-
atively selects 100,000 features with best `2 norm
values across shards. Feature templates such as rule
n-grams and rule shapes only work if iterative mix-
ing (algorithm 3) or feature selection (algorithm 4)
are used. Adding rule id features works in combina-
tion with other sparse features.

Table 3 shows results for algorithms 1 and 4 on
the Europarl data (ep) for different devtest and test
sets. Europarl data were used in all runs for train-
ing and for setting the meta-parameter of number
of epochs. Testing was done on the Europarl test
set and news crawl test data from the years 2010
and 2011. Here tuning large feature sets on the
respective dev sets yields significant improvements
of around 2 BLEU points over tuning the 12 de-
fault features on the dev sets. Another 0.5 BLEU
points (test-crawl11) or even 1.3 BLEU points (test-
crawl10) are gained when scaling to the full training
set using iterative features selection. Result differ-
ences on the Europarl test set were not significant
for moving from dev to full train set. Algorithms 2
and 3 were infeasible to run on Europarl data beyond
one epoch because features vectors grew too large to
be kept in memory.

6 Discussion

We presented an approach to scaling discrimina-
tive learning for SMT not only to large feature

sets but also to large sets of parallel training data.
Since inference for SMT (unlike many other learn-
ing problems) is very expensive, especially on large
training sets, good parallelization is key. Our ap-
proach is made feasible and effective by applying
joint feature selection across distributed stochastic
learning processes. Furthermore, our local features
are efficiently computable at runtime. Our algo-
rithms and features are generic and can easily be re-
implemented and make our results relevant across
datasets and language pairs.

In future work, we would like to investigate more
sophisticated features, better learners, and in gen-
eral improve the components of our system that have
been neglected in the current investigation of rela-
tive improvements by scaling the size of data and
feature sets. Ultimately, since our algorithms are in-
spired by multi-task learning, we would like to apply
them to scenarios where a natural definition of tasks
is given. For example, patent data can be charac-
terized along the dimensions of patent classes and
patent text fields (Wäschle and Riezler, 2012) and
thus are well suited for multi-task translation.
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Abstract

Parallel data in the domain of interest is the
key resource when training a statistical ma-
chine translation (SMT) system for a specific
purpose. Since ad-hoc manual translation can
represent a significant investment in time and
money, a prior assesment of the amount of
training data required to achieve a satisfac-
tory accuracy level can be very useful. In this
work, we show how to predict what the learn-
ing curve would look like if we were to manu-
ally translate increasing amounts of data.

We consider two scenarios, 1) Monolingual
samples in the source and target languages are
available and 2) An additional small amount
of parallel corpus is also available. We pro-
pose methods for predicting learning curves in
both these scenarios.

1 Introduction

Parallel data in the domain of interest is the key re-
source when training a statistical machine transla-
tion (SMT) system for a specific business purpose.
In many cases it is possible to allocate some budget
for manually translating a limited sample of relevant
documents, be it via professional translation services
or through increasingly fashionable crowdsourcing.
However, it is often difficult to predict how much
training data will be required to achieve satisfactory
translation accuracy, preventing sound provisional
budgetting. This prediction, or more generally the
prediction of the learning curve of an SMT system
as a function of available in-domain parallel data, is
the objective of this paper.

We consider two scenarios, representative of real-
istic situations.

1. In the first scenario (S1), the SMT developer is
given only monolingual source and target sam-
ples from the relevant domain, and a small test
parallel corpus.

∗This research was carried out during an internship at Xerox
Research Centre Europe.

2. In the second scenario (S2), an additional small
seed parallel corpus is given that can be used
to train small in-domain models and measure
(with some variance) the evaluation score at a
few points on the initial portion of the learning
curve.

In both cases, the task consists in predicting an eval-
uation score (BLEU, throughout this work) on the
test corpus as a function of the size of a subset of
the source sample, assuming that we could have it
manually translated and use the resulting bilingual
corpus for training.

In this paper we provide the following contribu-
tions:

1. An extensive study across six parametric func-
tion families, empirically establishing that a
certain three-parameter power-law family is
well suited for modeling learning curves for the
Moses SMT system when the evaluation score
is BLEU. Our methodology can be easily gen-
eralized to other systems and evaluation scores
(Section 3);

2. A method for inferring learning curves based
on features computed from the resources avail-
able in scenario S1, suitable for both the sce-
narios described above (S1) and (S2) (Section
4);

3. A method for extrapolating the learning curve
from a few measurements, suitable for scenario
S2 (Section 5);

4. A method for combining the two approaches
above, achieving on S2 better prediction accu-
racy than either of the two in isolation (Section
6).

In this study we limit tuning to the mixing param-
eters of the Moses log-linear model through MERT,
keeping all meta-parameters (e.g. maximum phrase
length, maximum allowed distortion, etc.) at their
default values. One can expect further tweaking to
lead to performance improvements, but this was a
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necessary simplification in order to execute the tests
on a sufficiently large scale.

Our experiments involve 30 distinct language pair
and domain combinations and 96 different learning
curves. They show that without any parallel data
we can predict the expected translation accuracy at
75K segments within an error of 6 BLEU points (Ta-
ble 4), while using a seed training corpus of 10K
segments narrows this error to within 1.5 points (Ta-
ble 6).

2 Related Work

Learning curves are routinely used to illustrate how
the performance of experimental methods depend
on the amount of training data used. In the SMT
area, Koehn et al. (2003) used learning curves to
compare performance for various meta-parameter
settings such as maximum phrase length, while
Turchi et al. (2008) extensively studied the be-
haviour of learning curves under a number of test
conditions on Spanish-English. In Birch et al.
(2008), the authors examined corpus features that
contribute most to the machine translation perfor-
mance. Their results showed that the most predic-
tive features were the morphological complexity of
the languages, their linguistic relatedness and their
word-order divergence; in our work, we make use of
these features, among others, for predicting transla-
tion accuracy (Section 4).

In a Machine Learning context, Perlich et al.
(2003) used learning curves for predicting maximum
performance bounds of learning algorithms and to
compare them. In Gu et al. (2001), the learning
curves of two classification algorithms were mod-
elled for eight different large data sets. This work
uses similar a priori knowledge for restricting the
form of learning curves as ours (see Section 3), and
also similar empirical evaluation criteria for compar-
ing curve families with one another. While both ap-
plication and performance metric in our work are
different, we arrive at a similar conclusion that a
power law family of the form y = c − a x−α is a
good model of the learning curves.

Learning curves are also frequently used for de-
termining empirically the number of iterations for
an incremental learning procedure.

The crucial difference in our work is that in the
previous cases, learning curves are plotted a poste-
riori i.e. once the labelled data has become avail-
able and the training has been performed, whereas

in our work the learning curve itself is the object of
the prediction. Our goal is to learn to predict what
the learning curve will be a priori without having to
label the data at all (S1), or through labelling only a
very small amount of it (S2).

In this respect, the academic field of Computa-
tional Learning Theory has a similar goal, since it
strives to identify bounds to performance measures1,
typically including a dependency on the training
sample size. We take a purely empirical approach
in this work, and obtain useful estimations for a case
like SMT, where the complexity of the mapping be-
tween the input and the output prevents tight theo-
retical analysis.

3 Selecting a parametric family of curves

The first step in our approach consists in selecting
a suitable family of shapes for the learning curves
that we want to produce in the two scenarios being
considered.

We formulate the problem as follows. For a cer-
tain bilingual test dataset d, we consider a set of
observations Od = {(x1, y1), (x2, y2)...(xn, yn)},
where yi is the performance on d (measured using
BLEU (Papineni et al., 2002)) of a translation model
trained on a parallel corpus of size xi. The corpus
size xi is measured in terms of the number of seg-
ments (sentences) present in the parallel corpus.

We consider such observations to be generated by
a regression model of the form:

yi = F (xi; θ) + εi 1 ≤ i ≤ n (1)

where F is a function depending on a vector param-
eter θ which depends on d, and εi is Gaussian noise
of constant variance.

Based on our prior knowledge of the problem,
we limit the search for a suitable F to families that
satisfies the following conditions- monotonically in-
creasing, concave and bounded. The first condition
just says that more training data is better. The sec-
ond condition expresses a notion of “diminishing
returns”, namely that a given amount of additional
training data is more advantageous when added to
a small rather than to a big amount of initial data.
The last condition is related to our use of BLEU —
which is bounded by 1 — as a performance mea-
sure; It should be noted that some growth patterns
which are sometimes proposed, such as a logarith-
mic regime of the form y ' a + b log x, are not

1More often to a loss, which is equivalent.
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compatible with this constraint.
We consider six possible families of functions sat-

isfying these conditions, which are listed in Table 1.
Preliminary experiments indicated that curves from

Model Formula
Exp3 y = c− e−ax+b
Exp4 y = c− e−axα+b

ExpP3 y = c− e(x−b)α

Pow3 y = c− ax−α
Pow4 y = c− (−ax+ b)−α

ILog2 y = c− (a/ log x)

Table 1: Curve families.

the “Power” and “Exp” family with only two param-
eters underfitted, while those with five or more pa-
rameters led to overfitting and solution instability.
We decided to only select families with three or four
parameters.

Curve fitting technique Given a set of observa-
tions {(x1, y1), (x2, y2)...(xn, yn)} and a curve fam-
ily F (x; θ) from Table 1, we compute a best fit θ̂
where:

θ̂ = arg min
θ

n∑
i=1

[yi − F (xi; θ)]
2, (2)

through use of the Levenberg-Marquardt
method (Moré, 1978) for non-linear regression.

For selecting a learning curve family, and for all
other experiments in this paper, we trained a large
number of systems on multiple configurations of
training sets and sample sizes, and tested each on
multiple test sets; these are listed in Table 2. All
experiments use Moses (Koehn et al., 2007). 2

Domain Source Target # Test
Language Language sets

Europarl (Koehn, 2005) Fr, De, Es En 4En Fr, De, Es
KFTT (Neubig, 2011) Jp, En En, Jp 2

EMEA (Tiedemann, 2009) Da, De En 4
News (Callison-Burch et al., 2011) Cz,En,Fr,De,Es Cz,En,Fr,De,Es 3

Table 2: The translation systems used for the curve fit-
ting experiments, comprising 30 language-pair and do-
main combinations for a total of 96 learning curves.
Language codes: Cz=Czech, Da=Danish, En=English,
De=German, Fr=French, Jp=Japanese, Es=Spanish

The goodness of fit for each of the families is eval-
2The settings used in training the systems are those

described in http://www.statmt.org/wmt11/
baseline.html

uated based on their ability to i) fit over the entire set
of observations, ii) extrapolate to points beyond the
observed portion of the curve and iii) generalize well
over different datasets .

We use a recursive fitting procedure where the
curve obtained from fitting the first i points is used
to predict the observations at two points: xi+1, i.e.
the point to the immediate right of the currently ob-
served xi and xn, i.e. the largest point that has been
observed.

The following error measures quantify the good-
ness of fit of the curve families:

1. Average root mean-squared error (RMSE):

1

N

∑
c∈S

∑
t∈Tc

{
1

n

n∑
i=1

[yi − F (xi; θ̂)]
2

}1/2

ct

where S is the set of training datasets, Tc is the
set of test datasets for training configuration c,
θ̂ is as defined in Eq. 2, N is the total number
of combinations of training configurations and
test datasets, and i ranges on a grid of training
subset sizes.The expressions n, xi, yi, θ̂ are all
local to the combination ct.

2. Average root mean squared residual at next
point X = xi+1 (NPR):

1

N

∑
c∈S

∑
t∈Tc

{
1

n− k − 1

n−1∑
i=k

[yi+1 − F (xi+1; θ̂
i)]2

}1/2

ct

where θ̂i is obtained using only observations
up to xi in Eq. 2 and where k is the number of
parameters of the family.3

3. Average root mean squared residual at the last
point X = xn (LPR):

1

N

∑
c∈S

∑
t∈Tc

{
1

n− k − 1

n−1∑
i=k

[yn − F (xn; θ̂
i)]2

}1/2

ct

Curve fitting evaluation The evaluation of the
goodness of fit for the curve families is presented
in Table 3. The average values of the root mean-
squared error and the average residuals across all the
learning curves used in our experiments are shown
in this table. The values are on the same scale as the
BLEU scores. Figure 1 shows the curve fits obtained

3We start the summation from i = k, because at least k
points are required for computing θ̂i.
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Figure 1: Curve fits using different curve families on a
test dataset

for all the six families on a test dataset for English-
German language pair.

Curve Family RMSE NPR LPR
Exp3 0.0063 0.0094 0.0694
Exp4 0.0030 0.0036 0.0072

ExpP3 0.0040 0.0049 0.0145
Pow3 0.0029 0.0037 0.0091
Pow4 0.0026 0.0042 0.0102
ILog2 0.0050 0.0067 0.0146

Table 3: Evaluation of the goodness of fit for the six fam-
ilies.

Loooking at the values in Table 3, we decided to
use the Pow3 family as the best overall compromise.
While it is not systematically better than Exp4 and
Pow4, it is good overall and has the advantage of
requiring only 3 parameters.

4 Inferring a learning curve from mostly
monolingual data

In this section we address scenario S1: we have
access to a source-language monolingual collec-
tion (from which portions to be manually translated
could be sampled) and a target-language in-domain
monolingual corpus, to supplement the target side of
a parallel corpus while training a language model.
The only available parallel resource is a very small
test corpus. Our objective is to predict the evolution
of the BLEU score on the given test set as a function
of the size of a random subset of the training data

that we manually translate4. The intuition behind
this is that the source-side and target-side mono-
lingual data already convey significant information
about the difficulty of the translation task.

We proceed in the following way. We first train
models to predict the BLEU score at m anchor sizes
s1, . . . , sm, based on a set of features globally char-
acterizing the configuration of interest. We restrict
our attention to linear models:

µj = wj
>φ, j ∈ {1 . . .m}

where wj is a vector of feature weights specific to
predicting at anchor size j, and φ is a vector of size-
independent configuration features, detailed below.
We then perform inference using these models to
predict the BLEU score at each anchor, for the test
case of interest. We finally estimate the parameters
of the learning curve by weighted least squares re-
gression using the anchor predictions.

Anchor sizes can be chosen rather arbitrarily, but
must satisfy the following two constraints:

1. They must be three or more in number in order
to allow fitting the tri-parameter curve.

2. They should be spread as much as possible
along the range of sample size.

For our experiments, we take m = 3, with anchors
at 10K, 75K and 500K segments.

The feature vectorφ consists of the following fea-
tures:

1. General properties: number and average length
of sentences in the (source) test set.

2. Average length of tokens in the (source) test set
and in the monolingual source language corpus.

3. Lexical diversity features:

(a) type-token ratios for n-grams of order 1 to
5 in the monolingual corpus of both source
and target languages

(b) perplexity of language models of order 2
to 5 derived from the monolingual source
corpus computed on the source side of the
test corpus.

4We specify that it is a random sample as opposed to a subset
deliberately chosen to maximize learning effectiveness. While
there are clear ties between our present work and active learn-
ing, we prefer to keep these two aspects distinct at this stage,
and intend to explore this connection in future work.
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4. Features capturing divergence between lan-
guages in the pair:

(a) average ratio of source/target sentence
lengths in the test set.

(b) ratio of type-token ratios of orders 1 to 5
in the monolingual corpus of both source
and target languages.

5. Word-order divergence: The divergence in the
word-order between the source and the target
languages can be captured using the part-of-
speech (pos) tag sequences across languages.
We use cross-entropy measure to capture sim-
ilarity between the n-gram distributions of the
pos tags in the monolingual corpora of the two
languages. The order of the n-grams ranges be-
tween n = 2, 4 . . . 12 in order to account for
long distance reordering between languages.
The pos tags for the languages are mapped to
a reduced set of twelve pos tags (Petrov et al.,
2012) in order to account for differences in
tagsets used across languages.

These features capture our intuition that translation
is going to be harder if the language in the domain
is highly variable and if the source and target lan-
guages diverge more in terms of morphology and
word-order.

The weights wj are estimated from data. The
training data for fitting these linear models is ob-
tained in the following way. For each configuration
(combination of language pair and domain) c and
test set t in Table 2, a gold curve is fitted using the
selected tri-parameter power-law family using a fine
grid of corpus sizes. This is available as a byproduct
of the experiments for comparing different paramet-
ric families described in Section 3. We then compute
the value of the gold curves at the m anchor sizes:
we thus have m “gold” vectors µ1, . . . ,µm with ac-
curate estimates of BLEU at the anchor sizes5. We
construct the design matrix Φ with one column for
each feature vector φct corresponding to each com-
bination of training configuration c and test set t.

We then estimate weights wj using Ridge regres-
sion (L2 regularization):

wj = arg min
w
||Φ>w − µj ||2 + C||w||2 (3)

5Computing these values from the gold curve rather than di-
rectly from the observations has the advantage of smoothing the
observed values and also does not assume that observations at
the anchor sizes are always directly available.

where the regularization parameter C is chosen by
cross-validation. We also run experiments using
Lasso (L1) regularization (Tibshirani, 1994) instead
of Ridge. As baseline, we take a constant mean
model predicting, for each anchor size sj , the av-
erage of all the µjct.

We do not assume the difficulty of predicting
BLEU at all anchor points to be the same. To allow
for this, we use (non-regularized) weighted least-
squares to fit a curve from our parametric family
through the m anchor points6. Following (Croarkin
and Tobias, 2006, Section 4.4.5.2), the anchor con-
fidence is set to be the inverse of the cross-validated
mean square residuals:

ωj =

(
1

N

∑
c∈S

∑
t∈Tc

(φ>ctw
\c
j − µjct)

2

)−1

(4)

where w\cj are the feature weights obtained by the
regression above on all training configurations ex-
cept c, µjct is the gold value at anchor j for train-
ing/test combination c, t, and N is the total number
of such combinations7. In other words, we assign to
each anchor point a confidence inverse to the cross-
validated mean squared error of the model used to
predict it.

For a new unseen configuration with feature vec-
tor φu, we determine the parameters θu of the corre-
sponding learning curve as:

θu = arg min
θ

∑
j

ωj
(
F (sj ; θ)− φ>uwj

)2
(5)

5 Extrapolating a learning curve fitted on
a small parallel corpus

Given a small “seed” parallel corpus, the translation
system can be used to train small in-domain models
and the evaluation score can be measured at a few
initial sample sizes {(x1, y1), (x2, y2)...(xp, yp)}.
The performance of the system for these initial
points provides evidence for predicting its perfor-
mance for larger sample sizes.

In order to do so, a learning curve from the fam-
ily Pow3 is first fit through these initial points. We

6When the number of anchor points is the same as the num-
ber of parameters in the parametric family, the curve can be fit
exactly through all anchor points. However the general discus-
sion is relevant in case there are more anchor points than pa-
rameters, and also in view of the combination of inference and
extrapolation in Section 6.

7Curves on different test data for the same training configu-
ration are highly correlated and are therefore left out.
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assume that p ≥ 3 for this operation to be well-
defined. The best fit η̂ is computed using the same
curve fitting as in Eq. 2.

At each individual anchor size sj , the accuracy of
prediction is measured using the root mean-squared
error between the prediction of extrapolated curves
and the gold values:(

1

N

∑
c∈S

∑
t∈Tc

[F (sj ; η̂ct)− µctj ]2
)1/2

(6)

where η̂ct are the parameters of the curve fit using
the initial points for the combination ct.

In general, we observed that the extrapolated
curve tends to over-estimate BLEU for large sam-
ples.

6 Combining inference and extrapolation

In scenario S2, the models trained from the seed par-
allel corpus and the features used for inference (Sec-
tion 4) provide complementary information. In this
section we combine the two to see if this yields more
accurate learning curves.

For the inference method of Section 4, predictions
of models at anchor points are weighted by the in-
verse of the model empirical squared error (ωj). We
extend this approach to the extrapolated curves. Let
u be a new configuration with seed parallel corpus of
size xu, and let xl be the largest point in our grid for
which xl ≤ xu. We first train translation models and
evaluate scores on samples of size x1, . . . , xl, fit pa-
rameters η̂u through the scores, and then extrapolate
BLEU at the anchors sj : F (sj ; η̂u), j ∈ {1, . . . ,m}.
Using the models trained for the experiments in Sec-
tion 3, we estimate the squared extrapolation error at
the anchors sj when using models trained on size up
to xl, and set the confidence in the extrapolations8

for u to its inverse:

ξ<lj =

(
1

N

∑
c∈S

∑
t∈Tc

(F (sj ; η
<l
ct )− µctj)2

)−1

(7)

where N , S, Tc and µctj have the same meaning as
in Eq. 4, and η<lct are parameters fitted for config-
uration c and test t using only scores measured at
x1, . . . , xl. We finally estimate the parameters θu of

8In some cases these can actually be interpolations.

the combined curve as:

θu = arg min
θ

∑
j

ωj(F (sj ; θ)− φ>uwj)2

+ ξ<lj (F (sj ; θ)− F (sj ; η̂u))
2

where φu is the feature vector for u, and wj are the
weights we obtained from the regression in Eq. 3.

7 Experiments

In this section, we report the results of our experi-
ments on predicting the learning curves.

7.1 Inferred Learning Curves

Regression model 10K 75K 500K
Ridge 0.063 0.060 0.053
Lasso 0.054 0.060 0.062

Baseline 0.112 0.121 0.121

Table 4: Root mean squared error of the linear regression
models for each anchor size

In the case of inference from mostly monolingual
data, the accuracy of the predictions at each of the
anchor sizes is evaluated using root mean-squared
error over the predictions obtained in a leave-one-
out manner over the set of configurations from Ta-
ble 2. Table 4 shows these results for Ridge and
Lasso regression models at the three anchor sizes.
As an example, the model estimated using Lasso for
the 75K anchor size exhibits a root mean squared
error of 6 BLEU points. The errors we obtain are
lower than the error of the baseline consisting in tak-
ing, for each anchor size sj , the average of all the
µctj . The Lasso regression model selected four fea-
tures from the entire feature set: i) Size of the test
set (sentences & tokens) ii) Perplexity of language
model (order 5) on the test set iii) Type-token ratio
of the target monolingual corpus . Feature correla-
tion measures such as Pearsons R showed that the
features corresponding to type-token ratios of both
source and target languages and size of test set have
a high correlation with the BLEU scores at the three
anchor sizes.

Figure 2 shows an instance of the inferred learn-
ing curves obtained using a weighted least squares
method on the predictions at the anchor sizes. Ta-
ble 7 presents the cumulative error of the inferred
learning curves with respect to the gold curves, mea-
sured as the average distance between the curves in
the range x ∈ [0.1K, 100K].
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Figure 2: Inferred learning curve for English-Japanese
test set. The error-bars show the anchor confidence for
the predictions.

7.2 Extrapolated Learning Curves

As explained in Section 5, we evaluate the accuracy
of predictions from the extrapolated curve using the
root mean squared error (see Eq. 6) between the pre-
dictions of this curve and the gold values at the an-
chor points.

We conducted experiments for three sets of initial
points, 1) 1K-5K-10K, 2) 5K-10K-20K, and 3) 1K-
5K-10K-20K. For each of these sets, we show the
prediction accuracy at the anchor sizes, 10K9, 75K,
and 500K in Table 5.

Initial Points 10K 75K 500K
1K-5K-10K 0.005 0.017 0.042

5K-10K-20K 0.002 0.015 0.034
1K-5K-10K-20K 0.002 0.008 0.019

Table 5: Root mean squared error of the extrapolated
curves at the three anchor sizes

The root mean squared errors obtained by extrap-
olating the learning curve are much lower than those
obtained by prediction of translation accuracy using
the monolingual corpus only (see Table 4), which
is expected given that more direct evidence is avail-
able in the former case . In Table 5, one can also
see that the root mean squared error for the sets 1K-
5K-10K and 5K-10K-20K are quite close for anchor

9The 10K point is not an extrapolation point but lies within
the range of the set of initial points. However, it does give a
measure of the closeness of the curve fit using only the initial
points with the gold fit using all the points; the value of this gold
fit at 10K is not necessarily equal to the observation at 10K.

sizes 75K and 500K. However, when a configuration
of four initial points is used for the same amount of
“seed” parallel data, it outperforms both the config-
urations with three initial points.

7.3 Combined Learning Curves and Overall
Comparison

In Section 6, we presented a method for combin-
ing the predicted learning curves from inference and
extrapolation by using a weighted least squares ap-
proach. Table 6 reports the root mean squared error
at the three anchor sizes from the combined curves.

Initial Points Model 10K 75K 500K

1K-5K-10K Ridge 0.005 0.015 0.038
Lasso 0.005 0.014 0.038

5K-10K-20K Ridge 0.001 0.006 0.018
Lasso 0.001 0.006 0.018

1K-5K-10K-20K Ridge 0.001 0.005 0.014
Lasso 0.001 0.005 0.014

Table 6: Root mean squared error of the combined curves
at the three anchor sizes

We also present an overall evaluation of all the
predicted learning curves. The evaluation metric is
the average distance between the predicted curves
and the gold curves, within the range of sample sizes
xmin=0.1K to xmax=500K segments; this metric is
defined as:

1

N

∑
c∈S

∑
t∈Tc

∑xmax
x=xmin

|F (x; η̂ct)− F (x; θ̂ct)|
xmax − xmin

where η̂ct is the curve of interest, θ̂ct is the gold
curve, and x is in the range [xmin, xmax], with a step
size of 1. Table 7 presents the final evaluation.

Initial Points IR IL EC CR CL
1K-5K-10K 0.034 0.050 0.018 0.015 0.014
5K-10K-20K 0.036 0.048 0.011 0.010 0.009
1K-5K-10K-20K 0.032 0.049 0.008 0.007 0.007

Table 7: Average distance of different predicted
learning curves relative to the gold curve. Columns:
IR=“Inference using Ridge model”, IL=“Inference
using Lasso model”, EC=“Extrapolated curve”,
CR=“Combined curve using Ridge”, CL=“Combined
curve using Lasso”

We see that the combined curves (CR and CL)
perform slightly better than the inferred curves (IR
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and IL) and the extrapolated curves (EC). The aver-
age distance is on the same scale as the BLEU score,
which suggests that our best curves can predict the
gold curve within 1.5 BLEU points on average (the
best result being 0.7 BLEU points when the initial
points are 1K-5K-10K-20K) which is a telling re-
sult. The distances between the predicted and the
gold curves for all the learning curves in our experi-
ments are shown in Figure 3.

Figure 3: Distances between the predicted and the gold
learning curves in our experiments across the range of
sample sizes. The dotted lines indicate the distance from
gold curve for each instance, while the bold line indi-
cates the 95th quantile of the distance between the curves.
IR=“Inference using Ridge model”, EC=“Extrapolated
curve”, CR=“Combined curve using Ridge”.

We also provide a comparison of the different pre-
dicted curves with respect to the gold curve as shown
in Figure 4.

Figure 4: Predicted curves in the three scenarios for
Czech-English test set using the Lasso model

8 Conclusion

The ability to predict the amount of parallel data
required to achieve a given level of quality is very
valuable in planning business deployments of statis-
tical machine translation; yet, we are not aware of
any rigorous proposal for addressing this need.

Here, we proposed methods that can be directly
applied to predicting learning curves in realistic sce-
narios. We identified a suitable parametric fam-
ily for modeling learning curves via an extensive
empirical comparison. We described an inference
method that requires a minimal initial investment in
the form of only a small parallel test dataset. For the
cases where a slightly larger in-domain “seed” par-
allel corpus is available, we introduced an extrapola-
tion method and a combined method yielding high-
precision predictions: using models trained on up to
20K sentence pairs we can predict performance on a
given test set with a root mean squared error in the
order of 1 BLEU point at 75K sentence pairs, and
in the order of 2-4 BLEU points at 500K. Consider-
ing that variations in the order of 1 BLEU point on
a same test dataset can be observed simply due to
the instability of the standard MERT parameter tun-
ing algorithm (Foster and Kuhn, 2009; Clark et al.,
2011), we believe our results to be close to what can
be achieved in principle. Note that by using gold
curves as labels instead of actual measures we im-
plicitly average across many rounds of MERT (14
for each curve), greatly attenuating the impact of the
instability in the optimization procedure due to ran-
domness.

For enabling this work we trained a multitude
of instances of the same phrase-based SMT sys-
tem on 30 distinct combinations of language-pair
and domain, each with fourteen distinct training
sets of increasing size and tested these instances on
multiple in-domain datasets, generating 96 learning
curves. BLEU measurements for all 96 learning
curves along with the gold curves and feature values
used for inferring the learning curves are available
as additional material to this submission.

We believe that it should be possible to use in-
sights from this paper in an active learning setting,
to select, from an available monolingual source, a
subset of a given size for manual translation, in such
a way at to yield the highest performance, and we
plan to extend our work in this direction.
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Abstract

This paper presents a probabilistic framework
that combines multiple knowledge sources for
Haptic Voice Recognition (HVR), a multi-
modal input method designed to provide ef-
ficient text entry on modern mobile devices.
HVR extends the conventional voice input by
allowing users to provide complementary par-
tial lexical information via touch input to im-
prove the efficiency and accuracy of voice
recognition. This paper investigates the use of
the initial letter of the words in the utterance
as the partial lexical information. In addition
to the acoustic and language models used in
automatic speech recognition systems, HVR
uses the haptic and partial lexical models as
additional knowledge sources to reduce the
recognition search space and suppress confu-
sions. Experimental results show that both the
word error rate and runtime factor can be re-
duced by a factor of two using HVR.

1 Introduction

Nowadays, modern portable devices, such as the
smartphones and tablets, are equipped with micro-
phone and touchscreen display. With these devices
becoming increasingly popular, there is an urgent
need for an efficient and reliable text entry method
on these small devices. Currently, text entry us-
ing an onscreen virtual keyboard is the most widely
adopted input method on these modern mobile de-
vices. Unfortunately, typing with a small virtual
keyboard can sometimes be cumbersome and frus-
tratingly slow for many people. Instead of using

a virtual keyboard, it is also possible to use hand-
writing gestures to input text. Handwriting input
offers a more convenient input method for writing
systems with complex orthography, including many
Asian languages such as Chinese, Japanese and Ko-
rean. However, handwriting input is not necessarily
more efficient compared to keyboard input for En-
glish. Moreover, handwriting recognition is suscep-
tible to recognition errors, too.

Voice input offers a hands-free solution for text
entry. This is an attractive alternative for text entry
because it completely eliminates the need for typ-
ing. Voice input is also more natural and faster for
human to convey messages. Normally, the average
human speaking rate is approximately 100 words
per minute (WPM). Clarkson et al. (2005) showed
that the typing speed for regular users reaches only
86.79 – 98.31 using a full-size keyboard and 58.61
– 61.44 WPM using a mini-QWERTY keyboard.
Evidently, speech input is the preferred text entry
method, provided that speech signals can be reli-
ably and efficiently converted into texts. Unfortu-
nately, voice input relies on automatic speech recog-
nition (ASR) (Rabiner, 1989) technology, which re-
quires high computational resources and is suscep-
tible to performance degradation due to acoustic in-
terference, such as the presence of noise.

In order to improve the reliability and efficiency
of ASR, Haptic Voice Recognition (HVR) was pro-
posed by Sim (2010) as a novel multimodal input
method combining both speech and touch inputs.
Touch inputs are used to generate haptic events,
which correspond to the initial letters of the words in
the spoken utterance. In addition to the regular beam
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pruning used in traditional ASR (Ortmanns et al.,
1997), search paths which are inconsistent with the
haptic events are also pruned away to achieve further
reduction in the recognition search space. As a re-
sult, the runtime of HVR is generally more efficient
than ASR. Furthermore, haptic events are not sus-
ceptible to acoustic distortion, making HVR more
robust to noise.

This paper proposes a probabilistic framework
that encompasses multiple knowledge sources for
combining the speech and touch inputs. This frame-
work allows coherent probabilistic models of dif-
ferent knowledge sources to be tightly integrated.
In addition to the acoustic model and language
model used in ASR, haptic model and partial lexi-
cal model are also introduced to facilitate the inte-
gration of more sophisticated haptic events, such as
the keystrokes, into HVR.

The remaining of this paper is organised as fol-
lows. Section 2 gives an overview of existing tech-
niques in the literature that aim at improving noise
robustness for automatic speech recognition. Sec-
tion 3 gives a brief introduction to HVR. Section 4
proposes a probabilistic framework for HVR that
unifies multiple knowledge sources as an integrated
probabilistic generative model. Next, Section 5
describes how multiple knowledge sources can be
integrated using Weighted Finite State Transducer
(WFST) operations. Experimental results are pre-
sented in Section 6. Finally, conclusions are given
in Section 7.

2 Noise Robust ASR

As previously mentioned, the process of converting
speech into text using ASR is error-prone, where
significant performance degradation is often due to
the presence of noise or other acoustic interference.
Therefore, it is crucial to improve the robustness
of voice input in noisy environment. There are
many techniques reported in the literature which
aim at improving the robustness of ASR in noisy
environment. These techniques can be largely di-
vided into two groups: 1) using speech enhance-
ment techniques to increase the signal-to-noise ratio
of the noisy speech (Ortega-Garcia and Gonzalez-
Rodriguez, 1996); and 2) using model-based com-
pensation schemes to adapt the acoustic models to

noisy environment (Gales and Young, 1996; Acero
et al., 2000).

From the information-theoretic point of view, in
order to achieve reliable information transmission,
redundancies are introduced so that information lost
due to channel distortion or noise corruption can be
recovered. Similar concept can also be applied to
improve the robustness of voice input in noisy en-
vironment. Additional complementary information
can be provided using other input modalities to pro-
vide cues (redundancies) to boost the recognition
performance. The next section will introduce a mul-
timodal interface that combines speech and touch in-
puts to improve the efficiency and noise robustness
for text entry using a technique known as Haptic
Voice Recognition (Sim, 2010).

3 Haptic Voice Recognition (HVR)

For many voice-enabled applications, users often
find voice input to be a black box that captures the
users’ voice and automatically converts it into texts
using ASR. It does not provide much flexibility for
human intervention through other modalities in case
of errors. Certain applications may return multiple
hypotheses, from which users can choose the most
appropriate output. Any remaining errors are typi-
cally corrected manually. However, it may be more
useful to give users more control during the input
stage, instead of having a post-processing step for
error correction. This motivates the investigation of
multimodal interface that tightly integrates speech
input with other modalities.

Haptic Voice Recognition (HVR) is a multimodal
interface designed to offer users the opportunity to
add his or her ‘magic touch’ in order to improve
the accuracy, efficiency and robustness of voice in-
put. HVR is designed for modern mobile devices
equipped with an embedded microphone to capture
speech signals and a touchscreen display to receive
touch events. The HVR interface aims to combine
both speech and touch modalities to enhance speech
recognition. When using an HVR interface, users
will input text verbally, at the same time provide ad-
ditional cues in the form of Partial Lexical Infor-
mation (PLI) to guide the recognition search. PLIs
are simplified lexical representation of words that
should be easy to enter whilst speaking (e.g. the
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prefix and/or suffix letters). Preliminary simulated
experiments conducted by Sim (2010) show that
potential performance improvements both in terms
of recognition speed and noise robustness can be
achieved using the initial letters as PLIs. For ex-
ample, to enter the text “Henry will be in Boston
next Friday”, the user will speak the sentence and
enter the following letter sequence: ‘H’, ‘W’, ‘B’,
‘I’, ‘B’, ‘N’ and ‘F’. These additional letter sequence
is simple enough to be entered whilst speaking; and
yet they provide crucial information that can sig-
nificantly improve the efficiency and robustness of
speech recognition. For instance, the number of let-
ters entered can be used to constrain the number of
words in the recognition output, thereby suppress-
ing spurious insertion and deletion errors, which are
commonly observed in noisy environment. Further-
more, the identity of the letters themselves can be
used to guide the search process so that partial word
sequences in the search graph that do not conform to
the PLIs provided by the users can be pruned away.

PLI provides additional complementary informa-
tion that can be used to eliminate confusions caused
by poor speech signal. In conventional ASR, acous-
tically similar word sequences are typically resolved
implicitly using a language model where contexts
of neighboring words are used for disambiguation.
On the other hand, PLI can also be very effective
in disambiguating homophones1 and similar sound-
ing words and phrases that have distinct initial let-
ters. For example, ‘hour’ versus ‘our’, ‘vary’ versus
‘marry’ and ‘great wine’ versus ‘grey twine’.

This paper considers two methods of generating
the initial letter sequence using a touchscreen. The
first method requires the user to tap on the appropri-
ate keys on an onscreen virtual keyboard to generate
the desired letter sequence. This method is similar
to that proposed in Sim (2010). However, typing on
small devices like smartphones may require a great
deal of concentration and precision from the users.
Alternatively, the initial letters can be entered using
handwriting gestures. A gesture recognizer can be
used to determine the letters entered by the users. In
order to achieve high recognition accuracy, each let-
ter is represented by a single-stroke gesture, so that
isolated letter recognition can be performed. Fig-

1Words with the same pronunciation

ure 1 shows the single-stroke gestures that are used
in this work.

4 A Probabilistic Formulation for HVR

Let O = {o1,o2, . . . ,oT } denote a sequence of
T observed acoustic features such as MFCC (Davis
and Mermelstein, 1980) or PLP (Hermansky, 1990)
and H = {h1,h2, . . . ,hN} denote a sequence of
N haptic features. For the case of keyboard input,
each hi is a discrete symbol representing one of the
26 letters. On the other hand, for handwriting input,
each hi represents a sequence of 2-dimensional vec-
tors that corresponds to the coordinates of the points
of the keystroke. Therefore, the haptic voice recog-
nition problem can be defined as finding the joint
optimal solution for both the word sequence, Ŵ and
the PLI sequence, L̂, given O and H. This can be
expressed using the following formulation:

(Ŵ, L̂) = arg max
W,L

P (W,L|O,H) (1)

where according to the Bayes’ theorem:

P (W,L|O,H) =
p(O,H|W,L)P (W,L)

p(O,H)

=
p(O|W)p(H|L)P (W,L)

p(O,H)
(2)

The joint prior probability of the observed inputs,
p(O,H), can be discarded during the maximisation
of Eq. 1 since it is independent ofW andL. p(O|W)
is the acoustic likelihood of the word sequence,W ,
generating the acoustic feature sequence, O. Simi-
larly, P (H|L) is the haptic likelihood of the lexical
sequence, L, generating the observed haptic inputs,
H. The joint prior probability, P (W,L), can be de-
composed into:

P (W,L) = P (L|W)P (W) (3)

where P (W) can be modelled by the word-based n-
gram language model (Chen and Goodman, 1996)
commonly used in automatic speech recognition.
Combining Eq. 2 and Eq. 3 yields:

P (W,L|O,H) ∝
p(O|W)× p(H|L)× P (L|W)× P (W)(4)

It is evident from the above equation that the prob-
abilistic formulation of HVR combines four knowl-
edge sources:
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Figure 1: Examples of single-stroke handwriting gestures for the 26 English letters

• Acoustic model score: p(O|W)

• Haptic model score: p(H|L)

• PLI model score: P (L|W)

• Language model score: P (W)

Note that the acoustic model and language model
scores are already used in the conventional ASR.
The probabilistic formulation of HVR incorporated
two additional probabilities: haptic model score,
p(H|L) and PLI model score, P (L|W). The role
of the haptic model and PLI model will be described
in the following sub-sections.

4.1 Haptic Model

Similar to having an acoustic model as a statisti-
cal representation of the phoneme sequence generat-
ing the observed acoustic features, a haptic model is
used to model the PLI sequence generating the ob-
served haptic inputs, H. The haptic likelihood can
be factorised as

p(H|L) =
N∏

i=1

p(hi|li) (5)

where L = {li : 1 ≤ i ≤ N}. li is the ith PLI
in L and hi is the ith haptic input feature. In this
work, each PLI represent the initial letter of a word.
Therefore, li represents one of the 26 letters. As pre-
viously mentioned, for keyboard input, hi are dis-
crete features whose values are also one of the 26
letters. Therefore, p(hi|li) forms a 26×26 matrix. A
simple model can be derived by making p(hi|li) an
identity matrix. Therefore, p(hi|li) = 1 if hi = li;
otherwise, p(hi|li) = 0. However, it is also possi-
ble to have a non-diagonal matrix for p(hi|li) in or-
der to accommodate typing errors, so that non-zero
probabilities are assigned to cases where hi 6= li.

For handwriting input, hi denote a sequence of 2-
dimensional feature vectors, which can be modelled
using Hidden Markov Models (HMMs) (Rabiner,
1989). Therefore, (hi|li) is simply given by the
HMM likelihood. In this work, each of the 26 let-
ters is represented by a left-to-right HMM with 3
emitting states.

4.2 Partial Lexical Information (PLI) Model

Finally, a PLI model is used to impose the com-
patibility constraint between the PLI sequence, L,
and the word sequence, W . Let W = {wi : 1 ≤
i ≤ M} denote a word sequence of length M . If
M = N , the PLI model likelihood, P (L|W), can
be expressed in the following form:

P (L|W) =
N∏

i=1

P (li|wi) (6)

where P (li|wi) is the likelihood of the ith word, wi,
generating the ith PLI, li. Since each word is rep-
resented by a unique PLI (the initial letter) in this
work, the PLI model score is given by

P (li|wi) = Csub =
{

1 if li = initial letter of wi

0 otherwise

On the other hand, if N 6= M , insertions and dele-
tions have to be taken into consideration:

P (li = ε|wi) = Cdel and P (li|wi = ε) = Cins

where ε represents an empty token. Cdel and Cins

denote the deletion and insertion penalties respec-
tively. This work assumes Cdel = Cins = 0.
This means that the word count of the HVR out-
put matches the length of the initial letter sequence
entered by the user. Assigning a non-zero value to
Cdel gives the users option to skip entering letters
for certain words (e.g. short words).
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Figure 2: WSFT representation of PLI model, P̄

5 Integration of Knowledge Sources

As previously mentioned, the HVR recognition pro-
cess involves maximising the posterior probability
in Eq. 4, which can be expressed in terms of four
knowledge sources. It turns out that these knowl-
edge sources can be represented as Weighted Finite
State Transducers (WFSTs) (Mohri et al., 2002) and
the composition operation (◦) can be used to inte-
grate these knowledge sources into a single WFST:

F̄integrated = Ā ◦ L̄ ◦ P̄ ◦ H̄ (7)

where Ā, L̄, P̄ and H̄ denote the WFST repre-
sentation of the acoustic model, language model,
PLI model and haptic model respectively. Mohri
et al. (2002) has shown that Hidden Markov Mod-
els (HMMs) and n-gram language models can be
viewed as WFSTs. Furthermore, HMM-based hap-
tic models are also used in this work to represent
the single-stroke letters shown in Fig. 1. Therefore,
Ā, L̄, and H̄ can be obtained from the respective
probabilistic models. Finally, the PLI model de-
scribed in Section 4.2 can also be represented using
the WFST as shown in Fig. 2. The transition weights
of these WFSTs are given by the negative log prob-
ability of the respective models. P̄ can be viewed
as a merger that defines the possible alignments be-
tween the speech and haptic inputs. Each complete
path in F̄ represents a valid pair of W and L such
that the weight of the path is given by the negative
logP (L,W|O,H). Therefore, finding the shortest
path in F̄ is equivalent to solving Eq. 1.

Direct decoding from the overall composed
WFST, F̄integrated, is referred to as integrated de-
coding. Alternatively, HVR can also operate in a lat-
tice rescoring manner. Speech input and haptic in-
put are processed separately by the ASR system and
the haptic model respectively. The ASR system may

Figure 3: Screenshot depicting the HVR prototype oper-
ating with keyboard input

Figure 4: Screenshot depicting the HVR prototype oper-
ating with keystroke input

generate multiple hypotheses of word sequences in
the form of a lattice. Similarly, the haptic model may
also generate a lattice containing the most probably
letter sequences. Let L̂ and Ĥ represent the word
and letter lattices respectively. Then, the final HVR
output can be obtained by searching for the shortest
path of the following merged WFST:

F̄rescore = L̂ ◦ P̄ ◦ Ĥ (8)

Note that the above composition may yield an empty
WFST. This may happen if the lattices generated by
the ASR system or the haptic model are not large
enough to produce any valid pair ofW and L.

6 Experimental Results

In this section, experimental results are reported
based on the data collected using a prototype HVR
interface implemented on an iPad. This prototype
HVR interface allows both speech and haptic input
data to be captured either synchronously or asyn-
chronously and the partial lexical information can
be entered using either a soft keyboard or handwrit-
ing gestures. Figures 3 and 4 shows the screen-
shot of the HVR prototype iPad app using the key-
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Donna was in Cincinnati last Thursday.
Adam will be visiting Charlotte tomorrow
Janice will be in Chattanooga next month.
Christine will be visiting Corpus Christi
next Tuesday.

Table 1: Example sentences used for data collection.

board and keystroke inputs respectively. Therefore,
there are altogether four input configurations. For
each configuration, 250 sentences were collected
from a non-native fluent English speaker. 200 sen-
tences were used as test data while the remaining 50
sentences were used for acoustic model adaptation.
These sentences contain a variety of given names,
surnames and city names so that confusions can-
not be easily resolved using a language model. Ex-
ample sentences used for data collection are shown
in Table 1. In order to investigate the robustness
of HVR in noisy environment, the collected speech
data were also artificially corrupted with additive
babble noise from the NOISEX database (Varga and
Steeneken, 1993) to synthesise noisy speech signal-
to-noise (SNR) levels of 20 and 10 decibels2.

The ASR system used in all the experiments re-
ported in this paper consists of a set of HMM-based
triphone acoustic models and an n-gram language
model. The HMM models were trained using 39-
dimensional MFCC features. Each HMM has a
left-to-right topology and three emitting states. The
emission probability for each state is represented by
a single Gaussian component 3. A bigram language
model with a vocabulary size of 200 words was used
for testing. The acoustic models were also noise-
compensated using VTS (Acero et al., 2000) in order
achieve a better baseline performance.

6.1 Comparison of Input Speed
Table 2 shows the speech, letter and total input
speed using different input configurations. For syn-
chronous HVR, the total input speed is the same
as the speech and letter input speed since both the
speech and haptic inputs are provided concurrently.
According to this study, synchronous keyboard in-
put speed is 86 words per minutes (WPM). This is

2Higher SNR indicates a better speech quality
3A single Gaussian component system was used as a com-

promise between speed and accuracy for mobile apps.

Haptic HVR Input Speed (WPM)
Input Mode Speech Letter Total

Keyboard
Sync 86 86 86

ASync 100 105 51

Keystroke
Sync 78 78 78

ASync 97 83 45

Table 2: Comparison of the speech and letter input
speed, measured in Words-Per-Minute (WPM), for dif-
ferent HVR input configurations

slightly faster than keystroke input using handwrit-
ing gestures, where the input speed is 78 WPM. This
is not surprising since key taps are much quicker
to generate compared to handwriting gestures. On
the other hand, the individual speech and letter in-
put speed are faster for asynchronous mode be-
cause users do not need to multi-task. However,
since the speech and haptic inputs are provided con-
currently, the resulting total input speed for asyn-
chronous HVR is much slower compared to syn-
chronous HVR. Therefore, synchronous HVR is po-
tentially more efficient than asynchronous HVR.

6.2 Performance of ASR

HVR Mode SNR WER (%) LER (%)

ASync
Clean 22.2 17.0
20 dB 30.2 24.2
10 dB 33.3 28.5

Sync
Clean 25.9 20.2

(Keyboard)
20 dB 34.6 28.8
10 dB 35.5 29.9

Sync
Clean 29.0 22.5

(Keystroke)
20 dB 40.1 32.0
10 dB 37.9 31.3

Table 3: WER and LER performance of ASR in different
noise conditions

First of all, the Word Error Rate (WER) and
Letter Error Rate (LER) performances for standard
ASR systems in different noise conditions are sum-
marized in Table 3. These are results using pure
ASR, without adding the haptic inputs. Speech
recorded using asynchronous HVR is considered
normal speech. The ASR system achieved 22.2%,
30.2% and 33.3% WER in clean, 20dB and 10dB
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conditions respectively. Note that the acoustic mod-
els have been compensated using VTS (Acero et al.,
2000) for noisy conditions. Table 3 also shows the
system performance considering on the initial let-
ter sequence of the recognition output. This indi-
cates the potential improvements that can be ob-
tained with the additional first letter information.
Note that the pure ASR system output contains sub-
stantial initial letter errors.

For synchronous HVR, the recorded speech is ex-
pected to exhibit different characteristics since it
may be influenced by concurrent haptic input. Ta-
ble 3 shows that there are performance degradations,
both in terms of WER and LER, when performing
ASR on these speech utterances. Also, the degra-
dations caused by simultaneous keystroke input are
greater. The degradation may be caused by phenom-
ena such as the presence of filled pauses and the
lengthening of phoneme duration. Other forms of
disfluencies may have also been introduced to the
realized speech utterances. Nevertheless, the addi-
tional information provided by the PLIs will out-
weigh these degradations.

6.3 Performance of Synchronous HVR

Haptic
SNR WER (%) LER (%)

Input

Keyboard
Clean 11.8 1.1
20 dB 12.7 1.0
10 dB 15.0 1.0

Keystroke
Clean 11.4 0.3
20 dB 13.1 0.9
10 dB 14.0 1.0

Table 4: WER and LER performance of synchronous
HVR in different noise conditions

The performance of synchronous HVR is shown
in Table 4. Compared to the results shown in Ta-
ble 3, the WER performance of synchronous HVR
improved by approximately a factor of two. Fur-
thermore, the LER performance improved signifi-
cantly. For keyboard input, the LER reduced to
about 1.0% for all noise conditions. Note that the
tradeoffs between the WER and LER performance
can be adjusted by applying appropriately weights to
different knowledge sources during integration. For
keystroke input, top five letter candidates returned

by the handwriting recognizer were used. Therefore,
in clean condition, the acoustic models are able to
recover some of the errors introduced by the hand-
writing recognizer, bringing the LER down to as low
as 0.3%. However, in noisy conditions, the LER
performance is similar to those using keyboard in-
put. Overall, synchronous and asynchronous HVR
achieved WER comparable performance.

6.4 Performance of Asynchronous HVR

Haptic
SNR WER (%) LER (%)

Input

Keyboard
Clean 10.2 0.6
20 dB 11.2 0.6
10 dB 13.0 0.6

Keystroke
Clean 10.7 0.4
20 dB 11.4 1.0
10 dB 13.4 1.1

Table 5: WER and LER performance of asynchronous
HVR in different noise conditions

Similar to synchronous HVR, asynchronous HVR
also achieved significant performance improve-
ments over the pure ASR systems. Table 5 shows the
WER and LER performance of asynchronous HVR
in different noise conditions. The WER perfor-
mance of asynchronous HVR is consistently better
than that of synchronous HVR (comparing Tables 4
and 5). This is expected since the speech quality for
asynchronous HVR is higher. However, consider-
ing the much slower input speed (c.f. Table 2) and
the marginal WER improvements for asynchronous
HVR, synchronous HVR appears to be a better con-
figuration.

6.5 Integrated Decoding vs. Lattice Rescoring

SNR
WER (%)

Clean 20dB 10dB
Integrated 11.8 12.7 15.0

Lat-rescore 11.2 18.6 18.1

Table 6: WER performance of keyboard synchronous
HVR using integrated decoding and lattice rescoring

As previously mentioned in Section 5, HVR can
also be performed in two stages using lattice rescor-
ing technique. Table 6 shows the performance
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comparison between integrated decoding and lat-
tice rescoring for HVR. Both methods gave similar
performance in clean condition. However, lattice
rescoring yielded significantly worse performance
in noisy environment. Therefore, it is important to
tightly integrate the PLI into the decoding process to
avoid premature pruning away optimal paths.

6.6 Runtime Performance

ASR system searches for the best word sequence
using a dynamic programming paradigm (Ney and
Ortmanns, 1999). The complexity of the search in-
creases with the vocabulary size as well as the length
of the input speech. A well-known concept of To-
ken Passing (Young et al., 1989) can be used to de-
scribe the recognition search process. A set of ac-
tive tokens are being propagated upon observing an
acoustic feature frame. The best token that survived
to the end of the utterance represents the best out-
put. Typically, beam pruning technique (Ortmanns
et al., 1997) is applied to improve the recognition ef-
ficiency. Tokens which are unlikely to yield the op-
timal solution will be pruned away. HVR performs a
more stringent pruning, where paths that do not con-
form to the PLI sequence are also be pruned away.

System SNR RT
Active Tokens

Per Frame

ASR
Clean 1.9 6260
20 dB 2.0 6450
10 dB 2.4 7168

Keyboard
Clean 0.9 3490
20 dB 0.9 3764
10 dB 1.0 4442

Keystroke
Clean 1.1 4059
20 dB 1.2 4190
10 dB 1.5 4969

Table 7: WER and LER performance of integrated and
rescoring synchronous HVR in different noise conditions

Table 7 shows the comparison of the runtime fac-
tors and the average number of active tokens per
frame for ASR and HVR systems. The standard
ASR system runs at 1.9, 2.0 and 2.4 times real-
time (xRT)4. The runtime factor increases with de-

4Runtime factor is computed as the ratio between the recog-
nition duration and the input speech duration

creasing SNR because the presence of noise intro-
duces more confusions, which renders beam prun-
ing (Ortmanns et al., 1997) less effective. The num-
ber of active tokens per frame also increases from
6260 to 7168 as the SNR drops from the clean con-
dition to 10dB. On the other hand, there are sig-
nificant speedup in the runtime of HVR systems.
In particular, synchronous HVR achieved the best
runtime performance, which is roughly consistent
across different noise conditions (approximately 1.0
xRT). The average number of active tokens also re-
duces to the range of 3490 – 4442. Therefore, the
synchronous HVR using keyboard input is robust to
noisy environment, both in terms of WER and run-
time performance. The runtime performance using
keystroke input is also comparable to that using key-
board input (only slightly worse). Therefore, both
keyboard and keystroke inputs are effective ways for
entering the initial letters for HVR. However, it is
worth noting that the iPad was used for the studies
conducted in this work. The size of the iPad screen
is sufficiently large to allow efficient keyboard entry.
However, for devices with smaller screen, keystroke
inputs may be easier to use and less error-prone.

7 Conclusions

This paper has presented a unifying probabilistic
framework for the multimodal Haptic Voice Recog-
nition (HVR) interface. HVR offers users the option
to interact with the system using touchscreen during
voice input so that additional cues can be provided
to improve the efficiency and robustness of voice
recognition. Partial Lexical Information (PLI), such
as the initial letter of the words, are used as cues
to guide the recognition search process. Therefore,
apart from the acoustic and language models used
in conventional ASR, HVR also combines the hap-
tic model as well as the PLI model to yield an inte-
grated probabilistic model. This probabilistic frame-
work integrates multiple knowledge sources using
the weighted finite state transducer operation. Such
integration is achieved using the composition oper-
ation which can be applied on-the-fly to yield ef-
ficient implementation. Experimental results show
that this framework can be used to achieve a more
efficient and robust multimodal interface for text en-
try on modern portable devices.
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Abstract

We investigate the problem of acoustic mod-
eling in which prior language-specific knowl-
edge and transcribed data are unavailable. We
present an unsupervised model that simultane-
ously segments the speech, discovers a proper
set of sub-word units (e.g., phones) and learns
a Hidden Markov Model (HMM) for each in-
duced acoustic unit. Our approach is formu-
lated as a Dirichlet process mixture model in
which each mixture is an HMM that repre-
sents a sub-word unit. We apply our model
to the TIMIT corpus, and the results demon-
strate that our model discovers sub-word units
that are highly correlated with English phones
and also produces better segmentation than the
state-of-the-art unsupervised baseline. We test
the quality of the learned acoustic models on a
spoken term detection task. Compared to the
baselines, our model improves the relative pre-
cision of top hits by at least 22.1% and outper-
forms a language-mismatched acoustic model.

1 Introduction

Acoustic models are an indispensable component
of speech recognizers. However, the standard pro-
cess of training acoustic models is expensive, and
requires not only language-specific knowledge, e.g.,
the phone set of the language, a pronunciation dic-
tionary, but also a large amount of transcribed data.
Unfortunately, these necessary data are only avail-
able for a very small number of languages in the
world. Therefore, a procedure for training acous-
tic models without annotated data would not only
be a breakthrough from the traditional approach, but

would also allow us to build speech recognizers for
any language efficiently.

In this paper, we investigate the problem of unsu-
pervised acoustic modeling with only spoken utter-
ances as training data. As suggested in Garcia and
Gish (2006), unsupervised acoustic modeling can
be broken down to three sub-tasks: segmentation,
clustering segments, and modeling the sound pattern
of each cluster. In previous work, the three sub-
problems were often approached sequentially and
independently in which initial steps are not related to
later ones (Lee et al., 1988; Garcia and Gish, 2006;
Chan and Lee, 2011). For example, the speech data
was usually segmented regardless of the clustering
results and the learned acoustic models.

In contrast to the previous methods, we approach
the problem by modeling the three sub-problems as
well as the unknown set of sub-word units as la-
tent variables in one nonparametric Bayesian model.
More specifically, we formulate a Dirichlet pro-
cess mixture model where each mixture is a Hid-
den Markov Model (HMM) used to model a sub-
word unit and to generate observed segments of that
unit. Our model seeks the set of sub-word units,
segmentation, clustering and HMMs that best repre-
sent the observed data through an iterative inference
process. We implement the inference process using
Gibbs sampling.

We test the effectiveness of our model on the
TIMIT database (Garofolo et al., 1993). Our model
shows its ability to discover sub-word units that are
highly correlated with standard English phones and
to capture acoustic context information. For the seg-
mentation task, our model outperforms the state-of-
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the-art unsupervised method and improves the rel-
ative F-score by 18.8 points (Dusan and Rabiner,
2006). Finally, we test the quality of the learned
acoustic models through a keyword spotting task.
Compared to the state-of-the-art unsupervised meth-
ods (Zhang and Glass, 2009; Zhang et al., 2012),
our model yields a relative improvement in precision
of top hits by at least 22.1% with only some degra-
dation in equal error rate (EER), and outperforms
a language-mismatched acoustic model trained with
supervised data.

2 Related Work

Unsupervised Sub-word Modeling We follow
the general guideline used in (Lee et al., 1988; Gar-
cia and Gish, 2006; Chan and Lee, 2011) and ap-
proach the problem of unsupervised acoustic mod-
eling by solving three sub-problems of the task:
segmentation, clustering and modeling each cluster.
The key difference, however, is that our model does
not assume independence among the three aspects of
the problem, which allows our model to refine its so-
lution to one sub-problem by exploiting what it has
learned about other parts of the problem. Second,
unlike (Lee et al., 1988; Garcia and Gish, 2006) in
which the number of sub-word units to be learned is
assumed to be known, our model learns the proper
size from the training data directly.

Instead of segmenting utterances, the authors
of (Varadarajan et al., 2008) trained a single state
HMM using all data at first, and then iteratively
split the HMM states based on objective functions.
This method achieved high performance in a phone
recognition task using a label-to-phone transducer
trained from some transcriptions. However, the per-
formance seemed to rely on the quality of the trans-
ducer. For our work, we assume no transcriptions
are available and measure the quality of the learned
acoustic units via a spoken query detection task as
in Jansen and Church (2011).

Jansen and Church (2011) approached the task of
unsupervised acoustic modeling by first discovering
repetitive patterns in the data, and then learned a
whole-word HMM for each found pattern, where the
state number of each HMM depends on the average
length of the pattern. The states of the whole-word
HMMs were then collapsed and used to represent

acoustic units. Instead of discovering repetitive pat-
terns first, our model is able to learn from any given
data.

Unsupervised Speech Segmentation One goal
of our model is to segment speech data into
small sub-word (e.g., phone) segments. Most un-
supervised speech segmentation methods rely on
acoustic change for hypothesizing phone bound-
aries (Scharenborg et al., 2010; Qiao et al., 2008;
Dusan and Rabiner, 2006; Estevan et al., 2007).
Even though the overall approaches differ, these al-
gorithms are all one-stage and bottom-up segmenta-
tion methods (Scharenborg et al., 2010). Our model
does not make a single one-stage decision; instead, it
infers the segmentation through an iterative process
and exploits the learned sub-word models to guide
its hypotheses on phone boundaries.

Bayesian Model for Segmentation Our model is
inspired by previous applications of nonparametric
Bayesian models to segmentation problems in NLP
and speaker diarization (Goldwater, 2009; Fox et al.,
2011); particularly, we adapt the inference method
used in (Goldwater, 2009) to our segmentation task.
Our problem is, in principle, similar to the word seg-
mentation problem discussed in (Goldwater, 2009).
The main difference, however, is that our model
is under the continuous real value domain, and the
problem of (Goldwater, 2009) is under the discrete
symbolic domain. For the domain our problem is ap-
plied to, our model has to include more latent vari-
ables and is more complex.

3 Problem Formulation

The goal of our model, given a set of spoken utter-
ances, is to jointly learn the following:

• Segmentation: To find the phonetic boundaries
within each utterance.

• Nonparametric clustering: To find a proper set
of clusters and group acoustically similar seg-
ments into the same cluster.

• Sub-word modeling: To learn a HMM to model
each sub-word acoustic unit.

We model the three sub-tasks as latent variables
in our approach. In this section, we describe the ob-
served data, latent variables, and auxiliary variables
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Figure 1: An example of the observed data and hidden
variables of the problem for the word banana. See Sec-
tion 3 for a detailed explanation.

of the problem and show an example in Fig. 1. In
the next section, we show the generative process our
model uses to generate the observed data.

Speech Feature (xit) The only observed data for
our problem are a set of spoken utterances, which are
converted to a series of 25 ms 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCCs) (Davis
and Mermelstein, 1980) and their first- and second-
order time derivatives at a 10 ms analysis rate. We
use xit ∈ R39 to denote the tth feature frame of the
ith utterance. Fig. 1 illustrates how the speech signal
of a single word utterance banana is converted to a
sequence of feature vectors xi1 to xi11.

Boundary (bit) We use a binary variable bit to in-
dicate whether a phone boundary exists between xit
and xit+1. If our model hypothesizes xit to be the last
frame of a sub-word unit, which is called a boundary
frame in this paper, bit is assigned with value 1; or 0
otherwise. Fig. 1 shows an example of the boundary
variables where the values correspond to the true an-
swers. We use an auxiliary variable giq to denote the
index of the qth boundary frame in utterance i. To
make the derivation of posterior distributions easier
in Section 5, we define gi0 to be the beginning of
an utterance, and Li to be the number of boundary
frames in an utterance. For the example shown in
Fig. 1, Li is equal to 6.

Segment (pij,k) We define a segment to be com-
posed of feature vectors between two boundary
frames. We use pij,k to denote a segment that con-
sists of xij , x

i
j+1 · · ·xik and dij,k to denote the length

of pij,k. See Fig. 1 for more examples.

Cluster Label (cij,k) We use cij,k to specify the
cluster label of pij,k. We assume segment pij,k is gen-
erated by the sub-word HMM with label cij,k.

HMM (θc) In our model, each HMM has three
emission states, which correspond to the beginning,
middle and end of a sub-word unit (Jelinek, 1976).
A traversal of each HMM must start from the first
state, and only left-to-right transitions are allowed
even though we allow skipping of the middle and
the last state for segments shorter than three frames.
The emission probability of each state is modeled by
a diagonal Gaussian Mixture Model (GMM) with 8
mixtures. We use θc to represent the set of param-
eters that define the cth HMM, which includes state
transition probability aj,kc , and the GMM parameters
of each state emission probability. We use wmc,s ∈ R,
µmc,s ∈ R39 and λmc,s ∈ R39 to denote the weight,
mean vector and the diagonal of the inverse covari-
ance matrix of the mth mixture in the GMM for the
sth state in the cth HMM.

Hidden State (sit) Since we assume the observed
data are generated by HMMs, each feature vector,
xit, has an associated hidden state index. We denote
the hidden state of xit as sit.

Mixture ID (mi
t) Similarly, each feature vector is

assumed to be emitted by the state GMM it belongs
to. We use mi

t to identify the Gaussian mixture that
generates xit.

4 Model

We aim to discover and model a set of sub-word
units that represent the spoken data. If we think of
utterances as sequences of repeated sub-word units,
then in order to find the sub-words, we need a model
that concentrates probability on highly frequent pat-
terns while still preserving probability for previously
unseen ones. Dirichlet processes are particulary
suitable for our goal. Therefore, we construct our
model as a Dirichlet Process (DP) mixture model,
of which the components are HMMs that are used
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Figure 2: The graphical model for our approach. The shaded circle denotes the observed feature vectors, and the
squares denote the hyperparameters of the priors used in our model. The dotted arrows indicate deterministic relations.
Note that the Markov chain structure over the st variables is not shown here due to limited space.

to model sub-word units. We assume each spoken
segment is generated by one of the clusters in this
DP mixture model. Here, we describe the genera-
tive process our model uses to generate the observed
utterances and present the corresponding graphical
model. For clarity, we assume that the values of
the boundary variables bit are given in the genera-
tive process. In the next section, we explain how to
infer their values.

Let pi
gi

q+1,gi
q+1

for 0 ≤ q ≤ Li − 1 be the seg-

ments of the ith utterance. Our model assumes each
segment is generated as follows:

1. Choose a cluster label ci
gi

q+1,gi
q+1

for pi
gi

q+1,gi
q+1

.

This cluster label can be either an existing la-
bel or a new one. Note that the cluster label
determines which HMM is used to generate the
segment.

2. Given the cluster label, choose a hidden state
for each feature vector xit in the segment.

3. For each xit, based on its hidden state, choose a
mixture from the GMM of the chosen state.

4. Use the chosen Gaussian mixture to generate
the observed feature vector xit.

The generative process indicates that our model
ignores utterance boundaries and views the entire
data as concatenated spoken segments. Given this

viewpoint, we discard the utterance index, i, of all
variables in the rest of the paper.

The graphical model representing this generative
process is shown in Fig. 2, where the shaded circle
denotes the observed feature vectors, and the squares
denote the hyperparameters of the priors used in our
model. Specifically, we use a Bernoulli distribution
as the prior of the boundary variables and impose
a Dirichlet process prior on the cluster labels and
the HMM parameters. The dotted arrows represent
deterministic relations. For example, the boundary
variables deterministically construct the duration of
each segment, d, which in turn sets the number of
feature vectors that should be generated for a seg-
ment. In the next section, we show how to infer the
value of each of the latent variables in Fig. 21.

5 Inference

We employ Gibbs sampling (Gelman et al., 2004)
to approximate the posterior distribution of the hid-
den variables in our model. To apply Gibbs sam-
pling to our problem, we need to derive the condi-
tional posterior distributions of each hidden variable
of the model. In the following sections, we first de-
rive the sampling equations for each hidden variable
and then describe how we incorporate acoustic cues
to reduce the sampling load at the end.

1Note that the value of π is irrelevant to our problem; there-
fore, it is integrated out in the inference process

43



5.1 Sampling Equations
Here we present the sampling equations for each
hidden variable defined in Section 3. We use
P (·| · · · ) to denote a conditional posterior probabil-
ity given observed data, all the other variables, and
hyperparameters for the model.

Cluster Label (cj,k) Let C be the set of distinctive
label values in c−j,k, which represents all the cluster
labels except cj,k. The conditional posterior proba-
bility of cj,k for c ∈ C is:

P (cj,k = c| · · · ) ∝ P (cj,k = c|c−j,k; γ)P (pj,k|θc)

=
n(c)

N − 1 + γ
P (pj,k|θc) (1)

where γ is a parameter of the DP prior. The first line
of Eq. 1 follows Bayes’ rule. The first term is the
conditional prior, which is a result of the DP prior
imposed on the cluster labels 2. The second term is
the conditional likelihood, which reflects how likely
the segment pj,k is generated by HMMc. We use n(c)

to represent the number of cluster labels in c−j,k tak-
ing the value c and N to represent the total number
of segments in current segmentation.

In addition to existing cluster labels, cj,k can also
take a new cluster label, which corresponds to a new
sub-word unit. The corresponding conditional pos-
terior probability is:

P (cj,k 6= c, c ∈ C| · · · ) ∝ γ

N − 1 + γ

∫
θ
P (pj,k|θ) dθ

(2)
To deal with the integral in Eq. 2, we follow the

suggestions in (Rasmussen, 2000; Neal, 2000). We
sample an HMM from the prior and compute the
likelihood of the segment given the new HMM to
approximate the integral.

Finally, by normalizing Eq. 1 and Eq. 2, the Gibbs
sampler can draw a new value for cj,k by sampling
from the normalized distribution.

Hidden State (st) To enforce the assumption that
a traversal of an HMM must start from the first state
and end at the last state3, we do not sample hidden
state indices for the first and the last frame of a seg-
ment. For each of the remaining feature vectors in

2See (Neal, 2000) for an overview on Dirichlet process mix-
ture models and the inference methods.

3If a segment has only 1 frame, we assign the first state to it.

a segment pj,k, we sample a hidden state index ac-
cording to the conditional posterior probability:

P (st = s| · · · ) ∝
P (st = s|st−1)P (xt|θcj,k

, st = s)P (st+1|st = s)

= ast−1,s
cj,k

P (xt|θcj,k
, st = s)as,st+1

cj,k
(3)

where the first term and the third term are the condi-
tional prior – the transition probability of the HMM
that pj,k belongs to. The second term is the like-
lihood of xt being emitted by state s of HMMcj,k

.
Note for initialization, st is sampled from the first
prior term in Eq. 3.

Mixture ID (mt) For each feature vector in a seg-
ment, given the cluster label cj,k and the hidden state
index st, the derivation of the conditional posterior
probability of its mixture ID is straightforward:

P (mt = m| · · · )
∝ P (mt = m|θcj,k

, st)P (xt|θcj,k
, st,mt = m)

= wmcj,k,st
P (xt|µmcj,k,st

, λmcj,k,st
) (4)

where 1 ≤ m ≤ 8. The conditional posterior con-
sists of two terms: 1) the mixing weight of the mth

Gaussian in the state GMM indexed by cj,k and st
and 2) the likelihood of xt given the Gaussian mix-
ture. The sampler draws a value for mt from the
normalized distribution of Eq. 4.

HMM Parameters (θc) Each θc consists of two
sets of variables that define an HMM: the state emis-
sion probabilities wmc,s, µ

m
c,s, λ

m
c,s and the state transi-

tion probabilities aj,kc . In the following, we derive
the conditional posteriors of these variables.

Mixture Weight wmc,s: We use wc,s = {wmc,s|1 ≤
m ≤ 8} to denote the mixing weights of the Gaus-
sian mixtures of state s of HMM c. We choose a
symmetric Dirichlet distribution with a positive hy-
perparameter β as its prior. The conditional poste-
rior probability of wc,s is:

P (wc,s| · · · ) ∝ P (wc,s;β)P (mc,s|wc,s)
∝ Dir(wc,s;β)Mul(mc,s;wc,s)

∝ Dir(wc,s;β′) (5)

where mc,s is the set of mixture IDs of feature vec-
tors that belong to state s of HMM c. The mth entry
of β′ is β +

∑
mt∈mc,s

δ(mt,m), where we use δ(·)
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P (pl,t, pt+1,r|c−,θ) = P (pl,t|c−,θ)P (pt+1,r|c−, cl,t,θ)

=

[∑
c∈C

n(c)

N− + γ
P (pl,t|θc) +

γ

N− + γ

∫
θ
P (pl,t|θ) dθ

]

×

[∑
c∈C

n(c) + δ(cl,t, c)

N− + 1 + γ
P (pt+1,r|θc) +

γ

N− + 1 + γ

∫
θ
P (pt+1,r|θ) dθ

]

P (pl,r|c−,θ) =
∑
c∈C

n(c)

N− + γ
P (pl,r|θc) +

γ

N− + γ

∫
θ
P (pl,r|θ) dθ

Figure 3: The full derivation of the relative conditional posterior probabilities of a boundary variable.

to denote the discrete Kronecker delta. The last line
of Eq. 5 comes from the fact that Dirichlet distribu-
tions are a conjugate prior for multinomial distribu-
tions. This property allows us to derive the update
rule analytically.

Gaussian Mixture µmc,s, λmc,s: We assume the di-
mensions in the feature space are independent. This
assumption allows us to derive the conditional pos-
terior probability for a single-dimensional Gaussian
and generalize the results to other dimensions.

Let the dth entry of µmc,s and λmc,s be µm,dc,s and
λm,dc,s . The conjugate prior we use for the two vari-
ables is a normal-Gamma distribution with hyperpa-
rameters µ0, κ0, α0 and β0 (Murphy, 2007).

P (µm,dc,s , λ
m,d
c,s |µ0, κ0, α0, β0)

= N(µm,dc,s |µ0, (κ0λ
m,d
c,s )−1)Ga(λm,dc,s |α0, β0)

By tracking the dth dimension of feature vectors
x ∈ {xt|mt = m, st = s, cj,k = c, xt ∈ pj,k}, we
can derive the conditional posterior distribution of
µm,dc,s and λm,dc,s analytically following the procedures
shown in (Murphy, 2007). Due to limited space,
we encourage interested readers to find more details
in (Murphy, 2007).

Transition Probabilities aj,kc : We represent the
transition probabilities at state j in HMM c using ajc.
If we view ajc as mixing weights for states reachable
from state j, we can simply apply the update rule
derived for the mixing weights of Gaussian mixtures
shown in Eq. 5 to ajc. Assume we use a symmetric
Dirichlet distribution with a positive hyperparameter
η as the prior, the conditional posterior for ajc is:

P (ajc| · · · ) ∝ Dir(ajc; η′)

where the kth entry of η′ is η + nj,kc , the number
of occurrences of the state transition pair (j, k) in
segments that belong to HMM c.

Boundary Variable (bt) To derive the conditional
posterior probability for bt, we introduce two vari-
ables:

l = (arg max
gq

gq < t) + 1

r = arg min
gq

t < gq

where l is the index of the closest turned-on bound-
ary variable that precedes bt plus 1, while r is the in-
dex of the closest turned-on boundary variable that
follows bt. Note that because g0 and gL are defined,
l and r always exist for any bt.

Note that the value of bt only affects segmentation
between xl and xr. If bt is turned on, the sampler hy-
pothesizes two segments pl,t and pt+1,r between xl
and xr. Otherwise, only one segment pl,r is hypoth-
esized. Since the segmentation on the rest of the data
remains the same no matter what value bt takes, the
conditional posterior probability of bt is:

P (bt = 1| · · · ) ∝ P (pl,t, pt+1,r|c−,θ) (6)

P (bt = 0| · · · ) ∝ P (pl,r|c−,θ) (7)

where we assume that the prior probabilities for
bt = 1 and bt = 0 are equal; c− is the set of cluster
labels of all segments except those between xl and
xr ; and θ indicates the set of HMMs that have as-
sociated segments. Our Gibbs sampler hypothesizes
bt’s value by sampling from the normalized distribu-
tion of Eq. 6 and Eq. 7. The full derivations of Eq. 6
and Eq. 7 are shown in Fig. 3.

Note that in Fig. 3, N− is the total number of seg-
ments in the data except those between xl and xr.
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For bt = 1, to account the fact that when the model
generates pt+1,r, pl,t is already generated and owns
a cluster label, we sample a cluster label for pl,t that
is reflected in the Kronecker delta function. To han-
dle the integral in Fig. 3, we sample one HMM from
the prior and compute the likelihood using the new
HMM to approximate the integral as suggested in
(Rasmussen, 2000; Neal, 2000).

5.2 Heuristic Boundary Elimination
To reduce the inference load on the boundary vari-
ables bt, we exploit acoustic cues in the feature space
to eliminate bt’s that are unlikely to be phonetic
boundaries. We follow the pre-segmentation method
described in Glass (2003) to achieve the goal. For
the rest of the boundary variables that are proposed
by the heuristic algorithm, we randomly initialize
their values and proceed with the sampling process
described above.

6 Experimental Setup

To the best of our knowledge, there are no stan-
dard corpora for evaluating unsupervised methods
for acoustic modeling. However, numerous related
studies have reported performance on the TIMIT
corpus (Dusan and Rabiner, 2006; Estevan et al.,
2007; Qiao et al., 2008; Zhang and Glass, 2009;
Zhang et al., 2012), which creates a set of strong
baselines for us to compare against. Therefore, the
TIMIT corpus is chosen as the evaluation set for
our model. In this section, we describe the methods
used to measure the performance of our model on
the following three tasks: sub-word acoustic model-
ing, segmentation and nonparametric clustering.

Unsupervised Segmentation We compare the
phonetic boundaries proposed by our model to the
manual labels provided in the TIMIT dataset. We
follow the suggestion of (Scharenborg et al., 2010)
and use a 20-ms tolerance window to compute re-
call, precision rates and F-score of the segmentation
our model proposed for TIMIT’s training set. We
compare our model against the state-of-the-art un-
supervised and semi-supervised segmentation meth-
ods that were also evaluated on the TIMIT training
set (Dusan and Rabiner, 2006; Qiao et al., 2008).

Nonparametric Clustering Our model automat-
ically groups speech segments into different clus-

ters. One question we are interested in answering
is whether these learned clusters correlate to En-
glish phones. To answer the question, we develop
a method to map cluster labels to the phone set in
a dataset. We align each cluster label in an utter-
ance to the phone(s) it overlaps with in time by
using the boundaries proposed by our model and
the manually-labeled ones. When a cluster label
overlaps with more than one phone, we align it
to the phone with the largest overlap.4 We com-
pile the alignment results for 3696 training utter-
ances5 and present a confusion matrix between the
learned cluster labels and the 48 phonetic units used
in TIMIT (Lee and Hon, 1989).

Sub-word Acoustic Modeling Finally, and most
importantly, we need to gauge the quality of the
learned sub-word acoustic models. In previous
work, Varadarajan et al. (2008) and Garcia and
Gish (2006) tested their models on a phone recog-
nition task and a term detection task respectively.
These two tasks are fair measuring methods, but per-
formance on these tasks depends not only on the
learned acoustic models, but also other components
such as the label-to-phone transducer in (Varadara-
jan et al., 2008) and the graphone model in (Garcia
and Gish, 2006). To reduce performance dependen-
cies on components other than the acoustic model,
we turn to the task of spoken term detection, which
is also the measuring method used in (Jansen and
Church, 2011).

We compare our unsupervised acoustic model
with three supervised ones: 1) an English triphone
model, 2) an English monophone model and 3) a
Thai monophone model. The first two were trained
on TIMIT, while the Thai monophone model was
trained with 32 hour clean read Thai speech from
the LOTUS corpus (Kasuriya et al., 2003). All
of the three models, as well as ours, used three-
state HMMs to model phonetic units. To conduct
spoken term detection experiments on the TIMIT
dataset, we computed a posteriorgram representa-
tion for both training and test feature frames over the

4Except when a cluster label is mapped to /vcl/ /b/, /vcl/ /g/
and /vcl/ /d/, where the duration of the release /b/, /g/, /d/ is
almost always shorter than the closure /vcl/. In this case, we
align the cluster label to both the closure and the release.

5The TIMIT training set excluding the sa-type subset.
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γ αb β η µ0 κ0 α0 β0

1 0.5 3 3 µd 5 3 3/λd

Table 1: The values of the hyperparameters of our model,
where µd and λd are the dth entry of the mean and the
diagonal of the inverse covariance matrix of training data.

HMM states for each of the four models. Ten key-
words were randomly selected for the task. For ev-
ery keyword, spoken examples were extracted from
the training set and were searched for in the test set
using segmental dynamic time warping (Zhang and
Glass, 2009).

In addition to the supervised acoustic models,
we also compare our model against the state-of-
the-art unsupervised methods for this task (Zhang
and Glass, 2009; Zhang et al., 2012). Zhang and
Glass (2009) trained a GMM with 50 components
to decode posteriorgrams for the feature frames, and
Zhang et al. (2012) used a deep Boltzmann machine
(DBM) trained with pseudo phone labels generated
from an unsupervised GMM to produce a posteri-
orgram representation. The evaluation metrics they
used were: 1) P@N, the average precision of the top
N hits, where N is the number of occurrences of each
keyword in the test set; 2) EER: the average equal er-
ror rate at which the false acceptance rate is equal to
the false rejection rate. We also report experimental
results using the P@N and EER metrics.

Hyperparameters and Training Iterations The
values of the hyperparameters of our model are
shown in Table 1, where µd and λd are the dth en-
try of the mean and the diagonal of the inverse co-
variance matrix computed from training data. We
pick these values to impose weak priors on our
model.6 We run our sampler for 20,000 iterations,
after which the evaluation metrics for our model all
converged. In Section 7, we report the performance
of our model using the sample from the last iteration.

7 Results

Fig. 4 shows a confusion matrix of the 48 phones
used in TIMIT and the sub-word units learned from
3696 TIMIT utterances. Each circle represents a
mapping pair for a cluster label and an English
phone. The confusion matrix demonstrates a strong

6In the future, we plan to extend the model and infer the
values of these hyperparameters from data directly.
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Figure 4: A confusion matrix of the learned cluster labels
from the TIMIT training set excluding the sa type utter-
ances and the 48 phones used in TIMIT. Note that for
clarity, we show only pairs that occurred more than 200
times in the alignment results. The average co-occurrence
frequency of the mapping pairs in this figure is 431.

correlation between the cluster labels and individ-
ual English phones. For example, clusters 19, 20
and 21 are mapped exclusively to the vowel /ae/. A
more careful examination on the alignment results
shows that the three clusters are mapped to the same
vowel in a different acoustic context. For example,
cluster 19 is mapped to /ae/ followed by stop conso-
nants, while cluster 20 corresponds to /ae/ followed
by nasal consonants. This context-dependent rela-
tionship is also observed in other English phones
and their corresponding sets of clusters. Fig. 4 also
shows that a cluster may be mapped to multiple En-
glish phones. For instance, clusters 85 and 89 are
mapped to more than one phone; nevertheless, a
closer look reveals that these clusters are mapped to
/n/, /d/ and /b/, which are sounds with a similar place
of articulation (i.e. labial and dental). These corre-
lations indicate that our model is able to discover the
phonetic composition of a set of speech data without
any language-specific knowledge.

The performance of the four acoustic models on
the spoken term detection task is presented in Ta-
ble 2. The English triphone model achieves the best
P@N and EER results and performs slightly bet-
ter than the English monophone model, which indi-
cates a correlation between the quality of an acous-
tic model and its performance on the spoken term
detection task. Although our unsupervised model
does not perform as well as the supervised English
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unit(%) P@N EER
English triphone 75.9 11.7
English monophone 74.0 11.8
Thai monophone 56.6 14.9
Our model 63.0 16.9

Table 2: The performance of our model and three super-
vised acoustic models on the spoken term detection task.

acoustic models, it generates a comparable EER and
a more accurate detection performance for top hits
than the Thai monophone model. This indicates that
even without supervision, our model captures and
learns the acoustic characteristics of a language au-
tomatically and is able to produce an acoustic model
that outperforms a language-mismatched acoustic
model trained with high supervision.

Table 3 shows that our model improves P@N by
a large margin and generates only a slightly worse
EER than the GMM baseline on the spoken term
detection task. At the end of the training process,
our model induced 169 HMMs, which were used to
compute posteriorgrams. This seems unfair at first
glance because Zhang and Glass (2009) only used
50 Gaussians for decoding, and the better result of
our model could be a natural outcome of the higher
complexity of our model. However, Zhang and
Glass (2009) pointed out that using more Gaussian
mixtures for their model did not improve their model
performance. This indicates that the key reason for
the improvement is our joint modeling method in-
stead of simply the higher complexity of our model.

Compared to the DBM baseline, our model pro-
duces a higher EER; however, it improves the rel-
ative detection precision of top hits by 24.3%. As
indicated in (Zhang et al., 2012), the hierarchical
structure of DBM allows the model to provide a
descent posterior representation of phonetic units.
Even though our model only contains simple HMMs
and Gaussians, it still achieves a comparable, if not
better, performance as the DBM baseline. This
demonstrates that even with just a simple model
structure, the proposed learning algorithm is able
to acquire rich phonetic knowledge from data and
generate a fine posterior representation for phonetic
units.

Table 4 summarizes the segmentation perfor-
mance of the baselines, our model and the heuristic

unit(%) P@N EER
GMM (Zhang and Glass, 2009) 52.5 16.4
DBM (Zhang et al., 2012) 51.1 14.7
Our model 63.0 16.9

Table 3: The performance of our model and the GMM
and DBM baselines on the spoken term detection task.

unit(%) Recall Precision F-score
Dusan (2006) 75.2 66.8 70.8
Qiao et al. (2008)* 77.5 76.3 76.9
Our model 76.2 76.4 76.3
Pre-seg 87.0 50.6 64.0

Table 4: The segmentation performance of the baselines,
our model and the heuristic pre-segmentation on TIMIT
training set. *The number of phone boundaries in each
utterance was assumed to be known in this model.

pre-segmentation (pre-seg) method. The language-
independent pre-seg method is suitable for seeding
our model. It eliminates most unlikely boundaries
while retaining about 87% true boundaries. Even
though this indicates that at best our model only
recalls 87% of the true boundaries, the pre-seg re-
duces the search space significantly. In addition,
it also allows the model to capture proper phone
durations, which compensates the fact that we do
not include any explicit duration modeling mecha-
nisms in our approach. In the best semi-supervised
baseline model (Qiao et al., 2008), the number of
phone boundaries in an utterance was assumed to
be known. Although our model does not incorpo-
rate this information, it still achieves a very close
F-score. When compared to the baseline in which
the number of phone boundaries in each utterance
was also unknown (Dusan and Rabiner, 2006), our
model outperforms in both recall and precision, im-
proving the relative F-score by 18.8%. The key dif-
ference between the two baselines and our method
is that our model does not treat segmentation as a
stand-alone problem; instead, it jointly learns seg-
mentation, clustering and acoustic units from data.
The improvement on the segmentation task shown
by our model further supports the strength of the
joint learning scheme proposed in this paper.

8 Conclusion

We present a Bayesian unsupervised approach to the
problem of acoustic modeling. Without any prior
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knowledge, this method is able to discover phonetic
units that are closely related to English phones, im-
prove upon state-of-the-art unsupervised segmenta-
tion method and generate more precise spoken term
detection performance on the TIMIT dataset. In the
future, we plan to explore phonological context and
use more flexible topological structures to model
acoustic units within our framework.
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Abstract

Conventional Automated Essay Scoring
(AES) measures may cause severe problems
when directly applied in scoring Automatic
Speech Recognition (ASR) transcription
as they are error sensitive and unsuitable
for the characteristic of ASR transcription.
Therefore, we introduce a framework of
Finite State Transducer (FST) to avoid the
shortcomings. Compared with the Latent
Semantic Analysis with Support Vector
Regression (LSA-SVR) method (stands for
the conventional measures), our FST method
shows better performance especially towards
the ASR transcription. In addition, we apply
the synonyms similarity to expand the FST
model. The final scoring performance reaches
an acceptable level of 0.80 which is only 0.07
lower than the correlation (0.87) between
human raters.

1 Introduction

The assessment of learners’ language abilities is a
significant part in language learning. In conven-
tional assessment, the problem of limited teach-
er availability has become increasingly serious
with the population increase of language learn-
ers. Fortunately, with the development of com-
puter techniques and machine learning techniques
(natural language processing and automatic speech
recognition), Computer-Assisted Language Learn-
ing (CALL) systems help people to learn language
by themselves.

One form of CALL is evaluating the speech of
the learner. Efforts in speech assessment usually fo-

cus on the integrality, fluency, pronunciation, and
prosody (Cucchiarini et al., 2000; Neumeyer et al.,
2000; Maier et al., 2009; Huang et al., 2010) of the
speech, which are highly predictable like the exam
form of the read-aloud text passage. Another form
of CALL is textual assessment. This work is also
named AES. Efforts in this area usually focus on the
content, arrangement and language usage (Landauer
et al., 2003; Ishioka and Kameda, 2004; Kakkonen
et al., 2005; Attali and Burstein, 2006; Burstein et
al., 2010; Persing et al., 2010; Peng et al., 2010; At-
tali, 2011; Yannakoudakis et al., 2011) of the text
written by the learner under a certain form of exam-
ination.

In this paper, our evaluation objects are the oral
English picture compositions in English as a Sec-
ond Language (ESL) examination. This examina-
tion requires students to talk about four successive
pictures with at least five sentences in one minute,
and the beginning sentence is given. This examina-
tion form combines both of the two forms described
above. Therefore, we need two steps in the scoring
task. The first step is Automatic Speech Recognition
(ASR), in which we get the speech scoring features
as well as the textual transcriptions of the speech-
es. Then, the second step could grade the text-free
transcription in an (conventional) AES system. The
present work is mainly about the AES system un-
der the certain situation as the examination grading
criterion is more concerned about the integrated con-
tent of the speech (the reason will be given in sub-
section 3.1).

There are many features and techniques which
are very powerful in conventional AES systems, but
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applying them in this task will cause two differen-
t problems as the scoring objects are the ASR out-
put results. The first problem is that the inevitable
recognition errors of the ASR will affect the perfor-
mance of the feature extractions and scoring system.
The second problem is caused by the special charac-
teristic of the ASR result. As all these methods are
designed under the normal AES situation that they
are not suitable for the characteristic.

The impact of the first problem can be reduced
by either perfecting the results of the ASR system or
building the AES system which is not sensitive to the
ASR errors. Improving the performance of the ASR
is not what we concern about, so building an error
insensitive AES system is what we care about in this
paper. This makes many conventional features no
longer useful in the AES system, such as spelling
errors, punctuation errors and even grammar errors.

The second problem is caused by applying the
bag-of-words (BOW) techniques to score the ASR
transcription. The BOW are very useful in measur-
ing the content features and are usually robust even
if there are some errors in the scoring transcription.
However, the robustness would not exist anymore
because of the characteristic of the ASR result. It is
known that better performance of ASR (reduce the
word error rate in ASR) usually requires a strong
constrain Language Model (LM). It means that more
meaningless parts of the oral speeches would be rec-
ognized as the words quite related to the topic con-
tent. These words will usually be the key words in
the BOW methods, which will lead to a great distur-
brance for the methods. Therefore, the conventional
BOW methods are no longer appropriate because of
the characteristic of the ASR result.

To tackle the two problems described above, we
apply the FST (Mohri, 2004). As the evaluating ob-
jects are from an oral English picture composition
examination, it has two important features that make
the FST algorithm quite suitable.

• Picture composition examinations require stu-
dents to speak according to the sequence of the
pictures, so there is strong sequentiality in the
speech.

• The sentences for describing the same picture
are very identical in expression, so there is a
hierarchy between the word sequences in the

sentences (the expression) and the sense for the
same picture.

FST is designed to describe a structure mapping
two different types of information sequences. It is
very useful in expressing the sequences and the hi-
erarchy in picture composition. Therefore, we build
a FST-based model to extract features related to the
transcription assessment in this paper. As the FST-
based model is similar to the BOW metrics, it is also
an error insensitive model. In this way, the impact of
the first problem could be reduced. The FST model
is very powerful in delivering the sequence informa-
tion that a meaningless sequence of words related to
the topic content will get low score under the mod-
el. Therefore, it works well concerning the second
problem. In a word, the FST model can not only be
insensitive to the recognition error in the ASR sys-
tem, but also remedy the weakness of BOW methods
in ASR result scoring.

In the remainder of the paper, the related work of
conventional AES methods is addressed in section 2.
The details of the speech corpus and the examination
grading criterion are introduced in section 3. The
FST model and its improved method are proposed
in section 4. The experiments and the results are
presented in section 5. The final section presents the
conclusion and future work.

2 Related Work

Conventional AES systems usually exploit textual
features to assess the quality of writing mainly in
three different facets: the content facet, the arrange-
ment facet and the language usage facet. In the con-
tent facet, many existing BOW techniques have been
applied, such as the content vector analysis (Attal-
i and Burstein, 2006; Attali, 2011) and the LSA to
reduce the dimension of content vector (Landauer et
al., 2003; Ishioka and Kameda, 2004; Kakkonen et
al., 2005; Peng et al., 2010). In arrangement facet,
Burstein et al. (2010) modeled the coherence in s-
tudent essays, while Persing et al. (2010) modeled
the organization. In language usage facet, grammar,
spelling and punctuation are common features in as-
sessment of the writing competence (Landauer et al.,
2003; Attali and Burstein, 2006), and so does the di-
versity of words and clauses (Lonsdale and Strong-
Krause, 2003; Ishioka and Kameda, 2004). Besides
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Grading levels Content Integrity Acoustic
(18-20)

passed
Describe the information in the four pictures with proper elaboration Perfect

(15-17) Describe all the information in all of the four pictures Good
(12-14) Describe most of the information in all of the four pictures Allow errors
(9-11)

failed

Describe most of the information in the pictures, but lose about 1 or 2 pictures
(6-8) Describe some of the information in the pictures, but lose about 2 or 3 pictures
(3-5) Describe little information in the four pictures
(0-2) Describe some words related to the four pictures

Table 1: Criterion of Grading

the textual features, many methods are also proposed
to evaluate the quality. The cosine similarity is one
of the most common used similarity measures (Lan-
dauer et al., 2003; Ishioka and Kameda, 2004; Attali
and Burstein, 2006; Attali, 2011). Also, the regres-
sion or the classification method is a good choice for
scoring (Rudner and Liang, 2002; Peng et al., 2010).
The rank preference techniques show excellent per-
formance in grading essays (Yannakoudakis et al.,
2011). Chen et al. (2010) proposed an unsupervised
approach to AES.

As our work concerns more about the content in-
tegrity, we applied the LSA-SVR approach (Peng et
al., 2010) as the contrast experiment, which is very
effective and robust. In the LSA-SVR method, each
essay transcription is represented by a latent seman-
tic space vector, which is regarded as the features in
the SVR model. The LSA (Deerwester et al., 1990)
considers the relations between the dimensions in
conventional vector space model (VSM) (Salton et
al., 1975), and it can order the importance of each di-
mension in the Latent Semantic Space (LSS). There-
fore, it is useful in reducing the dimensions of the
vector by truncate the high dimensions. The sup-
port vector machine can be performed for the func-
tion estimation (Smola and Schölkopf, 2004). The
LSA-SVR method takes the LSS vector as the fea-
ture vector, and applies the SVR for the training da-
ta to obtain the SVR model. Each test transcription
represented by the LSS vector can be scored by the
model.

3 Data

As characteristics of the data determine the effec-
tiveness of our methods, the details of it will be in-
troduced first. Our experimental data is acquired in
an oral English examination for ESL students. Three

score > 0 > 12 > 15 > 18

WER(%) 58.86 50.58 45.56 36.36
MR(%) 72.88 74.03 75.70 78.45

Table 2: WER and MR of ASR result

classes of students participated in the exam and 417
valid speeches are obtained in the examination. As
the paper mainly focuses on scoring the text tran-
scriptions, we have two ways to obtain them. One
is manually typing the text transcriptions which we
regarded as the Correct Recognition Result (CRR)
transcription, and another is the ASR result which
we named ASR transcription. We use the HTK (Y-
oung et al., 2006), which stands for the state of art
in speech recognition, to build the ASR system.

To better reveal the differences of the methods’
performance, all the experiments will be done in
both transcriptions. A better understanding of the
difference in the CRR transcription and the ASR
transcription from the low score to the high score
is shown in Table 2, where WER is the word error
rate and MR is the match rate which is the words’
correct rate.

3.1 Criterion of Grading

According to the Grading Criterion of the exami-
nation, the score of the examination ranges from 0
to 20, and the grading score is divided into 7 levels
with 3 points’ interval for each level. The criterion
mainly concerns about two facets of the speech: the
acoustic level and the content integrity. The details
of the criterion are shown in Table 1. The criterion
indicates that the integrity is the most important part
in rating the speech. The acoustic level only work-
s well in excellent speeches (Huang et al., 2010).
Therefore, this paper mainly focuses on the integrity
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Correlation R1 R2 R3 ES OC
R1 - 0.8966 0.8557 0.9620 0.9116
R2 - - 0.8461 0.9569 0.9048
R3 - - - 0.9441 0.8739

Average 0.8661 0.9543 0.8968

Table 3: Correlations of Human Scores

Figure 1: Distribution of Final Expert Scores

of content. The acoustic level as well as other levels
such as grammar errors is ignored. Because the cri-
terion is almost based on the content, our methods
obtain good performance although we ignore some
features.

3.2 Human Score Correlation and Distribution
Each speech in our experiments was scored by three
raters. Therefore, we have three scores for each
speech. The final expert score is the average of these
three scores. The correlations between human s-
cores are shown in Table 3.

R1, R2, and R3 stand for the three raters, and ES
is the final expert score. The Open Correlation (OC)
is the correlation between human rater scores and
the final scores, which are not related to the human
scores themselves (average of the other two scores).

As most students are supposed to pass the ex-
amination, the expert scores are mostly distributed
above 12 points, as shown in Figure 1. In the range
of the pass score, the distribution is close to normal
distribution, while in the range of failed score except
0, the distribution is close to uniform distribution.

4 Approach

The approach used in this paper is to build a standard
FST for the current examination topic. However,
the annotation of the corpus is necessary before the

Figure 2: Distribution of Sentence Labels

building. After the annotation and the building, the
features are extracted based on the FST. The auto-
mated machine score is computed from the features
at last. Therefore, subsection 4.1 will show the cor-
pus annotation, subsection 4.2 will introduce how to
build the standard FST of the current topic, and sub-
sections 4.3 and 4.4 will discuss how to extract the
features, at last, an improved method is proposed in
subsection 4.5.

4.1 Corpus Annotation
The definitions of the sequences and hierarchy in
the corpus will be given before we apply the FST
algorithm. According to the characteristics of the
picture composition examination, each composition
can be held as an orderly combination of the senses
of pictures. The senses of pictures are called sense-
groups here. We define a sense-group as one sen-
tence either describing the same one or two pictures
or elaborating on the same pictures. The descrip-
tion sentence is labeled with a tag ‘m’(main sense of
the picture) and the elaboration one is labeled with
‘s’(subordinate sense of the picture). The first giv-
en sentence in the examination is labeled with 0m
and the other describing sentences for the 1 to 4 pic-
tures are labeled with 1m to 4m, while the elabo-
ration ones for the 4 pictures are labeled with 1s to
4s. Therefore, each sentence in the composition is
labeled as a sense-group. For the entire 417 CRR
transcriptions, we manually labeled 274 transcrip-
tions whose scores are higher than 15 points. We
gained 8 types of labels from the manually labeled
results. They are 0m, 1m, 2m, 3m, 34m (one sen-
tence describes both of the third and the fourth pic-
tures), 4m, 2s and 4s. Other labels were discarded
for the number of their appearance is very low. The
distribution of sentences with each label is shown in
Figure 2. There are 1679 sentences in the 274 CRR
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Figure 3: FST Building

transcriptions and 1667 are labeled in the eight sym-
bols.

4.2 FST Building

In this paper, we build three types of FST to extract
scoring features with the help of openFST tool (Al-
lauzen et al., 2007). The first is the sense-group F-
ST, the second is the words to each sense-group FST
and the last is the words to all the sense-groups FST.
They are shown in Figure 3.

The definition of the sense-group has been giv-
en in subsection 4.1. The sense-group FST can de-
scribe all the possible proper sense-group sequences
of the current picture composition topic. It is also
an acceptor trained from the labeled corpus. We use
manually labeled corpus, which are the sequences
of sense-groups of the CRR transcriptions with ex-
pert scores higher than 15 points, to build the sense-
group FST. In the process, each CRR transcription
sense-group sequence is a simple sense-group FST.
Later, we unite these sense-group FSTs to get the
final FST which considers every situation of sense-
group sequences in the train corpus. Also, we use
the operation of ”determinize” and ”minimize” in
openFST to optimize the final sense-group FST that
its states have no same input label and is a smallest
FST.

The second type is the words to sense-group F-
ST. It determines what word sequence input will re-
sult in what sense-group output. With the help of
these FSTs, we can find out how students use lan-
guage to describe a certain sense-group, or in other
words, a certain sense-group is usually constructed
with what kind of word sequence. All the differ-
ent sentences with their sense-group labels are tak-

en from the train corpus. We regard each sentence
as a simple words to sense-group FST, and then u-
nite these FSTs which have the same sense-group la-
bel. The final union FSTs can transform proper word
sequence into the right sense-group. Like building
the sense-group FST, the optimization operations of
”determinize” and ”minimize” are also done for the
FSTs.

The last type of FST is a words to sense-groups
FST. We can also treat it as a words FSA, because
any word sequence accepted by the words to sense-
groups FST is considered to be an integrated com-
position. Meanwhile, it can transform the word se-
quence into the sense-group label sequence which
is very useful in extracting the scoring features (de-
tails will be presented in subsection 4.4). The F-
ST is built from the other two types of FST that we
made before. We compute the composition of all the
words to each sense-group FSTs (the second type)
and the sense-group FST (the first type) with the op-
erations of ”compose” in openFST. Then, the com-
position result is the words to sense-groups FST, the
third type of FST in this paper.

4.3 Search for the Best Path in FST

Now we have successfully built the words to sense-
groups FST, the third type described above. Just like
the similarity methods mentioned in section 2 can
score essays from a have-been-scored similar essay,
we need to find the best path, which is closest to
the to-be-scored transcription, in the FST. Here, we
apply the edit distance to measure how best the path
is. This means the best path is the word sequence
path in the FST which has the smallest edit distance
compared with the to-be-scored transcription’s word
sequences .

Here, we modify the Wagner-Fischer algorithm
(Wagner and Fischer, 1974), which is a Dynamic
Programming (DP) algorithm, to quest the best path
in the FST. A simple example is illustrated in Figure
4. The best path can be described as

path = arg min
path∈
allpath

EDcost(path, transcription) (1)

EDcost = ins + del + sub (2)

EDcost is the edit distance from the transcription to
the paths which start at state 0 and end at the end
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Figure 4: Search the Best Path in the FST by DP

state. The DP process can be described by equation
(3):

min EDcost(i) = arg min
j∈

X1,...,Xp−1

(min EDcost(j) + cost(j, i))

(3)

The minEDcost(j) is the accumulated minimum ed-
it distance from state 0 to state j, and the cost(i,j) is
the cost of insertion, deletion or substitution from s-
tate j to state i. The equation means the minED of
state i can be computed by the accumulated minED-
cost of state j in the phase p. The state j belongs to
the have-been-calculated state set {X0,. . . ,Xp−1} in
phase p. In phrase p, we compute the best path and
its edit distance from the transcription for all the to-
be-calculated states which is the Xp shown in Fig-
ure 4. After computing all the phrases, the best path
and its edit distances of the end states are obtained.
Then the final best path is the one with the smallest
edit distance.

4.4 Feature Extraction
After building the FST and finding the best path
for the to-be-scored transcription, we can extrac-
t some effective features from the path information
and the transcription. Inspired by the similarity s-
coring measures, our proposed features represent the
similarity between the best path’s word sequence
and the to-be-scored transcription.

The features used for the scoring model are as fol-
lows:
• The Edit Distance (ED):

The edit distance is the linear combination of
the weights of insertion, deletion and substi-
tution. The relation is shown in equation (2),
where ins, del and sub are the appearance times

of insertions, deletions and substitutions, re-
spectively. Normally, we set the cost of each
to be 1.
• The Normalized Edit Distance(NED):

The NED is the ED normalized with the tran-
scription’s length.

NEDcost = EDcost/length (4)

• The Match Number(MN):
The match number is the number of words
matched between the best path and the tran-
scription.
• The Match Rate(MR):

The match rate is the match number normalized
with the transcription’s length.

MR = MN/length (5)

• The Continuous Match Value(CMV):
Continuous match should be better than the
fragmentary match, so a higher value is given
for the continuous situation.

CMV =
∑

OM + 2
∑

SM + 3
∑

LM (6)

where OM (One Match) is the fragmentary
match number, SM (Short Match) is the con-
tinuous match number which is no more than 4,
and LM (Long Match) is the continuous match
number which is more than 4.
• The Length(L):

The length of transcription. Length is always
a very effective feature in essay scoring (Attali
and Burstein, 2006).
• The Sense-group Scoring Feature(SSF):

For each best path, we can transform the tran-
scription’s word sequence into the sense-group
label sequence with the FST. Then, the words
match rate of each sense-group can be comput-
ed. The match rate of each sense-group can be
regarded as one feature so that all the sense-
group match rate in the transcription will be
combined to a feature vector (called the Sense-
group Match Rate vector (SMRv)), which is
an 8-dimensional vector in the present experi-
ments. After that, we applied the SVR algorith-
m to train a sense-group scoring model with the
vectors and scores, and the transcription gets its
SSF from the model.

55



4.5 Extend the FST model with the similarity
of synonym

Because the FST is trained from the limited corpus,
it does not contain all the possible situations prop-
er for the current composition topic. To complete
the current FST model, we add the similarity of syn-
onym to extend the FST model so that it can handle
more situations.

The extension of the FST model is mainly reflect-
ed in calculation of the edit distance of the best path.
The previous edit distance, in equation (2), refers
to the Levenshtein distance in which the insertion-
s, deletions and substitutions have equal cost, but in
the edit distance in this section, the cost of substi-
tutions is less than that of insertions and deletion-
s. Here, we assume that the cost of substitutions is
based on the similarity of the two words. Then with
the help of different cost of substitutions, each word
edge is extended to some of its synonym word edges
under the cost of similarity. The new edit distance is
calculated by equation (7) as follows:

EDcost = ins + del + sub× (1− sim) (7)

where, sim is the similarity of two words.
We used the Wordnet::Similarity software pack-

age (Pedersen et al., 2004) to calculate the similarity
between every two words at first. However, the per-
formance’s reduction of the AES system indicates
that the similarity is not good enough to extend the
FST model. Therefore, we seek for human help
to accurate the similarity calculation. We manual-
ly checked the similarity, and deleted some improp-
er similarity. Thus the final similarity applied in our
experiment is the Wordnet::Similarity software com-
puting result after the manual check.

5 Experiments

In this section, the proposed features and our FST
methods will be evaluated on the corpus we men-
tioned above. The contrasting approach, the LSA-
SVR approach, will also be presented.

5.1 Data Setup
The experiment corpus consists of 417 speeches.
With the help of manual typing and the ASR system,
417 CRR transcriptions and 417 ASR transcriptions
are obtained from the speeches after preprocessing

FST SVR SVR CRR ASR
build train test transcription transcription
Set2 Set3

Set1
0.7999 0.7505

Set3 Set2 0.8185 0.7401
Set1 Set3

Set2
0.8557 0.7372

Set3 Set1 0.8111 0.7257
Set1 Set2

Set3
0.9085 0.8086

Set2 Set1 0.8860 0.8086

Table 4: Correlation Between the SSF and the Expert S-
cores

which includes the capitalization processing and the
stemming processing. We divide them into 3 sets
by the same distribution of their scores. Therefore,
there are totally 6 sets, and each of them has 139 of
the transcriptions. The FST building only uses the
CRR transcriptions whose expert scores are higher
than 15 points. While treating one set (one CRR set)
as the FST building train set, we get the ED, NED,
MN, MR, CMV features and the SMR vectors for
the other two sets(could be either CRR sets or ASR
sets). Then, the SSF is obtained by another set as
the SVR train set and the last set as the test set. The
parameters of the SVR are trained through the grid
search from the whole data sets (ASR or CRR set-
s) by cross-validation. Therefore, except the length
feature, the other six features of each set can be ex-
tracted from the FST model.

Also, we presented the result of using LSA-SVR
approach as a contrast experiment to show the im-
provement of our FST model in scoring oral English
picture composition.

To quantitatively assess the effectiveness of the
methods, the Pearson correlation between the expert
scores and the automated results is adopted as the
performance measure.

5.2 Correlation of Features

The correlations between the seven features and the
final expert scores are shown in Tables 4 and 5 on
the three sets.

The MN and CMV are very good features, while
the NED is not. This is mainly due to the nature of
the examination. When scoring the speech, human
raters concern more about how much valid informa-
tion it contains and irrelevant contents are not taken
for penalty. Therefore, the match features are more
reasonable than the edit distance features. This im-
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Script Train Test L ED NED MN MR CMV

CRR

Set2 Set1 0.7404 0.2410 -0.6690 0.8136 0.1544 0.7417
Set3 0.3900 -0.4379 0.8316 0.1386 0.7792
Set1 Set2 0.7819 0.4029 -0.7667 0.8205 0.4904 0.7333
Set3 0.4299 -0.5672 0.8370 0.5090 0.7872
Set1 Set3 0.8645 0.4983 -0.7634 0.8867 0.2718 0.8162
Set2 0.3639 -0.6616 0.8857 0.3305 0.8035

Average 0.7956 0.3877 -0.6443 0.8459 0.3158 0.7769

ASR

Set2 Set1 0.1341 -0.2281 -0.6375 0.7306 0.6497 0.7012
Set3 -0.1633 -0.5110 0.7240 0.6071 0.6856
Set1 Set2 0.2624 -0.0075 -0.4640 0.6717 0.5929 0.6255
Set3 0.0294 -0.4389 0.6860 0.6259 0.6255
Set1 Set3 0.1643 -0.1871 -0.5391 0.7419 0.6213 0.7001
Set2 -0.1742 -0.4721 0.7714 0.6199 0.7329

Average 0.1869 -0.1218 -0.5104 0.7209 0.6195 0.6785

Table 5: Correlations Between the Six Features and the Expert Scores

Script Method Set1 Set2 Set3 Average

CRR
Length 0.7404 0.7819 0.8645 0.7956

LSA-SVR 0.7476 0.8024 0.8663 0.8054
FST 0.8702 0.8852 0.9386 0.8980

ASR
Length 0.1341 0.2624 0.1643 0.1869

LSA-SVR 0.5975 0.5643 0.5907 0.5842
FST 0.7992 0.7678 0.8452 0.8041

Table 6: Performance of the FST Method, the LSA-SVR
Approach and the Length Feature

pact is similar to the result displayed by the ASR
output performance in Table 2 in section 3, where
the WER has significant difference from the low s-
core speeches to the high score ones while the MR
does not, and the MR is much better than the WER.

As the length feature is a strong correlation fea-
ture in CRR transcription, the MR feature, which is
normalized by the length, is strongly affected. How-
ever, with the impact declining in the ASR transcrip-
tion, the MR feature performs very well. This also
explains the reason of different correlations of ED
and NED in CRR transcription.

The SSF is entirely based on the FST model, so
the impact of the length feature is very low. The
decline of it in different transcriptions is mainly be-
cause of the ASR error.

5.3 Performance of the FST Model

For each test transcription, it has 12 dimensions of F-
ST features. The ED, NED, MN, MR and CMV fea-
tures have two dimensions of each as trained from

two different FST building sets. The SSF needs t-
wo train sets as there are two train models: one is
for the FST building model and another is for the
SVR model. As different sets for different models,
it also has two dimension features. We use the linear
regression to combine these 12 features to the final
automated score. The linear regression parameter-
s were trained from all the data by cross-validation.
After the weight of each feature and the linear bias
are gained, we calculate the automated score of each
transcription by the FST features. The performance
of our FST model is shown in Table 6. Compared
with it, the performance of the LSA-SVR algorithm,
the baseline in our paper, is also shown. As a usual
best feature for AES, the length shows its outstand-
ing performance in CRR transcription. However, it
fails in the ASR transcription.

As we have predicted above, the BOW algorith-
m (the LSA-SVR) performance declines drastically
in the ASR transcription, which also happens to the
length feature. By contrast, the decline of the per-
formance of our FST method is acceptable consid-
ering the impact of recognition errors in the ASR
system. This means the FST model is an error in-
sensitive model that is very appropriate for the task.

5.4 Improvement of FST by Adding the
Similarity

The improved FST extends the original FST model
by considering the word similarity in substitution-
s. In the extension, the similarities of the synonyms
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Script Method Set1 Set2 Set3 Average

CRR
FST 0.8702 0.8852 0.9386 0.8980
IFST 0.8788 0.8983 0.9418 0.9063

ASR
FST 0.7992 0.7678 0.8452 0.8041
IFST 0.8351 0.7617 0.8168 0.8045

Table 7: Performance of the FST Method and the Im-
proved FST Method

describe the invisible (extended) part of the FST, so
it should be very accurate for the substitutions cost.
Therefore, we added manual intervention to the sim-
ilarity result calculated by the wordnet::similarity
software packet.

After we added the similarity of synonym to ex-
tend the FST model, the performance of the new
model increased stably in the CRR transcription.
However, the increase is not significant in the AS-
R transcription (shown in Table 7). We believe it is
because the superiority of the improved model is dis-
guised by the ASR error. In other words, the impact
of ASR error under the FST model is more signifi-
cant than the improvement of the FST model. The
performance correlation of our FST model in the
CRR transcription is about 0.9 which is very close to
the human raters’ (shown in Table 3). Even though
the performance correlation in the ASR transcription
declines compared with that in the CRR transcrip-
tion, the FST methods still perform very well under
the current recognition errors of the ARS system.

6 Conclusion and Future work

The aforementioned experiments indicate three
points. First, the BOW algorithm has its own weak-
ness. In regular text essay scoring, the BOW algo-
rithm can have excellent performance. However, in
certain situations, such as towards ASR transcription
of oral English speech, its weakness of sequence ne-
glect will be magnified, leading to drastic decline of
performance. Second, the introduced FST model is
suitable in our task. It is an error insensitive mod-
el under the task of automated oral English picture
composition scoring. Also, it considers the sequence
and the hierarchy information. As we expected, the
performance of the FST model is more outstanding
than that of the BOW metrics in CRR transcription,
and the decline of performance is acceptable in AS-
R transcription scoring. Third, adding the similarity

of synonyms to extend the FST model improves the
system performance. The extension can complete
the FST model, and achieve better performance in
the CRR transcription.

The future work may focus on three facets. First,
as the extension of the FST model is a preliminary
study, there is much work that can be done, such
as calculating the similarity more accurately without
manual intervention, or finding a balance between
the original FST model and the extended one to im-
prove the performance in ASR transcription. Sec-
ond, as the task is speech evaluation, considering the
acoustic features may give more information to the
automated scoring system. Therefore, the features
at the acoustic level could be introduced to com-
plete the scoring model. Third, the decline of the
performance in ASR transcription is derived from
the recognition error of ASR system. Therefore, im-
proving the performance of the ASR system or mak-
ing full use of the N-best lists may give more accu-
rate transcription for the AES system.
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Abstract

In this paper, we develop an RST-style text-
level discourse parser, based on the HILDA
discourse parser (Hernault et al., 2010b). We
significantly improve its tree-building step by
incorporating our own rich linguistic features.
We also analyze the difficulty of extending
traditional sentence-level discourse parsing to
text-level parsing by comparing discourse-
parsing performance under different discourse
conditions.

1 Introduction

In a well-written text, no unit of the text is com-
pletely isolated; interpretation requires understand-
ing the unit’s relation with the context. Research in
discourse parsing aims to unmask such relations in
text, which is helpful for many downstream applica-
tions such as summarization, information retrieval,
and question answering.

However, most existing discourse parsers oper-
ate on individual sentences alone, whereas discourse
parsing is more powerful for text-level analysis.
Therefore, in this work, we aim to develop a text-
level discourse parser. We follow the framework of
Rhetorical Structure Theory (Mann and Thompson,
1988) and we take the HILDA discourse parser (Her-
nault et al., 2010b) as the basis of our work, because
it is the first fully implemented text-level discourse
parser with state-of-the-art performance. We signif-
icantly improve the performance of HILDA’s tree-
building step (introduced in Section 5.1 below) by
incorporating rich linguistic features (Section 5.3).
In our experiments (Section 6), we also analyze the

difficulty with extending traditional sentence-level
discourse parsing to text-level parsing, by compar-
ing discourse parsing performance under different
discourse conditions.

2 Discourse-annotated corpora

2.1 The RST Discourse Treebank

Rhetorical Structure Theory (Mann and Thompson,
1988) is one of the most widely accepted frame-
works for discourse analysis. In the framework of
RST, a coherent text can be represented as a dis-
course tree whose leaves are non-overlapping text
spans called elementary discourse units (EDUs);
these are the minimal text units of discourse trees.
Adjacent nodes can be related through particular dis-
course relations to form a discourse subtree, which
can then be related to other adjacent nodes in the tree
structure. According to RST, there are two types of
discourse relations, hypotactic (“mononuclear”) and
paratactic (“multi-nuclear”). In mononuclear rela-
tions, one of the text spans, the nucleus, is more
salient than the other, the satellite, while in multi-
nuclear relations, all text spans are equally important
for interpretation.

The example text fragment shown in Figure 1
consists of four EDUs (e1-e4), segmented by square
brackets. Its discourse tree representation is shown
below in the figure, following the notational conven-
tion of RST. The two EDUs e1 and e2 are related by a
mononuclear relation ATTRIBUTION, where e1 is the
more salient span; the span (e1-e2) and the EDU e3
are related by a multi-nuclear relation SAME-UNIT,
where they are equally salient.
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[Catching up with commercial competitors in retail banking

and financial services,]e1 [they argue,]e2 [will be difficult,]e3

[particularly if market conditions turn sour.]e4

(e1) (e2)

attribution

(e1-e3)

same-unit

(e3)

(e4)

condition

(e1-e4)

(e1-e2)

Figure 1: An example text fragment (wsj 0616) com-
posed of four EDUs, and its RST discourse tree repre-
sentation.

The RST Discourse Treebank (RST-DT) (Carlson
et al., 2001), is a corpus annotated in the framework
of RST. It consists of 385 documents (347 for train-
ing and 38 for testing) from the Wall Street Jour-
nal. In RST-DT, the original 24 discourse relations
defined by Mann and Thompson (1988) are further
divided into a set of 18 relation classes with 78 finer-
grained rhetorical relations in total, which provides
a high level of expressivity.

2.2 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) is another annotated discourse corpus. Its
text is a superset of that of RST-DT (2159 Wall
Street Journal articles). Unlike RST-DT, PDTB does
not follow the framework of RST; rather, it follows
a lexically grounded, predicate-argument approach
with a different set of predefined discourse relations,
as proposed by Webber (2004). In this framework, a
discourse connective (e.g., because) is considered to
be a predicate that takes two text spans as its argu-
ments. The argument that the discourse connective
structurally attaches to is called Arg2, and the other
argument is called Arg1 — unlike in RST, the two
arguments are not distinguished by their saliency
for interpretation. Another important difference be-
tween PDTB and RST-DT is that in PDTB, there
does not necessarily exist a tree structure covering
the full text, i.e., PDTB-styled discourse relations
exist only in a very local contextual window. In
PDTB, relation types are organized hierarchically:
there are 4 classes, which can be further divided into
16 types and 23 subtypes.

3 Related work

Discourse parsing was first brought to prominence
by Marcu (1997). Since then, many different algo-
rithms and systems (Soricut and Marcu, 2003; Reit-
ter, 2003; LeThanh et al., 2004; Baldridge and Las-
carides, 2005; Subba and Di Eugenio, 2009; Sagae,
2009; Hernault et al., 2010b) have been proposed,
which extracted different textual information and
adopted various approaches for discourse tree build-
ing. Here we briefly review two fully implemented
text-level discourse parsers with the state-of-the-art
performance.

The HILDA discourse parser of Hernault and his
colleagues (duVerle and Prendinger, 2009; Hernault
et al., 2010b) is the first fully-implemented feature-
based discourse parser that works at the full text
level. Hernault et al. extracted a variety of lexi-
cal and syntactic features from the input text, and
trained their system on RST-DT. While some of their
features were inspired by the previous work of oth-
ers, e.g., lexico-syntactic features borrowed from
Soricut and Marcu (2003), Hernault et al. also pro-
posed the novel idea of discourse tree building by
using two classifiers in cascade — a binary struc-
ture classifier to determine whether two adjacent text
units should be merged to form a new subtree, and
a multi-class classifier to determine which discourse
relation label should be assigned to the new subtree
— instead of the more-usual single multi-class clas-
sifier with the additional label NO-REL. Hernault
et al. obtained 93.8% F-score for EDU segmenta-
tion, 85.0% accuracy for structure classification, and
66.8% accuracy for 18-class relation classification.

Lin et al. (2009) attempted to recognize implicit
discourse relations (discourse relations which are
not signaled by explicit connectives) in PDTB by us-
ing four classes of features — contextual features,
constituent parse features, dependency parse fea-
tures, and lexical features — and explored their indi-
vidual influence on performance. They showed that
the production rules extracted from constituent parse
trees are the most effective features, while contex-
tual features are the weakest. Subsequently, they
fully implemented an end-to-end PDTB-style dis-
course parser (Lin et al., 2010).

Recently, Hernault et al. (2010a) argued that more
effort should be focused on improving performance
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on certain infrequent relations presented in the dis-
course corpora, since due to the imbalanced distribu-
tion of different discourse relations in both RST-DT
and PDTB, the overall accuracy score can be over-
whelmed by good performance on the small sub-
set of frequent relations, even though the algorithms
perform poorly on all other relations. However, be-
cause of infrequent relations for which we do not
have sufficient instances for training, many unseen
features occur in the test data, resulting in poor test
performance. Therefore, Hernault et al. proposed
a semi-supervised method that exploits abundant,
freely-available unlabeled data as a basis for feature
vector extension to alleviate such issues.

4 Text-level discourse parsing

Not until recently has discourse parsing for full texts
been a research focus — previously, discourse pars-
ing was only performed on the sentence level1. In
this section, we explain why we believe text-level
discourse parsing is crucial.

Unlike syntactic parsing, where we are almost
never interested in parsing above sentence level,
sentence-level parsing is not sufficient for discourse
parsing. While a sequence of local (sentence-level)
grammaticality can be considered to be global gram-
maticality, a sequence of local discourse coherence
does not necessarily form a globally coherent text.
For example, the text shown in Figure 2 contains
two sentences, each of which is coherent and sen-
sible itself. However, there is no reasonable content
transition between these two sentences, so the com-
bination of the two sentences does not make much
sense. If we attempt to represent the text as an RST
discourse tree like the one shown in Figure 1, we
find that no discourse relation can be assigned to re-
late the spans (e1-e2) and (e3-e4) and the text cannot
be represented by a valid discourse tree structure.

In order to rule out such unreasonable transitions
between sentences, we have to expand the text units
upon which discourse parsing is performed: from
sentences to paragraphs, and finally paragraphs to

1Strictly speaking, for PDTB-style discourse parsing (e.g.,
Lin et al. (2009; 2010)), there is no absolute distinction between
sentence-level and text-level parsing, since in PDTB, discourse
relations are annotated at a level no higher than that of adjacent
sentences. Here we are concerned with RST-style discourse
parsing.

[No wonder he got an A for his English class,]e1 [he was

studying so hard.]e2 [He avoids eating chocolates,]e3 [since he

is really worried about gaining weight.]e4

(e1) (e2)

cause

(e1-e2)

(e3) (e4)

cause

(e3-e4)

?

Figure 2: An example of incoherent text fragment com-
posed of two sentences. The two EDUs associated with
each sentence are coherent themselves, whereas the com-
bination of the two sentences is not coherent at the sen-
tence boundary. No discourse relation can be associated
with the spans (e1-e2) and (e3-e4).

the full text.
Text-level discourse parsing imposes more con-

straints on the global coherence than sentence-level
discourse parsing. However, if, technically speak-
ing, text-level discourse parsing were no more diffi-
cult than sentence-level parsing, any sentence-level
discourse parser could be easily upgraded to a text-
level discourse parser just by applying it to full
texts. In our experiments (Section 6), we show
that when applied above the sentence level, the per-
formance of discourse parsing is consistently infe-
rior to that within individual sentences, and we will
briefly discuss what the key difficulties with extend-
ing sentence-level to text-level discourse parsing are.

5 Method

We use the HILDA discourse parser of Hernault et
al. (2010b) as the basis of our work. We refine Her-
nault et al.’s original feature set by incorporating our
own features as well as some adapted from Lin et al.
(2009). We choose HILDA because it is a fully im-
plemented text-level discourse parser with the best
reported performance up to now. On the other hand,
we also follow the work of Lin et al. (2009), because
their features can be good supplements to those used
by HILDA, even though Lin et al.’s work was based
on PDTB. More importantly, Lin et al.’s strategy of
performing feature selection prior to classification
proves to be effective in reducing the total feature
dimensions, which is favorable since we wish to in-
corporate rich linguistic features into our discourse
parser.
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5.1 Bottom-up approach and two-stage
labeling step

Following the methodology of HILDA, an input text
is first segmented into EDUs. Then, from the EDUs,
a bottom-up approach is applied to build a discourse
tree for the full text. Initially, a binary Structure clas-
sifier evaluates whether a discourse relation is likely
to hold between consecutive EDUs. The two EDUs
which are most probably connected by a discourse
relation are merged into a discourse subtree of two
EDUs. A multi-class Relation classifier evaluates
which discourse relation label should be assigned to
this new subtree. Next, the Structure classifier and
the Relation classifier are employed in cascade to re-
evaluate which relations are the most likely to hold
between adjacent spans (discourse subtrees of any
size, including atomic EDUs). This procedure is re-
peated until all spans are merged, and a discourse
tree covering the full text is therefore produced.

Since EDU boundaries are highly correlated with
the syntactic structures embedded in the sentences,
EDU segmentation is a relatively trivial step — us-
ing machine-generated syntactic parse trees, HILDA
achieves an F-score of 93.8% for EDU segmenta-
tion. Therefore, our work is focused on the tree-
building step, i.e., the Structure and the Relation
classifiers. In our experiments, we improve the over-
all performance of these two classifiers by incorpo-
rating rich linguistic features, together with appro-
priate feature selection. We also explore how these
two classifiers perform differently under different
discourse conditions.

5.2 Instance extraction

Because HILDA adopts a bottom-up approach for
discourse tree building, errors produced on lower
levels will certainly propagate to upper levels, usu-
ally causing the final discourse tree to be very dis-
similar to the gold standard. While appropriate post-
processing may be employed to fix these errors and
help global discourse tree recovery, we feel that it
might be more effective to directly improve the raw
instance performance of the Structure and Relation
classifiers. Therefore, in our experiments, all classi-
fications are conducted and evaluated on the basis of
individual instances.

Each instance is of the form (SL,SR), which is a

pair of adjacent text spans SL (left span) and SR (right
span), extracted from the discourse tree representa-
tion in RST-DT. From each discourse tree, we ex-
tract positive instances as those pairs of text spans
that are siblings of the same parent node, and neg-
ative examples as those pairs of adjacent text spans
that are not siblings in the tree structure. In all in-
stances, both SL and SR must correspond to a con-
stituent in the discourse tree, which can be either an
atomic EDU or a concatenation of multiple consec-
utive EDUs.

5.3 Feature extraction
Given a pair of text spans (SL,SR), we extract the
following seven types of features.

HILDA’s features: We incorporate the origi-
nal features used in the HILDA discourse parser
with slight modification, which include the follow-
ing four types of features occurring in SL, SR, or
both: (1) N-gram prefixes and suffixes; (2) syntac-
tic tag prefixes and suffixes; (3) lexical heads in the
constituent parse tree; and (4) POS tag of the domi-
nating nodes.

Lin et al.’s features: Following Lin et al. (2009),
we extract the following three types of features: (1)
pairs of words, one from SL and one from SR, as
originally proposed by Marcu and Echihabi (2002);
(2) dependency parse features in SL, SR, or both; and
(3) syntactic production rules in SL, SR, or both.

Contextual features: For a globally coherent
text, there exist particular sequential patterns in the
local usage of different discourse relations. Given
(SL,SR), the pair of text spans of interest, contextual
features attempt to encode the discourse relations as-
signed to the preceding and the following text span
pairs. Lin et al. (2009) also incorporated contextual
features in their feature set. However, their work
was based on PDTB, which has a very different an-
notation framework from RST-DT (see Section 2):
in PDTB, annotated discourse relations can form a
chain-like structure such that contextual features can
be more readily extracted. However, in RST-DT, a
full text is represented as a discourse tree structure,
so the previous and the next discourse relations are
not well-defined.

We resolve this problem as follows. Suppose SL =
(ei-e j) and SR = (e j+1-ek), where i≤ j < k. To find
the previous discourse relation RELprev that immedi-
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ately precedes (SL,SR), we look for the largest span
Sprev = (eh-ei−1),h < i, such that it ends right before
SL and all its leaves belong to a single subtree which
neither SL nor SR is a part of. If SL and SR belong
to the same sentence, Sprev must also be a within-
sentence span, and it must be a cross-sentence span
if SL and SR are a cross-sentence span pair. RELprev

is then the discourse relation which covers Sprev. The
next discourse relation RELnext that immediately fol-
lows (SL,SR) is found in the analogous way.

However, when building a discourse tree using
a greedy bottom-up approach, as adopted by the
HILDA discourse parser, RELprev and RELnext are
not always available; therefore these contextual fea-
tures represent an idealized situation. In our ex-
periments we wish to explore whether incorporating
perfect contextual features can help better recognize
discourse relations, and if so, set an upper bound of
performance in more realistic situations.

Discourse production rules: Inspired by Lin et
al. (2009)’s syntactic production rules as features,
we develop another set of production rules, namely
discourse production rules, derived directly from the
tree structure representation in RST-DT.

For example, with respect to the RST discourse
tree shown in Figure 1, we extract the following
discourse production rules: ATTRIBUTION → NO-
REL NO-REL, SAME-UNIT → ATTRIBUTION NO-
REL, CONDITION → SAME-UNIT NO-REL, where
NO-REL denotes a leaf node in the discourse subtree.

The intuition behind using discourse production
rules is that the discourse tree structure is able to re-
flect the relatedness of different discourse relations
— discourse relations on the lower level of the tree
can determine the relation of their direct parent to
some degree. Hernault et al. (2010b) attempt to
capture such relatedness by traversing a discourse
subtree and encoding its traversal path as features,
but since they used a depth-first traversal order, the
information encoded in a node’s direct children is
too distant; whereas most useful information can be
gained from the relations covering these direct chil-
dren.

Semantic similarities: Semantic similarities are
useful for recognizing relations such as COMPARI-
SON, when there are no explicit syntactic structures
or lexical features signaling such relations.

We use two subsets of similarity features for verbs

and nouns separately. For each verb in either SL or
SR, we look up its most frequent verb class ID in
VerbNet2, and specify whether that verb class ID ap-
pears in SL, SR, or both. For nouns, we extract all
pairs of nouns from (SL,SR), and compute the aver-
age similarity among these pairs. In particular, we
use path similarity, lch similarity, wup similarity,
res similarity, jcn similarity, and lin similarity pro-
vided in the nltk.wordnet.similarity package (Bird et
al., 2009) for computing WordNet-based similarity,
and always choose the most frequent sense for each
noun.

Cue phrases: We compile a list of cue phrases,
the majority of which are connectives collected by
Knott and Dale (1994). For each cue phrase in this
list, we determine whether it appears in SL or SR. If
a cue phrase appears in a span, we also determine
whether its appearance is in the beginning, the end,
or the middle of that span.

5.4 Feature selection

If we consider all possible combinations of the fea-
tures listed in Section 5.3, the resulting data space
can be horribly high dimensional and extremely
sparse. Therefore, prior to training, we first conduct
feature selection to effectively reduce the dimension
of the data space.

We employ the same feature selection method as
Lin et al. (2009). Feature selection is done for each
feature type separately. Among all features belong-
ing to the feature type to be selected, we first ex-
tract all possible features that have been seen in the
training data, e.g., when applying feature selection
for word pairs, we find all word pairs that appear
in some text span pair that have a discourse relation
between them. Then for each extracted feature, we
compute its mutual information with all 18 discourse
relation classes defined in RST-DT, and use the high-
est mutual information to evaluate the effectiveness
of that feature. All extracted features are sorted to
form a ranked list by effectiveness. After that, we
use a threshold to select the top features from that
ranked list. The total number of selected features
used in our experiments is 21,410.

2http://verbs.colorado.edu/˜mpalmer/
projects/verbnet
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6 Experiments

As discussed in Section 5.1, our research focus in
this paper is the tree-building step of the HILDA
discourse parser, which consists of two classifica-
tions: Structure and Relation classification. The bi-
nary Structure classifier decides whether a discourse
relation is likely to hold between consecutive text
spans, and the multi-class Relation classifier decides
which discourse relation label holds between these
two text spans if the Structure classifier predicts the
existence of such a relation.

Although HILDA’s bottom-up approach is aimed
at building a discourse tree for the full text, it does
not explicitly employ different strategies for within-
sentence text spans and cross-sentence text spans.
However, we believe that discourse parsing is signif-
icantly more difficult for text spans at higher levels
of the discourse tree structure. Therefore, we con-
duct the following three sub-experiments to explore
whether the two classifiers behave differently under
different discourse conditions.

Within-sentence: Trained and tested on text span
pairs belonging to the same sentence.

Cross-sentence: Trained and tested on text span
pairs belonging to different sentences.

Hybrid: Trained and tested on all text span pairs.
In particular, we split the training set and the test-

ing set following the convention of RST-DT, and
conduct Structure and Relation classification by in-
corporating our rich linguistic features, as listed in
Section 5.3 above. To rule out all confounding fac-
tors, all classifiers are trained and tested on the basis
of individual text span pairs, by assuming the dis-
course subtree structure (if any) covering each indi-
vidual text span has been already correctly identified
(no error propagation).

6.1 Structure classification

The number of training and testing instances used in
this experiment for different discourse conditions is
listed in Table 1. Instances are extracted in the man-
ner described in Section 5.2. We observe that the
distribution of positive and negative instances is ex-
tremely skewed for cross-sentence instances, while
for all conditions, the distribution is similar in the
training and the testing set.

In this experiment, classifiers are trained using

Dataset Pos # Neg # Total #

Within
Training 11,087 10,188 21,275
Testing 1,340 1,181 2,521

Cross
Training 6,646 49,467 56,113
Testing 882 6,357 7,239

Hybrid
Training 17,733 59,655 77,388
Testing 2,222 7,539 9,761

Table 1: Number of training and testing instances used in
Structure classification.

the SVMperf classifier (Joachims, 2005) with a lin-
ear kernel.

Structure classification performance for all three
discourse conditions is shown in Table 2. The
columns Full and NC (No Context) denote the per-
formance of using all features listed in Section 5.3
and all features except for contextual features re-
spectively. As discussed in Section 5.3, contex-
tual features represent an ideal situation which is
not always available in real applications; therefore,
we wish to see how they affect the overall per-
formance by comparing the performance obtained
with them and without them as features. The col-
umn HILDA lists the performance of using Hernault
et al. (2010b)’s original features, and Baseline de-
notes the performance obtained by always picking
the more frequent class. Performance is measured
by four metrics: accuracy, precision, recall, and F1
score on the test set, shown in the first section in
each sub-table.

Under the within-sentence condition, we observe
that, surprisingly, incorporating contextual features
boosts the overall performance by a large margin,
even though it requires only 38 additional features.
Under the cross-sentence condition, our features re-
sult in lower accuracy and precision than HILDA’s
features. However, under this discourse condition,
the distribution of positive and negative instances
in both training and test sets is extremely skewed,
which makes it more sensible to compare the recall
and F1 scores for evaluation. In fact, our features
achieve much higher recall and F1 score despite a
much lower precision and a slightly lower accuracy.

In the second section of each sub-table, we also
list the F1 score on the training data. This allows
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us to compare the model-fitting capacity of differ-
ent feature sets from another perspective, especially
when the training data is not sufficiently well fitted
by the model. For example, looking at the training
F1 score under the cross-sentence condition, we can
see that classification using full features and clas-
sification without contextual features both perform
significantly better on the training data than HILDA
does. At the same time, such superior performance
is not due to possible over-fitting on the training
data, because we are using significantly fewer fea-
tures (21,410 for Full and 21,372 for NC) than Her-
nault et al. (2010b)’s 136,987; rather, it suggests
that using carefully selected rich linguistic features
is able to better model the problem itself.

Comparing the results obtained under the first
two conditions, we see that the binary classification
problem of whether a discourse relation is likely to
hold between two adjacent text spans is much more
difficult under the cross-sentence condition. One
major reason is that many features that are predictive
for within-sentence instances are no longer applica-
ble (e.g., Dependency parse features). In addition,
given the extremely imbalanced nature of the dataset
under this discourse condition, we might need to
employ special approaches to deal with this needle-
in-a-haystack problem. This difficulty can also be
perceived from the training performance. Compared
to the within-sentence condition, all features fit the
training data much more poorly under the cross-
sentence condition. This suggests that sophisticated
features or models in addition to our rich linguis-
tic features must be incorporated in order to fit the
problem sufficiently well. Unfortunately, this under-
fitting issue cannot be resolved by exploiting any
abundant linguistic resources for feature vector ex-
tension (e.g., Hernault et al. (2010a)), because the
poor training performance is no longer caused by the
unknown features found in test vectors.

Turning to the hybrid condition, the performance
of Full features is surprisingly good, probably be-
cause we have more available training data than the
other two conditions. However, with contextual fea-
tures removed, our features perform quite similarly
to those of Hernault et al. (2010b), but still with
a marginal, but nonetheless statistically significant,
improvement on recall and F1 score.

Full NC HILDA Baseline

Within-sentence

Accuracy 91.04* 85.17* 83.74 53.15
Precision 92.71* 85.36* 84.81 53.15
Recall 90.22* 87.01* 84.55 100.00
F1 91.45* 86.18* 84.68 69.41

Train F1 97.87* 96.23* 95.42 68.52

Cross-sentence

Accuracy 87.69 86.68 89.13 87.82
Precision 49.60 44.73 61.90 −
Recall 63.95* 39.46* 28.00 0.00
F1 55.87* 41.93* 38.56 −

Train F1 87.25* 71.93* 49.03 −
Hybrid

Accuracy 95.64* 87.03 87.04 77.24
Precision 94.77* 74.19 79.41 −
Recall 85.92* 65.98* 58.15 0.00
F1 89.51* 69.84* 67.13 −

Train F1 93.15* 80.79* 72.09 −

Table 2: Structure classification performance (in percent-
age) on text spans of within-sentence, cross-sentence, and
all level. Performance that is significantly superior to that
of HILDA (p < .01, using the Wilcoxon sign-rank test for
significance) is denoted by *.

6.2 Relation classification

The Relation classifier has 18 possible output la-
bels, which are the coarse-grained relation classes
defined in RST-DT. We do not consider nuclearity
when classifying different discourse relations, i.e.,
ATTRIBUTION[N][S] and ATTRIBUTION[S][N] are
treated as the same label. The training and test in-
stances in this experiment are from the positive sub-
set used in Structure classification.

In this experiment, classifiers are trained using
LibSVM classifier (Chang and Lin, 2011) with a lin-
ear kernel and probability estimation.

Relation classification performance under three
discourse conditions is shown in Table 3. We list
the performance achieved by Full, NC, and HILDA
features, as well as the majority baseline, which is
obtained by always picking the most frequent class
label (ELABORATION in all cases).
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Full NC HILDA Baseline

Within-sentence

MAFS 0.490 0.485 0.446 −
WAFS 0.763 0.762 0.740 −
Acc (%) 78.06 78.13 76.42 31.42

TAcc (%) 99.90 99.93 99.26 33.38

Cross-sentence

MAFS 0.194 0.184 0.127 −
WAFS 0.334 0.329 0.316 −
Acc (%) 46.83 46.71 45.69 42.52

TAcc (%) 78.30 67.30 57.70 47.79

Hybrid

MAFS 0.440 0.428 0.379 −
WAFS 0.607 0.604 0.588 −
Acc (%) 65.30 65.12 64.18 35.82

TAcc (%) 99.96 99.95 90.11 38.78

Table 3: Relation classification performance on text
spans of within-sentence, cross-sentence, and all levels.

Following Hernault et al. (2010a), we use Macro-
averaged F-scores (MAFS) to evaluate the perfor-
mance of each classifier. Macro-averaged F-score
is not influenced by the number of instances that
exist in each relation class, by equally weighting
the performance of each relation class3. Therefore,
the evaluation is not biased by the performance on
those prevalent classes such as ATTRIBUTION and
ELABORATION. For reasons of space, we do not
show the class-wise F-scores, but in our results,
we find that using our features consistently provides
superior performance for most class relations over
HILDA’s features, and therefore results in higher
overall MAFS under all conditions. We also list two
other metrics for performance on the test data —
Weight-averaged F-score (WAFS), which weights
the performance of each relation class by the num-
ber of its existing instances, and the testing accuracy
(Acc) — but these metrics are relatively more bi-

3No significance test is reported for relation classification,
because we are comparing MAFS, which equally weights the
performance of each relation. Therefore, traditional signifi-
cance tests which operate on individual instances rather than
individual relation classes are not applicable.

ased evaluation metrics in this task. Similar to Struc-
ture classification, the accuracy on the training data
(TAcc)4 is listed in the second section of each sub-
table. It demonstrates that our carefully selected rich
linguistic features are able to better fit the classifi-
cation problem, especially under the cross-sentence
condition.

Similar to our observation in Structure classifica-
tion, the performance of Relation classification for
cross-sentence instances is also much poorer than
that on within-sentence instances, which again re-
veals the difficulty of text-level discourse parsing.

7 Conclusions

In this paper, we aimed to develop an RST-style
text-level discourse parser. We chose the HILDA
discourse parser (Hernault et al., 2010b) as the ba-
sis of our work, and significantly improved its tree-
building step by incorporating our own rich linguis-
tic features, together with features suggested by Lin
et al. (2009). We analyzed the difficulty of extending
traditional sentence-level discourse parsing to text-
level parsing by showing that using exactly the same
set of features, the performance of Structure and Re-
lation classification on cross-sentence instances is
consistently inferior to that on within-sentence in-
stances. We also explored the effect of contextual
features on the overall performance. We showed
that contextual features are highly effective for both
Structure and Relation classification under all dis-
course conditions. Although perfect contextual fea-
tures are available only in idealized situations, when
they are correct, together with other features, they
can almost correctly predict the tree structure and
better predict the relation labels. Therefore, an it-
erative updating approach, which progressively up-
dates the tree structure and the labeling based on the
current estimation, may push the final results toward
this idealized end.

Our future work will be to fully implement an
end-to-end discourse parser using our rich linguis-
tic features, and focus on improving performance on
cross-sentence instances.

4We use accuracy instead of MAFS as the evaluation metric
on the training data because it is the metric that the training
procedure is optimized toward.
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Abstract

We describe a discourse annotation scheme
for Chinese and report on the preliminary re-
sults. Our scheme, inspired by the Penn Dis-
course TreeBank (PDTB), adopts the lexically
grounded approach; at the same time, it makes
adaptations based on the linguistic and statisti-
cal characteristics of Chinese text. Annotation
results show that these adaptations work well
in practice. Our scheme, taken together with
other PDTB-style schemes (e.g. for English,
Turkish, Hindi, and Czech), affords a broader
perspective on how the generalized lexically
grounded approach can flesh itself out in the
context of cross-linguistic annotation of dis-
course relations.

1 Introduction

In the realm of discourse annotation, the Penn Dis-
course TreeBank (PDTB) (Prasad et al., 2008) sep-
arates itself by adopting a lexically grounded ap-
proach: Discourse relations are lexically anchored
by discourse connectives (e.g., because, but, there-
fore), which are viewed as predicates that take ab-
stract objects such as propositions, events and states
as their arguments. In the absence of explicit dis-
course connectives, the PDTB asks the annotator to
fill in a discourse connective that best describes the
discourse relation between these two sentences, in-
stead of selecting from an inventory of predefined
discourse relations. By keeping the discourse an-
notation lexically grounded even in the case of im-
plicit discourse relations, the PDTB appeals to the
annotator’s judgment at an intuitive level. This is in

contrast with an approach in which the set of dis-
course relations are pre-determined by linguistic ex-
perts and the role of the annotator is just to select
from those choices (Mann and Thompson, 1988;
Carlson et al., 2003). This lexically grounded ap-
proach led to consistent and reliable discourse anno-
tation, a feat that is generally hard to achieve for dis-
course annotation. The PDTB team reported inter-
annotator agreement in the lower 90% for explicit
discourse relations (Miltsakaki et al., 2004).

In this paper we describe a discourse annota-
tion scheme for Chinese that adopts this lexically
grounded approach while making adaptations when
warranted by the linguistic and statistical properties
of Chinese text. This scheme is shown to be practi-
cal and effective in the annotation experiment.

The rest of the paper is organized as follows: In
Section 2, we review the key aspects of the PDTB
annotation scheme under discussion in this paper. In
Section 3, we first show that some key features of
Chinese make adaptations necessary in Section 3.1,
and then in Section 3.2, we present our systematic
adaptations that follow from the differences outlined
in Section 3.1. In Section 4, we present the prelim-
inary annotation results we have so far. And finally
in Section 5, we conclude the paper.

2 The PDTB annotation scheme

As mentioned in the introduction, discourse relation
is viewed as a predication with two arguments in the
framework of the PDTB. To characterize the pred-
ication, the PDTB annotates its argument structure
and sense. Two types of discourse relation are dis-
tinguished in the annotation: explicit and implicit.
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Although their annotation is carried out separately, it
conforms to the same paradigm of a discourse con-
nective with two arguments. In what follows, we
highlight the key points that will be under discussion
in the following sections. To get a more compre-
hensive and detailed picture of the PDTB scheme,
see the PDTB 2.0 annotation manual (Prasad et al.,
2007).

2.1 Annotation of explicit discourse relations
Explicit discourse relations are those anchored by
explicit discourse connectives in text. Explicit con-
nectives are drawn from three grammatical classes:

• Subordinating conjunctions: e.g., because,
when, since, although;

• Coordinating conjunctions: e.g., and, or, nor;
• Discourse adverbials: e.g., however, other-

wise, then, as a result, for example.

Not all uses of these lexical items are considered to
function as a discourse connective. For example,
coordinating conjunctions appearing in VP coordi-
nations, such as “and” in (1), are not annotated as
discourse connectives.

(1) More common chrysotile fibers are curly and
are more easily rejected by the body, Dr. Moss-
man explained.

The text spans of the two arguments of a discourse
connective are marked up. The two arguments, Arg1
and Arg2, are defined based on the physical location
of the connective: Arg2 is the argument expressed
by the clause syntactically bound to the connective,
and Arg1 is the other argument. There are no restric-
tions on how many clauses can be included in the
text span for an argument other than the Minimality
Principle: Only as many clauses and/or sentences
should be included in an argument selection as are
minimally required and sufficient for the interpreta-
tion of the relation.

2.2 Annotation of implicit discourse relations
In the case of implicit discourse relations, annotators
are asked to insert a discourse connective that best
conveys the implicit relation; when no such connec-
tive expression is appropriate, the implicit relation
is further distinguished as the following three sub-
types:

• AltLex: when insertion of a connective leads
to redundancy due to the presence of an alter-
natively lexicalized expression, as in (2).

• EntRel: when the only relation between the
two arguments is that they describe different as-
pects of the same entity, as in (3).

• NoRel: when neither a lexicalized discourse re-
lation nor entity-based coherence is present. It
is to be noted that at least some of the “NoRel”
cases are due to the adjacency constraint (see
below for more detail).

(2) And she further stunned her listeners by re-
vealing her secret garden design method: [Arg1

Commissioning a friend to spend five or six
thousand dollars . . . on books that I ultimately
cut up.] [Arg2 AltLex After that, the layout had
been easy.

(3) [Arg1 Hale Milgrim, 41 years old, senior vice
president, marketing at Elecktra Entertainment
Inc., was named president of Capitol Records
Inc., a unit of this entertainment concern].
[Arg2 EntRel Mr. Milgrim succeeds David
Berman, who resigned last month].

There are restrictions on what kinds of implicit
relations are subjected to annotation, presented be-
low. These restrictions do not have counterparts in
explicit relation annotation.

• Implicit relations between adjacent clauses in
the same sentence not separated by a semi-
colon are not annotated, even though the rela-
tion may very well be definable. A case in point
is presented in (4) below, involving an intra-
sentential comma-separated relation between a
main clause and a free adjunct.

• Implicit relations between adjacent sentences
across a paragraph boundary are not annotated.

• The adjacency constraint: At least some part
of the spans selected for Arg1 and Arg2 must
belong to the pair of adjacent sentences initially
identified for annotation.

(4) [MC The market for export financing was liber-
alized in the mid-1980s], [FA forcing the bank
to face competition].
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2.3 Annotation of senses
Discourse connectives, whether originally present in
the data in the case of explicit relations, or filled in
by annotators in the case of implicit relations, along
with text spans marked as “AltLex”, are annotated
with respect to their senses. There are three levels in
the sense hierarchy:

• Class: There are four major semantic classes:
TEMPORAL, CONTINGENCY, COMPARISON,
and EXPANSION;

• Type: A second level of types is further de-
fined for each semantic class. For example,
under the class CONTINGENCY, there are two
types: “Cause” (relating two situations in a di-
rect cause-effect relation) and “Condition” (re-
lating a hypothetical situation with its (possi-
ble) consequences);1

• Subtype: A third level of subtypes is defined
for some, but not all, types. For instance, under
the type “CONTINGENCY:Cause”, there are two
subtypes: “reason” (for cases like because and
since) and “result” (for cases like so and as a
result).

It is worth noting that a type of implicit relation,
namely those labeled as “EntRel”, is not part of the
sense hierarchy since it has no explicit counterpart.

3 Adapted scheme for Chinese

3.1 Key characteristics of Chinese text
Despite similarities in discourse features between
Chinese and English (Xue, 2005), there are differ-
ences that have a significant impact on how dis-
course relations could be best annotated. These dif-
ferences can be illustrated with (5):

(5) 据悉
according to reports

，
,

[AO1东莞
Dongguan

海关
Customs

共
in total

接受
accept

企业
company

合同
contract

备案
record

八千四百多
8400 plus

份 ]
CLASS

，[AO2

,
比
compare

试点
pilot

前
before

略
slight

有
EXIST

上升 ]
increase

，
,

[AO3企业
company

1There is another dimension to this level, i.e. literal or prag-
matic use. If this dimension is taken into account, there could be
said to be four types: “Cause”, “Pragmatic Cause”, “Condition”,
and “Pragmatic Condition”. For details, see Prasad et al. (2007).

反应
respond/response

良好 ]
well/good

，
,

[AO4普遍
generally

表示
acknowledge

接受 ]
accept/acceptance

。
.

“According to reports, [AO1 Dongguan District
Customs accepted more than 8400 records of com-
pany contracts], [AO2 a slight increase from before
the pilot]. [AO3 Companies responded well], [AO4

generally acknowledging acceptance].”

This sentence reports on how a pilot program
worked in Dongguan City. Because all that is said
is about the pilot program, it is perfectly natural to
include it all in a single sentence in Chinese. Intu-
itively though, there are two different aspects of how
the pilot program worked: the number of records
and the response from the affected companies. To
report the same facts in English, it is more natural
to break them down into two sentences or two semi-
colon-separated clauses, but in Chinese, not only are
they merely separated by comma, but also there is no
connective relating them.

This difference in writing style necessitates re-
thinking of the annotation scheme. If we apply the
PDTB scheme to the English translation, regardless
of whether the two pieces of facts are expressed in
two sentences or two semi-colon-separated clauses,
at least one discourse relation will be annotated, re-
lating these two text units. In contrast, if we apply
the same scheme to the Chinese sentence, no dis-
course relation will be picked out because this is
just one comma-separated sentence with no explicit
discourse connectives in it. In other words, the dis-
course relation within the Chinese sentence, which
would be captured in its English counterpart follow-
ing the PDTB procedure, would be lost when anno-
tating Chinese. Such loss is not a sporadic occur-
rence but rather a very prevalent one since it is asso-
ciated with the customary writing style of Chinese.
To ensure a reasonable level of coverage, we need to
consider comma-delimited intra-sentential implicit
relations when annotating Chinese text.

There are some complications associated with this
move. One of them is that it introduces into dis-
course annotation considerable ambiguity associ-
ated with the comma. For example, the first in-
stance of comma in (5), immediately following “据
悉” (“according to reports”), clearly does not indi-
cate a discourse relation, so it needs to be spelt out in

71



the guidelines how to exclude such cases of comma
as discourse relation indicators. We think, however,
that disambiguating the commas in Chinese text is
valuable in its own right and is a necessary step in
annotating discourse relations.

Another complication is that some comma-
separated chunks are ambiguous as to whether they
should be considered potential arguments in a dis-
course relation. The chunks marked AO2 and AO4
in (5) are examples of such cases. They, judging
from their English translation, may seem clear cases
of free adjuncts in PDTB terms (Prasad et al., 2007),
but there is no justification for treating them as such
in Chinese. The lack of justification comes from at
least three features of Chinese:

• Certain words, for instance, “反应” (“re-
spond/response”), “良好” (“well/good”) and
“接受” (“accept/acceptance”), are ambiguous
with respect to their POS, and when they com-
bine, the resulting sentence may have more
than one syntactic analysis. For example, AO3
may be literally translated as “Companies re-
sponded well” or “Companies’ response was
good”.

• There are no inflectional clues to differenti-
ate free adjuncts and main clauses. For ex-
ample, one can be reasonably certain that “表
示” (“acknowledge”) functions as a verb in (5),
however, there is no indication whether it is
in the form corresponding to “acknowledging”
or “acknowledged” in English. Or putting it
differently, whether one wants to express in
Chinese the meaning corresponding to the -ing
form or the tensed form in English, the same
form “表示” could apply.

• Both subject and object can be dropped in Chi-
nese, and they often are when they are infer-
able from the context. For example, in the two-
sentence sequence below, the subject of (7) is
dropped since it is clearly the same as the sub-
ject of the previous sentence in (6) .

(6) [S1

recent
近
five
五
years

年
since

来
,
，
Shanghai

上海
through

通过
actively

积极
from

从
other

外
province

省
city
市
procure

收购
export

出口
supply

货源
,

、
organize

举办
China

中国
East

华东
Export

出口
Commodity

商品
Fair

交易会
etc.

等
event,

活动，
strengthen

增强
port

口岸
to

对
whole country

全国
DE

的
connection

辐射
capability

能力
.

。]

“[S1 In the past five years, Shanghai strength-
ened the connection of its port to other areas
of the country through actively procuring ex-
port supplies from other provinces and cities,
and through organizing events such as the East
China Export Commodities Fair.]”

(7) [S2同时
At the same time

，
,
发展
develop

跨国
transnational

经营
operation

，
,
大力
vigorously

开拓
open up

多元化
diversified

市场。]
market

“[S2 At the same time, (it) developed transna-
tional operations (and) vigorously opened up
diversified markets.]”

Since the subject can be omitted from the en-
tire sentence, absence or presence of subject in
a clause is not an indication whether the clause
is a main clause or a free adjunct, or whether it
is part of a VP coordination without a connec-
tive. So if we take into account both the lack of
differentiating inflectional clues and the possi-
bility of omitting the subject, AO4 in (5) may
be literally translated as “generally acknowl-
edging acceptance”, or “(and) generally ac-
knowledged acceptance”, or “(companies) gen-
erally acknowledged acceptance”, or “(compa-
nies) generally acknowledged (they) accepted
(it)”.

Since in Chinese, there is no reliable indicator dis-
tinguishing between main clauses and free adjuncts,
or distinguishing between coordination on the clause
level without the subject and coordination on the VP
level, we will not rely on these distinctions in anno-
tation, as the PDTB team does in their annotation.

These basic decisions directly based on linguistic
characteristics of Chinese lead to more systematic
adaptations to the annotation scheme, to which we
will turn in the next subsection.

3.2 Systematic adaptations
The main consequence of the basic decisions de-
scribed in Section 3.1 is that we have a whole lot
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more tokens of implicit relation than explicit rela-
tion to deal with. According to a rough count on
20 randomly selected files from Chinese Treebank
(Xue et al., 2005), 82% are tokens of implicit rela-
tion, compared to 54.5% in the PDTB 2.0. Given
the overwhelming number of implicit relations, we
re-examine where it could make an impact in the an-
notation scheme. There are three such areas.

3.2.1 Procedural division between explicit and
implicit discourse relation

In the PDTB, explicit and implicit relations are
annotated separately. This is probably partly be-
cause explicit connectives are quite abundant in En-
glish, and partly because the project evolved in
stages, expanding from the more canonical case of
explicit relation to implicit relation for greater cov-
erage. When annotating Chinese text, maintaining
this procedural division makes much less sense: the
landscape of discourse relation (or at least the key
elements of it) has already been mapped out by the
PDTB work and to set up a separate task to cover
18% of the data does not seem like a worthwhile
bother without additional benefits for doing so.

So the question now is how to annotate explicit
and implicit relations in one fell swoop? In Chi-
nese text, the use of a discourse connective is al-
most always accompanied by a punctuation or two
(usually period and/or comma), preceding or flank-
ing it. So a sensible solution is to rely on punctu-
ations as the denominator between explicit and im-
plicit relations;and in the case of explicit relation,
the connective will be marked up as an attribute of
the discourse relation. This unified approach simpli-
fies the annotation procedure while preserving the
explicit/implicit distinction in the process.

One might question, at this point, whether such
an approach can still call itself “lexically grounded”.
Certainly not if one interprets the term literally ; but
in a broader sense, our approach can be seen as an
instantiation of a generalized version of it, much the
same way that the PDTB is an, albeit different, in-
stantiation of it for English. The thrust of the lexi-
cally grounded approach is that discourse annotation
should be a data-driven, bottom-up process, rather
than a top-down one, trying to fit data into a pre-
scriptive system. Once the insight that a discourse
connective functions like a predicate with two ar-

guments is generalized to cover all discourse rela-
tions, there is no fundamental difference between
explicit and implicit discourse relations: both work
like a predicate whether or not there is a lexicaliza-
tion of it. As to what role this distinction plays in
the annotation procedure, it is an engineering issue,
depending on a slew of factors, among which are
cross-linguistic variations. In the case of Chinese,
we think it is more economical to treat explicit and
implicit relations alike in the annotation process.

To treat explicit and implicit relations alike actu-
ally goes beyond annotating them in one pass; it also
involves how they are annotated, which we discuss
next.

3.2.2 Annotation of implicit discourse relations
In the PDTB, treatment of implicit discourse rela-

tions is modeled after that of explicit relations, and at
the same time, some restrictions are put on implicit,
but not explicit, relations. This is quite understand-
able: implicit discourse relations tend to be vague
and elusive, so making use of explicit relations as a
prototype helps pin them down, and restrictions are
put in place to strike a balance between high relia-
bility and good coverage. When implicit relations
constitute a vast majority of the data as is the case
with Chinese, both aspects need to be re-examined
to strike a new balance.

In the PDTB, annotators are asked to insert a
discourse connective that best conveys the implicit
discourse relation between two adjacent discourse
units; when no such connective expression is ap-
propriate, the implicit discourse relation is further
distinguished as “AltLex”, “EntRel”, and “NoRel”.
The inserted connectives and those marked as “Al-
tLex”, along with explicit discourse connectives, are
further annotated with respect to their senses.

When a connective needs to be inserted in a ma-
jority of cases, the difficulty of the task really stands
out. In many cases, it seems, there is a good rea-
son for not having a connective present and because
of it, the wording rejects insertion of a connective
even if it expresses the underlying discourse relation
exactly (or sometimes, maybe the wording itself is
the reason for not having a connective). So to try
to insert a connective expression may very well be
too hard a task for annotators, with little to show for
their effort in the end.
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Furthermore, the inter-annotator agreement for
providing an explicit connective in place of an im-
plicit one is computed based on the type of explicit
connectives (e.g. cause-effect relations, temporal re-
lations, contrastive relations, etc.), rather than based
on their identity (Miltsakaki et al., 2004). This sug-
gests that a reasonable degree of agreement for such
a task may only be reached with a coarse classifica-
tion scheme.

Given the above two considerations, our solution
is to annotate implicit discourse relations with their
senses directly, bypassing the step of inserting a con-
nective expression. It has been pointed out that to
train annotators to reason about pre-defined abstract
relations with high reliability might be too hard a
task (Prasad et al., 2007). This difficulty can be
overcome by associating each semantic type with
one or two prototypical explicit connectives and ask-
ing annotators to consider each to see if it expresses
the implicit discourse relation. This way, annotators
have a concrete aid to reason about abstract relations
without having to choose one connective from a set
expressing roughly the same relation or having to
worry about whether insertion of the connective is
somehow awkward.

It should be noted that annotating implicit rela-
tions directly with their senses means that sense an-
notation is no longer restricted to those that can be
lexically expressed, but also includes those that can-
not, notably those labeled “EntRel/NoRel” in the
PDTB.2 In other words, we annotate senses of dis-
course relations, not just connectives and their lex-
ical alternatives (in the case of AltLex). This ex-
pansion is consistent with the generalized view of
the lexically grounded approach discussed in Sec-
tion 3.2.1.

With respect to restrictions on implicit relation,
we will adopt them as they prove to be necessary
in the annotation process, with one exception. The
exception is the restriction that implicit relations be-
tween adjacent clauses in the same sentence not sep-
arated by a semi-colon are not annotated. This re-
striction seems to apply mainly to a main clause and
any free adjunct attached to it in English; in Chinese,
however, the distinction between a main clause and a

2Thus “EntRel” and “NoRel” are treated as relation senses,
rather than relation types, in our scheme.

free adjunct is not as clear-cut for reasons explained
in Section 3.1. So this restriction is not applicable
for Chinese annotation.

3.2.3 Definition of Arg1 and Arg2
The third area that an overwhelming number of

implicit relation in the data affects is how Arg1 and
Arg2 are defined. As mentioned in the introduc-
tion, discourse relations are viewed as a predication
with two arguments. These two arguments are de-
fined based on the physical location of the connec-
tive in the PDTB: Arg2 is the argument expressed by
the clause syntactically bound to the connective and
Arg1 is the other argument. In the case of implicit
relations, the label is assigned according to the text
order.

In an annotation task where implicit relations con-
stitute an overwhelming majority, the distinction of
Arg1 and Arg2 is meaningless in most cases. In addi-
tion, the phenomenon of parallel connectives is pre-
dominant in Chinese. Parallel connectives are pairs
of connectives that take the same arguments, exam-
ples of which in English are “if..then”, “either..or”,
and “on the one hand..on the other hand”. In Chi-
nese, most connectives are part of a pair; though
some can be dropped from their pair, it is considered
“proper” or formal to use both. (8) below presents
two such examples, for which parallel connectives
are not possible in English.

(8) a. 伦敦
London

股市
stock market

因
because

适逢
coincide

银行节
Bank Holiday

，
,
故
therefore

没有
NEG

开市。
open market

“London Stock Market did not open because it
was Bank Holiday.”

b. 虽然
Although

他们
they

不
NEG

离
leave

土
land
、
,
不
NEG

离
leave

乡
home village

，
,
但
but
严格
strict

来
PART

讲
speak

已
already

不再
no longer

是
be
传统
tradition

意义
sense

上
PREP

的
DE
农民。
peasant

“Although they do not leave land or their home
village, strictly speaking, they are no longer
peasants in the traditional sense.”

In the PDTB, parallel connectives are annotated dis-
continuously; but given the prevalence of such phe-
nomenon in Chinese, such practice would generate

74



a considerably high percentage of essentially repeti-
tive annotation among explicit relations.

So the situation with Chinese is that distinguish-
ing Arg1 and Arg2 the PDTB way is meaningless
in most cases, and in the remaining cases, it of-
ten results in duplication. Rather than abandoning
the distinction altogether, we think it makes more
sense to define Arg1 and Arg2 semantically. It will
not create too much additional work beyond distinc-
tion of different senses of discourse relation in the
PDTB. For example, in the semantic type CONTIN-
GENCY:Cause, we can define “reason” as Arg1 and
“result” as Arg2. In this scheme, no matter which
one of因 (“because”) and故 (“therefore”) appears
without the other, or if they appear as a pair in a
sentence, or if the relation is implicit, the Arg1 and
Arg2 labels will be consistently assigned to the same
clauses.

This approach is consistent with the move from
annotating senses of connectives to annotating
senses of discourse relations, pointed out in Section
3.2.2. For example, in the PDTB’s sense hierarchy,
“reason” and “result” are subtypes under type CON-
TINGENCY:Cause: “reason” applies to connectives
like “because” and “since” while “result” applies
to connectives like “so” and “as a result”. When
we move to annotating senses of discourse relations,
since both types of connectives express the same un-
derlying discourse relation, there will not be further
division under CONTINGENCY:Cause, and the “rea-
son”/“result” distinction is an intrinsic property of
the semantic type. We think this level of generality
makes sense semantically.

4 Annotation experiment

To test our adapted annotation scheme, we have con-
ducted annotation experiments on a modest, yet sig-
nificant, amount of data and computed agreement
statistics.

4.1 Set-up

The agreement statistics come from annotation con-
ducted by two annotators in training so far. The data
set consists of 98 files taken from the Chinese Tree-
bank (Xue et al., 2005). The source of these files is
Xinhua newswire. The annotation is carried out on

the PDTB annotation tool3.

4.2 Inter-annotator agreement
To evaluate our proposed scheme, we measure
agreement on each adaption proposed in Section
3, as well as agreement on argument span deter-
mination. Whenever applicable, we also present
(roughly) comparable statistics of the PDTB (Milt-
sakaki et al., 2004). The results are summarized in
Table 1.

Chinese PDTB
tkn no. F(p/r) (%) (%)

rel-ident 3951*
95.4

N/A
(96.0/94.7)

rel-type 3951 95.1 N/A
imp-sns-type 2967 87.4 72
arg-order 3059 99.8 N/A
argument span
exp-span-xm 1580 84.2 90.2
exp-span-pm 1580 99.6 94.5
imp-span-xm 5934 76.9 85.1

overall-bnd- 14039*
87.7

N/A
(87.5/87.9)

Table 1: Inter-annotator agreement in various aspects
of Chinese discourse annotation: rel-ident, discourse
relation identification; rel-type, relation type classifica-
tion; imp-sns-type, classification of sense type of im-
plicit relations; arg-order, order determination of Arg1
and Arg2. For agreement on argument spans, the
naming convention is <type-of-relation>-<element-as-
independent-token>-<matching-method>. exp: explicit
relations; imp: implicit relations; span: argument span;
xm: exact match; pm: partial match; bnd: boundary. *:
number of tokens agreed on by both annotators.

The first adaption we proposed is to annotate ex-
plicit and implicit discourse relations in one pass.
This introduces two steps, at which agreement can
each be measured: First, the annotator needs to
make the judgment, at each instance of the punctu-
ations, whether there is a discourse relation (a step
we call “relation identification”); second, once a dis-
course relation is identified, the annotator needs to
classify the type as one of “Explicit”, “Implicit”, or
“AltLex” (a step we call “relation type classifica-
tion”). The agreement at these two steps is 95.4%

3http://www.seas.upenn.edu/∼pdtb/tools.shtml#annotator
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and 95.1% respectively.
The second adaption is to bypass the step of in-

serting a connective when annotating an implicit dis-
course relation and classify the sense directly. The
third adaptation is to define Arg1 and Arg2 semanti-
cally for each sense. To help annotators think about
relation sense abstractly and determine the order of
the arguments, we put a helper item alongside each
sense label, like “Causation: 因为arg1所以arg2”
(“Causation: because arg1 therefore arg2”). This
approach works well, as evidenced by 87.4%4 and
99.8% agreement for the two processes respectively.

To evaluate agreement on determining argument
span, we adopt four measures. In the first three,
explicit and implicit relations are calculated sepa-
rately (although they are actually annotated in the
same process) to make our results comparable to
the published PDTB results. Each argument span is
treated as an independent token and either exact or
partial match (i.e. if two spans share one boundary)
counts as 1. The fourth measure is less stringent than
exact match and more stringent than partial match:
It groups explicit and implicit relation together and
treats each boundary as an independent token. Typ-
ically, an argument span has two boundaries, but it
can have four (or more) boundaries when an argu-
ment span is interrupted by a connective and/or an
AltLex item.

Evidently, determining argument span is the most
challenging aspect of discourse annotation. How-
ever, it should be pointed out that agreement was on
an overall upward trend, which became especially
prominent after we instituted a restriction on im-
plicit relations across a paragraph boundary towards
the end of the training period. It restricts full anno-

4Two more points should be made about this number. First,
it may be partially attributed to our differently structured sense
hierarchy. It is a flat structure containing the following 12 val-
ues: ALTERNATIVE, CAUSATION, CONDITIONAL, CONJUNC-
TION, CONTRAST, EXPANSION, PROGRESSION, PURPOSE,
RESTATEMENT, TEMPORAL, EntRel, and NoRel. Aside from in-
cluding EntRel and NoRel (the reason and significance of which
have been discussed in Section 3.2.2), the revision was by and
large not motivated by Chinese-specific features, so we do not
address it in detail in this paper. Second, in making the compar-
ison with the PDTB result, the 12-value structure is collapsed
into 5 values: TEMPORAL, CONTINGENCY, COMPARISON, EX-
PANSION, and EntRel/NoRel, which must be different from the
5 values in Miltsakaki et al. (2004), judging from the descrip-
tions.

tation to only three specific situations so that most
loose and/or hard-to-delimit relations across para-
graph boundaries are excluded. This restriction ap-
pears to be quite effective, as shown in Table 2.

num Overall Arg Span
of boundary span-em

rel.’s F(p/r) (%) (%)
last 5 wks 1103 90.0 (90.0/89.9) 80.8
last 3 wks 677 91.0 (91.0/91.0) 82.5
last 2 wks 499 91.8 (91.8/91.8) 84.2

Table 2: Inter-annotator agreement on argument span
during the last 5 weeks of training.

5 Conclusions

We have presented a discourse annotation scheme
for Chinese that adopts the lexically ground ap-
proach of the PDTB while making systematic adap-
tations motivated by characteristics of Chinese text.
These adaptations not only work well in practice, as
evidenced by the results from our annotation exper-
iment, but also embody a more generalized view of
the lexically ground approach to discourse annota-
tion: Discourse relations are predication involving
two arguments; the predicate can be either covert
(i.e. Implicit) or overt, lexicalized as discourse con-
nectives (i.e. Explicit) or their more polymorphous
counterparts (i.e. AltLex). Consistent with this
generalized view is a more semantically motivated
sense annotation scheme: Senses of discourse rela-
tions (as opposed to just connectives) are annotated;
and the two arguments of the discourse relation are
semantically defined, allowing the sense structure
to be more general and less connective-dependent.
These framework-level generalizations can be ap-
plied to discourse annotation of other languages.
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Abstract

One of the key tasks for analyzing conversa-
tional data is segmenting it into coherent topic
segments. However, most models of topic
segmentation ignore the social aspect of con-
versations, focusing only on the words used.
We introduce a hierarchical Bayesian nonpara-
metric model, Speaker Identity for Topic Seg-
mentation (SITS), that discovers (1) the top-
ics used in a conversation, (2) how these top-
ics are shared across conversations, (3) when
these topics shift, and (4) a person-specific
tendency to introduce new topics. We eval-
uate against current unsupervised segmenta-
tion models to show that including person-
specific information improves segmentation
performance on meeting corpora and on po-
litical debates. Moreover, we provide evidence
that SITS captures an individual’s tendency to
introduce new topics in political contexts, via
analysis of the 2008 US presidential debates
and the television program Crossfire.

1 Topic Segmentation as a Social Process

Conversation, interactive discussion between two or
more people, is one of the most essential and com-
mon forms of communication. Whether in an in-
formal situation or in more formal settings such as
a political debate or business meeting, a conversa-
tion is often not about just one thing: topics evolve
and are replaced as the conversation unfolds. Dis-
covering this hidden structure in conversations is a
key problem for conversational assistants (Tur et al.,
2010) and tools that summarize (Murray et al., 2005)
and display (Ehlen et al., 2007) conversational data.
Topic segmentation also can illuminate individuals’
agendas (Boydstun et al., 2011), patterns of agree-
ment and disagreement (Hawes et al., 2009; Abbott

et al., 2011), and relationships among conversational
participants (Ireland et al., 2011).

One of the most natural ways to capture conversa-
tional structure is topic segmentation (Reynar, 1998;
Purver, 2011). Topic segmentation approaches range
from simple heuristic methods based on lexical simi-
larity (Morris and Hirst, 1991; Hearst, 1997) to more
intricate generative models and supervised meth-
ods (Georgescul et al., 2006; Purver et al., 2006;
Gruber et al., 2007; Eisenstein and Barzilay, 2008),
which have been shown to outperform the established
heuristics.

However, previous computational work on con-
versational structure, particularly in topic discovery
and topic segmentation, focuses primarily on con-
tent, ignoring the speakers. We argue that, because
conversation is a social process, we can understand
conversational phenomena better by explicitly model-
ing behaviors of conversational participants. In Sec-
tion 2, we incorporate participant identity in a new
model we call Speaker Identity for Topic Segmen-
tation (SITS), which discovers topical structure in
conversation while jointly incorporating a participant-
level social component. Specifically, we explicitly
model an individual’s tendency to introduce a topic.
After outlining inference in Section 3 and introducing
data in Section 4, we use SITS to improve state-of-
the-art-topic segmentation and topic identification
models in Section 5. In addition, in Section 6, we
also show that the per-speaker model is able to dis-
cover individuals who shape and influence the course
of a conversation. Finally, we discuss related work
and conclude the paper in Section 7.

2 Modeling Multiparty Discussions

Data Properties We are interested in turn-taking,
multiparty discussion. This is a broad category, in-
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cluding political debates, business meetings, and on-
line chats. More formally, such datasets contain C
conversations. A conversation c has Tc turns, each of
which is a maximal uninterrupted utterance by one
speaker.1 In each turn t ∈ [1, Tc], a speaker ac,t utters
N words {wc,t,n}. Each word is from a vocabulary
of size V , and there are M distinct speakers.

Modeling Approaches The key insight of topic
segmentation is that segments evince lexical cohe-
sion (Galley et al., 2003; Olney and Cai, 2005).
Words within a segment will look more like their
neighbors than other words. This insight has been
used to tune supervised methods (Hsueh et al., 2006)
and inspire unsupervised models of lexical cohesion
using bags of words (Purver et al., 2006) and lan-
guage models (Eisenstein and Barzilay, 2008).

We too take the unsupervised statistical approach.
It requires few resources and is applicable in many
domains without extensive training. Like previ-
ous approaches, we consider each turn to be a bag
of words generated from an admixture of topics.
Topics—after the topic modeling literature (Blei and
Lafferty, 2009)—are multinomial distributions over
terms. These topics are part of a generative model
posited to have produced a corpus.

However, topic models alone cannot model the dy-
namics of a conversation. Topic models typically do
not model the temporal dynamics of individual docu-
ments, and those that do (Wang et al., 2008; Gerrish
and Blei, 2010) are designed for larger documents
and are not applicable here because they assume that
most topics appear in every time slice.

Instead, we endow each turn with a binary latent
variable lc,t, called the topic shift. This latent variable
signifies whether the speaker changed the topic of the
conversation. To capture the topic-controlling behav-
ior of the speakers across different conversations, we
further associate each speaker m with a latent topic
shift tendency, πm. Informally, this variable is in-
tended to capture the propensity of a speaker to effect
a topic shift. Formally, it represents the probability
that the speakerm will change the topic (distribution)
of a conversation.

We take a Bayesian nonparametric ap-
proach (Müller and Quintana, 2004). Unlike

1Note the distinction with phonetic utterances, which by
definition are bounded by silence.

parametric models, which a priori fix the number of
topics, nonparametric models use a flexible number
of topics to better represent data. Nonparametric
distributions such as the Dirichlet process (Ferguson,
1973) share statistical strength among conversations
using a hierarchical model, such as the hierarchical
Dirichlet process (HDP) (Teh et al., 2006).

2.1 Generative Process

In this section, we develop SITS, a generative model
of multiparty discourse that jointly discovers topics
and speaker-specific topic shifts from an unannotated
corpus (Figure 1a). As in the hierarchical Dirichlet
process (Teh et al., 2006), we allow an unbounded
number of topics to be shared among the turns of the
corpus. Topics are drawn from a base distribution
H over multinomial distributions over the vocabu-
lary, a finite Dirichlet with symmetric prior λ. Unlike
the HDP, where every document (here, every turn)
draws a new multinomial distribution from a Dirich-
let process, the social and temporal dynamics of a
conversation, as specified by the binary topic shift
indicator lc,t, determine when new draws happen.

The full generative process is as follows:
1. For speaker m ∈ [1,M ], draw speaker shift probability
πm ∼ Beta(γ)

2. Draw global probability measure G0 ∼ DP(α,H)
3. For each conversation c ∈ [1, C]

(a) Draw conversation distribution Gc ∼ DP(α0, G0)
(b) For each turn t ∈ [1, Tc] with speaker ac,t

i. If t = 1, set the topic shift lc,t = 1. Otherwise,
draw lc,t ∼ Bernoulli(πac,t).

ii. If lc,t = 1, draw Gc,t ∼ DP (αc, Gc). Other-
wise, set Gc,t ≡ Gc,t−1.

iii. For each word index n ∈ [1, Nc,t]

• Draw ψc,t,n ∼ Gc,t
• Draw wc,t,n ∼ Multinomial(ψc,t,n)

The hierarchy of Dirichlet processes allows sta-
tistical strength to be shared across contexts; within
a conversation and across conversations. The per-
speaker topic shift tendency πm allows speaker iden-
tity to influence the evolution of topics.

To make notation concrete and aligned with the
topic segmentation, we introduce notation for seg-
ments in a conversation. A segment s of conver-
sation c is a sequence of turns [τ, τ ′] such that
lc,τ = lc,τ ′+1 = 1 and lc,t = 0, ∀t ∈ (τ, τ ′]. When
lc,t = 0, Gc,t is the same as Gc,t−1 and all topics (i.e.
multinomial distributions over words) {ψc,t,n} that
generate words in turn t and the topics {ψc,t−1,n}
that generate words in turn t− 1 come from the same
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Figure 1: Graphical model representations of our proposed models: (a) the nonparametric version; (b) the
parametric version. Nodes represent random variables (shaded ones are observed), lines are probabilistic
dependencies. Plates represent repetition. The innermost plates are turns, grouped in conversations.

distribution. Thus all topics used in a segment s are
drawn from a single distribution, Gc,s,

Gc,s | lc,1, lc,2, · · · , lc,Tc , αc, Gc ∼ DP(αc, Gc) (1)

For notational convenience, Sc denotes the num-
ber of segments in conversation c, and st denotes
the segment index of turn t. We emphasize that all
segment-related notations are derived from the poste-
rior over the topic shifts l and not part of the model
itself.

Parametric Version SITS is a generalization of a
parametric model (Figure 1b) where each turn has
a multinomial distribution over K topics. In the
parametric case, the number of topics K is fixed.
Each topic, as before, is a multinomial distribution
φ1 . . . φK . In the parametric case, each turn t in con-
versation c has an explicit multinomial distribution
over K topics θc,t, identical for turns within a seg-
ment. A new topic distribution θ is drawn from a
Dirichlet distribution parameterized by α when the
topic shift indicator l is 1.

The parametric version does not share strength
within or across conversations, unlike SITS. When
applied on a single conversation without speaker iden-
tity (all speakers are identical) it is equivalent to
(Purver et al., 2006). In our experiments (Section 5),
we compare against both.

3 Inference

To find the latent variables that best explain observed
data, we use Gibbs sampling, a widely used Markov
chain Monte Carlo inference technique (Neal, 2000;
Resnik and Hardisty, 2010). The state space is latent
variables for topic indices assigned to all tokens z =
{zc,t,n} and topic shifts assigned to turns l = {lc,t}.
We marginalize over all other latent variables. Here,
we only present the conditional sampling equations;
for more details, see our supplement.2

3.1 Sampling Topic Assignments

To sample zc,t,n, the index of the shared topic as-
signed to token n of turn t in conversation c, we need
to sample the path assigning each word token to a
segment-specific topic, each segment-specific topic
to a conversational topic and each conversational
topic to a shared topic. For efficiency, we make use
of the minimal path assumption (Wallach, 2008) to
generate these assignments.3 Under the minimal path
assumption, an observation is assumed to have been
generated by using a new distribution if and only if
there is no existing distribution with the same value.

2 http://www.cs.umd.edu/∼vietan/topicshift/appendix.pdf
3We also investigated using the maximal assumption and

fully sampling assignments. We found the minimal path assump-
tion worked as well as explicitly sampling seating assignments
and that the maximal path assumption worked less well.

80



We use Nc,s,k to denote the number of tokens in
segment s in conversation c assigned topic k; Nc,k
denotes the total number of segment-specific top-
ics in conversation c assigned topic k and Nk de-
notes the number of conversational topics assigned
topic k. TWk,w denotes the number of times the
shared topic k is assigned to word w in the vocab-
ulary. Marginal counts are represented with · and
∗ represents all hyperparameters. The conditional
distribution for zc,t,n is P (zc,t,n = k | wc,t,n =
w, z−c,t,n,w−c,t,n, l, ∗) ∝

N−c,t,nc,st,k
+ αc

N
−c,t,n
c,k

+α0

N
−c,t,n
k

+ α
K

N
−c,t,n
· +α

N
−c,t,n
c,· +α0

N−c,t,nc,st,· + αc
×


TW−c,t,nk,w + λ

TW−c,t,nk,· + V λ
,

1

V
k new.

(2)

Here V is the size of the vocabulary, K is the current
number of shared topics and the superscript −c,t,n

denotes counts without considering wc,t,n. In Equa-
tion 2, the first factor is proportional to the probability
of sampling a path according to the minimal path as-
sumption; the second factor is proportional to the
likelihood of observing w given the sampled topic.
Since an uninformed prior is used, when a new topic
is sampled, all tokens are equiprobable.

3.2 Sampling Topic Shifts

Sampling the topic shift variable lc,t requires us to
consider merging or splitting segments. We use kc,t
to denote the shared topic indices of all tokens in
turn t of conversation c; Sac,t,x to denote the num-
ber of times speaker ac,t is assigned the topic shift
with value x ∈ {0, 1}; Jxc,s to denote the number of
topics in segment s of conversation c if lc,t = x and
Nx
c,s,j to denote the number of tokens assigned to the

segment-specific topic j when lc,t = x.4 Again, the
superscript −c,t is used to denote exclusion of turn t
of conversation c in the corresponding counts.

Recall that the topic shift is a binary variable. We
use 0 to represent the case that the topic distribution
is identical to the previous turn. We sample this
assignment P (lc,t = 0 | l−c,t,w,k,a, ∗) ∝

S−c,tac,t,0
+ γ

S−c,tac,t,· + 2γ
×
α
J0
c,st
c

∏J0
c,st
j=1 (N0

c,st,j − 1)!∏N0
c,st,·

x=1 (x− 1 + αc)
. (3)

4Deterministically knowing the path assignments is the pri-
mary efficiency motivation for using the minimal path assump-
tion. The alternative is to explicitly sample the path assignments,
which is more complicated (for both notation and computation).
This option is spelled in full detail in the supplementary material.

In Equation 3, the first factor is proportional to the
probability of assigning a topic shift of value 0 to
speaker ac,t and the second factor is proportional to
the joint probability of all topics in segment st of
conversation c when lc,t = 0.

The other alternative is for the topic shift to be
1, which represents the introduction of a new distri-
bution over topics inside an existing segment. We
sample this as P (lc,t = 1 | l−c,t,w,k,a, ∗) ∝

S−c,tac,t,1
+ γ

S−c,tac,t,· + 2γ
×

α
J1
c,(st−1)
c

∏J1
c,(st−1)

j=1 (N1
c,(st−1),j − 1)!∏N1

c,(st−1),·
x=1 (x− 1 + αc)

α
J1
c,st
c

∏J1
c,st
j=1 (N1

c,stj − 1)!∏N1
c,st,·

x=1 (x− 1 + αc)

 . (4)

As above, the first factor in Equation 4 is propor-
tional to the probability of assigning a topic shift of
value 1 to speaker ac,t; the second factor in the big
bracket is proportional to the joint distribution of the
topics in segments st − 1 and st. In this case lc,t = 1
means splitting the current segment, which results in
two joint probabilities for two segments.

4 Datasets

This section introduces the three corpora we use. We
preprocess the data to remove stopwords and remove
turns containing fewer than five tokens.

The ICSI Meeting Corpus: The ICSI Meeting
Corpus (Janin et al., 2003) is 75 transcribed meetings.
For evaluation, we used a standard set of reference
segmentations (Galley et al., 2003) of 25 meetings.
Segmentations are binary, i.e., each point of the doc-
ument is either a segment boundary or not, and on
average each meeting has 8 segment boundaries. Af-
ter preprocessing, there are 60 unique speakers and
the vocabulary contains 3346 non-stopword tokens.

The 2008 Presidential Election Debates Our sec-
ond dataset contains three annotated presidential de-
bates (Boydstun et al., 2011) between Barack Obama
and John McCain and a vice presidential debate be-
tween Joe Biden and Sarah Palin. Each turn is one
of two types: questions (Q) from the moderator or
responses (R) from a candidate. Each clause in a
turn is coded with a Question Topic (TQ) and a Re-
sponse Topic (TR). Thus, a turn has a list of TQ’s and
TR’s both of length equal to the number of clauses in
the turn. Topics are from the Policy Agendas Topics
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Speaker Type Turn clauses TQ TR

Brokaw Q Sen. Obama, [. . . ] Are you saying [. . . ] that the American economy is going to get much worse
before it gets better and they ought to be prepared for that?

1 N/A

Obama R
No, I am confident about the American economy. 1 1
[. . . ] But most importantly, we’re going to have to help ordinary families be able to stay in their
homes, make sure that they can pay their bills [. . . ]

1 14

Brokaw Q Sen. McCain, in all candor, do you think the economy is going to get worse before it gets better? 1 N/A

McCain R
[. . . ] I think if we act effectively, if we stabilize the housing market–which I believe we can, 1 14
if we go out and buy up these bad loans, so that people can have a new mortgage at the new value
of their home

1 14

I think if we get rid of the cronyism and special interest influence in Washington so we can act
more effectively. [. . . ]

1 20

Table 1: Example turns from the annotated 2008 election debates. The topics (TQ and TR) are from the Policy
Agendas Topics Codebook which contains the following codes of topic: Macroeconomics (1), Housing &
Community Development (14), Government Operations (20).

Codebook, a manual inventory of 19 major topics
and 225 subtopics.5 Table 1 shows an example anno-
tation.

To get reference segmentations, we assign each
turn a real value from 0 to 1 indicating how much a
turn changes the topic. For a question-typed turn, the
score is the fraction of clause topics not appearing in
the previous turn; for response-typed turns, the score
is the fraction of clause topics that do not appear in
the corresponding question. This results in a set of
non-binary reference segmentations. For evaluation
metrics that require binary segmentations, we create
a binary segmentation by setting a turn as a segment
boundary if the computed score is 1. This threshold
is chosen to include only true segment boundaries.

CNN’s Crossfire Crossfire was a weekly U.S. tele-
vision “talking heads” program engineered to incite
heated arguments (hence the name). Each episode
features two recurring hosts, two guests, and clips
from the week’s news. Our Crossfire dataset con-
tains 1134 transcribed episodes aired between 2000
and 2004.6 There are 2567 unique speakers. Unlike
the previous two datasets, Crossfire does not have
explicit topic segmentations, so we use it to explore
speaker-specific characteristics (Section 6).

5 Topic Segmentation Experiments

In this section, we examine how well SITS can repli-
cate annotations of when new topics are introduced.

5 http://www.policyagendas.org/page/topic-codebook
6 http://www.cs.umd.edu/∼vietan/topicshift/crossfire.zip

We discuss metrics for evaluating an algorithm’s seg-
mentation against a gold annotation, describe our
experimental setup, and report those results.

Evaluation Metrics To evaluate segmentations,
we use Pk (Beeferman et al., 1999) and WindowDiff
(WD) (Pevzner and Hearst, 2002). Both metrics mea-
sure the probability that two points in a document
will be incorrectly separated by a segment boundary.
Both techniques consider all spans of length k in the
document and count whether the two endpoints of
the window are (im)properly segmented against the
gold segmentation.

However, these metrics have drawbacks. First,
they require both hypothesized and reference seg-
mentations to be binary. Many algorithms (e.g., prob-
abilistic approaches) give non-binary segmentations
where candidate boundaries have real-valued scores
(e.g., probability or confidence). Thus, evaluation
requires arbitrary thresholding to binarize soft scores.
To be fair, thresholds are set so the number of seg-
ments are equal to a predefined value (Purver et al.,
2006; Galley et al., 2003).

To overcome these limitations, we also use Earth
Mover’s Distance (EMD) (Rubner et al., 2000), a
metric that measures the distance between two distri-
butions. The EMD is the minimal cost to transform
one distribution into the other. Each segmentation
can be considered a multi-dimensional distribution
where each candidate boundary is a dimension. In
EMD, a distance function across features allows par-
tial credit for “near miss” segment boundaries. In
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addition, because EMD operates on distributions, we
can compute the distance between non-binary hy-
pothesized segmentations with binary or real-valued
reference segmentations. We use the FastEMD im-
plementation (Pele and Werman, 2009).

Experimental Methods We applied the following
methods to discover topic segmentations in a docu-
ment:
• TextTiling (Hearst, 1997) is one of the earliest general-

purpose topic segmentation algorithms, sliding a fixed-
width window to detect major changes in lexical similarity.

• P-NoSpeaker-S: parametric version without speaker iden-
tity run on each conversation (Purver et al., 2006)

• P-NoSpeaker-M: parametric version without speaker
identity run on all conversations

• P-SITS: the parametric version of SITS with speaker iden-
tity run on all conversations

• NP-HMM: the HMM-based nonparametric model which
a single topic per turn. This model can be considered a
Sticky HDP-HMM (Fox et al., 2008) with speaker identity.

• NP-SITS: the nonparametric version of SITS with speaker
identity run on all conversations.

Parameter Settings and Implementations In our
experiment, all parameters of TextTiling are the
same as in (Hearst, 1997). For statistical models,
Gibbs sampling with 10 randomly initialized chains
is used. Initial hyperparameter values are sampled
from U(0, 1) to favor sparsity; statistics are collected
after 500 burn-in iterations with a lag of 25 itera-
tions over a total of 5000 iterations; and slice sam-
pling (Neal, 2003) optimizes hyperparameters.

Results and Analysis Table 2 shows the perfor-
mance of various models on the topic segmentation
problem, using the ICSI corpus and the 2008 debates.

Consistent with previous results, probabilistic
models outperform TextTiling. In addition, among
the probabilistic models, the models that had access
to speaker information consistently segment better
than those lacking such information, supporting our
assertion that there is benefit to modeling conversa-
tion as a social process. Furthermore, NP-SITS out-
performs NP-HMM in both experiments, suggesting
that using a distribution over topics to turns is bet-
ter than using a single topic. This is consistent with
parametric results reported in (Purver et al., 2006).

The contribution of speaker identity seems more
valuable in the debate setting. Debates are character-
ized by strong rewards for setting the agenda; dodg-
ing a question or moving the debate toward an oppo-

nent’s weakness can be useful strategies (Boydstun
et al., 2011). In contrast, meetings (particularly low-
stakes ICSI meetings) are characterized by pragmatic
rather than strategic topic shifts. Second, agenda-
setting roles are clearer in formal debates; a modera-
tor is tasked with setting the agenda and ensuring the
conversation does not wander too much.

The nonparametric model does best on the smaller
debate dataset. We suspect that an evaluation that
directly accessed the topic quality, either via predic-
tion (Teh et al., 2006) or interpretability (Chang et al.,
2009) would favor the nonparametric model more.

6 Evaluating Topic Shift Tendency

In this section, we focus on the ability of SITS to
capture speaker-level attributes. Recall that SITS
associates with each speaker a topic shift tendency
π that represents the probability of asserting a new
topic in the conversation. While topic segmentation
is a well studied problem, there are no established
quantitative measurements of an individual’s ability
to control a conversation. To evaluate whether the
tendency is capturing meaningful characteristics of
speakers, we compare our inferred tendencies against
insights from political science.

2008 Elections To obtain a posterior estimate of π
(Figure 3) we create 10 chains with hyperparameters
sampled from the uniform distribution U(0, 1) and
averaged π over 10 chains (as described in Section 5).
In these debates, Ifill is the moderator of the debate
between Biden and Palin; Brokaw, Lehrer and Schief-
fer are the three moderators of three debates between
Obama and McCain. Here “Question” denotes ques-
tions from audiences in “town hall” debate. The role
of this “speaker” can be considered equivalent to the
debate moderator.

The topic shift tendencies of moderators are
much higher than for candidates. In the three de-
bates between Obama and McCain, the moderators—
Brokaw, Lehrer and Schieffer—have significantly
higher scores than both candidates. This is a useful
reality check, since in a debate the moderators are
the ones asking questions and literally controlling the
topical focus. Interestingly, in the vice-presidential
debate, the score of moderator Ifill is only slightly
higher than those of Palin and Biden; this is consis-
tent with media commentary characterizing her as a
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Model EMD Pk WindowDiff
k = 5 10 15 k = 5 10 15

IC
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TextTiling 2.507 .289 .388 .451 .318 .477 .561
P-NoSpeaker-S 1.949 .222 .283 .342 .269 .393 .485
P-NoSpeaker-M 1.935 .207 .279 .335 .253 .371 .468
P-SITS 1.807 .211 .251 .289 .256 .363 .434
NP-HMM 2.189 .232 .257 .263 .267 .377 .444
NP-SITS 2.126 .228 .253 .259 .262 .372 .440

D
eb
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es
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as
et TextTiling 2.821 .433 .548 .633 .534 .674 .760

P-NoSpeaker-S 2.822 .426 .543 .653 .482 .650 .756
P-NoSpeaker-M 2.712 .411 .522 .589 .479 .644 .745
P-SITS 2.269 .380 .405 .402 .482 .625 .719
NP-HMM 2.132 .362 .348 .323 .486 .629 .723
NP-SITS 1.813 .332 .269 .231 .470 .600 .692

Table 2: Results on the topic segmentation task.
Lower is better. The parameter k is the window
size of the metrics Pk and WindowDiff chosen to
replicate previous results.
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Table 3: Topic shift tendency π of speakers in the
2008 Presidential Election Debates (larger means
greater tendency)

weak moderator.7 Similarly, the “Question” speaker
had a relatively high variance, consistent with an
amalgamation of many distinct speakers.

These topic shift tendencies suggest that all can-
didates manage to succeed at some points in setting
and controlling the debate topics. Our model gives
Obama a slightly higher score than McCain, consis-
tent with social science claims (Boydstun et al., 2011)
that Obama had the lead in setting the agenda over
McCain. Table 4 shows of SITS-detected topic shifts.

Crossfire Crossfire, unlike the debates, has many
speakers. This allows us to examine more closely
what we can learn about speakers’ topic shift ten-
dency. We verified that SITS can segment topics,
and assuming that changing the topic is useful for a
speaker, how can we characterize who does so effec-
tively? We examine the relationship between topic
shift tendency, social roles, and political ideology.

To focus on frequent speakers, we filter out speak-
ers with fewer than 30 turns. Most speakers have
relatively small π, with the mode around 0.3. There
are, however, speakers with very high topic shift
tendencies. Table 5 shows the speakers having the
highest values according to SITS.

We find that there are three general patterns for
who influences the course of a conversation in Cross-
fire. First, there are structural “speakers” the show
uses to frame and propose new topics. These are

7 http://harpers.org/archive/2008/10/hbc-90003659

audience questions, news clips (e.g. many of Gore’s
and Bush’s turns from 2000), and voice overs. That
SITS is able to recover these is reassuring. Second,
the stable of regular hosts receives high topic shift
tendencies, which is reasonable given their experi-
ence with the format and ostensible moderation roles
(in practice they also stoke lively discussion).

The remaining class is more interesting. The re-
maining non-hosts with high topic shift tendency are
relative moderates on the political spectrum:
• John Kasich, one of few Republicans to support the assault

weapons ban and now governor of Ohio, a swing state
• Christine Todd Whitman, former Republican governor of

New Jersey, a very Democratic state
• John McCain, who before 2008 was known as a “maverick”

for working with Democrats (e.g. Russ Feingold)

This suggests that, despite Crossfire’s tendency to
create highly partisan debates, those who are able to
work across the political spectrum may best be able
to influence the topic under discussion in highly po-
larized contexts. Table 4 shows detected topic shifts
from these speakers; two of these examples (McCain
and Whitman) show disagreement of Republicans
with President Bush. In the other, Kasich is defend-
ing a Republican plan (school vouchers) popular with
traditional Democratic constituencies.

7 Related and Future Work

In the realm of statistical models, a number of tech-
niques incorporate social connections and identity to
explain content in social networks (Chang and Blei,
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Previous turn Turn detected as shifting topic
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PALIN: Your question to him was whether he sup-
ported gay marriage and my answer is the same as
his and it is that I do not.

IFILL: Wonderful. You agree. On that note, let’s move to foreign policy. You
both have sons who are in Iraq or on their way to Iraq. You, Governor Palin,
have said that you would like to see a real clear plan for an exit strategy. [. . . ]

MCCAIN: I think that Joe Biden is qualified in
many respects. . . .

SCHIEFFER: [. . . ] Let’s talk about energy and climate control. Every president
since Nixon has said what both of you [. . . ]

IFILL: So, Governor, as vice president, there’s
nothing that you have promised [. . . ] that you
wouldn’t take off the table because of this finan-
cial crisis we’re in?

BIDEN: Again, let me–let’s talk about those tax breaks. [Obama] voted for an
energy bill because, for the first time, it had real support for alternative energy.
[. . . ] on eliminating the tax breaks for the oil companies, Barack Obama voted
to eliminate them. [. . . ]
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et

PRESS: But what do you say, governor, to Gov-
ernor Bush and [. . . ] your party who would let
politicians and not medical scientists decide what
drugs are distributed [. . . ]

WHITMAN: Well I disagree with them on this particular issues [. . . ] that’s
important to me that George Bush stands for education of our children [. . . ] I
care about tax policy, I care about the environment. I care about all the issues
where he has a proven record in Texas [. . . ]

WEXLER: [. . . ] They need a Medicare prescrip-
tion drug plan [. . . ] Talk about schools, [. . . ] Al
Gore has got a real plan. George Bush offers us
vouchers. Talk about the environment. [. . . ] Al
Gore is right on in terms of the majority of Ameri-
cans, but George Bush [. . . ]

KASICH: [. . . ] I want to talk about choice. [. . . ] George Bush believes that, if
schools fail, parents ought to have a right to get their kids out of those schools
and give them a chance and an opportunity for success. Gore says “no way” [. . . ]
Social Security. George Bush says [. . . ] direct it the way federal employees do
[. . . ] Al Gore says “No way” [. . . ] That’s real choice. That’s real bottom-up,
not a bureaucratic approach, the way we run this country.

PRESS: Senator, Senator Breaux mentioned that
it’s President Bush’s aim to start on education [. . . ]
[McCain] [. . . ] said he was going to do introduce
the legislation the first day of the first week of the
new administration. [. . . ]

MCCAIN: After one of closest elections in our nation’s history, there is one
thing the American people are unanimous about They want their government
back. We can do that by ridding politics of large, unregulated contributions that
give special interests a seat at the table while average Americans are stuck in the
back of the room.

Table 4: Example of turns designated as a topic shift by SITS. Turns were chosen with speakers to give
examples of those with high topic shift tendency π.

Rank Speaker π Rank Speaker π

1 Announcer .884 10 Kasich .570
2 Male .876 11 Carville† .550
3 Question .755 12 Carlson† .550
4 G. W. Bush‡ .751 13 Begala† .545
5 Press† .651 14 Whitman .533
6 Female .650 15 McAuliffe .529
7 Gore‡ .650 16 Matalin† .527
8 Narrator .642 17 McCain .524
9 Novak† .587 18 Fleischer .522

Table 5: Top speakers by topic shift tendencies. We
mark hosts (†) and “speakers” who often (but not al-
ways) appeared in clips (‡). Apart from those groups,
speakers with the highest tendency were political
moderates.

2009) and scientific corpora (Rosen-Zvi et al., 2004).
However, these models ignore the temporal evolution
of content, treating documents as static.

Models that do investigate the evolution of topics
over time typically ignore the identify of the speaker.
For example: models having sticky topics over n-
grams (Johnson, 2010), sticky HDP-HMM (Fox et al.,
2008); models that are an amalgam of sequential
models and topic models (Griffiths et al., 2005; Wal-

lach, 2006; Gruber et al., 2007; Ahmed and Xing,
2008; Boyd-Graber and Blei, 2008; Du et al., 2010);
or explicit models of time or other relevant features
as a distinct latent variable (Wang and McCallum,
2006; Eisenstein et al., 2010).

In contrast, SITS jointly models topic and individ-
uals’ tendency to control a conversation. Not only
does SITS outperform other models using standard
computational linguistics baselines, but it also pro-
poses intriguing hypotheses for social scientists.

Associating each speaker with a scalar that mod-
els their tendency to change the topic does improve
performance on standard tasks, but it’s inadequate to
fully describe an individual. Modeling individuals’
perspective (Paul and Girju, 2010), “side” (Thomas
et al., 2006), or personal preferences for topics (Grim-
mer, 2009) would enrich the model and better illumi-
nate the interaction of influence and topic.

Statistical analysis of political discourse can help
discover patterns that political scientists, who often
work via a “close reading,” might otherwise miss.
We plan to work with social scientists to validate
our implicit hypothesis that our topic shift tendency
correlates well with intuitive measures of “influence.”
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Abstract

We propose a new approach to characterizing
the timeline of a text: temporal dependency
structures, where all the events of a narrative
are linked via partial ordering relations like BE-
FORE, AFTER, OVERLAP and IDENTITY. We
annotate a corpus of children’s stories with tem-
poral dependency trees, achieving agreement
(Krippendorff’s Alpha) of 0.856 on the event
words, 0.822 on the links between events, and
of 0.700 on the ordering relation labels. We
compare two parsing models for temporal de-
pendency structures, and show that a determin-
istic non-projective dependency parser outper-
forms a graph-based maximum spanning tree
parser, achieving labeled attachment accuracy
of 0.647 and labeled tree edit distance of 0.596.
Our analysis of the dependency parser errors
gives some insights into future research direc-
tions.

1 Introduction

There has been much recent interest in identifying
events, times and their relations along the timeline,
from event and time ordering problems in the Temp-
Eval shared tasks (Verhagen et al., 2007; Verhagen
et al., 2010), to identifying time arguments of event
structures in the Automated Content Extraction pro-
gram (Linguistic Data Consortium, 2005; Gupta and
Ji, 2009), to timestamping event intervals in the
Knowledge Base Population shared task (Artiles et
al., 2011; Amigó et al., 2011).

However, to date, this research has produced frag-
mented document timelines, because only specific
types of temporal relations in specific contexts have

been targeted. For example, the TempEval tasks only
looked at relations between events in the same or ad-
jacent sentences (Verhagen et al., 2007; Verhagen et
al., 2010), and the Automated Content Extraction pro-
gram only looked at time arguments for specific types
of events, like being born or transferring money.

In this article, we propose an approach to temporal
information extraction that identifies a single con-
nected timeline for a text. The temporal language
in a text often fails to specify a total ordering over
all the events, so we annotate the timelines as tem-
poral dependency structures, where each event is a
node in the dependency tree, and each edge between
nodes represents a temporal ordering relation such
as BEFORE, AFTER, OVERLAP or IDENTITY. We
construct an evaluation corpus by annotating such
temporal dependency trees over a set of children’s
stories. We then demonstrate how to train a time-
line extraction system based on dependency parsing
techniques instead of the pair-wise classification ap-
proaches typical of prior work.

The main contributions of this article are:

• We propose a new approach to characterizing
temporal structure via dependency trees.

• We produce an annotated corpus of temporal
dependency trees in children’s stories.

• We design a non-projective dependency parser
for inferring timelines from text.

The following sections first review some relevant
prior work, then describe the corpus annotation and
the dependency parsing algorithm, and finally present
our evaluation results.
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2 Related Work

Much prior work on the annotation of temporal in-
formation has constructed corpora with incomplete
timelines. The TimeBank (Pustejovsky et al., 2003b;
Pustejovsky et al., 2003a) provided a corpus anno-
tated for all events and times, but temporal relations
were only annotated when the relation was judged to
be salient by the annotator. In the TempEval compe-
titions (Verhagen et al., 2007; Verhagen et al., 2010),
annotated texts were provided for a few different
event and time configurations, for example, an event
and a time in the same sentence, or two main-clause
events from adjacent sentences. Bethard et al. (2007)
proposed to annotate temporal relations one syntactic
construction at a time, producing an initial corpus of
only verbal events linked to events in subordinated
clauses. One notable exception to this pattern of
incomplete timelines is the work of Bramsen et al.
(2006) where temporal structures were annotated as
directed acyclic graphs. However they worked on a
much coarser granularity, annotating not the order-
ing between individual events, but between multi-
sentence segments of text.

In part because of the structure of the available
training corpora, most existing temporal informa-
tion extraction models formulate temporal linking
as a pair-wise classification task, where each pair
of events and/or times is examined and classified as
having a temporal relation or not. Early work on the
TimeBank took this approach (Boguraev and Ando,
2005), classifying relations between all events and
times within 64 tokens of each other. Most of the top-
performing systems in the TempEval competitions
also took this pair-wise classification approach for
both event-time and event-event temporal relations
(Bethard and Martin, 2007; Cheng et al., 2007; UzZa-
man and Allen, 2010; Llorens et al., 2010). Systems
have also tried to take advantage of more global in-
formation to ensure that the pair-wise classifications
satisfy temporal logic transitivity constraints, using
frameworks such as integer linear programming and
Markov logic networks (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Yoshikawa et al., 2009; Uz-
Zaman and Allen, 2010). Yet the basic approach is
still centered around pair-wise classifications, not the
complete temporal structure of a document.

Our work builds upon this prior research, both

improving the annotation approach to generate the
fully connected timeline of a story, and improving
the models for timeline extraction using dependency
parsing techniques. We use the annotation scheme
introduced in more detail in Bethard et. al. (2012),
which proposes to annotate temporal relations as de-
pendency links between head events and dependent
events. This annotation scheme addresses the issues
of incoherent and incomplete annotations by guaran-
teeing that all events in a plot are connected along
a single timeline. These connected timelines allow
us to design new models for timeline extraction in
which we jointly infer the temporal structure of the
text and the labeled temporal relations. We employ
methods from syntactic dependency parsing, adapt-
ing them to our task by including features typical of
temporal relation labeling models.

3 Corpus Annotation

The corpus of stories for children was drawn from the
fables collection of (McIntyre and Lapata, 2009)1 and
annotated as described in (Bethard et al., 2012). In
this section we illustrate the main annotation princi-
ples for coherent temporal annotation. As an example
story, consider:

Two Travellers were on the road together,
when a Bear suddenly appeared on the
scene. Before he observed them, one made
for a tree at the side of the road, and
climbed up into the branches and hid there.
The other was not so nimble as his compan-
ion; and, as he could not escape, he threw
himself on the ground and pretended to be
dead. . . [37.txt]

Figure 1 shows the temporal dependency structure
that we expect our annotators to identify in this story.

The annotators were provided with guidelines both
for which kinds of words should be identified as
events, and for which kinds of events should be
linked by temporal relations. For identifying event
words, the standard TimeML guidelines for anno-
tating events (Pustejovsky et al., 2003a) were aug-
mented with two additional guidelines:

1Data available at http://homepages.inf.ed.ac.
uk/s0233364/McIntyreLapata09/
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Figure 1: Event timeline for the story of the Travellers and the Bear. Nodes are events and edges are temporal relations.
Edges denote temporal relations signaled by linguistic cues in the text. Temporal relations that can be inferred via
transitivity are not shown.

• Skip negated, modal or hypothetical events (e.g.
could not escape, dead in pretended to be dead).

• For phrasal events, select the single word that
best paraphrases the meaning (e.g. in used to
snap the event should be snap, in kept perfectly
still the event should be still).

For identifying the temporal dependencies (i.e. the
ordering relations between event words), the anno-
tators were instructed to link each event in the story
to a single nearby event, similar to what has been
observed in reading comprehension studies (Johnson-
Laird, 1980; Brewer and Lichtenstein, 1982). When
there were several reasonable nearby events to choose
from, the annotators were instructed to choose the
temporal relation that was easiest to infer from the
text (e.g. preferring relations with explicit cue words
like before). A set of six temporal relations was used:
BEFORE, AFTER, INCLUDES, IS-INCLUDED, IDEN-
TITY or OVERLAP.

Two annotators annotated temporal dependency
structures in the first 100 fables of the McIntyre-
Lapata collection and measured inter-annotator agree-
ment by Krippendorff’s Alpha for nominal data (Krip-
pendorff, 2004; Hayes and Krippendorff, 2007). For
the resulting annotated corpus annotators achieved
Alpha of 0.856 on the event words, 0.822 on the links
between events, and of 0.700 on the ordering rela-
tion labels. Thus, we concluded that the temporal
dependency annotation paradigm was reliable, and
the resulting corpus of 100 fables2 could be used to

2Available from http://www.bethard.info/data/
fables-100-temporal-dependency.xml

train a temporal dependency parsing model.

4 Parsing Models

We consider two different approaches to learning a
temporal dependency parser: a shift-reduce model
(Nivre, 2008) and a graph-based model (McDonald
et al., 2005). Both models take as input a sequence
of event words and produce as output a tree structure
where the events are linked via temporal relations.
Formally, a parsing model is a function (W → Π)
where W = w1w2 . . . wn is a sequence of event
words, and π ∈ Π is a dependency tree π = (V,E)
where:

• V = W ∪ {Root}, that is, the vertex set of the
graph is the set of words in W plus an artificial
root node.

• E = {(wh, r, wd) : wh ∈ V,wd ∈ V, r ∈ R =
{BEFORE, AFTER, INCLUDES, IS INCLUDED,
IDENTITY, OVERLAP}}, that is, in the edge set
of the graph, each edge is a link between a de-
pendent word and its head word, labeled with a
temporal relation.

• (wh, r, wd) ∈ E =⇒ wd 6= Root, that is, the
artificial root node has no head.

• (wh, r, wd) ∈ E =⇒ ((w′h, r
′, wd) ∈ E =⇒

wh = w′h∧ r = r′), that is, for every node there
is at most one head and one relation label.

• E contains no (non-empty) subset of arcs
(wh, ri, wi), (wi, rj , wj), . . . , (wk, rl, wh), that
is, there are no cycles in the graph.
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SHIFT Move all of L2 and the head of Q onto L1

([a1 . . . ai], [b1 . . . bj ], [wkwk+1 . . .], E) → ([a1 . . . aib1 . . . bjwk], [], [wk+1 . . .], E)
NO-ARC Move the head of L1 to the head of L2

([a1 . . . aiai+1], [b1 . . . bj ], Q,E) → ([a1 . . . ai], [ai+1b1 . . . bj ], Q,E)
LEFT-ARC Create a relation where the head of L1 depends on the head of Q

Not applicable if ai+1 is the root or already has a head, or if there is a path connecting wk and ai+1

([a1 . . . aiai+1], [b1 . . . bj ], [wk . . .], E) → ([a1 . . . ai], [ai+1b1 . . . bj ], [wk . . .], E ∪ (wk, r, ai+1)
RIGHT-ARC Create a relation where the head of Q depends on the head of L1

Not applicable if wk is the root or already has a head, or if there is a path connecting wk and ai+1

([a1 . . . aiai+1], [b1 . . . bj ], [wk . . .], E) → ([a1 . . . ai], [ai+1b1 . . . bj ], [wk . . .], E ∪ (ai+1, r, wk)

Table 1: Transition system for Covington-style shift-reduce dependency parsers.

4.1 Shift-Reduce Parsing Model

Shift-reduce dependency parsers start with an input
queue of unlinked words, and link them into a tree
by repeatedly choosing and performing actions like
shifting a node to a stack, or popping two nodes from
the stack and linking them. Shift-reduce parsers are
typically defined in terms of configurations and a tran-
sition system, where the configurations describe the
current internal state of the parser, and the transition
system describes how to get from one state to another.
Formally, a deterministic shift-reduce dependency
parser is defined as (C, T,CF , INIT, TREE) where:

• C is the set of possible parser configurations ci

• T ⊆ (C → C) is the set of transitions ti from
one configuration cj to another cj+1 allowed by
the parser

• INIT ∈ (W → C) is a function from the input
words to an initial parser configuration

• CF ⊆ C are the set of final parser configura-
tions cF where the parser is allowed to terminate

• TREE ∈ (CF → Π) is a function that extracts a
dependency tree π from a final parser state cF

Given this formalism and an oracle o ∈ (C → T ),
which can choose a transition given the current con-
figuration of the parser, dependency parsing can be
accomplished by Algorithm 1. For temporal depen-
dency parsing, we adopt the Covington set of transi-
tions (Covington, 2001) as it allows for parsing the
non-projective trees, which may also contain “cross-
ing” edges, that occasionally occur in our annotated
corpus. Our parser is therefore defined as:

Algorithm 1 Deterministic parsing with an oracle.
c← INIT(W )
while c /∈ CF do
t← o(c)
c← t(c)

end while
return TREE(c)

• c = (L1, L2, Q,E) is a parser configuration,
where L1 and L2 are lists for temporary storage,
Q is the queue of input words, and E is the set
of identified edges of the dependency tree.

• T = {SHIFT,NO-ARC,LEFT-ARC,RIGHT-ARC}
is the set of transitions described in Table 1.

• INIT(W ) = ([Root], [], [w1, w2, . . . , wn], ∅)
puts all input words on the queue and the ar-
tificial root on L1.

• CF = {(L1, L2, Q,E) ∈ C : L1 = {W ∪
{Root}}, L2 = Q = ∅} accepts final states
where the input words have been moved off of
the queue and lists and into the edges in E.

• TREE((L1, L2, Q,E)) = (W ∪{Root}, E) ex-
tracts the final dependency tree.

The oracle o is typically defined as a machine learn-
ing classifier, which characterizes a parser configu-
ration c in terms of a set of features. For temporal
dependency parsing, we learn a Support Vector Ma-
chine classifier (Yamada and Matsumoto, 2003) using
the features described in Section 5.

4.2 Graph-Based Parsing Model
One shortcoming of the shift-reduce dependency
parsing approach is that each transition decision
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Figure 2: A setting for the graph-based parsing model: an initial dense graph G (left) with edge scores SCORE(e). The
resulting dependency tree as a spanning tree with the highest score over the edges (right).

made by the model is final, and cannot be revisited to
search for more globally optimal trees. Graph-based
models are an alternative dependency parsing model,
which assembles a graph with weighted edges be-
tween all pairs of words, and selects the tree-shaped
subset of this graph that gives the highest total score
(Fig. 2). Formally, a graph-based parser follows
Algorithm 2, where:

• W ′ = W ∪ {Root}

• SCORE ∈ ((W ′×R×W ) → <) is a function
for scoring edges

• SPANNINGTREE is a function for selecting a
subset of edges that is a tree that spans over all
the nodes of the graph.

Algorithm 2 Graph-based dependency parsing
E ← {(e, SCORE(e)) : e ∈ (W ′×R×W ))}
G← (W ′, E)
return SPANNINGTREE(G)

The SPANNINGTREE function is usually defined
using one of the efficient search techniques for find-
ing a maximum spanning tree. For temporal depen-
dency parsing, we use the Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) which
solves this problem by iteratively selecting the edge
with the highest weight and removing edges that
would create cycles. The result is the globally op-
timal maximum spanning tree for the graph (Geor-
giadis, 2003).

The SCORE function is typically defined as a ma-
chine learning model that scores an edge based on a
set of features. For temporal dependency parsing, we
learn a model to predict edge scores via the Margin
Infused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003; Crammer et al., 2006) using the set of
features defined in Section 5.

5 Feature Design

The proposed parsing algorithms both rely on ma-
chine learning methods. The shift-reduce parser
(SRP) trains a machine learning classifier as the or-
acle o ∈ (C → T ) to predict a transition t from a
parser configuration c = (L1, L2, Q,E), using node
features such as the heads of L1, L2 and Q, and
edge features from the already predicted temporal
relations in E. The graph-based maximum spanning
tree (MST) parser trains a machine learning model
to predict SCORE(e) for an edge e = (wi, rj , wk),
using features of the nodes wi and wk. The full set
of features proposed for both parsing models, de-
rived from the state-of-the-art systems for temporal
relation labeling, is presented in Table 2. Note that
both models share features that look at the nodes,
while only the shift-reduce parser has features for
previously classified edges.

6 Evaluations

Evaluations were performed using 10-fold cross-
validation on the fables annotated in Section 3. The
corpus contains 100 fables, a total of 14,279 tokens
and a total of 1136 annotated temporal relations. As
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Feature SRP MST
Word

√∗ √∗

Lemma
√∗ √∗

Part of speech (POS) tag
√∗ √∗

Suffixes
√∗ √∗

Syntactically governing verb
√∗ √∗

Governing verb lemma
√∗ √∗

Governing verb POS tag
√∗ √∗

Governing verb POS suffixes
√∗ √∗

Prepositional phrase occurrence
√∗ √∗

Dominated by auxiliary verb?
√∗ √∗

Dominated by modal verb?
√∗ √∗

Temporal signal word is nearby?
√∗ √∗

Head word lemma
√∗ √∗

Temporal relation labels of ai and its
leftmost and rightmost dependents

√

Temporal relation labels of ai−1’s
leftmost and rightmost dependents

√

Temporal relation labels of b1 and its
leftmost and rightmost dependents

√

Table 2: Features for the shift-reduce parser (SRP) and the
graph-based maximum spanning tree (MST) parser. The√∗ features are extracted from the heads of L1, L2 and Q
for SRP and from each node of the edge for MST.

only 40 instances of OVERLAP relations were an-
notated when neither INCLUDES nor IS INCLUDED

label matched, for evaluation purposes all instances
of these relations were merged into the temporally
coarse OVERLAP relation. Thus, the total number of
OVERLAP relations in the corpus grew from 40 to
258 annotations in total.

To evaluate the parsing models (SRP and MST)
we proposed two baselines. Both are based on the
assumption of linear temporal structures of narratives
as the temporal ordering process that was evidenced
by studies in human text rewriting (Hickmann, 2003).
The proposed baselines are:

• LinearSeq: A model that assumes all events
occur in the order they are written, adding links
between each pair of adjacent events, and label-
ing all links with the relation BEFORE.

• ClassifySeq: A model that links each pair of
adjacent events, but trains a pair-wise classifier
to predict the relation label for each pair. The

classifier is a support vector machine trained us-
ing the same features as the MST parser. This is
an approximation of prior work, where the pairs
of events to classify with a temporal relation
were given as an input to the system. (Note that
Section 6.2 will show that for our corpus, apply-
ing the model only to adjacent pairs of events
is quite competitive for just getting the basic
unlabeled link structure right.)

The Shift-Reduce parser (SRP; Section 4.1) and the
graph-based, maximum spanning tree parser (MST;
Section 4.2) are compared to these baselines.

6.1 Evaluation Criteria and Metrics

Model performance was evaluated using standard
evaluation criteria for parser evaluations:

Unlabeled Attachment Score (UAS) The fraction
of events whose head events were correctly predicted.
This measures whether the correct pairs of events
were linked, but not if they were linked by the correct
relations.

Labeled Attachment Score (LAS) The fraction
of events whose head events were correctly pre-
dicted with the correct relations. This measures both
whether the correct pairs of events were linked and
whether their temporal ordering is correct.

Tree Edit Distance In addition to the UAS and
LAS the tree edit distance score has been recently in-
troduced for evaluating dependency structures (Tsar-
faty et al., 2011). The tree edit distance score
for a tree π is based on the following operations
λ ∈ Λ : Λ = {DELETE, INSERT, RELABEL}:

• λ =DELETE delete a non-root node v in π with
parent u, making the children of v the children
of u, inserted in the place of v as a subsequence
in the left-to-right order of the children of u.

• λ =INSERT insert a node v as a child of u in
π making it the parent of a consecutive subse-
quence of the children of u.

• λ =RELABEL change the label of node v in π

Any two trees π1 and π2 can be turned one into an-
other by a sequence of edit operations {λ1, ..., λn}.
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UAS LAS UTEDS LTEDS
LinearSeq 0.830 0.581 0.689 0.549
ClassifySeq 0.830 0.581 0.689 0.549
MST 0.837 0.614∗ 0.710 0.571
SRP 0.830 0.647∗† 0.712 0.596∗

Table 3: Performance levels of temporal structure pars-
ing methods. A ∗ indicates that the model outperforms
LinearSeq and ClassifiedSeq at p < 0.01 and a † indicates
that the model outperforms MST at p < 0.05.

Taking the shortest such sequence, the tree edit dis-
tance is calculated as the sum of the edit operation
costs divided by the size of the tree (i.e. the number
of words in the sentence). For temporal dependency
trees, we assume each operation costs 1.0. The fi-
nal score subtracts the edit distance from 1 so that
a perfect tree has score 1.0. The labeled tree edit
distance score (LTEDS) calculates sequences over
the tree with all its labeled temporal relations, while
the unlabeled tree edit distance score (UTEDS) treats
all edges as if they had the same label.

6.2 Results

Table 3 shows the results of the evaluation. The
unlabeled attachment score for the LinearSeq base-
line was 0.830, suggesting that annotators were most
often linking adjacent events. At the same time,
the labeled attachment score was 0.581, indicating
that even in fables, the stories are not simply linear,
that is, there are many relations other than BEFORE.
The ClassifySeq baseline performs identically to the
LinearSeq baseline, which shows that the simple pair-
wise classifier was unable to learn anything beyond
predicting all relations as BEFORE.

In terms of labeled attachment score, both de-
pendency parsing models outperformed the base-
line models – the maximum spanning tree parser
achieved 0.614 LAS, and the shift-reduce parser
achieved 0.647 LAS. The shift-reduce parser also
outperformed the baseline models in terms of labeled
tree edit distance, achieving 0.596 LTEDS vs. the
baseline 0.549 LTEDS. These results indicate that de-
pendency parsing models are a good fit to our whole-
story timeline extraction task.

Finally, in comparing the two different depen-
dency parsing models, we observe that the shift-
reduce parser outperforms the maximum spanning

Error Type Num. %
OVERLAP→ BEFORE 24 43.7
Attach to further head 18 32.7
Attach to nearer head 6 11.0
Other types of errors 7 12.6

Total 55 100

Table 4: Error distribution from the analysis of 55 errors
of the Shift-Reduce parsing model.

tree parser in terms of labeled attachment score
(0.647 vs. 0.614). It has been argued that graph-
based models like the maximum spanning tree parser
should be able to produce more globally consistent
and correct dependency trees, yet we do not observe
that here. A likely explanation for this phenomenon
is that the shift-reduce parsing model allows for fea-
tures describing previous parse decisions (similar to
the incremental nature of human parse decisions),
while the joint nature of the maximum spanning tree
parser does not.

6.3 Error Analysis
To better understand the errors our model is still mak-
ing, we examined two folds (55 errors in total in
20% of the evaluation data) and identified the major
categories of errors:

• OVERLAP→ BEFORE: The model predicts the
correct head, but predicts its label as BEFORE,
while the correct label is OVERLAP.

• Attach to further head: The model predicts
the wrong head, and predicts as the head an
event that is further away than the true head.

• Attach to nearer head: The model predicts the
wrong head, and predicts as the head an event
that is closer than the true head.

Table 4 shows the distribution of the errors over these
categories. The two most common types of errors,
OVERLAP → BEFORE and Attach to further head,
account for 76.4% of all the errors.

The most common type of error is predicting
a BEFORE relation when the correct answer is an
OVERLAP relation. Figure 3 shows an example of
such an error, where the model predicts that the
Spendthrift stood before he saw, while the anno-
tator indicates that the seeing happened during the
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Figure 3: An OVERLAP → BEFORE parser error. True
links are solid lines; the parser error is the dotted line.

Figure 4: Parser errors attaching to further away heads.
True links are solid lines; parser errors are dotted lines.

time in which he was standing. An analysis of these
OVERLAP→ BEFORE errors suggests that they occur
in scenarios like this one, where the duration of one
event is significantly longer than the duration of an-
other, but there are no direct cues for these duration
differences. We also observe these types of errors
when one event has many sub-events, and therefore
the duration of the main event typically includes the
durations of all the sub-events. It might be possible
to address these kinds of errors by incorporating auto-
matically extracted event duration information (Pan
et al., 2006; Gusev et al., 2011).

The second most common error type of the model
is the prediction of a head event that is further away
than the head identified by the annotators. Figure 4
gives an example of such an error, where the model
predicts that the gathering includes the smarting, in-
stead of that the gathering includes the stung. The
second error in the figure is also of the same type.
In 65% of the cases where this type of error occurs,
it occurs after the parser had already made a label
classification error such as BEFORE → OVERLAP.
So these errors may be in part due to the sequen-
tial nature of shift-reduce parsing, where early errors
propagate and cause later errors.

7 Discussion and Conclusions

In this article, we have presented an approach to tem-
poral information extraction that represents the time-

line of a story as a temporal dependency tree. We
have constructed an evaluation corpus where such
temporal dependencies have been annotated over a
set of 100 children’s stories. We have introduced two
dependency parsing techniques for extracting story
timelines and have shown that both outperform a rule-
based baseline and a prior-work-inspired pair-wise
classification baseline. Comparing the two depen-
dency parsing models, we have found that a shift-
reduce parser, which more closely mirrors the incre-
mental processing of our human annotators, outper-
forms a graph-based maximum spanning tree parser.
Our error analysis of the shift-reduce parser revealed
that being able to estimate differences in event dura-
tions may play a key role in improving parse quality.

We have focused on children’s stories in this study,
in part because they typically have simpler temporal
structures (though not so simple that our rule-based
baseline could parse them accurately). In most of our
fables, there were only one or two characters with at
most one or two simultaneous sequences of actions.
In other domains, the timeline of a text is likely to
be more complex. For example, in clinical records,
descriptions of patients may jump back and forth
between the patient history, the current examination,
and procedures that have not yet happened.

In future work, we plan to investigate how to best
apply the dependency structure approach to such
domains. One approach might be to first group
events into their narrative containers (Pustejovsky
and Stubbs, 2011), for example, grouping together all
events linked to the time of a patient’s examination.
Then within each narrative container, our dependency
parsing approach could be applied. Another approach
might be to join the individual timeline trees into a
document-wide tree via discourse relations or rela-
tions to the document creation time. Work on how
humans incrementally process such timelines in text
may help to decide which of these approaches holds
the most promise.
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Castaño, Robert Ingria, Roser Saurý, Robert
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Abstract

Temporal reasoners for document understand-
ing typically assume that a document’s cre-
ation date is known. Algorithms to ground
relative time expressions and order events of-
ten rely on this timestamp to assist the learner.
Unfortunately, the timestamp is not always
known, particularly on the Web. This pa-
per addresses the task of automatic document
timestamping, presenting two new models that
incorporate rich linguistic features about time.
The first is a discriminative classifier with
new features extracted from the text’s time
expressions (e.g., ‘since 1999’). This model
alone improves on previous generative mod-
els by 77%. The second model learns prob-
abilistic constraints between time expressions
and the unknown document time. Imposing
these learned constraints on the discriminative
model further improves its accuracy. Finally,
we present a new experiment design that facil-
itates easier comparison by future work.

1 Introduction

This paper addresses a relatively new task in
the NLP community: automatic document dating.
Given a document with unknown origins, what char-
acteristics of its text indicate the year in which the
document was written? This paper proposes a learn-
ing approach that builds constraints from a docu-
ment’s use of time expressions, and combines them
with a new discriminative classifier that greatly im-
proves previous work.

The temporal reasoning community has long de-
pended on document timestamps to ground rela-

tive time expressions and events (Mani and Wilson,
2000; Llidó et al., 2001). For instance, consider
the following passage from the TimeBank corpus
(Pustejovsky et al., 2003):

And while there was no profit this year from
discontinued operations, last year they con-
tributed 34 million, before tax.

Reconstructing the timeline of events from this doc-
ument requires extensive temporal knowledge, most
notably, the document’s creation date to ground its
relative expressions (e.g., this year = 2012). Not
only did the latest TempEval competitions (Verha-
gen et al., 2007; Verhagen et al., 2009) include
tasks to link events to the (known) document cre-
ation time, but state-of-the-art event-event ordering
algorithms also rely on these timestamps (Chambers
and Jurafsky, 2008; Yoshikawa et al., 2009). This
knowledge is assumed to be available, but unfortu-
nately this is not often the case, particularly on the
Web.

Document timestamps are growing in importance
to the information retrieval (IR) and management
communities as well. Several IR applications de-
pend on knowledge of when documents were posted,
such as computing document relevance (Li and
Croft, 2003; Dakka et al., 2008) and labeling search
queries with temporal profiles (Diaz and Jones,
2004; Zhang et al., 2009). Dating documents is sim-
ilarly important to processing historical and heritage
collections of text. Some of the early work that moti-
vates this paper arose from the goal of automatically
grounding documents in their historical contexts (de
Jong et al., 2005; Kanhabua and Norvag, 2008; Ku-
mar et al., 2011). This paper builds on their work
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by incorporating more linguistic knowledge and ex-
plicit reasoning into the learner.

The first part of this paper describes a novel learn-
ing approach to document dating, presenting a dis-
criminative model and rich linguistic features that
have not been applied to document dating. Further,
we introduce new features specific to absolute time
expressions. Our model outperforms the generative
models of previous work by 77%.

The second half of this paper describes a novel
learning algorithm that orders time expressions
against the unknown timestamp. For instance, the
phrase the second quarter of 1999 might be labeled
as being before the timestamp. These labels impose
constraints on the possible timestamp and narrow
down its range of valid dates. We combine these
constraints with our discriminative learner and see
another relative improvement in accuracy by 9%.

2 Previous Work

Most work on dating documents has come from the
IR and knowledge management communities inter-
ested in dating documents with unknown origins.
de Jong et al. (2005) was among the first to auto-
matically label documents with dates. They learned
unigram language models (LMs) for specific time
periods and scored articles with log-likelihood ra-
tio scores. Kanhabua and Norvag (2008; 2009) ex-
tended this approach with the same model, but ex-
panded its unigrams with POS tags, collocations,
and tf-idf scores. They also integrated search engine
results as features, but did not see an improvement.
Both works evaluated on the news genre.

Recent work by Kumar et al. (2011) focused on
dating Gutenberg short stories. As above, they
learned unigram LMs, but instead measured the KL-
divergence between a document and a time period’s
LM. Our proposed models differ from this work
by applying rich linguistic features, discriminative
models, and by focusing on how time expressions
improve accuracy. We also study the news genre.

The only work we are aware of within the NLP
community is that of Dalli and Wilks (2006). They
computed probability distributions over different
time periods (e.g., months and years) for each ob-
served token. The work is similar to the above IR
work in its bag of words approach to classification.

They focused on finding words that show periodic
spikes (defined by the word’s standard deviation in
its distribution over time), weighted with inverse
document frequency scores. They evaluated on a
subset of the Gigaword Corpus (Graff, 2002).

The experimental setup in the above work (except
Kumar et al. who focus on fiction) all train on news
articles from a particular time period, and test on ar-
ticles in the same time period. This leads to possi-
ble overlap of training and testing data, particularly
since news is often reprinted across agencies the
same day. In fact, one of the systems in Kanhabua
and Norvag (2008) simply searches for one training
document that best matches a test document, and as-
signs its timestamp. We intentionally deviate from
this experimental design and instead create tempo-
rally disjoint train/test sets (see Section 5).

Finally, we extend this previous work by focusing
on aspects of language not yet addressed for docu-
ment dating: linguistic structure and absolute time
expressions. The majority of articles in our dataset
contain time expressions (e.g., the year 1998), yet
these have not been incorporated into the models de-
spite their obvious connection to the article’s times-
tamp. This paper first describes how to include
time expressions as traditional features, and then
describes a more sophisticated temporal reasoning
component that naturally fits into our classifier.

3 Timestamp Classifiers

Labeling documents with timestamps is similar to
topic classification, but instead of choosing from
topics, we choose the most likely year (or other
granularity) in which it was written. We thus begin
with a bag-of-words approach, reproducing the gen-
erative model used by both de Jong (2005) and Kan-
habua and Norvag (2008; 2009). The subsequent
sections then introduce our novel classifiers and
temporal reasoners to compare against this model.

3.1 Language Models

The model of de Jong et al. (2005) uses the nor-
malized log-likelihood ratio (NLLR) to score doc-
uments. It weights tokens by the ratio of their prob-
ability in a specific year to their probability over the
entire corpus. The model thus requires an LM for
each year and an LM for the entire corpus:
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NLLR(D,Y ) =
∑
w∈D

P (w|D) ∗ log(P (w|Y )

P (w|C)
) (1)

where D is the target document, Y is the time span
(e.g., a year), and C is the distribution of words in
the corpus across all years. A document is labeled
with the year that satisfies argmaxYNLLR(D,Y ).
They adapted this model from earlier work in the
IR community (Kraaij, 2004). We apply Dirichlet-
smoothing to the language models (as in de Jong et
al.), although the exact choice of α did not signifi-
cantly alter the results, most likely due to the large
size of our training corpus. Kanhabua and Norvag
added an entropy factor to the summation, but we
did not see an improvement in our experiments.

The unigrams w are lowercased tokens. We will
refer to this de Jong et al. model as the Unigram
NLLR. Follow-up work by Kanhabua and Norvag
(2008) applied two filtering techniques to the uni-
grams in the model:

1. Word Classes: include only nouns, verbs, and
adjectives as labeled by a POS tagger

2. IDF Filter: include only the top-ranked terms
by tf-idf score

We also tested with these filters, choosing a cut-
off for the top-ranked terms that optimized perfor-
mance on our development data. We also stemmed
the words as Kanhabua and Norvag suggest. This
model is the Filtered NLLR.

Kanhabua and Norvag also explored what they
termed collocation features, but lacking details on
how collocations were included (or learned), we
could not reproduce this for comparison. How-
ever, we instead propose using NER labels to ex-
tract what may have counted as collocations in their
data. Named entities are important to document dat-
ing due to the nature of people and places coming in
and out of the news at precise moments in time. We
compare the NER features against the Unigram and
Filtered NLLR models in our final experiments.

3.2 Discriminative Models
In addition to reproducing the models from previous
work, we also trained a new discriminative version
with the same features. We used a MaxEnt model
and evaluated with the same filtering methods based

on POS tags and tf-idf scores. The model performed
best on the development data without any filtering
or stemming. The final results (Section 6) only use
the lowercased unigrams. Ultimately, this MaxEnt
model vastly outperforms these NLLR models.

3.3 Models with Time Expressions

The above language modeling and MaxEnt ap-
proaches are token-based classifiers that one could
apply to any topic classification domain. Barring
other knowledge, the learners solely rely on the ob-
served frequencies of unigrams in order to decide
which class is most likely. However, document dat-
ing is not just a simple topic classification applica-
tion, but rather relates to temporal phenomena that
is often explicitly described in the text itself. Lan-
guage contains words and phrases that discuss the
very time periods we aim to recover. These expres-
sions should be better incorporated into the learner.

3.3.1 Motivation
Let the following snippet serve as a text example

with an ambiguous creation time:

Then there’s the fund-raiser at the American
Museum of Natural History, which plans to
welcome about 1,500 guests paying $1,000 to
$5,000. Their tickets will entitle them to a pre-
view of...the new Hayden Planetarium.

Without extremely detailed knowledge about the
American Museum of Natural History, the events
discussed here are difficult to place in time, let alone
when the author reported it. However, time expres-
sions are sometimes included, and the last sentence
in the original text contains a helpful relative clause:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

This one clause is more valuable than the rest of
the document, allowing us to infer that the docu-
ment’s timestamp is before February, 2000. An ed-
ucated guess might surmise the article appeared in
the year prior, 1999, which is the correct year. At
the very least, this clause should eliminate all years
after 2000 from consideration. Previous work on
document dating does not integrate this information
except to include the unigram ‘2000’ in the model.
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This paper discusses two complementary ways to
learn and reason about this information. The first
is to simply add richer time-based features into the
model. The second is to build separate learners that
can assign probabilities to entire ranges of dates,
such as all years following 2000 in the example
above. We begin with the feature-based model.

3.3.2 Time Features
To our knowledge, the following time features

have not been used in a document dating setting.
We use the freely available Stanford Parser and NER
system1 to generate the syntactic interpretation for
these features. We then train a MaxEnt classifier and
compare against previous work.

Typed Dependency: The most basic time feature is
including governors of year mentions and the rela-
tion between them. This covers important contexts
that determine the semantics of the time frame, like
prepositions. For example, consider the following
context for the mention 1997:

Torre, who watched the Kansas City Royals
beat the Yankees, 13-6, on Friday for the first
time since 1997.

The resulting feature is ‘since pobj 1997’.

Typed Dependency POS: Similar to Typed Depen-
dency, this feature uses POS tags of the dependency
relation’s governor. The feature from the previous
example is now ‘PP pobj 1997’. This generalizes
the features to capture time expressions with prepo-
sitions, as noun modifiers, or other constructs.

Verb Tense: An important syntactic feature for tem-
poral positioning is the tense of the verb that domi-
nates the time expression. A past tense verb situates
the phrase in 2003 differently than one in the future.
We traverse the sentence’s parse tree until a gover-
nor with a VB* tag is found, and determine its tense
through hand constructed rules based on the struc-
ture of the parent VP. The verb tense feature takes a
value of past, present, future, or undetermined.

Verb Path: The verb path feature is the dependency
path from the nearest verb to the year expression.
The following snippet will include the feature, ‘ex-
pected prep in pobj 2002’.

1http://nlp.stanford.edu/software

Finance Article from Jan. 2002

Text Snippet Relation to 2002
...started a hedge fund before the
market peaked in 2000.

before

The peak in economic activity was
the 4th quarter of 1999.

before

...might have difficulty in the latter
part of 2002.

simultaneous

Figure 1: Three year mentions and their relation to the
document creation year. Relations can be correctly iden-
tified for training using known document timestamps.

Supervising them is Vice President Hu Jintao,
who appears to be Jiang’s favored successor if
he retires from leadership as expected in 2002.

Named Entities: Although not directly related to
time expressions, we also include n-grams of tokens
that are labeled by an NER system using Person, Or-
ganization, or Location. People and places are often
discussed during specific time periods, particularly
in the news genre. Collecting named entity mentions
will differentiate between an article discussing a bill
and one discussing the US President, Bill Clinton.
We extract NER features as sequences of uninter-
rupted tokens labeled with the same NER tag, ignor-
ing unigrams (since unigrams are already included
in the base model). Using the Verb Path example
above, the bigram feature Hu Jintao is included.

4 Learning Time Constraints

This section departs from the above document clas-
sifiers and instead classifies individual emphyear
mentions. The goal is to automatically learn tem-
poral constraints on the document’s timestamp.

Instead of predicting a single year for a document,
a temporal constraint predicts a range of years. Each
time mention, such as ‘not since 2009’, is a con-
straint representing its relation to the document’s
timestamp. For example, the mentioned year ‘2009’
must occur before the year of document creation.
This section builds a classifier to label time mentions
with their relations (e.g., before, after, or simultane-
ous with the document’s timestamp), enabling these
mentions to constrain the document classifiers de-
scribed above. Figure 1 gives an example of time
mentions and the desired labels we wish to learn.

To better motivate the need for constraints, let
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Figure 2: Distribution over years for a single document
as output by a MaxEnt classifier.

Figure 2 illustrate a typical distribution output by a
document classifier for a training document. Two
of the years appear likely (1999 and 2001), how-
ever, the document contains a time expression that
seems to impose a strict constraint that should elim-
inate 2001 from consideration:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

The clause until February 2000 in a present tense
context may not definitively identify the document’s
timestamp (1999 is a good guess), but as discussed
earlier, it should remove all future years beyond
2000 from consideration. We thus want to impose
a constraint based on this phrase that says, loosely,
‘this document was likely written before 2000’.

The document classifiers described in previous
sections cannot capture such ordering information.
Our new time features in Section 3.3.2 add richer
time information (such as until pobj 2000 and open
prep until pobj 2000), but they compete with many
other features that can mislead the final classifica-
tion. An independent constraint learner may push
the document classifier in the right direction.

4.1 Constraint Types
We learn several types of constraints between each
year mention and the document’s timestamp. Year
mentions are defined as tokens with exactly four
digits, numerically between 1900 and 2100. Let T
be the document timestamp’s year, and M the year
mention. We define three core relations:

1. Before Timestamp: M < T

2. After Timestamp: M > T

3. Same as Timestamp: M == T

We also experiment with 7 fine-grained relations:

1. One year Before Timestamp: M == T − 1

2. Two years Before Timestamp: M == T − 2

3. Three+ years Before Timestamp: M < T − 2

4. One year After Timestamp: M == T + 1

5. Two years After Timestamp: M == T + 2

6. Three+ years After Timestamp: M > T + 2

7. Same Year and Timestamp: M == T

Obviously the more fine-grained a relation, the bet-
ter it can inform a classifier. We experiment with
these two granularities to compare performance.

The learning process is a typical training envi-
ronment where year mentions are treated as labeled
training examples. Labels for year mentions are
automatically computed by comparing the actual
timestamp of the training document (all documents
in Gigaword have dates) with the integer value of
the year token. For example, a document written in
1997 might contain the phrase, “in the year 2000”.
The year token (2000) is thus three+ years after the
timestamp (1997). We use this relation for the year
mention as a labeled training example.

Ultimately, we want to use similar syntactic con-
structs in training so that “in the year 2000” and “in
the year 2003” mutually inform each other. We thus
compute the label for each time expression, and re-
place the integer year with the generic YEAR token
to generalize mentions. The text for this example be-
comes “in the year YEAR” (labeled as three+ years
after). We train a MaxEnt model on each year men-
tion, to be described next. Table 2 gives the overall
counts for the core relations in our training data. The
vast majority of year mentions are references to the
future (e.g. after the timestamp).

4.2 Constraint Learner

The features we use to classify year mentions are
given in Table 1. The same time features in the docu-
ment classifier of Section 3.3.2 are included, as well
as several others specific to this constraint task.

We use a MaxEnt classifier trained on the individ-
ual year mentions. Documents often contain multi-
ple (and different) year mentions; all are included in
training and testing. This classifier labels mentions
with relations, but in order to influence the document
classifier, we need to map the relations to individual
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Time Constraint Features

Typed Dep. Same as Section 3.3.2
Verb Tense Same as Section 3.3.2
Verb Path Same as Section 3.3.2
Decade The decade of the year mention
Bag of Words Unigrams in the year’s sentence
n-gram The 4-gram and 3-gram that end

with the year
n-gram POS The 4-gram and 3-gram of POS tags

that end with the year

Table 1: Features used to classify year expressions.

Constraint Count
After Timestamp 1,203,010
Before Timestamp 168,185
Same as Timestamp 141,201

Table 2: Training size of year mentions (and their relation
to the document timestamp) in Gigaword’s NYT section.

year predictions. Let Td be the set of mentions in
document d. We represent a MaxEnt classifier by
PY (R|t) for a time mention t ∈ Td and possible re-
lations R. We map this distribution over relations to
a distribution over years by defining Pyear(Y |d):

Pyear(y|d) =
1

Z(Td)

∑
t∈Td

PY (rel(val(t)− y)|t) (2)

rel(x) =

 before if x < 0
after if x > 0

simultaneous otherwise
(3)

where val(t) is the integer year of the year mention
andZ(Td) is the partition function. The rel(val(t)−
y) function simply determines if the year mention t
(e.g., 2003) is before, after, or overlaps the year we
are predicting for the document’s unknown times-
tamp y. We use a similar function for the seven fine-
grained relations. Figure 3 visually illustrates how
Pyear(y|d) is constructed from three year mentions.

4.3 Joint Classifier
Finally, given the document classifiers of Section 3
and the constraint classifier just defined in Section 4,
we create a joint model combining the two with the
following linear interpolation:

P (y|d) = λPdoc(y|d) + (1− λ)Pyear(y|d) (4)

where y is a year, and d is the document. λ was set
to 0.35 by maximizing accuracy on the dev set. See
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Figure 4: Development set accuracy and λ values.

Figure 4. This optimal λ = .35 weights the con-
straint classifier higher than the document classifier.

5 Datasets

This paper uses the New York Times section of the
Gigaword Corpus (Graff, 2002) for evaluation. Most
previous work on document dating evaluates on the
news genre, so we maintain the pattern for consis-
tency. Unfortunately, we cannot compare to these
previous experiments because of differing evalua-
tion setups. Dalli and Wilks (2006) is most similar in
their use of Gigaword, but they chose a random set
of documents that cannot be reproduced. We instead
define specific segments of the corpus for evaluation.

The main goal for this experiment setup was to es-
tablish specific training, development, and test sets.
One of the potential difficulties in testing with news
articles is that the same story is often reprinted with
very minimal (or no) changes. Over 10% of the doc-
uments in the New York Times section of the Giga-
word Corpus are exact or approximate duplicates of
another document in the corpus2. A training set for
document dating must not include duplicates from
the test set.

We adopt the intuition behind the experimen-
tal setup used in other NLP domains, like parsing,
where the entire test set is from a contiguous sec-
tion of the corpus (as opposed to randomly selected
examples across the corpus). As the parsing com-
munity trains on sections 2-21 of the Penn Treebank
(Marcus et al., 1993) and tests on section 23, we cre-
ate Gigaword sections by isolating specific months.

2Approximate duplicate is defined as an article whose first
two sentences exactly match the first two of another article.
Only the second matched document is counted as a duplicate.
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Year Distributions for Three Time Expressions

97 98 99 00 01 02 03 04 0596

PY(y | "peaked in 2000")

PY(y | "was the quarter of 1999")

PY(y | "will have difficulty in part of 2003")

Final Distribution  -  Pyear(y|d)

0.2

0.0
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0.2

0.0

0.2
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Figure 3: Three year mentions in a document and the distributions output by the learner. The document is from 2002.
The dots indicate the before, same, and after relation probabilities. The combination of three constraints results in a
final distribution that gives the years 2001 and 2002 the highest probability. This distribution can help a document
classifier make a more informed final decision.

Training Jan-May and Sep-Dec
Development July
Testing June and August

In other words, the development set includes docu-
ments from July 1995, July 1996, July 1997, etc. We
chose the dev/test sets to be in the middle of the year
so that the training set includes documents on both
temporal sides of the test articles. We include years
1995-2001 and 2004-2006, but skip 2002 and 2003
due to their abnormally small size compared to the
other years.

Finally, we experiment in a balanced data set-
ting, training and testing on the same number
of documents from each year. The test set in-
cludes 11,300 documents in each year (months
June and August) for a total of 113,000 test doc-
uments. The development set includes 7,300
from July of each year. Training includes ap-
proximately 75,000 documents in each year with
some years slightly less than 75,000 due to their
smaller size in the corpus. The total number of
training documents for the 10 evaluated years is
725,468. The full list of documents is online at
www.usna.edu/Users/cs/nchamber/data/timestamp.

6 Experiments and Results

We experiment on the Gigaword corpus as described
in Section 5. Documents are tokenized and parsed
with the Stanford Parser. The year in the times-
tamp is retrieved from the document’s Gigaword ID
which contains the year and day the article was re-

trieved. Year mentions are extracted from docu-
ments by matching all tokens with exactly four digits
whose integer is in the range of 1900 and 2100.

The MaxEnt classifiers are also from the Stanford
toolkit, and both the document and year mention
classifiers use its default settings (quadratic prior).
The λ factor in the joint classifier is optimized on
the development set as described in Section 4.3. We
also found that dev results improved when training
ignores the border months of Jan, Feb, and Dec. The
features described in this paper were selected solely
by studying performance on the development set.
The final reported results come from running on the
test set once at the end of this study.

Table 3 shows the results on the Test set for all
document classifiers. We measure accuracy to com-
pare overall performance since the test set is a bal-
anced set (each year has the same number of test
documents). Unigram NLLR and Filtered NLLR
are the language model implementations of previ-
ous work as described in Section 3.1. MaxEnt Un-
igram is our new discriminative model for this task.
MaxEnt Time is the discriminative model with rich
time features (but not NER) as described in Section
3.3.2 (Time+NER includes NER). Finally, the Joint
model is the combined document and year mention
classifiers as described in Section 4.3. Table 4 shows
the F1 scores of the Joint model by year.

Our new MaxEnt model outperforms previous
work by 55% relative accuracy. Incorporating time
features further improves the relative accuracy by
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Model Overall Accuracy
Random Guess 10.0%
Unigram NLLR 24.1%
Filtered NLLR 29.1%
MaxEnt Unigram 45.1%
MaxEnt Time 48.3%
MaxEnt Time+NER 51.4%
Joint 53.4%

Table 3: Performance as measured by accuracy. The pre-
dicted year must exactly match the actual year.

95 96 97 98 99 00 01 02
P .57 .49 .52 .48 .47 .51 .51 .59
R .54 .56 .62 .44 .48 .48 .46 .57
F1 .55 .52 .57 .46 .48 .49 .48 .58

Table 4: Yearly results for the Joint model. 2005/06 are
omitted due to space, with F1 .56 and .63, respectively.

7%, and adding NER by another 6%. Total relative
improvement in accuracy is thus almost 77% from
the Time+NER model over Filtered NLLR. Further,
the temporal constraint model increases this best
classifier by another 3.9%. All improvements are
statistically significant (p < 0.000001, McNemar’s
test, 2-tailed). Table 6 shows that performance in-
creased most on the documents that contain at least
one year mention (60% of the corpus).

Finally, Table 5 shows the results of the tempo-
ral constraint classifiers on year mentions. Not sur-
prisingly, the fine-grained performance is quite a bit
lower than the core relations. The full Joint results
in Table 3 use the three core relations, but the seven
fine-grained relations give approximately the same
results. Its lower accuracy is mitigated by the finer
granularity (i.e., the majority class basline is lower).

7 Discussion

The main contribution of this paper is the discrimi-
native model (54% improvement) and a new set of

P R F1
Before Timestamp .95 .98 .96
Same as Timestamp .73 .57 .64
After Timestamp .84 .81 .82
Overall Accuracy 92.2%
Fine-Grained Accuracy 70.1%

Table 5: Precision, recall, and F1 for the core relations.
Accuracy for both core and fine-grained.

All With Year Mentions
MaxEnt Unigram 45.1% 46.1%
MaxEnt Time+NER 51.4% 54.3%
Joint 53.4% 57.7%

Table 6: Accuracy on all documents and documents with
at least one year mention (about 60% of the corpus).

features for document dating (14% improvement).
Such a large performance boost makes clear that the
log likelihood and entropy approaches from previ-
ous work are not as effective as discriminative mod-
els on a large training corpus. Further, token-based
features do not capture the implicit references to
time in language. Our richer syntax-based features
only apply to year mentions, but this small textual
phenomena leads to a surprising 13% relative im-
provement in accuracy. Table 6 shows that a signif-
icant chunk of this improvement comes from docu-
ments containing year mentions, as expected.

The year constraint learner also improved perfor-
mance. Although most of its features are in the doc-
ument classifier, by learning constraints it captures a
different picture of time that a traditional document
classifier does not address. Combining this picture
with the document classifier leads to another 3.9%
relative improvement. Although we focused on year
mentions here, there are several avenues for future
study, including explorations of how other types of
time expressions might inform the task. These con-
straints might also have applications to the ordering
tasks of recent TempEval competitions.

Finally, we presented a new evaluation setup for
this task. Previous work depended on having train-
ing documents in the same week and day of the test
documents. We argued that this may not be an ap-
propriate assumption in some domains, and particu-
larly problematic for the news genre. Our proposed
evaluation setup instead separates training and test-
ing data across months. The results show that log-
likelihood ratio scores do not work as well in this
environment. We hope our explicit train/test envi-
ronment encourages future comparison and progress
on document dating.

Acknowledgments

Many thanks to Stephen Guo and Dan Jurafsky for
early ideas and studies on this topic.

105



References

Nathanael Chambers and Dan Jurafsky. 2008. Jointly
combining implicit constraints improves temporal or-
dering. In Proceedings of the Conference on Em-
pirical Methods on Natural Language Processing
(EMNLP), Hawaii, USA.

W. Dakka, L. Gravano, and P. G. Ipeirotis. 2008. An-
swering general time sensitive queries. In Proceedings
of the 17th International ACM Conference on Informa-
tion and Knowledge Management, pages 1437–1438.

Angelo Dalli and Yorick Wilks. 2006. Automatic dat-
ing of documents and temporal text classification. In
Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 17–22.

Franciska de Jong, Henning Rode, and Djoerd Hiemstra.
2005. Temporal language models for the disclosure of
historical text. In Humanities, computers and cultural
heritage: Proceedings of the XVIth International Con-
ference of the Association for History and Computing
(AHC 2005).

Fernando Diaz and Rosie Jones. 2004. Using temporal
profiles of queries for precision prediction. In Pro-
ceedings of the 27th Annual International ACM Spe-
cial Interest Group on Information Retrieval Confer-
ence.

David Graff. 2002. English Gigaword. Linguistic Data
Consortium.

Nattiya Kanhabua and Kjetil Norvag. 2008. Improv-
ing temporal language models for determining time of
non-timestamped documents. In Proceedings of the
12th European conference on Research and Advanced
Technology for Digital Libraries.

Nattiya Kanhabua and Kjetil Norvag. 2009. Using tem-
poral language models for document dating. Lecture
Notes in Computer Science: machine learning and
knowledge discovery in databases, 5782.

W. Kraaij. 2004. Variations on language modeling
for information retrieval. Ph.D. thesis, University of
Twente.

Abhimanu Kumar, Matthew Lease, and Jason Baldridge.
2011. Supervised language modeling for temporal res-
olution of texts. In Proceedings of CIKM.

Xiaoyan Li and W. Bruce Croft. 2003. Time-based lan-
guage models. In Proceedings of the twelfth interna-
tional conference on Information and knowledge man-
agement.

Dolores M. Llidó, Rafael Llavori, and Mariá J. Aram-
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Abstract

Although much work on relation extraction
has aimed at obtaining static facts, many of
the target relations are actually fluents, as their
validity is naturally anchored to a certain time
period. This paper proposes a methodologi-
cal approach to temporally anchored relation
extraction. Our proposal performs distant su-
pervised learning to extract a set of relations
from a natural language corpus, and anchors
each of them to an interval of temporal va-
lidity, aggregating evidence from documents
supporting the relation. We use a rich graph-
based document-level representation to gener-
ate novel features for this task. Results show
that our implementation for temporal anchor-
ing is able to achieve a 69% of the upper
bound performance imposed by the relation
extraction step. Compared to the state of the
art, the overall system achieves the highest
precision reported.

1 Introduction

A question that arises when extracting a relation is
how to capture its temporal validity: Can we assign a
period of time when the obtained relation held? As
pointed out in (Ling and Weld, 2010), while much
research in automatic relation extraction has focused
on distilling static facts from text, many of the tar-
get relations are in fact fluents, dynamic relations
whose truth value is dependent on time (Russell and
Norvig, 2010).

The Temporally anchored relation extraction
problem consists in, given a natural language text
document corpus, C, a target entity, e, and a target

relation, r, extracting from the corpus the value of
that relation for the entity, and a temporal interval
for which the relation was valid.

In this paper, we introduce a methodological ap-
proach to temporal anchoring of relations automat-
ically extracted from unrestricted text. Our system
(see Figure 1) extracts relational facts from text us-
ing distant supervision (Mintz et al., 2009) and then
anchors the relation to an interval of temporal va-
lidity. The intuition is that a distant supervised sys-
tem can effectively extract relations from the source
text collection, and a straightforward date aggrega-
tion can then be applied to anchor them. We pro-
pose a four step process for temporal anchoring:
(1) represent temporal evidence; (2) select tempo-
ral information relevant to the relation; (3) decide
how a relational fact and its relevant temporal in-
formation are themselves related; and (4) aggregate
imprecise temporal intervals across multiple docu-
ments. In contrast with previous approaches that
aim at intra-document temporal information extrac-
tion (Ling and Weld, 2010), we focus on mining
a corpus aggregating temporal evidences across the
supporting documents.

We address the following research questions:
(1) Validate whether distant supervised learning is
suitable for the task, and evaluate its shortcomings.
(2) Explore whether the use of features extracted
from a document-level rich representation could im-
prove distant supervised learning. (3) Compare the
use of document metadata against temporal expres-
sions within the document for relation temporal an-
choring. (4) Analyze how, in a pipeline architecture,
the propagation of errors limits the overall system’s
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Figure 1: System overview diagram.

performance.
The representation we use for temporal informa-

tion is detailed in section 2; the rich document-level
representation we exploit is described in section 3.
For a query entity and target relation, the system first
performs relation extraction (section 4); then, we
find and aggregate time constraint evidence for the
same relation across different documents, to estab-
lish a temporal validity anchor interval (section 5).
Empirical comparative evaluation of our approach is
introduced in section 6; while some related work is
shown in section 7 and conclusions in section 8.

2 Temporal Anchors

We will denominate relation instance a triple
〈entity, relation name, value〉. We aim at anchor-
ing relation instances to their temporal validity. We
need a representation flexible enough to capture the
imprecise temporal information available in text,
but expressed in a structured style. Allen’s (1983)
interval-based algebra for temporal representation
and reasoning, underlies much research, such as the
Tempeval challenges (Verhagen et al., 2007; Puste-
jovsky and Verhagen, 2009). Our task is different,
as we focus on obtaining the temporal interval as-
sociated to a fact, rather than reasoning about the

temporal relations among the events appearing in a
single text.

Let us assume that each relation instance is valid
during a certain temporal interval, I = [t0, tf ]. This
sharp temporal interval fails to capture the impreci-
sion of temporal boundaries conveyed in natural lan-
guage text. The Temporal Slot Filling task at TAC-
KBP 2011 (Ji et al., 2011) proposed a 4-tuple rep-
resentation that we will refer to as imprecise anchor
intervals. An imprecise temporal interval is defined
as an ordered 4-tuple of time points: (t1, t2, t3, t4),
with the following semantics: the relation is true for
a period which starts at some point between t1 and
t2 and ends between t3 and t4. It should hold that:
t1 ≤ t2, t3 ≤ t4, and t1 ≤ t4. Any of the four
endpoints can be left unconstrained (t1 or t3 would
be −∞, and t2 or t4 would be +∞). This represen-
tation is flexible and expressive, although it cannot
capture certain types of information (Ji et al., 2011).

3 Document Representation

We use a rich document representation that employs
a graph structure obtained by augmenting the syn-
tactic dependency analysis of the document with se-
mantic information.

A document D is represented as a document
graph GD; with node set VD and edge set, ED. Each
node v ∈ VD represents a chunk of text, which is a
sequence of words1. Each node is labeled with a
dictionary of attributes, some of which are common
for every node: the words it contains, their part-of-
speech annotations (POS) and lemmas. Also, a rep-
resentative descriptor, which is a normalized string
value, is generated from the chunks in the node. Cer-
tain nodes are also annotated with one or more types.
There are three families of types: Events (verbs
that describe an action, annotated with tense, polar-
ity and aspect); standardized Time Expressions; and
Named Entities, with additional annotations such as
gender or age.

Edges in the document graph, e ∈ ED, represent
four kinds of relations between the nodes:
• Syntactic: a dependency relation.
• Coreference: indicates that two chunks refer to

1Most chunks consist in one word; we join words into a
chunk (and a node) in two cases: a multi-word named entity
and a verb and its auxiliaries.
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David[NNP,David]

NER: PERSON
DESCRIPTOR: 
David
POS: N 

Julia[NNP,Julia]

CLASS:WIFE
NER: PERSON
DESCRIPTOR: 
Julia
POS: N
GENDER:FEMALE 

September[NNP,September] 1979[CD,1979]

NER:DATE
TIMEVALUE:197909
DESCRIPTOR: September 1979
POS: NNP 

wife[NN,wife]
DESCRIPTOR: 
wife
POS: NN 

is[VBZ,be] celebrating[VBG,celebrate]

ASPECT:PROGRESSIVE
TENSE:PRESENT
POLARITY:POS
DESCRIPTOR: celebrate
POS: V 

birthday[NN,birthday]

DESCRIPTOR: 
birthday
POS: NN 

was[VBD,be] born[VBN,bear]

ASPECT:NONE
TENSE:PAST
POLARITY:POS
DESCRIPTOR: bear
POS: V 

arg0

hasClass

prep_in

arg1 arg1

has
INCLUDES

has_wife

Figure 2: Collapsed document graph representation, GC ,
for the sample text document “David’s wife, Julia, is cel-
ebrating her birthday. She was born in September 1979”.

the same discourse referent.
• Semantic relations between two nodes, such as
hasClass, hasProperty and hasAge.
• Temporal relations between events and time ex-

pressions.
The processing includes dependency parsing,

named entity recognition and coreference reso-
lution, done with the Stanford CoreNLP soft-
ware (Klein and Manning, 2003); and events and
temporal information extraction, via the TARSQI

Toolkit (Verhagen et al., 2005).
The document graph GD is then further trans-

formed into a collapsed document graph, GC . Each
node of GC clusters together coreferent nodes, rep-
resenting a discourse referent. Thus, a node u in GC

is a cluster of nodes u1, . . . , uk of GD. There is an
edge (u, v) in GC if there was an edge between any
of the nodes clustered into u and any of the nodes
v1, . . . , vk′ . The coreference edges do not appear in
this representation. Additional semantic information
is also blended into this representation: normaliza-
tion of genitives, semantic class indicators inferred
from appositions and genitives, and gender annota-
tion inferred from pronouns. A final graph example
can be seen in Figure 2.

4 Distant Supervised Relation Extraction

To perform relation extraction, our proposal fol-
lows a distant supervision approach (Mintz et al.,
2009), which has also inspired other slot filling sys-
tems (Agirre et al., 2009; Surdeanu et al., 2010).
We capture long distance relations by introducing

a document-level representation and deriving novel
features from deep syntactic and semantic analysis.

Seed harvesting. From a reference Knowledge
Base (KB), we extract a set of relation triples
or seeds: 〈entity, relation, value〉, where the
relation is one of the target relations. Our
document-level distant supervision assumption is
that if entity and value are found in a document
graph (see section 3), and there is a path connect-
ing them, then the document expresses the relation.

Relation candidates gathering. From a seed triple,
we retrieve candidate documents that contain both
the entity and value, within a span of 20 tokens,
using a standard IR approach. Then, entity and
value are matched to the document graph represen-
tation. We first use approximate string comparison
to find nodes matching the seed entity. After an en-
tity node has been found we use local breadth-first-
search (BFS) to find a matching value and the short-
est connecting path between them. We enforce the
Named Entity type of entity and value to match a
expected type, predefined for the relation.

Our procedure traverses the document graph look-
ing for entity and value nodes meeting those condi-
tions; when found, we generate features for a pos-
itive example for the relation2. If we encounter a
node that matches the expected NE type of the rela-
tion, but does not match the seed value, we generate
a negative example for that relation.

Training. From positive and negative examples, we
generate binary features; some of them are inspired
by previous work (Surdeanu and Ciaramita, 2007;
Mintz et al., 2009; Riedel et al., 2010; Surdeanu et
al., 2010), and others are novel, taking advantage of
our graph representation. Table 1 summarizes our
choice of features. Features appearing in less than 5
training examples were discarded.

Relation instance extraction. Given an input entity
and a target relation, we aim at finding a filler value
for a relation instance. This task is known as Slot
Filling. From the set of retrieved documents relevant
to the query entity, represented as document graphs,

2From the collapsed document graph representation we ob-
tained an average of 9213 positive training examples per slot;
from the uncollapsed document graph, a slightly lower average
of 8178.5 positive examples per slot.
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Feature name Description
path dependency path between ENTITY and

VALUE in the sentence
X-annotation NE annotations for X
X-pos Part-of-speech annotations for X
X-gov Governor of X in the dependency path
X-mod Modifiers of X in the dependency path
X-has age X is a NE, with an age attribute
X-has class-C X is a NE, with a class C
X-property-P X is a NE, and it has a property P
X-has-Y X is a NE, with a possessive relation with

another NE, Y
X-is-Y X is a NE, in a copula with another NE, Y
X-gender-G X is a NE, and it has gender G
V -tense Tense of the verb V in the path
V -aspect Aspect of the verb V in the path
V -polarity Polarity (positive or negative) of the verb V

Table 1: Features included in the model. X stands for
ENTITY and VALUE. Verb features are generated from
the verbs, V , identified in the path between ENTITY and
VALUE.

we locate matching entities and start a local BFS of
candidate values, generating for them an unlabelled
example. For each of the relations to extract, a bi-
nary classifier (extractor) decides whether the exam-
ple is a valid relation instance. For each particular
relation classifier, only candidates with the expected
entity and value types for the relation were used in
the application phase. Each extractor was a SVM
classifier with linear kernel (Joachims, 2002). All
learning parameters were set to their default values.

The classification process yields a predicted class
label, plus a real number indicating the margin. We
performed an aggregation phase to sum the mar-
gins over distinct occurrences of the same extracted
value. The rationale is that when the same value is
extracted from more than one document, we should
accumulate that evidence.

The output of this phase is the set of extracted re-
lations (positive for each of the classifiers), plus the
documents where the same fact was detected (sup-
porting documents).

5 Temporal Anchoring of Relations

In this section, we propose and discuss a unified
methodological approach for temporal anchoring of
relations. We assume the input is a relation instance
and a set of supporting documents. The task is es-
tablishing a imprecise temporal anchor interval for
the relation.

We present a four-step methodological approach:
(1) representation of intra-document temporal infor-
mation; (2) selection of relevant temporal informa-
tion for the relation; (3) mapping of the link between
relational fact and temporal information into an in-
terval; and (4) aggregation of imprecise intervals.

Temporal representation. The first methodologi-
cal step is to obtain and represent the available intra-
document temporal information; the input is a doc-
ument, and the task is to identify temporal signals
and possible links among them. We use the term link
for a relation between a temporal expression (a date)
and an event; we want to avoid confusion with the
term relation (a relational fact extracted from text).

In our particular implementation:
• We use TARSQI to extract temporal expressions

and link them to events. In particular, TARSQI

uses the following temporal links: included, si-
multaneous, after, before, begun by or ended.
• We focus also on the syntactic pattern [Event-

preposition-Time] within the lexical context of the
candidate entity and value.
• Both are normalized into one from a set of prede-

fined temporal links: within, throughout, begin-
ning, ending, after and before.

Selection of temporal evidence. For each docu-
ment and relational instance, we have to select those
temporal expressions that are relevant.
a. Document-level metadata. The default value

we use is the document creation time (DCT),
if available. The underlying assumption is that
there is a within link from each fact expressed in
the text and the document creation time.

b. Temporal expressions. Temporal evidence
comes also from the temporal expressions
present in the context of a relation. In our par-
ticular implementation, we followed a straight-
forward approach, looking for the time expres-
sion closest in the document graph to the short-
est path between the entity and value nodes. This
search is performed via a limited depth BFS,
starting from the nodes in the path, in order from
value to entity.

Mapping of temporal links into intervals. The
third step is deciding how a relational fact and its rel-
evant temporal information are themselves related.
We have to map this information, expressed in text,
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Temporal link Constraints mapping
Before t4 = first
After t1 = last
Within and Throughout t2 = first and t3 = last
Beginning t1 = first and t2 = last
Ending t3 = first and t4 = last

Table 2: Mapping from time expression and temporal re-
lation to temporal constraints.

to a temporal representation. We will use the impre-
cise anchor intervals described is section 2.

Let T be a temporal expression identified in the
document or its metadata. Now, the mapping of tem-
poral constraints depends on the temporal link to the
time expression identified; also, the semantics of the
event have to be considered in order to decide the
time period associated to a relation instance. This
step is important because the event could refer just to
the beginning of the relation, its ending, or both. For
instance, it is obvious that having the event marry
is different to having the event divorce, when decid-
ing the temporal constraints associated to the spouse
relation.

Table 2 shows our particular mapping between
temporal links and constraints. In particular, for the
default document creation time, we suppose that a
relation which appears in a document with creation
time d held true at least in that date; that is, we are
assuming a within link, and we map t2 = d, t3 = d.

Inter-document temporal evidence aggregation.
The last step is aggregating all the time constraints
found for the same relation and value across differ-
ent documents. If we found that a relation started af-
ter two dates d and d′, where d′ > d, the closest con-
straint to the real start of the relation is d′. Mapped to
temporal constraints, it means that we would choose
the biggest t1 possible. Following the same reason-
ing, we would want to maximize t3. On the other
side, when a relation started before two dates d2 and
d′

2, where d′
2 > d2, the closest constraint is d2 and

we would choose the smallest t2. In summary, we
will maximize t1 and t3 and minimize t2 and t4, so
we will narrow the margins.

6 Evaluation

We have used for our evaluation the dataset com-
piled within the TAC-KBP 2011 Temporal Slot Fill-
ing Task (Ji et al., 2011). We employed as initial

KB the one distributed to participants in the task,
which has been compiled from Wikipedia infoboxes.
It contains 898 triples 〈entity, slot type, value〉 for
100 different entities and up to 8 different slots (re-
lations) per entity3. This gold standard contains the
correct responses pooled from the participant sys-
tems plus a set of responses manually found by
annotators. Each triple has associated a temporal
anchor. The relations had to be extracted from a
domain-general collection of 1.7 million documents.
Our system was one of the five that took part in
the task.We have evaluated the overall system and
the two main components of the architecture: Rela-
tion Extraction, and Temporal Anchoring of the re-
lations. Due to space limitations, the description of
our implementation is very concise; refer to (Garrido
et al., 2011) for further details.

6.1 Evaluation of Relation Extraction

System response in the relation extraction step con-
sists in a set of triples 〈entity, slot type, value〉.
Performance is measured using precision, recall and
F-measure (harmonic mean) with respect to the 898
triples in the key. Target relations (slots) are poten-
tially list-valued, that is, more than one value can
be valid for a relation (possibly at different points
in time). Only correct values yield any score, and
redundant triples are ignored.

Experiments. We run two different system settings
for the relation extraction step. They differ in the
document representation used (detailed in section3),
in order to empirically assess whether clustering of
discourse referents into single nodes benefits the ex-
traction. In SETTING 1, each document is repre-
sented as a document graph, GD, while in SETTING

2 collapsed document graph representation, GC , is
employed.

Results. Results are shown in Table 3 in the col-
umn Relation Extraction. Both settings have a sim-
ilar performance with a slight increase in the case
of graphs with clustered referents. Although preci-
sion is close to 0.5, recall is lower than 0.1. We have
studied the limits of the assumptions our approach

3There are 7 person relations: cities of residence, state-
orprovinces of residence, countries of residence, employee of,
member of, title, spouse, and an organization relation:
top members/employees.
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is based on. First, our standard retrieval component
performance limits the overall system’s. As a matter
of example, if we retrieve the first 100 documents
per entity, we find relevant documents only for 62%
of the triples in the key. This number means that no
matter how good relation extraction method is, 38%
of relations will not be found.

Second, the distant supervision assumption un-
derlying our approach is that for a seed relation in-
stance 〈entity, relation, value〉, any textual men-
tion of entity and value expresses the relation. It
has been shown that this assumption is more often
violated when training knowledge base and docu-
ment collection are of different type, e.g. Wikipedia
and news-wire (Riedel et al., 2010). We have real-
ized that a more determinant factor is the relation
itself and the type of arguments it takes. We ran-
domly sampled 100 training examples per relation,
and manually inspected them to assess if they were
indeed mentions of the relation. While for the re-
lation cities of residence only 30% of the training
examples are expressing the relation, for spouse the
number goes up to 59%. For title, up to 90% of the
examples are correct. This fact explains, at least par-
tially, the zeros we obtain for some relations.

6.2 Evaluation of Temporal Anchoring
Under the evaluation metrics proposed by TAC-KBP
2011, if the value of the relation instance is judged
as correct, the score for temporal anchoring depends
on how well the returned interval matches the one
provided in the key. More precisely, let the correct
imprecise anchor interval in the gold standard key
be Sk = (k1, k2, k3, k4) and the system response be
S = (r1, r2, r3, r4). The absence of a constraint in
t1 or t3 is treated as a value of −∞; the absence of
a constraint in t2 or t4 is treated as a value of +∞.
Then, let di = |ki − ri|, for i ∈ 1, . . . , 4, be the
difference, a real number measured in years. The
score for the system response is:

Q(S) =
1
4

4∑
i=1

1
1 + di

The score for a target relation Q(r) is computed
by summing Q(S) over all unique instances of the
relation whose value is correct. If the gold standard
contains N responses, and the system output M re-
sponses, then precision is: P = Q(r)/M , and recall:

R = Q(r)/N ; F1 is the harmonic mean of P and R.

Experiments. We evaluated two different set-
tings for the temporal anchoring step; both use
the collapsed document graph representation, GC

(SETTING 2). The goal of the experiment is two-
fold. First, test the strength of the document creation
time as evidence for temporal anchoring. Second,
test how hard this metadata-level baseline is to beat
using contextual temporal expressions.

The SETTING 2-I assumes a within temporal link
between the document creation time and any relation
expressed inside the document, and aggregates this
information across the documents that we have iden-
tified as supporting the relation. The SETTING 2-II
considers documents content in order to extract tem-
poral links from the context of the text that expresses
the relation. If no temporal expression is found, the
date of the document is used as default. Temporal
links from all supporting documents are mapped into
intervals and aggregated as detailed in section 5.

The performance on relation extraction is an up-
per bound for temporal anchoring, attainable if tem-
poral anchoring is perfect. Thus, we also evaluate
the temporal anchoring performance as the percent-
age the final system achieves with respect to the re-
lation extraction upper bound.

Results. Results are shown in Table 3 under column
Temporal Anchoring. They are low, due to the upper
bound that error propagation in candidate retrieval
and relation extraction imposes upon this step: tem-
porally anchoring alone achives 69% of its upper
bound. This value corresponds to the baseline SET-
TING 2-I, showing its strength. The difference with
SETTING 2-II shows that this baseline is difficult
to beat by considering temporal evidence inside the
document content. There is a reason for this. The
temporal link mapping into time intervals does not
depend only on the type of link, but also on the se-
mantics of the text that expresses the relation as we
pointed out above. We have to decide how to trans-
form the link between relation and temporal expres-
sion into a temporal interval. Learning a model for
this is a hard open research problem that has a strong
adversary in the baseline proposed.

112



Relation Extraction Temporal Anchoring
SETTING 1 SETTING 2 SETTING 2-I SETTING 2-II

P R F P R F P R F % P R F %
(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(3) 0.33 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0
(4) 0.22 0.09 0.13 0.29 0.11 0.16 0.23 0.09 0.13 79 0.21 0.08 0.11 72
(5) 0.53 0.13 0.20 0.54 0.12 0.19 0.34 0.07 0.12 63 0.30 0.06 0.11 56
(6) 0.70 0.12 0.20 0.75 0.13 0.22 0.57 0.10 0.16 76 0.50 0.08 0.14 67
(7) 0.50 0.06 0.10 0.50 0.07 0.12 0.29 0.04 0.07 58 0.25 0.04 0.06 50
(8) 0.25 0.04 0.07 0.20 0.04 0.07 0.15 0.03 0.05 75 0.06 0.01 0.02 30
(9) 0.42 0.08 0.14 0.45 0.08 0.14 0.31 0.06 0.10 69 0.27 0.05 0.09 60

Table 3: Results of experiments for each relation: (1) per:stateorprovinces of residence; (2) per:employee of; (3)
per:countries of residence; (4) per:member of; (5) per:title; (6) org:top members/employees; (7) per:spouse; (8)
per:cities of residence; (9) overall results (calculated as a micro-average).

System # Filled Precision Recall F1
BLENDER2 1206 0.1789 0.3030 0.2250
BLENDER1 1116 0.1796 0.2942 0.2231
BLENDER3 1215 0.1744 0.2976 0.2199
IIRG1 346 0.2457 0.1194 0.1607
Setting 2-1 167 0.2996 0.0703 0.1139
Setting 2-2 167 0.2596 0.0609 0.0986
Stanford 12 5140 0.0233 0.1680 0.0409
Stanford 11 4353 0.0238 0.1453 0.0408
USFD20112 328 0.0152 0.0070 0.0096
USFD20113 127 0.0079 0.0014 0.0024

Table 4: System ID, number of filled responses of the
system, precision, recall and F measure.

6.3 Comparative Evaluation

Our approach was compared with the other four
participants at the KBP Temporal Slot Filling Task
2011. Table 4 shows results sorted by F-measure in
comparison to our two settings (described above).
These official results correspond to a previous
dataset containing 712 triples4.

As shown in column Filled our approach returns
less triples than other systems, explaining low recall.
However, our system achieves the highest precision
for the complete task of temporally anchored rela-
tion extraction. Despite low recall, our system ob-
tains the third best F1 value. This is a very promis-
ing result, since several directions can be explored
to consider more candidates and increase recall.

7 Related Work

Compiling a Knowledge Base of temporally an-
chored facts is an open research challenge (Weikum
et al., 2011). Despite the vast amount of research fo-
cusing on understanding temporal expressions and

4Slot-fillers from human assessors were not considered

their relation to events in natural language, the com-
plete problem of temporally anchored relation ex-
traction remains relatively unexplored. Also, while
much research has focused on single-document ex-
traction, it seems clear that extracting temporally an-
chored relations needs the aggregation of evidences
across multiple documents.

There have been attempts to extend an existing
knowledge base. Wang et al. (2010) use regular
expressions to mine Wikipedia infoboxes and cat-
egories and it is not suited for unrestricted text. An
earlier attempt (Zhang et al., 2008), is specific for
business and difficult to generalize to other relations.
Two recent promising works are more related to our
research. Wang et al. (2011) uses manually defined
patterns to collect candidate facts and explicit dates,
and re-rank them using a graph label propagation al-
gorithm; their approach is complementary to ours,
as our aim is not to harvest temporal facts but to
extract the relations in which a query entity takes
part; unlike us, they require entity, value, and a ex-
plicit date to appear in the same sentence. Talukdar
et al. (2012) focus on the partial task of temporally
anchoring already known facts, showing the useful-
ness of the document creation time as temporal sig-
nal, aggregated across documents.

Earlier work has dealt mainly with partial aspects
of the problem. The TempEval community focused
on the classification of the temporal links between
pairs of events, or an event and a temporal expres-
sion; using shallow features (Mani et al., 2003; La-
pata and Lascarides, 2004; Chambers et al., 2007),
or syntactic-based structured features (Bethard and
Martin, 2007; Puşcaşu, 2007; Cheng et al., 2007).

Aggregating evidence across different documents
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to temporally anchor facts has been explored in set-
tings different to Information Extraction, such as
answering of definition questions (Paşca, 2008) or
extracting possible dates of well-known historical
events (Schockaert et al., 2010).

Temporal inference or reasoning to solve con-
flicting temporal expressions and induce temporal
order of events has been used in TempEval (Tatu
and Srikanth, 2008; Yoshikawa et al., 2009) and
ACE (Gupta and Ji, 2009) tasks, but focused on
single-document extraction. Ling et al. (2010), use
cross-event joint inference to extract temporal facts,
but only inside a single document.

Evaluation campaigns, such as ACE and TAC-
KBP 2011 have had an important role in promoting
this research. While ACE required only to identify
time expressions and classify their relation to events,
KBP requires to infer explicitly the start/end time of
relations, which is a realistic approach in the context
of building time-aware knowledge bases. KBP rep-
resents an important step for the evaluation of tem-
poral information extraction systems. In general, the
participant systems adapted existing slot filling sys-
tems, adding a temporal classification component:
distant supervised (Chen et al., 2010; Surdeanu et
al., 2010) on manually-defined patterns (Byrne and
Dunnion, 2010).

8 Conclusions

This paper introduces the problem of extracting,
from unrestricted natural language text, relational
knowledge anchored to a temporal span, aggregat-
ing temporal evidence from a collection of docu-
ments. Although compiling time-aware knowledge
bases is an important open challenge (Weikum et
al., 2011), it has remained unexplored until very re-
cently (Wang et al., 2011; Talukdar et al., 2012).

We have elucidated the two challenges of the task,
namely relation extraction and temporal anchoring
of the extracted relations.

We have studied how, in a pipeline architecture,
the propagation of errors limits the overall system’s
performance. The performance attainable in the full
task is limited by the quality of the output of the
three main phases: retrieval of candidate passages/
documents, extraction of relations and temporal an-
choring of those.

We have also studied the limits of the distant su-
pervision approach to relation extraction, showing
empirically that its performance depends not only
on the nature of reference knowledge base and doc-
ument corpus (Riedel et al., 2010), but also on the
relation to be extracted. Given a relation between
two arguments, if it is not dominant among textual
expressions of those arguments, the distant supervi-
sion assumption will be more often violated.

We have introduced a novel graph-based docu-
ment level representation, that has allowed us to gen-
erate new features for the task of relation extraction,
capturing long distance structured contexts. Our re-
sults show how, in a document level syntactic repre-
sentation, it yields better results to collapse corefer-
ent nodes.

We have presented a methodological approach
to temporal anchoring composed of: (1) intra-
document temporal information representation; (2)
selection of relation-dependent relevant temporal in-
formation; (3) mapping of temporal links to an inter-
val representation; and (4) aggregation of imprecise
intervals.

Our proposal has been evaluated within a frame-
work that allows for comparability. It has been able
to extract temporally anchored relational informa-
tion with the highest precision among the partici-
pant systems taking part in the competitive evalu-
ation TAC-KBP 2011.

For the temporal anchoring sub-problem, we have
demonstrated the strength of the document creation
time as a temporal signal. It is possible to achieve
a performance of 69% of the upper-bound imposed
by relation extraction by assuming that any relation
mentioned in a document held at the document cre-
ation time (there is a within link between the rela-
tional fact and the document creation time). This
baseline has proved stronger than extracting and an-
alyzing the temporal expressions present in the doc-
ument content.
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Abstract

Learning entailment rules is fundamental in
many semantic-inference applications and has
been an active field of research in recent years.
In this paper we address the problem of learn-
ing transitive graphs that describe entailment
rules between predicates (termed entailment
graphs). We first identify that entailment
graphs exhibit a “tree-like” property and are
very similar to a novel type of graph termed
forest-reducible graph. We utilize this prop-
erty to develop an iterative efficient approxi-
mation algorithm for learning the graph edges,
where each iteration takes linear time. We
compare our approximation algorithm to a
recently-proposed state-of-the-art exact algo-
rithm and show that it is more efficient and
scalable both theoretically and empirically,
while its output quality is close to that given
by the optimal solution of the exact algorithm.

1 Introduction

Performing textual inference is in the heart of many
semantic inference applications such as Question
Answering (QA) and Information Extraction (IE). A
prominent generic paradigm for textual inference is
Textual Entailment (TUE) (Dagan et al., 2009). In
TUE, the goal is to recognize, given two text frag-
ments termed text and hypothesis, whether the hy-
pothesis can be inferred from the text. For example,
the text “Cyprus was invaded by the Ottoman Em-
pire in 1571” implies the hypothesis “The Ottomans
attacked Cyprus”.

Semantic inference applications such as QA and
IE crucially rely on entailment rules (Ravichandran

and Hovy, 2002; Shinyama and Sekine, 2006) or
equivalently inference rules, that is, rules that de-
scribe a directional inference relation between two
fragments of text. An important type of entailment
rule specifies the entailment relation between natu-
ral language predicates, e.g., the entailment rule ‘X
invade Y → X attack Y’ can be helpful in inferring
the aforementioned hypothesis. Consequently, sub-
stantial effort has been made to learn such rules (Lin
and Pantel, 2001; Sekine, 2005; Szpektor and Da-
gan, 2008; Schoenmackers et al., 2010).

Textual entailment is inherently a transitive rela-
tion , that is, the rules ‘x → y’ and ‘y → z’ imply
the rule ‘x → z’. Accordingly, Berant et al. (2010)
formulated the problem of learning entailment rules
as a graph optimization problem, where nodes are
predicates and edges represent entailment rules that
respect transitivity. Since finding the optimal set of
edges respecting transitivity is NP-hard, they em-
ployed Integer Linear Programming (ILP) to find the
exact solution. Indeed, they showed that applying
global transitivity constraints improves rule learning
comparing to methods that ignore graph structure.
More recently, Berant et al. (Berant et al., 2011) in-
troduced a more efficient exact algorithm, which de-
composes the graph into connected components and
then applies an ILP solver over each component.

Despite this progress, finding the exact solution
remains NP-hard – the authors themselves report
they were unable to solve some graphs of rather
moderate size and that the coverage of their method
is limited. Thus, scaling their algorithm to data sets
with tens of thousands of predicates (e.g., the extrac-
tions of Fader et al. (2011)) is unlikely.
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In this paper we present a novel method for learn-
ing the edges of entailment graphs. Our method
computes much more efficiently an approximate so-
lution that is empirically almost as good as the exact
solution. To that end, we first (Section 3) conjecture
and empirically show that entailment graphs exhibit
a “tree-like” property, i.e., that they can be reduced
into a structure similar to a directed forest.

Then, we present in Section 4 our iterative ap-
proximation algorithm, where in each iteration a
node is removed and re-attached back to the graph in
a locally-optimal way. Combining this scheme with
our conjecture about the graph structure enables a
linear algorithm for node re-attachment. Section 5
shows empirically that this algorithm is by orders of
magnitude faster than the state-of-the-art exact al-
gorithm, and that though an optimal solution is not
guaranteed, the area under the precision-recall curve
drops by merely a point.

To conclude, the contribution of this paper is two-
fold: First, we define a novel modeling assumption
about the tree-like structure of entailment graphs and
demonstrate its validity. Second, we exploit this as-
sumption to develop a polynomial approximation al-
gorithm for learning entailment graphs that can scale
to much larger graphs than in the past. Finally, we
note that learning entailment graphs bears strong
similarities to related tasks such as Taxonomy In-
duction (Snow et al., 2006) and Ontology induction
(Poon and Domingos, 2010), and thus our approach
may improve scalability in these fields as well.

2 Background

Until recently, work on learning entailment rules be-
tween predicates considered each rule independently
of others and did not exploit global dependencies.
Most methods utilized the distributional similarity
hypothesis that states that semantically similar pred-
icates occur with similar arguments (Lin and Pan-
tel, 2001; Szpektor et al., 2004; Yates and Etzioni,
2009; Schoenmackers et al., 2010). Some meth-
ods extracted rules from lexicographic resources
such as WordNet (Szpektor and Dagan, 2009) or
FrameNet (Bob and Rambow, 2009; Ben Aharon et
al., 2010), and others assumed that semantic rela-
tions between predicates can be deduced from their
co-occurrence in a corpus via manually-constructed

patterns (Chklovski and Pantel, 2004).
Recently, Berant et al. (2010; 2011) formulated

the problem as the problem of learning global entail-
ment graphs. In entailment graphs, nodes are predi-
cates (e.g., ‘X attack Y’) and edges represent entail-
ment rules between them (‘X invade Y → X attack
Y’). For every pair of predicates i, j, an entailment
score wij was learned by training a classifier over
distributional similarity features. A positive wij in-
dicated that the classifier believes i→ j and a nega-
tive wij indicated that the classifier believes i 9 j.
Given the graph nodes V (corresponding to the pred-
icates) and the weighting function w : V × V → R,
they aim to find the edges of a graph G = (V,E)
that maximize the objective

∑
(i,j)∈E wij under the

constraint that the graph is transitive (i.e., for every
node triplet (i, j, k), if (i, j) ∈ E and (j, k) ∈ E,
then (i, k) ∈ E).

Berant et al. proved that this optimization prob-
lem, which we term Max-Trans-Graph, is NP-hard,
and so described it as an Integer Linear Program
(ILP). Let xij be a binary variable indicating the ex-
istence of an edge i → j in E. Then, X = {xij :
i 6= j} are the variables of the following ILP for
Max-Trans-Graph:

arg max
X

∑
i 6=j

wij · xij (1)

s.t. ∀i,j,k∈V xij + xjk − xik ≤ 1

∀i,j∈V xij ∈ {0, 1}

The objective function is the sum of weights over the
edges of G and the constraint xij + xjk − xik ≤ 1
on the binary variables enforces that whenever xij =
xjk =1, then also xik = 1 (transitivity).

Since ILP is NP-hard, applying an ILP solver di-
rectly does not scale well because the number of
variables isO(|V |2) and the number of constraints is
O(|V |3). Thus, even a graph with∼80 nodes (predi-
cates) has more than half a million constraints. Con-
sequently, in (Berant et al., 2011), they proposed a
method that efficiently decomposes the graph into
smaller components and applies an ILP solver on
each component separately using a cutting-plane
procedure (Riedel and Clarke, 2006). Although this
method is exact and improves scalability, it does
not guarantee an efficient solution. When the graph
does not decompose into sufficiently small compo-
nents, and the weights generate many violations of
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transitivity, solving Max-Trans-Graph becomes in-
tractable. To address this problem, we present in
this paper a method for approximating the optimal
set of edges within each component and show that
it is much more efficient and scalable both theoreti-
cally and empirically.

Do and Roth (2010) suggested a method for a re-
lated task of learning taxonomic relations between
terms. Given a pair of terms, a small graph is con-
structed and constraints are imposed on the graph
structure. Their work, however, is geared towards
scenarios where relations are determined on-the-fly
for a given pair of terms and no global knowledge
base is explicitly constructed. Thus, their method
easily produces solutions where global constraints,
such as transitivity, are violated.

Another approximation method that violates tran-
sitivity constraints is LP relaxation (Martins et al.,
2009). In LP relaxation, the constraint xij ∈ {0, 1}
is replaced by 0 ≤ xij ≤ 1, transforming the prob-
lem from an ILP to a Linear Program (LP), which
is polynomial. An LP solver is then applied on the
problem, and variables xij that are assigned a frac-
tional value are rounded to their nearest integer and
so many violations of transitivity easily occur. The
solution when applying LP relaxation is not a transi-
tive graph, but nevertheless we show for comparison
in Section 5 that our method is much faster.

Last, we note that transitive relations have been
explored in adjacent fields such as Temporal Infor-
mation Extraction (Ling and Weld, 2010), Ontol-
ogy Induction (Poon and Domingos, 2010), and Co-
reference Resolution (Finkel and Manning, 2008).

3 Forest-reducible Graphs

The entailment relation, described by entailment
graphs, is typically from a “semantically-specific”
predicate to a more “general” one. Thus, intuitively,
the topology of an entailment graph is expected to be
“tree-like”. In this section we first formalize this in-
tuition and then empirically analyze its validity. This
property of entailment graphs is an interesting topo-
logical observation on its own, but also enables the
efficient approximation algorithm of Section 4.

For a directed edge i → j in a directed acyclic
graphs (DAG), we term the node i a child of node
j, and j a parent of i. A directed forest is a DAG

Xdisease be 
epidemic in 

 Ycountry 

Xdisease 
common in 

 Ycountry 

Xdisease 
occur in 
 Ycountry 

Xdisease 
frequent in 

 Ycountry 

Xdisease 
begin in 
 Ycountry 

be epidemic in 

common in 
frequent in 

occur in 

begin in 

be epidemic in 

common in 
 frequent in 

occur in 

begin in 

(a) 

(b) 

(c) 

Figure 1: A fragment of an entailment graph (a), its SCC
graph (b) and its reduced graph (c). Nodes are predicates
with typed variables (see Section 5), which are omitted in
(b) and (c) for compactness.

where all nodes have no more than one parent.
The entailment graph in Figure 1a (subgraph from

the data set described in Section 5) is clearly not a
directed forest – it contains a cycle of size two com-
prising the nodes ‘X common in Y’ and ‘X frequent in
Y’, and in addition the node ‘X be epidemic in Y’ has
3 parents. However, we can convert it to a directed
forest by applying the following operations. Any
directed graph G can be converted into a Strongly-
Connected-Component (SCC) graph in the follow-
ing way: every strongly connected component (a set
of semantically-equivalent predicates, in our graphs)
is contracted into a single node, and an edge is added
from SCC S1 to SCC S2 if there is an edge in G from
some node in S1 to some node in S2. The SCC graph
is always a DAG (Cormen et al., 2002), and if G is
transitive then the SCC graph is also transitive. The
graph in Figure 1b is the SCC graph of the one in
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Xcountry annex  Yplace 

Xcountry invade  Yplace Yplace be part of Xcountry  

Figure 2: A fragment of an entailment graph that is not
an FRG.

Figure 1a, but is still not a directed forest since the
node ‘X be epidemic in Y’ has two parents.

The transitive closure of a directed graph G is
obtained by adding an edge from node i to node j
if there is a path in G from i to j. The transitive
reduction of G is obtained by removing all edges
whose absence does not affect its transitive closure.
In DAGs, the result of transitive reduction is unique
(Aho et al., 1972). We thus define the reduced graph
Gred = (Vred, Ered) of a directed graph G as the
transitive reduction of its SCC graph. The graph in
Figure 1c is the reduced graph of the one in Fig-
ure 1a and is a directed forest. We say a graph is a
forest-reducible graph (FRG) if all nodes in its re-
duced form have no more than one parent.

We now hypothesize that entailment graphs are
FRGs. The intuition behind this assumption is
that the predicate on the left-hand-side of a uni-
directional entailment rule has a more specific mean-
ing than the one on the right-hand-side. For instance,
in Figure 1a ‘X be epidemic in Y’ (where ‘X’ is a type
of disease and ‘Y’ is a country) is more specific than
‘X common in Y’ and ‘X frequent in Y’, which are
equivalent, while ‘X occur in Y’ is even more gen-
eral. Accordingly, the reduced graph in Figure 1c
is an FRG. We note that this is not always the case:
for example, the entailment graph in Figure 2 is not
an FRG, because ‘X annex Y’ entails both ‘Y be part
of X’ and ‘X invade Y’, while the latter two do not
entail one another. However, we hypothesize that
this scenario is rather uncommon. Consequently, a
natural variant of the Max-Trans-Graph problem is
to restrict the required output graph of the optimiza-
tion problem (1) to an FRG. We term this problem
Max-Trans-Forest.

To test whether our hypothesis holds empirically
we performed the following analysis. We sampled
7 gold standard entailment graphs from the data set

described in Section 5, manually transformed them
into FRGs by deleting a minimal number of edges,
and measured recall over the set of edges in each
graph (precision is naturally 1.0, as we only delete
gold standard edges). The lowest recall value ob-
tained was 0.95, illustrating that deleting a very
small proportion of edges converts an entailment
graph into an FRG. Further support for the prac-
tical validity of this hypothesis is obtained from
our experiments in Section 5. In these experiments
we show that exactly solving Max-Trans-Graph and
Max-Trans-Forest (with an ILP solver) results in
nearly identical performance.

An ILP formulation for Max-Trans-Forest is sim-
ple – a transitive graph is an FRG if all nodes in
its reduced graph have no more than one parent. It
can be verified that this is equivalent to the following
statement: for every triplet of nodes i, j, k, if i → j
and i → k, then either j → k or k → j (or both).
Therefore, the ILP is formulated by adding this lin-
ear constraint to ILP (1):

∀i,j,k∈V xij+xik+(1− xjk)+(1− xkj) ≤ 3 (2)

We note that despite the restriction to FRGs, Max-
Trans-Forest is an NP-hard problem by a reduction
from the X3C problem (Garey and Johnson, 1979).
We omit the reduction details for brevity.

4 Sequential Approximation Algorithms

In this section we present Tree-Node-Fix, an efficient
approximation algorithm for Max-Trans-Forest, as
well as Graph-Node-Fix, an approximation for Max-
Trans-Graph.

4.1 Tree-Node-Fix
The scheme of Tree-Node-Fix (TNF) is the follow-
ing. First, an initial FRG is constructed, using some
initialization procedure. Then, at each iteration a
single node v is re-attached (see below) to the FRG
in a way that improves the objective function. This
is repeated until the value of the objective function
cannot be improved anymore by re-attaching a node.

Re-attaching a node v is performed by removing
v from the graph and connecting it back with a better
set of edges, while maintaining the constraint that it
is an FRG. This is done by considering all possible
edges from/to the other graph nodes and choosing
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Figure 3: (a) Inserting v into a component c ∈ Vred. (b)
Inserting v as a child of c and a parent of a subset of c’s
children in Gred. (b’) A node d that is a descendant but
not a child of c can not choose v as a parent, as v becomes
its second parent. (c) Inserting v as a new root.

the optimal subset, while the rest of the graph re-
mains fixed. Formally, let Sv−in =

∑
i 6=v wiv · xiv

be the sum of scores over v’s incoming edges and
Sv−out =

∑
k 6=v wvk · xvk be the sum of scores over

v’s outgoing edges. Re-attachment amounts to opti-
mizing a linear objective:

arg max
Xv

(Sv-in + Sv-out) (3)

where the variables Xv ⊆ X are indicators for all
pairs of nodes involving v. We approximate a solu-
tion for (1) by iteratively optimizing the simpler ob-
jective (3). Clearly, at each re-attachment the value
of the objective function cannot decrease, since the
optimization algorithm considers the previous graph
as one of its candidate solutions.

We now show that re-attaching a node v is lin-
ear. To analyze v’s re-attachment, we consider the
structure of the directed forest Gred just before v is
re-inserted, and examine the possibilities for v’s in-
sertion relative to that structure. We start by defin-
ing some helpful notations. Every node c ∈ Vred

is a connected component in G. Let vc ∈ c be an
arbitrary representative node in c. We denote by
Sv-in(c) the sum of weights from all nodes in c and
their descendants to v, and by Sv-out(c) the sum of
weights from v to all nodes in c and their ancestors:

Sv-in(c) =
∑
i∈c

wiv +
∑
k /∈c

wkvxkvc

Sv-out(c) =
∑
i∈c

wvi +
∑
k /∈c

wvkxvck

Note that {xvck, xkvc} are edge indicators in G
and not Gred. There are two possibilities for re-
attaching v – either it is inserted into an existing
component c ∈ Vred (Figure 3a), or it forms a new
component. In the latter, there are also two cases:
either v is inserted as a child of a component c (Fig-

ure 3b), or not and then it becomes a root in Gred

(Figure 3c). We describe the details of these 3 cases:
Case 1: Inserting v into a component c ∈ Vred.

In this case we add in G edges from all nodes in c
and their descendants to v and from v to all nodes in
c and their ancestors. The score (3) in this case is

s1(c) , Sv-in(c) + Sv-out(c) (4)

Case 2: Inserting v as a child of some c ∈ Vred.
Once c is chosen as the parent of v, choosing v’s
children in Gred is substantially constrained. A node
that is not a descendant of c can not become a child
of v, since this would create a new path from that
node to c and would require by transitivity to add a
corresponding directed edge to c (but all graph edges
not connecting v are fixed). Moreover, only a direct
child of c can choose v as a parent instead of c (Fig-
ure 3b), since for any other descendant of c, v would
become a second parent, and Gred will no longer be
a directed forest (Figure 3b’). Thus, this case re-
quires adding in G edges from v to all nodes in c and
their ancestors, and also for each new child of v, de-
noted by d ∈ Vred, we add edges from all nodes in
d and their descendants to v. Crucially, although the
number of possible subsets of c’s children in Gred is
exponential, the fact that they are independent trees
in Gred allows us to go over them one by one, and
decide for each one whether it will be a child of v
or not, depending on whether Sv-in(d) is positive.
Therefore, the score (3) in this case is:

s2(c) , Sv-out(c)+
∑

d∈child(c)

max(0, Sv-in(d)) (5)

where child(c) are the children of c.
Case 3: Inserting v as a new root in Gred. Similar

to case 2, only roots of Gred can become children of
v. In this case for each chosen root r we add in G
edges from the nodes in r and their descendants to
v. Again, each root can be examined independently.
Therefore, the score (3) of re-attaching v is:

s3 ,
∑

r

max(0, Sv-in(r)) (6)

where the summation is over the roots of Gred.
It can be easily verified that Sv-in(c) and

Sv-out(c) satisfy the recursive definitions:
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Algorithm 1 Computing optimal re-attachment
Input: FRG G = (V,E), function w, node v ∈ V
Output: optimal re-attachment of v

1: remove v and compute Gred = (Vred, Ered).
2: for all c ∈ Vred in post-order compute Sv-in(c) (Eq.

7)
3: for all c ∈ Vred in pre-order compute Sv-out(c) (Eq.

8)
4: case 1: s1 = maxc∈Vred

s1(c) (Eq. 4)
5: case 2: s2 = maxc∈Vred

s2(c) (Eq. 5)
6: case 3: compute s3 (Eq. 6)
7: re-attach v according to max(s1, s2, s3).

Sv-in(c) =
∑
i∈c

wiv +
∑

d∈child(c)

Sv-in(d), c ∈ Vred (7)

Sv-out(c) =
∑
i∈c

wvi + Sv-out(p), c ∈ Vred (8)

where p is the parent of c in Gred. These recursive
definitions allow to compute in linear time Sv-in(c)
and Sv-out(c) for all c (given Gred) using dynamic
programming, before going over the cases for re-
attaching v. Sv-in(c) is computed going over Vred

leaves-to-root (post-order), and Sv-out(c) is com-
puted going over Vred root-to-leaves (pre-order).

Re-attachment is summarized in Algorithm 1.
Computing an SCC graph is linear (Cormen et al.,
2002) and it is easy to verify that transitive reduction
in FRGs is also linear (Line 1). Computing Sv-in(c)
and Sv-out(c) (Lines 2-3) is also linear, as explained.
Cases 1 and 3 are trivially linear and in case 2 we go
over the children of all nodes in Vred. As the reduced
graph is a forest, this simply means going over all
nodes of Vred, and so the entire algorithm is linear.

Since re-attachment is linear, re-attaching all
nodes is quadratic. Thus if we bound the number
of iterations over all nodes, the overall complexity is
quadratic. This is dramatically more efficient and
scalable than applying an ILP solver. In Section
5 we ran TNF until convergence and the maximal
number of iterations over graph nodes was 8.

4.2 Graph-node-fix
Next, we show Graph-Node-Fix (GNF), a similar
approximation that employs the same re-attachment
strategy but does not assume the graph is an FRG.
Thus, re-attachment of a node v is done with an
ILP solver. Nevertheless, the ILP in GNF is sim-
pler than (1), since we consider only candidate edges

v 

i k 

v 

i k 

v 

i k 

v 

i k 

Figure 4: Three types of transitivity constraint violations.

involving v. Figure 4 illustrates the three types of
possible transitivity constraint violations when re-
attaching v. The left side depicts a violation when
(i, k) /∈ E, expressed by the constraint in (9) below,
and the middle and right depict two violations when
the edge (i, k) ∈ E, expressed by the constraints
in (10). Thus, the ILP is formulated by adding the
following constraints to the objective function (3):

∀i,k∈V \{v} if (i, k) /∈ E, xiv + xvk ≤ 1 (9)

if (i, k) ∈ E, xvi ≤ xvk, xkv ≤ xiv (10)

xiv, xvk ∈ {0, 1} (11)

Complexity is exponential due to the ILP solver;
however, the ILP size is reduced by an order of mag-
nitude to O(|V |) variables and O(|V |2) constraints.

4.3 Adding local constraints

For some pairs of predicates i, j we sometimes have
prior knowledge whether i entails j or not. We term
such pairs local constraints, and incorporate them
into the aforementioned algorithms in the following
way. In all algorithms that apply an ILP solver, we
add a constraint xij = 1 if i entails j or xij = 0 if i
does not entail j. Similarly, in TNF we incorporate
local constraints by settingwij =∞ orwij = −∞.

5 Experiments and Results

In this section we empirically demonstrate that TNF
is more efficient than other baselines and its output
quality is close to that given by the optimal solution.

5.1 Experimental setting

In our experiments we utilize the data set released
by Berant et al. (2011). The data set contains 10 en-
tailment graphs, where graph nodes are typed pred-
icates. A typed predicate (e.g., ‘Xdisease occur in
Ycountry’) includes a predicate and two typed vari-
ables that specify the semantic type of the argu-
ments. For instance, the typed variable Xdisease can
be instantiated by arguments such as ‘flu’ or ‘dia-
betes’. The data set contains 39,012 potential edges,
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of which 3,427 are annotated as edges (valid entail-
ment rules) and 35,585 are annotated as non-edges.

The data set also contains, for every pair of pred-
icates i, j in every graph, a local score sij , which is
the output of a classifier trained over distributional
similarity features. A positive sij indicates that the
classifier believes i→ j. The weighting function for
the graph edges w is defined as wij = sij−λ, where
λ is a single parameter controlling graph sparseness:
as λ increases, wij decreases and becomes nega-
tive for more pairs of predicates, rendering the graph
more sparse. In addition, the data set contains a set
of local constraints (see Section 4.3).

We implemented the following algorithms for
learning graph edges, where in all of them the graph
is first decomposed into components according to
Berant et al’s method, as explained in Section 2.

No-trans Local scores are used without transitiv-
ity constraints – an edge (i, j) is inserted iffwij > 0.

Exact-graph Berant et al.’s exact method (2011)
for Max-Trans-Graph, which utilizes an ILP solver1.

Exact-forest Solving Max-Trans-Forest exactly
by applying an ILP solver (see Eq. 2).

LP-relax Solving Max-Trans-Graph approxi-
mately by applying LP-relaxation (see Section 2)
on each graph component. We apply the LP solver
within the same cutting-plane procedure as Exact-
graph to allow for a direct comparison. This also
keeps memory consumption manageable, as other-
wise all |V |3 constraints must be explicitly encoded
into the LP. As mentioned, our goal is to present
a method for learning transitive graphs, while LP-
relax produces solutions that violate transitivity.
However, we run it on our data set to obtain empiri-
cal results, and to compare run-times against TNF.

Graph-Node-Fix (GNF) Initialization of each
component is performed in the following way: if the
graph is very sparse, i.e. λ ≥ C for some constantC
(set to 1 in our experiments), then solving the graph
exactly is not an issue and we use Exact-graph. Oth-
erwise, we initialize by applying Exact-graph in a
sparse configuration, i.e., λ = C.

Tree-Node-Fix (TNF) Initialization is done as in
GNF, except that if it generates a graph that is not an
FRG, it is corrected by a simple heuristic: for every
node in the reduced graph Gred that has more than

1We use the Gurobi optimization package in all experiments.

●

●

●

●

●

●

●

−0.8 −0.6 −0.4 −0.2 0.0

10
50

10
0

50
0

50
00

50
00

0

−lambda

se
c

● Exact−graph
LP−relax
GNF
TNF

Figure 5: Run-time in seconds for various −λ values.

one parent, we choose from its current parents the
single one whose SCC is composed of the largest
number of nodes in G.

We evaluate algorithms by comparing the set of
gold standard edges with the set of edges learned by
each algorithm. We measure recall, precision and
F1 for various values of the sparseness parameter
λ, and compute the area under the precision-recall
Curve (AUC) generated. Efficiency is evaluated by
comparing run-times.

5.2 Results

We first focus on run-times and show that TNF is
efficient and has potential to scale to large data sets.

Figure 5 compares run-times2 of Exact-graph,
GNF, TNF, and LP-relax as −λ increases and the
graph becomes denser. Note that the y-axis is in
logarithmic scale. Clearly, Exact-graph is extremely
slow and run-time increases quickly. For λ = 0.3
run-time was already 12 hours and we were unable
to obtain results for λ < 0.3, while in TNF we easily
got a solution for any λ. When λ = 0.6, where both
Exact-graph and TNF achieve best F1, TNF is 10
times faster than Exact-graph. When λ = 0.5, TNF
is 50 times faster than Exact-graph and so on. Most
importantly, run-time for GNF and TNF increases
much more slowly than for Exact-graph.

2Run on a multi-core 2.5GHz server with 32GB of RAM.
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Maximal F1 on the curve is .43 for Exact-graph, .41 for
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is .32 for Exact-graph, .31 for TNF, and .26 for No-trans.

Run-time of LP-relax is also bad compared to
TNF and GNF. Run-time increases more slowly than
Exact-graph, but still very fast comparing to TNF.
When λ = 0.6, LP-relax is almost 10 times slower
than TNF, and when λ = −0.1, LP-relax is 200
times slower than TNF. This points to the difficulty
of scaling LP-relax to large graphs.

As for the quality of learned graphs, Figure 6 pro-
vides a precision-recall curve for Exact-graph, TNF
and No-trans (GNF and LP-relax are omitted from
the figure and described below to improve readabil-
ity). We observe that both Exact-graph and TNF
substantially outperform No-trans and that TNF’s
graph quality is only slightly lower than Exact-graph
(which is extremely slow). Following Berant et al.,
we report in the caption the maximal F1 on the curve
and AUC in the recall range 0-0.5 (the widest range
for which we have results for all algorithms). Note
that compared to Exact-graph, TNF reduces AUC by
a point and the maximal F1 score by 2 points only.

GNF results are almost identical to those of TNF
(maximal F1=0.41, AUC: 0.31), and in fact for all
λ configurations TNF outperforms GNF by no more
than one F1 point. As for LP-relax, results are just
slightly lower than Exact-graph (maximal F1: 0.43,
AUC: 0.32), but its output is not a transitive graph,

and as shown above run-time is quite slow. Last, we
note that the results of Exact-forest are almost iden-
tical to Exact-graph (maximal F1: 0.43), illustrating
that assuming that entailment graphs are FRGs (Sec-
tion 3) is reasonable in this data set.

To conclude, TNF learns transitive entailment
graphs of good quality much faster than Exact-
graph. Our experiment utilized an available data
set of moderate size; However, we expect TNF to
scale to large data sets (that are currently unavail-
able), where other baselines would be impractical.

6 Conclusion

Learning large and accurate resources of entailment
rules is essential in many semantic inference appli-
cations. Employing transitivity has been shown to
improve rule learning, but raises issues of efficiency
and scalability.

The first contribution of this paper is a novel mod-
eling assumption that entailment graphs are very
similar to FRGs, which is analyzed and validated
empirically. The main contribution of the paper is
an efficient polynomial approximation algorithm for
learning entailment rules, which is based on this
assumption. We demonstrate empirically that our
method is by orders of magnitude faster than the
state-of-the-art exact algorithm, but still produces an
output that is almost as good as the optimal solution.

We suggest our method as an important step to-
wards scalable acquisition of precise entailment re-
sources. In future work, we aim to evaluate TNF on
large graphs that are automatically generated from
huge corpora. This of course requires substantial ef-
forts of pre-processing and test-set annotation. We
also plan to examine the benefit of TNF in learning
similar structures, e.g., taxonomies or ontologies.
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Abstract

Comprehending action preconditions and ef-
fects is an essential step in modeling the dy-
namics of the world. In this paper, we ex-
press the semantics of precondition relations
extracted from text in terms of planning oper-
ations. The challenge of modeling this con-
nection is to ground language at the level of
relations. This type of grounding enables us to
create high-level plans based on language ab-
stractions. Our model jointly learns to predict
precondition relations from text and to per-
form high-level planning guided by those rela-
tions. We implement this idea in the reinforce-
ment learning framework using feedback au-
tomatically obtained from plan execution at-
tempts. When applied to a complex virtual
world and text describing that world, our rela-
tion extraction technique performs on par with
a supervised baseline, yielding an F-measure
of 66% compared to the baseline’s 65%. Ad-
ditionally, we show that a high-level planner
utilizing these extracted relations significantly
outperforms a strong, text unaware baseline
– successfully completing 80% of planning
tasks as compared to 69% for the baseline.1

1 Introduction

Understanding action preconditions and effects is a
basic step in modeling the dynamics of the world.
For example, having seeds is a precondition for
growing wheat. Not surprisingly, preconditions have
been extensively explored in various sub-fields of
AI. However, existing work on action models has
largely focused on tasks and techniques specific to
individual sub-fields with little or no interconnection
between them. In NLP, precondition relations have
been studied in terms of the linguistic mechanisms

1The code, data and experimental setup for this work are
available at http://groups.csail.mit.edu/rbg/code/planning

A pickaxe, which is used to harvest stone, can be
made from wood.

(a)
Low Level Actions for: wood→ pickaxe→ stone
step 1: move from (0,0) to (2,0)
step 2: chop tree at: (2,0)
step 3: get wood at: (2,0)
step 4: craft plank from wood
step 5: craft stick from plank
step 6: craft pickaxe from plank and stick
· · ·
step N-1: pickup tool: pickaxe
step N: harvest stone with pickaxe at: (5,5)

(b)

Figure 1: Text description of preconditions and effects
(a), and the low-level actions connecting them (b).

that realize them, while in classical planning, these
relations are viewed as a part of world dynamics.
In this paper, we bring these two parallel views to-
gether, grounding the linguistic realization of these
relations in the semantics of planning operations.

The challenge and opportunity of this fusion
comes from the mismatch between the abstractions
of human language and the granularity of planning
primitives. Consider, for example, text describing a
virtual world such as Minecraft2 and a formal de-
scription of that world using planning primitives.
Due to the mismatch in granularity, even the simple
relations between wood, pickaxe and stone described
in the sentence in Figure 1a results in dozens of low-
level planning actions in the world, as can be seen
in Figure 1b. While the text provides a high-level
description of world dynamics, it does not provide
sufficient details for successful plan execution. On
the other hand, planning with low-level actions does
not suffer from this limitation, but is computation-
ally intractable for even moderately complex tasks.
As a consequence, in many practical domains, plan-
ning algorithms rely on manually-crafted high-level

2http://www.minecraft.net/
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abstractions to make search tractable (Ghallab et al.,
2004; Lekavý and Návrat, 2007).

The central idea of our work is to express the se-
mantics of precondition relations extracted from text
in terms of planning operations. For instance, the
precondition relation between pickaxe and stone de-
scribed in the sentence in Figure 1a indicates that
plans which involve obtaining stone will likely need
to first obtain a pickaxe. The novel challenge of this
view is to model grounding at the level of relations,
in contrast to prior work which focused on object-
level grounding. We build on the intuition that the
validity of precondition relations extracted from text
can be informed by the execution of a low-level
planner.3 This feedback can enable us to learn these
relations without annotations. Moreover, we can use
the learned relations to guide a high level planner
and ultimately improve planning performance.

We implement these ideas in the reinforcement
learning framework, wherein our model jointly
learns to predict precondition relations from text and
to perform high-level planning guided by those rela-
tions. For a given planning task and a set of can-
didate relations, our model repeatedly predicts a se-
quence of subgoals where each subgoal specifies an
attribute of the world that must be made true. It
then asks the low-level planner to find a plan be-
tween each consecutive pair of subgoals in the se-
quence. The observed feedback – whether the low-
level planner succeeded or failed at each step – is
utilized to update the policy for both text analysis
and high-level planning.

We evaluate our algorithm in the Minecraft virtual
world, using a large collection of user-generated on-
line documents as our source of textual information.
Our results demonstrate the strength of our relation
extraction technique – while using planning feed-
back as its only source of supervision, it achieves
a precondition relation extraction accuracy on par
with that of a supervised SVM baseline. Specifi-
cally, it yields an F-score of 66% compared to the
65% of the baseline. In addition, we show that
these extracted relations can be used to improve the
performance of a high-level planner. As baselines

3If a planner can find a plan to successfully obtain stone
after obtaining a pickaxe, then a pickaxe is likely a precondition
for stone. Conversely, if a planner obtains stone without first
obtaining a pickaxe, then it is likely not a precondition.

for this evaluation, we employ the Metric-FF plan-
ner (Hoffmann and Nebel, 2001),4 as well as a text-
unaware variant of our model. Our results show that
our text-driven high-level planner significantly out-
performs all baselines in terms of completed plan-
ning tasks – it successfully solves 80% as compared
to 41% for the Metric-FF planner and 69% for the
text unaware variant of our model. In fact, the per-
formance of our method approaches that of an ora-
cle planner which uses manually-annotated precon-
ditions.

2 Related Work

Extracting Event Semantics from Text The task
of extracting preconditions and effects has previ-
ously been addressed in the context of lexical se-
mantics (Sil et al., 2010; Sil and Yates, 2011).
These approaches combine large-scale distributional
techniques with supervised learning to identify de-
sired semantic relations in text. Such combined ap-
proaches have also been shown to be effective for
identifying other relationships between events, such
as causality (Girju and Moldovan, 2002; Chang and
Choi, 2006; Blanco et al., 2008; Beamer and Girju,
2009; Do et al., 2011).

Similar to these methods, our algorithm capital-
izes on surface linguistic cues to learn preconditions
from text. However, our only source of supervision
is the feedback provided by the planning task which
utilizes the predictions. Additionally, we not only
identify these relations in text, but also show they
are valuable in performing an external task.

Learning Semantics via Language Grounding
Our work fits into the broad area of grounded lan-
guage acquisition, where the goal is to learn linguis-
tic analysis from a situated context (Oates, 2001;
Siskind, 2001; Yu and Ballard, 2004; Fleischman
and Roy, 2005; Mooney, 2008a; Mooney, 2008b;
Branavan et al., 2009; Liang et al., 2009; Vogel
and Jurafsky, 2010). Within this line of work, we
are most closely related to the reinforcement learn-
ing approaches that learn language by interacting
with an external environment (Branavan et al., 2009;
Branavan et al., 2010; Vogel and Jurafsky, 2010;
Branavan et al., 2011).

4The state-of-the-art baseline used in the 2008 International
Planning Competition. http://ipc.informatik.uni-freiburg.de/
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Text (input):

A pickaxe, which is used to harvest stone, 
can be made from wood.

Precondition Relations:

pickaxe stonewood pickaxe

Plan Subgoal Sequence:

initial
state

stone
(goal)

wood
(subgoal 1)

pickaxe
(subgoal 2)

Figure 2: A high-level plan showing two subgoals in
a precondition relation. The corresponding sentence is
shown above.

The key distinction of our work is the use of
grounding to learn abstract pragmatic relations, i.e.
to learn linguistic patterns that describe relationships
between objects in the world. This supplements pre-
vious work which grounds words to objects in the
world (Branavan et al., 2009; Vogel and Jurafsky,
2010). Another important difference of our setup
is the way the textual information is utilized in the
situated context. Instead of getting step-by-step in-
structions from the text, our model uses text that de-
scribes general knowledge about the domain struc-
ture. From this text, it extracts relations between
objects in the world which hold independently of
any given task. Task-specific solutions are then con-
structed by a planner that relies on these relations to
perform effective high-level planning.

Hierarchical Planning It is widely accepted that
high-level plans that factorize a planning prob-
lem can greatly reduce the corresponding search
space (Newell et al., 1959; Bacchus and Yang,
1994). Previous work in planning has studied
the theoretical properties of valid abstractions and
proposed a number of techniques for generating
them (Jonsson and Barto, 2005; Wolfe and Barto,
2005; Mehta et al., 2008; Barry et al., 2011). In gen-
eral, these techniques use static analysis of the low-
level domain to induce effective high-level abstrac-
tions. In contrast, our focus is on learning the ab-
straction from natural language. Thus our technique
is complementary to past work, and can benefit from
human knowledge about the domain structure.

3 Problem Formulation

Our task is two-fold. First, given a text document
describing an environment, we wish to extract a set
of precondition/effect relations implied by the text.
Second, we wish to use these induced relations to
determine an action sequence for completing a given
task in the environment.

We formalize our task as illustrated in Figure 2.
As input, we are given a world defined by the tuple
〈S,A, T 〉, where S is the set of possible world states,
A is the set of possible actions and T is a determin-
istic state transition function. Executing action a in
state s causes a transition to a new state s′ according
to T (s′ | s, a). States are represented using proposi-
tional logic predicates xi ∈ X , where each state is
simply a set of such predicates, i.e. s ⊂ X .

The objective of the text analysis part of our task
is to automatically extract a set of valid precondi-
tion/effect relationships from a given document d.
Given our definition of the world state, precondi-
tions and effects are merely single term predicates,
xi, in this world state. We assume that we are given
a seed mapping between a predicate xi, and the
word types in the document that reference it (see
Table 3 for examples). Thus, for each predicate
pair 〈xk, xl〉, we want to utilize the text to predict
whether xk is a precondition for xl; i.e., xk → xl.
For example, from the text in Figure 2, we want to
predict that possessing a pickaxe is a precondition
for possessing stone. Note that this relation implies
the reverse as well, i.e. xl can be interpreted as the
effect of an action sequence performed on state xk.

Each planning goal g ∈ G is defined by a starting
state sg0, and a final goal state sgf . This goal state is
represented by a set of predicates which need to be
made true. In the planning part of our task our objec-
tive is to find a sequence of actions ~a that connect sg0
to sgf . Finally, we assume document d does not con-
tain step-by-step instructions for any individual task,
but instead describes general facts about the given
world that are useful for a wide variety of tasks.

4 Model

The key idea behind our model is to leverage textual
descriptions of preconditions and effects to guide the
construction of high level plans. We define a high-
level plan as a sequence of subgoals, where each

128



subgoal is represented by a single-term predicate,
xi, that needs to be set in the corresponding world
state – e.g. have(wheat)=true. Thus the set of
possible subgoals is defined by the set of all possi-
ble single-term predicates in the domain. In contrast
to low-level plans, the transition between these sub-
goals can involve multiple low-level actions. Our al-
gorithm for textually informed high-level planning
operates in four steps:

1. Use text to predict the preconditions of each
subgoal. These predictions are for the entire
domain and are not goal specific.

2. Given a planning goal and the induced pre-
conditions, predict a subgoal sequence that
achieves the given goal.

3. Execute the predicted sequence by giving each
pair of consecutive subgoals to a low-level
planner. This planner, treated as a black-box,
computes the low-level plan actions necessary
to transition from one subgoal to the next.

4. Update the model parameters, using the low-
level planner’s success or failure as the source
of supervision.

We formally define these steps below.

Modeling Precondition Relations Given a docu-
ment d, and a set of subgoal pairs 〈xi, xj〉, we want
to predict whether subgoal xi is a precondition for
xj . We assume that precondition relations are gener-
ally described within single sentences. We first use
our seed grounding in a preprocessing step where
we extract all predicate pairs where both predicates
are mentioned in the same sentence. We call this set
the Candidate Relations. Note that this set will con-
tain many invalid relations since co-occurrence in a
sentence does not necessarily imply a valid precon-
dition relation.5 Thus for each sentence, ~wk, asso-
ciated with a given Candidate Relation, xi → xj ,
our task is to predict whether the sentence indicates
the relation. We model this decision via a log linear
distribution as follows:

p(xi → xj | ~wk, qk; θc) ∝ eθc·φc(xi,xj , ~wk,qk), (1)

where θc is the vector of model parameters. We
compute the feature function φc using the seed

5In our dataset only 11% of Candidate Relations are valid.

Input: A document d, Set of planning tasks G,
Set of candidate precondition relations Call,
Reward function r(), Number of iterations T

Initialization:Model parameters θx = 0 and θc = 0.

for i = 1 · · ·T do
Sample valid preconditions:
C ← ∅
foreach 〈xi, xj〉 ∈ Call do

foreach Sentence ~wk containing xi and xj do
v ∼ p(xi → xj | ~wk, qk; θc)
if v = 1 then C = C ∪ 〈xi, xj〉

end
end
Predict subgoal sequences for each task g.
foreach g ∈ G do

Sample subgoal sequence ~x as follows:
for t = 1 · · ·n do

Sample next subgoal:
xt ∼ p(x | xt−1, s

g
0, s

g
f , C; θx)

Construct low-level subtask from xt−1 to xt

Execute low-level planner on subtask
end
Update subgoal prediction model using Eqn. 2

end
Update text precondition model using Eqn. 3

end

Algorithm 1: A policy gradient algorithm for pa-
rameter estimation in our model.

grounding, the sentence ~wk, and a given dependency
parse qk of the sentence. Given these per-sentence
decisions, we predict the set of all valid precondi-
tion relations, C, in a deterministic fashion. We do
this by considering a precondition xi → xj as valid
if it is predicted to be valid by at least one sentence.

Modeling Subgoal Sequences Given a planning
goal g, defined by initial and final goal states sg0 and
sgf , our task is to predict a sequence of subgoals ~x
which will achieve the goal. We condition this de-
cision on our predicted set of valid preconditions C,
by modeling the distribution over sequences ~x as:

p(~x | sg0, s
g
f , C; θx) =

n∏
t=1

p(xt | xt−1, s
g
0, s

g
f , C; θx),

p(xt | xt−1, s
g
0, s

g
f , C; θx) ∝ eθx·φx(xt,xt−1,s

g
0,s

g
f ,C).

Here we assume that subgoal sequences are Marko-
vian in nature and model individual subgoal predic-
tions using a log-linear model. Note that in con-
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trast to Equation 1 where the predictions are goal-
agnostic, these predictions are goal-specific. As be-
fore, θx is the vector of model parameters, and φx is
the feature function. Additionally, we assume a spe-
cial stop symbol, x∅, which indicates the end of the
subgoal sequence.

Parameter Update Parameter updates in our model
are done via reinforcement learning. Specifically,
once the model has predicted a subgoal sequence for
a given goal, the sequence is given to the low-level
planner for execution. The success or failure of this
execution is used to compute the reward signal r for
parameter estimation. This predict-execute-update
cycle is repeated until convergence. We assume that
our reward signal r strongly correlates with the cor-
rectness of model predictions. Therefore, during
learning, we need to find the model parameters that
maximize expected future reward (Sutton and Barto,
1998). We perform this maximization via stochastic
gradient ascent, using the standard policy gradient
algorithm (Williams, 1992; Sutton et al., 2000).

We perform two separate policy gradient updates,
one for each model component. The objective of the
text component of our model is purely to predict the
validity of preconditions. Therefore, subgoal pairs
〈xk, xl〉, where xl is reachable from xk, are given
positive reward. The corresponding parameter up-
date, with learning rate αc, takes the following form:

∆θc ← αc r

[
φc(xi, xj , ~wk, qk) −

Ep(xi′→xj′ |·)
[
φc(xi′ , xj′ , ~wk, qk)

] ]
. (2)

The objective of the planning component of our
model is to predict subgoal sequences that success-
fully achieve the given planning goals. Thus we di-
rectly use plan-success as a binary reward signal,
which is applied to each subgoal decision in a se-
quence. This results in the following update:

∆θx ← αx r
∑
t

[
φx(xt, xt−1, s

g
0, s

g
f , C) −

Ep(x′t|·)
[
φx(x′t, xt−1, s

g
0, s

g
f , C)

] ]
, (3)

where t indexes into the subgoal sequence and αx is
the learning rate.

fish

iron

shears bucket

milkstringseeds wool

iron doorbone meal

fishing rod

wood

plank

stick

fence

Figure 3: Example of the precondition dependencies
present in the Minecraft domain.

Domain #Objects #Pred Types #Actions
Parking 49 5 4
Floortile 61 10 7
Barman 40 15 12

Minecraft 108 16 68

Table 1: A comparison of complexity between Minecraft
and some domains used in the IPC-2011 sequential satis-
ficing track. In the Minecraft domain, the number of ob-
jects, predicate types, and actions is significantly larger.

5 Applying the Model

We apply our method to Minecraft, a grid-based vir-
tual world. Each grid location represents a tile of ei-
ther land or water and may also contain resources.
Users can freely move around the world, harvest
resources and craft various tools and objects from
these resources. The dynamics of the world require
certain resources or tools as prerequisites for per-
forming a given action, as can be seen in Figure 3.
For example, a user must first craft a bucket before
they can collect milk.

Defining the Domain In order to execute a tradi-
tional planner on the Minecraft domain, we define
the domain using the Planning Domain Definition
Language (PDDL) (Fox and Long, 2003). This is the
standard task definition language used in the Inter-
national Planning Competitions (IPC).6 We define
as predicates all aspects of the game state – for ex-
ample, the location of resources in the world, the re-
sources and objects possessed by the player, and the
player’s location. Our subgoals xi and our task goals
sgf map directly to these predicates. This results in
a domain with significantly greater complexity than
those solvable by traditional low-level planners. Ta-
ble 1 compares the complexity of our domain with
some typical planning domains used in the IPC.

6http://ipc.icaps-conference.org/
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Low-level Planner As our low-level planner we
employ Metric-FF (Hoffmann and Nebel, 2001),
the state-of-the-art baseline used in the 2008 In-
ternational Planning Competition. Metric-FF is a
forward-chaining heuristic state space planner. Its
main heuristic is to simplify the task by ignoring op-
erator delete lists. The number of actions in the so-
lution for this simplified task is then used as the goal
distance estimate for various search strategies.

Features The two components of our model lever-
age different types of information, and as a result,
they each use distinct sets of features. The text com-
ponent features φc are computed over sentences and
their dependency parses. The Stanford parser (de
Marneffe et al., 2006) was used to generate the de-
pendency parse information for each sentence. Ex-
amples of these features appear in Table 2. The se-
quence prediction component takes as input both the
preconditions induced by the text component as well
as the planning state and the previous subgoal. Thus
φx contains features which check whether two sub-
goals are connected via an induced precondition re-
lation, in addition to features which are simply the
Cartesian product of domain predicates.

6 Experimental Setup
Datasets As the text description of our virtual world,
we use documents from the Minecraft Wiki,7 the
most popular information source about the game.
Our manually constructed seed grounding of pred-
icates contains 74 entries, examples of which can be
seen in Table 3. We use this seed grounding to iden-
tify a set of 242 sentences that reference predicates
in the Minecraft domain. This results in a set of
694 Candidate Relations. We also manually anno-
tated the relations expressed in the text, identifying
94 of the Candidate Relations as valid. Our corpus
contains 979 unique word types and is composed of
sentences with an average length of 20 words.

We test our system on a set of 98 problems that
involve collecting resources and constructing ob-
jects in the Minecraft domain – for example, fish-
ing, cooking and making furniture. To assess the
complexity of these tasks, we manually constructed
high-level plans for these goals and solved them us-
ing the Metric-FF planner. On average, the execu-

7http://www.minecraftwiki.net/wiki/Minecraft Wiki/

Words
Dependency Types
Dependency Type × Direction
Word × Dependency Type
Word × Dependency Type × Direction

Table 2: Example text features. A subgoal pair 〈xi, xj〉
is first mapped to word tokens using a small grounding
table. Words and dependencies are extracted along paths
between mapped target words. These are combined with
path directions to generate the text features.

Domain Predicate Noun Phrases
have(plank) wooden plank, wood plank
have(stone) stone, cobblestone
have(iron) iron ingot

Table 3: Examples in our seed grounding table. Each
predicate is mapped to one or more noun phrases that de-
scribe it in the text.

tion of the sequence of low-level plans takes 35 ac-
tions, with 3 actions for the shortest plan and 123
actions for the longest. The average branching fac-
tor is 9.7, leading to an average search space of more
than 1034 possible action sequences. For evaluation
purposes we manually identify a set of Gold Rela-
tions consisting of all precondition relations that are
valid in this domain, including those not discussed
in the text.

Evaluation Metrics We use our manual annotations
to evaluate the type-level accuracy of relation extrac-
tion. To evaluate our high-level planner, we use the
standard measure adopted by the IPC. This evalu-
ation measure simply assesses whether the planner
completes a task within a predefined time.

Baselines To evaluate the performance of our rela-
tion extraction, we compare against an SVM classi-
fier8 trained on the Gold Relations. We test the SVM
baseline in a leave-one-out fashion.

To evaluate the performance of our text-aware
high-level planner, we compare against five base-
lines. The first two baselines – FF and No Text –
do not use any textual information. The FF base-
line directly runs the Metric-FF planner on the given
task, while the No Text baseline is a variant of our
model that learns to plan in the reinforcement learn-
ing framework. It uses the same state-level features

8SVMlight (Joachims, 1999) with default parameters.
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✘✘
Seeds  for growing  wheat  can be obtained by breaking  tall grass 

(false negative)

Sticks  are the only building material required to craft a  fence  or  ladder.

Figure 4: Examples of precondition relations predicted by our model from text. Check marks (3) indicate correct
predictions, while a cross (8) marks the incorrect one – in this case, a valid relation that was predicted as invalid by
our model. Note that each pair of highlighted noun phrases in a sentence is a Candidate Relation, and pairs that are
not connected by an arrow were correctly predicted to be invalid by our model.

200100 15050

Figure 5: The performance of our model and a supervised
SVM baseline on the precondition prediction task. Also
shown is the F-Score of the full set of Candidate Rela-
tions which is used unmodified by All Text, and is given as
input to our model. Our model’s F-score, averaged over
200 trials, is shown with respect to learning iterations.

as our model, but does not have access to text.
The All Text baseline has access to the full set of

694 Candidate Relations. During learning, our full
model refines this set of relations, while in contrast
the All Text baseline always uses the full set.

The two remaining baselines constitute the upper
bound on the performance of our model. The first,
Manual Text, is a variant of our model which directly
uses the links derived from manual annotations of
preconditions in text. The second, Gold, has access
to the Gold Relations. Note that the connections
available to Manual Text are a subset of the Gold
links, because the text does not specify all relations.

Experimental Details All experimental results are
averaged over 200 independent runs for both our
model as well as the baselines. Each of these tri-
als is run for 200 learning iterations with a max-
imum subgoal sequence length of 10. To find a
low-level plan between each consecutive pair of sub-
goals, our high-level planner internally uses Metric-
FF. We give Metric-FF a one-minute timeout to find
such a low-level plan. To ensure that the comparison

Method %Plans
FF 40.8
No text 69.4
All text 75.5
Full model 80.2
Manual text 84.7
Gold connection 87.1

Table 4: Percentage of tasks solved successfully by our
model and the baselines. All performance differences be-
tween methods are statistically significant at p ≤ .01.

between the high-level planners and the FF baseline
is fair, the FF baseline is allowed a runtime of 2,000
minutes. This is an upper bound on the time that our
high-level planner can take over the 200 learning it-
erations, with subgoal sequences of length at most
10 and a one minute timeout. Lastly, during learning
we initialize all parameters to zero, use a fixed learn-
ing rate of 0.0001, and encourage our model to ex-
plore the state space by using the standard ε-greedy
exploration strategy (Sutton and Barto, 1998).

7 Results
Relation Extraction Figure 5 shows the perfor-
mance of our method on identifying preconditions
in text. We also show the performance of the super-
vised SVM baseline. As can be seen, after 200 learn-
ing iterations, our model achieves an F-Measure of
66%, equal to the supervised baseline. These results
support our hypothesis that planning feedback is a
powerful source of supervision for analyzing a given
text corpus. Figure 4 shows some examples of sen-
tences and the corresponding extracted relations.

Planning Performance As shown in Table 4 our
text-enriched planning model outperforms the text-
free baselines by more than 10%. Moreover, the
performance improvement of our model over the All
Text baseline demonstrates that the accuracy of the
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Figure 6: Percentage of problems solved by various mod-
els on Easy and Hard problem sets.

extracted text relations does indeed impact planning
performance. A similar conclusion can be reached
by comparing the performance of our model and the
Manual Text baseline.

The difference in performance of 2.35% between
Manual Text and Gold shows the importance of the
precondition information that is missing from the
text. Note that Gold itself does not complete all
tasks – this is largely because the Markov assump-
tion made by our model does not hold for all tasks.9

Figure 6 breaks down the results based on the dif-
ficulty of the corresponding planning task. We mea-
sure problem complexity in terms of the low-level
steps needed to implement a manually constructed
high-level plan. Based on this measure, we divide
the problems into two sets. As can be seen, all of
the high-level planners solve almost all of the easy
problems. However, performance varies greatly on
the more challenging tasks, directly correlating with
planner sophistication. On these tasks our model
outperforms the No Text baseline by 28% and the
All Text baseline by 11%.

Feature Analysis Figure 7 shows the top five pos-
itive features for our model and the SVM baseline.
Both models picked up on the words that indicate
precondition relations in this domain. For instance,
the word use often occurs in sentences that describe
the resources required to make an object, such as
“bricks are items used to craft brick blocks”. In ad-
dition to lexical features, dependency information is
also given high weight by both learners. An example

9When a given task has two non-trivial preconditions, our
model will choose to satisfy one of the two first, and the Markov
assumption blinds it to the remaining precondition, preventing
it from determining that it must still satisfy the other.

path has word "craft"

path has dependency type "partmod"

path has word "equals"

path has word "use"

path has dependency type "xsubj"

path has word "use"

path has word "fill"

path has dependency type "dobj"

path has dependency type "xsubj"

path has word "craft"

Figure 7: The top five positive features on words and
dependency types learned by our model (above) and by
SVM (below) for precondition prediction.

of this is a feature that checks for the direct object
dependency type. This analysis is consistent with
prior work on event semantics which shows lexico-
syntactic features are effective cues for learning text
relations (Blanco et al., 2008; Beamer and Girju,
2009; Do et al., 2011).

8 Conclusions
In this paper, we presented a novel technique for in-
ducing precondition relations from text by ground-
ing them in the semantics of planning operations.
While using planning feedback as its only source
of supervision, our method for relation extraction
achieves a performance on par with that of a su-
pervised baseline. Furthermore, relation grounding
provides a new view on classical planning problems
which enables us to create high-level plans based on
language abstractions. We show that building high-
level plans in this manner significantly outperforms
traditional techniques in terms of task completion.
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Abstract

Our research aims at building computational
models of word meaning that are perceptually
grounded. Using computer vision techniques,
we build visual and multimodal distributional
models and compare them to standard textual
models. Our results show that, while visual
models with state-of-the-art computer vision
techniques perform worse than textual models
in general tasks (accounting for semantic re-
latedness), they are as good or better models
of the meaning of words with visual correlates
such as color terms, even in a nontrivial task
that involves nonliteral uses of such words.
Moreover, we show that visual and textual in-
formation are tapping on different aspects of
meaning, and indeed combining them in mul-
timodal models often improves performance.

1 Introduction

Traditional semantic space models represent mean-
ing on the basis of word co-occurrence statistics in
large text corpora (Turney and Pantel, 2010). These
models (as well as virtually all work in computa-
tional lexical semantics) rely on verbal information
only, while human semantic knowledge also relies
on non-verbal experience and representation (Louw-
erse, 2011), crucially on the information gathered
through perception. Recent developments in com-
puter vision make it possible to computationally
model one vital human perceptual channel: vision
(Mooney, 2008). A few studies have begun to use
visual information extracted from images as part of
distributional semantic models (Bergsma and Van

Durme, 2011; Bergsma and Goebel, 2011; Bruni et
al., 2011; Feng and Lapata, 2010; Leong and Mihal-
cea, 2011). These preliminary studies all focus on
how vision may help text-based models in general
terms, by evaluating performance on, for instance,
word similarity datasets such as WordSim353.

This paper contributes to connecting language and
perception, focusing on how to exploit visual infor-
mation to build better models of word meaning, in
three ways: (1) We carry out a systematic compari-
son of models using textual, visual, and both types of
information. (2) We evaluate the models on general
semantic relatedness tasks and on two specific tasks
where visual information is highly relevant, as they
focus on color terms. (3) Unlike previous work, we
study the impact of using different kinds of visual
information for these semantic tasks.

Our results show that, while visual models with
state-of-the-art computer vision techniques perform
worse than textual models in general semantic tasks,
they are as good or better models of the mean-
ing of words with visual correlates such as color
terms, even in a nontrivial task that involves nonlit-
eral uses of such words. Moreover, we show that vi-
sual and textual information are tapping on different
aspects of meaning, such that they are complemen-
tary sources of information, and indeed combining
them in multimodal models often improves perfor-
mance. We also show that “hybrid” models exploit-
ing the patterns of co-occurrence of words as tags
of the same images can be a powerful surrogate of
visual information under certain circumstances.

The rest of the paper is structured as follows. Sec-
tion 2 introduces the textual, visual, multimodal,
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and hybrid models we use for our experiments. We
present our experiments in sections 3 to 5. Section
6 reviews related work, and section 7 finishes with
conclusions and future work.

2 Distributional semantic models

2.1 Textual models

For the current project, we constructed a set of
textual distributional models that implement vari-
ous standard ways to extract them from a corpus,
chosen to be representative of the state of the art.
In all cases, occurrence and co-occurrence statis-
tics are extracted from the freely available ukWaC
and Wackypedia corpora combined (size: 1.9B and
820M tokens, respectively).1 Moreover, in all mod-
els the raw co-occurrence counts are transformed
into nonnegative Local Mutual Information (LMI)
scores.2 Finally, in all models we harvest vector rep-
resentations for the same words (lemmas), namely
the top 20K most frequent nouns, 5K most frequent
adjectives and 5K most frequent verbs in the com-
bined corpora (for coherence with the vision-based
models, that cannot exploit contextual information
to distinguish nouns and adjectives, we merge nom-
inal and adjectival usages of the color adjectives in
the text-based models as well). The same 30K tar-
get nouns, verbs and adjectives are also employed as
contextual elements.

The Window2 and Window20 models are based
on counting co-occurrences with collocates within
a window of fixed width, in the tradition of HAL
(Lund and Burgess, 1996). Window2 records
sentence-internal co-occurrence with the nearest 2
content words to the left and right of each target con-
cept, a narrow context definition expected to capture
taxonomic relations. Window20 considers a larger
window of 20 words to the left and right of the target,
and should capture broader topical relations. The
Document model corresponds to a “topic-based”
approach in which words are represented as distri-
butions over documents. It is based on a word-by-
document matrix, recording the distribution of the

1http://wacky.sslmit.unibo.it/
2LMI is obtained by multiplying raw counts by Pointwise

Mutual Information, and it is a close approximation to the Log-
Likelihood Ratio (Evert, 2005). It counteracts the tendency of
PMI to favour extremely rare events.

30K target words across the 30K documents in the
concatenated corpus that have the largest cumulative
LMI mass. This model is thus akin to traditional
Latent Semantic Analysis (Landauer and Dumais,
1997), without dimensionality reduction.

We add to the models we constructed the freely
available Distributional Memory (DM) model,3 that
has been shown to reach state-of-the-art perfor-
mance in many semantic tasks (Baroni and Lenci,
2010). DM is an example of a more complex text-
based model that exploits lexico-syntactic and de-
pendency relations between words (see Baroni and
Lenci’s article for details), and we use it as an in-
stance of a grammar-based model. DM is based
on the same corpora we used plus the 100M-word
British National Corpus,4 and it also uses LMI
scores.

2.2 Visual models
The visual models use information extracted from
images instead of textual corpora. We use image
data where each image is associated with one or
more words or tags (we use “tag” for each word as-
sociated to the image, and “label” for the set of tags
of an image). We use the ESP-Game dataset,5 con-
taining 100K images labeled through a game with a
purpose in which two people partnered online must
independently and rapidly agree on an appropriate
word to label randomly selected images. Once a
word is entered by both partners in a certain num-
ber of game matches, that word is added to the label
for that image, and it becomes a taboo word for the
following rounds of the game (von Ahn and Dab-
bish, 2004). There are 20,515 distinct tags in the
dataset, with an average of 4 tags per image. We
build one vector with visual features for each tag in
the dataset.

The visual features are extracted with the use of
a standard bag-of-visual-words (BoVW) represen-
tation of images, inspired by NLP (Sivic and Zisser-
man, 2003; Csurka et al., 2004; Nister and Stewe-
nius, 2006; Bosch et al., 2007; Yang et al., 2007).
This approach relies on the notion of a common vo-
cabulary of “visual words” that can serve as discrete
representations for all images. Contrary to what hap-

3http://clic.cimec.unitn.it/dm
4http://www.natcorp.ox.ac.uk/
5http://www.espgame.org
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pens in NLP, where words are (mostly) discrete and
easy to identify, in vision the visual words need to
be first defined. The process is completely induc-
tive. In a nutshell, BoVW works as follows. From
every image in a dataset, relevant areas are identified
and a low-level feature vector (called a “descriptor”)
is built to represent each area. These vectors, living
in what is sometimes called a descriptor space, are
then grouped into a number of clusters. Each cluster
is treated as a discrete visual word, and the clusters
will be the vocabulary of visual words used to rep-
resent all the images in the collection. Now, given
a new image, the nearest visual word is identified
for each descriptor extracted from it, such that the
image can be represented as a BoVW feature vec-
tor, by counting the instances of each visual word
in the image (note that an occurrence of a low-level
descriptor vector in an image, after mapping to the
nearest cluster, will increment the count of a single
dimension of the higher-level BoVW vector). In our
work, the representation of each word (tag) is a also
a BoVW vector. The values of each dimension are
obtained by summing the occurrences of the relevant
visual word in all the images tagged with the word.
Again, raw counts are transformed into Local Mu-
tual Information scores. The process to extract vi-
sual words and use them to create image-based vec-
tors to represent (real) words is illustrated in Figure
1, for a hypothetical example in which there is only
one image in the collection labeled with the word
horse.
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Figure 1: Procedure to build a visual representation for a
word, exemplified with SIFT features.

We extract descriptor features of two types.6

First, the standard Scale-Invariant Feature Trans-
form (SIFT) feature vectors (Lowe, 1999; Lowe,
2004), good at characterizing parts of objects. Sec-
ond, LAB features (Fairchild, 2005), which encode
only color information. We also experimented with
other visual features, such as those focusing on
edges (Canny, 1986), texture (Zhu et al., 2002), and
shapes (Oliva and Torralba, 2001), but they were
not useful for the color tasks. Moreover, we ex-
perimented also with different color scales, such as
LUV, HSV and RGB, obtaining significantly worse
performance compared to LAB. Further details on
feature extraction follow.

SIFT features are designed to be invariant to im-
age scale and rotation, and have been shown to pro-
vide a robust matching across affine distortion, noise
and change in illumination. The version of SIFT fea-
tures that we use is sensitive to color (RGB scale;
LUV, LAB and OPPONENT gave worse results).
We automatically identified keypoints for each im-
age and extracted SIFT features on a regular grid de-
fined around the keypoint with five pixels spacing,
at four multiple scales (10, 15, 20, 25 pixel radii),
zeroing the low contrast ones. To obtain the visual
word vocabulary, we cluster the SIFT feature vec-
tors with the standardly used k-means clustering al-
gorithm. We varied the number k of visual words
between 500 and 2,500 in steps of 500.

For the SIFT-based representation of images, we
used spatial histograms to introduce weak geometry
(Grauman and Darrell, 2005; Lazebnik et al., 2006),
dividing the image into several (spatial) regions, rep-
resenting each region in terms of BoVW, and then
concatenating the vectors. In our experiments, the
spatial regions were obtained by dividing the image
in 4× 4, for a total of 16 regions (other values and a
global representation did not perform as well). Note
that, following standard practice, descriptor cluster-
ing was performed ignoring the region partition, but
the resulting visual words correspond to different di-
mensions in the concatenated BoVW vectors, de-
pending on the region in which they occur. Con-
sequently, a vocabulary of k visual words results in
BoVW vectors with k × 16 dimensions.

6We use VLFeat (http://www.vlfeat.org/) for fea-
ture extraction (Vedaldi and Fulkerson, 2008).
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The LAB color space plots image data in 3 di-
mensions along 3 independent (orthogonal) axes,
one for brightness (luminance) and two for color
(chrominance). Luminance corresponds closely to
brightness as recorded by the brain-eye system;
the chrominance (red-green and yellow-blue) axes
mimic the oppositional color sensations the retina
reports to the brain (Szeliski, 2010). LAB features
are densely sampled for each pixel. Also here we use
the k-means algorithm to build the descriptor space.
We varied the number of k visual words between
128 and 1,024 in steps of 128.

2.3 Multimodal models

To assemble the textual and visual representations in
multimodal semantic spaces, we concatenate the two
vectors after normalizing them. We use the linear
weighted combination function proposed by Bruni
et al. (2011): Given a word that is present both in
the textual model and in the visual model, we sepa-
rately normalize the two vectors Ft and Fv and we
combine them as follows:

F = α× Ft ⊕ (1− α)× Fv

where ⊕ is the vector concatenate operator. The
weighting parameter α (0 ≤ α ≤ 1) is tuned on the
MEN development data (2,000 word pairs; details
on the MEN dataset in the next section). We find the
optimal value to be close to α = 0.5 for most model
combinations, suggesting that textual and visual in-
formation should have similar weight. Our imple-
mentation of the proposed method is open source
and publicly available.7

2.4 Hybrid models

We further introduce hybrid models that exploit the
patterns of co-occurrence of words as tags of the
same images. Like textual models, these mod-
els are based on word co-occurrence; like visual
models, they consider co-occurrence in images (im-
age labels). In one model (ESP-Win, analogous
to window-based models), words tagging an im-
age were represented in terms of co-occurrence with
the other tags in the image label (Baroni and Lenci
(2008) are a precedent for the use of ESP-Win).
The other (ESP-Doc, analogous to document-based

7https://github.com/s2m/FUSE

models) represented words in terms of their co-
occurrence with images, using each image as a dif-
ferent dimension. This information is very easy to
extract, as it does not require the sophisticated tech-
niques used in computer vision. We expected these
models to perform very bad; however, as we will
show, they perform relatively well in all but one of
the tasks tested.

3 Textual and visual models as general
semantic models

We test the models just presented in two different
ways: First, as general models of word meaning,
testing their correlation to human judgements on
word similarity and relatedness (this section). Sec-
ond, as models of the meaning of color terms (sec-
tions 4 and 5).

We use one standard dataset (WordSim353) and
one new dataset (MEN). WordSim353 (Finkelstein
et al., 2002) is a widely used benchmark constructed
by asking 16 subjects to rate a set of 353 word pairs
on a 10-point similarity scale and averaging the rat-
ings (dollar/buck receives a high 9.22 average rat-
ing, professor/cucumber a low 0.31). MEN is a
new evaluation benchmark with a better coverage of
our multimodal semantic models.8 It contains 3,000
pairs of randomly selected words that occur as ESP
tags (pairs sampled to ensure a balanced range of re-
latedness levels according to a text-based semantic
score). Each pair is scored on a [0, 1]-normalized
semantic relatedness scale via ratings obtained by
crowdsourcing on the Amazon Mechanical Turk (re-
fer to the online MEN documentation for more de-
tails). For example, cold/frost has a high 0.9 MEN
score, eat/hair a low 0.1. We evaluate the models
in terms of their Spearman correlation to the human
ratings. Our models have a perfect MEN coverage
and a coverage of 252 WordSim pairs.

We used the development set of MEN to test
the effect of varying the number k of visual words
in SIFT and LAB. We restrict the discussion to
SIFT with the optimal k (2.5K words) and to LAB
with the optimal (256), lowest (128), and highest
k (1024). We report the results of the multimodal

8An updated version of MEN is available from http://
clic.cimec.unitn.it/˜elia.bruni/MEN.html.
The version used here contained 10 judgements per word pair.
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models built with these visual models and the best
textual models (Window2 and Window20).

Columns WS and MEN in Table 1 report corre-
lations with the WordSim and MEN ratings, respec-
tively. As expected, because they are more mature
and capture a broader range of semantic informa-
tion, textual models perform much better than purely
visual models. Also as expected, SIFT features out-
perform the simpler LAB features for this task.

A first indication that visual information helps is
the fact that, for MEN, multimodal models perform
best. Note that all models that are sensitive to vi-
sual information perform better for MEN than for
WordSim, and the reverse is true for textual models.
Because of its design, word pairs in MEN can be
expected to be more imageable than those in Word-
Sim, so the visual information is more relevant for
this dataset. Also recall that we did some parameter
tuning on held-out MEN data.

Surprisingly, hybrid models perform quite well:
They are around 10 points worse than textual and
multimodal models for WordSim, and only slightly
worse than multimodal models for MEN.

4 Experiment 1: Discovering the color of
concrete objects

In Experiment 1, we test the hypothesis that the re-
lation between words denoting concrete things and
words denoting their typical color is reflected by the
distance of the corresponding vectors better when
the models are sensitive to visual information.

4.1 Method

Two authors labeled by consensus a list of concrete
nouns (extracted from the BLESS dataset9 and the
nouns in the BNC occurring with color terms more
than 100 times) with one of the 11 colors from
the basic set proposed by Berlin and Kay (1969):
black, blue, brown, green, grey, orange, pink, pur-
ple, red, white, yellow. Objects that do not have
an obvious characteristic color (computer) and those
with more than one characteristic color (zebra, bear)
were eliminated. Moreover, only nouns covered by
all the models were preserved. The final list con-

9http://sites.google.com/site/
geometricalmodels/shared-evaluation

Model WS MEN E1 E2
DM .44 .42 3 (09) .14
Document .63 .62 3 (07) .06
Window2 .70 .66 5 (13) .49***
Window20 .70 .62 3 (11) .53***
LAB128 .21 .41 1 (27) .25*
LAB256 .21 .41 2 (24) .24*
LAB1024 .19 .41 2 (24) .28**
SIFT2.5K .33 .44 3 (15) .57***
W2-LAB128 .40 .59 1 (27) .40***
W2-LAB256 .41 .60 2 (23) .40***
W2-LAB1024 .39 .61 2 (24) .44***
W20-LAB128 .40 .60 1 (27) .36***
W20-LAB256 .41 .60 2 (23) .36***
W20-LAB1024 .39 .62 2 (24) .40***
W2-SIFT2.5K .64 .69 2.5 (19) .68***
W20-SIFT2.5K .64 .68 2 (17) .73***
ESP-Doc .52 .66 1 (37) .29*
ESP-Win .55 .68 4 (15) .16

Table 1: Results of the textual, visual, multimodal, and
hybrid models on the general semantic tasks (first two
columns, section 3; Pearson ρ) and Experiments 1 (E1,
section 4) and 2 (E2, section 5). E1 reports the median
rank of the correct color and the number of top matches
(in parentheses), and E2 the average difference in nor-
malized cosines between literal and nonliteral adjective-
noun phrases, with the significance of a t-test (*** for
p< 0.001, ** < 0.01, * < 0.05).

tains 52 nouns.10 Some random examples are fog–
grey, crow–black, wood–brown, parsley–green, and
grass–green.

For evaluation, we measured the cosine of each
noun with the 11 basic color words in the space pro-
duced by each model, and recorded the rank of the
correct color in the resulting ordered list.

4.2 Results

Column E1 in Table 1 reports the median rank for
each model (the smaller the rank, the better the
model), as well as the number of exact matches (that
is, number of nouns for which the model ranks the
correct color first).

Discovering knowledge such that grass is green
is arguably a simple task but Experiment 1 shows

10Dataset available from the second author’s webpage, under
resources.
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that textual models fail this simple task, with median
ranks around 3.11 This is consistent with the findings
in Baroni and Lenci (2008) that standard distribu-
tional models do not capture the association between
concrete concepts and their typical attributes. Visual
models, as expected, are better at capturing the as-
sociation between concepts and visual attributes. In
fact, all models that are sensitive to visual informa-
tion achieve median rank 1.

Multimodal models do not increase performance
with respect to visual models: For instance, both
W2-LAB128 and W20-LAB128 have the same me-
dian rank and number of exact matches as LAB128

alone. Textual information in this case is not com-
plementary to visual information, but simply poorer.

Also note that LAB features do better than SIFT
features. This is probably due to the fact that Exper-
iment 1 is basically about identifying a large patch
of color. The SIFT features we are using are also
sensitive to color, but they seem to be misguided by
the other cues that they extract from images. For
example, pigs are pink in LAB space but brown in
SIFT space, perhaps because SIFT focused on the
color of the typical environment of a pig. We can
thus confirm that, by limiting multimodal spaces to
SIFT features, as has been done until now in the lit-
erature, we are missing important semantic informa-
tion, such as the color information that we can mine
with LAB.

Again we find that hybrid models do very well,
in fact in this case they have the top performance,
as they perform better than LAB128 (the differ-
ence, which can be noticed in the number of exact
matches, is highly significant according to a paired
Mann-Whitney test, with p<0.001).

5 Experiment 2

Experiment 2 requires more sophisticated informa-
tion than Experiment 1, as it involves distinguishing
between literal and nonliteral uses of color terms.

11We also experimented with a model based on direct co-
occurrence of adjectives and nouns, obtaining promising results
in a preliminary version of Exp. 1. We abandoned this approach
because such a model inherently lacks scalability, as it will not
generalize behind cases where the training data contain direct
examples of co-occurrences of the target pairs.

5.1 Method

We test the performance of the different models
with a dataset consisting of color adjective-noun
phrases, randomly drawn from the most frequent 8K
nouns and 4K adjectives in the concatenated ukWaC,
Wackypedia, and BNC corpora (four color terms are
not among these, so the dataset includes phrases for
black, blue, brown, green, red, white, and yellow
only). These were tagged by consensus by two hu-
man judges as literal (white towel, black feather)
or nonliteral (white wine, white musician, green fu-
ture). Some phrases had both literal and nonliteral
uses, such as blue book in “book that is blue” vs.
“automobile price guide”. In these cases, only the
most common sense (according to the judges) was
taken into account for the present experiment. The
dataset consists of 370 phrases, of which our models
cover 342, 227 literal and 115 nonliteral.12

The prediction is that, in good semantic models,
literal uses will in general result in a higher simi-
larity between the noun and color term vectors: A
white towel is white, while wine or musicians are
not white in the same manner. We test this prediction
by comparing the average cosine between the color
term and the nouns across the literal and nonliteral
pairs (similar results were obtained in an evaluation
in terms of prediction accuracy of a simple classi-
fier).

5.2 Results

Column E2 in Table 1 summarizes the results of
the experiment, reporting the mean difference be-
tween the normalized cosines (that is, how large
the difference is between the literal and nonliteral
uses of color terms), as well as the significance of
the differences according to a t-test. Window-based
models perform best among textual models, partic-
ularly Window20, while the rest can’t discriminate
between the two uses. This is particularly striking
for the Document model, which performs quite well
in general semantic tasks but bad in visual tasks.

Visual models are all able to discriminate between
the two uses, suggesting that indeed visual infor-
mation can capture nonliteral aspects of meaning.
However, in this case SIFT features perform much
better than LAB features, as Experiment 2 involves

12Dataset available upon request to the second author.
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tackling much more sophisticated information than
Experiment 1. This is consistent with the fact that,
for LAB, a lower k (lower granularity of the in-
formation) performs better for Experiment 1 and a
higher k (higher granularity) for Experiment 2.

One crucial question to ask, given the goals of
our research, is whether textual and visual models
are doing essentially the same job, only using dif-
ferent types of information. Note that, in this case,
multimodal models increase performance over the
individual modalities, and are the best models for
this task. This suggests that the information used in
the individual models is complementary, and indeed
there is no correlation between the cosines obtained
with the best textual and visual models (Pearson’s
ρ = .09, p = .11).

Figure 2 depicts the results broken down by
color.13 Both modalities can capture the differ-
ences for black and green, probably because nonlit-
eral uses of these color terms have also clear textual
correlates (more concretely, topical correlates, as
they are related to race and ecology, respectively).14

Significantly, however, vision can capture nonliteral
uses of blue and red, while text can’t. Note that
these uses (blue note, shark, shield, red meat, dis-
trict, face) do not have a clear topical correlate, and
thus it makes sense that vision does a better job.

Finally, note that for this more sophisticated task,
hybrid models perform quite bad, which shows their
limitations as models of word meaning.15 Overall,

13Yellow and brown are excluded because the dataset contains
only one and two instances of nonliteral cases for these terms,
respectively. The significance of the differences as explained in
the text has been tested via t-tests.

14It’s not entirely clear why neither modality can capture
the differences for white; for text, it may be because the non-
literal cases are not so tied to race as is the cases for black,
but they also contain many other types of nonliteral uses, such
as type-referring (white wine/rice/cell) or metonymical ones
(white smile).

15The hybrid model that performs best in the color tasks is
ESP-Doc. This model can only detect a relation between an ad-
jective and a noun if they directly co-occur in the label of at least
one image (a “document” in this setting). The more direct co-
occurrences there are, the more related the words will be for the
model. This works for Exp. 1: Since the ESP labels are lists of
what subjects saw in a picture, and the adjectives of Exp. 1 are
typical colors of objects, there is a high co-occurrence, as all but
one adjective-noun pairs co-occur in at least one ESP label. For
the model to perform well in Exp. 2 too, literal phrases should
occur in the same labels and non-literal pairs should not. We

our results suggest that co-occurrence in an image
label can be used as a surrogate of true visual infor-
mation to some extent, but the behavior of hybrid
models depends on ad-hoc aspects of the labeled
dataset, and, from an empirical perspective, they are
more limited than truly multimodal models, because
they require large amounts of rich verbal picture de-
scriptions to reach good coverage.

6 Related work

There is an increasing amount of work in com-
puter vision that exploits text-derived information
for image retrieval and annotation tasks (Farhadi
et al., 2010; Kulkarni et al., 2011). One particu-
lar techinque inspired by NLP that has acted as a
very effective proxy from CV to NLP is precisely
the BoVW. Recently, NLPers have begun exploit-
ing BoVW to enrich distributional models that rep-
resent word meaning with visual features automati-
cally extracted from images (Feng and Lapata, 2010;
Bruni et al., 2011; Leong and Mihalcea, 2011). Pre-
vious work in this area relied on SIFT features only,
whereas we have enriched the visual representation
of words with other kinds of features from computer
vision, namely, color-related features (LAB). More-
over, earlier evaluation of multimodal models has
focused only on standard word similarity tasks (us-
ing mainly WordSim353), whereas we have tested
them on both general semantic tasks and specific
tasks that tap directly into aspects of semantics (such
as color) where we expect visual information to be
crucial.

The most closely related work to ours is that re-
cently presented by Özbal et al. (2011). Like us,
Özbal and colleagues use both a textual model and a
visual model (as well as Google adjective-noun co-
occurrence counts) to find the typical color of an ob-
ject. However, their visual model works by analyz-
ing pictures associated with an object, and determin-
ing the color of the object directly by image analysis.
We attempt the more ambitious goal of separately
associating a vector to nouns and adjectives, and de-

find no such difference (89% of adjective-noun pairs co-occur
in at least one image in the literal set, 86% in the nonliteral set),
because many of the relevant pairs describe concrete concepts
that, while not necessarily of the “right” literal colour, are per-
fectly fit to be depicted in images (“blue shark”, “black boy”,
“white wine”).
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Figure 2: Discrimination of literal (L) vs. nonliteral (N) uses by the best visual and textual models.

termining the color of an object by the nearness of
the noun denoting the object to the color term. In
other words, we are trying to model the meaning of
color terms and how they relate to other words, and
not to directly extract the color of an object from pic-
tures depicting them. Our second experiment is con-
nected to the literature on the automated detection of
figurative language (Shutova, 2010). There is in par-
ticular some similarity with the tasks studied by Tur-
ney et al. (2011). Turney and colleagues try, among
other things, to distinguish literal and metaphorical
usages of adjectives when combined with nouns, in-
cluding the highly visual adjective dark (dark hair
vs. dark humour). Their method, based on automat-
ically quantifying the degree of abstractness of the
noun, is complementary to ours. Future work could
combine our approach and theirs.

7 Conclusion

We have presented evidence that distributional se-
mantic models based on text, while providing a
good general semantic representation of word mean-
ing, can be outperformed by models using visual
information for semantic aspects of words where
vision is relevant. More generally, this suggests
that computer vision is mature enough to signifi-
cantly contribute to perceptually grounded compu-
tational models of language. We have also shown

that different types of visual features (LAB, SIFT)
are appropriate for different tasks. Future research
should investigate automated methods to discover
which (if any) kind of visual information should be
highlighted in which task, more sophisticated mul-
timodal models, visual properties other than color,
and larger color datasets, such as the one recently
introduced by Mohammad (2011).
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Abstract

When automatically translating from a weakly
inflected source language like English to a tar-
get language with richer grammatical features
such as gender and dual number, the output
commonly contains morpho-syntactic agree-
ment errors. To address this issue, we present
a target-side, class-based agreement model.
Agreement is promoted by scoring a sequence
of fine-grained morpho-syntactic classes that
are predicted during decoding for each transla-
tion hypothesis. For English-to-Arabic transla-
tion, our model yields a +1.04 BLEU average
improvement over a state-of-the-art baseline.
The model does not require bitext or phrase ta-
ble annotations and can be easily implemented
as a feature in many phrase-based decoders.

1 Introduction

Languages vary in the degree to which surface forms
reflect grammatical relations. English is a weakly in-
flected language: it has a narrow verbal paradigm, re-
stricted nominal inflection (plurals), and only the ves-
tiges of a case system. Consequently, translation into
English—which accounts for much of the machine
translation (MT) literature (Lopez, 2008)—often in-
volves some amount of morpho-syntactic dimension-
ality reduction. Less attention has been paid to what
happens during translation from English: richer gram-
matical features such as gender, dual number, and
overt case are effectively latent variables that must
be inferred during decoding. Consider the output of
Google Translate for the simple English sentence in
Fig. 1. The correct translation is a monotone mapping
of the input. However, in Arabic, SVO word order
requires both gender and number agreement between
the subject �

èPAJ
�Ë@ ‘the car’ and verb I. ë
	
YK
 ‘go’. The

MT system selects the correct verb stem, but with
masculine inflection. Although the translation has

(1) �
èPAJ
�Ë@

the-carsg.def.fem

I. ë
	
YK


gosg.masc

�
é«Qå��.

with-speedsg.fem
The car goes quickly

Figure 1: Ungrammatical Arabic output of Google Trans-
late for the English input The car goes quickly. The subject
should agree with the verb in both gender and number, but
the verb has masculine inflection. For clarity, the Arabic
tokens are arranged left-to-right.

the correct semantics, it is ultimately ungrammatical.
This paper addresses the problem of generating text
that conforms to morpho-syntactic agreement rules.
Agreement relations that cross statistical phrase

boundaries are not explicitly modeled in most phrase-
based MT systems (Avramidis and Koehn, 2008).
We address this shortcoming with an agreement
model that scores sequences of fine-grained morpho-
syntactic classes. First, bound morphemes in transla-
tion hypotheses are segmented. Next, the segments
are labeled with classes that encode both syntactic
category information (i.e., parts of speech) and gram-
matical features such as number and gender. Finally,
agreement is promoted by scoring the predicted class
sequences with a generative Markov model.

Our model scores hypotheses during decoding. Un-
like previous models for scoring syntactic relations,
our model does not require bitext annotations, phrase
table features, or decoder modifications. The model
can be implemented using the feature APIs of popular
phrase-based decoders such as Moses (Koehn et al.,
2007) and Phrasal (Cer et al., 2010).
Intuition might suggest that the standard n-gram

language model (LM) is sufficient to handle agree-
ment phenomena. However, LM statistics are sparse,
and they are made sparser by morphological varia-
tion. For English-to-Arabic translation, we achieve
a +1.04 BLEU average improvement by tiling our
model on top of a large LM.
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It has also been suggested that this setting requires
morphological generation because the bitext may not
contain all inflected variants (Minkov et al., 2007;
Toutanova et al., 2008; Fraser et al., 2012). However,
using lexical coverage experiments, we show that
there is ample room for translation quality improve-
ments through better selection of forms that already
exist in the translation model.

2 A Class-based Model of Agreement

2.1 Morpho-syntactic Agreement
Morpho-syntactic agreement refers to a relationship
between two sentence elements a and b that must
have at least one matching grammatical feature.1
Agreement relations tend to be defined for partic-
ular syntactic configurations such as verb-subject,
noun-adjective, and pronoun-antecedent. In some
languages, agreement affects the surface forms of the
words. For example, from the perspective of gener-
ative grammatical theory, the lexicon entry for the
Arabic nominal �

èPAJ
�Ë@ ‘the car’ contains a feminine
gender feature. When this nominal appears in the sub-
ject argument position, the verb-subject agreement
relationship triggers feminine inflection of the verb.
Our model treats agreement as a sequence of

scored, pairwise relations between adjacent words.
Of course, this assumption excludes some agreement
phenomena, but it is sufficient for many common
cases. We focus on English-Arabic translation as
an example of a translation direction that expresses
substantially more morphological information in the
target. These relations are best captured in a target-
side model because they are mostly unobserved (from
lexical clues) in the English source.

The agreement model scores sequences of morpho-
syntactic word classes, which express grammatical
features relevant to agreement. The model has three
components: a segmenter, a tagger, and a scorer.

2.2 Morphological Segmentation
Segmentation is a procedure for converting raw sur-
face forms to component morphemes. In some lan-
guages, agreement relations exist between bound
morphemes, which are syntactically independent yet
phonologically dependent morphemes. For example,

1We use morpho-syntactic and grammatical agreement inter-
changeably, as is common in the literature.

��������	


�������
�


Pron+Fem+Sg Verb+Masc+3+Pl Prt Conj

andwillthey writeit

Figure 2: Segmentation and tagging of the Arabic token
Aî

	
EñJ.

�
JºJ
�ð ‘and they will write it’. This token has four seg-

ments with conflicting grammatical features. For example,
the number feature is singular for the pronominal object
and plural for the verb. Our model segments the raw to-
ken, tags each segment with a morpho-syntactic class (e.g.,
“Pron+Fem+Sg”), and then scores the class sequences.

the single raw token in Fig. 2 contains at least four
grammatically independent morphemes. Because the
morphemes bear conflicting grammatical features and
basic parts of speech (POS), we need to segment the
token before we can evaluate agreement relations.2
Segmentation is typically applied as a bitext pre-

processing step, and there is a rich literature on the
effect of different segmentation schemata on transla-
tion quality (Koehn and Knight, 2003; Habash and
Sadat, 2006; El Kholy and Habash, 2012). Unlike pre-
vious work, we segment each translation hypothesis
as it is generated (i.e., during decoding). This permits
greater modeling flexibility. For example, it may be
useful to count tokens with bound morphemes as a
unit during phrase extraction, but to score segmented
morphemes separately for agreement.
We treat segmentation as a character-level se-

quence modeling problem and train a linear-chain
conditional random field (CRF) model (Lafferty et
al., 2001). As a pre-processing step, we group con-
tiguous non-native characters (e.g., Latin characters
in Arabic text). The model assigns four labels:

• I: Continuation of a morpheme
• O: Outside morpheme (whitespace)
• B: Beginning of a morpheme
• F: Non-native character(s)

2Segmentation also improves translation of compounding
languages such as German (Dyer, 2009) and Finnish (Macherey
et al., 2011).
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Translation Model
e Target sequence of I words
f Source sequence of J words
a Sequence ofK phrase alignments for 〈e, f〉
Π Permutation of the alignments for target word order e
h Sequence ofM feature functions
λ Sequence of learned weights for theM features
H A priority queue of hypotheses

Class-based Agreement Model
t ∈ T Set of morpho-syntactic classes
s ∈ S Set of all word segments
θseg Learned weights for the CRF-based segmenter
θtag Learned weights for the CRF-based tagger
φo, φt CRF potential functions (emission and transition)
τ Sequence of I target-side predicted classes
π T dimensional (log) prior distribution over classes
ŝ Sequence of l word segments
σ Model state: a tagged segment 〈s, t〉

Figure 3: Notation used in this paper. The convention eI
i

indicates a subsequence of a length I sequence.

The features are indicators for (character, position,
label) triples for a five character window and bigram
label transition indicators.
This formulation is inspired by the classic “IOB”

text chunking model (Ramshaw and Marcus, 1995),
which has been previously applied to Chinese seg-
mentation (Peng et al., 2004). It can be learned from
gold-segmented data, generally applies to languages
with bound morphemes, and does not require a hand-
compiled lexicon.3 Moreover, it has only four labels,
so Viterbi decoding is very fast. We learn the param-
eters θseg using a quasi-Newton (QN) procedure with
l1 (lasso) regularization (Andrew and Gao, 2007).

2.3 Morpho-syntactic Tagging

After segmentation, we tag each segment with a fine-
grained morpho-syntactic class. For this task we also
train a standard CRF model on full sentences with
gold classes and segmentation. We use the same QN
procedure as before to obtain θtag.
A translation derivation is a tuple 〈e, f, a〉 where

e is the target, f is the source, and a is an alignment
between the two. The CRF tagging model predicts a
target-side class sequence τ∗

τ∗ = arg max
τ

I∑
i=1

θtag · {φo(τi, i, e) + φt(τi, τi−1)}

where further notation is defined in Fig. 3.
3Mada, the standard tool for Arabic segmentation (Habash

and Rambow, 2005), relies on a manually compiled lexicon.

Set of Classes The tagger assignsmorpho-syntactic
classes, which are coarse POS categories refined with
grammatical features such as gender and definiteness.
The coarse categories are the universal POS tag set
described by Petrov et al. (2012). More than 25 tree-
banks (in 22 languages) can be automatically mapped
to this tag set, which includes “Noun” (nominals),
“Verb” (verbs), “Adj” (adjectives), and “ADP” (pre-
and post-positions). Many of these treebanks also
contain per-token morphological annotations. It is
easy to combine the coarse categories with selected
grammatical annotations.
For Arabic, we used the coarse POS tags plus

definiteness and the so-called phi features (gender,
number, and person).4 For example, �

èPAJ
�Ë@ ‘the
car’ would be tagged “Noun+Def+Sg+Fem”. We
restricted the set of classes to observed combinations
in the training data, so the model implicitly disallows
incoherent classes like “Verb+Def”.

Features The tagging CRF includes emission fea-
tures φo that indicate a class τi appearing with various
orthographic characteristics of the word sequence
being tagged. In typical CRF inference, the entire
observation sequence is available throughout infer-
ence, so these features can be scored on observed
words in an arbitrary neighborhood around the cur-
rent position i. However, we conduct CRF inference
in tandem with the translation decoding procedure
(§3), creating an environment in which subsequent
words of the observation are not available; the MT
system has yet to generate the rest of the translation
when the tagging features for a position are scored.
Therefore, we only define emission features on the
observed words at the current and previous positions
of a class: φo(τi, ei, ei−1).

The emission features are word types, prefixes and
suffixes of up to three characters, and indicators for
digits and punctuation. None of these features are
language specific.
Bigram transition features φt encode local agree-

ment relations. For example, the model learns that the
Arabic class “Noun+Fem” is followed by “Adj+Fem”
and not “Adj+Masc” (noun-adjective gender agree-
ment).

4Case is also relevant to agreement in Arabic, but it is mostly
indicated by diacritics, which are absent in unvocalized text.
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2.4 Word Class Sequence Scoring
The CRF tagger model defines a conditional distribu-
tion p(τ |e; θtag) for a class sequence τ given a sen-
tence e and model parameters θtag. That is, the sam-
ple space is over class—not word—sequences. How-
ever, in MT, we seek a measure of sentence quality
q(e) that is comparable across different hypotheses
on the beam (much like the n-gram language model
score). Discriminative model scores have been used
as MT features (Galley and Manning, 2009), but we
obtained better results by scoring the 1-best class se-
quences with a generative model. We trained a simple
add-1 smoothed bigram language model over gold
class sequences in the same treebank training data:

q(e) = p(τ) =
I∏
i=1

p(τi|τi−1)

We chose a bigram model due to the aggressive
recombination strategy in our phrase-based decoder.
For contexts in which the LM is guaranteed to back
off (for instance, after an unseen bigram), our decoder
maintains only theminimal state needed (perhaps only
a single word). In less restrictive decoders, higher
order scoring models could be used to score longer-
distance agreement relations.
We integrate the segmentation, tagging, and scor-

ing models into a self-contained component in the
translation decoder.

3 Inference during Translation Decoding

Scoring the agreement model as part of translation
decoding requires a novel inference procedure. Cru-
cially, the inference procedure does not measurably
affect total MT decoding time.

3.1 Phrase-based Translation Decoding
We consider the standard phrase-based approach to
MT (Och and Ney, 2004). The distribution p(e|f) is
modeled directly using a log-linear model, yielding
the following decision rule:

e∗ = arg max
e,a,Π

{
M∑
m=1

λmhm(e, f, a,Π)

}
(1)

This decoding problem is NP-hard, thus a beam search
is often used (Fig. 4). The beam search relies on three
operations, two of which affect the agreement model:

Input: implicitly defined search space
generate initial hypotheses and add toH
setHfinal to ∅
whileH is not empty:
setHext to ∅
for each hypothesis η inH:
if η is a goal hypothesis:
add η toHfinal

else Extend η and add toHext IScore agreement
Recombine and Prune Hext

setH toHext

Output: argmax ofHfinal

Figure 4: Breadth-first beam search algorithm of Och and
Ney (2004). Typically, a hypothesis stackH is maintained
for each unique source coverage set.

Input: (eI
1, n, is_goal)

run segmenter on attachment eI
n+1 to get ŝL

1

get model state σ = 〈s, t〉 for translation prefix en
1

initialize π to −∞
set π(t) = 0
compute τ∗ from parameters 〈s, ŝL

1 , π, is_goal〉
compute q(eI

n+1) = p(τ∗) under the generative LM
set model state σnew = 〈ŝL, τ

∗
L〉 for prefix eI

1

Output: q(eI
n+1)

Figure 5: Procedure for scoring agreement for each hy-
pothesis generated during the search algorithm of Fig. 4.
In the extended hypothesis eI

1, the index n+ 1 indicates
the start of the new attachment.

• Extend a hypothesis with a new phrase pair
• Recombine hypotheses with identical states

We assume familiarity with these operations, which
are described in detail in (Och and Ney, 2004).

3.2 Agreement Model Inference
The class-based agreement model is implemented as
a feature function hm in Eq. (1). Specifically, when
Extend generates a new hypothesis, we run the algo-
rithm shown in Fig. 5. The inputs are a translation
hypothesis eI1, an index n distinguishing the prefix
from the attachment, and a flag indicating if their
concatenation is a goal hypothesis.
The beam search maintains state for each deriva-

tion, the score of which is a linear combination of
the feature values. States in this program depend on
some amount of lexical history. With a trigram lan-
guage model, the state might be the last two words
of the translation prefix. Recombine can be applied
to any two hypotheses with equivalent states. As a
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result, two hypotheses with different full prefixes—
and thus potentially different sequences of agreement
relations—can be recombined.

Incremental Greedy Decoding Decoding with
the CRF-based tagger model in this setting requires
some slight modifications to the Viterbi algorithm.
We make a greedy approximation that permits recom-
bination and works well in practice. The agreement
model state is the last tagged segment 〈s, t〉 of the
concatenated hypothesis. We tag a new attachment by
assuming a prior distribution π over the starting posi-
tion such that π(t) = 0 and −∞ for all other classes,
a deterministic distribution in the tropical semiring.
This forces the Viterbi path to go through t. We only
tag the final boundary symbol for goal hypotheses.
To accelerate tagger decoding in our experiments,

we also used tagging dictionaries for frequently ob-
served word types. For each word type observed more
than 100 times in the training data, we restricted the
set of possible classes to the set of observed classes.

3.3 Translation Model Features

The agreement model score is one decoder feature
function. The output of the procedure in Fig. 5 is the
log probability of the class sequence of each attach-
ment. Summed over all attachments, this gives the
log probability of the whole class sequence.
We also add a new length penalty feature. To dis-

criminate between hypotheses that might have the
same number of raw tokens, but different underlying
segmentations, we add a penalty equal to the length
difference between the segmented and unsegmented
attachments |ŝL1 | − |eIn+1|.

4 Related Work

We compare our class-based model to previous ap-
proaches to scoring syntactic relations in MT.

Unification-based Formalisms Agreement rules
impose syntactic and semantic constraints on the
structure of sentences. A principled way to model
these constraints is with a unification-based gram-
mar (UBG). Johnson (2003) presented algorithms for
learning and parsing with stochastic UBGs. However,
training data for these formalisms remains extremely
limited, and it is unclear how to learn such knowledge-
rich representations from unlabeled data. One partial

solution is to manually extract unification rules from
phrase-structure trees. Williams and Koehn (2011)
annotated German trees, and extracted translation
rules from them. They then specified manual unifi-
cation rules, and applied a penalty according to the
number of unification failures in a hypothesis. In
contrast, our class-based model does not require any
manual rules and scores similar agreement phenom-
ena as probabilistic sequences.

Factored Translation Models Factored transla-
tion models (Koehn and Hoang, 2007) facilitate a
more data-oriented approach to agreement modeling.
Words are represented as a vector of features such as
lemma and POS. The bitext is annotated with separate
models, and the annotations are saved during phrase
extraction. Hassan et al. (2007) noticed that the target-
side POS sequences could be scored, much as we do
in this work. They used a target-side LM over Combi-
natorial Categorial Grammar (CCG) supertags, along
with a penalty for the number of operator violations,
and also modified the phrase probabilities based on
the tags. However, Birch et al. (2007) showed that
this approach captures the same re-ordering phenom-
ena as lexicalized re-ordering models, which were
not included in the baseline. Birch et al. (2007) then
investigated source-side CCG supertag features, but
did not show an improvement for Dutch-English.

Subotin (2011) recently extended factored transla-
tion models to hierarchical phrase-based translation
and developed a discriminative model for predicting
target-side morphology in English-Czech. His model
benefited from gold morphological annotations on
the target-side of the 8M sentence bitext.

In contrast to these methods, our model does not af-
fect phrase extraction and does not require annotated
translation rules.

Class-based LMs Class-based LMs (Brown et al.,
1992) reduce lexical sparsity by placing words in
equivalence classes. They have been widely used
for speech recognition, but not for MT. Och (1999)
showed a method for inducing bilingual word classes
that placed each phrase pair into a two-dimensional
equivalence class. To our knowledge, Uszkoreit and
Brants (2008) are the only recent authors to show an
improvement in a state-of-the-art MT system using
class-based LMs. They used a classical exchange al-
gorithm for clustering, and learned 512 classes from
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a large monolingual corpus. Then they mixed the
classes into a word-based LM. However, both Och
(1999) and Uszkoreit and Brants (2008) relied on
automatically induced classes. It is unclear if their
classes captured agreement information.
Monz (2011) recently investigated parameter es-

timation for POS-based language models, but his
classes did not include inflectional features.

Target-Side Syntactic LMs Our agreement model
is a form of syntactic LM, of which there is a long
history of research, especially in speech processing.5
Syntactic LMs have traditionally been too slow for
scoring during MT decoding. One exception was
the quadratic-time dependency language model pre-
sented by Galley and Manning (2009). They applied
a quadratic time dependency parser to every hypothe-
sis during decoding. However, to achieve quadratic
running time, they permitted ill-formed trees (e.g.,
parses with multiple roots). More recently, Schwartz
et al. (2011) integrated a right-corner, incremental
parser into Moses. They showed a large improve-
ment for Urdu-English, but decoding slowed by three
orders of magnitude.6 In contrast, our class-based
model encodes shallow syntactic information without
a noticeable effect on decoding time.

Our model can be viewed as a way to score local
syntactic relations without extensive decoder modifi-
cations. For long-distance relations, Shen et al. (2010)
proposed a new decoder that generates target-side
dependency trees. The target-side structure enables
scoring hypotheses with a trigram dependency LM.

5 Experiments

We first evaluate the Arabic segmenter and tagger
components independently, then provide English-
Arabic translation quality results.

5.1 Intrinsic Evaluation of Components
Experimental Setup All experiments use the Penn
Arabic Treebank (ATB) (Maamouri et al., 2004) parts
1–3 divided into training/dev/test sections according
to the canonical split (Rambow et al., 2005).7

5See (Zhang, 2009) for a comprehensive survey.
6In principle, their parser should run in linear time. An imple-

mentation issue may account for the decoding slowdown. (p.c.)
7LDC catalog numbers: LDC2008E61 (ATBp1v4),

LDC2008E62 (ATBp2v3), and LDC2008E22 (ATBp3v3.1).

Full (%) Incremental (%)

Segmenter 98.6 –
Tagger 96.3 96.2

Table 1: Intrinsic evaluation accuracy [%] (development
set) for Arabic segmentation and tagging.

The ATB contains clitic-segmented text with per-
segment morphological analyses (in addition to
phrase-structure trees, which we discard). For train-
ing the segmenter, we used markers in the vocalized
section to construct the IOB character sequences. For
training the tagger, we automatically converted the
ATB morphological analyses to the fine-grained class
set. This procedure resulted in 89 classes.
For the segmentation evaluation, we report per-

character labeling accuracy.8 For the tagger, we re-
port per-token accuracy.

Results Tbl. 1 shows development set accuracy for
two settings. Full is a standard evaluation in which
features may be defined over the whole sentence. This
includes next-character segmenter features and next-
word tagger features. Incremental emulates the MT
setting in which the models are restricted to current
and previous observation features. Since the seg-
menter operates at the character level, we can use
the same feature set. However, next-observation fea-
tures must be removed from the tagger. Nonetheless,
tagging accuracy only decreases by 0.1%.

5.2 Translation Quality

Experimental Setup Our decoder is based on the
phrase-based approach to translation (Och and Ney,
2004) and contains various feature functions includ-
ing phrase relative frequency, word-level alignment
statistics, and lexicalized re-ordering models (Till-
mann, 2004; Och et al., 2004). We tuned the feature
weights on a development set using lattice-based min-
imum error rate training (MERT) (Macherey et al.,

The data was pre-processed with packages from the Stanford
Arabic parser (Green and Manning, 2010). The corpus split is
available at http://nlp.stanford.edu/projects/arabic.shtml.

8We ignore orthographic re-normalization performed by the
annotators. For example, they converted the contraction ‘ÉË’ ll
back to ‘È@'È’ l Al. As a result, we can report accuracy since
the guess and gold segmentations have equal numbers of non-
whitespace characters.
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MT04 (tune) MT02 MT03 MT05 Avg

Baseline 18.14 23.87 18.88 22.60
+POS 18.11 −0.03 23.65 −0.22 18.99 +0.11 22.29 −0.31 −0.17
+POS+Agr 18.86 +0.72 24.84 +0.97 20.26 +1.38 23.48 +0.88 +1.04

genres nw nw nw nw
#sentences 1353 728 663 1056 2447

Table 2: Translation quality results (BLEU-4 [%]) for newswire (nw) sets. Avg is the weighted averaged (by number of
sentences) of the individual test set gains. All improvements are statistically significant at p ≤ 0.01.

MT06 MT08 Avg

Baseline 14.68 14.30
+POS 14.57 −0.11 14.30 +0.0 −0.06
+POS+Agr 15.04 +0.36 14.49 +0.19 +0.29

genres nw,bn,ng nw,ng,wb
#sentences 1797 1360 3157

Table 3: Mixed genre test set results (BLEU-4 [%]). The
MT06 result is statistically significant at p ≤ 0.01; MT08
is significant at p ≤ 0.02. The genres are: nw, broadcast
news (bn), newsgroups (ng), and weblog (wb).

2008). For each set of results, we initialized MERT
with uniform feature weights.

We trained the translation model on 502 million
words of parallel text collected from a variety of
sources, including theWeb. Word alignments were in-
duced using a hidden Markov model based alignment
model (Vogel et al., 1996) initialized with bilexical
parameters from IBM Model 1 (Brown et al., 1993).
Both alignment models were trained using two itera-
tions of the expectation maximization algorithm. Our
distributed 4-gram language model was trained on
600 million words of Arabic text, also collected from
many sources including the Web (Brants et al., 2007).

For development and evaluation, we used the NIST
Arabic-English data sets, each of which contains one
set of Arabic sentences and multiple English refer-
ences. To reverse the translation direction for each
data set, we chose the first English reference as the
source and the Arabic as the reference.
The NIST sets come in two varieties: newswire

(MT02-05) and mixed genre (MT06,08). Newswire
contains primarily Modern Standard Arabic (MSA),
while the mixed genre data sets also contain tran-
scribed speech and web text. Since the ATB contains
MSA, and significant lexical and syntactic differences

may exist between MSA and the mixed genres, we
achieved best results by tuning on MT04, the largest
newswire set.

We evaluated translation quality with BLEU-4 (Pa-
pineni et al., 2002) and computed statistical signifi-
cance with the approximate randomization method
of Riezler and Maxwell (2005).9

6 Discussion of Translation Results

Tbl. 2 shows translation quality results on newswire,
while Tbl. 3 contains results for mixed genres. The
baseline is our standard system feature set. For
comparison, +POS indicates our class-based model
trained on the 11 coarse POS tags only (e.g., “Noun”).
Finally, +POS+Agr shows the class-based model
with the fine-grained classes (e.g., “Noun+Fem+Sg”).

The best result—a +1.04 BLEU average gain—
was achieved when the class-based model training
data, MT tuning set, and MT evaluation set contained
the same genre. We realized smaller, yet statistically
significant, gains on the mixed genre data sets. We
tried tuning on both MT06 and MT08, but obtained
insignificant gains. In the next section, we investigate
this issue further.

Tuning with a Treebank-Trained Feature The
class-based model is trained on the ATB, which is pre-
dominantly MSA text. This data set is syntactically
regular, meaning that it does not have highly dialectal
content, foreign scripts, disfluencies, etc. Conversely,
the mixed genre data sets contain more irregulari-
ties. For example, 57.4% of MT06 comes from non-
newswire genres. Of the 764 newsgroup sentences,
112 contain some Latin script tokens, while others
contain very little morphology:

9With the implementation of Clark et al. (2011), available at:
http://github.com/jhclark/multeval.
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In these imperatives, there are no lexically marked
agreement relations to score. Ex. (2) is an excerpt
from a recipe that appears in full in MT06. Ex. (3)
is part of usage instructions for the MusicMatch soft-
ware. The ATB contains few examples like these, so
our class-based model probably does not effectively
discriminate between alternative hypotheses for these
types of sentences.

Phrase Table Coverage In a standard phrase-
based system, effective translation into a highly in-
flected target language requires that the phrase table
contain the inflected word forms necessary to con-
struct an output with correct agreement. If the requi-
site words are not present in the search space of the
decoder, then no feature function would be sufficient
to enforce morpho-syntactic agreement.
During development, we observed that the phrase

table of our large-scale English-Arabic system did
often contain the inflected forms that we desired the
system to select. In fact, correctly agreeing alterna-
tives often appeared in n-best translation lists. To
verify this observation, we computed the lexical cov-
erage of the MT05 reference sentences in the decoder
search space. The statistics below report the token-
level recall of reference unigrams:10

• Baseline system translation output: 44.6%
• Phrase pairs matching source n-grams: 67.8%

The bottom category includes all lexical items that
the decoder could produce in a translation of the
source. This large gap between the unigram recall
of the actual translation output (top) and the lexical
coverage of the phrase-based model (bottom) indi-
cates that translation performance can be improved
dramatically by altering the translation model through
features such as ours, without expanding the search
space of the decoder.

10To focus on possibly inflected word forms, we excluded
numbers and punctuation from this analysis.

Human Evaluation We also manually evaluated
the MT05 output for improvements in agreement.11
Our system produced different output from the base-
line for 785 (74.3%) sentences. We randomly sam-
pled 100 of these sentences and counted agreement
errors of all types. The baseline contained 78 errors,
while our system produced 66 errors, a statistically
significant 15.4% error reduction at p ≤ 0.01 accord-
ing to a paired t-test.

In our output, a frequent source of remaining errors
was the case of so-called “deflected agreement”: inan-
imate plural nouns require feminine singular agree-
ment with modifiers. On the other hand, animate
plural nouns require the sound plural, which is indi-
cated by an appropriate masculine or feminine suffix.
For example, the inanimate plural �

HAK
BñË@ ’states’ re-
quires the singular feminine adjective �

èYj
�
JÖÏ @ ‘united’,

not the sound plural �
H@Yj

�
JÖÏ @. The ATB does not con-

tain animacy annotations, so our agreement model
cannot discriminate between these two cases. How-
ever, Alkuhlani and Habash (2011) have recently
started annotating the ATB for animacy, and our
model could benefit as more data is released.

7 Conclusion and Outlook

Our class-based agreement model improves transla-
tion quality by promoting local agreement, but with
a minimal increase in decoding time and no addi-
tional storage requirements for the phrase table. The
model can be implemented with a standard CRF pack-
age, trained on existing treebanks for many languages,
and integrated easily with many MT feature APIs.
We achieved best results when the model training
data, MT tuning set, and MT evaluation set con-
tained roughly the same genre. Nevertheless, we also
showed an improvement, albeit less significant, on
mixed genre evaluation sets.

In principle, our class-based model should be more
robust to unseen word types and other phenomena that
make non-newswire genres challenging. However,
our analysis has shown that for Arabic, these genres
typically contain more Latin script and transliterated
words, and thus there is less morphology to score.
One potential avenue of future work would be to adapt
our component models to new genres by self-training
them on the target side of a large bitext.

11The annotator was the first author.
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Abstract

In this paper we show how to train statis-
tical machine translation systems on real-
life tasks using only non-parallel monolingual
data from two languages. We present a mod-
ification of the method shown in (Ravi and
Knight, 2011) that is scalable to vocabulary
sizes of several thousand words. On the task
shown in (Ravi and Knight, 2011) we obtain
better results with only 5% of the computa-
tional effort when running our method with
an n-gram language model. The efficiency
improvement of our method allows us to run
experiments with vocabulary sizes of around
5,000 words, such as a non-parallel version of
the VERBMOBIL corpus. We also report re-
sults using data from the monolingual French
and English GIGAWORD corpora.

1 Introduction

It has long been a vision of science fiction writers
and scientists to be able to universally communi-
cate in all languages. In these visions, even previ-
ously unknown languages can be learned automati-
cally from analyzing foreign language input.

In this work, we attempt to learn statistical trans-
lation models from only monolingual data in the
source and target language. The reasoning behind
this idea is that the elements of languages share sta-
tistical similarities that can be automatically identi-
fied and matched with other languages.

This work is a big step towards large-scale and
large-vocabulary unsupervised training of statistical
translation models. Previous approaches have faced
constraints in vocabulary or data size. We show how

∗Author now at Google Inc., amauser@google.com.

to scale unsupervised training to real-life transla-
tion tasks and how large-scale experiments can be
done. Monolingual data is more readily available,
if not abundant compared to true parallel or even
just translated data. Learning from only monolin-
gual data in real-life translation tasks could improve
especially low resource language pairs where few or
no parallel texts are available.

In addition to that, this approach offers the op-
portunity to decipher new or unknown languages
and derive translations based solely on the available
monolingual data. While we do tackle the full unsu-
pervised learning task for MT, we make some very
basic assumptions about the languages we are deal-
ing with:

1. We have large amounts of data available in
source and target language. This is not a very
strong assumption as books and text on the in-
ternet are readily available for almost all lan-
guages.

2. We can divide the given text in tokens and
sentence-like units. This implies that we know
enough about the language to tokenize and
sentence-split a given text. Again, for the vast
majority of languages, this is not a strong re-
striction.

3. The writing system is one-dimensional left-to-
right. It has been shown (Lin and Knight, 2006)
that the writing direction can be determined
separately and therefore this assumption does
not pose a real restriction.

Previous approaches to unsupervised training for
SMT prove feasible only for vocabulary sizes up to
around 500 words (Ravi and Knight, 2011) and data
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sets of roughly 15,000 sentences containing only
about 4 tokens per sentence on average. Real data
as it occurs in texts such as web pages or news texts
does not meet any of these characteristics.

In this work, we will develop, describe, and
evaluate methods for large vocabulary unsupervised
learning of machine translation models suitable for
real-world tasks. The remainder of this paper is
structured as follows: In Section 2, we will review
the related work and describe how our approach ex-
tends existing work. Section 3 describes the model
and training criterion used in this work. The im-
plementation and the training of this model is then
described in Section 5 and experimentally evaluated
in Section 6.

2 Related Work

Unsupervised training of statistical translations sys-
tems without parallel data and related problems have
been addressed before. In this section, we will re-
view previous approaches and highlight similarities
and differences to our work. Several steps have been
made in this area, such as (Knight and Yamada,
1999), (Ravi and Knight, 2008), or (Snyder et al.,
2010), to name just a few. The main difference of
our work is, that it allows for much larger vocab-
ulary sizes and more data to be used than previous
work while at the same time not being dependent on
seed lexica and/or any other knowledge of the lan-
guages.

Close to the methods described in this work,
Ravi and Knight (2011) treat training and transla-
tion without parallel data as a deciphering prob-
lem. Their best performing approach uses an EM-
Algorithm to train a generative word based trans-
lation model. They perform experiments on a
Spanish/English task with vocabulary sizes of about
500 words and achieve a performance of around
20 BLEU compared to 70 BLEU obtained by a sys-
tem that was trained on parallel data. Our work uses
the same training criterion and is based on the same
generative story. However, we use a new training
procedure whose critical parts have constant time
and memory complexity with respect to the vocab-
ulary size so that our methods can scale to much
larger vocabulary sizes while also being faster.

In a different approach, Koehn and Knight (2002)

induce a bilingual lexicon from only non-parallel
data. To achieve this they use a seed lexicon which
they systematically extend by using orthographic as
well as distributional features such as context, and
frequency. They perform their experiments on non-
parallel German-English news texts, and test their
mappings against a bilingual lexicon. We use a
greedy method similar to (Koehn and Knight, 2002)
for extending a given lexicon, and we implicitly also
use the frequency as a feature. However, we perform
fully unsupervised training and do not start with a
seed lexicon or use linguistic features.

Similarly, Haghighi et al. (2008) induce a one-
to-one translation lexicon only from non-parallel
monolingual data. Also starting with a seed lexi-
con, they use a generative model based on canoni-
cal correlation analysis to systematically extend the
lexicon using context as well as spelling features.
They evaluate their method on a variety of tasks,
ranging from inherently parallel data (EUROPARL)
to unrelated corpora (100k sentences of the GIGA-
WORD corpus). They report F-measure scores of the
induced entries between 30 to 70. As mentioned
above, our work neither uses a seed lexicon nor or-
thographic features.

3 Translation Model

In this section, we describe the statistical training
criterion and the translation model that is trained us-
ing monolingual data. In addition to the mathemat-
ical formulation of the model we describe approxi-
mations used.

Throughout this work, we denote the source lan-
guage words as f and target language words as e.
The source vocabulary is Vf and we write the size
of this vocabulary as |Vf |. The same notation holds
for the target vocabulary with Ve and |Ve|.

As training criterion for the translation model’s
parameters θ, Ravi and Knight (2011) suggest

arg max
θ

∏
f

∑
e

P (e) · pθ(f |e)

 (1)

We would like to obtain θ from Equation 1 using
the EM Algorithm (Dempster et al., 1977). This
becomes increasingly difficult with more complex
translation models. Therefore, we use a simplified
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translation model that still contains all basic phe-
nomena of a generic translation process. We formu-
late the translation process with the same generative
story presented in (Ravi and Knight, 2011):

1. Stochastically generate the target sentence ac-
cording to an n-gram language model.

2. Insert NULL tokens between any two adjacent
positions of the target string with uniform prob-
ability.

3. For each target token ei (including NULL)
choose a foreign translation fi (including
NULL) with probability Pθ(fi|ei).

4. Locally reorder any two adjacent foreign words
fi−1, fi with probability P (SWAP) = 0.1.

5. Remove the remaining NULL tokens.

In practice, however, it is not feasible to deal with
the full parameter table Pθ(fi|ei) which models the
lexicon. Instead we only allow translation models
where for each source word f the number of words
e′ with P (f |e′) 6= 0 is below some fixed value. We
will refer to this value as the maximum number of
candidates of the translation model and denote it
with NC . Note that for a given e this does not nec-
essarily restrict the number of entries P (f ′|e) 6= 0.
Also note that with a fixed value of NC , time and
memory complexity of the EM step isO(1) with re-
spect to |Ve| and |Vf |.

In the following we divide the problem of maxi-
mizing Equation 1 into two parts:

1. Determining a set of active lexicon entries.

2. Choosing the translation probabilities for the
given set of active lexicon entries.

The second task can be achieved by running the
EM algorithm on the restricted translation model.
We deal with the first task in the following section.

4 Monolingual Context Similarity

As described in Section 3 we need some mecha-
nism to iteratively choose an active set of translation
candidates. Based on the assumption that some of
the active candidates and their respective probabili-
ties are already correct, we induce new active candi-
dates. In the context of information retrieval, Salton
et al. (1975) introduce a document space where each

document identified by one or more index terms is
represented by a high dimensional vector of term
weights. Given two vectors v1 and v2 of two doc-
uments it is then possible to calculate a similarity
coefficient between those given documents (which
is usually denoted as s(v1, v2)). Similar to this we
represent source and target words in a high dimen-
sional vector space of target word weights which we
call context vectors and use a similarity coefficient
to find possible translation pairs. We first initialize
these context vectors using the following procedure:

1. Using only the monolingual data for the target
language, prepare the context vectors vei with
entries vei,ej :

(a) Initialize all vei,ej = 0

(b) For each target sentence E:
For each word ei in E:

For each word ej 6= ei in E:
vei,ej = vei,ej + 1.

(c) Normalize each vector vei such that∑
ej

(vei,ej )
2 !

= 1 holds.

Using the notation ei =
(
ej : vei,ej , . . .

)
these

vectors might for example look like

work = (early : 0.2, late : 0.1, . . . )

time = (early : 0.2, late : 0.2, . . . ).

2. Prepare context vectors vfi,ej for the source
language using only the monolingual data for
the source language and the translation model’s
current parameter estimate θ:

(a) Initialize all vfi,ej = 0

(b) Let Ẽθ(F ) denote the most probable
translation of the foreign sentence F ob-
tained by using the current estimate θ.

(c) For each source sentence F :
For each word fi in F :

For each word ej 6= Eθ(fi)
1 in

Eθ(F ):
vfi,ej = vfi,ej + 1

(d) Normalize each vector vfi such that∑
ej

(vfi,ej )
2 !

= 1 holds.

1denoting that ej is not the translation of fi in Eθ(F )
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Adapting the notation described above, these
vectors might for example look like

Arbeit = (early : 0.25, late : 0.05, . . . )

Zeit = (early : 0.15, late : 0.25, . . . )

Once we have set up the context vectors ve and
vf , we can retrieve translation candidates for some
source word f by finding those words e′ that maxi-
mize the similarity coefficient s(ve′ , vf ), as well as
candidates for a given target word e by finding those
words f ′ that maximize s(ve, vf ′). In our implemen-
tation we use the Euclidean distance

d(ve, vf ) = ||ve − vf ||2. (2)

as distance measure.2 The normalization of context
vectors described above is motivated by the fact that
the context vectors should be invariant with respect
to the absolute number of occurrences of words.3

Instead of just finding the best candidates for a
given word, we are interested in an assignment that
involves all source and target words, minimizing the
sum of distances between the assigned words. In
case of a one-to-one mapping the problem of assign-
ing translation candidates such that the sum of dis-
tances is minimal can be solved optimally in poly-
nomial time using the hungarian algorithm (Kuhn,
1955). In our case we are dealing with a many-
to-many assignment that needs to satisfy the max-
imum number of candidates constraints. For this,
we solve the problem in a greedy fashion by simply
choosing the best pairs (e, f) first. As soon as a tar-
get word e or source word f has reached the limit
of maximum candidates, we skip all further candi-
dates for that word e (or f respectively). This step
involves calculating and sorting all |Ve| · |Vf | dis-
tances which can be done in time O(V 2 · log(V )),
with V = max(|Ve|, |Vf |). A simplified example of
this procedure is depicted in Figure 1. The example
already shows that the assignment obtained by this
algorithm is in general not optimal.

2We then obtain pairs (e, f) that minimize d.
3This gives the same similarity ordering as using un-

normalized vectors with the cosine similarity measure
ve·vf

||ve||2·||vf ||2
which can be interpreted as measuring the cosine

of the angle between the vectors, see (Manning et al., 2008).
Still it is noteworthy that this procedure is not equivalent to the
tf-IDF context vectors described in (Salton et al., 1975).

x

y

time (e)
Arbeit (f)

work (e) Zeit (f)

Figure 1: Hypothetical example for a greedy one-to-one
assignment of translation candidates. The optimal assign-
ment would contain (time,Zeit) and (work,Arbeit).

5 Training Algorithm and Implementation

Given the model presented in Section 3 and the
methods illustrated in Section 4, we now describe
how to train this model.

As described in Section 4, the overall procedure
is divided into two alternating steps: After initializa-
tion we first perform EM training of the translation
model for 20-30 iterations using a 2-gram or 3-gram
language model in the target language. With the ob-
tained best translations we induce new translation
candidates using context similarity. This procedure
is depicted in Figure 2.

5.1 Initialization
Let NC be the maximum number of candidates per
source word we allow, Ve and Vf be the target/source
vocabulary and r(e) and r(f) the frequency rank of
a source/target word. Each word f ∈ Vf with fre-
quency rank r(f) is assigned to all words e ∈ Ve
with frequency rank

r(e) ∈ [ start(f) , end(f) ] (3)

where

start(f) = max(0 , min
(
|Ve| −Nc ,

⌊
|Ve|
|Vf |

· r(f)− Nc

2

⌋ )
)

(4)

end(f) = min (start(f) + Nc, |Ve|) . (5)

This defines a diagonal beam4 when visualizing
the lexicon entries in a matrix where both source
and target words are sorted by their frequency rank.
However, note that the result of sorting by frequency

4The diagonal has some artifacts for the highest and lowest
frequency ranks. See, for example, left side of Figure 2.
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Figure 2: Visualization of the training procedure. The big rectangles represent word lexica in different stages of the
training procedure. The small rectangles represent word pairs (e, f) for which e is a translation candidate of f , while
dots represent word pairs (e, f) for which this is not the case. Source and target words are sorted by frequency so that
the most frequent source words appear on the very left, and the most frequent target words appear at the very bottom.

and thus the frequency ranks are not unique when
there are words with the same frequency. In this
case, we initially obtain some not further specified
frequency ordering, which is then kept throughout
the procedure.

This initialization proves useful as we show by
taking an IBM1 lexicon P (f |e) extracted on the
parallel VERBMOBIL corpus (Wahlster, 2000): For
each word e we calculate the weighted rank differ-
ence

∆ravg(e) =
∑
f

P (f |e) · |(r(e)− r(f)| (6)

and count how many of those weighted rank dif-
ferences are smaller than a given value NC

2 . Here
we see that for about 1% of the words the weighted
rank difference lies withinNC = 50, and even about
3% for NC = 150 respectively. This shows that the
initialization provides a first solid guess of possible
translations.

5.2 EM Algorithm

The generative story described in Section 3 is im-
plemented as a cascade of a permutation, insertion,
lexicon, deletion and language model finite state
transducers using OpenFST (Allauzen et al., 2007).
Our FST representation of the LM makes use of
failure transitions as described in (Allauzen et al.,
2003). We use the forward-backward algorithm on
the composed transducers to efficiently train the lex-
icon model using the EM algorithm.

5.3 Context Vector Step

Given the trained parameters θ from the previous run
of the EM algorithm we set the context vectors ve

and vf up as described in Section 4. We then calcu-
late and sort all |Ve|·|Vf | distances which proves fea-
sible in a few CPU hours even for vocabulary sizes
of more than 50,000 words. This is achieved with
the GNU SORT tool, which uses external sorting for
sorting large amounts of data.

To set up the new lexicon we keep the bNC2 c
best translations for each source word with respect
to P (e|f), which we obtained in the previous EM
run. Experiments showed that it is helpful to also
limit the number of candidates per target words. We
therefore prune the resulting lexicon using P (f |e)
to a maximum of bN

′
C
2 c candidates per target word

afterwards. Then we fill the lexicon with new can-
didates using the previously sorted list of candidate
pairs such that the final lexicon has at most NC

candidates per source word and at most N ′C can-
didates per target word. We set N ′C to some value
N ′C > NC . All experiments in this work were run
with N ′C = 300. Values of N ′C ≈ NC seem to pro-
duce poorer results. Not limiting the number of can-
didates per target word at all also typically results in
weaker performance. After the lexicon is filled with
candidates, we initialize the probabilities to be uni-
form. With this new lexicon the process is iterated
starting with the EM training.

6 Experimental Evaluation

We evaluate our method on three different corpora.
At first we apply our method to non-parallel Span-

ish/English data that is based on the OPUS corpus
(Tiedemann, 2009) and that was also used in (Ravi
and Knight, 2011). We show that our method per-
forms better by 1.6 BLEU than the best performing
method described in (Ravi and Knight, 2011) while
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Name Lang. Sent. Words Voc.

OPUS
Spanish 13,181 39,185 562

English 19,770 61,835 411

VERBMOBIL
German 27,861 282,831 5,964

English 27,862 294,902 3,723

GIGAWORD
French 100,000 1,725,993 68,259

English 100,000 1,788,025 64,621

Table 1: Statistics of the corpora used in this paper.

being approximately 15 to 20 times faster than their
n-gram based approach.

After that we apply our method to a non-parallel
version of the German/English VERBMOBIL corpus,
which has a vocabulary size of 6,000 words on the
German side, and 3,500 words on the target side and
which thereby is approximately one order of magni-
tude larger than the previous OPUS experiment.

We finally run our system on a subset of the non-
parallel French/English GIGAWORD corpus, which
has a vocabulary size of 60,000 words for both
French and English. We show first interesting re-
sults on such a big task.

In case of the OPUS and VERBMOBIL corpus,
we evaluate the results using BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) to reference
translations. We report all scores in percent. For
BLEU higher values are better, for TER lower val-
ues are better. We also compare the results on these
corpora to a system trained on parallel data.

In case of the GIGAWORD corpus we show lexi-
con entries obtained during training.

6.1 OPUS Subtitle Corpus

6.1.1 Experimental Setup
We apply our method to the corpus described in

Table 6. This exact corpus was also used in (Ravi
and Knight, 2011). The best performing methods
in (Ravi and Knight, 2011) use the full 411 × 579
lexicon model and apply standard EM training. Us-
ing a 2-gram LM they obtain 15.3 BLEU and with
a whole segment LM, they achieve 19.3 BLEU. In
comparison to this baseline we run our algorithm
with NC = 50 candidates per source word for both,
a 2-gram and a 3-gram LM. We use 30 EM iterations

between each context vector step. For both cases we
run 7 EM+Context cycles.

6.1.2 Results
Figure 3 and Figure 4 show the evolution of BLEU

and TER scores for applying our method using a 2-
gram and a 3-gram LM.

In case of the 2-gram LM (Figure 3) the transla-
tion quality increases until it reaches a plateau after
5 EM+Context cycles. In case of the 3-gram LM
(Figure 4) the statement only holds with respect to
TER. It is notable that during the first iterations TER

only improves very little until a large chunk of the
language unravels after the third iteration. This be-
havior may be caused by the fact that the corpus only
provides a relatively small amount of context infor-
mation for each word, since sentence lengths are 3-4
words on average.
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Figure 3: Results on the OPUS corpus with a 2-gram LM,
NC = 50, and 30 EM iterations between each context
vector step. The dashed line shows the best result using a
2-gram LM in (Ravi and Knight, 2011).

Table 2 summarizes these results and compares
them with (Ravi and Knight, 2011). Our 3-gram
based method performs by 1.6 BLEU better than
their best system which is a statistically significant
improvement at 95% confidence level. Furthermore,
Table 2 compares the CPU time needed for training.
Our 3-gram based method is 15-20 times faster than
running the EM based training procedure presented
in (Ravi and Knight, 2011) with a 3-gram LM5.

5(Ravi and Knight, 2011) only report results using a 2-gram
LM and a whole-segment LM.
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Figure 4: Results on the OPUS corpus with a 3-gram LM,
NC = 50, and 30 EM iterations between each context
vector step. The dashed line shows the best result using a
whole-segment LM in (Ravi and Knight, 2011)

Method CPU BLEU TER

EM, 2-gram LM
411 cand. p. source word
(Ravi and Knight, 2011)

≈850h6 15.3 −

EM, Whole-segment LM
411 cand. p. source word
(Ravi and Knight, 2011)

−7 19.3 −

EM+Context, 2-gram LM
50 cand. p. source word
(this work)

50h8 15.2 66.6

EM+Context, 3-gram LM
50 cand. p. source word
(this work)

200h8 20.9 64.5

Table 2: Results obtained on the OPUS corpus.

To summarize: Our method is significantly faster
than n-gram LM based approaches and obtains bet-
ter results than any previously published method.

6Estimated by running full EM using the 2-gram LM using
our implementation for 90 Iterations yielding 15.2 BLEU.

7≈4,000h when running full EM using a 3-gram LM, using
our implementation. Estimated by running only the first itera-
tion and by assuming that the final result will be obtained after
90 iterations. However, (Ravi and Knight, 2011) report results
using a whole segment LM, assigning P (e) > 0 only to se-
quences seen in training. This seems to work for the given task
but we believe that it can not be a general replacement for higher
order n-gram LMs.

8Estimated by running our method for 5× 30 iterations.

6.2 VERBMOBIL Corpus

6.2.1 Experimental Setup

The VERBMOBIL corpus is a German/English
corpus dealing with short sentences for making ap-
pointments. We prepared a non-parallel subset of
the original VERBMOBIL (Wahlster, 2000) by split-
ting the corpus into two parts and then selecting only
the German side from the first half, and the English
side from the second half such that the target side
is not the translation of the source side. The source
and target vocabularies of the resulting non-parallel
corpus are both more than 9 times bigger compared
to the OPUS vocabularies. Also the total amount of
word tokens is more than 5 times larger compared
to the OPUS corpus. Table 6 shows the statistics of
this corpus. We run our method for 5 EM+Context
cycles (30 EM iterations each) using a 2-gram LM.
After that we run another five EM+Context cycles
using a 3-gram LM.

6.2.2 Results

Our results on the VERBMOBIL corpus are sum-
marized in Table 3. Even on this more complex
task our method achieves encouraging results: The

Method BLEU TER

5× 30 Iterations EM+Context
50 cand. p. source word, 2-gram LM

11.7 67.4

+ 5× 30 Iterations EM+Context
50 cand. p. source word, 3-gram LM

15.5 63.2

Table 3: Results obtained on the VERBMOBIL corpus.

translation quality increases from iteration to itera-
tion until the algorithm finally reaches 11.7 BLEU

using only the 2-gram LM. Running further five
cycles using a 3-gram LM achieves a final perfor-
mance of 15.5 BLEU. Och (2002) reports results of
48.2 BLEU for a single-word based translation sys-
tem and 56.1 BLEU using the alignment template
approach, both trained on parallel data. However, it
should be noted that our experiment only uses 50%
of the original VERBMOBIL training data to simulate
a truly non-parallel setup.
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Iter. e p(f1|e) f1 p(f2|e) f2 p(f3|e) f3 p(f4|e) f4 p(f5|e) f5

1. the 0.43 la 0.31 l’ 0.11 une 0.04 le 0.04 les

2. several 0.57 plusieurs 0.21 les 0.09 des 0.03 nombreuses 0.02 deux

3. where 0.63 où 0.17 mais 0.06 indique 0.04 précise 0.02 appelle

4. see 0.49 éviter 0.09 effet 0.09 voir 0.05 envisager 0.04 dire

5. January 0.25 octobre 0.22 mars 0.09 juillet 0.07 août 0.07 janvier

− Germany 0.24 Italie 0.12 Espagne 0.06 Japon 0.05 retour 0.05 Suisse

Table 4: Lexicon entries obtained by running our method on the non-parallel GIGAWORD corpus. The first column
shows in which iteration the algorithm found the first correct translations f (compared to a parallely trained lexicon)
among the top 5 candidates

6.3 GIGAWORD

6.3.1 Experimental Setup
This setup is based on a subset of the monolingual

GIGAWORD corpus. We selected 100,000 French
sentences from the news agency AFP and 100,000
sentences from the news agency Xinhua. To have a
more reliable set of training instances, we selected
only sentences with more than 7 tokens. Note that
these corpora form true non-parallel data which, be-
sides the length filtering, were not specifically pre-
selected or pre-processed. More details on these
non-parallel corpora are summarized in Table 6. The
vocabularies have a size of approximately 60,000
words which is more than 100 times larger than the
vocabularies of the OPUS corpus. Also it incor-
porates more than 25 times as many tokens as the
OPUS corpus.

After initialization, we run our method with
NC = 150 candidates per source word for 20 EM
iterations using a 2-gram LM. After the first context
vector step with NC = 50 we run another 4 × 20
iterations with NC = 50 with a 2-gram LM.

6.3.2 Results
Table 4 shows example lexicon entries we ob-

tained. Note that we obtained these results by us-
ing purely non-parallel data, and that we neither
used a seed lexicon, nor orthographic features to as-
sign e.g. numbers or proper names: All results are
obtained using 2-gram statistics and the context of
words only. We find the results encouraging and
think that they show the potential of large-scale un-
supervised techniques for MT in the future.

7 Conclusion

We presented a method for learning statistical ma-
chine translation models from non-parallel data. The
key to our method lies in limiting the translation
model to a limited set of translation candidates and
then using the EM algorithm to learn the probabil-
ities. Based on the translations obtained with this
model we obtain new translation candidates using
a context vector approach. This method increased
the training speed by a factor of 10-20 compared
to methods known in literature and also resulted
in a 1.6 BLEU point increase compared to previ-
ous approaches. Due to this efficiency improvement
we were able to tackle larger tasks, such as a non-
parallel version of the VERBMOBIL corpus having
a nearly 10 times larger vocabulary. We also had a
look at first results of our method on an even larger
Task, incorporating a vocabulary of 60,000 words.
We have shown that, using a limited set of trans-
lation candidates, we can significantly reduce the
computational complexity of the learning task. This
work serves as a big step towards large-scale unsu-
pervised training for statistical machine translation
systems.
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Abstract

In this paper, we demonstrate that accu-
rate machine translation is possible without
the concept of “words,” treating MT as a
problem of transformation between character
strings. We achieve this result by applying
phrasal inversion transduction grammar align-
ment techniques to character strings to train
a character-based translation model, and us-
ing this in the phrase-based MT framework.
We also propose a look-ahead parsing algo-
rithm and substring-informed prior probabil-
ities to achieve more effective and efficient
alignment. In an evaluation, we demonstrate
that character-based translation can achieve
results that compare to word-based systems
while effectively translating unknown and un-
common words over several language pairs.

1 Introduction

Traditionally, the task of statistical machine trans-
lation (SMT) is defined as translating a source sen-
tence fJ

1 = {f1, . . . , fJ} to a target sentence eI
1 =

{e1, . . ., eI}, where each element of fJ
1 and eI

1 is
assumed to be a word in the source and target lan-
guages. However, the definition of a “word” is of-
ten problematic. The most obvious example of this
lies in languages that do not separate words with
white space such as Chinese, Japanese, or Thai, in
which the choice of a segmentation standard has
a large effect on translation accuracy (Chang et
al., 2008). Even for languages with explicit word

The first author is now affiliated with the Nara Institute of Sci-
ence and Technology.

boundaries, all machine translation systems perform
at least some precursory form of tokenization, split-
ting punctuation and words to prevent the sparsity
that would occur if punctuated and non-punctuated
words were treated as different entities. Sparsity
also manifests itself in other forms, including the
large vocabularies produced by morphological pro-
ductivity, word compounding, numbers, and proper
names. A myriad of methods have been proposed
to handle each of these phenomena individually,
including morphological analysis, stemming, com-
pound breaking, number regularization, optimizing
word segmentation, and transliteration, which we
outline in more detail in Section 2.

These difficulties occur because we are translat-
ing sequences of words as our basic unit. On the
other hand, Vilar et al. (2007) examine the possibil-
ity of instead treating each sentence as sequences of
characters to be translated. This method is attrac-
tive, as it is theoretically able to handle all sparsity
phenomena in a single unified framework, but has
only been shown feasible between similar language
pairs such as Spanish-Catalan (Vilar et al., 2007),
Swedish-Norwegian (Tiedemann, 2009), and Thai-
Lao (Sornlertlamvanich et al., 2008), which have
a strong co-occurrence between single characters.
As Vilar et al. (2007) state and we confirm, accu-
rate translations cannot be achieved when applying
traditional translation techniques to character-based
translation for less similar language pairs.

In this paper, we propose improvements to the
alignment process tailored to character-based ma-
chine translation, and demonstrate that it is, in fact,
possible to achieve translation accuracies that ap-
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proach those of traditional word-based systems us-
ing only character strings. We draw upon recent
advances in many-to-many alignment, which allows
for the automatic choice of the length of units to
be aligned. As these units may be at the charac-
ter, subword, word, or multi-word phrase level, we
conjecture that this will allow for better character
alignments than one-to-many alignment techniques,
and will allow for better translation of uncommon
words than traditional word-based models by break-
ing down words into their component parts.

We also propose two improvements to the many-
to-many alignment method of Neubig et al. (2011).
One barrier to applying many-to-many alignment
models to character strings is training cost. In the
inversion transduction grammar (ITG) framework
(Wu, 1997), which is widely used in many-to-many
alignment, search is cumbersome for longer sen-
tences, a problem that is further exacerbated when
using characters instead of words as the basic unit.
As a step towards overcoming this difficulty, we in-
crease the efficiency of the beam-search technique of
Saers et al. (2009) by augmenting it with look-ahead
probabilities in the spirit of A* search. Secondly,
we describe a method to seed the search process us-
ing counts of all substring pairs in the corpus to bias
the phrase alignment model. We do this by defining
prior probabilities based on these substring counts
within the Bayesian phrasal ITG framework.

An evaluation on four language pairs with differ-
ing morphological properties shows that for distant
language pairs, character-based SMT can achieve
translation accuracy comparable to word-based sys-
tems. In addition, we perform ablation studies,
showing that these results were not possible with-
out the proposed enhancements to the model. Fi-
nally, we perform a qualitative analysis, which finds
that character-based translation can handle unseg-
mented text, conjugation, and proper names in a uni-
fied framework with no additional processing.

2 Related Work on Data Sparsity in SMT

As traditional SMT systems treat all words as single
tokens without considering their internal structure,
major problems of data sparsity occur for less fre-
quent tokens. In fact, it has been shown that there
is a direct negative correlation between vocabulary

size (and thus sparsity) of a language and transla-
tion accuracy (Koehn, 2005). Sparsity causes trou-
ble for alignment models, both in the form of incor-
rectly aligned uncommon words, and in the form of
garbage collection, where uncommon words in one
language are incorrectly aligned to large segments
of the sentence in the other language (Och and Ney,
2003). Unknown words are also a problem during
the translation process, and the default approach is
to map them as-is into the target sentence.

This is a major problem in agglutinative lan-
guages such as Finnish or compounding languages
such as German. Previous works have attempted to
handle morphology, decompounding and regulariza-
tion through lemmatization, morphological analysis,
or unsupervised techniques (Nießen and Ney, 2000;
Brown, 2002; Lee, 2004; Goldwater and McClosky,
2005; Talbot and Osborne, 2006; Mermer and Akın,
2010; Macherey et al., 2011). It has also been noted
that it is more difficult to translate into morpho-
logically rich languages, and methods for modeling
target-side morphology have attracted interest in re-
cent years (Bojar, 2007; Subotin, 2011).

Another source of data sparsity that occurs in all
languages is proper names, which have been handled
by using cognates or transliteration to improve trans-
lation (Knight and Graehl, 1998; Kondrak et al.,
2003; Finch and Sumita, 2007), and more sophisti-
cated methods for named entity translation that com-
bine translation and transliteration have also been
proposed (Al-Onaizan and Knight, 2002).

Choosing word units is also essential for creat-
ing good translation results for languages that do
not explicitly mark word boundaries, such as Chi-
nese, Japanese, and Thai. A number of works have
dealt with this word segmentation problem in trans-
lation, mainly focusing on Chinese-to-English trans-
lation (Bai et al., 2008; Chang et al., 2008; Zhang et
al., 2008b; Chung and Gildea, 2009; Nguyen et al.,
2010), although these works generally assume that a
word segmentation exists in one language (English)
and attempt to optimize the word segmentation in
the other language (Chinese).

We have enumerated these related works to
demonstrate the myriad of data sparsity problems
and proposed solutions. Character-based transla-
tion has the potential to handle all of the phenom-
ena in the previously mentioned research in a single
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unified framework, requiring no language specific
tools such as morphological analyzers or word seg-
menters. However, while the approach is attractive
conceptually, previous research has only been shown
effective for closely related language pairs (Vilar et
al., 2007; Tiedemann, 2009; Sornlertlamvanich et
al., 2008). In this work, we propose effective align-
ment techniques that allow character-based transla-
tion to achieve accurate translation results for both
close and distant language pairs.

3 Alignment Methods

SMT systems are generally constructed from a par-
allel corpus consisting of target language sentences
E and source language sentences F . The first step
of training is to find alignments A for the words in
each sentence pair.

We represent our target and source sentences as
eI

1 and fJ
1 . ei and fj represent single elements of

the target and source sentences respectively. These
may be words in word-based alignment models or
single characters in character-based alignment mod-
els.1 We define our alignment as aK

1 , where each
element is a span ak = 〈s, t, u, v〉 indicating that the
target string es, . . . , et and source string fu, . . . , fv

are aligned to each-other.

3.1 One-to-Many Alignment
The most well-known and widely-used models for
bitext alignment are for one-to-many alignment, in-
cluding the IBM models (Brown et al., 1993) and
HMM alignment model (Vogel et al., 1996). These
models are by nature directional, attempting to find
the alignments that maximize the conditional prob-
ability of the target sentence P (eI

1|fJ
1 , aK

1 ). For
computational reasons, the IBM models are re-
stricted to aligning each word on the target side to
a single word on the source side. In the formal-
ism presented above, this means that each ei must
be included in at most one span, and for each span
u = v. Traditionally, these models are run in both
directions and combined using heuristics to create
many-to-many alignments (Koehn et al., 2003).

However, in order for one-to-many alignment
methods to be effective, each fj must contain

1Some previous work has also performed alignment using
morphological analyzers to normalize or split the sentence into
morpheme streams (Corston-Oliver and Gamon, 2004).

enough information to allow for effective alignment
with its corresponding elements in eI

1. While this is
often the case in word-based models, for character-
based models this assumption breaks down, as there
is often no clear correspondence between characters.

3.2 Many-to-Many Alignment

On the other hand, in recent years, there have been
advances in many-to-many alignment techniques
that are able to align multi-element chunks on both
sides of the translation (Marcu and Wong, 2002;
DeNero et al., 2008; Blunsom et al., 2009; Neu-
big et al., 2011). Many-to-many methods can be ex-
pected to achieve superior results on character-based
alignment, as the aligner can use information about
substrings, which may correspond to letters, mor-
phemes, words, or short phrases.

Here, we focus on the model presented by Neu-
big et al. (2011), which uses Bayesian inference in
the phrasal inversion transduction grammar (ITG,
Wu (1997)) framework. ITGs are a variety of syn-
chronous context free grammar (SCFG) that allows
for many-to-many alignment to be achieved in poly-
nomial time through the process of biparsing, which
we explain more in the following section. Phrasal
ITGs are ITGs that allow for non-terminals that can
emit phrase pairs with multiple elements on both
the source and target sides. It should be noted
that there are other many-to-many alignment meth-
ods that have been used for simultaneously discov-
ering morphological boundaries over multiple lan-
guages (Snyder and Barzilay, 2008; Naradowsky
and Toutanova, 2011), but these have generally been
applied to single words or short phrases, and it is not
immediately clear that they will scale to aligning full
sentences.

4 Look-Ahead Biparsing

In this work, we experiment with the alignment
method of Neubig et al. (2011), which can achieve
competitive accuracy with a much smaller phrase ta-
ble than traditional methods. This is important in
the character-based translation context, as we would
like to use phrases that contain large numbers of
characters without creating a phrase table so large
that it cannot be used in actual decoding. In this
framework, training is performed using sentence-
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Figure 1: (a) A chart with inside probabilities in boxes
and forward/backward probabilities marking the sur-
rounding arrows. (b) Spans with corresponding look-
aheads added, and the minimum probability underlined.
Lightly and darkly shaded spans will be trimmed when
the beam is log(P ) ≥ −3 and log(P ) ≥ −6 respectively.

wise block sampling, acquiring a sample for each
sentence by first performing bottom-up biparsing to
create a chart of probabilities, then performing top-
down sampling of a new tree based on the probabil-
ities in this chart.

An example of a chart used in this parsing can
be found in Figure 1 (a). Within each cell of the
chart spanning et

s and fv
u is an “inside” probabil-

ity I(as,t,u,v). This probability is the combination
of the generative probability of each phrase pair
Pt(e

t
s,f

v
u) as well as the sum the probabilities over

all shorter spans in straight and inverted order2

I(as,t,u,v) = Pt(e
t
s, f

v
u)

+
∑

s≤S≤t

∑
u≤U≤v

Px(str)I(as,S,u,U )I(aS,t,U,v)

+
∑

s≤S≤t

∑
u≤U≤v

Px(inv)I(as,S,U,v)I(aS,t,u,U )

where Px(str) and Px(inv) are the probability of
straight and inverted ITG productions.

While the exact calculation of these probabilities
can be performed in O(n6) time, where n is the

2Pt can be specified according to Bayesian statistics as de-
scribed by Neubig et al. (2011).

length of the sentence, this is impractical for all but
the shortest sentences. Thus it is necessary to use
methods to reduce the search space such as beam-
search based chart parsing (Saers et al., 2009) or
slice sampling (Blunsom and Cohn, 2010).3

In this section we propose the use of a look-ahead
probability to increase the efficiency of this chart
parsing. Taking the example of Saers et al. (2009),
spans are pushed onto a different queue based on
their size, and queues are processed in ascending or-
der of size. Agendas can further be trimmed based
on a histogram beam (Saers et al., 2009) or probabil-
ity beam (Neubig et al., 2011) compared to the best
hypothesis â. In other words, we have a queue dis-
cipline based on the inside probability, and all spans
ak where I(ak) < cI(â) are pruned. c is a constant
describing the width of the beam, and a smaller con-
stant probability will indicate a wider beam.

This method is insensitive to the existence of
competing hypotheses when performing pruning.
Figure 1 (a) provides an example of why it is unwise
to ignore competing hypotheses during beam prun-
ing. Particularly, the alignment “les/1960s” com-
petes with the high-probability alignment “les/the,”
so intuitively should be a good candidate for prun-
ing. However its probability is only slightly higher
than “années/1960s,” which has no competing hy-
potheses and thus should not be trimmed.

In order to take into account competing hypothe-
ses, we can use for our queue discipline not only the
inside probability I(ak), but also the outside proba-
bility O(ak), the probability of generating all spans
other than ak, as in A* search for CFGs (Klein and
Manning, 2003), and tic-tac-toe pruning for word-
based ITGs (Zhang and Gildea, 2005). As the cal-
culation of the actual outside probability O(ak) is
just as expensive as parsing itself, it is necessary to
approximate this with heuristic function O∗ that can
be calculated efficiently.

Here we propose a heuristic function that is de-
signed specifically for phrasal ITGs and is com-
putable with worst-case complexity of n2, compared
with the n3 amortized time of the tic-tac-toe pruning

3Applying beam-search before sampling will sample from
an improper distribution, although Metropolis-in-Gibbs sam-
pling (Johnson et al., 2007) can be used to compensate. How-
ever, we found that this had no significant effect on results, so
we omit the Metropolis-in-Gibbs step for experiments.
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algorithm described by (Zhang et al., 2008a). Dur-
ing the calculation of the phrase generation proba-
bilities Pt, we save the best inside probability I∗ for
each monolingual span.

I∗e (s, t) = max
{ã=〈s̃,t̃,ũ,ṽ〉;s̃=s,t̃=t}

Pt(ã)

I∗f (u, v) = max
{ã=〈s̃,t̃,ũ,ṽ〉;ũ=u,ṽ=v}

Pt(ã)

For each language independently, we calculate for-
ward probabilities α and backward probabilities β.
For example, αe(s) is the maximum probability of
the span (0, s) of e that can be created by concate-
nating together consecutive values of I∗e :

αe(s) = max
{S1,...,Sx}

I∗e (0, S1)I
∗
e (S1, S2) . . . I∗e (Sx, s).

Backwards probabilities and probabilities over f can
be defined similarly. These probabilities are calcu-
lated for e and f independently, and can be calcu-
lated in n2 time by processing each α in ascending
order, and each β in descending order in a fashion
similar to that of the forward-backward algorithm.
Finally, for any span, we define the outside heuristic
as the minimum of the two independent look-ahead
probabilities over each language

O∗(as,t,u,v) = min(αe(s) ∗ βe(t), αf (u) ∗ βf (v)).

Looking again at Figure 1 (b), it can be seen
that the relative probability difference between the
highest probability span “les/the” and the spans
“années/1960s” and “60/1960s” decreases, allowing
for tighter beam pruning without losing these good
hypotheses. In contrast, the relative probability of
“les/1960s” remains low as it is in conflict with a
high-probability alignment, allowing it to be dis-
carded.

5 Substring Prior Probabilities

While the Bayesian phrasal ITG framework uses
the previously mentioned phrase distribution Pt dur-
ing search, it also allows for definition of a phrase
pair prior probability Pprior(e

t
s, f

v
u), which can ef-

ficiently seed the search process with a bias towards
phrase pairs that satisfy certain properties. In this
section, we overview an existing method used to cal-
culate these prior probabilities, and also propose a
new way to calculate priors based on substring co-
occurrence statistics.

5.1 Word-based Priors

Previous research on many-to-many translation has
used IBM model 1 probabilities to bias phrasal
alignments so that phrases whose member words are
good translations are also aligned. As a representa-
tive of this existing method, we adopt a base mea-
sure similar to that used by DeNero et al. (2008):

Pm1(e, f) =M0(e, f)Ppois(|e|; λ)Ppois(|f |; λ)

M0(e, f) =(Pm1(f |e)Puni(e)Pm1(e|f)Puni(f))
1
2 .

Ppois is the Poisson distribution with the average
length parameter λ, which we set to 0.01. Pm1 is the
word-based (or character-based) Model 1 probabil-
ity, which can be efficiently calculated using the dy-
namic programming algorithm described by Brown
et al. (1993). However, for reasons previously stated
in Section 3, these methods are less satisfactory
when performing character-based alignment, as the
amount of information contained in a character does
not allow for proper alignment.

5.2 Substring Co-occurrence Priors

Instead, we propose a method for using raw sub-
string co-occurrence statistics to bias alignments to-
wards substrings that often co-occur in the entire
training corpus. This is similar to the method of
Cromieres (2006), but instead of using these co-
occurrence statistics as a heuristic alignment crite-
rion, we incorporate them as a prior probability in
a statistical model that can take into account mutual
exclusivity of overlapping substrings in a sentence.

We define this prior probability using three counts
over substrings c(e), c(f), and c(e, f). c(e) and
c(f) count the total number of sentences in which
the substrings e and f occur respectively. c(e, f) is
a count of the total number of sentences in which the
substring e occurs on the target side, and f occurs
on the source side. We perform the calculation of
these statistics using enhanced suffix arrays, a data
structure that can efficiently calculate all substrings
in a corpus (Abouelhoda et al., 2004).4

While suffix arrays allow for efficient calculation
of these statistics, storing all co-occurrence counts
c(e, f) is an unrealistic memory burden for larger

4Using the open-source implementation esaxx http://
code.google.com/p/esaxx/
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corpora. In order to reduce the amount of mem-
ory used, we discount every count by a constant d,
which we set to 5. This has a dual effect of reducing
the amount of memory needed to hold co-occurrence
counts by removing values for which c(e,f) < d, as
well as preventing over-fitting of the training data. In
addition, we heuristically prune values for which the
conditional probabilities P (e|f) or P (f |e) are less
than some fixed value, which we set to 0.1 for the
reported experiments.

To determine how to combine c(e), c(f), and
c(e, f) into prior probabilities, we performed pre-
liminary experiments testing methods proposed by
previous research including plain co-occurrence
counts, the Dice coefficient, and χ-squared statistics
(Cromieres, 2006), as well as a new method of defin-
ing substring pair probabilities to be proportional to
bidirectional conditional probabilities

Pcooc(e, f) = Pcooc(e|f)Pcooc(f |e)/Z

=

(
c(e,f)− d

c(f)− d

)(
c(e, f)− d

c(e)− d

)
/Z

for all substring pairs where c(e, f) > d and where
Z is a normalization term equal to

Z =
∑

{e,f ;c(e,f)>d}

Pcooc(e|f)Pcooc(f |e).

The experiments showed that the bidirectional con-
ditional probability method gave significantly better
results than all other methods, so we adopt this for
the remainder of our experiments.

It should be noted that as we are using discount-
ing, many substring pairs will be given zero proba-
bility according to Pcooc. As the prior is only sup-
posed to bias the model towards good solutions and
not explicitly rule out any possibilities, we linearly
interpolate the co-occurrence probability with the
one-to-many Model 1 probability, which will give
at least some probability mass to all substring pairs

Pprior(e, f) = λPcooc(e, f) + (1− λ)Pm1(e,f).

We put a Dirichlet prior (α = 1) on the interpolation
coefficient λ and learn it during training.

6 Experiments

In order to test the effectiveness of character-based
translation, we performed experiments over a variety
of language pairs and experimental settings.

de-en fi-en fr-en ja-en
TM (en) 2.80M 3.10M 2.77M 2.13M
TM (other) 2.56M 2.23M 3.05M 2.34M
LM (en) 16.0M 15.5M 13.8M 11.5M
LM (other) 15.3M 11.3M 15.6M 11.9M
Tune (en) 58.7k 58.7k 58.7k 30.8k
Tune (other) 55.1k 42.0k 67.3k 34.4k
Test (en) 58.0k 58.0k 58.0k 26.6k
Test (other) 54.3k 41.4k 66.2k 28.5k

Table 1: The number of words in each corpus for TM and
LM training, tuning, and testing.

6.1 Experimental Setup

We use a combination of four languages with En-
glish, using freely available data. We selected
French-English, German-English, Finnish-English
data from EuroParl (Koehn, 2005), with develop-
ment and test sets designated for the 2005 ACL
shared task on machine translation.5 We also did
experiments with Japanese-English Wikipedia arti-
cles from the Kyoto Free Translation Task (Neu-
big, 2011) using the designated training and tuning
sets, and reporting results on the test set. These lan-
guages were chosen as they have a variety of inter-
esting characteristics. French has some inflection,
but among the test languages has the strongest one-
to-one correspondence with English, and is gener-
ally considered easy to translate. German has many
compound words, which must be broken apart to
translate properly into English. Finnish is an ag-
glutinative language with extremely rich morphol-
ogy, resulting in long words and the largest vocab-
ulary of the languages in EuroParl. Japanese does
not have any clear word boundaries, and uses logo-
graphic characters, which contain more information
than phonetic characters.

With regards to data preparation, the EuroParl
data was pre-tokenized, so we simply used the to-
kenized data as-is for the training and evaluation of
all models. For word-based translation in the Kyoto
task, training was performed using the provided tok-
enization scripts. For character-based translation, no
tokenization was performed, using the original text
for both training and decoding. For both tasks, we
selected as training data all sentences for which both

5http://statmt.org/wpt05/mt-shared-task
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de-en fi-en fr-en ja-en
GIZA-word 24.58 / 64.28 / 30.43 20.41 / 60.01 / 27.89 30.23 / 68.79 / 34.20 17.95 / 56.47 / 24.70
ITG-word 23.87 / 64.89 / 30.71 20.83 / 61.04 / 28.46 29.92 / 68.64 / 34.29 17.14 / 56.60 / 24.89
GIZA-char 08.05 / 45.01 / 15.35 06.91 / 41.62 / 14.39 11.05 / 48.23 / 17.80 09.46 / 49.02 / 18.34
ITG-char 21.79 / 64.47 / 30.12 18.38 / 62.44 / 28.94 26.70 / 66.76 / 32.47 15.84 / 58.41 / 24.58

en-de en-fi en-fr en-ja
GIZA-word 17.94 / 62.71 / 37.88 13.22 / 58.50 / 27.03 32.19 / 69.20 / 52.39 20.79 / 27.01 / 38.41
ITG-word 17.47 / 63.18 / 37.79 13.12 / 59.27 / 27.09 31.66 / 69.61 / 51.98 20.26 / 28.34 / 38.34
GIZA-char 06.17 / 41.04 / 19.90 04.58 / 35.09 / 11.76 10.31 / 42.84 / 25.06 01.48 / 00.72 / 06.67
ITG-char 15.35 / 61.95 / 35.45 12.14 / 59.02 / 25.31 27.74 / 67.44 / 48.56 17.90 / 28.46 / 35.71

Table 2: Translation results in word-based BLEU, character-based BLEU, and METEOR for the GIZA++ and phrasal
ITG models for word and character-based translation, with bold numbers indicating a statistically insignificant differ-
ence from the best system according to the bootstrap resampling method at p = 0.05 (Koehn, 2004).

source and target were 100 characters or less,6 the
total size of which is shown in Table 1. In character-
based translation, white spaces between words were
treated as any other character and not given any spe-
cial treatment. Evaluation was performed on tok-
enized and lower-cased data.

For alignment, we use the GIZA++ implementa-
tion of one-to-many alignment7 and the pialign im-
plementation of the phrasal ITG models8 modified
with the proposed improvements. For GIZA++, we
used the default settings for word-based alignment,
but used the HMM model for character-based align-
ment to allow for alignment of longer sentences.
For pialign, default settings were used except for
character-based ITG alignment, which used a prob-
ability beam of 10−4 instead 10−10.9 For decoding,
we use the Moses decoder,10 using the default set-
tings except for the stack size, which we set to 1000
instead of 200. Minimum error rate training was per-
formed to maximize word-based BLEU score for all
systems.11 For language models, word-based trans-
lation uses a word 5-gram model, and character-
based translation uses a character 12-gram model,
both smoothed using interpolated Kneser-Ney.

6100 characters is an average of 18.8 English words
7http://code.google.com/p/giza-pp/
8http://phontron.com/pialign/
9Improvement by using a beam larger than 10−4 was

marginal, especially with co-occurrence prior probabilities.
10http://statmt.org/moses/
11We chose this set-up to minimize the effect of tuning crite-

rion on our experiments, although it does indicate that we must
have access to tokenized data for the development set.

6.2 Quantitative Evaluation

Table 2 presents a quantitative analysis of the trans-
lation results for each of the proposed methods. As
previous research has shown that it is more diffi-
cult to translate into morphologically rich languages
than into English (Koehn, 2005), we perform exper-
iments translating in both directions for all language
pairs. We evaluate translation quality using BLEU
score (Papineni et al., 2002), both on the word and
character level (with n = 4), as well as METEOR
(Denkowski and Lavie, 2011) on the word level.

It can be seen that character-based translation
with all of the proposed alignment improvements
greatly exceeds character-based translation using
one-to-many alignment, confirming that substring-
based information is necessary for accurate align-
ments. When compared with word-based trans-
lation, character-based translation achieves better,
comparable, or inferior results on character-based
BLEU, comparable or inferior results on METEOR,
and inferior results on word-based BLEU. The dif-
ferences between the evaluation metrics are due to
the fact that character-based translation often gets
words mostly correct other than one or two letters.
These are given partial credit by character-based
BLEU (and to a lesser extent METEOR), but marked
entirely wrong by word-based BLEU.

Interestingly, for translation into English,
character-based translation achieves higher ac-
curacy compared to word-based translation on
Japanese and Finnish input, followed by German,
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fi-en ja-en
ITG-word 2.851 2.085
ITG-char 2.826 2.154

Table 3: Human evaluation scores (0-5 scale).

Ref: directive on equality
Source Unk. Word: tasa-arvodirektiivi
(13/26) Char: equality directive

Ref: yoshiwara-juku station
Target Unk. Word: yoshiwara no eki
(5/26) Char: yoshiwara-juku station

Ref: world health organisation
Uncommon Word: world health
(5/26) Char: world health organisation

Table 4: The major gains of character-based translation,
unknown, hyphenated, and uncommon words.

and finally French. This confirms that character-
based translation is performing well on languages
that have long words or ambiguous boundaries, and
less well on language pairs with relatively strong
one-to-one correspondence between words.

6.3 Qualitative Evaluation
In addition, we performed a subjective evaluation of
Japanese-English and Finnish-English translations.
Two raters evaluated 100 sentences each, assigning
a score of 0-5 based on how well the translation con-
veys the information contained in the reference. We
focus on shorter sentences of 8-16 English words to
ease rating and interpretation. Table 3 shows that
the results are comparable, with no significant dif-
ference in average scores for either language pair.

Table 4 shows a breakdown of the sentences for
which character-based translation received a score
of at 2+ points more than word-based. It can be seen
that character-based translation is properly handling
sparsity phenomena. On the other hand, word-based
translation was generally stronger with reordering
and lexical choice of more common words.

6.4 Effect of Alignment Method
In this section, we compare the translation accura-
cies for character-based translation using the phrasal
ITG model with and without the proposed improve-
ments of substring co-occurrence priors and look-
ahead parsing as described in Sections 4 and 5.2.

fi-en en-fi ja-en en-ja
ITG +cooc +look 28.94 25.31 24.58 35.71
ITG +cooc -look 28.51 24.24 24.32 35.74
ITG -cooc +look 28.65 24.49 24.36 35.05
ITG -cooc -look 27.45 23.30 23.57 34.50

Table 5: METEOR scores for alignment with and without
look-ahead and co-occurrence priors.

Figure 5 shows METEOR scores12 for experi-
ments translating Japanese and Finnish. It can be
seen that the co-occurrence prior gives gains in all
cases, indicating that substring statistics are effec-
tively seeding the ITG aligner. The introduced look-
ahead probabilities improve accuracy significantly
when substring co-occurrence counts are not used,
and slightly when co-occurrence counts are used.
More importantly, they allow for more aggressive
beam pruning, increasing sampling speed from 1.3
sent/s to 2.5 sent/s for Finnish, and 6.8 sent/s to 11.6
sent/s for Japanese.

7 Conclusion and Future Directions

This paper demonstrated that character-based trans-
lation can act as a unified framework for handling
difficult problems in translation: morphology, com-
pound words, transliteration, and segmentation.

One future challenge includes scaling training up
to longer sentences, which can likely be achieved
through methods such as the heuristic span prun-
ing of Haghighi et al. (2009) or sentence splitting
of Vilar et al. (2007). Monolingual data could also
be used to improve estimates of our substring-based
prior. In addition, error analysis showed that word-
based translation performed better than character-
based translation on reordering and lexical choice,
indicating that improved decoding (or pre-ordering)
and language modeling tailored to character-based
translation will likely greatly improve accuracy. Fi-
nally, we plan to explore the middle ground between
word-based and character based translation, allow-
ing for the flexibility of character-based translation,
while using word boundary information to increase
efficiency and accuracy.

12Similar results were found for character and word-based
BLEU, but are omitted for lack of space.
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Abstract

Long-span features, such as syntax, can im-
prove language models for tasks such as
speech recognition and machine translation.
However, these language models can be dif-
ficult to use in practice because of the time
required to generate features for rescoring a
large hypothesis set. In this work, we pro-
pose substructure sharing, which saves dupli-
cate work in processing hypothesis sets with
redundant hypothesis structures. We apply
substructure sharing to a dependency parser
and part of speech tagger to obtain significant
speedups, and further improve the accuracy
of these tools through up-training. When us-
ing these improved tools in a language model
for speech recognition, we obtain significant
speed improvements with bothN -best and hill
climbing rescoring, and show that up-training
leads to WER reduction.

1 Introduction

Language models (LM) are crucial components in
tasks that require the generation of coherent natu-
ral language text, such as automatic speech recog-
nition (ASR) and machine translation (MT). While
traditional LMs use word n-grams, where the n − 1
previous words predict the next word, newer mod-
els integrate long-span information in making deci-
sions. For example, incorporating long-distance de-
pendencies and syntactic structure can help the LM
better predict words by complementing the predic-
tive power of n-grams (Chelba and Jelinek, 2000;
Collins et al., 2005; Filimonov and Harper, 2009;
Kuo et al., 2009).

The long-distance dependencies can be modeled
in either a generative or a discriminative framework.
Discriminative models, which directly distinguish
correct from incorrect hypothesis, are particularly
attractive because they allow the inclusion of arbi-
trary features (Kuo et al., 2002; Roark et al., 2007;
Collins et al., 2005); these models with syntactic in-
formation have obtained state of the art results.

However, both generative and discriminative LMs
with long-span dependencies can be slow, for they
often cannot work directly with lattices and require
rescoring large N -best lists (Khudanpur and Wu,
2000; Collins et al., 2005; Kuo et al., 2009). For dis-
criminative models, this limitation applies to train-
ing as well. Moreover, the non-local features used in
rescoring are usually extracted via auxiliary tools –
which in the case of syntactic features include part of
speech taggers and parsers – from a set of ASR sys-
tem hypotheses. Separately applying auxiliary tools
to each N -best list hypothesis leads to major ineffi-
ciencies as many hypotheses differ only slightly.

Recent work on hill climbing algorithms for ASR
lattice rescoring iteratively searches for a higher-
scoring hypothesis in a local neighborhood of the
current-best hypothesis, leading to a much more ef-
ficient algorithm in terms of the number, N , of hy-
potheses evaluated (Rastrow et al., 2011b); the idea
also leads to a discriminative hill climbing train-
ing algorithm (Rastrow et al., 2011a). Even so, the
reliance on auxiliary tools slow LM application to
the point of being impractical for real time systems.
While faster auxiliary tools are an option, they are
usually less accurate.

In this paper, we propose a general modifica-
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tion to the decoders used in auxiliary tools to uti-
lize the commonalities among the set of generated
hypotheses. The key idea is to share substructure
states in transition based structured prediction al-
gorithms, i.e. algorithms where final structures are
composed of a sequence of multiple individual deci-
sions. We demonstrate our approach on a local Per-
ceptron based part of speech tagger (Tsuruoka et al.,
2011) and a shift reduce dependency parser (Sagae
and Tsujii, 2007), yielding significantly faster tag-
ging and parsing of ASR hypotheses. While these
simpler structured prediction models are faster, we
compensate for the model’s simplicity through up-
training (Petrov et al., 2010), yielding auxiliary tools
that are both fast and accurate. The result is signif-
icant speed improvements and a reduction in word
error rate (WER) for both N -best list and the al-
ready fast hill climbing rescoring. The net result
is arguably the first syntactic LM fast enough to be
used in a real time ASR system.

2 Syntactic Language Models
There have been several approaches to include syn-
tactic information in both generative and discrimi-
native language models.

For generative LMs, the syntactic information
must be part of the generative process. Structured
language modeling incorporates syntactic parse
trees to identify the head words in a hypothesis for
modeling dependencies beyond n-grams. Chelba
and Jelinek (2000) extract the two previous exposed
head words at each position in a hypothesis, along
with their non-terminal tags, and use them as con-
text for computing the probability of the current po-
sition. Khudanpur and Wu (2000) exploit such syn-
tactic head word dependencies as features in a maxi-
mum entropy framework. Kuo et al. (2009) integrate
syntactic features into a neural network LM for Ara-
bic speech recognition.

Discriminative models are more flexible since
they can include arbitrary features, allowing for
a wider range of long-span syntactic dependen-
cies. Additionally, discriminative models are di-
rectly trained to resolve the acoustic confusion in the
decoded hypotheses of an ASR system. This flexi-
bility and training regime translate into better perfor-
mance. Collins et al. (2005) uses the Perceptron al-
gorithm to train a global linear discriminative model

which incorporates long-span features, such as head-
to-head dependencies and part of speech tags.

Our Language Model. We work with a discrimi-
native LM with long-span dependencies. We use a
global linear model with Perceptron training. We
rescore the hypotheses (lattices) generated by the
ASR decoder—in a framework most similar to that
of Rastrow et al. (2011a).

The LM score S(w,a) for each hypothesis w of
a speech utterance with acoustic sequence a is based
on the baseline ASR system score b(w,a) (initial n-
gram LM score and the acoustic score) and α0, the
weight assigned to the baseline score.1 The score is
defined as:

S(w,a) = α0 · b(w,a) + F (w, s1, . . . , sm)

= α0 · b(w,a) +
d∑
i=1

αi · Φi(w, s
1, . . . , sm)

where F is the discriminative LM’s score for the
hypothesis w, and s1, . . . , sm are candidate syntac-
tic structures associated with w, as discussed be-
low. Since we use a linear model, the score is a
weighted linear combination of the count of acti-
vated features of the word sequence w and its as-
sociated structures: Φi(w, s

1, . . . , sm). Perceptron
training learns the parameters α. The baseline score
b(w,a) can be a feature, yielding the dot product
notation: S(w,a) = 〈α,Φ(a,w, s1, . . . , sm)〉 Our
LM uses features from the dependency tree and part
of speech (POS) tag sequence. We use the method
described in Kuo et al. (2009) to identify the two
previous exposed head words, h−2, h−1, at each po-
sition i in the input hypothesis and include the fol-
lowing syntactic based features into our LM:

1. (h−2.w ◦ h−1.w ◦ wi) , (h−1.w ◦ wi) , (wi)

2. (h−2.t ◦ h−1.t ◦ ti) , (h−1.t ◦ ti) , (ti) , (tiwi)

where h.w and h.t denote the word identity and the
POS tag of the corresponding exposed head word.

2.1 Hill Climbing Rescoring
We adopt the so called hill climbing framework of
Rastrow et al. (2011b) to improve both training and
rescoring time as much as possible by reducing the

1We tune α0 on development data (Collins et al., 2005).
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number N of explored hypotheses. We summarize
it below for completeness.

Given a speech utterance’s lattice L from a first
pass ASR decoder, the neighborhood N (w, i) of a
hypothesis w = w1w2 . . . wn at position i is de-
fined as the set of all paths in the lattice that may
be obtained by editing wi: deleting it, substituting
it, or inserting a word to its left. In other words,
it is the “distance-1-at-position i” neighborhood of
w. Given a position i in a word sequence w, all
hypotheses in N (w, i) are rescored using the long-
span model and the hypothesis ŵ′(i) with the high-
est score becomes the new w. The process is re-
peated with a new position – scanned left to right
– until w = ŵ′(1) = . . . = ŵ′(n), i.e. when w
itself is the highest scoring hypothesis in all its 1-
neighborhoods, and can not be furthered improved
using the model. Incorporating this into training
yields a discriminative hill climbing algorithm (Ras-
trow et al., 2011a).

3 Incorporating Syntactic Structures

Long-span models – generative or discriminative,
N -best or hill climbing – rely on auxiliary tools,
such as a POS tagger or a parser, for extracting
features for each hypothesis during rescoring, and
during training for discriminative models. The top-
m candidate structures associated with the ith hy-
pothesis, which we denote as s1

i , . . . , s
m
i , are gener-

ated by these tools and used to score the hypothesis:
F (wi, s

1
i , . . . , s

m
i ). For example, sji can be a part of

speech tag or a syntactic dependency. We formally
define this sequential processing as:

w1
tool(s)−−−−→ s1

1, . . . , s
m
1

LM−−→ F (w1, s
1
1, . . . , s

m
1 )

w2
tool(s)−−−−→ s1

2, . . . , s
m
2

LM−−→ F (w2, s
1
2, . . . , s

m
2 )

...

wk
tool(s)−−−−→ s1

k, . . . , s
m
k

LM−−→ F (wk, s
1
k, . . . , s

m
k )

Here, {w1, . . . ,wk} represents a set of ASR output
hypotheses that need to be rescored. For each hy-
pothesis, we apply an external tool (e.g. parser) to
generate associated structures s1

i , . . . , s
m
i (e.g. de-

pendencies.) These are then passed to the language
model along with the word sequence for scoring.

3.1 Substructure Sharing

While long-span LMs have been empirically shown
to improve WER over n-gram LMs, the computa-
tional burden prohibits long-span LMs in practice,
particularly in real-time systems. A major complex-
ity factor is due to processing 100s or 1000s of hy-
potheses for each speech utterance, even during hill
climbing, each of which must be POS tagged and
parsed. However, the candidate hypotheses of an
utterance share equivalent substructures, especially
in hill climbing methods due to the locality present
in the neighborhood generation. Figure 1 demon-
strates such repetition in an N -best list (N=10) and
a hill climbing neighborhood hypothesis set for a
speech utterance from broadcast news. For exam-
ple, the word “ENDORSE” occurs within the same
local context in all hypotheses and should receive
the same part of speech tag in each case. Processing
each hypothesis separately wastes time.

We propose a general algorithmic approach to re-
duce the complexity of processing a hypothesis set
by sharing common substructures among the hy-
potheses. Critically, unlike many lattice parsing al-
gorithms, our approach is general and produces ex-
act output. We first present our approach and then
demonstrate its generality by applying it to a depen-
dency parser and part of speech tagger.

We work with structured prediction models that
produce output from a series of local decisions: a
transition model. We begin in initial state π0 and
terminate in a possible final state πf . All states
along the way are chosen from the possible states
Π. A transition (or action) ω ∈ Ω advances the
decoder from state to state, where the transition ωi
changes the state from πi to πi+1. The sequence
of states {π0 . . . πi, πi+1 . . . πf} can be mapped to
an output (the model’s prediction.) The choice of
action ω is given by a learning algorithm, such as
a maximum-entropy classifier, support vector ma-
chine or Perceptron, trained on labeled data. Given
the previous k actions up to πi, the classifier g :
Π × Ωk → R|Ω| assigns a score to each possi-
ble action, which we can interpret as a probability:
pg(ωi|πi, ωi−1ωi−2 . . . ωi−k). These actions are ap-
plied to transition to new states πi+1. We note that
state definitions can encode the k previous actions,
which simplifies the probability to pg(ωi|πi). The
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N -best list Hill climbing neighborhood
(1) AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE

(2) TO AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE

(3) AL GORE HAS PROMISE THAT HE WOULD ENDORSE A CANDIDATE

(4) SO AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE (1) YEAH FIFTY CENT GALLON NOMINATION WHICH WAS GREAT

(5) IT’S AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE (2) YEAH FIFTY CENT A GALLON NOMINATION WHICH WAS GREAT

(6) AL GORE HAS PROMISED HE WOULD ENDORSE A CANDIDATE (3) YEAH FIFTY CENT GOT A NOMINATION WHICH WAS GREAT

(7) AL GORE HAS PROMISED THAT HE WOULD ENDORSE THE CANDIDATE

(8) SAID AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE

(9) AL GORE HAS PROMISED THAT HE WOULD ENDORSE A CANDIDATE FOR

(10) AL GORE HIS PROMISE THAT HE WOULD ENDORSE A CANDIDATE

Figure 1: Example of repeated substructures in candidate hypotheses.

score of the new state is then

p(πi+1) = pg(ωi|πi) · p(πi) (1)

Classification decisions require a feature represen-
tation of πi, which is provided by feature functions
f : Π→ Y , that map states to features. Features are
conjoined with actions for multi-class classification,
so pg(ωi|πi) = pg(f(π) ◦ ωi), where ◦ is a conjunc-
tion operation. In this way, states can be summarized
by features.

Equivalent states are defined as two states π and
π′ with an identical feature representation:

π ≡ π′ iff f(π) = f(π′)

If two states are equivalent, then g imposes the same
distribution over actions. We can benefit from this
substructure redundancy, both within and between
hypotheses, by saving these distributions in mem-
ory, sharing a distribution computed just once across
equivalent states. A similar idea of equivalent states
is used by Huang and Sagae (2010), except they use
equivalence to facilitate dynamic programming for
shift-reduce parsing, whereas we generalize it for
improving the processing time of similar hypotheses
in general models. Following Huang and Sagae, we
define kernel features as the smallest set of atomic
features f̃(π) such that,

f̃(π) = f̃(π′) ⇒ π ≡ π′. (2)

Equivalent distributions are stored in a hash table
H : Π→ Ω×R; the hash keys are the states and the
values are distributions2 over actions: {ω, pg(ω|π)}.

2For pure greedy search (deterministic search) we need only
retain the best action, since the distribution is only used in prob-
abilistic search, such as beam search or best-first algorithms.

H caches equivalent states in a hypothesis set and re-
sets for each new utterance. For each state, we first
check H for equivalent states before computing the
action distribution; each cache hit reduces decod-
ing time. Distributing hypotheses wi across differ-
ent CPU threads is another way to obtain speedups,
and we can still benefit from substructure sharing by
storing H in shared memory.

We use h(π) =
∑|f̃(π)|

i=1 int(f̃i(π)) as the hash
function, where int(f̃i(π)) is an integer mapping of
the ith kernel feature. For integer typed features
the mapping is trivial, for string typed features (e.g.
a POS tag identity) we use a mapping of the cor-
responding vocabulary to integers. We empirically
found that this hash function is very effective and
yielded very few collisions.

To apply substructure sharing to a transition based
model, we need only define the set of states Π (in-
cluding π0 and πf ), actions Ω and kernel feature
functions f̃ . The resulting speedup depends on the
amount of substructure duplication among the hy-
potheses, which we will show is significant for ASR
lattice rescoring. Note that our algorithm is not an
approximation; we obtain the same output {sji} as
we would without any sharing. We now apply this
algorithm to dependency parsing and POS tagging.

3.2 Dependency Parsing
We use the best-first probabilistic shift-reduce de-
pendency parser of Sagae and Tsujii (2007), a
transition-based parser (Kübler et al., 2009) with a
MaxEnt classifier. Dependency trees are built by
processing the words left-to-right and the classifier
assigns a distribution over the actions at each step.
States are defined as π = {S,Q}: S is a stack of
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Kernel features f̃(π) for state π = {S,Q}
S = s0, s1, . . . & Q = q0, q1, . . .

(1) s0.w s0.t s0.r (5) ts0−1

s0.lch.t s0.lch.r ts1+1

s0.rch.t s0.rch.r
(2) s1.w s1.t s1.r (6) dist(s0, s1)

s1.lch.t s1.lch.r dist(q0, s0)
s1.rch.t s1.rch.r

(3) s2.w s2.t s2.r
(4) q0.w q0.t (7) s0.nch

q1.w q1.t s1.nch
q2.w

Table 1: Kernel features for defining parser states. si.w
denotes the head-word in a subtree and t its POS tag.
si.lch and si.rch are the leftmost and rightmost children
of a subtree. si.r is the dependency label that relates a
subtree head-word to its dependent. si.nch is the number
of children of a subtree. qi.w and qi.t are the word and
its POS tag in the queue. dist(s0,s1) is the linear distance
between the head-words of s0 and s1.

subtrees s0, s1, . . . (s0 is the top tree) and Q are
words in the input word sequence. The initial state is
π0 = {∅, {w0, w1, . . .}}, and final states occur when
Q is empty and S contains a single tree (the output).

Ω is determined by the set of dependency labels
r ∈ R and one of three transition types:

• Shift: remove the head of Q (wj) and place it on
the top of S as a singleton tree (only wj .)

• Reduce-Leftr: replace the top two trees in S (s0

and s1) with a tree formed by making the root of
s1 a dependent of the root of s0 with label r.

• Reduce-Rightr: same as Reduce-Leftr except re-
verses s0 and s1.

Table 1 shows the kernel features used in our de-
pendency parser. See Sagae and Tsujii (2007) for a
complete list of features.

Goldberg and Elhadad (2010) observed that pars-
ing time is dominated by feature extraction and
score calculation. Substructure sharing reduces
these steps for equivalent states, which are persis-
tent throughout a candidate set. Note that there are
far fewer kernel features than total features, hence
the hash function calculation is very fast.

We summarize substructure sharing for depen-
dency parsing in Algorithm 1. We extend the def-
inition of states to be {S,Q, p} where p denotes the
score of the state: the probability of the action se-
quence that resulted in the current state. Also, fol-

Algorithm 1 Best-first shift-reduce dependency parsing
w ← input hypothesis
S0 = ∅, Q0 = w, p0 = 1
π0 ← {S0, Q0, p0} [initial state]
H ←Hash table (Π→ Ω× R)
Heap← Heap for prioritizing states and performing best-first search
Heap.push(π0) [initialize the heap]

while Heap 6= ∅ do
πcurrent ←Heap.pop() [the best state so far]
if πcurrent = πf [if final state]

return πcurrent [terminate if final state]
else ifH.find(πcurrent)

ActList← H[πcurrent] [retrieve action list from the hash table]
else [need to construct action list]

for all ω ∈ Ω [for all actions]
pω ← pg(ω|πcurrent) [action score]
ActList.insert({ω, pω})

H.insert(πcurrent,ActList) [Store the action list into hash table]
end if
for all {ω, pω} ∈ ActList [compute new states]
πnew ← πcurrent × ω
Heap.push(πnew) [push to the heap]

end while

lowing Sagae and Tsujii (2007) a heap is used to
maintain states prioritized by their scores, for apply-
ing the best-first strategy. For each step, a state from
the top of the heap is considered and all actions (and
scores) are either retrieved from H or computed us-
ing g.3 We use πnew ← πcurrent × ω to denote the
operation of extending a state by an action ω ∈ Ω4.

3.3 Part of Speech Tagging
We use the part of speech (POS) tagger of Tsuruoka
et al. (2011), a transition based model with a Per-
ceptron and a lookahead heuristic process. The tag-
ger processes w left to right. States are defined as
πi = {ci,w}: a sequence of assigned tags up to wi
(ci = t1t2 . . . ti−1) and the word sequence w. Ω is
defined simply as the set of possible POS tags (T )
that can be applied. The final state is reached once
all the positions are tagged. For f we use the features
of Tsuruoka et al. (2011). The kernel features are
f̃(πi) = {ti−2, ti−1, wi−2, wi−1, wi, wi+1, wi+2}.
While the tagger extracts prefix and suffix features,
it suffices to look at wi for determining state equiv-
alence. The tagger is deterministic (greedy) in that
it only considers the best tag at each step, so we do
not store scores. However, this tagger uses a depth-

3 Sagae and Tsujii (2007) use a beam strategy to increase
speed. Search space pruning is achieved by filtering heap states
for probability greater than 1

b
the probability of the most likely

state in the heap with the same number of actions. We use b =
100 for our experiments.

4We note that while we have demonstrated substructure
sharing for dependency parsing, the same improvements can
be made to a shift-reduce constituent parser (Sagae and Lavie,
2006).
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Figure 2: POS tagger with lookahead search of d=1. At
wi the search considers the current state and next state.

first search lookahead procedure to select the best
action at each step, which considers future decisions
up to depth d5. An example for d = 1 is shown
in Figure 2. Using d = 1 for the lookahead search
strategy, we modify the kernel features since the de-
cision forwi is affected by the state πi+1. The kernel
features in position i should be f̃(πi) ∪ f̃(πi+1):

f̃(πi) =

{ti−2, ti−1, wi−2, wi−1, wi, wi+1, wi+2, wi+3}

4 Up-Training
While we have fast decoding algorithms for the pars-
ing and tagging, the simpler underlying models can
lead to worse performance. Using more complex
models with higher accuracy is impractical because
they are slow. Instead, we seek to improve the accu-
racy of our fast tools.

To achieve this goal we use up-training, in which
a more complex model is used to improve the accu-
racy of a simpler model. We are given two mod-
els, M1 and M2, as well as a large collection of
unlabeled text. Model M1 is slow but very accu-
rate while M2 is fast but obtains lower accuracy.
Up-training applies M1 to tag the unlabeled data,
which is then used as training data for M2. Like
self-training, a model is retrained on automatic out-
put, but here the output comes form a more accurate
model. Petrov et al. (2010) used up-training as a
domain adaptation technique: a constituent parser –
which is more robust to domain changes – was used
to label a new domain, and a fast dependency parser

5 Tsuruoka et al. (2011) shows that the lookahead search
improves the performance of the local ”history-based” models
for different NLP tasks

was trained on the automatically labeled data. We
use a similar idea where our goal is to recover the
accuracy lost from using simpler models. Note that
while up-training uses two models, it differs from
co-training since we care about improving only one
model (M2). Additionally, the models can vary in
different ways. For example, they could be the same
algorithm with different pruning methods, which
can lead to faster but less accurate models.

We apply up-training to improve the accuracy of
both our fast POS tagger and dependency parser. We
parse a large corpus of text with a very accurate but
very slow constituent parser and use the resulting
data to up-train our tools. We will demonstrate em-
pirically that up-training improves these fast models
to yield better WER results.

5 Related Work
The idea of efficiently processing a hypothesis set is
similar to “lattice-parsing”, in which a parser con-
sider an entire lattice at once (Hall, 2005; Chep-
palier et al., 1999). These methods typically con-
strain the parsing space using heuristics, which are
often model specific. In other words, they search in
the joint space of word sequences present in the lat-
tice and their syntactic analyses; they are not guaran-
teed to produce a syntactic analysis for all hypothe-
ses. In contrast, substructure sharing is a general
purpose method that we have applied to two differ-
ent algorithms. The output is identical to processing
each hypothesis separately and output is generated
for each hypothesis. Hall (Hall, 2005) uses a lattice
parsing strategy which aims to compute the marginal
probabilities of all word sequences in the lattice by
summing over syntactic analyses of each word se-
quence. The parser sums over multiple parses of a
word sequence implicitly. The lattice parser there-
fore, is itself a language model. In contrast, our
tools are completely separated from the ASR sys-
tem, which allows the system to create whatever fea-
tures are needed. This independence means our tools
are useful for other tasks, such as machine transla-
tion. These differences make substructure sharing a
more attractive option for efficient algorithms.

While Huang and Sagae (2010) use the notion of
“equivalent states”, they do so for dynamic program-
ming in a shift-reduce parser to broaden the search
space. In contrast, we use the idea to identify sub-
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structures across inputs, where our goal is efficient
parsing in general. Additionally, we extend the defi-
nition of equivalent states to general transition based
structured prediction models, and demonstrate ap-
plications beyond parsing as well as the novel setting
of hypothesis set parsing.

6 Experiments
Our ASR system is based on the 2007 IBM
Speech transcription system for the GALE Distilla-
tion Go/No-go Evaluation (Chen et al., 2006) with
state of the art discriminative acoustic models. See
Table 2 for a data summary. We use a modi-
fied Kneser-Ney (KN) backoff 4-gram baseline LM.
Word-lattices for discriminative training and rescor-
ing come from this baseline ASR system.6 The long-
span discriminative LM’s baseline feature weight
(α0) is tuned on dev data and hill climbing (Rastrow
et al., 2011a) is used for training and rescoring. The
dependency parser and POS tagger are trained on su-
pervised data and up-trained on data labeled by the
CKY-style bottom-up constituent parser of Huang et
al. (2010), a state of the art broadcast news (BN)
parser, with phrase structures converted to labeled
dependencies by the Stanford converter.

While accurate, the parser has a huge grammar
(32GB) from using products of latent variable gram-
mars and requires O(l3) time to parse a sentence of
length l. Therefore, we could not use the constituent
parser for ASR rescoring since utterances can be
very long, although the shorter up-training text data
was not a problem.7 We evaluate both unlabeled
(UAS) and labeled dependency accuracy (LAS).

6.1 Results
Before we demonstrate the speed of our models, we
show that up-training can produce accurate and fast
models. Figure 3 shows improvements to parser ac-
curacy through up-training for different amount of
(randomly selected) data, where the last column in-
dicates constituent parser score (91.4% UAS). We
use the POS tagger to generate tags for depen-
dency training to match the test setting. While
there is a large difference between the constituent
and dependency parser without up-training (91.4%

6For training a 3-gram LM is used to increase confusions.
7Speech utterances are longer as they are not as effectively

sentence segmented as text.
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Figure 3: Up-training results for dependency parsing for
varying amounts of data (number of words.) The first
column is the dependency parser with supervised training
only and the last column is the constituent parser (after
converting to dependency trees.)

vs. 86.2% UAS), up-training can cut the differ-
ence by 44% to 88.5%, and improvements saturate
around 40m words (about 2m sentences.)8 The de-
pendency parser remains much smaller and faster;
the up-trained dependency model is 700MB with
6m features compared with 32GB for constituency
model. Up-training improves the POS tagger’s accu-
racy from 95.9% to 97%, when trained on the POS
tags produced by the constituent parser, which has a
tagging accuracy of 97.2% on BN.

We train the syntactic discriminative LM, with
head-word and POS tag features, using the faster
parser and tagger and then rescore the ASR hypothe-
ses. Table 3 shows the decoding speedups as well as
the WER reductions compared to the baseline LM.
Note that up-training improvements lead to WER re-
ductions. Detailed speedups on substructure sharing
are shown in Table 4; the POS tagger achieves a 5.3
times speedup, and the parser a 5.7 speedup with-
out changing the output. We also observed speedups
during training (not shown due to space.)

The above results are for the already fast hill
climbing decoding, but substructure sharing can also
be used for N -best list rescoring. Figure 4 (logarith-
mic scale) illustrates the time for the parser and tag-
ger to processN -best lists of varying size, with more
substantial speedups for larger lists. For example,
for N=100 (a typical setting) the parsing time re-

8Better performance is due to the exact CKY-style – com-
pared with best-first and beam– search and that the constituent
parser uses the product of huge self-trained grammars.
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Usage Data Size
Acoustic model training Hub4 acoustic train 153k uttr, 400 hrs
Baseline LM training: modified KN 4-gram TDT4 closed captions+EARS BN03 closed caption 193m words
Disc. LM training: long-span w/hill climbing Hub4 (length <50) 115k uttr, 2.6m words
Baseline feature (α0) tuning dev04f BN data 2.5 hrs
Supervised training: dep. parser, POS tagger Ontonotes BN treebank+ WSJ Penn treebank 1.3m words, 59k sent.
Supervised training: constituent parser Ontonotes BN treebank + WSJ Penn treebank 1.3m words, 59k sent.
Up-training: dependency parser, POS tagger TDT4 closed captions+EARS BN03 closed caption 193m words available
Evaluation: up-training BN treebank test (following Huang et al. (2010)) 20k words, 1.1k sent.
Evaluation: ASR transcription rt04 BN evaluation 4 hrs, 45k words

Table 2: A summary of the data for training and evaluation. The Ontonotes corpus is from Weischedel et al. (2008).
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Figure 4: Elapsed time for (a) parsing and (b) POS tagging the N -best lists with and without substructure sharing.

Substr. Share (sec)
LM WER No Yes

Baseline 4-gram 15.1 - -
Syntactic LM 14.8

8,658 1,648
+ up-train 14.6

Table 3: Speedups and WER for hill climbing rescor-
ing. Substructure sharing yields a 5.3 times speedup. The
times for with and without up-training are nearly identi-
cal, so we include only one set for clarity. Time spent
is dominated by the parser, so the faster parser accounts
for much of the overall speedup. Timing information in-
cludes neighborhood generation and LM rescoring, so it
is more than the sum of the times in Table 4.

duces from about 20,000 seconds to 2,700 seconds,
about 7.4 times as fast.

7 Conclusion
The computational complexity of accurate syntac-
tic processing can make structured language models
impractical for applications such as ASR that require
scoring hundreds of hypotheses per input. We have

Substr. Share Speedup
No Yes

Parser 8,237.2 1,439.5 5.7
POS tagger 213.3 40.1 5.3

Table 4: Time in seconds for the parser and POS tagger
to process hypotheses during hill climbing rescoring.

presented substructure sharing, a general framework
that greatly improves the speed of syntactic tools
that process candidate hypotheses. Furthermore, we
achieve improved performance through up-training.
The result is a large speedup in rescoring time, even
on top of the already fast hill climbing framework,
and reductions in WER from up-training. Our re-
sults make long-span syntactic LMs practical for
real-time ASR, and can potentially impact machine
translation decoding as well.
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Abstract

During early language acquisition, infants must
learn both a lexicon and a model of phonet-
ics that explains how lexical items can vary
in pronunciation—for instance “the” might be
realized as [Di] or [D@]. Previous models of ac-
quisition have generally tackled these problems
in isolation, yet behavioral evidence suggests
infants acquire lexical and phonetic knowledge
simultaneously. We present a Bayesian model
that clusters together phonetic variants of the
same lexical item while learning both a lan-
guage model over lexical items and a log-linear
model of pronunciation variability based on ar-
ticulatory features. The model is trained on
transcribed surface pronunciations, and learns
by bootstrapping, without access to the true
lexicon. We test the model using a corpus of
child-directed speech with realistic phonetic
variation and either gold standard or automati-
cally induced word boundaries. In both cases
modeling variability improves the accuracy of
the learned lexicon over a system that assumes
each lexical item has a unique pronunciation.

1 Introduction

Infants acquiring their first language confront two
difficult cognitive problems: building a lexicon of
word forms, and learning basic phonetics and phonol-
ogy. The two tasks are closely related: knowing what
sounds can substitute for one another helps in clus-
tering together variant pronunciations of the same
word, while knowing the environments in which par-
ticular words can occur helps determine which sound
changes are meaningful and which are not (Feldman

(a) intended: /ju want w2n/ /want e kUki/
(b) surface: [j@ w�aP w2n] [wan @ kUki]
(c) unsegmented: [j@w�aPw2n] [wan@kUki]
(d) idealized: /juwantw2n/ /wantekUki/

Figure 1: The utterances you want one? want a cookie?
represented (a) using a canonical phonemic encoding for
each word and (b) as they might be pronounced phoneti-
cally. Lines (c) and (d) remove the word boundaries (but
not utterance boundaries) from (b) and (a), respectively.

et al., 2009). For instance, if an infant who already
knows the word [ju] “you” encounters a new word
[j@], they must decide whether it is a new lexical item
or a variant of the word they already know. Evidence
for the correct conclusion comes from the pronun-
ciation (many English vowels are reduced to [@] in
unstressed positions) and the context—if the next
word is “want”, “you” is a plausible choice.

To date, most models of infant language learn-
ing have focused on either lexicon-building or pho-
netic learning in isolation. For example, many mod-
els of word segmentation implicitly or explicitly
build a lexicon while segmenting the input stream
of phonemes into word tokens; in nearly all cases
the phonemic input is created from an orthographic
transcription using a phonemic dictionary, thus ab-
stracting away from any phonetic variability (Brent,
1999; Venkataraman, 2001; Swingley, 2005; Gold-
water et al., 2009, among others). As illustrated
in Figure 1, these models attempt to infer line (a)
from line (d). However, (d) is an idealization: real
speech has variability, and behavioral evidence sug-
gests that infants are still learning about the phonetics
and phonology of their language even after beginning
to segment words, rather than learning to neutralize
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the variations first and acquiring the lexicon after-
wards (Feldman et al., 2009, and references therein).

Based on this evidence, a more realistic model of
early language acquisition should propose a method
of inferring the intended forms (Figure 1a) from the
unsegmented surface forms (1c) while also learning a
model of phonetic variation relating the intended and
surface forms (a) and (b). Previous models with sim-
ilar goals have learned from an artificial corpus with
a small vocabulary (Driesen et al., 2009; Räsänen,
2011) or have modeled variability only in vowels
(Feldman et al., 2009); to our knowledge, this paper
is the first to use a naturalistic infant-directed corpus
while modeling variability in all segments, and to
incorporate word-level context (a bigram language
model). Our main contribution is a joint lexical-
phonetic model that infers intended forms from seg-
mented surface forms; we test the system using in-
put with either gold standard word boundaries or
boundaries induced by an existing unsupervised seg-
mentation model (Goldwater et al., 2009). We show
that in both cases modeling variability improves the
accuracy of the learned lexicon over a system that
assumes each intended form has a unique surface
form.

Our model is conceptually similar to those used
in speech recognition and other applications: we
assume the intended tokens are generated from a bi-
gram language model and then distorted by a noisy
channel, in particular a log-linear model of phonetic
variability. But unlike speech recognition, we have
no 〈intended-form, surface-form〉 training pairs to
train the phonetic model, nor even a dictionary of
intended-form strings to train the language model.
Instead, we initialize the noise model using feature
weights based on universal linguistic principles (e.g.,
a surface phone is likely to share articulatory features
with the intended phone) and use a bootstrapping
process to iteratively infer the intended forms and
retrain the language model and noise model. While
we do not claim that the particular inference mech-
anism we use is cognitively plausible, our positive
results further support the claim that infants can and
do acquire phonetics and the lexicon in concert.

2 Related work

Our work is inspired by the lexical-phonetic model
of Feldman et al. (2009). They extend a model for

clustering acoustic tokens into phonetic categories
(Vallabha et al., 2007) by adding a lexical level that
simultaneously clusters word tokens (which contain
the acoustic tokens) into lexical entries. Including
the lexical level improves the model’s phonetic cat-
egorization, and a follow-up study on artificial lan-
guage learning (Feldman, 2011) supports the claim
that human learners use lexical knowledge to distin-
guish meaningful from unimportant phonetic con-
trasts. Feldman et al. (2009) use a real-valued rep-
resentation for vowels (formant values), but assume
no variability in consonants, and treat each word to-
ken independently. In contrast, our model uses a
symbolic representation for sounds, but models vari-
ability in all segment types and incorporates a bigram
word-level language model.

To our knowledge, the only other lexicon-building
systems that also learn about phonetic variability are
those of Driesen et al. (2009) and Räsänen (2011).
These systems learn to represent lexical items and
their variability from a discretized representation of
the speech stream, but they are tested on an artifi-
cial corpus with only 80 vocabulary items that was
constructed so as to “avoid strong word-to-word de-
pendencies” (Räsänen, 2011). Here, we use a natu-
ralistic corpus, demonstrating that lexical-phonetic
learning is possible in this more general setting and
that word-level context information is important for
doing so.

Several other related systems work directly from
the acoustic signal and many of these do use natu-
ralistic corpora. However, they do not learn at both
the lexical and phonetic/acoustic level. For example,
Park and Glass (2008), Aimetti (2009), Jansen et al.
(2010), and McInnes and Goldwater (2011) present
lexicon-building systems that use hard-coded acous-
tic similarity measures rather than learning about
variability, and they only extract and cluster a few
frequent words. On the phonetic side, Varadarajan et
al. (2008) and Dupoux et al. (2011) describe systems
that learn phone-like units but without the benefit of
top-down information.

A final line of related work is on word segmenta-
tion. In addition to the models mentioned in Section
1, which use phonemic input, a few models of word
segmentation have been tested using phonetic input
(Fleck, 2008; Rytting, 2007; Daland and Pierrehum-
bert, 2010). However, they do not cluster segmented
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Figure 2: Our generative model of the surface tokens s
from intended tokens x, which occur with left and right
contexts l and r.

word tokens into lexical items (none of these mod-
els even maintains an explicit lexicon), nor do they
model or learn from phonetic variation in the input.

3 Lexical-phonetic model

Our lexical-phonetic model is defined using the stan-
dard noisy channel framework: first a sequence of
intended word tokens is generated using a language
model, and then each token is transformed by a proba-
bilistic finite-state transducer to produce the observed
surface sequence. In this section, we present the
model in a hierarchical Bayesian framework to em-
phasize its similarity to existing models, in particu-
lar those of Feldman et al. (2009) and Goldwater et
al. (2009). In our actual implementation, however,
we use approximation and MAP point estimates to
make our inference process more tractable; we dis-
cuss these simplifications in Section 4.

Our observed data consists of a (segmented) se-
quence of surface words s1 . . . sn. We wish to re-
cover the corresponding sequence of intended words
x1 . . . xn. As shown in Figure 2, si is produced from
xi by a transducer T : si ∼ T (xi), which models
phonetic changes. Each xi is sampled from a dis-
tribution θ which represents word frequencies, and
its left and right context words, li and ri, are drawn
from distributions conditioned on xi, in order to cap-
ture information about the environments in which
xi appears: li ∼ PL(xi), ri ∼ PR(xi). Because the
number of word types is not known in advance, θ is
drawn from a Dirichlet process DP (α), and PL(x)
and PR(x) have Pitman-Yor priors with concentra-
tion parameter 0 and discount d (Teh, 2006).

Our generative model of xi is unusual for two rea-
sons. First, we treat each xi independently rather
than linking them via a Markov chain. This makes
the model deficient, since li overlaps with xi−1 and
so forth, generating each token twice. During in-
ference, however, we will never compute the joint
probability of all the data at once, only the prob-
abilities of subsets of the variables with particular
intended word forms u and v. As long as no two of
these words are adjacent, the deficiency will have no
effect. We make this independence assumption for
computational reasons—when deciding whether to
merge u and v into a single lexical entry, we compute
the change in estimated probability for their contexts,
but not the effect on other words for which u and v
themselves appear as context words.

Also unusual is that we factor the joint probabil-
ity (l, x, r) as p(x)p(l|x)p(r|x) rather than as a left-
to-right chain p(l)p(x|l)p(r|x). Given our indepen-
dence assumption above, these two quantities are
mathematically equivalent, so the difference matters
only because we are using smoothed estimates. Our
factorization leads to a symmetric treatment of left
and right contexts, which simplifies implementation:
we can store all the context parameters locally as
PL(·|x) rather than distributed over various P (x|·).

Next, we explain our transducer T . A weighted
finite-state transducer (WFST) is a variant of a finite-
state automaton (Pereira et al., 1994) that reads an
input string symbol-by-symbol and probabilistically
produces an output string; thus it can be used to
specify a conditional probability on output strings
given an input. Our WFST (Figure 3) computes a
weighted edit distance, and is implemented using
OpenFST (Allauzen et al., 2007). It contains a state
for each triplet of (previous, current, next) phones;
conditioned on this state, it emits a character out-
put which can be thought of as a possible surface
realization of current in its particular environment.
The output can be the empty string ε, in which case
current is deleted. The machine can also insert char-
acters at any point in the string, by transitioning to an
insert state (previous, ε, current) and then returning
while emitting some new character.

The transducer is parameterized by the probabil-
ities of the arcs. For instance, all arcs leaving the
state (•, D, i) consume the character D and emit some
character c with probability p(c|•, D, i). Following
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Figure 3: The fragment of the transducer responsible for
input string [Di] “the”. “...” represents an output arc for
each possible character, including the empty string ε; • is
the word boundary marker.

Dreyer et al. (2008), we parameterize these distribu-
tions with a log-linear model. The model features are
based on articulatory phonetics and distinguish three
dimensions of sound production: voicing, place of
articulation and manner of articulation.

Features are generated from four positional tem-
plates (Figure 4): (curr)→out, (prev, curr)→out,
(curr, next)→out and (prev, curr, next)→out. Each
template is instantiated once per articulatory dimen-
sion, with prev, curr, next and out replaced by their
values for that dimension: for instance, there are
two voicing values, voiced and unvoiced1 and the
(curr)→out template for [D] producing [d] would
be instantiated as (voiced)→voiced. To capture
trends specific to particular sounds, each template
is instantiated again using the actual symbol for
curr and articulatory values for everything else (e.g.,
[D]→unvoiced). An additional template,→out, cap-
tures the marginal frequency of the output symbol.
There are also faithfulness features, same-sound,
same-voice, same-place and same-manner which
check if curr is exactly identical to out or shares
the exact value of a particular feature.

Our choice of templates and features is based on
standard linguistic principles: we expect that chang-
ing only a single articulatory dimension will be more
acceptable than changing several, and that the artic-
ulatory dimensions of context phones are important
because of assimilatory and dissimilatory processes
(Hayes, 2011). In modern phonetics and phonology,
these generalizations are usually expressed as Opti-
mality Theory constraints; log-linear models such as
ours have previously been used to implement stochas-

1We use seven place values and five manner values (stop,
nasal stop, fricative, vowel, other). Empty segments like ε and •
are assigned a special value “no-value” for all features.

Figure 4: Some features generated for (•, D, i)→ d. Each
black factor node corresponds to a positional template.
The features instantiated for the (curr)→out and →out
template are shown in full, and we show some of the
features for the (curr,next)→out template.

tic Optimality Theory models (Goldwater and John-
son, 2003; Hayes and Wilson, 2008).

4 Inference

Global optimization of the model posterior is diffi-
cult; instead we use Viterbi EM (Spitkovsky et al.,
2010; Allahverdyan and Galstyan, 2011). We begin
with a simple initial transducer and alternate between
two phases: clustering together surface forms, and
reestimating the transducer parameters. We iterate
this procedure until convergence (when successive
clustering phases find nearly the same set of merges);
this tends to take about 5 or 6 iterations.

In our clustering phase, we improve the model
posterior as much as possible by greedily making
type merges, where, for a pair of intended word forms
u and v, we replace all instances of xi = u with
xi = v. We maintain the invariant that each intended
word form’s most common surface form must be
itself; this biases the model toward solutions with
low distortion in the transducer.

4.1 Scoring merges

We write the change in the log posterior probability
of the model resulting from a type merge of u to v as
∆(u, v), which factors into two terms, one depending
on the surface string and the transducer, and the other
depending on the string of intended words. In order to
ensure that each intended word form’s most common
surface form is itself, we define ∆(u, v) = −∞ if u
is more common than v.

We write the log probability of x being transduced
to s as T (s|x). If we merge u into v, we no longer
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need to produce any surface forms from u, but instead
we must derive them from v. If #(·) counts the
occurrences of some event in the current state of the
model, the transducer component of ∆ is:

∆T =
∑

s

#(xi=u, si=s)(T (s|v)− T (s|u)) (1)

This term is typically negative, voting against a
merge, since u is more similar to itself than to v.

The language modeling term relating to the in-
tended string again factors into multiple components.
The probability of a particular li, xi, ri can be broken
into p(xi)p(li|xi)p(ri|xi) according to the model.
We deal first with the p(xi) unigram term, consid-
ering all tokens where xi ∈ {u, v} and computing
the probability pu = p(xi = u|xi ∈ {u, v}). By
definition of a Dirichlet process, the marginal over a
subset of the variables will be Dirichlet, so for α > 1
we have the MAP estimate:

pu =
#(xi=u) + α− 1

#(xi ∈ {u, v}) + 2(α− 1)
(2)

pv = p(xi = v|xi ∈ {u, v}) is computed similarly.
If we decide to merge u into v, however, the proba-
bility p(xi = v|xi ∈ {u, v}) becomes 1. The change
in log-probability resulting from the merge is closely
related to the entropy of the distribution:

∆U = −#(xi=u) log(pu)−#(xi=v) log(pv) (3)

This change must be positive and favors merging.
Next, we consider the change in probability from

the left contexts (the derivations for right contexts are
equivalent). If u and v are separate words, we gen-
erate their left contexts from different distributions
p(l|u) and p(l|v), while if they are merged, we must
generate all the contexts from the same distribution
p(l|{u, v}). This change is:

∆L =
∑

l

#(l, u){log(p(l|{u, v}))− log(p(l|u)}

+
∑

l

#(l, v){log(p(l|{u, v}))− log(p(l|v)}

In a full Bayesian model, we would integrate over
the parameters of these distributions; instead, we
use Kneser-Ney smoothing (Kneser and Ney, 1995)
which has been shown to approximate the MAP solu-
tion of a hierarchical Pitman-Yor model (Teh, 2006;

Goldwater et al., 2006). The Kneser-Ney discount2

d is a tunable parameter of our system, and con-
trols whether the term favors merging or not. If d is
small, p(l|u) and p(l|v) are close to their maximum-
likelihood estimates, and ∆L is similar to a Jensen-
Shannon divergence; it is always negative and dis-
courages mergers. As d increases, however, p(l|u)
for rare words approaches the prior distribution; in
this case, merging two words may result in better
posterior parameters than estimating both separately,
since the combined estimate loses less mass to dis-
counting.

Because neither the transducer nor the language
model are perfect models of the true distribution,
they can have incompatible dynamic ranges. Often,
the transducer distribution is too peaked; to remedy
this, we downweight the transducer probability by
λ, a parameter of our model, which we set to .5.
Downweighting of the acoustic model versus the LM
is typical in speech recognition (Bahl et al., 1980).

To summarize, the full change in posterior is:

∆(u, v) = ∆U + ∆L + ∆R + λ∆T (4)

There are four parameters. The transducer regular-
ization r = 1 and unigram prior α = 2, which we
set ad-hoc, have little impact on performance. The
Kneser-Ney discount d = 2 and transducer down-
weight λ = .5 have more influence and were tuned
on development data.

4.2 Clustering algorithm

In the clustering phase, we start with an initial solu-
tion in which each surface form is its own intended
pronunciation and iteratively improve this solution
by merging together word types, picking (approxi-
mately) the best merger at each point.

We begin by computing a set of candidate mergers
for each surface word type u. This step saves time
by quickly rejecting mergers which are certain to get
very low transducer scores. We reject a pair u, v if
the difference in their length is greater than 4, or if
both words are longer than 4 segments, but, when
we consider them as unordered bags of segments, the
Dice coefficient between them is less than .5.

For each word u and all its candidates v, we com-
pute ∆(u, v) as in Equation 4. We keep track of the

2We use one discount, rather than several as in modified KN.
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Input: vocabulary of surface forms u
Input: C(u): candidate intended forms of u
Output: intend(u): intended form of u
foreach u ∈ vocab do

// initialization
v∗(u)← argmaxv ∈C(u) ∆(u, v);
∆∗(u)← ∆(u, v∗(u))
intend(u)← u
add u to queue Q with priority ∆∗(u))

while top(Q) > −∞ do
u← pop(Q)
recompute v∗(u),∆∗(u)
if ∆∗(u) > 0 then

// merge u with best merger
intend(u)← v∗(u)
update ∆(x, u) ∀x : v∗(x) = u
remove u from C(x) ∀x
update ∆(x, v) ∀x : v∗(x) = v
update ∆(v, x) ∀x ∈ C(v)
if updated ∆ > ∆∗ for any words then

reset ∆∗, v∗ for those words
// (these updates can

increase a word’s priority
from −∞)

else if ∆∗(u) 6= −∞ then
// reject but leave in queue
∆∗(u)← −∞

Algorithm 1: Our clustering phase.

current best target v∗(u) and best score ∆∗(u), using
a priority queue. At each step of the algorithm, we
pop the u with the current best ∆∗(u), recompute
its scores, and then merge it with v∗(u) if doing so
would improve the model posterior. In an exact al-
gorithm, we would then need to recompute most of
the other scores, since merging u and v∗(u) affects
other words for which u and v∗(u) are candidates,
and also words for which they appear in the context
set. However, recomputing all these scores would be
extremely time-consuming.3 Therefore, we recom-
pute scores for only those words where the previous
best merger was either u or v∗(u). (If the best merge
would not improve the probability, we reject it, but
since its score might increase if we merge v∗(u), we
leave u in the queue, setting its ∆ score to −∞; this
score will be updated if we merge v∗(u).)

Since we recompute the exact scores ∆(u, v) im-
mediately before merging u, the algorithm is guaran-

3The transducer scores can be cached since they depend only
on surface forms, but the language model scores cannot.

teed never to reduce the posterior probability. It can
potentially make changes in the wrong order, since
not all the ∆s are recomputed in each step, but most
changes do not affect one another, so performing
them out of order has no impact. Empirically, we
find that mutually exclusive changes (usually of the
form (u, v) and (v, w)) tend to differ enough in initial
score that they are evaluated in the correct order.

4.3 Training the transducer

To train the transducer on a set of mappings between
surface and intended forms, we find the maximum-
probability state sequence for each mapping (another
application of Viterbi EM) and extract features for
each state and its output. Learning weights is then
a maximum-entropy problem, which we solve using
Orthant-wise Limited-memory Quasi-Newton.4

To construct our initial transducer, we first learn
weights for the marginal distribution on surface
sounds by training the max-ent system with only the
bias features active. Next, we manually set weights
(Table 1) for insertions and deletions, which do not
appear on the surface, and for faithfulness features.
Other features get an initial weight of 0.

5 Experiments

5.1 Dataset

Our corpus is a processed version of the Bernstein-
Ratner corpus (Bernstein-Ratner, 1987) from
CHILDES (MacWhinney, 2000), which contains or-
thographic transcriptions of parent-child dyads with
infants aged 13-23 months. Brent and Cartwright
(1996) created a phonemic version of this corpus
by extracting all infant-directed utterances and con-
verted them to a phonemic transcription using a dic-
tionary. This version, which contains 9790 utterances
(33399 tokens, 1321 types), is now standard for word
segmentation, but contains no phonetic variability.

Since producing a close phonetic transcription of
this data would be impractical, we instead construct
an approximate phonetic version using information
from the Buckeye corpus (Pitt et al., 2007). Buckeye
is a corpus of adult-directed conversational Ameri-
can English, and has been phonetically transcribed

4We use the implementation of Andrew and Gao (2007) with
an l2 regularizer and regularization parameter r = 1; although
this could be tuned, in practice it has little effect on results.
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Feature Weight
output-is-x marginal p(x)
output-is-ε 0
same-sound 5
same-{place,voice, manner} 2
insertion -3

Table 1: Initial transducer weights.

“about” ahbawt:15, bawt:9, ihbawt:4, ahbawd:4, ih-
bawd:4, ahbaat:2, baw:1, ahbaht:1, erbawd:1,
bawd:1, ahbaad:1, ahpaat:1, bah:1, baht:1,
ah:1, ahbahd:1, ehbaat:1, ahbaed:1, ihbaht:1,
baot:1

“wanna” waanah:94, waanih:37, wahnah:16, waan:13,
wahneh:8, wahnih:5, wahney:3, waanlih:3,
wehnih:2, waaneh:2, waonih:2, waaah:1,
wuhnih:1, wahn:1, waantah:1, waanaa:1,
wowiy:1, waaih:1, wah:1, waaniy:1

Table 2: Empirical distribution of pronunciations of
“about” and “wanna” in our dataset.

by hand to indicate realistic pronunciation variability.
To create our phonetic corpus, we replace each phone-
mic word in the Bernstein-Ratner-Brent corpus with
a phonetic pronunciation of that word sampled from
the empirical distribution of pronunciations in Buck-
eye (Table 2). If the word never occurs in Buckeye,
we use the original phonemic version.

Our corpus is not completely realistic as a sam-
ple of child-directed speech. Since each pronuncia-
tion is sampled independently, it lacks coarticulation
and prosodic effects, and the distribution of pronun-
ciations is derived from adult-directed rather than
child-directed speech. Nonetheless, it represents pho-
netic variability more realistically than the Bernstein-
Ratner-Brent corpus, while still maintaining the lexi-
cal characteristics of infant-directed speech (as com-
pared to the Buckeye corpus, with its much larger
vocabulary and more complex language model).

We conduct our development experiments on the
first 8000 input utterances, holding out the remain-
ing 1790 for evaluation. For evaluation experiments,
we run the system on all 9790 utterances, reporting
scores on only the last 1790.

5.2 Metrics
We evaluate our results by generalizing the three
segmentation metrics from Goldwater et al. (2009):
word boundary F-score, word token F-score, and
lexicon (word type) F-score.

0 1 2 3 4 5
Iteration

75
76
77
78
79
80
81
82

Token F
Lexicon F

Figure 5: System scores over 5 iterations.

In our first set of experiments we evaluate how
well our system clusters together surface forms de-
rived from the same intended form, assuming gold
standard word boundaries. We do not evaluate the
induced intended forms directly against the gold stan-
dard intended forms—we want to evaluate cluster
memberships and not labels. Instead we compute
a one-to-one mapping between our induced lexical
items and the gold standard, maximizing the agree-
ment between the two (Haghighi and Klein, 2006).
Using this mapping, we compute mapped token F-
score5 and lexicon F-score.

In our second set of experiments, we use unknown
word boundaries and evaluate the segmentations. We
report the standard word boundary F and unlabeled
word token F as well as mapped F. The unlabeled to-
ken score counts correctly segmented tokens, whether
assigned a correct intended form or not.

5.3 Known word boundaries

We first run our system with known word boundaries
(Table 3). As a baseline, we treat every surface token
as its own intended form (none). This baseline has
fairly high accuracy; 65% of word tokens receive
the most common pronunciation for their intended
form.6 As an upper bound, we find the best intended
form for each surface type (type ubound). This cor-
rectly resolves 91% of tokens; the remaining error is
due to homophones (surface types corresponding to
more than one intended form). We also test our sys-

5When using the gold word boundaries, the precision and
recall are equal and this is is the same as the accuracy; in seg-
mentation experiments the two differ, because with fewer seg-
mentation boundaries, the system proposes fewer tokens. Only
correctly segmented tokens which are also mapped to the correct
form count as matches.

6The lexicon recall is not quite 100% because one rare word
appears only as a homophone of another word.
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System Tok F Lex P Lex R Lex F
none 65.4 50.2 99.7 66.7
initializer 75.2 83.2 73.3 78.0
system 79.2 87.1 75.9 81.1
oracle trans. 82.7 88.7 83.8 86.2
type ubound 91.0 97.5 98.0 97.7

Table 3: Results on 1790 utterances (known boundaries).

Boundaries Unlabeled Tokens
P R F P R F

no var. 90.1 80.3 84.9 74.5 68.7 71.5
w/var. 70.4 93.5 80.3 56.5 69.7 62.4

Table 4: Degradation in dpseg segmentation perfor-
mance caused by pronunciation variation.

Mapped Tokens Lexicon (types)
P R F P R F

none 39.8 49.0 43.9 37.7 49.1 42.6
init 42.2 52.0 56.5 50.1 40.8 45.0
sys 44.2 54.5 48.8 48.6 43.1 45.7

Table 5: Results on 1790 utterances (induced boundaries).

tem using an oracle transducer (oracle trans.)—the
transducer estimated from the upper-bound mapping.
This scores 83%, showing that our articulatory fea-
ture set captures most, but not all, of the available
information. At the beginning of bootstrapping, our
system (init) scores 75%, but this improves to 79%
after five iterations of reestimation (system). Most
learning occurs in the first two or three iterations
(Figure 5).

To determine the importance of different parts of
our system, we run a few ablation tests on develop-
ment data. Context information is critical to obtain
a good solution; setting ∆L and ∆R to 0 lowers our
dev token F-score from 83% to 75%. Initializing
all feature weights to 0 yields a poor initial solution
(18% dev token F instead of 75%), but after learn-
ing the result is only slightly lower than using the
weights in Table 1 (78% rather than 80%), showing
that the system is quite robust to initialization.

5.4 Unknown word boundaries

As a simple extension of our model to the case of
unknown word boundaries, we interleave it with an
existing model of word segmentation, dpseg (Gold-

water et al., 2009).7 In each iteration, we run the
segmenter, then bootstrap our model for five itera-
tions on the segmented output. We then concatenate
the intended word sequence proposed by our model
to produce the next iteration’s segmenter input.

Phonetic variation is known to reduce the perfor-
mance of dpseg (Fleck, 2008; Boruta et al., 2011)
and our experiments confirm this (Table 4). Using
induced word boundaries also makes it harder to
recover the lexicon (Table 5), lowering the baseline
F-score from 67% to 43%. Nevertheless, our system
improves the lexicon F-score to 46%, with token F
rising from 44% to 49%, demonstrating the system’s
ability to work without gold word boundaries. Un-
fortunately, performing multiple iterations between
the segmenter and lexical-phonetic learner has little
further effect; we hope to address this issue in future.

6 Conclusion

We have presented a noisy-channel model that si-
multaneously learns a lexicon, a bigram language
model, and a model of phonetic variation, while us-
ing only the noisy surface forms as training data.
It is the first model of lexical-phonetic acquisition
to include word-level context and to be tested on an
infant-directed corpus with realistic phonetic variabil-
ity. Whether trained using gold standard or automati-
cally induced word boundaries, the model recovers
lexical items more effectively than a system that as-
sumes no phonetic variability; moreover, the use of
word-level context is key to the model’s success. Ul-
timately, we hope to extend the model to jointly infer
word boundaries along with lexical-phonetic knowl-
edge, and to work directly from acoustic input. How-
ever, we have already shown that lexical-phonetic
learning from a broad-coverage corpus is possible,
supporting the claim that infants acquire lexical and
phonetic knowledge simultaneously.

Acknowledgements

This work was supported by EPSRC grant
EP/H050442/1 to the second author.

7dpseg1.2 from http://homepages.inf.ed.ac.
uk/sgwater/resources.html

191



References
Guillaume Aimetti. 2009. Modelling early language

acquisition skills: Towards a general statistical learning
mechanism. In Proceedings of the Student Research
Workshop at EACL.

Armen Allahverdyan and Aram Galstyan. 2011. Compar-
ative analysis of Viterbi training and ML estimation for
HMMs. In Advances in Neural Information Processing
Systems (NIPS).

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst:
A general and efficient weighted finite-state trans-
ducer library. In Proceedings of the Ninth Interna-
tional Conference on Implementation and Application
of Automata, (CIAA 2007), volume 4783 of Lecture
Notes in Computer Science, pages 11–23. Springer.
http://www.openfst.org.

Galen Andrew and Jianfeng Gao. 2007. Scalable training
of L1-regularized log-linear models. In ICML ’07.

Lalit Bahl, Raimo Bakis, Frederick Jelinek, and Robert
Mercer. 1980. Language-model/acoustic-channel-
model balance mechanism. Technical disclosure bul-
letin Vol. 23, No. 7b, IBM, December.

Nan Bernstein-Ratner. 1987. The phonology of parent-
child speech. In K. Nelson and A. van Kleeck, editors,
Children’s Language, volume 6. Erlbaum, Hillsdale,
NJ.

L. Boruta, S. Peperkamp, B. Crabbé, E. Dupoux, et al.
2011. Testing the robustness of online word segmenta-
tion: effects of linguistic diversity and phonetic varia-
tion. ACL HLT 2011, page 1.

Michael Brent and Timothy Cartwright. 1996. Distribu-
tional regularity and phonotactic constraints are useful
for segmentation. Cognition, 61:93–125.

Michael R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation and word discovery.
Machine Learning, 34:71–105, February.

R. Daland and J.B. Pierrehumbert. 2010. Learning
diphone-based segmentation. Cognitive Science.

Markus Dreyer, Jason R. Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing,
EMNLP ’08, pages 1080–1089, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Joris Driesen, Louis ten Bosch, and Hugo Van hamme.
2009. Adaptive non-negative matrix factorization in
a computational model of language acquisition. In
Proceedings of Interspeech.

E. Dupoux, G. Beraud-Sudreau, and S. Sagayama. 2011.
Templatic features for modeling phoneme acquisition.
In Proceedings of the 33rd Annual Cognitive Science
Society.

Naomi Feldman, Thomas Griffiths, and James Morgan.
2009. Learning phonetic categories by learning a lexi-
con. In Proceedings of the 31st Annual Conference of
the Cognitive Science Society (CogSci).

Naomi Feldman. 2011. Interactions between word and
speech sound categorization in language acquisition.
Ph.D. thesis, Brown University.

Margaret M. Fleck. 2008. Lexicalized phonotactic word
segmentation. In Proceedings of ACL-08: HLT, pages
130–138, Columbus, Ohio, June. Association for Com-
putational Linguistics.

Sharon Goldwater and Mark Johnson. 2003. Learning OT
constraint rankings using a maximum entropy model.
In J. Spenader, A. Eriksson, and Osten Dahl, editors,
Proceedings of the Stockholm Workshop on Variation
within Optimality Theory, pages 111–120, Stockholm.
Stockholm University.

Sharon Goldwater, Tom Griffiths, and Mark Johnson.
2006. Interpolating between types and tokens by esti-
mating power-law generators. In Advances in Neural
Information Processing Systems (NIPS) 18.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A Bayesian framework for word segmen-
tation: Exploring the effects of context. In In 46th
Annual Meeting of the ACL, pages 398–406.

Aria Haghighi and Dan Klein. 2006. Prototype-driven
learning for sequence models. In Proceedings of
the Human Language Technology Conference of the
NAACL, Main Conference, pages 320–327, New York
City, USA, June. Association for Computational Lin-
guistics.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonotactic learning.
Linguistic Inquiry, 39(3):379–440.

Bruce Hayes. 2011. Introductory Phonology. John Wiley
and Sons.

A. Jansen, K. Church, and H. Hermansky. 2010. Towards
spoken term discovery at scale with zero resources. In
Proceedings of Interspeech, pages 1676–1679.

R. Kneser and H. Ney. 1995. Improved backing-off for M-
gram language modeling. In Proc. ICASSP ’95, pages
181–184, Detroit, MI, May.

B. MacWhinney. 2000. The CHILDES Project: Tools
for Analyzing Talk. Vol 2: The Database. Lawrence
Erlbaum Associates, Mahwah, NJ, 3rd edition.

Fergus R. McInnes and Sharon Goldwater. 2011. Un-
supervised extraction of recurring words from infant-
directed speech. In Proceedings of the 33rd Annual
Conference of the Cognitive Science Society.

A. S. Park and J. R. Glass. 2008. Unsupervised pat-
tern discovery in speech. IEEE Transactions on Audio,
Speech and Language Processing, 16:186–197.

192



Fernando Pereira, Michael Riley, and Richard Sproat.
1994. Weighted rational transductions and their ap-
plication to human language processing. In HLT.

Mark A. Pitt, Laura Dilley, Keith Johnson, Scott Kies-
ling, William Raymond, Elizabeth Hume, and Eric
Fosler-Lussier. 2007. Buckeye corpus of conversa-
tional speech (2nd release).

Okko Räsänen. 2011. A computational model of word
segmentation from continuous speech using transitional
probabilities of atomic acoustic events. Cognition,
120(2):28.

Anton Rytting. 2007. Preserving Subsegmental Varia-
tion in Modeling Word Segmentation (Or, the Raising
of Baby Mondegreen). Ph.D. thesis, The Ohio State
University.

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D. Manning. 2010. Viterbi training
improves unsupervised dependency parsing. In Pro-
ceedings of the Fourteenth Conference on Computa-
tional Natural Language Learning, pages 9–17, Up-
psala, Sweden, July. Association for Computational
Linguistics.

D. Swingley. 2005. Statistical clustering and the contents
of the infant vocabulary. Cognitive Psychology, 50:86–
132.

Yee Whye Teh. 2006. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Proceedings
of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 985–992, Sydney,
Australia, July. Association for Computational Linguis-
tics.

G.K. Vallabha, J.L. McClelland, F. Pons, J.F. Werker, and
S. Amano. 2007. Unsupervised learning of vowel
categories from infant-directed speech. Proceedings
of the National Academy of Sciences, 104(33):13273–
13278.

B. Varadarajan, S. Khudanpur, and E. Dupoux. 2008. Un-
supervised learning of acoustic sub-word units. In Pro-
ceedings of the 46th Annual Meeting of the Association
for Computational Linguistics on Human Language
Technologies: Short Papers, pages 165–168. Associa-
tion for Computational Linguistics.

A. Venkataraman. 2001. A statistical model for word
discovery in transcribed speech. Computational Lin-
guistics, 27(3):351–372.

193



Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 194–203,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Discriminative Pronunciation Modeling:
A Large-Margin, Feature-Rich Approach

Hao Tang, Joseph Keshet, and Karen Livescu
Toyota Technological Institute at Chicago

Chicago, IL USA
{haotang,jkeshet,klivescu}@ttic.edu

Abstract

We address the problem of learning the map-
ping between words and their possible pro-
nunciations in terms of sub-word units. Most
previous approaches have involved genera-
tive modeling of the distribution of pronuncia-
tions, usually trained to maximize likelihood.
We propose a discriminative, feature-rich ap-
proach using large-margin learning. This ap-
proach allows us to optimize an objective
closely related to a discriminative task, to
incorporate a large number of complex fea-
tures, and still do inference efficiently. We
test the approach on the task of lexical access;
that is, the prediction of a word given a pho-
netic transcription. In experiments on a sub-
set of the Switchboard conversational speech
corpus, our models thus far improve classi-
fication error rates from a previously pub-
lished result of 29.1% to about 15%. We
find that large-margin approaches outperform
conditional random field learning, and that
the Passive-Aggressive algorithm for large-
margin learning is faster to converge than the
Pegasos algorithm.

1 Introduction

One of the problems faced by automatic speech
recognition, especially of conversational speech, is
that of modeling the mapping between words and
their possible pronunciations in terms of sub-word
units such as phones. While pronouncing dictionar-
ies provide each word’s canonical pronunciation(s)
in terms of phoneme strings, running speech of-
ten includes pronunciations that differ greatly from

the dictionary. For example, some pronunciations
of “probably” in the Switchboard conversational
speech database are [p r aa b iy], [p r aa l iy], [p r
ay], and [p ow ih] (Greenberg et al., 1996). While
some words (e.g., common words) are more prone
to such variation than others, the effect is extremely
general: In the phonetically transcribed portion of
Switchboard, fewer than half of the word tokens
are pronounced canonically (Fosler-Lussier, 1999).
In addition, pronunciation variants sometimes in-
clude sounds not present in the dictionary at all,
such as nasalized vowels (“can’t” → [k ae n n t])
or fricatives introduced due to incomplete consonant
closures (“legal” → [l iy g fr ix l]).1 This varia-
tion makes pronunciation modeling one of the major
challenges facing speech recognition (McAllaster et
al., 1998; Jurafsky et al., 2001; Saraçlar and Khu-
danpur, 2004; Bourlard et al., 1999). 2

Most efforts to address the problem have involved
either learning alternative pronunciations and/or
their probabilities (Holter and Svendsen, 1999) or
using phonetic transformation (substitution, inser-
tion, and deletion) rules, which can come from lin-
guistic knowledge or be learned from data (Riley
et al., 1999; Hazen et al., 2005; Hutchinson and
Droppo, 2011). These have produced some im-
provements in recognition performance. However,
they also tend to cause additional confusability due
to the introduction of additional homonyms (Fosler-

1We use the ARPAbet phonetic alphabet with additional di-
acritics, such as [ n] for nasalization and [ fr] for frication.

2This problem is separate from the grapheme-to-phoneme
problem, in which pronunciations are predicted from a word’s
spelling; here, we assume the availability of a dictionary of
canonical pronunciations as is usual in speech recognition.
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Lussier et al., 2002). Some other alternatives are
articulatory pronunciation models, in which words
are represented as multiple parallel sequences of ar-
ticulatory features rather than single sequences of
phones, and which outperform phone-based models
on some tasks (Livescu and Glass, 2004; Jyothi et
al., 2011); and models for learning edit distances be-
tween dictionary and actual pronunciations (Ristad
and Yianilos, 1998; Filali and Bilmes, 2005).

All of these approaches are generative—i.e., they
provide distributions over possible pronunciations
given the canonical one(s)—and they are typically
trained by maximizing the likelihood over train-
ing data. In some recent work, discriminative ap-
proaches have been proposed, in which an objective
more closely related to the task at hand is optimized.
For example, (Vinyals et al., 2009; Korkmazskiy
and Juang, 1997) optimize a minimum classification
error (MCE) criterion to learn the weights (equiv-
alently, probabilities) of alternative pronunciations
for each word; (Schramm and Beyerlein, 2001) use
a similar approach with discriminative model com-
bination. In this work, the weighted alternatives are
then used in a standard (generative) speech recog-
nizer. In other words, these approaches optimize
generative models using discriminative criteria.

We propose a general, flexible discriminative ap-
proach to pronunciation modeling, rather than dis-
criminatively optimizing a generative model. We
formulate a linear model with a large number
of word-level and subword-level feature functions,
whose weights are learned by optimizing a discrim-
inative criterion. The approach is related to the re-
cently proposed segmental conditional random field
(SCRF) approach to speech recognition (Zweig et
al., 2011). The main differences are that we opti-
mize large-margin objective functions, which lead
to sparser, faster, and better-performing models than
conditional random field optimization in our exper-
iments; and we use a large set of different feature
functions tailored to pronunciation modeling.

In order to focus attention on the pronunciation
model alone, our experiments focus on a task that
measures only the mapping between words and sub-
word units. Pronunciation models have in the past
been tested using a variety of measures. For gener-
ative models, phonetic error rate of generated pro-
nunciations (Venkataramani and Byrne, 2001) and

phone- or frame-level perplexity (Riley et al., 1999;
Jyothi et al., 2011) are appropriate measures. For
our discriminative models, we consider the task
of lexical access; that is, prediction of a single
word given its pronunciation in terms of sub-word
units (Fissore et al., 1989; Jyothi et al., 2011). This
task is also sometimes referred to as “pronunciation
recognition” (Ristad and Yianilos, 1998) or “pro-
nunciation classification” (Filali and Bilmes, 2005).)
As we show below, our approach outperforms both
traditional phonetic rule-based models and the best
previously published results on our data set obtained
with generative articulatory approaches.

2 Problem setting
We define a pronunciation of a word as a representa-
tion of the way it is produced by a speaker in terms
of some set of linguistically meaningful sub-word
units. A pronunciation can be, for example, a se-
quence of phones or multiple sequences of articu-
latory features such as nasality, voicing, and tongue
and lip positions. For purposes of this paper, we will
assume that a pronunciation is a single sequence of
units, but the approach applies to other representa-
tions. We distinguish between two types of pronun-
ciations of a word: (i) canonical pronunciations, the
ones typically found in the dictionary, and (ii) sur-
face pronunciations, the ways a speaker may actu-
ally produce the word. In the task of lexical access
we are given a surface pronunciation of a word, and
our goal is to predict the word.

Formally, we define a pronunciation as a sequence
of sub-word units p = (p1, p2, . . . , pK), where pk ∈
P for all 1 ≤ k ≤ K and P is the set of all sub-word
units. The index k can represent either a fixed-length
frame or a variable-length segment. P? denotes the
set of all finite-length sequences over P . We denote
a word by w ∈ V where V is the vocabulary. Our
goal is to find a function f : P? → V that takes as
input a surface pronunciation and returns the word
from the vocabulary that was spoken.

In this paper we propose a discriminative super-
vised learning approach for learning the function f
from a training set of pairs (p, w). We aim to find a
function f that performs well on the training set as
well as on unseen examples. Let ŵ = f(p) be the
predicted word given the pronunciation p. We assess
the quality of the function f by the zero-one loss: if
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w 6= ŵ then the error is one, otherwise the error is
zero. The goal of the learning process is to mini-
mize the expected zero-one loss, where the expec-
tation is taken with respect to a fixed but unknown
distribution over words and surface pronunciations.
In the next section we present a learning algorithm
that aims to minimize the expected zero-one loss.

3 Algorithm
Similarly to previous work in structured prediction
(Taskar et al., 2003; Tsochantaridis et al., 2005),
we construct the function f from a predefined set
of N feature functions, {φj}Nj=1, each of the form
φj : P∗×V → R. Each feature function takes a sur-
face pronunciation p and a proposed word w and re-
turns a scalar which, intuitively, should be correlated
with whether the pronunciation p corresponds to the
word w. The feature functions map pronunciations
of different lengths along with a proposed word to a
vector of fixed dimension in RN . For example, one
feature function might measure the Levenshtein dis-
tance between the pronunciation p and the canonical
pronunciation of the word w. This feature function
counts the minimum number of edit operations (in-
sertions, deletions, and substitutions) that are needed
to convert the surface pronunciation to the canonical
pronunciation; it is low if the surface pronunciation
is close to the canonical one and high otherwise.

The function f maximizes a score relating the
word w to the pronunciation p. We restrict our-
selves to scores that are linear in the feature func-
tions, where each φj is scaled by a weight θj :

N∑
j=1

θjφj(p, w) = θ · φ(p, w),

where we have used vector notation for the feature
functions φ = (φ1, . . . , φN ) and for the weights
θ = (θ1, . . . , θN ). Linearity is not a very strong
restriction, since the feature functions can be arbi-
trarily non-linear. The function f is defined as the
word w that maximizes the score,

f(p) = argmax
w∈V

θ · φ(p, w).

Our goal in learning θ is to minimize the expected
zero-one loss:

θ∗ = argmin
θ

E(p,w)∼ρ
[
1w 6=f(p)

]
,

where 1π is 1 if predicate π holds and 0 other-
wise, and where ρ is an (unknown) distribution from
which the examples in our training set are sampled
i.i.d. Let S = {(p1, w1), . . . , (pm, wm)} be the
training set. Instead of working directly with the
zero-one loss, which is non-smooth and non-convex,
we use the surrogate hinge loss, which upper-bounds
the zero-one loss:

L(θ, pi, wi) = max
w∈V

[
1wi 6=w

− θ · φ(pi, wi) + θ · φ(pi, w)
]
. (1)

Finding the weight vector θ that minimizes the
`2-regularized average of this loss function is the
structured support vector machine (SVM) problem
(Taskar et al., 2003; Tsochantaridis et al., 2005):

θ∗ = argmin
θ

λ

2
‖θ‖2 +

1

m

m∑
i=1

L(θ, pi, wi), (2)

where λ is a user-defined tuning parameter that bal-
ances between regularization and loss minimization.

In practice, we have found that solving the
quadratic optimization problem given in Eq. (2) con-
verges very slowly using standard methods such as
stochastic gradient descent (Shalev-Shwartz et al.,
2007). We use a slightly different algorithm, the
Passive-Aggressive (PA) algorithm (Crammer et al.,
2006), whose average loss is comparable to that of
the structured SVM solution (Keshet et al., 2007).

The Passive-Aggressive algorithm is an efficient
online algorithm that, under some conditions, can
be viewed as a dual-coordinate ascent minimizer of
Eq. (2) (The connection to dual-coordinate ascent
can be found in (Hsieh et al., 2008)). The algorithm
begins by setting θ = 0 and proceeds in rounds.
In the t-th round the algorithm picks an example
(pi, wi) from S at random uniformly without re-
placement. Denote by θt−1 the value of the weight
vector before the t-th round. Let ŵti denote the pre-
dicted word for the i-th example according to θt−1:

ŵti = argmax
w∈V

θt−1 · φ(pi, w) + 1wi 6=w.

Let ∆φti = φ(pi, wi) − φ(pi, ŵ
t
i). Then the algo-

rithm updates the weight vector θt as follows:

θt = θt−1 + αti∆φti (3)
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where

αti = min

{
1

λm
,
1wi 6=ŵt

i
− θ ·∆φti

‖∆φti‖

}
.

In practice we iterate over the m examples in the
training set several times; each such iteration is an
epoch. The final weight vector is set to the average
over all weight vectors during training.

An alternative loss function that is often used to
solve structured prediction problems is the log-loss:

L(θ, pi, wi) = − logPθ(wi|pi) (4)

where the probability is defined as

Pθ(wi|pi) =
eθ·φ(pi,wi)∑
w∈V e

θ·φ(p,w)
.

Minimization of Eq. (2) under the log-loss results in
a probabilistic model commonly known as a condi-
tional random field (CRF) (Lafferty et al., 2001). By
taking the sub-gradient of Eq. (4), we can obtain an
update rule similar to the one shown in Eq. (3).

4 Feature functions
Before defining the feature functions, we define
some notation. Suppose p ∈ P∗ is a sequence of
sub-word units. We use p1:n to denote the n-gram
substring p1 . . . pn. The two substrings a and b are
said to be equal if they have the same length and
ai = bi for 1 ≤ i ≤ n. For a given sub-word unit n-
gram u ∈ Pn, we use the shorthand u ∈ p to mean
that we can find u in p; i.e., there exists an index i
such that pi:i+n = u. We use |p| to denote the length
of the sequence p.

We assume we have a pronunciation dictionary,
which is a set of words and their baseforms. We ac-
cess the dictionary through the function pron, which
takes a word w ∈ V and returns a set of baseforms.

4.1 TF-IDF feature functions

Term frequency (TF) and inverse document fre-
quency (IDF) are measures that have been heavily
used in information retrieval to search for documents
using word queries (Salton et al., 1975). Similarly to
(Zweig et al., 2010), we adapt TF and IDF by treat-
ing a sequence of sub-word units as a “document”
and n-gram sub-sequences as “words.” In this anal-
ogy, we use sub-sequences in surface pronunciations
to “search” for baseforms in the dictionary. These

features measure the frequency of each n-gram in
observed pronunciations of a given word in the train-
ing set, along with the discriminative power of the n-
gram. These features are therefore only meaningful
for words actually observed in training.

The term frequency of a sub-word unit n-gram
u ∈ Pn in a sequence p is the length-normalized
frequency of the n-gram in the sequence:

TFu(p) =
1

|p| − |u|+ 1

|p|−|u|+1∑
i=1

1u=pi:i+|u|−1
.

Next, define the set of words in the training set that
contain the n-gram u as Vu = {w ∈ V | (p, w) ∈
S, u ∈ p}. The inverse document frequency (IDF)
of an n-gram u is defined as

IDFu = log
|V|
|Vu|

.

IDF represents the discriminative power of an n-
gram: An n-gram that occurs in few words is better
at word discrimination than a very common n-gram.

Finally, we define word-specific features using TF
and IDF. Suppose the vocabulary is indexed: V =
{w1, . . . , wn}. Define ew as a binary vector with
elements

(ew)i = 1wi=w.

We define the TF-IDF feature function of u as

φu(p, w) = (TFu(p)× IDFu)⊗ ew,

where ⊗ : Ra×b × Rc×d → Rac×bd is the tensor
product. We therefore have as many TF-IDF feature
functions as we have n-grams. In practice, we only
consider n-grams of a certain order (e.g., bigrams).

The following toy example demonstrates how the
TF-IDF features are computed. Suppose we have
V = {problem, probably}. The dictionary maps
“problem” to /pcl p r aa bcl b l ax m/ and “prob-
ably” to /pcl p r aa bcl b l iy/, and our input is
(p, w) = ([p r aa b l iy], problem). Then for the bi-
gram /l iy/, we have TF/l iy/(p) = 1/5 (one out of
five bigrams in p), and IDF/l iy/ = log(2/1) (one
word out of two in the dictionary). The indicator
vector is eproblem =

[
1 0

]>, so the final feature is

φ/l iy/(p, w) =

[
1
5 log 2

1
0

]
.
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4.2 Length feature function

The length feature functions measure how the length
of a word’s surface form tends to deviate from the
baseform. These functions are parameterized by a
and b and are defined as

φa≤∆`<b(p, w) = 1a≤∆`<b ⊗ ew,

where ∆` = |p| − |v|, for some baseform v ∈
pron(w). The parameters a and b can be either posi-
tive or negative, so the model can learn whether the
surface pronunciations of a word tend to be longer
or shorter than the baseform. Like the TF-IDF fea-
tures, this feature is only meaningful for words ac-
tually observed in training.

As an example, suppose we have V =
{problem, probably}, and the word “probably” has
two baseforms, /pcl p r aa bcl b l iy/ (of length
eight) and /pcl p r aa bcl b ax bcl b l iy/ (of length
eleven). If we are given an input (p, w) =
([pcl p r aa bcl l ax m], probably), whose length of
the surface form is eight, then the length features for
the ranges 0 ≤ ∆` < 1 and −3 ≤ ∆` < −2 are

φ0≤∆`<1(p, w) =
[
0 1

]>
,

φ−3≤∆`<−2(p, w) =
[
0 1

]>
,

respectively. Other length features are all zero.

4.3 Phonetic alignment feature functions

Beyond the length, we also measure specific pho-
netic deviations from the dictionary. We define pho-
netic alignment features that count the (normalized)
frequencies of phonetic insertions, phonetic dele-
tions, and substitutions of one surface phone for an-
other baseform phone. Given (p, w), we use dy-
namic programming to align the surface form p with
all of the baseforms of w. Following (Riley et al.,
1999), we encode a phoneme/phone with a 4-tuple:
consonant manner, consonant place, vowel manner,
and vowel place. Let the dash symbol “−” be a
gap in the alignment (corresponding to an inser-
tion/deletion). Given p, q ∈ P ∪ {−}, we say that
a pair (p, q) is a deletion if p ∈ P and q = −, is
an insertion if p = − and q ∈ P , and is a substi-
tution if both p, q ∈ P . Given p, q ∈ P ∪ {−}, let
(s1, s2, s3, s4) and (t1, t2, t3, t4) be the correspond-
ing 4-tuple encoding of p and q, respectively. The

pcl p r aa pcl p er l iy
pcl p r aa bcl b − l iy

pcl p r aa pcl p er − − l iy
pcl p r aa bcl b ax bcl b l iy

Table 1: Possible alignments of [p r aa pcl p er l iy] with
two baseforms of “probably” in the dictionary.

similarity between p and q is defined as

s(p, q) =

{
1, if p = − or q = −;∑4

i=1 1si=ti , otherwise.

Consider aligning p with the Kw = |pron(w)|
baseforms of w. Define the length of the align-
ment with the k-th baseform as Lk, for 1 ≤ k ≤
Kw. The resulting alignment is a sequence of pairs
(ak,1, bk,1), . . . , (ak,Lk

, bk,Lk
), where ak,i, bk,i ∈

P ∪ {−} for 1 ≤ i ≤ Lk. Now we define the align-
ment features, given p, q ∈ P ∪ {−}, as

φp→q(p, w) =
1

Zp

Kw∑
k=1

Lk∑
i=1

1ak,i=p, bk,i=q,

where the normalization term is

Zp =

{∑Kw
k=1

∑Lk
i=1 1ak,i=p, if p ∈ P ;

|p| ·Kw if p = −.

The normalization for insertions differs from the
normalization for substitutions and deletions, so that
the resulting values always lie between zero and one.

As an example, consider the input pair (p, w) =
([p r aa pcl p er l iy], probably) and suppose there
are two baseforms of the word “probably” in the
dictionary. Let one possible alignments be the one
shown in Table 1. Since /p/ occurs four times in the
alignments and two of them are aligned to [b], the
feature for p→ b is then φp→b(p, w) = 2/4.

Unlike the TF-IDF feature functions and the
length feature functions, the alignment feature func-
tions can assign a non-zero score to words that are
not seen at training time (but are in the dictionary),
as long as there is a good alignment with their base-
forms. The weights given to the alignment fea-
tures are the analogue of substitution, insertion, and
deletion rule probabilities in traditional phone-based
pronunciation models such as (Riley et al., 1999);
they can also be seen as a generalized version of the
Levenshtein features of (Zweig et al., 2011).
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4.4 Dictionary feature function

The dictionary feature is an indicator of whether
a pronunciation is an exact match to a baseform,
which also generalizes to words unseen in training.
We define the dictionary feature as

φdict(p, w) = 1p∈pron(w).

For example, assume there is a baseform
/pcl p r aa bcl b l iy/ for the word “probably” in
the dictionary, and p = /pcl p r aa bcl b l iy/. Then
φdict(p, probably) = 1, while φdict(p, problem) = 0.

4.5 Articulatory feature functions

Articulatory models represented as dynamic
Bayesian networks (DBNs) have been successful
in the past on the lexical access task (Livescu
and Glass, 2004; Jyothi et al., 2011). In such
models, pronunciation variation is seen as the
result of asynchrony between the articulators (lips,
tongue, etc.) and deviations from the intended
articulatory positions. Given a sequence p and a
word w, we use the DBN to produce an alignment
at the articulatory level, which is a sequence of
7-tuples, representing the articulatory variables3 lip
opening, tongue tip location and opening, tongue
body location and opening, velum opening, and
glottis opening. We extract three kinds of features
from the output—substitutions, asynchrony, and
log-likelihood.

The substitution features are similar to the pho-
netic alignment features in Section 4.3, except that
the alignment is not a sequence of pairs but a se-
quence of 14-tuples (7 for the baseform and 7 for the
surface form). The DBN model is based on articu-
latory phonology (Browman and Goldstein, 1992),
in which there are no insertions and deletions, only
substitutions (apparent insertions and deletions are
accounted for by articulatory asynchrony). For-
mally, consider the seven sets of articulatory vari-
able values F1, . . . , F7. For example, F1 could be
all of the values of lip opening, F1 ={closed, crit-
ical, narrow, wide}. Let F = {F1, . . . , F7}. Con-
sider an articulatory variable F ∈ F . Suppose the
alignment for F is (a1, b1), . . . , (aL, bL), where L

3We use the term “articulatory variable” for the “articulatory
features” of (Livescu and Glass, 2004; Jyothi et al., 2011), in
order to avoid confusion with our feature functions.

is the length of the alignment and ai, bi ∈ F , for
1 ≤ i ≤ L. Here the ai are the intended articulatory
variable values according to the baseform, and the
bi are the corresponding realized values. For each
a, b ∈ F we define a substitution feature function:

φa→b(p, w) =
1

L

L∑
i=1

1ai=a, bi=b.

The asynchrony features are also extracted from
the DBN alignments. Articulators are not always
synchronized, which is one cause of pronunciation
variation. We measure this by looking at the phones
that two articulators are aiming to produce, and find
the time difference between them. Formally, we
consider two articulatory variables Fh, Fk ∈ F .
Let the alignment between the two variables be
(a1, b1), . . . , (aL, bL), where now ai ∈ Fh and bi ∈
Fk. Each ai and bi can be mapped back to the cor-
responding phone index th,i and tk,i, for 1 ≤ i ≤ L.
The average degree of asynchrony is then defined as

async(Fh, Fk) =
1

L

L∑
i=1

(th,i − tk,i) .

More generally, we compute the average asynchrony
between any two sets of variables F1,F2 ⊂ F as

async(F1,F2) =

1

L

L∑
i=1

 1

|F1|
∑
Fh∈F1

th,i −
1

|F2|
∑
Fk∈F2

tk,i

 .
We then define the asynchrony features as

φa≤async(F1,F2)≤b = 1a≤async(F1,F2)≤b.

Finally, the log-likelihood feature is the DBN
alignment score, shifted and scaled so that the value
lies between zero and one,

φdbn-LL(p, w) =
L(p, w)− h

c
,

where L is the log-likelihood function of the DBN,
h is the shift, and c is the scale.

Note that none of the DBN features are word-
specific, so that they generalize to words in the dic-
tionary that are unseen in the training set.

5 Experiments
All experiments are conducted on a subset of the
Switchboard conversational speech corpus that has
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been labeled at a fine phonetic level (Greenberg et
al., 1996); these phonetic transcriptions are the input
to our lexical access models. The data subset, phone
set P , and dictionary are the same as ones previ-
ously used in (Livescu and Glass, 2004; Jyothi et al.,
2011). The dictionary contains 3328 words, consist-
ing of the 5000 most frequent words in Switchboard,
excluding ones with fewer than four phones in their
baseforms. The baseforms use a similar, slightly
smaller phone set (lacking, e.g., nasalization). We
measure performance by error rate (ER), the propor-
tion of test examples predicted incorrectly.

The TF-IDF features used in the experiments
are based on phone bigrams. For all of the ar-
ticulatory DBN features, we use the DBN from
(Livescu, 2005) (the one in (Jyothi et al., 2011)
is more sophisticated and may be used in fu-
ture work). For the asynchrony features, the ar-
ticulatory pairs are (F1,F2) ∈ {({tongue tip},
{tongue body}), ({lip opening}, {tongue tip,
tongue body}), and ({lip opening, tongue tip,
tongue body}, {glottis, velum})}, as in (Livescu,
2005). The parameters (a, b) of the length and
asynchrony features are drawn from (a, b) ∈
{(−3,−2), (−2,−1), . . . (2, 3)}.

We compare the CRF4, Passive-Aggressive (PA),
and Pegasos learning algorithms. The regularization
parameter λ is tuned on the development set. We run
all three algorithms for multiple epochs and pick the
best epoch based on development set performance.

For the first set of experiments, we use the same
division of the corpus as in (Livescu and Glass,
2004; Jyothi et al., 2011) into a 2492-word train-
ing set, a 165-word development set, and a 236-
word test set. To give a sense of the difficulty of
the task, we test two simple baselines. One is a lex-
icon lookup: If the surface form is found in the dic-
tionary, predict the corresponding word; otherwise,
guess randomly. For a second baseline, we calcu-
late the Levenshtein (0-1 edit) distance between the
input pronunciation and each dictionary baseform,
and predict the word corresponding to the baseform
closest to the input. The results are shown in the first
two rows of Table 2. We can see that, by adding just
the Levenshtein distance, the error rate drops signif-

4We use the term “CRF” since the learning algorithm corre-
sponds to CRF learning, although the task is multiclass classifi-
cation rather than a sequence or structure prediction task.

Model ER
lexicon lookup (from (Livescu, 2005)) 59.3%
lexicon + Levenshtein distance 41.8%
(Jyothi et al., 2011) 29.1%
CRF/DP+ 21.5%
PA/DP+ 15.2%
Pegasos/DP+ 14.8%
PA/ALL 15.2%

Table 2: Lexical access error rates (ER) on the same data
split as in (Livescu and Glass, 2004; Jyothi et al., 2011).
Models labeled X/Y use learning algorithm X and feature
set Y. The feature set DP+ contains TF-IDF, DP align-
ment, dictionary, and length features. The set ALL con-
tains DP+ and the articulatory DBN features. The best
results are in bold; the differences among them are in-
significant (according to McNemar’s test with p = .05).

icantly. However, both baselines do quite poorly.

Table 2 shows the best previous result on this data
set from the articulatory model of Jyothi et al., which
greatly improves over our baselines as well as over
a much more complex phone-based model (Jyothi
et al., 2011). The remaining rows of Table 2 give
results with our feature functions and various learn-
ing algorithms. The best result for PA/DP+ (the PA
algorithm using all features besides the DBN fea-
tures) on the development set is with λ = 100 and 5
epochs. Tested on the test set, this model improves
over (Jyothi et al., 2011) by 13.9% absolute (47.8%
relative). The best result for Pegasos with the same
features on the development set is with λ = 0.01 and
10 epochs. On the test set, this model gives a 14.3%
absolute improvement (49.1% relative). CRF learn-
ing with the same features performs about 6% worse
than the corresponding PA and Pegasos models.

The single-threaded running time for PA/DP+ and
Pegasos/DP+ is about 40 minutes per epoch, mea-
sured on a dual-core AMD 2.4GHz CPU with 8GB
of memory; for CRF, it takes about 100 minutes for
each epoch, which is almost entirely because the
weight vector θ is less sparse with CRF learning.
In the PA and Pegasos algorithms, we only update θ
for the most confusable word, while in CRF learn-
ing, we sum over all words. In our case, the number
of non-zero entries in θ for PA and Pegasos is around
800,000; for CRF, it is over 4,000,000. Though PA
and Pegasos take roughly the same amount of time
per epoch, Pegasos tends to require more epochs to
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Figure 1: 5-fold cross validation (CV) results. The lex-
icon lookup baseline is labeled lex; lex + lev = lexi-
con lookup with Levenshtein distance. Each point cor-
responds to the test set error rate for one of the 5 data
splits. The horizontal red line marks the mean of the re-
sults with means labeled, and the vertical red line indi-
cates the mean plus and minus one standard deviation.

achieve the same performance as PA.
For the second experiment, we perform 5-fold

cross-validation. We combine the training, devel-
opment, and test sets from the previous experiment,
and divide the data into five folds. We take three
folds for training, one fold for tuning λ and the best
epoch, and the remaining fold for testing. The re-
sults on the test fold are shown in Figure 1, which
compares the learning algorithms, and Figure 2,
which compares feature sets. Overall, the results
are consistent with our first experiment. The fea-
ture selection experiments in Figure 2 shows that
the TF-IDF features alone are quite weak, while the
dynamic programming alignment features alone are
quite good. Combining the two gives close to our
best result. Although the marginal improvement gets
smaller as we add more features, in general perfor-
mance keeps improving the more features we add.

6 Discussion
The results in Section 5 are the best obtained thus
far on the lexical access task on this conversational
data set. Large-margin learning, using the Passive-
Aggressive and Pegasos algorithms, has benefits
over CRF learning for our task: It produces sparser
models, is faster, and produces better lexical access
results. In addition, the PA algorithm is faster than
Pegasos on our task, as it requires fewer epochs.

Our ultimate goal is to incorporate such models
into complete speech recognizers, that is to predict
word sequences from acoustics. This requires (1)

Figure 2: Feature selection results for five-fold cross val-
idation. In the figure, phone bigram TF-IDF is labeled
p2; phonetic alignment with dynamic programming is la-
beled DP. The dots and lines are as defined in Figure 1.

extension of the model and learning algorithm to
word sequences and (2) feature functions that re-
late acoustic measurements to sub-word units. The
extension to sequences can be done analogously to
segmental conditional random fields (SCRFs). The
main difference between SCRFs and our approach
would be the large-margin learning, which can be
straightforwardly applied to sequences. To incorpo-
rate acoustics, we can use feature functions based on
classifiers of sub-word units, similarly to previous
work on CRF-based speech recognition (Gunawar-
dana et al., 2005; Morris and Fosler-Lussier, 2008;
Prabhavalkar et al., 2011). Richer, longer-span (e.g.,
word-level) feature functions are also possible.

Thus far we have restricted the pronunciation-to-
word score to linear combinations of feature func-
tions. This can be extended to non-linear combi-
nations using a kernel. This may be challenging in
a high-dimensional feature space. One possibility
is to approximate the kernels as in (Keshet et al.,
2011). Additional extensions include new feature
functions, such as context-sensitive alignment fea-
tures, and joint inference and learning of the align-
ment models embedded in the feature functions.
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Abstract

The integration of multiword expressions in a
parsing procedure has been shown to improve
accuracy in an artificial context where such
expressions have been perfectly pre-identified.
This paper evaluates two empirical strategies
to integrate multiword units in a real con-
stituency parsing context and shows that the
results are not as promising as has sometimes
been suggested. Firstly, we show that pre-
grouping multiword expressions before pars-
ing with a state-of-the-art recognizer improves
multiword recognition accuracy and unlabeled
attachment score. However, it has no statis-
tically significant impact in terms of F-score
as incorrect multiword expression recognition
has important side effects on parsing. Sec-
ondly, integrating multiword expressions in
the parser grammar followed by a reranker
specific to such expressions slightly improves
all evaluation metrics.

1 Introduction

The integration of Multiword Expressions (MWE)
in real-life applications is crucial because such ex-
pressions have the particularity of having a certain
level of idiomaticity. They form complex lexical
units which, if they are considered, should signifi-
cantly help parsing.

From a theoretical point of view, the integra-
tion of multiword expressions in the parsing pro-
cedure has been studied for different formalisms:
Head-Driven Phrase Structure Grammar (Copestake
et al., 2002), Tree Adjoining Grammars (Schuler
and Joshi, 2011), etc. From an empirical point of

view, their incorporation has also been considered
such as in (Nivre and Nilsson, 2004) for depen-
dency parsing and in (Arun and Keller, 2005) in con-
stituency parsing. Although experiments always re-
lied on a corpus where the MWEs were perfectly
pre-identified, they showed that pre-grouping such
expressions could significantly improve parsing ac-
curacy. Recently, Green et al. (2011) proposed in-
tegrating the multiword expressions directly in the
grammar without pre-recognizing them. The gram-
mar was trained with a reference treebank where
MWEs were annotated with a specific non-terminal
node.

Our proposal is to evaluate two discriminative
strategies in a real constituency parsing context:
(a) pre-grouping MWE before parsing; this would
be done with a state-of-the-art recognizer based
on Conditional Random Fields; (b) parsing with
a grammar including MWE identification and then
reranking the output parses thanks to a Maxi-
mum Entropy model integrating MWE-dedicated
features. (a) is the direct realistic implementation of
the standard approach that was shown to reach the
best results (Arun and Keller, 2005). We will evalu-
ate if real MWE recognition (MWER) still positively
impacts parsing, i.e., whether incorrect MWER does
not negatively impact the overall parsing system.
(b) is a more innovative approach to MWER (de-
spite not being new in parsing): we select the final
MWE segmentation after parsing in order to explore
as many parses as possible (as opposed to method
(a)). The experiments were carried out on the French
Treebank (Abeillé et al., 2003) where MWEs are an-
notated.
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The paper is organized as follows: section 2 is
an overview of the multiword expressions and their
identification in texts; section 3 presents the two dif-
ferent strategies and their associated models; sec-
tion 4 describes the resources used for our exper-
iments (the corpus and the lexical resources); sec-
tion 5 details the features that are incorporated in the
models; section 6 reports on the results obtained.

2 Multiword expressions

2.1 Overview

Multiword expressions are lexical items made up
of multiple lexemes that undergo idiosyncratic con-
straints and therefore offer a certain degree of id-
iomaticity. They cover a wide range of linguistic
phenomena: fixed and semi-fixed expressions, light
verb constructions, phrasal verbs, named entities,
etc. They may be contiguous (e.g. traffic light) or
discontinuous (e.g. John took your argument into
account). They are often divided into two main
classes: multiword expressions defined through lin-
guistic idiomaticity criteria (lexicalized phrases in
the terminology of Sag et al. (2002)) and those de-
fined by statistical ones (i.e. simple collocations).
Most linguistic criteria used to determine whether a
combination of words is a MWE are based on syn-
tactic and semantic tests such as the ones described
in (Gross, 1986). For instance, the utterance at night
is a MWE because it does display a strict lexical
restriction (*at day, *at afternoon) and it does not
accept any inserting material (*at cold night, *at
present night). Such linguistically defined expres-
sions may overlap with collocations which are the
combinations of two or more words that cooccur
more often than by chance. Collocations are usu-
ally identified through statistical association mea-
sures. A detailed description of MWEs can be found
in (Baldwin and Nam, 2010).

In this paper, we focus on contiguous MWEs that
form a lexical unit which can be marked by a part-of-
speech tag (e.g. at night is an adverb, because of is a
preposition). They can undergo limited morphologi-
cal and lexical variations – e.g. traffic (light+lights),
(apple+orange+...) juice – and usually do not al-
low syntactic variations1 such as inserts (e.g. *at

1Such MWEs may very rarely accept inserts, often limited
to single word modifiers: e.g. in the short term, in the very short

cold night). Such expressions can be analyzed at the
lexical level. In what follows, we use the term com-
pounds to denote such expressions.

2.2 Identification

The idiomaticity property of MWEs makes them
both crucial for Natural Language Processing appli-
cations and difficult to predict. Their actual iden-
tification in texts is therefore fundamental. There
are different ways for achieving this objective. The
simpler approach is lexicon-driven and consists in
looking the MWEs up in an existing lexicon, such
as in (Silberztein, 2000). The main drawback is
that this procedure entirely relies on a lexicon and
is unable to discover unknown MWEs. The use
of collocation statistics is therefore useful. For in-
stance, for each candidate in the text, Watrin and
François (2011) compute on the fly its association
score from an external ngram base learnt from a
large raw corpus, and tag it as MWE if the associa-
tion score is greater than a threshold. They reach ex-
cellent scores in the framework of a keyword extrac-
tion task. Within a validation framework (i.e. with
the use of a reference corpus annotated in MWEs),
Ramisch et al. (2010) developped a Support Vector
Machine classifier integrating features correspond-
ing to different collocation association measures.
The results were rather low on the Genia corpus
and Green et al. (2011) confirmed these bad results
on the French Treebank. This can be explained by
the fact that such a method does not make any dis-
tinctions between the different types of MWEs and
the reference corpora are usually limited to certain
types of MWEs. Furthermore, the lexicon-driven
and collocation-driven approaches do not take the
context into account, and therefore cannot discard
some of the incorrect candidates. A recent trend is
to couple MWE recognition with a linguistic ana-
lyzer: a POS tagger (Constant and Sigogne, 2011)
or a parser (Green et al., 2011). Constant and Si-
gogne (2011) trained a unified Conditional Random
Fields model integrating different standard tagging
features and features based on external lexical re-
sources. They show a general tagging accuracy of
94% on the French Treebank. In terms of Multi-
word expression recognition, the accuracy was not

term.
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clearly evaluated, but seemed to reach around 70-
80% F-score. Green et al. (2011) proposed to in-
clude the MWER in the grammar of the parser. To
do so, the MWEs in the training treebank were anno-
tated with specific non-terminal nodes. They used a
Tree Substitution Grammar instead of a Probabilis-
tic Context-free Grammar (PCFG) with latent anno-
tations in order to capture lexicalized rules as well
as general rules. They showed that this formalism
was more relevant to MWER than PCFG (71% F-
score vs. 69.5%). Both methods have the advantage
of being able to discover new MWEs on the basis
of lexical and syntactic contexts. In this paper, we
will take advantage of the methods described in this
section by integrating them as features of a MWER
model.

3 Two strategies, two discriminative
models

3.1 Pre-grouping Multiword Expressions

MWER can be seen as a sequence labelling task
(like chunking) by using an IOB-like annotation
scheme (Ramshaw and Marcus, 1995). This implies
a theoretical limitation: recognized MWEs must be
contiguous. The proposed annotation scheme is
therefore theoretically weaker than the one proposed
by Green et al. (2011) that integrates the MWER in
the grammar and allows for discontinuous MWEs.
Nevertheless, in practice, the compounds we are
dealing with are very rarely discontinuous and if so,
they solely contain a single word insert that can be
easily integrated in the MWE sequence. Constant
and Sigogne (2011) proposed to combine MWE seg-
mentation and part-of-speech tagging into a single
sequence labelling task by assigning to each token a
tag of the form TAG+X where TAG is the part-of-
speech (POS) of the lexical unit the token belongs to
and X is either B (i.e. the token is at the beginning
of the lexical unit) or I (i.e. for the remaining posi-
tions): John/N+B hates/V+B traffic/N+B jams/N+I.
In this paper, as our task consists in jointly locating
and tagging MWEs, we limited the POS tagging to
MWEs only (TAG+B/TAG+I), simple words being
tagged by O (outside): John/O hates/O traffic/N+B
jams/N+I.

For such a task, we used Linear chain Conditional
Ramdom Fields (CRF) that are discriminative prob-

abilistic models introduced by Lafferty et al. (2001)
for sequential labelling. Given an input sequence of
tokens x = (x1, x2, ..., xN ) and an output sequence
of labels y = (y1, y2, ..., yN ), the model is defined
as follows:

Pλ(y|x) =
1

Z(x)
.
N∑
t

K∑
k

logλk.fk(t, yt, yt−1, x)

where Z(x) is a normalization factor depending
on x. It is based on K features each of them be-
ing defined by a binary function fk depending on
the current position t in x, the current label yt, the
preceding one yt−1 and the whole input sequence
x. The tokens xi of x integrate the lexical value
of this token but can also integrate basic properties
which are computable from this value (for example:
whether it begins with an upper case, it contains a
number, its tags in an external lexicon, etc.). The
feature is activated if a given configuration between
t, yt, yt−1 and x is satisfied (i.e. fk(t, yt, yt−1, x) =
1). Each feature fk is associated with a weight λk.
The weights are the parameters of the model, to be
estimated. The features used for MWER will be de-
scribed in section 5.

3.2 Reranking
Discriminative reranking consists in reranking the n-
best parses of a baseline parser with a discriminative
model, hence integrating features associated with
each node of the candidate parses. Charniak and
Johnson (2005) introduced different features that
showed significant improvement in general parsing
accuracy (e.g. around +1 point in English). For-
mally, given a sentence s, the reranker selects the
best candidate parse p among a set of candidates
P (s) with respect to a scoring function Vθ:

p∗ = argmaxp∈P (s)Vθ(p)

The set of candidates P (s) corresponds to the n-best
parses generated by the baseline parser. The scor-
ing function Vθ is the scalar product of a parameter
vector θ and a feature vector f :

Vθ(p) = θ.f(p) =
m∑
j=1

θj .fj(p)

where fj(p) corresponds to the number of occur-
rences of the feature fj in the parse p. According to
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Charniak and Johnson (2005), the first feature f1 is
the probability of p provided by the baseline parser.
The vector θ is estimated during the training stage
from a reference treebank and the baseline parser
ouputs.

In this paper, we slightly deviate from the original
reranker usage, by focusing on improving MWER
in the context of parsing. Given the n-best parses,
we want to select the one with the best MWE seg-
mentation by keeping the overall parsing accuracy as
high as possible. We therefore used MWE-dedicated
features that we describe in section 5. The training
stage was performed by using a Maximum entropy
algorithm as in (Charniak and Johnson, 2005).

4 Resources

4.1 Corpus
The French Treebank2 [FTB] (Abeillé et al., 2003)
is a syntactically annotated corpus made up of jour-
nalistic articles from Le Monde newspaper. We
used the latest edition of the corpus (June 2010)
that we preprocessed with the Stanford Parser pre-
processing tools (Green et al., 2011). It contains
473,904 tokens and 15,917 sentences. One benefit of
this corpus is that its compounds are marked. Their
annotation was driven by linguistic criteria such as
the ones in (Gross, 1986). Compounds are identified
with a specific non-terminal symbol ”MWX” where
X is the part-of-speech of the expression. They have
a flat structure made of the part-of-speech of their
components as shown in figure 1.

MWN

��
��

HH
HH

N

part

P

de

N

marché

Figure 1: Subtree of MWE part de marché (market
share): The MWN node indicates that it is a multiword
noun; it has a flat internal structure N P N (noun – pre-
prosition – noun)

The French Treebank is composed of 435,860 lex-
ical units (34,178 types). Among them, 5.3% are
compounds (20.8% for types). In addition, 12.9%

2http://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-
fr.php

of the tokens belong to a MWE, which, on average,
has 2.7 tokens. The non-terminal tagset is composed
of 14 part-of-speech labels and 24 phrasal ones (in-
cluding 11 MWE labels). The train/dev/test split is
the same as in (Green et al., 2011): 1,235 sentences
for test, 1,235 for development and 13,347 for train-
ing. The development and test sections are the same
as those generally used for experiments in French,
e.g. (Candito and Crabbé, 2009).

4.2 Lexical resources

French is a resource-rich language as attested by
the existing morphological dictionaries which in-
clude compounds. In this paper, we use two large-
coverage general-purpose dictionaries: Dela (Cour-
tois, 1990; Courtois et al., 1997) and Lefff (Sagot,
2010). The Dela was manually developed in the
90’s by a team of linguists. We used the distribution
freely available in the platform Unitex3 (Paumier,
2011). It is composed of 840,813 lexical entries in-
cluding 104,350 multiword ones (91,030 multiword
nouns). The compounds present in the resources re-
spect the linguistic criteria defined in (Gross, 1986).
The lefff is a freely available dictionary4 that has
been automatically compiled by drawing from dif-
ferent sources and that has been manually validated.
We used a version with 553,138 lexical entries in-
cluding 26,311 multiword ones (22,673 multiword
nouns). Their different modes of acquisition makes
those two resources complementary. In both, lexical
entries are composed of a inflected form, a lemma,
a part-of-speech and morphological features. The
Dela has an additional feature for most of the mul-
tiword entries: their syntactic surface form. For in-
stance, eau de vie (brandy) has the feature NDN be-
cause it has the internal flat structure noun – prepo-
sition de – noun.

In order to compare compounds in these lexical
resources with the ones in the French Treebank, we
applied on the development corpus the dictionar-
ies and the lexicon extracted from the training cor-
pus. By a simple look-up, we obtained a prelimi-
nary lexicon-based MWE segmentation. The results
are provided in table 1. They show that the use of
external resources may improve recall, but they lead

3http://igm.univ-mlv.fr/˜unitex
4http://atoll.inria.fr/˜sagot/lefff.html
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to a decrease in precision as numerous MWEs in the
dictionaries are not encoded as such in the reference
corpus; in addition, the FTB suffers from some in-
consistency in the MWE annotations.

T L D T+L T+D T+L+D
recall 75.9 31.7 59.0 77.3 83.4 84.0
precision 61.2 52.0 55.6 58.7 51.2 49.9
f-score 67.8 39.4 57.2 66.8 63.4 62.6

Table 1: Simple context-free application of the lexical
resources on the development corpus: T is the MWE lex-
icon of the training corpus, L is the lefff, D is the Dela.
The given scores solely evaluate MWE segmentation and
not tagging.

In terms of statistical collocations, Watrin and
François (2011) described a system that lists all the
potential nominal collocations of a given sentence
along with their association measure. The authors
provided us with a list of 17,315 candidate nominal
collocations occurring in the French treebank with
their log-likelihood and their internal flat structure.

5 MWE-dedicated Features

The two discriminative models described in sec-
tion 3 require MWE-dedicated features. In order to
make these models comparable, we use two compa-
rable sets of feature templates: one adapted to se-
quence labelling (CRF-based MWER) and the other
one adapted to reranking (MaxEnt-based reranker).
The MWER templates are instantiated at each posi-
tion of the input sequence. The reranker templates
are instantiated only for the nodes of the candidate
parse tree, which are leaves dominated by a MWE
node (i.e. the node has a MWE ancestor). We define
a template T as follows:

• MWER: for each position n in the input se-
quence x,

T = f(x, n)/yn

• RERANKER: for each leaf (in position n)
dominated by a MWE node m in the current
parse tree p,

T = f(p, n)/label(m)/pos(p, n)

where f is a function to be defined; yn is the out-
put label at position n; label(m) is the label of node
m and pos(p, n) indicates the position of the word
corresponding to n in the MWE sequence: B (start-
ing position), I (remaining positions).

5.1 Endogenous Features

Endogenous features are features directly extracted
from properties of the words themselves or from a
tool learnt from the training corpus (e.g. a tagger).
Word n-grams. We use word unigrams and bigrams
in order to capture multiwords present in the training
section and to extract lexical cues to discover new
MWEs. For instance, the bigram coup de is often
the prefix of compounds such as coup de pied (kick),
coup de foudre (love at first sight), coup de main
(help).
POS n-grams. We use part-of-speech unigrams
and bigrams in order to capture MWEs with irreg-
ular syntactic structures that might indicate the id-
iomacity of a word sequence. For instance, the POS
sequence preposition – adverb associated with the
compound depuis peu (recently) is very unusual in
French. We also integrated mixed bigrams made up
of a word and a part-of-speech.
Specific features. Due to their different use, each
model integrates some specific features. In order to
deal with unknown words and special tokens, we in-
corporate standard tagging features in the CRF: low-
ercase forms of the words, word prefixes of length 1
to 4, word suffice of length 1 to 4, whether the word
is capitalized, whether the token has a digit, whether
it is an hyphen. We also add label bigrams. The
reranker models integrate features associated with
each MWE node, the value of which is the com-
pound itself.

5.2 Exogenous Features

Exogenous features are features that are not entirely
derived from the (reference) corpus itself. They are
computed from external data (in our case, our lexical
resources). The lexical resources might be useful to
discover new expressions: usually, expressions that
have standard syntax like nominal compounds and
are difficult to predict from the endogenous features.
The resources are applied to the corpus through a
lexical analysis that generates, for each sentence, a
finite-state automaton TFSA which represents all the
possible analyses. The features are computed from
the automaton TFSA.
Lexicon-based features. We associate each word
with its part-of-speech tags found in our external
morphological lexicon. All tags of a word constitute
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an ambiguity class ac. If the word belongs to a com-
pound, the compound tag is also incorporated in the
ambiguity class. For instance, the word night (either
a simple noun or a simple adjective) in the context at
night, is associated with the class adj noun adv+I as
it is located inside a compound adverb. This feature
is directly computed from TFSA. The lexical anal-
ysis can lead to a preliminary MWE segmentation
by using a shortest path algorithm that gives priority
to compound analyses. This segmentation is also a
source of features: a word belonging to a compound
segment is assigned different properties such as the
segment part-of-speech mwt and its syntactic struc-
turemws encoded in the lexical resource, its relative
position mwpos in the segment (’B’ or ’I’).
Collocation-based features. In our collocation re-
source, each candidate collocation of the French
treebank is associated with its internal syntactic
structure and its association score (log-likelihood).
We divided these candidates into two classes: those
whose score is greater than a threshold and the other
ones. Therefore, a given word in the corpus can be
associated with different properties whether it be-
longs to a potential collocation: the class c and the
internal structure cs of the collocation it belongs to,
its position cpos in the collocation (B: beginning; I:
remaining positions; O: outside). We manually set
the threshold to 150 after some tuning on the devel-
opment corpus.

All feature templates are given in table 2.

Endogenous Features
w(n+ i), i ∈ {−2,−1, 0, 1, 2}
w(n+ i)/w(n+ i+ 1), i ∈ {−2,−1, 0, 1}
t(n+ i), i ∈ {−2,−1, 0, 1, 2}
t(n+ i)/t(n+ i+ 1), i ∈ {−2,−1, 0, 1}
w(n+ i)/t(n+ j), (i, j) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}
Exogenous Features
ac(n)
mwt(n)/mwpos(n)
mws(n)/mwpos(n)
c(n)/cs(n)/cpos(n)

Table 2: Feature templates (f ) used both in the MWER
and the reranker models: n is the current position in the
sentence, w(i) is the word at position i; t(i) is the part-
of-speech tag of w(i); if the word at absolute position i
is part of a compound in the Shortest Path Segmentation,
mwt(i) and mws(i) are respectively the part-of-speech
tag and the internal structure of the compound,mwpos(i)
indicates its relative position in the compound (B or I).

6 Evaluation

6.1 Experiment Setup

We carried out 3 different experiments. We first
tested a standalone MWE recognizer based on CRF.
We then combined MWE pregrouping based on
this recognizer and the Berkeley parser5 (Petrov
et al., 2006) trained on the FTB where the com-
pounds were concatenated (BKYc). Finally, we
combined the Berkeley parser trained on the FTB
where the compounds are annotated with specific
non-terminals (BKY), and the reranker. In all exper-
iments, we varied the set of features: endo are all en-
dogenous features; coll and lex include all endoge-
nous features plus collocation-based features and
lexicon-based ones, respectively; all is composed of
both endogenous and exogenous features. The CRF
recognizer relies on the software Wapiti6 (Lavergne
et al., 2010) to train and apply the model, and on
the software Unitex (Paumier, 2011) to apply lexical
resources. The part-of-speech tagger used to extract
POS features was lgtagger7 (Constant and Sigogne,
2011). To train the reranker, we used a MaxEnt al-
gorithm8 as in (Charniak and Johnson, 2005).

Results are reported using several standard mea-
sures, the F1score, unlabeled attachment and Leaf
Ancestor scores. The labeled F1score [F1]9, de-
fined by the standard protocol called PARSEVAL
(Black et al., 1991), takes into account the brack-
eting and labeling of nodes. The unlabeled attache-
ment score [UAS] evaluates the quality of unlabeled

5We used the version adapted to French in
the software Bonsai (Candito and Crabbé, 2009):
http://alpage.inria.fr/statgram/frdep/fr stat dep parsing.html.
The original version is available at:
http://code.google.com/p/berkeleyparser/. We trained the
parser as follows: right binarization, no parent annotation, six
split-merge cycles and default random seed initialisation (8).

6Wapiti can be found at http://wapiti.limsi.fr/. It was con-
figured as follows: rprop algorithm, default L1-penalty value
(0.5), default L2-penalty value (0.00001), default stopping cri-
terion value (0.02%).

7Available at http://igm.univ-
mlv.fr/˜mconstan/research/software/.

8We used the following mathematical libraries PETSc et
TAO, freely available at http://www.mcs.anl.gov/petsc/ and
http://www.mcs.anl.gov/research/projects/tao/

9Evalb tool available at http://nlp.cs.nyu.edu/evalb/. We
also used the evaluation by category implemented in the class
EvalbByCat in the Stanford Parser.
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dependencies between words of the sentence10. And
finally, the Leaf-Ancestor score [LA]11 (Sampson,
2003) computes the similarity between all paths (se-
quence of nodes) from each terminal node to the root
node of the tree. The global score of a generated
parse is equal to the average score of all terminal
nodes. Punctuation tokens are ignored in all met-
rics. The quality of MWE identification was evalu-
ated by computing the F1 score on MWE nodes. We
also evaluated the MWE segmentation by using the
unlabeled F1 score (U). In order to compare both ap-
proaches, parse trees generated by BKYc were auto-
matically transformed in trees with the same MWE
annotation scheme as the trees generated by BKY.

In order to establish the statistical significance of
results between two parsing experiments in terms of
F1 and UAS, we used a unidirectional t-test for two
independent samples12. The statistical significance
between two MWE identification experiments was
established by using the McNemar-s test (Gillick
and Cox, 1989). The results of the two experiments
are considered statistically significant with the com-
puted value p < 0.01.

6.2 Standalone Multiword recognition
The results of the standalone MWE recognizer are
given in table 3. They show that the lexicon-based
system (lex) reaches the best score. Accuracy is im-
proved by an absolute gain of +6.7 points as com-
pared with BKY parser. The strictly endogenous
system has a +4.9 point absolute gain, +5.4 points
when collocations are added. That shows that most
of the work is done by fully automatically acquired
features (as opposed to features coming from a man-
ually constructed lexicon). As expected, lexicon-
based features lead to a 5.3 point recall improve-
ment (with respect to non-lexicon based features)
whereas precision is stable. The more precise sys-
tem is the base one because it almost solely detects
compounds present in the training corpus; neverthe-
less, it is unable to capture new MWEs (it has the

10This score is computed by using the tool available at
http://ilk.uvt.nl/conll/software.html. The constituent trees are
automatically converted into dependency trees with the tool
Bonsai.

11Leaf-ancestor assessment tool available at
http://www.grsampson.net/Resources.html

12Dan Bikel’s tool available at
http://www.cis.upenn.edu/˜dbikel/software.html.

lowest recall). BKY parser has the best recall among
the non lexicon-based systems, i.e. it is the best one
to discover new compounds as it is able to precisely
detect irregular syntactic structures that are likely to
be MWEs. Nevertheless, as it does not have a lex-
icalized strategy, it is not able to filter out incorrect
candidates; the precision is therefore very low (the
worst).

P R F1 F1 ≤ 40 U
base 78.0 68.3 72.8 71.2 74.3
endo 75.5 74.5 75.0 74.0 76.3
coll 76.6 74.4 75.5 74.9 77.0
lex 76.0 79.8 77.8 77.8 79.0
all 76.2 79.2 77.7 77.3 78.8
BKY 67.6 75.1 71.1 70.7 72.5
Stanford* - - - 70.1 -
DP-TSG* - - - 71.1 -

Table 3: MWE identification with CRF: base are the
features corresponding to token properties and word n-
grams. The differences between all systems are statisti-
cally significant with respect to McNemar’s test (Gillick
and Cox, 1989), except lex/all and all/coll;
lex/coll is ”border-line”. The results of the systems
based on the Stanford Parser and the Tree Substitution
Parser (DP-TSG) are reported from (Green et al., 2011).

6.3 Combination of Multiword Expression
Recognition and Parsing

We tested and compared the two proposed dis-
criminative strategies by varying the sets of MWE-
dedicated features. The results are reported in ta-
ble 4. Table 5 compares the parsing systems, by
showing the score differences between each of the
tested system and the BKY parser.

Strat. Feat. Parser F1 LA UAS F1(MWE)
- - BKY 80.61 92.91 82.99 71.1
pre - BKYc 75.47 91.10 76.74 0.0
pre endo BKYc 80.23 92.69 83.62 74.9
pre coll BKYc 80.32 92.73 83.77 75.5
pre lex BKYc 80.66 92.81 84.16 77.4
pre all BKYc 80.51 92.77 84.05 77.2
post endo BKY 80.87 92.94 83.49 72.9
post coll BKY 80.71 92.85 83.16 71.2
post lex BKY 81.08 92.98 83.98 74.5
post all BKY 81.03 92.96 83.97 74.3
pre gold BKYc 83.73 93.77 90.08 95.8

Table 4: Parsing evaluation: pre indicates a MWE pre-
grouping strategy, whereas post is a reranking strategy
with n = 50. The feature gold means that we have ap-
plied the parser on a gold MWE segmentation.
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∆F1 ∆UAS ∆F1(MWE)
pre post pre post pre post

endo -0.38 +0.26 +0.63 +0.50 +3.8 +1.8
coll -0.29 +0.10 +0.78 +0.17 +4.4 +0.1
lex +0.05 +0.47 +1.17 +0.99 +6.3 +3.4

Table 5: Comparison of the strategies with respect to
BKY parser.

Firstly, we note that the accuracy of the best re-
alistic parsers is much lower than that of a parser
with a golden MWE segmentation13 (-2.65 and -5.92
respectively in terms of F-score and UAS), which
shows the importance of not neglecting MWE recog-
nition in the framework of parsing. Furthermore,
pre-grouping has no statistically significant impact
on the F-score14, whereas reranking leads to a sta-
tistically significant improvement (except for col-
locations). Both strategies also lead to a statisti-
cally significant UAS increase. Whereas both strate-
gies improve the MWE recognition, pre-grouping
is much more accurate (+2-4%); this might be due
to the fact that an unlexicalized parser is limited in
terms of compound identification, even within n-
best analyses (cf. Oracle in table 6). The benefits of
lexicon-based features are confirmed in this experi-
ment, whereas the use of collocations in the rerank-
ing strategy seems to be rejected.

endo coll lex all oracle
n=1 80.61

(71.1)
n=5 80.74 80.88 81.03 81.05 83.17

(71.5) (71.7) (73.4) (73.3) (74.6)
n=20 80.98 80.72 81.09 81.01 84.76

(72.9) (70.6) (73.6) (73.0) (75.5)
n=50 80.87 80.71 81.08 81.03 85.21

(72.9) (71.2) (74.5) (74.3) (76.4)
n=100 80.69 80.53 81.12 80.93 85.54

(72.0) (70.0) (74.4) (73.7) (76.4)

Table 6: Reranker F1 evaluation with respect to n and the
types of features. The F1(MWE) is given in parenthesis.

Table 7 shows the results by category. It indi-
cates that both discriminative strategies are of in-
terest in locating multiword adjectives, determiners
and prepositions; the pre-grouping method appears
to be particularly relevant for multiword nouns and

13The F1(MWE) is not 100% with a golden segmentation be-
cause of tagging errors by the parser.

14Note that we observe an increase of +0.5 in F1 on the de-
velopment corpus with lexicon-based features.

adverbs. However, it performs very poorly in multi-
word verb recognition. In terms of standard parsing
accuracy, the pre-grouping approach has a very het-
erogeneous impact: Adverbial and Adjective Modi-
fier phrases tend to be more accurate; verbal kernels
and higher level constituents such as relative and
subordinate clauses see their accuracy level drop,
which shows that pre-recognition of MWE can have
a negative impact on general parsing accuracy as
MWE errors propagate to higher level constituents.

cat #gold BKY endo lex endo lex
(pre) (pre) (post) (post)

MWET 4 0.0 N/A N/A N/A N/A
MWA 22 37.2 +15.2 +21.3 +0.9 +4.7
MWV 47 62.1 -9.7 -13.2 +1.7 +2.5
MWD 24 62.1 +7.3 +10.2 0.0 +1.2
MWN 860 68.2 +4.0 +7.0 +1.7 +4.2
MWADV 357 72.1 +3.8 +6.4 +3.4 +4.1
MWPRO 31 84.2 -3.5 -0.9 0.0 0.0
MWP 294 79.1 +4.3 +5.8 +0.4 +1.1
MWC 86 85.7 +0.9 +3.7 +0.2 +1.0
Sint 209 47.2 -7.7 -8.7 +0.1 -0.2
AdP 86 48.8 +1.2 +3.0 +3.4 +5.1
Ssub 406 60.8 -1.1 -1.1 -0.3 -0.5
VPpart 541 63.2 -2.8 -2.1 -0.5 -1.6
Srel 408 74.8 -3.4 -3.5 -0.3 -0.6
VPinf 781 75.2 0.0 -0.1 -0.3 -0.3
COORD 904 75.2 +0.2 +0.4 -0.3 -0.4
PP 4906 76.7 -0.8 -0.3 +0.5 +0.7
AP 1482 74.5 +3.2 +3.9 +0.7 +1.6
NP 9023 79.8 -1.1 -0.8 +0.1 +0.2
VN 3089 94.0 -2.0 -1.0 0.0 0.0

Table 7: Evaluation by category with respect to BKY
parser. The BKY column indicates the F1 of BKY parser.

7 Conclusions and Future Work

In this paper, we evaluated two discriminative strate-
gies to integrate Multiword Expression Recognition
in probabilistic parsing: (a) pre-grouping MWEs
with a state-of-the-art recognizer and (b) MWE
identification with a reranker after parsing. We
showed that MWE pre-grouping significantly im-
proves compound recognition and unlabeled depen-
dency annotation, which implies that this strategy
could be useful for dependency parsing. The rerank-
ing procedure evenly improves all evaluation scores.
Future work could consist in combining both strate-
gies: pre-grouping could suggest a set of potential
MWE segmentations in order to make it more flexi-
ble for a parser; final decisions would then be made
by the reranker.
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Abstract

Most previous graph-based parsing models in-
crease decoding complexity when they use
high-order features due to exact-inference de-
coding. In this paper, we present an approach
to enriching high-order feature representations
for graph-based dependency parsing models
using a dependency language model and beam
search. The dependency language model is
built on a large-amount of additional auto-
parsed data that is processed by a baseline
parser. Based on the dependency language
model, we represent a set of features for the
parsing model. Finally, the features are effi-
ciently integrated into the parsing model dur-
ing decoding using beam search. Our ap-
proach has two advantages. Firstly we utilize
rich high-order features defined over a view
of large scope and additional large raw cor-
pus. Secondly our approach does not increase
the decoding complexity. We evaluate the pro-
posed approach on English and Chinese data.
The experimental results show that our new
parser achieves the best accuracy on the Chi-
nese data and comparable accuracy with the
best known systems on the English data.

1 Introduction

In recent years, there are many data-driven mod-
els that have been proposed for dependency parsing
(McDonald and Nivre, 2007). Among them, graph-
based dependency parsing models have achieved
state-of-the-art performance for a wide range of lan-
guages as shown in recent CoNLL shared tasks

∗Corresponding author

(Buchholz and Marsi, 2006; Nivre et al., 2007).
In the graph-based models, dependency parsing is
treated as a structured prediction problem in which
the graphs are usually represented as factored struc-
tures. The information of the factored structures de-
cides the features that the models can utilize. There
are several previous studies that exploit high-order
features that lead to significant improvements.

McDonald et al. (2005) and Covington (2001)
develop models that represent first-order features
over a single arc in graphs. By extending the first-
order model, McDonald and Pereira (2006) and Car-
reras (2007) exploit second-order features over two
adjacent arcs in second-order models. Koo and
Collins (2010) further propose a third-order model
that uses third-order features. These models utilize
higher-order feature representations and achieve bet-
ter performance than the first-order models. But this
achievement is at the cost of the higher decoding
complexity, from O(n2) to O(n4), where n is the
length of the input sentence. Thus, it is very hard to
develop higher-order models further in this way.

How to enrich high-order feature representations
without increasing the decoding complexity for
graph-based models becomes a very challenging
problem in the dependency parsing task. In this pa-
per, we solve this issue by enriching the feature rep-
resentations for a graph-based model using a depen-
dency language model (DLM) (Shen et al., 2008).
The N-gram DLM has the ability to predict the next
child based on the N-1 immediate previous children
and their head (Shen et al., 2008). The basic idea
behind is that we use the DLM to evaluate whether a
valid dependency tree (McDonald and Nivre, 2007)
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is well-formed from a view of large scope. The pars-
ing model searches for the final dependency trees
by considering the original scores and the scores of
DLM.

In our approach, the DLM is built on a large
amount of auto-parsed data, which is processed
by an original first-order parser (McDonald et al.,
2005). We represent the features based on the DLM.
The DLM-based features can capture the N-gram in-
formation of the parent-children structures for the
parsing model. Then, they are integrated directly
in the decoding algorithms using beam-search. Our
new parsing model can utilize rich high-order fea-
ture representations but without increasing the com-
plexity.

To demonstrate the effectiveness of the proposed
approach, we conduct experiments on English and
Chinese data. The results indicate that the approach
greatly improves the accuracy. In summary, we
make the following contributions:

• We utilize the dependency language model to
enhance the graph-based parsing model. The
DLM-based features are integrated directly into
the beam-search decoder.

• The new parsing model uses the rich high-order
features defined over a view of large scope and
and additional large raw corpus, but without in-
creasing the decoding complexity.

• Our parser achieves the best accuracy on the
Chinese data and comparable accuracy with the
best known systems on the English data.

2 Dependency language model

Language models play a very important role for sta-
tistical machine translation (SMT). The standard N-
gram based language model predicts the next word
based on theN−1 immediate previous words. How-
ever, the traditional N-gram language model can
not capture long-distance word relations. To over-
come this problem, Shen et al. (2008) proposed a
dependency language model (DLM) to exploit long-
distance word relations for SMT. The N-gram DLM
predicts the next child of a head based on theN − 1
immediate previous children and the head itself. In
this paper, we define a DLM, which is similar to the
one of Shen et al. (2008), to score entire dependency
trees.

An input sentence is denoted byx =
(x0, x1, ..., xi, ..., xn), where x0 = ROOT and
does not depend on any other token inx and each
token xi refers to a word. Lety be a depen-
dency tree forx andH(y) be a set that includes the
words that have at least one dependent. For each
xh ∈ H(y), we have a dependency structureDh =
(xLk, ...xL1, xh, xR1...xRm), wherexLk, ...xL1 are
the children on the left side from the farthest to the
nearest andxR1...xRm are the children on the right
side from the nearest to the farthest. Probability
P (Dh) is defined as follows:

P (Dh) = PL(Dh)× PR(Dh) (1)

HerePL andPR are left and right side generative
probabilities respectively. Suppose, we use a N-
gram dependency language model.PL is defined as
follows:

PL(Dh) ≈ PLc(xL1|xh)

×PLc(xL2|xL1, xh)

×... (2)

×PLc(xLk|xL(k−1), ..., xL(k−N+1), xh)

where the approximation is based on thenth order
Markov assumption. The right side probability is
similar. For a dependency tree, we calculate the
probability as follows:

P (y) =
∏

xh∈H(y)

P (Dh) (3)

In this paper, we use a linear model to calculate
the scores for the parsing models (defined in Section
3.1). Accordingly, we reform Equation 3. We define
fDLM as a high-dimensional feature representation
which is based on arbitrary features ofPLc, PRc and
x. Then, the DLM score of treey is in turn computed
as the inner product offDLM with a corresponding
weight vectorwDLM .

scoreDLM (y) = fDLM · wDLM (4)

3 Parsing with dependency language
model

In this section, we propose a parsing model which
includes the dependency language model by extend-
ing the model of McDonald et al. (2005).
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3.1 Graph-based parsing model

The graph-based parsing model aims to search for
the maximum spanning tree (MST) in a graph (Mc-
Donald et al., 2005). We write(xi, xj) ∈ y

if there is a dependency in treey from word xi
to word xj (xi is the head andxj is the depen-
dent). A graph, denoted byGx, consists of a set
of nodesVx = {x0, x1, ..., xi, ..., xn} and a set of
arcs (edges)Ex = {(xi, xj)|i 6= j, xi ∈ Vx, xj ∈
(Vx − x0)}, where the nodes inVx are the words
in x. Let T (Gx) be the set of all the subgraphs of
Gx that are valid dependency trees (McDonald and
Nivre, 2007) for sentencex.

The formulation defines the score of a depen-
dency treey ∈ T (Gx) to be the sum of the edge
scores,

s(x, y) =
∑

g∈y

score(w, x, g) (5)

whereg is a spanning subgraph ofy. g can be a
single dependency or adjacent dependencies. Then
y is represented as a set of factors. The model
scores each factor using a weight vectorw that con-
tains the weights for the features to be learned dur-
ing training using the Margin Infused Relaxed Algo-
rithm (MIRA) (Crammer and Singer, 2003; McDon-
ald and Pereira, 2006). The scoring function is

score(w, x, g) = f(x, g) · w (6)

where f(x, g) is a high-dimensional feature repre-
sentation which is based on arbitrary features ofg

andx.
The parsing model finds amaximum spanning

tree (MST), which is the highest scoring tree in
T (Gx). The task of the decoding algorithm for a
given sentencex is to findy∗,

y∗ = argmax
y∈T (Gx)

s(x, y) = argmax
y∈T (Gx)

∑

g∈y

score(w, x, g)

3.2 Add DLM scores

In our approach, we consider the scores of the DLM
when searching for the maximum spanning tree.
Then for a given sentencex, we findy∗DLM ,

y∗DLM = argmax
y∈T (Gx)

(
∑

g∈y

score(w, x, g)+scoreDLM (y))

After adding the DLM scores, the new parsing
model can capture richer information. Figure 1 illus-
trates the changes. In the original first-order parsing
model, we only utilize the information of single arc
(xh, xL(k−1)) for xL(k−1) as shown in Figure 1-(a).
If we use 3-gram DLM, we can utilize the additional
information of the two previous children (nearer to
xh thanxL(k−1)): xL(k−2) andxL(k−3) as shown in
Figure 1-(b).

Figure 1: Adding the DLM scores to the parsing model

3.3 DLM-based feature templates

We define DLM-based features forDh =
(xLk, ...xL1, xh, xR1...xRm). For each childxch on
the left side, we havePLc(xch|HIS), whereHIS
refers to theN − 1 immediate previous right chil-
dren and headxh. Similarly, we havePRc(xch|HIS)
for each child on the right side. LetPu(xch|HIS)
(Pu(ch) in short) be one of the above probabilities.
We use the map functionΦ(Pu(ch)) to obtain the
predefined discrete value (defined in Section 5.3).
The feature templates are outlined in Table 1, where
TYPE refers to one of the types:PL or PR, h pos
refers to the part-of-speech tag ofxh, h word refers
to the lexical form ofxh, ch pos refers to the part-of-
speech tag ofxch, and chword refers to the lexical
form of xch.

4 Decoding

In this section, we turn to the problem of adding the
DLM in the decoding algorithm. We propose two
ways: (1) Rescoring, in which we rescore the K-
best list with the DLM-based features; (2) Intersect,
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< Φ(Pu(ch)),TYPE >

< Φ(Pu(ch)),TYPE, h pos >

< Φ(Pu(ch)),TYPE, h word >

< Φ(Pu(ch)),TYPE, ch pos >

< Φ(Pu(ch)),TYPE, ch word >

< Φ(Pu(ch)),TYPE, h pos, ch pos >

< Φ(Pu(ch)),TYPE, h word, ch word >

Table 1: DLM-based feature templates

in which we add the DLM-based features in the de-
coding algorithm directly.

4.1 Rescoring

We add the DLM-based features into the decoding
procedure by using the rescoring technique used in
(Shen et al., 2008). We can use an original parser
to produce the K-best list. This method has the po-
tential to be very fast. However, because the perfor-
mance of this method is restricted to the K-best list,
we may have to set K to a high number in order to
find the best parsing tree (with DLM) or a tree ac-
ceptably close to the best (Shen et al., 2008).

4.2 Intersect

Then, we add the DLM-based features in the decod-
ing algorithm directly. The DLM-based features are
generated online during decoding.

For our parser, we use the decoding algorithm
of McDonald et al. (2005). The algorithm was ex-
tensions of the parsing algorithm of (Eisner, 1996),
which was a modified version of the CKY chart
parsing algorithm. Here, we describe how to add
the DLM-based features in the first-order algorithm.
The second-order and higher-order algorithms can
be extended by the similar way.

The parsing algorithm independently parses the
left and right dependents of a word and combines
them later. There are two types of chart items (Mc-
Donald and Pereira, 2006): 1) acomplete item in
which the words are unable to accept more depen-
dents in a certain direction; and 2) anincomplete
item in which the words can accept more dependents
in a certain direction. In the algorithm, we create
both types of chart items with two directions for all
the word pairs in a given sentence. The direction of
a dependency is from the head to the dependent. The
right (left) direction indicates the dependent is on the
right (left) side of the head. Larger chart items are

created from pairs of smaller ones in a bottom-up
style. In the following figures, complete items are
represented by triangles and incomplete items are
represented by trapezoids. Figure 2 illustrates the
cubic parsing actions of the algorithm (Eisner, 1996)
in the right direction, wheres, r, andt refer to the
start and end indices of the chart items. In Figure
2-(a), all the items on the left side are complete and
the algorithm creates the incomplete item (trapezoid
on the right side) ofs – t. This action builds a de-
pendency relation froms to t. In Figure 2-(b), the
item of s – r is incomplete and the item ofr – t is
complete. Then the algorithm creates the complete
item of s – t. In this action, all the children ofr are
generated. In Figure 2, the longer vertical edge in a
triangle or a trapezoid corresponds to the subroot of
the structure (spanning chart). For example,s is the
subroot of the spans – t in Figure 2-(a). For the left
direction case, the actions are similar.

Figure 2: Cubic parsing actions of Eisner (Eisner, 1996)

Then, we add the DLM-based features into the
parsing actions. Because the parsing algorithm is
in the bottom-up style, the nearer children are gen-
erated earlier than the farther ones of the same head.
Thus, we calculate the left or right side probabil-
ity for a new child when a new dependency rela-
tion is built. For Figure 2-(a), we add the features of
PRc(xt|HIS). Figure 3 shows the structure, where
cRs refers to the current children (nearer thanxt) of
xs. In the figure, HIS includescRs andxs.

Figure 3: Add DLM-based features in cubic parsing
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We use beam search to choose the one having the
overall best score as the final parse, where K spans
are built at each step (Zhang and Clark, 2008). At
each step, we perform the parsing actions in the cur-
rent beam and then choose the best K resulting spans
for the next step. The time complexity of the new de-
coding algorithm isO(Kn3) while the original one
isO(n3), wheren is the length of the input sentence.
With the rich feature set in Table 1, the running time
of Intersect is longer than the time of Rescoring. But
Intersect considers more combination of spans with
the DLM-based features than Rescoring that is only
given a K-best list.

5 Implementation Details

5.1 Baseline parser

We implement our parsers based on the MSTParser1,
a freely available implementation of the graph-based
model proposed by (McDonald and Pereira, 2006).
We train a first-order parser on the training data (de-
scribed in Section 6.1) with the features defined in
McDonald et al. (2005). We call this first-order
parser Baseline parser.

5.2 Build dependency language models

We use a large amount of unannotated data to build
the dependency language model. We first perform
word segmentation (if needed) and part-of-speech
tagging. After that, we obtain the word-segmented
sentences with the part-of-speech tags. Then the
sentences are parsed by the Baseline parser. Finally,
we obtain the auto-parsed data.

Given the dependency trees, we estimate the prob-
ability distribution by relative frequency:

Pu(xch|HIS) =
count(xch,HIS)

∑

x′

ch

count(x′

ch
,HIS)

(7)

No smoothing is performed because we use the
mapping function for the feature representations.

5.3 Mapping function

We can define different mapping functions for the
feature representations. Here, we use a simple way.
First, the probabilities are sorted in decreasing order.
Let No(Pu(ch)) be the position number ofPu(ch)
in the sorted list. The mapping function is:

1http://mstparser.sourceforge.net

Φ(Pu(ch)) =

{

PH if No(Pu(ch)) ≤ TOP10
PM if TOP10< No(Pu(ch)) ≤ TOP30
PL if TOP30< No(Pu(ch))
PO if Pu(ch)) = 0

where TOP10 and TOP 30 refer to the position num-
bers of top 10% and top 30% respectively. The num-
bers, 10% and 30%, are tuned on the development
sets in the experiments.

6 Experiments

We conducted experiments on English and Chinese
data.

6.1 Data sets

For English, we used the Penn Treebank (Marcus et
al., 1993) in our experiments. We created a stan-
dard data split: sections 2-21 for training, section
22 for development, and section 23 for testing. Tool
“Penn2Malt”2 was used to convert the data into de-
pendency structures using a standard set of head
rules (Yamada and Matsumoto, 2003). Following
the work of (Koo et al., 2008), we used the MX-
POST (Ratnaparkhi, 1996) tagger trained on training
data to provide part-of-speech tags for the develop-
ment and the test set, and used 10-way jackknifing
to generate part-of-speech tags for the training set.
For the unannotated data, we used the BLLIP corpus
(Charniak et al., 2000) that contains about 43 million
words of WSJ text.3 We used the MXPOST tagger
trained on training data to assign part-of-speech tags
and used the Baseline parser to process the sentences
of the BLLIP corpus.

For Chinese, we used the Chinese Treebank
(CTB) version 4.04 in the experiments. We also used
the “Penn2Malt” tool to convert the data and cre-
ated a data split: files 1-270 and files 400-931 for
training, files 271-300 for testing, and files 301-325
for development. We used gold standard segmenta-
tion and part-of-speech tags in the CTB. The data
partition and part-of-speech settings were chosen to
match previous work (Chen et al., 2008; Yu et al.,
2008; Chen et al., 2009). For the unannotated data,
we used the XINCMN portion of Chinese Giga-
word5 Version 2.0 (LDC2009T14) (Huang, 2009),

2http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
3We ensured that the text used for extracting subtrees did not

include the sentences of the Penn Treebank.
4http://www.cis.upenn.edu/˜chinese/.
5We excluded the sentences of the CTB data from the Giga-

word data
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which has approximately 311 million words whose
segmentation and POS tags are given. We discarded
the annotations due to the differences in annotation
policy between CTB and this corpus. We used the
MMA system (Kruengkrai et al., 2009) trained on
the training data to perform word segmentation and
POS tagging and used the Baseline parser to parse
all the sentences in the data.

6.2 Features for basic and enhanced parsers

The previous studies have defined four types of
features: (FT1) the first-order features defined in
McDonald et al. (2005), (FT2SB) the second-order
parent-siblings features defined in McDonald and
Pereira (2006), (FT2GC) the second-order parent-
child-grandchild features defined in Carreras (2007),
and (FT3) the third-order features defined in (Koo
and Collins, 2010).

We used the first- and second-order parsers of
the MSTParser as the basic parsers. Then we en-
hanced them with other higher-order features us-
ing beam-search. Table 2 shows the feature set-
tings of the systems, where MST1/2 refers to the ba-
sic first-/second-order parser and MSTB1/2 refers to
the enhanced first-/second-order parser. MSTB1 and
MSTB2 used the same feature setting, but used dif-
ferent order models. This resulted in the difference
of using FT2SB (beam-search in MSTB1 vs exact-
inference in MSTB2). We used these four parsers as
the Baselines in the experiments.

System Features
MST1 (FT1)
MSTB1 (FT1)+(FT2SB+FT2GC+FT3)
MST2 (FT1+FT2SB)
MSTB2 (FT1+FT2SB)+(FT2GC+FT3)

Table 2: Baseline parsers

We measured the parser quality by the unlabeled
attachment score (UAS), i.e., the percentage of to-
kens (excluding all punctuation tokens) with the cor-
rect HEAD. In the following experiments, we used
“Inter” to refer to the parser with Intersect, and
“Rescore” to refer to the parser with Rescoring.

6.3 Development experiments

Since the setting of K (for beam search) affects our
parsers, we studied its influence on the development

set for English. We added the DLM-based features
to MST1. Figure 4 shows the UAS curves on the
development set, where K is beam size for Inter-
sect and K-best for Rescoring, the X-axis represents
K, and the Y-axis represents the UAS scores. The
parsing performance generally increased as the K
increased. The parser with Intersect always outper-
formed the one with Rescoring.
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Figure 4: The influence of K on the development data

K 1 2 4 8 16
English 157.1 247.4 351.9 462.3 578.2

Table 3: The parsing times on the development set (sec-
onds for all the sentences)

Table 3 shows the parsing times of Intersect on
the development set for English. By comparing the
curves of Figure 4, we can see that, while using
larger K reduced the parsing speed, it improved the
performance of our parsers. In the rest of the ex-
periments, we set K=8 in order to obtain the high
accuracy with reasonable speed and used Intersect
to add the DLM-based features.

N 0 1 2 3 4
English 91.30 91.87 92.52 92.72 92.72
Chinese 87.36 87.96 89.33 89.92 90.40

Table 4: Effect of different N-gram DLMs

Then, we studied the effect of adding different N-
gram DLMs to MST1. Table 4 shows the results.
From the table, we found that the parsing perfor-
mance roughly increased as the N increased. When
N=3 and N=4, the parsers obtained the same scores
for English. For Chinese, the parser obtained the
best score when N=4. Note that the size of the Chi-
nese unannotated data was larger than that of En-
glish. In the rest of the experiments, we used 3-gram
for English and 4-gram for Chinese.
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6.4 Main results on English data

We evaluated the systems on the testing data for En-
glish. The results are shown in Table 5, where -
DLM refers to adding the DLM-based features to the
Baselines. The parsers using the DLM-based fea-
tures consistently outperformed the Baselines. For
the basic models (MST1/2), we obtained absolute
improvements of 0.94 and 0.63 points respectively.
For the enhanced models (MSTB1/2), we found that
there were 0.63 and 0.66 points improvements re-
spectively. The improvements were significant in
McNemar’s Test (p < 10−5)(Nivre et al., 2004).

Order1 UAS Order2 UAS
MST1 90.95 MST2 91.71
MST-DLM1 91.89 MST-DLM2 92.34
MSTB1 91.92 MSTB2 92.10
MSTB-DLM1 92.55 MSTB-DLM2 92.76

Table 5: Main results for English

6.5 Main results on Chinese data

The results are shown in Table 6, where the abbrevi-
ations used are the same as those in Table 5. As in
the English experiments, the parsers using the DLM-
based features consistently outperformed the Base-
lines. For the basic models (MST1/2), we obtained
absolute improvements of 4.28 and 3.51 points re-
spectively. For the enhanced models (MSTB1/2),
we got 3.00 and 2.93 points improvements respec-
tively. We obtained large improvements on the Chi-
nese data. The reasons may be that we use the very
large amount of data and 4-gram DLM that captures
high-order information. The improvements were
significant in McNemar’s Test (p < 10−7).

Order1 UAS Order2 UAS
MST1 86.38 MST2 88.11
MST-DLM1 90.66 MST-DLM2 91.62
MSTB1 88.38 MSTB2 88.66
MSTB-DLM1 91.38 MSTB-DLM2 91.59

Table 6: Main results for Chinese

6.6 Compare with previous work on English

Table 7 shows the performance of the graph-based
systems that were compared, where McDonald06
refers to the second-order parser of McDonald

and Pereira (2006), Koo08-standard refers to the
second-order parser with the features defined in
Koo et al. (2008), Koo10-model1 refers to the
third-order parser with model1 of Koo and Collins
(2010), Koo08-dep2c refers to the second-order
parser with cluster-based features of (Koo et al.,
2008), Suzuki09 refers to the parser of Suzuki et
al. (2009), Chen09-ord2s refers to the second-order
parser with subtree-based features of Chen et al.
(2009), and Zhou11 refers to the second-order parser
with web-derived selectional preference features of
Zhou et al. (2011).

The results showed that our MSTB-DLM2 ob-
tained the comparable accuracy with the previous
state-of-the-art systems. Koo10-model1 (Koo and
Collins, 2010) used the third-order features and
achieved the best reported result among the super-
vised parsers. Suzuki2009 (Suzuki et al., 2009) re-
ported the best reported result by combining a Semi-
supervised Structured Conditional Model (Suzuki
and Isozaki, 2008) with the method of (Koo et al.,
2008). However, their decoding complexities were
higher than ours and we believe that the performance
of our parser can be further enhanced by integrating
their methods with our parser.

Type System UAS Cost

G
McDonald06 91.5 O(n3)

Koo08-standard 92.02 O(n4)
Koo10-model1 93.04 O(n4)

S

Koo08-dep2c 93.16 O(n4)
Suzuki09 93.79 O(n4)

Chen09-ord2s 92.51 O(n3)
Zhou11 92.64 O(n4)

D MSTB-DLM2 92.76 O(Kn3)

Table 7: Relevant results for English. G denotes the su-
pervised graph-based parsers, S denotes the graph-based
parsers with semi-supervised methods, D denotes our
new parsers

6.7 Compare with previous work on Chinese

Table 8 shows the comparative results, where
Chen08 refers to the parser of (Chen et al., 2008),
Yu08 refers to the parser of (Yu et al., 2008), Zhao09
refers to the parser of (Zhao et al., 2009), and
Chen09-ord2s refers to the second-order parser with
subtree-based features of Chen et al. (2009). The
results showed that our score for this data was the
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best reported so far and significantly higher than the
previous scores.

System UAS
Chen08 86.52

Yu08 87.26
Zhao09 87.0

Chen09-ord2s 89.43
MSTB-DLM2 91.59

Table 8: Relevant results for Chinese

7 Analysis

Dependency parsers tend to perform worse on heads
which have many children. Here, we studied the ef-
fect of DLM-based features for this structure. We
calculated the number of children for each head and
listed the accuracy changes for different numbers.
We compared the MST-DLM1 and MST1 systems
on the English data. The accuracy is the percentage
of heads having all the correct children.

Figure 5 shows the results for English, where the
X-axis represents the number of children, the Y-
axis represents the accuracies, OURS refers to MST-
DLM1, and Baseline refers to MST1. For example,
for heads having two children, Baseline obtained
89.04% accuracy while OURS obtained 89.32%.
From the figure, we found that OURS achieved bet-
ter performance consistently in all cases and when
the larger the number of children became, the more
significant the performance improvement was.
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Figure 5: Improvement relative to numbers of children

8 Related work

Several previous studies related to our work have
been conducted.

Koo et al. (2008) used a clustering algorithm to
produce word clusters on a large amount of unan-
notated data and represented new features based on
the clusters for dependency parsing models. Chen
et al. (2009) proposed an approach that extracted
partial tree structures from a large amount of data
and used them as the additional features to im-
prove dependency parsing. They approaches were
still restricted in a small number of arcs in the
graphs. Suzuki et al. (2009) presented a semi-
supervised learning approach. They extended a
Semi-supervised Structured Conditional Model (SS-
SCM)(Suzuki and Isozaki, 2008) to the dependency
parsing problem and combined their method with
the approach of Koo et al. (2008). In future work,
we may consider apply their methods on our parsers
to improve further.

Another group of methods are the co-
training/self-training techniques. McClosky et
al. (2006) presented a self-training approach for
phrase structure parsing. Sagae and Tsujii (2007)
used the co-training technique to improve perfor-
mance. First, two parsers were used to parse the
sentences in unannotated data. Then they selected
some sentences which have the same trees produced
by those two parsers. They retrained a parser on
newly parsed sentences and the original labeled
data. We are able to use the output of our systems
for co-training/self-training techniques.

9 Conclusion

We have presented an approach to utilizing the de-
pendency language model to improve graph-based
dependency parsing. We represent new features
based on the dependency language model and in-
tegrate them in the decoding algorithm directly us-
ing beam-search. Our approach enriches the feature
representations but without increasing the decoding
complexity. When tested on both English and Chi-
nese data, our parsers provided very competitive per-
formance compared with the best systems on the En-
glish data and achieved the best performance on the
Chinese data in the literature.
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Abstract

We introduce a spectral learning algorithm for
latent-variable PCFGs (Petrov et al., 2006).
Under a separability (singular value) condi-
tion, we prove that the method provides con-
sistent parameter estimates.

1 Introduction
Statistical models with hidden or latent variables are
of great importance in natural language processing,
speech, and many other fields. The EM algorithm is
a remarkably successful method for parameter esti-
mation within these models: it is simple, it is often
relatively efficient, and it has well understood formal
properties. It does, however, have a major limitation:
it has no guarantee of finding the global optimum of
the likelihood function. From a theoretical perspec-
tive, this means that the EM algorithm is not guar-
anteed to give consistent parameter estimates. From
a practical perspective, problems with local optima
can be difficult to deal with.

Recent work has introduced polynomial-time
learning algorithms (and consistent estimation meth-
ods) for two important cases of hidden-variable
models: Gaussian mixture models (Dasgupta, 1999;
Vempala and Wang, 2004) and hidden Markov mod-
els (Hsu et al., 2009). These algorithms use spec-
tral methods: that is, algorithms based on eigen-
vector decompositions of linear systems, in particu-
lar singular value decomposition (SVD). In the gen-
eral case, learning of HMMs or GMMs is intractable
(e.g., see Terwijn, 2002). Spectral methods finesse
the problem of intractibility by assuming separabil-
ity conditions. For example, the algorithm of Hsu
et al. (2009) has a sample complexity that is polyno-
mial in 1/σ, whereσ is the minimum singular value
of an underlying decomposition. These methods are
not susceptible to problems with local maxima, and
give consistent parameter estimates.

In this paper we derive a spectral algorithm
for learning of latent-variable PCFGs (L-PCFGs)
(Petrov et al., 2006; Matsuzaki et al., 2005). Our

method involves a significant extension of the tech-
niques from Hsu et al. (2009). L-PCFGs have been
shown to be a very effective model for natural lan-
guage parsing. Under a separation (singular value)
condition, our algorithm provides consistent param-
eter estimates; this is in contrast with previous work,
which has used the EM algorithm for parameter es-
timation, with the usual problems of local optima.

The parameter estimation algorithm (see figure 4)
is simple and efficient. The first step is to take
an SVD of the training examples, followed by a
projection of the training examples down to a low-
dimensional space. In a second step, empirical av-
erages are calculated on the training example, fol-
lowed by standard matrix operations. On test ex-
amples, simple (tensor-based) variants of the inside-
outside algorithm (figures 2 and 3) can be used to
calculate probabilities and marginals of interest.

Our method depends on the following results:
• Tensor form of the inside-outside algorithm.

Section 5 shows that the inside-outside algorithm for
L-PCFGs can be written using tensors. Theorem 1
gives conditions under which the tensor form calcu-
lates inside and outside terms correctly.
• Observable representations.Section 6 shows

that under a singular-value condition, there is anob-
servable formfor the tensors required by the inside-
outside algorithm. By an observable form, we fol-
low the terminology of Hsu et al. (2009) in referring
to quantities that can be estimated directly from data
where values for latent variables are unobserved.
Theorem 2 shows that tensors derived from the ob-
servable form satisfy the conditions of theorem 1.
• Estimating the model.Section 7 gives an al-

gorithm for estimating parameters of the observable
representation from training data. Theorem 3 gives a
sample complexity result, showing that the estimates
converge to the true distribution at a rate of1/

√
M

whereM is the number of training examples.
The algorithm is strikingly different from the EM

algorithm for L-PCFGs, both in its basic form, and
in its consistency guarantees. The techniques de-
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veloped in this paper are quite general, and should
be relevant to the development of spectral methods
for estimation in other models in NLP, for exam-
ple alignment models for translation, synchronous
PCFGs, and so on. The tensor form of the inside-
outside algorithm gives a new view of basic calcula-
tions in PCFGs, and may itself lead to new models.

2 Related Work
For work on L-PCFGs using the EM algorithm, see
Petrov et al. (2006), Matsuzaki et al. (2005), Pereira
and Schabes (1992). Our work builds on meth-
ods for learning of HMMs (Hsu et al., 2009; Fos-
ter et al., 2012; Jaeger, 2000), but involves sev-
eral extensions: in particular in the tensor form of
the inside-outside algorithm, and observable repre-
sentations for the tensor form. Balle et al. (2011)
consider spectral learning of finite-state transducers;
Lugue et al. (2012) considers spectral learning of
head automata for dependency parsing. Parikh et al.
(2011) consider spectral learning algorithms of tree-
structured directed bayes nets.

3 Notation
Given a matrixA or a vectorv, we writeA⊤ or v⊤

for the associated transpose. For any integern ≥ 1,
we use[n] to denote the set{1, 2, . . . n}. For any
row or column vectory ∈ R

m, we usediag(y) to
refer to the(m×m) matrix with diagonal elements
equal toyh for h = 1 . . . m, and off-diagonal ele-
ments equal to0. For any statementΓ, we use[[Γ]]
to refer to the indicator function that is1 if Γ is true,
and0 if Γ is false. For a random variableX, we use
E[X] to denote its expected value.

We will make (quite limited) use of tensors:

Definition 1 A tensorC ∈ R
(m×m×m) is a set of

m3 parametersCi,j,k for i, j, k ∈ [m]. Given a ten-
sorC, and a vectory ∈ R

m, we defineC(y) to be
the (m × m) matrix with components[C(y)]i,j =
∑

k∈[m]Ci,j,kyk. HenceC can be interpreted as a

functionC : R
m → R

(m×m) that maps a vector
y ∈ R

m to a matrixC(y) of dimension(m×m).
In addition, we define the tensorC∗ ∈ R

(m×m×m)

for any tensorC ∈ R
(m×m×m) to have values

[C∗]i,j,k = Ck,j,i

Finally, for vectorsx, y, z ∈ R
m, xy⊤z⊤ is the

tensorD ∈ R
m×m×m whereDj,k,l = xjykzl (this

is analogous to the outer product:[xy⊤]j,k = xjyk).

4 L-PCFGs: Basic Definitions
This section gives a definition of the L-PCFG for-
malism used in this paper. An L-PCFG is a 5-tuple
(N ,I,P,m, n) where:
• N is the set of non-terminal symbols in the

grammar. I ⊂ N is a finite set ofin-terminals.
P ⊂ N is a finite set ofpre-terminals. We assume
thatN = I ∪ P, andI ∩ P = ∅. Hence we have
partitioned the set of non-terminals into two subsets.
• [m] is the set of possible hidden states.
• [n] is the set of possible words.
• For alla ∈ I, b ∈ N , c ∈ N , h1, h2, h3 ∈ [m],

we have a context-free rulea(h1)→ b(h2) c(h3).
• For all a ∈ P, h ∈ [m], x ∈ [n], we have a

context-free rulea(h)→ x.
Hence each in-terminala ∈ I is always the left-

hand-side of a binary rulea → b c; and each pre-
terminal a ∈ P is always the left-hand-side of a
rule a → x. Assuming that the non-terminals in
the grammar can be partitioned this way is relatively
benign, and makes the estimation problem cleaner.

We define the set of possible “skeletal rules” as
R = {a → b c : a ∈ I, b ∈ N , c ∈ N}. The
parameters of the model are as follows:
• For eacha→ b c ∈ R, andh ∈ [m], we have

a parameterq(a → b c|h, a). For eacha ∈ P,
x ∈ [n], and h ∈ [m], we have a parameter
q(a → x|h, a). For eacha → b c ∈ R, and
h, h′ ∈ [m], we have parameterss(h′|h, a → b c)
andt(h′|h, a→ b c).

These definitions give a PCFG, with rule proba-
bilities

p(a(h1)→ b(h2) c(h3)|a(h1)) =
q(a→ b c|h1, a)× s(h2|h1, a→ b c)× t(h3|h1, a→ b c)

andp(a(h)→ x|a(h)) = q(a→ x|h, a).
In addition, for eacha ∈ I, for eachh ∈ [m], we

have a parameterπ(a, h) which is the probability of
non-terminala paired with hidden variableh being
at the root of the tree.

An L-PCFG defines a distribution over parse trees
as follows. Askeletal tree(s-tree) is a sequence of
rules r1 . . . rN where eachri is either of the form
a → b c or a → x. The rule sequence forms
a top-down, left-most derivation under a CFG with
skeletal rules. See figure 1 for an example.

A full treeconsists of an s-treer1 . . . rN , together
with valuesh1 . . . hN . Eachhi is the value for
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S1

NP2

D3

the

N4

dog

VP5

V6

saw

P7

him

r1 = S→ NP VP
r2 = NP→ D N
r3 = D → the
r4 = N → dog
r5 = VP→ V P
r6 = V → saw
r7 = P→ him

Figure 1: An s-tree, and its sequence of rules. (For con-
venience we have numbered the nodes in the tree.)

the hidden variable for the left-hand-side of ruleri.
Eachhi can take any value in[m].

Defineai to be the non-terminal on the left-hand-
side of ruleri. For anyi ∈ {2 . . . N} definepa(i)
to be the index of the rule above nodei in the tree.
DefineL ⊂ [N ] to be the set of nodes in the tree
which are the left-child of some parent, andR ⊂
[N ] to be the set of nodes which are the right-child of
some parent. The probability mass function (PMF)
over full trees is then

p(r1 . . . rN , h1 . . . hN ) = π(a1, h1)

×
N
∏

i=1

q(ri|hi, ai)×
∏

i∈L

s(hi|hpa(i), rpa(i))

×
∏

i∈R

t(hi|hpa(i), rpa(i)) (1)

The PMF over s-trees isp(r1 . . . rN ) =
∑

h1...hN
p(r1 . . . rN , h1 . . . hN ).

In the remainder of this paper, we make use of ma-
trix form of parameters of an L-PCFG, as follows:
• For eacha→ b c ∈ R, we defineQa→b c ∈

R
m×m to be the matrix with valuesq(a → b c|h, a)

for h = 1, 2, . . . m on its diagonal, and0 values for
its off-diagonal elements. Similarly, for eacha ∈ P,
x ∈ [n], we defineQa→x ∈ R

m×m to be the matrix
with valuesq(a→ x|h, a) for h = 1, 2, . . . m on its
diagonal, and0 values for its off-diagonal elements.
• For eacha → b c ∈ R, we defineSa→b c ∈

R
m×m where[Sa→b c]h′,h = s(h′|h, a→ b c).
• For eacha → b c ∈ R, we defineT a→b c ∈

R
m×m where[T a→b c]h′,h = t(h′|h, a→ b c).
• For eacha ∈ I, we define the vectorπa ∈ R

m

where[πa]h = π(a, h).

5 Tensor Form of the Inside-Outside
Algorithm

Given an L-PCFG, two calculations are central:

Inputs: s-treer1 . . . rN , L-PCFG(N , I,P ,m, n), parameters

• Ca→b c ∈ R
(m×m×m) for all a→ b c ∈ R

• c∞a→x ∈ R
(1×m) for all a ∈ P , x ∈ [n]

• c1a ∈ R
(m×1) for all a ∈ I.

Algorithm: (calculate thef i terms bottom-up in the tree)

• For all i ∈ [N ] such thatai ∈ P , f i = c∞ri

• For all i ∈ [N ] such thatai ∈ I, f i = fγCri(fβ) where
β is the index of the left child of nodei in the tree, andγ
is the index of the right child.

Return: f1c1a1
= p(r1 . . . rN)

Figure 2: The tensor form for calculation ofp(r1 . . . rN ).

1. For a given s-tree r1 . . . rN , calculate
p(r1 . . . rN ).

2. For a given input sentencex = x1 . . . xN , cal-
culate the marginal probabilities

µ(a, i, j) =
∑

τ∈T (x):(a,i,j)∈τ

p(τ)

for each non-terminala ∈ N , for each(i, j)
such that1 ≤ i ≤ j ≤ N .

HereT (x) denotes the set of all possible s-trees for
the sentencex, and we write(a, i, j) ∈ τ if non-
terminala spans wordsxi . . . xj in the parse treeτ .

The marginal probabilities have a number of uses.
Perhaps most importantly, for a given sentencex =
x1 . . . xN , the parsing algorithm of Goodman (1996)
can be used to find

arg max
τ∈T (x)

∑

(a,i,j)∈τ

µ(a, i, j)

This is the parsing algorithm used by Petrov et al.
(2006), for example. In addition, we can calcu-
late the probability for an input sentence,p(x) =
∑

τ∈T (x) p(τ), asp(x) =
∑

a∈I µ(a, 1, N).
Variants of the inside-outside algorithm can be

used for problems 1 and 2. This section introduces a
novel form of these algorithms, using tensors. This
is the first step in deriving the spectral estimation
method.

The algorithms are shown in figures 2 and 3. Each
algorithm takes the following inputs:

1. A tensorCa→b c ∈ R
(m×m×m) for each rule

a→ b c.

2. A vectorc∞a→x ∈ R
(1×m) for each rulea→ x.
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3. A vectorc1a ∈ R
(m×1) for eacha ∈ I.

The following theorem gives conditions under
which the algorithms are correct:

Theorem 1 Assume that we have an L-PCFG with
parametersQa→x, Qa→b c, T a→b c, Sa→b c, πa, and
that there exist matricesGa ∈ R

(m×m) for all a ∈
N such that eachGa is invertible, and such that:

1. For all rules a→ b c, Ca→b c(y) =
GcT a→b cdiag(yGbSa→b c)Qa→b c(Ga)−1

2. For all rulesa→ x, c∞a→x = 1⊤Qa→x(Ga)−1

3. For all a ∈ I, c1a = Gaπa

Then: 1) The algorithm in figure 2 correctly com-
putesp(r1 . . . rN ) under the L-PCFG. 2) The algo-
rithm in figure 3 correctly computes the marginals
µ(a, i, j) under the L-PCFG.

Proof: See section 9.1.

6 Estimating the Tensor Model
A crucial result is that it is possible to directly esti-
mate parametersCa→b c, c∞a→x andc1a that satisfy the
conditions in theorem 1, from a training sample con-
sisting of s-trees (i.e., trees where hidden variables
are unobserved). We first describe random variables
underlying the approach, then describe observable
representations based on these random variables.

6.1 Random Variables Underlying the Approach

Each s-tree withN rulesr1 . . . rN hasN nodes. We
will use the s-tree in figure 1 as a running example.

Each node has an associated rule: for example,
node2 in the tree in figure 1 has the ruleNP→ D N.
If the rule at a node is of the forma→ b c, then there
are left and rightinside treesbelow the left child and
right child of the rule. For example, for node2 we
have a left inside tree rooted at node3, and a right
inside tree rooted at node4 (in this case the left and
right inside trees both contain only a single rule pro-
duction, of the forma → x; however in the general
case they might be arbitrary subtrees).

In addition, each node has anoutsidetree. For
node 2, the outside tree is

S

NP VP

V

saw

P

him

Inputs: Sentencex1 . . . xN , L-PCFG(N , I,P ,m, n), param-
etersCa→b c ∈ R

(m×m×m) for all a→ b c ∈ R, c∞a→x ∈
R

(1×m) for all a ∈ P , x ∈ [n], c1a ∈ R
(m×1) for all a ∈ I.

Data structures:

• Eachαa,i,j ∈ R
1×m for a ∈ N , 1 ≤ i ≤ j ≤ N is a

row vector of inside terms.

• Eachβa,i,j ∈ R
m×1 for a ∈ N , 1 ≤ i ≤ j ≤ N is a

column vector of outside terms.

• Eachµ(a, i, j) ∈ R for a ∈ N , 1 ≤ i ≤ j ≤ N is a
marginal probability.

Algorithm:
(Inside base case)∀a ∈ P , i ∈ [N ], αa,i,i = c∞a→xi

(Inside recursion)∀a ∈ I, 1 ≤ i < j ≤ N,

αa,i,j =

j−1∑

k=i

∑

a→b c

αc,k+1,jCa→b c(αb,i,k)

(Outside base case)∀a ∈ I, βa,1,n = c1a
(Outside recursion)∀a ∈ N , 1 ≤ i ≤ j ≤ N,

βa,i,j =
i−1∑

k=1

∑

b→c a

Cb→c a(αc,k,i−1)βb,k,j

+
N∑

k=j+1

∑

b→a c

Cb→a c
∗ (αc,j+1,k)βb,i,k

(Marginals)∀a ∈ N , 1 ≤ i ≤ j ≤ N,

µ(a, i, j) = αa,i,jβa,i,j =
∑

h∈[m]

αa,i,j
h βa,i,j

h

Figure 3: The tensor form of the inside-outside algorithm,
for calculation of marginal termsµ(a, i, j).

The outside tree contains everything in the s-tree
r1 . . . rN , excluding the subtree below nodei.

Our random variables are defined as follows.
First, we select a random internal node, from a ran-
dom tree, as follows:

• Sample an s-treer1 . . . rN from the PMF
p(r1 . . . rN ). Choose a nodei uniformly at ran-
dom from[N ].

If the ruleri for the nodei is of the forma→ b c,
we define random variables as follows:
• R1 is equal to the ruleri (e.g.,NP→ D N).
• T1 is the inside tree rooted at nodei. T2 is the

inside tree rooted at the left child of nodei, andT3
is the inside tree rooted at the right child of nodei.
• H1,H2,H3 are the hidden variables associated

with nodei, the left child of nodei, and the right
child of nodei respectively.
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• A1, A2, A3 are the labels for nodei, the left
child of nodei, and the right child of nodei respec-
tively. (E.g.,A1 = NP,A2 = D,A3 = N.)
• O is the outside tree at nodei.
• B is equal to1 if nodei is at the root of the tree

(i.e., i = 1), 0 otherwise.
If the rule ri for the selected nodei is of

the form a → x, we have random vari-
ablesR1, T1,H1, A1, O,B as defined above, but
H2,H3, T2, T3, A2, andA3 are not defined.

We assume a functionψ that maps outside treeso
to feature vectorsψ(o) ∈ R

d′ . For example, the fea-
ture vector might track the rule directly above the
node in question, the word following the node in
question, and so on. We also assume a functionφ
that maps inside treest to feature vectorsφ(t) ∈ R

d.
As one example, the functionφ might be an indica-
tor function tracking the rule production at the root
of the inside tree. Later we give formal criteria for
what makes good definitions ofψ(o) of φ(t). One
requirement is thatd′ ≥ m andd ≥ m.

In tandem with these definitions, we assume pro-
jection maticesUa ∈ R

(d×m) andV a ∈ R
(d′×m)

for all a ∈ N . We then define additional random
variablesY1, Y2, Y3, Z as

Y1 = (Ua1)⊤φ(T1) Z = (V a1)⊤ψ(O)

Y2 = (Ua2)⊤φ(T2) Y3 = (Ua3)⊤φ(T3)

whereai is the value of the random variableAi.
Note thatY1, Y2, Y3, Z are all inRm.

6.2 Observable Representations

Given the definitions in the previous section, our
representation is based on the following matrix, ten-
sor and vector quantities, defined for alla ∈ N , for
all rules of the forma→ b c, and for all rules of the
form a→ x respectively:

Σa = E[Y1Z
⊤|A1 = a]

Da→b c = E

[

[[R1 = a→ b c]]Y3Z
⊤Y ⊤2 |A1 = a

]

d∞a→x = E

[

[[R1 = a→ x]]Z⊤|A1 = a
]

Assuming access to functionsφ andψ, and projec-
tion matricesUa andV a, these quantities can be es-
timated directly from training data consisting of a
set of s-trees (see section 7).

Our observable representation then consists of:

Ca→b c(y) = Da→b c(y)(Σa)−1 (2)

c∞a→x = d∞a→x(Σ
a)−1 (3)

c1a = E [[[A1 = a]]Y1|B = 1] (4)

We next introduce conditions under which these
quantities satisfy the conditions in theorem 1.

The following definition will be important:

Definition 2 For all a ∈ N , we define the matrices
Ia ∈ R

(d×m) andJa ∈ R
(d′×m) as

[Ia]i,h = E[φi(T1) | H1 = h,A1 = a]

[Ja]i,h = E[ψi(O) | H1 = h,A1 = a]

In addition, for anya ∈ N , we useγa ∈ R
m to

denote the vector withγah = P (H1 = h|A1 = a).

The correctness of the representation will rely on
the following conditions being satisfied (these are
parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 ∀a ∈ N , the matricesIa and Ja are
of full rank (i.e., they have rankm). For all a ∈ N ,
for all h ∈ [m], γah > 0.

Condition 2 ∀a ∈ N , the matricesUa ∈ R
(d×m)

andV a ∈ R
(d′×m) are such that the matricesGa =

(Ua)⊤Ia andKa = (V a)⊤Ja are invertible.

The following lemma justifies the use of an SVD
calculation as one method for finding values forUa

andV a that satisfy condition 2:

Lemma 1 Assume that condition 1 holds, and for
all a ∈ N define

Ωa = E[φ(T1) (ψ(O))⊤ |A1 = a] (5)

Then ifUa is a matrix of them left singular vec-
tors ofΩa corresponding to non-zero singular val-
ues, andV a is a matrix of them right singular vec-
tors ofΩa corresponding to non-zero singular val-
ues, then condition 2 is satisfied.

Proof sketch: It can be shown thatΩa =
Iadiag(γa)(Ja)⊤. The remainder is similar to the
proof of lemma 2 in Hsu et al. (2009).

The matricesΩa can be estimated directly from a
training set consisting of s-trees, assuming that we
have access to the functionsφ andψ.

We can now state the following theorem:
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Theorem 2 Assume conditions 1 and 2 are satisfied.
For all a ∈ N , defineGa = (Ua)⊤Ia. Then under
the definitions in Eqs. 2-4:

1. For all rules a→ b c, Ca→b c(y) =
GcT a→b cdiag(yGbSa→b c)Qa→b c(Ga)−1

2. For all rulesa→ x, c∞a→x = 1⊤Qa→x(Ga)−1.

3. For all a ∈ N , c1a = Gaπa

Proof: The following identities hold (see sec-
tion 9.2):

Da→b c(y) = (6)

GcT a→b cdiag(yGbSa→b c)Qa→b cdiag(γa)(Ka)⊤

d∞a→x = 1⊤Qa→xdiag(γa)(Ka)⊤ (7)

Σa = Gadiag(γa)(Ka)⊤ (8)

c1a = Gaπa (9)

Under conditions 1 and 2,Σa is invertible, and
(Σa)−1 = ((Ka)⊤)−1(diag(γa))−1(Ga)−1. The
identities in the theorem follow immediately.

7 Deriving Empirical Estimates
Figure 4 shows an algorithm that derives esti-
mates of the quantities in Eqs 2, 3, and 4. As
input, the algorithm takes a sequence of tuples
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i ∈ [M ].

These tuples can be derived from a training set
consisting of s-treesτ1 . . . τM as follows:
• ∀i ∈ [M ], choose a single nodeji uniformly at

random from the nodes inτi. Definer(i,1) to be the
rule at nodeji. t(i,1) is the inside tree rooted at node
ji. If r(i,1) is of the forma→ b c, thent(i,2) is the
inside tree under the left child of nodeji, andt(i,3)

is the inside tree under the right child of nodeji. If
r(i,1) is of the forma → x, thent(i,2) = t(i,3) =
NULL. o(i) is the outside tree at nodeji. b(i) is 1 if
nodeji is at the root of the tree,0 otherwise.

Under this process, assuming that the s-trees
τ1 . . . τM are i.i.d. draws from the distribution
p(τ) over s-trees under an L-PCFG, the tuples
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) are i.i.d. draws
from the joint distribution over the random variables
R1, T1, T2, T3, O,B defined in the previous section.

The algorithm first computes estimates of the pro-
jection matricesUa and V a: following lemma 1,
this is done by first deriving estimates ofΩa,
and then taking SVDs of eachΩa. The matrices
are then used to project inside and outside trees

t(i,1), t(i,2), t(i,3), o(i) down tom-dimensional vec-
torsy(i,1), y(i,2), y(i,3), z(i); these vectors are used to
derive the estimates ofCa→b c, c∞a→x, andc1a.

We now state a PAC-style theorem for the learning
algorithm. First, for a given L-PCFG, we need a
couple of definitions:
• Λ is the minimum absolute value of any element

of the vectors/matrices/tensorsc1a, d∞a→x, Da→b c,
(Σa)−1. (Note thatΛ is a function of the projec-
tion matricesUa andV a as well as the underlying
L-PCFG.)
• For eacha ∈ N , σa is the value of them’th

largest singular value ofΩa. Defineσ = mina σ
a.

We then have the following theorem:

Theorem 3 Assume that the inputs to the algorithm
in figure 4 are i.i.d. draws from the joint distribution
over the random variablesR1, T1, T2, T3, O,B, un-
der an L-PCFG with distributionp(r1 . . . rN ) over
s-trees. Definem to be the number of latent states
in the L-PCFG. Assume that the algorithm in fig-
ure 4 has projection matriceŝUa andV̂ a derived as
left and right singular vectors ofΩa, as defined in
Eq. 5. Assume that the L-PCFG, together withÛa

and V̂ a, has coefficientsΛ > 0 andσ > 0. In addi-
tion, assume that all elements inc1a, d∞a→x, Da→b c,
andΣa are in [−1,+1]. For any s-treer1 . . . rN de-
fine p̂(r1 . . . rN ) to be the value calculated by the
algorithm in figure 3 with inputŝc1a, ĉ∞a→x, Ĉ

a→b c

derived from the algorithm in figure 4. DefineR to
be the total number of rules in the grammar of the
form a→ b c or a → x. DefineMa to be the num-
ber of training examples in the input to the algorithm
in figure 4 whereri,1 has non-terminala on its left-
hand-side. Under these assumptions, if for alla

Ma ≥
128m2

(

2N+1
√
1 + ǫ− 1

)2
Λ2σ4

log

(

2mR

δ

)

Then
1− ǫ ≤

∣

∣

∣

∣

p̂(r1 . . . rN )

p(r1 . . . rN )

∣

∣

∣

∣

≤ 1 + ǫ

A similar theorem (omitted for space) states that

1− ǫ ≤
∣

∣

∣

µ̂(a,i,j)
µ(a,i,j)

∣

∣

∣
≤ 1 + ǫ for the marginals.

The condition thatÛa and V̂ a are derived from
Ωa, as opposed to the sample estimateΩ̂a, follows
Foster et al. (2012). As these authors note, similar
techniques to those of Hsu et al. (2009) should be
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applicable in deriving results for the case whereΩ̂a

is used in place ofΩa.
Proof sketch:The proof is similar to that of Foster

et al. (2012). The basic idea is to first show that
under the assumptions of the theorem, the estimates
ĉ1a, d̂∞a→x, D̂

a→b c, Σ̂a are all close to the underlying
values being estimated. The second step is to show
that this ensures thatp̂(r1...rN′ )

p(r1...rN′ )
is close to1.

The method described of selecting a single tuple
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for each s-tree en-
sures that the samples are i.i.d., and simplifies the
analysis underlying theorem 3. In practice, an im-
plementation should most likely use all nodes in all
trees in training data; by Rao-Blackwellization we
know such an algorithm would be better than the
one presented, but the analysis of how much better
would be challenging. It would almost certainly lead
to a faster rate of convergence ofp̂ to p.

8 Discussion
There are several potential applications of the
method. The most obvious is parsing with L-
PCFGs.1 The approach should be applicable in other
cases where EM has traditionally been used, for ex-
ample in semi-supervised learning. Latent-variable
HMMs for sequence labeling can be derived as spe-
cial case of our approach, by converting tagged se-
quences to right-branching skeletal trees.

The sample complexity of the method depends on
the minimum singular values ofΩa; these singular
values are a measure of how well correlatedψ and
φ are with the unobserved hidden variableH1. Ex-
perimental work is required to find a good choice of
values forψ andφ for parsing.

9 Proofs
This section gives proofs of theorems 1 and 2. Due
to space limitations we cannot give full proofs; in-
stead we provide proofs of some key lemmas. A
long version of this paper will give the full proofs.

9.1 Proof of Theorem 1

First, the following lemma leads directly to the cor-
rectness of the algorithm in figure 2:

1Parameters can be estimated using the algorithm in
figure 4; for a test sentencex1 . . . xN we can first
use the algorithm in figure 3 to calculate marginals
µ(a, i, j), then use the algorithm of Goodman (1996) to find
argmaxτ∈T (x)

∑
(a,i,j)∈τ µ(a, i, j).

Inputs: Training examples(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i))
for i ∈ {1 . . .M}, wherer(i,1) is a context free rule;t(i,1),
t(i,2) and t(i,3) are inside trees;o(i) is an outside tree; and
b(i) = 1 if the rule is at the root of tree,0 otherwise. A function
φ that maps inside treest to feature-vectorsφ(t) ∈ R

d. A func-

tionψ that maps outside treeso to feature-vectorsψ(o) ∈ R
d′

.
Algorithm:
Defineai to be the non-terminal on the left-hand side of rule
r(i,1). If r(i,1) is of the forma→ b c, definebi to be the non-
terminal for the left-child ofr(i,1), andci to be the non-terminal
for the right-child.
(Step 0: Singular Value Decompositions)

• Use the algorithm in figure 5 to calculate matricesÛa ∈

R
(d×m) andV̂ a ∈ R

(d′
×m) for eacha ∈ N .

(Step 1: Projection)

• For all i ∈ [M ], computey(i,1) = (Ûai)⊤φ(t(i,1)).

• For all i ∈ [M ] such that r(i,1) is of the form
a→ b c, computey(i,2) = (Ûbi)⊤φ(t(i,2)) andy(i,3) =
(Ûci)⊤φ(t(i,3)).

• For all i ∈ [M ], computez(i) = (V̂ ai)⊤ψ(o(i)).

(Step 2: Calculate Correlations)

• For eacha ∈ N , defineδa = 1/
∑M

i=1[[ai = a]]

• For each rulea→ b c, compute D̂a→b c = δa ×∑M

i=1[[r
(i,1) = a→ b c]]y(i,3)(z(i))⊤(y(i,2))⊤

• For each rulea → x, compute d̂∞a→x = δa ×∑M

i=1[[r
(i,1) = a→ x]](z(i))⊤

• For each a ∈ N , compute Σ̂a = δa ×∑M

i=1[[ai = a]]y(i,1)(z(i))⊤

(Step 3: Compute Final Parameters)

• For alla→ b c, Ĉa→b c(y) = D̂a→b c(y)(Σ̂a)−1

• For alla→ x, ĉ∞a→x = d̂∞a→x(Σ̂
a)−1

• For alla ∈ I, ĉ1a =
∑M

i=1[[ai=a andb(i)=1]]y(i,1)

∑
M
i=1[[b

(i)=1]]

Figure 4: The spectral learning algorithm.

Inputs: Identical to algorithm in figure 4.
Algorithm:
• For eacha ∈ N , computeΩ̂a ∈ R

(d′
×d) as

Ω̂a =

∑M

i=1[[ai = a]]φ(t(i,1))(ψ(o(i)))⊤
∑M

i=1[[ai = a]]

and calculate a singular value decomposition ofΩ̂a.
• For eacha ∈ N , defineÛa ∈ R

m×d to be a matrix of the left
singular vectors of̂Ωa corresponding to them largest singular

values. DefinêV a ∈ R
m×d′

to be a matrix of the right singular
vectors ofΩ̂a corresponding to them largest singular values.

Figure 5: Singular value decompositions.
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Lemma 2 Assume that conditions 1-3 of theorem 1
are satisfied, and that the input to the algorithm in
figure 2 is an s-treer1 . . . rN . Defineai for i ∈ [N ]
to be the non-terminal on the left-hand-side of rule
ri, and ti for i ∈ [N ] to be the s-tree with ruleri
at its root. Finally, for all i ∈ [N ], define the row
vectorbi ∈ R

(1×m) to have components

bih = P (Ti = ti|Hi = h,Ai = ai)

for h ∈ [m]. Then for alli ∈ [N ], f i = bi(G(ai))−1.
It follows immediately that

f1c1a1 = b1(G(a1))−1Ga1πa1 = p(r1 . . . rN )

This lemma shows a direct link between the vec-
torsf i calculated in the algorithm, and the termsbih,
which are terms calculated by the conventional in-
side algorithm: eachf i is a linear transformation
(throughGai) of the corresponding vectorbi.
Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for
any i such thatai ∈ P—we havebih = q(ri|h, ai),
and it is easily verified thatf i = bi(G(ai))−1.

The inductive case is as follows. For alli ∈ [N ]
such thatai ∈ I, by the definition in the algorithm,

f i = fγCri(fβ)

= fγGaγT ridiag(fβGaβSri)Qri(Gai)−1

Assuming by induction thatfγ = bγ(G(aγ ))−1 and
fβ = bβ(G(aβ))−1, this simplifies to

f i = κrdiag(κl)Qri(Gai)−1 (10)

whereκr = bγT ri , andκl = bβSri . κr is a row
vector with componentsκrh =

∑

h′∈[m] b
γ
h′T

ri
h′,h =

∑

h′∈[m] b
γ
h′t(h

′|h, ri). Similarly, κl is a row vector

with components equal toκlh =
∑

h′∈[m] b
β
h′S

ri
h′,h =

∑

h′∈[m] b
β
h′s(h

′|h, ri). It can then be verified that

κrdiag(κl)Qri is a row vector with components
equal toκrhκ

l
hq(ri|h, ai).

But bih = q(ri|h, ai)×
(

∑

h′∈[m] b
γ
h′t(h

′|h, ri)
)

×
(

∑

h′∈[m] b
β
h′s(h

′|h, ri)
)

= q(ri|h, ai)κrhκlh, hence

κrdiag(κl)Qri = bi and the inductive case follows
immediately from Eq. 10.

Next, we give a similar lemma, which implies the
correctness of the algorithm in figure 3:

Lemma 3 Assume that conditions 1-3 of theorem 1
are satisfied, and that the input to the algorithm in
figure 3 is a sentencex1 . . . xN . For anya ∈ N , for
any1 ≤ i ≤ j ≤ N , defineᾱa,i,j ∈ R

(1×m) to have
components̄αa,i,j

h = p(xi . . . xj|h, a) for h ∈ [m].
In addition, defineβ̄a,i,j ∈ R

(m×1) to have compo-
nentsβ̄a,i,jh = p(x1 . . . xi−1, a(h), xj+1 . . . xN ) for
h ∈ [m]. Then for alli ∈ [N ],αa,i,j = ᾱa,i,j(Ga)−1

andβa,i,j = Gaβ̄a,i,j. It follows that for all(a, i, j),

µ(a, i, j) = ᾱa,i,j(Ga)−1Gaβ̄a,i,j = ᾱa,i,j β̄a,i,j

=
∑

h

ᾱa,i,j
h β̄a,i,jh =

∑

τ∈T (x):(a,i,j)∈τ

p(τ)

Thus the vectorsαa,i,j andβa,i,j are linearly re-
lated to the vectors̄αa,i,j and β̄a,i,j, which are the
inside and outside terms calculated by the conven-
tional form of the inside-outside algorithm.

The proof is by induction, and is similar to the
proof of lemma 2; for reasons of space it is omitted.

9.2 Proof of the Identity in Eq. 6

We now prove the identity in Eq. 6, used in the proof
of theorem 2. For reasons of space, we do not give
the proofs of identities 7-9: the proofs are similar.

The following identities can be verified:

P (R1 = a→ b c|H1 = h,A1 = a) = q(a→ b c|h, a)
E [Y3,j|H1 = h,R1 = a→ b c] = Ea→b c

j,h

E [Zk|H1 = h,R1 = a→ b c] = Ka
k,h

E [Y2,l|H1 = h,R1 = a→ b c] = F a→b c
l,h

whereEa→b c = GcT a→b c, F a→b c = GbSa→b c.
Y3, Z andY2 are independent when conditioned

onH1, R1 (this follows from the independence as-
sumptions in the L-PCFG), hence

E [[[R1 = a→ b c]]Y3,jZkY2,l | H1 = h,A1 = a]

= q(a→ b c|h, a)Ea→b c
j,h Ka

k,hF
a→b c
l,h

Hence (recall thatγah = P (H1 = h|A1 = a)),

Da→b c
j,k,l = E [[[R1 = a→ b c]]Y3,jZkY2,l | A1 = a]

=
∑

h

γahE [[[R1 = a→ b c]]Y3,jZkY2,l | H1 = h,A1 = a]

=
∑

h

γahq(a→ b c|h, a)Ea→b c
j,h Ka

k,hF
a→b c
l,h (11)

from which Eq. 6 follows.
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Abstract

We address the issue of consuming heteroge-
neous annotation data for Chinese word seg-
mentation and part-of-speech tagging. We em-
pirically analyze the diversity between two
representative corpora, i.e. Penn Chinese
Treebank (CTB) and PKU’s People’s Daily
(PPD), on manually mapped data, and show
that their linguistic annotations are systemat-
ically different and highly compatible. The
analysis is further exploited to improve pro-
cessing accuracy by (1) integrating systems
that are respectively trained on heterogeneous
annotations to reduce the approximation error,
and (2) re-training models with high quality
automatically converted data to reduce the es-
timation error. Evaluation on the CTB and
PPD data shows that our novel model achieves
a relative error reduction of 11% over the best
reported result in the literature.

1 Introduction

A majority of data-driven NLP systems rely on
large-scale, manually annotated corpora that are im-
portant to train statistical models but very expensive
to build. Nowadays, for many tasks, multiple het-
erogeneous annotated corpora have been built and
publicly available. For example, the Penn Treebank
is popular to train PCFG-based parsers, while the
Redwoods Treebank is well known for HPSG re-
search; the Propbank is favored to build general se-
mantic role labeling systems, while the FrameNet is
attractive for predicate-specific labeling. The anno-

∗This work is mainly finished when the first author was
in Saarland University and DFKI. Both authors are the corre-
sponding authors.

tation schemes in different projects are usually dif-
ferent, since the underlying linguistic theories vary
and have different ways to explain the same lan-
guage phenomena. Though statistical NLP systems
usually are not bound to specific annotation stan-
dards, almost all of them assume homogeneous an-
notation in the training corpus. The co-existence of
heterogeneous annotation data therefore presents a
new challenge to the consumers of such resources.

There are two essential characteristics of hetero-
geneous annotations that can be utilized to reduce
two main types of errors in statistical NLP, i.e. the
approximation error that is due to the intrinsic sub-
optimality of a model and the estimation error that is
due to having only finite training data. First, hetero-
geneous annotations are (similar but) different as a
result of different annotation schemata. Systems re-
spectively trained on heterogeneous annotation data
can produce different but relevant linguistic analy-
sis. This suggests that complementary features from
heterogeneous analysis can be derived for disam-
biguation, and therefore the approximation error can
be reduced. Second, heterogeneous annotations are
(different but) similar because their linguistic analy-
sis is highly correlated. This implies that appropriate
conversions between heterogeneous corpora could
be reasonably accurate, and therefore the estimation
error can be reduced by reason of the increase of re-
liable training data.

This paper explores heterogeneous annotations
to reduce both approximation and estimation errors
for Chinese word segmentation and part-of-speech
(POS) tagging, which are fundamental steps for
more advanced Chinese language processing tasks.
We empirically analyze the diversity between two
representative popular heterogeneous corpora, i.e.
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Penn Chinese Treebank (CTB) and PKU’s People’s
Daily (PPD). To that end, we manually label 200
sentences from CTB with PPD-style annotations.1

Our analysis confirms the aforementioned two prop-
erties of heterogeneous annotations. Inspired by
the sub-word tagging method introduced in (Sun,
2011), we propose a structure-based stacking model
to fully utilize heterogeneous word structures to re-
duce the approximation error. In particular, joint
word segmentation and POS tagging is addressed
as a two step process. First, character-based tag-
gers are respectively trained on heterogeneous an-
notations to produce multiple analysis. The outputs
of these taggers are then merged into sub-word se-
quences, which are further re-segmented and tagged
by a sub-word tagger. The sub-word tagger is de-
signed to refine the tagging result with the help of
heterogeneous annotations. To reduce the estima-
tion error, we employ a learning-based approach to
convert complementary heterogeneous data to in-
crease labeled training data for the target task. Both
the character-based tagger and the sub-word tagger
can be refined by re-training with automatically con-
verted data.

We conduct experiments on the CTB and PPD
data, and compare our system with state-of-the-
art systems. Our structure-based stacking model
achieves an f-score of 94.36, which is superior to
a feature-based stacking model introduced in (Jiang
et al., 2009). The converted data can also enhance
the baseline model. A simple character-based model
can be improved from 93.41 to 94.11. Since the
two treatments are concerned with reducing differ-
ent types of errors and thus not fully overlapping, the
combination of them gives a further improvement.
Our final system achieves an f-score of 94.68, which
yields a relative error reduction of 11% over the best
published result (94.02).

2 Joint Chinese Word Segmentation and
POS Tagging

Different from English and other Western languages,
Chinese is written without explicit word delimiters
such as space characters. To find and classify the

1The first 200 sentences of the development data for experi-
ments are selected. This data set is submitted as a supplemental
material for research purposes.

basic language units, i.e. words, word segmentation
and POS tagging are important initial steps for Chi-
nese language processing. Supervised learning with
specifically defined training data has become a dom-
inant paradigm. Joint approaches that resolve the
two tasks simultaneously have received much atten-
tion in recent research. Previous work has shown
that joint solutions led to accuracy improvements
over pipelined systems by avoiding segmentation er-
ror propagation and exploiting POS information to
help segmentation (Ng and Low, 2004; Jiang et al.,
2008a; Zhang and Clark, 2008; Sun, 2011).

Two kinds of approaches are popular for joint
word segmentation and POS tagging. The first is the
“character-based” approach, where basic processing
units are characters which compose words (Jiang et
al., 2008a). In this kind of approach, the task is for-
mulated as the classification of characters into POS
tags with boundary information. For example, the
label B-NN indicates that a character is located at the
begging of a noun. Using this method, POS infor-
mation is allowed to interact with segmentation. The
second kind of solution is the “word-based” method,
also known as semi-Markov tagging (Zhang and
Clark, 2008; Zhang and Clark, 2010), where the ba-
sic predicting units are words themselves. This kind
of solver sequentially decides whether the local se-
quence of characters makes up a word as well as its
possible POS tag. Solvers may use previously pre-
dicted words and their POS information as clues to
process a new word.

In addition, we proposed an effective and efficient
stacked sub-word tagging model, which combines
strengths of both character-based and word-based
approaches (Sun, 2011). First, different character-
based and word-based models are trained to produce
multiple segmentation and tagging results. Sec-
ond, the outputs of these coarse-grained models are
merged into sub-word sequences, which are fur-
ther bracketed and labeled with POS tags by a fine-
grained sub-word tagger. Their solution can be
viewed as utilizing stacked learning to integrate het-
erogeneous models.

Supervised segmentation and tagging can be im-
proved by exploiting rich linguistic resources. Jiang
et al. (2009) presented a preliminary study for an-
notation ensemble, which motivates our research as
well as similar investigations for other NLP tasks,
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e.g. parsing (Niu et al., 2009; Sun et al., 2010). In
their solution, heterogeneous data is used to train an
auxiliary segmentation and tagging system to pro-
duce informative features for target prediction. Our
previous work (Sun and Xu, 2011) and Wang et al.
(2011) explored unlabeled data to enhance strong
supervised segmenters and taggers. Both of their
work fall into the category of feature induction based
semi-supervised learning. In brief, their methods
harvest useful string knowledge from unlabeled or
automatically analyzed data, and apply the knowl-
edge to design new features for discriminative learn-
ing.

3 About Heterogeneous Annotations

For Chinese word segmentation and POS tag-
ging, supervised learning has become a dominant
paradigm. Much of the progress is due to the devel-
opment of both corpora and machine learning tech-
niques. Although several institutions to date have
released their segmented and POS tagged data, ac-
quiring sufficient quantities of high quality training
examples is still a major bottleneck. The annotation
schemes of existing lexical resources are different,
since the underlying linguistic theories vary. Despite
the existence of multiple resources, such data cannot
be simply put together for training systems, because
almost all of statistical NLP systems assume homo-
geneous annotation. Therefore, it is not only inter-
esting but also important to study how to fully utilize
heterogeneous resources to improve Chinese lexical
processing.

There are two main types of errors in statistical
NLP: (1) the approximation error that is due to the
intrinsic suboptimality of a model and (2) the esti-
mation error that is due to having only finite train-
ing data. Take Chinese word segmentation for ex-
ample. Our previous analysis (Sun, 2010) shows
that one main intrinsic disadvantage of character-
based model is the difficulty in incorporating the
whole word information, while one main disadvan-
tage of word-based model is the weak ability to ex-
press word formation. In both models, the signifi-
cant decrease of the prediction accuracy of out-of-
vocabulary (OOV) words indicates the impact of the
estimation error. The two essential characteristics
about systematic diversity of heterogeneous annota-

tions can be utilized to reduce both approximation
and estimation errors.

3.1 Analysis of the CTB and PPD Standards
This paper focuses on two representative popular
corpora for Chinese lexical processing: (1) the Penn
Chinese Treebank (CTB) and (2) the PKU’s Peo-
ple’s Daily data (PPD). To analyze the diversity be-
tween their annotation standards, we pick up 200
sentences from CTB and manually label them ac-
cording to the PPD standard. Specially, we employ a
PPD-style segmentation and tagging system to auto-
matically label these 200 sentences. A linguistic ex-
pert who deeply understands the PPD standard then
manually checks the automatic analysis and corrects
its errors.

These 200 sentences are segmented as 3886 and
3882 words respectively according to the CTB and
PPD standards. The average lengths of word tokens
are almost the same. However, the word bound-
aries or the definitions of words are different. 3561
word tokens are consistently segmented by both
standards. In other words, 91.7% CTB word tokens
share the same word boundaries with 91.6% PPD
word tokens. Among these 3561 words, there are
552 punctuations that are simply consistently seg-
mented. If punctuations are filtered out to avoid
overestimation of consistency, 90.4% CTB words
have same boundaries with 90.3% PPD words. The
boundaries of words that are differently segmented
are compatible. Among all annotations, only one
cross-bracketing occurs. The statistics indicates that
the two heterogenous segmented corpora are sys-
tematically different, and confirms the aforemen-
tioned two properties of heterogeneous annotations.

Table 1 is the mapping between CTB-style tags
and PPD-style tags. For the definition and illus-
tration of these tags, please refers to the annotation
guidelines2. The statistics after colons are how many
times this POS tag pair appears among the 3561
words that are consistently segmented. From this ta-
ble, we can see that (1) there is no one-to-one map-
ping between their heterogeneous word classifica-
tion but (2) the mapping between heterogeneous tags
is not very uncertain. This simple analysis indicates

2Available at http://www.cis.upenn.edu/

˜chinese/posguide.3rd.ch.pdf and http://www.
icl.pku.edu.cn/icl_groups/corpus/spec.htm.
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that the two POS tagged corpora also hold the two
properties of heterogeneous annotations. The dif-
ferences between the POS annotation standards are
systematic. The annotations in CTB are treebank-
driven, and thus consider more functional (dynamic)
information of basic lexical categories. The annota-
tions in PPD are lexicon-driven, and thus focus on
more static properties of words. Limited to the doc-
ument length, we only illustrate the annotation of
verbs and nouns for better understanding of the dif-
ferences.

• The CTB tag VV indicates common verbs that
are mainly labeled as verbs (v) too according
to the PPD standard. However, these words can
be also tagged as nominal categories (a, vn, n).
The main reason is that there are a large num-
ber of Chinese adjectives and nouns that can be
realized as predicates without linking verbs.

• The tag NN indicates common nouns in CTB.
Some of them are labeled as verbal categories
(vn, v). The main reason is that a majority of
Chinese verbs could be realized as subjects and
objects without form changes.

4 Structure-based Stacking

4.1 Reducing the Approximation Error via
Stacking

Each annotation data set alone can yield a predictor
that can be taken as a mechanism to produce struc-
tured texts. With different training data, we can con-
struct multiple heterogeneous systems. These sys-
tems produce similar linguistic analysis which holds
the same high level linguistic principles but differ in
details. A very simple idea to take advantage of het-
erogeneous structures is to design a predictor which
can predict a more accurate target structure based
on the input, the less accurate target structure and
complementary structures. This idea is very close
to stacked learning (Wolpert, 1992), which is well
developed for ensemble learning, and successfully
applied to some NLP tasks, e.g. dependency parsing
(Nivre and McDonald, 2008; Torres Martins et al.,
2008).

Formally speaking, our idea is to include two
“levels” of processing. The first level includes one

AS⇒ u:44; CD⇒ m:134;
DEC⇒ u:83; DEV⇒ u:7;
DEG⇒ u:123; ETC⇒ u:9;
LB⇒ p:1; NT⇒ t:98;
OD⇒ m:41; PU⇒ w:552;
SP⇒ u:1; VC⇒ v:32;
VE⇒ v:13; BA⇒ p:2; d:1;
CS⇒ c:3; d:1; DT⇒ r:15; b:1;
MSP⇒ c:2; u:1; PN⇒ r:53; n:2;
CC⇒ c:73; p:5; v:2; M⇒ q:101; n:11; v:1;
LC⇒ f:51; Ng:3; v:1; u:1; P⇒ p:133; v:4; c:2; Vg:1;
VA ⇒ a:57; i:4; z:2; ad:1;
b:1;

NR ⇒ ns:170; nr:65; j:23;
nt:21; nz:7; n:2; s:1;

VV ⇒ v:382; i:5; a:3; Vg:2;
vn:2; n:2; p:2; w:1;

JJ ⇒ a:43; b:13; n:3; vn:3;
d:2; j:2; f:2; t:2; z:1;

AD⇒ d:149; c:11; ad:6; z:4;
a:3; v:2; n:1; r:1; m:1; f:1;
t:1;

NN ⇒ n:738; vn:135; v:26;
j:19; Ng:5; an:5; a:3; r:3; s:3;
Ag:2; nt:2; f:2; q:2; i:1; t:1;
nz:1; b:1;

Table 1: Mapping between CTB and PPD POS Tags.

or more base predictors f1, ..., fK that are indepen-
dently built on different training data. The second
level processing consists of an inference function h
that takes as input 〈x, f1(x), ..., fK(x)〉3 and out-
puts a final prediction h(x, f1(x), ..., fK(x)). The
only difference between model ensemble and anno-
tation ensemble is that the output spaces of model
ensemble are the same while the output spaces of an-
notation ensemble are different. This framework is
general and flexible, in the sense that it assumes al-
most nothing about the individual systems and take
them as black boxes.

4.2 A Character-based Tagger

With IOB2 representation (Ramshaw and Marcus,
1995), the problem of joint segmentation and tag-
ging can be regarded as a character classification
task. Previous work shows that the character-based
approach is an effective method for Chinese lexical
processing. Both of our feature- and structure-based
stacking models employ base character-based tag-
gers to generate multiple segmentation and tagging
results. Our base tagger use a discriminative sequen-
tial classifier to predict the POS tag with positional
information for each character. Each character can
be assigned one of two possible boundary tags: “B”
for a character that begins a word and “I” for a char-
acter that occurs in the middle of a word. We denote

3x is a given Chinese sentence.

235



a candidate character token ci with a fixed window
ci−2ci−1cici+1ci+2. The following features are used
for classification:

• Character unigrams: ck (i− l ≤ k ≤ i + l)

• Character bigrams: ckck+1 (i− l ≤ k < i + l)

4.3 Feature-based Stacking
Jiang et al. (2009) introduced a feature-based stack-
ing solution for annotation ensemble. In their so-
lution, an auxiliary tagger CTagppd is trained on a
complementary corpus, i.e. PPD, to assist the tar-
get CTB-style tagging. To refine the character-based
tagger CTagctb, PPD-style character labels are di-
rectly incorporated as new features. The stacking
model relies on the ability of discriminative learning
method to explore informative features, which play
central role to boost the tagging performance. To
compare their feature-based stacking model and our
structure-based model, we implement a similar sys-
tem CTagppd→ctb. Apart from character uni/bigram
features, the PPD-style character labels are used to
derive the following features to enhance our CTB-
style tagger:

• Character label unigrams: cppd
k (i−lppd ≤ k ≤

i + lppd)

• Character label bigrams: cppd
k cppd

k+1 (i− lppd ≤
k < i + lppd)

In the above descriptions, l and lppd are the win-
dow sizes of features, which can be tuned on devel-
opment data.

4.4 Structure-based Stacking
We propose a novel structured-based stacking model
for the task, in which heterogeneous word struc-
tures are used not only to generate features but also
to derive a sub-word structure. Our work is in-
spired by the stacked sub-word tagging model in-
troduced in (Sun, 2011). Their work is motivated
by the diversity of heterogeneous models, while
our work is motivated by the diversity of heteroge-
neous annotations. The workflow of our new sys-
tem is shown in Figure 1. In the first phase, one
character-based CTB-style tagger (CTagctb) and
one character-based PPD-style tagger (CTagppd)
are respectively trained to produce heterogenous

Raw sentences

CTB-style character
tagger CTagctb

PPD-style character
tagger CTagppd

Segmented and
tagged sentences

Segmented and
tagged sentences

Merging

Sub-word
sequences

CTB-style
sub-word tag-
ger STagctb

Figure 1: Sub-word tagging based on heterogeneous tag-
gers.

word boundaries. In the second phase, this system
first combines the two segmentation and tagging re-
sults to get sub-words which maximize the agree-
ment about word boundaries. Finally, a fine-grained
sub-word tagger (STagctb) is applied to bracket sub-
words into words and also to label their POS tags.
We can also apply a PPD-style sub-word tagger. To
compare with previous work, we specially concen-
trate on the PPD-to-CTB adaptation.

Following (Sun, 2011), the intermediate sub-word
structures is defined to maximize the agreement of
CTagctb and CTagppd. In other words, the goal is
to make merged sub-words as large as possible but
not overlap with any predicted word produced by
the two taggers. If the position between two con-
tinuous characters is predicted as a word boundary
by any segmenter, this position is taken as a separa-
tion position of the sub-word sequence. This strat-
egy makes sure that it is still possible to correctly
re-segment the strings of which the boundaries are
disagreed with by the heterogeneous segmenters in
the sub-word tagging stage.

To train the sub-word tagger STagctb, features
are formed making use of both CTB-style and PPD-
style POS tags provided by the character-based tag-
gers. In the following description, “C” refers to the
content of a sub-word; “Tctb” and “Tppd” refers to
the positional POS tags generated from CTagctb and
CTagppd; lC , lctbT and lppd

T are the window sizes.
For convenience, we denote a sub-word with its con-
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text ...si−1sisi+1..., where si is the current token.
The following features are applied:

• Unigram features: C(sk) (i − lC ≤ k ≤ +lC),
Tctb(sk) (i − lctbT ≤ k ≤ i + lctbT ), Tppd(sk)
(i− lppd

T ≤ k ≤ i + lppd
T )

• Bigram features: C(sk)C(sk+1) (i − lC ≤ k <
i + lC), Tctb(sk)Tctb(sk+1) (i − lctbT ≤ k <

i + lctbT ), Tppd(sk)Tppd(sk+1) (i− lppd
T ≤ k <

i + lppd
T )

• C(si−1)C(si+1) (if lC ≥ 1),
Tctb(si−1)Tctb(si+1) (if lctbT ≥ 1),
Tppd(si−1)Tppd(si+1) (if lppd

T ≥ 1)

• Word formation features: character n-gram
prefixes and suffixes for n up to 3.

Cross-validation CTagctb and CTagppd are di-
rectly trained on the original training data, i.e. the
CTB and PPD data. Cross-validation technique has
been proved necessary to generate the training data
for sub-word tagging, since it deals with the train-
ing/test mismatch problem (Sun, 2011). To con-
struct training data for the new heterogeneous sub-
word tagger, a 10-fold cross-validation on the origi-
nal CTB data is performed too.

5 Data-driven Annotation Conversion

It is possible to acquire high quality labeled data
for a specific annotation standard by exploring ex-
isting heterogeneous corpora, since the annotations
are normally highly compatible. Moreover, the ex-
ploitation of additional (pseudo) labeled data aims to
reduce the estimation error and enhances a NLP sys-
tem in a different way from stacking. We therefore
expect the improvements are not much overlapping
and the combination of them can give a further im-
provement.

The stacking models can be viewed as annota-
tion converters: They take as input complementary
structures and produce as output target structures.
In other words, the stacking models actually learn
statistical models to transform the lexical represen-
tations. We can acquire informative extra samples
by processing the PPD data with our stacking mod-
els. Though the converted annotations are imperfect,
they are still helpful to reduce the estimation error.

Character-based Conversion The feature-based
stacking model CTagppd→ctb maps the input char-
acter sequence c and its PPD-style character label
sequence to the corresponding CTB-style character
label sequence. This model by itself can be taken as
a corpus conversion model to transform a PPD-style
analysis to a CTB-style analysis. By processing the
auxiliary corpus Dppd with CTagppd→ctb, we ac-
quire a new labeled data set D′ctb = D

CTagppd→ctb

ppd→ctb .
We can re-train the CTagctb model with both origi-
nal and converted data Dctb ∪D′ctb.

Sub-word-based Conversion Similarly, the
structure-based stacking model can be also taken
as a corpus conversion model. By processing the
auxiliary corpus Dppd with STagctb, we acquire
a new labeled data set D′′ctb = DSTagctb

ppd→ctb. We can
re-train the STagctb model with Dctb ∪ D′′ctb. If
we use the gold PPD-style labels of D′′ctb to extract
sub-words, the new model will overfit to the gold
PPD-style labels, which are unavailable at test time.
To avoid this training/test mismatch problem, we
also employ a 10-fold cross validation procedure to
add noise.

It is not a new topic to convert corpus from one
formalism to another. A well known work is trans-
forming Penn Treebank into resources for various
deep linguistic processing, including LTAG (Xia,
1999), CCG (Hockenmaier and Steedman, 2007),
HPSG (Miyao et al., 2004) and LFG (Cahill et al.,
2002). Such work for corpus conversion mainly
leverages rich sets of hand-crafted rules to convert
corpora. The construction of linguistic rules is usu-
ally time-consuming and the rules are not full cover-
age. Compared to rule-based conversion, our statis-
tical converters are much easier to built and empiri-
cally perform well.

6 Experiments

6.1 Setting

Previous studies on joint Chinese word segmenta-
tion and POS tagging have used the CTB in experi-
ments. We follow this setting in this paper. We use
CTB 5.0 as our main corpus and define the train-
ing, development and test sets according to (Jiang
et al., 2008a; Jiang et al., 2008b; Kruengkrai et al.,
2009; Zhang and Clark, 2010; Sun, 2011). Jiang et
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al. (2009) present a preliminary study for the annota-
tion adaptation topic, and conduct experiments with
the extra PPD data4. In other words, the CTB-sytle
annotation is the target analysis while the PPD-style
annotation is the complementary/auxiliary analysis.
Our experiments for annotation ensemble follows
their setting to lead to a fair comparison of our sys-
tem and theirs. A CRF learning toolkit, wapiti5

(Lavergne et al., 2010), is used to resolve sequence
labeling problems. Among several parameter esti-
mation methods provided by wapiti, our auxiliary
experiments indicate that the “rprop-” method works
best. Three metrics are used for evaluation: preci-
sion (P), recall (R) and balanced f-score (F) defined
by 2PR/(P+R). Precision is the relative amount of
correct words in the system output. Recall is the rel-
ative amount of correct words compared to the gold
standard annotations. A token is considered to be
correct if its boundaries match the boundaries of a
word in the gold standard and their POS tags are
identical.

6.2 Results of Stacking

Table 2 summarizes the segmentation and tagging
performance of the baseline and different stacking
models. The baseline of the character-based joint
solver (CTagctb) is competitive, and achieves an
f-score of 92.93. By using the character labels
from a heterogeneous solver (CTagppd), which is
trained on the PPD data set, the performance of this
character-based system (CTagppd→ctb) is improved
to 93.67. This result confirms the importance of a
heterogeneous structure. Our structure-based stack-
ing solution is effective and outperforms the feature-
based stacking. By better exploiting the heteroge-
neous word boundary structures, our sub-word tag-
ging model achieves an f-score of 94.03 (lctbT and
lppd
T are tuned on the development data and both set

to 1).
The contribution of the auxiliary tagger is two-

fold. On one hand, the heterogeneous solver pro-
vides structural information, which is the basis to
construct the sub-word sequence. On the other
hand, this tagger provides additional POS informa-
tion, which is helpful for disambiguation. To eval-

4http://icl.pku.edu.cn/icl_res/
5http://wapiti.limsi.fr/

Devel. P R F
CTagctb 93.28% 92.58% 92.93
CTagppd→ctb 93.89% 93.46% 93.67
STagctb 94.07% 93.99% 94.03

Table 2: Performance of different stacking models on the
development data.

uate these two contributions, we do another experi-
ment by just using the heterogeneous word boundary
structures without the POS information. The f-score
of this type of sub-word tagging is 93.73. This re-
sult indicates that both the word boundary and POS
information are helpful.

6.3 Learning Curves

We do additional experiments to evaluate the effect
of heterogeneous features as the amount of PPD data
is varied. Table 3 summarizes the f-score change.
The feature-based model works well only when a
considerable amount of heterogeneous data is avail-
able. When a small set is added, the performance is
even lower than the baseline (92.93). The structure-
based stacking model is more robust and obtains
consistent gains regardless of the size of the com-
plementary data.

PPD→ CTB
#CTB #PPD CTag STag

18104 7381 92.21 93.26
18104 14545 93.22 93.82
18104 21745 93.58 93.96
18104 28767 93.55 93.87
18104 35996 93.67 94.03
9052 9052 92.10 92.40

Table 3: F-scores relative to sizes of training data. Sizes
(shown in column #CTB and #PPD) are numbers of sen-
tences in each training corpus.

6.4 Results of Annotation Conversion

The stacking models can be viewed as data-driven
annotation converting models. However they are not
trained on “real” labeled samples. Although the tar-
get representation (CTB-style analysis in our case)
is gold standard, the input representation (PPD-style
analysis in our case) is labeled by a automatic tag-
ger CTagppd. To make clear whether these stacking

238



models trained with noisy inputs can tolerate per-
fect inputs, we evaluate the two stacking models on
our manually converted data. The accuracies pre-
sented in Table 4 indicate that though the conver-
sion models are learned by applying noisy data, they
can refine target tagging with gold auxiliary tagging.
Another interesting thing is that the gold PPD-style
analysis does not help the sub-word tagging model
as much as the character tagging model.

Auto PPD Gold PPD
CTagppd→ctb 93.69 95.19
STagctb 94.14 94.70

Table 4: F-scores with gold PPD-style tagging on the
manually converted data.

6.5 Results of Re-training
Table 5 shows accuracies of re-trained models. Note
that a sub-word tagger is built on character taggers,
so when we re-train a sub-word system, we should
consider whether or not re-training base character
taggers. The error rates decrease as automatically
converted data is added to the training pool, espe-
cially for the character-based tagger CTagctb. When
the base CTB-style tagging is improved, the final
tagging is improved in the end. The re-training does
not help the sub-word tagging much; the improve-
ment is very modest.

CTagctb STagctb P(%) R(%) F
Dctb ∪D′ctb - - 94.46 94.06 94.26
Dctb ∪D′ctb Dctb 94.61 94.43 94.52

Dctb Dctb ∪D′′ctb 94.05 94.08 94.06
Dctb ∪D′ctb Dctb ∪D′′ctb 94.71 94.53 94.62

Table 5: Performance of re-trained models on the devel-
opment data.

6.6 Comparison to the State-of-the-Art
Table 6 summarizes the tagging performance of
different systems. The baseline of the character-
based tagger is competitive, and achieve an f-score
of 93.41. By better using the heterogeneous word
boundary structures, our sub-word tagging model
achieves an f-score of 94.36. Both character and
sub-word tagging model can be enhanced with auto-
matically converted corpus. With the pseudo labeled

data, the performance goes up to 94.11 and 94.68.
These results are also better than the best published
result on the same data set that is reported in (Jiang
et al., 2009).

Test P R F
(Sun, 2011) - - - - 94.02
(Jiang et al., 2009) - - - - 94.02
(Wang et al., 2011) - - - - 94.186

Character model 93.31% 93.51% 93.41
+Re-training 93.93% 94.29% 94.11
Sub-word model 94.10% 94.62% 94.36
+Re-training 94.42% 94.93% 94.68

Table 6: Performance of different systems on the test
data.

7 Conclusion

Our theoretical and empirical analysis of two rep-
resentative popular corpora highlights two essential
characteristics of heterogeneous annotations which
are explored to reduce approximation and estima-
tion errors for Chinese word segmentation and POS
tagging. We employ stacking models to incorporate
features derived from heterogeneous analysis and
apply them to convert heterogeneous labeled data for
re-training. The appropriate application of hetero-
geneous annotations leads to a significant improve-
ment (a relative error reduction of 11%) over the best
performance for this task. Although our discussion
is for a specific task, the key idea to leverage het-
erogeneous annotations to reduce the approximation
error with stacking models and the estimation error
with automatically converted corpora is very general
and applicable to other NLP tasks.
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Abstract

From the perspective of structural linguistics,
we explore paradigmatic and syntagmatic lex-
ical relations for Chinese POS tagging, an im-
portant and challenging task for Chinese lan-
guage processing. Paradigmatic lexical rela-
tions are explicitly captured by word cluster-
ing on large-scale unlabeled data and are used
to design new features to enhance a discrim-
inative tagger. Syntagmatic lexical relations
are implicitly captured by constituent pars-
ing and are utilized via system combination.
Experiments on the Penn Chinese Treebank
demonstrate the importance of both paradig-
matic and syntagmatic relations. Our linguis-
tically motivated approaches yield a relative
error reduction of 18% in total over a state-
of-the-art baseline.

1 Introduction

In grammar, a part-of-speech (POS) is a linguis-
tic category of words, which is generally defined
by the syntactic or morphological behavior of the
word in question. Automatically assigning POS tags
to words plays an important role in parsing, word
sense disambiguation, as well as many other NLP
applications. Many successful tagging algorithms
developed for English have been applied to many
other languages as well. In some cases, the meth-
ods work well without large modifications, such
as for German. But a number of augmentations
and changes become necessary when dealing with
highly inflected or agglutinative languages, as well
as analytic languages, of which Chinese is the focus

∗This work is mainly finished when this author (correspond-
ing author) was in Saarland University and DFKI.

of this paper. The Chinese language is characterized
by the lack of formal devices such as morphological
tense and number that often provide important clues
for syntactic processing tasks. While state-of-the-
art tagging systems have achieved accuracies above
97% on English, Chinese POS tagging has proven to
be more challenging and obtained accuracies about
93-94% (Tseng et al., 2005b; Huang et al., 2007,
2009; Li et al., 2011).

It is generally accepted that Chinese POS tag-
ging often requires more sophisticated language pro-
cessing techniques that are capable of drawing in-
ferences from more subtle linguistic knowledge.
From a linguistic point of view, meaning arises from
the differences between linguistic units, including
words, phrases and so on, and these differences are
of two kinds: paradigmatic (concerning substitu-
tion) and syntagmatic (concerning positioning). The
distinction is a key one in structuralist semiotic anal-
ysis. Both paradigmatic and syntagmatic lexical re-
lations have a great impact on POS tagging, because
the value of a word is determined by the two rela-
tions. Our error analysis of a state-of-the-art Chinese
POS tagger shows that the lack of both paradigmatic
and syntagmatic lexical knowledge accounts for a
large part of tagging errors.

This paper is concerned with capturing paradig-
matic and syntagmatic lexical relations to advance
the state-of-the-art of Chinese POS tagging. First,
we employ unsupervised word clustering to explore
paradigmatic relations that are encoded in large-
scale unlabeled data. The word clusters are then ex-
plicitly utilized to design new features for POS tag-
ging. Second, we study the possible impact of syn-
tagmatic relations on POS tagging by comparatively
analyzing a (syntax-free) sequential tagging model
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and a (syntax-based) chart parsing model. Inspired
by the analysis, we employ a full parser to implicitly
capture syntagmatic relations and propose a Boot-
strap Aggregating (Bagging) model to combine the
complementary strengths of a sequential tagger and
a parser.

We conduct experiments on the Penn Chinese
Treebank and Chinese Gigaword. We implement
a discriminative sequential classification model for
POS tagging which achieves the state-of-the-art ac-
curacy. Experiments show that this model are sig-
nificantly improved by word cluster features in ac-
curacy across a wide range of conditions. This con-
firms the importance of the paradigmatic relations.
We then present a comparative study of our tagger
and the Berkeley parser, and show that the combi-
nation of the two models can significantly improve
tagging accuracy. This demonstrates the importance
of the syntagmatic relations. Cluster-based features
and the Bagging model result in a relative error re-
duction of 18% in terms of the word classification
accuracy.

2 State-of-the-Art

2.1 Previous Work

Many algorithms have been applied to computation-
ally assigning POS labels to English words, includ-
ing hand-written rules, generative HMM tagging
and discriminative sequence labeling. Such meth-
ods have been applied to many other languages as
well. In some cases, the methods work well without
large modifications, such as German POS tagging.
But a number of augmentations and changes became
necessary when dealing with Chinese that has little,
if any, inflectional morphology. While state-of-the-
art tagging systems have achieved accuracies above
97% on English, Chinese POS tagging has proven
to be more challenging and obtains accuracies about
93-94% (Tseng et al., 2005b; Huang et al., 2007,
2009; Li et al., 2011).

Both discriminative and generative models have
been explored for Chinese POS tagging (Tseng
et al., 2005b; Huang et al., 2007, 2009). Tseng
et al. (2005a) introduced a maximum entropy based
model, which includes morphological features for
unknown word recognition. Huang et al. (2007) and
Huang et al. (2009) mainly focused on the gener-

ative HMM models. To enhance a HMM model,
Huang et al. (2007) proposed a re-ranking proce-
dure to include extra morphological and syntactic
features, while Huang et al. (2009) proposed a la-
tent variable inducing model. Their evaluations on
the Chinese Treebank show that Chinese POS tag-
ging obtains an accuracy of about 93-94%.

2.2 Our Discriminative Sequential Model

According to the ACL Wiki, all state-of-the-art En-
glish POS taggers are based on discriminative se-
quence labeling models, including structure percep-
tron (Collins, 2002; Shen et al., 2007), maximum
entropy (Toutanova et al., 2003) and SVM (Gimnez
and Mrquez, 2004). A discriminative learner is easy
to be extended with arbitrary features and therefore
suitable to recognize more new words. Moreover, a
majority of the POS tags are locally dependent on
each other, so the Markov assumption can well cap-
tures the syntactic relations among words. Discrim-
inative learning is also an appropriate solution for
Chinese POS tagging, due to its flexibility to include
knowledge from multiple linguistic sources.

To deeply analyze the POS tagging problem for
Chinese, we implement a discriminative sequential
model. A first order linear-chain CRF model
is used to resolve the sequential classification
problem. We choose the CRF learning toolkit
wapiti1 (Lavergne et al., 2010) to train models.
In our experiments, we employ a feature set
which draws upon information sources such as
word forms and characters that constitute words.
To conveniently illustrate, we denote a word in
focus with a fixed window w−2w−1ww+1w+2,
where w is the current token. Our features includes:

Word unigrams: w−2, w−1, w, w+1, w+2;
Word bigrams: w−2 w−1, w−1 w, w w+1, w+1 w+2;
In order to better handle unknown words, we extract
morphological features: character n-gram prefixes and
suffixes for n up to 3.

2.3 Evaluation

2.3.1 Setting
Penn Chinese Treebank (CTB) (Xue et al., 2005)

is a popular data set to evaluate a number of Chinese
NLP tasks, including word segmentation (Sun and

1http://wapiti.limsi.fr/
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Xu, 2011), POS tagging (Huang et al., 2007, 2009),
constituency parsing (Zhang and Clark, 2009; Wang
et al., 2006) and dependency parsing (Zhang and
Clark, 2008; Huang and Sagae, 2010; Li et al.,
2011). In this paper, we use CTB 6.0 as the labeled
data for the study. The corpus was collected during
different time periods from different sources with a
diversity of topics. In order to obtain a representa-
tive split of data sets, we define the training, devel-
opment and test sets following two settings. To com-
pare our tagger with the state-of-the-art, we conduct
an experiment using the data setting of (Huang et al.,
2009). For detailed analysis and evaluation, we con-
duct further experiments following the setting of the
CoNLL 2009 shared task. The setting is provided by
the principal organizer of the CTB project, and con-
siders many annotation details. This setting is more
robust for evaluating Chinese language processing
algorithms.

2.3.2 Overall Performance
Table 1 summarizes the per token classification

accuracy (Acc.) of our tagger and results reported in
(Huang et al., 2009). Huang et al. (2009) introduced
a bigram HMM model with latent variables (Bigram
HMM-LA in the table) for Chinese tagging. Com-
pared to earlier work (Tseng et al., 2005a; Huang
et al., 2007), this model achieves the state-of-the-art
accuracy. Despite of simplicity, our discriminative
POS tagging model achieves a state-of-the-art per-
formance, even better.

System Acc.
Trigram HMM (Huang et al., 2009) 93.99%
Bigram HMM-LA (Huang et al., 2009) 94.53%
Our tagger 94.69%

Table 1: Tagging accuracies on the test data (setting 1).

2.4 Motivating Analysis
For the following experiments, we only report re-
sults on the development data of the CoNLL setting.

2.4.1 Correlating Tagging Accuracy with Word
Frequency

Table 2 summarizes the prediction accuracy on
the development data with respect to the word fre-
quency on the training data. To avoid overestimat-
ing the tagging accuracy, these statistics exclude all

punctuations. From this table, we can see that words
with low frequency, especially the out-of-vocabulary
(OOV) words, are hard to label. However, when a
word is very frequently used, its behavior is very
complicated and therefore hard to predict. A typi-
cal example of such words is the language-specific
function word “的.” This analysis suggests that a
main topic to enhance Chinese POS tagging is to
bridge the gap between the infrequent words and fre-
quent words.

Freq. Acc.
0 83.55%
1-5 89.31%
6-10 90.20%
11-100 94.88%
101-1000 96.26%
1001- 93.65%

Table 2: Tagging accuracies relative to word frequency.

2.4.2 Correlating Tagging Accuracy with Span
Length

A word projects its grammatical property to its
maximal projection and it syntactically governs all
words under the span of its maximal projection. The
words under the span of current token thus reflect
its syntactic behavior and good clues for POS tag-
ging. Table 3 shows the tagging accuracies relative
to the length of the spans. We can see that with the
increase of the number of words governed by the
token, the difficulty of its POS prediction increase.
This analysis suggests that syntagmatic lexical re-
lations plays a significant role in POS tagging, and
sometimes words located far from the current token
affect its tagging much.

Len. Acc.
1-2 93.79%
3-4 93.39%
5-6 92.19%
7- 94.18%

Table 3: Tagging accuracies relative to span length.

3 Capturing Paradigmatic Relations via
Word Clustering

To bridge the gap between high and low fre-
quency words, we employ word clustering to acquire
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the knowledge about paradigmatic lexical relations
from large-scale texts. Our work is also inspired
by the successful application of word clustering to
named entity recognition (Miller et al., 2004) and
dependency parsing (Koo et al., 2008).

3.1 Word Clustering

Word clustering is a technique for partitioning sets
of words into subsets of syntactically or semanti-
cally similar words. It is a very useful technique
to capture paradigmatic or substitutional similarity
among words.

3.1.1 Clustering Algorithms
Various clustering techniques have been pro-

posed, some of which, for example, perform au-
tomatic word clustering optimizing a maximum-
likelihood criterion with iterative clustering algo-
rithms. In this paper, we focus on distributional
word clustering that is based on the assumption that
words that appear in similar contexts (especially
surrounding words) tend to have similar meanings.
They have been successfully applied to many NLP
problems, such as language modeling.

Brown Clustering Our first choice is the bottom-
up agglomerative word clustering algorithm of
(Brown et al., 1992) which derives a hierarchical
clustering of words from unlabeled data. This al-
gorithm generates a hard clustering – each word be-
longs to exactly one cluster. The input to the algo-
rithm is sequences of words w1, ..., wn. Initially, the
algorithm starts with each word in its own cluster.
As long as there are at least two clusters left, the al-
gorithm merges the two clusters that maximizes the
quality of the resulting clustering. The quality is de-
fined based on a class-based bigram language model
as follows.

P (wi|w1, ...wi−1) ≈ p(C(wi)|C(wi−1))p(wi|C(wi))

where the function C maps a word w to its class
C(w). We use a publicly available package2 (Liang
et al., 2005) to train this model.

MKCLS Clustering We also do experiments by
using another popular clustering method based on

2http://cs.stanford.edu/˜pliang/
software/brown-cluster-1.2.zip

the exchange algorithm (Kneser and Ney, 1993).
The objective function is maximizing the likelihood∏n

i=1 P (wi|w1, ..., wi−1) of the training data given
a partially class-based bigram model of the form

P (wi|w1, ...wi−1) ≈ p(C(wi)|wi−1)p(wi|C(wi))

We use the publicly available implementation MK-
CLS3 (Och, 1999) to train this model.

We choose to work with these two algorithms
considering their prior success in other NLP appli-
cations. However, we expect that our approach can
function with other clustering algorithms.

3.1.2 Data
Chinese Gigaword is a comprehensive archive

of newswire text data that has been acquired over
several years by the Linguistic Data Consortium
(LDC). The large-scale unlabeled data we use in
our experiments comes from the Chinese Gigaword
(LDC2005T14). We choose the Mandarin news text,
i.e. Xinhua newswire. This data covers all news
published by Xinhua News Agency (the largest news
agency in China) from 1991 to 2004, which contains
over 473 million characters.

3.1.3 Pre-processing: Word Segmentation
Different from English and other Western lan-

guages, Chinese is written without explicit word de-
limiters such as space characters. To find the basic
language units, i.e. words, segmentation is a neces-
sary pre-processing step for word clustering. Previ-
ous research shows that character-based segmenta-
tion models trained on labeled data are reasonably
accurate (Sun, 2010). Furthermore, as shown in
(Sun and Xu, 2011), appropriate string knowledge
acquired from large-scale unlabeled data can signif-
icantly enhance a supervised model, especially for
the prediction of out-of-vocabulary (OOV) words.
In this paper, we employ such supervised and semi-
supervised segmenters4 to process raw texts.

3.2 Improving Tagging with Cluster Features
Our discriminative sequential tagger is easy to be ex-
tended with arbitrary features and therefore suitable
to explore additional features derived from other

3http://code.google.com/p/giza-pp/
4http://www.coli.uni-saarland.de/˜wsun/

ccws.tgz
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sources. We propose to use of word clusters as sub-
stitutes for word forms to assist the POS tagger. We
are relying on the ability of the discriminative learn-
ing method to explore informative features, which
play a central role in boosting the tagging perfor-
mance. 5 clustering-based uni/bi-gram features are
added: w−1, w, w+1, w−1 w, w w+1.

3.3 Evaluation

Features Data Brown MKCLS
Baseline CoNLL 94.48%
+c100 +1991-1995(S) 94.77% 94.83%
+c500 +1991-1995(S) 94.84% 94.93%
+c1000 +1991-1995(S) - - 94.95%
+c100 +1991-1995(SS) 94.90% 94.97%
+c500 +1991-1995(SS) 94.94% 94.88%
+c1000 +1991-1995(SS) 94.89% 94.94%
+c100 +1991-2000(SS) 94.82% 94.93%
+c500 +1991-2000(SS) 94.92% 94.99%
+c1000 +1991-2000(SS) 94.90% 95.00%
+c100 +1991-2004(SS) - - 94.87%
+c500 +1991-2004(SS) - - 95.02%
+c1000 +1991-2004(SS) - - 94.97%

Table 4: Tagging accuracies with different features. S:
supervised segmentation; SS: semi-supervised segmenta-
tion.

Table 4 summarizes the tagging results on the de-
velopment data with different feature configurations.
In this table, the symbol “+” in the Features col-
umn means current configuration contains both the
baseline features and new cluster-based features; the
number is the total number of the clusters; the sym-
bol “+” in the Data column means which portion of
the Gigaword data is used to cluster words; the sym-
bol “S” and “SS” in parentheses denote (s)upervised
and (s)emi-(s)upervised word segmentation. For ex-
ample, “+1991-2000(S)” means the data from 1991
to 2000 are processed by a supervised segmenter
and used for clustering. From this table, we can
clearly see the impact of word clustering features on
POS tagging. The new features lead to substantial
improvements over the strong supervised baseline.
Moreover, these increases are consistent regardless
of the clustering algorithms. Both clustering algo-
rithms contributes to the overall performance equiv-
alently. A natural strategy for extending current ex-
periments is to include both clustering results to-
gether, or to include more than one cluster granular-
ity. However, we find no further improvement. For

each clustering algorithm, there are not much dif-
ferences among different sizes of the total clustering
numbers. When a comparable amount of unlabeled
data (five years’ data) is used, the further increase
of the unlabeled data for clustering does not lead to
much changes of the tagging performance.

3.4 Learning Curves

Size Baseline +Cluster
4.5K 90.10% 91.93%
9K 92.91% 93.94%
13.5K 93.88% 94.60%
18K 94.24% 94.77%

Table 5: Tagging accuracies relative to sizes of training
data. Size=#sentences in the training corpus.

We do additional experiments to evaluate the ef-
fect of the derived features as the amount of la-
beled training data is varied. We also use the
“+c500(MKCLS)+1991-2004(SS)” setting for these
experiments. Table 5 summarizes the accuracies of
the systems when trained on smaller portions of the
labeled data. We can see that the new features obtain
consistent gains regardless of the size of the training
set. The error is reduced significantly on all data
sets. In other words, the word cluster features can
significantly reduce the amount of labeled data re-
quired by the learning algorithm. The relative reduc-
tion is greatest when smaller amounts of the labeled
data are used, and the effect lessens as more labeled
data is added.

3.5 Analysis
Word clustering derives paradigmatic relational in-
formation from unlabeled data by grouping words
into different sets. As a result, the contribution of
word clustering to POS tagging is two-fold. On
the one hand, word clustering captures and abstracts
context information. This new linguistic knowledge
is thus helpful to better correlate a word in a cer-
tain context to its POS tag. On the other hand, the
clustering of the OOV words to some extent fights
the sparse data problem by correlating an OOV word
with in-vocabulary (IV) words through their classes.
To evaluate the two contributions of the word clus-
tering, we limit entries of the clustering lexicon to
only contain IV words, i.e. words appearing in
the training corpus. Using this constrained lexicon,
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we train a new “+c500(MKCLS)+1991-2004(SS)”
model and report its prediction power in Table 6.
The gap between the baseline and +IV clustering
models can be viewed as the contribution of the first
effect, while the gap between the +IV clustering and
+All clustering models can be viewed as the second
contribution. This result indicates that the improved
predictive power partially comes from the new in-
terpretation of a POS tag through a clustering, and
partially comes from its memory of OOV words that
appears in the unlabeled data.

Baseline +IV Clustering +All clustering
Acc. 94.48% 94.70%(↑0.22) 95.02%(↑0.32)

Table 6: Tagging accuracies with IV clustering.

Table 7 shows the recall of OOV words on the
development data set. Only the word types appear-
ing more than 10 times are reported. The recall of
all OOV words are improved, especially of proper
nouns (NR) and common verbs (VV). Another in-
teresting fact is that almost all of them are content
words. This table is also helpful to understand the
impact of the clustering information on the predic-
tion of OOV words.

4 Capturing Syntagmatic Relations via
Constituency Parsing

Syntactic analysis, especially the full and deep one,
reflects syntagmatic relations of words and phrases
of sentences. We present a series of empirical stud-
ies of the tagging results of our syntax-free sequen-
tial tagger and a syntax-based chart parser5, aiming
at illuminating more precisely the impact of infor-
mation about phrase-structures on POS tagging. The
analysis is helpful to understand the role of syntag-
matic lexical relations in POS prediction.

4.1 Comparing Tagging and PCFG-LA Parsing
The majority of the state-of-the-art constituent
parsers are based on generative PCFG learning, with
lexicalized (Collins, 2003; Charniak, 2000) or la-
tent annotation (PCFG-LA) (Matsuzaki et al., 2005;
Petrov et al., 2006; Petrov and Klein, 2007) refine-
ments. Compared to lexicalized parsers, the PCFG-
LA parsers leverages on an automatic procedure to

5Both the tagger and the parser are trained on the same por-
tion from CTB.

#Words Baseline +Clustering ∆

AD 21 33.33% 42.86% <
CD 249 97.99% 98.39% <
JJ 86 3.49% 26.74% <
NN 1028 91.05% 91.34% <
NR 863 81.69% 88.76% <
NT 25 60.00% 68.00% <
VA 15 33.33% 53.33% <
VV 402 67.66% 72.39% <

Table 7: The tagging recall of OOV words.

learn refined grammars and are therefore more ro-
bust to parse non-English languages that are not well
studied. For Chinese, a PCFG-LA parser achieves
the state-of-the-art performance and defeat many
other types of parsers (Zhang and Clark, 2009). For
full parsing, the Berkeley parser6, an open source
implementation of the PCFG-LA model, is used for
experiments. Table 8 shows their overall and de-
tailed performance.

4.1.1 Content Words vs. Function Words
Table 8 gives a detailed comparison regarding dif-

ferent word types. For each type of word, we re-
port the accuracy of both solvers and compare the
difference. The majority of the words that are bet-
ter labeled by the tagger are content words, includ-
ing nouns(NN, NR, NT), numbers (CD, OD), pred-
icates (VA, VC, VE), adverbs (AD), nominal modi-
fiers (JJ), and so on. In contrast, most of the words
that are better predicted by the parser are function
words, including most particles (DEC, DEG, DER,
DEV, AS, MSP), prepositions (P, BA) and coordi-
nating conjunction (CC).

4.1.2 Open Classes vs. Close Classes
POS can be divided into two broad supercate-

gories: closed class types and open class types.
Open classes accept the addition of new morphemes
(words), through such processes as compounding,
derivation, inflection, coining, and borrowing. On
the other hand closed classes are those that have rel-
atively fixed membership. For example, nouns and
verbs are open classes because new nouns and verbs
are continually coined or borrowed from other lan-
guages, while DEC/DEG are two closed classes be-
cause only the function word “的” is assigned to

6http://code.google.com/p/
berkeleyparser/

247



Parser<Tagger Parser>Tagger
♠ AD 94.15<94.71 ♥ AS 98.54>98.44
♠ CD 94.66<97.52 ♥ BA 96.15>92.52

CS 91.12<92.12 ♥ CC 93.80>90.58
ETC 99.65<100.0 ♥ DEC 85.78>81.22
♠ JJ 81.35<84.65 ♥ DEG 88.94>85.96

LB 91.30<93.18 ♥ DER 80.95>77.42
LC 96.29<97.08 ♥ DEV 84.89>74.78
M 95.62<96.94 DT 98.28>98.05

♠ NN 93.56<94.95 ♥MSP 91.30>90.14
♠ NR 89.84<95.07 ♥ P 96.26>94.56
♠ NT 96.70<97.26 VV 91.99>91.87
♠ OD 81.06<86.36

PN 98.10<98.15
SB 95.36<96.77
SP 61.70<68.89

♠ VA 81.27<84.25 Overall
♠ VC 95.91<97.67 Tagger: 94.48%
♠ VE 97.12<98.48 Parser: 93.69%

Table 8: Tagging accuracies of relative to word classes.

them. The discriminative model can conveniently
include many features, especially features related to
the word formation, which are important to predict
words of open classes. Table 9 summarizes the tag-
ging accuracies relative to IV and OOV words. On
the whole, the Berkeley parser processes IV words
slightly better than our tagger, but processes OOV
words significantly worse. The numbers in this ta-
ble clearly shows the main weakness of the Berkeley
parser is the the predictive power of the OOV words.

IV OOV
Tagger 95.22% 81.59%
Parser 95.38% 64.77%

Table 9: Tagging accuracies of the IV and OOV words.

4.1.3 Local Disambiguation vs. Global
Disambiguation

Closed class words are generally function words
that tend to occur frequently and often have struc-
turing uses in grammar. These words have little
lexical meaning or have ambiguous meaning, but
instead serve to express grammatical relationships
with other words within a sentence. They signal
the structural relationships that words have to one
another and are the glue that holds sentences to-
gether. Thus, they serve as important elements to the
structures of sentences. The disambiguation of these

words normally require more syntactic clues, which
is very hard and inappropriate for a sequential tagger
to capture. Based on global grammatical inference
of the whole sentence, the full parser is relatively
good at dealing with structure related ambiguities.

We conclude that discriminative sequential tag-
ging model can better capture local syntactic and
morphological information, while the full parser can
better capture global syntactic structural informa-
tion. The discriminative tagging model are limited
by the Markov assumption and inadequate to cor-
rectly label structure related words.

4.2 Enhancing POS Tagging via Bagging

The diversity analysis suggests that we may im-
prove parsing by simply combining the tagger and
the parser. Bootstrap aggregating (Bagging) is a ma-
chine learning ensemble meta-algorithm to improve
classification and regression models in terms of sta-
bility and classification accuracy (Breiman, 1996). It
also reduces variance and helps to avoid overfitting.
We introduce a Bagging model to integrate different
POS tagging models. In the training phase, given
a training set D of size n, our model generates m
new training sets Di of size 63.2%× n by sampling
examples from D without replacement. Namely no
example will be repeated in each Di. Each Di is
separately used to train a tagger and a parser. Us-
ing this strategy, we can get 2m weak solvers. In the
tagging phase, the 2m models outputs 2m tagging
results, each word is assigned one POS label. The
final tagging is the voting result of these 2m labels.
There may be equal number of different tags. In this
case, our system prefer the first label they met.

4.3 Evaluation

We evaluate our combination model on the same
data set used above. Figure 1 shows the influence
of m in the Bagging algorithm. Because each new
data set Di in bagging algorithm is generated by a
random procedure, the performance of all Bagging
experiments are not the same. To give a more sta-
ble evaluation, we repeat 5 experiments for each m
and show the averaged accuracy. We can see that
the Bagging model taking both sequential tagging
and chart parsing models as basic systems outper-
form the baseline systems and the Bagging model
taking either model in isolation as basic systems. An
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Figure 1: Tagging accuracies of Bagging models.
Tagger-Bagging and Tagger(WC)-Bagging means that the
Bagging system built on the tagger with and without
word clusters. Parser-Bagging is named in the same way.
Tagger+Paser-Bagging and Tagger(WC)+Paser-Bagging
means that the Bagging systems are built on both tagger
and parser.

interesting phenomenon is that the Bagging method
can also improve the parsing model, but there is a
decrease while only combining taggers.

5 Combining Both

We have introduced two separate improvements for
Chinese POS tagging, which capture different types
of lexical relations. We therefore expect further im-
provement by combining both enhancements, since
their contributions to the task is different. We still
use a Bagging model to integrate the discriminative
tagger and the Berkeley parser. The only differ-
ence between current experiment and previous ex-
periment is that the sub-tagging models are trained
with help of word clustering features. Figure 1 also
shows the performance of the new Bagging model
on the development data set. We can see that the im-
provements that come from two ways, namely cap-
turing syntagmatic and paradigmatic relations, are
not much overlapping and the combination of them
gives more.

Table 10 shows the performance of different sys-
tems evaluated on the test data. The final result is
remarkable. The word clustering features and the
Bagging model result in a relative error reduction of
18% in terms of the classification accuracy. The sig-
nificant improvement of the POS tagging also help
successive language processing. Results in Table

Systems Acc.
Baseline 94.33%
Tagger(WC) 94.85%
Tagger+Parser(m = 15) 94.96%
Tagger(WC)+Parser(m = 15) 95.34%

Table 10: Tagging accuracies on the test data (CoNLL).

11 indicate that the parsing accuracy of the Berke-
ley parser can be simply improved by inputting the
Berkeley parser with the POS Bagging results. Al-
though the combination with a syntax-based tagger
is very effective, there are two weaknesses: (1) a
syntax-based model relies on linguistically rich syn-
tactic annotations that are not easy to acquire; (2)
a syntax-based model is computationally expensive
which causes efficiency difficulties.

Tagger LP LR F
Berkeley 82.71% 80.57% 81.63
Bagging(m = 15) 82.96% 81.44% 82.19

Table 11: Parsing accuracies on the test data. (CoNLL)

6 Conclusion

We hold a view of structuralist linguistics and study
the impact of paradigmatic and syntagmatic lexical
relations on Chinese POS tagging. First, we har-
vest word partition information from large-scale raw
texts to capture paradigmatic relations and use such
knowledge to enhance a supervised tagger via fea-
ture engineering. Second, we comparatively analyze
syntax-free and syntax-based models and employ a
Bagging model to integrate a sequential tagger and
a chart parser to capture syntagmatic relations that
have a great impact on non-local disambiguation.
Both enhancements significantly improve the state-
of-the-art of Chinese POS tagging. The final model
results in an error reduction of 18% over a state-of-
the-art baseline.
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Abstract

We present a joint model for Chinese
word segmentation and new word detection.
We present high dimensional new features,
including word-based features and enriched
edge (label-transition) features, for the joint
modeling. As we know, training a word
segmentation system on large-scale datasets
is already costly. In our case, adding high
dimensional new features will further slow
down the training speed. To solve this
problem, we propose a new training method,
adaptive online gradient descent based on
feature frequency information, for very fast
online training of the parameters, even given
large-scale datasets with high dimensional
features. Compared with existing training
methods, our training method is an order
magnitude faster in terms of training time, and
can achieve equal or even higher accuracies.
The proposed fast training method is a general
purpose optimization method, and it is not
limited in the specific task discussed in this
paper.

1 Introduction

Since Chinese sentences are written as continuous
sequences of characters, segmenting a character
sequence into words is normally the first step
in the pipeline of Chinese text processing. The
major problem of Chinese word segmentation
is the ambiguity. Chinese character sequences
are normally ambiguous, and new words (out-
of-vocabulary words) are a major source of the
ambiguity. A typical category of new words
is named entities, including organization names,
person names, location names, and so on.

In this paper, we present high dimensional
new features, including word-based features and
enriched edge (label-transition) features, for the
joint modeling of Chinese word segmentation
(CWS) and new word detection (NWD). While most
of the state-of-the-art CWS systems used semi-
Markov conditional random fields or latent variable
conditional random fields, we simply use a single
first-order conditional random fields (CRFs) for
the joint modeling. The semi-Markov CRFs and
latent variable CRFs relax the Markov assumption
of CRFs to express more complicated dependencies,
and therefore to achieve higher disambiguation
power. Alternatively, our plan is not to relax
Markov assumption of CRFs, but to exploit more
complicated dependencies via using refined high-
dimensional features. The advantage of our choice
is the simplicity of our model. As a result, our
CWS model can be more efficient compared with
the heavier systems, and with similar or even higher
accuracy because of using refined features.

As we know, training a word segmentation system
on large-scale datasets is already costly. In our
case, adding high dimensional new features will
further slow down the training speed. To solve this
challenging problem, we propose a new training
method, adaptive online gradient descent based on
feature frequency information (ADF), for very fast
word segmentation with new word detection, even
given large-scale datasets with high dimensional
features. In the proposed training method, we try
to use more refined learning rates. Instead of using
a single learning rate (a scalar) for all weights,
we extend the learning rate scalar to a learning
rate vector based on feature frequency information
in the updating. By doing so, each weight has
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its own learning rate adapted on feature frequency
information. We will show that this can significantly
improve the convergence speed of online learning.
We approximate the learning rate vector based
on feature frequency information in the updating
process. Our proposal is based on the intuition
that a feature with higher frequency in the training
process should be with a learning rate that is decayed
faster. Based on this intuition, we will show the
formalized training algorithm later. We will show in
experiments that our solution is an order magnitude
faster compared with exiting learning methods, and
can achieve equal or even higher accuracies.

The contribution of this work is as follows:

• We propose a general purpose fast online
training method, ADF. The proposed training
method requires only a few passes to complete
the training.

• We propose a joint model for Chinese word
segmentation and new word detection.

• Compared with prior work, our system
achieves better accuracies on both word
segmentation and new word detection.

2 Related Work

First, we review related work on word segmentation
and new word detection. Then, we review popular
online training methods, in particular stochastic
gradient descent (SGD).

2.1 Word Segmentation and New Word
Detection

Conventional approaches to Chinese word
segmentation treat the problem as a sequential
labeling task (Xue, 2003; Peng et al., 2004; Tseng
et al., 2005; Asahara et al., 2005; Zhao et al.,
2010). To achieve high accuracy, most of the state-
of-the-art systems are heavy probabilistic systems
using semi-Markov assumptions or latent variables
(Andrew, 2006; Sun et al., 2009b). For example,
one of the state-of-the-art CWS system is the latent
variable conditional random field (Sun et al., 2008;
Sun and Tsujii, 2009) system presented in Sun et al.
(2009b). It is a heavy probabilistic model and it is
slow in training. A few other state-of-the-art CWS
systems are using semi-Markov perceptron methods
or voting systems based on multiple semi-Markov

perceptron segmenters (Zhang and Clark, 2007;
Sun, 2010). Those semi-Markov perceptron systems
are moderately faster than the heavy probabilistic
systems using semi-Markov conditional random
fields or latent variable conditional random fields.
However, a disadvantage of the perceptron style
systems is that they can not provide probabilistic
information.

On the other hand, new word detection is also one
of the important problems in Chinese information
processing. Many statistical approaches have been
proposed (J. Nie and Jin, 1995; Chen and Bai, 1998;
Wu and Jiang, 2000; Peng et al., 2004; Chen and
Ma, 2002; Zhou, 2005; Goh et al., 2003; Fu and
Luke, 2004; Wu et al., 2011). New word detection
is normally considered as a separate process from
segmentation. There were studies trying to solve this
problem jointly with CWS. However, the current
studies are limited. Integrating the two tasks would
benefit both segmentation and new word detection.
Our method provides a convenient framework for
doing this. Our new word detection is not a stand-
alone process, but an integral part of segmentation.

2.2 Online Training

The most representative online training method
is the SGD method. The SGD uses a small
randomly-selected subset of the training samples to
approximate the gradient of an objective function.
The number of training samples used for this
approximation is called the batch size. By using a
smaller batch size, one can update the parameters
more frequently and speed up the convergence. The
extreme case is a batch size of 1, and it gives the
maximum frequency of updates, which we adopt in
this work. Then, the model parameters are updated
in such a way:

wwwt+1 = wwwt + γt∇wwwtLstoch(zzzi,wwwt), (1)

where t is the update counter, γt is the learning rate,
and Lstoch(zzzi,wwwt) is the stochastic loss function
based on a training sample zzzi.

There were accelerated versions of SGD,
including stochastic meta descent (Vishwanathan
et al., 2006) and periodic step-size adaptation
online learning (Hsu et al., 2009). Compared with
those two methods, our proposal is fundamentally
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different. Those two methods are using 2nd-order
gradient (Hessian) information for accelerated
training, while our accelerated training method
does not need such 2nd-order gradient information,
which is costly and complicated. Our ADF training
method is based on feature frequency adaptation,
and there is no prior work on using feature frequency
information for accelerating online training.

Other online training methods includes averaged
SGD with feedback (Sun et al., 2010; Sun et al.,
2011), latent variable perceptron training (Sun et al.,
2009a), and so on. Those methods are less related to
this paper.

3 System Architecture

3.1 A Joint Model Based on CRFs
First, we briefly review CRFs. CRFs are proposed
as a method for structured classification by solving
“the label bias problem” (Lafferty et al., 2001).
Assuming a feature function that maps a pair of
observation sequence xxx and label sequence yyy to a
global feature vector fff , the probability of a label
sequence yyy conditioned on the observation sequence
xxx is modeled as follows (Lafferty et al., 2001):

P (yyy|xxx,www) =
exp

{
www⊤fff(yyy,xxx)

}∑
∀y′y′y′ exp

{
www⊤fff(y′y′y′,xxx)

} , (2)

where www is a parameter vector.
Given a training set consisting of n labeled

sequences, zzzi = (xxxi, yyyi), for i = 1 . . . n, parameter
estimation is performed by maximizing the objective
function,

L(www) =

n∑
i=1

log P (yyyi|xxxi,www)−R(www). (3)

The first term of this equation represents a
conditional log-likelihood of a training data. The
second term is a regularizer for reducing overfitting.
We employed an L2 prior, R(www) = ||www||2

2σ2 . In what
follows, we denote the conditional log-likelihood of
each sample log P (yyyi|xxxi,www) as ℓ(zzzi,www). The final
objective function is as follows:

L(www) =

n∑
i=1

ℓ(zzzi,www)− ||w
ww||2

2σ2
. (4)

Since no word list can be complete, new word
identification is an important task in Chinese NLP.
New words in input text are often incorrectly
segmented into single-character or other very short
words (Chen and Bai, 1998). This phenomenon
will also undermine the performance of Chinese
word segmentation. We consider here new word
detection as an integral part of segmentation,
aiming to improve both segmentation and new word
detection: detected new words are added to the
word list lexicon in order to improve segmentation.
Based on our CRF word segmentation system,
we can compute a probability for each segment.
When we find some word segments are of reliable
probabilities yet they are not in the existing word
list, we then treat those “confident” word segments
as new words and add them into the existing word
list. Based on preliminary experiments, we treat
a word segment as a new word if its probability
is larger than 0.5. Newly detected words are re-
incorporated into word segmentation for improving
segmentation accuracies.

3.2 New Features
Here, we will describe high dimensional new
features for the system.

3.2.1 Word-based Features
There are two ideas in deriving the refined

features. The first idea is to exploit word features
for node features of CRFs. Note that, although our
model is a Markov CRF model, we can still use word
features to learn word information in the training
data. To derive word features, first of all, our system
automatically collect a list of word unigrams and
bigrams from the training data. To avoid overfitting,
we only collect the word unigrams and bigrams
whose frequency is larger than 2 in the training set.
This list of word unigrams and bigrams are then used
as a unigram-dictionary and a bigram-dictionary to
generate word-based unigram and bigram features.
The word-based features are indicator functions that
fire when the local character sequence matches a
word unigram or bigram occurred in the training
data. The word-based feature templates derived for
the label yi are as follows:

• unigram1(xxx, yi) ← [xj,i, yi], if the
character sequence xj,i matches a word w ∈ U,
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with the constraint i − 6 < j < i. The item
xj,i represents the character sequence xj . . . xi.
U represents the unigram-dictionary collected
from the training data.

• unigram2(xxx, yi) ← [xi,k, yi], if the
character sequence xi,k matches a word w ∈ U,
with the constraint i < k < i + 6.

• bigram1(xxx, yi) ← [xj,i−1, xi,k, yi], if
the word bigram candidate [xj,i−1, xi,k] hits
a word bigram [wi, wj ] ∈ B, and satisfies
the aforementioned constraints on j and k. B
represents the word bigram dictionary collected
from the training data.

• bigram2(xxx, yi) ← [xj,i, xi+1,k, yi], if
the word bigram candidate [xj,i, xi+1,k] hits a
word bigram [wi, wj ] ∈ B, and satisfies the
aforementioned constraints on j and k.

We also employ the traditional character-based
features. For each label yi, we use the feature
templates as follows:

• Character unigrams locating at positions i− 2,
i− 1, i, i + 1 and i + 2

• Character bigrams locating at positions i −
2, i− 1, i and i + 1

• Whether xj and xj+1 are identical, for j = i−
2, . . . , i + 1

• Whether xj and xj+2 are identical, for j = i−
3, . . . , i + 1

The latter two feature templates are designed
to detect character or word reduplication, a
morphological phenomenon that can influence word
segmentation in Chinese.

3.2.2 High Dimensional Edge Features
The node features discussed above are based on

a single label yi. CRFs also have edge features
that are based on label transitions. The second idea
is to incorporate local observation information of
xxx in edge features. For traditional implementation
of CRF systems (e.g., the HCRF package), usually
the edges features contain only the information
of yi−1 and yi, and without the information of

the observation sequence (i.e., xxx). The major
reason for this simple realization of edge features
in traditional CRF implementation is for reducing
the dimension of features. Otherwise, there can
be an explosion of edge features in some tasks.
For example, in part-of-speech tagging tasks, there
can be more than 40 labels and more than 1,600
types of label transitions. Therefore, incorporating
local observation information into the edge feature
will result in an explosion of edge features, which
is 1,600 times larger than the number of feature
templates.

Fortunately, for our task, the label set is quite
small, Y = {B,I,E}1. There are only nine possible
label transitions: T = Y × Y and |T| = 9.2 As
a result, the feature dimension will have nine times
increase over the feature templates, if we incorporate
local observation information of xxx into the edge
features. In this way, we can effectively combine
observation information of xxx with label transitions
yi−1yi. We simply used the same templates of
node features for deriving the new edge features.
We found adding new edge features significantly
improves the disambiguation power of our model.

4 Adaptive Online Gradient Descent based
on Feature Frequency Information

As we will show in experiments, the training of the
CRF model with high-dimensional new features is
quite expensive, and the existing training method is
not good enough. To solve this issue, we propose a
fast online training method: adaptive online gradient
descent based on feature frequency information
(ADF). The proposed method is easy to implement.

For high convergence speed of online learning, we
try to use more refined learning rates than the SGD
training. Instead of using a single learning rate (a
scalar) for all weights, we extend the learning rate
scalar to a learning rate vector, which has the same
dimension of the weight vector www. The learning
rate vector is automatically adapted based on feature
frequency information. By doing so, each weight

1B means beginning of a word, I means inside a word, and
E means end of a word. The B,I,E labels have been widely
used in previous work of Chinese word segmentation (Sun et
al., 2009b).

2The operator × means a Cartesian product between two
sets.
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ADF learning algorithm
1: procedure ADF(q, c, α, β)
2: www ← 0, t← 0, vvv ← 0, γγγ ← c
3: repeat until convergence
4: . Draw a sample zzzi at random
5: . vvv ← UPDATE(vvv, zzzi)
6: . if t > 0 and t mod q = 0
7: . . γγγ ← UPDATE(γγγ, vvv)
8: . . vvv ← 0
9: . ggg ← ∇wwwLstoch(zzzi,www)

10: . www ← www + γγγ ··· ggg
11: . t← t + 1
12: return www
13:

14: procedure UPDATE(vvv, zzzi)
15: for k ∈ features used in sample zzzi

16: . vvvk ← vvvk + 1
17: return vvv
18:

19: procedure UPDATE(γγγ, vvv)
20: for k ∈ all features
21: . u← vvvk/q
22: . η ← α− u(α− β)
23: . γγγk ← ηγγγk

24: return γγγ

Figure 1: The proposed ADF online learning algorithm.
q, c, α, and β are hyper-parameters. q is an integer
representing window size. c is for initializing the learning
rates. α and β are the upper and lower bounds of a scalar,
with 0 < β < α < 1.

has its own learning rate, and we will show that this
can significantly improve the convergence speed of
online learning.

In our proposed online learning method, the
update formula is as follows:

wwwt+1 = wwwt + γγγt ··· gggt. (5)

The update term gggt is the gradient term of a
randomly sampled instance:

gggt = ∇wwwtLstoch(zzzi,wwwt) = ∇wwwt

{
ℓ(zzzi,wwwt)−

||wwwt||2

2nσ2

}
.

In addition, γγγt ∈ Rf
+ is a positive vector-

valued learning rate and ··· denotes component-wise
(Hadamard) product of two vectors.

We learn the learning rate vector γγγt based
on feature frequency information in the updating

process. Our proposal is based on the intuition that a
feature with higher frequency in the training process
should be with a learning rate that decays faster. In
other words, we assume a high frequency feature
observed in the training process should have a small
learning rate, and a low frequency feature should
have a relatively larger learning rate in the training.
Our assumption is based on the intuition that a
weight with higher frequency is more adequately
trained, hence smaller learning rate is preferable for
fast convergence.

Given a window size q (number of samples in a
window), we use a vector vvv to record the feature
frequency. The k’th entry vvvk corresponds to the
frequency of the feature k in this window. Given
a feature k, we use u to record the normalized
frequency:

u = vvvk/q.

For each feature, an adaptation factor η is calculated
based on the normalized frequency information, as
follows:

η = α− u(α− β),

where α and β are the upper and lower bounds of
a scalar, with 0 < β < α < 1. As we can see,
a feature with higher frequency corresponds to a
smaller scalar via linear approximation. Finally, the
learning rate is updated as follows:

γγγk ← ηγγγk.

With this setting, different features will correspond
to different adaptation factors based on feature
frequency information. Our ADF algorithm is
summarized in Figure 1.

The ADF training method is efficient, because
the additional computation (compared with SGD) is
only the derivation of the learning rates, which is
simple and efficient. As we know, the regularization
of SGD can perform efficiently via the optimization
based on sparse features (Shalev-Shwartz et al.,
2007). Similarly, the derivation of γγγt can also
perform efficiently via the optimization based on
sparse features.

4.1 Convergence Analysis

Prior work on convergence analysis of existing
online learning algorithms (Murata, 1998; Hsu et
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Data Method Passes Train-Time (sec) NWD Rec Pre Rec CWS F-score
MSR Baseline 50 4.7e3 72.6 96.3 95.9 96.1

+ New features 50 1.2e4 75.3 97.2 97.0 97.1
+ New word detection 50 1.2e4 78.2 97.5 96.9 97.2
+ ADF training 10 2.3e3 77.5 97.6 97.2 97.4

CU Baseline 50 2.9e3 68.5 94.0 93.9 93.9
+ New features 50 7.5e3 68.0 94.4 94.5 94.4
+ New word detection 50 7.5e3 68.8 94.8 94.5 94.7
+ ADF training 10 1.5e3 68.8 94.8 94.7 94.8

PKU Baseline 50 2.2e3 77.2 95.0 94.0 94.5
+ New features 50 5.2e3 78.4 95.5 94.9 95.2
+ New word detection 50 5.2e3 79.1 95.8 94.9 95.3
+ ADF training 10 1.2e3 78.4 95.8 94.9 95.4

Table 2: Incremental evaluations, by incrementally adding new features (word features and high dimensional edge
features), new word detection, and ADF training (replacing SGD training with ADF training). Number of passes is
decided by empirical convergence of the training methods.

#W.T. #Word #C.T. #Char
MSR 8.8× 104 2.4× 106 5× 103 4.1× 106

CU 6.9× 104 1.5× 106 5× 103 2.4× 106

PKU 5.5× 104 1.1× 106 5× 103 1.8× 106

Table 1: Details of the datasets. W.T. represents word
types; C.T. represents character types.

al., 2009) can be extended to the proposed ADF
training method. We can show that the proposed
ADF learning algorithm has reasonable convergence
properties.

When we have the smallest learning rate γγγt+1 =
βγγγt, the expectation of the obtained wwwt is

E(wwwt) = www∗ +

t∏
m=1

(III − γγγ0β
mHHH(www∗))(www0 −www∗),

where www∗ is the optimal weight vector, and HHH is the
Hessian matrix of the objective function. The rate of
convergence is governed by the largest eigenvalue of
the function CCCt =

∏t
m=1(III − γγγ0β

mHHH(www∗)). Then,
we can derive a bound of rate of convergence.
Theorem 1 Assume ϕ is the largest eigenvalue of
the function CCCt =

∏t
m=1(III − γγγ0β

mHHH(www∗)). For
the proposed ADF training, its convergence rate is
bounded by ϕ, and we have

ϕ ≤ exp
{γγγ0λβ

β − 1

}
,

where λ is the minimum eigenvalue of HHH(www∗).

5 Experiments

5.1 Data and Metrics
We used benchmark datasets provided by the second
International Chinese Word Segmentation Bakeoff
to test our proposals. The datasets are from
Microsoft Research Asia (MSR), City University
of Hongkong (CU), and Peking University (PKU).
Details of the corpora are listed in Table 1. We
did not use any extra resources such as common
surnames, parts-of-speech, and semantics.

Four metrics were used to evaluate segmentation
results: recall (R, the percentage of gold standard
output words that are correctly segmented by the
decoder), precision (P , the percentage of words in
the decoder output that are segmented correctly),
balanced F-score defined by 2PR/(P + R), and
recall of new word detection (NWD recall). For
more detailed information on the corpora, refer to
Emerson (2005).

5.2 Features, Training, and Tuning
We employed the feature templates defined in
Section 3.2. The feature sets are huge. There are
2.4 × 107 features for the MSR data, 4.1 × 107

features for the CU data, and 4.7 × 107 features for
the PKU data. To generate word-based features, we
extracted high-frequency word-based unigram and
bigram lists from the training data.

As for training, we performed gradient descent
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Figure 2: F-score curves on the MSR, CU, and PKU datasets: ADF learning vs. SGD and LBFGS training methods.

with our proposed training method. To compare
with existing methods, we chose two popular
training methods, a batch training one and an
online training one. The batch training method
is the Limited-Memory BFGS (LBFGS) method
(Nocedal and Wright, 1999). The online baseline
training method is the SGD method, which we have
introduced in Section 2.2.

For the ADF training method, we need to tune the
hyper-parameters q, c, α, and β. Based on automatic
tuning within the training data (validation in the
training data), we found it is proper to set q = n/10
(n is the number of training samples), c = 0.1,
α = 0.995, and β = 0.6. To reduce overfitting,
we employed an L2 Gaussian weight prior (Chen
and Rosenfeld, 1999) for all training methods. We
varied the σ with different values (e.g., 1.0, 2.0, and
5.0), and finally set the value to 1.0 for all training
methods.

5.3 Results and Discussion

First, we performed incremental evaluation in this
order: Baseline (word segmentation model with
SGD training); Baseline + New features; Baseline
+ New features + New word detection; Baseline +
New features + New word detection + ADF training
(replacing SGD training). The results are shown in
Table 2.

As we can see, the new features improved
performance on both word segmentation and new
word detection. However, we also noticed that
the training cost became more expensive via
adding high dimensional new features. Adding
new word detection function further improved the
segmentation quality and the new word recognition
recall. Finally, by using the ADF training method,
the training speed is much faster than the SGD
training method. The ADF method can achieve
empirical optimum in only a few passes, yet
with better segmentation accuracies than the SGD
training with 50 passes.

To get more details of the proposed training
method, we compared it with SGD and LBFGS
training methods based on an identical platform,
by varying the number of passes. The comparison
was based on the same platform: Baseline + New
features + New word detection. The F-score curves
of the training methods are shown in Figure 2.
Impressively, the ADF training method reached
empirical convergence in only a few passes, while
the SGD and LBFGS training converged much
slower, requiring more than 50 passes. The ADF
training is about an order magnitude faster than
the SGD online training and more than an order
magnitude faster than the LBFGS batch training.

Finally, we compared our method with the state-
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Data Method Prob. Pre Rec F-score
MSR Best05 (Tseng et al., 2005)

√
96.2 96.6 96.4

CRF + rule-system (Zhang et al., 2006)
√

97.2 96.9 97.1
Semi-Markov perceptron (Zhang and Clark, 2007) × N/A N/A 97.2
Semi-Markov CRF (Gao et al., 2007)

√
N/A N/A 97.2

Latent-variable CRF (Sun et al., 2009b)
√

97.3 97.3 97.3
Our method (A Single CRF)

√
97.6 97.2 97.4

CU Best05 (Tseng et al., 2005)
√

94.1 94.6 94.3
CRF + rule-system (Zhang et al., 2006)

√
95.2 94.9 95.1

Semi-perceptron (Zhang and Clark, 2007) × N/A N/A 95.1
Latent-variable CRF (Sun et al., 2009b)

√
94.7 94.4 94.6

Our method (A Single CRF)
√

94.8 94.7 94.8
PKU Best05 (Chen et al., 2005) N/A 95.3 94.6 95.0

CRF + rule-system (Zhang et al., 2006)
√

94.7 95.5 95.1
semi-perceptron (Zhang and Clark, 2007) × N/A N/A 94.5
Latent-variable CRF (Sun et al., 2009b)

√
95.6 94.8 95.2

Our method (A Single CRF)
√

95.8 94.9 95.4

Table 3: Comparing our method with the state-of-the-art CWS systems.

of-the-art systems reported in the previous papers.
The statistics are listed in Table 3. Best05 represents
the best system of the Second International Chinese
Word Segmentation Bakeoff on the corresponding
data; CRF + rule-system represents confidence-
based combination of CRF and rule-based models,
presented in Zhang et al. (2006). Prob. indicates
whether or not the system can provide probabilistic
information. As we can see, our method achieved
similar or even higher F-scores, compared with the
best systems reported in previous papers. Note that,
our system is a single Markov model, while most of
the state-of-the-art systems are complicated heavy
systems, with model-combinations (e.g., voting of
multiple segmenters), semi-Markov relaxations, or
latent-variables.

6 Conclusions and Future Work

In this paper, we presented a joint model for
Chinese word segmentation and new word detection.
We presented new features, including word-based
features and enriched edge features, for the joint
modeling. We showed that the new features can
improve the performance on the two tasks.

On the other hand, the training of the model,
especially with high-dimensional new features,
became quite expensive. To solve this problem,

we proposed a new training method, ADF training,
for very fast training of CRFs, even given large-
scale datasets with high dimensional features. We
performed experiments and showed that our new
training method is an order magnitude faster than
existing optimization methods. Our final system can
learn highly accurate models with only a few passes
in training. The proposed fast learning method
is a general algorithm that is not limited in this
specific task. As future work, we plan to apply
this fast learning method on other large-scale natural
language processing tasks.
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Abstract
In this paper, we propose innovative repre-
sentations for automatic classification of verbs
according to mainstream linguistic theories,
namely VerbNet and FrameNet. First, syntac-
tic and semantic structures capturing essential
lexical and syntactic properties of verbs are
defined. Then, we design advanced similarity
functions between such structures, i.e., seman-
tic tree kernel functions, for exploiting distri-
butional and grammatical information in Sup-
port Vector Machines. The extensive empir-
ical analysis on VerbNet class and frame de-
tection shows that our models capture mean-
ingful syntactic/semantic structures, which al-
lows for improving the state-of-the-art.

1 Introduction
Verb classification is a fundamental topic of com-
putational linguistics research given its importance
for understanding the role of verbs in conveying se-
mantics of natural language (NL). Additionally, gen-
eralization based on verb classification is central to
many NL applications, ranging from shallow seman-
tic parsing to semantic search or information extrac-
tion. Currently, a lot of interest has been paid to
two verb categorization schemes: VerbNet (Schuler,
2005) and FrameNet (Baker et al., 1998), which
has also fostered production of many automatic ap-
proaches to predicate argument extraction.

Such work has shown that syntax is necessary
for helping to predict the roles of verb arguments
and consequently their verb sense (Gildea and Juras-
fky, 2002; Pradhan et al., 2005; Gildea and Palmer,
2002). However, the definition of models for opti-
mally combining lexical and syntactic constraints is

still far for being accomplished. In particular, the ex-
haustive design and experimentation of lexical and
syntactic features for learning verb classification ap-
pears to be computationally problematic. For exam-
ple, the verb order can belongs to the two VerbNet
classes:

– The class 60.1, i.e., order someone to do some-
thing as shown in: The Illinois Supreme Court or-
dered the commission to audit Commonwealth Edi-
son ’s construction expenses and refund any unrea-
sonable expenses .

– The class 13.5.1: order or request something like
in: ... Michelle blabs about it to a sandwich man
while ordering lunch over the phone .

Clearly, the syntactic realization can be used to dis-
cern the cases above but it would not be enough to
correctly classify the following verb occurrence: ..
ordered the lunch to be delivered .. in Verb class
13.5.1. For such a case, selectional restrictions are
needed. These have also been shown to be use-
ful for semantic role classification (Zapirain et al.,
2010). Note that their coding in learning algorithms
is rather complex: we need to take into account syn-
tactic structures, which may require an exponential
number of syntactic features (i.e., all their possible
substructures). Moreover, these have to be enriched
with lexical information to trig lexical preference.

In this paper, we tackle the problem above
by studying innovative representations for auto-
matic verb classification according to VerbNet and
FrameNet. We define syntactic and semantic struc-
tures capturing essential lexical and syntactic prop-
erties of verbs. Then, we apply similarity between
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such structures, i.e., kernel functions, which can also
exploit distributional lexical semantics, to train au-
tomatic classifiers. The basic idea of such functions
is to compute the similarity between two verbs in
terms of all the possible substructures of their syn-
tactic frames. We define and automatically extract
a lexicalized approximation of the latter. Then, we
apply kernel functions that jointly model structural
and lexical similarity so that syntactic properties are
combined with generalized lexemes. The nice prop-
erty of kernel functions is that they can be used
in place of the scalar product of feature vectors to
train algorithms such as Support Vector Machines
(SVMs). This way SVMs can learn the association
between syntactic (sub-) structures whose lexical ar-
guments are generalized and target verb classes, i.e.,
they can also learn selectional restrictions.

We carried out extensive experiments on verb
class and frame detection which showed that our
models greatly improve on the state-of-the-art (up
to about 13% of relative error reduction). Such re-
sults are nicely assessed by manually inspecting the
most important substructures used by the classifiers
as they largely correlate with syntactic frames de-
fined in VerbNet.

In the rest of the paper, Sec. 2 reports on related
work, Sec. 3 and Sec. 4 describe previous and our
models for syntactic and semantic similarity, respec-
tively, Sec. 5 illustrates our experiments, Sec. 6 dis-
cusses the output of the models in terms of error
analysis and important structures and finally Sec. 7
derives the conclusions.

2 Related work
Our target task is verb classification but at the same
time our models exploit distributional models as
well as structural kernels. The next three subsec-
tions report related work in such areas.

Verb Classification. The introductory verb classi-
fication example has intuitively shown the complex-
ity of defining a comprehensive feature representa-
tion. Hereafter, we report on analysis carried out in
previous work.

It has been often observed that verb senses tend
to show different selectional constraints in a specific
argument position and the above verb order is a clear
example. In the direct object position of the example
sentence for the first sense 60.1 of order, we found

commission in the role PATIENT of the predicate. It
clearly satisfies the +ANIMATE/+ORGANIZATION

restriction on the PATIENT role. This is not true
for the direct object dependency of the alternative
sense 13.5.1, which usually expresses the THEME

role, with unrestricted type selection. When prop-
erly generalized, the direct object information has
thus been shown highly predictive about verb sense
distinctions.

In (Brown et al., 2011), the so called dynamic
dependency neighborhoods (DDN), i.e., the set of
verbs that are typically collocated with a direct ob-
ject, are shown to be more helpful than lexical in-
formation (e.g., WordNet). The set of typical verbs
taking a noun n as a direct object is in fact a strong
characterization for semantic similarity, as all the
nounsm similar to n tend to collocate with the same
verbs. This is true also for other syntactic depen-
dencies, among which the direct object dependency
is possibly the strongest cue (as shown for example
in (Dligach and Palmer, 2008)).

In order to generalize the above DDN feature, dis-
tributional models are ideal, as they are designed
to model all the collocations of a given noun, ac-
cording to large scale corpus analysis. Their abil-
ity to capture lexical similarity is well established in
WSD tasks (e.g. (Schutze, 1998)), thesauri harvest-
ing (Lin, 1998), semantic role labeling (Croce et al.,
2010)) as well as information retrieval (e.g. (Furnas
et al., 1988)).

Distributional Models (DMs). These models fol-
low the distributional hypothesis (Firth, 1957) and
characterize lexical meanings in terms of context of
use, (Wittgenstein, 1953). By inducing geometrical
notions of vectors and norms through corpus analy-
sis, they provide a topological definition of seman-
tic similarity, i.e., distance in a space. DMs can
capture the similarity between words such as dele-
gation, deputation or company and commission. In
case of sense 60.1 of the verb order, DMs can be
used to suggest that the role PATIENT can be inher-
ited by all these words, as suitable Organisations.

In supervised language learning, when few exam-
ples are available, DMs support cost-effective lexi-
cal generalizations, often outperforming knowledge
based resources (such as WordNet, as in (Pantel et
al., 2007)). Obviously, the choice of the context
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type determines the type of targeted semantic prop-
erties. Wider contexts (e.g., entire documents) are
shown to suggest topical relations. Smaller con-
texts tend to capture more specific semantic as-
pects, e.g. the syntactic behavior, and better capture
paradigmatic relations, such as synonymy. In partic-
ular, word space models, as described in (Sahlgren,
2006), define contexts as the words appearing in a
n-sized window, centered around a target word. Co-
occurrence counts are thus collected in a words-by-
words matrix, where each element records the num-
ber of times two words co-occur within a single win-
dow of word tokens. Moreover, robust weighting
schemas are used to smooth counts against too fre-
quent co-occurrence pairs: Pointwise Mutual Infor-
mation (PMI) scores (Turney and Pantel, 2010) are
commonly adopted.

Structural Kernels. Tree and sequence kernels
have been successfully used in many NLP applica-
tions, e.g., parse reranking and adaptation, (Collins
and Duffy, 2002; Shen et al., 2003; Toutanova et
al., 2004; Kudo et al., 2005; Titov and Hender-
son, 2006), chunking and dependency parsing, e.g.,
(Kudo and Matsumoto, 2003; Daumé III and Marcu,
2004), named entity recognition, (Cumby and Roth,
2003), text categorization, e.g., (Cancedda et al.,
2003; Gliozzo et al., 2005), and relation extraction,
e.g., (Zelenko et al., 2002; Bunescu and Mooney,
2005; Zhang et al., 2006).

Recently, DMs have been also proposed in in-
tegrated syntactic-semantic structures that feed ad-
vanced learning functions, such as the semantic
tree kernels discussed in (Bloehdorn and Moschitti,
2007a; Bloehdorn and Moschitti, 2007b; Mehdad et
al., 2010; Croce et al., 2011).

3 Structural Similarity Functions
In this paper we model verb classifiers by exploiting
previous technology for kernel methods. In particu-
lar, we design new models for verb classification by
adopting algorithms for structural similarity, known
as Smoothed Partial Tree Kernels (SPTKs) (Croce et
al., 2011). We define new innovative structures and
similarity functions based on LSA.

The main idea of SPTK is rather simple: (i) mea-
suring the similarity between two trees in terms of
the number of shared subtrees; and (ii) such number
also includes similar fragments whose lexical nodes

are just related (so they can be different). The con-
tribution of (ii) is proportional to the lexical similar-
ity of the tree lexical nodes, where the latter can be
evaluated according to distributional models or also
lexical resources, e.g., WordNet.

In the following, we define our models based on
previous work on LSA and SPTKs.

3.1 LSA as lexical similarity model
Robust representations can be obtained through
intelligent dimensionality reduction methods. In
LSA the original word-by-context matrix M is de-
composed through Singular Value Decomposition
(SVD) (Landauer and Dumais, 1997; Golub and Ka-
han, 1965) into the product of three new matrices:
U , S, and V so that S is diagonal and M = USV T .
M is then approximated by Mk = UkSkV

T
k , where

only the first k columns of U and V are used,
corresponding to the first k greatest singular val-
ues. This approximation supplies a way to project
a generic term wi into the k-dimensional space us-
ing W = UkS

1/2
k , where each row corresponds to

the representation vectors ~wi. The original statisti-
cal information about M is captured by the new k-
dimensional space, which preserves the global struc-
ture while removing low-variant dimensions, i.e.,
distribution noise. Given two words w1 and w2,
the term similarity function σ is estimated as the
cosine similarity between the corresponding projec-
tions ~w1, ~w2 in the LSA space, i.e σ(w1, w2) =
~w1· ~w2

‖ ~w1‖‖ ~w2‖ . This is known as Latent Semantic Ker-
nel (LSK), proposed in (Cristianini et al., 2001),
as it defines a positive semi-definite Gram matrix
G = σ(w1, w2) ∀w1, w2 (Shawe-Taylor and Cris-
tianini, 2004). σ is thus a valid kernel and can be
combined with other kernels, as discussed in the
next session.

3.2 Tree Kernels driven by Semantic Similarity
To our knowledge, two main types of tree kernels
exploit lexical similarity: the syntactic semantic tree
kernel defined in (Bloehdorn and Moschitti, 2007a)
applied to constituency trees and the smoothed
partial tree kernels (SPTKs) defined in (Croce et
al., 2011), which generalizes the former. We report
the definition of the latter as we modified it for our
purposes. SPTK computes the number of common
substructures between two trees T1 and T2 without
explicitly considering the whole fragment space. Its
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Figure 2: Representation of verbs according to the Grammatical Relation Centered Tree (GRCT)

general equations are reported hereafter:

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (1)

where NT1 and NT2 are the sets of the T1’s and T2’s
nodes, respectively and ∆(n1, n2) is equal to the
number of common fragments rooted in the n1 and
n2 nodes1. The ∆ function determines the richness
of the kernel space and thus induces different tree
kernels, for example, the syntactic tree kernel (STK)
(Collins and Duffy, 2002) or the partial tree kernel
(PTK) (Moschitti, 2006).

The algorithm for SPTK’s ∆ is the follow-
ing: if n1 and n2 are leaves then ∆σ(n1, n2) =
µλσ(n1, n2); else

∆σ(n1, n2) = µσ(n1, n2)×
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(
~I1)+d(~I2)

l(~I1)∏
j=1

∆σ(cn1
(~I1j), cn2

(~I2j))
)
, (2)

where (1) σ is any similarity between nodes, e.g., be-
tween their lexical labels; (2) λ, µ ∈ [0, 1] are decay
factors; (3) cn1(h) is the hth child of the node n1;
(4) ~I1 and ~I2 are two sequences of indexes, i.e., ~I =
(i1, i2, .., l(I)), with 1 ≤ i1 < i2 < .. < il(I); and (5)
d(~I1) = ~I1l(~I1)−~I11+1 and d(~I2) = ~I2l(~I2)−~I21+1.
Note that, as shown in (Croce et al., 2011), the av-
erage running time of SPTK is sub-quadratic in the
number of the tree nodes. In the next section we
show how we exploit the class of SPTKs, for verb
classification.

1To have a similarity score between 0 and 1, a normalization
in the kernel space, i.e. TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
is applied.

4 Verb Classification Models
The design of SPTK-based algorithms for our verb
classification requires the modeling of two differ-
ent aspects: (i) a tree representation for the verbs;
and (ii) the lexical similarity suitable for the task.
We also modified SPTK to apply different similarity
functions to different nodes to introduce flexibility.

4.1 Verb Structural Representation
The implicit feature space generated by structural
kernels and the corresponding notion of similarity
between verbs obviously depends on the input struc-
tures. In the cases of STK, PTK and SPTK different
tree representations lead to engineering more or less
expressive linguistic feature spaces.

With the aim of capturing syntactic features, we
started from two different parsing paradigms: phrase
and dependency structures. For example, for repre-
senting the first example of the introduction, we can
use the constituency tree (CT) in Figure 1, where the
target verb node is enriched with the TARGET label.
Here, we apply tree pruning to reduce the computa-
tional complexity of tree kernels as it is proportional
to the number of nodes in the input trees. Accord-
ingly, we only keep the subtree dominated by the
target VP by pruning from it all the S-nodes along
with their subtrees (i.e, all nested sentences are re-
moved). To further improve generalization, we lem-
matize lexical nodes and add generalized POS-Tags,
i.e., noun (n::), verb (v::), adjective (::a), determiner
(::d) and so on, to them. This is useful for constrain-
ing similarity to be only contributed by lexical pairs
of the same grammatical category.
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Figure 3: Representation of verbs according to the Lexical Centered Tree (LCT)

To encode dependency structure information in a
tree (so that we can use it in tree kernels), we use
(i) lexemes as nodes of our tree, (ii) their dependen-
cies as edges between the nodes and (iii) the depen-
dency labels, e.g., grammatical functions (GR), and
POS-Tags, again as tree nodes. We designed two
different tree types: (i) in the first type, GR are cen-
tral nodes from which dependencies are drawn and
all the other features of the central node, i.e., lexi-
cal surface form and its POS-Tag, are added as ad-
ditional children. An example of the GR Centered
Tree (GRCT) is shown in Figure 2, where the POS-
Tags and lexemes are children of GR nodes. (ii) The
second type of tree uses lexicals as central nodes on
which both GR and POS-Tag are added as the right-
most children. For example, Figure 3 shows an ex-
ample of a Lexical Centered Tree (LCT). For both
trees, the pruning strategy only preserves the verb
node, its direct ancestors (father and siblings) and
its descendants up to two levels (i.e., direct children
and grandchildren of the verb node). Note that, our
dependency tree can capture the semantic head of
the verbal argument along with the main syntactic
construct, e.g., to audit.

4.2 Generalized node similarity for SPTK
We have defined the new similarity στ to be used in
Eq. 2, which makes SPTK more effective as shown
by Alg. 1. στ takes two nodes n1 and n2 and applies
a different similarity for each node type. The latter is
derived by τ and can be: GR (i.e., SYNT), POS-Tag
(i.e., POS) or a lexical (i.e., LEX) type. In our exper-
iment, we assign 0/1 similarity for SYNT and POS

nodes according to string matching. For LEX type,
we apply a lexical similarity learned with LSA to
only pairs of lexicals associated with the same POS-
Tag. It should be noted that the type-based similarity
allows for potentially applying a different similarity
for each node. Indeed, we also tested an amplifica-
tion factor, namely, leaf weight (lw), which ampli-
fies the matching values of the leaf nodes.

Algorithm 1 στ (n1, n2, lw)
στ ← 0,
if τ(n1) = τ(n2) = SYNT ∧ label(n1) = label(n2) then
στ ← 1

end if
if τ(n1) = τ(n2) = POS ∧ label(n1) = label(n2) then
στ ← 1

end if
if τ(n1) = τ(n2) = LEX ∧ pos(n1) = pos(n2) then
στ ← σLEX(n1, n2)

end if
if leaf(n1) ∧ leaf(n2) then
στ ← στ × lw

end if
return στ

5 Experiments
In these experiments, we tested the impact of our dif-
ferent verb representations using different kernels,
similarities and parameters. We also compared with
simple bag-of-words (BOW) models and the state-
of-the-art.

5.1 General experimental setup
We consider two different corpora: one for VerbNet
and the other for FrameNet. For the former, we used
the same verb classification setting of (Brown et al.,
2011). Sentences are drawn from the Semlink cor-
pus (Loper et al., 2007), which consists of the Prop-
Banked Penn Treebank portions of the Wall Street
Journal. It contains 113K verb instances, 97K of
which are verbs represented in at least one VerbNet
class. Semlink includes 495 verbs, whose instances
are labeled with more than one class (including one
single VerbNet class or none). We used all instances
of the corpus for a total of 45,584 instances for 180
verb classes. When instances labeled with the none
class are not included, the number of examples be-
comes 23,719.

The second corpus refers to FrameNet frame clas-
sification. The training and test data are drawn from
the FrameNet 1.5 corpus2, which consists of 135K
sentences annotated according the frame semantics

2http://framenet.icsi.berkeley.edu
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(Baker et al., 1998). We selected the subset of
frames containing more than 100 sentences anno-
tated with a verbal predicate for a total of 62,813
sentences in 187 frames (i.e., very close to the Verb-
Net datasets). For both the datasets, we used 70% of
instances for training and 30% for testing.

Our verb (multi) classifier is designed with
the one-vs-all (Rifkin and Klautau, 2004) multi-
classification schema. This uses a set of binary
SVM classifiers, one for each verb class (frame) i.
The sentences whose verb is labeled with the class
i are positive examples for the classifier i. The sen-
tences whose verbs are compatible with the class i
but evoking a different class or labeled with none
(no current verb class applies) are added as negative
examples. In the classification phase the binary clas-
sifiers are applied by (i) only considering classes that
are compatible with the target verbs; and (ii) select-
ing the class associated with the maximum positive
SVM margin. If all classifiers provide a negative
score the example is labeled with none.

To learn the binary classifiers of the schema
above, we coded our modified SPTK in SVM-Light-
TK3 (Moschitti, 2006). The parameterization of
each classifier is carried on a held-out set (30% of
the training) and is concerned with the setting of the
trade-off parameter (option -c) and the leaf weight
(lw) (see Alg. 1), which is used to linearly scale
the contribution of the leaf nodes. In contrast, the
cost-factor parameter of SVM-Light-TK is set as the
ratio between the number of negative and positive
examples for attempting to have a balanced Preci-
sion/Recall.

Regarding SPTK setting, we used the lexical simi-
larity σ defined in Sec. 3.1. In more detail, LSA was
applied to ukWak (Baroni et al., 2009), which is a
large scale document collection made up of 2 billion
tokens. M is constructed by applying POS tagging to
build rows with pairs 〈lemma, ::POS〉 (lemma::POS
in brief). The contexts of such items are the columns
of M and are short windows of size [−3,+3], cen-
tered on the items. This allows for better captur-
ing syntactic properties of words. The most frequent
20,000 items are selected along with their 20k con-
texts. The entries of M are the point-wise mutual

3(Structural kernels in SVMLight (Joachims, 2000)) avail-
able at http://disi.unitn.it/moschitti/Tree-Kernel.htm

STK PTK SPTK
lw Acc. lw Acc. lw Acc.

CT - 83.83% 8 84.57% 8 84.46%
GRCT - 84.83% 8 85.15% 8 85.28%
LCT - 77.73% 0.1 86.03% 0.2 86.72%
Br. et Al. 84.64%
BOW 79.08%
SK 82.08%

Table 1: VerbNet accuracy with the none class

STK PTK SPTK
lw Acc. lw Acc. lw Acc.

GRCT - 92.67% 6 92.97% 0.4 93.54%
LCT - 90.28% 6 92.99% 0.3 93.78%
BOW 91.13%
SK 91.84%

Table 2: FrameNet accuracy without the none class

information between them. SVD reduction is then
applied to M, with a dimensionality cut of l = 250.

For generating the CT, GRCT and LCT struc-
tures, we used the constituency trees generated by
the Charniak parser (Charniak, 2000) and the de-
pendency structures generated by the LTH syntactic
parser (described in (Johansson and Nugues, 2008)).

The classification performance is measured with
accuracy (i.e., the percentage of correct classifica-
tion). We also derive statistical significance of the
results by using the model described in (Yeh, 2000)
and implemented in (Padó, 2006).

5.2 VerbNet and FrameNet Classification
Results

To assess the performance of our settings, we also
derive a simple baseline based on the bag-of-words
(BOW) model. For it, we represent an instance of
a verb in a sentence using all words of the sentence
(by creating a special feature for the predicate word).

We also used sequence kernels (SK), i.e., PTK ap-
plied to a tree composed of a fake root and only one
level of sentence words. For efficiency reasons4, we
only consider the 10 words before and after the pred-
icate with subsequence features of length up to 5.

Table 1 reports the accuracy of different mod-
els for VerbNet classification. It should be noted
that: first, SK produces a much higher accuracy than
BOW, i.e., 82.08 vs. 79.08. On one hand, this is

4The average running time of the SK is much higher than the
one of PTK. When a tree is composed by only one level PTK
collapses to SK.
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STK PTK SPTK
lw Acc. lw Acc. lw Acc.

CT - 91.14% 8 91.66% 6 91.66%
GRCT - 91.71% 8 92.38% 4 92.33%
LCT - 89.20% 0.2 92.54% 0.1 92.55%
BOW 88.16%
SK 89.86%

Table 3: VerbNet accuracy without the none class

generally in contrast with standard text categoriza-
tion tasks, for which n-gram models show accuracy
comparable to the simpler BOW. On the other hand,
it simply confirms that verb classification requires
the dependency information between words (i.e., at
least the sequential structure information provided
by SK).

Second, SK is 2.56 percent points below the state-
of-the-art achieved in (Brown et al., 2011) (BR), i.e,
82.08 vs. 84.64. In contrast, STK applied to our rep-
resentation (CT, GRCT and LCT) produces compa-
rable accuracy, e.g., 84.83, confirming that syntactic
representation is needed to reach the state-of-the-art.

Third, PTK, which produces more general struc-
tures, improves over BR by almost 1.5 (statistically
significant result) when using our dependency struc-
tures GRCT and LCT. CT does not produce the same
improvement since it does not allow PTK to directly
compare the lexical structure (lexemes are all leaf
nodes in CT and to connect some pairs of them very
large trees are needed).

Finally, the best model of SPTK (i.e, using LCT)
improves over the best PTK (i.e., using LCT) by al-
most 1 point (statistically significant result): this dif-
ference is only given by lexical similarity. SPTK im-
proves on the state-of-the-art by about 2.08 absolute
percent points, which, given the high accuracy of the
baseline, corresponds to 13.5% of relative error re-
duction.

We carried out similar experiments for frame clas-
sification. One interesting difference is that SK im-
proves BOW by only 0.70, i.e., 4 times less than in
the VerbNet setting. This suggests that word order
around the predicate is more important for deriving
the VerbNet class than the FrameNet frame. Ad-
ditionally, LCT or GRCT seems to be invariant for
both PTK and SPTK whereas the lexical similarity
still produces a relevant improvement on PTK, i.e.,
13% of relative error reduction, for an absolute accu-
racy of 93.78%. The latter improves over the state-
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Figure 4: Learning curves: VerbNet accuracy with the
none Class

of-the-art, i.e., 92.63% derived in (Giuglea and Mos-
chitti, 2006), by using STK on CT on 133 frames.

We also carried out experiments to understand
the role of the none class. Table 3 reports on the
VerbNet classification without its instances. This is
of course an unrealistic setting as it would assume
that the current VerbNet release already includes all
senses for English verbs. In the table, we note that
the overall accuracy highly increases and the differ-
ence between models reduces. The similarities play
no role anymore. This may suggest that SPTK can
help in complex settings, where verb class character-
ization is more difficult. Another important role of
SPTK models is their ability to generalize. To test
this aspect, Figure 4 illustrates the learning curves
of SPTK with respect to BOW and the accuracy
achieved by BR (with a constant line). It is impres-
sive to note that with only 40% of the data SPTK can
reach the state-of-the-art.

6 Model Analysis and Discussion
We carried out analysis of system errors and its in-
duced features. These can be examined by apply-
ing the reverse engineering tool5 proposed in (Pighin
and Moschitti, 2010; Pighin and Moschitti, 2009a;
Pighin and Moschitti, 2009b), which extracts the
most important features for the classification model.
Many mistakes are related to false positives and neg-
atives of the none class (about 72% of the errors).
This class also causes data imbalance. Most errors
are also due to lack of lexical information available
to the SPTK kernel: (i) in 30% of the errors, the
argument heads were proper nouns for which the
lexical generalization provided by the DMs was not

5http://danielepighin.net/cms/software/flink
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VerbNet class 13.5.1
(IM(VB(target))(OBJ))
(VC(VB(target))(OBJ))
(VC(VBG(target))(OBJ))
(OPRD(TO)(IM(VB(target))(OBJ)))
(PMOD(VBG(target))(OBJ))
(VB(target))
(VC(VBN(target)))
(PRP(TO)(IM(VB(target))(OBJ)))
(IM(VB(target))(OBJ)(ADV(IN)(PMOD)))
(OPRD(TO)(IM(VB(target))(OBJ)(ADV(IN)(PMOD))))

VerbNet class 60
(VC(VB(target))(OBJ))
(NMOD(VBG(target))(OPRD))
(VC(VBN(target))(OPRD))
(NMOD(VBN(target))(OPRD))
(PMOD(VBG(target))(OBJ))
(ROOT(SBJ)(VBD(target))(OBJ)(P(,)))
(VC(VB(target))(OPRD))
(ROOT(SBJ)(VBZ(target))(OBJ)(P(,)))
(NMOD(SBJ(WDT))(VBZ(target))(OPRD))
(NMOD(SBJ)(VBZ(target))(OPRD(SBJ)(TO)(IM)))

Table 4: GRCT fragments

available; and (ii) in 76% of the errors only 2 or less
argument heads are included in the extracted tree,
therefore tree kernels cannot exploit enough lexical
information to disambiguate verb senses. Addition-
ally, ambiguity characterizes errors where the sys-
tem is linguistically consistent but the learned selec-
tional preferences are not sufficient to separate verb
senses. These errors are mainly due to the lack of
contextual information. While error analysis sug-
gests that further improvement is possible (e.g. by
exploiting proper nouns), the type of generalizations
currently achieved by SPTK are rather effective. Ta-
ble 4 and 5 report the tree structures characterizing
the most informative training examples of the two
senses of the verb order, i.e. the VerbNet classes
13.5.1 (make a request for something) and 60 (give
instructions to or direct somebody to do something
with authority).

In line with the method discussed in (Pighin and
Moschitti, 2009b), these fragments are extracted as
they appear in most of the support vectors selected
during SVM training. As easily seen, the two classes
are captured by rather different patterns. The typ-
ical accusative form with an explicit direct object
emerges as characterizing the sense 13.5.1, denot-
ing the THEME role. All fragments of the sense 60
emphasize instead the sentential complement of the
verb that in fact expresses the standard PROPOSI-
TION role in VerbNet. Notice that tree fragments
correspond to syntactic patterns. The a posteriori

VerbNet class 13.5.1
(VP(VB(target))(NP))
(VP(VBG(target))(NP))
(VP(VBD(target))(NP))
(VP(TO)(VP(VB(target))(NP)))
(S(NP-SBJ)(VP(VBP(target))(NP)))
VerbNet class 60
(VBN(target))
(VP(VBD(target))(S))
(VP(VBZ(target))(S))
(VBP(target))
(VP(VBD(target))(NP-1)(S(NP-SBJ)(VP)))

Table 5: CT fragments

analysis of the learned models (i.e. the underlying
support vectors) confirm very interesting grammati-
cal generalizations, i.e. the capability of tree kernels
to implicitly trigger useful linguistic inductions for
complex semantic tasks. When SPTK are adopted,
verb arguments can be lexically generalized into
word classes, i.e., clusters of argument heads (e.g.
commission vs. delegation, or gift vs. present). Au-
tomatic generation of such classes is an interesting
direction for future research.

7 Conclusion
We have proposed new approaches to characterize
verb classes in learning algorithms. The key idea is
the use of structural representation of verbs based on
syntactic dependencies and the use of structural ker-
nels to measure similarity between such representa-
tions. The advantage of kernel methods is that they
can be directly used in some learning algorithms,
e.g., SVMs, to train verb classifiers. Very interest-
ingly, we can encode distributional lexical similar-
ity in the similarity function acting over syntactic
structures and this allows for generalizing selection
restrictions through a sort of (supervised) syntactic
and semantic co-clustering.

The verb classification results show a large im-
provement over the state-of-the-art for both Verb-
Net and FrameNet, with a relative error reduction
of about 13.5% and 16.0%, respectively. In the fu-
ture, we plan to exploit the models learned from
FrameNet and VerbNet to carry out automatic map-
ping of verbs from one theory to the other.
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Abstract

Previous research has conflicting conclu-
sions on whether word sense disambiguation
(WSD) systems can improve information re-
trieval (IR) performance. In this paper, we
propose a method to estimate sense distribu-
tions for short queries. Together with the
senses predicted for words in documents, we
propose a novel approach to incorporate word
senses into the language modeling approach
to IR and also exploit the integration of syn-
onym relations. Our experimental results on
standard TREC collections show that using the
word senses tagged by a supervised WSD sys-
tem, we obtain significant improvements over
a state-of-the-art IR system.

1 Introduction

Word sense disambiguation (WSD) is the task of
identifying the correct meaning of a word in context.
As a basic semantic understanding task at the lexi-
cal level, WSD is a fundamental problem in natural
language processing. It can be potentially used as
a component in many applications, such as machine
translation (MT) and information retrieval (IR).

In recent years, driven by Senseval/Semeval
workshops, WSD systems achieve promising perfor-
mance. In the application of WSD to MT, research
has shown that integrating WSD in appropriate ways
significantly improves the performance of MT sys-
tems (Chan et al., 2007; Carpuat and Wu, 2007).

In the application to IR, WSD can bring two kinds
of benefits. First, queries may contain ambiguous
words (terms), which have multiple meanings. The

ambiguities of these query words can hurt retrieval
precision. Identifying the correct meaning of the
ambiguous words in both queries and documents
can help improve retrieval precision. Second, query
words may have tightly related meanings with other
words not in the query. Making use of these relations
between words can improve retrieval recall.

Overall, IR systems can potentially benefit from
the correct meanings of words provided by WSD
systems. However, in previous investigations of the
usage of WSD in IR, different researchers arrived
at conflicting observations and conclusions. Some
of the early research showed a drop in retrieval per-
formance by using word senses (Krovetz and Croft,
1992; Voorhees, 1993). Some other experiments ob-
served improvements by integrating word senses in
IR systems (Schütze and Pedersen, 1995; Gonzalo
et al., 1998; Stokoe et al., 2003; Kim et al., 2004).

This paper proposes the use of word senses to
improve the performance of IR. We propose an ap-
proach to annotate the senses for short queries. We
incorporate word senses into the language modeling
(LM) approach to IR (Ponte and Croft, 1998), and
utilize sense synonym relations to further improve
the performance. Our evaluation on standard TREC1

data sets shows that supervised WSD outperforms
two other WSD baselines and significantly improves
IR.

The rest of this paper is organized as follows. In
Section 2, we first review previous work using WSD
in IR. Section 3 introduces the LM approach to IR,
including the pseudo relevance feedback method.
We describe our WSD system and the method of

1http://trec.nist.gov/

273



generating word senses for query terms in Section
4, followed by presenting our novel method of in-
corporating word senses and their synonyms into the
LM approach in Section 5. We present experiments
and analyze the results in Section 6. Finally, we con-
clude in Section 7.

2 Related Work

Many previous studies have analyzed the benefits
and the problems of applying WSD to IR. Krovetz
and Croft (1992) studied the sense matches between
terms in query and the document collection. They
concluded that the benefits of WSD in IR are not as
expected because query words have skewed sense
distribution and the collocation effect from other
query terms already performs some disambiguation.
Sanderson (1994; 2000) used pseudowords to intro-
duce artificial word ambiguity in order to study the
impact of sense ambiguity on IR. He concluded that
because the effectiveness of WSD can be negated
by inaccurate WSD performance, high accuracy of
WSD is an essential requirement to achieve im-
provement. In another work, Gonzalo et al. (1998)
used a manually sense annotated corpus, SemCor, to
study the effects of incorrect disambiguation. They
obtained significant improvements by representing
documents and queries with accurate senses as well
as synsets (synonym sets). Their experiment also
showed that with the synset representation, which
included synonym information, WSD with an error
rate of 40%–50% can still improve IR performance.
Their later work (Gonzalo et al., 1999) verified that
part of speech (POS) information is discriminatory
for IR purposes.

Several works attempted to disambiguate terms
in both queries and documents with the senses pre-
defined in hand-crafted sense inventories, and then
used the senses to perform indexing and retrieval.
Voorhees (1993) used the hyponymy (“IS-A”) rela-
tion in WordNet (Miller, 1990) to disambiguate the
polysemous nouns in a text. In her experiments, the
performance of sense-based retrieval is worse than
stem-based retrieval on all test collections. Her anal-
ysis showed that inaccurate WSD caused the poor
results.

Stokoe et al. (2003) employed a fine-grained
WSD system with an accuracy of 62.1% to dis-

ambiguate terms in both the text collections and
the queries in their experiments. Their evalua-
tion on TREC collections achieved significant im-
provements over a standard term based vector space
model. However, it is hard to judge the effect
of word senses because of the overall poor perfor-
mances of their baseline method and their system.

Instead of using fine-grained sense inventory, Kim
et al. (2004) tagged words with 25 root senses of
nouns in WordNet. Their retrieval method main-
tained the stem-based index and adjusted the term
weight in a document according to its sense match-
ing result with the query. They attributed the im-
provement achieved on TREC collections to their
coarse-grained, consistent, and flexible sense tag-
ging method. The integration of senses into the tra-
ditional stem-based index overcomes some of the
negative impact of disambiguation errors.

Different from using predefined sense inventories,
Schütze and Pedersen (1995) induced the sense in-
ventory directly from the text retrieval collection.
For each word, its occurrences were clustered into
senses based on the similarities of their contexts.
Their experiments showed that using senses im-
proved retrieval performance, and the combination
of word-based ranking and sense-based ranking can
further improve performance. However, the cluster-
ing process of each word is a time consuming task.
Because the sense inventory is collection dependent,
it is also hard to expand the text collection without
re-doing preprocessing.

Many studies investigated the expansion effects
by using knowledge sources from thesauri. Some
researchers achieved improvements by expanding
the disambiguated query words with synonyms and
some other information from WordNet (Voorhees,
1994; Liu et al., 2004; Liu et al., 2005; Fang, 2008).
The usage of knowledge sources from WordNet in
document expansion also showed improvements in
IR systems (Cao et al., 2005; Agirre et al., 2010).

The previous work shows that the WSD errors can
easily neutralize its positive effect. It is important
to reduce the negative impact of erroneous disam-
biguation, and the integration of senses into tradi-
tional term index, such as stem-based index, is a pos-
sible solution. The utilization of semantic relations
has proved to be helpful for IR. It is also interest-
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ing to investigate the utilization of semantic relations
among senses in IR.

3 The Language Modeling Approach to IR

This section describes the LM approach to IR and
the pseudo relevance feedback approach.

3.1 The language modeling approach

In the language modeling approach to IR, language
models are constructed for each query q and each
document d in a text collection C. The documents
in C are ranked by the distance to a given query q
according to the language models. The most com-
monly used language model in IR is the unigram
model, in which terms are assumed to be indepen-
dent of each other. In the rest of this paper, language
model will refer to the unigram language model.

One of the commonly used measures of the sim-
ilarity between query model and document model
is negative Kullback-Leibler (KL) divergence (Laf-
ferty and Zhai, 2001). With unigram model, the neg-
ative KL-divergence between model θq of query q
and model θd of document d is calculated as follows:

−D(θq||θd)=−
∑
t∈V

p(t|θq) log
p(t|θq)
p(t|θd)

=
∑
t∈V

p(t|θq) log p(t|θd)−
∑
t∈V

p(t|θq) log p(t|θq)

=
∑
t∈V

p(t|θq) log p(t|θd) + E(θq), (1)

where p(t|θq) and p(t|θd) are the generative proba-
bilities of a term t from the models θq and θd, V is
the vocabulary of C, and E(θq) is the entropy of q.

Define tf (t, d) and tf (t, q) as the frequencies of t
in d and q, respectively. Normally, p(t|θq) is calcu-
lated with maximum likelihood estimation (MLE):

p(t|θq) = tf (t,q)P
t′∈q tf (t′,q) . (2)

In the calculation of p(t|θd), several smoothing
methods have been proposed to overcome the data
sparseness problem of a language model constructed
from one document (Zhai and Lafferty, 2001b). For
example, p(t|θd) with the Dirichlet-prior smoothing
can be calculated as follows:

p(t|θd) =
tf (t, d) + µ p(t|θC)∑

t′∈V tf (t′, d) + µ
, (3)

where µ is the prior parameter in the Dirichlet-prior
smoothing method, and p(t|θC) is the probability of
t in C, which is often calculated with MLE:

p(t|θC) =
P

d′∈C tf (t,d′)P
d′∈C

P
t′∈V tf (t′,d′) .

3.2 Pseudo relevance feedback
Pseudo relevance feedback (PRF) is widely used in
IR to achieve better performance. It is constructed
with two retrieval steps. In the first step, ranked doc-
uments are retrieved from C by a normal retrieval
method with the original query q. In the second step,
a number of terms are selected from the top k ranked
documents Dq for query expansion, under the as-
sumption that these k documents are relevant to the
query. Then, the expanded query is used to retrieve
the documents from C.

There are several methods to select expansion
terms in the second step (Zhai and Lafferty, 2001a).
For example, in Indri2, the terms are first ranked by
the following score:

v(t,Dq) =
∑

d∈Dq
log( tf (t,d)

|d| ×
1

p(t|θC)),

as in Ponte (1998). Define p(q|θd) as the probability
score assigned to d. The topm terms Tq are selected
with weights calculated based on the relevance
model described in Lavrenko and Croft (2001):

w(t,Dq) =
∑

d∈Dq

[
tf (t,d)
|d| × p(q|θd)× p(θd)

]
,

which calculates the sum of weighted probabilities
of t in each document. After normalization, the
probability of t in θrq is calculated as follows:

p(t|θrq) = w(t,Dq)P
t′∈Tq

w(t′,Dq) .

Finally, the relevance model is interpolated with the
original query model:

p(t|θprfq ) = λ p(t|θrq) + (1− λ)p(t|θq), (4)

where parameter λ controls the amount of feedback.
The new model θprfq is used to replace the original
one θq in Equation 1.

Collection enrichment (CE) (Kwok and Chan,
1998) is a technique to improve the quality of the
feedback documents by making use of an external
target text collection X in addition to the original
target C in the first step of PRF. The usage of X is
supposed to provide more relevant feedback docu-
ments and feedback query terms.

2http://lemurproject.org/indri/
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4 Word Sense Disambiguation

In this section, we first describe the construction of
our WSD system. Then, we propose the method of
assigning senses to query terms.

4.1 Word sense disambiguation system

Previous research shows that translations in another
language can be used to disambiguate the meanings
of words (Chan and Ng, 2005; Zhong and Ng, 2009).
We construct our supervised WSD system directly
from parallel corpora.

To generate the WSD training data, 7 parallel cor-
pora were used, including Chinese Treebank, FBIS
Corpus, Hong Kong Hansards, Hong Kong Laws,
Hong Kong News, Sinorama News Magazine, and
Xinhua Newswire. These corpora were already
aligned at sentence level. We tokenized English
texts with Penn Treebank Tokenizer, and performed
word segmentation on Chinese texts. Then, word
alignment was performed on the parallel corpora
with the GIZA++ software (Och and Ney, 2003).

For each English morphological root e, the En-
glish sentences containing its occurrences were ex-
tracted from the word aligned output of GIZA++,
as well as the corresponding translations of these
occurrences. To minimize noisy word alignment
result, translations with no Chinese character were
deleted, and we further removed a translation when
it only appears once, or its frequency is less than 10
and also less than 1% of the frequency of e. Finally,
only the most frequent 10 translations were kept for
efficiency consideration.

The English part of the remaining occurrences
were used as training data. Because multiple En-
glish words may have the same Chinese transla-
tion, to differentiate them, each Chinese translation
is concatenated with the English morphological root
to form a word sense. We employed a supervised
WSD system, IMS3, to train the WSD models. IMS
(Zhong and Ng, 2010) integrates multiple knowl-
edge sources as features. We used MaxEnt as the
machine learning algorithm. Finally, the system can
disambiguate the words by assigning probabilities to
different senses.

3http://nlp.comp.nus.edu.sg/software/ims

4.2 Estimating sense distributions for query
terms

In IR, both terms in queries and the text collection
can be ambiguous. Hence, WSD is needed to disam-
biguate these ambiguous terms. In most cases, doc-
uments in a text collection are full articles. There-
fore, a WSD system has sufficient context to dis-
ambiguate the words in the document. In contrast,
queries are usually short, often with only two or
three terms in a query. Short queries pose a chal-
lenge to WSD systems since there is insufficient
context to disambiguate a term in a short query.

One possible solution to this problem is to find
some text fragments that contain a query term. Sup-
pose we already have a basic IR method which does
not require any sense information, such as the stem-
based LM approach. Similar to the PRF method,
assuming that the top k documents retrieved by the
basic method are relevant to the query, these k docu-
ments can be used to represent query q (Broder et al.,
2007; Bendersky et al., 2010; He and Wu, 2011). We
propose a method to estimate the sense probabilities
of each query term of q from these top k retrieved
documents.

Suppose the words in all documents of the text
collection are disambiguated with a WSD system,
and each word occurrence w in document d is as-
signed a vector of senses, S(w). Define the proba-
bility of assigning sense s to w as p(w, s, d). Given
a query q, suppose Dq is the set of top k documents
retrieved by the basic method, with the probability
score p(q|θd) assigned to d ∈ Dq.

Given a query term t ∈ q
S(t, q) = {}
sum = 0
for each document d ∈ Dq

for each word occurrence w ∈ d, whose stem form is
identical to the stem form of t

for each sense s ∈ S(w)
S(t, q) = S(t, q) ∪ {s}
p(t, s, q) = p(t, s, q) + p(q|θd) p(w, s, d)
sum = sum + p(q|θd) p(w, s, d)

for each sense s ∈ S(t, q)
p(t, s, q) = p(t, s, q)/sum

Return S(t, q), with probability p(t, s, q) for s ∈ S(t, q)

Figure 1: Process of generating senses for query terms

Figure 1 shows the pseudocode of calculating the
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sense distribution for a query term t in q with Dq,
where S(t, q) is the set of senses assigned to t and
p(t, s, q) is the probability of tagging t as sense s.
Basically, we utilized the sense distribution of the
words with the same stem form in Dq as a proxy to
estimate the sense probabilities of a query term. The
retrieval scores are used to weight the information
from the corresponding retrieved documents in Dq.

5 Incorporating Senses into Language
Modeling Approaches

In this section, we propose to incorporate senses into
the LM approach to IR. Then, we describe the inte-
gration of sense synonym relations into our model.

5.1 Incorporating senses as smoothing
With the method described in Section 4.2, both the
terms in queries and documents have been sense
tagged. The next problem is to incorporate the sense
information into the language modeling approach.

Suppose p(t, s, q) is the probability of tagging a
query term t ∈ q as sense s, and p(w, s, d) is the
probability of tagging a word occurrence w ∈ d as
sense s. Given a query q and a document d in text
collection C, we want to re-estimate the language
models by making use of the sense information as-
signed to them.

Define the frequency of s in d as:

stf (s, d) =
∑

w∈d p(w, s, d),

and the frequency of s in C as:

stf (s, C) =
∑

d∈C stf (s, d).

Define the frequencies of sense set S in d and C as:

stf (S, d) =
∑

s∈S stf (s, d),
stf (S,C) =

∑
s∈S stf (s, C).

For a term t ∈ q, with senses S(t, q):{s1, ..., sn},
suppose V :{p(t, s1, q), ..., p(t, sn, q)} is the vector
of probabilities assigned to the senses of t and
W :{stf (s1, d), ..., stf (sn, d)} is the vector of fre-
quencies of S(t, q) in d. The function cos(t, q, d)
calculates the cosine similarity between vector V
and vector W . Assume D is a set of documents
in C which contain any sense in S(t, q), we define
function cos(t, q) =

∑
d∈D cos(t, q, d)/|D|, which

calculates the mean of the sense cosine similarities,
and define function ∆cos(t, q, d) = cos(t, q, d) −

cos(t, q), which calculates the difference between
cos(t, q, d) and the corresponding mean value.

Given a query q, we re-estimate the term fre-
quency of query term t in d with sense information
integrated as smoothing:

tf sen(t, d) = tf (t, d) + sen(t, q, d), (5)

where function sen(t, q, d) is a measure of t’s sense
information in d, which is defined as follows:

sen(t, q, d) = α∆cos(t,q,d)stf (S(t, q), d). (6)

In sen(t, q, d), the last item stf (S(t, q), d) calcu-
lates the sum of the sense frequencies of t senses in
d, which represents the amount of t’s sense informa-
tion in d. The first item α∆cos(t,q,d) is a weight of the
sense information concerning the relative sense sim-
ilarity ∆cos(t, q, d), where α is a positive parame-
ter to control the impact of sense similarity. When
∆cos(t, q, d) is larger than zero, such that the sense
similarity of d and q according to t is above the av-
erage, the weight for the sense information is larger
than 1; otherwise, it is less than 1. The more similar
they are, the larger the weight value. For t /∈ q, be-
cause the sense set S(t, q) is empty, stf (S(t, q), d)
equals to zero and tf sen(t, d) is identical to tf (t, d).

With sense incorporated, the term frequency is in-
fluenced by the sense information. Consequently,
the estimation of probability of t in d becomes query
specific:

p(t|θsend ) =
tf sen(t, d) + µ p(t|θsenC )∑

t′∈V tf sen(t′, d) + µ
, (7)

where the probability of t in C is re-calculated as:

p(t|θsenC ) =
P

d′∈C tf sen (t,d′)P
d′∈C

P
t′∈V tf sen (t′,d′) .

5.2 Expanding with synonym relations
Words usually have some semantic relations with
others. Synonym relation is one of the semantic re-
lations commonly used to improve IR performance.
In this part, we further integrate the synonym rela-
tions of senses into the LM approach.

Suppose R(s) is the set of senses having syn-
onym relation with sense s. Define S(q) as the set
of senses of query q, S(q) =

⋃
t∈q S(t, q), and de-

fine R(s, q)=R(s)−S(q). We update the frequency
of a query term t in d by integrating the synonym
relations as follows:

tf syn(t, d) = tf sen(t, d) + syn(t, q, d), (8)
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where syn(t, q, d) is a function measuring the syn-
onym information in d:

syn(t, q, d) =
∑
s∈S(t)

β(s, q)p(t, s, q)stf (R(s, q), d).

The last item stf (R(s, q), d) in syn(t, q, d) is the
sum of the sense frequencies of R(s, q) in d. Notice
that the synonym senses already appearing in S(q)
are not included in the calculation, because the infor-
mation of these senses has been used in some other
places in the retrieval function. The frequency of
synonyms, stf (R(s, q), d), is weighted by p(t, s, q)
together with a scaling function β(s, q):

β(s, q) = min(1, stf (s,C)
stf (R(s,q),C)).

When stf (s, C), the frequency of sense s in C, is
less than stf (R(s, q), C), the frequency of R(s, q)
in C, the function β(s, q) scales down the impact
of synonyms according to the ratio of these two fre-
quencies. The scaling function makes sure that the
overall impact of the synonym senses is not greater
than the original word senses.

Accordingly, we have the probability of t in d up-
dated to:

p(t|θsynd ) =
tf syn(t, d) + µ p(t|θsyn

C )∑
t′∈V tf syn(t′, d) + µ

, (9)

and the probability of t in C is calculated as:

p(t|θsynC ) =
P

d′∈C tf syn (t,d′)P
d′∈C

P
t′∈V tf syn (t′,d′) .

With this language model, the probability of a query
term in a document is enlarged by the synonyms of
its senses; The more its synonym senses in a doc-
ument, the higher the probability. Consequently,
documents with more synonym senses of the query
terms will get higher retrieval rankings.

6 Experiments

In this section, we evaluate and analyze the mod-
els proposed in Section 5 on standard TREC collec-
tions.

6.1 Experimental settings

We conduct experiments on the TREC collection.
The text collection C includes the documents from
TREC disk 4 and 5, minus the CR (Congressional
Record) corpus, with 528,155 documents in total. In

addition, the other documents in TREC disk 1 to 5
are used as the external text collection X .

We use 50 queries from TREC6 Ad Hoc task
as the development set, and evaluate on 50 queries
from TREC7 Ad Hoc task, 50 queries from TREC8
Ad Hoc task, 50 queries from ROBUST 2003
(RB03), and 49 queries from ROBUST 2004
(RB04). In total, our test set includes 199 queries.
We use the terms in the title field of TREC topics as
queries. Table 1 shows the statistics of the five query
sets. The first column lists the query topics, and the
column #qry is the number of queries. The column
Ave gives the average query length, and the column
Rels is the total number of relevant documents.

Query Set Topics #qry Ave Rels
TREC6 301–350 50 2.58 4,290
TREC7 351–400 50 2.50 4,674
TREC8 401–450 50 2.46 4,728
RB03 601–650 50 3.00 1,658
RB044 651–700 49 2.96 2,062

Table 1: Statistics of query sets

We use the Lemur toolkit (Ogilvie and Callan,
2001) version 4.11 as the basic retrieval tool, and se-
lect the default unigram LM approach based on KL-
divergence and Dirichlet-prior smoothing method in
Lemur as our basic retrieval approach. Stop words
are removed from queries and documents using the
standard INQUERY stop words list (Allan et al.,
2000), and then the Porter stemmer is applied to per-
form stemming. The stem forms are finally used for
indexing and retrieval.

We set the smoothing parameter µ in Equation 3
to 400 by tuning on TREC6 query set in a range of
{100, 400, 700, 1000, 1500, 2000, 3000, 4000, 5000}.
With this basic method, up to 10 top ranked docu-
ments Dq are retrieved for each query q from the
extended text collection C ∪ X , for the usage of
performing PRF and generating query senses.

For PRF, we follow the implementation of Indri’s
PRF method and further apply the CE technique as
described in Section 3.2. The number of terms se-
lected from Dq for expansion is tuned from range
{20, 25, 30, 35, 40} and set to 25. The interpolation
parameter λ in Equation 4 is set to 0.7 from range

4Topic 672 is eliminated, since it has no relevant document.
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Method TREC7 TERC8 RB03 RB04 Comb Impr #ret-rel
Top 1 0.2530 0.3063 0.3704 0.4019 - - -
Top 2 0.2488 0.2876 0.3065 0.4008 - - -
Top 3 0.2427 0.2853 0.3037 0.3514 - - -

Stemprf (Baseline) 0.2634 0.2944 0.3586 0.3781 0.3234 - 9248
Stemprf+MFS 0.2655 0.2971 0.3626† 0.3802 0.3261† 0.84% 9281
Stemprf+Even 0.2655 0.2972 0.3623† 0.3814 0.3263‡ 0.91% 9284
Stemprf+WSD 0.2679‡ 0.2986† 0.3649‡ 0.3842 0.3286‡ 1.63% 9332

Stemprf+MFS+Syn 0.2756‡ 0.3034† 0.3649† 0.3859 0.3322‡ 2.73% 9418
Stemprf+Even+Syn 0.2713† 0.3061‡ 0.3657‡ 0.3859† 0.3320‡ 2.67% 9445
Stemprf+WSD+Syn 0.2762‡ 0.3126‡ 0.3735‡ 0.3891† 0.3376‡ 4.39% 9538

Table 2: Results on test set in MAP score. The first three rows show the results of the top participating systems, the
next row shows the performance of the baseline method, and the rest rows are the results of our method with different
settings. Single dagger (†) and double dagger (‡) indicate statistically significant improvement over Stemprf at the
95% and 99% confidence level with a two-tailed paired t-test, respectively. The best results are highlighted in bold.

{0.1, 0.2, ..., 0.9}. The CE-PRF method with this
parameter setting is chosen as the baseline.

To estimate the sense distributions for terms in
query q, the method described in Section 4.2 is ap-
plied with Dq. To disambiguate the documents in
the text collection, besides the usage of the super-
vised WSD system described in Section 4.1, two
WSD baseline methods, Even and MFS, are applied
for comparison. The method Even assigns equal
probabilities to all senses for each word, and the
method MFS tags the words with their correspond-
ing most frequent senses. The parameter α in Equa-
tion 6 is tuned on TREC6 from 1 to 10 in increment
of 1 for each sense tagging method. It is set to 7,
6, and 9 for the supervised WSD method, the Even
method, and the MFS method, respectively.

Notice that the sense in our WSD system is con-
ducted with two parts, a morphological root and a
Chinese translation. The Chinese parts not only dis-
ambiguate senses, but also provide clues of connec-
tions among different words. Assume that the senses
with the same Chinese part are synonyms, there-
fore, we can generate a set of synonyms for each
sense, and then utilize these synonym relations in
the method proposed in Section 5.2.

6.2 Experimental results
For evaluation, we use average precision (AP) as the
metric to evaluate the performance on each query q:

AP(q) =
PR

r=1 [p(r)rel(r)]
relevance(q) ,

where relevance(q) is the number of documents rel-
evant to q, R is the number of retrieved documents,

r is the rank, p(r) is the precision of the top r re-
trieved documents, and rel(r) equals to 1 if the rth
document is relevant, and 0 otherwise. Mean aver-
age precision (MAP) is a metric to evaluate the per-
formance on a set of queries Q:

MAP(Q) =
P

q∈Q AP(q)

|Q| ,

where |Q| is the number of queries in Q.
We retrieve the top-ranked 1,000 documents for

each query, and use the MAP score as the main com-
paring metric. In Table 2, the first four columns are
the MAP scores of various methods on the TREC7,
TREC8, RB03, and RB04 query sets, respectively.
The column Comb shows the results on the union of
the four test query sets. The first three rows list the
results of the top three systems that participated in
the corresponding tasks. The row Stemprf shows the
performance of our baseline method, the stem-based
CE-PRF method. The column Impr calculates the
percentage improvement of each method over the
baseline Stemprf in column Comb. The last column
#ret-rel lists the total numbers of relevant documents
retrieved by different methods.

The rows Stemprf +{MFS, Even, WSD} are the re-
sults of Stemprf incorporating with the senses gen-
erated for the original query terms, by applying the
approach proposed in Section 5.1, with the MFS
method, the Even method, and our supervised WSD
method, respectively. Comparing to the baseline
method, all methods with sense integrated achieve
consistent improvements on all query sets. The
usage of the supervised WSD method outperforms
the other two WSD baselines, and it achieves sta-
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tistically significant improvements over Stemprf on
TREC7, TREC8, and RB03.

The integration of senses into the baseline method
has two aspects of impact. First, the morphologi-
cal roots of senses conquer the irregular inflection
problem. Thus, the documents containing the irreg-
ular inflections are retrieved when senses are inte-
grated. For example, in topic 326 {ferry sinkings},
the stem form of sinkings is sink. As sink is an irreg-
ular verb, the usage of senses improves the retrieval
recall by retrieving the documents containing the in-
flection forms sunk, sank, and sunken.

Second, the senses output by supervised WSD
system help identify the meanings of query terms.
Take topic 357 {territorial waters dispute} for ex-
ample, the stem form of waters is water and its ap-
propriate sense in this query should be water 水域
(body of water) instead of the most frequent sense
of water 水 (H2O). In Stemprf +WSD, we correctly
identify the minority sense for this query term. In
another example, topic 425 {counterfeiting money},
the stem form of counterfeiting is counterfeit. Al-
though the most frequent sense counterfeit 冒牌
(not genuine) is not wrong, another sense counter-
feit 伪钞 (forged money) is more accurate for this
query term. The Chinese translation in the latter
sense represents the meaning of the phrase in orig-
inal query. Thus, Stemprf +WSD outperforms the
other two methods on this query by assigning the
highest probability for this sense.

Overall, the performance of Stemprf +WSD is bet-
ter than Stemprf +{MFS, Even} on 121 queries and
119 queries, respectively. The t-test at the confi-
dence level of 99% indicates that the improvements
are statistically significant.

The results of expanding with synonym relations
in the above three methods are shown in the last
three rows, Stemprf +{MFS, Even, WSD}+Syn. The
integration of synonym relations further improves
the performance no matter what kind of sense tag-
ging method is applied. The improvement varies
with different methods on different query sets. As
shown in the last column of Table 2, the number of
relevant documents retrieved is increased for each
method. Stemprf +Even+Syn retrieves more rele-
vant documents than Stemprf +MFS+Syn, because
the former method expands more senses. Overall,
the improvement achieved by Stemprf +WSD+Syn is

larger than the other two methods. It shows that
the WSD technique can help choose the appropriate
senses for synonym expansion.

Among the different settings, Stemprf +WSD+Syn
achieves the best performance. Its improvement
over the baseline method is statistically significant
at the 95% confidence level on RB04 and at the 99%
confidence level on the other three query sets, with
an overall improvement of 4.39%. It beats the best
participated systems on three out of four query sets5,
including TREC7, TREC8, and RB03.

7 Conclusion

This paper reports successful application of WSD
to IR. We proposed a method for annotating senses
to terms in short queries, and also described an ap-
proach to integrate senses into an LM approach for
IR. In the experiment on four query sets of TREC
collection, we compared the performance of a su-
pervised WSD method and two WSD baseline meth-
ods. Our experimental results showed that the incor-
poration of senses improved a state-of-the-art base-
line, a stem-based LM approach with PRF method.
The performance of applying the supervised WSD
method is better than the other two WSD base-
line methods. We also proposed a method to fur-
ther integrate the synonym relations to the LM ap-
proaches. With the integration of synonym rela-
tions, our best performance setting with the super-
vised WSD achieved an improvement of 4.39% over
the baseline method, and it outperformed the best
participating systems on three out of four query sets.
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Abstract

This paper addresses the search problem in
textual inference, where systems need to infer
one piece of text from another. A prominent
approach to this task is attempts to transform
one text into the other through a sequence
of inference-preserving transformations, a.k.a.
a proof, while estimating the proof’s valid-
ity. This raises a search challenge of find-
ing the best possible proof. We explore this
challenge through a comprehensive investi-
gation of prominent search algorithms and
propose two novel algorithmic components
specifically designed for textual inference: a
gradient-style evaluation function, and a local-
lookahead node expansion method. Evalua-
tions, using the open-source system, BIUTEE,
show the contribution of these ideas to search
efficiency and proof quality.

1 Introduction

In many NLP settings it is necessary to identify
that a certain semantic inference relation holds be-
tween two pieces of text. For example, in para-
phrase recognition it is necessary to identify that the
meanings of two text fragments are roughly equiva-
lent. In passage retrieval for question answering, it
is needed to detect text passages from which a sat-
isfying answer can be inferred. A generic formula-
tion for the inference relation between two texts is
given by the Recognizing Textual Entailment (RTE)
paradigm (Dagan et al., 2005), which is adapted here
for our investigation. In this setting, a system is
given two text fragments, termed “text” (T) and “hy-

pothesis” (H), and has to recognize whether the hy-
pothesis is entailed by (inferred from) the text.

An appealing approach to such textual inferences
is to explicitly transform T into H, using a sequence
of transformations (Bar-Haim et al., 2007; Harmel-
ing, 2009; Mehdad, 2009; Wang and Manning,
2010; Heilman and Smith, 2010; Stern and Dagan,
2011). Examples of such possible transformations
are lexical substitutions (e.g. “letter”→ “message”)
and predicate-template substitutions (e.g. “X [verb-
active] Y” → “Y [verb-passive] by X”), which are
based on available knowledge resources. Another
example is coreference substitutions, such as replac-
ing “he” with “the employee” if a coreference re-
solver has detected that these two expressions core-
fer. Table 1 exemplifies this approach for a particu-
lar T-H pair. The rationale behind this approach is
that each transformation step should preserve infer-
ence validity, such that each text generated along this
process is indeed inferred from the preceding one.

An inherent aspect in transformation-based infer-
ence is modeling the certainty that each inference
step is valid. This is usually achieved by a cost-
based or probabilistic model, which quantifies con-
fidence in the validity of each individual transfor-
mation and consequently of the complete chain of
inference.

Given a set of possible transformations, there may
be many transformation sequences that would trans-
form T to H. This creates a very large search space,
where systems have to find the “best” transformation
sequence – the one of lowest cost, or of highest prob-
ability. To the best of our knowledge, this search
challenge has not been investigated yet in a substan-
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# Operation Generated text
0 - He received the letter from the secretary.
1 Coreference substitution The employee received the letter from the secretary.
2 X received Y from Z→ Y was sent to X by Z The letter was sent to the employee by the secretary.
3 Y [verb-passive] by X→ X [verb-active] Y The secretary sent the letter to the employee.
4 X send Y→ X deliver Y The secretary delivered the letter to the employee.
5 letter→ message The secretary delivered the message to the employee.

Table 1: A sequence of transformations that transform the text “He received the letter from the secretary.” into the
hypothesis “The secretary delivered the message to the employee.”. The knowledge required for such transformations
is often obtained from available knowledge resources and NLP tools.

tial manner: each of the above-cited works described
the search method they used, but none of them tried
alternative methods while evaluating search perfor-
mance. Furthermore, while experimenting with our
own open-source inference system, BIUTEE1, we
observed that search efficiency is a major issue, of-
ten yielding practically unsatisfactory run-times.

This paper investigates the search problem in
transformation-based textual inference, naturally
falling within the framework of heuristic AI (Ar-
tificial Intelligence) search. To facilitate such in-
vestigation, we formulate a generic search scheme
which incorporates many search variants as special
cases and enable a meaningful comparison between
the algorithms. Under this framework, we identify
special characteristics of the textual inference search
space, that lead to the development of two novel al-
gorithmic components: a special lookahead method
for node expansion, named local lookahead, and a
gradient-based evaluation function. Together, they
yield a new search algorithm, which achieved sub-
stantially superior search performance in our evalu-
ations.

The remainder of this paper is organized as
follows. Section 2 provides an overview of
transformation-based inference systems, AI search
algorithms, and search methods realized in prior in-
ference systems. Section 3 formulates the generic
search scheme that we have investigated, which cov-
ers a broad range of known algorithms, and presents
our own algorithmic contributions. These new algo-
rithmic contributions were implemented in our sys-
tem, BIUTEE. In Section 4 we evaluate them empir-
ically, and show that they improve search efficiency
as well as solution’s quality. Search performance is
evaluated on two recent RTE benchmarks, in terms

1www.cs.biu.ac.il/˜nlp/downloads/biutee

of runtime, ability to find lower-cost transformation
chains and impact on overall inference.

2 Background

Applying sequences of transformations to recognize
textual inference was suggested by several works.
Such a sequence may be referred to as a proof, in
the sense that it is used to “prove” the hypothesis
from the text. Although various works along this
line differ from each other in several respects, many
of them share the common challenge of finding an
optimal proof. The following paragraphs review the
major research approaches in this direction. We fo-
cus on methods that perform transformations over
parse trees, and highlight the search challenge with
which they are faced.

2.1 Transformation-based textual inference

Several researchers suggested using various types
of transformations in order to derive H from T .
Some suggested a set of predefined transforma-
tions, for example, insertion, deletion and substitu-
tion of parse-tree nodes, by which any tree can be
transformed to any other tree. These transforma-
tions were used by the open-source system EDITS
(Mehdad, 2009), and by (Wang and Manning, 2010).
Since the above mentioned transformations are lim-
ited in capturing certain interesting and prevalent
semantic phenomena, an extended set of tree edit
operations (e.g., relabel-edge, move-sibling, etc.)
was proposed by Heilman and Smith (2010). Simi-
larly, Harmeling (2009) suggested a heuristic set of
28 transformations, which include various types of
node-substitutions as well as restructuring of the en-
tire parse-tree.

In contrast to such predefined sets of transfor-
mations, knowledge oriented approaches were sug-
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gested by Bar-Haim et al. (2007) and de Salvo Braz
et al. (2005). Their transformations are defined by
knowledge resources that contain a large amount of
entailment rules, or rewrite rules, which are pairs of
parse-tree fragments that entail one another. Typical
examples for knowledge resources of such rules are
DIRT (Lin and Pantel, 2001), and TEASE (Szpek-
tor et al., 2004), as well as syntactic transforma-
tions constructed manually. In addition, they used
knowledge-based lexical substitutions.

However, when only knowledge-based transfor-
mations are allowed, transforming the text into the
hypothesis is impossible in many cases. This limi-
tation is dealt by our open-source integrated frame-
work, BIUTEE (Stern and Dagan, 2011), which
incorporates knowledge-based transformations (en-
tailment rules) with a set of predefined tree-edits.
Motivated by the richer structure and search space
provided by BIUTEE, we adopted it for our empiri-
cal investigations.

The semantic validity of transformation-based in-
ference is usually modeled by defining a cost or
a probability estimation for each transformation.
Costs may be defined manually (Kouylekov and
Magnini, 2005), but are usually learned automati-
cally (Harmeling, 2009; Mehdad, 2009; Wang and
Manning, 2010; Heilman and Smith, 2010; Stern
and Dagan, 2011). A global cost (or probability esti-
mation) for a complete sequence of transformations
is typically defined as the sum of the costs of the
involved transformations.

Finding the lowest cost proof, as needed for de-
termining inference validity, is the focus of our re-
search. Textual inference systems limited to the
standard tree-edit operations (insertion, deletion,
substitution) can use an exact algorithm that finds
the optimal solution in polynomial time under cer-
tain constraints (Bille, 2005). Nevertheless, for the
extended set of transformations it is unlikely that ef-
ficient exact algorithms for finding lowest-cost se-
quences are available (Heilman and Smith, 2010).

In this harder case, the problem can be viewed
as an AI search problem. Each state in the search
space is a parse-tree, where the initial state is the text
parse-tree, the goal state is the hypothesis parse-tree,
and we search for the shortest (in terms of costs)
path of transformations from the initial state to the
goal state. Next we briefly review major concepts

from the field of AI search and summarize some rel-
evant proposed solutions.

2.2 Search Algorithms
Search algorithms find a path from an initial state to
a goal state by expanding and generating states in
a search space. The term generating a state refers
to creating a data structure that represents it, while
expanding a state means generating all its immedi-
ate derivations. In our domain, each state is a parse
tree, which is expanded by performing all applicable
transformations.

Best-first search is a common search framework.
It maintains an open list (denoted hereafter as
OPEN) containing all the generated states that have
not been expanded yet. States in OPEN are prior-
itized by an evaluation function, f(s). A best-first
search algorithm iteratively removes the best state
(according to f(s)) from OPEN, and inserts new
states being generated by expanding this best state.
The evaluation function is usually a linear combina-
tion of the shortest path found from the start state to
state s, denoted by g(s), and a heuristic function, de-
noted by h(s), which estimates the cost of reaching
a goal state from s.

Many search algorithms can be viewed as spe-
cial cases or variations of best-first search. The
well-known A* (Hart et al., 1968). algorithm is
a best-first search that uses an evaluation function
f(s) = g(s) + h(s). Weighted A* (Pohl, 1970)
uses an evaluation function f(s) = w · g(s) + h(s),
where w is a parameter, while pure heuristic search
uses f(s) = h(s). K-BFS (Felner et al., 2003) ex-
pands k states in each iteration. Beam search (Furcy
and Koenig, 2005; Zhou and Hansen, 2005) limits
the number of states stored in OPEN, while Greedy
search limits OPEN to contain only the single best
state generated in the current iteration.

The search algorithm has crucial impact on the
quality of proof found by a textual inference system,
as well as on its efficiency. Next, we describe search
strategies used in prior works for textual inference.

2.3 Search in prior inference models
In spite of being a fundamental problem, prior so-
lutions to the search challenge in textual inference
were mostly ad-hoc. Furthermore, there was no in-
vestigation of alternative search methods, and no
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evaluation of search efficiency and quality was re-
ported. For example, in (Harmeling, 2009) the order
by which the transformations are performed is pre-
determined, and in addition many possible deriva-
tions are discarded, to prevent exponential explo-
sion. Handling the search problem in (Heilman and
Smith, 2010) was by a variant of greedy search,
driven by a similarity measure between the current
parse-tree and the hypothesis, while ignoring the
cost already paid. In addition, several constraints on
the search space were implemented. In the earlier
version of BIUTEE (Stern and Dagan, 2011)2, a ver-
sion of beam search was incorporated, named here-
after BIUTEE-orig. This algorithm uses the evalua-
tion function f(s) = g(s) +wi ·h(s), where in each
iteration (i) the value of w is increased, to ensure
successful termination of the search. Nevertheless,
its efficiency and quality were not investigated.

In this paper we consider several prominent
search algorithms and evaluate their quality. The
evaluation concentrates on two measures: the run-
time required to find a proof, and proof quality (mea-
sured by its cost). In addition to evaluating standard
search algorithms we propose two novel compo-
nents specifically designed for proof-based textual-
inference and evaluate their contribution.

3 Search for Textual Inference

In this section we formalize our search problem and
specify a unifying search scheme by which we test
several search algorithms in a systematic manner.
Then we propose two novel algorithmic components
specifically designed for our problem. We conclude
by presenting our new search algorithm which com-
bines these two ideas.

3.1 Inference and search space formalization

Let t be a parse tree, and let o be a transforma-
tion. Applying o on t, yielding t′, is denoted by
t `o t′. If the underlying meaning of t′ can in-
deed be inferred from the underlying meaning of t,
then we refer to the application of o as valid. Let
O = (o1, o2, . . . on) be a sequence of transforma-
tions, such that t0 `o1 t1 `o2 t2 . . . `on tn. We
write t0 `O tn, and say that tn can be proven from

2More details in www.cs.biu.ac.il/˜nlp/
downloads/biutee/search_ranlp_2011.pdf

t0 by applying the sequence O. The proof might be
valid, if all the transformations involved are valid, or
invalid otherwise.

An inference system specifies a cost, C(o), for
each transformation o. In most systems the costs
are automatically learned. The interpretation of a
high cost is that it is unlikely that applying o will be
valid. The cost of a sequence O = (o1, o2, . . . on)
is defined as

∑n
i=1C(o) (or ,in some systems,∏n

i=1C(o)). Denoting by tT and tH the text parse
tree and the hypothesis parse tree, a proof system
has to find a sequenceO with minimal cost such that
tT `O tH. This forms a search problem of finding
the lowest-cost proof among all possible proofs.

The search space is defined as follows. A state
s is a parse-tree. The start state is tT and the goal
state is tH. In some systems any state s in which tH
is embedded is considered as goal as well.

Given a state s, let {o(1), o(2) . . . o(m)} be m
transformations that can be applied on it. Expand-
ing s means generating m new states, s(j), j =
1 . . .m, such that s `o(j) s(j). The number m is
called branching factor. Our empirical observations
on BIUTEE showed that its branching factor ranges
from 2-3 for some states to about 30 for other states.

3.2 Search Scheme

Our empirical investigation compares a range
prominent search algorithms, described in Section 2.
To facilitate such investigation, we formulate them
in the following unifying scheme (Algorithm 1).

Algorithm 1 Unified Search Scheme
Parameters: f(·): state evaluation function

expand(·): state generation function
Input: kexpand: # states expanded in each iteration

kmaintain: # states in OPEN in each iteration
sinit: initial state

1: OPEN← {sinit}
2: repeat
3: BEST← kexpand best (according to f ) states in OPEN
4: GENERATED←

⋃
s∈BEST expand(s)

5: OPEN← (OPEN \ Best) ∪ GENERATED
6: OPEN← kmaintain best (according to f ) states in OPEN
7: until BEST contains the goal state

Initially, the open list, OPEN contains the initial
state. Then, the best kexpand states from OPEN are
chosen, according to the evaluation function f(s)
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Algorithm f() expand() kmaintain kexpand

A* g + h regular ∞ 1
Weighted A* g+w ·h regular ∞ 1
K-Weighted A* g+w ·h regular ∞ k > 1

Pure Heuristic h regular ∞ 1
Greedy g+w ·h regular 1 1
Beam g + h regular k > 1 k > 1

BIUTEE-orig g+wi·h regular k > 1 k > 1

LLGS ∆g
∆h

local-
lookahead

1 1

Table 2: Search algorithm mapped to the unified search
scheme. “Regular” means generating all the states which
can be generated by applying a single transformation. Al-
ternative greedy implementations use f = h.

(line 3), and expanded using the expansion func-
tion expand(s). In classical search algorithms,
expand(s) means generating a set of states by ap-
plying all the possible state transition operators to s.
Next, we remove from OPEN the states which were
expanded, and add the newly generated states. Fi-
nally, we keep in OPEN only the best kmaintain states,
according to the evaluation function f(s) (line 6).
This process repeats until the goal state is found in
BEST (line 7). Table 2 specifies how known search
algorithms, described in Section 2, fit into the uni-
fied search scheme.

Since runtime efficiency is crucial in our domain,
we focused on improving one of the simple but fast
algorithms, namely, greedy search. To improve the
quality of the proof found by greedy search, we in-
troduce new algorithmic components for the expan-
sion and evaluation functions, as described in the
next two subsections, while maintaining efficiency
by keeping kmaintain=kexpand= 1

3.3 Evaluation function

In most domains, the heuristic function h(s) esti-
mates the cost of the minimal-cost path from a cur-
rent state, s, to a goal state. Having such a function,
the value g(s) + h(s) estimates the expected total
cost of a search path containing s. In our domain, it
is yet unclear how to calculate such a heuristic func-
tion. Given a state s, systems typically estimate the
difference (the gap) between s and the hypothesis
tH (the goal state). In BIUTEE this is quantified by
the number of parse-tree nodes and edges of tH that
do not exist in s. However, this does not give an

estimation for the expected cost of the path (the se-
quence of transformations) from s to the goal state.
This is because the number of nodes and edges that
can be changed by a single transformation can vary
from a single node to several nodes (e.g., by a lexi-
cal syntactic entailment rule). Moreover, even if two
transformations change the same number of nodes
and edges, their costs might be significantly differ-
ent. Consequently, the measurement of the cost ac-
cumulated so far (g(s)) and the remaining gap to tH
(h(s)) are unrelated. We note that a more sophisti-
cated heuristic function was suggested by Heilman
and Smith (2010), based on tree-kernels. Neverthe-
less, this heuristic function, serving as h(s), is still
unrelated to the transformation costs (g(s)).

We therefore propose a novel gradient-style func-
tion to overcome this difficulty. Our function is
designed for a greedy search in which OPEN al-
ways contains a single state, s. Let sj be a state
generated from s, the cost of deriving sj from s
is ∆g(sj) ≡ g(sj) − g(s). Similarly, the reduc-
tion in the value of the heuristic function is de-
fined ∆h(sj) ≡ h(s) − h(sj). Now, we define
f∆(sj) ≡ ∆g(sj)

∆h(sj)
. Informally, this function mea-

sures how costly it is to derive sj relative to the
obtained decrease in the remaining gap to the goal
state. For the edge case in which h(s)− h(sj) ≤ 0,
we define f∆(sj) =∞. Empirically, we show in our
experiments that the function f∆(s) performs better
than the traditional functions f(s) = g(s) + h(s)
and fw(s) = g(s) + w · h(s) in our domain.

3.4 Node expansion method

When examining the proofs produced by the above
mentioned algorithms, we observed that in many
cases a human could construct proofs that exhibit
some internal structure, but were not revealed by the
algorithms. Observe, for example, the proof in Ta-
ble 1. It can be seen that transformations 2,3 and
4 strongly depend on each other. Applying trans-
formation 3 requires first applying transformation 2,
and similarly 4 could not be applied unless 2 and 3
are first applied. Moreover, there is no gain in apply-
ing transformations 2 and 3, unless transformation 4
is applied as well. On the other hand, transformation
1 does not depend on any other transformation. It
may be performed at any point along the proof, and
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moreover, changing all other transformations would
not affect it.

Carefully examining many examples, we general-
ized this phenomenon as follows. Often, a sequence
of transformations can be decomposed into a set of
coherent subsequences of transformations, where in
each subsequence the transformations strongly de-
pend on each other, while different subsequences are
independent. This phenomenon can be utilized in
the following way: instead of searching for a com-
plete sequence of transformations that transform tT
into tH, we can iteratively search for independent co-
herent subsequences of transformations, such that a
combination of these subsequences will transform
tT into tH. This is somewhat similar to the tech-
nique of applying macro operators, which is used in
automated planning (Botea et al., 2005) and puzzle
solving (Korf, 1985).

One technique for finding such subsequences is
to perform, for each state being expanded, a brute-
force depth-limited search, also known as looka-
head (Russell and Norvig, 2010; Bulitko and Lus-
trek, 2006; Korf, 1990; Stern et al., 2010). How-
ever, performing such lookahead might be slow if
the branching factor is large. Fortunately, in our
domain, coherent subsequences have the following
characteristic which can be leveraged: typically, a
transformation depends on a previous one only if
it is performed over some nodes which were af-
fected by the previous transformation. Accordingly,
our proposed algorithm searches for coherent subse-
quences, in which each subsequent transformation
must be applied to nodes that were affected by the
previous transformation.

Formally, let o be a transformation that has been
applied on a tree t, yielding t′. σaffected(o, t′) denotes
the subset of nodes in t′ which were affected (modi-
fied or created) by the application of o.

Next, for a transformation o, applied on a parse
tree t, we define σrequired(t, o) as the subset of t’s
nodes required for applying o (i.e., in the absence of
these nodes, o could not be applied).

Finally, let t be a parse-tree and σ be a subset of
its nodes. enabled ops(t, σ) is a function that re-
turns the set of the transformations that can be ap-
plied on t, which require at least one of the nodes
in σ. Formally, enabled ops(t, σ) ≡ {o ∈ O :
σ ∩ σrequired(t, o) 6= ∅}, where O is the set of trans-

formations that can be applied on t. In our algo-
rithm, σ is the set of nodes that were affected by the
preceding transformation of the constructed subse-
quence.

The recursive procedure described in Algorithm 2
generates all coherent subsequences of lengths up to
d. It should be initially invoked with t - the current
state (parse tree) being expanded, σ - the set of all its
nodes, d - the maximal required length, and ∅ as an
empty initial sequence. We useO·o as concatenation
of an operation o to a subsequence O.

Algorithm 2 local-lookahead (t,σ,d,O)
1: if d = 0 then
2: return ∅ (empty-set)
3: end if
4: SUBSEQUENCES← ∅
5: for all o ∈ enabled ops(t, σ) do
6: Let t `o t

′

7: Add {O·o}∪local-lookahead(t′, σaffected(o, t
′), d−1, O·

o) to SUBSEQUENCES
8: end for
9: return SUBSEQUENCES

The loop in lines 5 - 8 iterates over transforma-
tions that can be applied on the input tree, t, requir-
ing the same nodes that were affected by the pre-
vious transformation of the subsequence being con-
structed. Note that in the first call enabled ops(t, σ)
contain all operations that can be applied on t, with
no restriction. Applying an operation o results in a
new subsequence O · o. This subsequence will be
part of the set of subsequences found by the proce-
dure. In addition, it will be used in the next recur-
sive call as the prefix of additional (longer) subse-
quences.

3.5 Local-lookahead gradient search
We are now ready to define our new algorithm
LOCAL-LOOKAHEAD GRADIENT SEARCH

(LLGS). In LLGS, like in greedy search,
kmaintain=kexpand= 1. expand(s) is defined to
return all states generated by subsequences found
by the local-lookahead procedure, while the evalua-
tion function is defined as f = f∆ (see last row of
Table 2).

4 Evaluation

In this section we first evaluate the search perfor-
mance in terms of efficiency (run time), the quality
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of the found proofs (as measured by proof cost), and
overall inference performance achieved through var-
ious search algorithms. Finally we analyze the con-
tribution of our two novel components.

4.1 Evaluation settings
We performed our experiments on the last two
published RTE datasets: RTE-5 (2009) and RTE-
6 (2010). The RTE-5 dataset is composed of a
training and test corpora, each containing 600 text-
hypothesis pairs, where in half of them the text en-
tails the hypothesis and in the other half it does
not. In RTE-6, each of the training and test cor-
pora consists of 10 topics, where each topic con-
tains 10 documents. Each corpus contains a set of
hypotheses (211 in the training dataset, and 243 in
the test dataset), along with a set of candidate en-
tailing sentences for each hypothesis. The system
has to find for each hypothesis which candidate sen-
tences entail it. To improve speed and results, we
used the filtering mechanism suggested by (Mirkin
et al., 2009), which filters the candidate sentences
by the Lucene IR engine3. Thus, only top 20 candi-
dates per hypothesis were tested

Evaluation of each of the algorithms was
performed by running BIUTEE while replacing
BIUTEE-orig with this algorithm. We employed a
comprehensive set of knowledge resources (avail-
able in BIUTEE’s web site): WordNet (Fellbaum,
1998), Directional similarity (Kotlerman et al.,
2010), DIRT (Lin and Pantel, 2001) and generic syn-
tactic rules. In addition, we used coreference substi-
tutions, detected by ArkRef4.

We evaluated several known algorithms, de-
scribed in Table 2 above, as well as BIUTEE-orig.
The latter is a strong baseline, which outperforms
known search algorithms in generating low cost
proofs. We compared all the above mentioned al-
gorithms to our novel one, LLGS.

We used the training dataset for parameter tun-
ing, which controls the trade-off between speed and
quality. For weighted A*, as well as for greedy
search, we used w = 6.0, since, for a few instances,
lower values of w resulted in prohibitive runtime.
For beam search we used k = 150, since higher val-

3http://lucene.apache.org
4www.ark.cs.cmu.edu/ARKref/ See (Haghighi and

Klein, 2009)

ues of k did not improve the proof cost on the train-
ing dataset. The value of d in LLGS was set to 3.
d = 4 yielded the same proof costs, but was about 3
times slower.

Since lower values of w could be used by
weighted A* for most instances, we also ran ex-
periments where we varied the value of w accord-
ing to the dovetailing method suggested in (Valen-
zano et al., 2010) (denoted dovetailing WA*) as fol-
lows. When weighted A* has found a solution, we
reran it with a new value of w, set to half of the
previous value. The idea is to guide the search for
lower cost solutions. This process was halted when
the total number of states generated by all weighted
A* instances exceeded a predefined constant (set to
10, 000).

4.2 Search performance
This experiment evaluates the search algorithms in
both efficiency (run-time) and proof quality. Effi-
ciency is measured by the average CPU (Intel Xeon
2.5 GHz) run-time (in seconds) for finding a com-
plete proof for a text-hypothesis instance, and by the
average number of generated states along the search.
Proof quality is measured by its cost.

The comparison of costs requires that all experi-
ments are performed on the same model which was
learned during training. Thus, in the training phase
we used the original search of BIUTEE, and then ran
the test phase with each algorithm separately. The
results, presented in Table 3, show that our novel
algorithm, LLGS, outperforms all other algorithms
in finding lower cost proofs. The second best is
BIUTEE-orig which is much slower by a factor of
3 (on RTE-5) to 8 (on RTE-6)5. While inherently
fast algorithms, particularly greedy and pure heuris-
tic, achieve faster running times, they achieve lower
proof quality, as well as lower overall inference per-
formance (see next subsection).

4.3 Overall inference performance
In this experiment we test whether, and how much,
finding better proofs, by a better search algorithm,
improves overall success rate of the RTE system.
Table 4 summarizes the results (accuracy in RTE-5

5Calculating T-test, we found that runtime improvement is
statistically significant with p < 0.01, and p < 0.052 for cost
improvement over BIUTEE-orig.
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Algorithm Avg. time
Avg.
generated

Avg. cost

Weighted A* 0.22 / 0.09 301 / 143 1.11 / 10.52
Dovetailing
WA*

7.85 / 8.53 9797 / 9979 1.05 / 10.28

Greedy 0.20 / 0.10 468 / 158 1.10 / 10.55
Pure heuristic 0.09 / 0.10 123 / 167 1.35 / 12.51
Beam search 20.53 / 9.48 43925 / 18992 1.08 / 10.52
BIUTEE-orig 7.86 / 14.61 14749 / 22795 1.03 / 10.28
LLGS 2.76 / 1.72 1722 / 842 0.95 / 10.14

Table 3: Comparison of algorithms on RTE-5 / RTE-6

and F1 in RTE-6). We see that in RTE-5 LLGS out-
performs all other algorithms, and BIUTEE-orig is
the second best. This result is statistically significant
with p < 0.02 according to McNemar test. In RTE-
6 we see that although LLGS tends to finds lower
cost proofs, as shown in Table 3, BIUTEE obtains
slightly lower results when utilizing this algorithm.

Algorithm RTE-5 accuracy % RTE-6 F1 %
Weighted A* 59.50 48.20
Dovetailing WA* 60.83 49.01
Greedy 60.50 48.56
Pure heuristic 60.83 45.70
Beam search 61.33 48.58
BIUTEE-orig 60.67 49.25
LLGS 64.00 49.09

Table 4: Impact of algorithms on system success rate

4.4 Component evaluation
In this experiment we examine separately our two
novel components. We examined f∆ by running
LLGS with alternative evaluation functions. The re-
sults, displayed in Table 5, show that using f∆ yields
better proofs and also improves run time.

f Avg. time Avg. cost Accuracy %
f = g + h 3.28 1.06 61.50
f = g + w · h 3.30 1.07 61.33
f = f∆ 2.76 0.95 64.0

Table 5: Impact of f∆ on RTE-5. w = 6.0. Accuracy
obtained by retraining with corresponding f .

Our local-lookahead (Subsection 3.4) was exam-
ined by running LLGS with alternative node expan-
sion methods. One alternative to local-lookahead
is standard expansion by generating all immediate
derivations. Another alternative is to use the stan-
dard lookahead, in which a brute-force depth-limited

search is performed in each iteration, termed here
“exhaustive lookahead”. The results, presented in
Table 6, show that by avoiding any type of looka-
head one can achieve fast runtime, while compro-
mising proof quality. On the other hand, both ex-
haustive and local lookahead yield better proofs and
accuracy, while local lookahead is more than 4 times
faster than exhaustive lookahead.

lookahead Avg. time Avg. cost Accuracy (%)
exhaustive 13.22 0.95 64.0
local 2.76 0.95 64.0
none 0.24 0.97 62.0

Table 6: Impact of local and global lookahead on RTE-5.
Accuracy obtained by retraining with the corresponding
lookahead method.

5 Conclusion

In this paper we investigated the efficiency and proof
quality obtained by various search algorithms. Con-
sequently, we observed special phenomena of the
search space in textual inference and proposed two
novel components yielding a new search algorithm,
targeted for our domain. We have shown empirically
that (1) this algorithm improves run time by factors
of 3-8 relative to BIUTEE-orig, and by similar fac-
tors relative to standard AI-search algorithms that
achieve similar proof quality; and (2) outperforms
all other algorithms in finding low cost proofs.

In future work we plan to investigate other search
paradigms, e.g., Monte-Carlo style approaches
(Kocsis and Szepesvári, 2006), which do not fall
under the AI search scheme covered in this paper.
In addition, while our novel components were moti-
vated by the search space of textual inference, we
foresee their potential utility in other application
areas for search, such as automated planning and
scheduling.
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Abstract 

This paper proposes a new discriminative 
training method in constructing phrase and 
lexicon translation models. In order to 
reliably learn a myriad of parameters in 
these models, we propose an expected 
BLEU score-based utility function with KL 
regularization as the objective, and train the 
models on a large parallel dataset. For 
training, we derive growth transformations 
for phrase and lexicon translation 
probabilities to iteratively improve the 
objective. The proposed method, evaluated 
on the Europarl German-to-English dataset, 
leads to a 1.1 BLEU point improvement 
over a state-of-the-art baseline translation 
system. In IWSLT 2011 Benchmark, our 
system using the proposed method achieves 
the best Chinese-to-English translation 
result on the task of translating TED talks.  

1. Introduction 

Discriminative training is an active area in 
statistical machine translation (SMT) (e.g., Och et 
al., 2002, 2003, Liang et al., 2006, Blunsom et al., 
2008, Chiang et al., 2009, Foster et al, 2010, Xiao 
et al. 2011). Och (2003) proposed using a log-
linear model to incorporate multiple features for 
translation, and proposed a minimum error rate 
training (MERT) method to train the feature 
weights to optimize a desirable translation metric.  

While the log-linear model itself is 
discriminative, the phrase and lexicon translation 
features, which are among the most important 
components of SMT, are derived from either 
generative models or heuristics (Koehn et al., 
2003, Brown et al., 1993). Moreover, the 

parameters in the phrase and lexicon translation 
models are estimated by relative frequency or 
maximizing joint likelihood, which may not 
correspond closely to the translation measure, e.g., 
bilingual evaluation understudy (BLEU) (Papineni 
et al., 2002). Therefore, it is desirable to train all 
these parameters to directly maximize an objective 
that directly links to translation quality. 

However, there are a large number of 
parameters in these models, making discriminative 
training for them non-trivial (e.g., Liang et al., 
2006, Chiang et al., 2009). Liang et al. (2006) 
proposed a large set of lexical and Part-of-Speech  
features and trained the model weights associated 
with these features using perceptron. Since many 
of the reference translations are non-reachable, an 
empirical local updating strategy had to be devised 
to fix this problem by picking a pseudo reference. 
Many such non-desirable heuristics led to 
moderate gains reported in that work. Chiang et al. 
(2009) improved a syntactic SMT system by 
adding as many as ten thousand syntactic features, 
and used Margin Infused Relaxed Algorithm 
(MIRA) to train the feature weights. However, the 
number of parameters in common phrase and 
lexicon translation models is much larger.  

In this work, we present a new, highly effective 
discriminative learning method for phrase and 
lexicon translation models. The training objective 
is an expected BLEU score, which is closely linked 
to translation quality. Further, we apply a 
Kullback–Leibler (KL) divergence regularization 
to prevent over-fitting. 

For effective optimization, we derive updating 
formulas of growth transformation (GT) for phrase 
and lexicon translation probabilities. A GT is a 
transformation of the probabilities that guarantees 
strict non-decrease of the objective over each GT 
iteration unless a local maximum is reached. A 
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similar GT technique has been successfully used in 
speech recognition (Gopalakrishnan et al., 1991, 
Povey, 2004, He et al., 2008). Our work 
demonstrates that it works with large scale 
discriminative training of SMT model as well. 

Our work is based on a phrase-based SMT 
system. Experiments on the Europarl German-to-
English dataset show that the proposed method 
leads to a 1.1 BLEU point improvement over a 
strong baseline. The proposed method is also 
successfully evaluated on the IWSLT 2011 
benchmark test set, where the task is to translate 
TED talks (www.ted.com). Our experimental 
results on this open-domain spoken language 
translation task show that the proposed method 
leads to significant translation performance 
improvement over a state-of-the-art baseline, and 
the system using the proposed method achieved the 
best single system translation result in the Chinese-
to-English MT track.  

2. Related Work 

One best known approach in discriminative 
training for SMT is proposed by Och (2003). In 
that work, multiple features, most of them are 
derived from generative models, are incorporated 
into a log-linear model, and the relative weights of 
them are tuned discriminatively on a small tuning 
set. However, in practice, this approach only works 
with a handful of parameters.  

More closely related to our work, Liang et al. 
(2006) proposed a large set of lexical and Part-of-
Speech features in addition to the phrase 
translation model. Weights of these features are 
trained using perceptron on a training set of 67K 
sentences. In that paper, the authors pointed out 
that forcing the model to update towards the 
reference translation could be problematic. This is 
because the hidden structure such as phrase 
segmentation and alignment could be abused if the 
system is forced to produce a reference translation. 
Therefore, instead of pushing the parameter update 
towards the reference translation (a.k.a. bold 
updating), the author proposed a local updating 
strategy where the model parameters are updated 
towards a pseudo-reference (i.e., the hypothesis in 
the n-best list that gives the best BLEU score). 
Experimental results showed that their approach 
outperformed a baseline by 0.8 BLEU point when 
using monotonic decoding, but there was no 

significant gain over a stronger baseline with a 
full-distortion model. In our work, we use the 
expectation of BLEU scores as the objective. This 
avoids the heuristics of picking the updating 
reference and therefore gives a more principal way 
of setting the training objective.  

As another closely related study, Chiang et al. 
(2009) incorporated about ten thousand syntactic 
features in addition to the baseline features. The 
feature weights are trained on a tuning set with 
2010 sentences using MIRA. In our work, we have 
many more parameters to train, and the training is 
conducted on the entire training corpora. Our GT 
based optimization algorithm is highly 
parallelizable and efficient, which is the key for 
large scale discriminative training. 

As a further related work, Rosti et al. (2011) 
have proposed using differentiable expected BLEU 
score as the objective to train system combination 
parameters. Other work related to the computation 
of expected BLEU in common with ours includes 
minimum Bayes risk approaches (Smith and Eisner 
2006, Tromble et al., 2008) and lattice-based 
MERT (Macherey et al., 2008). In these earlier work, 
however, the phrase and lexicon translation models 
used remained unchanged. 

Another line of research that is closely related to 
our work is phrase table refinement and pruning. 
Wuebker et al. (2010) proposed a method to train 
the phrase translation model using Expectation-
Maximization algorithm with a leave-one-out 
strategy. The parallel sentences were forced to be 
aligned at the phrase level using the phrase table 
and other features as in a decoding process. Then 
the phrase translation probabilities were estimated 
based on the phrase alignments. To prevent 
overfitting, the statistics of phrase pairs from a 
particular sentence was excluded from the phrase 
table when aligning that sentence. However, as 
pointed out by Liang et al (2006), the same 
problem as in the bold updating existed, i.e., forced 
alignment between a source sentence and its 
reference translation was tricky, and the proposed 
alignment was likely to be unreliable. The method 
presented in this paper is free from this problem. 

3. Phrase-based Translation System 

The translation process of phrase-based SMT can 
be briefly described in three steps: segment source 
sentence into a sequence of phrases, translate each 
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source phrase to a target phrase, re-order target 
phrases into target sentence (Koehn et al., 2003).  

In decoding, the optimal translation 𝐸 given the 
source sentence F is obtained according to  

 
𝐸 = argmax

!
𝑃 𝐸 𝐹  (1) 

where 
 

𝑃 𝐸 𝐹 =
1
𝑍
𝑒𝑥𝑝 𝜆!log   ℎ!(𝐸,𝐹)

!

 (2) 

 
and 𝑍 = 𝑒𝑥𝑝 𝜆!log   ℎ!(𝐸,𝐹)!!  is the 
normalization denominator to ensure that the 
probabilities sum to one. Note that we define the 
feature functions {ℎ!(𝐸,𝐹)}  in log domain to 
simplify the notation in later sections. Feature 
weights 𝛌 =    {𝜆!} are usually tuned by MERT. 

Features used in a phrase-based system usually 
include LM, reordering model, word and phrase 
counts, and phrase and lexicon translation models. 
Given the focus of this paper, we review only the 
phrase and lexicon translation models below.  

 
3.1. Phrase translation model 
A set of phrase pairs are extracted from word-
aligned parallel corpus according to phrase 
extraction rules (Koehn et al., 2003). Phrase 
translation probabilities are then computed as 
relative frequencies of phrases over the training 
dataset. i.e., the probability of translating a source 
phrase 𝑓 to a target phrase 𝑒 is computed by  

 

𝑝 𝑒 𝑓 =   
𝐶(𝑒, 𝑓)
𝐶(𝑓)

 (3) 

 
where 𝐶(𝑒, 𝑓) is the joint counts of 𝑒 and 𝑓, and 
𝐶(𝑓) is the marginal counts of 𝑓. 

In translation, the input sentence is segmented 
into K phrases, and the source-to-target forward 
phrase (FP) translation feature is scored as: 

 

ℎ!" 𝐸,𝐹 = 𝑝 𝑒! 𝑓!
!

 (4) 

 
where 𝑒! and 𝑓! are the k-th phrase in E and F, 
respectively.  The target-to-source (backward) 
phrase translation model is defined similarly.  
 

3.2. Lexicon translation model 
There are several variations in lexicon translation 
features (Ayan and Dorr 2006, Koehn et al., 2003, 
Quirk et al., 2005). We use the word translation 
table from IBM Model 1 (Brown et al., 1993) and 
compute the sum over all possible word alignments 
within a phrase pair without normalizing for length 
(Quirk et al., 2005). The source-to-target forward 
lexicon (FL) translation feature is: 
 

ℎ!" 𝐸,𝐹 = 𝑝 𝑒!,! 𝑓!,!
!!!

 (5) 

 
where 𝑒!,!  is the m-th word of the k-th target 
phrase 𝑒!,  𝑓!,! is the r-th word in the k-th source 
phrase 𝑓! , and 𝑝(𝑒!,!|𝑓!,!)  is the probability of 
translating word 𝑓!,! to word 𝑒!,!. In IBM model 
1, these probabilities are learned via maximizing a 
joint likelihood between the source and target 
sentences. The target-to-source (backward) lexicon 
translation model is defined similarly. 

4. Maximum Expected-BLEU Training  

4.1. Objective function 
We denote by 𝛉 the set of all the parameters to be 
optimized, including forward phrase and lexicon 
translation probabilities and their backward 
counterparts. For simplification of notation,   𝛉  is 
formed as a matrix, where its elements {𝜃!"} are 
probabilities subject to 𝜃!"! = 1. E.g., each row 
is a probability distribution.  

The utility function over the entire training set is 
defined as: 

    
𝑈(𝛉)   

=    𝑃𝛉(𝐸!,… ,𝐸!|𝐹!,… ,𝐹!) 𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗)
!

!!!

  
!!,…,!!

  

(6) 
 

where N is the number of sentences in the training 
set, 𝐸!∗  is the reference translation of the n-th 
source sentence 𝐹!, and 𝐸! ∊ 𝐻𝑦𝑝(𝐹!) that denotes 
the list of translation hypotheses of 𝐹!. Since the 
sentences are independent with each other, the 
joint posterior can be decomposed: 

𝑃𝛉 𝐸!,… ,𝐸! 𝐹!,… ,𝐹! =    𝑃𝛉 𝐸! 𝐹!

!

!!!

   (7) 
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and 𝑃𝛉 𝐸! 𝐹!  is the posterior defined in (2), the 
subscript 𝛉 indicates that it is computed based on 
the parameter set 𝛉. 𝑈 𝛉  is proportional (with a 
factor of N) to the expected sentence BLEU score 
over the entire training set, i.e., after some algebra,  

𝑈(𝛉)   =    𝑃𝛉(𝐸!|𝐹!)𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗)
!!

!

!!!

 

In a phrase-based SMT system, the total number 
of parameters of phrase and lexicon translation 
models, which we aim to learn discriminatively, is 
very large (see Table 1). Therefore, regularization 
is critical to prevent over-fitting. In this work, we 
regularize the parameters with KL regularization. 

KL divergence is commonly used to measure 
the distance between two probability distributions. 
For the whole parameter set 𝛉 , the KL 
regularization is defined in this work as the sum of 
KL divergence over the entire parameter space: 

 

𝐾𝐿(𝛉!||𝛉) = 𝜃!"! log
𝜃!"!

𝜃!"!!

 (8) 

 
where 𝛉!  is a constant prior parameter set. In 
training, we want to improve the utility function 
while keeping the changes of the parameters from 
𝛉! at minimum. Therefore, we design the objective 
function to be maximized as: 

 
𝑂 𝛉 = log𝑈 𝛉 − 𝜏 · 𝐾𝐿(𝛉!||𝛉)   (9) 

 
where the prior model 𝛉! in our approach is the 
relative-frequency-based phrase translation model 
and the maximum-likelihood-estimated IBM 
model 1 (word translation model). 𝜏 is a hyper-
parameter controlling the degree of regularization. 
 
 4.2. Optimization 
In this section, we derived GT formulas for 
iteratively updating the parameters so as to 
optimize objective (9). GT is based on extended 
Baum-Welch (EBW) algorithm first proposed by 
Gopalakrishnan et al. (1991) and commonly used 
in speech recognition (e.g., He et al. 2008). 
 
4.2.1. Extended Baum-Welch Algorithm 
Baum-Eagon inequality (Baum and Eagon, 1967) 
gives the GT formula to iteratively maximize 
positive-coefficient polynomials of random 

variables that are subject to sum-to-one constants. 
Baum-Welch algorithm is a model update 
algorithm for hidden Markov model which uses 
this GT. Gopalakrishnan et al. (1991) extended the 
algorithm to handle rational function, i.e., a ratio of 
two polynomials, which is more commonly 
encountered in discriminative training.  

Here we briefly review EBW. Assuming a set of 
random variables 𝐩 = {𝑝!"}  that subject to the 
constraint that 𝑝!"! = 1 , and assume 𝑔(𝐩)and 
ℎ(𝐩) are two positive polynomial functions of 𝐩 , a 
GT of 𝐩 for the rational function 𝑟 𝐩 = !(𝐩)

!(𝐩)
  can 

be obtained through the following two steps: 
 

i) Construct the auxiliary function: 
 

𝑓 𝐩 = 𝑔 𝐩 − 𝑟 𝐩! ℎ 𝐩  (10) 
 

where 𝐩! are the values from the previous iteration. 
Increasing f guarantees an increase of r, i.e.,  ℎ 𝐩  
> 0 and 𝑟 𝐩 − 𝑟 𝐩′ =    !

! 𝐩
𝑓 𝐩 − 𝑓 𝐩′ . 

 
ii) Derive GT formula for 𝑓 𝐩   

 

𝑝!" =
𝑝!"!

𝜕𝑓(𝐩)
𝜕𝑝!" 𝐩!𝐩!

+ 𝐷 ∙ 𝑝!"!

𝑝!"!
𝜕𝑓(𝐩)
𝜕𝑝!" 𝐩!𝐩!

! + 𝐷
     

(11) 

 
where D is a smoothing factor.  

 
4.2.2. GT of Translation Models 
Now we derive the GTs of translation models for 
our objective.  Since maximizing 𝑂 𝛉  is 
equivalent to maximizing 𝑒! 𝛉 , we have the 
following auxiliary function: 

 
𝑅 𝛉 = 𝑈(𝛉)𝑒!!·!"(𝛉!||𝛉)    (12) 

 
After substituting (2) and (7) into (6), and drop 

optimization irrelevant terms in KL regularization, 
we have 𝑅 𝛉  in a rational function form: 

 

𝑅 𝛉 =
𝐺 𝛉 · 𝐽 𝛉
𝐻(𝛉)

    (13) 

where     𝐻 𝛉 = ℎ!
!! 𝐸!,𝐹!!

!
!!!   !!,…,!! , 

𝐽 𝛉 = 𝜃!"
!!!"

!

!!  , and 𝐺 𝛉 =  
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ℎ!
!! 𝐸!,𝐹!!

!
!!! 𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗!

!!!   !!,…,!!  
are all positive polynomials of 𝛉. Therefore, we 
can follow the two steps of EBW to derive the GT 
formulas for 𝛉. 

If we denote by  𝑝!"  the probability of 
translating the source phrase i to the target phrase j. 
Then, the updating formula is (derivation omitted): 

 

𝑝!" =
𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!! + 𝑈 𝛉′ 𝜏!"𝑝!"! + 𝐷!𝑝!"!

𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!!! + 𝑈 𝛉′ 𝜏!" + 𝐷!
 

(14) 

where 𝜏!" = 𝜏/𝜆!" and 
 𝛾!" 𝐸!, 𝑛, 𝑖, 𝑗 =  𝑃𝛉! 𝐸! 𝐹!  ·    𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ −
𝑈! 𝛉′  · 𝟏(𝑓!,! = 𝑖, 𝑒!,! = 𝑗)! . In which 
𝑈! 𝛉′  takes a form similar to (6), but is the 
expected BLEU score for sentence n using models 
from the previous iteration. 𝑓!,! and 𝑒!,! are the k-
th phrases of 𝐹! and 𝐸!, respectively. 

The smoothing factor set of  𝐷! according to the 
Baum-Eagon inequality is usually far too large for 
practical use. In practice, one general guide of 
setting 𝐷!  is to make all updated value positive. 
Similar to (Povey 2004), we set 𝐷! by 

 

𝐷! = max  (0,−𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)
!!!!

)   (15) 

 
to ensure the denominator of (15) is positive. 
Further, we set a low-bound of 𝐷!  as 
max!{

! !!" !!,!,!,!!!!

!!"
! }  to guarantee the 

numerator to be positive. 
We denote by 𝑙!" the probability of translating 

the source word i to the target word j. Then 
following the same derivation, we get the updating 
formula for forward lexicon translation model: 

 

𝑙!" =
𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!! + 𝑈 𝛉′ 𝜏!"𝑙!"! + 𝐷!𝑙!"!

𝛾!"(𝐸!,𝐹!, 𝑖, 𝑗)!!!! + 𝑈 𝛉′ 𝜏!" + 𝐷!
 

(16) 

where 𝜏!" = 𝜏/𝜆!" and 
𝛾!" 𝐸!, 𝑛, 𝑖, 𝑗   =  𝑃𝛉! 𝐸! 𝐹!  ·    𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ −
𝑈! 𝛉′ · 𝟏(𝑒!,!,! = 𝑗)!! 𝛾 𝑛, 𝑘,𝑚, 𝑖 , and   
𝛾 𝑛, 𝑘,𝑚, 𝑖 = 𝟏(!!,!,!!!)!!(!!,!,!|!!,!,!)!

!!(!!,!,!|!!,!,!)!
, in which 

𝑓!,!,! and 𝑒!,!,! are the r-th and m-th word in the 
k-th phrase of the source sentence 𝐹! and the target 
hypothesis 𝐸!, respectively. Value of 𝐷!  is set in a 

way similar to (15). 
GTs for updating backward phrase and lexicon 

translation models can be derived in a similar way, 
and is omitted here. 
 
4.3. Implementation issues  
 
4.3.1. Normalizing 𝝀 
The posterior 𝑝𝛉! 𝐸! 𝐹!  in the model updating 
formula is computed according to (2). In decoding, 
only the relative values of 𝛌 matters. However, the 
absolute value will affect the posterior distribution, 
e.g., an overly large absolute value of 𝛌 would lead 
to a very sharp posterior distribution. In order to 
control the sharpness of the posterior distribution, 
we normalize 𝛌 by its L1 norm: 

 

𝜆! =
𝜆!
|𝜆!|!

  (17) 

 
4.3.2. Computing the sentence BLEU sore 
The commonly used BLEU-4 score is computed by 

 

𝐵𝐿𝐸𝑈-­‐ 4 = BP ∙ exp
1
4

log𝑝!

!

!!!

   (18) 

 
In the updating formula, we need to compute the 
sentence-level 𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ . Since the matching 
count may be sparse at the sentence level, we 
smooth raw precisions of high-order n-grams by: 

 

𝑝! =
#(𝑛-­‐𝑔𝑟𝑎𝑚  𝑚𝑎𝑡𝑐ℎ𝑒𝑑) + 𝜂 ∙ 𝑝!!

#(𝑛-­‐𝑔𝑟𝑎𝑚) + 𝜂
   (19) 

 
where 𝑝!! is the prior value of 𝑝!, 𝜂 is a smoothing 
factor usually takes a value of 5 and  𝑝!! can be set 
by 𝑝!! = 𝑝!!! ∙ 𝑝!!! 𝑝!!!, for n = 3, 4. 𝑝! and 𝑝! 
are estimated empirically. Brevity penalty (BP) 
also plays a key role. Instead of clip it at 1, we use 
a non-clipped BP, 𝐵𝑃 = 𝑒(!!

!
!), for sentence-level 

BLEU1. We further scale the reference length, r, by 
a factor such that the total length of references on 
the training set equals that of the baseline output2.  
                                                             
1 This is to better approximate corpus-level BLEU, i.e., as 
discussed in (Chiang, et al., 2008), the per-sentence BP might 
effectively exceed unity in corpus-level BLEU computation. 
2  This is to focus the training on improving BLEU by 
improving n-gram match instead of by improving BP, e.g., this 
makes the BP of the baseline output already being perfect. 
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4.3.3. Training procedure 
The parameter set θ is optimized on the training set 
while the feature weights λ are tuned on a small 
tuning set3. Since θ and λ affect the training of 
each other, we train them in alternation. I.e., at 
each iteration, we first fix λ and update θ, then we 
re-tune λ given the new θ. Due to mismatch 
between training and tuning data, the training 
process might not always converge. Therefore, we 
need a validation set to determine the stop point of 
training. At the end, θ and λ that give the best 
score on the validation set are selected and applied 
to the test set. Fig. 1 gives a summary of the 
training procedure. Note that step 2 and 4 are 
parallelize-able across multiple processors.  
 

 
Figure 1. The max expected-BLEU training algorithm. 

5. Evaluation 

In evaluating the proposed method, we use two 
separate datasets. We first describe the 
experiments with the Europarl dataset (Koehn 
2002), followed by the experiments with the more 
recent IWSLT-2011 task (Federico et al., 2011). 
 
5.1 Experimental setup in the Europarl task 
In evaluating the proposed method, we use two 
separate datasets. First, we conduct experiments on 
the Europarl German-to-English dataset. The 
training corpus contains 751K sentence pairs, 21 
words per sentence on average. 2000 sentences are 
provided in the development set. We use the first 
1000 sentences for 𝛌  tuning, and the rest for 
validation. The test set consists of 2000 sentences.  

                                                             
3 Usually, the tuning set matches the test condition better, and 
therefore is preferable for λ tuning. 

To build the baseline phrase-based SMT system, 
we first perform word alignment on the training set 
using a hidden Markov model with lexicalized 
distortion (He 2007), then extract the phrase table 
from the word aligned bilingual texts (Koehn et al., 
2003). The maximum phrase length is set to four. 
Other models used in the baseline system include 
lexicalized ordering model, word count and phrase 
count, and a 3-gram LM trained on the English 
side of the parallel training corpus. Feature weights 
are tuned by MERT. A fast beam-search phrase-
based decoder (Moore and Quirk 2007) is used and 
the distortion limit is set to four. Details of the 
phrase and lexicon translation models are given in 
Table 1. This baseline achieves a BLEU score of 
26.22% on the test set. This baseline system is also 
used to generate a 100-best list of the training 
corpus during maximum expected BLEU training. 

 
     Translation model  # parameters 
Phrase models (fore. & back.)   9.2 M 
Lexicon model (IBM-1 src-to-tgt) 12.9 M 
Lexicon model (IBM-1 tgt-to-src) 11.9 M 

Table 1. Summary of phrase and lexicon translation 
models 

 
5.2 Experimental results on the Europarl task 
During training, we first tune the regularization 
factor τ based on the performance on the validation 
set. For simplicity reasons, the tuning of τ makes 
use of only the phrase translation models.  Table 2 
reports the BLEU scores and gains over the 
baseline given different values of τ. The results 
highlight the importance of regularization. While τ 
=       5×10!! gives the best score on the validation 
set, the gain is shown to be substantially reduced to 
merely 0.2 BLEU point when τ = 0, i.e., no 
regularization.  We set the optimal value of τ = 
5×10!! in all remaining experiments.  

 
Test on Validation Set 𝐵𝐿𝐸𝑈% Δ𝐵𝐿𝐸𝑈% 
Baseline 26.70 -- 
τ = 0 (no regularization) 26.91 +0.21 
τ =       1×10!! 27.31 +0.61 
τ =       5×10!! 27.44 +0.74 
τ = 10×10!! 27.27 +0.57 

Table 2. Results on degrees of regularizations. BLEU 
scores are reported on the validation set. Δ𝐵𝐿𝐸𝑈 
denotes the gain over the baseline. 

 
Fixing the optimal regularization factor τ, we 

then study the relationship between the expected 

1. Build the baseline system, estimate { θ, λ }. 
2. Decode N-best list for training corpus using 

the baseline system, compute 𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗). 
3. set 𝛉′ = 𝛉, 𝛌! = 𝛌. 
4. Max expected BLEU training  

a. Go through the training set. 
i. Compute  𝑃𝛉!(𝐸!|𝐹!) and 𝑈!(𝛉′) . 

ii. Accumulate statistics {𝛾}. 
b. Update: 𝛉! →   𝛉 by one iteration of GT. 

5. MERT on the tuning set:  𝛌! → 𝛌. 
6. Test on the validation set using { θ, λ }. 
7. Go to step 3 unless training converges or 

reaches a certain number of iterations. 
8. Pick the best { θ, λ } on the validation set. 
 

297



sentence-level BLEU (Exp. BLEU) score of N-best 
lists and the corpus-level BLEU score of 1-best 
translations. The conjectured close relationship 
between the two is important in justifying our use 
of the former as the training objective. Fig. 2 
shows these two scores on the training set over 
training iterations. Since the expected BLEU is 
affected by λ strongly, we fix the value of λ in 
order to make the expected BLEU comparable 
across different iterations. From Fig. 2 it is clear 
that the expected BLEU score correlates strongly 
with the real BLEU score, justifying its use as our 
training objective.  

     
   

Figure 2. Expected sentence BLEU and 1-best corpus 
BLEU on the 751K sentence of training data. 

 
Next, we study the effects of training the phrase 

translation probabilities and the lexicon translation 
probabilities according to the GT formulas 
presented in the preceding section. The break-
down results are shown in Table 3. Compared with 
the baseline, training phrase or lexicon models 
alone gives a gain of 0.7 and 0.5 BLEU points, 
respectively, on the test set. For a full training of 
both phrase and lexicon models, we adopt two 
learning schedules: update both models together at 
each iteration (simultaneously), or update them in 
two stages (two-stage), where the phrase models 
are trained first until reaching the best score on the 
validation set and then the lexicon models are 
trained. Both learning schedules give significant 
improvements over the baseline and also over 
training phrase or lexicon models alone. The two-
stage training of both models gives the best result 
of 27.33%, outperforming the baseline by 1.1 
BLEU points.  

More detail of the two-stage training is provided 
in Fig. 3, where BLEU scores in each stage are 
shown as a function of the GT training iteration. 
The phrase translation probabilities (PT) are 
trained alone in the first stage, shown in blue color. 
After five iterations, the BLEU score on the 
validation set reaches the peak value, with further 
iteration giving BLEU score fluctuation. Hence, 
we perform lexicon model (LEX) training starting 
from the sixth iteration with the corresponding 
BLEU scores shown in red color in Fig. 3. The 
BLEU score is further improved by 0.4 points after 
additional three iterations of training the lexicon 
models. In total, nine iterations are performed to 
complete the two-stage GT training of all phrase 
and lexicon models.  

 
BLEU (%) validation test 
Baseline 26.70 26.22 
Train phrase models alone 27.44 26.94* 
Train lexicon models alone 27.36 26.71 
Both models: simultaneously  27.65 27.13* 
Both models: two-stage 27.82 27.33* 

Table 3. Results on the Europarl German-to-English 
dataset. The BLEU measures from various settings of 
maximum expected BLEU training are compared with 
the baseline, where * denotes that the gain over the 
baseline is statistically significant with a significance 
level > 99%, measured by paired bootstrap resampling 
method proposed by Koehn (2004). 

             

 
 
Figure 3. BLEU scores on the validation set as a 
function of the GT training iteration in two-stage 
training of both the phrase translation models (PT) and 
the lexicon models (LEX). The BLEU scores on 
training phrase models are shown in blue, and on 
training lexicon models in red. 
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5.3 Experiments on the IWSLT2011 benchmark 
As the second evaluation task, we apply our new 
method described in this paper to the 2011 IWSLT 
Chinese-to-English machine translation benchmark 
(Federico et al., 2011). The main focus of the 
IWSLT2011 Evaluation is the translation of TED 
talks (www.ted.com). These talks are originally 
given in English. In the Chinese-to-English 
translation task, we are provided with human 
translated Chinese text with punctuations inserted. 
The goal is to match the human transcribed English 
speech with punctuations.  

This is an open-domain spoken language 
translation task. The training data consist of 110K 
sentences in the transcripts of the TED talks and 
their translations, in English and Chinese, 
respectively. Each sentence consists of 20 words 
on average. Two development sets are provided, 
namely, dev2010 and tst2010. They consist of 934 
sentences and 1664 sentences, respectively. We 
use dev2010 for λ tuning and tst2010 for 
validation. The test set tst2011 consists of 1450 
sentences. 

In our system, a primary phrase table is trained 
from the 110K TED parallel training data, and a 3-
gram LM is trained on the English side of the 
parallel data. We are also provided additional out-
of-domain data for potential usage. From them, we 
train a secondary 5-gram LM on 115M sentences 
of supplementary English data, and a secondary 
phrase table from 500K sentences selected from 
the supplementary UN corpus by the method 
proposed by Axelrod et al. (2011).  

In carrying out the maximum expected BLEU 
training, we use 100-best list and tune the 
regularization factor to the optimal value of τ = 
1×10!! . We only train the parameters of the 
primary phrase table. The secondary phrase table 
and LM are excluded from the training process 
since the out-of-domain phrase table is less 
relevant to the TED translation task, and the large 
LM slows down the N-best generation process 
significantly.  

At the end, we perform one final MERT to tune 
the relative weights with all features including the 
secondary phrase table and LM.  

The translation results are presented in Table 4. 
The baseline is a phrase-based system with all 
features including the secondary phrase table and 
LM. The new system uses the same features except 
that the primary phrase table is discriminatively 

trained using maximum expected-BLEU and GT 
optimization as described earlier in this paper.   
The results are obtained using the two-stage 
training schedule, including six iterations for 
training phrase translation models and two 
iterations for training lexicon translation models. 
The results in Table 4 show that the proposed 
method leads to an improvement of 1.2 BLEU 
point over the baseline. This gives the best single 
system result on this task. 

 
BLEU (%) Validation Test 
Baseline 11.48 14.68 
Max expected  BLEU training 12.39 15.92 

Table 4. The translation results on IWSLT 2011 
MT_CE task.  

6. Summary  

The contributions of this work can be summarized 
as follows. First, we propose a new objective 
function (Eq. 9) for training of large-scale 
translation models, including phrase and lexicon 
models, with more parameters than all previous 
methods have attempted. The objective function 
consists of 1) the utility function of expected 
BLEU score, and 2) the regularization term taking 
the form of KL divergence in the parameter space. 
The expected BLEU score is closely linked to 
translation quality and the regularization is 
essential when many parameters are trained at 
scale. The importance of both is verified 
experimentally with the results presented in this 
paper.  

Second, through non-trivial derivation, we show 
that the novel objective function of Eq. (9) is 
amenable to iterative GT updates, where each 
update is equipped with a closed-form formula.  

Third, the new objective function and new 
optimization technique are successfully applied to 
two important machine translation tasks, with 
implementation issues resolved (e.g., training 
schedule and hyper-parameter tuning, etc.).  The 
superior results clearly demonstrate the 
effectiveness of the proposed algorithm. 
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Abstract 

In this paper, we address the issue for 
learning better translation consensus in 
machine translation (MT) research, and 
explore the search of translation consensus 
from similar, rather than the same, source 
sentences or their spans. Unlike previous 
work on this topic, we formulate the 
problem as structured labeling over a much 
smaller graph, and we propose a novel 
structured label propagation for the task. 
We convert such graph-based translation 
consensus from similar source strings into 
useful features both for n-best output re-
ranking and for decoding algorithm. 
Experimental results show that, our method 
can significantly improve machine 
translation performance on both IWSLT 
and NIST data, compared with a state-of-
the-art baseline.  

1 Introduction 

Consensus in translation has gained more and 
more attention in recent years. The principle of 
consensus can be sketched as “a translation 
candidate is deemed more plausible if it is 
supported by other translation candidates.” The 
actual formulation of the principle depends on 
whether the translation candidate is a complete 
sentence or just a span of it, whether the candidate 
is the same as or similar to the supporting 
candidates, and whether the supporting candidates 
come from the same or different MT system.  

                                                           
 This work has been done while the first author was visiting 
Microsoft Research Asia. 

Translation consensus is employed in those 
minimum Bayes risk (MBR) approaches where the 
loss function of a translation is defined with 
respect to all other translation candidates. That is, 
the translation with the minimal Bayes risk is the 
one to the greatest extent similar to other 
candidates. These approaches include the work of 
Kumar and Byrne (2004), which re-ranks the n-
best output of a MT decoder, and the work of 
Tromble et al. (2008) and Kumar et al. (2009), 
which does MBR decoding for lattices and 
hypergraphs.  

Others extend consensus among translations 
from the same MT system to those from different 
MT systems. Collaborative decoding (Li et al., 
2009) scores the translation of a source span by its 
n-gram similarity to the translations by other 
systems. Hypothesis mixture decoding (Duan et al., 
2011) performs a second decoding process where 
the search space is enriched with new hypotheses 
composed out of existing hypotheses from multiple 
systems. 

All these approaches are about utilizing 
consensus among translations for the same (span 
of) source sentence. It should be noted that 
consensus among translations of similar source 
sentences/spans is also helpful for good candidate 
selection. Consider the examples in Figure 1. For 
the source (Chinese) span “五百 元 以下 的 茶 ”, 
the MT system produced the correct translation for 
the second sentence, but it failed to do so for the 
first one. If the translation of the first sentence 
could take into consideration the translation of the 
second sentence, which is similar to but not 
exactly the same as the first one, the final 
translation output may be improved. 

Following this line of reasoning, a 
discriminative learning method is proposed to 
constrain the translation of an input sentence using 
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the most similar translation examples from 
translation memory (TM) systems (Ma et al., 
2011). A classifier is applied to re-rank the n-best 
output of a decoder, taking as features the 
information about the agreement with those similar 
translation examples. Alexandrescu and Kirchhoff 
(2009) proposed a graph-based semi-supervised 
model to re-rank n-best translation output. Note 
that these two attempts are about translation 
consensus for similar sentences, and about re-
ranking of n-best output. It is still an open question 
whether translation consensus for similar 
sentences/spans can be applied to the decoding 
process. Moreover, the method in Alexandrescu 
and Kirchhoff (2009) is formulated as a typical and 
simple label propagation, which leads to very large 
graph, thus making learning and search inefficient. 
(c.f. Section 3.) 

In this paper, we attempt to leverage translation 
consensus among similar (spans of) source 
sentences in bilingual training data, by a novel 
graph-based model of translation consensus. 
Unlike Alexandrescu and Kirchhoff (2009), we 
reformulate the task of seeking translation 
consensus among source sentences as structured 
labeling. We propose a novel label propagation 
algorithm for structured labeling, which is much 
more efficient than simple label propagation, and 
derive useful MT decoder features out of it. We 
conduct experiments with IWSLT and NIST data, 
and experimental results show that, our method 

can improve the translation performance 
significantly on both data sets, compared with a 
state-of-the-art baseline. 

2 Graph-based Translation Consensus 

Our MT system with graph-based translation 
consensus adopts the conventional log-linear 
model. For the source string ݂ , the conditional 
probability of a translation candidate ݁ is defined 
as: 

ሺ݁|݂ሻ݌ ൌ
exp ሺ∑ ሺߣ௜߰௜ሺ݁, ݂ሻሻ௜ ሻ

∑ ሺexp൫∑ ൫ߣ௜߰௜ሺ݁ᇱ, ݂ሻ൯௜ ൯ሻ௘ᇲאுሺ௙ሻ
(1)

where ߰  is the feature vector, ߣ  is the feature 
weights, and ܪሺ݂ሻ  is the set of translation 
hypotheses in the search space.  

Based on the commonly used features, two 
kinds of feature are added to equation (1), one is 
graph-based consensus features, which are about 
consensus among the translations of similar 
sentences/spans; the other is local consensus 
features, which are about consensus among the 
translations of the same sentence/span. We 
develop a structured label propagation method, 
which can calculate consensus statistics from 
translation candidates of similar source 
sentences/spans. 

In the following, we explain why the standard, 
simple label propagation is not suitable for 
translation consensus, and then introduce how the 
problem is formulated as an instance of structured 
labeling, with the proposed structured label 
propagation algorithm, in section 3. Before 
elaborating how the graph model of consensus is 
constructed for both a decoder and N-best output 
re-ranking in section 5, we will describe how the 
consensus features and their feature weights can be 
trained in a semi-supervised way, in section 4. 

3 Graph-based Structured Learning 

In general, a graph-based model assigns labels to 
instances by considering the labels of similar 
instances. A graph is constructed so that each 
instance is represented by a node, and the weight 
of the edge between a pair of nodes represents the 
similarity between them. The gist of graph-based 
model is that, if two instances are connected by a 
strong edge, then their labels tend to be the same 
(Zhu, 2005). 

 
IWSLT Chinese to English Translation Task 

Src 你 有没有 五百 元 以下 的 茶 ? 
Ref Do you have any tea under five 

hundred dollars ? 
Best1 Do you have any less than five 

hundred dollars tea ? 
Src 我 想要 五百 元 以下 的 茶 . 
Ref I would like some tea under five 

hundred dollars . 
Best1 I would like tea under five hundred 

dollars . 

Figure 1. Two sentences from IWSLT 
(Chinese to English) data set. "Src" stands for 
the source sentence, and "Ref" means the 
reference sentence. "Best1" is the final output 
of the decoder. 
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In MT, the instances are source sentences or 
spans of source sentences, and the possible labels 
are their translation candidates. This scenario 
differs from the general case of graph-based model 
in two aspects. First, there are an indefinite, or 
even intractable, number of labels. Each of them is 
a string of words rather than a simple category. In 
the following we will call these labels as structured 
labels (Berlett et al., 2004). Second, labels are 
highly ‘instance-dependent’. In most cases, for any 
two different (spans of) source sentences, however 
small their difference is, their correct labels 
(translations) are not exactly the same. Therefore, 
the principle of graph-based translation consensus 
must be reformulated as, if two instances (source 
spans) are similar, then their labels (translations) 
tend to be similar (rather than the same). 

Note that Alexandrescu and Kirchhoff (2009) do 
not consider translation as structured labeling. In 
their graph, a node does not represent only a 
source sentence but a pair of source sentence and 
its candidate translation, and there are only two 
possible labels for each node, namely, 1 (this is a 
good translation pair) and 0 (this is not a good 
translation pair). Thus their graph-based model is a 
normal example of the general graph-based model. 
The biggest problem of such a perspective is 
inefficiency. An average MT decoder considers a 
vast amount of translation candidates for each 
source sentence, and therefore the corresponding 
graph also contains a vast amount of nodes, thus 
rendering learning over a large dataset is infeasible. 

3.1 Label Propagation for General Graph-
based Models 

A general graph-based model is iteratively trained 
by label propagation, in which ݌௜,௟, the probability 
of label l for the node ݅, is updated with respect to 
the corresponding probabilities for ݅’s neighboring 
nodes ܰሺ݅ሻ . In Zhu (2005), the updating rule is 
expressed in a matrix calculation. For convenience, 
the updating rule is expressed for each label here: 

௜,௟݌
௧ାଵ ൌ ෍ ܶሺ݅, ݆ሻ݌௝,௟

௧

௝אேሺ௜ሻ

 
 

(2)

where ܶሺ݅, ݆ሻ,  the propagating probability, is 
defined as: 

ܶሺ݅, ݆ሻ ൌ
௜,௝ݓ

∑ ேሺ௜ሻא௜,௝ᇲ௝ᇲݓ
 

 
(3)

௜,௝ݓ  defines the weight of the edge, which is a 
similarity measure between nodes ݅ and ݆. 

Note that the graph contains nodes for training 
instances, whose correct labels are known. The 
probability of the correct label to each training 
instance is reset to 1 at the end of each iteration. 
With a suitable measure of instance/node similarity, 
it is expected that an unlabeled instance/node will 
find the most suitable label from similar labeled 
nodes.  

3.2 Structured Label Propagation for Graph-
based Learning 

In structured learning like MT, different instances 
would not have the same correct label, and so the 
updating rule (2) is no longer valid, as the value of 
௜,௟݌   should not be calculated based on ݌௝,௟ . Here 
we need a new updating rule so that ݌௜,௟  can be 
updated with respect to ݌௝,௟ᇲ , where in general 
݈ ് ݈ᇱ. 

Let us start with the model in Alexandrescu and 
Kirchhoff (2009). According to them, a node in the 
graph represents the pair of some source 
sentence/span  ݂  and its translation candidate  ݁ . 
The updating rule (for the label 1 or 0) is: 

ሺ௙,௘ሻ݌
௧ାଵ ൌ ෍ ܶ൫ሺ݂, ݁ሻ, ሺ݂Ԣ, ݁Ԣሻ൯݌൫௙ᇲ,௘ᇲ൯

௧

ሺ௙ᇲ,௘ᇲሻאே௉ሺ௙,௘ሻ

 ሺ4ሻ 

where ܰܲሺ݂, ݁ሻ is the set of neighbors of the node 
ሺ݂, ݁). 

When the problem is reformulated as structured 
labeling, each node represents the source 
sentence/span only, and the translation candidates 
become labels. The propagating probability 
ܶሺሺ݂, ݁ሻ, ሺ݂Ԣ, ݁Ԣሻሻ  has to be reformulated 
accordingly. A natural way is to decompose it into 
a component for nodes and a component for labels. 
Assuming that the two components are 
independent, then: 

ܶ൫ሺ݂, ݁ሻ, ሺ݂Ԣ, ݁Ԣሻ൯ ൌ ௦ܶሺ݂, ݂Ԣሻ ௟ܶሺ݁, ݁Ԣሻ        ሺ5ሻ 

where ௦ܶሺ݂, ݂Ԣሻ is the propagating probability from 
source sentence/span ݂Ԣ to ݂ , and ௟ܶሺ݁, ݁Ԣሻ is that 
from translation candidate  ݁Ԣ to ݁.  

The set of neighbors ܰܲሺ݂, ݁ሻ of a pair ሺ݂, ݁ሻ 
has also to be reformulated in terms of the set of 
neighbors ܰሺ݂ሻ of a source sentence/span ݂: 

ܰܲሺ݂, ݁ሻ ൌ ሼሺ݂Ԣ, ݁Ԣሻ|݂Ԣ א ܰሺ݂ሻ, ݁Ԣ א  ሺ݂Ԣሻሽ ሺ6ሻܪ
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where ܪሺ݂Ԣሻ is the set of translation candidates 
for source ݂Ԣ. The new updating rule will then be: 

௙,௘݌
௧ାଵ ൌ ෍ ௦ܶሺ݂, ݂Ԣሻ ௟ܶሺ݁, ݁ᇱሻ݌௙ᇲ,௘ᇲ

௧

௙ᇲאேሺ௙ሻ,௘ᇲאுሺ௙ᇲሻ

 

ൌ ෍ ෍ ௦ܶሺ݂, ݂Ԣሻ ௟ܶሺ݁, ݁ᇱሻ݌௙ᇲ,௘ᇲ
௧

௘ᇲאுሺ௙ᇲሻ௙ᇲאேሺ௙ሻ

 

ൌ ෍ ௦ܶሺ݂, ݂Ԣሻ ෍ ௟ܶሺ݁, ݁Ԣሻ݌௙ᇲ,௘ᇲ
௧

௘ᇲאுሺ௙ᇲሻ௙ᇲאேሺ௙ሻ

  ሺ7ሻ 

The new rule updates the probability of a 
translation ݁  of a source sentence/span ݂ with 
probabilities of similar translations ݁ᇱs  of some 
similar source sentences/spans ݂ᇱs.  

Propagation probability ௦ܶሺ݂, ݂Ԣሻ is as defined in 
equation (3), and ௟ܶሺ݁, ݁Ԣሻ is defined given some 
similarity measure ݉݅ݏሺ݁, ݁Ԣሻ between labels ݁ and 
݁Ԣ: 

௟ܶሺ݁, ݁Ԣሻ ൌ
,ሺ݁݉݅ݏ ݁Ԣሻ

∑ ,ሺ݁݉݅ݏ ݁ԢԢሻ௘ᇲᇲאுሺ௙ᇲሻ  
            ሺ8ሻ 

Note that rule (2) is a special case of rule (7), 
when ݉݅ݏሺ݁, ݁Ԣሻ is defined as: 

,ሺ݁݉݅ݏ ݁Ԣሻ ൌ ൝
1

0
           

݂݅ ݁ ൌ ݁Ԣ ;

;݁ݏ݅ݓݎ݄݁ݐ݋
 

4 Features and Training 

The last section sketched the structured label 
propagation algorithm. Before elaborating the 
details of how the actual graph is constructed, we 
would like to first introduce how the graph-based 
translation consensus can be used in an MT system. 

4.1 Graph-based Consensus Features  

The probability as estimated in equation (7) is 
taken as a group of new features in either a 
decoder or an n-best output re-ranker. We will call 
these features collectively as graph-based 
consensus features (GC): 

,ሺ݁ܥܩ ݂ሻ ൌ                                                               ሺ9ሻ 

log ሺ ෍ ௦ܶሺ݂, ݂ᇱሻ ෍ ௟ܶሺ݁, ݁ᇱሻ݌௙ᇲ,௘ᇲ
௘ᇲאுሺ௙ᇲሻ௙ᇲאேሺ௙ሻ

ሻ 

Recall that, ܰሺ݂ሻ refers to source sentences/spans 
which are similar with ݂ , and ܪሺ݂ᇱሻ  refers to 

translation candidates of ݂ᇱ ௙ᇲ,௘ᇲ݌ .  is initialized 
with the translation posterior of ݁ᇱ given ݂ᇱ .The 
translation posterior is normalized in the n-best list. 
For the nodes representing the training sentence 
pairs, this posterior is fixed.   ௟ܶሺ݁, ݁ᇱሻ  is the 
propagating probability in equation (8), with the 
similarity measure ݉݅ݏሺ݁, ݁Ԣሻ defined as the Dice 
co-efficient over the set of all n-grams in ݁  and 
those in ݁Ԣ. That is, 

,ሺ݁݉݅ݏ ݁Ԣሻ ൌ ,௡ሺ݁ሻݎܩሺܰ݁ܿ݅ܦ  ௡ሺ݁Ԣሻሻݎܩܰ

where ܰݎܩ௡ሺݔሻ is the set of n-grams in string ݔ, 
and ݁ܿ݅ܦሺܣ,  ܣ ሻ is the Dice co-efficient over setsܤ
and ܤ: 

,ܣሺ݁ܿ݅ܦ ሻܤ ൌ
ܣ|2 ת |ܤ
|ܣ| ൅ |ܤ|

 

We take 1 ൑ ݊ ൑ 4  for similarity between 
translation candidates, thus leading to four features. 
The other propagating probability ௦ܶሺ݂, ݂Ԣሻ , as 
defined in equation (3),  takes symmetrical 
sentence level BLEU as similarity measure1: 

௙,௙ᇲݓ ൌ
1
2
ሺܧܮܤ ௦ܷ௘௡௧ሺ݂, ݂ᇱሻ ൅ ܧܮܤ ௦ܷ௘௡௧ሺ݂ᇱ, ݂ሻሻ 

where ܧܮܤ ௦ܷ௘௡௧ሺ݂, ݂ᇱሻ  is defined as follows 
(Liang et al., 2006): 

ܧܮܤ ௦ܷ௘௡௧ሺ݂, ݂ᇱሻ ൌ෍
݅ െ ,ሺ݂ܷܧܮܤ ݂ᇱሻ

2ସି௜ାଵ
ସ

௜ୀଵ
   ሺ10ሻ 

where ݅ െ ,ሺ݂ܷܧܮܤ ݂ᇱሻ  is the IBM BLEU score 
computed over i-grams for hypothesis ݂ using ݂ᇱ 
as reference. 

In theory we could use other similarity measures 
such as edit distance, string kernel. Here simple n-
gram similarity is used for the sake of efficiency. 

4.2 Other Features 

In addition to graph-based consensus features, we 
also propose local consensus features, defined over 
the n-best translation candidates as: 

,ሺ݁ܥܮ ݂ሻ ൌ log ሺ ෍ ሺ݁ᇱ|݂ሻ݌ ௟ܶ ሺ݁, ݁Ԣሻ
௘ᇲאுሺ௙ሻ

ሻ  (11)

                                                           
1 BLEU is not symmetric, which means, different scores are 
obtained depending on which one is reference and which one 
is hypothesis. 
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where ݌ሺ݁ᇱ|݂ሻ  is translation posterior. Like ܥܩ , 
there are four features with respect to the value of 
n in n-gram similarity measure. 

We also use other fundamental features, such as 
translation probabilities, lexical weights, distortion 
probability, word penalty, and language model 
probability. 

4.3 Training Method 

When graph-based consensus is applied to an MT 
system, the graph will have nodes for training data, 
development (dev) data, and test data (details in 
Section 5). There is only one label/translation for 
each training data node. For each dev/test data 
node, the possible labels are the n-best translation 
candidates from the decoder. Note that there is 
mutual dependence between the consensus graph 
and the decoder. On the one hand, the MT decoder 
depends on the graph for the GC features. On the 
other hand, the graph needs the decoder to provide 
the translation candidates as possible labels, and 
their posterior probabilities as initial values of 
various ݌௙,௘ . Therefore, we can alternatively 
update graph-based consensus features and feature 
weights in the log-linear model. 

Algorithm 1 Semi-Supervised Learning 
଴ܥܩ ൌ 0; 
λ௧= ܴܶܧܯሺܵௗ௘௩, ܶௗ௘௩,  ;଴ሻܥܩ
while not converged do 
௧ܩ  ൌ ,ሺܵ௧௥௔௜௡ܩݐܽ݁ݎܥ ܶ௧௥௔௜௡, ܵௗ௘௩, ܵ௧௘௦௧, λ௧ሻ. 
௧ାଵܥܩ  ൌ  .௧ሻܩሺܲܮݐܿݑݎݐܵ
 λ௧ାଵ ൌ ,ሺܵௗ௘௩ܴܶܧܯ ܶௗ௘௩,  ௧ାଵሻܥܩ
end while 
return last (ܥܩ௧, λ௧) 

Algorithm 1 outlines our semi-supervised 
method for such alternative training. The entire 
process starts with a decoder without consensus 
features. Then a graph is constructed out of all 
training, dev, and test data. The subsequent 
structured label propagation provides ܥܩ  feature 
values to the MT decoder. The decoder then adds 
the new features and re-trains all the feature 
weights by Minimum Error Rate Training (MERT) 
(Och, 2003). The decoder with new feature 
weights then provides new n-best candidates and 
their posteriors for constructing another consensus 
graph, which in turn gives rise to next round of 

MERT. This alternation of structured label 
propagation and MERT stops when the BLEU 
score on dev data converges, or a pre-set limit (10 
rounds) is reached. 

5 Graph Construction 

A technical detail is still needed to complete the 
description of graph-based consensus, namely, 
how the actual consensus graph is constructed. We 
will divide the discussion into two sections 
regarding how the graph is used.  

5.1 Graph Construction for Re-Ranking 

When graph-based consensus is used for re-
ranking the n-best outputs of a decoder, each node 
in the graph corresponds to a complete sentence. A 
separate node is created for each source sentence 
in training data, dev data, and test data. For any 
node from training data (henceforth training node), 
it is labeled with the correct translation, and ݌௙,௘ is 
fixed as 1. If there are sentence pairs with the same 
source sentence but different translations, all the 
translations will be assigned as labels to that 
source sentence, and the corresponding 
probabilities are estimated by MLE. There is no 
edge between training nodes, since we suppose all 
the sentences of the training data are correct, and it 
is pointless to re-estimate the confidence of those 
sentence pairs. 

Each node from dev/test data (henceforth test 
node) is unlabeled, but it will be given an n-best 
list of translation candidates as possible labels 
from a MT decoder. The decoder also provides 
translation posteriors as the initial confidences of 
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Figure 2. A toy graph constructed for re-ranking.  
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the labels. A test node can be connected to training 
nodes and other test nodes. If the source sentences 
of a test node and some other node are sufficiently 
similar, a similarity edge is created between them. 
In our experiment we measure similarity by 
symmetrical sentence level BLEU of source 
sentences, and 0.3 is taken as the threshold for 
edge creation.  

Figure 2 shows a toy example graph. Each node 
is depicted as rectangle with the upper half 
showing the source sentence and the lower half 
showing the correct or possible labels. Training 
nodes are in grey while test nodes are in white. 
The edges between the nodes are weighted by the 
similarities between the corresponding source 
sentences.   

5.2 Graph Construction for Decoding 

Graph-based consensus can also be used in the 
decoding algorithm, by re-ranking the translation 
candidates of not only the entire source sentence 
but also every source span. Accordingly the graph 
does not contain only the nodes for source 
sentences but also the nodes for all source spans. It 
is needed to find the candidate labels for each 
source span. 

It is not difficult to handle test nodes, since the 
purpose of MT decoder is to get all possible 
segmentations of a source sentence in dev/test data, 
search for the translation candidates of each source 
span, and calculate the probabilities of the 
candidates. Therefore, the cells in the search space 
of a decoder can be directly mapped as test nodes 
in the graph. 

 Training nodes can be handled similarly, by 
applying forced alignment. Forced alignment 
performs phrase segmentation and alignment of 
each sentence pair of the training data using the 
full translation system as in decoding (Wuebker et 
al., 2010). In simpler term, for each sentence pair 
in training data, a decoder is applied to the source 
side, and all the translation candidates that do not 
match any substring of the target side are deleted. 
The cells of in such a reduced search space of the 
decoder can be directly mapped as training nodes 
in the graph, just as in the case of test nodes. Note 
that, due to pruning in both decoding and 
translation model training, forced alignment may 
fail, i.e. the decoder may not be able to produce 
target side of a sentence pair. In such case we still 
map the cells in the search space as training nodes. 

Note also that the shorter a source span is, the 
more likely it appears in more than one source 
sentence. All the translation candidates of the same 
source span in different source sentences are 
merged. 

Edge creation is the same as that in graph 
construction for n-best re-ranking, except that two 
nodes are always connected if they are about a 
span and its sub-span. This exception ensures that 
shorter spans can always receive propagation from 
longer ones, and vice versa.  

Figure 3 shows a toy example. There is one 
node for the training sentence "E A M N" and two 
nodes for the test sentences "E A B C" and "F D B 
C". All the other nodes represent spans. The node 
"M N" and "E A" are created according to the 
forced alignment result of the sentence "E A M N". 
As we see, the translation candidates for "M N" 
and "E A" are not the sub-strings from the target 
sentence of "E A M N". There are two kinds of 
edges. Dash lines are edges connecting nodes of a 
span and its sub-span, such as the one between "E 
A B C" and "E". Solid lines are edges connecting 
nodes with sufficient source side n-gram similarity, 
such as the one between "E A M N" and "E A B 
C". 

 

 

Figure 3. A toy example graph for decoding. 
Edges in dash line indicate relation between a 
span and its sub-span, whereas edges of solid 
line indicate source side similarity. 
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6 Experiments and Results 

In this section, graph-based translation consensus 
is tested on the Chinese to English translation tasks. 
The evaluation method is the case insensitive IBM 
BLEU-4 (Papineni et al., 2002). Significant testing 
is carried out using bootstrap re-sampling method 
proposed by Koehn (2004) with a 95% confidence 
level. 

6.1 Experimental Data Setting and Baselines 

We test our method with two data settings: one is 
IWSLT data set, the other is NIST data set. Our 
baseline decoder is an in-house implementation of 
Bracketing Transduction Grammar (Dekai Wu, 
1997) (BTG) in CKY-style decoding with a lexical 
reordering model trained with maximum entropy 
(Xiong et al., 2006). The features we used are 
commonly used features as standard BTG decoder, 
such as translation probabilities, lexical weights, 
language model, word penalty and distortion 
probabilities.  

Our IWSLT data is the IWSLT 2009 dialog task 
data set. The training data include the BTEC and 
SLDB training data. The training data contains 81k 
sentence pairs, 655k Chinese words and 806 
English words. The language model is 5-gram 
language model trained with the target sentences in 
the training data. The test set is devset9, and the 
development set for MERT comprises both 
devset8 and the Chinese DIALOG set. The 
baseline results on IWSLT data are shown in Table 
1. 

 devset8+dialog devset9 
Baseline 48.79 44.73 

Table 1. Baselines for IWSLT data 

For the NIST data set, the bilingual training data 
we used is NIST 2008 training set excluding the 
Hong Kong Law and Hong Kong Hansard. The 
training data contains 354k sentence pairs, 8M 
Chinese words and 10M English words. The 
language model is 5-gram language model trained 
with the Giga-Word corpus plus the English 
sentences in the training data. The development 
data utilized to tune the feature weights of our 
decoder is NIST’03 evaluation set, and test sets are 
NIST’05 and NIST’08 evaluation sets. The 
baseline results on NIST data are shown in Table 2. 

 NIST'03 NIST'05 NIST'08 
Baseline 38.57 38.21 27.52 

Table 2. Baselines for NIST data 

6.2 Experimental Result 

Table 3 shows the performance of our consensus-
based re-ranking and decoding on the IWSLT data 
set. To perform consensus-based re-ranking, we 
first use the baseline decoder to get the n-best list 
for each sentence of development and test data, 
then we create graph using the n-best lists and 
training data as we described in section 5.1, and 
perform semi-supervised training as mentioned in 
section 4.3. As we can see from Table 3, our 
consensus-based re-ranking (G-Re-Rank) 
outperforms the baseline significantly, not only for 
the development data, but also for the test data.  

Instead of using graph-based consensus 
confidence as features in the log-linear model, we 
perform structured label propagation (Struct-LP) to 
re-rank the n-best list directly, and the similarity 
measures for source sentences and translation 
candidates are symmetrical sentence level BLEU 
(equation (10)). Using Struct-LP, the performance 
is significantly improved, compared with the 
baseline, but not as well as G-Re-Rank. 

devset8+dialog devset9
Baseline 48.79 44.73 
Struct-LP 49.86 45.54 
G-Re-Rank 50.66 46.52 
G-Re-Rank-GC 50.23 45.96 
G-Re-Rank-LC 49.87 45.84 
G-Decode 51.20 47.31 
G-Decode-GC 50.46 46.21 
G-Decode-LC 50.11 46.17 

Table 3. Consensus-based re-ranking and decoding 
for IWSLT data set. The results in bold type are 
significantly better than the baseline. 

We use the baseline system to perform forced 
alignment procedure on the training data, and 
create span nodes using the derivation tree of the 
forced alignment. We also saved the spans of the 
sentences from development and test data, which 
will be used to create the responding nodes for 
consensus-based decoding. In such a way, we 
create the graph for decoding, and perform semi-
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supervised training to calculate graph-based 
consensus features, and tune the weights for all the 
features we used. In Table 3, we can see that our 
consensus-based decoding (G-Decode) is much 
better than baseline, and also better than 
consensus-based re-ranking method. That is 
reasonable since the neighbor/local similarity 
features not only re-rank the final n-best output, 
but also the spans during decoding. 

To test the contribution of each kind of features, 
we first remove all the local consensus features 
and perform consensus-based re-ranking and 
decoding (G-Re-Rank-GC and G-Decode-GC), 
and then we remove all the graph-based consensus 
features to test the contribution of local consensus 
features (G-Re-Rank-LC and G-Decode-LC). 
Without the graph-based consensus features, our 
consensus-based re-ranking and decoding is 
simplified into a consensus re-ranking and 
consensus decoding system, which only re-rank 
the candidates according to the consensus 
information of other candidates in the same n-best 
list.  

From Table 3, we can see, the G-Re-Rank-LC 
and G-Decode-LC improve the performance of 
development data and test data, but not as much as 
G-Re-Rank and G-Decode do. G-Re-Rank-GC and 
G-Decode-GC improve the performance of 
machine translation according to the baseline. G-
Re-Rank-GC does not achieve the same 
performance as G-Re-Rank-LC does. Compared 
with G-Decode-LC, the performance with G-
Decode-GC is much better.  

 NIST'03 NIST'05 NIST'08
Baseline 38.57 38.21 27.52 
Struct-LP 38.79 38.52 28.06 
G-Re-Rank 39.21 38.93 28.18 
G-Re-Rank-GC 38.92 38.76 28.21 
G-Re-Rank-LC 38.90 38.65 27.88 
G-Decode 39.62 39.17 28.76 
G-Decode-GC 39.42 39.02 28.51 
G-Decode-LC 39.17 38.70 28.20 

Table 4. Consensus-based re-ranking and decoding 
for NIST data set. The results in bold type are 
significantly better than the baseline. 

We also conduct experiments on NIST data, and 
results are shown in Table 4. The consensus-based 

re-ranking methods are performed in the same way 
as for IWSLT data, but for consensus-based 
decoding, the data set contains too many sentence 
pairs to be held in one graph for our machine. We 
apply the method of Alexandrescu and Kirchhoff 
(2009) to construct separate graphs for each 
development and test sentence without losing 
global connectivity information. We perform 
modified label propagation with the separate 
graphs to get the graph-based consensus for n-best 
list of each sentence, and the graph-based 
consensus will be recorded for the MERT to tune 
the weights. 

From Table 4, we can see that, Struct-LP 
improves the performance slightly, but not 
significantly. Local consensus features (G-Re-
Rank-LC and G-Decode-LC) improve the 
performance slightly. The combination of graph-
based and local consensus features can improve 
the translation performance significantly on SMT 
re-ranking. With graph-based consensus features, 
G-Decode-GC achieves significant performance 
gain, and combined with local consensus features, 
G-Decode performance is improved farther. 

7 Conclusion and Future Work 

In this paper, we extend the consensus method by 
collecting consensus statistics, not only from 
translation candidates of the same source 
sentence/span, but also from those of similar ones. 
To calculate consensus statistics, we develop a 
novel structured label propagation method for 
structured learning problems, such as machine 
translation. Note that, the structured label 
propagation can be applied to other structured 
learning tasks, such as POS tagging and syntactic 
parsing. The consensus statistics are integrated into 
the conventional log-linear model as features. The 
features and weights are tuned with an iterative 
semi-supervised method. We conduct experiments 
on IWSLT and NIST data, and our method can 
improve the performance significantly. 

In this paper, we only tried Dice co-efficient of 
n-grams and symmetrical sentence level BLEU as 
similarity measures. In the future, we will explore 
other consensus features and other similarity 
measures, which may take document level 
information, or syntactic and semantic information 
into consideration. We also plan to introduce 
feature to model the similarity of the source 
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sentences, which are reflected by only one score in 
our paper, and optimize the parameters with CRF 
model. 
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Abstract

Two decades after their invention, the IBM
word-based translation models, widely avail-
able in the GIZA++ toolkit, remain the dom-
inant approach to word alignment and an in-
tegral part of many statistical translation sys-
tems. Although many models have surpassed
them in accuracy, none have supplanted them
in practice. In this paper, we propose a simple
extension to the IBM models: an `0 prior to en-
courage sparsity in the word-to-word transla-
tion model. We explain how to implement this
extension efficiently for large-scale data (also
released as a modification to GIZA++) and
demonstrate, in experiments on Czech, Ara-
bic, Chinese, and Urdu to English translation,
significant improvements over IBM Model 4
in both word alignment (up to +6.7 F1) and
translation quality (up to +1.4 Bleu).

1 Introduction

Automatic word alignment is a vital component of
nearly all current statistical translation pipelines. Al-
though state-of-the-art translation models use rules
that operate on units bigger than words (like phrases
or tree fragments), they nearly always use word
alignments to drive extraction of those translation
rules. The dominant approach to word alignment has
been the IBM models (Brown et al., 1993) together
with the HMM model (Vogel et al., 1996). These
models are unsupervised, making them applicable
to any language pair for which parallel text is avail-
able. Moreover, they are widely disseminated in the
open-source GIZA++ toolkit (Och and Ney, 2004).
These properties make them the default choice for
most statistical MT systems.

In the decades since their invention, many mod-
els have surpassed them in accuracy, but none has
supplanted them in practice. Some of these models
are partially supervised, combining unlabeled paral-
lel text with manually-aligned parallel text (Moore,
2005; Taskar et al., 2005; Riesa and Marcu, 2010).
Although manually-aligned data is very valuable, it
is only available for a small number of language
pairs. Other models are unsupervised like the IBM
models (Liang et al., 2006; Graça et al., 2010; Dyer
et al., 2011), but have not been as widely adopted as
GIZA++ has.

In this paper, we propose a simple extension to
the IBM/HMM models that is unsupervised like the
IBM models, is as scalable as GIZA++ because it is
implemented on top of GIZA++, and provides sig-
nificant improvements in both alignment and trans-
lation quality. It extends the IBM/HMM models by
incorporating an `0 prior, inspired by the princi-
ple of minimum description length (Barron et al.,
1998), to encourage sparsity in the word-to-word
translation model (Section 2.2). This extension fol-
lows our previous work on unsupervised part-of-
speech tagging (Vaswani et al., 2010), but enables
it to scale to the large datasets typical in word
alignment, using an efficient training method based
on projected gradient descent (Section 2.3). Ex-
periments on Czech-, Arabic-, Chinese- and Urdu-
English translation (Section 3) demonstrate consis-
tent significant improvements over IBM Model 4 in
both word alignment (up to +6.7 F1) and transla-
tion quality (up to +1.4 Bleu). Our implementation
has been released as a simple modification to the
GIZA++ toolkit that can be used as a drop-in re-
placement for GIZA++ in any existing MT pipeline.
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2 Method

We start with a brief review of the IBM and HMM
word alignment models, then describe how to extend
them with a smoothed `0 prior and how to efficiently
train them.

2.1 IBM Models and HMM
Given a French string f = f1 · · · f j · · · fm and an
English string e = e1 · · · ei · · · e`, these models de-
scribe the process by which the French string is
generated by the English string via the alignment
a = a1, . . . , a j, . . . , am. Each a j is a hidden vari-
ables, indicating which English word ea j the French
word f j is aligned to.

In IBM Model 1–2 and the HMM model, the joint
probability of the French sentence and alignment
given the English sentence is

P(f, a | e) =

m∏
j=1

d(a j | a j−1, j)t( f j | ea j). (1)

The parameters of these models are the distortion
probabilities d(a j | a j−1, j) and the translation prob-
abilities t( f j | ea j). The three models differ in their
estimation of d, but the differences do not concern us
here. All three models, as well as IBM Models 3–5,
share the same t. For further details of these models,
the reader is referred to the original papers describ-
ing them (Brown et al., 1993; Vogel et al., 1996).

Let θ stand for all the parameters of the model.
The standard training procedure is to find the param-
eter values that maximize the likelihood, or, equiv-
alently, minimize the negative log-likelihood of the
observed data:

θ̂ = arg min
θ

(
− log P(f | e, θ)

)
(2)

= arg min
θ

− log
∑

a
P(f, a | e, θ)

 (3)

This is done using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977).

2.2 MAP-EM with the `0-norm
Maximum likelihood training is prone to overfitting,
especially in models with many parameters. In word
alignment, one well-known manifestation of overfit-
ting is that rare words can act as “garbage collectors”

(Moore, 2004), aligning to many unrelated words.
This hurts alignment precision and rule-extraction
recall. Previous attempted remedies include early
stopping, smoothing (Moore, 2004), and posterior
regularization (Graça et al., 2010).

We have previously proposed another simple
remedy to overfitting in the context of unsuper-
vised part-of-speech tagging (Vaswani et al., 2010),
which is to minimize the size of the model using a
smoothed `0 prior. Applying this prior to an HMM
improves tagging accuracy for both Italian and En-
glish.

Here, our goal is to apply a similar prior in a
word-alignment model to the word-to-word transla-
tion probabilities t( f | e). We leave the distortion
models alone, since they are not very large, and there
is not much reason to believe that we can profit from
compacting them.

With the addition of the `0 prior, the MAP (maxi-
mum a posteriori) objective function is

θ̂ = arg min
θ

(
− log P(f | e, θ)P(θ)

)
(4)

where

P(θ) ∝ exp
(
−α‖θ‖

β
0

)
(5)

and

‖θ‖
β
0 =

∑
e, f

(
1 − exp

−t( f | e)
β

)
(6)

is a smoothed approximation of the `0-norm. The
hyperparameter β controls the tightness of the ap-
proximation, as illustrated in Figure 1. Substituting
back into (4) and dropping constant terms, we get
the following optimization problem: minimize

− log P(f | e, θ) − α
∑
e, f

exp
−t( f | e)

β
(7)

subject to the constraints∑
f

t( f | e) = 1 for all e. (8)

We can carry out the optimization in (7) with the
MAP-EM algorithm (Bishop, 2006). EM and MAP-
EM share the same E-step; the difference lies in the
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Figure 1: The `0-norm (top curve) and smoothed approx-
imations (below) for β = 0.05, 0.1, 0.2.

M-step. For vanilla EM, the M-step is:

θ̂ = arg min
θ

−∑
e, f

E[C(e, f )] log t( f | e)

 (9)

again subject to the constraints (8). The count
C(e, f ) is the number of times that f occurs aligned
to e. For MAP-EM, it is:

θ̂ = arg min
θ

(
−

∑
e, f

E[C(e, f )] log t( f | e) −

α
∑
e, f

exp
−t( f | e)

β

) (10)

This optimization problem is non-convex, and we
do not know of a closed-form solution. Previously
(Vaswani et al., 2010), we used ALGENCAN, a non-
linear optimization toolkit, but this solution does not
scale well to the number of parameters involved in
word alignment models. Instead, we use a simpler
and more scalable method which we describe in the
next section.

2.3 Projected gradient descent
Following Schoenemann (2011b), we use projected
gradient descent (PGD) to solve the M-step (but
with the `0-norm instead of the `1-norm). Gradient
projection methods are attractive solutions to con-
strained optimization problems, particularly when
the constraints on the parameters are simple (Bert-
sekas, 1999). Let F(θ) be the objective function in

(10); we seek to minimize this function. As in pre-
vious work (Vaswani et al., 2010), we optimize each
set of parameters {t(· | e)} separately for each En-
glish word type e. The inputs to the PGD are the
expected counts E[C(e, f )] and the current word-to-
word conditional probabilities θ. We run PGD for K
iterations, producing a sequence of intermediate pa-
rameter vectors θ1, . . . , θk, . . . , θK . Each iteration has
two steps, a projection step and a line search.

Projection step In this step, we compute:

θ
k

=
[
θk − s∇F(θk)

]∆
(11)

This moves θ in the direction of steepest descent
(∇F) with step size s, and then the function [·]∆

projects the resulting point onto the simplex; that
is, it finds the nearest point that satisfies the con-
straints (8).

The gradient ∇F(θk) is

∂F
∂t( f | e)

= −
E[C( f , e)]

t( f | e)
+
α

β
exp
−t( f | e)

β
(12)

In contrast to Schoenemann (2011b), we use an
O(n log n) algorithm for the projection step due to
Duchi et. al. (2008), shown in Pseudocode 1.

Pseudocode 1 Project input vector u ∈ Rn onto the
probability simplex.

v = u sorted in non-increasing order
ρ = 0
for i = 1 to n do

if vi −
1
i

(∑i
r=1 vr − 1

)
> 0 then

ρ = i
end if

end for
η = 1

ρ

(∑ρ
r=1 vr − 1

)
wr = max{vr − η, 0} for 1 ≤ r ≤ n
return w

Line search Next, we move to a point between θk

and θ
k

that satisfies the Armijo condition,

F(θk + δm) ≤ F(θk) + σ
(
∇F(θk) · δm

)
(13)

where δm = γm(θ
k
− θk) and σ and γ are both con-

stants in (0, 1). We try values m = 1, 2, . . . until the
Armijo condition (13) is satisfied or the limit m = 20
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Pseudocode 2 Find a point between θk and θ
k

that
satisfies the Armijo condition.

Fmin = F(θk)
θmin = θk

for m = 1 to 20 do
δm = γm

(
θ

k
− θk

)
if F(θk + δm) < Fmin then

Fmin = F(θk + δm)
θmin = θk + δm

end if
if F(θk + δm) ≤ F(θk) + σ

(
∇F(θk) · δm

)
then

break
end if

end for
θk+1 = θmin

return θk+1

is reached. (Note that we don’t allow m = 0 because
this can cause θk + δm to land on the boundary of
the probability simplex, where the objective func-
tion is undefined.) Then we set θk+1 to the point in
{θk} ∪ {θk + δm | 1 ≤ m ≤ 20} that minimizes F.
The line search algorithm is summarized in Pseu-
docode 2.

In our implementation, we set γ = 0.5 and σ =

0.5. We keep s fixed for all PGD iterations; we ex-
perimented with s ∈ {0.1, 0.5} and did not observe
significant changes in F-score. We run the projection
step and line search alternately for at most K itera-
tions, terminating early if there is no change in θk

from one iteration to the next. We set K = 35 for the
large Arabic-English experiment; for all other con-
ditions, we set K = 50. These choices were made to
balance efficiency and accuracy. We found that val-
ues of K between 30 and 75 were generally reason-
able.

3 Experiments

To demonstrate the effect of the `0-norm on the IBM
models, we performed experiments on four trans-
lation tasks: Arabic-English, Chinese-English, and
Urdu-English from the NIST Open MT Evaluation,
and the Czech-English translation from the Work-
shop on Machine Translation (WMT) shared task.
We measured the accuracy of word alignments gen-
erated by GIZA++ with and without the `0-norm,

and also translation accuracy of systems trained us-
ing the word alignments. Across all tests, we found
strong improvements from adding the `0-norm.

3.1 Training

We have implemented our algorithm as an open-
source extension to GIZA++.1 Usage of the exten-
sion is identical to standard GIZA++, except that the
user can switch the `0 prior on or off, and adjust the
hyperparameters α and β.

For vanilla EM, we ran five iterations of Model 1,
five iterations of HMM, and ten iterations of
Model 4. For our approach, we first ran one iter-
ation of Model 1, followed by four iterations of
Model 1 with smoothed `0, followed by five itera-
tions of HMM with smoothed `0. Finally, we ran ten
iterations of Model 4.2

We used the following parallel data:

• Chinese-English: selected data from the con-
strained task of the NIST 2009 Open MT Eval-
uation.3

• Arabic-English: all available data for the
constrained track of NIST 2009, excluding
United Nations proceedings (LDC2004E13),
ISI Automatically Extracted Parallel Text
(LDC2007E08), and Ummah newswire text
(LDC2004T18), for a total of 5.4+4.3 mil-
lion words. We also experimented on a larger
Arabic-English parallel text of 44+37 million
words from the DARPA GALE program.

• Urdu-English: all available data for the con-
strained track of NIST 2009.

1The code can be downloaded from the first author’s website
at http://www.isi.edu/˜avaswani/giza-pp-l0.html.

2GIZA++ allows changing some heuristic parameters for
efficient training. Currently, we set two of these to zero:
mincountincrease and probcutoff. In the default setting,
both are set to 10−7. We set probcutoff to 0 because we would
like the optimization to learn the parameter values. For a fair
comparison, we applied the same setting to our vanilla EM
training as well. To test, we ran GIZA++ with the default set-
ting on the smaller of our two Arabic-English datasets with the
same number of iterations and found no change in F-score.

3LDC catalog numbers LDC2003E07, LDC2003E14,
LDC2005E83, LDC2005T06, LDC2006E24, LDC2006E34,
LDC2006E85, LDC2006E86, LDC2006E92, and
LDC2006E93.
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Figure 2: Smoothed-`0 alignments (red circles) correct many errors in the baseline GIZA++ alignments (black
squares), as shown in four Chinese-English examples (the red circles are almost perfect for these examples, except
for minor mistakes such as liu-shūqı̄ng and meeting-zàizuò in (a) and .-, in (c)). In particular, the baseline system
demonstrates typical “garbage-collection” phenomena in proper name “shuqing” in both languages in (a), number
“4000” and word “láibı̄n” (lit. “guest”) in (b), word “troublesome” and “lùlù” (lit. “land-route”) in (c), and “block-
houses” and “diāobǎo” (lit. “bunker”) in (d). We found this garbage-collection behavior to be especially common with
proper names, numbers, and uncommon words in both languages. Most interestingly, in (c), our smoothed-`0 system
correctly aligns “extremely” to “hěn hěn hěn hěn” (lit. “very very very very”) which is rare in the bitext.
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task data (M) system align F1 (%) word trans (M) φ̃sing. Bleu (%)
2008 2009 2010

Chi-Eng 9.6+12
baseline 73.2 3.5 6.2 28.7
`0-norm 76.5 2.0 3.3 29.5

difference +3.3 −43% −47% +0.8

Ara-Eng 5.4+4.3
baseline 65.0 3.1 4.5 39.8 42.5
`0-norm 70.8 1.8 1.8 41.1 43.7

difference +5.9 −39% −60% +1.3 +1.2

Ara-Eng 44+37
baseline 66.2 15 5.0 41.6 44.9
`0-norm 71.8 7.9 1.8 42.5 45.3

difference +5.6 −47% −64% +0.9 +0.4

Urd-Eng 1.7+1.5
baseline 1.7 4.5 25.3∗ 29.8
`0-norm 1.2 2.2 25.9∗ 31.2

difference −29% −51% +0.6∗ +1.4

Cze-Eng 2.1+2.3
baseline 65.6 1.5 3.0 17.3 18.0
`0-norm 72.3 1.0 1.4 17.9 18.4

difference +6.7 −33% −53% +0.6 +0.4

Table 1: Adding the `0-norm to the IBM models improves both alignment and translation accuracy across four different
language pairs. The word trans column also shows that the number of distinct word translations (i.e., the size of the
lexical weighting table) is reduced. The φ̃sing. column shows the average fertility of once-seen source words. For
Czech-English, the year refers to the WMT shared task; for all other language pairs, the year refers to the NIST Open
MT Evaluation. ∗Half of this test set was also used for tuning feature weights.

• Czech-English: A corpus of 4 million words of
Czech-English data from the News Commen-
tary corpus.4

We set the hyperparameters α and β by tuning
on gold-standard word alignments (to maximize F1)
when possible. For Arabic-English and Chinese-
English, we used 346 and 184 hand-aligned sen-
tences from LDC2006E86 and LDC2006E93. Sim-
ilarly, for Czech-English, 515 hand-aligned sen-
tences were available (Bojar and Prokopová, 2006).
But for Urdu-English, since we did not have any
gold alignments, we used α = 10 and β = 0.05. We
did not choose a large α, as the dataset was small,
and we chose a conservative value for β.

We ran word alignment in both directions and
symmetrized using grow-diag-final (Koehn et al.,
2003). For models with the smoothed `0 prior, we
tuned α and β separately in each direction.

3.2 Alignment

First, we evaluated alignment accuracy directly by
comparing against gold-standard word alignments.

4This data is available at http://statmt.org/wmt10.

The results are shown in the alignment F1 col-
umn of Table 1. We used balanced F-measure rather
than alignment error rate as our metric (Fraser and
Marcu, 2007).

Following Dyer et al. (2011), we also measured
the average fertility, φ̃sing., of once-seen source
words in the symmetrized alignments. Our align-
ments show smaller fertility for once-seen words,
suggesting that they suffer from “garbage collec-
tion” effects less than the baseline alignments do.

The fact that we had to use hand-aligned data to
tune the hyperparameters α and β means that our
method is no longer completely unsupervised. How-
ever, our observation is that alignment accuracy is
actually fairly robust to the choice of these hyperpa-
rameters, as shown in Table 2. As we will see below,
we still obtained strong improvements in translation
quality when hand-aligned data was unavailable.

We also tried generating 50 word classes using
the tool provided in GIZA++. We found that adding
word classes improved alignment quality a little, but
more so for the baseline system (see Table 3). We
used the alignments generated by training with word
classes for our translation experiments.
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β model α
0 10 25 50 75 100 250 500 750

– HMM 47.5
M4 52.1

0.5 HMM 46.3 48.4 52.8 55.7 57.5 61.5 62.6 62.7
M4 51.7 53.7 56.4 58.6 59.8 63.3 64.4 64.8

0.1 HMM 55.6 60.4 61.6 62.1 61.9 61.8 60.2 60.1
M4 58.2 62.4 64.0 64.4 64.8 65.5 65.6 65.9

0.05 HMM 59.1 61.4 62.4 62.5 62.3 60.8 58.7 57.7
M4 61.0 63.5 64.6 65.3 65.3 65.4 65.7 65.7

0.01 HMM 59.7 61.6 60.0 59.5 58.7 56.9 55.7 54.7
M4 62.9 65.0 65.1 65.2 65.1 65.4 65.3 65.4

0.005 HMM 58.1 59.0 58.3 57.6 57.0 55.9 53.9 51.7
M4 62.0 64.1 64.5 64.5 64.5 65.0 64.8 64.6

0.001 HMM 51.7 52.1 51.4 49.3 50.4 46.8 45.4 44.0
M4 59.8 61.3 61.5 61.0 61.8 61.2 61.0 61.2

Table 2: Almost all hyperparameter settings achieve higher F-scores than the baseline IBM Model 4 and HMM model
for Arabic-English alignment (α = 0).

word classes?
direction system no yes

P( f | e)
baseline 49.0 52.1
`0-norm 63.9 65.9

difference +14.9 +13.8

P(e | f )
baseline 64.3 65.2
`0-norm 69.2 70.3

difference +4.9 +5.1

Table 3: Adding word classes improves the F-score in
both directions for Arabic-English alignment by a little,
for the baseline system more so than ours.

Figure 2 shows four examples of Chinese-
English alignment, comparing the baseline with our
smoothed-`0 method. In all four cases, the base-
line produces incorrect extra alignments that prevent
good translation rules from being extracted while
the smoothed-`0 results are correct. In particular, the
baseline system demonstrates typical “garbage col-
lection” behavior (Moore, 2004) in all four exam-
ples.

3.3 Translation

We then tested the effect of word alignments on
translation quality using the hierarchical phrase-
based translation system Hiero (Chiang, 2007). We
used a fairly standard set of features: seven in-
herited from Pharaoh (Koehn et al., 2003), a sec-

setting align F1 (%) Bleu (%)
t( f | e) t(e | f ) 2008 2009

1st 1st 70.8 41.1 43.7
1st 2nd 70.7 41.1 43.8
2nd 1st 70.7 40.7 44.1
2nd 2nd 70.9 41.1 44.2

Table 4: Optimizing hyperparameters on alignment F1
score does not necessarily lead to optimal Bleu. The
first two columns indicate whether we used the first- or
second-best alignments in each direction (according to
F1); the third column shows the F1 of the symmetrized
alignments, whose corresponding Bleu scores are shown
in the last two columns.

ond language model, and penalties for the glue
rule, identity rules, unknown-word rules, and two
kinds of number/name rules. The feature weights
were discriminatively trained using MIRA (Chi-
ang et al., 2008). We used two 5-gram language
models, one on the combined English sides of
the NIST 2009 Arabic-English and Chinese-English
constrained tracks (385M words), and another on
2 billion words of English.

For each language pair, we extracted grammar
rules from the same data that were used for word
alignment. The development data that were used for
discriminative training were: for Chinese-English
and Arabic-English, data from the NIST 2004 and
NIST 2006 test sets, plus newsgroup data from the
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GALE program (LDC2006E92); for Urdu-English,
half of the NIST 2008 test set; for Czech-English,
a training set of 2051 sentences provided by the
WMT10 translation workshop.

The results are shown in the Bleu column of Ta-
ble 1. We used case-insensitive IBM Bleu (closest
reference length) as our metric. Significance test-
ing was carried out using bootstrap resampling with
1000 samples (Koehn, 2004; Zhang et al., 2004).

All of the tests showed significant improvements
(p < 0.01), ranging from +0.4 Bleu to +1.4 Bleu.
For Urdu, even though we didn’t have manual align-
ments to tune hyperparameters, we got significant
gains over a good baseline. This is promising for lan-
guages that do not have any manually aligned data.

Ideally, one would want to tune α and β to max-
imize Bleu. However, this is prohibitively expen-
sive, especially if we must tune them separately
in each alignment direction before symmetrization.
We ran some contrastive experiments to investi-
gate the impact of hyperparameter tuning on trans-
lation quality. For the smaller Arabic-English cor-
pus, we symmetrized all combinations of the two
top-scoring alignments (according to F1) in each di-
rection, yielding four sets of alignments. Table 4
shows Bleu scores for translation models learned
from these alignments. Unfortunately, we find that
optimizing F1 is not optimal for Bleu—using the
second-best alignments yields a further improve-
ment of 0.5 Bleu on the NIST 2009 data, which is
statistically significant (p < 0.05).

4 Related Work

Schoenemann (2011a), taking inspiration from Bo-
drumlu et al. (2009), uses integer linear program-
ming to optimize IBM Model 1–2 and the HMM
with the `0-norm. This method, however, does not
outperform GIZA++. In later work, Schoenemann
(2011b) used projected gradient descent for the `1-
norm. Here, we have adopted his use of projected
gradient descent, but using a smoothed `0-norm.

Liang et al. (2006) show how to train IBM mod-
els in both directions simultaneously by adding a
term to the log-likelihood that measures the agree-
ment between the two directions. Graça et al. (2010)
explore modifications to the HMM model that en-
courage bijectivity and symmetry. The modifications

take the form of constraints on the posterior dis-
tribution over alignments that is computed during
the E-step. Mermer and Saraçlar (2011) explore a
Bayesian version of IBM Model 1, applying sparse
Dirichlet priors to t. However, because this method
requires the use of Monte Carlo methods, it is not
clear how well it can scale to larger datasets.

5 Conclusion

We have extended the IBM models and HMM model
by the addition of an `0 prior to the word-to-word
translation model, which compacts the word-to-
word translation table, reducing overfitting, and, in
particular, the “garbage collection” effect. We have
shown how to perform MAP-EM with this prior
efficiently, even for large datasets. The method is
implemented as a modification to the open-source
toolkit GIZA++, and we have shown that it signif-
icantly improves translation quality across four dif-
ferent language pairs. Even though we have used a
small set of gold-standard alignments to tune our
hyperparameters, we found that performance was
fairly robust to variation in the hyperparameters, and
translation performance was good even when gold-
standard alignments were unavailable. We hope that
our method, due to its simplicity, generality, and ef-
fectiveness, will find wide application for training
better statistical translation systems.
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Abstract 

Writing comments about news articles, 
blogs, or reviews have become a popular 
activity in social media. In this paper, we 
analyze reader comments about reviews. 
Analyzing review comments is important 
because reviews only tell the experiences 
and evaluations of reviewers about the 
reviewed products or services. Comments, 
on the other hand, are readers’ evaluations 
of reviews, their questions and concerns. 
Clearly, the information in comments is 
valuable for both future readers and brands. 
This paper proposes two latent variable 
models to simultaneously model and 
extract these key pieces of information. 
The results also enable classification of 
comments accurately. Experiments using 
Amazon review comments demonstrate the 
effectiveness of the proposed models. 

1. Introduction 

Online reviews enable consumers to evaluate the 
products and services that they have used. These 
reviews are also used by other consumers and 
businesses as a valuable source of opinions.  

However, reviews only give the evaluations and 
experiences of the reviewers. Often a reviewer may 
not be an expert of the product and may misuse the 
product or make other mistakes. There may also be 
aspects of the product that the reviewer did not 
mention but a reader wants to know. Some 
reviewers may even write fake reviews to promote 

some products, which is called opinion spamming 
(Jindal and Liu 2008). To improve the online 
review system and user experience, some review 
hosting sites allow readers to write comments 
about reviews (apart from just providing a 
feedback by clicking whether the review is helpful 
or not). Many reviews receive a large number of 
comments. It is difficult for a reader to read them 
to get a gist of them. An automated comment 
analysis would be very helpful. Review comments 
mainly contain the following information:   

Thumbs-up or thumbs-down: Some readers may 
comment on whether they find the review 
useful in helping them make a buying decision.  

Agreement or disagreement: Some readers who 
comment on a review may be users of the 
product themselves. They often state whether 
they agree or disagree with the review. Such 
comments are valuable as they provide a second 
opinion, which may even identify fake reviews 
because a genuine user often can easily spot 
reviewers who have never used the product.  

Question and answer: A commenter may ask for 
clarification or about some aspects of the 
product that are not covered in the review. 

In this paper, we use statistical modeling to model 
review comments. Two new generative models are 
proposed. The first model is called the Topic and 
Multi-Expression model (TME). It models topics 
and different types of expressions, which represent 
different types of comment posts: 

1. Thumbs-up (e.g., “review helped me”) 
2. Thumbs-down (e.g., “poor review”) 
3. Question (e.g., “how to”) 

320



4. Answer acknowledgement (e.g., “thank you for 
clarifying”). Note that we have no expressions 
for answers to questions as there are usually no 
specific phrases indicating that a post answers 
a question except starting with the name of the 
person who asked the question. However, there 
are typical phrases for acknowledging answers, 
thus answer acknowledgement expressions.  

5. Disagreement (contention) (e.g., “I disagree”)  
6. Agreement (e.g., “I agree”). 

For ease of presentation, we call these 
expressions the comment expressions (or C-
expressions). TME provides a basic model for 
extracting these pieces of information and topics. 
Its generative process separates topics and C-
expression types using a switch variable and treats 
posts as random mixtures over latent topics and C-
expression types. The second model, called ME-
TME, improves TME by using Maximum-Entropy 
priors to guide topic/expression switching. In short, 
the two models provide a principled and integrated 
approach to simultaneously discover topics and C-
expressions, which is the goal of this work. Note 
that topics are usually product aspects in this work.  

The extracted C-expressions and topics from 
review comments are very useful in practice. First 
of all, C-expressions enable us to perform more 
accurate classification of comments, which can 
give us a good evaluation of the review quality and 
credibility. For example, a review with many 
Disagreeing and Thumbs-down comments is 
dubious. Second, the extracted C-expressions and 
topics help identify the key product aspects that 
people are troubled with in disagreements and in 
questions. Our experimental results in Section 5 
will demonstrate these capabilities of our models. 

With these pieces of information, comments for 
a review can be summarized. The summary may 
include, but not limited to, the following: (1) 
percent of people who give the review thumbs-up 
or thumbs-down; (2) percent of people who agree 
or disagree (or contend) with the reviewer; (3) 
contentious (disagreed) aspects (or topics); (4) 
aspects about which people often have questions. 

To the best of our knowledge, there is no 
reported work on such a fine-grained modeling of 
review comments. The related works are mainly in 
sentiment analysis (Pang and Lee, 2008; Liu 
2012), e.g., topic and sentiment modeling, review 
quality prediction and review spam detection. 
However, our work is different from them. We will 
compare with them in detail in Section 2.  

The proposed models have been evaluated both 
qualitatively and quantitatively using a large 
number of review comments from Amazon.com. 
Experimental results show that both TME and ME-
TME are effective in performing their tasks. ME-
TME also outperforms TME significantly.   

2. Related Work 

We believe that this work is the first attempt to 
model review comments for fine-grained analysis. 
There are, however, several general research areas 
that are related to our work. 

Topic models such as LDA (Latent Dirichlet 
Allocation) (Blei et al., 2003) have been used to 
mine topics in large text collections. There have 
been various extensions to multi-grain (Titov and 
McDonald, 2008a), labeled (Ramage et al., 2009), 
partially-labeled (Ramage et al., 2011), constrained 
(Andrzejewski et al., 2009) models, etc. These 
models produce only topics but not multiple types 
of expressions together with topics. Note that in 
labeled models, each document is labeled with one 
or multiple labels. For our work, there is no label 
for each comment. Our labeling is on topical terms 
and C-expressions with the purpose of obtaining 
some priors to separate topics and C-expressions. 

In sentiment analysis, researchers have jointly 
modeled topics and sentiment words (Lin and He, 
2009; Mei et al., 2007; Lu and Zhai, 2008; Titov 
and McDonald, 2008b; Lu et al., 2009; Brody and 
Elhadad, 2010; Wang et al., 2010; Jo and Oh, 
2011; Maghaddam and Ester, 2011; Sauper et al., 
2011; Mukherjee and Liu, 2012a). Our model is 
more related to the ME-LDA model in (Zhao et al., 
2010), which used a switch variable trained with 
Maximum-Entropy to separate topic and sentiment 
words. We also use such a variable. However, 
unlike sentiments and topics in reviews, which are 
emitted in the same sentence, C-expressions often 
interleave with topics across sentences and the 
same comment post may also have multiple types 
of C-expressions. Additionally, C-expressions are 
mostly phrases rather than individual words. Thus, 
a different model is required to model them. 

There have also been works aimed at putting 
authors in debate into support/oppose camps, e.g., 
(Galley et al., 2004; Agarwal et al., 2003; 
Murakami and Raymond, 2010), modeling debate 
discussions considering reply relations (Mukherjee 
and Liu, 2012b), and identifying stances in debates 
(Somasundaran and Wiebe, 2009; Thomas et al., 
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2006; Burfoot et al., 2011). (Yano and Smith, 
2010) also modeled the relationship of a blog post 
and the number of comments it receives. These 
works are different as they do not mine C-
expressions or discover the points of contention 
and questions in comments. 

In (Kim et al., 2006; Zhang and Varadarajan, 
2006; Ghose and Ipeirotis, 2007; Liu et al., 2007; 
Liu et al., 2008; O’Mahony and Smyth, 2009; Tsur 
and Rappoport 2009), various classification and 
regression approaches were taken to assess the 
quality of reviews. (Jindal and Liu, 2008; Lim et 
al., 2010; Li et al. 2011; Ott et al., 2011; 
Mukherjee et al., 2012) detect fake reviews and 
reviewers. However, all these works are not 
concerned with review comments. 

3. The Basic TME Model   

This section discusses TME. The next section 
discusses ME-TME, which improves TME. These 
models belong to the family of generative models 
for text where words and phrases (n-grams) are 
viewed as random variables, and a document is 
viewed as a bag of n-grams and each n-gram takes 
a value from a predefined vocabulary. In this work, 
we use up to 4-grams, i.e., n = 1, 2, 3, 4. For 
simplicity, we use terms to denote both words 
(unigrams or 1-grams) and phrases (n-grams). We 
denote the entries in our vocabulary by ݒଵ…௏ where 
ܸ is the number of unique terms in the vocabulary. 
The entire corpus contains ݀ଵ…஽ documents. A 
document (e.g., comment post) ݀ is represented as 
a vector of terms ࢊ࢝ with ௗܰ entries. ܹ is the set of 
all observed terms with cardinality, |ܹ| ൌ ∑ ௗܰௗ . 

The TME (Topic and Multi-Expression) model is 
a hierarchical generative model motivated by the 
joint occurrence of various types of expressions 
indicating Thumbs-up, Thumbs-down, Question, 
Answer acknowledgement, Agreement, and 
Disagreement and topics in comment posts. As 
before, these expressions are collectively called C-
expressions. A typical comment post mentions a 
few topics (using semantically related topical 
terms) and expresses some viewpoints with one or 
more C-expression types (using semantically 
related expressions). This observation motivates 
the generative process of our model where 
documents (posts) are represented as random 
mixtures of latent topics and C-expression types. 
Each topic or C-expression type is characterized by 
a distribution over terms (words/phrases). Assume 

we have ݐଵ…் topics and ݁ଵ…ா expression types in 
our corpus. Note that in our case of Amazon 
review comments, based on reading various posts, 
we hypothesize that E = 6 as in such review 
discussions, we mostly find 6 expression types 
(more details in Section 5.1). Let ߰ௗ denote the 
distribution of topics and C-expressions in a 
document ݀ with ݎௗ,௝ א ሼ̂ݐ, ݁̂ሽ denoting the binary 
indicator variable (topic or C-expression) for the 
݆௧௛ term of ݀, ݓௗ,௝. ݖௗ,௝denotes the appropriate 
topic or C-expression type index to which ݓௗ,௝ 
belongs. We parameterize multinomials over topics 
using a matrix Θ஽ൈ்் whose elements ߠௗ,௧

்  signify the 
probability of document ݀ exhibiting topic ݐ. For 
simplicity of notation, we will drop the latter 
subscript (ݐ in this case) when convenient and use 
ௗߠ
் to stand for the ݀௧௛ row of Θ். Similarly, we 

define multinomials over C-expression types using 
a matrix Θ஽ൈாா . The multinomials over terms 
associated with each topic are parameterized by a 
matrix Φ்ൈ௏

் , whose elements ߮௧,௩்  denote the 
probability of generating ݒ from topic ݐ. Likewise, 
multinomials over terms associated with each C-
expression type are parameterized by a matrix 
Φாൈ௏
ா . We now define the generative process of 

TME (see Figure 1(a)). 
A. For each C-expression type ݁, draw ߮௘ா~ݎ݅ܦሺߚாሻ 
B. For each topic t, draw ߮௧்~ݎ݅ܦሺ்ߚሻ 
C. For each comment post ݀ א ሼ1…ܦሽ: 

i. Draw ߰ௗ~ܽݐ݁ܤሺ࢛ߛሻ  
ii. Draw ߠௗ

ா~ݎ݅ܦሺߙாሻ 
iii. Draw ߠௗ

 ሻ்ߙሺݎ݅ܦ~்
iv. For each term ݓௗ,௝, ݆ א ሼ1… ௗܰሽ: 

a. Draw ݎௗ,௝~݈݈݅ݑ݋݊ݎ݁ܤሺ߰ௗሻ 
b. if (ݎௗ,௝ ൌ    ௗ,௝is a C-expression termݓ // ̂݁

Draw ݖௗ,௝~ ݐ݈ݑܯሺߠௗ
ா) 

else  // ݎௗ,௝ ൌ    ௗ,௝is a topical termݓ ,ݐ̂
Draw ݖௗ,௝~ ݐ݈ݑܯሺߠௗ

்) 

c. Emit ݓௗ,௝~ݐ݈ݑܯሺ߮௭೏,ೕ
௥೏,ೕ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) TME Model (b) ME-TME Model  

Figure 1: Graphical Models in plate notations.  
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To learn the TME model from data, as exact 
inference is not possible, we resort to approximate 
inference using collapsed Gibbs sampling 
(Griffiths and Steyvers, 2004). Gibbs sampling is a 
form of Markov Chain Monte Carlo method where 
a Markov chain is constructed to have a particular 
stationary distribution. In our case, we want to 
construct a Markov chain which converges to the 
posterior distribution over ܴ and ܼ conditioned on 
the data. We only need to sample ݖ and ݎ as we use 
collapsed Gibbs sampling and the dependencies of 
 and ߮ have been integrated out analytically in the ߠ
joint. Denoting the random variables ሼݓ, ,ݖ  ሽ byݎ
singular subscriptsሼݓ௞, ,௞ݖ ܭ ௞ሽ, ݇ଵ…௄, whereݎ ൌ
∑ ௗܰௗ , a single iteration consists of performing the 
following sampling: 

௞ݖሺ݌ ൌ ,ݐ ௞ݎ ൌ |ݐ̂ ൓ܹ௞, ܼ൓௞, ܴ൓௞,ݓ௞ ൌ ሻݒ  ן

       
௡೏
೅
൓ೖାఊೌ

௡೏
೅
൓ೖ
ା௡೏

ಶାఊೌ ାఊ್
ൈ

௡೏,೟
ವ೅

൓ೖ
ାఈ೅

௡೏,ሺ൉ሻ
ವ೅

൓ೖ
ା்ఈ೅

ൈ
௡೟,ೡ
಴೅

൓ೖ
ାఉ೅

௡೟,ሺ൉ሻ
಴೅

൓ೖ
ା௏ఉ೅

   (1) 

௞ݖሺ݌ ൌ ݁, ௞ݎ ൌ ݁̂| ൓ܹ௞, ܼ൓௞, ܴ൓௞, ௞ݓ ൌ ሻݒ  ן

       
௡೏
ಶ
൓ೖାఊ್

௡೏
೅ା௡೏

ಶ
൓ೖ
ାఊೌ ାఊ್

ൈ
௡೏,೐
ವಶ

൓ೖ
ାఈಶ

௡೏,ሺ൉ሻ
ವಶ

൓ೖ
ାாఈಶ

ൈ
௡೐,ೡ
಴ಶ

൓ೖାఉಶ

௡೐,ሺ൉ሻ
಴ಶ

൓ೖ
ା௏ఉಶ

   (2) 

where ݇ ൌ ሺ݀, ݆ሻ denotes the ݆௧௛ term of document 
݀ and the subscript ൓݇ denotes assignments 
excluding the term at ሺ݀, ݆ሻ. Counts݊௧,௩஼் and ݊௘,௩஼ா  
denote the number of times term ݒ was assigned to 
topic ݐ and expression type ݁ respectively. ݊ௗ,௧

஽் and 
݊ௗ,௘
஽ா  denote the number of terms in document ݀ that 

were assigned to topic ݐ and C-expression type ݁ 
respectively. Lastly, ݊ௗ

் and ݊ௗ
ா are the number of 

terms in ݀ that were assigned to topics and C-
expression types respectively. Omission of the 
latter index denoted by ሺ൉ሻ represents the 
marginalized sum over the latter index. We employ 
a blocked sampler jointly sampling ݎ and ݖ as this 
improves convergence and reduces autocorrelation 
of the Gibbs sampler (Rosen-Zvi et al., 2004). 

Asymmetric Beta priors: Based on our initial 
experiments with TME, we found that properly 
setting the smoothing hyper-parameter ࢛ߛ is 
crucial as it governs the topic/expression switch. 

According to the generative process, ߰ௗ is the 
(success) probability (of the Bernoulli distribution) 
of emitting a topical/aspect term in a comment post 
݀ and1 െ ߰ௗ, the probability of emitting a C-
expression term in ݀. Without loss of generality, 
we draw ߰ௗ~ܽݐ݁ܤሺ࢛ߛሻ where ߛ is the 
concentration parameter and ࢛ ൌ ሾܽݑ,  ሿ is theܾݑ
base measure. Without any prior belief, one resorts 

to uniform base measure ݑ௔ ൌ ௕ݑ ൌ0.5 (i.e., 
assumes that both topical and C-expression terms 
are equally likely to be emitted in a comment post). 
This results in symmetric Beta priors 
߰ௗ~ܽݐ݁ܤሺߛ௔, ௔ߛ ௕ሻ whereߛ ൌ ௕ߛ ,௔ݑߛ ൌ  ௕ andݑߛ
௔ߛ ൌ ௕ߛ ൌ  However, knowing the fact that .2/ߛ
topics are more likely to be emitted than 
expressions in a post apriori motivates us to take 
guidance from asymmetric priors (i.e., we now 
have a non-uniform base measure࢛).  This 
asymmetric setting of ߛ ensures that samples of ߰ௗ 
are more close to the actual distribution of topical 
terms in posts based on some domain knowledge. 
Symmetric γ cannot utilize any prior knowledge. In 
(Lin and He, 2009), a method was proposed to 
incorporate domain knowledge during Gibbs 
sampling initialization, but its effect becomes weak 
as the sampling progresses (Jo and Oh, 2011). 

For asymmetric priors, we estimate the hyper-
parameters from labeled data. Given a labeled set 
-௅, where we know the per post probability of Cܦ
expression emission (1 െ ߰ௗሻ, we use the method 
of moments to estimate ߛ ൌ ሾߛ௔,  :௕ሿ as followsߛ

௔ߛ ൌ ߤ ቀ
ఓሺଵିఓሻ

ఙ
െ 1ቁ , ௕ߛ ൌ ௔ߛ ቀ

ଵ

ఓ
െ 1ቁ ; ߤ  ൌ ,ሾ߰ௗሿܧ ߪ ൌ  ሾ߰ௗሿ   (3)ݎܸܽ

4. ME-TME Model 

The guidance of Beta priors, although helps, is still 
relatively coarse and weak. We can do better to 
produce clearer separation of topical and C-
expression terms. An alternative strategy is to 
employ Maximum-Entropy (Max-Ent) priors 
instead of Beta priors. The Max-Ent parameters 
can be learned from a small number of labeled 
topical and C-expression terms (words and 
phrases) which can serve as good priors. The idea 
is motivated by the following observation: topical 
and C-expression terms typically play different 
syntactic roles in a sentence. Topical terms (e.g. 
“ipod” “cell phone”, “macro lens”, “kindle”, etc.) 
tend to be noun and noun phrases while expression 
terms (“I refute”, “how can you say”, “great 
review”) usually contain pronouns, verbs, wh-
determiners, adjectives, and modals. In order to 
utilize the part-of-speech (POS) tag information, 
we move the topic/C-expression distribution ߰ௗ 
(the prior over the indicator variable ݎௗ,௝) from the 
document plate to the word plate (see Figure 1 (b)) 
and draw it from a Max-Ent model conditioned on 
the observed feature vector ݔௗ,ఫሬሬሬሬሬሬԦ associated with 
 ௗ,௝ canݔ .ߣ ௗ,௝ and the learned Max-Ent parametersݓ
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encode arbitrary contextual features for learning. 
With Max-Ent priors, we have the new model ME-
TME. In this work, we encode both lexical and 
POS features of the previous, current and next POS 
tags/lexemes of the term ݓௗ,௝. More specifically, 

ௗ,ఫሬሬሬሬሬሬԦݔ  ൌ ቂܱܲܵ௪೏,ೕିଵ, ܱܲܵ௪೏,ೕ
, ܱܲܵ௪೏,ೕାଵ, ௗ,௝ݓ െ ,ௗ,௝ݓ,1 ௗ,௝ݓ ൅ 1ቃ 

For phrasal terms (n-grams), all POS tags and 
lexemes of ݓௗ,௝are considered as features. 
Incorporating Max-Ent priors, the Gibbs sampler 
of ME-TME is given by: 

௞ݖሺ݌ ൌ ,ݐ ௞ݎ ൌ |ݐ̂ ൓ܹ௞, ܼ൓௞, ܴ൓௞,ݓ௞ ൌ ሻݒ  ן

       ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೕ,௧መ൯
೙
೔సభ ൯

∑ ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೕ,௬൯
೙
೔సభ ൯೤אሼ೐ෝ,೟෠ሽ

ൈ
௡೏,೟
ವ೅

൓ೖ
ାఈ೅

௡೏,ሺ൉ሻ
ವ೅

൓ೖ
ା்ఈ೅

ൈ
௡೟,ೡ
಴೅

൓ೖ
ାఉ೅

௡೟,ሺ൉ሻ
಴೅

൓ೖ
ା௏ఉ೅

    (4) 

௞ݖሺ݌ ൌ ݁, ௞ݎ ൌ ݁̂| ൓ܹ௞, ܼ൓௞, ܴ൓௞, ௞ݓ ൌ ሻݒ  ן

       ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೕ,௘̂൯
೙
೔సభ ൯

∑ ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೕ,௬൯
೙
೔సభ ൯೤אሼ೐ෝ,೟෠ሽ

ൈ
௡೏,೐
ವಶ

൓ೖ
ାఈಶ

௡೏,ሺ൉ሻ
ವಶ

൓ೖ
ାாఈಶ

ൈ
௡೐,ೡ಴ಶ൓ೖାఉಶ

௡೐,ሺ൉ሻ
಴ಶ

൓ೖ
ା௏ఉಶ

   (5) 

where ߣଵ…௡ are the parameters of the learned Max-
Ent model corresponding to the ݊ binary feature 
functions ଵ݂…௡ from Max-Ent. 

5. Evaluation 

We now evaluate the proposed TME and ME-TME 
models. Specifically, we evaluate the discovered 
C-expressions, contentious aspects, and aspects 
often mentioned in questions. 

5.1 Dataset and Experiment SettingsWe crawled 
comments of reviews in Amazon.com for a variety 
of products. For each comment we extracted its id, 
the comment author id, the review id on which it 
commented, and the review author id. Our 
database consisted of 21,316 authors, 37,548 
reviews, and 88,345 comments with an average of 
124 words per comment post. 

For all our experiments, the hyper-parameters 
for TME and ME-TME were set to the heuristic 
values αT = 50/T, αE = 50/E, βT = βE = 0.1 as 
suggested in (Griffiths and Steyvers, 2004). For ߛ, 
we estimated the asymmetric Beta priors using the 
method of moments discussed in Section 3. We 
sampled 1000 random posts and for each post we 
identified the C-expressions emitted. We thus 
computed the per-post probability of C-expression 
emission (1 െ ߰ௗሻ and used Eq. (3) to get the final 
estimates, ߛ௔ = 3.66, ߛ௕= 1.21. To learn the Max-
Ent parameters ߣ, we randomly sampled 500 terms 
from our corpus appearing at least 10 times and 
labeled them as topical (332) or C-expressions 
(168) and used the corresponding feature vector of 

each term (in the context of posts where it occurs) 
to train the Max-Ent model. We set the number of 
topics, T = 100 and the number of C-expression 
types, E = 6 (Thumbs-up, Thumbs-down, Question, 
Answer acknowledgement, Agreement and 
Disagreement) as in review comments, we usually 
find these six dominant expression types. Note that 
knowing the exact number of topics, T and 
expression types, E in a corpus is difficult. While 
non-parametric Bayesian approaches (Teh et al., 
2006) aim to estimate T from the corpus, in this 
work the heuristic values obtained from our initial 
experiments produced good results. We also tried 
increasing E to 7, 8, etc. However, it did not 
produce any new dominant expression type. 
Instead, the expression types became less specific 
as the expression term space became sparser. 

5.2 C-Expression Evaluation 

We now evaluate the discovered C-expressions. 
We first evaluate them qualitatively in Tables 1 
and 2. Table 1 shows the top terms of all 
expression types using the TME model. We find 
that TME can discover and cluster many correct C-
expressions, e.g., “great review”, “review helped 
me” in Thumbs-up; “poor review”, “very unfair 
review” in Thumbs-down; “how do I”, “help me 
decide” in Question; “good reply”, “thank you for 
clarifying” in Answer Acknowledgement; “I 
disagree”, “I refute” in Disagreement; and “I 
agree”, “true in fact” in Agreement. However, with 
the guidance of Max-Ent priors, ME-TME did 
much better (Table 2). For example, we find “level 
headed review”, “review convinced me” in 
Thumbs-up; “biased review”, “is flawed” in 
Thumbs-down; “any clues”, “I was wondering 
how” in Question; “clears my”, “valid answer” in 
Answer-acknowledgement; “I don’t buy your”, 
“sheer nonsense” in Disagreement; “agree 
completely”, “well said” in Agreement. These 
newly discovered phrases by ME-TME are marked 
in blue in Table 3. ME-TME also has fewer errors. 

Next, we evaluate them quantitatively using the 
metric precision @ n, which gives the precision at 
different rank positions. This metric is appropriate 
here because the C-expressions (according to top 
terms in ΦE) produced by TME and ME-TME are 
rankings. Table 3 reports the precisions @ top 25, 
50, 75, and 100 rank positions for all six 
expression types across both models. We evaluated 
till top 100 positions because it is usually 
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important to see whether a model can discover and 
rank those major expressions of a type at the top. 
We believe that top 100 are sufficient for most 
applications. From Table 3, we observe that ME-
TME consistently outperforms TME in precisions 
across all expression types and all rank positions. 
This shows that Max-Ent priors are more effective 
in discovering expressions than Beta priors. Note 
that we couldn’t compare with an existing baseline 
because there is no reported study on this problem. 

5.3 Comment Classification 

Here we show that the discovered C-expressions 
can help comment classification. Note that since a 
comment can belong to one or more types (e.g., a 
comment can belong to both Thumbs-up and 
Agreement types), this task is an instance of multi-
label classification, i.e., an instance can have more 
than one class label. In order to evaluate all the 
expression types, we follow the binary approach 
which is an extension of one-against-all method for 
multi-label classification. Thus, for each label, we 
build a binary classification problem. Instances 
associated with that label are in one class and the 
rest are in the other class. To perform this task, we 
randomly sampled 2000 comments, and labeled 
each of them into one or more of the following 8 
labels: Thumbs-up, Thumbs-down, Disagreement, 
Agreement, Question, Answer-Acknowledgement, 
Answer, and None, which have 432, 401, 309, 276, 

305, 201, 228, and 18 comments respectively. We 
disregard the None category due to its small size. 
This labeling is a fairly easy task as one can almost 
certainly make out to which type a comment 
belongs. Thus we didn’t use multiple labelers. The 
distribution reveals that the labels are overlapping. 
For instance, we found many comments belonging 
to both Thumbs-down and Disagreement, Thumbs-up 
with Acknowledgement and with Question. 

For supervised classification, the choice of 
feature is a key issue. While word and POS n-
grams are traditional features, such features may 
not be the best for our task. We now compare such 
features with the C-expressions discovered by the 
proposed models. We used the top 1000 terms 
from each of the 6 C-expression rankings as 
features. As comments in Question type mostly use 
the punctuation “?”, we added it in our feature set. 
We use precision, recall and F1 as our metric to 
compare classification performance using a trained 
SVM (linear kernel). All results (Table 4) were 
computed using 10-fold cross-validation (CV). We 
also tried Naïve Bayes and Logistic Regression 
classifiers, but they were poorer than SVM. Hence 
their results are not reported due to space 
constraints. As a separate experiment (not shown 
here also due to space constraints), we analyzed 
the classification performance by varying the 
number of top terms from 200, 400,…, 1000, 1200, 
etc. and found that the F1 scores stabilized after top 

 
 

 

        Figure 5: Precision @ top 50,  

Thumbs-up (e1): review, thanks, great review, nice review, time, 
best review, appreciate, you, your review helped, nice, terrific, 
review helped me, good critique, very, assert, wrong, useful 
review, don’t, misleading, thanks a lot, … 

Thumbs-down (e2): review, no, poor review, imprecise, you, 
complaint, very, suspicious, bogus review, absolutely, credible, 
very unfair review, criticisms, true, disregard this review, disagree 
with, judgment, without owning, … 

Question (e3): question, my, I, how do I, why isn’t, please explain, 
good answer, clarify, don’t understand, my doubts, I’m confused, 
does not, understand, help me decide, how to,  yes, answer, how 
can I, can’t explain, … 

Answer Acknowledgement (e4): my, informative, answer, good 
reply, thank you for clarifying, answer doesn’t, good answer, 
vague, helped me choose, useful suggestion, don’t understand, 
cannot explain, your answer, doubts, answer isn’t, … 

Disagreement (e5): disagree, I, don’t, I disagree, argument claim, I 
reject, I refute, I refuse, oppose, debate, accept, don’t agree, quote, 
sense, would disagree, assertions, I doubt, right,  your, really, 
you, I’d disagree, cannot, nonsense,... 

Agreement (e6): yes, do, correct, indeed, no, right, I agree, you, 
agree, I accept, very, yes indeed, true in fact, indeed correct, I’d 
agree, completely, true, but, doesn’t, don’t, definitely, false, 
completely agree, agree with your, true, … 

Table 1: Top terms (comma delimited) of six expression types 
e1, e2, e3, e4, e5, e6 (Φ

E) using TME model. Red (bold) colored 
terms denote possible errors 

Thumbs-up (e1): review, you, great review, I'm glad I read, best 
review, review convinced me, review helped me,  good review, terrific 
review, job, thoughtful review, awesome review, level headed review, 
good critique, good job, video review,... 

Thumbs-down (e2): review, you, bogus review, con, useless review, 
ridiculous,  biased review, very unfair review, is flawed, completely, 
skeptical, badmouth, misleading review, cynical review, wrong, 
disregard this review, seemingly honest, … 

Question (e3): question, I, how do I, why isn’t, please explain, clarify, 
any clues, answer, please explain, help me decide, vague, how to, how 
do I, where can I, how to set, I was wondering how, could you explain, 
how can I, can I use, … 

Answer Acknowledgement (e4): my, good reply, , answer, reply, 
helped me choose, clears my,  valid answer, answer doesn’t, 
satisfactory answer, can you clarify, informative answer, useful 
suggestion, perfect answer, thanks for your reply, doubts, … 

Disagreement (e5): disagree, I, don’t, I disagree, doesn’t, I don’t buy 
your, credible, I reject, I doubt, I refuse, I oppose, sheer nonsense, 
hardly, don’t agree, can you prove, you have no clue, how do you say, 
sense, you fail, contradiction, … 

Agreement (e6): I, do, agree, point, yes, really, would agree, you, 
agree, I accept, claim, agree completely, personally agree, true in fact, 
indeed correct, well said, valid point, correct, never meant, might not, 
definitely agree,… 

Table 2: Top terms (comma delimited) of six expression types 
using ME-TME model. Red (bold) terms denote possible errors. 
Blue (italics) terms denote those newly discovered by the model; 
rest (black) were used in Max-Ent training. 
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1000 terms. From Table 4, we see that F1 scores 
dramatically increase with C-expression (Φா) 
features for all expression types. TME and ME-
TME progressively improve the classification. 
Improvements of TME and ME-TME being 
significant (p<0.001) using a paired t-test across 
10-fold cross validations shows that the discovered 
C-expressions are of high quality and useful.  

We note that the annotation resulted in a new 
label “Answer” which consists of mostly replies to 
comments with questions. Since an “answer” to a 
question usually does not show any specific 
expression, it does not attain very good F1 scores. 
Thus, to improve the performance of the Answer 

type comments, we added three binary features for 
each comment c on top of C-expression features: 
i) Is the author of c the review author too? The 

idea here is that most of the times the reviewer 
answers the questions raised in comments. 

ii) Is there any comment posted before c by some 
author a which has been previously classified 
as a question post? 

iii) Is there any comment posted after c by author 
a that replies to c (using @name) and is an 
Answer-Acknowledgement comment (which 
again has been previously classified as such)? 

Using these additional features, we obtained a 
precision of 0.78 and a recall of 0.73 yielding an F1 

C-Expression Type P@25 P@50 P@75 P@100 
TME ME-TME TME ME-TME TME ME-TME TME ME-TME

Thumbs-up 0.60 0.80 0.66 0.78 0.60 0.69 0.55 0.64 
Thumbs-down 0.68 0.84 0.70 0.80 0.63 0.67 0.60 0.65 

Question 0.64 0.80 0.68 0.76 0.65 0.72 0.61 0.67 
Answer-Acknowledgement 0.68 0.76 0.62 0.72 0.57 0.64 0.54 0.58 

Disagreement 0.76 0.88 0.74 0.80 0.68 0.73 0.65 0.70 
Agreement 0.72 0.80 0.64 0.74 0.61 0.70 0.60 0.69 

Table 3: Precision @ top 25, 50, 75, and 100 rank positions for all C-expression types. 

Features Thumbs-up Thumbs-down Question Answer-Ack. Disagreement Agreement Answer 
 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 

W+POS 1-gram 0.68 0.66 0.67 0.65 0.65 0.65 0.71 0.68 0.69 0.64 0.61 0.62 0.73 0.72 0.72 0.67 0.65 0.66 0.58 0.57 0.57
W+POS 1-2 gram 0.72 0.69 0.70 0.68 0.67 0.67 0.74 0.69 0.71 0.69 0.63 0.65 0.76 0.75 0.75 0.71 0.69 0.70 0.60 0.57 0.58
W+POS, 1-3 gram 0.73 0.71 0.72 0.69 0.68 0.68 0.75 0.69 0.72 0.70 0.64 0.66 0.76 0.76 0.76 0.72 0.70 0.71 0.61 0.58 0.59
W+POS, 1-4 gram 0.74 0.72 0.73 0.71 0.68 0.69 0.75 0.70 0.72 0.70 0.65 0.67 0.77 0.76 0.76 0.73 0.70 0.71 0.61 0.58 0.59
C-Expr. ΦE, TME 0.82 0.74 0.78 0.77 0.71 0.74 0.83 0.75 0.78 0.75 0.72 0.73 0.83 0.80 0.81 0.78 0.75 0.76 0.66 0.61 0.63

C-Expr. ΦE, ME-TME 0.87 0.79 0.83 0.80 0.73 0.76 0.87 0.76 0.81 0.77 0.72 0.74 0.86 0.81 0.83 0.81 0.77 0.79 0.67 0.61 0.64

Table 4: Precision (P), Recall (R), and F1 scores of binary classification using SVM and different features. The 
improvements of our models are significant (p<0.001) over paired t-test across 10-fold cross validation. 

D 
ΦE  + Noun/Noun Phrase TME ME-TME 

J1 J2 J1 J2 J1 J2 
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 

D1 0.62 0.70 0.66 0.58 0.67 0.62 0.66 0.75 0.70 0.62 0.70 0.66 0.67 0.79 0.73 0.64 0.74 0.69
D2 0.61 0.67 0.64 0.57 0.63 0.60 0.66 0.72 0.69 0.62 0.67 0.64 0.68 0.75 0.71 0.64 0.71 0.67
D3 0.60 0.69 0.64 0.56 0.64 0.60 0.64 0.73 0.68 0.60 0.67 0.63 0.67 0.76 0.71 0.63 0.72 0.67
D4 0.59 0.68 0.63 0.55 0.65 0.60 0.63 0.71 0.67 0.59 0.68 0.63 0.65 0.73 0.69 0.62 0.71 0.66

Avg. 0.61 0.69 0.64 0.57 0.65 0.61 0.65 0.73 0.69 0.61 0.68 0.64 0.67 0.76 0.71 0.63 0.72 0.67

Table 5 (a) 

D 
ΦE  + Noun/Noun Phrase TME ME-TME 

J1 J2 J1 J2 J1 J2 
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 

D1 0.57 0.65 0.61 0.54 0.63 0.58 0.61 0.69 0.65 0.58 0.66 0.62 0.64 0.73 0.68 0.61 0.70 0.65
D2 0.61 0.66 0.63 0.58 0.61 0.59 0.64 0.68 0.66 0.60 0.64 0.62 0.68 0.70 0.69 0.65 0.69 0.67
D3 0.60 0.68 0.64 0.57 0.64 0.60 0.64 0.71 0.67 0.62 0.68 0.65 0.67 0.72 0.69 0.64 0.69 0.66
D4 0.56 0.67 0.61 0.55 0.65 0.60 0.60 0.72 0.65 0.58 0.68 0.63 0.63 0.75 0.68 0.61 0.71 0.66

Avg. 0.59 0.67 0.62 0.56 0.63 0.59 0.62 0.70 0.66 0.60 0.67 0.63 0.66 0.73 0.69 0.63 0.70 0.66

Table 5 (b) 

Table 5: Points of Contention (a), Questioned aspects (b). D1: Ipod, D2: Kindle, D3: Nikon, D4: Garmin. We report the 
average precision (P), recall (R), and F1 score over 100 comments for each particular domain.  

Statistical significance: Differences between Nearest Noun Phrase and TME for both judges (J1, J2) across all domains were 
significant at 97% confidence level (p<0.03). Differences among TME and ME-TME for both judges (J1, J2) across all 
domains were significant at 95% confidence level (p<0.05). A paired t-test was used for testing significance. 
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score of 0.75 which is a dramatic increase beyond 
0.64 achieved by ME-TME in Table 4. 

5.4 Contention Points and Questioned Aspects  

We now turn to the task of discovering points of 
contention in disagreement comments and aspects 
(or topics) raised in questions. By “points”, we 
mean the topical terms on which some contentions 
or disagreements have been expressed. Topics 
being the product aspects are also indirectly 
evaluated in this task. We employ the TME and 
ME-TME models in the following manner.  

We only detail the approach for disagreement 
comments. The same method is applied to question 
comments. Given a disagreement comment post ݀, 
we first select the top k topics that are mentioned in 
d according to its topic distribution, ߠௗ

். Let ௗܶ be 
the set of these top ݇ topics in ݀. Then, for each 
disagreement expression ݓ א ݀ ת ߮௘ୀ஽௜௦௔௚௥௘௘௠௘௡௧

ா , 
we emit the topical terms (words/phrases) of topics 
in ௗܶwhich appear within a word window of ݍ from 
ܣ in ݀. More precisely, we emit the set ݓ ൌ ሼݓ|ݓ א
݀ ת ߮௧், ݐ א ௗܶ, ሻݓሺ݅ݏ݋݌| െ |ሻݒሺ݅ݏ݋݌ ൑  ሽ, whereݍ
posi(·) returns the position index of the word or 
phrase in document ݀. To compute the intersection 
ݓ א ݀ ת ߮௧், we need a threshold. This is so 
because the Dirichlet distribution has a smoothing 
effect which assigns some non-zero probability 
mass to every term in the vocabulary for each topic 
 So for computing the intersection, we considered .ݐ
only terms in ߮௧் which have ݌ሺݐ|ݒሻ ൌ  ߮௧,௩்  > 0.001 
as probability masses lower than 0.001 are more 
due to the smoothing effect of the Dirichlet 
distribution than true correlation. In an actual 
application, the values for ݇ and ݍ can be set 
according to the user’s need. In our experiment, we 
used ݇ = 3 and 5 = ݍ, which are reasonable because 
a post normally does not talk about many topics 
(݇), and the contention points (aspect terms) appear 
quite close to the disagreement expressions. 

For comparison, we also designed a baseline. 
For each disagreement (or question) expression 
ݓ א ݀ ת ߮௘ୀ஽௜௦௔௚௥௘௘௠௘௡௧

ா (߮௘ୀொ௨௘௦௧௜௢௡
ா ), we emit the 

nouns and noun phrases within the same window ݍ 
as the points of contention (question) in ݀. This 
baseline is reasonable because topical terms are 
usually nouns and noun phrases and are near 
disagreement (question) expressions. We note that 
this baseline cannot stand alone because it has to 
rely on our expression models Φா of ME-TME. 

Next, to evaluate the performance of these 
methods in discovering points of contention, we 
randomly selected 100 disagreement (contentious) 
(and 100 question) comment posts on reviews from 
each of the 4 product domains: Ipod, Kindle, 
Nikon Cameras, and Garmin GPS in our database 
and employed the aforementioned methods to 
discover the points of contention (question) in each 
post. Then we asked two human judges (graduate 
students fluent in English) to manually judge the 
results produced by each method for each post. We 
asked them to report the precision of the 
discovered terms for a post by judging them as 
being indeed valid points of contention and report 
recall in a post by judging how many of actually 
contentious points in the post were discovered. In 
Table 5 (a), we report the average precision and 
recall for 100 posts in each domain by the two 
judges J1 and J2 for different methods on the task 
of discovering points (aspects) of contention. In 
Table 5 (b), similar results are reported for the task 
of discovering questioned aspects in 100 question 
comments for each product domain. Since this 
judging task is subjective, the differences in the 
results from the two judges are not surprising. Our 
judges were made to work in isolation to prevent 
any bias. We observe that across all domains, ME-
TME again performs the best consistently. Note 
that agreement study using Kappa is not used here 
as our problem is not to label a fixed set of items 
categorically by the judges. 

6. Conclusion 

This paper proposed the problem of modeling 
review comments, and presented two models TME 
and ME-TME to model and to extract topics 
(aspects) and various comment expressions. These 
expressions enable us to classify comments more 
accurately, and to find contentious aspects and 
questioned aspects. These pieces of information 
also allow us to produce a simple summary of 
comments for each review as discussed in Section 
1. To our knowledge, this is the first attempt to 
analyze comments in such details. Our experiments 
demonstrated the efficacy of the models. ME-TME 
also outperformed TME significantly. 
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Abstract

We describe a joint model for understanding
user actions in natural language utterances.
Our multi-layer generative approach uses both
labeled and unlabeled utterances to jointly
learn aspects regarding utterance’s target do-
main (e.g. movies), intention (e.g., finding a
movie) along with other semantic units (e.g.,
movie name). We inject information extracted
from unstructured web search query logs as
prior information to enhance the generative
process of the natural language utterance un-
derstanding model. Using utterances from five
domains, our approach shows up to 4.5% im-
provement on domain and dialog act perfor-
mance over cascaded approach in which each
semantic component is learned sequentially
and a supervised joint learning model (which
requires fully labeled data).

1 Introduction

Virtual personal assistance (VPA) is a human to
machine dialog system, which is designed to per-
form tasks such as making reservations at restau-
rants, checking flight statuses, or planning weekend
activities. A typical spoken language understanding
(SLU) module of a VPA (Bangalore, 2006; Tur and
Mori, 2011) defines a structured representation for
utterances, in which the constituents correspond to
meaning representations in terms of slot/value pairs
(see Table 1). While target domain corresponds to
the context of an utterance in a dialog, the dialog
act represents overall intent of an utterance. The
slots are entities, which are semantic constituents at
the word or phrase level. Learning each component

Sample utterances on ’plan a night out’ scenario
(I) Show me theaters in [Austin] playing [iron man 2].
(II)I’m in the mood for [indian] food tonight, show me the
ones [within 5 miles] that have [patios].

Extracted Class and Labels
Domain Dialog Act Slots=Values
(I) Movie find Location=Austin

theater Movie-Name= iron man 2
(II) Restaurant find Rest-Cusine=indian

restaurant Location=within 5 miles
Rest-Amenities= patios

Table 1: Examples of utterances with corresponding se-
mantic components, i.e., domain, dialog act, and slots.

is a challenging task not only because there are no
a priori constraints on what a user might say, but
also systems must generalize from a tractably small
amount of labeled training data. In this paper, we
argue that each of these components are interdepen-
dent and should be modeled simultaneously. We
build a joint understanding framework and introduce
a multi-layer context model for semantic representa-
tion of utterances of multiple domains.

Although different strategies can be applied,
typically a cascaded approach is used where
each semantic component is modeled sepa-
rately/sequentially (Begeja et al., 2004), focusing
less on interrelated aspects, i.e., dialog’s domain,
user’s intentions, and semantic tags that can be
shared across domains. Recent work on SLU
(Jeong and Lee, 2008; Wang, 2010) presents joint
modeling of two components, i.e., the domain and
slot or dialog act and slot components together.
Furthermore, most of these systems rely on labeled
training utterances, focusing little on issues such
as information sharing between the discourse and
word level components across different domains,
or variations in use of language. To deal with de-
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pendency and language variability issues, a model
that considers dependencies between semantic
components and utilizes information from large
bodies of unlabeled text can be beneficial for SLU.

In this paper, we present a novel generative
Bayesian model that learns domain/dialog-act/slot
semantic components as latent aspects of text ut-
terances. Our approach can identify these semantic
components simultaneously in a hierarchical frame-
work that enables the learning of dependencies. We
incorporate prior knowledge that we observe in web
search query logs as constraints on these latent as-
pects. Our model can discover associations between
words within a multi-layered aspect model, in which
some words are indicative of higher layer (meta) as-
pects (domain or dialog act components), while oth-
ers are indicative of lower layer specific entities.

The contributions of this paper are as follows:
(i) construction of a novel Bayesian framework for
semantic parsing of natural language (NL) utter-
ances in a unifying framework in §4,
(ii) representation of seed labeled data and informa-
tion from web queries as informative prior to design
a novel utterance understanding model in §3 & §4,
(iii) comparison of our results to supervised sequen-
tial and joint learning methods on NL utterances in
§5. We conclude that our generative model achieves
noticeable improvement compared to discriminative
models when labeled data is scarce.

2 Background

Language understanding has been well studied in
the context of question/answering (Harabagiu and
Hickl, 2006; Liang et al., 2011), entailment (Sam-
mons et al., 2010), summarization (Hovy et al.,
2005; Daumé-III and Marcu, 2006), spoken lan-
guage understanding (Tur and Mori, 2011; Dinarelli
et al., 2009), query understanding (Popescu et al.,
2010; Li, 2010; Reisinger and Pasca, 2011), etc.
However data sources in VPA systems pose new
challenges, such as variability and ambiguities in
natural language, or short utterances that rarely con-
tain contextual information, etc. Thus, SLU plays
an important role in allowing any sophisticated spo-
ken dialog system (e.g., DARPA Calo (Berry et al.,
2011), Siri, etc.) to take the correct machine actions.

A common approach to building SLU framework

is to model its semantic components separately, as-
suming that the context (domain) is given a pri-
ori. Earlier work takes dialog act identification as
a classification task to capture the user’s intentions
(Margolis et al., 2010) and slot filling as a sequence
learning task specific to a given domain class (Wang
et al., 2009; Li, 2010). Since these tasks are con-
sidered as a pipeline, the errors of each component
are transfered to the next, causing robustness issues.
Ideally, these components should be modeled si-
multaneously considering the dependencies between
them. For example, in a local domain application,
users may require information about a sub-domain
(movies, hotels, etc.), and for each sub-domain, they
may want to take different actions (find a movie, call
a restaurant or book a hotel) using domain specific
attributes (e.g., cuisine type of a restaurant, titles for
movies or star-rating of a hotel). There’s been little
attention in the literature on modeling the dependen-
cies of SLU’s correlated structures.

Only recent research has focused on the joint
modeling of SLU (Jeong and Lee, 2008; Wang,
2010) taking into account the dependencies at learn-
ing time. In (Jeong and Lee, 2008), a triangular
chain conditional random fields (Tri-CRF) approach
is presented to model two of the SLU’s components
in a single-pass. Their discriminative approach rep-
resents semantic slots and discourse-level utterance
labels (domain or dialog act) in a single structure
to encode dependencies. However, their model re-
quires fully labeled utterances for training, which
can be time consuming and expensive to generate for
dynamic systems. Also, they can only learn depen-
dencies between two components simultaneously.

Our approach differs from the earlier work- in
that- we take the utterance understanding as a multi-
layered learning problem, and build a hierarchical
clustering model. Our joint model can discover
domain D, and user’s act A as higher layer latent
concepts of utterances in relation to lower layer la-
tent semantic topics (slots) S such as named-entities
(”New York”) or context bearing non-named enti-
ties (”vegan”). Our work resembles the earlier work
of PAM models (Mimno et al., 2007), i.e., directed
acyclic graphs representing mixtures of hierarchical
topic structures, where upper level topics are multi-
nomial over lower level topics in a hierarchy. In an
analogical way to earlier work, the D and A in our
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approach represent common co-occurrence patterns
(dependencies) between semantic tags S (Fig. 2).
Concretely, correlated topics eliminate assignment
of semantic tags to segments in an utterance that
belong to other domains, e.g., we can discover that
”Show me vegan restaurants in San Francisco” has
a low probably of outputting a movie-actor slot. Be-
ing generative, our model can incorporate unlabeled
utterances and encode prior information of concepts.

3 Data and Approach Overview

Here we define several abstractions of our joint
model as depicted in Fig. 1. Our corpus mainly
contains NL utterances (”show me the nearest dim-
sum places”) and some keyword queries (”iron man
2 trailers”). We represent each utterance u as a vec-
tor wu of Nu word n-grams (segments), wuj , each
of which are chosen from a vocabulary W of fixed-
size V. We use entity lists obtained from web sources
(explained next) to identify segments in the corpus.
Our corpus contains utterances from KD=4 main
domains:∈ {movies, hotels, restaurants, events},
as well as out-of-domain other class. Each utterance
has one dialog act (A) associated with it. We assume
a fixed number of possible dialog acts KA for each
domain. Semantic Tags, slots (S) are lexical units
(segments) of an utterance, which we classify into
two types: domain-independent slots that are shared
across all domains, (e.g., location, time, year, etc.),
and domain-dependent slots, (e.g. movie-name,
actor-name, restaurant-name, etc.). For tractability,
we consider a fixed number of latent slot types KS .
Our algorithm assigns domain/dialog-act/slot labels
to each topic at each layer in the hierarchy using la-
beled data (explained in §4.)

We represent domain and dialog act components
as meta-variables of utterances. This is similar to
author-topic models (Rosen-Zvi et al., 2004), that
capture author-topic relations across documents. In
that case, words are generated by first selecting an
author uniformly from an observed author list and
then selecting a topic from a distribution over words
that is specific to that author. In our model, each
utterance u is associated with domain and dialog
act topics. A word wuj in u is generated by first
selecting a domain and an act topic and then slot
topic over words of u. The domain-dependent slots

in utterances are usually not dependent on the di-
alog act. For instance, while ”find [hugo] trailer”
and ”show me where [hugo] is playing” have both
a movie-name slot (”hugo”), they have different di-
alog acts, i.e., find-trailer and find-movie, respec-
tively. We predict posterior probabilities for domain
P̃ (d ∈ D|u) dialog act P̃ (a ∈ A|ud) and slots
P̃ (sj ∈ S|wuj , d, sj−1) of words wuj in sequence.

To handle language variability, and hence dis-
cover correlation between hierarchical aspects of ut-
terances1, we extract prior information from two
web resources as follows:

Web n-Grams (G). Large-scale engines such as
Bing or Google log more than 100M search queries
each day. Each query in the search logs has an as-
sociated set of URLs that were clicked after users
entered a given query. The click information can
be used to infer domain class labels, and there-
fore, can provide (noisy) supervision in training do-
main classifiers. For example, two queries (”cheap
hotels Las Vegas” and ”wine resorts in Napa”),
which resulted in clicks on the same base URL (e.g.,
www.hotels.com) probably belong to the same do-
main (”hotels” in this case).

movie rest. hotel event other

ψG   = P(d=hotel|wj=‘room’)
d|wj

Given query logs, we
compile sets of in-domain
queries based on their
base URLs2. Then, for
each vocabulary item
wj ∈ W in our corpus, we calculate frequency of
wj in each set of in-domain queries and represent
each word (e.g., ”room”) as a discrete normalized
probability distribution ψj

G over KD domains
{ψd|j

G }∈ ψj
G. We inject them as nonuniform priors

over domain and dialog act parameters in §4.
Entity Lists (E). We limit our model to a set

of named-entity slots (e.g., movie-name, restaurant-
name) and non-named entity slots (e.g., restaurant-
cuisine, hotel-rating). For each entity slot, we ex-
tract a large collection of entity lists through the url’s
on the web that correspond to our domains, such
as movie-names listed on IMDB, restaurant-names
on OpenTable, or hotel-ratings on tripadvisor.com.

1Two utterances can be intrinsically related but contain no
common terms, e.g., ”has open bar” and ”serves free drinks”.

2We focus on domain specific search engines such as
IMDB.com, RottenTomatoes.com for movies, Hotels.com and
Expedia.com for hotels, etc.
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Figure 1: Graphical model depiction of the MCM. D,A,S are
domain, dialog act and slot in a hierarchy, each consisting of
KD,KA,KS components. Shaded nodes indicate observed
variables. Hyper-parameters are omitted. Sample informative
priors over latent topics ψE and ψG are shown. Blue arrows
indicate frequency of vocabulary terms sampled for each topic.

We represent each entity list as observed nonuniform
priors ψE and inject them into our joint learning pro-
cess as V sparse multinomial distributions over la-
tent topics D, and S to ”guide” the generation of
utterances (Fig. 1 top-left table), explained in §4.

4 Multi-Layer Context Model - MCM

The generative process of our multi-layer context
model (MCM) (Fig. 1) is shown in Algorithm 1. Each
utterance u is associated with d = 1..KD multino-
mial domain-topic distributions θdD. Each domain d,
is represented as a distribution over a = 1, ..,KA

dialog acts θdaA (θdD → θdaA ). In our MCM model, we
assume that each utterance is represented as a hidden
Markov model with KS slot states. Each state gen-
erates n-grams according to a multinomial n-gram
distribution. Once domain Du and act Aud topics
are sampled for u, a slot state topic Sujd is drawn
to generate each segment wuj of u by considering
the word-tag sequence frequencies based on a sim-
ple HMM assumption, similar to the content models
of (Sauper et al., 2011). Initial and transition prob-
ability distributions over the HMM states are sam-
pled from Dirichlet distribution over slots θdsS . Each
slot state s generates words according to multino-
mial word distribution φsS . We also keep track of the
frequency of vocabulary termswj’s in a V ×KD ma-
trixMD. Every time awj is sampled for a domain d,
we increment its count, a degree of domain bearing

words. Similarly, we keep track of dialog act and
slot bearing words in V ×KA and V ×KS matrices,
MA and MS (shown as red arrows in Fig 1). Being
Bayesian, each distribution θdD, θadA , and θdsS is sam-
pled from a Dirichlet prior distribution with different
parameters, described next.

Algorithm 1 Multi-Layer Context Model Generation
1: for each domain d← 1, ...,KD

2: draw domain dist. θd
D ∼ Dir(α?

D)†,
3: for each dialog-act a← 1, ...,KA

4: draw dialog act dist. θda
A ∼ Dir(α?

A),
5: for each slot type s← 1, ...,KS

6: draw slot dist. θds
S ∼ Dir(α?

S).
7: endfor
8: draw φs

S ∼ Dir(β) for each slot type s← 1, ...,KS .
9: for each utterance u← 1, ..., |U | do

10: Sample a domain Du∼Multi(θd
D) and,

11: and act topic Aud∼Multi(θda
A ).

12: for words wuj , j ← 1, ..., Nu do
13: - Draw Sujd∼Multi(θ

Du,Su(j−1)d

S )‡.
14: - Sample wuj∼Multi(φSujd ).
15: end for
16: end for
† Dir(α?

D), Dir(α?
A), Dir(α?

S) are parameterized based on prior
knowledge.
‡ Here HMM assumption over utterance words is used.

In hierarchical topic models (Blei et al., 2003;
Mimno et al., 2007), etc., topics are represented
as distributions over words, and each document ex-
presses an admixture of these topics, both of which
have symmetric Dirichlet (Dir) prior distributions.
Symmetric Dirichlet distributions are often used,
since there is typically no prior knowledge favoring
one component over another. In the topic model lit-
erature, such constraints are sometimes used to de-
terministically allocate topic assignments to known
labels (Labeled Topic Modeling (Ramage et al.,
2009)) or in terms of pre-learnt topics encoded as
prior knowledge on topic distributions in documents
(Reisinger and Paşca, 2009). Similar to previous
work, we define a latent topic per each known se-
mantic component label, e.g., five domain topics for
five defined domains. Different from earlier work
though, we also inject knowledge that we extract
from several resources including entity lists from
web search query click logs as well as seed labeled
training utterances as prior information. We con-
strain the generation of the semantic components of
our model by encoding prior knowledge in terms of
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asymmetric Dirichlet topic priors α=(αm1,...,αmK)
where each kth topic has a prior weight αk=αmk,
with varying base measure m=(m1,...,mk) 3.

We update parameter vectors of Dirichlet domain
prior αu?D ={(αD·ψu1D ),..., αD·ψuKD

D }, where αD is
the concentration parameter for domain Dirichlet
distribution and ψuD={ψudD }

KD
d=1 is the base mea-

sure which we obtain from various resources. Be-
cause base measure updates are dependent on prior
knowledge of corpus words, each utterance u gets
a different base measure. Similarly, we update
the parameter vector of the Dirichlet dialog act
and slot priors αu?A ={(αA·ψu1A ),...,(αA·ψuKA

A )} and
αu?S ={(αS ·ψu1S ),...,(αS ·ψuKS

S )} using base measures
ψuA={ψuaA }

KA
a=1 and ψSu={ψusS }

KS
s=1 respectively.

Before describing base measure update for do-
main, act and slot Dirichlet priors, we explain the
constraining prior knowledge parameters below:
? Entity List Base Measure(ψj

E): Entity fea-
tures are indicative of domain and slots and MCM
utilizes these features while sampling topics. For
instance, entities hotel-name ”Hilton” and location
”New York” are discriminative features in classi-
fying ”find nice cheap double room in New York
Hilton” into correct domain (hotel) and slot (hotel-
name) clusters. We represent entity lists correspond-
ing to known domains as multinomial distributions
ψjE , where each ψ

d|j
E is the probability of entity-

word wj used in the domain d. Some entities may
belong to more than one domain, e.g., ”hotel Cali-
fornia” can either be a movie, or song or hotel name.
? Web n-Gram Context Base Measure (ψjG):

As explained in §3, we use the web n-grams as ad-
ditional information for calculating the base mea-
sures of the Dirichlet topic distributions. Normal-
ized word distributions ψjG over domains were used
as weights for domain and dialog act base measure.
? Corpus n-Gram Base Measure (ψjC): Sim-

ilar to other measures, MCM also encodes n-gram
constraints as word-frequency features extracted
from labeled utterances. Concretely, we cal-
culate the frequency of vocabulary items given
domain-act label pairs from the training labeled ut-
terances and convert there into probability mea-
sures over domain-acts. We encode conditional

3See (Wallach, 2008) Chapter 3 for analysis of hyper-priors
on topic models.

probabilities {ψad|jC }∈ψjC as multinomial distribu-
tions of words over domain-act pairs, e.g., ψad|jC =
P(d=”restaurant”, a=”make-reservation”|”table”).

Base measure update: The α-base measures are
used to shape Dirichlet priors αu?D , αu?A and αu?S . We
update the base measures of each sampled domain
Du = d given each vocabulary wj as:

ψdjD =

{
ψ
d|j
E , ψ

d|j
E > 0

ψ
d|j
G , otherwise

(1)

In (1) we assume that entities (E) are more indica-
tive of the domain compared to other n-grams (G)
and should be more dominant in sampling decision
for domain topics. Given an utterance u, we calcu-
late its base measure ψudD =(

∑Nu
j ψdjD )/Nu.

Once the domain is sampled, we update the prior
weight of dialog acts Aud = a:

ψajA = ψ
ad|j
C ∗ ψd|jG (2)

and slot components Sujd = s:
ψsjS = ψ

d|j
E (3)

Then we update their base measures for a given u as:
ψuaA =(

∑Nu
j ψajA )/Nu and ψusS =(

∑Nu
j ψsjS )/Nu.

4.1 Inference and Learning
The goal of inference is to predict the domain, user’s
act and slot distributions over each segment given
an utterance. The MCM has the following set of pa-
rameters: domain-topic distributions θdD for each u,
the act-topic distributions θdaA for each domain topic
d of u, local slot-topic distributions for each do-
main θS , and φsS for slot-word distributions. Pre-
vious work (Asuncion et al., 2009; Wallach et al.,
2009) shows that the choice of inference method has
negligible effect on the probability of testing doc-
uments or inferred topics. Thus, we use Markov
Chain Monte Carlo (MCMC) method,specifically
Gibbs sampling, to model the posterior distribution
PMCM(Du, Aud, Sujd|αu?D , αu?A , αu?S , β) by obtaining
samples (Du, Aud, Sujd) drawn from this distribu-
tion. For each utterance u, we sample a domain Du

and act Aud and hyper-parameters αD and αA and
their base measures ψudD , ψuaA (from Eq. 1,2):

θdD =
Nd
u + αDψ

ud
D

Nu + αu?D
; θdaA =

Na|ud + αAψudD
Nud + αu?A

(4)

The Nd
u is the number of occurrences of domain

topic d in utterance u, Na|ud is the number of occur-
rences of act a given d in u. During sampling of a
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slot state Sujd, we assume that utterance is generated
by the HMM model associated with the assigned
domain. For each segment wuj in u, we sample a
slot state Sujd given the remaining slots and hyper-
parameters αS , β and base measure ψusS (Eq. 3) by:

p(Sujd = s|w,Du,S−(ujd)α
u?
S , β) ∝

Nk
ujd + β

Nk
(.) + V β

∗ (N
Du,Su(j−1)d
s + αSψ

us
S )∗

NDu,s
Su(j+1)d

+ I(Suj−1, s) + I(Suj+1, s) + αSψ
us
S

NDu,s
(.) + I(Suj−1, s) +KDαu?S

(5)

The Nk
ujd is the number of times segment wuj is

generated from slot state s in all utterances as-
signed to domain topic d, NDu,s1

s2 is the num-
ber of transitions from slot state s1 to s2, where
s1 ∈{Su(j−1)d,Su(j+1)d}, I(s1, s2)=1 if slot s1=s2.

4.2 Semantic Structure Extraction with MCM

During Gibbs sampling, we keep track of the fre-
quency of draws of domain, dialog act and slot in-
dicating n-grams wj , in MD, MA and MS matri-
ces, respectively. These n-grams are context bearing
words (examples are shown in Fig.1.). For given u
the predicted domain d∗u is determined by:

d∗u = arg maxd P̃ (d|u) = arg maxd[θ
d
D ∗

∏Nu
j=1

Mjd
D

MD
]

and predicted dialog act by arg maxa P̃ (a|ud∗):

a∗u = arg maxa[θ
d∗a
A ∗

∏Nu
j=1

Mja
A

MA
] (6)

For each segment wuj in u, its predicted slot are de-
termined by arg maxs P (sj |wuj , d∗, sj−1):

s∗uj = arg maxs[p(Sujd∗ = s|.) ∗
∏Nu
j=1

Zjs
S
ZS

] (7)

5 Experiments

We performed several experiments to evaluate our
proposed approach. Before presenting our results,
we describe our datasets as well as two baselines.

5.1 Datasets, Labels and Tags

Our dataset contains utterances obtained from di-
alogs between human users and our personal assis-
tant system. We use the transcribed text forms of

Domain Sample Dialog Acts (DAs) & Slots
movie DAs: find-movie/director/actor,buy-ticket

Slots: name, mpaa-rating (g-rated), date,
director/actor-name, award(oscar winning)...

hotel DAs: find-hotel, book-hotel,
Slots: name, room-type(double), amenities,
smoking, reward-program(platinum elite)...

restaurant DAs: find-restaurant, make-reservation,
Slots: opening-hour, amenities, meal-type,...

event DAs: find-event/ticket/performers, get-info..
Slots: name, type(concert), performer....

Table 2: List of domains, dialog acts and semantic slot
tags of utterance segments. Examples for some slots val-
ues are presented in parenthesis as italicized.

the utterances obtained from (acoustic modeling en-
gine) to train our models 4. Thus, our dataset con-
tains 18084 NL utterances, 5034 of which are used
for measuring the performance of our models. The
dataset consists of five domain classes, i.e, movie,
restaurant, hotel, event, other, 42 unique dialog acts
and 41 slot tags. Each utterance is labeled with a
domain, dialog act and a sequence of slot tags cor-
responding to segments in utterance (see examples
in Table 1). Table 2 shows sample dialog act and
slot labels. Annotation agreement, Kappa measure
(Cohen, 1960), was around 85%.

We pulled a month of web query logs and ex-
tracted over 2 million search queries from the movie,
hotel, event, and restaurant domains. We also used
generic web queries to compile a set of ’other’ do-
main queries. Our vocabulary consists of n-grams
and segments (phrases) in utterances that are ex-
tracted using web n-grams and entity lists of §3. We
extract distributions of n-grams and entities to inject
as prior weights for entity list base (ψjE) and web
n-gram context base measures (ψjG) (see §4).

5.2 Baselines and Experiment Setup
We evaluated two baselines and two variants of our
joint SLU approach as follows:
? Sequence-SLU: A traditional approach to SLU
extracts domain, dialog act and slots as seman-
tic components of utterances using three sequential
models. Typically, domain and dialog act detec-
tion models are taken as query classification, where
a given NL query is assigned domain and act la-
bels. Among supervised query classification meth-

4We submitted sample utterances used in our models as ad-
ditional resource. Due to licensing issues, we will reveal the full
train/test utterances upon acceptance of our paper.
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Figure 2: Sample topics discovered by Multi-Layer Context
Model (MCM). Given samples of utterances, MCM is able to in-
fer a meaningful set of dialog act (A) and slots (S), falling into
broad categories of domain classes (D).

ods, we used the Adaboost, utterance classifica-
tion method that starts from a set of weak classifiers
and builds a strong classifier by boosting the weak
classifiers. Slot discovery is taken as a sequence la-
beling task in which segments in utterances are la-
beled (Li, 2010). For segment labeling we use Semi-
Markov Conditional Random Fields (Semi-CRF)
(Sarawagi and Cohen, 2004) method as a benchmark
in evaluating semantic tagging performance.
? Tri-CRF: We used Triangular Chain CRF (Jeong
and Lee, 2008) as our supervised joint model base-
line. It is a state-of-the art method that learns the
sequence labels and utterance class (domain or dia-
log act) as meta-sequence in a joint framework. It
encodes the inter-dependence between the slot se-
quence s and meta-sequence label (d or a) using a
triangular chain (dual-layer) structure.
? Base-MCM: Our first version injects an informa-
tive prior for domain, dialog act and slot topic dis-
tributions using information extracted from only la-
beled training utterances and inject as prior con-
straints (corpus n-gram base measure ψjC) during
topic assignments.
? WebPrior-MCM: Our full model encodes distri-
butions extracted from labeled training data as well
as structured web logs as asymmetric Dirichlet pri-
ors. We analyze performance gain by the informa-
tion from web sources (ψjG and ψjE) when injected
into our approach compared to Base-MCM.

We inject dictionary constraints as features
to train supervised discriminative methods, i.e.,
boosting and Semi-CRF in Sequence-SLU, and
Tri-CRF models. For semantic tagging, dictionary
constraints apply to the features between individual

segments and their labels, and for utterance classifi-
cation (to predict domain and dialog acts) they apply
to the features between utterance and its label. Given
a list of dictionaries, these constraints specify which
label is more likely. For discriminative methods,
we use several named entities, e.g., Movie-Name,
Restaurant-Name, Hotel-Name, etc., non-named en-
tities, e.g., Genre, Cuisine, etc., and domain inde-
pendent dictionaries, e.g., Time, Location, etc.

We train domain and dialog act classifiers via
Icsiboost (Favre et al., 2007) with 10K iterations
using lexical features (up to 3-n-grams) and con-
straining dictionary features (all dictionaries). For
feature templates of sequence learners, i.e., Semi-
CRF and Tri-CRF, we use current word, bi-gram
and dictionary features. For Base-MCM and
WebPrior-MCM, we run Gibbs sampler for 2000
iterations with the first 500 samples as burn-in.

5.3 Evaluations and Discussions
We evaluate the performance of our joint model on
two experiments using two metrics. For domain and
dialog act detection performance we present results
in accuracy, and for slot detection we use the F1 pair-
wise measure.

Experiment 1. Encoding Prior Knowledge: A
common evaluation method in SLU tasks is to mea-
sure the performance of each individual semantic
model, i.e., domain, dialog act and semantic tagging
(slot filling). Here, we not only want to demon-
strate the performance of each component of MCM
but also their performance under limited amount of
labeled data. We randomly select subsets of labeled
training data U iL ⊂ UL with different samples sizes,
niL ={γ ∗nL}, where nL represents the sample size
of UL and γ={10%,25%,..} is the subset percentage.
At each random selection, the rest of the utterances
are used as unlabeled data to boost the performance
of MCM. The supervised baselines do not leverage the
unlabeled utterances.

The results reported in Figure 3 reveal both
the strengths and some shortcomings of our ap-
proach. When the number of labeled data is
small (niL ≤25%*nL), our WebPrior-MCM has
a better performance on domain and act predic-
tions compared to the two baselines. Compared to
Sequence-SLU, we observe 4.5% and 3% perfor-
mance improvement on the domain and dialog act
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Figure 3: Semantic component extraction performance measures for various baselines as well as our approach with different priors.

models, whereas our gain is 2.6% and 1.7% over
Tri-CRF models. As the percentage of labeled ut-
terances in training data increase, Tri-CRF perfor-
mance increases, however WebPrior-MCM is still
comparable with Sequence-SLU. This is because
we utilize domain priors obtained from the web
sources as supervision during generative process as
well as unlabeled utterances that enable handling
language variability. Adding labeled data improves
the performance of all models however supervised
models benefit more compared to MCM models.

Although WebPrior-MCM’s domain and dialog
act performances are comparable (if not better than)
the other baselines, it falls short on the semantic
tagging model. This is partially due to the HMM
assumption compared to the supervised conditional
model’s used in the other baselines, i.e., Semi-CRF
in Sequence-SLU and Tri-CRF). Our work can
be extended by replacing HMM assumption with
CRF based sequence learner to enhance the capa-
bility of the sequence tagging component of MCM.

Experiment 2. Less is More? Being Bayesian,
our model can incorporate unlabeled data at train-
ing time. Here, we evaluate the performance gain on
domain, act and slot predictions as more unlabeled
data is introduced at learning time. We use only 10%
of the utterances as labeled data in this experiment
and incrementally add unlabeled data (90% of la-
beled data are treated as unlabeled).

The results are shown in Table 3. n% (n=10,25,..)
unlabeled data indicates that the WebPrior-MCM
is trained using n% of unlabeled utterances along
with training utterances. Adding unlabeled data has
a positive impact on the performance of all three se-

Table 3: Performance evaluation results of
WebPrior-MCM using different sizes of unlabeled
utterances at learning time.

Unlabeled Domain Dialog Act Slot
% Accuracy Accuracy F-Measure

10% 94.69 84.17 52.61
25% 94.89 84.29 54.22
50% 95.08 84.39 56.58
75% 95.19 84.44 57.45

100% 95.28 84.52 58.18

mantic components when WebPrior-MCM is used.
The results show that our joint modeling approach
has an advantage over the other joint models (i.e.,
Tri-CRF) in that it can leverage unlabeled NL ut-
terances. Our approach might be usefully extended
into the area of understanding search queries, where
an abundance of unlabeled queries is observed.

6 Conclusions

In this work, we introduced a joint approach to
spoken language understanding that integrates two
properties (i) identifying user actions in multiple
domains in relation to semantic units, (ii) utilizing
large amounts of unlabeled web search queries that
suggest the user’s hidden intentions. We proposed a
semi-supervised generative joint learning approach
tailored for injecting prior knowledge to enhance the
semantic component extraction from utterances as a
unifying framework. Experimental results using the
new Bayesian model indicate that we can effectively
learn and discover meta-aspects in natural language
utterances, outperforming the supervised baselines,
especially when there are fewer labeled and more
unlabeled utterances.
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Abstract 

Aspect extraction is a central problem in 
sentiment analysis. Current methods either 
extract aspects without categorizing them, 
or extract and categorize them using 
unsupervised topic modeling. By 
categorizing, we mean the synonymous 
aspects should be clustered into the same 
category. In this paper, we solve the 
problem in a different setting where the 
user provides some seed words for a few 
aspect categories and the model extracts 
and clusters aspect terms into categories 
simultaneously. This setting is important 
because categorizing aspects is a subjective 
task. For different application purposes, 
different categorizations may be needed. 
Some form of user guidance is desired. In 
this paper, we propose two statistical 
models to solve this seeded problem, which 
aim to discover exactly what the user 
wants. Our experimental results show that 
the two proposed models are indeed able to 
perform the task effectively.  

1 Introduction 

Aspect-based sentiment analysis is one of the main 
frameworks for sentiment analysis (Hu and Liu, 
2004; Pang and Lee, 2008; Liu, 2012). A key task 
of the framework is to extract aspects of entities 
that have been commented in opinion documents. 
The task consists of two sub-tasks. The first sub-
task extracts aspect terms from an opinion corpus. 
The second sub-task clusters synonymous aspect 
terms into categories where each category 

represents a single aspect, which we call an aspect 
category. Existing research has proposed many 
methods for aspect extraction. They largely fall 
into two main types. The first type only extracts 
aspect terms without grouping them into categories 
(although a subsequent step may be used for the 
grouping, see Section 2). The second type uses 
statistical topic models to extract aspects and group 
them at the same time in an unsupervised manner. 
Both approaches are useful. However, in practice, 
one also encounters another setting, where 
grouping is not straightforward because for 
different applications the user may need different 
groupings to reflect the application needs. This 
problem was reported in (Zhai et al., 2010), which 
gave the following example. In car reviews, 
internal design and external design can be regarded 
as two separate aspects, but can also be regarded as 
one aspect, called “design”, based on the level of 
details that the user wants to study. It is also 
possible that the same word may be put in different 
categories based on different needs. However, 
(Zhai et al., 2010) did not extract aspect terms. It 
only categorizes a set of given aspect terms. 

In this work, we propose two novel statistical 
models to extract and categorize aspect terms 
automatically given some seeds in the user 
interested categories. It is thus able to best meet the 
user’s specific needs. Our models also jointly 
model both aspects and aspect specific sentiments. 
The first model is called SAS and the second 
model is called ME-SAS. ME-SAS improves SAS 
by using Maximum-Entropy (or Max-Ent for short) 
priors to help separate aspects and sentiment terms. 
However, to train Max-Ent, we do not need 
manually labeled training data (see Section 4).  
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In practical applications, asking users to provide 
some seeds is easy as they are normally experts in 
their trades and have a good knowledge what are 
important in their domains.  

Our models are related to topic models in 
general (Blei et al., 2003) and joint models of 
aspects and sentiments in sentiment analysis in 
specific (e.g., Zhao et al., 2010). However, these 
current models are typically unsupervised. None of 
them can use seeds. With seeds, our models are 
thus semi-supervised and need a different 
formulation. Our models are also related to the DF-
LDA model in (Andrzejewski et al., 2009), which 
allows the user to set must-link and cannot-link 
constraints. A must-link means that two terms must 
be in the same topic (aspect category), and a 
cannot-link means that two terms cannot be in the 
same topic. Seeds may be expressed with must-
links and cannot-links constraints. However, our 
models are very different from DF-LDA. First of 
all, we jointly model aspect and sentiment, while 
DF-LDA is only for topics/aspects. Joint modeling 
ensures clear separation of aspects from sentiments 
producing better results. Second, our way of 
treating seeds is also different from DF-LDA. We 
discuss these and other related work in Section 2. 

The proposed models are evaluated using a large 
number of hotel reviews. They are also compared 
with two state-of-the-art baselines. Experimental 
results show that the proposed models outperform 
the two baselines by large margins. 

2 Related Work  

There are many existing works on aspect 
extraction. One approach is to find frequent noun 
terms and possibly with the help of dependency 
relations (Hu and Liu, 2004; Popescu and Etzioni, 
2005; Zhuang et al., 2006; Blair-Goldensohn et al., 
2008; Ku et al., 2006; Wu et al., 2009; 
Somasundaran and Wiebe, 2009; Qiu et al., 2011). 
Another approach is to use supervised sequence 
labeling (Liu, Hu and Cheng 2005; Jin and Ho, 
2009; Jakob and Gurevych, 2010; Li et al., 2010; 
Choi and Cardie, 2010; Kobayashi et al., 2007; Yu 
et al., 2011). Ma and Wan (2010) also exploited 
centering theory, and (Yi et al., 2003) used 
language models. However, all these methods do 
not group extracted aspect terms into categories. 
Although there are works on grouping aspect terms 
(Carenini et al., 2005; Zhai et al., 2010; Zhai et al., 

2011; Guo et al., 2010), they all assume that aspect 
terms have been extracted beforehand. 

In recent years, topic models have been used to 
perform extraction and grouping at the same time. 
Existing works are based on two basic models, 
pLSA (Hofmann, 1999) and LDA (Blei et al., 
2003). Some existing works include discovering 
global and local aspects (Titov and McDonald, 
2008), extracting key phrases (Branavan et al., 
2008), rating multi-aspects (Wang et al., 2010; 
Moghaddam and Ester, 2011), summarizing 
aspects and sentiments (Lu et al., 2009), and 
modeling attitudes (Sauper et al., 2011). In (Lu and 
Zhai, 2008), a semi-supervised model was 
proposed. However, their method is entirely 
different from ours as they use expert reviews to 
guide the analysis of user reviews. 

 Aspect and sentiment extraction using topic 
modeling come in two flavors: discovering aspect 
words sentiment wise (i.e., discovering positive 
and negative aspect words and/or sentiments for 
each aspect without separating aspect and 
sentiment terms) (Lin and He, 2009; Brody and 
Elhadad, 2010, Jo and Oh, 2011) and separately 
discovering both aspects and sentiments (e.g., Mei 
et al., 2007; Zhao et al., 2010). Zhao et al. (2010) 
used Maximum-Entropy to train a switch variable 
to separate aspect and sentiment words. We adopt 
this method as well but with no use of manually 
labeled data in training. One problem with these 
existing models is that many discovered aspects 
are not understandable/meaningful to users. Chang 
et al. (2009) stated that one reason is that the 
objective function of topic models does not always 
correlate well with human judgments. Our seeded 
models are designed to overcome this problem.   

Researchers have tried to generate “meaningful” 
and “specific” topics/aspects. Blei and McAuliffe 
(2007) and Ramage et al. (2009) used document 
label information in a supervised setting. Hu et al. 
(2011) relied on user feedback during Gibbs 
sampling iterations. Andrzejewski et al. (2011) 
incorporated first-order logic with Markov Logic 
Networks. However, it has a practical limitation 
for reasonably large corpora since the number of 
non-trivial groundings can grow to O(N2) where N 
is the number of unique tokens in the corpus. 
Andrzejewski et al. (2009) used another approach 
(DF-LDA) by introducing must-link and cannot-
link constraints as Dirichlet Forest priors. Zhai et 
al. (2011) reported that the model does not scale up 
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when the number of cannot-links go beyond 1000 
because the number of maximal cliques Q(r) in a 
connected component of size |r| in the cannot-link 
graph is exponential in r. Note that we could still 
experiment with DF-LDA as our problem size is 
not so large. We will show in Section 4 that the 
proposed models outperform it by a large margin. 

3 Proposed Seeded Models  

The standard LDA and existing aspect and 
sentiment models (ASMs) are mostly governed by 
the phenomenon called “higher-order co-
occurrence” (Heinrich, 2009), i.e., based on how 
often terms co-occur in different contexts1. This 
unfortunately results in many “non-specific” terms 
being pulled and clustered. We employ seed sets to 
address this issue by “guiding” the model to group 
semantically related terms in the same aspect thus 
making the aspect more specific and related to the 
seeds (which reflect the user needs). For easy 
presentation, we will use aspect to mean aspect 
category from now on. We replace the multinomial 
distribution over words for each aspect (as in 
ASMs) with a special two-level tree structured 
distribution. The generative process of ASMs 
assumes that each vocabulary word is 
independently (i.e., not dependent upon other 
word-aspect association) and equally probable to 
be associated with any aspect. Due to higher-order 
co-occurrences, we find conceptually different 
terms yet related in contexts (e.g., in hotel domain 
terms like stain, shower, walls in aspect 
                                                           
1 w1 co-occurring with w2 which in turn co-occurs with w3 denotes a 
second-order co-occurrence between w1 and w3. 

Maintenance; bed, linens, pillows in aspect 
Cleanliness) equally probable of emission for any 
aspect. Figure 1(a) shows an example tree. Upon 
adding the seed sets {bed, linens, pillows} and 
{staff, service}, the prior structure now changes to 
the correlated distribution in Figure 1 (b). Thus, 
each aspect has a top level distribution over non-
seed words and seed sets. Each seed set in each 
aspect further has a second level distribution over 
seeds in that seed set. The aspect term (word) 
emission now requires two steps: first sampling at 
level one to obtain a non-seed word or a seed set. If 
a non-seed word is sampled we emit it else we 
further sample at the second seed set level and emit 
a seed word. This ensures that seed words together 
have either all high or low aspect associations. 
Furthermore, seed sets preserve conjugacy between 
related concepts and also shape more specific 
aspects by clustering based on higher order co-
occurrences with seeds rather than only with 
standard one level multinomial distribution over 
words (or terms) alone. 

3.1 SAS Model 

We now present the proposed Seeded Aspect and 
Sentiment model (SAS). Let ݒଵ…௏ denote the 
entries in our vocabulary where ܸ is the number of 
unique non-seed terms. Let there be ܥ seed sets 
ܳ௟ୀଵ…஼ where each seed set ܳ௟ is a group of 
semantically related terms. Let ߮௧ୀଵ…்஺ , ߮௧ୀଵ…்ை  
denote T aspect and aspect specific sentiment 
models. Also let ߗ௧,௟ denote the aspect specific 
distribution of seeds in the seed set ܳ௟. Following 
the approach of (Zhao et al., 2010), we too assume 
that a review sentence usually talks about one 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Prior structure:  (a) Standard ASMs, (b) Two-level tree structured distribution. Graphical models in plate 
notation: (c) SAS and (d) ME-SAS. 
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aspect. A review document ݀ଵ…஽ comprises of ܵௗ 
sentences and each sentence ݏ א ܵௗ has ௗܰ,௦words. 
Also, let ܵ݁݊ݐ௦ௗ denote the sentence ݏ of document 
݀. To distinguish between aspect and sentiment 
terms, we introduce an indicator (switch) variable 
ௗ,௦,௝ݎ א ሼ ොܽ,  .ௗ,௦,௝ݓ ,௦ௗݐ݊݁ܵ ොሽ for the ݆௧௛term of݋
Further, let ߰ௗ,௦ denote the distribution of aspects 
and sentiments in ܵ݁݊ݐ௦ௗ. The generative process of 
the SAS model (see Figure 1(c)) is given by: 

1. For each aspect ݐ  א ሼ1, … , ܶሽ: 
i. Draw    ߮௧

ை ~ ݎ݅ܦሺߚைሻ 
ii. Draw a distribution over terms and seed sets ߮௧஺ ~ ݎ݅ܦሺߚ஺ሻ 

a) For each seed set ݈ א ሼܳଵ, … , ܳ஼ሽ 
Draw a distribution over seeds ߗ௧,௟ ~ ݎ݅ܦሺߛሻ 

2. For each (review) document ݀ א ሼ1, … ,  :ሽܦ
i. Draw ߠௗ ~ ݎ݅ܦሺߙሻ 
ii. For each sentence ݏ א ሼ1, … , ܵௗሽ: 

a) Draw ݖௗ,௦ ~ ݐ݈ݑܯሺߠௗሻ 
b) Draw ߰ௗ,௦ ~ ܽݐ݁ܤሺߜሻ 
c) For each term ݓௗ,௦,௝ where  ݆ א ሼ1, … , ௗܰ,௦ሽ: 

I. Draw ݎௗ,௦,௝ ~ ݈݈݅ݑ݋݊ݎ݁ܤ൫߰ௗ,௦൯, ݎௗ,௦,௝ א ሼ ොܽ,  ොሽ݋
II. if ݎௗ,௦,௝ ൌ    ௗ,௦,௝ is a sentimentݓ // ො݋

Emit ݓௗ,௦,௝ ~ ݐ݈ݑܯሺ߮௭೏,ೞ
ை ሻ 

else // ݎௗ,௦,௝ ൌ   ොܽ ,  ௗ,௦,௝ is an aspectݓ
A. Draw ݑௗ,௦,௝ ~ ݐ݈ݑܯሺ߮௭೏,ೞ

஺ ሻ 
B. if ݑௗ,௦,௝   א ܸ // non-seed term 

Emit ݓௗ,௦,௝ ൌ  ௗ,௦,௝ݑ 
else // ݑௗ,௦,௝ is some seed set index say ݈ௗ,௦,௝ 
Emit ݓௗ,௦,௝ ~ ߗ௭೏,ೞ ,௟೏,ೞ,ೕ 

We employ collapsed Gibbs sampling (Griffiths 
and Steyvers, 2004) for posterior inference. As ݖ 
and ݎ are at different hierarchical levels, we derive 
their samplers separately as follows: 

ௗ,௦ݖ൫݌ ൌ ,หܼ൓ௗ,௦ ݐ ܴ൓ௗ,௦, ൓ܹௗ,௦ , ܷ൓ௗ,௦ሻ ן
൫݊௧,ሾሿܤ

ை ൅ ை൯ߚ

ܤ ቀ݊௧,ሾሿ
ை

൓ௗ,௦
൅ ைቁߚ

ൈ 

஻ሺ௡೟,ሾሿ
ೆ,ಲା ఉಲሻ

஻ሺ௡೟,ሾሿ
ೆ,ಲ

൓೏,ೞ
ା ఉಲሻ

ൈ ∏
஻ሺ௡೟,೗,ሾሿ

ೄ,ಲ ା ఊሻ

஻ሺ௡೟,೗,ሾሿ
ೄ,ಲ

൓೏,ೞ
ା ఊሻ

஼
௟ୀଵ ൈ

௡೏,೟
ೄ೐೙೟.

൓೏,ೞ
ାఈ

௡೏,ሺ·ሻ
ೄ೐೙೟.

൓೏,ೞ
ା்ఈ

  (1) 

ௗ,௦,௝ݎ൫݌ ൌ ,ොหܼ൓ௗ,௦݋ ܴ൓ௗ,௦,௝, ൓ܹௗ,௦,௝ , ܷ൓ௗ,௦,௝, ௗ,௦ݖ ൌ ,ݐ ௗ,௦,௝ݓ ൌ ൯ݓ  ן

௡೟,ೢ
ೀ

൓೏,ೞ,ೕ
ାఉೀ

௡೟,ሺ·ሻ
ೀ

൓೏,ೞ,ೕ
ା|௏ڂ׫ ொ೗೗ |ఉೀ

ൈ
௡೏,ೞ
ೀ

൓೏,ೞ,ೕ
ାఋ್

௡೏,ೞ
ಲ

൓೏,ೞ,ೕ
ାఋೌା ௡೏,ೞ

ೀ
൓೏,ೞ,ೕ

ାఋ್
    (2) 

ௗ,௦,௝ݎ൫݌ ൌ ොܽห … ൯ ן

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

௡೟,೗,ೢ
ೄ,ಲ

൓೏,ೞ,ೕ
ାఊ

௡೟,೗,ሺ·ሻ
ೄ,ಲ

൓೏,ೞ,ೕ
ା|ொ೗|ఊ

ൈ
௡೟,೗
೾ ାఉಲ

௡೟,ሺ·ሻ
೾ ାሺ௏ା஼ሻఉಲ

ൈ 

௡೏,ೞ
ಲ

൓೏,ೞ,ೕ
ାఋ್

௡೏,ೞ
ಲ

൓೏,ೞ,ೕ
ାఋೌା ௡೏,ೞ

ೀ
൓೏,ೞ,ೕ

ାఋ್
    ; ݓ   א ܳ௟

௡೟,ೢ
ೆ,ಲା ఉಲ

௡೟,ሺ·ሻ
ೆ,ಲାሺ௏ା஼ሻ ఉಲ

ൈ
௡೏,ೞ
ಲ

൓೏,ೞ,ೕ
ାఋ್

௡೏,ೞ
ಲ

൓೏,ೞ,ೕ
ାఋೌା ௡೏,ೞ

ೀ
൓೏,ೞ,ೕ

ାఋ್
; ,݈׍ ݓ א ܳ௟

 (3) 

where ܤሺݔԦሻ ൌ  
∏ ௰ሺ௫೔ሻ
ౚ౟ౣ ሺሬೣሬԦሻ
೔సభ

௰ሺ∑ ௫೔
ౚ౟ౣ ሺሬೣሬԦሻ
೔సభ ሻ

is the multinomial Beta 

function. ݊௧,௩ை  is the number of times term ݒ was 

assigned to aspect ݐ as an opinion/sentiment word. 
݊௧,௩
௎,஺ is the number of times non-seed term ݒ א  ܸ 

was assigned to aspect ݐ as an aspect. ݊௧,௟,௩
ௌ,஺  is the 

number of times seed term ݒ א   ௟ܸ was assigned to 
aspect ݐ as an aspect. ݊ௗ,௧

ௌ௘௡௧. is the number of 
sentences in document ݀ that were assigned to 
aspect ݐ. ݊ௗ,௦

஺  and ݊ௗ,௦
ை  denote the number of terms 

in ܵ݁݊ݐ௦ௗ that were assigned to aspects and opinions 
respectively. ݊௧,௟

ఆ  is the number of times any term of 
seed set ܳ௟ was assigned to aspect ݐ. Omission of a 
latter index denoted by [] in the above notation 
represents the corresponding row vector spanning 
over the latter index. For example, ݊௧,ሾሿ

௎,஺ ൌ

ሾ݊௧,௩ୀଵ
௎,஺ , … , ݊௧,௩ୀ௏

௎,஺ ሿ and (·) denotes the marginalized 
sum over the latter index. The subscript ൓݀,  ݏ
denotes the counts excluding assignments of all 
terms in ܵ݁݊ݐ௦ௗ. ൓݀, ,ݏ ݆ denotes counts excluding 
 ௗ,௦,௝.We perform hierarchical sampling. First, anݓ
aspect is sampled for each sentence ݖௗ,௦ using Eq. 
(1). After sampling the aspect, we sample ݎௗ,௦,௝. 
The probability of ݓௗ,௦,௝ being an opinion or 
sentiment term, ݌ሺݎௗ,௦,௝ ൌ  .ොሻ is given by Eq. (2)݋
However, for ݌ሺݎௗ,௦,௝ ൌ ොܽሻ we have two cases: (a) 
the observed term ݓ ൌ ௗ,௦,௝ݓ א ܳ௟ or (b) does not 
belong to any seed set, ݈׍, ݓ א ܳ௟, i.e., w is an non-
seed term. These cases are dealt in Eq. (3). 
Asymmetric Beta priors: Hyper-parameters α, βO, 
βA are not very sensitive and the heuristic values 
suggested in (Griffiths and Steyvers, 2004) usually 
hold well in practice (Wallach et al. 2009). 
However, the smoothing hyper-parameter ߜ 
(Figure 1(c)) is crucial as it governs the aspect or 
sentiment switch. Essentially, ߰ௗ,௦~ܽݐ݁ܤሺߦߜԦሻ is the 
probability of emitting an aspect term2 in ܵ݁݊ݐ௦ௗ 
with concentration parameter ߜ and base measure 
Ԧߦ ൌ ሾߦ௔,  ௕ሿ. Without any prior belief, uniformߦ
base measures ߦ௔ ൌ ௕ߦ ൌ 0.5 are used resulting in 
symmetric Beta priors. However, aspects are often 
more probable than sentiments in a sentence (e.g., 
“The beds, sheets, and bedding were dirty.”). Thus, 
it is more principled to employ asymmetric priors. 
Using a labeled set of sentences, ௟ܵ௔௕௘௟௘ௗ, where 
we know the per sentence probability of aspect 
emission (߰ௗ,௦), we can employ the method of 
moments to estimate the smoothing hyper-
parameter ߜ ൌ ሾߜ௔,  :௕ሿߜ

௔ߜ ൌ ߤ ቀ
ఓሺଵିఓሻ

ఙ
െ 1ቁ , ௕ߜ ൌ ௔ߜ ቀ

ଵ

ఓ
െ 1ቁ ; ߤ  ൌ ,ௗ,௦൧߰ൣܧ ߪ ൌ  ௗ,௦൧߰ൣݎܸܽ

(4) 

                                                           
ሺ߰ௗ,௦ሻ. ߰ௗ,௦ , 1݈݈݅ݑ݋݊ݎ݁ܤ ~ௗ,௦,௝ݎ 2 െ ߰ௗ,௦ are the success and failure 
probability of emitting an aspect/sentiment term. 

342



3.2 ME-SAS Model 

We can further improve SAS by employing 
Maximum Entropy (Max-Ent) priors for aspect and 
sentiment switching. We call this new model ME-
SAS. The motivation is that aspect and sentiment 
terms play different syntactic roles in a sentence. 
Aspect terms tend to be nouns or noun phrases 
while sentiment terms tend to be adjectives, 
adverbs, etc. POS tag information can be elegantly 
encoded by moving ߰ௗ,௦ to the term plate (see 
Figure 1(d)) and drawing it from a Max-
Entሺݏ,݀ݔ,݆;   ሻ model. Letߣ
ௗ,௦,ఫሬሬሬሬሬሬሬሬሬԦݔ  ൌ ሾܱܲܵ௪೏,ೞ,ೕିଵ, ܱܲܵ௪೏,ೞ,ೕ

, ܱܲܵ௪೏,ೞ,ೕାଵ, ௗ,௦,௝ݓ െ 1, ,ௗ,௦,௝ݓ ௗ,௦,௝ݓ ൅

1ሿ  denote the feature vector associated with ݓௗ,௦,௝  
encoding lexical and POS features of the previous, 
current and next term. Using a training data set, we 
can learn Max-Ent priors. Note that unlike 
traditional Max-Ent training, we do not need 
manually labeled data for training (see Section 4 
for details). For ME-SAS, only the sampler for the 
switch variable r changes as follows: 
ௗ,௦,௝ݎ൫݌ ൌ ,ොหܼ൓ௗ,௦݋ ܴ൓ௗ,௦,௝, ൓ܹௗ,௦,௝ , ܷ൓ௗ,௦,௝, ௗ,௦ݖ ൌ ,ݐ ௗ,௦,௝ݓ ൌ ൯ݓ  ן

௡೟,ೢ
ೀ

൓೏,ೞ,ೕ
ାఉೀ

௡೟,ሺ·ሻ
ೀ

൓೏,ೞ,ೕ
ା|௏ڂ׫ ொ೗೗ |ఉೀ

ൈ
௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௢ො൯

೙
೔సభ ൯

∑ ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௬൯
೙
೔సభ ൯೤אሼෝೌ,೚ෝሽ

      (5) 

ௗ,௦,௝ݎ൫݌ ൌ ොܽห … ൯ ן

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

௡೟,೗,ೢ
ೄ,ಲ

൓೏,ೞ,ೕ
ାఊ

௡೟,೗,ሺ·ሻ
ೄ,ಲ

൓೏,ೞ,ೕ
ା|ொ೗|ఊ

ൈ
௡೟,೗
೾ ାఉಲ

௡೟,ሺ·ሻ
೾ ାሺ௏ା஼ሻఉಲ

ൈ 

௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௔ො൯
೙
೔సభ ൯

∑ ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௬൯
೙
೔సభ ൯೤אሼෝೌ,೚ෝሽ

    ; ݓ   א ܳ௟

௡೟,ೢ
ೆ,ಲା ఉಲ

௡೟,ሺ·ሻ
ೆ,ಲାሺ௏ା஼ሻ ఉಲ

ൈ
௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௔ො൯

೙
೔సభ ൯

∑ ௘௫௣൫∑ ఒ೔௙೔൫௫೏,ೞ,ೕ,௬൯
೙
೔సభ ൯೤אሼෝೌ,೚ෝሽ

; ,݈׍ ݓ א ܳ௟

   (6) 

where ߣଵ…௡ are the parameters of the learned Max-
Ent model corresponding to the ݊ binary feature 
functions ଵ݂…௡ of Max-Ent. 

4 Experiments 

This section evaluates the proposed models. Since 
the focus in this paper is to generate high quality 
aspects using seeds, we will not evaluate 
sentiments although both SAS and ME-SAS can 
also discover sentiments. To compare the 
performance with our models, we use two existing 
state-of-the-art models, ME-LDA (Zhao et al. 
2010) and DF-LDA (Andrzejewski et al., 2009). 
As discussed in Section 2, there are two main 
flavors of aspect and sentiment models. The first 
flavor does not separate aspect and sentiment, and 
the second flavor uses a switch to perform the 
separation. Since our models also perform a 

switch, it is natural to compare with the latter 
flavor, which is also more advanced. ME-LDA is 
the representative model in this flavor. DF-LDA 
adds constraints to LDA. We use our seeds to 
generate constraints for DF-LDA. While ME-LDA 
cannot consider constraints, DF-LDA does not 
separate sentiments and aspects. Apart from other 
modeling differences, our models can do both, 
which enable them to produce much better results. 
Dataset and Settings: We used hotel reviews from 
tripadvisor.com. Our corpus consisted of 101,234 
reviews and 692,783 sentences. Punctuations, stop 
words 3, and words appearing less than 5 times in 
the corpus were removed. 

For all models, the posterior inference was 
drawn after 5000 Gibbs iterations with an initial 
burn-in of 1000 iterations. For SAS and ME-SAS, 
we set α = 50/T, βA = βO = 0.1 as suggested in 
(Griffiths and Steyvers, 2004). To make the seeds 
more effective, we set the seed set word-
distribution hyper-parameter γ to be much larger 
than βA, the hyper-parameter for the distribution 
over seed sets and aspect terms. This results in 
higher weights to seeded words which in turn 
guide the sampler to cluster relevant terms better. 
A more theoretical approach would involve 
performing hyper-parameter estimation (Wallach 
et al., 2009) which may reveal specific properties 
of the dataset like the estimate of α (indicating how 
different documents are in terms of their latent 
semantics), β (suggesting how large the groups of 
frequently appearing aspect and sentiment terms 
are) and γ (giving a sense of which and how large 
groupings of seeds are good). These are interesting 
questions and we defer it to our future work. In this 
work, we found that the setting γ = 250, a larger 
value compared to βA, produced good results. 

For SAS, the asymmetric Beta priors were 
estimated using the method of moments (Section 
3.1). We sampled 500 random sentences from the 
corpus and for each sentence identified the aspects. 
We thus computed the per-sentence probability of 
aspect emission (߰ௗ,௦) and used Eq. (4) to compute 
the final estimates, which give δa = 2.35, δb = 3.44.  

To learn the Max-Ent parameters λ of ME-SAS, 
we used the sentiment lexicon 4 of (Hu and Liu, 
2004) to automatically generate training data (no 
manual labeling). We randomly sampled 1000 
terms from the corpus which have appeared at least 
                                                           
3 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop 
4 http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar 
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20 times (to ensure that the training set is 
reasonably representative of the corpus). Of those 
1000 terms if they appeared in the sentiment 
lexicon, they were treated as sentiment terms, else 
aspect terms. Clearly, labeling words not in the 
sentiment lexicon as aspect terms may not always 
be correct. Even with this noisy automatically-
labeled data, the proposed models can produce 
good results. Since ME-LDA used manually 
labeled training data for Max-Ent, we again 
randomly sampled 1000 terms from our corpus 
appearing at least 20 times and labeled them as 
aspect terms or sentiment terms, so this labeled 
data clearly has less noise than our automatically 
labeled data. For both ME-SAS and ME-LDA we 
used the corresponding feature vector of each 
labeled term (in the context of sentences where it 
occurs) to train the Max-Ent model. As DF-LDA 
requires must-link and cannot-link constraints, we 
used our seed sets to generate intra-seed set must-
link and inter-seed set cannot-link constraints. For 
its hyper-parameters, we used the default values in 
the package5 (Andrzejewski et al., 2009). 

Setting the number of topics/aspects in topic 
models is often tricky as it is difficult to know the 
                                                           
5 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html 

exact number of topics that a corpus has. While 
non-parametric Bayesian approaches (Teh et al., 
2006) do exist for estimating the number of topics, 
T, they strongly depend on the hyper-parameters 
(Heinrich, 2009). As we use fixed hyper-
parameters, we do not learn T from Bayesian non-
parametrics. We used 9 major aspects (T = 9) 
based on commonsense knowledge of what people 
usually talk about hotels and some experiments. 
These are Dining, Staff, Maintenance, Check In, 
Cleanliness, Comfort, Amenities, Location and 
Value for Money (VFM). However, it is important 
to note that the proposed models are flexible and 
do not need to have seeds for every aspect/topic. 
Our experiments simulate the real-life situation 
where the user may not know all aspects or have 
no seeds for some aspects. Thus, we provided 
seeds only to the first 6 of the 9 aspects/topics. We 
will see that without seeds for all aspects, our 
models not only can improve the seeded aspects 
but also improve the non-seeded aspects. 

4.1 Qualitative Results  

This section shows some qualitative results to give 
an intuitive feeling of the results from different 
models. Table 1 shows the aspect terms and 
sentiment terms discovered by the 4 models for 

Aspect 
(seeds) 

ME-SAS SAS ME-LDA DF-LDA
Aspect Sentiment Aspect Sentiment Aspect Sentiment Topic

 
Staff 

 
(staff 

service 
waiter 

hospitality 
upkeep) 

 

attendant
manager 
waitress 

maintenance 
bartender 
waiters 

housekeeping
receptionist 

waitstaff 
janitor 

friendly 
attentive 

polite 
nice 

clean 
pleasant 

slow 
courteous 

rude 
professional 

attendant
waiter 

waitress 
manager 

maintenance 
helpful 
waiters 

housekeeping
receptionist 

polite

friendly
nice 
dirty 

comfortable
nice 

clean 
polite 

extremely 
courteous 
efficient

staff
maintenance 

room 
upkeep 
linens 

room-service 
receptionist 

wait 
pillow 
waiters

friendly 
nice 

courteous 
extremely 

nice 
clean 
polite 
little 

helpful 
better  

staff
friendly 
helpful 

beds 
front 
room 

comfortable 
large 

receptionist 
housekeeping

 
Cleanliness 

 
(curtains 
restroom 

floor 
beds 

cleanliness) 

carpets 
hall 

towels 
bathtub 
couch 

mattress 
linens 

wardrobe 
spa 

pillow 

clean 
dirty 

comfortable 
fresh 
wet 

filthy 
extra 
stain 
front 
worn 

hall
carpets 
towels 
pillow 
stain 

mattress 
filthy 
linens 

interior 
bathtub

clean
dirty 
fresh 
old 
nice 
good 

enough 
new 

front 
friendly

cleanliness
floor 

carpets 
bed 

lobby 
bathroom 

staff 
closet 

spa 
décor

clean 
good 
dirty 
hot 

large 
nice 

fresh 
thin 
new 
little 

clean
pool 

beach 
carpets 

parking 
bed 

bathroom 
nice 

comfortable 
suite

 
Comfort 

 
(comfort 
mattress 
furniture 

couch 
pillows) 

bedding 
bedcover 

sofa 
linens 

bedroom 
suites 
décor 

comforter 
blanket 
futon 

comfortable 
clean 
soft 
nice 

uncomfortable 
spacious 

hard 
comfy 
dirty 
quiet 

bed
linens 
sofa 

bedcover 
hard 

bedroom 
privacy 
double 
comfy 
futon

nice
dirty 

comfortable 
large 
clean 
best 

spacious 
only 
big 

extra

bed
mattress 

suites 
furniture 
lighting 
décor 
room 

bedroom 
hallway 
carpet

great 
clean 

awesome 
dirty 
best 

comfortable 
soft 
nice 
only 
extra 

bed
mattress 

nice 
stay 

lighting 
lobby 

comfort 
room 
dirty 
sofa

Table 1: Top ranked aspect and sentiment words in three aspects (please see the explanation in Section 4.1). 
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three aspects. Due to space limitations, we are 
unable to show all 6 aspects for which we have 
seeds. Since DF-LDA cannot separate aspects and 
sentiments, we only show its topics (aspects). Red 
(bold) colored words show semantic clustering 
errors or inappropriate terms for different groups.  

It is important to note that we judge the results 
based on how they are related to the user seeds 
(which represent the user need). The judgment is to 
some extent subjective. What we reported here are 
based on our judgments what are appropriate and 
what are not for each aspect. For SAS, ME-SAS 
and ME-LDA, we mark sentiment terms as errors 
when they are grouped under aspects as these 
models are supposed to separate sentiments and 
aspects. For DF-LDA, the situation is different as it 
is not meant to separate sentiment and aspect 
terms, we use red italic font to indicate those 
adjectives which are aspect specific adjectives (see 
more discussion below). Our judgment may be 
slightly unfair to ME-LDA and DF-LDA as their 
results may make sense in some other ways. 
However, that is precisely the purpose of this 
work, to produce results that suit the user’s need 
rather than something generic. 

We can see from Table 1 that ME-SAS performs 
the best. Next in order are SAS, ME-LDA, and 
DF-LDA. We see that only providing a handful of 
seeds (5) for the aspect Staff, ME-SAS can 
discover highly specific words like manager, 
attendant, bartender, and janitor. By specific, we 
mean they are highly related to the given seeds. 
While SAS also discovers specific words 
benefiting from seeds, relying on Beta priors for 
aspect and sentiment switching was less effective. 
Next in performance is ME-LDA which although 
produces reasonable results in general, several 
aspect terms are far from what the user wants 
based on the seeds, e.g., room, linens, wait, pillow. 
Finally, we observe that DF-LDA does not perform 
well either. One reason is that it is unable to 
separate aspects and sentiments. Although 
encoding the intra-seed set must-link and inter-
seed set cannot-link constraints in DF-LDA 
discovers some specific words as ME-SAS, they 
are much lower in the ranked order and hence do 
not show up in the top 10 words in Table 1. As 
DF-LDA is not meant to perform extraction and to 
group both aspect and sentiment terms, we relax 
the errors of DF-LDA due to correct aspect 
specific sentiments (e.g., friendly, helpful for Staff 
are correct aspect specific sentiments, but still 

regard incorrect sentiments like front, comfortable, 
large as errors) placed in aspect models. We call 
this model DF-LDA-Relaxed. 

4.2 Quantitative Results   

Topic models are often evaluated quantitatively 
using perplexity and likelihood on held-out test 
data (Blei et al., 2003). However, perplexity does 
not reflect our purpose since our aim is not to 
predict whether an unseen document is likely to be 
a review of some particular aspect. Nor are we 
trying to evaluate how well the unseen review data 
fits our seeded models. Instead our focus is to 
evaluate how well our learned aspects perform in 
clustering specific terms guided by seeds. So we 
directly evaluate the discovered aspect terms. Note 
again we do not evaluate sentiment terms as they 
are not the focus of this paper 6. Since aspects 
produced by the models are rankings and we do 
not know the number of correct aspect terms, a 
natural way to evaluate these rankings is to use 
precision @ n (or p@n), where n is a rank position. 
Varying number of seeds: Instead of a fixed 
number of seeds, we want to see the effect of the 
number of seeds on aspect discovery. Table 2 
reports the average p@n vs. the number of seeds. 
The average is a two-way averaging. The first 
average was taken over all combinations of actual 
seeds selected for each aspect, e.g., when the 
number of seeds is 3, out of the 5 seeds in each 
aspect, all ൫5

3
൯ combinations of seeds were tried and 

the results averaged. The results were further 
averaged over p@n for 6 aspects with seeds. We 
start with 2 seeds and progressively increase them 
to 5. Using only 1 seed per seed set (or per aspect) 
has practically no effect because the top level 
distribution ߮஺ encodes which seed sets (and non-
seed words) to include; the lower-level distribution 
Ω constrains the probabilities of the seed words to 
be correlated for each of the seed sets. Thus, 
having only one seed per seed set will result in 
sampling that single word whenever that seed set is 
chosen which will not have the effect of correlating 
seed words so as to pull other words based on co-
occurrence with constrained seed words. From 
Table 2, we can see that for all models p@n 
progressively improves as the number of seeds 
increases. Again ME-SAS performs the best 
followed by SAS and DF-LDA. 

                                                           
6 A qualitative evaluation of sentiment extraction based on Table 1 yields 
the following order: ME-SAS, SAS, ME-LDA. 
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Effect of seeds on non-seeded aspects: Here we 
compare all models aspect wise and see the results 
of seeded models SAS and ME-SAS on non-
seeded aspects (Table 3).  Shaded cells in Table 3 
give the p@n values for DF-LDA, DF-LDA-
Relaxed, SAS, and ME-SAS on three non-seeded 
aspects (Amenities, Location, and VFM)7.  

We see that across all the first 6 aspects with (5) 
seeds ME-SAS outperforms all other models by 
large margins in all top 3 ranked buckets p@10, 
p@20 and p@30. Next in order are SAS, ME-LDA 
and DF-LDA. For the last three aspects which did 
not have any seed guidance, we find something 
interesting. Seeded models SAS and especially 
ME-SAS result in improvements of non-seeded 
aspects too. This is because as seeds facilitate 
clustering specific and appropriate terms in seeded 
aspects, which in turn improves precision on non-
seeded aspects. This phenomenon can be clearly 
seen in Table 1. In aspect Staff of ME-LDA, we 
find pillow and linens being clustered. This is not a 
“flaw” of the model per se, but the point here is 
pillow and linens happen to co-occur many times 
with other words like maintenance, staff, and 
upkeep because “room-service” generally includes 
staff members coming and replacing linens and 
pillow covers. Although pillow and linens are 
related to Staff, strictly speaking they are 
semantically incorrect because they do not 
represent the very concept “Staff” based on the 
seeds (which reflect the user need). Presence of 
                                                           
7 Note that Tables 2 and 3 are different runs of the model. The variations in the 
results are due to the random initialization of the Gibbs sampler. 

seed sets in SAS and ME-SAS result in pulling 
such words as linens and pillow (due to seeds like 
beds and cleanliness in the aspect Cleanliness) and 
ranking them higher in the aspect Cleanliness (see 
Table 1) where they make more sense than Staff. 
Lastly, we also note that the improvements in non-
seeded aspects are more pronounced for ME-SAS 
than SAS as SAS encounters more switching errors 
which counters the improvement gained by seeds.  

In summary, the averages over all aspects (Table 
3 last row) show that the proposed seeded models 
SAS and ME-SAS outperform ME-LDA, DF-LDA 
and even DF-LDA-Relaxed considerably. 

5 Conclusion 
This paper studied the issue of using seeds to 
discover aspects in an opinion corpus. To our 
knowledge, no existing work deals with this 
problem. Yet, it is important because in practice 
the user often has something in mind to find. The 
results obtained in a completely unsupervised 
manner may not suit the user’s need. To solve this 
problem, we proposed two models SAS and ME-
SAS which take seeds reflecting the user needs to 
discover specific aspects. ME-SAS also does not 
need any additional help from the user in its Max-
Ent training. Our results showed that both models 
outperformed two state-of-the-art existing models 
ME-LDA and DF-LDA by large margins. 
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No. of Seeds 
DF-LDA DF-LDA-Relaxed SAS ME-SAS 

P@10 P@20 P@30 P@10 P@20 P@30 P@10 P@20 P@30 P@10 P@20 P@30 
2 0.51 0.53 0.49 0.67 0.69 0.70 0.69 0.71 0.67 0.74 0.72 0.70 
3 0.53 0.54 0.50 0.71 0.70 0.71 0.71 0.72 0.70 0.78 0.75 0.72 
4 0.57 0.56 0.53 0.73 0.73 0.73 0.75 0.74 0.73 0.83 0.79 0.76 
5 0.59 0.57 0.54 0.75 0.74 0.75 0.77 0.76 0.74 0.86 0.81 0.77 

Table 2: Average p@n of the seeded aspects with the no. of seeds. 

Aspect ME-LDA DF-LDA DF-LDA-Relaxed SAS ME-SAS
P@10 P@20 P@30 P@10 P@20 P@30 P@10 P@20 P@30 P@10 P@20 P@30 P@10 P@20 P@30

Dining 0.70 0.65 0.67 0.50 0.60 0.63 0.70 0.70 0.70 0.80 0.75 0.73 0.90 0.85 0.80
Staff 0.60 0.70 0.67 0.40 0.65 0.60 0.60 0.75 0.67 0.80 0.80 0.70 1.00 0.90 0.77

Maintenance 0.80 0.75 0.73 0.40 0.55 0.56 0.60 0.70 0.73 0.70 0.75 0.76 0.90 0.85 0.80
Check In 0.70 0.70 0.67 0.50 0.65 0.60 0.80 0.75 0.70 0.80 0.70 0.73 0.90 0.80 0.76

Cleanliness 0.70 0.75 0.67 0.70 0.70 0.63 0.70 0.75 0.70 0.80 0.75 0.70 1.00 0.85 0.83
Comfort 0.60 0.70 0.63 0.60 0.65 0.50 0.70 0.75 0.63 0.60 0.75 0.67 0.90 0.80 0.73

Amenities 0.80 0.80 0.67 0.70 0.65 0.53 0.90 0.75 0.73 0.90 0.80 0.70 1.00 0.85 0.73
Location 0.60 0.70 0.63 0.50 0.60 0.56 0.70 0.70 0.67 0.60 0.70 0.63 0.70 0.75 0.67

VFM 0.50 0.55 0.50 0.40 0.50 0.46 0.60 0.60 0.60 0.50 0.50 0.50 0.60 0.55 0.53
Avg. 0.67 0.70 0.65 0.52 0.62 0.56 0.70 0.72 0.68 0.72 0.72 0.68 0.88 0.80 0.74

Table 3: Effect of performance on seeded and non-seeded aspects (5 seeds were used for the 6 seeded aspects). 
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Abstract

Most information extraction (IE) systems
identify facts that are explicitly stated in text.
However, in natural language, some facts are
implicit, and identifying them requires “read-
ing between the lines”. Human readers nat-
urally use common sense knowledge to in-
fer such implicit information from the explic-
itly stated facts. We propose an approach
that uses Bayesian Logic Programs (BLPs),
a statistical relational model combining first-
order logic and Bayesian networks, to infer
additional implicit information from extracted
facts. It involves learning uncertain common-
sense knowledge (in the form of probabilis-
tic first-order rules) from natural language text
by mining a large corpus of automatically ex-
tracted facts. These rules are then used to de-
rive additional facts from extracted informa-
tion using BLP inference. Experimental eval-
uation on a benchmark data set for machine
reading demonstrates the efficacy of our ap-
proach.

1 Introduction

The task of information extraction (IE) involves au-
tomatic extraction of typed entities and relations
from unstructured text. IE systems (Cowie and
Lehnert, 1996; Sarawagi, 2008) are trained to extract
facts that are stated explicitly in text. However, some
facts are implicit, and human readers naturally “read
between the lines” and infer them from the stated
facts using commonsense knowledge. Answering
many queries can require inferring such implicitly
stated facts. Consider the text “Barack Obama is the

president of the United States of America.” Given
the query “Barack Obama is a citizen of what coun-
try?”, standard IE systems cannot identify the an-
swer since citizenship is not explicitly stated in the
text. However, a human reader possesses the com-
monsense knowledge that the president of a country
is almost always a citizen of that country, and easily
infers the correct answer.

The standard approach to inferring implicit infor-
mation involves using commonsense knowledge in
the form of logical rules to deduce additional in-
formation from the extracted facts. Since manually
developing such a knowledge base is difficult and
arduous, an effective alternative is to automatically
learn such rules by mining a substantial database of
facts that an IE system has already automatically
extracted from a large corpus of text (Nahm and
Mooney, 2000). Most existing rule learners assume
that the training data is largely accurate and com-
plete. However, the facts extracted by an IE sys-
tem are always quite noisy and incomplete. Conse-
quently, a purely logical approach to learning and in-
ference is unlikely to be effective. Consequently, we
propose using statistical relational learning (SRL)
(Getoor and Taskar, 2007), specifically, Bayesian
Logic Programs (BLPs) (Kersting and De Raedt,
2007), to learn probabilistic rules in first-order logic
from a large corpus of extracted facts and then use
the resulting BLP to make effective probabilistic in-
ferences when interpreting new documents.

We have implemented this approach by using an
off-the-shelf IE system and developing novel adap-
tations of existing learning methods to efficiently
construct fast and effective BLPs for “reading be-
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tween the lines.” We present an experimental evalu-
ation of our resulting system on a realistic test cor-
pus from DARPA’s Machine Reading project, and
demonstrate improved performance compared to a
purely logical approach based on Inductive Logic
Programming (ILP) (Lavrac̆ and Dz̆eroski, 1994),
and an alternative SRL approach based on Markov
Logic Networks (MLNs) (Domingos and Lowd,
2009).

To the best of our knowledge, this is the first paper
that employs BLPs for inferring implicit information
from natural language text. We demonstrate that it
is possible to learn the structure and the parameters
of BLPs automatically using only noisy extractions
from natural language text, which we then use to in-
fer additional facts from text.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work and highlights key dif-
ferences between our approach and existing work.
Section 3 provides a brief background on BLPs.
Section 4 describes our BLP-based approach to
learning to infer implicit facts. Section 5 describes
our experimental methodology and discusses the re-
sults of our evaluation. Finally, Section 6 discusses
potential future work and Section 7 presents our fi-
nal conclusions.

2 Related Work

Several previous projects (Nahm and Mooney, 2000;
Carlson et al., 2010; Schoenmackers et al., 2010;
Doppa et al., 2010; Sorower et al., 2011) have mined
inference rules from data automatically extracted
from text by an IE system. Similar to our approach,
these systems use the learned rules to infer addi-
tional information from facts directly extracted from
a document. Nahm and Mooney (2000) learn propo-
sitional rules using C4.5 (Quinlan, 1993) from data
extracted from computer-related job-postings, and
therefore cannot learn multi-relational rules with
quantified variables. Other systems (Carlson et al.,
2010; Schoenmackers et al., 2010; Doppa et al.,
2010; Sorower et al., 2011) learn first-order rules
(i.e. Horn clauses in first-order logic).

Carlson et al. (2010) modify an ILP system simi-
lar to FOIL (Quinlan, 1990) to learn rules with prob-
abilistic conclusions. They use purely logical de-
duction (forward-chaining) to infer additional facts.

Unlike BLPs, this approach does not use a well-
founded probabilistic graphical model to compute
coherent probabilities for inferred facts. Further,
Carlson et al. (2010) used a human judge to man-
ually evaluate the quality of the learned rules before
using them to infer additional facts. Our approach,
on the other hand, is completely automated and
learns fully parameterized rules in a well-defined
probabilistic logic.

Schoenmackers et al. (2010) develop a system
called SHERLOCK that uses statistical relevance to
learn first-order rules. Unlike our system and others
(Carlson et al., 2010; Doppa et al., 2010; Sorower et
al., 2011) that use a pre-defined ontology, they auto-
matically identify a set of entity types and relations
using “open IE.” They use HOLMES (Schoenmack-
ers et al., 2008), an inference engine based on MLNs
(Domingos and Lowd, 2009) (an SRL approach that
combines first-order logic and Markov networks)
to infer additional facts. However, MLNs include
all possible type-consistent groundings of the rules
in the corresponding Markov net, which, for larger
datasets, can result in an intractably large graphical
model. To overcome this problem, HOLMES uses
a specialized model construction process to control
the grounding process. Unlike MLNs, BLPs natu-
rally employ a more “focused” approach to ground-
ing by including only those literals that are directly
relevant to the query.

Doppa et al. (2010) use FARMER (Nijssen and
Kok, 2003), an existing ILP system, to learn first-
order rules. They propose several approaches to
score the rules, which are used to infer additional
facts using purely logical deduction. Sorower et al.
(2011) propose a probabilistic approach to modeling
implicit information as missing facts and use MLNs
to infer these missing facts. They learn first-order
rules for the MLN by performing exhaustive search.
As mentioned earlier, inference using both these ap-
proaches, logical deduction and MLNs, have certain
limitations, which BLPs help overcome.

DIRT (Lin and Pantel, 2001) and RESOLVER
(Yates and Etzioni, 2007) learn inference rules, also
called entailment rules that capture synonymous re-
lations and entities from text. Berant et al. (Berant
et al., 2011) propose an approach that uses transitiv-
ity constraints for learning entailment rules for typed
predicates. Unlike the systems described above,
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these systems do not learn complex first-order rules
that capture common sense knowledge. Further,
most of these systems do not use extractions from
an IE system to learn entailment rules, thereby mak-
ing them less related to our approach.

3 Bayesian Logic Programs

Bayesian logic programs (BLPs) (Kersting and De
Raedt, 2007; Kersting and Raedt, 2008) can be con-
sidered as templates for constructing directed graph-
ical models (Bayes nets). Formally, a BLP con-
sists of a set of Bayesian clauses, definite clauses
of the form a|a1, a2, a3, .....an, where n ≥ 0 and
a, a1, a2, a3,......,an are Bayesian predicates (de-
fined below), and where a is called the head of
the clause (head(c)) and (a1, a2, a3,....,an) is the
body (body(c)). When n = 0, a Bayesian clause
is a fact. Each Bayesian clause c is assumed to
be universally quantified and range restricted, i.e
variables{head} ⊆ variables{body}, and has an
associated conditional probability table CPT(c) =
P(head(c)|body(c)). A Bayesian predicate is a pred-
icate with a finite domain, and each ground atom for
a Bayesian predicate represents a random variable.
Associated with each Bayesian predicate is a com-
bining rule such as noisy-or or noisy-and that maps
a finite set of CPTs into a single CPT.

Given a knowledge base as a BLP, standard logi-
cal inference (SLD resolution) is used to automat-
ically construct a Bayes net for a given problem.
More specifically, given a set of facts and a query,
all possible Horn-clause proofs of the query are con-
structed and used to build a Bayes net for answering
the query. The probability of a joint assignment of
truth values to the final set of ground propositions is
defined as follows:

P(X) =
∏

i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of
random variables in the network and Pa(Xi) rep-
resents the parents of Xi. Once a ground network is
constructed, standard probabilistic inference meth-
ods can be used to answer various types of queries
as reviewed by Koller and Friedman (2009). The
parameters in the BLP model can be learned using
the methods described by Kersting and De Raedt
(2008).

4 Learning BLPs to Infer Implicit Facts

4.1 Learning Rules from Extracted Data

The first step involves learning commonsense
knowledge in the form of first-order Horn rules from
text. We first extract facts that are explicitly stated
in the text using SIRE (Florian et al., 2004), an IE
system developed by IBM. We then learn first-order
rules from these extracted facts using LIME (Mc-
creath and Sharma, 1998), an ILP system designed
for noisy training data.

We first identify a set of target relations we want
to infer. Typically, an ILP system takes a set of
positive and negative instances for a target relation,
along with a background knowledge base (in our
case, other facts extracted from the same document)
from which the positive instances are potentially in-
ferable. In our task, we only have direct access to
positive instances of target relations, i.e the relevant
facts extracted from the text. So we artificially gen-
erate negative instances using the closed world as-
sumption, which states that any instance of a rela-
tion that is not extracted can be considered a nega-
tive instance. While there are exceptions to this as-
sumption, it typically generates a useful (if noisy)
set of negative instances. For each relation, we gen-
erate all possible type-consistent instances using all
constants in the domain. All instances that are not
extracted facts (i.e. positive instances) are labeled
as negative. The total number of such closed-world
negatives can be intractably large, so we randomly
sample a fixed-size subset. The ratio of 1:20 for
positive to negative instances worked well in our ap-
proach.

Since LIME can learn rules using only positive in-
stances, or both positive and negative instances, we
learn rules using both settings. We include all unique
rules learned from both settings in the final set, since
the goal of this step is to learn a large set of po-
tentially useful rules whose relative strengths will
be determined in the next step of parameter learn-
ing. Other approaches could also be used to learn
candidate rules. We initially tried using the popular
ALEPH ILP system (Srinivasan, 2001), but it did not
produce useful rules, probably due to the high level
of noise in our training data.
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4.2 Learning BLP Parameters

The parameters of a BLP include the CPT entries as-
sociated with the Bayesian clauses and the parame-
ters of combining rules associated with the Bayesian
predicates. For simplicity, we use a deterministic
logical-and model to encode the CPT entries associ-
ated with Bayesian clauses, and use noisy-or to com-
bine evidence coming from multiple ground rules
that have the same head (Pearl, 1988). The noisy-
or model requires just a single parameter for each
rule, which can be learned from training data.

We learn the noisy-or parameters using the EM
algorithm adapted for BLPs by Kersting and De
Raedt (2008). In our task, the supervised training
data consists of facts that are extracted from the
natural language text. However, we usually do not
have evidence for inferred facts as well as noisy-or
nodes. As a result, there are a number of variables in
the ground networks which are always hidden, and
hence EM is appropriate for learning the requisite
parameters from the partially observed training data.

4.3 Inference of Additional Facts using BLPs

Inference in the BLP framework involves backward
chaining (Russell and Norvig, 2003) from a spec-
ified query (SLD resolution) to obtain all possi-
ble deductive proofs for the query. In our context,
each target relation becomes a query on which we
backchain. We then construct a ground Bayesian
network using the resulting deductive proofs for
all target relations and learned parameters using
the standard approach described in Section 3. Fi-
nally, we perform standard probabilistic inference
to estimate the marginal probability of each inferred
fact. Our system uses Sample Search (Gogate and
Dechter, 2007), an approximate sampling algorithm
developed for Bayesian networks with determinis-
tic constraints (0 values in CPTs). We tried several
exact and approximate inference algorithms on our
data, and this was the method that was both tractable
and produced the best results.

5 Experimental Evaluation

5.1 Data

For evaluation, we used DARPA’s machine-reading
intelligence-community (IC) data set, which con-
sists of news articles on terrorist events around the

world. There are 10, 000 documents each contain-
ing an average of 89.5 facts extracted by SIRE (Flo-
rian et al., 2004). SIRE assigns each extracted fact
a confidence score and we used only those with a
score of 0.5 or higher for learning and inference. An
average of 86.8 extractions per document meet this
threshold.

DARPA also provides an ontology describing the
entities and relations in the IC domain. It con-
sists of 57 entity types and 79 relations. The
entity types include Agent, PhysicalThing, Event,
TimeLocation, Gender, and Group, each with sev-
eral subtypes. The type hierarchy is a DAG rather
than a tree, and several types have multiple super-
classes. For instance, a GeopoliticalEntity can be
a HumanAgent as well as a Location. This can
cause some problems for systems that rely on a
strict typing system, such as MLNs which rely on
types to limit the space of ground literals that are
considered. Some sample relations are attended-
School, approximateNumberOfMembers, mediatin-
gAgent, employs, hasMember, hasMemberHuman-
Agent, and hasBirthPlace.

5.2 Methodology

We evaluated our approach using 10-fold cross vali-
dation. We learned first-order rules for the 13 tar-
get relations shown in Table 3 from the facts ex-
tracted from the training documents (Section 4.1).
These relations were selected because the extrac-
tor’s recall for them was low. Since LIME does not
scale well to large data sets, we could train it on
at most about 2, 500 documents. Consequently, we
split the 9, 000 training documents into four disjoint
subsets and learned first-order rules from each sub-
set. The final knowledge base included all unique
rules learned from any subset. LIME learned sev-
eral rules that had only entity types in their bodies.
Such rules make many incorrect inferences; hence
we eliminated them. We also eliminated rules vio-
lating type constraints. We learned an average of 48
rules per fold. Table 1 shows some sample learned
rules.

We then learned parameters as described in Sec-
tion 4.2. We initially set all noisy-or parameters to
0.9 based on the intuition that if exactly one rule for
a consequent was satisfied, it could be inferred with
a probability of 0.9.
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governmentOrganization(A) ∧ employs(A,B)→ hasMember(A,B)
If a government organization A employs person B, then B is a member of A

eventLocation(A,B) ∧ bombing(A)→ thingPhysicallyDamaged(A,B)
If a bombing event A took place in location B, then B is physically damaged

isLedBy(A,B)→ hasMemberPerson(A,B)
If a group A is led by person B, then B is a member of A

nationState(B) ∧ eventLocationGPE(A,B)→ eventLocation(A,B)
If an event A occurs in a geopolitical entity B, then the event location for that event is B

mediatingAgent(A,B) ∧ humanAgentKillingAPerson(A)→ killingHumanAgent(A,B)
If A is an event in which a human agent is killing a person and the mediating agent of A is an agent B, then B is

the human agent that is killing in event A

Table 1: A sample set of rules learned using LIME

For each test document, we performed BLP in-
ference as described in Section 4.3. We ranked all
inferences by their marginal probability, and evalu-
ated the results by either choosing the top n infer-
ences or accepting inferences whose marginal prob-
ability was equal to or exceeded a specified thresh-
old. We evaluated two BLPs with different param-
eter settings: BLP-Learned-Weights used noisy-or
parameters learned using EM, BLP-Manual-Weights
used fixed noisy-or weights of 0.9.

5.3 Evaluation Metrics

The lack of ground truth annotation for inferred facts
prevents an automated evaluation, so we resorted
to a manual evaluation. We randomly sampled 40
documents (4 from each test fold), judged the ac-
curacy of the inferences for those documents, and
computed precision, the fraction of inferences that
were deemed correct. For probabilistic methods like
BLPs and MLNs that provide certainties for their
inferences, we also computed precision at top n,
which measures the precision of the n inferences
with the highest marginal probability across the 40
test documents. Measuring recall for making infer-
ences is very difficult since it would require labeling
a reasonable-sized corpus of documents with all of
the correct inferences for a given set of target rela-
tions, which would be extremely time consuming.
Our evaluation is similar to that used in previous re-
lated work (Carlson et al., 2010; Schoenmackers et
al., 2010).

SIRE frequently makes incorrect extractions, and
therefore inferences made from these extractions are
also inaccurate. To account for the mistakes made

by the extractor, we report two different precision
scores. The “unadjusted” (UA) score, does not cor-
rect for errors made by the extractor. The “adjusted”
(AD) score does not count mistakes due to extraction
errors. That is, if an inference is incorrect because
it was based on incorrect extracted facts, we remove
it from the set of inferences and calculate precision
for the remaining inferences.

5.4 Baselines

Since none of the existing approaches have been
evaluated on the IC data, we cannot directly compare
our performance to theirs. Therefore, we compared
to the following methods:

• Logical Deduction: This method forward
chains on the extracted facts using the first-
order rules learned by LIME to infer additional
facts. This approach is unable to provide any
confidence or probability for its conclusions.

• Markov Logic Networks (MLNs): We use the
rules learned by LIME to define the structure
of an MLN. In the first setting, which we call
MLN-Learned-Weights, we learn the MLN’s
parameters using the generative weight learn-
ing algorithm (Domingos and Lowd, 2009),
which we modified to process training exam-
ples in an online manner. In online generative
learning, gradients are calculated and weights
are estimated after processing each example
and the learned weights are used as the start-
ing weights for the next example. The pseudo-
likelihood of one round is obtained by multi-
plying the pseudo-likelihood of all examples.
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UA AD
Precision 29.73 (443/1490) 35.24 (443/1257)

Table 2: Precision for logical deduction. “UA” and “AD”
refer to the unadjusted and adjusted scores respectively

In our approach, the initial weights of clauses
are set to 10. The average number of itera-
tions needed to acquire the optimal weights is
131. In the second setting, which we call MLN-
Manual-Weights, we assign a weight of 10 to
all rules and maximum likelihood prior to all
predicates. MLN-Manual-Weights is similar to
BLP-Manual-Weights in that all rules are given
the same weight. We then use the learned rules
and parameters to probabilistically infer addi-
tional facts using the MC-SAT algorithm im-
plemented in Alchemy,1 an open-source MLN
package.

6 Results and Discussion

6.1 Comparison to Baselines

Table 2 gives the unadjusted (UA) and adjusted
(AD) precision for logical deduction. Out of 1, 490
inferences for the 40 evaluation documents, 443
were judged correct, giving an unadjusted preci-
sion of 29.73%. Out of these 1, 490 inferences, 233
were determined to be incorrect due to extraction er-
rors, improving the adjusted precision to a modest
35.24%.

MLNs made about 127, 000 inferences for the 40
evaluation documents. Since it is not feasible to
manually evaluate all the inferences made by the
MLN, we calculated precision using only the top
1000 inferences. Figure 1 shows both unadjusted
and adjusted precision at top-n for various values
of n for different BLP and MLN models. For both
BLPs and MLNs, simple manual weights result in
superior performance than the learned weights. De-
spite the fairly large size of the overall training sets
(9,000 documents), the amount of data for each
target relation is apparently still not sufficient to
learn particularly accurate weights for both BLPs
and MLNs. However, for BLPs, learned weights
do show a substantial improvement initially (i.e.

1http://alchemy.cs.washington.edu/

top 25–50 inferences), with an average of 1 infer-
ence per document at 91% adjusted precision as
opposed to an average of 5 inferences per docu-
ment at 85% adjusted precision for BLP-Manual-
Weights. For MLNs, learned weights show a small
improvement initially only with respect to adjusted
precision. Between BLPs and MLNs, BLPs per-
form substantially better than MLNs at most points
in the curve. However, MLN-Manual-Weights im-
prove marginally over BLP-Learned-Weights at later
points (top 600 and above) on the curve, where the
precision is generally very low. Here, the superior
performance of BLPs over MLNs could be possibly
due to the focused grounding used in the BLP frame-
work.

For BLPs, as n increases towards including all of
the logically sanctioned inferences, as expected, the
precision converges to the results for logical deduc-
tion. However, as n decreases, both adjusted and
unadjusted precision increase fairly steadily. This
demonstrates that probabilistic BLP inference pro-
vides a clear improvement over logical deduction,
allowing the system to accurately select the best in-
ferences that are most likely to be correct. Unlike the
two BLP models, MLN-Manual-Weights has more
or less the same performance at most points on the
curve, and it is slightly better than that of purely-
logical deduction. MLN-Learned-Weights is worse
than purely-logical deduction at most points on the
curve.

6.2 Results for Individual Target Relations

Table 3 shows the adjusted precision for each
relation for instances inferred using logical de-
duction, BLP-Manual-Weights and BLP-Learned-
Weights with a confidence threshold of 0.95. The
probabilities estimated for inferences by MLNs are
not directly comparable to those estimated by BLPs.
As a result, we do not include results for MLNs
here. For this evaluation, using a confidence thresh-
old based cutoff is more appropriate than using top-
n inferences made by the BLP models since the esti-
mated probabilities can be directly compared across
target relations.

For logical deduction, precision is high for a few
relations like employs, hasMember, and hasMem-
berHumanAgent, indicating that the rules learned
for these relations are more accurate than the ones
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Figure 1: Unadjusted and adjusted precision at top-n for different BLP and MLN models for various values of n

learned for the remaining relations. Unlike rela-
tions like hasMember that are easily inferred from
relations like employs and isLedBy, certain relations
like hasBirthPlace are not easily inferable using the
information in the ontology. As a result, it might
not be possible to learn accurate rules for such tar-
get relations. Other reasons include the lack of a
sufficiently large number of target-relation instances
during training and lack of strictly defined types in
the IC ontology.

Both BLP-Manual-Weights and BLP-Learned-
Weights also have high precision for several re-
lations (eventLocation, hasMemberHumanAgent,
thingPhysicallyDamaged). However, the actual
number of inferences can be fairly low. For in-
stance, 103 instances of hasMemberHumanAgent
are inferred by logical deduction (i.e. 0 confidence
threshold), but only 2 of them are inferred by BLP-
Learned-Weights at 0.95 confidence threshold, in-
dicating that the parameters learned for the corre-
sponding rules are not very high. For several rela-
tions like hasMember, hasMemberPerson, and em-
ploys, no instances were inferred by BLP-Learned-
Weights at 0.95 confidence threshold. Lack of suffi-
cient training instances (extracted facts) is possibly
the reason for learning low weights for such rules.
On the other hand, BLP-Manual-Weights has in-
ferred 26 instances of hasMemberHumanAgent, out
which all are correct. These results therefore demon-
strate the need for sufficient training examples to
learn accurate parameters.

6.3 Discussion

We now discuss the potential reasons for BLP’s su-
perior performance compared to other approaches.
Probabilistic reasoning used in BLPs allows for a
principled way of determining the most confident
inferences, thereby allowing for improved precision
over purely logical deduction. The primary dif-
ference between BLPs and MLNs lies in the ap-
proaches used to construct the ground network. In
BLPs, only propositions that can be logically de-
duced from the extracted evidence are included in
the ground network. On the other hand, MLNs in-
clude all possible type-consistent groundings of all
rules in the network, introducing many ground liter-
als which cannot be logically deduced from the ev-
idence. This generally results in several incorrect
inferences, thereby yielding poor performance.

Even though learned weights in BLPs do not re-
sult in a superior performance, learned weights in
MLNs are substantially worse. Lack of sufficient
training data is one of the reasons for learning less
accurate weights by the MLN weight learner. How-
ever, a more important issue is due to the use of the
closed world assumption during learning, which we
believe is adversely impacting the weights learned.
As mentioned earlier, for the task considered in the
paper, if a fact is not explicitly stated in text, and
hence not extracted by the extractor, it does not nec-
essarily imply that it is not true. Since existing
weight learning approaches for MLNs do not deal
with missing data and open world assumption, de-
veloping such approaches is a topic for future work.

Apart from developing novel approaches for
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Relation Logical Deduction BLP-Manual-Weights-.95 BLP-Learned-Weights-.95 No. training instances

employs 69.44 (25/36) 92.85 (13/14) nil (0/0) 18440
eventLocation 18.75 (18/96) 100.00 (1/1) 100 (1/1) 6902
hasMember 95.95 (95/99) 97.26 (71/73) nil (0/0) 1462
hasMemberPerson 43.75 (42/96) 100.00 (14/14) nil (0/0) 705
isLedBy 12.30 (8/65) nil (0/0) nil (0/0) 8402
mediatingAgent 19.73 (15/76) nil (0/0) nil (0/0) 92998
thingPhysicallyDamaged 25.72 (62/241) 90.32 (28/31) 90.32 (28/31) 24662
hasMemberHumanAgent 95.14 (98/103) 100.00 (26/26) 100.00 (2/2) 3619
killingHumanAgent 15.35 (43/280) 33.33 (2/6) 66.67 (2/3) 3341
hasBirthPlace 0 (0/88) nil (0/0) nil (0/0) 89
thingPhysicallyDestroyed nil (0/0) nil (0/0) nil (0/0) 800
hasCitizenship 48.05 (37/77) 58.33 (35/60) nil (0/0) 222
attendedSchool nil (0/0) nil (0/0) nil (0/0) 2

Table 3: Adjusted precision for individual relations (highest values are in bold)

weight learning, additional engineering could poten-
tially improve the performance of MLNs on the IC
data set. Due to MLN’s grounding process, sev-
eral spurious facts like employs(a,a) were inferred.
These inferences can be prevented by including ad-
ditional clauses in the MLN that impose integrity
constraints that prevent such nonsensical proposi-
tions. Further, techniques proposed by Sorower et
al. (2011) can be incorporated to explicitly han-
dle missing information in text. Lack of strict typ-
ing on the arguments of relations in the IC ontol-
ogy has also resulted in inferior performance of the
MLNs. To overcome this, relations that do not have
strictly defined types could be specialized. Finally,
we could use the deductive proofs constructed by
BLPs to constrain the ground Markov network, sim-
ilar to the model-construction approach adopted by
Singla and Mooney (2011).

However, in contrast to MLNs, BLPs that use
first-order rules that are learned by an off-the-shelf
ILP system and given simple intuitive hand-coded
weights, are able to provide fairly high-precision in-
ferences that augment the output of an IE system and
allow it to effectively “read between the lines.”

7 Future Work

A primary goal for future research is developing an
on-line structure learner for BLPs that can directly
learn probabilistic first-order rules from uncertain
training data. This will address important limita-
tions of LIME, which cannot accept uncertainty in
the extractions used for training, is not specifically

optimized for learning rules for BLPs, and does not
scale well to large datasets. Given the relatively poor
performance of BLP parameters learned using EM,
tests on larger training corpora of extracted facts and
the development of improved parameter-learning al-
gorithms are clearly indicated. We also plan to per-
form a larger-scale evaluation by employing crowd-
sourcing to evaluate inferred facts for a bigger cor-
pus of test documents. As described above, a num-
ber of methods could be used to improve the per-
formance of MLNs on this task. Finally, it would
be useful to evaluate our methods on several other
diverse domains.

8 Conclusions

We have introduced a novel approach using
Bayesian Logic Programs to learn to infer implicit
information from facts extracted from natural lan-
guage text. We have demonstrated that it can learn
effective rules from a large database of noisy extrac-
tions. Our experimental evaluation on the IC data
set demonstrates the advantage of BLPs over logical
deduction and an approach based on MLNs.
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Abstract

We present a holistic data-driven approach
to image description generation, exploit-
ing the vast amount of (noisy) parallel im-
age data and associated natural language
descriptions available on the web. More
specifically, given a query image, we re-
trieve existing human-composed phrases
used to describe visually similar images,
then selectively combine those phrases
to generate a novel description for the
query image. We cast the generation pro-
cess as constraint optimization problems,
collectively incorporating multiple inter-
connected aspects of language composition
for content planning, surface realization
and discourse structure. Evaluation by hu-
man annotators indicates that our final
system generates more semantically cor-
rect and linguistically appealing descrip-
tions than two nontrivial baselines.

1 Introduction

Automatically describing images in natural lan-
guage is an intriguing, but complex AI task, re-
quiring accurate computational visual recogni-
tion, comprehensive world knowledge, and natu-
ral language generation. Some past research has
simplified the general image description goal by
assuming that relevant text for an image is pro-
vided (e.g., Aker and Gaizauskas (2010), Feng
and Lapata (2010)). This allows descriptions to
be generated using effective summarization tech-
niques with relatively surface level image under-
standing. However, such text (e.g., news articles

or encyclopedic text) is often only loosely related
to an image’s specific content and many natu-
ral images do not come with associated text for
summarization.

In contrast, other recent work has focused
more on the visual recognition aspect by de-
tecting content elements (e.g., scenes, objects,
attributes, actions, etc) and then composing de-
scriptions from scratch (e.g., Yao et al. (2010),
Kulkarni et al. (2011), Yang et al. (2011), Li
et al. (2011)), or by retrieving existing whole
descriptions from visually similar images (e.g.,
Farhadi et al. (2010), Ordonez et al. (2011)). For
the latter approaches, it is unrealistic to expect
that there will always exist a single complete de-
scription for retrieval that is pertinent to a given
query image. For the former approaches, visual
recognition first generates an intermediate rep-
resentation of image content using a set of En-
glish words, then language generation constructs
a full description by adding function words and
optionally applying simple re-ordering. Because
the generation process sticks relatively closely
to the recognized content, the resulting descrip-
tions often lack the kind of coverage, creativ-
ity, and complexity typically found in human-
written text.

In this paper, we propose a holistic data-
driven approach that combines and extends the
best aspects of these previous approaches – a)
using visual recognition to directly predict indi-
vidual image content elements, and b) using re-
trieval from existing human-composed descrip-
tions to generate natural, creative, and inter-
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esting captions. We also lift the restriction of
retrieving existing whole descriptions by gather-
ing visually relevant phrases which we combine
to produce novel and query-image specific de-
scriptions. By judiciously exploiting the corre-
spondence between image content elements and
phrases, it is possible to generate natural lan-
guage descriptions that are substantially richer
in content and more linguistically interesting
than previous work.

At a high level, our approach can be moti-
vated by linguistic theories about the connection
between reading activities and writing skills,
i.e., substantial reading enriches writing skills,
(e.g., Hafiz and Tudor (1989), Tsang (1996)).
Analogously, our generation algorithm attains a
higher level of linguistic sophistication by read-
ing large amounts of descriptive text available
online. Our approach is also motivated by lan-
guage grounding by visual worlds (e.g., Roy
(2002), Dindo and Zambuto (2010), Monner and
Reggia (2011)), as in our approach the mean-
ing of a phrase in a description is implicitly
grounded by the relevant content of the image.

Another important thrust of this work is col-
lective image-level content-planning, integrating
saliency, content relations, and discourse struc-
ture based on statistics drawn from a large
image-text parallel corpus. This contrasts with
previous approaches that generate multiple sen-
tences without considering discourse flow or re-
dundancy (e.g., Li et al. (2011)). For example,
for an image showing a flock of birds, generating
a large number of sentences stating the relative
position of each bird is probably not useful.

Content planning and phrase synthesis can
be naturally viewed as constraint optimization
problems. We employ Integer Linear Program-
ming (ILP) as an optimization framework that
has been used successfully in other generation
tasks (e.g., Clarke and Lapata (2006), Mar-
tins and Smith (2009), Woodsend and Lapata
(2010)). Our ILP formulation encodes a rich
set of linguistically motivated constraints and
weights that incorporate multiple aspects of the
generation process. Empirical results demon-
strate that our final system generates linguisti-
cally more appealing and semantically more cor-

rect descriptions than two nontrivial baselines.

1.1 System Overview

Our system consists of two parts. For a query
image, we first retrieve candidate descriptive
phrases from a large image-caption database us-
ing measures of visual similarity (§2). We then
generate a coherent description from these can-
didates using ILP formulations for content plan-
ning (§4) and surface realization (§5).

2 Vision & Phrase Retrieval

For a query image, we retrieve relevant candi-
date natural language phrases by visually com-
paring the query image to database images from
the SBU Captioned Photo Collection (Ordonez
et al., 2011) (1 million photographs with asso-
ciated human-composed descriptions). Visual
similarity for several kinds of image content are
used to compare the query image to images from
the database, including: 1) object detections for
89 common object categories (Felzenszwalb et
al., 2010), 2) scene classifications for 26 com-
mon scene categories (Xiao et al., 2010), and
3) region based detections for stuff categories
(e.g. grass, road, sky) (Ordonez et al., 2011).
All content types are pre-computed on the mil-
lion database photos, and caption parsing is per-
formed using the Berkeley PCFG parser (Petrov
et al., 2006; Petrov and Klein, 2007).

Given a query image, we identify content el-
ements present using the above classifiers and
detectors and then retrieve phrases referring to
those content elements from the database. For
example, if we detect a horse in a query im-
age, then we retrieve phrases referring to vi-
sually similar horses in the database by com-
paring the color, texture (Leung and Malik,
1999), or shape (Dalal and Triggs, 2005; Lowe,
2004) of the detected horse to detected horses
in the database images. We collect four types of
phrases for each query image as follows:

[1] NPs We retrieve noun phrases for each
query object detection (e.g., “the brown cow”)
from database captions using visual similar-
ity between object detections computed as an
equally weighted linear combination of L2 dis-
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tances on histograms of color, texton (Leung and
Malik, 1999), HoG (Dalal and Triggs, 2005) and
SIFT (Lowe, 2004) features.

[2] VPs We retrieve verb phrases for each
query object detection (e.g. “boy running”)
from database captions using the same mea-
sure of visual similarity as for NPs, but restrict-
ing the search to only those database instances
whose captions contain a verb phrase referring
to the object category.

[3] Region/Stuff PPs We collect preposi-
tional phrases for each query stuff detection (e.g.
“in the sky”, “on the road”) by measuring visual
similarity of appearance (color, texton, HoG)
and geometric configuration (object-stuff rela-
tive location and distance) between query and
database detections.

[4] Scene PPs We also collect prepositonal
phrases referring to general image scene context
(e.g. “at the market”, “on hot summer days”,
“in Sweden”) based on global scene similarity
computed using L2 distance between scene clas-
sification score vectors (Xiao et al., 2010) com-
puted on the query and database images.

3 Overview of ILP Formulation

For each image, we aim to generate multiple
sentences, each sentence corresponding to a sin-
gle distinct object detected in the given image.
Each sentence comprises of the NP for the main
object, and a subset of the corresponding VP,
region/stuff PP, and scene PP retrieved in §2.
We consider four different types of operations
to generate the final description for each image:

T1. Selecting the set of objects to describe (one
object per sentence).

T2. Re-ordering sentences (i.e., re-ordering ob-
jects).

T3. Selecting the set of phrases for each sen-
tence.

T4. Re-ordering phrases within each sentence.

The ILP formulation of §4 addresses T1 & T2,
i.e., content-planning, and the ILP of §5 ad-
dresses T3 & T4, i.e., surface realization.1

1It is possible to create one conjoined ILP formulation
to address all four operations T1—T4 at once. For com-

4 Image-level Content Planning

First we describe image-level content planning,
i.e., abstract generation. The goals are to (1) se-
lect a subset of the objects based on saliency and
semantically compatibility, and (2) order the se-
lected objects based on their content relations.

4.1 Variables and Objective Function

The following set of indicator variables encodes
the selection of objects and ordering:

ysk =

1, if object s is selected
for position k

0, otherwise
(1)

where k = 1, ..., S encodes the position (order)
of the selected objects, and s indexes one of the
objects. In addition, we define a set of variables
indicating specific pairs of adjacent objects:

yskt(k+1) =

{
1, if ysk = yt(k+1) = 1

0, otherwise
(2)

The objective function, F , that we will maxi-
mize is a weighted linear combination of these
indicator variables and can be optimized using
integer linear programming:

F =
∑

s

Fs ·
S∑

k=1

ysk −
∑
st

Fst ·
S−1∑
k=1

yskt(k+1) (3)

where Fs quantifies the salience/confidence of
the object s, and Fst quantifies the seman-
tic compatibility between the objects s and t.
These coefficients (weights) will be described in
§4.3 and §4.4. We use IBM CPLEX to optimize
this objective function subject to the constraints
introduced next in §4.2.

4.2 Constraints

Consistency Constraints: We enforce consis-
tency between indicator variables for indivisual
objects (Eq. 1) and consecutive objects (Eq. 2)
so that yskt(k+1) = 1 iff ysk = 1 and yt(k+1) = 1:

∀stk, yskt(k+1) ≤ ysk (4)

yskt(k+1) ≤ yt(k+1) (5)

yskt(k+1) + (1− ysk) + (1− yt(k+1)) ≥ 1 (6)

putational and implementation efficiency however, we opt
for the two-step approach.
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To avoid empty descriptions, we enforce that the
result includes at least one object:∑

s

ys1 = 1 (7)

To enforce contiguous positions be selected:

∀k = 2, ..., S − 1,
∑

s

ys(k+1) ≤
∑

s

ysk (8)

Discourse constraints: To avoid spurious de-
scriptions, we allow at most two objects of the
same type, where cs is the type of object s:

∀c ∈ objTypes,
∑

{s: cs=c}

S∑
k=1

ysk ≤ 2 (9)

4.3 Weight Fs: Object Detection
Confidence

In order to quantify the confidence of the object
detector for the object s, we define 0 ≤ Fs ≤ 1
as the mean of the detector scores for that object
type in the image.

4.4 Weight Fst: Ordering and
Compatibility

The weight 0 ≤ Fst ≤ 1 quantifies the compat-
ibility of the object pairing (s, t). Note that in
the objective function, we subtract this quan-
tity from the function to be maximized. This
way, we create a competing tension between the
single object selection scores and the pairwise
compatibility scores, so that variable number of
objects can be selected.

Object Ordering Statistics: People have bi-
ases on the order of topic or content flow. We
measure these biases by collecting statistics on
ordering of object names from the 1 million im-
age descriptions in the SBU Captioned Dataset
(Ordonez et al., 2011). Let ford(w1, w2) be
the number of times w1 appeared before w2.
For instance, ford(window, house) = 2895 and
ford(house, window) = 1250, suggesting that
people are more likely to mention a window be-
fore mentioning a house/building2. We use these
ordering statistics to enhance content flow. We
define score for the order of objects using Z-score
for normalization as follows:

F̂st =
ford(cs, ct)−mean(ford)

std dev(ford)
(10)

2We take into account synonyms.

We then transform F̂st so that F̂st ∈ [0,1], and
then set Fst = 1 − F̂st so that smaller values
correspond to better choices.

5 Surface Realization

Recall that for each image, the computer vi-
sion system identifies phrases from descriptions
of images that are similar in a variety of aspects.
The result is a set of phrases representing four
different types of information (§2). From this
assortment of phrases, we aim to select a subset
and glue them together to compose a complete
sentence that is linguistically plausible and se-
mantically truthful to the content of the image.

5.1 Variables and Objective Function

The following set of variables encodes the selec-
tion of phrases and their ordering in construct-
ing S′ sentences.

xsijk =


1, if phrase i of type j

is selected
for position k
in sentence s

0, otherwise

(11)

where k = 1, ..., N encodes the ordering of the
selected phrases, and j indexes one of the four
phrases types (object-NPs, action-VPs, region-
PPs, scene-PPs), i = 1, ...,M indexes one of
the M candidate phrases of each phrase type,
and s = 1, ..., S′ encodes the sentence (object).
In addition, we define indicator variables for
adjacent pairs of phrases: xsijkpq(k+1) = 1 if
xsijk = xspq(k+1) = 1 and 0 otherwise. Finally,
we define the objective function F as:

F =
∑
sij

Fsij ·
N∑

k=1

xsijk

−
∑
sijpq

Fsijpq ·
N−1∑
k=1

xsijkpq(k+1) (12)

where Fsij weights individual phrase goodness
and Fsijpq adjacent phrase goodness. All coeffi-
cients (weights) will be described in Section 5.3
and 5.4.

We optionally prepend the first sentence in a
generated description with a cognitive phrase.3

3We collect most frequent 200 phrases of length 1-
7 that start a caption from the SBU Captioned Photo
Collection.
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ILP: I think this is a boy’s bike 
lied in saltwater for quite a 
while. 
 

HMM: I liked the way bicycles 
leaning against a wall in 
Copenhagen Denmark in a 
windy sky in a Singapore 
bathroom. Boy’s bike lied in 
saltwater for quite a while in a 
windy sky in a Singapore 
bathroom. Fruit rubbing his 
face in the encrusted snow in a 
windy sky in a Singapore 
bathroom. 
 

Human: You re nobody in 
Oxford, unless you have a old 
bike with a basket 
 

ILP:  
This is a photo of this little flower sprouted up in defiance against grass.  
Bright yellow flowers growing in a rock garden at Volcan Mombacho. 
 

HMM: These was taken on the flowers growing in a rock garden in the field in two sorts. This 
little flower sprouted up in defiance in the field in two sorts. A full open flower sprouted up in 
defiance in the field in gardens. Bright yellow flowers growing in a rock garden in the field. 
 

Human: Yellow flower in my field 
 

ILP: Found trucks parked on first avenue in the east village. 
 

HMM: This is the first cellar door left back bedroom in center 
and clothes dryer to the right to the building in the house. 
This HUGE screen hanging on the wall outside a burned down 
building in the house. My truck parked on first avenue in the 
east village by the glass buildings in the house. 
 

Human: Flat bed Chisholms truck on display at the vintage 
vehicle rall y at Astley Green Colliery near Leigh Lancs 
 

Figure 1: ILP & HMM generated captions. In HMM generated captions, underlined phrases show redundancy
across different objects (due to lack of discourse constraints), and phrases in boldface show awkward topic
flow (due to lack of content planning). Note that in the bicycle image, the visual recognizer detected two
separate bicycles and some fruits, as can be seen in the HMM result. Via collective image-level content
planning (see §4), some of these erroneous detection can be corrected, as shown in the ILP result. Spurious
and redundant phrases can be suppressed via discourse constraints (see §5).

These are generic constructs that are often used
to start a description about an image, for in-
stance, “This is an image of...”. We treat these
phrases as an additional type, but omit corre-
sponding variables and constraints for brevity.

5.2 Constraints

Consistency Constraints: First we enforce
consistency between the unary variables (Eq.
11) and the pairwise variables so that xsijkpqm =
1 iff xsijk = 1 and xspqm = 1:

∀ijkpqm, xsijkpqm ≤ xsijk (13)

xsijkpqm ≤ xspqm (14)

xsijkpqm + (1− xsijk) + (1− xspqm) ≥ 1 (15)

Next we include constraints similar to Eq. 8
(contiguous slots are filled), but omit them for
brevity. Finally, we add constraints to ensure at
least two phrases are selected for each sentence,
to promote informative descriptions.

Linguistic constraints: We include linguisti-
cally motivated constraints to generate syntacti-
cally and semantically plausible sentences. First
we enforce a noun-phrase to be selected to en-
sure semantic relevance to the image:

∀s,
∑
ik

xsiNPk = 1 (16)

Also, to avoid content redundancy, we allow at
most one phrase of each type:

∀sj,
∑

i

N∑
k=1

xsijk ≤ 1 (17)

Discourse constraints: We allow at most
one prepositional scene phrase for the whole de-
scription to avoid redundancy:

For j = PPscene,
∑
sik

xsijk ≤ 1 (18)

We add constraints that prevent the inclusion of
more than one phrase with identical head words:
∀s, ij, pq with the same heads,

N∑
k=1

xsijk +
N∑

k=1

xspqk ≤ 1 (19)

5.3 Unary Phrase Selection

Let Msij be the confidence score for phrase
xsij given by the image–phrase matching al-
gorithm (§2). To make the scores across dif-
ferent phrase types comparable, we normalize
them using Z-score: Fsij = norm′(Msij) =
(Msij − meanj)/devj , and then transform the
values into the range of [0,1].

5.4 Pairwise Phrase Cohesion

In this section, we describe the pairwise phrase
cohesion score Fsijpq defined for each xsijpq in
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ILP: I like the way the clouds hanging down by 
the ground in Dupnitsa of Avikwalal. 
 

Human: Car was raised on the wall over a bridge 
facing traffic..paramedics were attending the 
driver on the ground 

ILP: This is a photo of this bird hopping 
around eating things off of the ground by 
river. 
Human: IMG_6892 Lookn up in the sky its a 
bird its a plane its ah..... you 

ILP: This is a sporty little red convertible made for 
a great day in Key West FL. This car was in the 4th 
parade of the apartment buildings. 
 

Human: Hard rock casino exotic car show in June 

ILP: Taken in front of my cat sitting in a shoe 
box. Cat likes hanging around in my recliner. 
 

Human: H happily rests his armpit on a 
warm Gatorade bottle of water (a small 
bottle wrapped in a rag) 

Figure 2: In some cases (16%), ILP generated captions were preferred over human written ones!

the objective function (Eq. 12). Via Fsijpq,
we aim to quantify the degree of syntactic and
semantic cohesion across two phrases xsij and
xspq. Note that we subtract this cohesion score
from the objective function. This trick helps the
ILP solver to generate sentences with varying
number of phrases, rather than always selecting
the maximum number of phrases allowed.

N-gram Cohesion Score: We use n-gram
statistics from the Google Web 1-T dataset
(Brants and Franz., 2006) Let Lsijpq be the set
of all n-grams (2 ≤ n ≤ 5) across xsij and xspq.
Then the n-gram cohesion score is computed as:

FNGRAM
sijpq = 1−

∑
l∈Lsijpq

NPMI(l)

size(Lsijpq)
(20)

NPMI(ngr) =
PMI(ngr)− PMImin

PMImax − PMImin
(21)

Where NPMI is the normalized point-wise mu-

tual information.4

Co-occurrence Cohesion Score: To cap-
ture long-distance cohesion, we introduce a co-
occurrence-based score, which measures order-
preserved co-occurrence statistics between the
head words hsij and hspq

5. Let fΣ(hsij , hspq)
be the sum frequency of all n-grams that start
with hsij , end with hspq and contain a prepo-
sition prep(spq) of the phrase spq. Then the

4We include the n-gram cohesion for the sentence
boundaries as well, by approximating statistics for sen-
tence boundaries with punctuation marks in the Google
Web 1-T data.

5For simplicity, we use the last word of a phrase as
the head word, except VPs where we take the main verb.

co-occurrence cohesion is computed as:

FCO
sijpq =

max(fΣ)− fΣ(hsij , hspq)

max(fΣ)−min(fΣ)
(22)

Final Cohesion Score: Finally, the pairwise
phrase cohesion score Fijpq is a weighted sum of
n-gram and co-occurrence cohesion scores:

Fsijpq =
α · FNGRAM

sijpq + β · FCO
sijpq

α+ β
(23)

where α and β can be tuned via grid search,
and FNGRAM

ijpq and FCO
ijpq are normalized ∈ [0, 1]

for comparability. Notice that Fsijpq is in the
range [0,1] as well.

6 Evaluation

TestSet: Because computer vision is a challeng-
ing and unsolved problem, we restrict our query
set to images where we have high confidence that
visual recognition algorithms perform well. We
collect 1000 test images by running a large num-
ber (89) of object detectors on 20,000 images
and selecting images that receive confident ob-
ject detection scores, with some preference for
images with multiple object detections to obtain
good examples for testing discourse constraints.

Baselines: We compare our ILP approaches
with two nontrivial baselines: the first is an
HMM approach (comparable to Yang et al.
(2011)), which takes as input the same set of
candidate phrases described in §2, but for de-
coding, we fix the ordering of phrases as [ NP
– VP – Region PP – Scene PP] and find the
best combination of phrases using the Viterbi
algorithm. We use the same rich set of pairwise
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Hmm Hmm Ilp Ilp
cognitive phrases: with w/o with w/o

0.111 0.114 0.114 0.116

Table 1: Automatic Evaluation

ILP selection rate

ILP V.S. HMM (w/o cogn) 67.2%
ILP V.S. HMM (with cogn) 66.3%

Table 2: Human Evaluation (without images)

ILP selection rate

ILP V.S. HMM (w/o cogn) 53.17%
ILP V.S. HMM (with cogn) 54.5%
ILP V.S. Retrieval 71.8%
ILP V.S. Human 16%

Table 3: Human Evaluation (with images)

phrase cohesion scores (§5.4) used for the ILP
formulation, producing a strong baseline6.

The second baseline is a recent Retrieval
based description method (Ordonez et al., 2011),
that searches the large parallel corpus of im-
ages and captions, and transfers a caption from
a visually similar database image to the query.
This again is a very strong baseline, as it ex-
ploits the vast amount of image-caption data,
and produces a description high in linguistic
quality (since the captions were written by hu-
man annotators).

Automatic Evaluation: Automatically quan-
tifying the quality of machine generated sen-
tences is known to be difficult. BLEU score
(Papineni et al., 2002), despite its simplicity
and limitations, has been one of the common
choices for automatic evaluation of image de-
scriptions (Farhadi et al., 2010; Kulkarni et al.,
2011; Li et al., 2011; Ordonez et al., 2011), as
it correlates reasonably well with human evalu-
ation (Belz and Reiter, 2006).

Table 1 shows the the BLEU @1 against the
original caption of 1000 images. We see that the
ILP improves the score over HMM consistently,
with or without the use of cognitive phrases.

6Including other long-distance scores in HMM decod-
ing would make the problem NP-hard and require more
sophisticated decoding, e.g. ILP.

Grammar Cognitive Relevance

HMM 3.40(σ=.82) 3.40(σ=.88) 2.25(σ=1.37)
ILP 3.56(σ=.90) 3.60(σ=.98) 2.37(σ=1.49)

Hum. 4.36(σ=.79) 4.77(σ=.66) 3.86(σ=1.60)

Table 4: Human Evaluation: Multi-Aspect Rating
(σ is a standard deviation)

Human Evaluation I – Ranking: We com-
plement the automatic evaluation with Mechan-
ical Turk evaluation. In ranking evaluation, we
ask raters to choose a better caption between
two choices7. We do this rating with and with-
out showing the images, as summarized in Ta-
ble 2 & 3. When images are shown, raters evalu-
ate content relevance as well as linguistic quality
of the captions. Without images, raters evaluate
only linguistic quality.

We found that raters generally prefer ILP gen-
erated captions over HMM generated ones, twice
as much (67.2% ILP V.S. 32.8% HMM), if im-
ages are not presented. However the difference is
less pronounced when images are shown. There
could be two possible reasons. The first is that
when images are shown, the Turkers do not try
as hard to tell apart the subtle difference be-
tween the two imperfect captions. The second
is that the relative content relevance of ILP gen-
erated captions is negating the superiority in lin-
guistic quality. We explore this question using
multi-aspect rating, described below.

Note that ILP generated captions are exceed-
ingly (71.8 %) preferred over the Retrieval
baseline (Ordonez et al., 2011), despite the gen-
erated captions tendency to be more prone to
grammatical and cognitive errors than retrieved
ones. This indicates that the generated captions
must have substantially better content relevance
to the query image, supporting the direction of
this research. Finally, notice that as much as
16% of the time, ILP generated captions are pre-
ferred over the original human generated ones
(examples in Figure 2).

Human Evaluation II – Multi-Aspect Rat-
ing: Table 4 presents rating in the 1–5 scale (5:
perfect, 4: almost perfect, 3: 70∼80% good, 2:

7We present two captions in a randomized order.
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Found MIT boy 
gave me this 
quizical expression. 

One of the most shirt 
in the wall of the 
house. 

Grammar Problems 

Here you can see a 
bright red flower taken 
near our apartment in 
Torremolinos the Costa 
Del Sol. 

Content Irrelevance 

This is a shoulder bag with 
a blended rainbow effect. 

Cognitive Absurdity 

Here you can see a cross 
by the frog in the sky. 

Figure 3: Examples with different aspects of prob-
lems in the ILP generated captions.

50∼70% good, 1: totally bad) in three different
aspects: grammar, cognitive correctness,8 and
relevance. We find that ILP improves over HMM
in all aspects, however, the relevance score is no-
ticeably worse than scores of two other criteria.
It turns out human raters are generally more
critical against the relevance aspect, as can be
seen in the ratings given to the original human
generated captions.

Discussion with Examples: Figure 1 shows
contrastive examples of HMM vs ILP gener-
ated captions. Notice that HMM captions
look robotic, containing spurious and redundant
phrases due to lack of discourse constraints, and
often discussing an awkward set of objects due
to lack of image-level content planning. Also
notice how image-level content planning under-
pinned by language statistics helps correct some
of the erroneous vision detections. Figure 3
shows some example mistakes in the ILP gen-
erated captions.

7 Related Work & Discussion

Although not directly focused on image descrip-
tion generation, some previous work in the realm
of summarization shares the similar problem of
content planning and surface realization. There

8E.g., “A desk on top of a cat” is grammatically cor-
rect, but cognitively absurd.

are subtle, but important differences however.
First, sentence compression is hardly the goal
of image description generation, as human writ-
ten descriptions are not necessarily succinct.9

Second, unlike summarization, we are not given
with a set of coherent text snippet to begin with,
and the level of noise coming from the visual
recognition errors is much higher than that of
starting with clean text. As a result, choosing
an additional phrase in the image description is
much riskier than it is in summarization.

Some recent research proposed very elegant
approaches to summarization using ILP for col-
lective content planning and/or surface realiza-
tion (e.g., Martins and Smith (2009), Woodsend
and Lapata (2010), Woodsend et al. (2010)).
Perhaps the most important difference in our
approach is the use of negative weights in the
objective function to create the necessary ten-
sion between selection (salience) and compatibil-
ity, which makes it possible for ILP to generate
variable length descriptions, effectively correct-
ing some of the erroneous vision detections. In
contrast, all previous work operates with a pre-
defined upper limit in length, hence the ILP was
formulated to include as many textual units as
possible modulo constraints.

To conclude, we have presented a collective
approach to generating natural image descrip-
tions. Our approach is the first to systematically
incorporate state of the art computer vision
to retrieve visually relevant candidate phrases,
then produce images descriptions that are sub-
stantially more complex and human-like than
previous attempts.
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Goyal, K. Stratos, A. Mensch, J. Dodge for data
pre-processing and useful initial discussions.

9On a related note, the notion of saliency also differs
in that human written captions often digress on details
that might be tangential to the visible content of the
image. E.g., “This is a dress my mom made.”, where the
picture does not show a woman making the dress.
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Abstract

This paper proposes a data-driven method
for concept-to-text generation, the task of
automatically producing textual output from
non-linguistic input. A key insight in our ap-
proach is to reduce the tasks of content se-
lection (“what to say”) and surface realization
(“how to say”) into a common parsing prob-
lem. We define a probabilistic context-free
grammar that describes the structure of the in-
put (a corpus of database records and text de-
scribing some of them) and represent it com-
pactly as a weighted hypergraph. The hyper-
graph structure encodes exponentially many
derivations, which we rerank discriminatively
using local and global features. We propose a
novel decoding algorithm for finding the best
scoring derivation and generating in this set-
ting. Experimental evaluation on the ATIS do-
main shows that our model outperforms a
competitive discriminative system both using
BLEU and in a judgment elicitation study.

1 Introduction

Concept-to-text generation broadly refers to the
task of automatically producing textual output from
non-linguistic input such as databases of records,
logical form, and expert system knowledge bases
(Reiter and Dale, 2000). A variety of concept-to-
text generation systems have been engineered over
the years, with considerable success (e.g., Dale et
al. (2003), Reiter et al. (2005), Green (2006), Turner
et al. (2009)). Unfortunately, it is often difficult
to adapt them across different domains as they rely
mostly on handcrafted components.

In this paper we present a data-driven ap-
proach to concept-to-text generation that is domain-
independent, conceptually simple, and flexible. Our
generator learns from a set of database records and
textual descriptions (for some of them). An exam-
ple from the air travel domain is shown in Figure 1.
Here, the records provide a structured representation
of the flight details (e.g., departure and arrival time,
location), and the text renders some of this infor-
mation in natural language. Given such input, our
model determines which records to talk about (con-
tent selection) and which words to use for describing
them (surface realization). Rather than breaking up
the generation process into a sequence of local deci-
sions, we perform both tasks jointly. A key insight
in our approach is to reduce content selection and
surface realization into a common parsing problem.
Specifically, we define a probabilistic context-free
grammar (PCFG) that captures the structure of the
database and its correspondence to natural language.
This grammar represents multiple derivations which
we encode compactly using a weighted hypergraph
(or packed forest), a data structure that defines a
weight for each tree.

Following a generative approach, we could first
learn the weights of the PCFG by maximising the
joint likelihood of the model and then perform gen-
eration by finding the best derivation tree in the hy-
pergraph. The performance of this baseline system
could be potentially further improved using discrim-
inative reranking (Collins, 2000). Typically, this
method first creates a list of n-best candidates from
a generative model, and then reranks them with arbi-
trary features (both local and global) that are either
not computable or intractable to compute within the
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Database:

Flight

from to
denver boston

Day Number

number dep/ar
9 departure

Month

month dep/ar
august departure

Condition

arg1 arg2 type
arrival time 1600 <

Search

type what
query flight

λ−expression:

Text:

λx. f light(x)∧ f rom(x,denver)∧ to(x,boston)∧day number(x,9)∧month(x,august)∧
less than(arrival time(x),1600)

Give me the flights leaving Denver August ninth coming back to Boston before 4pm.

Figure 1: Example of non-linguistic input as a structured database and logical form and its corresponding text. We
omit record fields that have no value, for the sake of brevity.

baseline system.
An appealing alternative is to rerank the hyper-

graph directly (Huang, 2008). As it compactly en-
codes exponentially many derivations, we can ex-
plore a much larger hypothesis space than would
have been possible with an n-best list. Importantly,
in this framework non-local features are computed
at all internal hypergraph nodes, allowing the de-
coder to take advantage of them continuously at all
stages of the generation process. We incorporate
features that are local with respect to a span of a
sub-derivation in the packed forest; we also (approx-
imately) include features that arbitrarily exceed span
boundaries, thus capturing more global knowledge.
Experimental results on the ATIS domain (Dahl et
al., 1994) demonstrate that our model outperforms
a baseline based on the best derivation and a state-
of-the-art discriminative system (Angeli et al., 2010)
by a wide margin.

Our contributions in this paper are threefold: we
recast concept-to-text generation in a probabilistic
parsing framework that allows to jointly optimize
content selection and surface realization; we repre-
sent parse derivations compactly using hypergraphs
and illustrate the use of an algorithm for generating
(rather than parsing) in this framework; finally, the
application of discriminative reranking to concept-
to-text generation is novel to our knowledge and as
our experiments show beneficial.

2 Related Work

Early discriminative approaches to text generation
were introduced in spoken dialogue systems, and
usually tackled content selection and surface re-
alization separately. Ratnaparkhi (2002) concep-
tualized surface realization (from a fixed meaning
representation) as a classification task. Local and
non-local information (e.g., word n-grams, long-

range dependencies) was taken into account with the
use of features in a maximum entropy probability
model. More recently, Wong and Mooney (2007)
describe an approach to surface realization based on
synchronous context-free grammars. The latter are
learned using a log-linear model with minimum er-
ror rate training (Och, 2003).

Angeli et al. (2010) were the first to propose a
unified approach to content selection and surface re-
alization. Their model operates over automatically
induced alignments of words to database records
(Liang et al., 2009) and decomposes into a sequence
of discriminative local decisions. They first deter-
mine which records in the database to talk about,
then which fields of those records to mention, and
finally which words to use to describe the chosen
fields. Each of these decisions is implemented as
a log-linear model with features learned from train-
ing data. Their surface realization component per-
forms decisions based on templates that are automat-
ically extracted and smoothed with domain-specific
knowledge in order to guarantee fluent output.

Discriminative reranking has been employed in
many NLP tasks such as syntactic parsing (Char-
niak and Johnson, 2005; Huang, 2008), machine
translation (Shen et al., 2004; Li and Khudanpur,
2009) and semantic parsing (Ge and Mooney, 2006).
Our model is closest to Huang (2008) who also
performs forest reranking on a hypergraph, using
both local and non-local features, whose weights
are tuned with the averaged perceptron algorithm
(Collins, 2002). We adapt forest reranking to gen-
eration and introduce several task-specific features
that boost performance. Although conceptually re-
lated to Angeli et al. (2010), our model optimizes
content selection and surface realization simultane-
ously, rather than as a sequence. The discriminative
aspect of two models is also fundamentally different.
We have a single reranking component that applies
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throughout, whereas they train different discrimina-
tive models for each local decision.

3 Problem Formulation

We assume our generator takes as input a set of
database records d and produces text w that verbal-
izes some of these records. Each record r ∈ d has a
type r.t and a set of fields f associated with it. Fields
have different values f .v and types f .t (i.e., integer
or categorical). For example, in Figure 1, flight is a
record type with fields from and to. The values of
these fields are denver and boston and their type is
categorical.

During training, our algorithm is given a corpus
consisting of several scenarios, i.e., database records
paired with texts like those shown in Figure 1. The
database (and accompanying texts) are next con-
verted into a PCFG whose weights are learned from
training data. PCFG derivations are represented as
a weighted directed hypergraph (Gallo et al., 1993).
The weights on the hyperarcs are defined by a vari-
ety of feature functions, which we learn via a dis-
criminative online update algorithm. During test-
ing, we are given a set of database records with-
out the corresponding text. Using the learned fea-
ture weights, we compile a hypergraph specific to
this test input and decode it approximately (Huang,
2008). The hypergraph representation allows us
to decompose the feature functions and compute
them piecemeal at each hyperarc (or sub-derivation),
rather than at the root node as in conventional n-best
list reranking. Note that the algorithm does not sep-
arate content selection from surface realization, both
subtasks are optimized jointly through the proba-
bilistic parsing formulation.

3.1 Grammar Definition

We capture the structure of the database with a num-
ber of CFG rewrite rules, in a similar way to how
Liang et al. (2009) define Markov chains in their
hierarchical model. These rules are purely syn-
tactic (describing the intuitive relationship between
records, records and fields, fields and corresponding
words), and could apply to any database with sim-
ilar structure irrespectively of the semantics of the
domain.

Our grammar is defined in Table 1 (rules (1)–(9)).
Rule weights are governed by an underlying multi-
nomial distribution and are shown in square brack-

1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(r j,start) R(r j.t) [P(r j.t |ri.t) ·λ]

3. R(ri.t)→ FS(r j,start) [P(r j.t |ri.t) ·λ]

4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P( f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P( f j | fi)]

6. F(r,r. f )→W(r,r. f ) F(r,r. f ) [P(w |w−1,r,r. f )]

7. F(r,r. f )→W(r,r. f ) [P(w |w−1,r,r. f )]

8. W(r,r. f )→ α [P(α |r,r. f , f .t, f .v)]

9. W(r,r. f )→ g( f .v)
[P(g( f .v).mode |r,r. f , f .t = int)]

Table 1: Grammar rules and their weights shown in
square brackets.

ets. Non-terminal symbols are in capitals and de-
note intermediate states; the terminal symbol α

corresponds to all words seen in the training set,
and g( f .v) is a function for generating integer num-
bers given the value of a field f . All non-terminals,
save the start symbol S, have one or more constraints
(shown in parentheses), similar to number and gen-
der agreement constraints in augmented syntactic
rules.

Rule (1) denotes the expansion from the start
symbol S to record R, which has the special start
type (hence the notation R(start)). Rule (2) de-
fines a chain between two consecutive records ri
and r j. Here, FS(r j,start) represents the set
of fields of the target r j, following the source
record R(ri). For example, the rule R(search1.t)→
FS( f light1,start)R( f light1.t) can be interpreted as
follows. Given that we have talked about search1,
we will next talk about f light1 and thus emit its
corresponding fields. R( f light1.t) is a non-terminal
place-holder for the continuation of the chain of
records, and start in FS is a special boundary field
between consecutive records. The weight of this rule
is the bigram probability of two records conditioned
on their type, multiplied with a normalization fac-
tor λ. We have also defined a null record type i.e., a
record that has no fields and acts as a smoother for
words that may not correspond to a particular record.
Rule (3) is simply an escape rule, so that the parsing
process (on the record level) can finish.

Rule (4) is the equivalent of rule (2) at the field
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level, i.e., it describes the chaining of two con-
secutive fields fi and f j. Non-terminal F(r,r. f )
refers to field f of record r. For example, the rule
FS( f light1, f rom) → F( f light1, to)FS( f light1, to),
specifies that we should talk about the field to of
record f light1, after talking about the field f rom.
Analogously to the record level, we have also in-
cluded a special null field type for the emission of
words that do not correspond to a specific record
field. Rule (6) defines the expansion of field F to
a sequence of (binarized) words W, with a weight
equal to the bigram probability of the current word
given the previous word, the current record, and
field.

Rules (8) and (9) define the emission of words and
integer numbers from W, given a field type and its
value. Rule (8) emits a single word from the vocabu-
lary of the training set. Its weight defines a multino-
mial distribution over all seen words, for every value
of field f , given that the field type is categorical or
the special null field. Rule (9) is identical but for
fields whose type is integer. Function g( f .v) gener-
ates an integer number given the field value, using
either of the following six ways (Liang et al., 2009):
identical to the field value, rounding up or rounding
down to a multiple of 5, rounding off to the clos-
est multiple of 5 and finally adding or subtracting
some unexplained noise.1 The weight is a multino-
mial over the six generation function modes, given
the record field f .

The CFG in Table 1 will produce many deriva-
tions for a given input (i.e., a set of database records)
which we represent compactly using a hypergraph or
a packed forest (Klein and Manning, 2001; Huang,
2008). Simplified examples of this representation
are shown in Figure 2.

3.2 Hypergraph Reranking

For our generation task, we are given a set of
database records d, and our goal is to find the best
corresponding text w. This corresponds to the best
grammar derivation among a set of candidate deriva-
tions represented implicitly in the hypergraph struc-
ture. As shown in Table 1, the mapping from d to w
is unknown. Therefore, all the intermediate multino-
mial distributions, described in the previous section,
define a hidden correspondence structure h, between
records, fields, and their values. We find the best

1The noise is modeled as a geometric distribution.

Algorithm 1: Averaged Structured Perceptron
Input: Training scenarios: (di,w∗,h+

i )N
i=1

1 α← 0
2 for t← 1 . . .T do
3 for i← 1 . . .N do
4 (ŵ, ĥ) = argmaxw,h α ·Φ(di,wi,hi)

5 if (w∗i ,h
+
i ) 6= (ŵi, ĥi) then

6 α← α+Φ(di,w∗i ,h
+
i )−Φ(di, ŵi, ĥi)

7 return 1
T ∑

T
t=1

1
N ∑

N
i=1 αi

t

scoring derivation (ŵ, ĥ) by maximizing over con-
figurations of h:

(ŵ, ĥ) = argmax
w,h

α ·Φ(d,w,h)

We define the score of (ŵ, ĥ) as the dot product
between a high dimensional feature representation
Φ = (Φ1, . . . ,Φm) and a weight vector α.

We estimate the weights α using the averaged
structured perceptron algorithm (Collins, 2002),
which is well known for its speed and good perfor-
mance in similar large-parameter NLP tasks (Liang
et al., 2006; Huang, 2008). As shown in Algo-
rithm 1, the perceptron makes several passes over
the training scenarios, and in each iteration it com-
putes the best scoring (ŵ, ĥ) among the candidate
derivations, given the current weights α. In line 6,
the algorithm updates α with the difference (if any)
between the feature representations of the best scor-
ing derivation (ŵ, ĥ) and the the oracle derivation
(w∗,h+). Here, ŵ is the estimated text, w∗ the gold-
standard text, ĥ is the estimated latent configuration
of the model and h+ the oracle latent configuration.
The final weight vector α is the average of weight
vectors over T iterations and N scenarios. This av-
eraging procedure avoids overfitting and produces
more stable results (Collins, 2002).

In the following, we first explain how we decode
in this framework, i.e., find the best scoring deriva-
tion (Section 3.3) and discuss our definition for the
oracle derivation (w∗,h+) (Section 3.4). Our fea-
tures are described in Section 4.2.

3.3 Hypergraph Decoding
Following Huang (2008), we also distinguish fea-
tures into local, i.e., those that can be computed
within the confines of a single hyperedge, and non-
local, i.e., those that require the prior visit of nodes
other than their antecedents. For example, the
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Alignment feature in Figure 2(a) is local, and thus
can be computed a priori, but the Word Trigrams
is not; in Figure 2(b) words in parentheses are sub-
generations created so far at each word node; their
combination gives rise to the trigrams serving as
input to the feature. However, this combination
may not take place at their immediate ancestors,
since these may not be adjacent nodes in the hy-
pergraph. According to the grammar in Table 1,
there is no direct hyperedge between nodes repre-
senting words (W) and nodes representing the set of
fields these correspond to (FS); rather, W and FS are
connected implicitly via individual fields (F). Note,
that in order to estimate the trigram feature at the
FS node, we need to carry word information in the
derivations of its antecedents, as we go bottom-up.2

Given these two types of features, we can then
adapt Huang’s (2008) approximate decoding algo-
rithm to find (ŵ, ĥ). Essentially, we perform bottom-
up Viterbi search, visiting the nodes in reverse topo-
logical order, and keeping the k-best derivations for
each. The score of each derivation is a linear com-
bination of local and non-local features weights. In
machine translation, a decoder that implements for-
est rescoring (Huang and Chiang, 2007) uses the lan-
guage model as an external criterion of the good-
ness of sub-translations on account of their gram-
maticality. Analogously here, non-local features in-
fluence the selection of the best combinations, by
introducing knowledge that exceeds the confines of
the node under consideration and thus depend on
the sub-derivations generated so far. (e.g., word tri-
grams spanning a field node rely on evidence from
antecedent nodes that may be arbitrarily deeper than
the field’s immediate children).

Our treatment of leaf nodes (see rules (8) and (9))
differs from the way these are usually handled in
parsing. Since in generation we must emit rather
than observe the words, for each leaf node we there-
fore output the k-best words according to the learned
weights α of the Alignment feature (see Sec-
tion 4.2), and continue building our sub-generations
bottom-up. This generation task is far from triv-
ial: the search space on the word level is the size of
the vocabulary and each field of a record can poten-
tially generate all words. Also, note that in decoding
it is useful to have a way to score different output

2We also store field information to compute structural fea-
tures, described in Section 4.2.

lengths |w|. Rather than setting w to a fixed length,
we rely on a linear regression predictor that uses the
counts of each record type per scenario as features
and is able to produce variable length texts.

3.4 Oracle Derivation

So far we have remained agnostic with respect to
the oracle derivation (w∗,h+). In other NLP tasks
such as syntactic parsing, there is a gold-standard
parse, that can be used as the oracle. In our gener-
ation setting, such information is not available. We
do not have the gold-standard alignment between the
database records and the text that verbalizes them.
Instead, we approximate it using the existing de-
coder to find the best latent configuration h+ given
the observed words in the training text w∗.3 This is
similar in spirit to the generative alignment model of
Liang et al. (2009).

4 Experimental Design

In this section we present our experimental setup for
assessing the performance of our model. We give
details on our dataset, model parameters and fea-
tures, the approaches used for comparison, and ex-
plain how system output was evaluated.

4.1 Dataset

We conducted our experiments on the Air Travel In-
formation System (ATIS) dataset (Dahl et al., 1994)
which consists of transcriptions of spontaneous ut-
terances of users interacting with a hypothetical on-
line flight booking system. The dataset was orig-
inally created for the development of spoken lan-
guage systems and is partitioned in individual user
turns (e.g., flights from orlando to milwaukee, show
flights from orlando to milwaukee leaving after six
o’clock) each accompanied with an SQL query to a
booking system and the results of this query. These
utterances are typically short expressing a specific
communicative goal (e.g., a question about the ori-
gin of a flight or its time of arrival). This inevitably
results in small scenarios with a few words that of-
ten unambiguously correspond to a single record. To
avoid training our model on a somewhat trivial cor-
pus, we used the dataset introduced in Zettlemoyer

3In machine translation, Huang (2008) provides a soft al-
gorithm that finds the forest oracle, i.e., the parse among the
reranked candidates with the highest Parseval F-score. How-
ever, it still relies on the gold-standard reference translation.
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and Collins (2007) instead, which combines the ut-
terances of a single user in one scenario and con-
tains 5,426 scenarios in total; each scenario corre-
sponds to a (manually annotated) formal meaning
representation (λ-expression) and its translation in
natural language.

Lambda expressions were automatically con-
verted into records, fields and values following the
conventions adopted in Liang et al. (2009).4 Given
a lambda expression like the one shown in Figure 1,
we first create a record for each variable and constant
(e.g., x, 9, august). We then assign record types ac-
cording to the corresponding class types (e.g., vari-
able x has class type flight). Next, fields and val-
ues are added from predicates with two arguments
with the class type of the first argument matching
that of the record type. The name of the predicate
denotes the field, and the second argument denotes
the value. We also defined special record types, such
as condition and search. The latter is introduced for
every lambda operator and assigned the categorical
field what with the value flight which refers to the
record type of variable x.

Contrary to datasets used in previous generation
studies (e.g., ROBOCUP (Chen and Mooney, 2008)
and WEATHERGOV (Liang et al., 2009)), ATIS has a
much richer vocabulary (927 words); each scenario
corresponds to a single sentence (average length
is 11.2 words) with 2.65 out of 19 record types
mentioned on average. Following Zettlemoyer and
Collins (2007), we trained on 4,962 scenarios and
tested on ATIS NOV93 which contains 448 examples.

4.2 Features

Broadly speaking, we defined two types of features,
namely lexical and structural ones. In addition,
we used a generatively trained PCFG as a baseline
feature and an alignment feature based on the co-
occurrence of records (or fields) with words.

Baseline Feature This is the log score of a gen-
erative decoder trained on the PCFG from Table 1.
We converted the grammar into a hypergraph, and
learned its probability distributions using a dynamic
program similar to the inside-outside algorithm (Li
and Eisner, 2009). Decoding was performed approx-

4The resulting dataset and a technical report describ-
ing the mapping procedure in detail are available from
http://homepages.inf.ed.ac.uk/s0793019/index.php?
page=resources

imately via cube pruning (Chiang, 2007), by inte-
grating a trigram language model extracted from the
training set (see Konstas and Lapata (2012) for de-
tails). Intuitively, the feature refers to the overall
goodness of a specific derivation, applied locally in
every hyperedge.

Alignment Features Instances of this feature fam-
ily refer to the count of each PCFG rule from Ta-
ble 1. For example, the number of times rule
R(search1.t)→ FS( f light1,start)R( f light1.t) is in-
cluded in a derivation (see Figure 2(a))

Lexical Features These features encourage gram-
matical coherence and inform lexical selection over
and above the limited horizon of the language model
captured by Rules (6)–(9). They also tackle anoma-
lies in the generated output, due to the ergodicity of
the CFG rules at the record and field level:

Word Bigrams/Trigrams This is a group of
non-local feature functions that count word n-grams
at every level in the hypergraph (see Figure 2(b)).
The integration of words in the sub-derivations is
adapted from Chiang (2007).

Number of Words per Field This feature function
counts the number of words for every field, aiming
to capture compound proper nouns and multi-word
expressions, e.g., fields from and to frequently corre-
spond to two or three words such as ‘new york’ and
‘salt lake city’ (see Figure 2(d)).

Consecutive Word/Bigram/Trigram This feature
family targets adjacent repetitions of the same word,
bigram or trigram, e.g., ‘show me the show me the
flights’.

Structural Features Features in this category tar-
get primarily content selection and influence appro-
priate choice at the field level:

Field bigrams/trigrams Analogously to the lexical
features mentioned above, we introduce a series of
non-local features that capture field n-grams, given
a specific record. For example the record flight in the
air travel domain typically has the values <from to>
(see Figure 2(c)). The integration of fields in sub-
derivations is implemented in fashion similar to the
integration of words.

Number of Fields per Record This feature family
is a coarser version of the Field bigrams/trigrams
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R(search1.t)

FS(flight1.t,start) R(flight1.t)

FS0,3(search1.t,start)

w0(search1.t,type) · · · w1,2(search1.t,what) show
me

what
· · ·


 me the

me f lights
the f lights

· · ·



FS2,6(flight1.t,start)

F2,4(flight1.t,from) FS4,6(flight1.t,from)

F4,6(flight1.t,to)
ε

| 2 words |

(b)Word Trigrams (non-local)
<show me the>, <show me flights>, etc.

(a)Alignment Features (local)
<R(srch1.t)→ FS(fl1.t,st) R(fl1.t)>

(c)Field Bigrams (non-local)
<from to> | flight

(d)Number of Words per Field (local)
<2 | from>

Figure 2: Simplified hypergraph examples with corresponding local and non-local features.

feature, which is deemed to be sparse for rarely-seen
records.

Field with No Value Although records in the ATIS

database schema have many fields, only a few are
assigned a value in any given scenario. For exam-
ple, the flight record has 13 fields, of which only 1.7
(on average) have a value. Practically, in a genera-
tive model this kind of sparsity would result in very
low field recall. We thus include an identity feature
function that explicitly counts whether a particular
field has a value.

4.3 Evaluation
We evaluated three configurations of our
model. A system that only uses the top scor-
ing derivation in each sub-generation and in-
corporates only the baseline and alignment
features (1-BEST+BASE+ALIGN). Our sec-
ond system considers the k-best derivations
and additionally includes lexical features
(k-BEST+BASE+ALIGN+LEX). The number of
k-best derivations was set to 40 and estimated
experimentally on held-out data. And finally,
our third system includes the full feature set
(k-BEST+BASE+ALIGN+LEX+STR). Note, that
the second and third system incorporate non-local
features, hence the use of k-best derivation lists.5

We compared our model to Angeli et al. (2010)
whose approach is closest to ours.6

We evaluated system output automatically, using
the BLEU-4 modified precision score (Papineni et

5Since the addition of these features, essentially incurs
reranking, it follows that the systems would exhibit the exact
same performance as the baseline system with 1-best lists.

6We are grateful to Gabor Angeli for providing us with the
code of his system.

al., 2002) with the human-written text as reference.
We also report results with the METEOR score
(Banerjee and Lavie, 2005), which takes into ac-
count word re-ordering and has been shown to cor-
relate better with human judgments at the sentence
level. In addition, we evaluated the generated text by
eliciting human judgments. Participants were pre-
sented with a scenario and its corresponding verbal-
ization (see Figure 3) and were asked to rate the lat-
ter along two dimensions: fluency (is the text gram-
matical and overall understandable?) and semantic
correctness (does the meaning conveyed by the text
correspond to the database input?). The subjects
used a five point rating scale where a high number
indicates better performance. We randomly selected
12 documents from the test set and generated out-
put with two of our models (1-BEST+BASE+ALIGN
and k-BEST+BASE+ALIGN+LEX+STR) and Angeli
et al.’s (2010) model. We also included the original
text (HUMAN) as a gold standard. We thus obtained
ratings for 48 (12× 4) scenario-text pairs. The study
was conducted over the Internet, using Amazon Me-
chanical Turk, and was completed by 51 volunteers,
all self reported native English speakers.

5 Results

Table 2 summarizes our results. As can be seen, in-
clusion of lexical features gives our decoder an ab-
solute increase of 6.73% in BLEU over the 1-BEST
system. It also outperforms the discriminative sys-
tem of Angeli et al. (2010). Our lexical features
seem more robust compared to their templates. This
is especially the case with infrequent records, where
their system struggles to learn any meaningful infor-
mation. Addition of the structural features further
boosts performance. Our model increases by 8.69%
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System BLEU METEOR
1-BEST+BASE+ALIGN 21.93 34.01
k-BEST+BASE+ALIGN+LEX 28.66 45.18
k-BEST+BASE+ALIGN+LEX+STR 30.62 46.07
ANGELI 26.77 42.41

Table 2: BLEU-4 and METEOR results on ATIS.

over the 1-BEST system and 3.85% over ANGELI in
terms of BLEU. We observe a similar trend when
evaluating system output with METEOR. Differ-
ences in magnitude are larger with the latter metric.

The results of our human evaluation study are
shown in Table 5. We carried out an Analysis of
Variance (ANOVA) to examine the effect of system
type (1-BEST, k-BEST, ANGELI, and HUMAN) on
the fluency and semantic correctness ratings. Means
differences were compared using a post-hoc Tukey
test. The k-BEST system is significantly better than
the 1-BEST and ANGELI (a < 0.01) both in terms
of fluency and semantic correctness. ANGELI is
significantly better than 1-BEST with regard to flu-
ency (a < 0.05) but not semantic correctness. There
is no statistically significant difference between the
k-BEST output and the original sentences (HUMAN).

Examples of system output are shown in Table 3.
They broadly convey similar meaning with the gold-
standard; ANGELI exhibits some long-range repeti-
tion, probably due to re-iteration of the same record
patterns. We tackle this issue with the inclusion of
non-local structural features. The 1-BEST system
has some grammaticality issues, which we avoid by
defining features over lexical n-grams and repeated
words. It is worth noting that both our system and
ANGELI produce output that is semantically com-
patible with but lexically different from the gold-
standard (compare please list the flights and show
me the flights against give me the flights). This is
expected given the size of the vocabulary, but raises
concerns regarding the use of automatic metrics for
the evaluation of generation output.

6 Conclusions

We presented a discriminative reranking framework
for an end-to-end generation system that performs
both content selection and surface realization. Cen-
tral to our approach is the encoding of generation
as a parsing problem. We reformulate the input (a
set of database records and text describing some of

System FluencySemCor
1-BEST+BASE+ALIGN 2.70 3.05
k-BEST+BASE+ALIGN+LEX+STR 4.02 4.04
ANGELI 3.74 3.17
HUMAN 4.18 4.02

Table 3: Mean ratings for fluency and semantic correct-
ness (SemCor) on system output elicited by humans.

Flight
from to

phoenix milwaukee

Time
when dep/ar

evening departure

Day
day dep/ar

wednesday departure

Search
type what
query flight

H
U

M
A

N
A

N
G

E
L

I
k-

B
E

S
T

1-
B

E
S

T

give me the flights from phoenix to milwaukee on
wednesday evening

show me the flights from phoenix to milwaukee on
wednesday evening flights from phoenix to milwaukee

please list the flights from phoenix to milwaukee on
wednesday evening

on wednesday evening from from phoenix to
milwaukee on wednesday evening

Figure 3: Example of scenario input and system output.

them) as a PCFG and convert it to a hypergraph. We
find the best scoring derivation via forest reranking
using both local and non-local features, that we train
using the perceptron algorithm. Experimental eval-
uation on the ATIS dataset shows that our model at-
tains significantly higher fluency and semantic cor-
rectness than any of the comparison systems. The
current model can be easily extended to incorporate,
additional, more elaborate features. Likewise, it can
port to other domains with similar database struc-
ture without modification, such as WEATHERGOV

and ROBOCUP. Finally, distributed training strate-
gies have been developed for the perceptron algo-
rithm (McDonald et al., 2010), which would allow
our generator to scale to even larger datasets.

In the future, we would also like to tackle more
challenging domains (e.g., product descriptions) and
to enrich our generator with some notion of dis-
course planning. An interesting question is how to
extend the PCFG-based approach advocated here so
as to capture discourse-level document structure.
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Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. In Proceedings of the
21st International Conference on Computational Lin-
guistics and the 44th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 761–768,
Sydney, Australia.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less supervi-
sion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP, pages 91–99, Suntec, Singapore.

Ryan McDonald, Keith Hall, and Gideon Mann. 2010.
Distributed training strategies for the structured per-
ceptron. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 456–464, Los Angeles, CA, June. Association
for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of

377



the 41st Annual Meeting on Association for Computa-
tional Linguistics, pages 160–167, Sapporo, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia.

Adwait Ratnaparkhi. 2002. Trainable approaches to sur-
face natural language generation and their application
to conversational dialog systems. Computer Speech &
Language, 16(3-4):435–455.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge University
Press, New York, NY.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu,
and Ian Davy. 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelligence,
167:137–169.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
HLT-NAACL 2004: Main Proceedings, pages 177–
184, Boston, Massachusetts.

Ross Turner, Yaji Sripada, and Ehud Reiter. 2009. Gen-
erating approximate geographic descriptions. In Pro-
ceedings of the 12th European Workshop on Natural
Language Generation, pages 42–49, Athens, Greece.

Yuk Wah Wong and Raymond Mooney. 2007. Gener-
ation by inverting a semantic parser that uses statis-
tical machine translation. In Proceedings of the Hu-
man Language Technology and the Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 172–179, Rochester, NY.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to log-
ical form. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 678–687, Prague, Czech
Republic.

378



Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 379–388,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

A Discriminative Hierarchical Model for Fast Coreference at Large Scale

Michael Wick
University of Massachsetts

140 Governor’s Drive
Amherst, MA

mwick@cs.umass.edu

Sameer Singh
University of Massachusetts

140 Governor’s Drive
Amherst, MA

sameer@cs.umass.edu

Andrew McCallum
University of Massachusetts

140 Governor’s Drive
Amherst, MA

mccallum@cs.umass.edu

Abstract

Methods that measure compatibility between
mention pairs are currently the dominant ap-
proach to coreference. However, they suffer
from a number of drawbacks including diffi-
culties scaling to large numbers of mentions
and limited representational power. As these
drawbacks become increasingly restrictive,
the need to replace the pairwise approaches
with a more expressive, highly scalable al-
ternative is becoming urgent. In this paper
we propose a novel discriminative hierarchical
model that recursively partitions entities into
trees of latent sub-entities. These trees suc-
cinctly summarize the mentions providing a
highly compact, information-rich structure for
reasoning about entities and coreference un-
certainty at massive scales. We demonstrate
that the hierarchical model is several orders
of magnitude faster than pairwise, allowing us
to perform coreference on six million author
mentions in under four hours on a single CPU.

1 Introduction

Coreference resolution, the task of clustering men-
tions into partitions representing their underlying
real-world entities, is fundamental for high-level in-
formation extraction and data integration, including
semantic search, question answering, and knowl-
edge base construction. For example, coreference
is vital for determining author publication lists in
bibliographic knowledge bases such as CiteSeer and
Google Scholar, where the repository must know
if the “R. Hamming” who authored “Error detect-
ing and error correcting codes” is the same” “R.

Hamming” who authored “The unreasonable effec-
tiveness of mathematics.” Features of the mentions
(e.g., bags-of-words in titles, contextual snippets
and co-author lists) provide evidence for resolving
such entities.

Over the years, various machine learning tech-
niques have been applied to different variations of
the coreference problem. A commonality in many
of these approaches is that they model the prob-
lem of entity coreference as a collection of deci-
sions between mention pairs (Bagga and Baldwin,
1999; Soon et al., 2001; McCallum and Wellner,
2004; Singla and Domingos, 2005; Bengston and
Roth, 2008). That is, coreference is solved by an-
swering a quadratic number of questions of the form
“does mention A refer to the same entity as mention
B?” with a compatibility function that indicates how
likely A and B are coreferent. While these models
have been successful in some domains, they also ex-
hibit several undesirable characteristics. The first is
that pairwise models lack the expressivity required
to represent aggregate properties of the entities. Re-
cent work has shown that these entity-level prop-
erties allow systems to correct coreference errors
made from myopic pairwise decisions (Ng, 2005;
Culotta et al., 2007; Yang et al., 2008; Rahman and
Ng, 2009; Wick et al., 2009), and can even provide
a strong signal for unsupervised coreference (Bhat-
tacharya and Getoor, 2006; Haghighi and Klein,
2007; Haghighi and Klein, 2010).

A second problem, that has received significantly
less attention in the literature, is that the pair-
wise coreference models scale poorly to large col-
lections of mentions especially when the expected
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Figure 1: Discriminative hierarchical factor graph for coreference: Latent entity nodes (white boxes)
summarize subtrees. Pairwise factors (black squares) measure compatibilities between child and parent
nodes, avoiding quadratic blow-up. Corresponding decision variables (open circles) indicate whether one
node is the child of another. Mentions (gray boxes) are leaves. Deciding whether to merge these two entities
requires evaluating just a single factor (red square), corresponding to the new child-parent relationship.

number of mentions in each entity cluster is also
large. Current systems cope with this by either
dividing the data into blocks to reduce the search
space (Hernández and Stolfo, 1995; McCallum et
al., 2000; Bilenko et al., 2006), using fixed heuris-
tics to greedily compress the mentions (Ravin and
Kazi, 1999; Rao et al., 2010), employing special-
ized Markov chain Monte Carlo procedures (Milch
et al., 2006; Richardson and Domingos, 2006; Singh
et al., 2010), or introducing shallow hierarchies of
sub-entities for MCMC block moves and super-
entities for adaptive distributed inference (Singh et
al., 2011). However, while these methods help man-
age the search space for medium-scale data, eval-
uating each coreference decision in many of these
systems still scales linearly with the number of men-
tions in an entity, resulting in prohibitive computa-
tional costs associated with large datasets. This scal-
ing with the number of mentions per entity seems
particularly wasteful because although it is common
for an entity to be referenced by a large number
of mentions, many of these coreferent mentions are
highly similar to each other. For example, in author
coreference the two most common strings that refer
to Richard Hamming might have the form “R. Ham-
ming” and “Richard Hamming.” In newswire coref-
erence, a prominent entity like Barack Obama may
have millions of “Obama” mentions (many occur-
ring in similar semantic contexts). Deciding whether

a mention belongs to this entity need not involve
comparisons to all contextually similar “Obama”
mentions; rather we prefer a more compact repre-
sentation in order to efficiently reason about them.

In this paper we propose a novel hierarchical dis-
criminative factor graph for coreference resolution
that recursively structures each entity as a tree of la-
tent sub-entities with mentions at the leaves. Our
hierarchical model avoids the aforementioned prob-
lems of the pairwise approach: not only can it jointly
reason about attributes of entire entities (using the
power of discriminative conditional random fields),
but it is also able to scale to datasets with enor-
mous numbers of mentions because scoring enti-
ties does not require computing a quadratic number
of compatibility functions. The key insight is that
each node in the tree functions as a highly compact
information-rich summary of its children. Thus, a
small handful of upper-level nodes may summarize
millions of mentions (for example, a single node
may summarize all contextually similar “R. Ham-
ming” mentions). Although inferring the structure
of the entities requires reasoning over a larger state-
space, the latent trees are actually beneficial to in-
ference (as shown for shallow trees in Singh et
al. (2011)), resulting in rapid progress toward high
probability regions, and mirroring known benefits
of auxiliary variable methods in statistical physics
(such as Swendsen and Wang (1987)). Moreover,
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each step of inference is computationally efficient
because evaluating the cost of attaching (or detach-
ing) sub-trees requires computing just a single com-
patibility function (as seen in Figure 1). Further,
our hierarchical approach provides a number of ad-
ditional advantages. First, the recursive nature of the
tree (arbitrary depth and width) allows the model to
adapt to different types of data and effectively com-
press entities of different scales (e.g., entities with
more mentions may require a deeper hierarchy to
compress). Second, the model contains compatibil-
ity functions at all levels of the tree enabling it to si-
multaneously reason at multiple granularities of en-
tity compression. Third, the trees can provide split
points for finer-grained entities by placing contex-
tually similar mentions under the same subtree. Fi-
nally, if memory is limited, redundant mentions can
be pruned by replacing subtrees with their roots.

Empirically, we demonstrate that our model is
several orders of magnitude faster than a pairwise
model, allowing us to perform efficient coreference
on nearly six million author mentions in under four
hours using a single CPU.

2 Background: Pairwise Coreference

Coreference is the problem of clustering mentions
such that mentions in the same set refer to the same
real-world entity; it is also known as entity disam-
biguation, record linkage, and de-duplication. For
example, in author coreference, each mention might
be represented as a record extracted from the author
field of a textual citation or BibTeX record. The
mention record may contain attributes for the first,
middle, and last name of the author, as well as con-
textual information occurring in the citation string,
co-authors, titles, topics, and institutions. The goal
is to cluster these mention records into sets, each
containing all the mentions of the author to which
they refer; we use this task as a running pedagogical
example.

Let M be the space of observed mention records;
then the traditional pairwise coreference approach
scores candidate coreference solutions with a com-
patibility function ψ : M × M → < that mea-
sures how likely it is that the two mentions re-
fer to the same entity.1 In discriminative log-

1We can also include an incompatibility function for when

linear models, the function ψ takes the form of
weights θ on features φ(mi,mj), i.e., ψ(mi,mj) =
exp (θ · φ(mi,mj)). For example, in author coref-
erence, the feature functions φ might test whether
the name fields for two author mentions are string
identical, or compute cosine similarity between the
two mentions’ bags-of-words, each representing a
mention’s context. The corresponding real-valued
weights θ determine the impact of these features on
the overall pairwise score.

Coreference can be solved by introducing a set of
binary coreference decision variables for each men-
tion pair and predicting a setting to their values that
maximizes the sum of pairwise compatibility func-
tions. While it is possible to independently make
pairwise decisions and enforce transitivity post hoc,
this can lead to poor accuracy because the decisions
are tightly coupled. For higher accuracy, a graphi-
cal model such as a conditional random field (CRF)
is constructed from the compatibility functions to
jointly reason about the pairwise decisions (McCal-
lum and Wellner, 2004). We now describe the pair-
wise CRF for coreference as a factor graph.

2.1 Pairwise Conditional Random Field
Each mention mi ∈ M is an observed variable, and
for each mention pair (mi,mj) we have a binary
coreference decision variable yij whose value de-
termines whether mi and mj refer to the same en-
tity (i.e., 1 means they are coreferent and 0 means
they are not coreferent). The pairwise compatibility
functions become the factors in the graphical model.
Each factor examines the properties of its mention
pair as well as the setting to the coreference decision
variable and outputs a score indicating how likely
the setting of that coreference variable is. The joint
probability distribution over all possible settings to
the coreference decision variables (y) is given as a
product of all the pairwise compatibility factors:

Pr(y|m) ∝
n∏

i=1

n∏
j=1

ψ(mi,mj , yij) (1)

Given the pairwise CRF, the problem of coreference
is then solved by searching for the setting of the
coreference decision variables that has the highest
probability according to Equation 1 subject to the

the mentions are not coreferent, e.g., ψ : M×M×{0, 1} → <
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Figure 2: Pairwise model on six mentions: Open
circles are the binary coreference decision variables,
shaded circles are the observed mentions, and the
black boxes are the factors of the graphical model
that encode the pairwise compatibility functions.

constraint that the setting to the coreference vari-
ables obey transitivity;2 this is the maximum proba-
bility estimate (MPE) setting. However, the solution
to this problem is intractable, and even approximate
inference methods such as loopy belief propagation
can be difficult due to the cubic number of determin-
istic transitivity constraints.

2.2 Approximate Inference
An approximate inference framework that has suc-
cessfully been used for coreference models is
Metropolis-Hastings (MH) (Milch et al. (2006), Cu-
lotta and McCallum (2006), Poon and Domingos
(2007), amongst others), a Markov chain Monte
Carlo algorithm traditionally used for marginal in-
ference, but which can also be tuned for MPE in-
ference. MH is a flexible framework for specify-
ing customized local-search transition functions and
provides a principled way of deciding which local
search moves to accept. A proposal function q takes
the current coreference hypothesis and proposes a
new hypothesis by modifying a subset of the de-
cision variables. The proposed change is accepted
with probability α:

α = min

(
1,
P r(y′)

Pr(y)

q(y|y′)
q(y′|y)

)
(2)

2We say that a full assignment to the coreference variables
y obeys transitivity if ∀ ijk yij = 1 ∧ yjk = 1 =⇒ yik = 1

When using MH for MPE inference, the second term
q(y|y′)/q(y′|y) is optional, and usually omitted.
Moves that reduce model score may be accepted and
an optional temperature can be used for annealing.
The primary advantages of MH for coreference are
(1) only the compatibility functions of the changed
decision variables need to be evaluated to accept a
move, and (2) the proposal function can enforce the
transitivity constraint by exploring only variable set-
tings that result in valid coreference partitionings.

A commonly used proposal distribution for coref-
erence is the following: (1) randomly select two
mentions (mi,mj), (2) if the mentions (mi,mj) are
in the same entity cluster according to y then move
one mention into a singleton cluster (by setting the
necessary decision variables to 0), otherwise, move
mention mi so it is in the same cluster as mj (by
setting the necessary decision variables). Typically,
MH is employed by first initializing to a singleton
configuration (all entities have one mention), and
then executing the MH for a certain number of steps
(or until the predicted coreference hypothesis stops
changing).

This proposal distribution always moves a sin-
gle mention m from some entity ei to another en-
tity ej and thus the configuration y and y′ only dif-
fer by the setting of decision variables governing to
which entity m refers. In order to guarantee transi-
tivity and a valid coreference equivalence relation,
we must properly remove m from ei by untethering
m from each mention in ei (this requires computing
|ei| − 1 pairwise factors). Similarly—again, for the
sake of transitivity—in order to complete the move
into ej we must coref m to each mention in ej (this
requires computing |ej | pairwise factors). Clearly,
all the other coreference decision variables are in-
dependent and so their corresponding factors can-
cel because they yield the same scores under y and
y′. Thus, evaluating each proposal for the pairwise
model scales linearly with the number of mentions
assigned to the entities, requiring the evaluation of
2(|ei|+ |ej | − 1) compatibility functions (factors).

3 Hierarchical Coreference

Instead of only capturing a single coreference clus-
tering between mention pairs, we can imagine mul-
tiple levels of coreference decisions over different
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granularities. For example, mentions of an author
may be further partitioned into semantically similar
sets, such that mentions from each set have topically
similar papers. This partitioning can be recursive,
i.e., each of these sets can be further partitioned, cap-
turing candidate splits for an entity that can facilitate
inference. In this section, we describe a model that
captures arbitrarily deep hierarchies over such lay-
ers of coreference decisions, enabling efficient in-
ference and rich entity representations.

3.1 Discriminative Hierarchical Model

In contrast to the pairwise model, where each en-
tity is a flat cluster of mentions, our proposed model
structures each entity recursively as a tree. The
leaves of the tree are the observed mentions with
a set of attribute values. Each internal node of the
tree is latent and contains a set of unobserved at-
tributes; recursively, these node records summarize
the attributes of their child nodes (see Figure 1), for
example, they may aggregate the bags of context
words of the children. The root of each tree repre-
sents the entire entity, with the leaves containing its
mentions. Formally, the coreference decision vari-
ables in the hierarchical model no longer represent
pairwise decisions directly. Instead, a decision vari-
able yri,rj = 1 indicates that node-record rj is the
parent of node-record ri. We say a node-record ex-
ists if either it is a mention, has a parent, or has at
least one child. Let R be the set of all existing node
records, let rp denote the parent for node r, that is
yr,rp = 1, and ∀r′ 6= rp, yr,r′ = 0. As we describe
in more detail later, the structure of the tree and the
values of the unobserved attributes are determined
during inference.

In order to represent our recursive model of coref-
erence, we include two types of factors: pairwise
factors ψpw that measure compatibility between a
child node-record and its parent, and unit-wise fac-
tors ψrw that measure compatibilities of the node-
records themselves. For efficiency we enforce that
parent-child factors only produce a non-zero score
when the corresponding decision variable is 1. The
unit-wise factors can examine compatibility of set-
tings to the attribute variables for a particular node
(for example, the set of topics may be too diverse
to represent just a single entity), as well as enforce
priors over the tree’s breadth and depth. Our recur-

sive hierarchical model defines the probability of a
configuration as:

Pr(y, R|m) ∝
∏
r∈R

ψrw(r)ψpw(r, rp) (3)

3.2 MCMC Inference for Hierarchical models

The state space of our hierarchical model is substan-
tially larger (theoretically infinite) than the pairwise
model due to the arbitrarily deep (and wide) latent
structure of the cluster trees. Inference must simul-
taneously determine the structure of the tree, the la-
tent node-record values, as well as the coreference
decisions themselves.

While this may seem daunting, the structures be-
ing inferred are actually beneficial to inference. In-
deed, despite the enlarged state space, inference
in the hierarchical model is substantially faster
than a pairwise model with a smaller state space.
One explanatory intuition comes from the statisti-
cal physics community: we can view the latent tree
as auxiliary variables in a data-augmentation sam-
pling scheme that guide MCMC through the state
space more efficiently. There is a large body of lit-
erature in the statistics community describing how
these auxiliary variables can lead to faster conver-
gence despite the enlarged state space (classic exam-
ples include Swendsen and Wang (1987) and slice
samplers (Neal, 2000)).

Further, evaluating each proposal during infer-
ence in the hierarchical model is substantially faster
than in the pairwise model. Indeed, we can replace
the linear number of factor evaluations (as in the
pairwise model) with a constant number of factor
evaluations for most proposals (for example, adding
a subtree requires re-evaluating only a single parent-
child factor between the subtree and the attachment
point, and a single node-wise factor).

Since inference must determine the structure of
the entity trees in addition to coreference, it is ad-
vantageous to consider multiple MH proposals per
sample. Therefore, we employ a modified variant
of MH that is similar to multi-try Metropolis (Liu
et al., 2000). Our modified MH algorithm makes k
proposals and samples one according to its model
ratio score (the first term in Equation 2) normalized
across all k. More specificaly, for each MH step, we
first randomly select two subtrees headed by node-
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records ri and rj from the current coreference hy-
pothesis. If ri and rj are in different clusters, we
propose several alternate merge operations: (also in
Figure 3):
• Merge Left - merges the entire subtree of rj into
node ri by making rj a child of ri
•Merge Entity Left - merges rj with ri’s root
•Merge Left and Collapse - merges rj into ri then
performs a collapse on rj (see below).
• Merge Up - merges node ri with node rj by cre-
ating a new parent node-record variable rp with ri
and rj as the children. The attribute fields of rp are
selected from ri and rj .

Otherwise ri and rj are subtrees in the same entity
tree, then the following proposals are used instead:
• Split Right - Make the subtree rj the root of a new
entity by detaching it from its parent
• Collapse - If ri has a parent, then move ri’s chil-
dren to ri’s parent and then delete ri.
• Sample attribute - Pick a new value for an at-
tribute of ri from its children.

Computing the model ratio for all of coreference
proposals requires only a constant number of com-
patibility functions. On the other hand, evaluating
proposals in the pairwise model requires evaluat-
ing a number of compatibility functions equal to the
number of mentions in the clusters being modified.

Note that changes to the attribute values of the
node-record and collapsing still require evaluating
a linear number of factors, but this is only linear in
the number of child nodes, not linear in the number
of mentions referring to the entity. Further, attribute
values rarely change once the entities stabilize. Fi-
nally, we incrementally update bags during corefer-
ence to reflect the aggregates of their children.

4 Experiments: Author Coreference

Author coreference is a tremendously important
task, enabling improved search and mining of sci-
entific papers by researchers, funding agencies, and
governments. The problem is extremely difficult due
to the wide variations of names, limited contextual
evidence, misspellings, people with common names,
lack of standard citation formats, and large numbers
of mentions.

For this task we use a publicly available collec-
tion of 4,394 BibTeX files containing 817,193 en-

tries.3 We extract 1,322,985 author mentions, each
containing first, middle, last names, bags-of-words
of paper titles, topics in paper titles (by running la-
tent Dirichlet allocation (Blei et al., 2003)), and last
names of co-authors. In addition we include 2,833
mentions from the REXA dataset4 labeled for coref-
erence, in order to assess accuracy. We also include
∼5 million mentions from DBLP.

4.1 Models and Inference

Due to the paucity of labeled training data, we did
not estimate parameters from data, but rather set
the compatibility functions manually by specifying
their log scores. The pairwise compatibility func-
tions punish a string difference in first, middle, and
last name, (−8); reward a match (+2); and reward
matching initials (+1). Additionally, we use the co-
sine similarity (shifted and scaled between −4 and
4) between the bags-of-words containing title to-
kens, topics, and co-author last names. These com-
patibility functions define the scores of the factors
in the pairwise model and the parent-child factors
in the hierarchical model. Additionally, we include
priors over the model structure. We encourage each
node to have eight children using a per node factor
having score 1/(|number of children−8|+1), manage
tree depth by placing a cost on the creation of inter-
mediate tree nodes −8 and encourage clustering by
placing a cost on the creation of root-level entities
−7. These weights were determined by just a few
hours of tuning on a development set.

We initialize the MCMC procedures to the single-
ton configuration (each entity consists of one men-
tion) for each model, and run the MH algorithm de-
scribed in Section 2.2 for the pairwise model and
multi-try MH (described in Section 3.2) for the hi-
erarchical model. We augment these samplers us-
ing canopies constructed by concatenating the first
initial and last name: that is, mentions are only
selected from within the same canopy (or block)
to reduce the search space (Bilenko et al., 2006).
During the course of MCMC inference, we record
the pairwise F1 scores of the labeled subset. The
source code for our model is available as part of the
FACTORIE package (McCallum et al., 2009, http:

3http://www.iesl.cs.umass.edu/data/bibtex
4http://www2.selu.edu/Academics/Faculty/

aculotta/data/rexa.html
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Figure 3: Example coreference proposals for the case where ri and rj are initially in different clusters.

//factorie.cs.umass.edu/).

4.2 Comparison to Pairwise Model

In Figure 4a we plot the number of samples com-
pleted over time for a 145k subset of the data. Re-
call that we initialized to the singleton configuration
and that as the size of the entities grows, the cost of
evaluating the entities in MCMC becomes more ex-
pensive. The pairwise model struggles with the large
cluster sizes while the hierarchical model is hardly
affected. Even though the hierarchical model is eval-
uating up to four proposals for each sample, it is still
able to sample much faster than the pairwise model;
this is expected because the cost of evaluating a pro-
posal requires evaluating fewer factors. Next, we
plot coreference F1 accuracy over time and show in
Figure 5a that the prolific sampling rate of the hierar-
chical model results in faster coreference. Using the
plot, we can compare running times for any desired
level of accuracy. For example, on the 145k men-
tion dataset, at a 60% accuracy level the hierarchical
model is 19 times faster and at 90% accuracy it is
31 times faster. These performance improvements
are even more profound on larger datasets: the hi-
erarchical model achieves a 60% level of accuracy
72 times faster than the pairwise model on the 1.3
million mention dataset, reaching 90% in just 2,350
seconds. Note, however, that the hierarchical model
requires more samples to reach a similar level of ac-
curacy due to the larger state space (Figure 4b).

4.3 Large Scale Experiments

In order to demonstrate the scalability of the hierar-
chical model, we run it on nearly 5 million author
mentions from DBLP. In under two hours (6,700
seconds), we achieve an accuracy of 80%, and in
under three hours (10,600 seconds), we achieve an

accuracy of over 90%. Finally, we combine DBLP
with BibTeX data to produce a dataset with almost 6
million mentions (5,803,811). Our performance on
this dataset is similar to DBLP, taking just 13,500
seconds to reach a 90% accuracy.

5 Related Work

Singh et al. (2011) introduce a hierarchical model
for coreference that treats entities as a two-tiered
structure, by introducing the concept of sub-entities
and super-entities. Super-entities reduce the search
space in order to propose fruitful jumps. Sub-
entities provide a tighter granularity of coreference
and can be used to perform larger block moves dur-
ing MCMC. However, the hierarchy is fixed and
shallow. In contrast, our model can be arbitrarily
deep and wide. Even more importantly, their model
has pairwise factors and suffers from the quadratic
curse, which they address by distributing inference.

The work of Rao et al. (2010) uses streaming
clustering for large-scale coreference. However, the
greedy nature of the approach does not allow errors
to be revisited. Further, they compress entities by
averaging their mentions’ features. We are able to
provide richer entity compression, the ability to re-
visit errors, and scale to larger data.

Our hierarchical model provides the advantages
of recently proposed entity-based coreference sys-
tems that are known to provide higher accuracy
(Haghighi and Klein, 2007; Culotta et al., 2007;
Yang et al., 2008; Wick et al., 2009; Haghighi and
Klein, 2010). However, these systems reason over a
single layer of entities and do not scale well.

Techniques such as lifted inference (Singla and
Domingos, 2008) for graphical models exploit re-
dundancy in the data, but typically do not achieve
any significant compression on coreference data be-
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Figure 4: Sampling Performance Plots for 145k mentions
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Figure 5: Runtime performance on two datasets

cause the observations usually violate any symmetry
assumptions. On the other hand, our model is able
to compress similar (but potentially different) obser-
vations together in order to make inference fast even
in the presence of asymmetric observed data.

6 Conclusion

In this paper we present a new hierarchical model
for large scale coreference and demonstrate it on
the problem of author disambiguation. Our model
recursively defines an entity as a summary of its
children nodes, allowing succinct representations of
millions of mentions. Indeed, inference in the hier-
archy is orders of magnitude faster than a pairwise
CRF, allowing us to infer accurate coreference on

six million mentions on one CPU in just 4 hours.
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Abstract

To address semantic ambiguities in corefer-
ence resolution, we use Web n-gram features
that capture a range of world knowledge in a
diffuse but robust way. Specifically, we ex-
ploit short-distance cues to hypernymy, se-
mantic compatibility, and semantic context, as
well as general lexical co-occurrence. When
added to a state-of-the-art coreference base-
line, our Web features give significant gains on
multiple datasets (ACE 2004 and ACE 2005)
and metrics (MUC and B3), resulting in the
best results reported to date for the end-to-end
task of coreference resolution.

1 Introduction

Many of the most difficult ambiguities in corefer-
ence resolution are semantic in nature. For instance,
consider the following example:

When Obama met Jobs, the president dis-
cussed the economy, technology, and educa-
tion. His election campaign is expected to [...]

For resolving coreference in this example, a sys-
tem would benefit from the world knowledge that
Obama is the president. Also, to resolve the pro-
noun his to the correct antecedent Obama, we can
use the knowledge that Obama has an election cam-
paign while Jobs does not. Such ambiguities are
difficult to resolve on purely syntactic or configu-
rational grounds.

There have been multiple previous systems that
incorporate some form of world knowledge in coref-
erence resolution tasks. Most work (Poesio et
al., 2004; Markert and Nissim, 2005; Yang et
al., 2005; Bergsma and Lin, 2006) addresses spe-
cial cases and subtasks such as bridging anaphora,

other anaphora, definite NP reference, and pronoun
resolution, computing semantic compatibility via
Web-hits and counts from large corpora. There
is also work on end-to-end coreference resolution
that uses large noun-similarity lists (Daumé III and
Marcu, 2005) or structured knowledge bases such as
Wikipedia (Yang and Su, 2007; Haghighi and Klein,
2009; Kobdani et al., 2011) and YAGO (Rahman
and Ng, 2011). However, such structured knowledge
bases are of limited scope, and, while Haghighi and
Klein (2010) self-acquires knowledge about corefer-
ence, it does so only via reference constructions and
on a limited scale.

In this paper, we look to the Web for broader if
shallower sources of semantics. In order to harness
the information on the Web without presupposing
a deep understanding of all Web text, we instead
turn to a diverse collection of Web n-gram counts
(Brants and Franz, 2006) which, in aggregate, con-
tain diffuse and indirect, but often robust, cues to
reference. For example, we can collect the co-
occurrence statistics of an anaphor with various can-
didate antecedents to judge relative surface affinities
(i.e., (Obama, president) versus (Jobs, president)).
We can also count co-occurrence statistics of com-
peting antecedents when placed in the context of an
anaphoric pronoun (i.e., Obama’s election campaign
versus Jobs’ election campaign).

All of our features begin with a pair of head-
words from candidate mention pairs and compute
statistics derived from various potentially informa-
tive queries’ counts. We explore five major cat-
egories of semantically informative Web features,
based on (1) general lexical affinities (via generic
co-occurrence statistics), (2) lexical relations (via
Hearst-style hypernymy patterns), (3) similarity of
entity-based context (e.g., common values of y for
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which h is a y is attested), (4) matches of distribu-
tional soft cluster ids, and (5) attested substitutions
of candidate antecedents in the context of a pronom-
inal anaphor.

We first describe a strong baseline consisting of
the mention-pair model of the Reconcile system
(Stoyanov et al., 2009; Stoyanov et al., 2010) us-
ing a decision tree (DT) as its pairwise classifier. To
this baseline system, we add our suite of features
in turn, each class of features providing substantial
gains. Altogether, our final system produces the best
numbers reported to date on end-to-end coreference
resolution (with automatically detected system men-
tions) on multiple data sets (ACE 2004 and ACE
2005) and metrics (MUC and B3), achieving signif-
icant improvements over the Reconcile DT baseline
and over the state-of-the-art results of Haghighi and
Klein (2010).

2 Baseline System

Before describing our semantic Web features, we
first describe our baseline. The core inference and
features come from the Reconcile package (Stoy-
anov et al., 2009; Stoyanov et al., 2010), with modi-
fications described below. Our baseline differs most
substantially from Stoyanov et al. (2009) in using a
decision tree classifier rather than an averaged linear
perceptron.

2.1 Reconcile

Reconcile is one of the best implementations of the
mention-pair model (Soon et al., 2001) of coref-
erence resolution. The mention-pair model relies
on a pairwise function to determine whether or not
two mentions are coreferent. Pairwise predictions
are then consolidated by transitive closure (or some
other clustering method) to form the final set of
coreference clusters (chains). While our Web fea-
tures could be adapted to entity-mention systems,
their current form was most directly applicable to
the mention-pair approach, making Reconcile a par-
ticularly well-suited platform for this investigation.

The Reconcile system provides baseline features,
learning mechanisms, and resolution procedures that
already achieve near state-of-the-art results on mul-
tiple popular datasets using multiple standard met-
rics. It includes over 80 core features that exploit

various automatically generated annotations such as
named entity tags, syntactic parses, and WordNet
classes, inspired by Soon et al. (2001), Ng and
Cardie (2002), and Bengtson and Roth (2008). The
Reconcile system also facilitates standardized em-
pirical evaluation to past work.1

In this paper, we develop a suite of simple seman-
tic Web features based on pairs of mention head-
words which stack with the default Reconcile fea-
tures to surpass past state-of-the-art results.

2.2 Decision Tree Classifier

Among the various learning algorithms that Recon-
cile supports, we chose the decision tree classifier,
available in Weka (Hall et al., 2009) as J48, an open
source Java implementation of the C4.5 algorithm of
Quinlan (1993).

The C4.5 algorithm builds decision trees by incre-
mentally maximizing information gain. The train-
ing data is a set of already classified samples, where
each sample is a vector of attributes or features. At
each node of the tree, C4.5 splits the data on an
attribute that most effectively splits its set of sam-
ples into more ordered subsets, and then recurses on
these smaller subsets. The decision tree can then be
used to classify a new sample by following a path
from the root downward based on the attribute val-
ues of the sample.

We find the decision tree classifier to work better
than the default averaged perceptron (used by Stoy-
anov et al. (2009)), on multiple datasets using multi-
ple metrics (see Section 4.3). Many advantages have
been claimed for decision tree classifiers, including
interpretability and robustness. However, we sus-
pect that the aspect most relevant to our case is that
decision trees can capture non-linear interactions be-
tween features. For example, recency is very im-
portant for pronoun reference but much less so for
nominal reference.

3 Semantics via Web Features

Our Web features for coreference resolution are sim-
ple and capture a range of diffuse world knowledge.
Given a mention pair, we use the head finder in Rec-
oncile to find the lexical heads of both mentions (for

1We use the default configuration settings of Reconcile
(Stoyanov et al., 2010) unless mentioned otherwise.
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example, the head of the Palestinian territories is the
word territories). Next, we take each headword pair
(h1, h2) and compute various Web-count functions
on it that can signal whether or not this mention pair
is coreferent.

As the source of Web information, we use the
Google n-grams corpus (Brants and Franz, 2006)
which contains English n-grams (n = 1 to 5) and
their Web frequency counts, derived from nearly 1
trillion word tokens and 95 billion sentences. Be-
cause we have many queries that must be run against
this corpus, we apply the trie-based hashing algo-
rithm of Bansal and Klein (2011) to efficiently an-
swer all of them in one pass over it. The features
that require word clusters (Section 3.4) use the out-
put of Lin et al. (2010).2

We describe our five types of features in turn. The
first four types are most intuitive for mention pairs
where both members are non-pronominal, but, aside
from the general co-occurrence group, helped for all
mention pair types. The fifth feature group applies
only to pairs in which the anaphor is a pronoun but
the antecedent is a non-pronoun. Related work for
each feature category is discussed inline.

3.1 General co-occurrence

These features capture co-occurrence statistics of
the two headwords, i.e., how often h1 and h2 are
seen adjacent or nearly adjacent on the Web. This
count can be a useful coreference signal because,
in general, mentions referring to the same entity
will co-occur more frequently (in large corpora) than
those that do not. Using the n-grams corpus (for n
= 1 to 5), we collect co-occurrence Web-counts by
allowing a varying number of wildcards between h1

and h2 in the query. The co-occurrence value is:

bin

(
log10

(
c12

c1 · c2

))

2These clusters are derived form the V2 Google n-grams
corpus. The V2 corpus itself is not publicly available, but
the clusters are available at http://www.clsp.jhu.edu/
˜sbergsma/PhrasalClusters

where

c12 = count(“h1 ? h2”)

+ count(“h1 ? ? h2”)

+ count(“h1 ? ? ? h2”),

c1 = count(“h1”), and

c2 = count(“h2”).

We normalize the overall co-occurrence count of the
headword pair c12 by the unigram counts of the indi-
vidual headwords c1 and c2, so that high-frequency
headwords do not unfairly get a high feature value
(this is similar to computing scaled mutual infor-
mation MI (Church and Hanks, 1989)).3 This nor-
malized value is quantized by taking its log10 and
binning. The actual feature that fires is an indica-
tor of which quantized bin the query produced. As
a real example from our development set, the co-
occurrence count c12 for the headword pair (leader,
president) is 11383, while it is only 95 for the head-
word pair (voter, president); after normalization and
log10, the values are -10.9 and -12.0, respectively.

These kinds of general Web co-occurrence statis-
tics have been used previously for other supervised
NLP tasks such as spelling correction and syntac-
tic parsing (Bergsma et al., 2010; Bansal and Klein,
2011). In coreference, similar word-association
scores were used by Kobdani et al. (2011), but from
Wikipedia and for self-training.

3.2 Hearst co-occurrence
These features capture templated co-occurrence of
the two headwords h1 and h2 in the Web-corpus.
Here, we only collect statistics of the headwords co-
occurring with a generalized Hearst pattern (Hearst,
1992) in between. Hearst patterns capture various
lexical semantic relations between items. For ex-
ample, seeing X is a Y or X and other Y indicates
hypernymy and also tends to cue coreference. The
specific patterns we use are:

• h1 {is | are | was | were} {a | an | the}? h2

• h1 {and | or} {other | the other | another} h2

• h1 other than {a | an | the}? h2

3We also tried adding count(“h1 h2”) to c12 but this
decreases performance, perhaps because truly adjacent occur-
rences are often not grammatical.
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• h1 such as {a | an | the}? h2

• h1 , including {a | an | the}? h2

• h1 , especially {a | an | the}? h2

• h1 of {the| all}? h2

For this feature, we again use a quantized nor-
malized count as in Section 3.1, but c12 here is re-
stricted to n-grams where one of the above patterns
occurs in between the headwords. We did not al-
low wildcards in between the headwords and the
Hearst-patterns because this introduced a significant
amount of noise. Also, we do not constrain the or-
der of h1 and h2 because these patterns can hold
for either direction of coreference.4 As a real ex-
ample from our development set, the c12 count for
the headword pair (leader, president) is 752, while
for (voter, president), it is 0.

Hypernymic semantic compatibility for corefer-
ence is intuitive and has been explored in varying
forms by previous work. Poesio et al. (2004) and
Markert and Nissim (2005) employ a subset of our
Hearst patterns and Web-hits for the subtasks of
bridging anaphora, other-anaphora, and definite NP
resolution. Others (Haghighi and Klein, 2009; Rah-
man and Ng, 2011; Daumé III and Marcu, 2005)
use similar relations to extract compatibility statis-
tics from Wikipedia, YAGO, and noun-similarity
lists. Yang and Su (2007) use Wikipedia to auto-
matically extract semantic patterns, which are then
used as features in a learning setup. Instead of ex-
tracting patterns from the training data, we use all
the above patterns, which helps us generalize to new
datasets for end-to-end coreference resolution (see
Section 4.3).

3.3 Entity-based context

For each headword h, we first collect context seeds
y using the pattern

h {is | are | was | were} {a | an | the}? y

taking seeds y in order of decreasing Web count.
The corresponding ordered seed list Y = {y} gives
us useful information about the headword’s entity
type. For example, for h = president, the top

4Two minor variants not listed above are h1 including h2

and h1 especially h2.

30 seeds (and their parts of speech) include impor-
tant cues such as president is elected (verb), pres-
ident is authorized (verb), president is responsible
(adjective), president is the chief (adjective), presi-
dent is above (preposition), and president is the head
(noun).

Matches in the seed lists of two headwords can
be a strong signal that they are coreferent. For ex-
ample, in the top 30 seed lists for the headword
pair (leader, president), we get matches including
elected, responsible, and expected. To capture this
effect, we create a feature that indicates whether
there is a match in the top k seeds of the two head-
words (where k is a hyperparameter to tune).

We create another feature that indicates whether
the dominant parts of speech in the seed lists
matches for the headword pair. We first collect the
POS tags (using length 2 character prefixes to indi-
cate coarse parts of speech) of the seeds matched in
the top k′ seed lists of the two headwords, where
k′ is another hyperparameter to tune. If the domi-
nant tags match and are in a small list of important
tags ({JJ, NN, RB, VB}), we fire an indicator feature
specifying the matched tag, otherwise we fire a no-
match indicator. To obtain POS tags for the seeds,
we use a unigram-based POS tagger trained on the
WSJ treebank training set.

3.4 Cluster information
The distributional hypothesis of Harris (1954) says
that words that occur in similar contexts tend to have
a similar linguistic behavior. Here, we design fea-
tures with the idea that this hypothesis extends to
reference: mentions occurring in similar contexts
in large document sets such as the Web tend to be
compatible for coreference. Instead of collecting the
contexts of each mention and creating sparse fea-
tures from them, we use Web-scale distributional
clustering to summarize compatibility.

Specifically, we begin with the phrase-based clus-
ters from Lin et al. (2010), which were created us-
ing the Google n-grams V2 corpus. These clusters
come from distributional K-Means clustering (with
K = 1000) on phrases, using the n-gram context as
features. The cluster data contains almost 10 mil-
lion phrases and their soft cluster memberships. Up
to twenty cluster ids with the highest centroid sim-
ilarities are included for each phrase in this dataset
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(Lin et al., 2010).
Our cluster-based features assume that if the

headwords of the two mentions have matches in
their cluster id lists, then they are more compatible
for coreference. We check the match of not just the
top 1 cluster ids, but also farther down in the 20 sized
lists because, as discussed in Lin and Wu (2009),
the soft cluster assignments often reveal different
senses of a word. However, we also assume that
higher-ranked matches tend to imply closer mean-
ings. To this end, we fire a feature indicating the
value bin(i+j), where i and j are the earliest match
positions in the cluster id lists of h1 and h2. Binning
here means that match positions in a close range
generally trigger the same feature.

Recent previous work has used clustering infor-
mation to improve the performance of supervised
NLP tasks such as NER and dependency parsing
(Koo et al., 2008; Lin and Wu, 2009). However, in
coreference, the only related work to our knowledge
is from Daumé III and Marcu (2005), who use word
class features derived from a Web-scale corpus via a
process described in Ravichandran et al. (2005).

3.5 Pronoun context

Our last feature category specifically addresses pro-
noun reference, for cases when the anaphoric men-
tion NP2 (and hence its headword h2) is a pronoun,
while the candidate antecedent mention NP1 (and
hence its headword h1) is not. For such a head-
word pair (h1, h2), the idea is to substitute the non-
pronoun h1 into h2’s position and see whether the
result is attested on the Web.

If the anaphoric pronominal mention is h2 and its
sentential context is l’ l h2 r r’, then the substituted
phrase will be l’ l h1 r r’.5 High Web counts of sub-
stituted phrases tend to indicate semantic compati-
bility. Perhaps unsurprisingly for English, only the
right context was useful in this capacity. We chose
the following three context types, based on perfor-
mance on a development set:

5Possessive pronouns are replaced with an additional apos-
trophe, i.e., h1 ’s. We also use features (see R1Gap) that allow
wildcards (?) in between the headword and the context when
collecting Web-counts, in order to allow for determiners and
other filler words.

• h1 r (R1)

• h1 r r’ (R2)

• h1 ? r (R1Gap)

As an example of the R1Gap feature, if the
anaphor h2 + context is his victory and one candidate
antecedent h1 is Bush, then we compute the normal-
ized value

count(“Bush ′s ? victory”)

count(“ ? ′s ? victory”)count(“Bush”)

In general, we compute

count(“h1
′s ? r”)

count(“ ? ′s ? r”)count(“h1”)

The final feature value is again a normalized count
converted to log10 and then binned.6 We have three
separate features for the R1, R2, and R1Gap context
types. We tune a separate bin-size hyperparameter
for each of these three features.

These pronoun resolution features are similar to
selectional preference work by Yang et al. (2005)
and Bergsma and Lin (2006), who compute seman-
tic compatibility for pronouns in specific syntactic
relationships such as possessive-noun, subject-verb,
etc. In our case, we directly use the general context
of any pronominal anaphor to find its most compat-
ible antecedent.

Note that all our above features are designed to be
non-sparse by firing indicators of the quantized Web
statistics and not the lexical- or class-based identities
of the mention pair. This keeps the total number of
features small, which is important for the relatively
small datasets used for coreference resolution. We
go from around 100 features in the Reconcile base-
line to around 165 features after adding all our Web
features.

6Normalization helps us with two kinds of balancing. First,
we divide by the count of the antecedent so that when choos-
ing the best antecedent for a fixed anaphor, we are not biased
towards more frequently occurring antecedents. Second, we di-
vide by the count of the context so that across anaphora, an
anaphor with rarer context does not get smaller values (for all its
candidate antecedents) than another anaphor with a more com-
mon context.
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Dataset docs dev test ment chn
ACE04 128 63/27 90/38 3037 1332
ACE05 81 40/17 57/24 1991 775

ACE05-ALL 599 337/145 482/117 9217 3050

Table 1: Dataset characteristics – docs: the total number of doc-
uments; dev: the train/test split during development; test: the
train/test split during testing; ment: the number of gold men-
tions in the test split; chn: the number of coreference chains in
the test split.

4 Experiments

4.1 Data
We show results on three popular and comparatively
larger coreference resolution data sets – the ACE04,
ACE05, and ACE05-ALL datasets from the ACE
Program (NIST, 2004). In ACE04 and ACE05, we
have only the newswire portion (of the original ACE
2004 and 2005 training sets) and use the standard
train/test splits reported in Stoyanov et al. (2009)
and Haghighi and Klein (2010). In ACE05-ALL,
we have the full ACE 2005 training set and use the
standard train/test splits reported in Rahman and Ng
(2009) and Haghighi and Klein (2010). Note that
most previous work does not report (or need) a stan-
dard development set; hence, for tuning our fea-
tures and its hyper-parameters, we randomly split
the original training data into a training and devel-
opment set with a 70/30 ratio (and then use the full
original training set during testing). Details of the
corpora are shown in Table 1.7

Details of the Web-scale corpora used for extract-
ing features are discussed in Section 3.

4.2 Evaluation Metrics
We evaluated our work on both MUC (Vilain et al.,
1995) and B3 (Bagga and Baldwin, 1998). Both
scorers are available in the Reconcile infrastruc-
ture.8 MUC measures how many predicted clusters
need to be merged to cover the true gold clusters.
B3 computes precision and recall for each mention
by computing the intersection of its predicted and
gold cluster and dividing by the size of the predicted

7Note that the development set is used only for ACE04, be-
cause for ACE05, and ACE05-ALL, we directly test using the
features tuned on ACE04.

8Note that B3 has two versions which handle twinless (spu-
rious) mentions in different ways (see Stoyanov et al. (2009) for
details). We use the B3All version, unless mentioned otherwise.

MUC B3

Feature P R F1 P R F1
AvgPerc 69.0 63.1 65.9 82.2 69.9 75.5
DecTree 80.9 61.0 69.5 89.5 69.0 77.9
+ Co-occ 79.8 62.1 69.8 88.7 69.8 78.1
+ Hearst 80.0 62.3 70.0 89.1 70.1 78.5
+ Entity 79.4 63.2 70.4 88.1 70.9 78.6
+ Cluster 79.5 63.6 70.7 87.9 71.2 78.6
+ Pronoun 79.9 64.3 71.3 88.0 71.6 79.0

Table 2: Incremental results for the Web features on the ACE04
development set. AvgPerc is the averaged perceptron baseline,
DecTree is the decision tree baseline, and the +Feature rows
show the effect of adding a particular feature incrementally (not
in isolation) to the DecTree baseline. The feature categories
correspond to those described in Section 3.

and gold cluster, respectively. It is well known
(Recasens and Hovy, 2010; Ng, 2010; Kobdani et
al., 2011) that MUC is biased towards large clus-
ters (chains) whereas B3 is biased towards singleton
clusters. Therefore, for a more balanced evaluation,
we show improvements on both metrics simultane-
ously.

4.3 Results

We start with the Reconcile baseline but employ the
decision tree (DT) classifier, because it has signifi-
cantly better performance than the default averaged
perceptron classifier used in Stoyanov et al. (2009).9

Table 2 compares the baseline perceptron results to
the DT results and then shows the incremental addi-
tion of the Web features to the DT baseline (on the
ACE04 development set).

The DT classifier, in general, is precision-biased.
The Web features somewhat balance this by increas-
ing the recall and decreasing precision to a lesser ex-
tent, improving overall F1. Each feature type incre-
mentally increases both MUC and B3 F1-measures,
showing that they are not taking advantage of any
bias of either metric. The incremental improve-
ments also show that each Web feature type brings
in some additional benefit over the information al-
ready present in the Reconcile baseline, which in-
cludes alias, animacy, named entity, and WordNet

9Moreover, a DT classifier takes roughly the same amount of
time and memory as a perceptron on our ACE04 development
experiments. It is, however, slower and more memory-intensive
(∼3x) on the bigger ACE05-ALL dataset.
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MUC B3

System P R F1 P R F1
ACE04-TEST-RESULTS

Stoyanov et al. (2009) - - 62.0 - - 76.5
Haghighi and Klein (2009) 67.5 61.6 64.4 77.4 69.4 73.2
Haghighi and Klein (2010) 67.4 66.6 67.0 81.2 73.3 77.0
This Work: Perceptron Baseline 65.5 61.9 63.7 84.1 70.9 77.0
This Work: DT Baseline 76.0 60.7 67.5 89.6 70.3 78.8
This Work: DT + Web Features 74.8 64.2 69.1 87.5 73.7 80.0
This Work: ∆ of DT+Web over DT (p < 0.05) 1.7 (p < 0.005) 1.3

ACE05-TEST-RESULTS
Stoyanov et al. (2009) - - 67.4 - - 73.7
Haghighi and Klein (2009) 73.1 58.8 65.2 82.1 63.9 71.8
Haghighi and Klein (2010) 74.6 62.7 68.1 83.2 68.4 75.1
This Work: Perceptron Baseline 72.2 61.6 66.5 85.0 65.5 73.9
This Work: DT Baseline 79.6 59.7 68.2 89.4 64.2 74.7
This Work: DT + Web Features 75.0 64.7 69.5 81.1 70.8 75.6
This Work: ∆ of DT+Web over DT (p < 0.12) 1.3 (p < 0.1) 0.9

ACE05-ALL-TEST-RESULTS
Rahman and Ng (2009) 75.4 64.1 69.3 54.4 70.5 61.4
Haghighi and Klein (2009) 72.9 60.2 67.0 53.2 73.1 61.6
Haghighi and Klein (2010) 77.0 66.9 71.6 55.4 74.8 63.8
This Work: Perceptron Baseline 68.9 60.4 64.4 80.6 60.5 69.1
This Work: DT Baseline 78.0 60.4 68.1 85.1 60.4 70.6
This Work: DT + Web Features 77.6 64.0 70.2 80.7 65.9 72.5
This Work: ∆ of DT+Web over DT (p < 0.001) 2.1 (p < 0.001) 1.9

Table 3: Primary test results on the ACE04, ACE05, and ACE05-ALL datasets. All systems reported here use automatically
extracted system mentions. B3 here is the B3All version of Stoyanov et al. (2009). We also report statistical significance of the
improvements from the Web features on the DT baseline, using the bootstrap test (Noreen, 1989; Efron and Tibshirani, 1993). The
perceptron baseline in this work (Reconcile settings: 15 iterations, threshold = 0.45, SIG for ACE04 and AP for ACE05, ACE05-
ALL) has different results from Stoyanov et al. (2009) because their current publicly available code is different from that used in
their paper (p.c.). Also, the B3 variant used by Rahman and Ng (2009) is slightly different from other systems (they remove all and
only the singleton twinless system mentions, so it is neither B3All nor B3None). For completeness, our (untuned) B3None results
(DT + Web) on the ACE05-ALL dataset are P=69.9|R=65.9|F1=67.8.

class / sense information.10

Table 3 shows our primary test results on the
ACE04, ACE05, and ACE05-ALL datasets, for the
MUC and B3 metrics. All systems reported use au-
tomatically detected mentions. We report our re-
sults (the 3 rows marked ‘This Work’) on the percep-
tron baseline, the DT baseline, and the Web features
added to the DT baseline. We also report statistical
significance of the improvements from the Web fea-

10We also initially experimented with smaller datasets
(MUC6 and MUC7) and an averaged perceptron baseline, and
we did see similar improvements, arguing that these features are
useful independently of the learning algorithm and dataset.

tures on the DT baseline.11 For significance testing,
we use the bootstrap test (Noreen, 1989; Efron and
Tibshirani, 1993).

Our main comparison is against Haghighi and
Klein (2010), a mostly-unsupervised generative ap-
proach that models latent entity types, which gen-
erate specific entities that in turn render individual
mentions. They learn on large datasets including

11All improvements are significant, except on the small
ACE05 dataset with the MUC metric (where it is weak, at
p < 0.12). However, on the larger version of this dataset,
ACE05-ALL, we get improvements which are both larger and
more significant (at p < 0.001).
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Wikipedia, and their results are state-of-the-art in
coreference resolution. We outperform their system
on most datasets and metrics (except on ACE05-
ALL for the MUC metric). The other systems we
compare to and outperform are the perceptron-based
Reconcile system of Stoyanov et al. (2009), the
strong deterministic system of Haghighi and Klein
(2009), and the cluster-ranking model of Rahman
and Ng (2009).

We develop our features and tune their hyper-
parameter values on the ACE04 development set and
then use these on the ACE04 test set.12 On the
ACE05 and ACE05-ALL datasets, we directly trans-
fer our Web features and their hyper-parameter val-
ues from the ACE04 dev-set, without any retuning.
The test improvements we get on all the datasets (see
Table 3) suggest that our features are generally use-
ful across datasets and metrics.13

5 Analysis

In this section, we briefly discuss errors (in the DT
baseline) corrected by our Web features, and ana-
lyze the decision tree classifier built during training
(based on the ACE04 development experiments).

To study error correction, we begin with the men-
tion pairs that are coreferent according to the gold-
standard annotation (after matching the system men-
tions to the gold ones). We consider the pairs that are
wrongly predicted to be non-coreferent by the base-
line DT system but correctly predicted to be corefer-
ent when we add our Web features. Some examples
of such pairs include:

Iran ; the country
the EPA ; the agency

athletic director ; Mulcahy
Democrat Al Gore ; the vice president

12Note that for the ACE04 dataset only, we use the ‘SmartIn-
stanceGenerator’ (SIG) filter of Reconcile that uses only a fil-
tered set of mention-pairs (based on distance and other proper-
ties of the pair) instead of the ‘AllPairs’ (AP) setting that uses
all pairs of mentions, and makes training and tuning very slow.

13For the ACE05 and ACE05-ALL datasets, we revert to the
‘AllPairs’ (AP) setting of Reconcile because this gives us base-
lines competitive with Haghighi and Klein (2010). Since we did
not need to retune on these datasets, training and tuning speed
were not a bottleneck. Moreover, the improvements from our
Web features are similar even when tried over the SIG baseline;
hence, the filter choice doesn’t affect the performance gain from
the Web features.

Barry Bonds ; the best baseball player
Vojislav Kostunica ; the pro-democracy leader

its closest rival ; the German magazine Das Motorrad
One of those difficult-to-dislodge judges ; John Marshall

These pairs are cases where our features
on Hearst-style co-occurrence and entity-based
context-match are informative and help discriminate
in favor of the correct antecedents. One advan-
tage of using Web-based features is that the Web
has a surprising amount of information on even rare
entities such as proper names. Our features also
correct coreference for various cases of pronominal
anaphora, but these corrections are harder to convey
out of context.

Next, we analyze the decision tree built after
training the classifier (with all our Web features in-
cluded). Around 30% of the decision nodes (both
non-terminals and leaves) correspond to Web fea-
tures, and the average error in classification at the
Web-feature leaves is only around 2.5%, suggest-
ing that our features are strongly discriminative for
pairwise coreference decisions. Some of the most
discriminative nodes correspond to the general co-
occurrence feature for most (binned) log-count val-
ues, the Hearst-style co-occurrence feature for its
zero-count value, the cluster-match feature for its
zero-match value, and the R2 pronoun context fea-
ture for certain (binned) log-count values.

6 Conclusion

We have presented a collection of simple Web-count
features for coreference resolution that capture a
range of world knowledge via statistics of general
lexical co-occurrence, hypernymy, semantic com-
patibility, and semantic context. When added to a
strong decision tree baseline, these features give sig-
nificant improvements and achieve the best results
reported to date, across multiple datasets and met-
rics.
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Abstract

The rapid and continuous growth of social
networking sites has led to the emergence of
many communities of communicating groups.
Many of these groups discuss ideological and
political topics. It is not uncommon that the
participants in such discussions split into two
or more subgroups. The members of each sub-
group share the same opinion toward the dis-
cussion topic and are more likely to agree with
members of the same subgroup and disagree
with members from opposing subgroups. In
this paper, we propose an unsupervised ap-
proach for automatically detecting discussant
subgroups in online communities. We analyze
the text exchanged between the participants of
a discussion to identify the attitude they carry
toward each other and towards the various as-
pects of the discussion topic. We use attitude
predictions to construct an attitude vector for
each discussant. We use clustering techniques
to cluster these vectors and, hence, determine
the subgroup membership of each participant.
We compare our methods to text clustering
and other baselines, and show that our method
achieves promising results.

1 Introduction

Online forums discussing ideological and political
topics are common1. When people discuss a dis-
puted topic they usually split into subgroups. The
members of each subgroup carry the same opinion

1www.politicalforum.com, www.createdebate.com,
www.forandagainst.com, etc

toward the discission topic. The member of a sub-
group is more likely to show positive attitude to the
members of the same subgroup, and negative atti-
tude to the members of opposing subgroups.

For example, let us consider the following two
snippets from a debate about the enforcement of a
new immigration law in Arizona state in the United
States:

(1) Discussant 1: Arizona immigration law is good.
Illegal immigration is bad.

(2) Discussant 2: I totally disagree with you. Ari-
zona immigration law is blatant racism, and quite
unconstitutional.

In (1), the writer is expressing positive attitude
regarding the immigration law and negative attitude
regarding illegal immigration. The writer of (2) is
expressing negative attitude towards the writer of
(1) and negative attitude regarding the immigration
law. It is clear from this short dialog that the writer
of (1) and the writer of (2) are members of two
opposing subgroups. Discussant 1 is supporting the
new law, while Discussant 2 is against it.

In this paper, we present an unsupervised ap-
proach for determining the subgroup membership of
each participant in a discussion. We use linguistic
techniques to identify attitude expressions, their po-
larities, and their targets. The target of attitude could
be another discussant or an entity mentioned in the
discussion. We use sentiment analysis techniques
to identify opinion expressions. We use named en-
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tity recognition and noun phrase chunking to iden-
tify the entities mentioned in the discussion. The
opinion-target pairs are identified using a number of
syntactic and semantic rules.

For each participant in the discussion, we con-
struct a vector of attitude features. We call this vec-
tor the discussant attitude profile. The attitude pro-
file of a discussant contains an entry for every other
discussant and an entry for every entity mentioned
in the discission. We use clustering techniques to
cluster the attitude vector space. We use the clus-
tering results to determine the subgroup structure of
the discussion group and the subgroup membership
of each participant.

The rest of this paper is organized as follows. Sec-
tion 2 examines the previous work. We describe the
data used in the paper in Section 2.4. Section 3
presents our approach. Experiments, results and
analysis are presented in Section 4. We conclude
in Section 5

2 Related Work

2.1 Sentiment Analysis
Our work is related to a huge body of work on sen-
timent analysis. Previous work has studied senti-
ment in text at different levels of granularity. The
first level is identifying the polarity of individual
words. Hatzivassiloglou and McKeown (1997) pro-
posed a method to identify the polarity of adjec-
tives based on conjunctions linking them. Turney
and Littman (2003) used pointwise mutual infor-
mation (PMI) and latent semantic analysis (LSA)
to compute the association between a given word
and a set of positive/negative seed words. Taka-
mura et al. (2005) proposed using a spin model to
predict word polarity. Other studies used Word-
Net to improve word polarity prediction (Hu and
Liu, 2004a; Kamps et al., 2004; Kim and Hovy,
2004; Andreevskaia and Bergler, 2006). Hassan
and Radev (2010) used a random walk model built
on top of a word relatedness network to predict the
semantic orientation of English words. Hassan et
al. (2011) proposed a method to extend their random
walk model to assist word polarity identification in
other languages including Arabic and Hindi.

Other work focused on identifying the subjectiv-
ity of words. The goal of this work is to deter-

mine whether a given word is factual or subjective.
We use previous work on subjectivity and polar-
ity prediction to identify opinion words in discus-
sions. Some of the work on this problem classi-
fies words as factual or subjective regardless of their
context (Wiebe, 2000; Hatzivassiloglou and Wiebe,
2000; Banea et al., 2008). Some other work no-
ticed that the subjectivity of a given word depends
on its context. Therefor, several studies proposed
using contextual features to determine the subjec-
tivity of a given word within its context (Riloff and
Wiebe, 2003; Yu and Hatzivassiloglou, 2003; Na-
sukawa and Yi, 2003; Popescu and Etzioni, 2005).

The second level of granularity is the sentence
level. Hassan et al. (2010) presents a method for
identifying sentences that display an attitude from
the text writer toward the text recipient. They de-
fine attitude as the mental position of one partici-
pant with regard to another participant. A very de-
tailed survey that covers techniques and approaches
in sentiment analysis and opinion mining could be
found in (Pang and Lee, 2008).

2.2 Opinion Target Extraction

Several methods have been proposed to identify
the target of an opinion expression. Most of the
work have been done in the context of product re-
views mining (Hu and Liu, 2004b; Kobayashi et
al., 2007; Mei et al., 2007; Stoyanov and Cardie,
2008). In this context, opinion targets usually refer
to product features (i.e. product components or at-
tributes, as defined by Liu (2009)). In the work of
Hu and Liu (2004b), they treat frequent nouns and
noun phrases as product feature candidates. In our
work, we extract as targets frequent noun phrases
and named entities that are used by two or more dif-
ferent discussants. Scaffidi et al. (2007) propose a
language model approach to product feature extrac-
tion. They assume that product features are men-
tioned more often in product reviews than they ap-
pear in general English text. However, such statistics
may not be reliable when the corpus size is small.

In another related work, Jakob and
Gurevych (2010) showed that resolving the
anaphoric links in the text significantly improves
opinion target extraction. In our work, we use
anaphora resolution to improve opinion-target
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Participant A posted: I support Arizona because they have every right to do so. They are just upholding well-established
federal law. All states should enact such a law.

Participant B commented on A’s
post:

I support the law because the federal government is either afraid or indifferent to the issue. Arizona
has the right and the responsibility to protect the people of the State of Arizona. If this requires a
possible slight inconvenience to any citizen so be it.

Participant C commented on B’s
post:

That is such a sad thing to say. You do realize that under the 14th Amendment, the very interaction
of a police officer asking you to prove your citizenship is Unconstitutional? As soon as you start
trading Constitutional rights for ”security”, then you’ve lost.

Table 1: Example posts from the Arizona Immigration Law thread

pairing as shown in Section 3 below.

2.3 Community Mining

Previous work also studied community mining in so-
cial media sites. Somasundaran and Wiebe (2009)
presents an unsupervised opinion analysis method
for debate-side classification. They mine the web
to learn associations that are indicative of opinion
stances in debates and combine this knowledge with
discourse information. Anand et al. (2011) present
a supervised method for stance classification. They
use a number of linguistic and structural features
such as unigrams, bigrams, cue words, repeated
punctuation, and opinion dependencies to build a
stance classification model. This work is limited to
dual sided debates and defines the problem as a clas-
sification task where the two debate sides are know
beforehand. Our work is characterized by handling
multi-side debates and by regarding the problem as
a clustering problem where the number of sides is
not known by the algorithm. This work also uti-
lizes only discussant-to-topic attitude predictions for
debate-side classification. Out work utilizes both
discussant-to-topic and discussant-to-discussant at-
titude predictions.

In another work, Kim and Hovy (2007) predict
the results of an election by analyzing discussion
threads in online forums that discuss the elections.
They use a supervised approach that uses unigrams,
bigrams, and trigrams as features. In contrast, our
work is unsupervised and uses different types infor-
mation. Moreover, although this work is related to
ours at the goal level, it does not involve any opinion
analysis.

Another related work classifies the speakers side
in a corpus of congressional floor debates, using
the speakers final vote on the bill as a labeling
for side (Thomas et al., 2006; Bansal et al., 2008;

Yessenalina et al., 2010). This work infers agree-
ment between speakers based on cases where one
speaker mentions another by name, and a simple al-
gorithm for determining the polarity of the sentence
in which the mention occurs. This work shows that
even with the resulting sparsely connected agree-
ment structure, the MinCut algorithm can improve
over stance classification based on textual informa-
tion alone. This work also requires that the de-
bate sides be known by the algorithm and it only
identifies discussant-to-discussant attitude. In our
experiments below we show that identifying both
discussant-to-discussant and discussant-to-topic at-
titudes achieves better results.

2.4 Data

In this section, we describe the datasets used in
this paper. We use three different datasets. The
first dataset (politicalforum, henceforth) consists of
5,743 posts collected from a political forum2. All
the posts are in English. The posts cover 12 dis-
puted political and ideological topics. The discus-
sants of each topic were asked to participate in a
poll. The poll asked them to determine their stance
on the discussion topic by choosing one item from a
list of possible arguments. The list of participants
who voted for each argument was published with
the poll results. Each poll was accompanied by a
discussion thread. The people who participated in
the poll were allowed to post text to that thread to
justify their choices and to argue with other partic-
ipants. We collected the votes and the discussion
thread of each poll. We used the votes to identify
the subgroup membership of each participant.

The second dataset (createdebate, henceforth)
comes from an online debating site 3. It consists of

2http://www.politicalforum.com
3http://www.createdebate.com
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Source Topic Question #Sides #Posts #Participants

Politicalforum
Arizona Immigration Law Do you support Arizona in its decision to enact their

Immigration Enforcement law?
2 738 59

Airport Security Should we pick muslims out of the line and give ad-
ditional scrutiny/screening?

4 735 69

Vote for Obama Will you vote for Obama in the 2012 Presidential
elections?

2 2599 197

Createdebate
Evolution Has evolution been scientifically proved? 2 194 98

Social networking sites It is easier to maintain good relationships in social
networking sites such as Facebook.

2 70 31

Abortion Should abortion be banned 3 477 70

Wikipedia
Ireland Misleading description of Irland island partition 3 40 10

South Africa Goverment Was the current form of South African government
born in May 1910?

3 23 5

Oil Spill Obama’s response to gulf oil spill 3 30 12

Table 2: Example threads from our three datasets

30 debates containing a total of 2,712 posts. Each
debate is about one topic. The description of each
debate states two or more positions regarding the de-
bate topic. When a new participant enters the discus-
sion, she explicitly picks a position and posts text to
support it, support a post written by another partici-
pant who took the same position, or to dispute a post
written by another participant who took an opposing
position. We collected the discussion thread and the
participant positions for each debate.

The third dataset (wikipedia, henceforth) comes
from the Wikipedia4 discussion section. When a
topic on Wikipedia is disputed, the editors of that
topic start a discussion about it. We collected 117
Wikipeida discussion threads. The threads contains
a total of 1,867 posts.

The politicalforum and createdebate datasets are
self labeled as described above. To annotate the
Wikipedia data, we asked an expert annotator (a
professor in sociolinguistics who is not one of the
authors) to read each of the Wikipedia discussion
threads and determine whether the discussants split
into subgroups in which case he was asked to deter-
mine the subgroup membership of each discussant.

Table 2 lists few example threads from our three
datasets. Table 1 shows a portion of discussion
thread between three participants about enforcing a
new immigration law in Arizona. This thread ap-
peared in the polictalforum dataset. The text posted
by the three participants indicates that A’s position

4http://www.wikipedia.com

is with enforcing the law, that B agrees with A, and
that C disagrees with both. This means that A and B
belong to the same opinion subgroup, while belongs
to an opposing subgroup.

We randomly selected 6 threads from our datasets
(2 from politicalforum, 2 from createdebate, and 2
from Wikipedia) and used them as development set.
This set was used to develop our approach.

3 Approach

In this section, we describe a system that takes a
discussion thread as input and outputs the subgroup
membership of each discussant. Figure 1 illustrates
the processing steps performed by our system to de-
tect subgroups. In the following subsections we de-
scribe the different stages in the system pipeline.

3.1 Thread Parsing

We start by parsing the thread to identify posts, par-
ticipants, and the reply structure of the thread (i.e.
who replies to whom). In the datasets described in
Section 2.4, all this information was explicitly avail-
able in the thread. We tokenize the text of each post
and split it into sentences using CLAIRLib (Abu-
Jbara and Radev, 2011).

3.2 Opinion Word Identification

The next step is to identify the words that express
opinion and determine their polarity (positive or
negative). Lehrer (1974) defines word polarity as
the direction the word deviates to from the norm. We
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use OpinionFinder (Wilson et al., 2005a) to identify
polarized words and their polarities.

The polarity of a word is usally affected by
the context in which it appears. For example, the
word fine is positive when used as an adjective and
negative when used as a noun. For another example,
a positive word that appears in a negated context
becomes negative. OpinionFinder uses a large set of
features to identify the contextual polarity of a given
polarized word given its isolated polarity and the
sentence in which it appears (Wilson et al., 2005b).
Snippet (3) below shows the result of applying this
step to snippet (1) above (O means neutral; POS
means positive; NEG means negative).

(3) Arizona/O Immigration/O law/O good/POS ./O
Illegal/O immigration/O bad/NEG ./O

3.3 Target Identification

The goal of this step is to identify the possible tar-
gets of opinion. A target could be another discus-
sant or an entity mentioned in the discussion. When
the target of opinion is another discussant, either the
discussant name is mentioned explicitly or a second
person pronoun is used to indicate that the opinion
is targeting the recipient of the post. For example,
in snippet (2) above the second person pronoun you
indicates that the opinion word disagree is targeting
Discussant 1, the recipient of the post.

The target of opinion can also be an entity
mentioned in the discussion. We use two methods to
identify such entities. The first method uses shallow
parsing to identify noun groups (NG). We use the
Edinburgh Language Technology Text Tokenization
Toolkit (LT-TTT) (Grover et al., 2000) for this pur-
pose. We consider as an entity any noun group that
is mentioned by at least two different discussants.
We replace each identified entity with a unique
placeholder (ENTITYID). For example, the noun
group Arizona immigration law is mentioned by
Discussant 1 and Discussant 2 in snippets 1 and 2
above respectively. Therefore, we replace it with a
placehold as illustrated in snippets (4) and (5) below.

(4) Discussant 1: ENTITY1 is good. Illegal im-

NER NP Chunking

Barack Obama the Republican nominee

Middle East the maverick economists

Bush conservative ideologues

Bob McDonell the Nobel Prize

Iraq Federal Government

Table 3: Some of the entities identified using NER and
NP Chunking in a discussion thread about the US 2012
elections

migration is bad.

(5) Discussant 2: I totally disagree with you. ENTITY1

is blatant racism, and quite unconstitutional.

We only consider as entities noun groups that
contain two words or more. We impose this require-
ment because individual nouns are very common
and regarding all of them as entities will introduce
significant noise.

In addition to this shallow parsing method, we
also use named entity recognition (NER) to identify
more entities. We use the Stanford Named Entity
Recognizer (Finkel et al., 2005) for this purpose. It
recognizes three types of entities: person, location,
and organization. We impose no restrictions on the
entities identified using this method. Again, we re-
place each distinct entity with a unique placeholder.
The final set of entities identified in a thread is the
union of the entities identified by the two aforemen-
tioned methods. Table 3

Finally, a challenge that always arises when
performing text mining tasks at this level of gran-
ularity is that entities are usually expressed by
anaphorical pronouns. Previous work has shown
that For example, the following snippet contains
an explicit mention of the entity Obama in the first
sentence, and then uses a pronoun to refer to the
same entity in the second sentence. The opinion
word unbeatable appears in the second sentence
and is syntactically related to the pronoun He.
In the next subsection, it will become clear why
knowing which entity does the pronoun He refers to
is essential for opinion-target pairing.

(6) It doesn’t matter whether you vote for Obama.
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Figure 1: An overview of the subgroups detection system

He is unbeatable.

Jakob and Gurevych (2010) showed experi-
mentally that resolving the anaphoric links in the
text significantly improves opinion target extraction.
We use the Beautiful Anaphora Resolution Toolkit
(BART) (Versley et al., 2008) to resolve all the
anaphoric links within the text of each post sepa-
rately. The result of applying this step to snippet (6)
is:

(6) It doesn’t matter whether you vote for Obama.
Obama is unbeatable.

Now, both mentions of Obama will be recog-
nized by the Stanford NER system and will be
identified as one entity.

3.4 Opinion-Target Pairing

At this point, we have all the opinion words and
the potential targets identified separately. The next
step is to determine which opinion word is target-
ing which target. We propose a rule based approach
for opinion-target pairing. Our rules are based on
the dependency relations that connect the words in
a sentence. We use the Stanford Parser (Klein and
Manning, 2003) to generate the dependency parse
tree of each sentence in the thread. An opinion word
and a target form a pair if they stratify at least one
of our dependency rules. Table 4 illustrates some

of these rules 5. The rules basically examine the
types of the dependencies on the shortest path that
connect the opinion word and the target in the de-
pendency parse tree. It has been shown in previous
work on relation extraction that the shortest depen-
dency path between any two entities captures the in-
formation required to assert a relationship between
them (Bunescu and Mooney, 2005).

If a sentence S in a post written by participant
Pi contains an opinion word OPj and a target TRk,
and if the opinion-target pair satisfies one of our de-
pendency rules, we say that Pi expresses an attitude
towards TRk. The polarity of the attitude is deter-
mined by the polarity of OPj . We represent this as
Pi

+→ TRk if OPj is positive and Pi
−→ TRk if OPj

is negative.
It is likely that the same participant Pi express

sentiment toward the same target TRk multiple
times in different sentences in different posts. We
keep track of the counts of all the instances of posi-
tive/negative attitude Pi expresses toward TRk. We
represent this as Pi

m+−−→
n−

TRk where m (n) is the

number of times Pi expressed positive (negative) at-
titude toward TRk.

3.5 Discussant Attitude Profile

We propose a representation of discussantsáttitudes
towards the identified targets in the discussion
thread. As stated above, a target could be another
discussant or an entity mentioned in the discussion.

5The code will be made publicly available at the time of
publication
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ID Rule In Words Example

R1 OP → nsubj → TR The target TR is the nominal subject of the opinion
word OP

ENTITY1TR is goodOP .

R2 OP → dobj → TR The target T is a direct object of the opinion OP I hateOP ENTITY2TR

R3 OP → prep ∗ → TR The target TR is the object of a preposition that
modifies the opinion word OP

I totally disagreeOP with youTR.

R4 TR→ amod→ OP The opinion is an adjectival modifier of the target The badOP ENTITY3TR is spreading lies

R5 OP → nsubjpass→ TR The target TR is the nominal subject of the passive
opinion word OP

ENTITY4TR is hatedOP by everybody.

R6 OP → prep ∗ → poss→ TR The opinion word OP connected through a prep ∗
relation as in R2 to something possessed by the
target TR

The main flawOP in yourTR analysis is
that it’s based on wrong assumptions.

R7 OP → dobj → poss→ TR The target TR possesses something that is the direct
object of the opinion word OP

I likeOP ENTITY5TR’s brilliant ideas.

R8 OP → csubj → nsubj → TR The opinon word OP is a causal subject of a phrase
that has the target TR as its nominal subject

What ENTITY6TR announced was
misleadingOP .

Table 4: Examples of the dependency rules used for opinion-target pairing.

Our representation is a vector containing numeri-
cal values. The values correspond to the counts of
positive/negative attitudes expressed by the discus-
sant toward each of the targets. We call this vector
the discussant attitude profile (DAP). We construct a
DAP for every discussant. Given a discussion thread
with d discussants and e entity targets, each attitude
profile vector has n = (d + e) ∗ 3 dimensions. In
other words, each target (discussant or entity) has
three corresponding values in the DAP: 1) the num-
ber of times the discussant expressed positive atti-
tude toward the target, 2) the number of times the
discussant expressed a negative attitude towards the
target, and 3) the number of times the the discussant
interacted with or mentioned the target. It has to be
noted that these values are not symmetric since the
discussions explicitly denote the source and the tar-
get of each post.

3.6 Clustering

At this point, we have an attitude profile (or vec-
tor) constructed for each discussant. Our goal is to
use these attitude profiles to determine the subgroup
membership of each discussant. We can achieve this
goal by noticing that the attitude profiles of discus-
sants who share the same opinion are more likely to
be similar to each other than to the attitude profiles
of discussants with opposing opinions. This sug-
gests that clustering the attitude vector space will
achieve the goal and split the discussants into sub-
groups according to their opinion.

4 Evaluation

In this section, we present several levels of evalu-
ation of our system. First, we compare our sys-
tem to baseline systems. Second, we study how the
choice of the clustering algorithm impacts the re-
sults. Third, we study the impact of each component
in our system on the performance. All the results
reported in this section that show difference in the
performance are statistically significant at the 0.05
level (as indicated by a 2-tailed paired t-test). Be-
fore describing the experiments and presenting the
results, we first describe the evaluation metrics we
use.

4.0.1 Evaluation Metrics
We use two evaluation metrics to evaluate sub-

groups detection accuracy: Purity and Entropy. To
compute Purity (Manning et al., 2008), each clus-
ter is assigned the class of the majority vote within
the cluster, and then the accuracy of this assignment
is measured by dividing the number of correctly as-
signed members by the total number of instances. It
can be formally defined as:

purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj | (1)

where Ω = {ω1, ω2, ..., ωk} is the set of clusters
and C = {c1, c2, ..., cJ} is the set of classes. ωk is
interpreted as the set of documents in ωk and cj as
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the set of documents in cj . The purity increases as
the quality of clustering improves.

The second metric is Entropy. The Entropy of a
cluster reflects how the members of the k distinct
subgroups are distributed within each resulting clus-
ter; the global quality measure is computed by aver-
aging the entropy of all clusters:

Entropy = −
j∑ nj

n

i∑
P (i, j)× log2P (i, j)

(2)
where P (i, j) is the probability of finding an ele-

ment from the category i in the cluster j, nj is the
number of items in cluster j, and n the total num-
ber of items in the distribution. In contrast to purity,
the entropy decreases as the quality of clustering im-
proves.

4.1 Comparison to Baseline Systems
We compare our system (DAPC) that was described
in Section 3 to two baseline methods. The first base-
line (GC) uses graph clustering to partition a net-
work based on the interaction frequency between
participants. We build a graph where each node
represents a participant. Edges link participants if
they exchange posts, and edge weights are based on
the number of interactions. We tried two methods
for clustering the resulting graph: spectral partition-
ing (Luxburg, 2007) and a hierarchical agglomera-
tion algorithm which works by greedily optimizing
the modularity for graphs (Clauset et al., 2004).

The second baseline (TC) is based on the premise
that the member of the same subgroup are more
likely to use vocabulary drawn from the same lan-
guage model. We collect all the text posted by each
participant and create a tf-idf representations of the
text in a high dimensional vector space. We then
cluster the vector space to identify subgroups. We
use k-means (MacQueen, 1967) as our clustering
algorithm in this experiment (comparison of vari-
ous clustering algorithms is presented in the next
subsection). The distances between vectors are
Eculidean distances. Table 5 shows that our sys-
tem performs significantly better the baselines on the
three datasets in terms of both the purity (P ) and the
entropy (E) (notice that lower entropy values indi-
cate better clustering). The values reported are the

Method Createdebate Politicalforum Wikipedia

P E P E P E

GC - Spectral 0.50 0.85 0.50 0.88 0.49 0.89

GC - Hierarchical 0.48 0.86 0.47 0.89 0.49 0.87

TC - kmeans 0.51 0.84 0.49 0.88 0.52 0.85

DAPC - kmeans 0.64 0.68 0.61 0.80 0.66 0.55

Table 5: Comparison to baseline systems

Method Createdebate Politicalforum Wikipedia

P E P E P E

DAPC - EM 0.63 0.71 0.61 0.82 0.63 0.61

DAPC - FF 0.63 0.70 0.60 0.83 0.64 0.59

DAPC - kmeans 0.64 0.68 0.61 0.80 0.66 0.55

Table 6: Comparison of different clustering algorithms

average results of the threads of each dataset. We
believe that the baselines performed poorly because
the interaction frequency and the text similarity are
not key factors in identifying subgroup structures.
Many people would respond to people they disagree
with more, while others would mainly respond to
people they agree with most of the time. Also, peo-
ple in opposing subgroups tend to use very similar
text when discussing the same topic and hence text
clustering does not work as well.

4.2 Choice of the clustering algorithm

We experimented with three different clustering al-
gorithms: expectation maximization (EM), and k-
means (MacQueen, 1967), and FarthestFirst (FF)
(Hochbaum and Shmoys, 1985; Dasgupta, 2002).
As we did in the previous subsection, we use
Eculidean distance to measure the distance between
vectors All the system (DAP) components are in-
cluded as described in Section 3. The purity and
entropy values using each algorithm are shown in
Table 6. Although k-means seems to be performing
slightly better than other algorithms, the differences
in the results are not significant. This indicates that
the choice of the clustering algorithm does not have
a noticeable impact on the results. We also exper-
imented with using Manhattan distance and cosine
similarity instead of Euclidean distance to measure
the distance between attitude vectors. We noticed
that the choice of the distance does not have signifi-
cant impact on the results as well.
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4.3 Component Evaluation

In this subsection, we evaluate the impact of the dif-
ferent components in the pipeline on the system per-
formance. We do that by removing each component
from the pipeline and measuring the change in per-
formance. We perform the following experiments:
1) We run the full system with all its components
included (DAPC). 2) We run the system and in-
clude only discussant-to-discussant attitude features
in the attitude vectors (DAPC-DD). 3) We include
only discussant-to-entity attitude features in the atti-
tude vectors (DAPC-DE). 4) We include only senti-
ment features in the attitude vector; i.e. we exclude
the interaction count features (DAPC-SE). 5) We in-
clude only interaction count features to the attitude
vector; i.e. we exclude sentiment features (DAPC-
INT). 6) We skip the anaphora resolution step in the
entity identification component (DAPC-NO AR). 7)
We only use named entity recognition to identify en-
tity targets; i.e. we exclude the entities identified
through noun phrasing chunking (DAPC-NER). 8)
Finally, we only noun phrase chunking to identify
entity targets (DAPC-NP). In all these experiments
k-means is used for clustering and the number of
clusters is set as explained in the previous subsec-
tion.

The results show that all the components in the
system contribute to better performance of the sys-
tem. We notice from the results that the performance
of the system drops significantly if sentiment fea-
tures are not included. This is result corroborates
our hypothesis that interaction features are not suffi-
cient factors for detecting rift in discussion groups.
Including interaction features improve the perfor-
mance (although not by a big difference) because
they help differentiate between the case where par-
ticipants A and B never interacted with each other
and the case where they interact several time but
never posted text that indicate difference in opin-
ion between them. We also notice that the perfor-
mance drops significantly in DAPC-DD and DAPC-
DD which also supports our hypotheses that both
the sentiment discussants show toward one another
and the sentiment they show toward the aspects of
the discussed topic are important for the task. Al-
though using both named entity recognition (NER)
and noun phrase chunking achieves better results, it

Method Createdebate Politicalforum Wikipedia

P E P E P E

DAPC 0.64 0.68 0.61 0.80 0.66 0.55
DAPC-DD 0.59 0.77 0.57 0.86 0.62 0.61

DAPC-DE 0.60 0.69 0.58 0.84 0.58 0.78

DAPC-SE 0.62 0.70 0.60 0.83 0.61 0.62

DAPC-INT 0.54 0.88 0.52 0.91 0.57 0.85

DAPC-NO AR 0.62 0.72 0.60 0.84 0.64 0.60

DAPC-NER 0.61 0.71 0.58 0.86 0.63 0.59

DAPC-NP 0.63 0.75 0.59 0.84 0.65 0.62

Table 7: Impact of system components on the perfor-
mance

can also be noted from the results that NER con-
tributes more to the system performance. Finally,
the results support Jakob and Gurevych (2010) find-
ings that anaphora resolution aids opinion mining
systems.

5 Conclusions

In this paper, we presented an approach for subgroup
detection in ideological discussions. Our system
uses linguistic analysis techniques to identify the at-
titude the participants of online discussions carry to-
ward each other and toward the aspects of the discus-
sion topic. Attitude prediction as well as interaction
frequency to construct an attitude vector for each
participant. The attitude vectors of discussants are
then clustered to form subgroups. Our experiments
showed that our system outperforms text clustering
and interaction graph clustering. We also studied the
contribution of each component in our system to the
overall performance.
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Abstract

Extracting sentiment and topic lexicons is im-
portant for opinion mining. Previous works
have showed that supervised learning methods
are superior for this task. However, the perfor-
mance of supervised methods highly relies on
manually labeled training data. In this paper,
we propose a domain adaptation framework
for sentiment- and topic- lexicon co-extraction
in a domain of interest where we do not re-
quire any labeled data, but have lots of labeled
data in another related domain. The frame-
work is twofold. In the first step, we gener-
ate a few high-confidence sentiment and topic
seeds in the target domain. In the second
step, we propose a novel Relational Adaptive
bootstraPping (RAP) algorithm to expand the
seeds in the target domain by exploiting the
labeled source domain data and the relation-
ships between topic and sentiment words. Ex-
perimental results show that our domain adap-
tation framework can extract precise lexicons
in the target domain without any annotation.

1 Introduction
In the past few years, opinion mining and senti-
ment analysis have attracted much attention in Natu-
ral Language Processing (NLP) and Information Re-
trieval (IR) (Pang and Lee, 2008; Liu, 2010). Senti-
ment lexicon construction and topic lexicon extrac-
tion are two fundamental subtasks for opinion min-
ing (Qiu et al., 2009). A sentiment lexicon is a list
of sentiment expressions, which are used to indicate
sentiment polarity (e.g., positive or negative). The
sentiment lexicon is domain dependent as users may
use different sentiment words to express their opin-
ion in different domains (e.g., different products). A
topic lexicon is a list of topic expressions, on which

the sentiment words are expressed. Extracting the
topic lexicon from a specific domain is important
because users not only care about the overall senti-
ment polarity of a review but also care about which
aspects are mentioned in review. Note that, similar
to sentiment lexicons, different domains may have
very different topic lexicons.

Recently, Jin and Ho (2009) and Liet al. (2010a)
showed that supervised learning methods can
achieve state-of-the-art results for lexicon extrac-
tion. However, the performance of these meth-
ods highly relies on manually annotated training
data. In most cases, the labeling work may be time-
consuming and expensive. It is impossible to anno-
tate each domain of interest to build precise domain-
dependent lexicons. It is more desirable to automat-
ically construct precise lexicons in domains of inter-
est by transferring knowledge from other domains.

In this paper, we focus on the co-extraction task
of sentiment and topic lexicons in a target domain
where we do not have any labeled data, but have
plenty of labeled data in a source domain. Our
goal is to leverage the knowledge extracted from the
source domain to help lexicon co-extraction in the
target domain. To address this problem, we propose
a two-stage domain adaptation method. In the first
step, we build a bridge between the source and tar-
get domains by identifying somecommonsentiment
words as sentiment seeds in the target domain, such
as “good”, “bad”, “nice”, etc. After that, we gener-
ate topic seeds in the target domain by mining some
generalsyntactic relation patterns between the sen-
timent and topic words from the source domain. In
the second step, we propose a Relational Adaptive
bootstraPping (RAP) algorithm to expand the seeds
in the target domain. Our proposed method can uti-
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lize useful labeled data from the source domain as
well as exploit the relationships between the topic
and sentiment words to propagate information for
lexicon construction in the target domain. Experi-
mental results show that our proposed method is ef-
fective for cross-domain lexicon co-extraction.

In summary, we have three main contributions: 1)
We give a systematic study on cross-domain senti-
ment analysis in word level. While, most of previous
work focused on document level; 2) A new two-step
domain adaptation framework, with a novel RAP al-
gorithm for seed expansion, is proposed. 3) We con-
duct extensive evaluation, and the experimental re-
sults demonstrate the effectiveness of our methods.

2 Related Work
2.1 Sentiment or Topic Lexicon Extraction
Sentiment or topic lexicon extraction is to iden-
tify the sentiment or topic words from text. In the
past, many machine learning techniques have been
proposed for this task. Hu and Liuet al. (2004)
proposed an association-rule-based method to ex-
tract topic words and a dictionary-based method to
identify sentiment words, independently. Wiebeet
al. (2004) and Rioff et al. (2003) proposed to
identify subjective adjectives and nouns using word
clustering based on their distributional similarity.
Popescu and Etzioni (2005) proposed a relaxed la-
beling approach to utilize linguistic rules for opinion
polarity detection. Some researchers also proposed
to use topic modeling to identify implicit topics and
sentiment words (Mei et al., 2007; Titov and Mc-
Donald, 2008; Zhao et al., 2010; Li et al., 2010b),
where a topic is a cluster of words, which is differ-
ent from our fine-grained topic-word extraction.

Jin and Ho (2009) and Liet al. (2010a) both pro-
posed to use supervised sequential labeling methods
for topic and opinion extraction. Experimental re-
sults showed that the supervised learning methods
can achieve state-of-the-art performance on lexicon
extraction. However, these methods need to manu-
ally annotate a lot of training data in each domain.
Recently, Qiuet al. (2009) proposed a rule-based
semi-supervised learning methods for lexicon ex-
traction. However, their method requires to manu-
ally define somegeneralsyntactic rules among sen-
timent and topic words. In addition, it still requires
some annotated words in the target domain. In this
paper, we do not assume any predefined rules and

labeled data be available in the target domain.

2.2 Domain Adaptation
Domain adaptation aims at transferring knowledge
across domains where data distributions may be dif-
ferent (Pan and Yang, 2010). In the past few years,
domain adaptation techniques have been widely ap-
plied to various NLP tasks, such as part-of-speech
tagging (Ando and Zhang, 2005; Jiang and Zhai,
2007; Dauḿe III, 2007), named-entity recognition
and shallow parsing (Dauḿe III, 2007; Jiang and
Zhai, 2007; Wu et al., 2009). There are also
lots of studies for cross-domain sentiment analy-
sis (Blitzer et al., 2007; Tan et al., 2007; Li et al.,
2009; Pan et al., 2010; Bollegala et al., 2011; He
et al., 2011; Glorot et al., 2011). However, most
of them focused on coarse-grained document-level
sentiment classification, which is different from our
fine-grained word-level extraction. Our work is sim-
ilar to Jakob and Gurevych (2010) which proposed a
Conditional Random Field (CRF) for cross-domain
topic word extraction. However, the performance
of their method highly depends on the manually de-
signed features. In our experiments, we compare our
method with theirs, and find that ours can achieve
much better results on cross-domain lexicon extrac-
tion. Note that our work is also different from a re-
cent work (Du et al., 2010), which focused on identi-
fying the polarity of adjective words by using cross-
domain knowledge. While we extract both topic and
sentiment words and allow non-adjective sentiment
words, which is more practical.

3 Cross-Domain Lexicon Co-Extraction
3.1 Problem Definition
Recall that, we focus on the setting where we have
no labeled data in the target domain, while we have
plenty of labeled data in the source domain. De-
noteDS = {(wSi

, ySi
)}n1

i=1
the source domain data,

wherewSi
represents a word in the source domain.

ySi
∈ Y is the corresponding label ofwSi

. Simi-
larly, we denoteDT = {wTj

}n2

j=1
the target domain

data, where the inputwTj
is a word in the target do-

main. In lexicon extraction,Y ∈ {1, 2, 3}, where
yi = 1 denotes the corresponding wordwi a sen-
timent word,yi = 2 denoteswi a topic word, and
yi = 3 denoteswi neither a sentiment nor topic
word. Our goal is to predict labels onDT to extract
topic and sentiment words for constructing topic and
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sentiment lexicons, respectively.

3.2 Motivating Examples

In this section, we use some examples to introduce
the motivation behind our proposed method. Table 1
shows several reviews from two domains:movieand
camera. From the table, we can observe that there
are some common sentiment words across different
domains, such as “great”, “excellent” and “amaz-
ing”. However, the topic words may be different.
For example, in the movie domain, topic words in-
clude “movie” and “script”. While in the camera do-
main, topic words include “camera” and “photos”.

Domain Review

camera

Thecamera is great.
it is a veryamazingproduct.
i highly recommendthis camera.
takesexcellentphotos.
photoshad someartifactsandnoise.

movie

This moviehasgoodscript, great
casting, excellentacting.
I lovethismovie.
Godfather was the mostamazingmovie.
Themovie is excellent.

Table 1: Reviews incameraandmoviedomains. Bold-
faces are topic words and Italics are sentiment words.

Based on the observations, we can build a connec-
tion between the source and target domains by iden-
tifying the common sentiment words. Furthermore,
intuitively, there are some general syntactic relation-
ships or patterns between topic and sentiment words
across different domains. Therefore, if we can mine
the patterns from the source and target domain data,
then we are able to construct an indirect connection
between topic words across domains by using the
common sentiment words as a bridge, which makes
knowledge transfer across domains possible.

Figure 1 shows two dependency trees for the sen-
tence “the camera is great” in the camera domain
and the sentence “the movie is excellent” in the
movie domain, respectively. As can be observed, the
relationships between the topic and sentiment words
in the two sentences are the same. They both share
a “TOPIC-nsubj-SENTIMENT” relation. Let the
camera domain be the source domain and the movie
domain be the target domain. If the word “excel-
lent” is identified as a common sentiment word, and
the “TOPIC-nsubj-SENTIMENT” relation extracted
from the camera domain is recognized as a common

syntactic pattern, then the word “movie” can be pre-
dicted as a topic word in the movie domain with high
probability. After new topic words are extracted in
the movie domain, we can apply the same syntac-
tic pattern or other syntactic patterns to extract new
sentiment and topic words iteratively.

great

camera is

The

nsubj cop

det

(a) Camera domain.

excellent

movie is

The

nsubj cop

det

(b) Movie domain.

Figure 1: Examples of dependency tree structure.

More specifically, we use the shortest path be-
tween a topic word and a sentiment word in the cor-
responding dependency tree to denote the relation
between them. To get more general paths, we do
not take original words in the path into considera-
tion, but use their POS tags instead, such as “NN”,
“VB”, “JJ”, etc. As an example shown in Figure 2,
we can extract two paths or relationships between
topic and sentiment words from the dependency tree
of the sentence “The movie has good script”: “NN-
amod-JJ” from “script” and “good”, and “NN-nsubj-
VB-dobj-NN-amod-JJ” from “movie” and “good”.

has(VB)

script(NN)

the(DT)

movie(NN)

good(JJ)

dobj nsubj

amod det

Figure 2: Example of pattern extraction.

In the following sections, we present the proposed
two-stage domain adaptation framework: 1) gener-
ating some sentiment and topic seeds in the target
domain; and 2) expanding the seeds in the target do-
main to construct sentiment and topic lexicons.

4 Seed Generation

Our basic idea is to first identify severalcommon
sentiment words across domains as sentiment seeds.
Meanwhile, we mine some general patterns between
sentiment and topic words from the source domain.
Finally, we use the sentiment seeds and general pat-
terns to generate topic seeds in the target domain.
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4.1 Sentiment Seed Generation
To identify commonsentiment words across do-
mains, we extract all sentiment words from the
source domain as candidates. For each candidate,
we calculate its score based on the following metric:

S1(wi) = (pS(wi) + pT (wi)) e
(−|pS(wi)−pT (wi)|), (1)

wherepS(wi) andpT (wi) are the probabilities of the
wordwi occurring in the source and target domains,
respectively. If a wordwi has highS1 score, which
implies that the wordwi occurs frequently and simi-
larly in both domains, then it can be considered as a
commonsentiment word (Pan et al., 2010; Blitzer et
al., 2007). We select topr candidates with highest
S1 scores as sentiment seeds.

4.2 Topic Seed Generation
We extract all patterns between sentiment and topic
words in the source domain as candidates. For each
pattern candidate, we calculate its score based on a
metric defined in AutoSlog-TS (Riloff, 1996):

S2(Rj) = Acc(Rj)× log2(Freq(Rj)), (2)

whereAcc(Rj) is the accuracy of the patternRj in
the source domain, andFreq(Rj) is the frequency
of the patternRj observed in target domain. This
metric aims to identify the patterns that are precise
in the source domain and observed frequently in the
target domain. We also select the topr patterns
with highestS2 scores. With the patterns and sen-
timent seeds, we extract topic-word candidates and
measure their scores based on a variant metric of
quadratic combination (Zhang and Ye, 2008):

S3(wk) =
∑

Rj∈A, wi∈B

(S2(Rj)× S1(wi)) , (3)

whereB is a set of sentiment seeds andA is a set of
patterns which the wordswi andwk satisfy. We then
select the topr candidates as topic seeds.

5 Seed Expansion
After generating the topic and sentiment seeds, we
aim to expand them in the target domain to construct
topic and sentiment lexicons. In this section, we pro-
pose a new bootstrapping-based method to address
this problem.

Bootstrapping is the process of improving the per-
formance of a weak classifier by iteratively adding
training data and retraining the classifier. More
specifically, bootstrapping starts with a small set
of labeled “seeds”, and iteratively adds unlabeled

data that are labeled by the classifier to the train-
ing set based on some selection criterion, and retrain
the classifier. Many bootstrapping-based algorithms
have been proposed to information extraction and
other NLP tasks (Blum and Mitchell, 1998; Riloff
and Jones, 1999; Jones et al., 1999; Wu et al., 2009).

One important issue in bootstrapping is how to
design a criterion to select unlabeled data to be
added to the training set iteratively. Our proposed
bootstrapping for cross-domain lexicon extraction
is based on the following two observations: 1) Al-
though the source and target domains are different,
part of source domain labeled data is still useful for
lexicon extraction in the target domain after some
adaptation; 2) The syntactic relationships among
sentiment and topic words can be used to expand the
seeds in the target domain for lexicon construction.

Based on the two observations, we propose a
new bootstrapping-based method named Relational
Adaptive bootstraPping (RAP), as summarized in
Algorithm 1, for expanding lexicons across do-
mains. In each iteration, we employ a cross-domain
classifier trained on the source domain lexicons and
the extracted target domain lexicons to predict the
labels of the target unlabeled data, and select topk2
predicted topic and sentiment words as candidates
based on confidence. With the extracted syntactic
patterns in the previous iterations, we construct a
bipartite graph between sentiment and topic words
on the extracted target domain lexicons and candi-
dates. After that, a graph-based score refinement al-
gorithm is performed on the graph, and the topk1
candidates are added to the extracted lexicons based
on the final scores. Accordingly, with the new ex-
tracted lexicons, we update the syntactic patterns in
each iteration. The details of RAP are presented in
the following sections.
5.1 Cross-Domain Classifier
In this paper, we employTransfer AdaBoost(TrAd-
aBoost) (Dai et al., 2007) as the cross-domain learn-
ing algorithm in RAP. In TrAdaBoost, each word
wSi

(or wTj
) is represented by a feature vectorxSi

(or xTj
). A classifier trained on the source domain

dataDS = {(xSi
, ySi

)} may perform poor onxTj

because of domain difference. The main idea of
TrAdaBoost is to re-weight the source domain data
based on a few of target domain labeled data, which
is referred to as seeds in our task. The re-weighting
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aims to reduce the effect of the “bad” source do-
main data while encourage the “good” ones to get
a more precise classifier in target domain. In each
iteration of RAP, we train cross-domain classifiers
fT
O and fT

P for sentiment- and topic- word extrac-
tion using TrAdaBoost separately (taking sentiment
or topic words as positive instances). We use linear
Support Vector Machines (SVMs) as the base clas-
sifier in TrAdaBoost. For features to represent each
word, we use lexicon features, such as the previous,
current and next words, and POS tag features, such
as the previous, current and next words’ POS tags.

Algorithm 1 Relational Adaptive bootstraPping
Require: Target domain dataDT = Dl

T

⋃
Du

T , whereDl
T

consists of sentiment seedsB and topic seedsC and their
initial scoresS1(wi), ∀wi ∈ B andS3(wj), ∀wj ∈ C, Du

T

is the set of unlabeled target domain data; labeled source
domain dataDS ; a cross-domain classifier; iteration num-
berM and candidate selection numberk1, k2.

Ensure: ExpandC andB in the target domain.
1: Initialize a pattern setA = ∅, S̃1(wi) = S1(wi), wi ∈ B

and S̃3(wj) = S3(wj), wj ∈ C. Consider all patterns
observed in the source domain as pattern candidatesP .

2: for m = 1 . . .M do
3: Extract new pattern candidates toP with Dl

T in target
domain, update pattern scorẽS2(Rj), whereRj ∈ P ,
based on Eq. (4), and select the topk1 patterns to the
pattern setA.

4: Learn the cross-domain classifiersfT
O and fT

P for
sentiment- and topic- word extraction withDS

⋃
Dl

T

separately. Predict the sentiment scorehT
fO

(wTj ) and
topic scorehT

fP
(wTj ) on Du

T , and selectk2 sentiment
words and topic words with highest scores as candidates.

5: Construct a bipartite graph between sentiment and topic
words onDl

T and thek2 sentiment- and topic- word can-
didates, and calculate the normalized weightsθij ’s for
each edge of the graph.

6: Refine the scores̃S1 and S̃3 of the k2 sentiment and
topic word candidates using Eqs. (5) and (6) iteratively.

7: Selectk1 new sentiment words andk1 new topic words
with the final scores, and add them to lexiconsB andC.
UpdateS̃1(wi) andS̃3(wj) accordingly.

8: end for
9: return Expanded lexiconsB andC.

5.2 Graph Construction
Based on the cross-domain classifiersfT

O and fT
P ,

we can predict the sentiment label scorehTfO(wTi
)

and topic label scorehTfP (wTi
) for the target domain

datawTi
. According to all predicted values, we re-

spectively select topk2 new sentiment- and topic-
words as candidates. Together with the extracted
sentiment and topic lexicons in the target domain,

we build a bipartite graph among them as shown in
Figure 3. In the bipartite graph, one set of nodes
represents topic words, including new topic candi-
dates and words in the lexiconC, and the other set
of nodes represents sentiment words, including new
sentiment candidates and words in the lexiconB.
For a pair of sentiment and topic wordswO

Ti
andwP

Tj
,

if there is a patternRj in the pattern setA that they
can satisfy, then there exists an edgeeij between
them. Furthermore, each edgeeij is associated with
a nonnegative weightθij , which is measured as fol-
lows,θij =

∑
Rk∈E

S̃2(Rk), whereS̃2 is the pattern
score. Similar to the metric defined in Eq. (3), the
pattern score is defined as:

S̃2(Rj) =
∑

{wi,wk}∈E

(
S̃1(wi)× S̃3(wk)

)
, (4)

whereE = {{wi, wj}|, wi ∈ B,wj ∈ C and
wi, wj satisfyRj , Rj ∈ A}. Note that in the be-
ginning of each iteration,̃S2 is updated based on the
new sentiment scorẽS1 and topic scorẽS3. We fur-
ther normalizeθij by θ̃ij = θij/(

∑
ij θij).

Topic words Sentiment words

music

movie

recommend

good

boring

script

NN-nsubj-VB-dobj-NN-amod-JJ

NN-amod-JJ

NN-nsubj-JJ

NN-amod-JJ

NN
-dob

j-VB

Figure 3: Topic and sentiment word graph.

5.3 Score Computation
We construct the bipartite graph to exploit the re-
lationships between sentiment and topic words to
propagate information for lexicon extraction. We
use the following reinforcement formulas to itera-
tively update the final sentiment scorẽS1(wTj

) and

topic scoreS̃3(wTi
), respectively:

S̃1(wTj
) = µ

∑

i

S̃3(wTi
)θ̃ij + (1− µ)hT

fO
(wTj

), (5)

S̃3(wTi
) = µ

∑

j

S̃1(wTj
)θ̃ij + (1− µ)hT

fP
(wTi

), (6)

whereµ is a trade-off parameter between the pre-
dicted value by cross-domain classifier and the re-
inforcement scores from other nodes connected by
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edgeeij . Hereµ is empirically set to be0.5. With
Eqs. (5) and (6), the sentiment scores and topic
scores are iteratively refined until the state of the
graph trends to be stable. This can be considered
as an extension to the HITS algorithm(Kleinberg,
1999). Finally, we selectk1 ≪ k2 sentiment and
topic words from thek2 candidates based on their
refined scores, and add them to the target domain
lexicons, respectively. We also update the sentiment
scoreS̃1 and topic scorẽS3 for next iteration.

5.4 Special Cases
We now introduce two special cases of the RAP al-
gorithm. In Eqs. (5) and (6), if the parameterµ = 1,
then RAP only uses the relationships between sen-
timent and topic words with their patterns to propa-
gate label information in the target domain without
using the cross-domain classifier. We call this reduc-
tion relational bootstrapping. Ifµ = 0, then RAP
only utilizes useful source domain labeled data to as-
sist learning of the target domain classifier without
considering the relationships between sentiment and
topic words. We call this reduction adaptive boot-
strapping, which can be considered as a bootstrap-
ping version of TrAdaBoost. We also empirically
study these two special cases in experiments.

6 Experiments on Lexicon Evaluation
6.1 Data Set and Evaluation Criteria
We use the review dataset from (Li et al., 2010a),
which contains500 movie and601 product reviews,
for evaluation. The sentiment and topic words are
manually annotated. In this dataset, all types of
sentiment words are annotated instead of adjective
words only. For example, the verbs, such as “like”,
“recommend”, and nouns, such as “masterpiece”,
are also labeled as sentiment words. We construct
two cross-domain lexicon extraction tasks: “prod-
uct vs. movie” and “movie vs. product”, where the
word before “vs.” corresponds with the source do-
main and the word after “vs.” corresponds with the
target domain. We evaluate our methods in terms of
precision, recall and F-score (F1).

6.2 Baselines
The results of in-domain classifiers, which are
trained on plenty of target domain labeled data, can
be treated as upper-bounds. We denote iSVM and
iCRF the in-domain SVM and CRF classifiers in
experiments, and compare our proposed methods,

RAP, relational bootstrapping, and adaptive boot-
strapping, with the following baselines,
Unsupervised Method (Un)we implement a rule-
based method for lexicon extraction based on (Hu
and Liu, 2004), where adjective words that match
a rule is recognized as sentiment words, and nouns
that match a rule are recognized as topic words.
Semi-Supervised Method (Semi)we implement
the double propagation model proposed in (Qiu et
al., 2009). Since this method requires some target
domain labeled data, we manually label30 senti-
ment words in the target domain.
Cross-Domain CRF (Cross-CRF)we implement
a cross-domain CRF algorithm proposed by (Jakob
and Gurevych, 2010).
TrAdaBoost We apply TrAdaBoost (Dai et al.,
2007) on the source domain labeled data and the
generated seeds in the target domain to train a lexi-
con extractor.

6.3 Comparison Results

Comparison results on lexicon extraction are shown
in Table 2 and Table 3. From Table 2, we can ob-
serve that our proposed methods are effective for
sentiment lexicon extraction. The relational boot-
strapping method performs better than the unsuper-
vised method, TrAdaBoost and the cross-domain
CRF algorithm, and achieves comparable results
with the semi-supervised method. However, com-
pared to the semi-supervised method, our proposed
relational bootstrapping method does not require any
labeled data in the target domain. We can also ob-
serve that the adaptive bootstrapping method and the
RAP method perform much better than other meth-
ods in terms of F-score. The reason is that part of
the source domain labeled data may be useful for
learning the target classifier after reweighting. In
addition, we also observe that embedding the TrAd-
aBoost algorithm into a bootstrapping process can
further boost the performance of the classifier for
sentiment lexicon extraction.

Table 3 shows the comparison results on topic lex-
icon extraction. From the table, we can observe that
different from the sentiment lexicon extraction task,
the relational bootstrapping method performs better
than the adaptive bootstrapping method slightly. The
reason may be that for the sentiment lexicon extrac-
tion task, there exist some common sentiment words
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product vs. movie movie vs. product
Prec. Rec. F1 Prec. Rec. F1

Un 0.82 0.31 0.45 0.74 0.23 0.35
Semi 0.71 0.44 0.54 0.62 0.45 0.52
Cross-CRF 0.69 0.40 0.51 0.65 0.34 0.45
Tradaboost 0.73 0.41 0.52 0.72 0.42 0.52
Adaptive 0.68 0.53 0.59 0.63 0.52 0.57
Relational 0.55 0.51 0.53 0.57 0.51 0.54
RAP 0.69 0.59 0.64 0.66 0.59 0.62
iSVM 0.82 0.60 0.70 0.80 0.61 0.68
iCRF 0.80 0.66 0.72 0.80 0.62 0.69

Table 2: Results on sentiment lexicon extraction. Num-
bers in boldface denote significant improvement.

product vs. movie movie vs. product
Prec. Rec. F1 Prec. Rec. F1

Un 0.41 0.32 0.36 0.53 0.35 0.41
Semi 0.54 0.59 0.56 0.75 0.50 0.60
Cross-CRF 0.70 0.23 0.34 0.80 0.24 0.37
Tradaboost 0.64 0.45 0.53 0.57 0.47 0.51
Adaptive 0.76 0.44 0.56 0.70 0.52 0.59
Relational 0.57 0.58 0.58 0.61 0.57 0.59
RAP 0.80 0.56 0.66 0.73 0.58 0.65
iSVM 0.83 0.73 0.78 0.85 0.70 0.77
iCRF 0.84 0.78 0.81 0.87 0.73 0.80

Table 3: Results on topic lexicon extraction. Numbers in
boldface denote significant improvement.

across domains, thus part of the labeled source do-
main data may be useful for the target learning task.
However, for the topic lexicon extraction task, the
topic words may be totally different, and as a result,
we may not be able to find useful source domain
labeled data to boost the performance for lexicon
extraction in the target domain. In this case, mu-
tual label propagation between sentiment and topic
words may be more reasonable for knowledge trans-
fer. RAP absorbs the advantages of the adaptive and
relational bootstrapping methods, thus can get the
best results in both lexicon extraction tasks.

We also observe that relational bootstrapping can
get better recall, but lower precision, compared to
adaptive bootstrapping. This is because relational
bootstrapping only utilizes the patterns to propagate
label information, which may cover more topic and
sentiment seeds, but include somenoisywords. For
example, given two phases “like the camera” and
“recommend the camera”, we can extract a pattern
“VB-dobj-NN”. However, by using this pattern and
the topic word “camera”, we may extract “take” as
a sentiment word from another phase “take the cam-

era”, which is incorrect. The adaptive bootstrapping
method can utilize various features to make predic-
tions more precisely, which may have higher preci-
sion, but encounter the lower recall problem. For ex-
ample, “flash” is not identified as a topic word in the
target product domain (camera domain). Our RAP
method can exploit both relationships between sen-
timent and topic words and part of labeled source
domain data for cross-domain lexicon extraction. It
can correctly identify the above two cases.

6.3.1 Parameter Sensitivity Study
In this section, we conduct experiments to study

the effect of different parameter settings. There are
several parameters in the framework: the number
of generated seedsr, the number of new candidates
k2 and the number of selectionsk in each iteration,
and the number of iterationsM (µ is empirically set
to 0.5 ). For the parameterk2, we just set it to a
large number (k2 = 100) such that have rich candi-
dates to build the bipartite graph. In the experiments
reported in the previous section, we setr = 20,
k1 = 10 andM = 50. Figures 4(a) and 4(b) show
the results under varying values ofr in the “product
vs. movie” task. Observe that for sentiment word
extraction, the results of the proposed methods are
not sensitive to the values ofr. While for the topic
word extraction, the proposed methods perform well
whenr falls in the range from15 to 20.

5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

Values of r

F
−

sc
or

e

 

 

Relational
Adaptive
RAP

(a) Sentiment word extraction

5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

Values of r

F
−

sc
or

e

 

 

Relational
Adaptive
RAP

(b) Topic word extraction

Figure 4: Results on varying values ofr.
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Figure 5: Results on varying values ofM .

We also test the sensitivity of the parameterk1
and find that the proposed methods work well and
robust whenk1 falls in the range from 10 to 20.
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Figures 5(a) and 5(b) show the results under vary-
ing numbers of iterations in the “product vs. movie”
task. As we can see, our proposed methods converge
well whenM ≥ 40.

7 Application: Sentiment Classification
To further verify the usefulness of the lexicons ex-
tracted by the RAP method, we apply the extracted
sentiment lexicon for sentiment classification.

7.1 Experiment Setting
Our work is motivated by the work of (Pang and
Lee, 2004), which only used subjective sentences
for document-level sentiment classification, instead
of using all sentences. In this experiment, we only
use sentiment related words as features to represent
opinion documents for classification, instead of us-
ing all words. Our goal is compare the sentiment
lexicon constructed by the RAP method with other
general lexicons on the impact of for sentiment clas-
sification. The general lexicons used for comparison
are described in Table 4.

We use the dataset from (Blitzer et al., 2007) for
sentiment classification. It contains a collection of
product reviews from Amazon.com. The reviews are
about four product domains: books, dvds, electron-
ics and kitchen appliance. In each domain, there are
1000 positive and 1000 negative reviews. To con-
struct domain specific sentiment lexicons, we apply
RAP on each product domain with themoviedomain
described in Section 6.1 as the source domain. Fi-
nally, we use linear SVM as the classifier and the
classification accuracy as the evaluate criterion.

Lexicon Name Size Description
Senti-WordNet 6957 Words with a subjective score> 0.6

(Esuli and Sebastiani, 2006)
HowNet 4619 Eng. translation of subj. Chinese

words (Dong and Dong, 2006)
Subj. Clues 6878 Lexicons from (Wilson et al., 2005)

Table 4: Description of different lexicons.

7.2 Experimental Results

Experimental results on sentiment classification are
shown in Table 5, where we denote “All” using all
unigram and bigram features instead of using sub-
jective words. As we can see that a classifier trained
with features constructed by our RAP method per-
formance best in all domains. Note that the num-
ber of features (sentiment words) constructed by our

method is much smaller than that of all unigram
and bigram features, which can reduce the classi-
fier training time dramatically. These promising re-
sults imply that our RAP can be applied for senti-
ment classification effectively and efficiently.

All Senti HowNet Subj. Clue Ours
dvd 82.55 79.80 80.57 80.93 84.05
book 80.71 76.22 78.22 79.48 81.65
electronic 84.43 82.42 83.05 83.22 86.71
kitchen 87.70 81.78 84.17 84.23 88.83

Table 5: Sentiment classification results (accuracy in %).
Numbers in boldface denotes significant improvement.

8 Conclusions
In this paper, we propose a two-stage framework for
co-extraction of sentiment and topic lexicons across
domains where we have no labeled data in the tar-
get domain but have plenty of labeled data in an-
other domain. In the first stage, we propose a sim-
ple strategy to generate a few high-quality sentiment
and topic seeds for the target domain. In the second
stage, we propose a novel Relational Adaptive boot-
straPping (RAP) method to expand the seeds, which
can exploit the relationships between topic and opin-
ion words, and make use of part of useful source do-
main labeled data for help. Extensive experimental
results show our proposed method can extract pre-
cise sentiment and topic lexicons from the target do-
main. Furthermore, the extracted sentiment lexicon
can be applied to sentiment classification effectively.

In the future work, besides the heterogeneous
relationships between topic and sentiment words,
we intend to investigate the homogeneous relation-
ships among topic words and those among sentiment
words (Qiu et al., 2009) to further boost the perfor-
mance of RAP method. Furthermore, in our frame-
work, we do not identify the polarity of the extracted
sentiment lexicon. We also plan to embed this com-
ponent into our unified framework. Finally, it is also
interesting to exploit multi-domain knowledge (Li
and Zong, 2008; Bollegala et al., 2011) for cross-
domain lexicon extraction.
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Abstract

We present a novel approach for building
verb subcategorization lexicons using a simple
graphical model. In contrast to previous meth-
ods, we show how the model can be trained
without parsed input or a predefined subcate-
gorization frame inventory. Our method out-
performs the state-of-the-art on a verb clus-
tering task, and is easily trained on arbitrary
domains. This quantitative evaluation is com-
plemented by a qualitative discussion of verbs
and their frames. We discuss the advantages of
graphical models for this task, in particular the
ease of integrating semantic information about
verbs and arguments in a principled fashion.
We conclude with future work to augment the
approach.

1 Introduction

Subcategorization frames (SCFs) give a compact de-
scription of a verb’s syntactic preferences. These
two sentences have the same sequence of lexical
syntactic categories (VP-NP-SCOMP), but the first
is a simple transitive (“X understood Y”), while the
second is a ditransitive with a sentential complement
(“X persuaded Y that Z”):

1. Kim (VP understood (NP the evidence
(SCOMP that Sandy was present)))

2. Kim (VP persuaded (NP the judge) (SCOMP
that Sandy was present))

An SCF lexicon would indicate that “persuade”
is likely to take a direct object and sentential com-
plement (NP-SCOMP), while “understand” is more
likely to take just a direct object (NP). A compre-
hensive lexicon would also include semantic infor-
mation about selectional preferences (or restrictions)
on argument heads of verbs, diathesis alternations
(i.e. semantically-motivated alternations between
pairs of SCFs) and a mapping from surface frames
to the underlying predicate-argument structure. In-
formation about verb subcategorization is useful for
tasks like information extraction (Cohen and Hunter,
2006; Rupp et al., 2010), verb clustering (Korho-
nen et al., 2006b; Merlo and Stevenson, 2001) and
parsing (Carroll et al., 1998). In general, tasks that
depend on predicate-argument structure can benefit
from a high-quality SCF lexicon (Surdeanu et al.,
2003).

Large, manually-constructed SCF lexicons
mostly target general language (Boguraev and
Briscoe, 1987; Grishman et al., 1994). However,
in many domains verbs exhibit different syntactic
behavior (Roland and Jurafsky, 1998; Lippincott
et al., 2010). For example, the verb “develop”
has specific usages in newswire, biomedicine and
engineering that dramatically change its probability
distribution over SCFs. In a few domains like
biomedicine, the need for focused SCF lexicons
has led to manually-built resources (Bodenreider,
2004). Such resources, however, are costly, prone to
human error, and in domains where new lexical and
syntactic constructs are frequently coined, quickly
become obsolete (Cohen and Hunter, 2006). Data-
driven methods for SCF acquisition can alleviate
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these problems by building lexicons tailored to
new domains with less manual effort, and higher
coverage and scalability.

Unfortunately, high quality SCF lexicons are dif-
ficult to build automatically. The argument-adjunct
distinction is challenging even for humans, many
SCFs have no reliable cues in data, and some SCFs
(e.g. those involving control such as type raising)
rely on semantic distinctions. As SCFs follow a Zip-
fian distribution (Korhonen et al., 2000), many gen-
uine frames are also low in frequency. State-of-the-
art methods for building data-driven SCF lexicons
typically rely on parsed input (see section 2). How-
ever, the treebanks necessary for training a high-
accuracy parsing model are expensive to build for
new domains. Moreover, while parsing may aid the
detection of some frames, many experiments have
also reported SCF errors due to noise from parsing
(Korhonen et al., 2006a; Preiss et al., 2007).

Finally, many SCF acquisition methods operate
with predefined SCF inventories. This subscribes to
a single (often language or domain-specific) inter-
pretation of subcategorization a priori, and ignores
the ongoing debate on how this interpretation should
be tailored to new domains and applications, such as
the more prominent role of adjuncts in information
extraction (Cohen and Hunter, 2006).

In this paper, we describe and evaluate a novel
probabilistic data-driven method for SCF acquisi-
tion aimed at addressing some of the problems with
current approaches. In our model, a Bayesian net-
work describes how verbs choose their arguments
in terms of a small number of frames, which are
represented as distributions over syntactic relation-
ships. First, we show that by allowing the infer-
ence process to automatically define a probabilistic
SCF inventory, we outperform systems with hand-
crafted rules and inventories, using identical syntac-
tic features. Second, by replacing the syntactic fea-
tures with an approximation based on POS tags, we
achieve state-of-the-art performance without relying
on error-prone unlexicalized or domain-specific lex-
icalized parsers. Third, we highlight a key advantage
of our method compared to previous approaches: the
ease of integrating and performing joint inference of
additional syntactic and semantic information. We
describe how we plan to exploit this in our future
research.

2 Previous work

Many state-of-the-art SCF acquisition systems take
grammatical relations (GRs) as input. GRs ex-
press binary dependencies between lexical items,
and many parsers produce them as output, with
some variation in inventory (Briscoe et al., 2006;
De Marneffe et al., 2006). For example, a subject-
relation like “ncsubj(HEAD, DEPENDENT)” ex-
presses the fact that the lexical item referred to by
HEAD (such as a present-tense verb) has the lexi-
cal item referred to by DEPENDENT as its subject
(such as a singular noun). GR inventories include
direct and indirect objects, complements, conjunc-
tions, among other relations. The dependency rela-
tionships included in GRs correspond closely to the
head-complement structure of SCFs, which is why
they are the natural choice for SCF acquisition.

There are several SCF lexicons for general lan-
guage, such as ANLT (Boguraev and Briscoe, 1987)
and COMLEX (Grishman et al., 1994), that depend
on manual work. VALEX (Preiss et al., 2007) pro-
vides SCF distributions for 6,397 verbs acquired
from a parsed general language corpus via a system
that relies on hand-crafted rules. There are also re-
sources which provide information about both syn-
tactic and semantic properties of verbs: VerbNet
(Kipper et al., 2008) draws on several hand-built
and semi-automatic sources to link the syntax and
semantics of 5,726 verbs. FrameNet (Baker et al.,
1998) provides semantic frames and annotated ex-
ample sentences for 4,186 verbs. PropBank (Palmer
et al., 2005) is a corpus where each verb is annotated
for its arguments and their semantic roles, covering
a total of 4,592 verbs.

There are many language-specific SCF acquisi-
tion systems, e.g. for French (Messiant, 2008),
Italian (Lenci et al., 2008), Turkish (Han et al.,
2008) and Chinese (Han et al., 2008). These typ-
ically rely on language-specific knowledge, either
directly through heuristics, or indirectly through
parsing models trained on treebanks. Furthermore,
some require labeled training instances for super-
vised (Uzun et al., 2008) or semi-supervised (Han
et al., 2008) learning algorithms.

Two state-of-the-art data-driven systems for En-
glish verbs are those that produced VALEX, Preiss et
al. (2007), and the BioLexicon (Venturi et al., 2009).
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The Preiss system extracts a verb instance’s GRs us-
ing the Rasp general-language unlexicalized parser
(Briscoe et al., 2006) as input, and based on hand-
crafted rules, maps verb instances to a predefined
inventory of 168 SCFs. Filtering is then performed
to remove noisy frames, with methods ranging from
a simple single threshold to SCF-specific hypothesis
tests based on external verb classes and SCF inven-
tories. The BioLexicon system extracts each verb in-
stance’s GRs using the lexicalized Enju parser tuned
to the biomedical domain (Miyao, 2005). Each
unique GR-set considered a potential SCF, and an
experimentally-determined threshold is used to fil-
ter low-frequency SCFs.

Note that both methods require extensive man-
ual work: the Preiss system involves the a priori
definition of the SCF inventory, careful construc-
tion of matching rules, and an unlexicalized pars-
ing model. The BioLexicon system induces its SCF
inventory automatically, but requires a lexicalized
parsing model, rendering it more sensitive to domain
variation. Both rely on a filtering stage that depends
on external resources and/or gold standards to select
top-performing thresholds. Our method, by contrast,
does not use a predefined SCF inventory, and can
perform well without parsed input.

Graphical models have been increasingly popu-
lar for a variety of tasks such as distributional se-
mantics (Blei et al., 2003) and unsupervised POS
tagging (Finkel et al., 2007), and sampling methods
allow efficient estimation of full joint distributions
(Neal, 1993). The potential for joint inference of
complementary information, such as syntactic verb
and semantic argument classes, has a clear and in-
terpretable way forward, in contrast to the pipelined
methods described above. This was demonstrated in
Andrew et al. (2004), where a Bayesian model was
used to jointly induce syntactic and semantic classes
for verbs, although that study relied on manually
annotated data and a predefined SCF inventory and
MLE. More recently, Abend and Rappoport (2010)
trained ensemble classifiers to perform argument-
adjunct disambiguation of PP complements, a task
closely related to SCF acquisition. Their study em-
ployed unsupervised POS tagging and parsing, and
measures of selectional preference and argument
structure as complementary features for the classi-
fier.

Finally, our task-based evaluation, verb clustering
with Levin (1993)’s alternation classes as the gold
standard, was previously conducted by Joanis and
Stevenson (2003), Korhonen et al. (2008) and Sun
and Korhonen (2009).

3 Methodology

In this section we describe the basic components of
our study: feature sets, graphical model, inference,
and evaluation.

3.1 Input and feature sets

We tested several feature sets either based on, or
approximating, the concept of grammatical relation
described in section 2. Our method is agnostic re-
garding the exact definition of GR, and for example
could use the Stanford inventory (De Marneffe et al.,
2006) or even an entirely different lexico-syntactic
formalism like CCG supertags (Curran et al., 2007).
In this paper, we distinguish “true GRs” (tGRs), pro-
duced by a parser, and “pseudo GRs” (pGRs), a
POS-based approximation, and employ subscripts to
further specify the variations described below. Our
input has been parsed into Rasp-style tGRs (Briscoe
et al., 2006), which facilitates comparison with pre-
vious work based on the same data set.

We’ll use a simple example sentence to illustrate
how our feature sets are extracted from CONLL-
formatted data (Nivre et al., 2007). The CONLL
format is a common language for comparing output
from dependency parsers: each lexical item has an
index, lemma, POS tag, tGR in which it is the de-
pendent, and index to the corresponding head. Table
1 shows the relevant fields for the sentence “We run
training programmes in Romania and other coun-
tries”.

We define the feature set for a verb occurrence as
the counts of each GR the verb participates in. Table
2 shows the three variations we tested: the simple
tGR type, with parameterization for the POS tags
of head and dependent, and with closed-class POS
tags (determiners, pronouns and prepositions) lexi-
calized. In addition, we tested the effect of limiting
the features to subject, object and complement tGRs,
indicated by adding the subscript “lim”, for a total of
six tGR-based feature sets.

While ideally tGRs would give full informa-
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Index Lemma POS Head tGR
1 we PPIS2 2 ncsubj
2 run VV0 0
3 training NN1 4 ncmod
4 programme NN2 2 dobj
5 in II 4 ncmod
6 romania NP1 7 conj
7 and CC 5 dobj
8 other JB 9 ncmod
9 country NN2 7 conj

Table 1: Simplified CONLL format for example sen-
tence “We run training programmes in Romania and
other countries”. Head=0 indicates the token is the
root.

Name Features
tGR ncsubj dobj
tGRparam ncsubj(VV0,PPIS2) dobj(VV0,NN2)
tGRparam,lex ncsubj(VV0,PPIS2-we) dobj(VV0,NN2)

Table 2: True-GR features for example sentence:
note there are also tGR∗,lim versions of each that
only consider subjects, objects and complements
and are not shown.

tion about the verb’s syntactic relationship to other
words, in practice parsers make (possibly prema-
ture) decisions, such as deciding that “in” modifies
“programme”, and not “run” in our example sen-
tence. An unlexicalized parser cannot distinguish
these based just on POS tags, while a lexicalized
parser requires a large treebank. We therefore define
pseudo-GRs (pGRs), which consider each (distance,
POS) pair within a given window of the verb to be
a potential tGR. Table 3 shows the pGR features for
the test sentence using a window of three. As with
tGRs, the closed-class tags can be lexicalized, but
there are no corresponding feature sets for param
(since they are already built from POS tags) or lim
(since there is no similar rule-based approach).

Name Features
pGR -1(PPIS2) 1(NN1) 2(NN2) 3(II)
pGRlex -1(PPIS2-we) 1(NN1) 2(NN2) 3(II-in)

Table 3: Pseudo-GR features for example sentence
with window=3

Whichever feature set is used, an instance is sim-

ply the count of each GR’s occurrences. We extract
instances for the 385 verbs in the union of our two
gold standards from the VALEX lexicon’s data set,
which was used in previous studies (Sun and Korho-
nen, 2009; Preiss et al., 2007) and facilitates com-
parison with that resource. This data set is drawn
from five general-language corpora parsed by Rasp,
and provides, on average, 7,000 instances per verb.

3.2 SCF extraction
Our graphical modeling approach uses the Bayesian
network shown in Figure 1. Its generative story
is as follows: when a verb is instantiated, an SCF
is chosen according to a verb-specific multinomial.
Then, the number and type of syntactic arguments
(GRs) are chosen from two SCF-specific multino-
mials. These three multinomials are modeled with
uniform Dirichlet priors and corresponding hyper-
parameters α, β and γ. The model is trained via
collapsed Gibbs sampling, where the probability of
assigning a particular SCF s to an instance of verb v
with GRs (gr1 . . . grn) is the product

P (s|V erb = v,GRs = gr1 . . . grn) =

P (SCF = s|V erb = v)×
P (N = n|SCF = s)×∏
i=1:n

P (GR = gri|SCF = s)

The three terms, given the hyper-parameters and
conjugate-prior relationship between Dirichlet and
Multinomial distributions, can be expressed in terms
of current assignments of s to verb v ( csv ), s to
GR-count n ( csn ) and s to GR ( csg ), the corre-
sponding totals ( cv, cs ), the dimensionality of the
distributions ( |SCF |, |N | and |G| ) and the hyper-
parameters α, β and γ:

P (SCF = s|V erb = v) = (csv+α)/(cv+|SCF |α)

P (N = n|SCF = s) = (csn + β)/(cs + |N |β)

P (GR = gri|SCF = s) = (csgri +γ)/(cs + |G|γ)

Note that N , the possible GR-count for an in-
stance, is usually constant for pGRs ( 2 × window
), unless the verb is close to the start or end of the
sentence.
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Figure 1: Our simple graphical model reflecting subcategorization. Double-circles indicate an observed
value, arrows indicate conditional dependency. What constitutes a “GR” depends on the feature set being
used.

We chose our hyper-parameters α = β = γ = .02
to reflect the characteristic sparseness of the phe-
nomena (i.e. verbs tend to take a small number of
SCFs, which in turn are limited to a small number
of realizations). For the pGRs we used a window
of 5 tokens: a verb’s arguments will fall within a
small window in the majority of cases, so there is
diminished return in expanding the window at the
cost of increased noise. Finally, we set our SCF
count to 40, about twice the size of the strictly syn-
tactic general-language gold standard we describe in
section 3.3. This overestimation allows some flex-
ibility for the model to define its inventory based
on the data; any supernumerary frames will act as
“junk frames” that are rarely assigned and hence
will have little influence. We run Gibbs sampling
for 1000 iterations, and average the final 100 sam-
ples to estimate the posteriors P (SCF |V erb) and
P (GR|SCF ). Variance between adjacent states’
estimates of P (SCF |V erb) indicates that the sam-
pling typically converges after about 100-200 itera-
tions.1

3.3 Evaluation

Quantitative: cluster gold standard
Evaluating the output of unsupervised methods is

not straightforward: discrete, expert-defined cate-
gories (like many SCF inventories) are unlikely to
line up perfectly with data-driven, probabilistic out-
put. Even if they do, finding a mapping between
them is a problem of its own (Meila, 2003).

1Full source code for this work is available at http://cl.
cam.ac.uk/˜tl318/files/subcat.tgz

Our goal is to define a fair quantitative compari-
son between arbitrary SCF lexicons. An SCF lexi-
con makes two claims: first, that it defines a reason-
able SCF inventory. Second, that for each verb, it
has an accurate distribution over that inventory. We
therefore compare the lexicons based on their per-
formance on a task that a good SCF lexicon should
be useful for: clustering verbs into lexical-semantic
classes. Our gold standard is from (Sun and Korho-
nen, 2009), where 200 verbs were assigned to 17
classes based on their alternation patterns (Levin,
1993). Previous work (Schulte im Walde, 2009;
Sun and Korhonen, 2009) has demonstrated that the
quality of an SCF lexicon’s inventory and probabil-
ity estimates corresponds to its predictive power for
membership in such alternation classes.

To compare the performance of our feature sets,
we chose the simple and familiar K-Means cluster-
ing algorithm (Hartigan and Wong, 1979). The in-
stances are the verbs’ SCF distributions, and we se-
lect the number of clusters by the Silhouette vali-
dation technique (Rousseeuw, 1987). The clusters
are then compared to the gold standard clusters with
the purity-based F-Score from Sun and Korhonen
(2009) and the more familiar Adjusted Rand Index
(Hubert and Arabie, 1985). Our main point of com-
parison is the VALEX lexicon of SCF distributions,
whose scores we report alongside ours.

Qualitative: manual gold standard

We also want to see how our results line up with
a traditional linguistic view of subcategorization,
but this requires digging into the unsupervised out-
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put and associating anonymous probabilistic objects
with established categories. We therefore present
sample output in three ways: first, we show the
clustering output from our top-performing method.
Second, we plot the probability mass over GRs for
two anonymous SCFs that correspond to recogniz-
able traditional SCFs, and one that demonstrates un-
expected behavior. Third, we compared the out-
put for several verbs to a coarsened version of the
manually-annotated gold standard used to evaluate
VALEX (Preiss et al., 2007). We collapsed the orig-
inal inventory of 168 SCFs to 18 purely syntactic
SCFs based on their characteristic GRs and removed
frames that depend on semantic distinctions, leav-
ing the detection of finer-grained and semantically-
based frames for future work.

4 Results

4.1 Verb clustering
We evaluated SCF lexicons based on the eight fea-
ture sets described in section 3.1, as well as the
VALEX SCF lexicon described in section 2. Table 4
shows the performance of the lexicons in ascending
order.

Method Pur. F-score Adj. Rand
tGR .24 .02
tGRlim .27 .02
pGRlex .32 .09
tGRlim,param .35 .08
pGR .35 .10
VALEX .36 .10
tGRparam,lex .37 .10
tGRparam .39 .12
tGRlim,param,lex .44 .12

Table 4: Task-based evaluation of lexicons acquired
with each of the eight feature types, and the state-of-
the-art rule-based VALEX lexicon.

These results lead to several conclusions: first,
training our model on tGRs outperforms pGRs and
VALEX. Since the parser that produced them is
known to perform well on general language (Briscoe
et al., 2006), the tGRs are of high quality: it makes
sense that reverting to the pGRs is unnecessary in
this case. The interesting point is the major perfor-
mance gain over VALEX, which uses the same tGR

features along with expert-developed rules and in-
ventory.

Second, we achieve performance comparable to
VALEX using pGRs with a narrow window width.
Since POS tagging is more reliable and robust across
domains than parsing, retraining on new domains
will not suffer the effects of a mismatched parsing
model (Lippincott et al., 2010). It is therefore pos-
sible to use this method to build large-scale lexicons
for any new domain with sufficient data.

Third, lexicalizing the closed-class POS tags in-
troduces semantic information outside the scope
of the alternation-based definition of subcatego-
rization. For example, subdividing the indefinite
pronoun tag “PN1” into “PN1-anyone” and “PN1-
anything” gives information about the animacy of
the verb’s arguments. Our results show this degrades
performance for both pGR and tGR features, unless
the latter are limited to tGRs traditionally thought to
be relevant for the task.

4.2 Qualitative analysis
Table 5 shows clusters produced by our top-scoring
method, GRparam,lex,lim. Some clusters are imme-
diately intelligible at the semantic level and corre-
spond closely to the lexical-semantic classes found
in Levin (1993). For example, clusters 1, 6, and 14
include member verbs of Levin’s SAY, PEER and
AMUSE classes, respectively. Some clusters are
based on broader semantic distinctions (e.g. cluster
2 which groups together verbs related to locations)
while others relate semantic classes purely based
on their syntactic similarity (e.g. the verbs in clus-
ter 17 share strong preference for ’to’ preposition).
The syntactic-semantic nature of the clusters reflects
the multimodal nature of verbs and illustrates why a
comprehensive subcategorization lexicon should not
be limited to syntactic frames. This phenomenon is
also encouraging for future work to tease apart and
simultaneously exploit several verbal aspects via ad-
ditional latent structure in the model.

An SCF’s distribution over features can reveal its
place in the traditional definition of subcategoriza-
tion. Figure 2 shows the high-probability (>.02)
tGRs for one SCF: the large mass centered on di-
rect object tGRs indicates this approximates the no-
tion of “transitive”. Looking at the verbs most likely
to take this SCF (“stimulate”, “conserve”) confirms
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1 exclaim, murmur, mutter, reply, retort, say,
sigh, whisper

2 bang, knock, snoop, swim, teeter
3 flicker, multiply, overlap, shine
4 batter, charter, compromise, overwhelm,

regard, sway, treat
5 abolish, broaden, conserve, deepen, eradi-

cate, remove, sharpen, shorten, stimulate,
strengthen, unify

6 gaze, glance, look, peer, sneer, squint, stare
7 coincide, commiserate, concur, flirt, inter-

act
8 grin, smile, wiggle
9 confuse, diagnose, march
10 mate, melt, swirl
11 frown, jog, stutter
12 chuckle, mumble, shout
13 announce, envisage, mention, report, state
14 frighten, intimidate, scare, shock, upset
15 bash, falter, snarl, wail, weaken
16 cooperate, eject, respond, transmit
17 affiliate, compare, contrast, correlate, for-

ward, mail, ship

Table 5: Clusters (of size >2 and <20) produced
using tGRparam,lex,lim

this. Figure 3 shows a complement-taking SCF,
which is far rarer than simple transitive but also
clearly induced by our model.

The induced SCF inventory also has some redun-
dancy, such as additional transitive frames beside
figure 2, and frames with poor probability estimates.
Most of these issues can be traced to our simplifying
assumption that each tGR is drawn independently
w.r.t. an instance’s other tGRs. For example, if an
SCF gives any weight to indirect objects, it gives
non-zero probability to an instance with only indi-
rect objects, an impossible case. This can lead to
skewed probability estimates: since some tGRs can
occur multiple times in a given instance (e.g. in-
direct objects and prepositional phrases) the model
may find it reasonable to create an SCF with all
probability focused on that tGR, ignoring all oth-
ers, such as in figure 4. We conclude that our inde-
pendence assumption was too strong, and the model
would benefit from defining more structure within

Figure 2: The SCF corresponding to transitive has
most probability centered on dobj (e.g. stimulate,
conserve, deepen, eradicate, broaden)

Figure 3: The SCF corresponding to verbs taking
complements has more probability on xcomp and
ccomp (e.g. believe, state, agree, understand, men-
tion)

instances.
The full tables necessary to compare verb SCF

distributions from our output with the manual gold
standard are prohibited by space, but a few exam-
ples reinforce the analysis above. The verbs “load”
and “fill” show particularly high usage of ditransi-
tive SCFs in the gold standard. In our inventory, this
is reflected in high usage of an SCF with probabil-
ity centered on indirect objects, but due to the inde-
pendence assumptions the frame has a correspond-
ing low probability on subjects and direct objects,
despite the fact that these necessarily occur along
with any indirect object. The verbs “acquire” and
“buy” demonstrate both a strength of our approach
and a weakness of using parsed input: both verbs
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Figure 4: This SCF is dominated by indirect objects
and complements, catering to verbs that may take
several such tGRs, at the expense of subjects

show high probability of simple transitive in our
output and the gold standard. However, the Rasp
parser often conflates indirect objects and preposi-
tional phrases due to its unlexicalized model. While
our system correctly gives high probability to ditran-
sitive for both verbs, it inherits this confusion and
over-estimates “acquire”’s probability mass for the
frame. This is an example of how bad decisions
made by the parser cannot be fixed by the graphi-
cal model, and an area where pGR features have an
advantage.

5 Conclusions and future work

Our study reached two important conclusions: first,
given the same data as input, an unsupervised prob-
abilistic model can outperform a hand-crafted rule-
based SCF extractor with a predefined inventory.
We achieve better results with far less effort than
previous approaches by allowing the data to gov-
ern the definition of frames while estimating the
verb-specific distributions in a fully Bayesian man-
ner. Second, simply treating POS tags within a
small window of the verb as pseudo-GRs produces
state-of-the-art results without the need for a pars-
ing model. This is particularly encouraging when
building resources for new domains, where com-
plex models fail to generalize. In fact, by integrat-
ing results from unsupervised POS tagging (Teichert
and Daumé III, 2009) we could render this approach
fully domain- and language-independent.

We did not dwell on issues related to choosing

our hyper-parameters or latent class count. Both of
these can be accomplished with additional sampling
methods: hyper-parameters of Dirichlet priors can
be estimated via slice sampling (Heinrich, 2009),
and their dimensionality via Dirichlet Process priors
(Heinrich, 2011). This could help address the redun-
dancy we find in the induced SCF inventory, with the
potential SCFs growing to accommodate the data.

Our initial attempt at applying graphical models
to subcategorization also suggested several ways to
extend and improve the method. First, the indepen-
dence assumptions between GRs in a given instance
turned out to be too strong. To address this, we could
give instances internal structure to capture condi-
tional probability between generated GRs. Second,
our results showed the conflation of several verbal
aspects, most notably the syntactic and semantic.
In a sense this is encouraging, as it motivates our
most exciting future work: augmenting this simple
model to explicitly capture complementary infor-
mation such as distributional semantics (Blei et al.,
2003), diathesis alternations (McCarthy, 2000) and
selectional preferences (Ó Séaghdha, 2010). This
study targeted high-frequency verbs, but the use of
syntactic and semantic classes would also help with
data sparsity down the road. These extensions would
also call for a more comprehensive evaluation, aver-
aging over several tasks, such as clustering by se-
mantics, syntax, alternations and selectional prefer-
ences.

In concrete terms, we plan to introduce latent vari-
ables corresponding to syntactic, semantic and alter-
nation classes, that will determine a verb’s syntac-
tic arguments, their semantic realization (i.e. selec-
tional preferences), and possible predicate-argument
structures. By combining the syntactic classes with
unsupervised POS tagging (Teichert and Daumé III,
2009) and the selectional preferences with distribu-
tional semantics (Ó Séaghdha, 2010), we hope to
produce more accurate results on these complemen-
tary tasks while avoiding the use of any supervised
learning. Finally, a fundamental advantage of a data-
driven, parse-free method is that it can be easily
trained for new domains. We next plan to test our
method on a new domain, such as biomedical text,
where verbs are known to take on distinct syntactic
behavior (Lippincott et al., 2010).
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Abstract

Learning a semantic lexicon is often an impor-
tant first step in building a system that learns
to interpret the meaning of natural language.
It is especially important in language ground-
ing where the training data usually consist of
language paired with an ambiguous perceptual
context. Recent work by Chen and Mooney
(2011) introduced a lexicon learning method
that deals with ambiguous relational data by
taking intersections of graphs. While the al-
gorithm produced good lexicons for the task of
learning to interpret navigation instructions, it
only works in batch settings and does not scale
well to large datasets. In this paper we intro-
duce a new online algorithm that is an order
of magnitude faster and surpasses the state-
of-the-art results. We show that by changing
the grammar of the formal meaning represen-
tation language and training on additional data
collected from Amazon’s Mechanical Turk we
can further improve the results. We also in-
clude experimental results on a Chinese trans-
lation of the training data to demonstrate the
generality of our approach.

1 Introduction

Learning to understand the semantics of human lan-
guages has been one of the ultimate goals of natural
language processing (NLP). Traditional learning ap-
proaches have relied on access to parallel corpora of
natural language sentences paired with their mean-
ings (Mooney, 2007; Zettlemoyer and Collins, 2007;
Lu et al., 2008; Kwiatkowski et al., 2010). How-
ever, constructing such semantic annotations can be

difficult and time-consuming. More recently, there
has been work on learning from ambiguous super-
vision where a set of potential sentence meanings
are given, only one (or a small subset) of which are
correct (Chen and Mooney, 2008; Liang et al., 2009;
Bordes et al., 2010; Chen and Mooney, 2011). Given
the training data, the system needs to infer the cor-
recting meaning for each training sentence.

Building a lexicon of the formal meaning repre-
sentations of words and phrases, either implicitly
or explicitly, is usually an important step in infer-
ring the meanings of entire sentences. In particu-
lar, Chen and Mooney (2011) first learned a lexicon
to help them resolve ambiguous supervision of re-
lational data in which the number of choices is ex-
ponential. They represent the perceptual context as
a graph and allow each sentence in the training data
to align to any connected subgraph. Their lexicon
learning algorithm finds the common connected sub-
graph that occurs with a word by taking intersections
of the graphs that represent the different contexts in
which the word appears. While the algorithm pro-
duced a good lexicon for their application of learn-
ing to interpret navigation instructions, it only works
in batch settings and does not scale well to large
datasets. In this paper we introduce a novel online
algorithm that is an order of magnitude faster and
also produces better results on their navigation task.

In addition to the new lexicon learning algorithm,
we also look at modifying the meaning representa-
tion grammar (MRG) for their formal semantic lan-
guage. By using a MRG that correlates better to the
structure of natural language, we further improve the
performance on the navigation task. Since our al-
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gorithm can scale to larger datasets, we present re-
sults on collecting and training on additional data
from Amazon’s Mechanical Turk. Finally, we show
the generality of our approach by demonstrating our
system’s ability to learn from a Chinese translation
of the training data.

2 Background

A common way to learn a lexicon across many dif-
ferent contexts is to find the common parts of the for-
mal representations associated with different occur-
rences of the same words or phrases (Siskind, 1996).
For graphical representations, this involves find-
ing the common subgraph between multiple graphs
(Thompson and Mooney, 2003; Chen and Mooney,
2011). In this section we review the lexicon learning
algorithm introduced by Chen and Mooney (2011)
as well as the overall task they designed to test se-
mantic understanding of navigation instructions.

2.1 Navigation Task

The goal of the navigation task is to build a sys-
tem that can understand free-form natural-language
instructions and follow them to move to the in-
tended destination (MacMahon et al., 2006; Shimizu
and Haas, 2009; Matuszek et al., 2010; Kollar et
al., 2010; Vogel and Jurafsky, 2010; Chen and
Mooney, 2011). Chen and Mooney (2011) de-
fined a learning task in which the only supervi-
sion the system receives is in the form of observ-
ing how humans behave when following sample
navigation instructions in a virtual world. For-
mally, the system is given training data in the
form: {(e1, a1, w1), (e2, a2, w2), . . . , (en, an, wn)},
where ei is a written natural language instruction, ai

is an observed action sequence, and wi is a descrip-
tion of the virtual world. The goal is then to build a
system that can produce the correct aj given a pre-
viously unseen (ej , wj) pair.

Since the observed actions ai only consists of
low-level actions (e.g. turn left, turn right, walk for-
ward) and not high-level concepts (e.g. turn your
back against the wall and walk to the couch), Chen
and Mooney first use a set of rules to automatically
construct the space of reasonable plans using the ac-
tion trace and knowledge about the world. The space
is represented compactly using a graph as shown in

Figure 1: Examples of landmarks plans constructed by
Chen and Mooney (2011) and how they computed the in-
tersection of two graphs.

Figure 1. This is what they called a landmarks plan
and consists of the low-level observed actions in-
terleaved with verification steps indicating what ob-
jects should be observed after each action.

Given that these landmarks plans contain a lot of
extraneous details, Chen and Mooney learn a lexicon
and use it to identify and remove the irrelevant parts
of the plans. They use a greedy method to remove
nodes from the graphs that are not associated with
any of the words in the instructions. The remain-
ing refined landmarks plans are then treated as su-
pervised training data for a semantic-parser learner,
KRISP (Kate and Mooney, 2006). Once a seman-
tic parser is trained, it can be used at test time to
transform novel instructions into formal navigation
plans which are then carried out by a virtual robot
(MacMahon et al., 2006).

2.2 Lexicon Learning
The central component of the system is the lexi-
con learning process which associates words and
short phrases (n-grams) to their meanings (con-
nected graphs). To learn the meaning of an n-gram
w, Chen and Mooney first collect all navigation
plans g that co-occur with w. This forms the ini-
tial candidate meaning set for w. They then repeat-
edly take the intersections between the candidate
meanings to generate additional candidate mean-
ings. They use the term intersection to mean a max-
imal common subgraph (i.e. it is not a subgraph of
any other common subgraphs). In general, there are
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multiple possible intersections between two graphs.
In this case, they bias toward finding large connected
components by greedily removing the largest com-
mon connected subgraph from both graphs until the
two graphs have no overlapping nodes. The out-
put of the intersection process consists of all the re-
moved subgraphs. An example of the intersection
operation is shown in Figure 1.

Once the list of candidate meanings are generated,
they are ranked by the following scoring metric for
an n-gram w and a graph g:

Score(w, g) = p(g|w) − p(g|¬w)

Intuitively, the score measures how much more
likely a graph g appears when w is present compared
to when it is not. The probabilities are estimated by
counting how many examples contain the word w or
graph g, ignoring multiple occurrences in a single
example.

3 Online Lexicon Learning Algorithm

While the algorithm presented by Chen and Mooney
(2011) produced good lexicons, it only works in
batch settings and does not scale well to large
datasets. The bottleneck of their algorithm is the in-
tersection process which is time-consuming to per-
form. Moreover, their algorithm requires taking
many intersections between many different graphs.
Even though they use beam-search to limit the size
of the candidate set, if the initial candidate meaning
set for a n-gram is large, it can take a long time to
take just one pass through the list of all candidates.
Moreover, reducing the beam size could also hurt the
quality of the lexicon learned.

In this section, we present another lexicon learn-
ing algorithm that is much faster and works in an on-
line setting. The main insight is that most words or
short phrases correspond to small graphs. Thus, we
concentrate our attention on only candidate mean-
ings that are less than a certain size. Using this con-
straint, we generate all the potential small connected
subgraphs for each navigation plan in the training
examples and discard the original graph. Pseudo-
code for the new algorithm, Subgraph Generation
Online Lexicon Learning (SGOLL) algorithm, is
shown in Algorithm 1.

As we encounter each new training example
which consists of a written navigation instruction

Algorithm 1 SUBGRAPH GENERATION ONLINE

LEXICON LEARNING (SGOLL)
input A sequence of navigation instructions

and the corresponding navigation plans
(e1, p1), . . . , (en, pn)

output Lexicon , a set of phrase-meaning pairs
1: main
2: for training example (ei, pi) do
3: Update((ei, pi))
4: end for
5: OutputLexicon()
6: end main
7:

8: function Update(training example (ei, pi))
9: for n-gram w that appears in ei do

10: for connected subgraph g of pi such that
the size of g is less than or equal to m do

11: Increase the co-occurrence count of g
and w by 1

12: end for
13: end for
14: Increase the count of examples, each n-gram

w and each subgraph g
15: end function
16:

17:

18: function OutputLexicon()
19: for n-gram w that has been observed do
20: if Number of times w has been observed is

less than minSup then
21: skip w
22: end if
23: for subgraph g that has co-occurred with w

do
24: if score(w, g) > threshold t then
25: add (w, g) to Lexicon
26: end if
27: end for
28: end for
29: end function
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and the corresponding navigation plan, we first seg-
ment the instruction into word tokens and construct
n-grams from them. From the corresponding navi-
gation plan, we find all connected subgraphs of size
less than or equal to m. We then update the co-
occurrence counts between all the n-grams w and
all the connected subgraphs g. We also update the
counts of how many examples we have encountered
so far and counts of the n-grams w and subgraphs
g. At any given time, we can compute a lexicon
using these various counts. Specifically, for each
n-gram w, we look at all the subgraphs g that co-
occurred with it, and compute a score for the pair
(w, g). If the score is higher than the threshold t, we
add the entry (w, g) to the lexicon. We use the same
scoring function as Chen and Mooney, which can be
computed efficiently using the counts we keep. In
contrast to Chen and Mooney’s algorithm though,
we add the constraint of minimum support by not
creating lexical entries for any n-gram w that ap-
peared in less than minSup training examples. This
is to prevent rarely seen n-grams from receiving high
scores in our lexicon simply due to their sparsity.
Unless otherwise specified, we compute lexical en-
tries for up to 4-grams with threshold t = 0.4, max-
imum subgraph size m = 3, and minimum support
minSup = 10.

It should be noted that SGOLL can also become
computationally intractable if the sizes of the nav-
igations plans are large or if we set the maximum
subgraph size m to a large number. Moreover, the
memory requirement can be quite high if there are
many different subgraphs g associated with each n-
gram w. To deal with such scalability issues, we
could use beam-search and only keep the top k can-
didates associated with each w. Another important
step is to define canonical orderings of the nodes in
the graphs. This allows us to determine if two graphs
are identical in constant time and also lets us use a
hash table to quickly update the co-occurrence and
subgraph counts. Thus, even given a large number
of subgraphs for each training example, each sub-
graph can be processed very quickly. Finally, this
algorithm readily lends itself to being parallelized.
Each processor would get a fraction of the training
data and compute the counts individually. Then the
counts can be merged together at the end to produce
the final lexicon.

3.1 Changing the Meaning Representation
Grammar

In addition to introducing a new lexicon learning
algorithm, we also made another modification to
the original system proposed by Chen and Mooney
(2011). To train a semantic parser using KRISP

(Kate and Mooney, 2006), they had to supply a
MRG, a context-free grammar, for their formal nav-
igation plan language. KRISP learns string-kernel
classifiers that maps natural language substrings to
MRG production rules. Consequently, it is impor-
tant that the production rules in the MRG mirror the
structure of natural language (Kate, 2008).

The original MRG used by Chen and Mooney is a
compact grammar that contains many recursive rules
that can be used to generate an infinite number of ac-
tions or arguments. While these rules are quite ex-
pressive, they often do not correspond well to any
words or phrases in natural language. To alleviate
this problem, we designed another MRG by expand-
ing out many of the rules. For example, the original
MRG contained the following production rules for
generating an infinite number of travel actions from
the root symbol S.

*S -> *Action

*Action -> *Action, *Action

*Action -> *Travel

*Travel -> Travel( )

*Travel -> Travel( steps: *Num )

We expand out the production rules as shown be-
low to map S directly to specific travel actions so
they correspond better to patterns such as “go for-
ward” or “walk N steps”.

*S -> Travel( )

*S -> Travel( steps: *Num )

*S -> Travel( ), *Action

*S -> Travel( steps: *Num ), *Action

*Action -> *Action, *Action

*Action -> Travel( )

*Action -> Travel( steps: *Num )

While this process of expanding the produc-
tion rules resulted in many more rules, these ex-
panded rules usually correspond better with words
or phrases in natural language. We still retain some
of the recursive rules to ensure that the formal lan-
guage remains as expressive as before.
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4 Collecting Additional Data with
Mechanical Turk

One of the motivations for studying ambiguous su-
pervision is the potential ease of acquiring large
amounts of training data. Without requiring seman-
tic annotations, a human only has to demonstrate
how language is used in context which is generally
simple to do. We validate this claim by collecting
additional training data for the navigation domain
using Mechanical Turk (Snow et al., 2008).

There are two types of data we are interested in
collecting: natural language navigation instructions
and follower data. Thus, we created two tasks on
Mechanical Turk. The first one asks the workers
to supply instructions for a randomly generated se-
quence of actions. The second one asks the workers
to try to follow a given navigation instruction in our
virtual environment. The latter task is used to gener-
ate the corresponding action sequences for instruc-
tions collected from the first task.

4.1 Task Descriptions

To facilitate the data collection, we first recreated
the 3D environments used to collect the original data
(MacMahon et al., 2006). We built a Java appli-
cation that allows the user to freely navigate the
three virtual worlds constructed by MacMahon et
al. (2006) using the discrete controls of turning left,
turning right, and moving forward one step.

The follower task is fairly straightforward using
our application. The worker is given a navigation
instruction and placed at the starting location. They
are asked to follow the navigation instruction as best
as they could using the three discrete controls. They
could also skip the problem if they did not under-
stand the instruction or if the instruction did not de-
scribe a viable route. For each Human Intelligence
Task (HIT), we asked the worker to complete 5 fol-
lower problems. We paid them $0.05 for each HIT,
or 1 cent per follower problem. The instructions
used for the follower problems were mainly col-
lected from our Mechanical Turk instructor task with
some of the instructions coming from data collected
by MacMahon (2007) that was not used by Chen and
Mooney (2011).

The instructor task is slightly more involved be-
cause we ask the workers to provide new navigation

Chen & Mooney MTurk
# instructions 3236 1011
Vocabulary size 629 590
Avg. # words 7.8 (5.1) 7.69 (7.12)
Avg. # actions 2.1 (2.4) 1.84 (1.24)

Table 1: Statistics about the navigation instruction cor-
pora. The average statistics for each instruction are
shown with standard deviations in parentheses.

instructions. The worker is shown a 3D simulation
of a randomly generated action sequence between
length 1 to 4 and asked to write short, free-form in-
structions that would lead someone to perform those
actions. Since this task requires more time to com-
plete, each HIT consists of only 3 instructor prob-
lems. Moreover, we pay the workers $0.10 for each
HIT, or about 3 cents for each instruction they write.

To encourage quality contributions, we use a
tiered payment structure (Chen and Dolan, 2011)
that rewards the good workers. Workers who have
been identified to consistently provide good instruc-
tions were allowed to do higher-paying version of
the same HITs that paid $0.15 instead of $0.10.

4.2 Data Statistics

Over a 2-month period we accepted 2,884 follower
HITs and 810 instructor HITs from 653 workers.
This corresponds to over 14,000 follower traces and
2,400 instructions with most of them consisting of
single sentences. For instructions with multiple sen-
tences, we merged all the sentences together and
treated it as a single sentence. The total cost of
the data collection was $277.92. While there were
2,400 instructions, we filtered them to make sure
they were of reasonable quality. First, we discarded
any instructions that did not have at least 5 follower
traces. Then we looked at all the follower traces and
discarded any instruction that did not have majority
agreement on what the correct path is.

Using our strict filter, we were left with slightly
over 1,000 instructions. Statistics about the new
corpus and the one used by Chen and Mooney can
be seen in Table 1. Overall, the new corpus has a
slightly smaller vocabulary, and each instruction is
slightly shorter both in terms of the number of words
and the number of actions.
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5 Experiments

We evaluate our new lexicon learning algorithm as
well as the other modifications to the navigation sys-
tem using the same three tasks as Chen and Mooney
(2011). The first task is disambiguating the train-
ing data by inferring the correct navigation plans as-
sociated with each training sentence. The second
task is evaluating the performance of the semantic
parsers trained on the disambiguated data. We mea-
sure the performance of both of these tasks by com-
paring to gold-standard data using the same partial
correctness metric used by Chen and Mooney which
gives credit to a parse for producing the correct ac-
tion type and additional credit if the arguments were
also correct. Finally, the third task is to complete the
end-to-end navigation task. There are two versions
of this task, the complete task uses the original in-
structions which are several sentences long and the
other version uses instructions that have been man-
ually split into single sentences. Task completion
is measured by the percentage of trials in which the
system reached the correct destination (and orienta-
tion in the single-sentence version).

We follow the same evaluation scheme as Chen
and Mooney and perform leave-one-map-out exper-
iments. For the first task, we build a lexicon using
ambiguous training data from two maps, and then
use the lexicon to produce the best disambiguated
semantic meanings for those same data. For the sec-
ond and third tasks, we train a semantic parser on the
automatically disambiguated data, and test on sen-
tences from the third, unseen map.

For all comparisons to the Chen and Mooney re-
sults, we use the performance of their refined land-
marks plans system which performed the best over-
all. Moreover, it provides the most direct compari-
son to our approach since both use a lexicon to re-
fine the landmarks plans. Other than the modifi-
cations discussed, we use the same components as
their system including using KRISP to train the se-
mantic parsers and using the execution module from
MacMahon et al. (2006) to carry out the navigation
plans.

5.1 Inferring Navigation Plans

First, we examine the quality of the refined naviga-
tion plans produced using SGOLL’s lexicon. The

Precision Recall F1
Chen and Mooney 78.54 78.10 78.32
SGOLL 87.32 72.96 79.49

Table 2: Partial parse accuracy of how well each algo-
rithm can infer the gold-standard navigation plans.

Precision Recall F1
Chen and Mooney 90.22 55.10 68.37
SGOLL 92.22 55.70 69.43
SGOLL with
new MRG 88.36 57.03 69.31

Table 3: Partial parse accuracy of the semantic parsers
trained on the disambiguated navigation plans.

precision, recall, and F1 (harmonic mean of preci-
sion and recall) of these plans are shown in Table 2.
Compared to Chen and Mooney, the plans produced
by SGOLL has higher precision and lower recall.
This is mainly due to the additional minimum sup-
port constraint we added which discards many noisy
lexical entries from infrequently seen n-grams.

5.2 Training Semantic Parsers
Next we look at the performance of the semantic
parsers trained on the inferred navigation plans. The
results are shown in Table 3. Here SGOLL per-
forms almost the same as Chen and Mooney, with
slightly better precision. We also look at the effect of
changing the MRG. Using the new MRG for KRISP

to train the semantic parser produced slightly lower
precision but higher recall, with similar overall F1
score.

5.3 Executing Navigation Plans
Finally, we evaluate the system on the end-to-end
navigation task. In addition to SGOLL and SGOLL
with the new MRG, we also look at augmenting each
of the training splits with the data we collected using
Mechanical Turk.

Completion rates for both the single-sentence
tasks and the complete tasks are shown in Table 4.
Here we see the benefit of each of our modifications.
SGOLL outperforms Chen and Mooney’s system on
both versions of the navigation task. Using the new
MRG to train the semantic parsers further improved
performance on both tasks. Finally, augmenting the
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Single-sentence Complete
Chen and Mooney 54.40% 16.18%
SGOLL 57.09% 17.56%
SGOLL with new
MRG 57.28% 19.18%
SGOLL with new
MRG and
MTurk data 57.62% 20.64%

Table 4: End-to-end navigation task completion rates.

Computation Time
Chen and Mooney (2011) 2,227.63
SGOLL 157.30
SGOLL with MTurk data 233.27

Table 5: The time (in seconds) it took to build the lexicon.

training data with additional instructions and fol-
lower traces collected from Mechanical Turk pro-
duced the best results.

5.4 Computation Times

Having established the superior performance of our
new system compared to Chen and Mooney’s, we
next look at the computational efficiency of SGOLL.
The average time (in seconds) it takes for each al-
gorithm to build a lexicon is shown in Table 5.
All the results are obtained running the algorithms
on Dell PowerEdge 1950 servers with 2x Xeon
X5440 (quad-core) 2.83GHz processors and 32GB
of RAM. Here SGOLL has a decidedly large advan-
tage over the lexicon learning algorithm from Chen
and Mooney, requiring an order of magnitude less
time to run. Even after incorporating the new Me-
chanical Turk data into the training set, SGOLL still
takes much less time to build a lexicon. This shows
how inefficient it is to perform graph intersection op-
erations and how our online algorithm can more re-
alistically scale to large datasets.

5.5 Experimenting with Chinese Data

In addition to evaluating the system on English data,
we also translated the corpus used by Chen and
Mooney into Mandarin Chinese.1 To run our sys-

1The translation can be downloaded at http://www.cs.
utexas.edu/˜ml/clamp/navigation/

tem, we first segmented the sentences using the
Stanford Chinese Word Segmenter (Chang et al.,
2008). We evaluated using the same three tasks as
before. This resulted in a precision, recall, and F1
of 87.07, 71.67, and 78.61, respectively for the in-
ferred plans. The trained semantic parser’s preci-
sion, recall, and F1 were 88.87, 58.76, and 70.74, re-
spectively. Finally, the system completed 58.70% of
the single-sentence task and 20.13% of the complete
task. All of these numbers are very similar to the En-
glish results, showing the generality of the system in
its ability to learn other languages.

5.6 Discussion
We have introduced a novel, online lexicon learn-
ing algorithm that is much faster than the one pro-
posed by Chen and Mooney and also performs bet-
ter on the navigation tasks they devised. Having
a computationally efficient algorithm is critical for
building systems that learn from ambiguous super-
vision. Compared to systems that train on super-
vised semantic annotations, a system that only re-
ceives weak, ambiguous training data is expected to
have to train on much larger datasets to achieve sim-
ilar performance. Consequently, such system must
be able to scale well in order to keep the learning
process tractable. Not only is SGOLL much faster in
building a lexicon, it can also be easily parallelized.
Moreover, the online nature of SGOLL allows the
lexicon to be continually updated while the system
is in use. A deployed navigation system can gather
new instructions from the user and receive feedback
about whether it is performing the correct actions.
As new training examples are collected, we can up-
date the corresponding n-gram and subgraph counts
without rebuilding the entire lexicon.

One thing to note though is that while SGOLL
makes the lexicon learning step much faster and
scalable, another bottleneck in the overall system
is training the semantic parser. Existing semantic-
parser learners such as KRISP were not designed to
scale to very large datasets and have trouble training
on more than a few thousand examples. Thus, de-
signing new scalable algorithms for learning seman-
tic parsers is critical to scaling the entire system.

We have performed a pilot data collection of new
training examples using Mechanical Turk. Even
though the instructions were collected from very dif-
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ferent sources (paid human subjects from a univer-
sity for the original data versus workers recruited
over the Internet), we showed that adding the new
data into the training set improved the system’s per-
formance on interpreting instructions from the orig-
inal corpus. It verified that we are indeed collecting
useful information and that non-experts are fully ca-
pable of training the system by demonstrating how
to use natural language in relevant contexts.

6 Related Work

The earliest work on cross-situational word learning
was by Siskind (1996) who developed a rule-based
system to solve the referential ambiguity problem.
However, it did not handle noise and was tested only
on artificial data. More recently, Fazly et al. (2010)
proposed a probabilistic incremental model that can
learn online similar to our algorithm and was tested
on transcriptions of child-directed speech. However,
they generated the semantic representations from the
text itself rather than from the environment. More-
over, the referential ambiguity was introduced artifi-
cially by including the correct semantic representa-
tion of the neighboring sentence.

Our work falls into the larger framework of learn-
ing the semantics of language from weak supervi-
sion. This problem can be seen as an alignment
problem where each sentence in the training data
needs to be aligned to one or more records that rep-
resent its meaning. Chen and Mooney (2008) previ-
ously introduced another task that aligns sportscast-
ing commentaries to events in a simulated soccer
game. Using an EM-like retraining method, they
alternated between building a semantic parser and
estimating the most likely alignment. Liang et al.
(2009) developed an unsupervised approach using a
generative model to solve the alignment problem.
They demonstrated improved results on matching
sentences and events on the sportscasting task and
also introduced a new task of aligning weather fore-
casts to weather information. Kim and Mooney
(2010) further improved the generative alignment
model by incorporating the full semantic parsing
model from Lu et al. (2008). This resulted in a
joint generative model that outperformed all previ-
ous results. In addition to treating the ambiguous
supervision problem as an alignment problem, there

have been other approaches such as treating it as a
ranking problem (Bordes et al., 2010), or a PCFG
learning problem (Borschinger et al., 2011).

Parallel to the work of learning from ambigu-
ous supervision, other recent work has also looked
at training semantic parsers from supervision other
than logical-form annotations. Clarke et al. (2010)
and Liang et al. (2011) trained systems on question
and answer pairs by automatically finding semantic
interpretations of the questions that would generate
the correct answers. Artzi and Zettlemoyer (2011)
use conversation logs between a computer system
and a human user to learn to interpret the human
utterances. Finally, Goldwasser et al. (2011) pre-
sented an unsupervised approach of learning a se-
mantic parser by using an EM-like retraining loop.
They use confidence estimation as a proxy for the
model’s prediction quality, preferring models that
have high confidence about their parses.

7 Conclusion

Learning the semantics of language from the per-
ceptual context in which it is uttered is a useful ap-
proach because only minimal human supervision is
required. In this paper we presented a novel online
algorithm for building a lexicon from ambiguously
supervised relational data. In contrast to the pre-
vious approach that computed common subgraphs
between different contexts in which an n-gram ap-
peared, we instead focus on small, connected sub-
graphs and introduce an algorithm, SGOLL, that is
an order of magnitude faster. In addition to being
more scalable, SGOLL also performed better on the
task of interpreting navigation instructions. In addi-
tion, we showed that changing the MRG and collect-
ing additional training data from Mechanical Turk
further improve the performance of the overall nav-
igation system. Finally, we demonstrated the gener-
ality of the system by using it to learn Chinese navi-
gation instructions and achieved similar results.
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Abstract

We propose Symbol-Refined Tree Substitu-
tion Grammars (SR-TSGs) for syntactic pars-
ing. An SR-TSG is an extension of the con-
ventional TSG model where each nonterminal
symbol can be refined (subcategorized) to fit
the training data. We aim to provide a unified
model where TSG rules and symbol refine-
ment are learned from training data in a fully
automatic and consistent fashion. We present
a novel probabilistic SR-TSG model based
on the hierarchical Pitman-Yor Process to en-
code backoff smoothing from a fine-grained
SR-TSG to simpler CFG rules, and develop
an efficient training method based on Markov
Chain Monte Carlo (MCMC) sampling. Our
SR-TSG parser achieves an F1 score of 92.4%
in the Wall Street Journal (WSJ) English Penn
Treebank parsing task, which is a 7.7 point im-
provement over a conventional Bayesian TSG
parser, and better than state-of-the-art discrim-
inative reranking parsers.

1 Introduction

Syntactic parsing has played a central role in natural
language processing. The resulting syntactic analy-
sis can be used for various applications such as ma-
chine translation (Galley et al., 2004; DeNeefe and
Knight, 2009), sentence compression (Cohn and La-
pata, 2009; Yamangil and Shieber, 2010), and ques-
tion answering (Wang et al., 2007). Probabilistic
context-free grammar (PCFG) underlies many sta-
tistical parsers, however, it is well known that the
PCFG rules extracted from treebank data via maxi-
mum likelihood estimation do not perform well due
to unrealistic context freedom assumptions (Klein
and Manning, 2003).

In recent years, there has been an increasing inter-
est in tree substitution grammar (TSG) as an alter-
native to CFG for modeling syntax trees (Post and
Gildea, 2009; Tenenbaum et al., 2009; Cohn et al.,
2010). TSG is a natural extension of CFG in which
nonterminal symbols can be rewritten (substituted)
with arbitrarily large tree fragments. These tree frag-
ments have great advantages over tiny CFG rules
since they can capture non-local contexts explic-
itly such as predicate-argument structures, idioms
and grammatical agreements (Cohn et al., 2010).
Previous work on TSG parsing (Cohn et al., 2010;
Post and Gildea, 2009; Bansal and Klein, 2010) has
consistently shown that a probabilistic TSG (PTSG)
parser is significantly more accurate than a PCFG
parser, but is still inferior to state-of-the-art parsers
(e.g., the Berkeley parser (Petrov et al., 2006) and
the Charniak parser (Charniak and Johnson, 2005)).
One major drawback of TSG is that the context free-
dom assumptions still remain at substitution sites,
that is, TSG tree fragments are generated that are
conditionally independent of all others given root
nonterminal symbols. Furthermore, when a sentence
is unparsable with large tree fragments, the PTSG
parser usually uses naive CFG rules derived from
its backoff model, which diminishes the benefits ob-
tained from large tree fragments.

On the other hand, current state-of-the-art parsers
use symbol refinement techniques (Johnson, 1998;
Collins, 2003; Matsuzaki et al., 2005). Symbol
refinement is a successful approach for weaken-
ing context freedom assumptions by dividing coarse
treebank symbols (e.g. NP and VP) into sub-
categories, rather than extracting large tree frag-
ments. As shown in several studies on TSG pars-
ing (Zuidema, 2007; Bansal and Klein, 2010), large
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tree fragments and symbol refinement work comple-
mentarily for syntactic parsing. For example, Bansal
and Klein (2010) have reported that deterministic
symbol refinement with heuristics helps improve the
accuracy of a TSG parser.

In this paper, we propose Symbol-Refined Tree
Substitution Grammars (SR-TSGs) for syntactic
parsing. SR-TSG is an extension of the conventional
TSG model where each nonterminal symbol can be
refined (subcategorized) to fit the training data. Our
work differs from previous studies in that we focus
on a unified model where TSG rules and symbol re-
finement are learned from training data in a fully au-
tomatic and consistent fashion. We also propose a
novel probabilistic SR-TSG model with the hierar-
chical Pitman-Yor Process (Pitman and Yor, 1997),
namely a sort of nonparametric Bayesian model, to
encode backoff smoothing from a fine-grained SR-
TSG to simpler CFG rules, and develop an efficient
training method based on blocked MCMC sampling.

Our SR-TSG parser achieves an F1 score of
92.4% in the WSJ English Penn Treebank pars-
ing task, which is a 7.7 point improvement over a
conventional Bayesian TSG parser, and superior to
state-of-the-art discriminative reranking parsers.

2 Background and Related Work

Our SR-TSG work is built upon recent work on
Bayesian TSG induction from parse trees (Post and
Gildea, 2009; Cohn et al., 2010). We firstly review
the Bayesian TSG model used in that work, and then
present related work on TSGs and symbol refine-
ment.

A TSG consists of a 4-tuple, G = (T,N, S,R),
where T is a set of terminal symbols, N is a set of
nonterminal symbols, S ∈ N is the distinguished
start nonterminal symbol and R is a set of produc-
tions (a.k.a. rules). The productions take the form
of elementary trees i.e., tree fragments of height
≥ 1. The root and internal nodes of the elemen-
tary trees are labeled with nonterminal symbols, and
leaf nodes are labeled with either terminal or nonter-
minal symbols. Nonterminal leaves are referred to
as frontier nonterminals, and form the substitution
sites to be combined with other elementary trees.

A derivation is a process of forming a parse tree.
It starts with a root symbol and rewrites (substi-

tutes) nonterminal symbols with elementary trees
until there are no remaining frontier nonterminals.
Figure 1a shows an example parse tree and Figure
1b shows its example TSG derivation. Since differ-
ent derivations may produce the same parse tree, re-
cent work on TSG induction (Post and Gildea, 2009;
Cohn et al., 2010) employs a probabilistic model of
a TSG and predicts derivations from observed parse
trees in an unsupervised way.

A Probabilistic Tree Substitution Grammar
(PTSG) assigns a probability to each rule in the
grammar. The probability of a derivation is defined
as the product of the probabilities of its component
elementary trees as follows.

p (e) =
∏

x→e∈e

p (e |x) ,

where e = (e1, e2, . . .) is a sequence of elemen-
tary trees used for the derivation, x = root (e) is the
root symbol of e, and p (e |x) is the probability of
generating e given its root symbol x. As in a PCFG,
e is generated conditionally independent of all oth-
ers given x.

The posterior distribution over elementary trees
given a parse tree t can be computed by using the
Bayes’ rule:

p (e |t) ∝ p (t |e) p (e) .

where p (t |e) is either equal to 1 (when t and e
are consistent) or 0 (otherwise). Therefore, the task
of TSG induction from parse trees turns out to con-
sist of modeling the prior distribution p (e). Recent
work on TSG induction defines p (e) as a nonpara-
metric Bayesian model such as the Dirichlet Pro-
cess (Ferguson, 1973) or the Pitman-Yor Process to
encourage sparse and compact grammars.

Several studies have combined TSG induction and
symbol refinement. An adaptor grammar (Johnson
et al., 2007a) is a sort of nonparametric Bayesian
TSG model with symbol refinement, and is thus
closely related to our SR-TSG model. However,
an adaptor grammar differs from ours in that all its
rules are complete: all leaf nodes must be termi-
nal symbols, while our model permits nonterminal
symbols as leaf nodes. Furthermore, adaptor gram-
mars have largely been applied to the task of unsu-
pervised structural induction from raw texts such as
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(a) (b) (c)

Figure 1: (a) Example parse tree. (b) Example TSG derivation of (a). (c) Example SR-TSG derivation of
(a). The refinement annotation is hyphenated with a nonterminal symbol.

morphology analysis, word segmentation (Johnson
and Goldwater, 2009), and dependency grammar in-
duction (Cohen et al., 2010), rather than constituent
syntax parsing.

An all-fragments grammar (Bansal and Klein,
2010) is another variant of TSG that aims to uti-
lize all possible subtrees as rules. It maps a TSG
to an implicit representation to make the grammar
tractable and practical for large-scale parsing. The
manual symbol refinement described in (Klein and
Manning, 2003) was applied to an all-fragments
grammar and this improved accuracy in the English
WSJ parsing task. As mentioned in the introduc-
tion, our model focuses on the automatic learning of
a TSG and symbol refinement without heuristics.

3 Symbol-Refined Tree Substitution
Grammars

In this section, we propose Symbol-Refined Tree
Substitution Grammars (SR-TSGs) for syntactic
parsing. Our SR-TSG model is an extension of
the conventional TSG model where every symbol of
the elementary trees can be refined to fit the train-
ing data. Figure 1c shows an example of SR-TSG
derivation. As with previous work on TSG induc-
tion, our task is the induction of SR-TSG deriva-
tions from a corpus of parse trees in an unsupervised
fashion. That is, we wish to infer the symbol sub-
categories of every node and substitution site (i.e.,
nodes where substitution occurs) from parse trees.
Extracted rules and their probabilities can be used to
parse new raw sentences.

3.1 Probabilistic Model
We define a probabilistic model of an SR-TSG based
on the Pitman-Yor Process (PYP) (Pitman and Yor,
1997), namely a sort of nonparametric Bayesian
model. The PYP produces power-law distributions,
which have been shown to be well-suited for such
uses as language modeling (Teh, 2006b), and TSG
induction (Cohn et al., 2010). One major issue as
regards modeling an SR-TSG is that the space of the
grammar rules will be very sparse since SR-TSG al-
lows for arbitrarily large tree fragments and also an
arbitrarily large set of symbol subcategories. To ad-
dress the sparseness problem, we employ a hierar-
chical PYP to encode a backoff scheme from the SR-
TSG rules to simpler CFG rules, inspired by recent
work on dependency parsing (Blunsom and Cohn,
2010).

Our model consists of a three-level hierarchy. Ta-
ble 1 shows an example of the SR-TSG rule and its
backoff tree fragments as an illustration of this three-
level hierarchy. The topmost level of our model is a
distribution over the SR-TSG rules as follows.

e |xk ∼ Gxk

Gxk
∼ PYP

(
dxk

, θxk
, P sr-tsg (· |xk )

)
,

where xk is a refined root symbol of an elemen-
tary tree e, while x is a raw nonterminal symbol
in the corpus and k = 0, 1, . . . is an index of the
symbol subcategory. Suppose x is NP and its sym-
bol subcategory is 0, then xk is NP0. The PYP has
three parameters: (dxk

, θxk
, P sr-tsg). P sr-tsg (· |xk )
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SR-TSG SR-CFG RU-CFG

Table 1: Example three-level backoff.

is a base distribution over infinite space of symbol-
refined elementary trees rooted with xk, which pro-
vides the backoff probability of e. The remaining
parameters dxk

and θxk
control the strength of the

base distribution.
The backoff probability P sr-tsg (e |xk ) is given by

the product of symbol-refined CFG (SR-CFG) rules
that e contains as follows.

P sr-tsg (e |xk ) =
∏

f∈F (e)

scf
×
∏

i∈I(e)

(1− sci
)

× H (cfg-rules (e |xk ))

α |xk ∼ Hxk

Hxk
∼ PYP

(
dx, θx, P

sr-cfg (· |xk )
)
,

where F (e) is a set of frontier nonterminal nodes
and I (e) is a set of internal nodes in e. cf and ci
are nonterminal symbols of nodes f and i, respec-
tively. sc is the probability of stopping the expan-
sion of a node labeled with c. SR-CFG rules are
CFG rules where every symbol is refined, as shown
in Table 1. The function cfg-rules (e |xk ) returns
the SR-CFG rules that e contains, which take the
form of xk → α. Each SR-CFG rule α rooted
with xk is drawn from the backoff distribution Hxk

,
and Hxk

is produced by the PYP with parameters:(
dx, θx, P

sr-cfg). This distribution over the SR-CFG
rules forms the second level hierarchy of our model.

The backoff probability of the SR-CFG rule,
P sr-cfg (α |xk ), is given by the root-unrefined CFG
(RU-CFG) rule as follows,

P sr-cfg (α |xk ) = I (root-unrefine (α |xk ))

α |x ∼ Ix

Ix ∼ PYP
(
d′x, θ

′
x, P

ru-cfg (· |x )
)
,

where the function root-unrefine (α |xk ) returns
the RU-CFG rule of α, which takes the form of x→
α. The RU-CFG rule is a CFG rule where the root
symbol is unrefined and all leaf nonterminal sym-
bols are refined, as shown in Table 1. Each RU-CFG
rule α rooted with x is drawn from the backoff distri-
bution Ix, and Ix is produced by a PYP. This distri-
bution over the RU-CFG rules forms the third level
hierarchy of our model. Finally, we set the back-
off probability of the RU-CFG rule, P ru-cfg (α |x),
so that it is uniform as follows.

P ru-cfg (α |x ) =
1

|x→ ·|
.

where |x→ ·| is the number of RU-CFG rules
rooted with x. Overall, our hierarchical model en-
codes backoff smoothing consistently from the SR-
TSG rules to the SR-CFG rules, and from the SR-
CFG rules to the RU-CFG rules. As shown in (Blun-
som and Cohn, 2010; Cohen et al., 2010), the pars-
ing accuracy of the TSG model is strongly affected
by its backoff model. The effects of our hierarchical
backoff model on parsing performance are evaluated
in Section 5.

4 Inference

We use Markov Chain Monte Carlo (MCMC) sam-
pling to infer the SR-TSG derivations from parse
trees. MCMC sampling is a widely used approach
for obtaining random samples from a probability
distribution. In our case, we wish to obtain deriva-
tion samples of an SR-TSG from the posterior dis-
tribution, p (e |t,d,θ, s).

The inference of the SR-TSG derivations corre-
sponds to inferring two kinds of latent variables:
latent symbol subcategories and latent substitution
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sites. We first infer latent symbol subcategories for
every symbol in the parse trees, and then infer latent
substitution sites stepwise. During the inference of
symbol subcategories, every internal node is fixed as
a substitution site. After that, we unfix that assump-
tion and infer latent substitution sites given symbol-
refined parse trees. This stepwise learning is simple
and efficient in practice, but we believe that the joint
learning of both latent variables is possible, and we
will deal with this in future work. Here we describe
each inference algorithm in detail.

4.1 Inference of Symbol Subcategories
For the inference of latent symbol subcategories, we
adopt split and merge training (Petrov et al., 2006)
as follows. In each split-merge step, each symbol
is split into at most two subcategories. For exam-
ple, every NP symbol in the training data is split into
either NP0 or NP1 to maximize the posterior prob-
ability. After convergence, we measure the loss of
each split symbol in terms of the likelihood incurred
when removing it, then the smallest 50% of the
newly split symbols as regards that loss are merged
to avoid overfitting. The split-merge algorithm ter-
minates when the total number of steps reaches the
user-specified value.

In each splitting step, we use two types of blocked
MCMC algorithm: the sentence-level blocked
Metroporil-Hastings (MH) sampler and the tree-
level blocked Gibbs sampler, while (Petrov et al.,
2006) use a different MLE-based model and the EM
algorithm. Our sampler iterates sentence-level sam-
pling and tree-level sampling alternately.

The sentence-level MH sampler is a recently pro-
posed algorithm for grammar induction (Johnson et
al., 2007b; Cohn et al., 2010). In this work, we apply
it to the training of symbol splitting. The MH sam-
pler consists of the following three steps: for each
sentence, 1) calculate the inside probability (Lari
and Young, 1991) in a bottom-up manner, 2) sample
a derivation tree in a top-down manner, and 3) ac-
cept or reject the derivation sample by using the MH
test. See (Cohn et al., 2010) for details. This sampler
simultaneously updates blocks of latent variables as-
sociated with a sentence, thus it can find MAP solu-
tions efficiently.

The tree-level blocked Gibbs sampler focuses on
the type of SR-TSG rules and simultaneously up-

dates all root and child nodes that are annotated
with the same SR-TSG rule. For example, the
sampler collects all nodes that are annotated with
S0 → NP1VP2, then updates those nodes to an-
other subcategory such as S0 → NP2VP0 according
to the posterior distribution. This sampler is simi-
lar to table label resampling (Johnson and Goldwa-
ter, 2009), but differs in that our sampler can update
multiple table labels simultaneously when multiple
tables are labeled with the same elementary tree.
The tree-level sampler also simultaneously updates
blocks of latent variables associated with the type of
SR-TSG rules, thus it can find MAP solutions effi-
ciently.

4.2 Inference of Substitution Sites

After the inference of symbol subcategories, we
use Gibbs sampling to infer the substitution sites of
parse trees as described in (Cohn and Lapata, 2009;
Post and Gildea, 2009). We assign a binary variable
to each internal node in the training data, which in-
dicates whether that node is a substitution site or not.
For each iteration, the Gibbs sampler works by sam-
pling the value of each binary variable in random
order. See (Cohn et al., 2010) for details.

During the inference, our sampler ignores
the symbol subcategories of internal nodes of
elementary trees since they do not affect the
derivation of the SR-TSG. For example, the
elementary trees “(S0 (NP0 NNP0) VP0)” and
“(S0 (NP1 NNP0) VP0)” are regarded as being the
same when we calculate the generation probabilities
according to our model. This heuristics is help-
ful for finding large tree fragments and learning
compact grammars.

4.3 Hyperparameter Estimation

We treat hyperparameters {d,θ} as random vari-
ables and update their values for every MCMC it-
eration. We place a prior on the hyperparameters as
follows: d ∼ Beta (1, 1), θ ∼ Gamma (1, 1). The
values of d and θ are optimized with the auxiliary
variable technique (Teh, 2006a).
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5 Experiment

5.1 Settings
5.1.1 Data Preparation

We ran experiments on the Wall Street Journal
(WSJ) portion of the English Penn Treebank data
set (Marcus et al., 1993), using a standard data
split (sections 2–21 for training, 22 for development
and 23 for testing). We also used section 2 as a
small training set for evaluating the performance of
our model under low-resource conditions. Hence-
forth, we distinguish the small training set (section
2) from the full training set (sections 2-21). The tree-
bank data is right-binarized (Matsuzaki et al., 2005)
to construct grammars with only unary and binary
productions. We replace lexical words with count
≤ 5 in the training data with one of 50 unknown
words using lexical features, following (Petrov et al.,
2006). We also split off all the function tags and
eliminated empty nodes from the data set, follow-
ing (Johnson, 1998).

5.1.2 Training and Parsing
For the inference of symbol subcategories, we

trained our model with the MCMC sampler by us-
ing 6 split-merge steps for the full training set and 3
split-merge steps for the small training set. There-
fore, each symbol can be subdivided into a maxi-
mum of 26 = 64 and 23 = 8 subcategories, respec-
tively. In each split-merge step, we initialized the
sampler by randomly splitting every symbol in two
subcategories and ran the MCMC sampler for 1000
iterations. After that, to infer the substitution sites,
we initialized the model with the final sample from
a run on the small training set, and used the Gibbs
sampler for 2000 iterations. We estimated the opti-
mal values of the stopping probabilities s by using
the development set.

We obtained the parsing results with the MAX-
RULE-PRODUCT algorithm (Petrov et al., 2006) by
using the SR-TSG rules extracted from our model.
We evaluated the accuracy of our parser by brack-
eting F1 score of predicted parse trees. We used
EVALB1 to compute the F1 score. In all our exper-
iments, we conducted ten independent runs to train
our model, and selected the one that performed best
on the development set in terms of parsing accuracy.

1http://nlp.cs.nyu.edu/evalb/

Model F1 (small) F1 (full)

CFG 61.9 63.6

*TSG 77.1 85.0

SR-TSG (P sr-tsg) 73.0 86.4

SR-TSG (P sr-tsg, P sr-cfg) 79.4 89.7

SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg) 81.7 91.1

Table 2: Comparison of parsing accuracy with the
small and full training sets. *Our reimplementation
of (Cohn et al., 2010).

Figure 2: Histogram of SR-TSG and TSG rule sizes
on the small training set. The size is defined as the
number of CFG rules that the elementary tree con-
tains.

5.2 Results and Discussion

5.2.1 Comparison of SR-TSG with TSG
We compared the SR-TSG model with the CFG

and TSG models as regards parsing accuracy. We
also tested our model with three backoff hierarchy
settings to evaluate the effects of backoff smoothing
on parsing accuracy. Table 2 shows the F1 scores
of the CFG, TSG and SR-TSG parsers for small and
full training sets. In Table 2, SR-TSG (P sr-tsg) de-
notes that we used only the topmost level of the hi-
erarchy. Similary, SR-TSG (P sr-tsg, P sr-cfg) denotes
that we used only the P sr-tsg and P sr-cfg backoff mod-
els.

Our best model, SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg),
outperformed both the CFG and TSG models on
both the small and large training sets. This result
suggests that the conventional TSG model trained
from the vanilla treebank is insufficient to resolve
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Model F1 (≤ 40) F1 (all)

TSG (no symbol refinement)

Post and Gildea (2009) 82.6 -

Cohn et al. (2010) 85.4 84.7

TSG with Symbol Refinement

Zuidema (2007) - *83.8

Bansal et al. (2010) 88.7 88.1

SR-TSG (single) 91.6 91.1
SR-TSG (multiple) 92.9 92.4

CFG with Symbol Refinement

Collins (1999) 88.6 88.2

Petrov and Klein (2007) 90.6 90.1

Petrov (2010) - 91.8

Discriminative

Carreras et al. (2008) - 91.1

Charniak and Johnson (2005) 92.0 91.4

Huang (2008) 92.3 91.7

Table 3: Our parsing performance for the testing set compared with those of other parsers. *Results for the
development set (≤ 100).

structural ambiguities caused by coarse symbol an-
notations in a training corpus. As we expected, sym-
bol refinement can be helpful with the TSG model
for further fitting the training set and improving the
parsing accuracy.

The performance of the SR-TSG parser was
strongly affected by its backoff models. For exam-
ple, the simplest model, P sr-tsg, performed poorly
compared with our best model. This result suggests
that the SR-TSG rules extracted from the training
set are very sparse and cannot cover the space of
unknown syntax patterns in the testing set. There-
fore, sophisticated backoff modeling is essential for
the SR-TSG parser. Our hierarchical PYP model-
ing technique is a successful way to achieve back-
off smoothing from sparse SR-TSG rules to simpler
CFG rules, and offers the advantage of automatically
estimating the optimal backoff probabilities from the
training set.

We compared the rule sizes and frequencies of
SR-TSG with those of TSG. The rule sizes of SR-

TSG and TSG are defined as the number of CFG
rules that the elementary tree contains. Figure 2
shows a histogram of the SR-TSG and TSG rule
sizes (by unrefined token) on the small training set.
For example, SR-TSG rules: S1 → NP0VP1 and
S0 → NP1VP2 were considered to be the same to-
ken. In Figure 2, we can see that there are almost
the same number of SR-TSG rules and TSG rules
with size = 1. However, there are more SR-TSG
rules than TSG rules with size ≥ 2. This shows
that an SR-TSG can use various large tree fragments
depending on the context, which is specified by the
symbol subcategories.

5.2.2 Comparison of SR-TSG with Other
Models

We compared the accuracy of the SR-TSG parser
with that of conventional high-performance parsers.
Table 3 shows the F1 scores of an SR-TSG and con-
ventional parsers with the full training set. In Ta-
ble 3, SR-TSG (single) is a standard SR-TSG parser,
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and SR-TSG (multiple) is a combination of sixteen
independently trained SR-TSG models, following
the work of (Petrov, 2010).

Our SR-TSG (single) parser achieved an F1 score
of 91.1%, which is a 6.4 point improvement over
the conventional Bayesian TSG parser reported by
(Cohn et al., 2010). Our model can be viewed as
an extension of Cohn’s work by the incorporation
of symbol refinement. Therefore, this result con-
firms that a TSG and symbol refinement work com-
plementarily in improving parsing accuracy. Com-
pared with a symbol-refined CFG model such as the
Berkeley parser (Petrov et al., 2006), the SR-TSG
model can use large tree fragments, which strength-
ens the probability of frequent syntax patterns in
the training set. Indeed, the few very large rules of
our model memorized full parse trees of sentences,
which were repeated in the training set.

The SR-TSG (single) is a pure generative model
of syntax trees but it achieved results comparable to
those of discriminative parsers. It should be noted
that discriminative reranking parsers such as (Char-
niak and Johnson, 2005) and (Huang, 2008) are con-
structed on a generative parser. The reranking parser
takes the k-best lists of candidate trees or a packed
forest produced by a baseline parser (usually a gen-
erative model), and then reranks the candidates us-
ing arbitrary features. Hence, we can expect that
combining our SR-TSG model with a discriminative
reranking parser would provide better performance
than SR-TSG alone.

Recently, (Petrov, 2010) has reported that com-
bining multiple grammars trained independently
gives significantly improved performance over a sin-
gle grammar alone. We applied his method (referred
to as a TREE-LEVEL inference) to the SR-TSG
model as follows. We first trained sixteen SR-TSG
models independently and produced a 100-best list
of the derivations for each model. Then, we erased
the subcategory information of parse trees and se-
lected the best tree that achieved the highest likeli-
hood under the product of sixteen models. The com-
bination model, SR-TSG (multiple), achieved an F1
score of 92.4%, which is a state-of-the-art result for
the WSJ parsing task. Compared with discriminative
reranking parsers, combining multiple grammars by
using the product model provides the advantage that
it does not require any additional training. Several

studies (Fossum and Knight, 2009; Zhang et al.,
2009) have proposed different approaches that in-
volve combining k-best lists of candidate trees. We
will deal with those methods in future work.

Let us note the relation between SR-CFG, TSG
and SR-TSG. TSG is weakly equivalent to CFG and
generates the same set of strings. For example, the
TSG rule “S → (NP NNP) VP” with probability p
can be converted to the equivalent CFG rules as fol-
lows: “S → NPNNP VP ” with probability p and
“NPNNP → NNP” with probability 1. From this
viewpoint, TSG utilizes surrounding symbols (NNP
of NPNNP in the above example) as latent variables
with which to capture context information. The
search space of learning a TSG given a parse tree
is O (2n) where n is the number of internal nodes
of the parse tree. On the other hand, an SR-CFG
utilizes an arbitrary index such as 0, 1, . . . as latent
variables and the search space is larger than that of a
TSG when the symbol refinement model allows for
more than two subcategories for each symbol. Our
experimental results comfirm that jointly modeling
both latent variables using our SR-TSG assists accu-
rate parsing.

6 Conclusion

We have presented an SR-TSG, which is an exten-
sion of the conventional TSG model where each
symbol of tree fragments can be automatically sub-
categorized to address the problem of the condi-
tional independence assumptions of a TSG. We pro-
posed a novel backoff modeling of an SR-TSG
based on the hierarchical Pitman-Yor Process and
sentence-level and tree-level blocked MCMC sam-
pling for training our model. Our best model sig-
nificantly outperformed the conventional TSG and
achieved state-of-the-art result in a WSJ parsing
task. Future work will involve examining the SR-
TSG model for different languages and for unsuper-
vised grammar induction.
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Abstract

Learning for sentence re-writing is a funda-
mental task in natural language processing and
information retrieval. In this paper, we pro-
pose a new class of kernel functions, referred
to as string re-writing kernel, to address the
problem. A string re-writing kernel measures
the similarity between two pairs of strings,
each pair representing re-writing of a string.
It can capture the lexical and structural sim-
ilarity between two pairs of sentences with-
out the need of constructing syntactic trees.
We further propose an instance of string re-
writing kernel which can be computed effi-
ciently. Experimental results on benchmark
datasets show that our method can achieve bet-
ter results than state-of-the-art methods on two
sentence re-writing learning tasks: paraphrase
identification and recognizing textual entail-
ment.

1 Introduction

Learning for sentence re-writing is a fundamental
task in natural language processing and information
retrieval, which includes paraphrasing, textual en-
tailment and transformation between query and doc-
ument title in search.

The key question here is how to represent the re-
writing of sentences. In previous research on sen-
tence re-writing learning such as paraphrase identifi-
cation and recognizing textual entailment, most rep-
resentations are based on the lexicons (Zhang and
Patrick, 2005; Lintean and Rus, 2011; de Marneffe
et al., 2006) or the syntactic trees (Das and Smith,

                  wrote     .                  Shakespeare  wrote  Hamlet.  

  *    was written by       .          Hamlet was written by Shakespeare.  

(B) 
** 

* * 

(A) 

Figure 1: Example of re-writing. (A) is a re-writing rule
and (B) is a re-writing of sentence.

2009; Heilman and Smith, 2010) of the sentence
pairs.

In (Lin and Pantel, 2001; Barzilay and Lee, 2003),
re-writing rules serve as underlying representations
for paraphrase generation/discovery. Motivated by
the work, we represent re-writing of sentences by
all possible re-writing rules that can be applied into
it. For example, in Fig. 1, (A) is one re-writing rule
that can be applied into the sentence re-writing (B).
Specifically, we propose a new class of kernel func-
tions (Schölkopf and Smola, 2002), called string re-
writing kernel (SRK), which defines the similarity
between two re-writings (pairs) of strings as the in-
ner product between them in the feature space in-
duced by all the re-writing rules. SRK is different
from existing kernels in that it is for re-writing and
defined on two pairs of strings. SRK can capture the
lexical and structural similarity between re-writings
of sentences and does not need to parse the sentences
and create the syntactic trees of them.

One challenge for using SRK lies in the high com-
putational cost of straightforwardly computing the
kernel, because it involves two re-writings of strings
(i.e., four strings) and a large number of re-writing
rules. We are able to develop an instance of SRK,
referred to as kb-SRK, which directly computes the
number of common rewriting rules without explic-
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itly calculating the inner product between feature
vectors, and thus drastically reduce the time com-
plexity.

Experimental results on benchmark datasets show
that SRK achieves better results than the state-of-
the-art methods in paraphrase identification and rec-
ognizing textual entailment. Note that SRK is very
flexible to the formulations of sentences. For ex-
ample, informally written sentences such as long
queries in search can also be effectively handled.

2 Related Work

The string kernel function, first proposed by Lodhi
et al. (2002), measures the similarity between two
strings by their shared substrings. Leslie et al.
(2002) proposed the k-spectrum kernel which repre-
sents strings by their contiguous substrings of length
k. Leslie et al. (2004) further proposed a number of
string kernels including the wildcard kernel to fa-
cilitate inexact matching between the strings. The
string kernels defined on two pairs of objects (in-
cluding strings) were also developed, which decom-
pose the similarity into product of similarities be-
tween individual objects using tensor product (Basil-
ico and Hofmann, 2004; Ben-Hur and Noble, 2005)
or Cartesian product (Kashima et al., 2009).

The task of paraphrasing usually consists of para-
phrase pattern generation and paraphrase identifica-
tion. Paraphrase pattern generation is to automat-
ically extract semantically equivalent patterns (Lin
and Pantel, 2001; Bhagat and Ravichandran, 2008)
or sentences (Barzilay and Lee, 2003). Paraphrase
identification is to identify whether two given sen-
tences are a paraphrase of each other. The meth-
ods proposed so far formalized the problem as clas-
sification and used various types of features such
as bag-of-words feature, edit distance (Zhang and
Patrick, 2005), dissimilarity kernel (Lintean and
Rus, 2011) predicate-argument structure (Qiu et al.,
2006), and tree edit model (which is based on a tree
kernel) (Heilman and Smith, 2010) in the classifica-
tion task. Among the most successful methods, Wan
et al. (2006) enriched the feature set by the BLEU
metric and dependency relations. Das and Smith
(2009) used the quasi-synchronous grammar formal-
ism to incorporate features from WordNet, named
entity recognizer, POS tagger, and dependency la-

bels from aligned trees.
The task of recognizing textual entailment is to

decide whether the hypothesis sentence can be en-
tailed by the premise sentence (Giampiccolo et al.,
2007). In recognizing textual entailment, de Marn-
effe et al. (2006) classified sentences pairs on the
basis of word alignments. MacCartney and Man-
ning (2008) used an inference procedure based on
natural logic and combined it with the methods by
de Marneffe et al. (2006). Harmeling (2007) and
Heilman and Smith (2010) classified sequence pairs
based on transformation on syntactic trees. Zanzotto
et al. (2007) used a kernel method on syntactic tree
pairs (Moschitti and Zanzotto, 2007).

3 Kernel Approach to Sentence
Re-Writing Learning

We formalize sentence re-writing learning as a ker-
nel method. Following the literature of string kernel,
we use the terms “string” and “character” instead of
“sentence” and “word”.

Suppose that we are given training data consisting
of re-writings of strings and their responses

((s1, t1),y1), ...,((sn, tn),yn) ∈ (Σ∗×Σ
∗)×Y

where Σ denotes the character set, Σ∗ =
⋃

∞
i=0 Σi de-

notes the string set, which is the Kleene closure of
set Σ, Y denotes the set of responses, and n is the
number of instances. (si, ti) is a re-writing consist-
ing of the source string si and the target string ti.
yi is the response which can be a category, ordinal
number, or real number. In this paper, for simplic-
ity we assume that Y = {±1} (e.g. paraphrase/non-
paraphrase). Given a new string re-writing (s, t) ∈
Σ∗×Σ∗, our goal is to predict its response y. That is,
the training data consists of binary classes of string
re-writings, and the prediction is made for the new
re-writing based on learning from the training data.

We take the kernel approach to address the learn-
ing task. The kernel on re-writings of strings is de-
fined as

K : (Σ∗×Σ
∗)× (Σ∗×Σ

∗)→ R

satisfying for all (si, ti), (s j, t j) ∈ Σ∗×Σ∗,

K((si, ti),(s j, t j)) = 〈Φ(si, ti),Φ(s j, t j)〉

where Φ maps each re-writing (pair) of strings into
a high dimensional Hilbert space H , referred to as
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feature space. By the representer theorem (Kimel-
dorf and Wahba, 1971; Schölkopf and Smola, 2002),
it can be shown that the response y of a new string
re-writing (s, t) can always be represented as

y = sign(
n

∑
i=1

αiyiK((si, ti),(s, t)))

where αi ≥ 0,(i = 1, · · · ,n) are parameters. That is,
it is determined by a linear combination of the sim-
ilarities between the new instance and the instances
in training set. It is also known that by employing a
learning model such as SVM (Vapnik, 2000), such a
linear combination can be automatically learned by
solving a quadratic optimization problem. The ques-
tion then becomes how to design the kernel function
for the task.

4 String Re-writing Kernel

Let Σ be the set of characters and Σ∗ be the set of
strings. Let wildcard domain D ⊆ Σ∗ be the set of
strings which can be replaced by wildcards.

The string re-writing kernel measures the similar-
ity between two string re-writings through the re-
writing rules that can be applied into them. For-
mally, given re-writing rule set R and wildcard do-
main D, the string re-writing kernel (SRK) is defined
as

K((s1, t1),(s2, t2)) = 〈Φ(s1, t1),Φ(s2, t2)〉 (1)

where Φ(s, t) = (φr(s, t))r∈R and

φr(s, t) = nλ
i (2)

where n is the number of contiguous substring pairs
of (s, t) that re-writing rule r matches, i is the num-
ber of wildcards in r, and λ ∈ (0,1] is a factor pun-
ishing each occurrence of wildcard.

A re-writing rule is defined as a triple r =
(βs,βt ,τ) where βs,βt ∈ (Σ ∪ {∗})∗ denote source
and target string patterns and τ ⊆ ind∗(βs)× ind∗(βt)
denotes the alignments between the wildcards in the
two string patterns. Here ind∗(β ) denotes the set of
indexes of wildcards in β .

We say that a re-writing rule (βs,βt ,τ) matches a
string pair (s, t), if and only if string patterns βs and
βt can be changed into s and t respectively by sub-
stituting each wildcard in the string patterns with an
element in the strings, where the elements are de-
fined in the wildcard domain D and the wildcards

βs[i] and βt [ j] are substituted by the same elements,
when there is an alignment (i, j) ∈ τ .

For example, the re-writing rule in Fig. 1 (A)
can be formally written as r = (β s,β t,τ) where
β s = (∗,wrote,∗), β t = (∗,was,written,by,∗) and
τ = {(1,5),(3,1)}. It matches with the string pair in
Fig. 1 (B).

String re-writing kernel is a class of kernels which
depends on re-writing rule set R and wildcard do-
main D. Here we provide some examples. Obvi-
ously, the effectiveness and efficiency of SRK de-
pend on the choice of R and D.

Example 1. We define the pairwise k-spectrum ker-
nel (ps-SRK) K ps

k as the re-writing rule kernel un-
der R = {(βs,βt ,τ)|βs,βt ∈ Σk,τ = /0} and any
D. It can be shown that K ps

k ((s1, t1),(s2, t2)) =
Kspec

k (s1,s2)K
spec
k (t1, t2) where Kspec

k (x,y) is equiv-
alent to the k-spectrum kernel proposed by Leslie et
al. (2002).

Example 2. The pairwise k-wildcard kernel (pw-
SRK) K pw

k is defined as the re-writing rule kernel
under R = {(βs,βt ,τ)|βs,βt ∈ (Σ∪{∗})k,τ = /0} and
D = Σ. It can be shown that K pw

k ((s1, t1),(s2, t2)) =
Kwc

(k,k)(s1,s2)Kwc
(k,k)(t1, t2) where Kwc

(k,k)(x,y) is a spe-
cial case (m=k) of the (k,m)-wildcard kernel pro-
posed by Leslie et al. (2004).

Both kernels shown above are represented as the
product of two kernels defined separately on strings
s1,s2 and t1, t2, and that is to say that they do not
consider the alignment relations between the strings.

5 K-gram Bijective String Re-writing
Kernel

Next we propose another instance of string re-
writing kernel, called the k-gram bijective string re-
writing kernel (kb-SRK). As will be seen, kb-SRK
can be computed efficiently, although it is defined
on two pairs of strings and is not decomposed (note
that ps-SRK and pw-SRK are decomposed).

5.1 Definition
The kb-SRK has the following properties: (1) A
wildcard can only substitute a single character, de-
noted as “?”. (2) The two string patterns in a re-
writing rule are of length k. (3) The alignment
relation in a re-writing rule is bijective, i.e., there
is a one-to-one mapping between the wildcards in
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the string patterns. Formally, the k-gram bijective
string re-writing kernel Kk is defined as a string
re-writing kernel under the re-writing rule set R =
{(βs,βt ,τ)|βs,βt ∈ (Σ∪{?})k,τ is bijective} and the
wildcard domain D = Σ.

Since each re-writing rule contains two string pat-
terns of length k and each wildcard can only substi-
tute one character, a re-writing rule can only match
k-gram pairs in (s, t). We can rewrite Eq. (2) as

φr(s, t) = ∑
αs∈k-grams(s)

∑
αt∈k-grams(t)

φ̄r(αs,αt) (3)

where φ̄r(αs,αt) = λ i if r (with i wildcards) matches
(αs,αt), otherwise φ̄r(αs,αt) = 0.

For ease of computation, we re-write kb-SRK as

Kk((s1, t1),(s2, t2))

= ∑
αs1 ∈ k-grams(s1)
αt1 ∈ k-grams(t1)

∑
αs2 ∈ k-grams(s2)
αt2 ∈ k-grams(t2)

K̄k((αs1 ,αt1),(αs2 ,αt2))

(4)

where
K̄k = ∑

r∈R
φ̄r(αs1 ,αt1)φ̄r(αs2 ,αt2) (5)

5.2 Algorithm for Computing Kernel
A straightforward computation of kb-SRK would
be intractable. The computation of Kk in Eq. (4)
needs computations of K̄k conducted O((n− k +
1)4) times, where n denotes the maximum length
of strings. Furthermore, the computation of K̄k in
Eq. (5) needs to perform matching of all the re-
writing rules with the two k-gram pairs (αs1 , αt1),
(αs2 , αt2), which has time complexity O(k!).

In this section, we will introduce an efficient algo-
rithm, which can compute K̄k and Kk with the time
complexities of O(k) and O(kn2), respectively. The
latter is verified empirically.

5.2.1 Transformation of Problem
For ease of manipulation, our method transforms

the computation of kernel on k-grams into the com-
putation on a new data structure called lists of dou-
bles. We first explain how to make the transforma-
tion.

Suppose that α1,α2 ∈ Σk are k-grams, we use
α1[i] and α2[i] to represent the i-th characters of
them. We call a pair of characters a double. Thus
Σ×Σ denotes the set of doubles and αD

s ,αD
t ∈ (Σ×

α𝑠1 = abbccbb ;               α𝑠2 = abcccdd; 

α𝑡1 = cbcbbcb ;               α𝑡2 = cbccdcd;  

Figure 2: Example of two k-gram pairs.

α𝑠
D = (a, a), (b, b), (𝐛, 𝐜), (c, c), (c, c), (𝐛, 𝐝), (𝐛, 𝐝) 

α𝑡
D = (c, c), (b, b), (c, c), (𝐛, 𝐜), (𝐛, 𝐝), (c, c), (𝐛, 𝐝) 

Figure 3: Example of the pair of double lists combined
from the two k-gram pairs in Fig. 2. Non-identical dou-
bles are in bold.

Σ)k denote lists of doubles. The following operation
combines two k-grams into a list of doubles.

α1⊗α2 = ((α1[1],α2[1]), · · · ,(α1[k],α2[k])).

We denotes α1 ⊗ α2[i] as the i-th element of the
list. Fig. 3 shows example lists of doubles combined
from k-grams.

We introduce the set of identical doubles I =
{(c,c)|c ∈ Σ} and the set of non-identical doubles
N = {(c,c′)|c,c′ ∈ Σ and c 6= c′}. Obviously, I

⋃
N =

Σ×Σ and I
⋂

N = /0.
We define the set of re-writing rules for double

lists RD = {rD = (β D
s ,β D

t ,τ)|β D
s ,β D

t ∈ (I∪{?})k,τ
is a bijective alignment} where β D

s and β D
t are lists

of identical doubles including wildcards and with
length k. We say rule rD matches a pair of double
lists (αD

s ,αD
t ) iff. β D

s ,β D
t can be changed into αD

s
and αD

t by substituting each wildcard pair to a dou-
ble in Σ×Σ , and the double substituting the wild-
card pair β D

s [i] and β D
t [ j] must be an identical dou-

ble when there is an alignment (i, j) ∈ τ . The rule
set defined here and the rule set in Sec. 4 only differ
on the elements where re-writing occurs. Fig. 4 (B)
shows an example of re-writing rule for double lists.
The pair of double lists in Fig. 3 can match with the
re-writing rule.

5.2.2 Computing K̄k

We consider how to compute K̄k by extending the
computation from k-grams to double lists.

The following lemma shows that computing the
weighted sum of re-writing rules matching k-gram
pairs (αs1 ,αt1) and (αs2 ,αt2) is equivalent to com-
puting the weighted sum of re-writing rules for dou-
ble lists matching (αs1⊗αs2 ,αt1⊗αt2).
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                           a b *1 c                    a b ?  c c ?  ?                        (a,a) (b,b) ?  (c,c) (c,c) ?  ?                                         

                             

       c b c ?  ?  c ?                         (c,c) (b,b) (c,c) ?  ?  (c,c) ?                   
(A) (B) 

Figure 4: For re-writing rule (A) matching both k-gram
pairs shown in Fig. 2, there is a corresponding re-writing
rule for double lists (B) matching the pair of double lists
shown in Fig. 3.

  #Σ×Σ(α𝑠
D) = {(a, a): 1, (b, b): 1, (𝐛, 𝐜): 1, (𝐛, 𝐝): 2, (c, c): 2}   

  #Σ×Σ(α𝑡
D) = {(a, a): 0, (b, b): 1, (𝐛, 𝐜): 1, (𝐛, 𝐝): 2, (c, c): 3}  

Figure 5: Example of #Σ×Σ(·) for the two double lists
shown in Fig. 3. Doubles not appearing in both αD

s and
αD

t are not shown.

Lemma 1. For any two k-gram pairs (αs1 ,αt1) and
(αs2 ,αt2), there exists a one-to-one mapping from
the set of re-writing rules matching them to the set of
re-writing rules matching the corresponding double
lists (αs1⊗αs2 ,αt1⊗αt2).

The re-writing rule in Fig. 4 (A) matches the k-
gram pairs in Fig. 2. Equivalently, the re-writing
rule for double lists in Fig. 4 (B) matches the pair
of double lists in Fig. 3. By lemma 1 and Eq. 5, we
have

K̄k = ∑
rD∈RD

φ̄rD(αs1⊗αs2 ,αt1⊗αt2) (6)

where φ̄rD(αD
s ,αD

t ) = λ 2i if the rewriting rule for
double lists rD with i wildcards matches (αD

s ,αD
t ),

otherwise φ̄rD(αD
s ,αD

t ) = 0. To get K̄k, we just need
to compute the weighted sum of re-writing rules for
double lists matching (αs1 ⊗αs2 ,αt1 ⊗αt2). Thus,
we can work on the “combined” pair of double lists
instead of two pairs of k-grams.

Instead of enumerating all possible re-writing
rules and checking whether they can match the given
pair of double lists, we only calculate the number of
possibilities of “generating” from the pair of double
lists to the re-writing rules matching it, which can be
carried out efficiently. We say that a re-writing rule
of double lists can be generated from a pair of double
lists (αD

s , αD
t ), if they match with each other. From

the definition of RD, in each generation, the identi-
cal doubles in αD

s and αD
t can be either or not sub-

stituted by an aligned wildcard pair in the re-writing

Algorithm 1: Computing K̄k

Input: k-gram pair (αs1 ,αt1) and (αs2 ,αt2)
Output: K̄k((αs1 ,αt1),(αs2 ,αt2))

1 Set (αD
s ,αD

t ) = (αs1⊗αs2 ,αt1⊗αt2) ;
2 Compute #Σ×Σ(αD

s ) and #Σ×Σ(αD
t );

3 result=1;
4 for each e ∈ Σ×Σ satisfies

#e(α
D
s )+#e(α

D
t ) 6= 0 do

5 ge = 0, ne = min{#e(α
D
s ),#e(α

D
t )} ;

6 for 0≤ i≤ ne do
7 ge = ge +a(e)

i λ 2i;

8 result = result ∗g;

9 return result;

rule, and all the non-identical doubles in αD
s and αD

t
must be substituted by aligned wildcard pairs. From
this observation and Eq. 6, K̄k only depends on the
number of times each double occurs in the double
lists.

Let e be a double. We denote #e(α
D) as the num-

ber of times e occurs in the list of doubles αD. Also,
for a set of doubles S⊆ Σ×Σ, we denote #S(α

D) as
a vector in which each element represents #e(α

D) of
each double e ∈ S. We can find a function g such
that

K̄k = g(#Σ×Σ(αs1⊗αs2),#Σ×Σ(αt1⊗αt2)) (7)

Alg. 1 shows how to compute K̄k. #Σ×Σ(.) is com-
puted from the two pairs of k-grams in line 1-2. The
final score is made through the iterative calculation
on the two lists (lines 4-8).

The key of Alg. 1 is the calculation of ge based on
a(e)

i (line 7). Here we use a(e)
i to denote the number

of possibilities for which i pairs of aligned wildcards
can be generated from e in both αD

s and αD
t . a(e)

i can
be computed as follows.

(1) If e ∈ N and #e(α
D
s ) 6= #e(α

D
t ), then a(e)

i = 0
for any i.

(2) If e∈N and #e(α
D
s ) = #e(α

D
t ) = j, then a(e)

j =

j! and a(e)
i = 0 for any i 6= j.

(3) If e ∈ I, then a(e)
i =

(#e(α
D
s )

i

)(#e(α
D
t )

i

)
i!.

We next explain the rationale behind the above
computations. In (1), since #e(α

D
s ) 6= #e(α

D
t ), it is

impossible to generate a re-writing rule in which all
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the occurrences of non-identical double e are substi-
tuted by pairs of aligned wildcards. In (2), j pairs of
aligned wildcards can be generated from all the oc-
currences of non-identical double e in both αD

s and
αD

t . The number of combinations thus is j!. In (3),
a pair of aligned wildcards can either be generated
or not from a pair of identical doubles in αD

s and
αD

t . We can select i occurrences of identical double
e from αD

s , i occurrences from αD
t , and generate all

possible aligned wildcards from them.
In the loop of lines 4-8, we only need to con-

sider a(e)
i for 0≤ i≤min{#e(α

D
s ),#e(α

D
t )}, because

a(e)
i = 0 for the rest of i.
To sum up, Eq. 7 can be computed as below,

which is exactly the computation at lines 3-8.

g(#Σ×Σ(αD
s ),#Σ×Σ(αD

t )) = ∏
e∈Σ×Σ

(
ne

∑
i=0

a(e)
i λ

2i) (8)

For the k-gram pairs in Fig. 2, we first create
lists of doubles in Fig. 3 and compute #Σ×Σ(·) for
them (lines 1-2 of Alg. 1), as shown in Fig. 5. We
next compute Kk from #Σ×Σ(αD

s ) and #Σ×Σ(αD
t ) in

Fig. 5 (lines 3-8 of Alg. 1) and obtain Kk = (1)(1+
λ 2)(λ 2)(2λ 4)(1 + 6λ 2 + 6λ 4) = 12λ 12 + 24λ 10 +
14λ 8 +2λ 6.

5.2.3 Computing Kk

Algorithm 2 shows how to compute Kk. It pre-
pares two maps ms and mt and two vectors of coun-
ters cs and ct . In ms and mt , each key #N(.) maps a
set of values #Σ×Σ(.). Counters cs and ct count the
frequency of each #Σ×Σ(.). Recall that #N(αs1⊗αs2)
denotes a vector whose element is #e(αs1 ⊗αs2) for
e ∈ N. #Σ×Σ(αs1 ⊗αs2) denotes a vector whose ele-
ment is #e(αs1⊗αs2) where e is any possible double.

One can easily verify the output of the al-
gorithm is exactly the value of Kk. First,
K̄k((αs1 ,αt1),(αs2 ,αt2)) = 0 if #N(αs1 ⊗ αs2) 6=
#N(αt1 ⊗αt2). Therefore, we only need to consider
those αs1 ⊗αs2 and αt1 ⊗αt2 which have the same
key (lines 10-13). We group the k-gram pairs by
their key in lines 2-5 and lines 6-9.

Moreover, the following relation holds

K̄k((αs1 ,αt1),(αs2 ,αt2)) = K̄k((α
′
s1
,α

′
t1),(α

′
s2
,α

′
t2))

if #Σ×Σ(αs1⊗αs2) = #Σ×Σ(α
′
s1
⊗α

′
s2
) and #Σ×Σ(αt1⊗

αt2) = #Σ×Σ(α
′
t1 ⊗α

′
t2), where α ′s1

, α ′s2
, α ′t1 , α ′t2 are

Algorithm 2: Computing Kk

Input: string pair (s1, t1) and (s2, t2), window
size k

Output: Kk((s1, t1),(s2, t2))
1 Initialize two maps ms and mt and two counters

cs and ct ;
2 for each k-gram αs1 in s1 do
3 for each k-gram αs2 in s2 do
4 Update ms with key-value pair

(#N(αs1⊗αs2),#Σ×Σ(αs1⊗αs2));
5 cs[#Σ×Σ(αs1⊗αs2)]++ ;

6 for each k-gram αt1 in t1 do
7 for each k-gram αt2 in t2 do
8 Update mt with key-value pair

(#N(αt1⊗αt2),#Σ×Σ(αt1⊗αt2));
9 ct [#Σ×Σ(αt1⊗αt2)]++ ;

10 for each key ∈ms.keys∩mt .keys do
11 for each vs ∈ms[key] do
12 for each vt ∈mt [key] do
13 result+= cs[vs]ct [vt ]g(vs,vt) ;

14 return result;

other k-grams. Therefore, we only need to take
#Σ×Σ(αs1⊗αs2) and #Σ×Σ(αt1⊗αt2) as the value un-
der each key and count its frequency. That is to say,
#Σ×Σ provides sufficient statistics for computing K̄k.

The quantity g(vs,vt) in line 13 is computed by
Alg. 1 (lines 3-8).

5.3 Time Complexity

The time complexities of Alg. 1 and Alg. 2 are
shown below.

For Alg. 1, lines 1-2 can be executed in
O(k). The time for executing line 7 is less
than #e(α

D
s ) + #e(α

D
t ) + 1 for each e satisfying

#e(α
D
s ) 6= 0 or #e(α

D
t ) 6= 0 . Since ∑e∈Σ×Σ #e(α

D
s ) =

∑e∈Σ×Σ #e(α
D
t ) = k, the time for executing lines 3-8

is less than 4k, which results in the O(k) time com-
plexity of Alg. 1.

For Alg. 2, we denote n = max{|s1|, |s2|, |t1|, |t2|}.
It is easy to see that if the maps and counters in the
algorithm are implemented by hash maps, the time
complexities of lines 2-5 and lines 6-9 are O(kn2).
However, analyzing the time complexity of lines 10-
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avg and window size

k when running Alg. 2 on MSR Paraphrases Corpus.

13 is quite difficult.
Lemma 2 and Theorem 1 provide an upper bound

of the number of times computing g(vs,vt) in line 13,
denoted as C.

Lemma 2. For αs1 ∈k-grams(s1) and αs2 ,α
′
s2
∈k-

grams(s2), we have #Σ×Σ(αs1⊗αs2) =
#Σ×Σ(αs1⊗α

′
s2
) if #N(αs1⊗αs2) = #N(αs1⊗α

′
s2
).

Theorem 1. C is O(n3).

By Lemma 2, each ms[key] contains at most
n− k + 1 elements. Together with the fact that
∑key ms[key] = (n− k + 1)2, Theorem 1 is proved.
It can be also proved that C is O(n2) when k = 1.

Empirical study shows that O(n3) is a loose upper
bound for C. Let navg denote the average length of
s1, t1, s2 and t2. Our experiment on all pairs of sen-
tences on MSR Paraphrase (Fig. 6) shows that C is in
the same order of n2

avg in the worst case and C/n2
avg

decreases with increasing k in both average case and
worst case, which indicates that C is O(n2) and the
overall time complexity of Alg. 2 is O(kn2).

6 Experiments

We evaluated the performances of the three types
of string re-writing kernels on paraphrase identifica-
tion and recognizing textual entailment: pairwise k-
spectrum kernel (ps-SRK), pairwise k-wildcard ker-
nel (pw-SRK), and k-gram bijective string re-writing
kernel (kb-SRK). We set λ = 1 for all kernels. The
performances were measured by accuracy (e.g. per-
centage of correct classifications).

In both experiments, we used LIBSVM with de-
fault parameters (Chang et al., 2011) as the clas-
sifier. All the sentences in the training and test
sets were segmented into words by the tokenizer at
OpenNLP (Baldrige et al., ). We further conducted
stemming on the words with Iveonik English Stem-
mer (http://www.iveonik.com/ ).

We normalized each kernel by K̃(x,y) =
K(x,y)√

K(x,x)K(y,y)
and then tried them under different

window sizes k. We also tried to combine the
kernels with two lexical features “unigram precision
and recall” proposed in (Wan et al., 2006), referred
to as PR. For each kernel K, we tested the window
size settings of K1 + ... + Kkmax (kmax ∈ {1,2,3,4})
together with the combination with PR and we
report the best accuracies of them in Tab 1 and
Tab 2.

6.1 Paraphrase Identification

The task of paraphrase identification is to examine
whether two sentences have the same meaning. We
trained and tested all the methods on the MSR Para-
phrase Corpus (Dolan and Brockett, 2005; Quirk
et al., 2004) consisting of 4,076 sentence pairs for
training and 1,725 sentence pairs for testing.

The experimental results on different SRKs are
shown in Table 1. It can be seen that kb-SRK out-
performs ps-SRK and pw-SRK. The results by the
state-of-the-art methods reported in previous work
are also included in Table 1. kb-SRK outperforms
the existing lexical approach (Zhang and Patrick,
2005) and kernel approach (Lintean and Rus, 2011).
It also works better than the other approaches listed
in the table, which use syntactic trees or dependency
relations.

Fig. 7 gives detailed results of the kernels under
different maximum k-gram lengths kmax with and
without PR. The results of ps-SRK and pw-SRK
without combining PR under different k are all be-
low 71%, therefore they are not shown for clar-

Method Acc.
Zhang and Patrick (2005) 71.9
Lintean and Rus (2011) 73.6
Heilman and Smith (2010) 73.2
Qiu et al. (2006) 72.0
Wan et al. (2006) 75.6
Das and Smith (2009) 73.9
Das and Smith (2009)(PoE) 76.1
Our baseline (PR) 73.6
Our method (ps-SRK) 75.6
Our method (pw-SRK) 75.0
Our method (kb-SRK) 76.3

Table 1: Comparison with state-of-the-arts on MSRP.

455



                           a b *1 c            

73.5

74

74.5

75

75.5

76

76.5

1 2 3 4

A
cc

u
ra

cy
 (

%
) 

window size kmax 

kb_SRK+PR

kb_SRK

ps_SRK+PR

pw_SRK+PR

PR

Figure 7: Performances of different kernels under differ-
ent maximum window size kmax on MSRP.

ity. By comparing the results of kb-SRK and pw-
SRK we can see that the bijective property in kb-
SRK is really helpful for improving the performance
(note that both methods use wildcards). Further-
more, the performances of kb-SRK with and without
combining PR increase dramatically with increasing
kmax and reach the peaks (better than state-of-the-art)
when kmax is four, which shows the power of the lex-
ical and structural similarity captured by kb-SRK.

6.2 Recognizing Textual Entailment

Recognizing textual entailment is to determine
whether a sentence (sometimes a short paragraph)
can entail the other sentence (Giampiccolo et al.,
2007). RTE-3 is a widely used benchmark dataset.
Following the common practice, we combined the
development set of RTE-3 and the whole datasets of
RTE-1 and RTE-2 as training data and took the test
set of RTE-3 as test data. The train and test sets con-
tain 3,767 and 800 sentence pairs.

The results are shown in Table 2. Again, kb-SRK
outperforms ps-SRK and pw-SRK. As indicated
in (Heilman and Smith, 2010), the top-performing
RTE systems are often built with significant engi-

Method Acc.
Harmeling (2007) 59.5
de Marneffe et al. (2006) 60.5
M&M, (2007) (NL) 59.4
M&M, (2007) (Hybrid) 64.3
Zanzotto et al. (2007) 65.75
Heilman and Smith (2010) 62.8
Our baseline (PR) 62.0
Our method (ps-SRK) 64.6
Our method (pw-SRK) 63.8
Our method (kb-SRK) 65.1

Table 2: Comparison with state-of-the-arts on RTE-3.
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ent maximum window size kmax on RTE-3.

neering efforts. Therefore, we only compare with
the six systems which involves less engineering. kb-
SRK still outperforms most of those state-of-the-art
methods even if it does not exploit any other lexical
semantic sources and syntactic analysis tools.

Fig. 8 shows the results of the kernels under dif-
ferent parameter settings. Again, the results of ps-
SRK and pw-SRK without combining PR are too
low to be shown (all below 55%). We can see that
PR is an effective method for this dataset and the
overall performances are substantially improved af-
ter combining it with the kernels. The performance
of kb-SRK reaches the peak when window size be-
comes two.

7 Conclusion

In this paper, we have proposed a novel class of ker-
nel functions for sentence re-writing, called string
re-writing kernel (SRK). SRK measures the lexical
and structural similarity between two pairs of sen-
tences without using syntactic trees. The approach
is theoretically sound and is flexible to formulations
of sentences. A specific instance of SRK, referred
to as kb-SRK, has been developed which can bal-
ance the effectiveness and efficiency for sentence
re-writing. Experimental results show that kb-SRK
achieve better results than state-of-the-art methods
on paraphrase identification and recognizing textual
entailment.
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Abstract

To adapt a translation model trained from
the data in one domain to another, previous
works paid more attention to the studies of
parallel corpus while ignoring the in-domain
monolingual corpora which can be obtained
more easily. In this paper, we propose a
novel approach for translation model adapta-
tion by utilizing in-domain monolingual top-
ic information instead of the in-domain bilin-
gual corpora, which incorporates the topic in-
formation into translation probability estima-
tion. Our method establishes the relationship
between the out-of-domain bilingual corpus
and the in-domain monolingual corpora vi-
a topic mapping and phrase-topic distribution
probability estimation from in-domain mono-
lingual corpora. Experimental result on the
NIST Chinese-English translation task shows
that our approach significantly outperforms
the baseline system.

1 Introduction

In recent years, statistical machine translation(SMT)
has been rapidly developing with more and more
novel translation models being proposed and put in-
to practice (Koehn et al., 2003; Och and Ney, 2004;
Galley et al., 2006; Liu et al., 2006; Chiang, 2007;
Chiang, 2010). However, similar to other natural
language processing(NLP) tasks, SMT systems of-
ten suffer from domain adaptation problem during
practical applications. The simple reason is that the
underlying statistical models always tend to closely

∗Part of this work was done during the first author’s intern-
ship at Baidu.

approximate the empirical distributions of the train-
ing data, which typically consist of bilingual sen-
tences and monolingual target language sentences.
When the translated texts and the training data come
from the same domain, SMT systems can achieve
good performance, otherwise the translation quality
degrades dramatically. Therefore, it is of significant
importance to develop translation systems which can
be effectively transferred from one domain to anoth-
er, for example, from newswire to weblog.

According to adaptation emphases, domain adap-
tation in SMT can be classified into translation mod-
el adaptation and language model adaptation. Here
we focus on how to adapt a translation model, which
is trained from the large-scale out-of-domain bilin-
gual corpus, for domain-specific translation task,
leaving others for future work. In this aspect, pre-
vious methods can be divided into two categories:
one paid attention to collecting more sentence pairs
by information retrieval technology (Hildebrand et
al., 2005) or synthesized parallel sentences (Ueffing
et al., 2008; Wu et al., 2008; Bertoldi and Federico,
2009; Schwenk and Senellart, 2009), and the other
exploited the full potential of existing parallel cor-
pus in a mixture-modeling (Foster and Kuhn, 2007;
Civera and Juan, 2007; Lv et al., 2007) framework.
However, these approaches focused on the studies of
bilingual corpus synthesis and exploitation while ig-
noring the monolingual corpora, therefore limiting
the potential of further translation quality improve-
ment.

In this paper, we propose a novel adaptation
method to adapt the translation model for domain-
specific translation task by utilizing in-domain
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monolingual corpora. Our approach is inspired by
the recent studies (Zhao and Xing, 2006; Zhao and
Xing, 2007; Tam et al., 2007; Gong and Zhou, 2010;
Ruiz and Federico, 2011) which have shown that a
particular translation always appears in some spe-
cific topical contexts, and the topical context infor-
mation has a great effect on translation selection.
For example, “bank” often occurs in the sentences
related to the economy topic when translated into
“ýinháng”, and occurs in the sentences related to the
geography topic when translated to “héàn”. There-
fore, the co-occurrence frequency of the phrases in
some specific context can be used to constrain the
translation candidates of phrases. In a monolingual
corpus, if “bank” occurs more often in the sentences
related to the economy topic than the ones related
to the geography topic, it is more likely that “bank”
is translated to “ýinháng” than to “héàn”. With the
out-of-domain bilingual corpus, we first incorporate
the topic information into translation probability es-
timation, aiming to quantify the effect of the topical
context information on translation selection. Then,
we rescore all phrase pairs according to the phrase-
topic and the word-topic posterior distributions of
the additional in-domain monolingual corpora. As
compared to the previous works, our method takes
advantage of both the in-domain monolingual cor-
pora and the out-of-domain bilingual corpus to in-
corporate the topic information into our translation
model, thus breaking down the corpus barrier for
translation quality improvement. The experimental
results on the NIST data set demonstrate the effec-
tiveness of our method.

The reminder of this paper is organized as fol-
lows: Section 2 provides a brief description of trans-
lation probability estimation. Section 3 introduces
the adaptation method which incorporates the top-
ic information into the translation model; Section
4 describes and discusses the experimental results;
Section 5 briefly summarizes the recent related work
about translation model adaptation. Finally, we end
with a conclusion and the future work in Section 6.

2 Background

The statistical translation model, which contains
phrase pairs with bi-directional phrase probabilities
and bi-directional lexical probabilities, has a great

effect on the performance of SMT system. Phrase
probability measures the co-occurrence frequency of
a phrase pair, and lexical probability is used to vali-
date the quality of the phrase pair by checking how
well its words are translated to each other.

According to the definition proposed by (Koehn
et al., 2003), given a source sentence f = fJ

1 =
f1, . . . , fj , . . . , fJ , a target sentence e = eI1 =
e1, . . . , ei, . . . , eI , and its word alignment a which
is a subset of the Cartesian product of word position-
s: a ⊆ (j, i) : j = 1, . . . , J ; i = 1, . . . , I , the phrase
pair (f̃ , ẽ) is said to be consistent (Och and Ney,
2004) with the alignment if and only if: (1) there
must be at least one word inside one phrase aligned
to a word inside the other phrase and (2) no words
inside one phrase can be aligned to a word outside
the other phrase. After all consistent phrase pairs are
extracted from training corpus, the phrase probabil-
ities are estimated as relative frequencies (Och and
Ney, 2004):

φ(ẽ|f̃) =
count(f̃ , ẽ)∑̃

e′
count(f̃ , ẽ′)

(1)

Here count(f̃ , ẽ) indicates how often the phrase pair
(f̃ , ẽ) occurs in the training corpus.

To obtain the corresponding lexical weight, we
first estimate a lexical translation probability distri-
bution w(e|f) by relative frequency from the train-
ing corpus:

w(e|f) =
count(f, e)∑

e′
count(f, e′)

(2)

Retaining the alignment ã between the phrase pair
(f̃ , ẽ), the corresponding lexical weight is calculated
as

pw(ẽ|f̃ , ã) =

|ẽ|∏
i=1

1

|{j|(j, i) ∈ ã}|
∑

∀(j,i)∈ã

w(ei|fj) (3)

However, the above-mentioned method only
counts the co-occurrence frequency of bilingual
phrases, assuming that the translation probability is
independent of the context information. Thus, the
statistical model estimated from the training data is
not suitable for text translation in different domains,
resulting in a significant drop in translation quality.

460



3 Translation Model Adaptation via
Monolingual Topic Information

In this section, we first briefly review the principle
of Hidden Topic Markov Model(HTMM) which is
the basis of our method, then describe our approach
to translation model adaptation in detail.

3.1 Hidden Topic Markov Model

During the last couple of years, topic models such
as Probabilistic Latent Semantic Analysis (Hof-
mann, 1999) and Latent Dirichlet Allocation mod-
el (Blei, 2003), have drawn more and more attention
and been applied successfully in NLP community.
Based on the “bag-of-words” assumption that the or-
der of words can be ignored, these methods model
the text corpus by using a co-occurrence matrix of
words and documents, and build generative model-
s to infer the latent aspects or topics. Using these
models, the words can be clustered into the derived
topics with a probability distribution, and the corre-
lation between words can be automatically captured
via topics.

However, the “bag-of-words” assumption is an
unrealistic oversimplification because it ignores the
order of words. To remedy this problem, Gruber et
al.(2007) propose HTMM, which models the topics
of words in the document as a Markov chain. Based
on the assumption that all words in the same sen-
tence have the same topic and the successive sen-
tences are more likely to have the same topic, HTM-
M incorporates the local dependency between words
by Hidden Markov Model for better topic estima-
tion.

HTMM can also be viewed as a soft clustering
tool for words in training corpus. That is, HT-
MM can estimate the probability distribution of a
topic over words, i.e. the topic-word distribution
P (word|topic) during training. Besides, HTMM
derives inherent topics in sentences rather than in
documents, so we can easily obtain the sentence-
topic distribution P (topic|sentence) in training
corpus. Adopting maximum likelihood estima-
tion(MLE), this posterior distribution makes it pos-
sible to effectively calculate the word-topic distri-
bution P (topic|word) and the phrase-topic distribu-
tion P (topic|phrase) both of which are very impor-
tant in our method.

3.2 Adapted Phrase Probability Estimation
We utilize the additional in-domain monolingual
corpora to adapt the out-of-domain translation mod-
el for domain-specific translation task. In detail, we
build an adapted translation model in the following
steps:

• Build a topic-specific translation model to
quantify the effect of the topic information on
the translation probability estimation.

• Estimate the topic posterior distributions of
phrases in the in-domain monolingual corpora.

• Score the phrase pairs according to the prede-
fined topic-specific translation model and the
topic posterior distribution of phrases.

Formally, we incorporate monolingual topic in-
formation into translation probability estimation,
and decompose the phrase probability φ(ẽ|f̃)1 as
follows:

φ(ẽ|f̃) =
∑
tf

φ(ẽ, tf |f̃)

=
∑
tf

φ(ẽ|f̃ , tf ) · P (tf |f̃) (4)

where φ(ẽ|f̃ , tf ) indicates the probability of trans-
lating f̃ into ẽ given the source-side topic tf ,
P (tf |f̃) denotes the phrase-topic distribution of f̃ .

To compute φ(ẽ|f̃), we first apply HTMM to re-
spectively train two monolingual topic models with
the following corpora: one is the source part of
the out-of-domain bilingual corpus Cf out, the oth-
er is the in-domain monolingual corpus Cf in in the
source language. Then, we respectively estimate
φ(ẽ|f̃ , tf ) and P (tf |f̃) from these two corpora. To
avoid confusion, we further refine φ(ẽ|f̃ , tf ) and
P (tf |f̃) with φ(ẽ|f̃ , tf out) and P (tf in|f̃), respec-
tively. Here, tf out is the topic clustered from the
corpus Cf out, and tf in represents the topic derived
from the corpus Cf in.

However, the two above-mentioned probabilities
can not be directly multiplied in formula (4) be-
cause they are related to different topic spaces from

1Due to the limit of space, we omit the description of the cal-
culation method of the phrase probability φ(f̃ |ẽ), which can be
adjusted in a similar way to φ(ẽ|f̃) with the help of in-domain
monolingual corpus in the target language.
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different corpora. Besides, their topic dimension-
s are not assured to be the same. To solve this
problem, we introduce the topic mapping probabili-
ty P (tf out|tf in) to map the in-domain phrase-topic
distribution into the one in the out-domain topic s-
pace. To be specific, we obtain the out-of-domain
phrase-topic distribution P (tf out|f̃) as follows:

P (tf out|f̃) =
∑
tf in

P (tf out|tf in) · P (tf in|f̃) (5)

Thus formula (4) can be further refined as the fol-
lowing formula:

φ(ẽ|f̃) =
∑
tf out

∑
tf in

φ(ẽ|f̃ , tf out)

·P (tf out|tf in) · P (tf in|f̃) (6)

Next we will give detailed descriptions of the cal-
culation methods for the three probability distribu-
tions mentioned in formula (6).

3.2.1 Topic-Specific Phrase Translation
Probability φ(ẽ|f̃ , tf out)

We follow the common practice (Koehn et al.,
2003) to calculate the topic-specific phrase trans-
lation probability, and the only difference is that
our method takes the topical context information in-
to account when collecting the fractional counts of
phrase pairs. With the sentence-topic distribution
P (tf out|f) from the relevant topic model of Cf out,
the conditional probability φ(ẽ|f̃ , tf out) can be eas-
ily obtained by MLE method:

φ(ẽ|f̃ , tf out)

=

∑
〈f ,e〉∈Cout

count〈f ,e〉(f̃ , ẽ) · P (tf out|f)∑̃
e′

∑
〈f ,e〉∈Cout

count〈f ,e〉(f̃ , ẽ′) · P (tf out|f)
(7)

where Cout is the out-of-domain bilingual training
corpus, and count〈f ,e〉(f̃ , ẽ) denotes the number of
the phrase pair (f̃ , ẽ) in sentence pair 〈f , e〉.

3.2.2 Topic Mapping Probability P (tf out|tf in)

Based on the two monolingual topic models re-
spectively trained from Cf in and Cf out, we com-
pute the topic mapping probability by using source
word f as the pivot variable. Noticing that there

are some words occurring in one corpus only, we
use the words belonging to both corpora during the
mapping procedure. Specifically, we decompose
P (tf out|tf in) as follows:

P (tf out|tf in)

=
∑

f∈Cf out
⋂

Cf in

P (tf out|f) · P (f |tf in) (8)

Here we first get P (f |tf in) directly from the top-
ic model related to Cf in. Then, considering the
sentence-topic distribution P (tf out|f) from the rel-
evant topic model of Cf out, we define the word-
topic distribution P (tf out|f) as:

P (tf out|f)

=

∑
f∈Cf out

countf (f) · P (tf out|f)∑
tf out

∑
f∈Cf out

countf (f) · P (tf out|f)
(9)

where countf (f) denotes the number of the word f
in sentence f .

3.2.3 Phrase-Topic Distribution P (tf in|f̃ )
A simple way to compute the phrase-topic distri-

bution is to take the fractional counts from Cf in

and then adopt MLE to obtain relative probability.
However, it is infeasible in our model because some
phrases occur in Cf out while being absent in Cf in.
To solve this problem, we further compute this pos-
terior distribution by the interpolation of two model-
s:

P (tf in|f̃) = θ · Pmle(tf in|f̃) +

(1− θ) · Pword(tf in|f̃) (10)

where Pmle(tf in|f̃) indicates the phrase-topic dis-
tribution by MLE, Pword(tf in|f̃) denotes the
phrase-topic distribution which is decomposed into
the topic posterior distribution at the word level, and
θ is the interpolation weight that can be optimized
over the development data.

Given the number of the phrase f̃ in sentence f
denoted as countf (f̃), we compute the in-domain
phrase-topic distribution in the following way:

Pmle(tf in|f̃)

=

∑
f∈Cf in

countf (f̃) · P (tf in|f)∑
tf in

∑
f∈Cf in

countf (f̃) · P (tf in|f)
(11)
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Under the assumption that the topics of all word-
s in the same phrase are independent, we consid-
er two methods to calculate Pword(tf in|f̃). One is
a “Noisy-OR” combination method (Zens and Ney,
2004) which has shown good performance in calcu-
lating similarities between bags-of-words in differ-
ent languages. Using this method, Pword(tf in|f̃) is
defined as:

Pword(tf in|f̃)

= 1− Pword(t̄f in|f̃)

≈ 1−
∏
fj∈f̃

P (t̄f in|fj)

= 1−
∏
fj∈f̃

(1− P (tf in|fj)) (12)

where Pword(t̄f in|f̃) represents the probability that
tf in is not the topic of the phrase f̃ . Similarly,
P (t̄f in|fj) indicates the probability that tf in is not
the topic of the word fj .

The other method is an “Averaging” combination
one. With the assumption that tf in is the topic of f̃
if at least one of the words in f̃ belongs to this topic,
we derive Pword(tf in|f̃) as follows:

Pword(tf in|f̃) ≈
∑
fj∈f̃

P (tf in|fj)/|f̃ | (13)

where |f̃ | denotes the number of words in phrase f̃ .

3.3 Adapted Lexical Probability Estimation
Now we briefly describe how to estimate the adapted
lexical weight for phrase pairs, which can be adjust-
ed in a similar way to the phrase probability.

Specifically, adopting our method, each word is
considered as one phrase consisting of only one
word, so

w(e|f) =
∑
tf out

∑
tf in

w(e|f, tf out)

·P (tf out|tf in) · P (tf in|f) (14)

Here we obtain w(e|f, tf out) with a simi-
lar approach to φ(ẽ|f̃ , tf out), and calculate
P (tf out|tf in) and P (tf in|f) by resorting to
formulas (8) and (9).

With the adjusted lexical translation probability,
we resort to formula (4) to update the lexical weight
for the phrase pair (f̃ , ẽ).

4 Experiment

We evaluate our method on the Chinese-to-English
translation task for the weblog text. After a brief de-
scription of the experimental setup, we investigate
the effects of various factors on the translation sys-
tem performance.

4.1 Experimental setup

In our experiments, the out-of-domain training cor-
pus comes from the FBIS corpus and the Hansard-
s part of LDC2004T07 corpus (54.6K documents
with 1M parallel sentences, 25.2M Chinese words
and 29M English words). We use the Chinese Sohu
weblog in 20091 and the English Blog Authorship
corpus2 (Schler et al., 2006) as the in-domain mono-
lingual corpora in the source language and target
language, respectively. To obtain more accurate top-
ic information by HTMM, we firstly filter the noisy
blog documents and the ones consisting of short sen-
tences. After filtering, there are totally 85K Chinese
blog documents with 2.1M sentences and 277K En-
glish blog documents with 4.3M sentences used in
our experiments. Then, we sample equal numbers of
documents from the in-domain monolingual corpo-
ra in the source language and the target language to
respectively train two in-domain topic models. The
web part of the 2006 NIST MT evaluation test da-
ta, consisting of 27 documents with 1048 sentences,
is used as the development set, and the weblog part
of the 2008 NIST MT test data, including 33 docu-
ments with 666 sentences, is our test set.

To obtain various topic distributions for the out-
of-domain training corpus and the in-domain mono-
lingual corpora in the source language and the tar-
get language respectively, we use HTMM tool devel-
oped by Gruber et al.(2007) to conduct topic model
training. During this process, we empirically set the
same parameter values for the HTMM training of d-
ifferent corpora: topics = 50, α = 1.5, β = 1.01,
iters = 100. See (Gruber et al., 2007) for the
meanings of these parameters. Besides, we set the
interpolation weight θ in formula (10) to 0.5 by ob-
serving the results on development set in the addi-
tional experiments.

We choose MOSES, a famous open-source

1http://blog.sohu.com/
2http://u.cs.biu.ac.il/ koppel/BlogCorpus.html
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phrase-based machine translation system (Koehn
et al., 2007), as the experimental decoder.
GIZA++ (Och and Ney, 2003) and the heuristics
“grow-diag-final-and” are used to generate a word-
aligned corpus, from which we extract bilingual
phrases with maximum length 7. We use SRILM
Toolkits (Stolcke, 2002) to train two 4-gram lan-
guage models on the filtered English Blog Author-
ship corpus and the Xinhua portion of Gigaword
corpus, respectively. During decoding, we set the
ttable-limit as 20, the stack-size as 100, and per-
form minimum-error-rate training (Och and Ney,
2003) to tune the feature weights for the log-linear
model. The translation quality is evaluated by
case-insensitive BLEU-4 metric (Papineni et al.,
2002). Finally, we conduct paired bootstrap sam-
pling (Koehn, 2004) to test the significance in BLEU
score differences.

4.2 Result and Analysis

4.2.1 Effect of Different Smoothing Methods
Our first experiments investigate the effect of dif-

ferent smoothing methods for the in-domain phrase-
topic distribution: “Noisy-OR” and “Averaging”.
We build adapted phrase tables with these two meth-
ods, and then respectively use them in place of the
out-of-domain phrase table to test the system perfor-
mance. For the purpose of studying the generality of
our approach, we carry out comparative experiments
on two sizes of in-domain monolingual corpora: 5K
and 40K.

Adaptation
Method

(Dev) MT06
Web

(Tst) MT08
Weblog

Baseline 30.98 20.22

Noisy-OR (5K) 31.16 20.45

Averaging (5K) 31.51 20.54

Noisy-OR (40K) 31.87 20.76

Averaging (40K) 31.89 21.11

Table 1: Experimental results using different smoothing
methods.

Table 1 reports the BLEU scores of the translation
system under various conditions. Using the out-of-
domain phrase table, the baseline system achieves
a BLEU score of 20.22. In the experiments with
the small-scale in-domain monolingual corpora, the

BLEU scores acquired by two methods are 20.45
and 20.54, achieving absolute improvements of 0.23
and 0.32 on the test set, respectively. In the exper-
iments with the large-scale monolingual in-domain
corpora, similar results are obtained, with absolute
improvements of 0.54 and 0.89 over the baseline
system.

From the above experimental results, we know
that both “Noisy-OR” and “Averaging” combination
methods improve the performance over the base-
line, and “Averaging” method seems to be slight-
ly better. This finding fails to echo the promis-
ing results in the previous study (Zens and Ney,
2004). This is because the “Noisy-OR” method in-
volves the multiplication of the word-topic distribu-
tion (shown in formula (12)), which leads to much
sharper phrase-topic distribution than “Averaging”
method, and is more likely to introduce bias to the
translation probability estimation. Due to this rea-
son, all the following experiments only consider the
“Averaging”method.

4.2.2 Effect of Combining Two Phrase Tables
In the above experiments, we replace the out-of-

domain phrase table with the adapted phrase table.
Here we combine these two phrase tables in a log-
linear framework to see if we could obtain further
improvement. To offer a clear description, we repre-
sent the out-of-domain phrase table and the adapted
phrase table with “OutBP” and “AdapBP”, respec-
tively.

Used Phrase
Table

(Dev) MT06
Web

(Tst) MT08
Weblog

Baseline 30.98 20.22

AdapBp (5K) 31.51 20.54

+ OutBp 31.84 20.70

AdapBp (40K) 31.89 21.11

+ OutBp 32.05 21.20

Table 2: Experimental results using different phrase ta-
bles. OutBp: the out-of-domain phrase table. AdapBp:
the adapted phrase table.

Table 2 shows the results of experiments using d-
ifferent phrase tables. Applying our adaptation ap-
proach, both “AdapBP” and “OutBP + AdapBP”
consistently outperform the baseline, and the lat-
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Figure 1: Effect of in-domain monolingual corpus size on
translation quality.

ter produces further improvements over the former.
Specifically, the BLEU scores of the “OutBP +
AdapBP” method are 20.70 and 21.20, which ob-
tain 0.48 and 0.98 points higher than the baseline
method, and 0.16 and 0.09 points higher than the
‘AdapBP” method. The underlying reason is that the
probability distribution of each in-domain sentence
often converges on some topics in the “AdapBP”
method and some translation probabilities are over-
estimated, which leads to negative effects on the
translation quality. By using two tables together, our
approach reduces the bias introduced by “AdapBP”,
therefore further improving the translation quality.

4.2.3 Effect of In-domain Monolingual Corpus
Size

Finally, we investigate the effect of in-domain
monolingual corpus size on translation quality. In
the experiment, we try different sizes of in-domain
documents to train different monolingual topic mod-
els: from 5K to 80K with an increment of 5K each
time. Note that here we only focus on the exper-
iments using the “OutBP + AdapBP” method, be-
cause this method performs better in the previous
experiments.

Figure 1 shows the BLEU scores of the transla-
tion system on the test set. It can be seen that the
more data, the better translation quality when the
corpus size is less than 30K. The overall BLEU
scores corresponding to the range of great N val-
ues are generally higher than the ones correspond-
ing to the range of small N values. For example, the
BLEU scores under the condition within the range
[25K, 80K] are all higher than the ones within the
range [5K, 20K]. When N is set to 55K, the BLEU

score of our system is 21.40, with 1.18 gains on the
baseline system. This difference is statistically sig-
nificant at P < 0.01 using the significance test tool
developed by Zhang et al.(2004). For this experi-
mental result, we speculate that with the increment
of in-domain monolingual data, the corresponding
topic models provide more accurate topic informa-
tion to improve the translation system. However,
this effect weakens when the monolingual corpora
continue to increase.

5 Related work

Most previous researches about translation model
adaptation focused on parallel data collection. For
example, Hildebrand et al.(2005) employed infor-
mation retrieval technology to gather the bilingual
sentences, which are similar to the test set, from
available in-domain and out-of-domain training da-
ta to build an adaptive translation model. With
the same motivation, Munteanu and Marcu (2005)
extracted in-domain bilingual sentence pairs from
comparable corpora. Since large-scale monolin-
gual corpus is easier to obtain than parallel corpus,
there have been some studies on how to generate
parallel sentences with monolingual sentences. In
this respect, Ueffing et al. (2008) explored semi-
supervised learning to obtain synthetic parallel sen-
tences, and Wu et al. (2008) used an in-domain
translation dictionary and monolingual corpora to
adapt an out-of-domain translation model for the in-
domain text.

Differing from the above-mentioned works on
the acquirement of bilingual resource, several stud-
ies (Foster and Kuhn, 2007; Civera and Juan, 2007;
Lv et al., 2007) adopted mixture modeling frame-
work to exploit the full potential of the existing par-
allel corpus. Under this framework, the training cor-
pus is first divided into different parts, each of which
is used to train a sub translation model, then these
sub models are used together with different weights
during decoding. In addition, discriminative weight-
ing methods were proposed to assign appropriate
weights to the sentences from training corpus (Mat-
soukas et al., 2009) or the phrase pairs of phrase ta-
ble (Foster et al., 2010). Final experimental result-
s show that without using any additional resources,
these approaches all improve SMT performance sig-
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nificantly.
Our method deals with translation model adap-

tation by making use of the topical context, so let
us take a look at the recent research developmen-
t on the application of topic models in SMT. As-
suming each bilingual sentence constitutes a mix-
ture of hidden topics and each word pair follows a
topic-specific bilingual translation model, Zhao and
Xing (2006,2007) presented a bilingual topical ad-
mixture formalism to improve word alignment by
capturing topic sharing at different levels of linguis-
tic granularity. Tam et al.(2007) proposed a bilin-
gual LSA, which enforces one-to-one topic corre-
spondence and enables latent topic distributions to
be efficiently transferred across languages, to cross-
lingual language modeling and translation lexicon
adaptation. Recently, Gong and Zhou (2010) also
applied topic modeling into domain adaptation in
SMT. Their method employed one additional feature
function to capture the topic inherent in the source
phrase and help the decoder dynamically choose re-
lated target phrases according to the specific topic of
the source phrase.

Besides, our approach is also related to context-
dependent translation. Recent studies have shown
that SMT systems can benefit from the utiliza-
tion of context information. For example, trigger-
based lexicon model (Hasan et al., 2008; Mauser et
al., 2009) and context-dependent translation selec-
tion (Chan et al., 2007; Carpuat and Wu, 2007; He
et al., 2008; Liu et al., 2008). The former gener-
ated triplets to capture long-distance dependencies
that go beyond the local context of phrases, and the
latter built the classifiers which combine rich con-
text information to better select translation during
decoding. With the consideration of various local
context features, these approaches all yielded stable
improvements on different translation tasks.

As compared to the above-mentioned works, our
work has the following differences.

• We focus on how to adapt a translation mod-
el for domain-specific translation task with the
help of additional in-domain monolingual cor-
pora, which are far from full exploitation in the
parallel data collection and mixture modeling
framework.

• In addition to the utilization of in-domain

monolingual corpora, our method is differen-
t from the previous works (Zhao and Xing,
2006; Zhao and Xing, 2007; Tam et al., 2007;
Gong and Zhou, 2010) in the following aspect-
s: (1) we use a different topic model — HTMM
which has different assumption from PLSA and
LDA; (2) rather than modeling topic-dependent
translation lexicons in the training process, we
estimate topic-specific lexical probability by
taking account of topical context when extract-
ing word pairs, so our method can also be di-
rectly applied to topic-dependent phrase proba-
bility modeling. (3) Instead of rescoring phrase
pairs online, our approach calculate the transla-
tion probabilities offline, which brings no addi-
tional burden to translation systems and is suit-
able to translate the texts without the topic dis-
tribution information.

• Different from trigger-based lexicon model and
context-dependent translation selection both of
which put emphasis on solving the translation
ambiguity by the exploitation of the context in-
formation at the sentence level, we adopt the
topical context information in our method for
the following reasons: (1) the topic informa-
tion captures the context information beyond
the scope of sentence; (2) the topical context in-
formation is integrated into the posterior prob-
ability distribution, avoiding the sparseness of
word or POS features; (3) the topical context
information allows for more fine-grained dis-
tinction of different translations than the genre
information of corpus.

6 Conclusion and future work

This paper presents a novel method for SMT sys-
tem adaptation by making use of the monolingual
corpora in new domains. Our approach first esti-
mates the translation probabilities from the out-of-
domain bilingual corpus given the topic information,
and then rescores the phrase pairs via topic mapping
and phrase-topic distribution probability estimation
from in-domain monolingual corpora. Experimental
results show that our method achieves better perfor-
mance than the baseline system, without increasing
the burden of the translation system.

In the future, we will verify our method on oth-
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er language pairs, for example, Chinese to Japanese.
Furthermore, since the in-domain phrase-topic dis-
tribution is currently estimated with simple smooth-
ing interpolations, we expect that the translation sys-
tem could benefit from other sophisticated smooth-
ing methods. Finally, the reasonable estimation of
topic number for better translation model adaptation
will also become our study emphasis.
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Abstract

We propose a novel model to automatically
extract transliteration pairs from parallel cor-
pora. Our model is efficient, language pair
independent and mines transliteration pairs in
a consistent fashion in both unsupervised and
semi-supervised settings. We model transliter-
ation mining as an interpolation of translitera-
tion and non-transliteration sub-models. We
evaluate on NEWS 2010 shared task data and
on parallel corpora with competitive results.

1 Introduction

Transliteration mining is the extraction of translit-
eration pairs from unlabelled data. Most transliter-
ation mining systems are built using labelled train-
ing data or using heuristics to extract transliteration
pairs. These systems are language pair dependent or
require labelled information for training. Our sys-
tem extracts transliteration pairs in an unsupervised
fashion. It is also able to utilize labelled information
if available, obtaining improved performance.

We present a novel model of transliteration min-
ing defined as a mixture of a transliteration model
and a non-transliteration model. The transliteration
model is a joint source channel model (Li et al.,
2004). The non-transliteration model assumes no
correlation between source and target word charac-
ters, and independently generates a source and a tar-
get word using two fixed unigram character models.
We use Expectation Maximization (EM) to learn pa-
rameters maximizing the likelihood of the interpola-
tion of both sub-models. At test time, we label word

pairs as transliterations if they have a higher proba-
bility assigned by the transliteration sub-model than
by the non-transliteration sub-model.

We extend the unsupervised system to a semi-
supervised system by adding a new S-step to the
EM algorithm. The S-step takes the probability es-
timates from unlabelled data (computed in the M-
step) and uses them as a backoff distribution to
smooth probabilities which were estimated from la-
belled data. The smoothed probabilities are then
used in the next E-step. In this way, the parame-
ters learned by EM are constrained to values which
are close to those estimated from the labelled data.

We evaluate our unsupervised and semi-
supervised transliteration mining system on the
datasets available from the NEWS 2010 shared task
on transliteration mining (Kumaran et al., 2010b).
We call this task NEWS10 later on. Compared with
a baseline unsupervised system our unsupervised
system achieves up to 5% better F-measure. On
the NEWS10 dataset, our unsupervised system
achieves an F-measure of up to 95.7%, and on three
language pairs, it performs better than all systems
which participated in NEWS10. We also evaluate
our semi-supervised system which additionally uses
the NEWS10 labelled data for training. It achieves
an improvement of up to 3.7% F-measure over our
unsupervised system. Additional experiments on
parallel corpora show that we are able to effectively
mine transliteration pairs from very noisy data.

The paper is organized as follows. Section 2 de-
scribes previous work. Sections 3 and 4 define our
unsupervised and semi-supervised models. Section
5 presents the evaluation. Section 6 concludes.
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2 Previous Work

We first discuss the literature on semi-supervised
and supervised techniques for transliteration min-
ing and then describe a previously defined unsuper-
vised system. Supervised and semi-supervised sys-
tems use a manually labelled set of training data to
learn character mappings between source and tar-
get strings. The labelled training data either con-
sists of a few hundred transliteration pairs or of
just a few carefully selected transliteration pairs.
The NEWS 2010 shared task on transliteration min-
ing (NEWS10) (Kumaran et al., 2010b) is a semi-
supervised task conducted on Wikipedia InterLan-
guage Links (WIL) data. The NEWS10 dataset con-
tains 1000 labelled examples (called the “seed data”)
for initial training. All systems which participated
in the NEWS10 shared task are either supervised or
semi-supervised. They are described in (Kumaran
et al., 2010a). Our transliteration mining model
can mine transliterations without using any labelled
data. However, if there is some labelled data avail-
able, our system is able to use it effectively.

The transliteration mining systems evaluated on
the NEWS10 dataset generally used heuristic meth-
ods, discriminative models or generative models for
transliteration mining (Kumaran et al., 2010a).

The heuristic-based system of Jiampojamarn et
al. (2010) is based on the edit distance method
which scores the similarity between source and tar-
get words. They presented two discriminative meth-
ods – an SVM-based classifier and alignment-based
string similarity for transliteration mining. These
methods model the conditional probability distribu-
tion and require supervised/semi-supervised infor-
mation for learning. We propose a flexible genera-
tive model for transliteration mining usable for both
unsupervised and semi-supervised learning.

Previous work on generative approaches uses
Hidden Markov Models (Nabende, 2010; Darwish,
2010; Jiampojamarn et al., 2010), Finite State Au-
tomata (Noeman and Madkour, 2010) and Bayesian
learning (Kahki et al., 2011) to learn transliteration
pairs from labelled data. Our method is different
from theirs as our generative story explains the un-
labelled data using a combination of a transliteration
and a non-transliteration sub-model. The translit-
eration model jointly generates source and target

strings, whereas the non-transliteration system gen-
erates them independently of each other.

Sajjad et al. (2011) proposed a heuristic-based un-
supervised transliteration mining system. We later
call it Sajjad11. It is the only unsupervised mining
system that was evaluated on the NEWS10 dataset
up until now, as far as we know. That system is com-
putationally expensive. We show in Section 5 that its
runtime is much higher than that of our system.

In this paper, we propose a novel model-based
approach to transliteration mining. Our approach
is language pair independent – at least for alpha-
betic languages – and efficient. Unlike the pre-
vious unsupervised system, and unlike the super-
vised and semi-supervised systems we mentioned,
our model can be used for both unsupervised and
semi-supervised mining in a consistent way.

3 Unsupervised Transliteration Mining
Model

A source word and its corresponding target word can
be character-aligned in many ways. We refer to a
possible alignment sequence which aligns a source
word e and a target word f as “a”. The function
Align(e, f) returns the set of all valid alignment se-
quences a of a word pair (e, f). The joint transliter-
ation probability p1(e, f) of a word pair is the sum
of the probabilities of all alignment sequences:

p1(e, f) =
∑

a∈Align(e,f)

p(a) (1)

Transliteration systems are trained on a list of
transliteration pairs. The alignment between the
transliteration pairs is learned with Expectation
Maximization (EM). We use a simple unigram
model, so an alignment sequence from function
Align(e, f) is a combination of 0–1, 1–1, and 1–
0 character alignments between a source word e and
its transliteration f . We refer to a character align-
ment unit as “multigram” later on and represent it
by the symbol “q”. A sequence of multigrams forms
an alignment of a source and target word. The prob-
ability of a sequence of multigrams a is the product
of the probabilities of the multigrams it contains.

p(a) = p(q1, q2, ..., q|a|) =
|a|∏

j=1

p(qj) (2)
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While transliteration systems are trained on a
clean list of transliteration pairs, our translitera-
tion mining system has to learn from data con-
taining both transliterations and non-transliterations.
The transliteration model p1(e, f) handles only the
transliteration pairs. We propose a second model
p2(e, f) to deal with non-transliteration pairs (the
“non-transliteration model”). Interpolation with the
non-transliteration model allows the transliteration
model to concentrate on modelling transliterations
during EM training. After EM training, transliter-
ation word pairs are assigned a high probability by
the transliteration submodel and a low probability by
the non-transliteration submodel, and vice versa for
non-transliteration pairs. This property is exploited
to identify transliterations.

In a non-transliteration word pair, the characters
of the source and target words are unrelated. We
model them as randomly seeing a source word and a
target word together. The non-transliteration model
uses random generation of characters from two uni-
gram models. It is defined as follows:

p2(e, f) = pE(e) pF (f) (3)

pE(e) =
∏|e|

i=1 pE(ei) and pF (f) =
∏|f |

i=1 pF (fi).
The transliteration mining model is an interpo-

lation of the transliteration model p1(e, f) and the
non-transliteration model p2(e, f):

p(e, f) = (1− λ)p1(e, f) + λp2(e, f) (4)

λ is the prior probability of non-transliteration.

3.1 Model Estimation

In this section, we discuss the estimation of the pa-
rameters of the transliteration model p1(e, f) and the
non-transliteration model p2(e, f).

The non-transliteration model consists of two un-
igram character models. Their parameters are esti-
mated from the source and target words of the train-
ing data, respectively, and the parameters do not
change during EM training.

For the transliteration model, we implement a
simplified form of the grapheme-to-phoneme con-
verter, g2p (Bisani and Ney, 2008). In the follow-
ing, we use notations from Bisani and Ney (2008).
g2p learns m-to-n character alignments between a
source and a target word. We restrict ourselves to
0–1,1–1,1–0 character alignments and to a unigram

model.1 The Expectation Maximization (EM) algo-
rithm is used to train the model. It maximizes the
likelihood of the training data. In the E-step the EM
algorithm computes expected counts for the multi-
grams and in the M-step the multigram probabilities
are reestimated from these counts. These two steps
are iterated. For the first EM iteration, the multigram
probabilities are initialized with a uniform distribu-
tion and λ is set to 0.5.

The expected count of a multigram q (E-step) is
computed by multiplying the posterior probability
of each alignment a with the frequency of q in a and
summing these weighted frequencies over all align-
ments of all word pairs.

c(q) =
N∑

i=1

∑
a∈Align(ei,fi)

(1− λ)p1(a, ei, fi)
p(ei, fi)

nq(a)

nq(a) is here the number of times the multigram q
occurs in the sequence a and p(ei, fi) is defined in
Equation 4. The new estimate of the probability of a
multigram is given by:

p(q) =
c(q)∑
q′ c(q′)

(5)

Likewise, we calculate the expected count of non-
transliterations by summing the posterior probabili-
ties of non-transliteration given each word pair:

cntr =
N∑

i=1

pntr(ei, fi) =
N∑

i=1

λp2(ei, fi)
p(ei, fi)

(6)

λ is then reestimated by dividing the expected count
of non-transliterations by N .

3.2 Implementation Details
We use the Forward-Backward algorithm to estimate
the counts of multigrams. The algorithm has a for-
ward variableα and a backward variable β which are
calculated in the standard way (Deligne and Bimbot,
1995). Consider a node r which is connected with
a node s via an arc labelled with the multigram q.
The expected count of a transition between r and s
is calculated using the forward and backward prob-
abilities as follows:

γ′rs =
α(r) p(q) β(s)

α(E)
(7)

1In preliminary experiments, using an n-gram order of
greater than one or more than one character on the source side or
the target side or both sides of the multigram caused the translit-
eration model to incorrectly learn non-transliteration informa-
tion from the training data.
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where E is the final node of the graph.
We multiply the expected count of a transition

by the posterior probability of transliteration (1 −
pntr(e, f)) which indicates how likely the string pair
is to be a transliteration. The counts γrs are then
summed for all multigram types q over all training
pairs to obtain the frequencies c(q) which are used
to reestimate the multigram probabilities according
to Equation 5.

4 Semi-supervised Transliteration Mining
Model

Our unsupervised transliteration mining system can
be applied to language pairs for which no labelled
data is available. However, the unsupervised sys-
tem is focused on high recall and also mines close
transliterations (see Section 5 for details). In a task
dependent scenario, it is difficult for the unsuper-
vised system to mine transliteration pairs according
to the details of a particular definition of what is con-
sidered a transliteration (which may vary somewhat
with the task). In this section, we propose an exten-
sion of our unsupervised model which overcomes
this shortcoming by using labelled data. The idea
is to rely on probabilities from labelled data where
they can be estimated reliably and to use probabili-
ties from unlabelled data where the labelled data is
sparse. This is achieved by smoothing the labelled
data probabilities using the unlabelled data probabil-
ities as a backoff.

4.1 Model Estimation

We calculate the unlabelled data probabilities in the
E-step using Equation 4. For labelled data (contain-
ing only transliterations) we set λ = 0 and get:

p(e, f) =
∑

a∈Align(e,f)

p1(e, f, a) (8)

In every EM iteration, we smooth the probability
distribution in such a way that the estimates of the
multigrams of the unlabelled data that do not occur
in the labelled data would be penalized. We obtain
this effect by smoothing the probability distribution
of unlabelled and labelled data using a technique
similar to Witten-Bell smoothing (Witten and Bell,
1991), as we describe below.

Figure 1: Semi-supervised training

4.2 Implementation Details
We divide the training process of semi-supervised
mining in two steps as shown in Figure 1. The first
step creates a reasonable alignment of the labelled
data from which multigram counts can be obtained.
The labelled data is a small list of transliteration
pairs. Therefore we use the unlabelled data to help
correctly align it and train our unsupervised min-
ing system on the combined labelled and unlabelled
training data. In the expectation step, the prior prob-
ability of non-transliteration λ is set to zero on the
labelled data since it contains only transliterations.
The first step passes the resulting multigram proba-
bility distribution to the second step.

We start the second step with the probability es-
timates from the first step and run the E-step sepa-
rately on labelled and unlabelled data. The E-step
on the labelled data is done using Equation 8, which
forces the posterior probability of non-transliteration
to zero, while the E-step on the unlabelled data uses
Equation 4. After the two E-steps, we estimate
a probability distribution from the counts obtained
from the unlabelled data (M-step) and use it as a
backoff distribution in computing smoothed proba-
bilities from the labelled data counts (S-step).

The smoothed probability estimate p̂(q) is:

p̂(q) =
cs(q) + ηsp(q)

Ns + ηs
(9)

where cs(q) is the labelled data count of the multi-
gram q, p(q) is the unlabelled data probability es-
timate, and Ns =

∑
q cs(q), and ηs is the number

of different multigram types observed in the Viterbi
alignment of the labelled data.
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5 Evaluation

We evaluate our unsupervised system and semi-
supervised system on two tasks, NEWS10 and paral-
lel corpora. NEWS10 is a standard task on translit-
eration mining from WIL. On NEWS10, we com-
pare our results with the unsupervised mining sys-
tem of Sajjad et al. (2011), the best supervised
and semi-supervised systems presented at NEWS10
(Kumaran et al., 2010b) and the best supervised and
semi-supervised results reported in the literature for
the NEWS10 task. For the challenging task of min-
ing from parallel corpora, we use the English/Hindi
and English/Arabic gold standard provided by Saj-
jad et al. (2011) to evaluate our results.

5.1 Experiments using the NEWS10 Dataset

We conduct experiments on four language pairs: En-
glish/Arabic, English/Hindi, English/Tamil and En-
glish/Russian using data provided at NEWS10. Ev-
ery dataset contains training data, seed data and ref-
erence data. The NEWS10 data consists of pairs of
titles of the same Wikipedia pages written in dif-
ferent languages, which may be transliterations or
translations. The seed data is a list of 1000 transliter-
ation pairs provided to semi-supervised systems for
initial training. We use the seed data only in our
semi-supervised system, and not in the unsupervised
system. The reference data is a small subset of the
training data which is manually annotated with pos-
itive and negative examples.

5.1.1 Training
We word-aligned the parallel phrases of the train-

ing data using GIZA++ (Och and Ney, 2003), and
symmetrized the alignments using the grow-diag-
final-and heuristic (Koehn et al., 2003). We extract
all word pairs which occur as 1-to-1 alignments (like
Sajjad et al. (2011)) and later refer to them as the
word-aligned list. We compared the word-aligned
list with the NEWS10 reference data and found that
the word-aligned list is missing some transliteration
pairs because of word-alignment errors. We built an-
other list by adding a word pair for every source
word that cooccurs with a target word in a paral-
lel phrase/sentence and call it the cross-product list
later on. The cross-product list is noisier but con-
tains almost all transliteration pairs in the corpus.

Word-aligned Cross-product
P R F P R F

EA 27.8 97.1 43.3 14.3 98.0 25.0
EH 42.5 98.7 59.4 20.5 99.6 34.1
ET 32.0 98.1 48.3 17.2 99.6 29.3
ER 25.5 95.6 40.3 12.8 99.0 22.7

Table 1: Statistics of word-aligned and cross-product
list calculated from the NEWS10 dataset, before min-
ing. EA is English/Arabic, EH is English/Hindi, ET is
English/Tamil and ER is English/Russian

Table 1 shows the statistics of the word-aligned
list and the cross-product list calculated using the
NEWS10 reference data.2 The word-aligned list cal-
culated from the NEWS10 dataset is used to com-
pare our unsupervised system with the unsupervised
system of Sajjad et al. (2011) on the same training
data. All the other experiments on NEWS10 use
cross-product lists. We remove numbers from both
lists as they are defined as non-transliterations (Ku-
maran et al., 2010b).

5.1.2 Unsupervised Transliteration Mining
We run our unsupervised transliteration mining

system on the word-aligned list and the cross-
product list. The word pairs with a posterior prob-
ability of transliteration 1 − pntr(e, f) = 1 −
λp2(ei, fi)/p(ei, fi) greater than 0.5 are selected as
transliteration pairs.

We compare our unsupervised system with the
unsupervised system of Sajjad11. Our unsupervised
system trained on the word-aligned list shows F-
measures of 91.7%, 95.5%, 92.9% and 77.7% which
is 4.3%, 3.3%, 2.8% and 1.7% better than the sys-
tem of Sajjad11 on English/Arabic, English/Hindi,
English/Tamil and English/Russian respectively.

Sajjad11 is computationally expensive. For in-
stance, a phrase-based statistical MT system is
built once in every iteration of the heuristic proce-
dure. We ran Sajjad11 on the English/Russian word-
aligned list using a 2.4 GHz Dual-Core AMD ma-
chine, which took almost 10 days. On the same ma-
chine, our transliteration mining system only takes
1.5 hours to finish the same experiment.

2Due to inconsistent word definition used in the reference
data, we did not achieve 100% recall in our cross-product list.
For example, the underscore is defined as a word boundary for
English WIL phrases. This assumption is not followed for cer-
tain phrases like ”New York” and ”New Mexico”.
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Unsupervised Semi-supervised/Supervised
SJD OU OS SBest GR DBN

EA 87.4 92.4 92.7 91.5 94.1 -
EH 92.2 95.7 96.3 94.4 93.2 95.5
ET 90.1 93.2 94.6 91.4 95.5 93.9
ER 76.0 79.4 83.1 87.5 92.3 82.5

Table 2: F-measure results on NEWS10 datasets where
SJD is the unsupervised system of Sajjad11, OU is
our unsupervised system built on the cross-product list,
OS is our semi-supervised system, SBest is the best
NEWS10 system, GR is the supervised system of Kahki
et al. (2011) and DBN is the semi-supervised system of
Nabende (2011)

Our unsupervised mining system built on the
cross-product list consistently outperforms the one
built on the word-aligned list. Later, we consider
only the system built on the cross-product list. Ta-
ble 2 shows the results of our unsupervised sys-
tem OU in comparison with the unsupervised sys-
tem of Sajjad11 (SJD), the best semi-supervised sys-
tems presented at NEWS10 (SBEST ) and the best
semi-supervised results reported on the NEWS10
dataset (GR, DBN ). On three language pairs, our
unsupervised system performs better than all semi-
supervised systems which participated in NEWS10.
It has competitive results with the best supervised
results reported on NEWS10 datasets. On En-
glish/Hindi, our unsupervised system outperforms
the state-of-the-art supervised and semi-supervised
systems. Kahki et al. (2011) (GR) achieved
the best results on English/Arabic, English/Tamil
and English/Russian. For the English/Arabic task,
they normalized the data using language dependent
heuristics3 and also used a non-standard evaluation
method (discussed in Section 5.1.4).

On the English/Russian dataset, our unsupervised
system faces the problem that it extracts cognates
as transliterations. The same problem was reported
in Sajjad et al. (2011). Cognates are close translit-
erations which differ by only one or two characters
from an exact transliteration pair. The unsupervised
system learns to delete the additional one or two
characters with a high probability and incorrectly
mines such word pairs as transliterations.

3They applied an Arabic word segmenter which uses lan-
guage dependent information. Arabic long vowels which have
identical sound but are written differently were merged to one
form. English characters were normalized by dropping accents.

Unsupervised Semi-supervised
P R F P R F

EA 89.2 95.7 92.4 92.9 92.4 92.7
EH 92.6 99.0 95.7 95.5 97.0 96.3
ET 88.3 98.6 93.2 93.4 95.8 94.6
ER 67.2 97.1 79.4 74.0 94.9 83.1

Table 3: Precision(P), Recall(R) and F-measure(F) of our
unsupervised and semi-supervised transliteration mining
systems on NEWS10 datasets

5.1.3 Semi-supervised Transliteration Mining
Our semi-supervised system uses similar initial-

ization of the parameters as used for unsupervised
system. Table 2 shows on three language pairs, our
semi-supervised system OS only achieves a small
gain in F-measure over our unsupervised system
OU . This shows that the unlabelled training data is
already providing most of the transliteration infor-
mation. The seed data is used to help the translit-
eration mining system to learn the right definition
of transliteration. On the English/Russian dataset,
our semi-supervised system achieves almost 7% in-
crease in precision with a 2.2% drop in recall com-
pared to our unsupervised system. This provides a
3.7% gain on F-measure. The increase in precision
shows that the seed data is helping the system in dis-
ambiguating transliteration pairs from cognates.

5.1.4 Discussion
The unsupervised system produces lists with high

recall. The semi-supervised system tends to better
balance out precision and recall. Table 3 compares
the precision, recall and F-measure of our unsuper-
vised and semi-supervised mining systems.

The errors made by our semi-supervised system
can be classified into the following categories:

Pronunciation differences: English proper
names may be pronounced differently in other lan-
guages. Sometimes, English short vowels are con-
verted to long vowels in Hindi such as the English
word “Lanthanum” which is pronounced “Laan-
thanum” in Hindi. Our transliteration mining system
wrongly extracts such pairs as transliterations.

In some cases, different vowels are used in two
languages. The English word “January” is pro-
nounced as “Janvary” in Hindi. Such word pairs are
non-transliterations according to the gold standard
but our system extracts them as transliterations. Ta-
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Table 4: Word pairs with pronunciation differences

Table 5: Examples of word pairs which are wrongly an-
notated as transliterations in the gold standard

ble 4 shows a few examples of such word pairs.
Inconsistencies in the gold standard: There are

several inconsistencies in the gold standard where
our transliteration system correctly identifies a word
pair as a transliteration but it is marked as a non-
transliteration or vice versa. Consider the example
of the English word “George” which is pronounced
as “Jaarj” in Hindi. Our semi-supervised system
learns this as a non-transliteration but it is wrongly
annotated as a transliteration in the gold standard.

Arabic nouns have an article “al” attached to them
which is translated in English as “the”. There are
various cases in the training data where an English
noun such as “Quran” is matched with an Arabic
noun “alQuran”. Our mining system classifies such
cases as non-transliterations, but 24 of them are in-
correctly annotated as transliterations in the gold
standard. We did not correct this, and are there-
fore penalized. Kahki et al. (2011) preprocessed
such Arabic words and separated “al” from the noun
“Quran” before mining. They report a match if the
version of the Arabic word with “al” appears with
the corresponding English word in the gold stan-
dard. Table 5 shows examples of word pairs which
are wrongly annotated as transliterations.

Cognates: Sometimes a word pair differs by only
one or two ending characters from a true translit-
eration. For example in the English/Russian train-
ing data, the Russian nouns are marked with cases
whereas their English counterparts do not mark the
case or translate it as a separate word. Often the
Russian word differs only by the last character from
a correct transliteration of the English word. Due
to the large amount of such word pairs in the En-
glish/Russian data, our mining system learns to
delete the final case marking characters from the
Russian words. It assigns a high transliteration prob-

Table 6: A few examples of English/Russian cognates

ability to these word pairs and extracts them as
transliterations. Table 6 shows some examples.

There are two English/Russian supervised sys-
tems which are better than our semi-supervised sys-
tem. The Kahki et al. (2011) system is built on seed
data only. Jiampojamarn et al. (2010)’s best sys-
tem on English/Russian is based on the edit distance
method. Both of these systems are focused on high
precision. Our semi-supervised system is focused
on high recall at the cost of lower precision.4

5.2 Transliteration Mining using Parallel
Corpora

The percentage of transliteration pairs in the
NEWS10 datasets is high. We further check the ef-
fectiveness of our unsupervised and semi-supervised
mining systems by evaluating them on parallel cor-
pora with as few as 2% transliteration pairs.

We conduct experiments using two language
pairs, English/Hindi and English/Arabic. The En-
glish/Hindi corpus is from the shared task on word
alignment organized as part of the ACL 2005 Work-
shop on Building and Using Parallel Texts (WA05)
(Martin et al., 2005). For English/Arabic, we use
200,000 parallel sentences from the United Nations
(UN) corpus (Eisele and Chen, 2010). The En-
glish/Hindi and English/Arabic transliteration gold
standards were provided by Sajjad et al. (2011).

5.2.1 Experiments
We follow the procedure for creating the training

data described in Section 5.1.1 and build a word-
aligned list and a cross-product list from the parallel
corpus. We first train and test our unsupervised min-
ing system on the word-aligned list and compare our
results with Sajjad et al. Table 7 shows the results.
Our unsupervised system achieves 0.6% and 1.8%
higher F-measure than Sajjad et al. respectively.

The cross-product list is huge in comparison to
the word-aligned list. It is noisier than the word-

4We implemented a bigram version of our system to learn
the contextual information at the end of the word pairs, but only
achieved a gain of less than 1% F-measure over our unigram
semi-supervised system. Details are omitted due to space.
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TP FN TN FP P R F

EHSJD 170 10 2039 45 79.1 94.4 86.1
EHO 176 4 2034 50 77.9 97.8 86.7

EASJD 197 91 6580 59 77.0 68.4 72.5
EAO 288 0 6440 199 59.1 100 74.3

Table 7: Transliteration mining results of our unsuper-
vised system and Sajjad11 system trained and tested
on the word-aligned list of English/Hindi and En-
glish/Arabic parallel corpus

TP FN TN FP P R F

EHU 393 19 12279 129 75.3 95.4 84.2
EHS 365 47 12340 68 84.3 88.6 86.4

EAU 277 11 6444 195 58.7 96.2 72.9
EAS 272 16 6497 142 65.7 94.4 77.5

Table 8: Transliteration mining results of our unsuper-
vised and semi-supervised systems trained on the word-
aligned list and tested on the cross-product list of En-
glish/Hindi and English/Arabic parallel corpus

aligned list but has almost 100% recall of transliter-
ation pairs. The English-Hindi cross-product list has
almost 55% more transliteration pairs (412 types)
than the word-aligned list (180 types). We can not
report these numbers on the English/Arabic cross-
product list since the English/Arabic gold standard
is built on the word-aligned list.

In order to keep the experiment computationally
inexpensive, we train our mining systems on the
word-aligned list and test them on the cross-product
list.5 We also perform the first semi-supervised eval-
uation on this task. For our semi-supervised sys-
tem, we additionally use the English/Hindi and En-
glish/Arabic seed data provided by NEWS10.

Table 8 shows the results of our unsupervised
and semi-supervised systems on the English/Hindi
and English/Arabic parallel corpora. Our unsu-
pervised system achieves higher recall than our
semi-supervised system but lower precision. The
semi-supervised system shows an improvement in
F-measure for both language pairs. We looked
into the errors made by our systems. The mined
transliteration pairs of our unsupervised system con-
tains 65 and 111 close transliterations for the En-
glish/Hindi and English/Arabic task respectively.

5There are some multigrams of the cross-product list which
are unknown to the model learned on the word-aligned list. We
define their probability as the inverse of the number of multi-
gram tokens in the Viterbi alignment of the labelled and unla-
belled data together.

The close transliterations only differ by one or two
characters from correct transliterations. We think
these pairs provide transliteration information to
the systems and help them to avoid problems with
data sparseness. Our semi-supervised system uses
the seed data to identify close transliterations as
non-transliterations and decreases the number of
false positives. They are reduced to 35 and 89
for English/Hindi and English/Arabic respectively.
The seed data and the training data used in the
semi-supervised system are from different domains
(Wikipedia and UN). Seed data extracted from the
same domain is likely to work better, resulting in
even higher scores than we have reported.

6 Conclusion and Future Work
We presented a novel model to automatically
mine transliteration pairs. Our approach is ef-
ficient and language pair independent (for alpha-
betic languages). Both the unsupervised and semi-
supervised systems achieve higher accuracy than the
only unsupervised transliteration mining system we
are aware of and are competitive with the state-
of-the-art supervised and semi-supervised systems.
Our semi-supervised system outperformed our un-
supervised system, in particular in the presence of
prevalent cognates in the Russian/English data.

In future work, we plan to adapt our approach
to language pairs where one language is alphabetic
and the other language is non-alphabetic such as En-
glish/Japanese. These language pairs require one-
to-many character mappings to learn transliteration
units, while our current system only learns unigram
character alignments.
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Abstract

This paper presents a novel method to suggest
long word reorderings to a phrase-based SMT
decoder. We address language pairs where
long reordering concentrates on few patterns,
and use fuzzy chunk-based rules to predict
likely reorderings for these phenomena. Then
we use reordered n-gram LMs to rank the re-
sulting permutations and select the n-best for
translation. Finally we encode these reorder-
ings by modifying selected entries of the dis-
tortion cost matrix, on a per-sentence basis.
In this way, we expand the search space by a
much finer degree than if we simply raised the
distortion limit. The proposed techniques are
tested on Arabic-English and German-English
using well-known SMT benchmarks.

1 Introduction
Despite the large research effort devoted to the mod-
eling of word reordering, this remains one of the
main obstacles to the development of accurate SMT
systems for many language pairs. On one hand, the
phrase-based approach (PSMT) (Och, 2002; Zens et
al., 2002; Koehn et al., 2003), with its shallow and
loose modeling of linguistic equivalences, appears
as the most competitive choice for closely related
language pairs with similar clause structures, both
in terms of quality and of efficiency. On the other,
tree-based approaches (Wu, 1997; Yamada, 2002;
Chiang, 2005) gain advantage, at the cost of higher
complexity and isomorphism assumptions, on lan-
guage pairs with radically different word orders.

Lying between these two extremes are language
pairs where most of the reordering happens locally,

and where long reorderings can be isolated and de-
scribed by a handful of linguistic rules. Notable
examples are the family-unrelated Arabic-English
and the related German-English language pairs. In-
terestingly, on these pairs, PSMT generally pre-
vails over tree-based SMT1, producing overall high-
quality outputs and isolated but critical reordering
errors that undermine the global sentence meaning.

Previous works on this type of language pairs have
mostly focused on source reordering prior to trans-
lation (Xia and McCord, 2004; Collins et al., 2005),
or on sophisticated reordering models integrated into
decoding (Koehn et al., 2005; Al-Onaizan and Pap-
ineni, 2006), achieving mixed results. To merge the
best of both approaches – namely, access to rich con-
text in the former and natural coupling of reorder-
ing and translation decisions in the latter – we intro-
duce modified distortion matrices: a novel method to
seamlessly provide to the decoder a set of likely long
reorderings pre-computed for a given input sentence.
Added to the usual space of local permutations de-
fined by a low distortion limit (DL), this results in a
linguistically informed definition of the search space
that simplifies the task of the in-decoder reordering
model, besides decreasing its complexity.

The paper is organized as follows. After review-
ing a selection of relevant works, we analyze salient
reordering patterns in Arabic-English and German-
English, and describe the corresponding chunk-
based reordering rule sets. In the following sections
we present a reordering selection technique based on

1A good comparison of phrase-based and tree-based ap-
proaches across language pairs with different reordering levels
can be found in (Zollmann et al., 2008).
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reordered n-gram LMs and, finally, explain the no-
tion of modified distortion matrices. In the last part
of the paper, we evaluate the proposed techniques on
two popular MT tasks.

2 Previous work

Pre-processing approaches to word reordering aim
at permuting input words in a way that minimizes
the reordering needed for translation: determinis-
tic reordering aims at finding a single optimal re-
ordering for each input sentence, which is then
translated monotonically (Xia and McCord, 2004)
or with a low DL (Collins et al., 2005; Habash,
2007); non-deterministic reordering encodes mul-
tiple alternative reorderings into a word lattice and
lets a monotonic decoder find the best path accord-
ing to its models (Zhang et al., 2007; Crego and
Habash, 2008; Elming and Habash, 2009; Niehues
and Kolss, 2009). The latter approaches are ideally
conceived as alternative to in-decoding reordering,
and therefore require an exhaustive reordering rule
set. Two recent works (Bisazza and Federico, 2010;
Andreas et al., 2011) opt instead for a hybrid way:
rules are used to generate multiple likely reorder-
ings, but only for a specific phenomenon – namely
verb-initial clauses in Arabic. This yields sparse re-
ordering lattices that can be translated with a regular
decoder performing additional reordering.

Reordering rules for pre-processing are either
manually written (Collins et al., 2005) or automat-
ically learned from syntactic parses (Xia and Mc-
Cord, 2004; Habash, 2007; Elming and Habash,
2009), shallow syntax chunks (Zhang et al., 2007;
Crego and Habash, 2008) or part-of-speech labels
(Niehues and Kolss, 2009). Similarly to hybrid ap-
proaches, in this work we use few linguistically in-
formed rules to generate multiple reorderings for se-
lected phenomena but, as a difference, we do not
employ lattices to represent them. We also include a
competitive in-decoding reordering model in all the
systems used to evaluate our methods.

Another large body of work is devoted to the mod-
eling of reordering decisions inside decoding, based
on a decomposition of the problem into a sequence
of basic reordering steps. Existing approaches range
from basic linear distortion to more complex models
that are conditioned on the words being translated.

The linear distortion model (Koehn et al., 2003)
encourages monotonic translations by penalizing
source position jumps proportionally to their length.
If used alone, this model is inadequate for language
pairs with different word orders. Green et al. (2010)
tried to improve it with a future distortion cost es-
timate. Thus they were able to preserve baseline
performance at a very high DL, but not to improve
it. Lexicalized phrase orientation models (Tillmann,
2004; Koehn et al., 2005; Zens and Ney, 2006; Gal-
ley and Manning, 2008) predict the orientation of a
phrase with respect to the last translated one. These
models are known to well handle local reordering
and are widely adopted by the PSMT community.
However, they are unsuitable to model long reorder-
ing as they classify as “discontinuous” every phrase
that does not immediately follow or precede the last
translated one. Lexicalized distortion models pre-
dict the jump from the last translated word to the
next one, with a class for each possible jump length
(Al-Onaizan and Papineni, 2006), or bin of lengths
(Green et al., 2010). These models are conceived to
deal with long reordering, but can easily suffer from
data sparseness, especially for longer jumps occur-
ring less frequently.

Following a typical sequence modeling approach,
Feng et al. (2010) train n-gram language models on
source data previously reordered in accordance to
the target language translation. This method does
not directly model reordering decisions, but rather
word sequences produced by them. Despite their
high perplexities, reordered LMs yield some im-
provements when integrated to a PSMT baseline that
already includes a discriminative phrase orientation
model (Zens and Ney, 2006). In this work we use
similar models to rank sets of chunk permutations.

Attempting to improve the reordering space def-
inition, Yahyaei and Monz (2010) train a classifier
to guess the most likely jump length at each source
position, then use its predictions to dynamically set
the DL. Translation improvements are obtained on a
simple task with mostly short sentences (BTEC).

Modifying the distortion function, as proposed in
this paper, makes it possible to expand the pemuta-
tion search space by a much finer degree than vary-
ing the DL does.
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3 Long reordering patterns

Our study focuses on Arabic-English and German-
English: two language pairs characterized by uneven
distributions of word-reordering phenomena, with
long-range movements concentrating on few pat-
terns. In Arabic-English, the internal order of most
noun phrases needs to be reversed during translation,
which is generally well handled by phrase-internal
reordering or local distortion. At the constituent
level, instead, Arabic admits both SV(O) and VS(O)
orders, the latter causing problematic long reorder-
ings. Common errors due to this issue are the ab-
sence of main verb in the English translation, or the
placement of the main verb before its own subject.
In both cases, adequacy is seriously compromised.
In German-English, the noun phrase structure is
similar between source and target languages. How-
ever, at the constituent level, the verb-second order
of German main clauses conflicts with the rigid SVO
structure of English, as does the clause-final verb
position of German subordinate clauses. As a fur-
ther complication, German compound verbs are split
apart so that the non-finite element (main verb) can
appear long after the inflected auxiliary or modal.

Thanks to sophisticated reordering models, state-
of-the-art PSMT systems are generally good at han-
dling local reordering phenomena that are not cap-
tured by phrase-internal reordering. However, they
typically fail to predict long reorderings. We believe
this is mainly not the fault of the reordering mod-
els, but rather of a too coarse definition of the search
space. To have a concrete idea, consider that a small
change of the DL from 5 to 6 words, in a sentence
of 8, makes the number of explorable permutations
increase from about 9,000 to 22,000. Existing mod-
els cannot be powerful enough to deal with such a
rapidly growing search space.

As a result, decoding at very high DLs is not
a good solution for these language pairs. Indeed,
decent performances are obtained within a low or
medium DL, but this obviously comes at the expense
of long reorderings, which are often crucial to pre-
serve the general meaning of a translated sentence.
For instance, taking English as the target language,
it is precisely the relative positioning of predicate ar-
guments that determines their role, in the absence of
case markers. Thus, a wrongly reordered verb with

minor impact on automatic scores, can be judged
very badly by a human evaluator.

We will now describe two rule sets aimed at cap-
turing these reordering phenomena.

4 Shallow syntax reordering rules

To compute the source reorderings, we use chunk-
based rules following Bisazza and Federico (2010).
Shallow syntax chunking is indeed a lighter and
simpler task compared to full parsing, and it can
be used to constrain the number of reorderings in
a softer way. While rules based on full parses
are generally deterministic, chunk-based rules are
non-deterministic or fuzzy, as they generate sev-
eral permutations for each matching sequence2. Be-
sides defining a unique segmentation of the sen-
tence, chunk annotation provides other useful infor-
mation that can be used by the rules – namely chunk
type and POS tags3.

For Arabic-English we apply the rules proposed
by Bisazza and Federico (2010) aimed at transform-
ing VS(O) sentences into SV(O). Reorderings are
generated by moving each verb chunk (VC), alone
or with its following chunk, by 1 to 6 chunks to the
right. The maximum movement of each VC is lim-
ited to the position of the next VC, so that neigh-
boring verb-reordering sequences may not overlap.
This rule set was shown to cover most (99.5%) of
the verb reorderings observed in a parallel news cor-
pus, including those where the verb must be moved
along with an adverbial or a complement.

For German-English we propose a set of three
rules4 aimed at arranging the German constituents
in SVO order:

• infinitive: move each infinitive VC right after a
preceding punctuation;

• subordinate: if a VC is immediately followed
by a punctuation, place it after a preceding sub-
ordinating conjunction (KOUS) or substitutive
relative pronoun (PRELS);

2Chunk annotation does not identify subject and comple-
ment boundaries, nor the relations among constituents that are
needed to deterministically rearrange a sentence in SVO order.

3We use AMIRA (Diab et al., 2004) to annotate Arabic and
Tree Tagger (Schmid, 1994) to annotate German.

4A similar rule set was previously used to produce chunk
reordering lattices in (Hardmeier et al., 2010).
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(b) German broken verb chunk: three permutations

Figure 1: Examples of chunk permutations generated by shallow syntax reordering rules. Chunk types: CC conjunc-
tion, VC verb (auxiliary/past participle), PC preposition, NC noun, Pct punctuation.

• broken verb chunk: join each finite VC (auxil-
iary or modal) with the nearest following non-
finite VC (infinitive or participle). Place the re-
sulting block in any position between the orig-
inal position of the finite verb and that of the
non-finite verb5.

The application of chunk reordering rules is illus-
trated by Fig. 1: in the Arabic sentence (a), the sub-
ject ‘dozens of militants’ is preceded by the main
verb ‘took part’ and its argument ‘to the march’. The
rules generate 5 permutations for one matching se-
quence (chunks 2 to 5), out of which the 5th is the
best for translation. The German sentence (b) con-
tains a broken VC with the inflected auxiliary ‘has’
separated from the past participle ‘initiated’. Here,
the rules generate 3 permutations for the chunk se-
quence 2 to 5, corresponding to likely locations of
the merged verb phrase, the 1st being optimal.

By construction, both rule sets generate a limited
number of permutations per matching sequence: in

5To bound the number of reorderings, we use the follow-
ing heuristics. In ‘infinitive’ at most 3 punctuations preceding
the VC are considered. In ‘subordinate’ 1 to 3 chunks are left
between the conjunction (or pronoun) and the moved VC to ac-
count for the subject. In ‘broken VC’ if the distance between the
finite and non-finite verb is more than 10 chunks, only the first
5 and last 5 positions of the verb-to-verb span are considered.

Arabic at most 12 for each VC; in German at most 3
for each infinitive VC and for each VC-punctuation
sequence, at most 10 for each broken VC. Empiri-
cally, this yields on average 22 reorderings per sen-
tence in the NIST-MT Arabic benchmark dev06-NW
and 3 on the WMT German benchmark test08. Ara-
bic rules are indeed more noisy, which is not surpris-
ing as reordering is triggered by any verb chunk.

5 Reordering selection

The number of chunk-based reorderings per sen-
tence varies according to the rule set, to the size of
chunks and to the context. A high degree of fuzzi-
ness can complicate the decoding process, leaving
too much work to the in-decoding reordering model.
A solution to this problem is using an external model
to score the rule-generated reorderings and discard
the less probable ones. In such a way, a further part
of reordering complexity is taken out of decoding.

At this end, instead of using a Support Vector Ma-
chine classifier as was done in (Bisazza et al., 2011),
we apply reordered n-gram models that are lighter-
weight and more suitable for a ranking task.

Differently from Feng et al. (2010), we train our
models on partially reordered data and at the level of
chunks. Chunks can be represented simply by their
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type label (such as VC or NC), but also by a com-
bination of the type and head word, to obtain finer
lexicalized distributions. LMs trained on different
chunk representations can also be applied jointly, by
log-linear combination.

We perform reordering selection as follows:

1. Chunk-based reordering rules are applied de-
terministically to the source side of the parallel
training data, using word alignment to choose
the optimal permutation (“oracle reordering”)6.

2. One or several chunk-level 5-gram LMs are
trained on such reordered data, using different
chunk representation modes.

3. Reordering rules are applied to the test sen-
tences and the resulting sets of rule-matching
sequence permutations are scored by the LMs.
The n-best reorderings of each rule-matching
sequence are selected for translation.

In experiments not reported here, we obtained
accurate rankings by scoring source permutations
with a uniformly weighted combination of two LMs
trained on chunk types and on chunk-type+head-
word, respectively. In particular, 3-best reorderings
of each rule-matching sequence yield reordering re-
calls of 77.2% in Arabic and 89.3% in German.

6 Modified distortion matrices
We present here a novel technique to encode likely
long reorderings of an input sentence, which can be
seamlessly integrated into the PSMT framework.

During decoding, the distance between source po-
sitions is used for two main purposes: (i) generating
a distortion penalty for the current hypothesis and
(ii) determining the set of source positions that can
be covered at the next hypothesis expansion. We can
then tackle the coarseness of both distortion penalty
and reordering constraints, by replacing the distance
function with a function defined ad hoc for each in-
put sentence.

Distortion can be thought of as a matrix assigning
a positive integer to any ordered pair of source posi-
tions (sx, sy). In the linear distortion model this is

6Following Bisazza and Federico (2010), the optimal re-
ordering for a source sentence is the one that minimizes dis-
tortion in the word alignment to a target translation, measured
by number of swaps and sum of distortion costs.

defined as:
DL(sx, sy) = |sy − sx − 1|

so that moving to the right by 1 position costs 0 and
by 2 positions costs 1. Moving to the left by 1 posi-
tion costs 2 and by 2 positions costs 3, and so on. At
the level of phrases, distortion is computed between
the last word of the last translated phrase and the
first word of the next phrase. We retain this equa-
tion as the core distortion function for our model.
Then, we modify entries in the matrix such that the
distortion cost is minimized for the decoding paths
pre-computed with the reordering rules.

Given a source sentence and its set of rule-
generated permutations, the linear distortion matrix
is modified as follows:

1. non-monotonic jumps (i.e. ordered pairs
(si, si+1) such that si+1− si "= 1) are extracted
from the permutations;

2. then, for each extracted pair, the corresponding
point in the matrix is assigned the lowest possi-
ble distortion cost, that is 0 if si < si+1 and 2
if si > si+1. We call these points shortcuts.

Although this technique is approximate and can
overgenerate minimal-distortion decoding paths7, it
practically works when the number of encoded per-
mutations per sequence is limited. This makes mod-
ifed distortion matrices particularly suitable to en-
code just those reorderings that are typically missed
by phrase-based decoders (see Sect. 3).

Since in this work we use chunk-based rules, we
also have to convert chunk-to-chunk jumps into
word-to-word shortcuts. We propose two ways to
do this, given an ordered pair of chunks (cx,cy):

mode A×A : create a shortcut from each word of
cx to each word of cy;

mode L×F : create only one shortcut from the last
word of cx to the first of cy.

The former solution admits more chunk-internal per-
mutations with the same minimal distortion cost,
whereas the latter implies that the first word of a re-
ordered chunk is covered first and the last is covered
last.

7In fact, any decoding path that includes a jump marked as
shortcut benefits from the same distortion discount in that point.
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Figure 2: Modified distortion matrix (mode A×A) of the
German sentence given in Fig. 1. The chunk reordering
shown on top generates three shortcuts corresponding to
the 0’s and 2’s highlighted in the matrix.

Fig. 2 shows the distortion matrix of the German
sentence of Fig. 1, with starting positions as columns
and landing positions as rows. Suppose we want to
encode the reordering shown on top of Fig. 2, cor-
responding to the merging of the broken VC ‘hat ...
eingeleitet’. This permutation contains three jumps:
(2,5), (5,3) and (4,6). Converted to word-level in
A×A mode, these yield five word shortcuts8: one
for the onward jump (2,5) assigned 0 distortion; two
for the backward jump (5,3), assigned 2; and two for
the onward jump (4,6), also assigned 0. The desired
reordering is now attainable within a DL of 2 words
instead of 5. The same process is then applied to
other permutations of the sentence.

If compared to the word reordering lattices used
by Bisazza and Federico (2010) and Andreas et al.
(2011), modified distortion matrices provide a more
compact, implicit way to encode likely reorderings
in a sentence-specific fashion. Matrix representation
does not require multiplication of nodes for the same

8In L×F mode, instead, each chunk-to-chunk jump would
yield exactly one word shortcut, for a total of three.

source word and is naturally compatible with the
PSMT decoder’s standard reordering mechanisms.

7 Evaluation

In this section we evaluate the impact of modified
distortion matrices on two news translation tasks.

Matrices were integrated into the Moses
toolkit (Koehn et al., 2007) using a sentence-
level XML markup. The list of word shortcuts
for each sentence is provided as an XML tag that
is parsed by the decoder to modify the distortion
matrix just before starting the search. As usual, the
distortion matrix is queried by the distortion penalty
generator and by the hypothesis expander9.

7.1 Experimental setup
For Arabic-English, we use the union of all in-
domain parallel corpora provided for the NIST-MT09
evaluation10 for a total of 986K sentences, 31M En-
glish words. The target LM is trained on the English
side of all available NIST-MT09 parallel data, UN in-
cluded (147M words). For development and test, we
use the newswire sections of the NIST benchmarks,
hereby called dev06-NW, eval08-NW and eval09-
NW: 1033, 813 and 586 sentences, respectively, each
provided with four reference translations.

The German-English system is instead trained
on WMT10 data: namely Europarl (v.5) plus News-
commentary-2010 for a total of 1.6M parallel sen-
tences, 43M English words. The target LM is trained
on the monolingual news data provided for the con-
strained track (1133M words). For development and
test, we use the WMT10 news benchmarks test08,
test09 and test10: 2051, 2525 and 2489 sentences,
respectively, with one reference translation.

Concerning pre-processing, we apply standard to-
kenization to the English data, while for Arabic we
use our in-house tokenizer that removes diacritics
and normalizes special characters. Arabic text is
then segmented with AMIRA (Diab et al., 2004) ac-
cording to the ATB scheme11. German tokenization

9Note that lexicalized reordering models use real word dis-
tances to compute the orientation class of a new hypothesis, thus
they are not affected by changes in the matrix.

10That is everything except the small GALE corpus and the
UN corpus. As reported by Green et al. (2010) the removal of
UN data does not affect baseline performances on news test.

11The Arabic Treebank tokenization scheme isolates con-
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and compound splitting is performed with Tree Tag-
ger (Schmid, 1994) and the Gertwol morphological
analyser (Koskenniemi and Haapalainen, 1994)12.

Using Moses we build competitive baselines on
the training data described above. Word alignment
is produced by the Berkeley Aligner (Liang et al.,
2006). The decoder is based on the log-linear com-
bination of a phrase translation model, a lexicalized
reordering model, a 6-gram target language model,
distortion cost, word and phrase penalties. The re-
ordering model is a hierarchical phrase orientation
model (Tillmann, 2004; Koehn et al., 2005; Galley
and Manning, 2008) trained on all the available par-
allel data. We choose the hierarchical variant, as it
was shown by its authors to outperform the default
word-based on an Arabic-English task. Finally, for
German, we enable the Moses option monotone-at-
punctuation which forbids reordering across punc-
tuation marks. The DL is initially set to 5 words
for Arabic-English and to 10 for German-English.
According to our experience, these are the optimal
settings for the evaluated tasks. Feature weights are
optimized by minimum error training (Och, 2003)
on the development sets (dev06-NW and test08).

7.2 Translation quality and efficiency results

We evaluate translations with BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005).
As these scores are only indirectly sensitive to word
order, we also compute KRS or Kendall Reorder-
ing Score (Birch et al., 2010; Bisazza et al., 2011)
which is a positive score based on the Kendall’s
Tau distance between the source-output and source-
reference permutations. To isolate the impact of our
techniques on problematic reordering, we extract
from each test set the sentences that got permuted
by “oracle reordering” (see Sect. 5). These consti-
tute about a half of the Arabic sentences, and about
a third of the German. We refer to the KRS com-
puted on these test subsets as KRS(R). Statistically
significant differences are assessed by approximate
randomization as in (Riezler and Maxwell, 2005)13.

Tab. 1 reports results obtained by varying the DL

junctions w+ and f+, prepositions l+, k+, b+, future marker
s+, pronominal suffixes, but not the article Al+.

12http://www2.lingsoft.fi/cgi-bin/gertwol
13Translation scores and significance tests are computed with

the tools multeval (Clark et al., 2011) and sigf (Padó, 2006).

and modifying the distortion function. To evalu-
ate the reordering selection technique, we also com-
pare the encoding of all rule-generated reorderings
against only the 3 best per rule-matching sequence,
as ranked by our best performing reordered LM (see
end of Sect. 5). We mark the DL with a ‘+’ to denote
that some longer jumps are being allowed by modi-
fied distortion. Run times refer to the translation of
the first 100 sentences of eval08-NW and test09 by
a 4-core processor.

Arabic-English. As anticipated, raising the DL
does not improve, but rather worsen performances.
The decrease in BLEU and METEOR reported with
DL=8 is not significant, but the decrease in KRS is
both significant and large. Efficiency is heavily af-
fected, with a 42% increase of the run time.

Results in the row “allReo” are obtained by encod-
ing all the rule-generated reorderings in L×F chunk-
to-word conversion mode. Except for some gains in
KRS reported on eval08-NW, most of the scores are
lower or equal to the baseline. Such inconsistent be-
haviour is probably due to the low precision of the
Arabic rule set, pointed out in Sect. 4.

Finally, we arrive to the performance of 3-best re-
orderings per sequence. With L×F we obtain sev-
eral improvements, but it’s with A×A that we are
able to beat the baseline according to all metrics.
BLEU and METEOR improvements are rather small
but significant and consistent across test sets, the
best gain being reported on eval09-NW (+.9 BLEU).
Most importantly, substantial word order improve-
ments are achieved on both full test sets (+.7/+.6
KRS) and selected subsets (+.7/+.6 KRS(R)). Ac-
cording to these figures, word order is affected only
in the sentences that contain problematic reordering.
This is good evidence, suggesting that the decoder
does not get “confused” by spurious shortcuts.

Looking at run times, we can say that modified
distortion matrices are a very efficient way to ad-
dress long reordering. Even when all the generated
reorderings are encoded, translation time increases
only by 4%. Reordering selection naturally helps to
further reduce decoding overload. As for conversion
modes, A×A yields slightly higher run times than
L×F because it generates more shortcuts.

German-English. In this task we manage to im-
prove translation quality with a setting that is almost
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(a) Arabic to English

eval08-nw eval09-nw runtime
Distortion Function DL bleu met krs krs(R) bleu met krs krs(R) (s)

† plain [baseline] 5 44.5 34.9 81.6 82.9 49.9 38.0 84.1 84.4 1038
plain 8 44.2◦ 34.8 80.7• 82.2• 49.8 37.9 83.3• 83.5• 1470

† modified: allReo, L×F 5+ 44.4 34.9 82.2• 83.7• 49.9 37.8• 84.3 84.4 1078
modified: 3bestReo, L×F 5+ 44.5 35.1• 82.3• 83.5• 50.7• 38.1 84.8• 85.0• 1052

† modified: 3bestReo, A×A 5+ 44.8◦ 35.1• 82.3• 83.6• 50.8• 38.2• 84.7• 85.0• 1072

(b) German to English

test09 test10 runtime
Distortion Function DL bleu met krs krs(R) bleu met krs krs(R) (s)

† plain [baseline] 10 18.8 27.5 65.8 66.7 20.1 29.4 68.7 68.9 629
plain 20 18.4• 27.4• 63.6• 65.2 • 19.8• 29.3• 66.3• 66.6• 792
plain 4 18.4• 27.4• 67.3• 66.9 19.6• 29.1• 70.2• 69.6• 345

† modified: allReo, L×F 4+ 19.1• 27.6• 67.6• 68.1• 20.4• 29.4 70.6• 70.7• 352
modified: 3bestReo, L×F 4+ 19.2• 27.7• 67.4• 68.1• 20.4• 29.4 70.4• 70.6• 351

† modified: 3bestReo, A×A 4+ 19.2• 27.7• 67.4• 68.4• 20.6• 29.5◦ 70.4• 70.7• 357

Table 1: Impact of modified distortion matrices on translation quality, measured with BLEU, METEOR and KRS
(all in percentage form, higher scores mean higher quality). The settings used for weight tuning are marked with †.
Statistically significant differences wrt the baseline are marked with • at the p ≤ .05 level and ◦ at the p ≤ .10 level.

twice as fast as the baseline. As shown by the first
part of the table, the best baseline results are ob-
tained with a rather high DL, that is 10 (only KRS
improves with a lower DL). However, with modified
distortion, the best results according to all metrics
are obtained with a DL of 4.

Looking at the rest of the table, we see that re-
ordering selection is not as crucial as in Arabic-
English. This is in line with the properties of the
more precise German reordering rule set (two rules
out of three generate at most 3 reorderings per se-
quence). Considering all scores, the last setting
(3-best reordering and A×A) appears as the best
one, achieving the following gains over the base-
line: +.4/+.5 BLEU, +.2/+.1 METEOR, +1.6/+1.7
KRS and +1.7/+1.8 KRS(R). The agreement ob-
served among such diverse metrics makes us con-
fident about the goodness of the approach.

8 Conclusions

In Arabic-English and German-English, long re-
ordering concentrates on specific patterns describ-
able by a small number of linguistic rules. By
means of non-deterministic chunk reordering rules,
we have generated likely permutations of the test

sentences and ranked them with n-gram LMs trained
on pre-reordered data. We have then introduced the
notion of modified distortion matrices to naturally
encode a set of likely reorderings in the decoder
input. Modified distortion allows for a finer and
more linguistically informed definition of the search
space, which is reflected in better translation outputs
and more efficient decoding.

We expect that further improvements may be
achieved by refining the Arabic reordering rules with
specific POS tags and lexical cues. We also plan
to evaluate modified distortion matrices in conjunc-
tion with a different type of in-decoding reorder-
ing model such as the one proposed by Green et
al. (2010). Finally, we may try to exploit not only
the ranking, but also the scores produced by the re-
ordered LMs, as an additional decoding feature.
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Abstract

Many semantic parsing models use tree trans-
formations to map between natural language
and meaning representation. However, while
tree transformations are central to several
state-of-the-art approaches, little use has been
made of the rich literature on tree automata.
This paper makes the connection concrete
with a tree transducer based semantic parsing
model and suggests that other models can be
interpreted in a similar framework, increasing
the generality of their contributions. In par-
ticular, this paper further introduces a varia-
tional Bayesian inference algorithm that is ap-
plicable to a wide class of tree transducers,
producing state-of-the-art semantic parsing re-
sults while remaining applicable to any do-
main employing probabilistic tree transducers.

1 Introduction

Semantic parsing is the task of mapping natural lan-
guage sentences to a formal representation of mean-
ing. Typically, a system is trained on pairs of natural
language sentences (NLs) and their meaning repre-
sentation expressions (MRs), as in figure 1(a), and
the system must generalize to novel sentences.

Most semantic parsing models rely on an assump-
tion of structural similarity between MR and NL.
Since strict isomorphism is overly restrictive, this
assumption is often relaxed by applying transforma-
tions. Several approaches assume a tree structure to
the NL, MR, or both (Ge and Mooney, 2005; Kate
and Mooney, 2006; Wong and Mooney, 2006; Lu
et al., 2008; B̈orschinger et al., 2011), and often in-

Figure 1: (a) An example sentence/meaning pair, (b) a
tree transformation based mapping, and (c) a tree trans-
ducer that performs the mapping.

volve tree transformations either between two trees
or a tree and a string.

The tree transducer, a formalism from automata
theory which has seen interest in machine transla-
tion (Yamada and Knight, 2001; Graehl et al., 2008)
and has potential applications in many other areas,
is well suited to formalizing such tree transforma-
tion based models. Yet, while many semantic pars-
ing systems resemble the formalism, each was pro-
posed as an independent model requiring custom al-
gorithms, leaving it unclear how developments in
one line of inquiry relate to others. We argue for a
unifying theory of tree transformation based seman-
tic parsing by presenting a tree transducer model and
drawing connections to other similar systems.

We make a further contribution by bringing to
tree transducers the benefits of the Bayesian frame-
work for principled handling of data sparsity and
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prior knowledge. Graehl et al. (2008) present an EM
training procedure for top down tree transducers, but
while there are Bayesian approaches to string trans-
ducers (Chiang et al., 2010) and PCFGs (Kurihara
and Sato, 2006), there has yet to be a proposal for
Bayesian inference intree transducers. Our vari-
ational algorithm produces better semantic parses
than EM while remaining general to a broad class
of transducers appropriate for other domains.

In short, our contributions are three-fold: we
present a new state-of-the-art semantic parsing
model, propose a broader theory for tree transforma-
tion based semantic parsing, and present a general
inference algorithm for the tree transducer frame-
work. We recommend the last of these as just one
benefit of working within a general theory: contri-
butions are more broadly applicable.

2 Meaning representations and regular
tree grammars

In semantic parsing, an MR is typically an expres-
sion from a machine interpretable language (e.g., a
database query language or a logical language like
Prolog). In this paper we assume MRs can be rep-
resented as trees, either by pre-parsing or because
they are already trees (often the case for functional
languages like LISP).1 More specifically, we assume
the MR language is a regular tree language.

A regular tree grammar (RTG) closely resembles
a context free grammar (CFG), and is a way of de-
scribing a language of trees. Formally, defineTΣ as
the set of trees with symbols from alphabetΣ, and
TΣ(A) as the set of all trees inTΣ∪A where symbols
fromA only occur at the leaves. Then an RTG is a
tuple(Q,Σ, qstart,R), whereQ is a set of states,Σ
is an alphabet,qstart ∈ Q is the initial state, andR
is a set of grammar rules of the formq → t, whereq
is a state fromQ andt is a tree fromTΣ(Q).

A rule typically consists of a parent state (left) and
its child states and output symbol (right). We indi-
cate states using all capital letters:

NUM → population(PLACE).

Intuitively, an RTG is a CFG where the yield of
every parse is itself a tree. In fact, for any CFGG, it

1See Liang et al. (2011) for work in representing lambda
calculus expressions with trees.

is straightforward to produce a corresponding RTG
that generates the set of parses ofG. Consequently,
while we assume we have an RTG for the MR lan-
guage, there is no loss of generality if the MR lan-
guage is actually context free.

3 Weighted root-to-frontier, linear,
non-deleting tree-to-string transducers

Tree transducers (Rounds, 1970; Thatcher, 1970) are
generalizations of finite state machines that operate
on trees. Mirroring the branching nature of its in-
put, the transducer may simultaneously transition to
several successor states, assigning a separate state to
each subtree.

There are many classes of transducer with dif-
ferent formal properties (Knight and Greahl, 2005;
Maletti et al., 2009). Figure 1(c) is an example of
a root-to-frontier, linear, non-deleting tree-to-string
transducer. It is defined using rules where the left
hand side identifies a state of the transducer and a
fragment of the input tree, and the right hand side
describes a portion of the output string. Variables
xi stand for entire sub-trees, and state-variable pairs
qj .xi stand for strings produced by applying the
transducer starting at stateqj to subtreexi. Fig-
ure 1(b) illustrates an application of the transducer,
taking the tree on the left as input and outputting the
string on the right.

Formally, a weighted root-to-frontier, tree-to-
string transducer is a 5-tuple(Q,Σ,∆, qstart,R). Q
is a finite set of states,Σ and∆ are the input and out-
put alphabets,qstart is the start state, andR is the
set of rules. Denote a pair of symbols,a andb by
a.b, the cross product of two setsA andB byA.B,
and letX be the set of variables{x0, x1, ...}. Then,
each ruler ∈ R is of the form[q.t → u].v, where
v ∈ ℜ≥0 is the rule weight,q ∈ Q, t ∈ TΣ(X ), and
u is a string in(∆ ∪ Q.X )∗ such that everyx ∈ X
in u also occurs int.

We sayq.t is the left hand side of ruler andu its
right hand side. The transducer islinear iff no vari-
able appears more than once on the right hand side.
It is non-deleting iff all variables on the left hand
side also occur on the right hand side. In this paper
we assume that every treet on the left hand side is ei-
ther a single variablex0 or of the formσ(x0, ...xn),
whereσ ∈ Σ (i.e., it is a tree of depth≤ 1).
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A weighted tree transducer may define a probabil-
ity distribution, either a joint distribution over input
and output pairs or a conditional distribution of the
output given the input. Here, we will use joint dis-
tributions, which can be defined by ensuring that the
weights of all rules with the same state on the left-
hand side sum to one. In this case, it can be help-
ful to view the transducer as simultaneously gener-
ating both the input and output, rather than the usual
view of mapping input trees into output strings. A
joint distribution allows us to model with a single
machine both the input and output languages, which
is important during decoding when we want to infer
the input given the output.

4 A generative model of semantic parsing

Like the hybrid tree semantic parser (Lu et al., 2008)
and the synchronous grammar based WASP (Wong
and Mooney, 2006), our model simultaneously gen-
erates the input MR tree and the output NL string.
The MR tree is built up according to the provided
MR grammar, one grammar rule at a time. Coupled
with the application of the MR rule, similar CFG-
like productions are applied to the NL side, repeated
until both the MR and NL are fully generated. In
each step, we select an MR rule and then build the
NL by first choosing a pattern with which to expand
it and then filling out that pattern with words drawn
from a unigram distribution.

This kind of coupled generative process can
be naturally formalized with tree transducer rules,
where the input tree fragment on the left side of each
rule describes the derivation of the MR and the right
describes the corresponding NL derivation.

For a simple example of a tree-to-string trans-
ducer rule consider

q.population(x1)→ ‘population of’ q.x1 (1)

which simultaneously generates tree fragment
population(x1) on the left and sub-string “popula-
tion of q.x1” on the right. Variablex1 stands for
an MR subtree underpopulation, and, on the right,
state-variable pairq.x1 stands for the NL substring
generated while processing subtreex1 starting from
q. While this rule can serve as a single step of
an MR-to-NL map such as the example transducer
shown in Figure 1(c), such rules do not model the

NUM → population(PLACE) (m)

PLACE→ cityid(CITY, STATE) (r)

CITY → portland (u)

STATE→ maine (v)

qMR
m,1.x1 → qNL

r .x1 (2)

qMR
r,1 .x1 → qNL

u .x1

qMR
r,2 .x1 → qNL

v .x1

qNL
m .population(w1, x1, w2)→

qW
m .w1 qMR

m,1.x1 qEND.w2 (3)

qNL
r .cityid(w1, x1, w2, x2, w3)→

qEND.w1 qMR
r,2 .x2 qW

r .w2 qMR
r,1 .x1 qEND.w3 (4)

qW
m .w1 → ‘population’ qW

m .w1 (5)

qW
m .w1 → ‘of’ qW

m .w1

qW
m .w1 → ... qW

m .w1

qW
m .w1 → ‘of’ qEND.w1 (6)

qW
m .w1 → ... qEND.w1

qEND.W → ǫ (7)

Figure 2: Examples of transducer rules (bottom) that gen-
erate MR and NL associated with MR rulesm-v (top).
Transducer rule 2 selects MR ruler from the MR gram-
mar. Rule 3 simultaneously writes the MR associated
with rule m and chooses an NL pattern (as does 4 for
r). Rules 5-7 generate the words associated withm ac-
cording to a unigram distribution specific tom.

grammaticality of the MR and lack flexibility since
sub-strings corresponding to a given tree fragment
must be completely pre-specified. Instead, we break
transductions down into a three stage process of
choosing the (i) MR grammar rule, (ii) NL expan-
sion pattern, and (iii) individual words according to
a unigram distribution. Such a decomposition in-
corporates independence assumptions that improve
generalizability. See Figure 2 for example rules
from our transducer and Figure 3 for a derivation.

To ensure that only grammatical MRs are gener-
ated, each state of our transducer encodes the iden-
tity of exactly one MR grammar rule. Transitions
betweenqMR andqNL states implicitly select the em-
bedded rule. For instance, rule 2 in Figure 2 selects
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MR grammar ruler to expand theith child of the
parent produced by rulem. Aside from ensuring
the grammaticality of the generated MR, rules of
this type also model theprobability of the MR, con-
ditioning the probability of a rule both on the par-
ent rule and the index of the child being expanded.
Thus, parent stateqMR

m,1 encodes not only the identity
of rulem, but also the child index,1 in this case.

Once the MR rule is selected,qNL states are ap-
plied to select among rules such as 3 and 4 to gen-
erate the MR entity and choose the NL expansion
pattern. These rules determine the word order of the
language by deciding (i) whether or not to generate
words in a given location and (ii) where to insert the
result of processing each MR subtree. Decision (i) is
made by either transitioning to stateqW

r to generate
words or toqEND to generate the empty string. De-
cision (ii) is made with the order ofxi’s on the right
hand side. Rule 4 illustrates the case whereport-
land andmaine in cityid(portland, maine) would be
realized in reverse order as “maine ... portland”.

The particular set of patterns that appear on the
right of rules such as 3 embodies the binary word at-
tachment decisions and the particular permutation of
xi in the NL. We allow words to be generated at the
beginning and end of each pattern and between the
xis. Thus, rule 4 is just one of 16 such possible pat-
terns (3 binary decisions and 2 permutations), while
rule 3 is one of 4. We instantiate all such rules and
allow the system to learn weights for them according
to the language of the training data.

Finally, the NL is filled out with words chosen ac-
cording to a unigram distribution, implemented in a
PCFG-like fashion, using a different rule for each
word which recursively chooses the next word un-
til a string termination rule is reached.2 Generating
word sequence “population of” entails first choosing
rule 5 in Figure 2. StateqW

r is then recursively ap-
plied to choose rule 6, generating “of” at the same
time as deciding to terminate the string by transi-
tioning to a new stateqEND which deterministically
concludes by writing the empty stringǫ.

On the MR side, rules 5-7 do very little: the tree
on the left side of rules 5 and 6 consists entirely of a

2There are roughly 25,000 rules in the transducers in our
experiments, and the majority of these implement the unigram
word distributions since every entity in the MR may potentially
produce any of the words it is paired with in training.

subtree variablew1, indicating that nothing is gener-
ated in the MR. Rule 7 subsequently generates these
subtrees asW symbols, marking corresponding lo-
cations where words might be produced in the NL,
which are later removed during post processing.3

Figure 3(b) illustrates the coupled generative pro-
cess. At each step of the derivation, an MR rule is
chosen to expand a node of the MR tree, and then a
corresponding part of the NL is expanded. Step 1.1
of the example chooses MR rulem, NUM →
population(PLACE). Transducer rule 3 then gener-
atespopulation in the MR (shown in the left column)
at the same time as choosing an NL expansion pat-
tern (Step 1.2) which is subsequently filled out with
specific words “population” (1.3) and “of” (1.4).

This coupled derivation can be represented by a
tree, shown in Figure 3(c), which explicitly repre-
sents the dependency structure of the coupled MR
and NL (a simplified version is shown in (d) for clar-
ity). In our transducer, which defines a joint distri-
bution over both the MR and NL, the probability of
a rule is conditioned on the parent state. Since each
state encodes an MR rule, MR rule specific distribu-
tions are learned for both the words and their order.

5 Relation to existing models

The tree transducer model can be viewed either as
a generative procedure for building up two separate
structures or as a transformative machine that takes
one as input and produces another as output. Dif-
ferent semantic parsing approaches have taken one
or the other view, and both can be captured in this
single framework.

WASP (Wong and Mooney, 2006) is an exam-
ple of the former perspective, coupling the genera-
tion of the MR and NL with a synchronous gram-
mar, a formalism closely related to tree transducers.
The most significant difference from our approach
is that they use machine translation techniques for
automatically extracting rules from parallel corpora;
similar techniques can be applied to tree transduc-
ers (Galley et al., 2004). In fact, synchronous gram-
mars and tree transducers can be seen as instances of
the same more general class of automata (Shieber,

3The addition ofW symbols is a convenience; it is easier to
design transducer rules where every substring on the right side
corresponds to a subtree on the left.
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Figure 3: Coupled derivation of an (MR, NL) pair. At each stepan MR grammar rule is chosen to expand the MR and
the corresponding portion of the NL is then generated. Symbols W stand for locations in the tree corresponding to
substrings of the output and are removed in a post-processing step. (a) The (MR, NL) pair. (b) Step by step derivation.
(c) The same derivation shown in tree form. (d) The underlying dependency structure of the derivation.

2004). Rather than argue for one or the other, we
suggest that other approaches could also be inter-
preted in terms of general model classes, grounding
them in a broader base of theory.

The hybrid tree model (Lu et al., 2008) takes
a transformative perspective that is in some ways
more similar to our model. In fact, there is a one-
to-one relationship between the multinomial param-
eters of the two models. However, they represent the
MR and NL with a single tree and apply tree walk-
ing algorithms to extract them. Furthermore, they
implement a custom training procedure for search-
ing over the potential MR transformations. The tree

transducer, on the other hand, naturally captures the
same probabilistic dependencies while maintaining
the separation between MR and NL, and further al-
lows us to build upon a larger body of theory.

KRISP (Kate and Mooney, 2006) uses string clas-
sifiers to label substrings of the NL with entities
from the MR. To focus search, they impose an or-
dering constraint based on the structure of the MR
tree, which they relax by allowing the re-ordering
of sibling nodes and devise a procedure for recover-
ing the MR from the permuted tree. This procedure
corresponds to backward-application in tree trans-
ducers, identifying the most likely input tree given a
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particular output string.
SCISSOR (Ge and Mooney, 2005) takes syntactic

parses rather than NL strings and attempts to trans-
late them into MR expressions. While few seman-
tic parsers attempt to exploit syntactic information,
there are techniques from machine translation for
using tree transducers to map between parsed par-
allel corpora, and these techniques could likely be
applied to semantic parsing.

Börschinger et al. (2011) argue for the PCFG as
an alternative model class, permitting conventional
grammar induction techniques, and tree transducers
are similar enough that many techniques are applica-
ble to both. However, the PCFG is less amenable to
conceptualizing correspondences between parallel
structures, and their model is more restrictive, only
applicable to domains with finite MR languages,
since their non-terminals encode entire MRs. The
tree transducer framework, on the other hand, allows
us to condition on individual MR rules.

6 Variational Bayes for tree transducers

As seen in the example in Figure 3(c), tree trans-
ducers not only operate on trees, their derivations
are themselves trees, making them amenable to dy-
namic programming and an EM training procedure
resembling inside-outside (Graehl et al., 2008). EM
assigns zero probability to events not seen in the
training data, however, limiting the ability to gen-
eralize to novel items. The Bayesian framework of-
fers an elegant solution to this problem, introducing
a prior over rule weights which simultaneously en-
sures that all rules receive non-zero probability and
allows the incorporation of prior knowledge and in-
tuitions. Unfortunately, the introduction of a prior
makes exact inference intractable, so we use an ap-
proximate method, variational Bayesian inference
(Bishop, 2006), deriving an algorithm similar to that
for PCFGs (Kurihara and Sato, 2006).

The tree transducer defines a joint distribution
over the inputy, outputw, and their derivationx
as the product of the weights of the rules appearing
in x. That is,

p(y, x, w|θ) =
∏

r∈R

θ(r)cr(x)

whereθ is the set of multinomial parameters,r is a
transducer rule,θ(r) is its weight, andcr(x) is the

number of timesr appears inx. In EM, we are in-
terested in the point estimate forθ that maximizes
p(Y,W|θ), whereY andW are theN input-output
pairs in the training data. In the Bayesian setting,
however, we place a symmetric Dirichlet prior over
θ and estimate a posterior distribution over bothX
andθ.

p(θ,X|Y,W) =
p(Y,X ,W, θ)

p(Y,W)

=
p(θ)

∏N
i=1 p(yi, xi, wi|θ)

∫

p(θ)
∏N

i=1

∑

x∈Xi
p(yi, x, wi|θ)dθ

Since the integral in the denominator is in-
tractable, we look for an appropriate approximation
q(θ,X ) ≈ p(θ,X|Y,W). In particular, we assume
the rule weights and the derivations are independent,
i.e., q(θ,X ) = q(θ)q(X ). The basic idea is then to
define a lower boundF ≤ ln p(Y,W) in terms ofq
and then apply the calculus of variations to find aq

that maximizesF .

ln p(Y,W|α) = lnEq[
p(Y,X ,W|θ)

q(θ,X )
]

≥ Eq[ln
p(Y,X ,W|θ)

q(θ,X )
] = F ,

Applying our independence assumption, we arrive at
the following expression forF , whereθt is the par-
ticular parameter vector corresponding to the rules
with parent statet:

F =
∑

t∈Q

(

Eq(θt)[ln p(θt|αt)]− Eq(θt)[ln q(θt)]
)

+
N
∑

i=1

(

Eq[ln p(wi, xi, yi|θ)]− Eq(xi)[ln q(xi)]
)

.

We find theq(θt) andq(xi) that maximizeF by
taking derivatives of the Lagrangian, setting them to
zero, and solving, which yields:

q(θt) = Dirichlet(θt|α̂t)

q(xi) =

∏

r∈R θ̂(r)cr(xi)

∑

x∈Xi

∏

r∈R θ̂(r)cr(x)

where

α̂(r) = α(r) +
∑

i

Eq(xi)[cr(xi)]

θ̂(r) = exp



Ψ(α̂(r))−Ψ(
∑

r:s(r)=t

α̂(r))



 .
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The parameters ofq(θt) are defined with respect
to q(xi) and the parameters ofq(xi) with respect
to the parameters ofq(θt). q(xi) can be computed
efficiently using inside-outside. Thus, we can per-
form an EM-like alternation between calculatingα̂

andθ̂.4

It is also possible to estimate the hyper-
parametersα from data, a practice known asem-
pirical Bayes, by optimizingF . We explore learn-
ing separate hyper-parametersαt for eachθt, us-
ing a fixed point update described by Minka (2000),
wherekt is the number of rules with parent statet:

α′t =

(

1

αt

+
1

ktα
2
t

(

∂2F

∂α2
t

)−1(
∂F

∂αt

)

)−1

7 Training and decoding

We implement our VB training algorithm inside the
tree transducer package Tiburon (May and Knight,
2006), and experiment with both manually set and
automatically estimated priors. For our manually
set priors, we explore different hyper-parameter set-
tings for three different priors, one for each of the
main decision types: MR rule, NL pattern, and word
generation. For the automatic priors, we estimate
separate hyper-parameters for each multinomial (of
which there are hundreds). As is standard, we ini-
tialize the word distributions using a variant of IBM
model 1, and make use of NP lists (a manually cre-
ated list of the constants in the MR language paired
with the words that refer to them in the corpus).

At test time, since finding the most probableMR
for a sentence involves summing over all possible
derivations, we instead find the MR associated with
the most probablederivation.

8 Experimental setup and evaluation

We evaluate the system on GeoQuery (Wong and
Mooney, 2006), a parallel corpus of 880 English
questions and database queries about United States
geography, 250 of which were translated into Span-
ish, Japanese, and Turkish. We present here ad-
ditional translations of the full 880 sentences into

4Because of the resemblance to EM, this procedure has been
called VBEM. Unlike EM, however, this procedure alternates
between two estimation steps and has no maximization step.

German, Greek, and Thai. For evaluation, follow-
ing from Kwiatkowski et al. (2010), we reserve 280
sentences for test and train on the remaining 600.
During development, we use cross-validation on the
600 sentence training set. At test, we run once on the
remaining 280 and perform 10 fold cross-validation
on the 250 sentence sets.

To judge correctness, we follow standard prac-
tice and submit each parse as a GeoQuery database
query, and say the parse is correct only if the answer
matches the gold standard. We report raw accuracy
(the percentage of sentences with correct answers),
as well as F1: the harmonic mean of precision (the
proportion of correct answers out of sentences with
a parse) and recall (the proportion of correct answers
out of all sentences).5

We run three other state-of-the-art systems for
comparison.WASP (Wong and Mooney, 2006) and
the hybrid tree (Lu et al., 2008) are chosen to rep-
resent tree transformation based approaches, and,
while this comparison is our primary focus, we also
reportUBL-S (Kwiatkowski et al., 2010) as a non-
tree based top-performing system.6 The hybrid tree
is notable as the only other system based on a gen-
erative model, anduni-hybrid, a version that uses a
unigram distribution over words, is very similar to
our own model. We also report the best performing
version,re-hybrid, which incorporates a discrimina-
tive re-ranking step.

We report transducer performance under three dif-
ferent training conditions:tsEM using EM, tsVB-
auto using VB with empirical Bayes, andtsVB-hand
using hyper-parameters manually tuned on the Ger-
man training data (α of 0.3, 0.8, and 0.25 for MR
rule, NL pattern, and word choices, respectively).

Table 1 shows results for 10 fold cross-validation
on the training set. The results highlight the benefit
of the Dirichlet prior, whether manually or automat-
ically set. VB improves over EM considerably, most
likely because (1) the handling of unknown words
and MR entities allows it to return an analysis for all
sentences, and (2) the sparse Dirichlet prior favors
fewer rules, reasonable in this setting where only a
few words are likely to share the same meaning.

5Note that accuracy and f-score reduce to the same formula
if there are no parse failures.

6UBL-S is based on CCG, which can be viewed as a map-
ping between graphs more general than trees.
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DEV geo600 - 10 fold cross-val
German Greek

Acc F1 Acc F1
UBL-S 76.7 76.9 76.2 76.5
WASP 66.3 75.0 71.2 79.7
uni-hybrid 61.7 66.1 71.0 75.4
re-hybrid 62.3 69.5 70.2 76.8
tsEM 61.7 67.9 67.3 73.2
tsVB-auto 74.0 74.0 •79.8 •79.8
tsVB-hand •78.0 •78.0 79.0 79.0

English Thai
UBL-S 85.3 85.4 74.0 74.1
WASP 73.5 79.4 69.8 73.9
uni-hybrid 76.3 79.0 71.3 73.7
re-hybrid 77.0 82.2 71.7 76.0
tsEM 73.5 78.1 69.8 72.9
tsVB-auto 81.2 81.2 74.7 74.7
tsVB-hand •83.7 •83.7 •76.7 •76.7

Table 1: Accuracy and F1 score comparisons on the
geo600 training set. Highest scores are in bold, while
the highest among thetree based models are marked with
a bullet. The dotted line separates the tree based from
non-tree based models.

On the test set (Table 2), we only run the model
variants that perform best on the training set. Test set
accuracy is consistently higher for the VB trained
tree transducer than the other tree transformation
based models (and often highest overall), while f-
score remains competitive.7

9 Conclusion

We have argued that tree transformation based se-
mantic parsing can benefit from the literature on for-
mal language theory and tree automata, and have
taken a step in this direction by presenting a tree
transducer based semantic parser. Drawing this con-
nection facilitates a greater flow of ideas in the
research community, allowing semantic parsing to
leverage ideas from other work with tree automata,
while making clearer how seemingly isolated ef-
forts might relate to one another. We demonstrate
this by both building on previous work in train-
ing tree transducers using EM (Graehl et al., 2008),

7Numbers differ slightly here from previously published re-
sults due to the fact that we have standardized the inputs to the
different systems.

TEST geo880 - 600 train/280 test
German Greek

Acc F1 Acc F1
UBL-S 75.0 75.0 73.6 73.7
WASP 65.7 • 74.9 70.7 • 78.6
re-hybrid 62.1 68.5 69.3 74.6
tsVB-hand • 74.6 74.6 •75.4 75.4

English Thai
UBL-S 82.1 82.1 66.4 66.4
WASP 71.1 77.7 71.4 75.0
re-hybrid 76.8 • 81.0 73.6 76.7
tsVB-hand • 79.3 79.3 • 78.2 • 78.2

geo250 - 10 fold cross-val
English Spanish

UBL-S 80.4 80.6 79.7 80.1
WASP 70.0 80.8 72.4 81.0
re-hybrid 74.8 82.6 78.8 • 86.2
tsVB-hand • 83.2 • 83.2 • 80.0 80.0

Japanese Turkish
UBL-S 80.5 80.6 74.2 74.9
WASP 74.4 • 82.9 62.4 75.9
re-hybrid 76.8 82.4 66.8 • 77.5
tsVB-hand • 78.0 78.0 • 75.6 75.6

Table 2: Accuracy and F1 score comparisons on the
geo880 and geo250 test sets. Highest scores are in
bold, while the highest among thetree based models are
marked with a bullet. The dotted line separates the tree
based from non-tree based models.7

and describing a general purpose variational infer-
ence algorithm for adapting tree transducers to the
Bayesian framework. The new VB algorithm re-
sults in an overall performance improvement for the
transducer over EM training, and the general effec-
tiveness of the approach is further demonstrated by
the Bayesian transducer achieving highest accuracy
among other tree transformation based approaches.
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Abstract

Optimising for one grammatical representa-
tion, but evaluating over a different one is
a particular challenge for parsers and n-best
CCG parsing. We find that this mismatch
causes many n-best CCG parses to be semanti-
cally equivalent, and describe a hashing tech-
nique that eliminates this problem, improving
oracle n-best F-score by 0.7% and reranking
accuracy by 0.4%. We also present a compre-
hensive analysis of errors made by the C&C
CCG parser, providing the first breakdown of
the impact of implementation decisions, such
as supertagging, on parsing accuracy.

1 Introduction

Reranking techniques are commonly used for im-
proving the accuracy of parsing (Charniak and John-
son, 2005). Efficient decoding of a parse forest is
infeasible without dynamic programming, but this
restricts features to local tree contexts. Reranking
operates over a list of n-best parses according to the
original model, allowing poor local parse decisions
to be identified using arbitrary rich parse features.

The performance of reranking depends on the
quality of the underlying n-best parses. Huang and
Chiang (2005)’s n-best algorithms are used in a wide
variety of parsers, including an n-best version of the
C&C CCG parser (Clark and Curran, 2007; Brennan,
2008). The oracle F-score of this parser (calculated
by selecting the most optimal parse in the n-best list)
is 92.60% with n = 50 over a baseline 1-best F-
score of 86.84%. In contrast, the Charniak parser
records an oracle F-score of 96.80% in 50-best mode

over a baseline of 91.00% (Charniak and Johnson,
2005). The 4.2% oracle score difference suggests
that further optimisations may be possible for CCG.

We describe how n-best parsing algorithms that
operate over derivations do not account for absorp-
tion ambiguities in parsing, causing semantically
identical parses to exist in the CCG n-best list. This
is caused by the mismatch between the optimisa-
tion target (different derivations) and the evaluation
target (CCG dependencies). We develop a hash-
ing technique over dependencies that removes du-
plicates and improves the oracle F-score by 0.7%
to 93.32% and reranking accuracy by 0.4%. Huang
et al. (2006) proposed a similar idea where strings
generated by a syntax-based MT rescoring system
were hashed to prevent duplicate translations.

Despite this improvement, there is still a substan-
tial gap between the C&C and Charniak oracle F-
scores. We perform a comprehensive subtractive
analysis of the C&C parsing pipeline, identifying the
relative contribution of each error class and why the
gap exists. The parser scores 99.49% F-score with
gold-standard categories on section 00 of CCGbank,
and 94.32% F-score when returning the best parse
in the chart using the supertagger on standard set-
tings. Thus the supertagger contributes roughly 5%
of parser error, and the parser model the remaining
7.5%. Various other speed optimisations also detri-
mentally affect accuracy to a smaller degree.

Several subtle trade-offs are made in parsers be-
tween speed and accuracy, but their actual impact
is often unclear. Our work investigates these and the
general issue of how different optimisation and eval-
uation targets can affect parsing performance.
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Jack swims across the river

NP S\NP ((S\NP)\(S\NP))/NP NP/N N
>

NP
>

(S\NP)\(S\NP)
<

S\NP
<

S

Figure 1: A CCG derivation with a PP adjunct, demon-
strating forward and backward combinator application.
Adapted from Villavicencio (2002).

2 Background

Combinatory Categorial Grammar (CCG, Steedman,
2000) is a lexicalised grammar formalism based on
formal logic. The grammar is directly encoded in
the lexicon in the form of categories that govern the
syntactic behaviour of each word.

Atomic categories such as N (noun), NP (noun
phrase), and PP (prepositional phrase) represent
complete units. Complex categories encode subcat-
egorisation information and are functors of the form
X /Y or X \Y . They represent structures which
combine with an argument category Y to produce a
result category X . In Figure 1, the complex category
S\NP for swims represents an intransitive verb re-
quiring a subject NP to the left.

Combinatory rules are used to combine categories
together to form an analysis. The simplest rules
are forward and backward application, where com-
plex categories combine with their outermost argu-
ments. Forward and backward composition allow
categories to be combined in a non-canonical order,
and type-raising turns a category into a higher-order
functor. A ternary coordination rule combines two
identical categories separated by a conj into one.

As complex categories are combined with their ar-
guments, they create a logical form representing the
syntactic and semantic properties of the sentence.
This logical form can be expressed in many ways;
we will focus on the dependency representation used
in CCGbank (Hockenmaier and Steedman, 2007). In
Figure 1, swims generates one dependency:

〈swims, S [dcl]\NP1 , 1, Jack , −〉
where the dependency contains the head word,
head category, argument slot, argument word, and
whether the dependency is long-range.

Jack swims across the river

NP (S\NP)/PP PP/NP NP/N N
>

NP
>

PP
>

S\NP
<

S

Figure 2: A CCG derivation with a PP argument (note the
categories of swims and across). The bracketing is identi-
cal to Figure 1, but nearly all dependencies have changed.

2.1 Corpora and evaluation

CCGbank (Hockenmaier, 2003) is a transformation
of the Penn Treebank (PTB) data into CCG deriva-
tions, and it is the standard corpus for English CCG

parsing. Other CCG corpora have been induced in a
similar way for German (Hockenmaier, 2006) and
Chinese (Tse and Curran, 2010). CCGbank con-
tains 99.44% of the sentences from the PTB, and
several non-standard rules were necessary to achieve
this coverage. These include punctuation absorption
rules and unary type-changing rules for clausal ad-
juncts that are otherwise difficult to represent.

The standard CCG parsing evaluation calculates
labeled precision, recall, and F-score over the de-
pendencies recovered by a parser as compared to
CCGbank (Clark et al., 2002). All components of
a dependency must match the gold standard for it to
be scored as correct, and this makes the procedure
much harsher than the PARSEVAL labeled brackets
metric. In Figure 2, the PP across the river has been
interpreted as an argument rather than an adjunct as
in Figure 1. Both parses would score identically
under PARSEVAL as their bracketing is unchanged.
However, the adjunct to argument change results in
different categories for swims and across; nearly ev-
ery CCG dependency in the sentence is headed by
one of these two words and thus each one changes
as a result. An incorrect argument/adjunct distinc-
tion in this sentence produces a score close to 0.

All experiments in this paper use the normal-form
C&C parser model over CCGbank 00 (Clark and
Curran, 2007). Scores are reported for sentences
which the parser could analyse; we observed simi-
lar conclusions when repeating our experiments over
the subset of sentences that were parsable under all
configurations described in this paper.
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2.2 The C&C parser

The C&C parser (Clark and Curran, 2007) is a fast
and accurate CCG parser trained on CCGbank 02-21,
with an accuracy of 86.84% on CCGbank 00 with
the normal-form model. It is a two-phase system,
where a supertagger assigns possible categories to
words in a sentence and the parser combines them
using the CKY algorithm. An n-best version incor-
porating the Huang and Chiang (2005) algorithms
has been developed (Brennan, 2008). Recent work
on a softmax-margin loss function and integrated su-
pertagging via belief propagation has improved this
to 88.58% (Auli and Lopez, 2011).

A parameter β is passed to the supertagger as a
multi-tagging probability beam. β is initially set at a
very restrictive value, and if the parser cannot form
an analysis the supertagger is rerun with a lower β,
returning more categories and giving the parser more
options in constructing a parse. This adaptive su-
pertagging prunes the search space whilst maintain-
ing coverage of over 99%.

The supertagger also uses a tag dictionary, as de-
scribed by Ratnaparkhi (1996), and accepts a cut-
off k. Words seen more than k times in CCGbank
02-21 may only be assigned categories seen with
that word more than 5 times in CCGbank 02-21;
the frequency must also be no less than 1/500th of
the most frequent tag for that word. Words seen
fewer than k times may only be assigned categories
seen with the POS of the word in CCGbank 02-21,
subject to the cutoff and ratio constraint (Clark and
Curran, 2004b). The tag dictionary eliminates infre-
quent categories and improves the performance of
the supertagger, but at the cost of removing unseen
or infrequently seen categories from consideration.

The parser accepts POS-tagged text as input; un-
like many PTB parsers, these tags are fixed and
remain unchanged throughout during the parsing
pipeline. The POS tags are important features for the
supertagger; parsing accuracy using gold-standard
POS tags is typically 2% higher than using automat-
ically assigned POS tags (Clark and Curran, 2004b).

2.3 n-best parsing and reranking

Most parsers use dynamic programming, discard-
ing infeasible states in order to maintain tractability.
However, constructing an n-best list requires keep-

ing the top n states throughout. Huang and Chiang
(2005) define several n-best algorithms that allow
dynamic programming to be retained whilst generat-
ing precisely the top n parses – using the observation
that once the 1-best parse is generated, the 2nd best
parse must differ in exactly one location from it, and
so forth. These algorithms are defined on a hyper-
graph framework equivalent to a chart, so the parses
are distinguished based on their derivations. Huang
et al. (2006) develop a translation reranking model
using these n-best algorithms, but faced the issue of
different derivations yielding the same string. This
was overcome by storing a hashtable of strings at
each node in the tree, and rejecting any derivations
that yielded a previously seen string.

Collins (2000)’s parser reranker uses n-best
parses of PTB 02-21 as training data. Reranker fea-
tures include lexical heads and the distances be-
tween them, context-free rules in the tree, n-grams
and their ancestors, and parent-grandparent relation-
ships. The system improves the accuracy of the
Collins parser from 88.20% to 89.75%.

Charniak and Johnson (2005)’s reranker uses a
similar setup to the Collins reranker, but utilises
much higher quality n-best parses. Additional fea-
tures on top of those from the Collins reranker such
as subject-verb agreement, n-gram local trees, and
right-branching factors are also used. In 50-best
mode the parser has an oracle F-score of 96.80%,
and the reranker produces a final F-score of 91.00%
(compared to an 89.70% baseline).

3 Ambiguity in n-best CCG parsing

The type-raising and composition combinators al-
low the same logical form to be created from dif-
ferent category combination orders in a derivation.
This is termed spurious ambiguity, where different
derivational structures are semantically equivalent
and will evaluate identically despite having a differ-
ent phrase structure. The C&C parser employs the
normal-form constraints of Eisner (1996) to address
spurious ambiguity in 1-best parsing.

Absorption ambiguity occurs when a constituent
may be legally placed at more than one location in
a derivation, and all of the resulting derivations are
semantically equivalent. Punctuation such as com-
mas, brackets, and periods are particularly prone to

499



Avg P/sent Distinct P/sent % Distinct
10-best 9.8 5.1 52
50-best 47.6 16.0 34
10-best# 9.0 9.0 100
50-best# 37.9 37.9 100

Table 1: Average and distinct parses per sentence over
CCGbank 00 with respect to CCG dependencies. # indi-
cates the inclusion of dependency hashing

absorption ambiguity in CCG; Figure 3 depicts four
semantically equivalent sequences of absorption and
combinator application in a sentence fragment.

The Brennan (2008) CCG n-best parser differen-
tiates CCG parses by derivation rather than logical
form. To illustrate how this is insufficient, we ran
the parser using Algorithm 3 of Huang and Chiang
(2005) with n = 10 and n = 50, and calculated how
many parses were semantically distinct (i.e. yield
different dependencies). The results (summarised in
Table 1) are striking: just 52% of 10-best parses and
34% of 50-best parses are distinct. We can also see
that fewer than n parses are found on average for
each sentence; this is mostly due to shorter sentences
that may only receive one or two parses.

We perform the same diversity experiment us-
ing the DepBank-style grammatical relations (GRs,
King et al., 2003; Briscoe and Carroll, 2006) out-
put of the parser. GRs are generated via a depen-
dency to GR mapping in the parser as well as a
post-processing script to clean up common errors
(Clark and Curran, 2007). GRs provide a more
formalism-neutral comparison and abstract away
from the raw CCG dependencies; for example, in
Figures 1 and 2, the dependency from swims to Jack
would be abstracted into (subj swims Jack)
and thus would be identical in both parses. Hence,
there are even fewer distinct parses in the GR results
summarised in Table 2: 45% and 27% of 10-best and
50-best parses respectively yield unique GRs.

3.1 Dependency hashing
To address this problem of semantically equivalent
n-best parses, we define a uniqueness constraint
over all the n-best candidates:

Constraint. At any point in the derivation, any n-
best candidate must not have the same dependencies
as any candidate already in the list.

Avg P/sent Distinct P/sent % Distinct
10-best 9.8 4.4 45
50-best 47.6 13.0 27
10-best# 8.9 8.1 91
50-best# 37.1 31.5 85

Table 2: Average and distinct parses per sentence over
CCGbank 00 with respect to GRs. # indicates the inclu-
sion of dependency hashing

Enforcing this constraint is non-trivial as it is in-
feasible to directly compare every dependency in a
partial tree with another. Due to the flexible no-
tion of constituency in CCG, dependencies can be
generated at a variety of locations in a derivation
and in a variety of orders. This means that compar-
ing all of the dependencies in a particular state may
require traversing the entire sub-derivation at that
point. Parsing is already a computationally expen-
sive process, so we require as little overhead from
this check as possible.

Instead, we represent all of the CCG dependencies
in a sub-derivation using a hash value. This allows
us to compare the dependencies in two derivations
with a single numeric equality check rather than a
full iteration. The underlying idea is similar to that
of Huang et al. (2006), who maintain a hashtable
of unique strings produced by a translation reranker,
and reject new strings that have previously been gen-
erated. Our technique does not use a hashtable, and
instead only stores the hash value for each set of de-
pendencies, which is much more efficient but runs
the risk of filtering unique parses due to collisions.

As we combine partial trees to build the deriva-
tion, we need to convolve the hash values in a con-
sistent manner. The convolution operator must be
order-independent as dependencies may be gener-
ated in an arbitrary order at different locations in
each tree. We use the bitwise exclusive OR (⊕) op-
eration as our convolution operator: when two par-
tial derivations are combined, their hash values are
XOR’ed together. XOR is commonly employed in
hashing applications for randomly permuting num-
bers, and it is also order independent: a⊕ b ≡ b⊕ a.
Using XOR, we enforce a unique hash value con-
straint in the n-best list of candidates, discarding po-
tential candidates with an identical hash value to any
already in the list.
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Figure 3: All four derivations have a different syntactic structure, but generate identical dependencies.

Collisions Comparisons %
10-best 300 54861 0.55
50-best 2109 225970 0.93

Table 3: Dependency hash collisions and comparisons
over 00 of CCGbank.

3.2 Hashing performance

We evaluate our hashing technique with several ex-
periments. A simple test is to measure the number of
collisions that occur, i.e. where two partial trees with
different dependencies have the same hash value.
We parsed CCGbank 00 with n = 10 and n = 50
using a 32 bit hash, and exhaustively checked the
dependencies of colliding states. We found that less
than 1% of comparisons resulted in collisions in
both 10-best and 50-best mode, and decided that this
was acceptably low for distinguishing duplicates.

We reran the diversity experiments, and verified
that every n-best parse for every sentence in CCG-
bank 00 was unique (see Table 1), corroborating our
decision to use hashing alone. On average, there
are fewer parses per sentence, showing that hashing
is eliminating many equivalent parses for more am-
biguous sentences. However, hashing also leads to a
near doubling of unique parses in 10-best mode and
a 2.3x increase in 50-best mode. Similar results are
recorded for the GR diversity (see Table 2), though
not every set of GRs is unique due to the many-
to-many mapping from CCG dependencies. These
results show that hashing prunes away equivalent
parses, creating more diversity in the n-best list.

We also evaluate the oracle F-score of the parser
using dependency hashing. Our results in Table 4
include a 1.1% increase in 10-best mode and 0.72%
in 50-best mode using the new constraints, showing
how the diversified parse list contains better candi-
dates for reranking. Our highest oracle F-score was
93.32% in 50-best mode.

Experiment LP LR LF AF

baseline 87.27 86.41 86.84 84.91
oracle 10-best 91.50 90.49 90.99 89.01
oracle 50-best 93.17 92.04 92.60 90.68
oracle 10-best# 92.67 91.51 92.09 90.15
oracle 50-best# 94.00 92.66 93.32 91.47

Table 4: Oracle precision, recall, and F-score on gold and
auto POS tags for the C&C n-best parser. # denotes the
inclusion of dependency hashing.

Test data
Training data no hashing hashing

no hashing 86.83 86.35
hashing 87.21 87.15

Table 5: Reranked parser accuracy; labeled F-score using
gold POS tags, with and without dependency hashing

3.3 CCG reranking performance

Finally, we implement a discriminative maximum
entropy reranker for the n-best C&C parser and
evaluate it when using dependency hashing. We
reimplement the features described in Charniak and
Johnson (2005) and add additional features based on
those used in the C&C parser and on features of CCG

dependencies. The training data is cross-fold n-best
parsed sentences of CCGbank 02-21, and we use the
MEGAM optimiser1 in regression mode to predict the
labeled F-score of each n-best candidate parse.

Our experiments rerank the top 10-best parses
and use four configurations: with and without de-
pendency hashing for generating the training and
test data for the reranker. Table 5 shows that la-
beled F-score improves substantially when depen-
dency hashing is used to create reranker training
data. There is a 0.4% improvement using no hash-
ing at test, and a 0.8% improvement using hashing

1http://hal3.name/megam
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at test, showing that more diverse training data cre-
ates a better reranker. The results of 87.21% with-
out hashing at test and 87.15% using hashing at test
are statistically indistinguishable from one other;
though we would expect the latter to perform better.

Our results also show that the reranker performs
extremely poorly using diversified test parses and
undiversified training parses. There is a 0.5% per-
formance loss in this configuration, from 86.83%
to 86.35% F-score. This may be caused by the
reranker becoming attuned to selecting between se-
mantically indistinguishable derivations, which are
pruned away in the diversified test set.

4 Analysing parser errors

A substantial gap exists between the oracle F-score
of our improved n-best parser and other PTB n-best
parsers (Charniak and Johnson, 2005). Due to the
different evaluation schemes, it is difficult to directly
compare these numbers, but whether there is further
room for improvement in CCG n-best parsing is an
open question. We analyse three main classes of er-
rors in the C&C parser in order to answer this ques-
tion: grammar error, supertagger error, and model
error. Furthermore, insights from this analysis will
prove useful in evaluating tradeoffs made in parsers.

Grammar error: the parser implements a subset
of the grammar and unary type-changing rules in
CCGbank for efficiency, with some rules, such as
substitution, omitted for efficiency (Clark and Cur-
ran, 2007). This means that, given the correct cat-
egories for words in a sentence, the parser may be
unable to combine them into a derivation yielding
the correct dependencies, or it may not recognise the
gold standard category at all.

There is an additional constraint in the parser that
only allows two categories to combine if they have
been seen to combine in the training data. This seen
rules constraint is used to reduce the size of the chart
and improve parsing speed, at the cost of only per-
mitting category combinations seen in CCGbank 02-
21 (Clark and Curran, 2007).

Supertagger error: The supertagger uses a re-
stricted set of 425 categories determined by a fre-
quency cutoff of 10 over the training data (Clark and
Curran, 2004b). Words with gold categories that are
not in this set cannot be tagged correctly.

The β parameter restricts the categories to within
a probability beam, and the tag dictionary restricts
the set of categories that can be considered for each
word. Supertagger model error occurs when the su-
pertagger can assign a word its correct category, but
the statistical model does not assign the correct tag
enough probability for it to fall within the β.

Model error: The parser model features may
be rich enough to capture certain characteristics of
parses, causing it to select a suboptimal parse.

4.1 Subtractive experiments

We develop an oracle methodology to distinguish
between grammar, supertagger, and model errors.
This is the most comprehensive error analysis of a
parsing pipeline in the literature.

First, we supplied gold-standard categories for
each word in the sentence. In this experiment
the parser only needs to combine the categories
correctly to form the gold parse. In our testing
over CCGbank 00, the parser scores 99.49% F-
score given perfect categories, with 95.61% cover-
age. Thus, grammar error accounts for about 0.5%
of overall parser errors as well as a 4.4% drop in cov-
erage2. All results in this section will be compared
against this 99.49% result as it removes the grammar
error from consideration.

4.2 Supertagger and model error

To determine supertagger and model error, we run
the parser on standard settings over CCGbank 00
and examined the chart. If it contains the gold parse,
then a model error results if the parser returns any
other parser. Otherwise, it is a supertagger or gram-
mar error, where the parser cannot construct the best
parse. For each sentence, we found the best parse in
the chart by decoding against the gold dependencies.
Each partial tree was scored using the formula:

score = ncorrect− nbad
where ncorrect is the number of dependencies
which appear in the gold standard, and nbad is the
number of dependencies which do not appear in the
gold standard. The top scoring derivation in the tree
under this scheme is then returned.

2Clark and Curran (2004a) performed a similar experiment
with lower accuracy and coverage; our improved numbers are
due to changes in the parser.
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Experiment LP LR LF AF cover ∆LF ∆AF

oracle cats 99.72 99.27 99.49 99.49 95.61 0.00 0.00
best in chart -tagdict -seen rules 96.88 94.81 95.84 94.17 99.01 -3.65 -5.32
best in chart -tagdict 96.13 94.72 95.42 93.56 99.37 -4.07 -5.93
best in chart -seen rules 96.10 93.66 94.86 93.35 98.85 -4.63 -6.14
best in chart 95.15 93.50 94.32 92.60 99.16 -5.17 -6.89
baseline 87.27 86.41 86.84 84.91 99.16 -12.65 -14.58

Table 6: Oracle labeled precision, recall, F-score, F-score with auto POS, and coverage over CCGbank 00. -tagdict
indicates disabling the tag dictionary, -seen rules indicates disabling the seen rules constraint

β k cats/word sent/sec LP LR LF AF cover ∆LF ∆AF

gold cats - - 99.72 99.27 99.49 - 95.61 0.00 0.00
0.075 20 1.27 40.5 95.46 93.90 94.68 93.07 94.30 -4.81 -6.42
0.03 20 1.43 33.0 96.23 94.87 95.54 94.01 96.03 -3.95 -5.48
0.01 20 1.72 19.1 97.02 95.82 96.42 95.02 96.86 -3.07 -4.47
0.005 20 1.98 10.7 97.26 96.09 96.68 95.32 97.23 -2.81 -4.17
0.001 150 3.57 1.18 98.33 97.37 97.85 96.76 96.13 -1.64 -2.73

Table 7: Category ambiguity, speed, labeled P, R, F-score on gold and auto POS, and coverage over CCGbank 00 for
the standard supertagger parameters selecting the best scoring parse against the gold parse in the chart.

We obtain an overall maximum possible F-score
for the parser using this scoring formula. The dif-
ference between this maximum F-score and the or-
acle result of 99.49% represents supertagger error
(where the supertagger has not provided the correct
categories), and the difference to the baseline per-
formance indicates model error (where the parser
model has not selected the optimal parse given the
current categories). We also try disabling the seen
rules constraint to determine its impact on accuracy.

The impact of tag dictionary errors must be neu-
tralised in order to distinguish between the types of
supertagger error. To do this, we added the gold
category for a word to the set of possible tags con-
sidered for that word by the supertagger. This was
done for categories that the supertagger could use;
categories that were not in the permissible set of
425 categories were not considered. This is an opti-
mistic experiment; removing the tag dictionary en-
tirely would greatly increase the number of cate-
gories considered by the supertagger and may dra-
matically change the tagging results.

Table 6 shows the results of our experiments. The
delta columns indicate the difference in labeled F-
score to the oracle result, which discounts the gram-
mar error in the parser. We ran the experiment in
four configurations: disabling the tag dictionary, dis-

abling the seen rules constraint, and disabling both.
There are coverage differences of less than 0.5% that
will have a small impact on these results.

The “best in chart” experiment produces a result
of 94.32% with gold POS tags and 92.60% with auto
POS tags. These numbers are the upper bound of the
parser with the supertagger on standard settings. Our
result with gold POS tags is statistically identical to
the oracle experiment conducted by Auli and Lopez
(2011), which exchanged brackets for dependencies
in the forest oracle algorithm of Huang (2008). This
illustrates the validity of our technique.

A perfect tag dictionary that always contains the
gold standard category if it is available results in
an upper bound accuracy of 95.42%. This shows
that overall supertagger error in the parser is around
5.2%, with roughly 1% attributable to the use of the
tag dictionary and the remainder to the supertagger
model. The baseline parser is 12.5% worse than the
oracle categories result due to model error and su-
pertagger error, so model error accounts for roughly
7.3% of the loss.

Eliminating the seen rules constraint contributes
to a 0.5% accuracy improvement over both the stan-
dard parser configuration and the -tagdict configura-
tion, at the cost of roughly 0.3% coverage to both.
This is of similar magnitude to grammar error; but
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Experiment LF cover ∆LF

baseline 86.84 99.16 0.00
auto POS parser 86.57 99.16 -0.27
auto POS super 85.33 99.06 -1.51
auto POS both 84.91 99.06 -1.93

Table 8: Labeled F-score, coverage, and deltas over
CCGbank 00 for combinations of gold and auto POS tags.

here accuracy is traded off against coverage.
The results also show that model and supertagger

error largely accounts for the remaining oracle accu-
racy difference between the C&C n-best parser and
the Charniak/Collins n-best parsers. The absolute
upper bound of the C&C parser is only 1% higher
than the oracle 50-best score in Table 4, placing the
n-best parser close to its theoretical limit.

4.3 Varying supertagger parameters

We conduct a further experiment to determine the
impact of the standard β and k values used in the
parser. We reran the “best in chart” configuration,
but used each standard β and k value individually
rather than backing off to a lower β value to find the
maximum score at each individual value.

Table 7 shows that the oracle accuracy improves
from 94.68% F-score and 94.30% coverage with
β = 0.075, k = 20 to 97.85% F-score and 96.13%
coverage with β = 0.001, k = 150. At higher
β values, accuracy is lost because the correct cat-
egory is not returned to the parser, while lower β
values are more likely to return the correct category.
The coverage peaks at the second-lowest value be-
cause at lower β values, the number of categories
returned means all of the possible derivations cannot
be stored in the chart. The back-off approach sub-
stantially increases coverage by ensuring that parses
that fail at higher β values are retried at lower ones,
at the cost of reducing the upper accuracy bound to
below that of any individual β.

The speed of the parser varies substantially in this
experiment, from 40.5 sents/sec at the first β level
to just 1.18 sents/sec at the last. This illustrates
the trade-off in using supertagging: the maximum
achievable accuracy drops by nearly 5% for parsing
speeds that are an order of magnitude faster.

4.4 Gold and automatic POS tags

There is a substantial difference in accuracy between
experiments that use gold POS and auto POS tags.
Table 6 shows a corresponding drop in upper bound
accuracy from 94.32% with gold POS tags to 92.60%
with auto POS tags. Both the supertagger and parser
use POS tags independently as features, but this re-
sult suggests that the bulk of the performance differ-
ence comes from the supertagger. To fully identify
the error contributions, we ran an experiment where
we provide gold POS tags to one of the parser and
supertagger, and auto POS tags to the other, and then
run the standard evaluation (the oracle experiment
will be identical to the “best in chart”).

Table 8 shows that supplying the parser with auto
POS tags reduces accuracy by 0.27% compared to
the baseline parser, while supplying the supertagger
with auto POS tags results in a 1.51% decrease. The
parser uses more features in a wider context than the
supertagger, so it is less affected by POS tag errors.

5 Conclusion

We have described how a mismatch between the way
CCG parses are modeled and evaluated caused equiv-
alent parses to be produced in n-best parsing. We
eliminate duplicates by hashing dependencies, sig-
nificantly improving the oracle F-score of CCG n-
best parsing by 0.7% to 93.32%, and improving the
performance of CCG reranking by up to 0.4%.

We have comprehensively investigated the
sources of error in the C&C parser to explain the gap
in oracle performance compared with other n-best
parsers. We show the impact of techniques that
subtly trade off accuracy for speed and coverage.
This will allow a better choice of parameters for
future applications of parsing in CCG and other
lexicalised formalisms.
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Abstract

Recently, it was shown (KUHLMANN, SATTA:
Tree-adjoining grammars are not closed un-
der strong lexicalization. Comput. Linguist.,
2012) that finitely ambiguous tree adjoining
grammars cannot be transformed into a nor-
mal form (preserving the generated tree lan-
guage), in which each production contains a
lexical symbol. A more powerful model, the
simple context-free tree grammar, admits such
a normal form. It can be effectively con-
structed and the maximal rank of the non-
terminals only increases by 1. Thus, simple
context-free tree grammars strongly lexicalize
tree adjoining grammars and themselves.

1 Introduction

Tree adjoining grammars [TAG] (Joshi et al., 1969;
Joshi et al., 1975) are a mildly context-sensitive
grammar formalism that can handle certain non-
local dependencies (Kuhlmann and Mohl, 2006),
which occur in several natural languages. A good
overview on TAG, their formal properties, their lin-
guistic motivation, and their applications is pre-
sented by Joshi and Schabes (1992) and Joshi and
Schabes (1997), in which also strong lexicalization
is discussed. In general, lexicalization is the process
of transforming a grammar into an equivalent one
(potentially expressed in another formalism) such
that each production contains a lexical item (or an-
chor). Each production can then be viewed as lex-
ical information on its anchor. It demonstrates a
syntactical construction in which the anchor can oc-
cur. Since a lexical item is a letter of the string

∗ Financially supported by the German Research Founda-
tion (DFG) grant MA 4959 / 1-1.

alphabet, each production of a lexicalized gram-
mar produces at least one letter of the generated
string. Consequently, lexicalized grammars offer
significant parsing benefits (Schabes et al., 1988)
as the number of applications of productions (i.e.,
derivation steps) is clearly bounded by the length
of the input string. In addition, the lexical items
in the productions guide the production selection in
a derivation, which works especially well in sce-
narios with large alphabets.1 The GREIBACH nor-
mal form (Hopcroft et al., 2001; Blum and Koch,
1999) offers those benefits for context-free gram-
mars [CFG], but it changes the parse trees. Thus,
we distinguish between two notions of equivalence:
Weak equivalence (Bar-Hillel et al., 1960) only re-
quires that the generated string languages coincide,
whereas strong equivalence (Chomsky, 1963) re-
quires that even the generated tree languages coin-
cide. Correspondingly, we obtain weak and strong
lexicalization based on the required equivalence.

The GREIBACH normal form shows that CFG
can weakly lexicalize themselves, but they cannot
strongly lexicalize themselves (Schabes, 1990). It is
a prominent feature of tree adjoining grammars that
they can strongly lexicalize CFG (Schabes, 1990),2

and it was claimed and widely believed that they can
strongly lexicalize themselves. Recently, Kuhlmann
and Satta (2012) proved that TAG actually can-
not strongly lexicalize themselves. In fact, they
prove that TAG cannot even strongly lexicalize the
weaker tree insertion grammars (Schabes and Wa-
ters, 1995). However, TAG can weakly lexicalize
themselves (Fujiyoshi, 2005).

1Chen (2001) presents a detailed account.
2Good algorithmic properties and the good coverage of lin-

guistic phenomena are other prominent features.
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Simple (i.e., linear and nondeleting) context-free
tree grammars [CFTG] (Rounds, 1969; Rounds,
1970) are a more powerful grammar formalism than
TAG (Mönnich, 1997). However, the monadic vari-
ant is strongly equivalent to a slightly extended ver-
sion of TAG, which is called non-strict TAG (Kepser
and Rogers, 2011). A GREIBACH normal form for a
superclass of CFTG (viz., second-order abstract cat-
egorial grammars) was discussed by Kanazawa and
Yoshinaka (2005) and Yoshinaka (2006). In particu-
lar, they also demonstrate that monadic CFTG can
strongly lexicalize regular tree grammars (Gécseg
and Steinby, 1984; Gécseg and Steinby, 1997).

CFTG are weakly equivalent to the simple macro
grammars of Fischer (1968), which are a notational
variant of the well-nested linear context-free rewrit-
ing systems (LCFRS) of Vijay-Shanker et al. (1987)
and the well-nested multiple context-free grammars
(MCFG) of Seki et al. (1991).3 Thus, CFTG are
mildly context-sensitive since their generated string
languages are semi-linear and can be parsed in poly-
nomial time (Gómez-Rodrı́guez et al., 2010).

In this contribution, we show that CFTG can
strongly lexicalize TAG and also themselves, thus
answering the second question in the conclusion
of Kuhlmann and Satta (2012). This is achieved
by a series of normalization steps (see Section 4)
and a final lexicalization step (see Section 5), in
which a lexical item is guessed for each produc-
tion that does not already contain one. This item
is then transported in an additional argument until
it is exchanged for the same item in a terminal pro-
duction. The lexicalization is effective and increases
the maximal rank (number of arguments) of the non-
terminals by at most 1. In contrast to a transforma-
tion into GREIBACH normal form, our lexicalization
does not radically change the structure of the deriva-
tions. Overall, our result shows that if we consider
only lexicalization, then CFTG are a more natural
generalization of CFG than TAG.

2 Notation

We write [k] for the set {i ∈ N | 1 ≤ i ≤ k},
where N denotes the set of nonnegative integers. We
use a fixed countably infinite set X = {x1, x2, . . . }

3Kuhlmann (2010), Mönnich (2010), and Kanazawa (2009)
discuss well-nestedness.

of (mutually distinguishable) variables, and we let
Xk = {xi | i ∈ [k]} be the first k variables from X
for every k ∈ N. As usual, an alphabet Σ is a finite
set of symbols, and a ranked alphabet (Σ, rk) adds a
ranking rk : Σ → N. We let Σk = {σ | rk(σ) = k}
be the set of k-ary symbols. Moreover, we just
write Σ for the ranked alphabet (Σ, rk).4 We build
trees over the ranked alphabet Σ such that the nodes
are labeled by elements of Σ and the rank of the node
label determines the number of its children. In addi-
tion, elements of X can label leaves. Formally, the
set TΣ(X) of Σ-trees indexed by X is the smallest
set T such that X ⊆ T and σ(t1, . . . , tk) ∈ T for all
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T .5

We use positions to address the nodes of a tree. A
position is a sequence of nonnegative integers indi-
cating successively in which subtree the addressed
node is. More precisely, the root is at position ε and
the position ip with i ∈ N and p ∈ N∗ refers to
the position p in the ith direct subtree. Formally, the
set pos(t) ⊆ N∗ of positions of a tree t ∈ TΣ(X) is
defined by pos(x) = {ε} for x ∈ X and

pos(σ(t1, . . . , tk)) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}

for all symbols σ ∈ Σk and t1, . . . , tk ∈ TΣ(X).
The positions are indicated as superscripts of the la-
bels in the tree of Figure 1. The subtree of t at posi-
tion p ∈ pos(t) is denoted by t|p, and the label of t
at position p by t(p). Moreover, t[u]p denotes the
tree obtained from t by replacing the subtree at p by
the tree u ∈ TΣ(X). For every label set S ⊆ Σ,
we let posS(t) = {p ∈ pos(t) | t(p) ∈ S} be
the S-labeled positions of t. For every σ ∈ Σ,
we let posσ(t) = pos{σ}(t). The set CΣ(Xk) con-
tains all trees t of TΣ(X), in which every x ∈ Xk

occurs exactly once and posX\Xk
(t) = ∅. Given

u1, . . . , uk ∈ TΣ(X), the first-order substitution
t[u1, . . . , uk] is inductively defined by

xi[u1, . . . , uk] =

{
ui if i ∈ [k]

xi otherwise

t[u1, . . . , uk] = σ
(
t1[u1, . . . , uk], . . . , tk[u1, . . . , uk]

)
for every i ∈ N and t = σ(t1, . . . , tk) with σ ∈ Σk

and t1, . . . , tk ∈ TΣ(X). First-order substitution is
illustrated in Figure 1.

4We often decorate a symbol σ with its rank k [e.g. σ(k)].
5We will often drop quantifications like ‘for all k ∈ N’.
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Figure 1: Tree in CΣ(X2) ⊂ TΣ(X) with indicated po-
sitions, where Σ = {σ, γ, α} with rk(σ) = 2, rk(γ) = 1,
and rk(α) = 0, and an example first-order substitution.

In first-order substitution we replace leaves (ele-
ments of X), whereas in second-order substitution
we replace an internal node (labeled by a symbol
of Σ). Let p ∈ pos(t) be such that t(p) ∈ Σk,
and let u ∈ CΣ(Xk) be a tree in which the vari-
ables Xk occur exactly once. The second-order sub-
stitution t[p ← u] replaces the subtree at position p
by the tree u into which the children of p are (first-
order) substituted. In essence, u is “folded” into t at
position p. Formally, t[p← u] = t

[
u[t|1, . . . , t|k]

]
p
.

Given P ⊆ posσ(t) with σ ∈ Σk, we let t[P ← u]
be t[p1 ← u] · · · [pn ← u], where P = {p1, . . . , pn}
and p1 > · · · > pn in the lexicographic order.
Second-order substitution is illustrated in Figure 2.
Gécseg and Steinby (1997) present a detailed intro-
duction to trees and tree languages.

3 Context-free tree grammars

In this section, we recall linear and nondeleting
context-free tree grammars [CFTG] (Rounds, 1969;
Rounds, 1970). The property ‘linear and nondelet-
ing’ is often called ‘simple’. The nonterminals of
regular tree grammars only occur at the leaves and
are replaced using first-order substitution. In con-
trast, the nonterminals of a CFTG are ranked sym-
bols, can occur anywhere in a tree, and are replaced
using second-order substitution.6 Consequently, the
nonterminals N of a CFTG form a ranked alpha-
bet. In the left-hand sides of productions we write
A(x1, . . . , xk) for a nonterminal A ∈ Nk to indi-
cate the variables that hold the direct subtrees of a
particular occurrence of A.

Definition 1. A (simple) context-free tree gram-
mar [CFTG] is a system (N,Σ, S, P ) such that
• N is a ranked alphabet of nonterminal symbols,
• Σ is a ranked alphabet of terminal symbols,7

6see Sections 6 and 15 of (Gécseg and Steinby, 1997)
7We assume that Σ ∩N = ∅.

σ

α σ

α α

[
ε←

σ

σ

α x2

σ

x1 α

]
=

σ

σ

α σ

α α

σ

α α

Figure 2: Example second-order substitution, in which
the boxed symbol σ is replaced.

• S ∈ N0 is the start nonterminal of rank 0, and
• P is a finite set of productions of the form
A(x1, . . . , xk) → r, where r ∈ CN∪Σ(Xk)
and A ∈ Nk.

The components ` and r are called left- and right-
hand side of the production ` → r in P . We say
that it is an A-production if ` = A(x1, . . . , xk). The
right-hand side is simply a tree using terminal and
nonterminal symbols according to their rank. More-
over, it contains all the variables ofXk exactly once.
Let us illustrate the syntax on an example CFTG. We
use an abstract language for simplicity and clarity.
We use lower-case Greek letters for terminal sym-
bols and upper-case Latin letters for nonterminals.

Example 2. As a running example, we consider the
CFTG Gex = ({S(0), A(2)},Σ, S, P ) where
• Σ = {σ(2), α(0), β(0)} and
• P contains the productions (see Figure 3):8

S → A(α, α) | A(β, β) | σ(α, β)

A(x1, x2)→ A(σ(x1, S), σ(x2, S)) | σ(x1, x2) .

We recall the (term) rewrite semantics (Baader
and Nipkow, 1998) of the CFTG G = (N,Σ, S, P ).
Since G is simple, the actual rewriting strategy
is irrelevant. The sentential forms of G are sim-
ply SF(G) = TN∪Σ(X). This is slightly more gen-
eral than necessary (for the semantics of G), but the
presence of variables in sentential forms will be use-
ful in the next section because it allows us to treat
right-hand sides as sentential forms. In essence in a
rewrite step we just select a nonterminal A ∈ N and
an A-production ρ ∈ P . Then we replace an occur-
rence of A in the sentential form by the right-hand
side of ρ using second-order substitution.

Definition 3. Let ξ, ζ ∈ SF(G) be sentential forms.
Given an A-production ρ = ` → r in P and an

8We separate several right-hand sides with ‘|’.

508



S →
A

α α
S →

σ

α β
S →

A

β β

A

x1 x2

→
A

σ

x1 S

σ

x2 S

A

x1 x2

→
σ

x1 x2

Figure 3: Productions of Example 2.

A-labeled position p ∈ posA(ξ) in ξ, we write
ξ ⇒ρ,p

G ξ[p ← r]. If there exist ρ ∈ P and
p ∈ pos(ξ) such that ξ ⇒ρ,p

G ζ, then ξ ⇒G ζ.9 The
semantics JGK of G is {t ∈ TΣ | S ⇒∗G t}, where
⇒∗G is the reflexive, transitive closure of⇒G.

Two CFTGG1 andG2 are (strongly) equivalent if
JG1K = JG2K. In this contribution we are only con-
cerned with strong equivalence (Chomsky, 1963).
Although we recall the string corresponding to a tree
later on (via its yield), we will not investigate weak
equivalence (Bar-Hillel et al., 1960).
Example 4. Reconsider the CFTG Gex of Exam-
ple 2. A derivation to a tree of TΣ is illustrated in
Figure 4. It demonstrates that the final tree in that
derivation is in the language JGexK generated byGex.

Finally, let us recall the relation between CFTG
and tree adjoining grammars [TAG] (Joshi et al.,
1969; Joshi et al., 1975). Joshi et al. (1975)
show that TAG are special footed CFTG (Kepser
and Rogers, 2011), which are weakly equivalent
to monadic CFTG, i.e., CFTG whose nonterminals
have rank at most 1 (Mönnich, 1997; Fujiyoshi
and Kasai, 2000). Kepser and Rogers (2011) show
the strong equivalence of those CFTG to non-strict
TAG, which are slightly more powerful than tradi-
tional TAG. In general, TAG are a natural formalism
to describe the syntax of natural language.10

4 Normal forms

In this section, we first recall an existing normal
form for CFTG. Then we introduce the property of
finite ambiguity in the spirit of (Schabes, 1990; Joshi
and Schabes, 1992; Kuhlmann and Satta, 2012),
which allows us to normalize our CFTG even fur-
ther. A major tool is a simple production elimination

9For all k ∈ N and ξ ⇒G ζ we note that ξ ∈ CN∪Σ(Xk) if
and only if ζ ∈ CN∪Σ(Xk).

10XTAG Research Group (2001) wrote a TAG for English.

scheme, which we present in detail. From now on,
let G = (N,Σ, S, P ) be the considered CFTG.

The CFTG G is start-separated if posS(r) = ∅
for every production `→ r ∈ P . In other words, the
start nonterminal S is not allowed in the right-hand
sides of the productions. It is clear that each CFTG
can be transformed into an equivalent start-separated
CFTG. In such a CFTG we call each production of
the form S → r initial. From now on, we assume,
without loss of generality, that G is start-separated.

Example 5. Let Gex = (N,Σ, S, P ) be the CFTG
of Example 2. An equivalent start-separated CFTG
is G′ex = ({S′(0)} ∪N,Σ, S′, P ∪ {S′ → S}).

We start with the growing normal form of Stamer
and Otto (2007) and Stamer (2009). It requires that
the right-hand side of each non-initial production
contains at least two terminal or nonterminal sym-
bols. In particular, it eliminates projection produc-
tions A(x1) → x1 and unit productions, in which
the right-hand side has the same shape as the left-
hand side (potentially with a different root symbol
and a different order of the variables).

Definition 6. A production ` → r is growing if
|posN∪Σ(r)| ≥ 2. The CFTG G is growing if all
of its non-initial productions are growing.

The next theorem is Proposition 2 of (Stamer and
Otto, 2007). Stamer (2009) provides a full proof.

Theorem 7. For every start-separated CFTG there
exists an equivalent start-separated, growing CFTG.

Example 8. Let us transform the CFTG G′ex of Ex-
ample 5 into growing normal form. We obtain the
CFTG G′′ex = ({S′(0), S(0), A(2)},Σ, S′, P ′′) where
P ′′ contains S′ → S and for each δ ∈ {α, β}

S → A(δ, δ) | σ(δ, δ) | σ(α, β) (1)
A(x1, x2)→ A(σ(x1, S), σ(x2, S)) (2)
A(x1, x2)→ σ(σ(x1, S), σ(x2, S)) .

From now on, we assume thatG is growing. Next,
we recall the notion of finite ambiguity from (Sch-
abes, 1990; Joshi and Schabes, 1992; Kuhlmann and
Satta, 2012).11 We distinguish a subset ∆ ⊆ Σ0 of
lexical symbols, which are the symbols that are pre-
served by the yield mapping. The yield of a tree is

11It should not be confused with the notion of ‘finite ambigu-
ity’ of (Goldstine et al., 1992; Klimann et al., 2004).
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σ
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σ

σ

α σ

β β

σ

α σ

α β

Figure 4: Derivation using the CFTG Gex of Example 2. The selected positions are boxed.

a string of lexical symbols. All other symbols are
simply dropped (in a pre-order traversal). Formally,
yd∆ : TΣ → ∆∗ is such that for all t = σ(t1, . . . , tk)
with σ ∈ Σk and t1, . . . , tk ∈ TΣ

yd∆(t) =

{
σ yd∆(t1) · · · yd∆(tk) if σ ∈ ∆

yd∆(t1) · · · yd∆(tk) otherwise.

Definition 9. The tree language L ⊆ TΣ has finite
∆-ambiguity if {t ∈ L | yd∆(t) = w} is finite for
every w ∈ ∆∗.

Roughly speaking, we can say that the set L has
finite ∆-ambiguity if eachw ∈ ∆∗ has finitely many
parses in L (where t is a parse of w if yd∆(t) = w).
Our example CFTG Gex is such that JGexK has finite
{α, β}-ambiguity (because Σ1 = ∅).

In this contribution, we want to (strongly) lexical-
ize CFTG, which means that for each CFTG G such
that JGK has finite ∆-ambiguity, we want to con-
struct an equivalent CFTG such that each non-initial
production contains at least one lexical symbol.
This is typically called strong lexicalization (Sch-
abes, 1990; Joshi and Schabes, 1992; Kuhlmann
and Satta, 2012) because we require strong equiva-
lence.12 Let us formalize our lexicalization property.

Definition 10. The production ` → r is ∆-lexical-
ized if pos∆(r) 6= ∅. The CFTG G is ∆-lexicalized
if all its non-initial productions are ∆-lexicalized.

Note that the CFTG G′′ex of Example 8 is not yet
{α, β}-lexicalized. We will lexicalize it in the next
section. To do this in general, we need some auxil-
iary normal forms. First, we define our simple pro-
duction elimination scheme, which we will use in
the following. Roughly speaking, a non-initial A-
production such that A does not occur in its right-
hand side can be eliminated fromG by applying it in

12The corresponding notion for weak equivalence is called
weak lexicalization (Joshi and Schabes, 1992).

all possible ways to occurrences in right-hand sides
of the remaining productions.

Definition 11. Let ρ = A(x1, . . . , xk) → r in P
be a non-initial production such that posA(r) = ∅.
For every other production ρ′ = `′ → r′ in P and
J ⊆ posA(r′), let ρ′J = `′ → r′[J ← r]. The CFTG
Elim(G, ρ) = (N,Σ, S, P ′) is such that

P ′ =
⋃

ρ′=`′→r′∈P\{ρ}

{ρ′J | J ⊆ posA(r′)} .

In particular, ρ′∅ = ρ′ for every production ρ′,
so every production besides the eliminated produc-
tion ρ is preserved. We obtained the CFTG G′′ex of
Example 8 as Elim(G′ex, A(x1, x2) → σ(x1, x2))
from G′ex of Example 5.

Lemma 12. The CFTG G and G′ρ = Elim(G, ρ)
are equivalent for every non-initial A-production
ρ = `→ r in P such that posA(r) = ∅.

Proof. Clearly, every single derivation step of G′ρ
can be simulated by a derivation of G using poten-
tially several steps. Conversely, a derivation of G
can be simulated directly by G′ρ except for deriva-
tion steps ⇒ρ,p

G using the eliminated production ρ.
Since S 6= A, we know that the nonterminal at po-
sition p was generated by another production ρ′. In
the given derivation of G we examine which non-
terminals in the right-hand side of the instance of ρ′

were replaced using ρ. Let J be the set of positions
corresponding to those nonterminals (thus p ∈ J).
Then instead of applying ρ′ and potentially several
times ρ, we equivalently apply ρ′J of G′ρ.

In the next normalization step we use our pro-
duction elimination scheme. The goal is to make
sure that non-initial monic productions (i.e., produc-
tions of which the right-hand side contains at most
one nonterminal) contain at least one lexical sym-
bol. We define the relevant property and then present
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the construction. A sentential form ξ ∈ SF(G)
is monic if |posN (ξ)| ≤ 1. The set of all monic
sentential forms is denoted by SF≤1(G). A pro-
duction ` → r is monic if r is monic. The next
construction is similar to the simultaneous removal
of epsilon-productions A → ε and unit productions
A → B for context-free grammars (Hopcroft et al.,
2001). Instead of computing the closure under those
productions, we compute a closure under non-∆-
lexicalized productions.

Theorem 13. If JGK has finite ∆-ambiguity, then
there exists an equivalent CFTG such that all its non-
initial monic productions are ∆-lexicalized.

Proof. Without loss of generality, we assume that
G is start-separated and growing by Theorem 7.
Moreover, we assume that each nonterminal is use-
ful. For every A ∈ N with A 6= S, we compute
all monic sentential forms without a lexical sym-
bol that are reachable from A(x1, . . . , xk), where
k = rk(A). Formally, let

ΞA = {ξ ∈ SF≤1(G) | A(x1, . . . , xk)⇒+

G′ ξ} ,

where⇒+

G′ is the transitive closure of⇒G′ and the
CFTG G′ = (N,Σ, S, P ′) is such that P ′ contains
exactly the non-∆-lexicalized productions of P .
The set ΞA is finite since only finitely many non-
∆-lexicalized productions can be used due to the
finite ∆-ambiguity of JGK. Moreover, no senten-
tial form in ΞA contains A for the same reason
and the fact that G is growing. We construct the
CFTG G1 = (N,Σ, S, P ∪ P1) such that

P1 = {A(x1, . . . , xk)→ ξ | A ∈ Nk, ξ ∈ ΞA} .

Clearly, G and G1 are equivalent. Next, we elimi-
nate all productions of P1 from G1 using Lemma 12
to obtain an equivalent CFTG G2 with the produc-
tions P2. In the final step, we drop all non-∆-
lexicalized monic productions of P2 to obtain the
CFTG G, in which all monic productions are ∆-
lexicalized. It is easy to see that G is growing, start-
separated, and equivalent to G2.

The CFTG G′′ex only has {α, β}-lexicalized non-
initial monic productions, so we use a new example.

Example 14. Let ({S(0), A(1), B(1)},Σ, S, P ) be
the CFTG such that Σ = {σ(2), α(0), β(0)} and

A

x1

⇒G′

σ

β B

x1

⇒G′

σ

β σ

x1 β

B

x1

⇒G′
σ

x1 β

Figure 5: The relevant derivations using only productions
that are not ∆-lexicalized (see Example 14).

P contains the productions

A(x1)→ σ(β,B(x1)) B(x1)→ σ(x1, β) (3)
B(x1)→ σ(α,A(x1)) S → A(α) .

This CFTG Gex2 is start-separated and growing.
Moreover, all its productions are monic, and JGex2K
is finitely ∆-ambiguous for the set ∆ = {α} of
lexical symbols. Then the productions (3) are non-
initial and not ∆-lexicalized. So we can run the
construction in the proof of Theorem 13. The rel-
evant derivations using only non-∆-lexicalized pro-
ductions are shown in Figure 5. We observe that
|ΞA| = 2 and |ΞB| = 1, so we obtain the CFTG
({S(0), B(1)},Σ, S, P ′), where P ′ contains13

S → σ(β,B(α)) | σ(β, σ(α, β))

B(x1)→ σ(α, σ(β,B(x1)))

B(x1)→ σ(α, σ(β, σ(x1, β))) . (4)

We now do one more normalization step before
we present our lexicalization. We call a production
` → r terminal if r ∈ TΣ(X); i.e., it does not con-
tain nonterminal symbols. Next, we show that for
each CFTG G such that JGK has finite ∆-ambiguity
we can require that each non-initial terminal produc-
tion contains at least two occurrences of ∆-symbols.

Theorem 15. If JGK has finite ∆-ambiguity, then
there exists an equivalent CFTG (N,Σ, S, P ′) such
that |pos∆(r)| ≥ 2 for all its non-initial terminal
productions `→ r ∈ P ′.

Proof. Without loss of generality, we assume that
G is start-separated and growing by Theorem 7.
Moreover, we assume that each nonterminal is use-
ful and that each of its non-initial monic produc-
tions is ∆-lexicalized by Theorem 13. We obtain
the desired CFTG by simply eliminating each non-
initial terminal production ` → r ∈ P such that
|pos∆(r)| = 1. By Lemma 12 the obtained CFTG

13The nonterminal A became useless, so we just removed it.
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A

x1 x2

→
A

σ

x1 S

σ

x2 S

〈A,α〉

x1 x2 x3

→

〈A,α〉

σ

x1 S

σ

x2 S

x3

〈A,α〉

x1 x2 x3

→

〈A,α〉

σ

x1 〈S, β〉

β

σ

x2 S

x3

Figure 6: Production ρ = `→ r of (2) [left], a corresponding production ρα of P ′ [middle] with right-hand side rα,2,
and a corresponding production of P ′′′ [right] with right-hand side (rα,2)β (see Theorem 17).

is equivalent to G. The elimination process termi-
nates because a new terminal production can only be
constructed from a monic production and a terminal
production or several terminal productions, but those
combinations already contain two occurrences of ∆-
symbols since non-initial monic productions are al-
ready ∆-lexicalized.

Example 16. Reconsider the CFTG obtained in Ex-
ample 14. Recall that ∆ = {α}. Production (4) is
the only non-initial terminal production that violates
the requirement of Theorem 15. We eliminate it and
obtain the CFTG with the productions

S → σ(β,B(α)) | σ(β, σ(α, β))

S → σ(β, σ(α, σ(β, σ(α, β))))

B(x1)→ σ(α, σ(β,B(x1)))

B(x1)→ σ(α, σ(β, σ(α, σ(β, σ(x1, β))))) .

5 Lexicalization

In this section, we present the main lexicalization
step, which lexicalizes non-monic productions. We
assume that JGK has finite ∆-ambiguity and is nor-
malized according to the results of Section 4: no
useless nonterminals, start-separated, growing (see
Theorem 7), non-initial monic productions are ∆-
lexicalized (see Theorem 13), and non-initial termi-
nal productions contain at least two occurrences of
∆-symbols (see Theorem 15).

The basic idea of the construction is that we guess
a lexical symbol for each non-∆-lexicalized produc-
tion. The guessed symbol is put into a new param-
eter of a nonterminal. It will be kept in the pa-
rameter until we reach a terminal production, where
we exchange the same lexical symbol by the pa-
rameter. This is the reason why we made sure
that we have two occurrences of lexical symbols in
the terminal productions. After we exchanged one
for a parameter, the resulting terminal production is

still ∆-lexicalized. Lexical items that are guessed
for distinct (occurrences of) productions are trans-
ported to distinct (occurrences of) terminal produc-
tions [cf. Section 3 of (Potthoff and Thomas, 1993)
and page 346 of (Hoogeboom and ten Pas, 1997)].

Theorem 17. For every CFTG G such that JGK
has finite ∆-ambiguity there exists an equivalent
∆-lexicalized CFTG.

Proof. We can assume that G = (N,Σ, S, P ) has
the properties mentioned before the theorem without
loss of generality. We let N ′ = N ×∆ be a new set
of nonterminals such that rk(〈A, δ〉) = rk(A) + 1
for every A ∈ N and δ ∈ ∆. Intuitively, 〈A, δ〉
represents the nonterminal A, which has the lexical
symbol δ in its last (new) parameter. This parameter
is handed to the (lexicographically) first nonterminal
in the right-hand side until it is resolved in a termi-
nal production. Formally, for each right-hand side
r ∈ TN∪N ′∪Σ(X) such that posN (r) 6= ∅ (i.e., it
contains an original nonterminal), each k ∈ N, and
each δ ∈ ∆, let rδ,k and rδ be such that

rδ,k = r[〈B, δ〉(r1, . . . , rn, xk+1)]p

rδ = r[〈B, δ〉(r1, . . . , rn, δ)]p ,

where p is the lexicographically smallest element
of posN (r) and r|p = B(r1, . . . , rn) with B ∈ N
and r1, . . . , rn ∈ TN∪N ′∪Σ(X). For each non-
terminal A-production ρ = `→ r in P let

ρδ = 〈A, δ〉(x1, . . . , xk+1)→ rδ,k ,

where k = rk(A). This construction is illustrated
in Figure 6. Roughly speaking, we select the lexi-
cographically smallest occurrence of a nonterminal
in the right-hand side and pass the lexical symbol δ
in the extra parameter to it. The extra parameter is
used in terminal productions, so let ρ = `→ r in P
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S →
σ

α α

〈S, α〉

x1

→
σ

x1 α

Figure 7: Original terminal production ρ from (1) [left]
and the production ρ (see Theorem 17).

be a terminal A-production. Then we define

ρ = 〈A, r(p)〉(x1, . . . , xk+1)→ r[xk+1]p ,

where p is the lexicographically smallest element
of pos∆(r) and k = rk(A). This construction is
illustrated in Figure 7. With these productions we
obtain the CFTG G′ = (N ∪ N ′,Σ, S, P ), where
P = P ∪ P ′ ∪ P ′′ and

P ′ =
⋃

ρ=`→r∈P
6̀=S,posN (r)6=∅

{ρδ | δ ∈ ∆} P ′′ =
⋃

ρ=`→r∈P
6̀=S,posN (r)=∅

{ρ} .

It is easy to prove that those new productions man-
age the desired transport of the extra parameter if it
holds the value indicated in the nonterminal.

Finally, we replace each non-initial non-∆-lexi-
calized production in G′ by new productions that
guess a lexical symbol and add it to the new parame-
ter of the (lexicographically) first nonterminal of N
in the right-hand side. Formally, we let

P nil = {`→ r ∈ P | ` 6= S, pos∆(r) = ∅}
P ′′′ = {`→ rδ | `→ r ∈ P nil, δ ∈ ∆} ,

of which P ′′′ is added to the productions. Note that
each production ` → r ∈ P nil contains at least one
occurrence of a nonterminal ofN (because all monic
productions of G are ∆-lexicalized). Now all non-
initial non-∆-lexicalized productions from P can be
removed, so we obtain the CFTGG′′, which is given
by (N ∪N ′,Σ, S,R) with R = (P ∪ P ′′′) \ P nil. It
can be verified that G′′ is ∆-lexicalized and equiva-
lent to G (using the provided argumentation).

Instead of taking the lexicographically smallest
element of posN (r) or pos∆(r) in the previous
proof, we can take any fixed element of that set. In
the definition of P ′ we can change posN (r) 6= ∅
to |pos∆(r)| ≤ 1, and simultaneously in the defini-
tion of P ′′ change posN (r) = ∅ to |pos∆(r)| ≥ 2.
With the latter changes the guessed lexical item is
only transported until it is resolved in a production
with at least two lexical items.

Example 18. For the last time, we consider the
CFTG G′′ex of Example 8. We already illustrated the
parts of the construction of Theorem 17 in Figures
6 and 7. The obtained {α, β}-lexicalized CFTG has
the following 25 productions for all δ, δ′ ∈ {α, β}:

S′ → S

S → A(δ, δ) | σ(δ, δ) | σ(α, β)

Sδ(x1)→ Aδ(δ
′, δ′, x1) | σ(x1, δ)

Sα(x1)→ σ(x1, β)

A(x1, x2)→ Aδ(σ(x1, S), σ(x2, S), δ) (5)
Aδ(x1, x2, x3)→ Aδ(σ(x1, Sδ′(δ

′)), σ(x2, S), x3)

A(x1, x2)→ σ(σ(x1, Sδ(δ)), σ(x2, S))

Aδ(x1, x2, x3)→ σ(σ(x1, Sδ(x3)), σ(x2, Sδ′(δ
′))) ,

where Aδ = 〈A, δ〉 and Sδ = 〈S, δ〉.
If we change the lexicalization construction as

indicated before this example, then all the produc-
tions Sδ(x1) → Aδ(δ

′, δ′, x1) are replaced by the
productions Sδ(x1) → A(x1, δ). Moreover, the
productions (5) can be replaced by the productions
A(x1, x2) → A(σ(x1, Sδ(δ)), σ(x2, S)), and then
the nonterminalsAδ and their productions can be re-
moved, which leaves only 15 productions.

Conclusion

For k ∈ N, let CFTG(k) be the set of those CFTG
whose nonterminals have rank at most k. Since the
normal form constructions preserve the nonterminal
rank, the proof of Theorem 17 shows that CFTG(k)
are strongly lexicalized by CFTG(k+1). Kepser and
Rogers (2011) show that non-strict TAG are strongly
equivalent to CFTG(1). Hence, non-strict TAG are
strongly lexicalized by CFTG(2).

It follows from Section 6 of Engelfriet et al.
(1980) that the classes CFTG(k) with k ∈ N in-
duce an infinite hierarchy of string languages, but it
remains an open problem whether the rank increase
in our lexicalization construction is necessary.

Gómez-Rodrı́guez et al. (2010) show that well-
nested LCFRS of maximal fan-out k can be parsed
in time O(n2k+2), where n is the length of the in-
put string w ∈ ∆∗. From this result we conclude
that CFTG(k) can be parsed in time O(n2k+4), in
the sense that we can produce a parse tree t that
is generated by the CFTG with yd∆(t) = w. It is
not clear yet whether lexicalized CFTG(k) can be
parsed more efficiently in practice.
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Abstract

As one of the most popular micro-blogging
services, Twitter attracts millions of users,
producing millions of tweets daily. Shared in-
formation through this service spreads faster
than would have been possible with tradi-
tional sources, however the proliferation of
user-generation content poses challenges to
browsing and finding valuable information. In
this paper we propose a graph-theoretic model
for tweet recommendation that presents users
with items they may have an interest in. Our
model ranks tweets and their authors simulta-
neously using several networks: the social net-
work connecting the users, the network con-
necting the tweets, and a third network that
ties the two together. Tweet and author entities
are ranked following a co-ranking algorithm
based on the intuition that that there is a mu-
tually reinforcing relationship between tweets
and their authors that could be reflected in the
rankings. We show that this framework can be
parametrized to take into account user prefer-
ences, the popularity of tweets and their au-
thors, and diversity. Experimental evaluation
on a large dataset shows that our model out-
performs competitive approaches by a large
margin.

1 Introduction

Online micro-blogging services have revolutionized
the way people discover, share, and distribute infor-
mation. Twitter is perhaps the most popular such
service with over 140 million active users as of

2012.1 Twitter enables users to send and read text-
based posts of up to 140 characters, known as tweets.
Twitter users follow others or are followed. Being a
follower on Twitter means that the user receives all
the tweets from those she follows. Common prac-
tice of responding to a tweet has evolved into a well-
defined markup culture (e.g., RT stands for retweet,
‘@’ followed by an identifier indicates the user).
The strict limit of 140 characters allows for quick
and immediate communication in real time, whilst
enforcing brevity. Moreover, the retweet mecha-
nism empowers users to spread information of their
choice beyond the reach of their original followers.

Twitter has become a prominent broadcast-
ing medium, taking priority over traditional news
sources (Teevan et al., 2011). Shared information
through this channel spreads faster than would have
been possible with conventional news sites or RSS
feeds and can reach a far wider population base.
However, the proliferation of user-generated con-
tent comes at a price. Over 340 millions of tweets
are being generated daily amounting to thousands
of tweets per second!2 Twitter’s own search en-
gine handles more than 1.6 billion search queries per
day.3 This enormous amount of data renders it in-
feasible to browse the entire Twitter network; even
if this was possible, it would be extremely difficult
for users to find information they are interested in.
A hypothetical tweet recommendation system could

1For details see http://blog.twitter.com/2012/03/
twitter-turns-six.html

2In fact, the peak record is 6,939 tweets per second, reported
by http://blog.twitter.com/2011/03/numbers.html.

3See http://engineering.twitter.com/2011/05/
engineering-behind-twitters-new-search.html
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alleviate this acute information overload, e.g., by
limiting the stream of tweets to those of interest to
the user, or by discovering intriguing content outside
the user’s following network.

The tweet recommendation task is challenging for
several reasons. Firstly, Twitter does not merely
consist of a set of tweets. Rather, it contains many
latent networks including the following relationships
among users and the retweeting linkage (which in-
dicates information diffusion). Secondly, the rec-
ommendations ought to be of interest to the user
and likely to to attract user response (e.g., to be
retweeted). Thirdly, recommendations should be
personalized (Cho and Schonfeld, 2007; Yan et al.,
2011), avoid redundancy, and demonstrate diversity.
In this paper we present a graph-theoretic approach
to tweet recommendation that attempts to address
these challenges.

Our recommender operates over a heterogeneous
network that connects the users (or authors) and the
tweets they produce. The user network represents
links among authors based on their following be-
havior, whereas the tweet network connects tweets
based on content similarity. A third bipartite graph
ties the two together. Tweet and author entities in
this network are ranked simultaneously following a
co-ranking algorithm (Zhou et al., 2007). The main
intuition behind co-ranking is that there is a mu-
tually reinforcing relationship between authors and
tweets that could be reflected in the rankings. Tweets
are important if they are related to other important
tweets and authored by important users who in turn
are related to other important users. The model ex-
ploits this mutually reinforcing relationship between
tweets and their authors and couples two random
walks, one on the tweet graph and one on the author
graph, into a combined one. Rather than creating a
global ranking over all tweets in a collection, we ex-
tend this framework to individual users and produce
personalized recommendations. Moreover, we in-
corporate diversity by allowing the random walk on
the tweet graph to be time-variant (Mei et al., 2010).

Experimental results on a real-world dataset con-
sisting of 364,287,744 tweets from 9,449,542 users
show that the co-ranking approach substantially im-
proves performance over the state of the art. We ob-
tain a relative improvement of 18.3% (in nDCG) and
7.8% (in MAP) over the best comparison system.

2 Related Work

Tweet Search Given the large amount of tweets
being posted daily, ranking strategies have be-
come extremely important for retrieving information
quickly. Many websites currently offer a real-time
search service which returns ranked lists of Twit-
ter posts or shared links according to user queries.
Ranking methods used by these sites employ three
criteria, namely recency, popularity and content rel-
evance (Dong et al., 2010). State-of-art tweet re-
trieval methods include a linear regression model bi-
ased towards text quality with a regularization factor
inspired by the hypothesis that documents similar
in content may have similar quality (Huang et al.,
2011). Duan et al. (2010) learn a ranking model us-
ing SVMs and features based on tweet content, the
relations among users, and tweet specific character-
istics (e.g., urls, number of retweets).

Tweet Recommendation Previous work has also
focused on tweet recommendation systems, assum-
ing no explicit query is provided by the users.
Collaborative filtering is perhaps the most obvious
method for recommending tweets (Hannon et al.,
2010). Chen et al. (2010) investigate how to se-
lect interesting URLs linked from Twitter and rec-
ommend the top ranked ones to users. Their rec-
ommender takes three dimensions into account: the
source, the content topic, and social voting. Sim-
ilarly, Abel et al. (2011a; 2011b; 2011c) recom-
mend external websites linked to Twitter. Their
method incorporates user profile modeling and tem-
poral recency, but they do not utilize the social
networks among users. R. et al. (2009) propose
a diffusion-based recommendation framework es-
pecially for tweets representing critical events by
constructing a diffusion graph. Hong et al. (2011)
recommend tweets based on popularity related fea-
tures. Ramage et al. (2010) investigate which topics
users are interested in following a Labeled-LDA ap-
proach, by deciding whether a user is in the followee
list of a given user or not. Uysal and Croft (2011) es-
timate the likelihood of a tweet being reposted from
a user-centric perspective.

Our work also develops a tweet recommendation
system. Our model exploits the information pro-
vided by the tweets and the underlying social net-
works in a unified co-ranking framework. Although
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these sources have been previously used to search
or recommend tweets, our model considers them
simultaneously and produces a ranking that is in-
formed by both. Furthermore, we argue that the
graph-theoretic framework upon which co-ranking
operates is beneficial as it allows to incorporate per-
sonalization (we provide user-specific rankings) and
diversity (the ranking is optimized so as to avoid re-
dundancy). The co-ranking framework has been ini-
tially developed for measuring scientific impact and
modeling the relationship between authors and their
publications (Zhou et al., 2007). However, the adap-
tation of this framework to the tweet recommenda-
tion task is novel to our knowledge.

3 Tweet Recommendation Framework

Our method operates over a heterogeneous network
that connects three graphs representing the tweets,
their authors and the relationships between them.
Let G denote the heterogeneous graph with nodes V
and edges E, and G = (V,E) = (VM ∪VU ,EM ∪EU ∪
EMU). G is divided into three subgraphs, GM, GU
and GMU . GM = (VM,EM) is a weighted undirected
graph representing the tweets and their relationships.
Let VM = {mi|mi ∈VM} denote a collection of |VM|
tweets and EM the set of links representing relation-
ships between them. The latter are established by
measuring how semantically similar any two tweets
are (see Section 3.4 for details). GU = (VU ,EU) is
an unweighted directed graph representing the so-
cial ties among Twitter users. VU = {ui|ui ∈ VU} is
the set of users with size |VU |. Links EU among
users are established by observing their following
behavior. GMU = (VMU ,EMU) is an unweighted bi-
partite graph that ties GM and GU together and repre-
sents tweet-author relationships. The graph consists
of nodes VMU = VM ∪VU and edges EMU connect-
ing each tweet with all of its authors. Typically, a
tweet m is written by only one author u. However,
because of retweeting we treat all users involved in
reposting a tweet as “co-authors”. The three subnet-
works are illustrated in Figure 1.

The framework includes three random walks, one
on GM, one on GU and one on GMU . A random walk
on a graph is a Markov chain, its states being the
vertices of the graph. It can be described by a square
n× n matrix M, where n is the number of vertices
in the graph. M is a stochastic matrix prescribing

Figure 1: Tweet recommendation based on a co-ranking
framework including three sub-networks. The undirected
links between tweets indicate semantic correlation. The
directed links between users denotes following. A bipar-
tite graph (whose edges are shown with dashed lines) ties
the tweet and author networks together.

the transition probabilities from one vertex to the
next. The framework couples the two random walks
on GM, and GU that rank tweets and theirs authors in
isolation. and allows to obtain a more global rank-
ing by taking into account their mutual dependence.
In the following sections we first describe how we
obtain the rankings on GM and GU , and then move
on to discuss how the two are coupled.

3.1 Ranking the Tweet Graph
Popularity We rank the tweet network follow-
ing the PageRank paradigm (Brin and Page, 1998).
Consider a random walk on GM and let M be the
transition matrix (defined in Section 3.4). Fix some
damping factor µ and say that at each time step with
probability (1-µ) we stick to random walking and
with probability µ we do not make a usual random
walk step, but instead jump to any vertex, chosen
uniformly at random:

m = (1−µ)MTm+
µ
|VM|

11T (1)

Here, vector m contains the ranking scores for the
vertices in GM. The fact that there exists a unique so-
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lution to (1) follows from the random walk M being
ergodic (µ >0 guarantees irreducibility, because we
can jump to any vertex). MT is the transpose of M.
1 is the vector of |VM| entries, each being equal to
one. Let m∈ RVM , ||m||1 = 1 be the only solution.

Personalization The standard PageRank algo-
rithm performs a random walk, starting from any
node, then randomly selects a link from that node to
follow considering the weighted matrix M, or jumps
to a random node with equal probability. It pro-
duces a global ranking over all tweets in the col-
lection without taking specific users into account.
As there are billions of tweets available on Twit-
ter covering many diverse topics, it is reasonable
to assume that an average user will only be inter-
ested in a small subset (Qiu and Cho, 2006). We
operationalize a user’s topic preference as a vec-
tor t = [t1, t2, . . . , tn]1×n, where n denotes the num-
ber of topics, and ti represents the degree of prefer-
ence for topic i. The vector t is normalized such
that ∑

n
i=1 ti = 1. Intuitively, such vectors will be

different for different users. Note that user prefer-
ences can be also defined at the tweet (rather than
topic) level. Although tweets can illustrate user in-
terests more directly, in most cases a user will only
respond to a small fraction of tweets. This means
that most tweets will not provide any information
relating to a user’s interests. The topic preference
vector allows to propagate such information (based
on whether a tweet has been reposted or not) to other
tweets within the same topic cluster.

Given n topics, we obtain a topic distribution ma-
trix D using Latent Dirichlet Allocation (Blei et al.,
2003). Let Di j denote the probability of tweet mi to
belong to topic t j. Consider a user with a topic pref-
erence vector t and topic distribution matrix D. We
calculate the response probability r for all tweets for
this user as:

r = tDT (2)

where r=[r1, r2, . . . , rVM ]1×|VM | represents the re-
sponse probability vector and ri the probability for a
user to respond to tweet mi. We normalize r so that
∑ri∈r ri = 1. Now, given the observed response prob-
ability vector r = [r1,r2, . . . ,rw]1×w, where w<|VM|
for a given user and the topic distribution ma-
trix D, our task is estimate the topic preference
vector t. We do this using maximum-likelihood

estimation. Assuming a user has responded to w
tweets, we approximate t so as to maximize the ob-
served response probability. Let r(t) = tDT. As-
suming all responses are independent, the probabil-
ity for w tweets r1, r2, . . . , rw is then ∏

w
i=1 ri(t) under

a given t. The value of t is chosen when the proba-
bility is maximized:

t = argmax
t

( w

∏
i=1

ri(t)
)

(3)

In a simple random walk, it is assumed that all
nodes in the matrix M are equi-probable before the
walk. In contrast, we use the topic preference vector
as a prior on M. Let Diag(r) denote a diagonal ma-
trix whose eigenvalue is vector r. Then m becomes:

m = (1−µ)[Diag(r)M]Tm+µr

= (1−µ)[Diag(tDT)M]Tm+µtDT (4)

Diversity We would also like our output to be
diverse without redundant information. Unfortu-
nately, equation (4) will have the opposite effect,
as it assigns high scores to closely connected node
communities. A greedy algorithm such as Maxi-
mum Marginal Relevance (Carbonell and Goldstein,
1998; Wan et al., 2007; Wan et al., 2010) may
achieve diversity by iteratively selecting the most
prestigious or popular vertex and then penalizing the
vertices “covered” by those that have been already
selected. Rather than adopting a greedy vertex selec-
tion method, we follow DivRank (Mei et al., 2010)
a recently proposed algorithm that balances popular-
ity and diversity in ranking, based on a time-variant
random walk. In contrast to PageRank, DivRank as-
sumes that the transition probabilities change over
time. Moreover, it is assumed that the transition
probability from one state to another is reinforced by
the number of previous visits to that state. At each
step, the algorithm creates a dynamic transition ma-
trix M(.). After z iterations, the matrix becomes:

M(z) = (1−µ)M(z−1) ·m(z−1) +µtDT (5)

and hence, m can be calculated as:

m(z) = (1−µ)[Diag(tDT)M(z)]Tm+µtDT (6)

Equation (5) increases the probability for nodes
with higher popularity. Nodes with high weights are
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likely to “absorb” the weights of their neighbors di-
rectly, and the weights of their neighbors’ neighbors
indirectly. The process iteratively adjusts the ma-
trix M according to m and then updates m according
to the changed M. Essentially, the algorithm favors
nodes with high popularity and as time goes by there
emerges a rich-gets-richer effect (Mei et al., 2010).

3.2 Ranking the Author Graph

As mentioned earlier, we build a graph of au-
thors (and obtain the affinity U) using the follow-
ing linkage. We rank the author network using
PageRank analogously to equation (1). Besides
popularity, we also take personalization into ac-
count. Intuitively, users are likely to be interested
in their friends even if these are relatively unpopu-
lar. Therefore, for each author, we include a vec-
tor p = [p1, p2, . . . , p|VU |]1×|VU | denoting their prefer-
ence for other authors. The preference factor for au-
thor u toward other authors ui is defined as:

pu
i =

#tweets from ui

#tweets of u
(7)

which represents the proportion of tweets inherited
from user ui. A large pu

i means that u is more likely
to respond to ui’s tweets.

In theory, we could also apply DivRank on the au-
thor graph. However, as the authors are unique, we
assume that they are sufficiently distinct and there is
no need to promote diversity.

3.3 The Co-Ranking Algorithm

So far we have described how we rank the network
of tweets GM and their authors GU independently
following the PageRank paradigm. The co-ranking
framework includes a random walk on GM, GU ,
and GMU . The latter is a bipartite graph representing
which tweets are authored by which users. The ran-
dom walks on GM and GU are intra-class random
walks, because take place either within the tweets’
or the users’ networks. The third (combined) ran-
dom walk on GMU is an inter-class random walk. It
is sufficient to describe it by a matrix MU|VM|×|VU|
and a matrix UM|VU|×|VM|, since GMU is bipartite.
One intra-class step changes the probability distribu-
tion from (m, 0) to (Mm, 0) or from (0, u) to (0, Uu),
while one inter-class step changes the probability
distribution from (m, u) to (UMT u, MUT m). The

design of M, U, MU and UM is detailed in Sec-
tion 3.4.

The two intra-class random walks are coupled
using the inter-class random walk on the bipartite
graph. The coupling is regulated by λ, a parameter
quantifying the importance of GMU versus GM and
GU . In the extreme case, if λ is set to 0, there is no
coupling. This amounts to separately ranking tweets
and authors by PageRank. In general, λ represents
the extent to which the ranking of tweets and their
authors depend on each other.

There are two intuitions behind the co-ranking al-
gorithm: (1) a tweet is important if it associates to
other important tweets, and is authored by impor-
tant users and (2) a user is important if they asso-
ciate to other important users, and they write impor-
tant tweets. We formulate these intuitions using the
following iterative procedure:

Step 1 Compute tweet saliency scores:

m(z+1) = (1−λ)([Diag(r)M(z)]T)m(z) +λUMTu(z)

m(z+1) = m(z+1)/||m(z+1)|| (8)

Step 2 Compute author saliency scores:

u(z+1) = (1−λ)([Diag(p)U]T)u(z) +λMUTm(z)

u(z+1) = u(z+1)/||u(z+1)|| (9)

Here, m(z) and u(z) are the ranking vectors for tweets
and authors for the z-th iteration. To guarantee con-
vergence, m and u are normalized after each itera-
tion. Note that the tweet transition matrix M is dy-
namic due to the computation of diversity while the
author transition matrix U is static. The algorithm
typically converges when the difference between the
scores computed at two successive iterations for any
tweet/author falls below a threshold ε (set to 0.001
in this study).

3.4 Affinity Matrices

The co-ranking framework is controlled by four
affinity matrices: M, U, MU and UM. In this section
we explain how these matrices are defined in more
detail.

The tweet graph is an undirected weighted graph,
where an edge between two tweets mi and m j repre-
sents their cosine similarity. An adjacency matrix M
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describes the tweet graph where each entry corre-
sponds to the weight of a link in the graph:

Mij =
F (mi,m j)

∑k F (mi,mk)
, F (mi,m j) =

~mi ·~m j

||~mi||||~m j||
(10)

where F (.) is the cosine similarity and ~m is a term
vector corresponding to tweet m. We treat a tweet
as a short document and weight each term with tf.idf
(Salton and Buckley, 1988), where tf is the term fre-
quency and idf is the inverse document frequency.

The author graph is a directed graph based on the
following linkage. When ui follows u j, we add a link
from ui to u j. Let the indicator function I (ui,u j) de-
note whether ui follows u j. The adjacency matrix U
is then defined as:

Uij =
I (ui,u j)

∑k I (ui,uk)
, I (ui,u j) =

{
1if ei j ∈ EU

0if ei j /∈ EU
(11)

In the bipartite tweet-author graph GMU , the
entry EMU(i, j) is an indicator function denoting
whether tweet mi is authored by user u j:

A(mi,u j) =

{
1 if ei j ∈ EMU

0 if ei j /∈ EMU
(12)

Through EMU we define MU and UM, using the
weight matrices MU= [W̄ij] and UM=[Ŵji], con-
taining the conditional probabilities of transitioning
from mi to u j and vice versa:

W̄ij =
A(mi,u j)

∑k A(mi,uk)
, Ŵji =

A(mi,u j)

∑k A(mk,u j)
(13)

4 Experimental Setup

Data We crawled Twitter data from 23 seed users
(who were later invited to manually evaluate the
output of our system). In addition, we collected
the data of their followees and followers by travers-
ing the following edges, and exploring all newly
included users in the same way until no new
users were added. This procedure resulted in
a relatively large dataset consisting of 9,449,542
users, 364,287,744 tweets, 596,777,491 links, and
55,526,494 retweets. The crawler monitored the
data from 3/25/2011 to 5/30/2011. We used approx-
imately one month of this data for training and the
rest for testing.

Before building the graphs (i.e., the tweet graph,
the author graph, and the tweet-author graph), the
dataset was preprocessed as follows. We removed
tweets of low linguistic quality and subsequently
discarded users without any linkage to the remain-
ing tweets. We measured linguistic quality follow-
ing the evaluation framework put forward in Pitler
et al. (2010). For instance, we measured the out-of-
vocabulary word ratio (as a way of gauging spelling
errors), entity coherence, fluency, and so on. We fur-
ther removed stopwords and performed stemming.

Parameter Settings We ran LDA with 500 itera-
tions of Gibbs sampling. The number of topics n
was set to 100 which upon inspection seemed gen-
erally coherent and meaningful. We set the damp-
ing factor µ to 0.15 following the standard PageRank
paradigm. We opted for more or less generic param-
eter values as we did not want to tune our frame-
work to the specific dataset at hand. We examined
the parameter λ which controls the balance of the
tweet-author graph in more detail. We experimented
with values ranging from 0 to 0.9, with a step size
of 0.1. Small λ values place little emphasis on the
tweet graph, whereas larger values rely more heav-
ily on the author graph. Mid-range values take both
graphs into account. Overall, we observed better
performance with values larger than 0.4. This sug-
gests that both sources of information — the content
of the tweets and their authors — are important for
the recommendation task. All our experiments used
the same λ value which was set to 0.6.

System Comparison We compared our approach
against three naive baselines and three state-of-the-
art systems recently proposed in the literature. All
comparison systems were subject to the same fil-
tering and preprocessing procedures as our own al-
gorithm. Our first baseline ranks tweets randomly
(Random). Our second baseline ranks tweets ac-
cording to token length: longer tweets are ranked
higher (Length). The third baseline ranks tweets
by the number of times they are reposted assum-
ing that more reposting is better (RTnum). We also
compared our method against Duan et al. (2010).
Their model (RSVM) ranks tweets based on tweet
content features and tweet authority features using
the RankSVM algorithm (Joachims, 1999). Our
fifth comparison system (DTC) was Uysal and Croft
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(2011) who use a decision tree classifier to judge
how likely it is for a tweet to be reposted by a spe-
cific user. This scenario is similar to ours when rank-
ing tweets by retweet likelihood. Finally, we com-
pared against Huang et al. (2011) who use weighted
linear combination (WLC) to grade the relevance of
a tweet given a query. We implemented their model
without any query-related features as in our setting
we do not discriminate tweets depending on their
relevance to specific queries.

Evaluation We evaluated system output in two
ways, i.e., automatically and in a user study. Specif-
ically, we assume that if a tweet is retweeted it is rel-
evant and is thus ranked higher over tweets that have
not been reposted. We used our algorithm to predict
a ranking for the tweets in the test data which we
then compared against a goldstandard ranking based
on whether a tweet has been retweeted or not. We
measured ranking performance using the normalized
Discounted Cumulative Gain (nDCG; Järvelin and
Kekäläinen (2002)):

nDCG(k,VU) =
1
|VU| ∑

u∈VU

1
Zu

k

∑
i=1

2ru
i −1

log(1+ i)
(14)

where VU denotes users, k indicates the top-k posi-
tions in a ranked list, and Zu is a normalization factor
obtained from a perfect ranking for a particular user.
ru

i is the relevance score (i.e., 1: retweeted, 0: not
retweeted) for the i-th tweet in the ranking list for
user u.

We also evaluated system output in terms of Mean
Average Precision (MAP), under the assumption
that retweeted tweets are relevant and the rest irrele-
vant:

MAP =
1
|VU| ∑

u∈VU

1
Nu

k

∑
i=1

Pu
i × ru

i (15)

where Nu is the number of reposted tweets for user u,
and Pu

i is the precision at i-th position for user u
(Manning et al., 2008).

The automatic evaluation sketched above does not
assess the full potential of our recommendation sys-
tem. For instance, it is possible for the algorithm to
recommend tweets to users with no linkage to their
publishers. Such tweets may be of potential interest,
however our goldstandard data can only provide in-
formation for tweets and users with following links.

System nDCG@5 nDCG@10 nDCG@25 nDCG@50 MAP

Random 0.068 0.111 0.153 0.180 0.167
Length 0.275 0.288 0.298 0.335 0.258
RTNum 0.233 0.219 0.225 0.249 0.239
RSVM 0.392 0.400 0.421 0.444 0.558
DTC 0.441 0.468 0.492 0.473 0.603
WLC 0.404 0.421 0.437 0.464 0.592
CoRank 0.519 0.546 0.550 0.585 0.617

Table 1: Evaluation of tweet ranking output produced by
our system and comparison baselines against goldstan-
dard data.

System nDCG@5 nDCG@10 nDCG@25 nDCG@50 MAP

Random 0.081 0.103 0.116 0.107 0.175
Length 0.291 0.307 0.246 0.291 0.264
RTNum 0.258 0.318 0.343 0.346 0.257
RSVM 0.346 0.443 0.384 0.414 0.447
DTC 0.545 0.565 0.579 0.526 0.554
WLC 0.399 0.447 0.460 0.481 0.506
CoRank 0.567 0.644 0.715 0.643 0.628

Table 2: Evaluation of tweet ranking output produced by
our system and comparison baselines against judgments
elicited by users.

We therefore asked the 23 users whose Twitter data
formed the basis of our corpus to judge the tweets
ranked by our algorithm and comparison systems.
The users were asked to read the systems’ recom-
mendations and decide for every tweet presented to
them whether they would retweet it or not, under the
assumption that retweeting takes place when users
find the tweet interesting.

In both automatic and human-based evaluations
we ranked all tweets in the test data. Then for each
date and user we selected the top 50 ones. Our
nDCG and MAP results are averages over users and
dates.

5 Results

Our results are summarized in Tables 1 and 2. Ta-
ble 1 reports results when model performance is
evaluated against the gold standard ranking obtained
from the Twitter network. In Table 2 model per-
formance is compared against rankings elicited by
users.

As can be seen, the Random method performs
worst. This is hardly surprising as it recommends
tweets without any notion of their importance or user
interest. Length performs considerably better than
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System nDCG@5 nDCG@10 nDCG@25 nDCG@50 MAP

PageRank 0.493 0.481 0.509 0.536 0.604
PersRank 0.501 0.542 0.558 0.560 0.611
DivRank 0.487 0.505 0.518 0.523 0.585
CoRank 0.519 0.546 0.550 0.585 0.617

Table 3: Evaluation of individual system components
against goldstandard data.

System nDCG@5 nDCG@10 nDCG@25 nDCG@50 MAP

PageRank 0.557 0.549 0.623 0.559 0.588
PersRank 0.571 0.595 0.655 0.613 0.601
DivRank 0.538 0.591 0.594 0.547 0.589
CoRank 0.637 0.644 0.715 0.643 0.628

Table 4: Evaluation of individual system components
against human judgments.

Random. This might be due to the fact that infor-
mativeness is related to tweet length. Using merely
the number of retweets does not seem to capture the
tweet importance as well as Length. This suggests
that highly retweeted posts are not necessarily in-
formative. For example, in our data, the most fre-
quently reposted tweet is a commercial advertise-
ment calling for reposting!

The supervised systems (RSVM, DTC, and
WLC) greatly improve performance over the naive
baselines. These methods employ standard machine
learning algorithms (such as SVMs, decision trees
and linear regression) on a large feature space. Aside
from the learning algorithm, their main difference
lies in the selection of the feature space, e.g., the way
content is represented and whether authority is taken
into account. DTC performs best on most evalua-
tion criteria. However, neither DTC nor RSVM, or
WLC take personalization into account. They gen-
erate the same recommendation lists for all users.
Our co-ranking algorithm models user interest with
respect to the content of the tweets and their pub-
lishers. Moreover, it attempts to create diverse out-
put and has an explicit mechanism for minimizing
redundancy. In all instances, using both DCG and
MAP, it outperforms the comparison systems. Inter-
estingly, the performance of CoRank is better when
measured against human judgments. This indicates
that users are interested in tweets that fall outside
the scope of their followers and that recommenda-
tion can improve user experience.

We further examined the contribution of the in-
dividual components of our system to the tweet
recommendation task. Tables 3 and 4 show how
the performance of our co-ranking algorithm varies
when considering only tweet popularity using the
standard PageRank algorithm, personalization (Per-
sRank), and diversity (DivRank). Note that DivRank
is only applied to the tweet graph. The PageR-
ank algorithm on its own makes good recommenda-
tions, while incorporating personalization improves
the performance substantially, which indicates that
individual users show preferences to specific topics
or other users. Diversity on its own does not seem
to make a difference, however it improves perfor-
mance when combined with personalization. Intu-
itively, users are more likely to repost tweets from
their followees, or tweets closely related to those
retweeted previously.

6 Conclusions

We presented a co-ranking framework for a tweet
recommendation system that takes popularity, per-
sonalization and diversity into account. Central to
our approach is the representation of tweets and
their users in a heterogeneous network and the abil-
ity to produce a global ranking that takes both in-
formation sources into account. Our model obtains
substantial performance gains over competitive ap-
proaches on a large real-world dataset (it improves
by 18.3% in DCG and 7.8% in MAP over the best
baseline). Our experiments suggest that improve-
ments are due to the synergy of the two information
sources (i.e., tweets and their authors). The adopted
graph-theoretic framework is advantageous in that
it allows to produce user-specific recommendations
and incorporate diversity in a unified model. Evalua-
tion with actual Twitter users shows that our recom-
mender can indeed identify interesting information
that lies outside the the user’s immediate following
network. In the future, we plan to extend the co-
ranking framework so as to incorporate information
credibility and temporal recency.
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Abstract

Tweets represent a critical source of fresh in-
formation, in which named entities occur fre-
quently with rich variations. We study the
problem of named entity normalization (NEN)
for tweets. Two main challenges are the er-
rors propagated from named entity recogni-
tion (NER) and the dearth of information in
a single tweet. We propose a novel graphi-
cal model to simultaneously conduct NER and
NEN on multiple tweets to address these chal-
lenges. Particularly, our model introduces a
binary random variable for each pair of words
with the same lemma across similar tweets,
whose value indicates whether the two related
words are mentions of the same entity. We
evaluate our method on a manually annotated
data set, and show that our method outper-
forms the baseline that handles these two tasks
separately, boosting the F1 from 80.2% to
83.6% for NER, and the Accuracy from 79.4%
to 82.6% for NEN, respectively.

1 Introduction

Tweets, short messages of less than 140 characters
shared through the Twitter service 1, have become
an important source of fresh information. As a re-
sult, the task of named entity recognition (NER)
for tweets, which aims to identify mentions of rigid
designators from tweets belonging to named-entity
types such as persons, organizations and locations
(2007), has attracted increasing research interest.
For example, Ritter et al. (2011) develop a sys-
tem that exploits a CRF model to segment named

1http://www.twitter.com

entities and then uses a distantly supervised ap-
proach based on LabeledLDA to classify named en-
tities. Liu et al. (2011) combine a classifier based
on the k-nearest neighbors algorithm with a CRF-
based model to leverage cross tweets information,
and adopt the semi-supervised learning to leverage
unlabeled tweets.

However, named entity normalization (NEN) for
tweets, which transforms named entities mentioned
in tweets to their unambiguous canonical forms, has
not been well studied. Owing to the informal nature
of tweets, there are rich variations of named enti-
ties in them. According to our investigation on the
data set provided by Liu et al. (2011), every named
entity in tweets has an average of 3.3 variations 2.
As an illustrative example, we show “Anneke Gron-
loh”, which may occur as “Mw.,Gronloh”, “Anneke
Kronloh” or “Mevrouw G”. We thus propose NEN
for tweets, which plays an important role in entity
retrieval, trend detection, and event and entity track-
ing. For example, Khalid et al. (2008) show that
even a simple normalization method leads to im-
provements of early precision, for both document
and passage retrieval, and better normalization re-
sults in better retrieval performance.

Traditionally, NEN is regarded as a septated task,
which takes the output of NER as its input (Li et al.,
2002; Cohen, 2005; Jijkoun et al., 2008; Dai et al.,
2011). One limitation of this cascaded approach is
that errors propagate from NER to NEN and there is
no feedback from NEN to NER. As demonstrated by
Khalid et al. (2008), most NEN errors are caused

2This data set consists of 12,245 randomly sampled tweets
within five days.
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by recognition errors. Another challenge of NEN
is the dearth of information in a single tweet, due
to the short and noise-prone nature of tweets. Re-
portedly, the accuracy of a baseline NEN system
based on Wikipedia drops considerably from 94%
on edited news to 77% on news comments, a kind of
user generated content (UGC) with similar style to
tweets (Jijkoun et al., 2008).

We propose jointly conducting NER and NEN
on multiple tweets using a graphical model, to
address these challenges. Intuitively, improving
the performance of NER boosts the performance
of NEN. For example, consider the following two
tweets: “· · ·Alex’s jokes. Justin’s smartness. Max’s
randomnes· · · ” and “· · ·Alex Russo was like the
best character on Disney Channel· · · ”. Identify-
ing “Alex” and “Alex Russo” as PERSON will en-
courage NEN systems to normalize “Alex” into
“Alex Russo”. On the other hand, NEN can guide
NER. For instance, consider the following two
tweets: “· · · she knew Burger King when he was a
Prince!· · · ” and “· · · I’m craving all sorts of food:
mcdonalds, burger king, pizza, chinese· · · ”. Sup-
pose the NEN system believes that “burger king”
cannot be mapped to “Burger King” since these two
tweets are not similar in content. This will help NER
to assign them different types of labels. Our method
optimizes these two tasks simultaneously by en-
abling them to interact with each other. This largely
differentiates our method from existing work.

Furthermore, considering multiple tweets simul-
taneously allows us to exploit the redundancy in
tweets, as suggested by Liu et al. (2011). For exam-
ple, consider the following two tweets: “· · ·Bobby
Shaw you don’t invite the wind· · · ” and “· · · I own
yah ! Loool bobby shaw· · · ”. Recognizing “Bobby
Shaw” in the first tweet as a PERSON is easy owing
to its capitalization and the following word “you”,
which in turn helps to identify “bobby shaw” in the
second tweet as a PERSON.

We adopt a factor graph as our graphical model,
which is constructed in the following manner. We
first introduce a random variable for each word in
every tweet, which represents the BILOU (Begin-
ning, the Inside and the Last tokens of multi-token
entities as well as Unit-length entities) label of the
corresponding word. Then we add a factor to con-
nect two neighboring variables, forming a conven-

tional linear chain CRFs. Hereafter, we use tm to
denote the mth tweet ,tim and yi

m to denote the ith

word of of tm and its BILOU label, respectively, and
f i

m to denote the factor related to yi−1
m and yi

m. Next,
for each word pair with the same lemma, denoted by
tim and tjn, we introduce a binary random variable,
denoted by zij

mn, whose value indicates whether tim
and tjn belong to two mentions of the same entity. Fi-
nally, for any zij

mn we add a factor, denoted by f ij
mn,

to connect yi
m, yj

n and zij
mn. Factors in the same

group ({f ij
mn} or {f i

m}) share the same set of fea-
ture templates. Figure 1 illustrates an example of
our factor graph for two tweets.

Figure 1: A factor graph that jointly conducts NER and
NEN on multiple tweets. Blue and green circles rep-
resent NE type (y-serials) and normalization variables
(z-serials), respectively; filled circles indicate observed
random variables; blue rectangles represent the factors
connecting neighboring y-serial variables while red rect-
angles stand for the factors connecting distant y-serial
and z-serial variables.

It is worth noting that our factor graph is differ-
ent from the skip-chain CRFs (Galley, 2006) in the
sense that any skip-chain factor of our model con-
sists not only of two NE type variables (yi

m and yj
n),

which is the case for skip-chain CRFs, but also a nor-
malization variable (zij

mn). It is these normalization
variables that enable us to conduct NER and NEN
jointly.

We manually add normalization information to
the data set shared by Liu et al. (2011), to eval-
uate our method. Experimental results show that
our method achieves 83.6% F1 for NER and 82.6%
Accuracy for NEN, outperforming the baseline with
80.2%F1 for NER and 79.4% Accuracy for NEN.

We summarize our contributions as follows.

1. We introduce the task of NEN for tweets, and
propose jointly conducting NER and NEN for
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multiple tweets using a factor graph, which
leverages redundancy in tweets to make up for
the dearth of information in a single tweet and
allows these two tasks to inform each other.

2. We evaluate our method on a human annotated
data set, and show that our method compares
favorably with the baseline, achieving better
performance in both tasks.

Our paper is organized as follows. In the next sec-
tion, we introduce related work. In Section 3 and 4,
we formally define the task and present our method.
In Section 5, we evaluate our method. And finally
we conclude our work in Section 6.

2 Related Work

Related work can be divided into two categories:
NER and NEN.

2.1 NER

NER has been well studied and its solutions can be
divided into three categories: 1) Rule-based (Krupka
and Hausman, 1998); 2) machine learning based
(Finkel and Manning, 2009; Singh et al., 2010); and
3) hybrid methods (Jansche and Abney, 2002). Ow-
ing to the availability of annotated corpora, such as
ACE05, Enron (Minkov et al., 2005) and CoNLL03
(Tjong Kim Sang and De Meulder, 2003), data
driven methods are now dominant.

Current studies of NER mainly focus on formal
text such as news articles (Mccallum and Li, 2003;
Etzioni et al., 2005). A representative work is that
of Ratinov and Roth (2009), in which they system-
atically study the challenges of NER, compare sev-
eral solutions, and show some interesting findings.
For example, they show that the BILOU encoding
scheme significantly outperforms the BIO schema
(Beginning, the Inside and Outside of a chunk).

A handful of work on other genres of texts exists.
For example, Yoshida and Tsujii build a biomedi-
cal NER system (2007) using lexical features, or-
thographic features, semantic features and syntactic
features, such as part-of-speech (POS) and shallow
parsing; Downey et al. (2007) employ capitaliza-
tion cues and n-gram statistics to locate names of a
variety of classes in web text; Wang (2009) intro-
duces NER to clinical notes. A linear CRF model

is trained on a manually annotated data set, which
achieves an F1 of 81.48% on the test data set; Chiti-
cariu et al. (2010) design and implement a high-
level language NERL which simplifies the process
of building, understanding, and customizing com-
plex rule-based named-entity annotators for differ-
ent domains.

Recently, NER for Tweets attracts growing inter-
est. Finin et al. (2010) use Amazons Mechani-
cal Turk service 3 and CrowdFlower 4 to annotate
named entities in tweets and train a CRF model to
evaluate the effectiveness of human labeling. Rit-
ter et al. (2011) re-build the NLP pipeline for
tweets beginning with POS tagging, through chunk-
ing, to NER, which first exploits a CRF model to
segment named entities and then uses a distantly su-
pervised approach based on LabeledLDA to clas-
sify named entities. Unlike this work, our work de-
tects the boundary and type of a named entity si-
multaneously using sequential labeling techniques.
Liu et al. (2011) combine a classifier based on
the k-nearest neighbors algorithm with a CRF-based
model to leverage cross tweets information, and
adopt the semi-supervised learning to leverage un-
labeled tweets. Our method leverages redundance
in similar tweets, using a factor graph rather than a
two-stage labeling strategy. One advantage of our
method is that local and global information can in-
teract with each other.

2.2 NEN

There is a large body of studies into normalizing
various types of entities for formally written texts.
For instance, Cohen (2005) normalizes gene/protein
names using dictionaries automatically extracted
from gene databases; Magdy et al. (2007) address
cross-document Arabic name normalization using a
machine learning approach, a dictionary of person
names and frequency information for names in a
collection; Cucerzan (2007) demostrates a large-
scale system for the recognition and semantic dis-
ambiguation of named entities based on informa-
tion extracted from a large encyclopedic collection
and Web search results; Dai et al. (2011) employ
a Markov logic network to model interweaved con-

3https://www.mturk.com/mturk/
4http://crowdflower.com/
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straints in a setting of gene mention normalization.
Jijkoun et al. (2008) study NEN for UGC. They

report that the accuracy of a baseline NEN system
based on Wikipedia drops considerably from 94%
on edited news to 77% on UGC. They identify three
main error sources, i.e., entity recognition errors,
multiple ways of referring to the same entity and am-
biguous references, and exploit hand-crafted rules to
improve the baseline NEN system.

We introduce the task of NEN for tweets, a new
genre of texts with rich entity variations. In contrast
to existing NEN systems, which take the output of
NER systems as their input, our method conducts
NER and NEN at the same time, allowing them to
reinforce each other, as demonstrated by the experi-
mental results.

3 Task Definition

A tweet is a short text message with no more than
140 characters. Here is an example of a tweet: “my-
craftingworld: #Win Microsoft Office 2010 Home
and Student #Contest from @office http://bit.ly/ · · ·
”, where “mycraftingworld” is the name of the user
who published this tweet. Words beginning with
“#” like “”#Win” are hash tags; words starting
with “@” like “@office” represent user names; and
“http://bit.ly/” is a shortened link.

Given a set of tweets, e.g., tweets within some pe-
riod or related to some query, our task is: 1) To rec-
ognize each mention of entities of predefined types
for each tweet; and 2) to restore each entity mention
into its unambiguous canonical form. Following Liu
et al. (2011), we focus on four types of entities, i.e.,
PERSON, ORGANIZATION, PRODUCT, and LO-
CATION, and constrain our scope to English tweets.
Note that the NEN sub-task can be transformed as
follows. Given each pair of entity mentions, decide
whether they denote the same entity. Once this is
achieved, we can link all the mentions of the same
entity, and choose a representative mention, e.g., the
longest mention, as their canonical form.

As an illustrative example, consider the following
three tweets: “· · ·Gaga’s Christmas dinner with her
family. Awwwwn· · · ”, “· · ·Lady Gaaaaga with her
family on Christmas· · · ” and “· · ·Buying a maga-
zine just because Lady Gaga’s on the cover· · · ”. It
is expected that “Gaga”, “Lady Gaaaaga” and “Lady

Gaga” are all labeled as PERSON, and can be re-
stored as “Lady Gaga”.

4 Our Method

In contrast to existing work, our method jointly
conducts NER and NEN for multiple tweets. We
first give an overview of our method, then detail its
model and features.

4.1 Overview

Given a set of tweets as input, our method recog-
nizes predefined types of named entities and for each
entity outputs its unambiguous canonical form.

To resolve NER, we assign a label to each
word in a tweet, indicating both the boundary
and entity type. Following Ratinov and Roth
(2009), we use the BILOU schema. For ex-
ample, consider the tweet “· · ·without you is
like an iphone without apps; Lady gaga with-
out her telephone· · · ”, the labeled sequence us-
ing the BILOU schema is: “· · ·withoutO youO

isO likeO anO iphoneU−PRODUCT withoutO appsO;
LadyB−PERSON gagaL−PERSON withoutO herO
telephoneO· · · ” , where “iphoneU−PRODUCT ” indi-
cates that “iphone” is a product name of unit length;
“LadyB−PERSON ” means “Lady” is the beginning
of a person name while “gagaL−PERSON ” suggests
that “gaga” is the last token of a person name.

To resolve NEN, we assign a binary value label
zij
mn to each pair of words tim and tjn which share the

same lemma. zij
mn = 1 or -1, indicating whether tim

and tjn belong to two mentions of the same entity 5.
For example, consider the three tweets presented in
Section 3. “Gaga1

1” 6 and “Gaga1
3” will be assigned

a “1” label, since they are part of two mentions of the
same entity “Lady Gaga”; similarly, “Lady1

2” and
“Lady1

3” are connected with a “1” label. Note that
there are no NEN labels for pairs like “her11” and
“her12” or “with1

1 and “with1
2”, since words like “her”

and “with” are stop words.
With NE type and normalization labels obtained,

we judge two mentions, denoted by ti1···ikm and

5Stop words have no normalization labels. The stop words
are mainly from http://www.textfixer.com/resources/common-
english-words.txt.

6We use wi
m to denote word w’s ith appearance in the mth

tweet. For example, “Gaga1
1” denotes the first occurance of

“Gaga” in the first tweet.
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tj1···jl
n , respectively, refer to the same entity if and

only if: 1) The two mentions share the same entity
type; 2) ti1···ikm is a sub-string of tj1···jl

n or vise versa;
and 3) zij

mn = 1, i = i1, · · · , ik and j = j1, · · · , jl,
if zij

mn exists. Still take the three tweets presented
in Section 3 for example. Suppose “Gaga1

1” and
“Lady Gaga1

3” are labeled as PERSON, and there
is only one related NE normalization label, which
is associated with “‘Gaga1

1” and “Gaga1
3” and has 1

as its value. We then consider that these two men-
tions can be normalized into the same entity; in a
similar way, we can align “Lady1

2 Gaaaaga” with
“Lady1

3 Gaga”. Combining these pieces informa-
tion together, we can infer that “‘Gaga1

1”, “Lady1
2

Gaaaaga” and “Lady1
3 Gaga” are three mentions of

the same entity. Finally, we can select ‘Lady1
3 Gaga”

as the representative, and output ‘Lady Gaga” as
their canonical form. We choose the mention with
the maximum number of words as the representa-
tive. In case of a tie, we prefer the mention with an
Wikipedia entry 7.

The central problem with our method is infer-
ring all the NE type (y-serial) and normalization
(z-serial) variables. To achieve this, we construct
a factor graph according to the input tweets, which
can evaluate the probability of every possible assign-
ment of y-serials and z-serials, by checking the
characteristics of the assignment. Each character-
istic is called a feature. In this way, we can select
the assignment with the highest probability. Next
we will introduce our model in detail, including its
training and inference procedure and features.

4.2 Model
We adopt a factor graph as our model. One advan-
tage of our model is that it allows y-serials and
z-serials variables to interact with each other to
jointly optimize NER and NEN.

Given a set of tweets T = {tm}N
m=1, we can build

a factor graph G = (Y,Z, F,E), where: Y and Z
denote y-serials and z-serials variables, respec-
tively; F represents factor vertices, consisting of
{f i

m} and {f ij
mn}, f i

m = f i
m(yi−1

m , yi
m) and f ij

mn =
f ij

mn(yi
m, yj

n, zij
mn); E stands for edges, which de-

pends on F , and consists of edges between yi−1
m and

yi
m, and those between yi

m,yj
n and f ij

mn.
7If it still ends up as a draw, we will randomly choose one

from the best.

G = (Y, Z, F, E) defines a probability distribu-
tion according to Formula 1.

ln P (Y, Z|G, T ) ∝
∑
m,i

ln f i
m(yi−1

m , yi
m)+

∑
m,n,i,j

δij
mn · ln f ij

mn(yi
m, yj

n, zij
mn)

(1)

where δij
mn = 1 if and only if tim and tjn have the

same lemma and are not stop words, otherwise zero.
A factor factorizes according to a set of features, so
that:

ln f i
m(yi−1

m , yi
m) =

∑
k

λ
(1)
k ϕ

(1)
k (yi−1

m , yi
m)

ln f ij
mn(yi

m, yj
n, zij

mn) =
∑

k

λ
(2)
k ϕ

(2)
k (yi

m, yj
n, zij

mn)

(2)
{ϕ(1)

k }K1
k=1 and {ϕ(2)

k }K2
k=1 are two feature sets. Θ =

{λ(1)
k }K1

k=1

∪
{λ(2)

k }K2
k=1 is called the feature weight

set or parameter set of G. Each feature has a real
value as its weight.
Training Θ is learnt from annotated tweets T , by
maximizing the data likelihood, i.e.,

Θ∗ = arg max
Θ

lnP (Y,Z|Θ, T ) (3)

To solve this optimization problem, we first calcu-
late its gradient:

∂ ln P (Y, Z|T ; Θ)

∂λ1
k

=
∑
m,i

ϕ
(1)
k (yi−1

m , yi
m)

−
∑
m,i

∑
yi−1

m ,yi
m

p(yi−1
m , yi

m|T ; Θ)ϕ
(1)
k (yi−1

m , yi
m)

(4)

∂ ln P (Y, Z|T ; Θ)

∂λ2
k

=
∑

m,n,i,j

δij
mn · ϕ

(2)
k (yi

m, yj
n, zij

mn)

−
∑

m,n,i,j

δij
mn

∑
yi

m,yj
n,zij

mn

p(yi
m, yj

n, zij
mn|T ; Θ)

·ϕ(2)
k (yi

m, yj
n, zij

mn)
(5)

Here, the two marginal probabilities
p(yi−1

m , yi
m|T ; Θ) and p(yi

m, yj
n, zij

mn|T ; Θ) are
computed using loopy belief propagation (Murphy
et al., 1999). Once we have computed the gradient,
Θ∗ can be worked out by standard techniques such
as steepest descent, conjugate gradient and the
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limited-memory BFGS algorithm (L-BFGS). We
choose L-BFGS because it is particularly well suited
for optimization problems with a large number of
variables.
Inference Supposing the parameters Θ have been
set to Θ∗, the inference problem is: Given a set
of testing tweets T , output the most probable
assignment of Y and Z, i.e.,

(Y, Z)∗ = arg max
(Y,Z)

lnP (Y,Z|Θ∗, T ) (6)

We adopt the max-product algorithm to solve this
inference problem. The max-product algorithm is
nearly identical to the loopy belief propagation al-
gorithm, with the sums replaced by maxima in the
definitions. Note that in both the training and test-
ing stage, the factor graph is constructed in the same
way as described in Section 1.
Efficiency We take several actions to improve our
model’s efficiency. Firstly, we manually compile a
comprehensive named entity dictionary from vari-
ous sources including Wikipedia, Freebase 8, news
articles and the gazetteers shared by Ratinov and
Roth (2009). In total this dictionary contains 350
million entries 9. By looking up this dictionary 10,
we generate the possible BILOU labels, denoted by
Y i

m hereafter, for each word tim. For instance, con-
sider “· · ·Good Morning new1

1 york1
1· · · ”. Suppose

“New York City” and “New York Times” are in
our dictionary, then “new1

1 york1
1” is the matched

string with two corresponding entities. As a re-
sult, “B-LOCATION” and “B-ORGANIZATION”
will be added to Ynew1

1
, and “I-LOCATION” and

“I-ORGANIZATION” will be added to Yyork1
1
. If

Y i
m ̸= ∅, we enforce the constraint for training and

testing that yi
m ∈ Y i

m , to reduce the search space.
Secondly, in the testing phase, we introduce three

rules related to zij
mn: 1) zij

mm = 1, which says two
words sharing the same lemma in the same tweet
denote the same entity; 2) set zij

mn to 1, if the sim-
ilarity between tm and tn is above a threshold (0.8
in our work), or tm and tn share one hash tag; and
3)zmnij = −1, if the similarity between tm and
tn is below a threshold (0.3 in work). To compute

8http://freebase.com/view/military
9One phrase refereing to L entities has L entries.

10We use case-insensitive leftmost longest match.

the similarity, each tweet is represented as a bag-of-
words vector with the stop words removed, and the
cosine similarity is adopted, as defined in Formula
7. These rules pre-label a significant part of z-serial
variables (accounting for 22.5%), with an accuracy
of 93.5%.

sim(tm, tn) =
t⃗m · t⃗n
|⃗tm||⃗tn|

(7)

Note that in our experiments, these measures reduce
the training and testing time by 36.2% and 62.8%,
respectively, while no obvious performance drop is
observed.

4.3 Features
A feature in {ϕ(1)

k }K1
k=1 involves a pair of neighbor-

ing NE-type labels, i.e., yi−1
m and yi

m, while a fea-
ture in {ϕ(2)

k }K2
k=1 concerns a pair of distant NE-type

labels and its associated normalization label, i.e.,
yi

m,yj
n and zij

mn. Details are given below.

4.3.1 Feature Set One: {ϕ(1)
k }K1

k=1

We adopts features similar to Wang (2009), and
Ratinov and Roth (2009), i.e., orthographic features,
lexical features and gazetteer-related features. These
features are defined on the observation. Combining
them with yi−1

m and yi
m constitutes {ϕ(1)

k }K1
k=1.

Orthographic features: Whether tim is capitalized
or upper case; whether it is alphanumeric or contains
any slashes; wether it is a stop word; word prefixes
and suffixes.
Lexical features: Lemma of tim, ti−1

m and ti+1
m ,

respectively; whether tim is an out-of-vocabulary
(OOV) word 11; POS of tim, ti−1

m and ti+1
m , respec-

tively; whether tim is a hash tag, a link, or a user
account.
Gazetteer-related features: Whether Y i

m is empty;
the dominating label/entity type in Y i

m. Which one
is dominant is decided by majority voting of the en-
tities in our dictionary. In case of a tie, we randomly
choose one from the best.

4.3.2 Feature Set Two: {ϕ(2)
k }K2

k=1

Similarly, we define orthographic, lexical features
and gazetteer-related features on the observation, yi

m

11We first conduct a simple dictionary-lookup based normal-
ization with the incorrect/correct word pair list provided by Han
et al. (2011) to correct common ill-formed words. Then we call
an online dictionary service to judge whether a word is OOV.
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and yj
n; and then we combine these features with

zij
mn, forming {ϕ(2)

k }K2
k=1.

Orthographic features: Whether tim / tjn is capital-
ized or upper case; whether tim / tjn is alphanumeric
or contains any slashes; prefixes and suffixes of tim.
Lexical features: Lemma of tim; whether tim is
OOV; whether tim / ti+1

m / ti−1
m and tjn / tj+1

n / tj−1
n

have the same POS; whether yi
m and yj

n have the
same label/entity type.
Gazetteer-related features: Whether Y i

m

∩
Y j

n /
Y i+1

m

∩
Y j+1

n / Y i−1
m

∩
Y j−1

n is empty; whether the
dominating label/entity type in Y i

m is the same as
that in Y j

n .

5 Experiments

We manually annotate a data set to evaluate our
method. We show that our method outperforms the
baseline, a cascaded system that conducts NER and
NEN individually.

5.1 Data Preparation

We use the data set provided by Liu et al. (2011),
which consists of 12,245 tweets with four types of
entities annotated: PERSON, LOCATION, ORGA-
NIZATION and PRODUCT. We enrich this data set
by adding entity normalization information. Two
annotators 12 are involved. For any entity mention,
two annotators independently annotate its canonical
form. The inter-rater agreement measured by kappa
is 0.72. Any inconsistent case is discussed by the
two annotators till a consensus is reached. 2, 245
tweets are used for development, and the remainder
are used for 5-fold cross validation.

5.2 Evaluation Metrics

We adopt the widely-used Precision, Recall and F1
to measure the performance of NER for a partic-
ular type of entity, and the average Precision, Re-
call and F1 to measure the overall performance of
NER (Liu et al., 2011; Ritter et al., 2011). As for
NEN, we adopt the widely-used Accuracy, i.e., to
what percentage the outputted canonical forms are
correct (Jijkoun et al., 2008; Cucerzan, 2007; Li et
al., 2002).

12Two native English speakers.

5.3 Baseline

We develop a cascaded system as the baseline,
which conducts NER and NEN sequentially. Its
NER module, denoted by SBR, is based on the state-
of-the-art method introduced by Liu et al. (2011);
and its NEN model , denoted by SBN , follows
the NEN system for user-generated news comments
proposed by Jijkoun et al. (2008), which uses
handcrafted rules to improve a typical NEN system
that normalizes surface forms to Wikipedia page ti-
tles. We use the POS tagger developed by Ritter et
al. (2011) to extract POS related features, and the
OpenNLP toolkit to get lemma related features.

5.4 Results

Tables 1- 2 show the overall performance of the
baseline and ours (denoted by SRN ). It can be
seen that, our method yields a significantly higher
F1 (with p < 0.01) than SBR, and a moderate im-
provement of accuracy as compared with SBN (with
p < 0.05). As a case study, we show that our system
successfully identified “jaxon1

1” as a PERSON in the
tweet “· · · come to see jaxon1

1 someday· · · ”, which
is mistakenly labeled as a LOCATION by SBR.
This is largely owing to the fact that our system
aligns “jaxon1

1” with “Jaxson1
2” in the tweet “· · · I

love Jaxson1
2,Hes like my little brother· · · ”, in which

“Jaxson1
2” is identified as a PERSON. As a result,

this encourages our system to consider “jaxon1
1” as

a PERSON. We also find cases where our system
works but SBN fails. For example, “Goldman1

1”
in the tweet “· · ·Goldman sees massive upside risk
in oil prices· · · ” is normalized into “Albert Gold-
man” by SBR, because it is mistakenly identified as
a PERSON by SBS ; in contrast, our system recog-
nizes “Goldman1

2 Sachs” as an ORGANIZATION,
and successfully links ‘Goldman1

2” to “Goldman1
1”,

resulting that “Goldman1
1” is identified as an ORGA-

NIZATION and normalized into “Goldman Sachs”.
Table 3 reports the NER performance of our

method for each entity type, from which we see that
our system consistently yields better F1 on all entity
types than SBR. We also see that our system boosts
the F1 for ORGANIZATION most significantly, re-
flecting the fact that a large number of organizations
that are incorrectly labeled as PERSON by SBR, are
now correctly recognized by our method.
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System Pre Rec F1
SRN 84.7 82.5 83.6
SBR 81.6 78.8 80.2

Table 1: Overall performance (%) of NER.

System Accuracy
SRN 82.6
SBN 79.4

Table 2: Overall Accuracy (%) of NEN .

System PER PRO LOC ORG
SRN 84.2 80.5 82.1 85.2
SBR 83.9 78.7 81.3 79.8

Table 3: F1 (%) of NER on different entity types.

Features NER (F1) NEN (Accuracy)
Fo 59.2 61.3

Fo + Fl 65.8 68.7
Fo + Fg 80.1 77.2

Fo + Fl + Fg 83.6 82.6

Table 4: Overall F1 (%) of NER and Accuracy (%) of
NEN with different feature sets.

Table 4 shows the overall performance of our
method with various feature set combinations,
where Fo, Fl and Fg denote the orthographic fea-
tures, the lexical features, and the gazetteer-related
features, respectively. From Table 4 we see that
gazetteer-related features significantly boost the F1
for NER and Accuracy for NEN, suggesting the im-
portance of external knowledge for this task.

5.5 Discussion

One main error source for NER and NEN, which
accounts for more than half of all the errors, is
slang expressions and informal abbreviations. For
instance, our method recognizes “California1

1” in
the tweet “· · ·And Now, He Lives All The Way In
California1

1· · · ” as a LOCATION, however, it mis-
takenly identifies “Cali12” in the tweet “· · · i love
Cali so much· · · ” as a PERSON. One reason is our
system does not generate any z-serial variable for
“California1

1” and “Cali12” since they have differ-
ent lemmas. A more complicated case is “BS1

1” in
the tweet “· · · I, bobby shaw, am gonna put BS1

1 on

everything· · · ”, in which “BS1
1” is the abbreviation

of “bobby shaw”. Our method fails to recognize
“BS1

1” as an entity. There are two possible ways to
fix these errors: 1) Extending the scope of z-serial
variables to each word pairs with a common prefix;
and 2) developing advanced normalization compo-
nents to restore such slang expressions and informal
abbreviations into their canonical forms.

Our method does not directly exploit Wikipedia
for NEN. This explains the cases where our system
correctly links multiple entity mentions but fails to
generate canonical forms. Take the following two
tweets for example: “· · · nitip link win71

1 sp1· · · ”
and “· · ·Hit the 3TB wall on SRT installing fresh
Win71

2· · · ”. Our system recognizes “win71
1” and

“Win71
2” as two mentions of the same product, but

cannot output their canonical forms “Windows 7”.
One possible solution is to exploit Wikipedia to
compile a dictionary consisting of entities and their
variations.

6 Conclusions and Future work

We study the task of NEN for tweets, a new genre
of texts that are short and prone to noise. Two chal-
lenges of this task are the dearth of information in
a single tweet and errors propagated from the NER
component. We propose jointly conducting NER
and NEN for multiple tweets using a factor graph, to
address these challenges. One unique characteristic
of our model is that a NE normalization variable is
introduced to indicate whether a word pair belongs
to the mentions of the same entity. We evaluate our
method on a manually annotated data set. Experi-
mental results show our method yields better F1 for
NER and Accuracy for NEN than the state-of-the-art
baseline that conducts two tasks sequentially.

In the future, we plan to explore two directions to
improve our method. First, we are going to develop
advanced tweet normalization technologies to re-
solve slang expressions and informal abbreviations.
Second, we are interested in incorporating knowl-
edge mined from Wikipedia into our factor graph.
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Abstract

Microblogs such as Twitter reflect the general
public’s reactions to major events. Bursty top-
ics from microblogs reveal what events have
attracted the most online attention. Although
bursty event detection from text streams has
been studied before, previous work may not
be suitable for microblogs because compared
with other text streams such as news articles
and scientific publications, microblog posts
are particularly diverse and noisy. To find top-
ics that have bursty patterns on microblogs,
we propose a topic model that simultaneous-
ly captures two observations: (1) posts pub-
lished around the same time are more like-
ly to have the same topic, and (2) posts pub-
lished by the same user are more likely to have
the same topic. The former helps find event-
driven posts while the latter helps identify and
filter out “personal” posts. Our experiments
on a large Twitter dataset show that there are
more meaningful and unique bursty topics in
the top-ranked results returned by our mod-
el than an LDA baseline and two degenerate
variations of our model. We also show some
case studies that demonstrate the importance
of considering both the temporal information
and users’ personal interests for bursty topic
detection from microblogs.

1 Introduction

With the fast growth of Web 2.0, a vast amount of
user-generated content has accumulated on the so-
cial Web. In particular, microblogging sites such
as Twitter allow users to easily publish short in-
stant posts about any topic to be shared with the

general public. The textual content coupled with
the temporal patterns of these microblog posts pro-
vides important insight into the general public’s in-
terest. A sudden increase of topically similar posts
usually indicates a burst of interest in some event
that has happened offline (such as a product launch
or a natural disaster) or online (such as the spread
of a viral video). Finding bursty topics from mi-
croblogs therefore can help us identify the most pop-
ular events that have drawn the public’s attention. In
this paper, we study the problem of finding bursty
topics from a stream of microblog posts generated
by different users. We focus on retrospective detec-
tion, where the text stream within a certain period is
analyzed in its entirety.

Retrospective bursty event detection from tex-
t streams is not new (Kleinberg, 2002; Fung et al.,
2005; Wang et al., 2007), but finding bursty topic-
s from microblog steams has not been well studied.
In his seminal work, Kleinberg (2002) proposed a s-
tate machine to model the arrival times of documents
in a stream in order to identify bursts. This model
has been widely used. However, this model assumes
that documents in the stream are all about a given
topic. In contrast, discovering interesting topics that
have drawn bursts of interest from a stream of top-
ically diverse microblog posts is itself a challenge.
To discover topics, we can certainly apply standard
topic models such as LDA (Blei et al., 2003), but
with standard LDA temporal information is lost dur-
ing topic discovery. For microblogs, where posts are
short and often event-driven, temporal information
can sometimes be critical in determining the topic of
a post. For example, typically a post containing the
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word “jobs” is likely to be about employment, but
right after October 5, 2011, a post containing “jobs”
is more likely to be related to Steve Jobs’ death. Es-
sentially, we expect that on microblogs, posts pub-
lished around the same time have a higher probabil-
ity to belong to the same topic.

To capture this intuition, one solution is to assume
that posts published within the same short time win-
dow follow the same topic distribution. Wang et
al. (2007) proposed a PLSA-based topic model that
exploits this idea to find correlated bursty patterns
across multiple text streams. However, their model
is not immediately applicable for our problem. First,
their model assumes multiple text streams where
word distributions for the same topic are different
on different streams. More importantly, their model
was applied to news articles and scientific publica-
tions, where most documents follow the global top-
ical trends. On microblogs, besides talking about
global popular events, users also often talk about
their daily lives and personal interests. In order to
detect global bursty events from microblog posts, it
is important to filter out these “personal” posts.

In this paper, we propose a topic model designed
for finding bursty topics from microblogs. Our mod-
el is based on the following two assumptions: (1) If
a post is about a global event, it is likely to follow
a global topic distribution that is time-dependent.
(2) If a post is about a personal topic, it is likely
to follow a personal topic distribution that is more
or less stable over time. Separation of “global” and
“personal” posts is done in an unsupervised manner
through hidden variables. Finally, we apply a state
machine to detect bursts from the discovered topics.

We evaluate our model on a large Twitter dataset.
We find that compared with bursty topics discovered
by standard LDA and by two degenerate variations
of our model, bursty topics discovered by our model
are more accurate and less redundant within the top-
ranked results. We also use some example bursty
topics to explain the advantages of our model.

2 Related Work

To find bursty patterns from data streams, Kleinberg
(2002) proposed a state machine to model the ar-
rival times of documents in a stream. Different states
generate time gaps according to exponential density

functions with different expected values, and bursty
intervals can be discovered from the underlying state
sequence. A similar approach by Ihler et al. (2006)
models a sequence of count data using Poisson dis-
tributions. To apply these methods to find bursty
topics, the data stream used must represent a single
topic.

Fung et al. (2005) proposed a method that iden-
tifies both topics and bursts from document stream-
s. The method first finds individual words that have
bursty patterns. It then finds groups of words that
tend to share bursty periods and co-occur in the same
documents to form topics. Weng and Lee (2011)
proposed a similar method that first characterizes the
temporal patterns of individual words using wavelet-
s and then groups words into topics. A major prob-
lem with these methods is that the word clustering
step can be expensive when the number of bursty
words is large. We find that the method by Fung
et al. (2005) cannot be applied to our dataset be-
cause their word clustering algorithm does not scale
up. Weng and Lee (2011) applied word clustering
to only the top bursty words within a single day, and
subsequently their topics mostly consist of two or
three words. In contrast, our method is scalable and
each detected bursty topic is directly associated with
a word distribution and a set of tweets (see Table 3),
which makes it easier to interpret the topic.

Topic models provide a principled and elegan-
t way to discover hidden topics from large docu-
ment collections. Standard topic models do not con-
sider temporal information. A number of temporal
topic models have been proposed to consider topic
changes over time. Some of these models focus on
the change of topic composition, i.e. word distri-
butions, which is not relevant to bursty topic detec-
tion (Blei and Lafferty, 2006; Nallapati et al., 2007;
Wang et al., 2008). Some other work looks at the
temporal evolution of topics, but the focus is not on
bursty patterns (Wang and McCallum, 2006; Ahmed
and Xing, 2008; Masada et al., 2009; Ahmed and X-
ing, 2010; Hong et al., 2011).

The model proposed by Wang et al. (2007) is the
most relevant to ours. But as we have pointed out
in Section 1, they do not need to handle the sep-
aration of “personal” documents from event-driven
documents. As we will show later in our experi-
ments, for microblogs it is critical to model users’
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personal interests in addition to global topical trend-
s.

To capture users’ interests, Rosen-Zvi et al.
(2004) expand topic distributions from document-
level to user-level in order to capture users’ specif-
ic interests. But on microblogs, posts are short and
noisy, so Zhao et al. (2011) further assume that each
post is assigned a single topic and some words can
be background words. However, these studies do not
aim to detect bursty patterns. Our work is novel in
that it combines users’ interests and temporal infor-
mation to detect bursty topics.

3 Method

3.1 Preliminaries

We first introduce the notation used in this paper and
formally formulate our problem. We assume that
we have a stream of D microblog posts, denoted as
d1, d2, . . . , dD. Each post di is generated by a user
ui, where ui is an index between 1 and U , and U is
the total number of users. Each di is also associat-
ed with a discrete timestamp ti, where ti is an index
between 1 and T , and T is the total number of time
points we consider. Each di contains a bag of word-
s, denoted as {wi,1, wi,2, . . . , wi,Ni}, where wi,j is
an index between 1 and V , and V is the vocabulary
size. Ni is the number of words in di.

We define a bursty topic b as a word distri-
bution coupled with a bursty interval, denoted as
(ϕb, tbs, t

b
e), where ϕb is a multinomial distribution

over the vocabulary, and tbs and tbe (1 ≤ tbs ≤ tbe ≤ T )
are the start and the end timestamps of the bursty in-
terval, respectively. Our task is to find meaningful
bursty topics from the input text stream.

Our method consists of a topic discovery step and
a burst detection step. At the topic discovery step,
we propose a topic model that considers both users’
topical interests and the global topic trends. Burst
detection is done through a standard state machine
method.

3.2 Our Topic Model

We assume that there are C (latent) topics in the text
stream, where each topic c has a word distribution
ϕc. Note that not every topic has a bursty interval.
On the other hand, a topic may have multiple bursty
intervals and hence leads to multiple bursty topics.

We also assume a background word distribution ϕB

that captures common words. All posts are assumed
to be generated from some mixture of these C + 1
underlying topics.

In standard LDA, a document contains a mixture
of topics, represented by a topic distribution, and
each word has a hidden topic label. While this is a
reasonable assumption for long documents, for short
microblog posts, a single post is most likely to be
about a single topic. We therefore associate a single
hidden variable with each post to indicate its topic.
Similar idea of assigning a single topic to a short se-
quence of words has been used before (Gruber et al.,
2007; Zhao et al., 2011). As we will see very soon,
this treatment also allows us to model topic distribu-
tions at time window level and user level.

As we have discussed in Section 1, an importan-
t observation we have is that when everything else
is equal, a pair of posts published around the same
time is more likely to be about the same topic than a
random pair of posts. To model this observation, we
assume that there is a global topic distribution θt for
each time point t. Presumably θt has a high prob-
ability for a topic that is popular in the microblog-
sphere at time t.

Unlike news articles from traditional media,
which are mostly about current affairs, an important
property of microblog posts is that many posts are
about users’ personal encounters and interests rather
than global events. Since our focus is to find popular
global events, we need to separate out these “person-
al” posts. To do this, an intuitive idea is to compare
a post with its publisher’s general topical interests
observed over a long time. If a post does not match
the user’s long term interests, it is more likely re-
lated to a global event. We therefore introduce a
time-independent topic distribution ηu for each us-
er to capture her long term topical interests.

We assume the following generation process for
all the posts in the stream. When user u publishes
a post at time point t, she first decides whether to
write about a global trendy topic or a personal top-
ic. If she chooses the former, she then selects a topic
according to θt. Otherwise, she selects a topic ac-
cording to her own topic distribution ηu. With the
chosen topic, words in the post are generated from
the word distribution for that topic or from the back-
ground word distribution that captures white noise.
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1. Draw ϕB ∼ Dirichlet(β), π ∼ Beta(γ), ρ ∼
Beta(λ)

2. For each time point t = 1, . . . , T

(a) draw θt ∼ Dirichlet(α)

3. For each user u = 1, . . . , U

(a) draw ηu ∼ Dirichlet(α)

4. For each topic c = 1, . . . , C,
(a) draw ϕc ∼ Dirichlet(β)

5. For each post i = 1, . . . , D,
(a) draw yi ∼ Bernoulli(π)

(b) draw zi ∼ Multinomial(ηui) if yi = 0 or
zi ∼ Multinomial(θti) if yi = 1

(c) for each word j = 1, . . . , Ni

i. draw xi,j ∼ Bernoulli(ρ)

ii. draw wi,j ∼ Multinomial(ϕB) if
xi,j = 0 or wi,j ∼ Multinomial(ϕzi)
if xi,j = 1

Figure 2: The generation process for all posts.

We use π to denote the probability of choosing to
talk about a global topic rather than a personal topic.

Formally, the generation process is summarized in
Figure 2. The model is also depicted in Figure 1(a).

There are two degenerate variations of our model
that we also consider in our experiments. The first
one is depicted in Figure 1(b). In this model, we only
consider the time-dependent topic distributions that
capture the global topical trends. This model can be
seen as a direct application of the model by Wang
et al. (2007). The second one is depicted in Fig-
ure 1(c). In this model, we only consider the users’
personal interests but not the global topical trends,
and therefore temporal information is not used. We
refer to our complete model as TimeUserLDA, the
model in Figure 1(b) as TimeLDA and the model in
Figure 1(c) as UserLDA. We also consider a standard
LDA model in our experiments, where each word is
associated with a hidden topic.

Learning

We use collapsed Gibbs sampling to obtain sam-
ples of the hidden variable assignment and to esti-
mate the model parameters from these samples. Due
to space limit, we only show the derived Gibbs sam-
pling formulas as follows.

First, for the i-th post, we know its publisher ui

and timestamp ti. We can jointly sample yi and zi

based on the values of all other hidden variables. Let
us use y to denote the set of all hidden variables y
and y¬i to denote all y except yi. We use similar
symbols for other variables. We then have

p(yi = p, zi = c|z¬i,y¬i,x,w) ∝
Mπ

(p) + γ

Mπ
(·) + 2γ

·
M l

(c) + α

M l
(·) + Cα

·
∏V

v=1

∏E(v)−1

k=0 (M c
(v) + k + β)∏E(·)−1

k=0 (M c
(·) + k + V β)

, (1)

where l = ui when p = 0 and l = ti when p =
1. Here every M is a counter. Mπ

(0) is the number
of posts generated by personal interests, while Mπ

(1)
is the number of posts coming from global topical
trends. Mπ

(·) = Mπ
0 + Mπ

1 . Mui

(c) is the number of
posts by user ui and assigned to topic c, and Mui

(·) is

the total number of posts by ui. M ti
(c) is the number

of posts assigned to topic c at time point ti, and M ti
(·)

is the total number of posts at ti. E(v) is the number
of times word v occurs in the i-th post and is labeled
as a topic word, while E(·) is the total number of
topic words in the i-th post. Here, topic words refer
to words whose latent variable x equals 1. M c

(v) is
the number of times word v is assigned to topic c,
and M c

(·) is the total number of words assigned to
topic c. All the counters M mentioned above are
calculated with the i-th post excluded.

We sample xi,j for each word wi,j in the i-th post
using

p(xi,j = q|y, z,x¬{i,j},w)

∝
Mρ

(q) + γ

Mρ
(·) + 2γ

·
M l

(wi,j)
+ β

M l
(·) + V β

, (2)

where l = B when q = 0 and l = zi when q = 1.
Mρ

(0) and Mρ
(1) are counters to record the numbers

of words assigned to the background model and any
topic, respectively, and Mρ

(·) = Mρ
(0)+Mρ

(1). MB
(wi,j)

is the number of times word wi,j occurs as a back-
ground word. M zi

(wi,j)
counts the number of times

word wi,j is assigned to topic zi, and M zi

(·) is the to-
tal number of words assigned to topic zi. Again, all
counters are calculated with the current word wi,j

excluded.
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Figure 1: (a) Our topic model for burst detection. (b) A variation of our model where we only consider global topical
trends. (c) A variation of our model where we only consider users’ personal topical interests.

3.3 Burst Detection
Just like standard LDA, our topic model itself finds a
set of topics represented by ϕc but does not directly
generate bursty topics. To identify bursty topics, we
use the following mechanism, which is based on the
idea by Kleinberg (2002) and Ihler et al. (2006). In
our experiments, when we compare different mod-
els, we also use the same burst detection mechanism
for other models.

We assume that after topic modeling, for each dis-
covered topic c, we can obtain a series of counts
(mc

1,m
c
2, . . . , m

c
T ) representing the intensity of the

topic at different time points. For LDA, these
are the numbers of words assigned to topic c.
For TimeUserLDA, these are the numbers of posts
which are in topic c and generated by the global top-
ic distribution θti , i.e whose hidden variable yi is 1.
For other models, these are the numbers of posts in
topic c.

We assume that these counts are generated by two
Poisson distributions corresponding to a bursty state
and a normal state, respectively. Let µ0 denote the
expected count for the normal state and µ1 for the
bursty state. Let vt denote the state for time point t,
where vt = 0 indicates the normal state and vt = 1
indicates the bursty state. The probability of observ-
ing a count of mc

t is as follows:

p(mc
t |vt = l) =

e−µlµ
mc

t
l

mc
t !

,

where l is either 0 or 1. The state sequence
(v0, v1, . . . , vT ) is a Markov chain with the follow-
ing transition probabilities:

p(vt = l|vt−1 = l) = σl,

Method P@5 P@10 P@20 P@30
LDA 0.600 0.800 0.750 N/A

TimeLDA 0.800 0.700 0.600 0.633
UserLDA 0.800 0.700 0.850 0.833

TimeUserLDA 1.000 1.000 0.900 0.800

Table 1: Precision at K for the various models.

Method P@5 P@10 P@20 P@30
LDA 0.600 0.800 0.700 N/A

TimeLDA 0.400 0.500 0.500 0.567
UserLDA 0.800 0.500 0.500 0.600

TimeUserLDA 1.000 0.900 0.850 0.767

Table 2: Precision at K for the various models after we
remove redundant bursty topics.

where l is either 0 or 1.
µ0 and µ1 are topic specific. In our experiments,

we set µ0 = 1
T

∑
t mc

t , that is, µ0 is the average
count over time. We set µ1 = 3µ0. For transition
probabilities, we empirically set σ0 = 0.9 and σ1 =
0.6 for all topics.

We can use dynamic programming to uncover the
underlying state sequence for a series of counts. Fi-
nally, a burst is marked by a consecutive subse-
quence of bursty states.

4 Experiments

4.1 Data Set

We use a Twitter data set to evaluate our models.
The original data set contains 151,055 Twitter users
based in Singapore and their tweets. These Twitter
users were obtained by starting from a set of seed
Singapore users who are active online and tracing
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Bursty Period Top Words Example Tweets Label
Nov 29 vote, big, awards, (1) why didnt 2ne1 win this time! Mnet Asian

bang, mama, win, (2) 2ne1. you deserved that urgh! Music Awards
2ne1, award, won (3) watching mama. whoohoo (MAMA)

Oct 5 ∼ Oct 8 steve, jobs, apple, (1) breaking: apple says steve jobs has passed away! Steve Jobs
iphone, rip, world, (2) google founders: steve jobs was an inspiration! death
changed, 4s, siri (3) apple 4 life thankyousteve

Nov 1 ∼ Nov 3 reservior, bedok, adlyn, (1) this adelyn totally disgust me. slap her mum? girl slapping
slap, found, body, queen of cine? joke please can. mom
mom, singapore, steven (2) she slapped her mum and boasted about it on fb

(3) adelyn lives in woodlands , later she slap me how?
Nov 5 reservior, bedok, adlyn, (1) bedok = bodies either drowned or killed. suicide near

slap, found, body, (2) another body found, in bedok reservoir? bedok reservoir
mom, singapore, steven (3) so many bodies found at bedok reservoir. alamak.

Oct 23 man, arsenal, united, (1) damn you man city! we will get you next time! football game
liverpool, chelsea, city, (2) wtf 90min goal!
goal, game, match (3) 6-1 to city. unbelievable.

Table 3: Top-5 bursty topics ranked by TimeUserLDA. The labels are manually given. The 3rd and the 4th bursty
topics come from the same topic but have different bursty periods.

Rank LDA UserLDA TimeLDA
1 Steve Jobs’ death MAMA MAMA
2 MAMA football game MAMA
3 N/A #zamanprimaryschool MAMA
4 girl slapping mom N/A girl slapping mom
5 N/A iphone 4s N/A

Table 4: Top-5 bursty topics ranked by other models. N/A indicates a meaningless burst.

their follower/followee links by two hops. Because
this data set is huge, we randomly sampled 2892
users from this data set and extracted their tweets
between September 1 and November 30, 2011 (91
days in total). We use one day as our time window.
Therefore our timestamps range from 1 to 91. We
then removed stop words and words containing non-
standard characters. Tweets containing less than 3
words were also discarded. After preprocessing, we
obtained the final data set with 3,967,927 tweets and
24,280,638 tokens.

4.2 Ground Truth Generation

To compare our model with other alternative models,
we perform both quantitative and qualitative evalua-
tion. As we have explained in Section 3, each mod-
el gives us time series data for a number of topics,
and by applying a Poisson-based state machine, we
can obtain a set of bursty topics. For each method,
we rank the obtained bursty topics by the number

of tweets (or words in the case of the LDA model)
assigned to the topics and take the top-30 bursty top-
ics from each model. In the case of the LDA mod-
el, only 23 bursty topics were detected. We merged
these topics and asked two human judges to judge
their quality by assigning a score of either 0 or 1.
The judges are graduate students living in Singapore
and not involved in this project. The judges were
given the bursty period and 100 randomly selected
tweets for the given topic within that period for each
bursty topic. They can consult external resources to
help make judgment. A bursty topic was scored 1
if the 100 tweets coherently describe a bursty even-
t based on the human judge’s understanding. The
inter-annotator agreement score is 0.649 using Co-
hen’s kappa, showing substantial agreement. For
ground truth, we consider a bursty topic to be cor-
rect if both human judges have scored it 1. Since
some models gave redundant bursty topics, we al-
so asked one of the judges to identify unique bursty
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topics from the ground truth bursty topics.

4.3 Evaluation
In this section, we show the quantitative evalua-
tion of the four models we consider, namely, LDA,
TimeLDA, UserLDA and TimeUserLDA. For each
model, we set the number of topics C to 80, α to 50

C
and β to 0.01 after some preliminary experiments.
Each model was run for 500 iterations of Gibbs sam-
pling. We take 40 samples with a gap of 5 iterations
in the last 200 iterations to help us assign values to
all the hidden variables.

Table 1 shows the comparison between these
models in terms of the precision of the top-K result-
s. As we can see, our model outperforms all other
models for K <= 20. For K = 30, the UserLDA
model performs the best followed by our model.

As we have pointed out, some of the bursty topics
are redundant, i.e. they are about the same bursty
event. We therefore also calculated precision at K
for unique topics, where for redundant topics the one
ranked the highest is scored 1 and the other ones
are scored 0. The comparison of the performance
is shown in Table 2. As we can see, in this case,
our model outperforms other models with all K. We
will further discuss redundant bursty topics in the
next section.

4.4 Sample Results and Discussions
In this section, we show some sample results from
our experiments and discuss some case studies that
illustrate the advantages of our model.

First, we show the top-5 bursty topics discovered
by the TimeUserLDA model in Table 3. As we can
see, all these bursty topics are meaningful. Some of
these events are global major events such as Steve
Jobs’ death, while some others are related to online
events such as the scandal of a girl boasting about
slapping her mother on Facebook. For comparison,
we also show the top-5 bursty topics discovered by
other models in Table 4. As we can see, some of
them are not meaningful events while some of them
are redundant.

Next, we show two case studies to demonstrate
the effectiveness of our model.

Effectiveness of Temporal Models: Both
TimeLDA and TimeUserLDA tend to group posts
published on the same day into the same topic. We

find that this can help separate bursty topics from
general ones. An example is the topic on the Circle
Line. The Circle Line is one of the subway lines of
Singapore’s mass transit system. There were a few
incidents of delays or breakdowns during the period
between September and November, 2011. We show
the time series data of the topic related to the Circle
Line of UserLDA, TimeLDA and TimeUserLDA in
Figure 3. As we can see, the UserLDA model de-
tects a much large volume of tweets related to this
topic. A close inspection tells us that the topic under
UserLDA is actually related to the subway systems
in Singapore in general, which include a few other
subway lines, and the Circle Line topic is merged
with this general topic. On the other hand, TimeL-
DA and TimeUserLDA are both able to separate the
Circle Line topic from the general subway topic be-
cause the Circle Line has several bursts. What is
shown in Figure 3 for TimeLDA and TimeUserLDA
is only the topic on the Circle Line, therefore the
volume is much smaller. We can see that TimeLDA
and TimeUserLDA show clearer bursty patterns than
UserLDA for this topic. The bursts around day 20,
day 44 and day 85 are all real events based on our
ground truth.

Effectiveness of User Models: We have stat-
ed that it is important to filter out users’ “person-
al” posts in order to find meaningful global events.
We find that our results also support this hypothesis.
Let us look at the example of the topic on the Mnet
Asian Music Awards, which is a major music award
show that is held by Mnet Media annually. In 2011,
this event took place in Singapore on November 29.
Because Korean pop music is very popular in Singa-
pore, many Twitter users often tweet about Korean
pop music bands and singers in general. All our top-
ic models give multiple topics related to Korean pop
music, and many of them have a burst on Novem-
ber 29, 2011. Under the TimeLDA and UserLDA
models, this leads to several redundant bursty top-
ics for the MAMA event ranked within the top-30.
For TimeUserLDA, however, although the MAMA
event is also ranked the top, there is no redundan-
t one within the top-30 results. We find that this is
because with TimeUserLDA, we can remove tweet-
s that are considered personal and therefore do not
contribute to bursty topic ranking. We show the top-
ic intensity of a topic about a Korean pop singer in
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Figure 3: Topic intensity over time for the topic on the Circle Line.
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Figure 4: Topic intensity over time for the topic about a Korean pop singer. The dotted curves show the topic on Steve
Jobs’ death.

Figure 4. For reference, we also show the intensity
of the topic on Steve Jobs’ death under each mod-
el. We can see that because this topic is related to
Korean pop music, it has a burst on day 90 (Novem-
ber 29). But if we consider the relative intensity of
this burst compared with Steve Jobs’ death, under
TimeLDA and UserLDA, this topic is still strong but
under TimeUserLDA its intensity can almost be ig-
nored. This is why with TimeLDA and UserLDA
this topic leads to a redundant burst within the top-
30 results but with TimeUserLDA the burst is not
ranked high.

5 Conclusions

In this paper, we studied the problem of finding
bursty topics from the text streams on microblogs.
Because existing work on burst detection from tex-
t streams may not be suitable for microblogs, we
proposed a new topic model that considers both the
temporal information of microblog posts and user-
s’ personal interests. We then applied a Poisson-
based state machine to identify bursty periods from
the topics discovered by our model. We compared
our model with standard LDA as well as two de-
generate variations of our model on a real Twitter
dataset. Our quantitative evaluation showed that our

model could more accurately detect unique bursty
topics among the top ranked results. We also used
two case studies to illustrate the effectiveness of the
temporal factor and the user factor of our model.

Our method currently can only detect bursty top-
ics in a retrospective and offline manner. A more in-
teresting and useful task is to detect realtime bursts
in an online fashion. This is one of the directions we
plan to study in the future. Another limitation of the
current method is that the number of topics is pre-
determined. We also plan to look into methods that
allow appearance and disappearance of topics along
the timeline, such as the model by Ahmed and Xing
(2010).
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Abstract

There are a growing number of popular web
sites where users submit and review instruc-
tions for completing tasks as varied as build-
ing a table and baking a pie. In addition to pro-
viding their subjective evaluation, reviewers
often provide actionable refinements. These
refinements clarify, correct, improve, or pro-
vide alternatives to the original instructions.
However, identifying and reading all relevant
reviews is a daunting task for a user. In this
paper, we propose a generative model that
jointly identifies user-proposed refinements in
instruction reviews at multiple granularities,
and aligns them to the appropriate steps in the
original instructions. Labeled data is not read-
ily available for these tasks, so we focus on
the unsupervised setting. In experiments in the
recipe domain, our model provides 90.1% F1

for predicting refinements at the review level,
and 77.0% F1 for predicting refinement seg-
ments within reviews.

1 Introduction

People turn to the web to seek advice on a wide
variety of subjects. An analysis of web search
queries posed as questions revealed that “how to”
questions are the most popular (Pang and Kumar,
2011). People consult online resources to answer
technical questions like “how to put music on my
ipod,” and to find instructions for tasks like tying
a tie and cooking Thanksgiving dinner. Not sur-
prisingly, there are many Web sites dedicated to
providing instructions. For instance, on the pop-
ular DIY site instructables.com (“share what you

make”), users post instructions for making a wide
variety of objects ranging from bed frames to “The
Stirling Engine, absorb energy from candles, coffee,
and more!1” There are also sites like allrecipes.com
that are dedicated to a specific domain. On these
community-based instruction sites, instructions are
posted and reviewed by users. For instance, the
aforementioned “Stirling engine” has received over
350 reviews on instructables.com.

While user-generated instructions greatly increase
the variety of instructions available online, they
are not necessarily foolproof, or appropriate for all
users. For instance, in the case of recipes, a user
missing a certain ingredient at home might wonder
whether it can be safely omitted; a user who wants
to get a slightly different flavor might want to find
out what substitutions can be used to achieve that ef-
fect. Reviews posted by other users provide a great
resource for mining such information. In recipe re-
views, users often offer their customized version of
the recipe by describing changes they made: e.g., “I
halved the salt” or “I used honey instead of sugar.”
In addition, they may clarify portions of the instruc-
tions that are too concise for a novice to follow, or
describe changes to the cooking method that result
in a better dish. We refer to such actionable infor-
mation as a refinement.

Refinements can be quite prevalent in instruction
reviews. In a random sample of recipe reviews
from allrecipes.com, we found that 57.8% contain
refinements of the original recipe. However, sift-
ing through all reviews for refinements is a daunting

1http://www.instructables.com/id/
The-Sterling-Engine-absorb-energy-from-candles-c
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task for a user. Instead, we would like to automat-
ically identify refinements in reviews, summarize
them, and either create an annotated version of the
instructions that reflects the collective experience of
the community, or, more ambitiously, revise the in-
structions directly.

In this paper, we take first steps toward these goals
by addressing the following tasks: (1) identifying re-
views that contain refinements, (2) identifying text
segments within reviews that describe refinements,
and (3) aligning these refinement segments to steps
in the instructions being reviewed (Figure 1 provides
an example). Solving these tasks provides a foun-
dation for downstream summarization and seman-
tic analysis, and also suggests intermediate applica-
tions. For example, we can use review classifica-
tion to filter or rank reviews as they are presented to
future users, since reviews that contain refinements
are more informative than a review which only says
“Great recipe, thanks for posting!”

To the best of our knowledge, no previous work
has explored this aspect of user-generated text.
While review mining has been studied extensively,
we differ from previous work in that instead of fo-
cusing on evaluative information, we focus action-
able information in the reviews. (See Section 2 for a
more detailed discussion.)

There is no existing labeled data for the tasks of
interest, and we would like the methods we develop
to be easily applied in multiple domains. Motivated
by this, we propose a generative model for solving
these tasks jointly without labeled data. Interest-
ingly, we find that jointly modeling refinements at
both the review and segment level is beneficial. We
created a new recipe data set, and manually labeled
a random sample to evaluate our model and several
baselines. We obtain 90.1% F1 for predicting refine-
ments at the review level, and 77.0% F1 for predict-
ing refinement segments within reviews.

2 Related Work

At first glance, the task of identifying refinements
appears similar to subjectivity detection (see (Pang
and Lee, 2008) for a survey). However, note that an
objective sentence is not necessarily a refinement:
e.g., “I took the cake to work”; and a subjective sen-
tence can still contain a refinement: e.g., “I reduced

the sugar and it came out perfectly.”
Our end goal is similar to review summarization.

However, previous work on review summarization
(Hu and Liu, 2004; Popescu and Etzioni, 2005; Titov
and McDonald, 2008) in product or service domains
focused on summarizing evaluative information —
more specifically, identifying ratable aspects (e.g.,
“food” and “service” for restaurants) and summariz-
ing the overall sentiment polarity for each aspect. In
contrast, we are interested in extracting a subset of
the non-evaluative information. Rather than ratable
aspects that are common across the entire domain
(e.g., “ingredient”, “cooking method”), we are in-
terested in actionable information that is related and
specific to the subject of the review.

Note that while our end goal is to summa-
rize objective information, it is still very differ-
ent from standard multi-document summarization
(Radev et al., 2002) of news articles. Apart from
differences in the quantity and the nature of the in-
put, we aim to summarize a distribution over what
should or can be changed, rather than produce a con-
sensus using different accounts of an event. In terms
of modeling approaches, in the context of extractive
summarization, Barzilay and Lee (2004) model con-
tent structure (i.e., the order in which topics appear)
in documents. We also model document structure,
but we do so to help identify refinement segments.

We share with previous work on predicting re-
view quality or helpfulness an interest in identify-
ing “informative” text. Early work tried to exploit
the intuition that a helpful review is one that com-
ments on product details. However, incorporating
product-aspect-mention count (Kim et al., 2006) or
similarity between the review and product specifi-
cation (Zhang and Varadarajan, 2006) as features
did not seem to improve the performance when the
task was predicting the percentage of helpfulness
votes. Instead of using the helpfulness votes, Liu
et al. (2007) manually annotated reviews with qual-
ity judgements, where a best review was defined as
one that contains complete and detailed comments.
Our notion of informativeness differs from previ-
ous work. We do not seek reviews that contain de-
tailed evaluative information; instead, we seek re-
views that contain detailed actionable information.
Furthermore, we are not expecting any single review
to be comprehensive; rather, we seek to extract a
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collection of refinements representing the collective
wisdom of the community.

To the best of our knowledge, there is little pre-
vious work on mining user-generated data for ac-
tionable information. However, there has been in-
creasing interest in language grounding. In partic-
ular, recent work has studied learning to act in an
external environment by following textual instruc-
tions (Branavan et al., 2009, 2010, 2011; Vogel and
Jurafsky, 2010). This line of research is complemen-
tary to our work. While we do not utilize extensive
linguistic knowledge to analyze actionable informa-
tion, we view this is an interesting future direction.

We propose a generative model that makes pre-
dictions at both the review and review segment level.
Recent work uses a discriminative model with a sim-
ilar structure to perform sentence-level sentiment
analysis with review-level supervision (Täckström
and McDonald, 2011). However, sentiment polarity
labels at the review level are easily obtained. In con-
trast, refinement labels are not naturally available,
motivating the use of unsupervised learning. Note
that the model of Täckström and McDonald (2011)
cannot be used in a fully unsupervised setting.

3 Refinements

In this section, we define refinements more pre-
cisely. We use recipes as our running example, but
our problem formulation and models are not specific
to this domain.

A refinement is a piece of text containing action-
able information that is not entailed by the original
instructions, but can be used to modify or expand the
original instructions. A refinement could propose an
alternative method or an improvement (e.g., “I re-
placed half of the shortening with butter”, “Let the
shrimp sit in 1/2 marinade for 3 hours”), as well as
provide clarification (“definitely use THIN cut pork
chops, otherwise your panko will burn before your
chops are cooked”).

Furthermore, we distinguish between a verified
refinement (what the user actually did) and a hy-
pothetical refinement (“next time I think I will try
evaporated milk”). In domains similar to recipes,
where instructions may be carried out repeatedly,
there exist refinements in both forms. Since instruc-
tions should, in principle, contain information that

has been well tested, in this work, we consider only
the former as our target class. In a small percent-
age of reviews we observed “failed attempts” where
a user did not follow a certain step and regretted the
diversion. In this work, we do not consider them to
be refinements. We refer to text that does not contain
refinements as background.

Finally, we note that the presence of a past tense
verb does not imply a refinement (e.g., “Everyone
loved this dish”, “I got many compliments”). In fact,
not all text segments that describe an action are re-
finements (e.g., “I took the cake to work”, “I fol-
lowed the instructions to a T”).

4 Models

In this section we describe our models. To iden-
tify refinements without labeled data, we propose
a generative model of reviews (or more gener-
ally documents) with latent variables. We assume
that each review x is divided into segments, x =
(x1, . . . ,xT ). Each segment is a sub-sentence-level
text span. We assume that the segmentation is ob-
served, and hence it is not modeled. The segmenta-
tion procedure we use is described in Section 5.1.

While we focus on the unsupervised setting, note
that the model can also be used in a semi-supervised
setting. In particular, coarse (review-level) labels
can be used to guide the induction of fine-grained
latent structure (segment labels, alignments).

4.1 Identifying Refinements

We start by directly modeling refinements at the seg-
ment level. Our first intuition is that refinement and
background segments can often be identified by lex-
ical differences. Based on this intuition, we can ig-
nore document structure and generate the segments
with a segment-level mixture of multinomials (S-
Mix). In general we could use n multinomials to
represent refinements and m multinomials to repre-
sent background text, but in this paper we simply use
n = m = 1. Therefore, unsupervised learning in S-
Mix can be viewed as clustering the segments with
two latent states. As is standard practice in unsu-
pervised learning, we subsequently map these latent
states onto the labels of interest: r and b, for refine-
ment and background, respectively. Note, however,
that this model ignores potential sequential depen-
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dencies among segments. A segment following a re-
finement segment in a review may be more likely to
be a refinement than background, for example.

To incorporate this intuition, we could instead
generate reviews with a HMM (Rabiner, 1989) over
segments (S-HMM) with two latent states. Let zi

be the latent label variable for the ith segment. The
joint probability of a review and segment labeling is

p(x, z; θ) =
T∏

j=1

p(zj |zj−1; θ)p(xj |zj ; θ), (1)

where p(zj |zj−1; θ) are multinomial transition dis-
tributions, allowing the model to learn that p(zj =
r|zj−1 = r; θ) > p(zj = b|zj−1 = r; θ) as moti-
vated above, and p(xj |zj ; θ) are multinomial emis-
sion distributions. Note that all words in a segment
are generated independently conditioned on zj .

While S-HMM models sequential dependencies,
note that it imposes the same transition probabili-
ties on each review. In a manually labeled random
sample of recipe reviews, we find that refinement
segments tend to be clustered together in certain re-
views (“bursty”), rather than uniformly distributed
across all reviews. Specifically, while we estimate
that 23% of all segments are refinements, 42% of
reviews do not contain any refinements. In reviews
that contain a refinement, 34% of segments are re-
finements. S-HMM cannot model this phenomenon.

Consequently, we extend S-HMM to include a la-
tent label variable y for each review that takes val-
ues yes (contains refinement) and no (does not con-
tain refinement). The extended model is a mixture
of HMMs (RS-MixHMM) where y is the mixture
component.

p(x, y, z; θ) = p(y; θ)p(x, z|y; θ) (2)

The two HMMs p(x, z | y=yes; θ) and p(x, z | y=
no; θ) can learn different transition multinomials
and consequently different distributions over z for
different y. On the other hand, we do not believe
the textual content of the background segments in a
y = yes review should be different from those in
a y = no review. Thus, the emission distributions
are shared between the two HMMs, p(xj |zj , y; θ) =
p(xj |zj ; θ).

Note that the definition of y imposes additional
constraints on RS-MixHMM: 1) reviews with y=no

cannot contain refinement segments, and 2) reviews
with y = yes must contain at least one refinement
segment. We enforce constraint (1) by disallow-
ing refinement segments zj = r when y = no:
p(zj = r|zj−1, y = no; θ) = 0. Therefore, with
one background label, only the all background la-
bel sequence has non-zero probability when y=no.
Enforcing constraint (2) is more challenging, as the
y = yes HMM must assign zero probability when
all segments are background, but permit background
segments when refinement segments are present.

To enforce constraint (2), we “rewire” the HMM
structure for y = yes so that a path that does not
go through the refinement state r is impossible. We
first expand the state representation by replacing b
with two states that encode whether or not the first
r has been encountered yet: bnot−yet encodes that
all previous states in the path have also been back-
ground; bok encodes that at least one refinement state
has been encountered2. We prohibit paths from end-
ing with bnot−yet by augmenting RS-MixHMM with
a special final state f , and fixing p(zT+1 = f |zT =
bnot−yet, y = yes; θ) = 0. Furthermore, to enforce
the correct semantics of each state, paths cannot start
with bok, p(z1 = bok|y = yes; θ) = 0, and transi-
tions from bnot−yet to bok, bok to bnot−yet, and r to
bnot−yet are prohibited.

Note that RS-MixHMM also generalizes to the
case where there are multiple refinement (n>1) and
background (m > 1) labels. Let Zr be the set of
refinement labels, and Zb be the set of background
labels. The transition structure is analogous to the
n = m = 1 case, but statements involving r are ap-
plied for each z ∈ Zr, and statements involving b are
applied for each z ∈ Zb. For example, the y = yes
HMM contains 2|Zb| background states.

In summary, the generative process of RS-
MixHMM involves first selecting whether the re-
view will contain a refinement. If the answer is yes,
a sequence of background segments and at least one
refinement segment are generated using the y = yes
HMM. If the answer is no, only background seg-
ments are generated. Interestingly, by enforcing
constraints (1) and (2), we break the label symme-
try that necessitates mapping latent states onto labels

2In this paper, the two background states share emission
multinomials, p(xj |zj = bnot−yet;θ) = p(xj |zj = bok;θ),
though this is not required.
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when using S-Mix and S-HMM. Indeed, in the ex-
periments we present in Section 5.3, mapping is not
necessary for RS-MixHMM.

Note that the relationship between document-
level labels and segment-level labels that we model
is related to the multiple-instance setting (Dietterich
et al., 1997) in the machine learning literature. In
multiple-instance learning (MIL), rather than having
explicit labels at the instance (e.g., segment) level,
labels are given for bags of instances (e.g., docu-
ments). In the binary case, a bag is negative only
if all of its instances are negative. While we share
this problem formulation, work on MIL has mostly
focussed on supervised learning settings, and thus
it is not directly applicable to our unsupervised set-
ting. Foulds and Smyth (2011) propose a generative
model for MIL in which the generation of the bag
label y is conditioned on the instance labels z. As a
result of this setup, their model reduces to our S-Mix
baseline in a fully unsupervised setting.

Finally, although we motivated including the
review-level latent variable y as a way to improve
segment-level prediction of z, note that predictions
of y are useful in and of themselves. They provide
some notion of review usefulness and can be used to
filter reviews for search and browsing. They addi-
tionally give us a way to measure whether a set of
instructions is often modified or performed as speci-
fied. Finally, if we want to provide supervision, it is
much easier to annotate whether a review contains a
refinement than to annotate each segment.

4.2 Alignment with the Instructions

In addition to the review x, we also observe the set of
instructions s being discussed. Often a review will
reference specific parts of the instructions. We as-
sume that each set of instructions is segmented into
steps, s = (s1, . . . , sS). We augment our model
with latent alignment variables a = (a1, . . . , aT ),
where aj = ` denotes that the jth review segment is
referring to the `th step of s. We also define a special
NULL instruction step. An alignment to NULL sig-
nifies that the segment does not refer to a specific in-
struction step. Note that this encoding assumes that
each review segment refers to at most one instruction
step. Alignment predictions could facilitate further
analysis of how refinements affect the instructions,
as well as aid in summarization and visualization of

refinements.
The joint probability under the augmented model,

which we refer to as RSA-MixHMM, is

p(a,x, y, z|s; θ) = p(y; θ)p(a,x, z|y, s; θ) (3)

p(a,x, z|y, s; θ) =
T∏

j=1

p(aj , zj |aj−1, zj−1, y, s; θ)

× p(xj |aj , zj , s; θ).

Note that the instructions s are assumed to be ob-
served and hence are not generated by the model.
RSA-MixHMM can be viewed as a mixture of
HMMs where each state encodes both a segment la-
bel zj and an alignment variable aj . Encoding an
alignment problem as a sequence labeling problem
was first proposed by Vogel et al. (1996). Note that
RSA-MixHMM uses a similar expanded state rep-
resentation and transition structure as RS-MixHMM
to encode the semantics of y.

In our current model, the transition probability de-
composes into the product of independent label tran-
sition and alignment transition probabilities

p(aj , zj |aj−1, zj−1, y, s; θ) =p(aj |aj−1, y, s; θ)

× p(zj |zj−1, y, s; θ),

and p(aj |aj−1, y, s; θ) = p(aj |y, s; θ) simply en-
codes the probability that segments align to a (non-
NULL) instruction step given y. This allows the
model to learn, for example, that reviews that con-
tain refinements refer to the instructions more often.

Intuitively, a segment and the step it refers to
should be lexically similar. Consequently, RSA-
MixHMM generates segments using a mixture of the
multinomial distribution for the segment label zj and
the (fixed) multinomial distribution3 for the step saj .
In this paper, we do not model the mixture proba-
bility and simply assume that all overlapping words
are generated by the instruction step. When aj =
NULL, only the segment label multinomial is used.
Finally, we disallow an alignment to a non-NULL
step if no words overlap: p(xj |aj , zj , s; θ) = 0.

4.3 Inference and Parameter Estimation
Because our model is tree-structured, we can
efficiently compute exact marginal distributions

3Stopwords are removed from the instruction step.

549



over latent variables using the sum-product algo-
rithm (Koller and Friedman, 2009). Similarly, to
find maximum probability assignments, we use the
max-product algorithm.

At training time we observe a set of re-
views and corresponding instructions, D =
{(x1, s1), . . . , (xN , sN )}. The other variables, y, z,
and a, are latent. For all models, we estimate param-
eters to maximize the marginal likelihood of the ob-
served reviews. For example, for RSA-MixHMM,
we estimate parameters using

arg max
θ

N∑
i=1

log
∑
a,z,y

p(a,xi, y, z|si; θ).

This problem cannot be solved analytically, so we
use the Expectation Maximization (EM) algorithm.

5 Experiments

5.1 Data
In this paper, we use recipes and reviews from
allrecipes.com, an active community where we es-
timate that the mean number of reviews per recipe is
54.2. We randomly selected 22,437 reviews for our
data set. Of these, we randomly selected a subset
of 550 reviews and determined whether or not each
contains a refinement, using the definition provided
in Section 3. In total, 318 of the 550 (57.8%) con-
tain a refinement. We then randomly selected 119 of
the 550 and labeled the individual segments. Of the
712 segments in the selected reviews, 165 (23.2%)
are refinements and 547 are background.

We now define our review segmentation scheme.
Most prior work on modeling latent document sub-
structure uses sentence-level labels (Barzilay and
Lee, 2004; Täckström and McDonald, 2011). In
the recipe data, we find that sentences often con-
tain both refinement and background segments: “[I
used a slow cooker with this recipe and] [it turned
out great!]” Additionally, we find that sentences of-
ten contain several distinct refinements: “[I set them
on top and around the pork and] [tossed in a can
of undrained french cut green beans and] [cooked
everything on high for about 3 hours].” To make re-
finements easier to identify, and to facilitate down-
stream processing, we allow sub-sentence segments.

Our segmentation procedure leverages a phrase
structure parser. In this paper we use the Stanford

Parser4. Based on a quick manual inspection, do-
main shift and ungrammatical sentences do cause
a significant degradation in parsing accuracy when
compared to in-domain data. However, this is ac-
ceptable because we only use the parser for segmen-
tation. We first parse the entire review, and subse-
quently iterate through the tokens, adding a segment
break when any of the following conditions is met:

• sentence break (determined by the parser)

• token is a coordinating conjunction (CC) with
parent other than NP, PP, ADJP

• token is a comma (,) with parent other than NP,
PP, ADJP

• token is a colon (:)

The resulting segmentations are fixed during learn-
ing. In future work we could extend our model to
additionally identify segment boundaries.

5.2 Experimental Setup

We first describe the methods we evaluate. For com-
parison, we provide results with a baseline that ran-
domly guesses according to the class distribution for
each task. We also evaluate a Review-level model:

• R-Mix: A review-level mixture of multinomi-
als with two latent states.

Note that this is similar to clustering at the review
level, except that class priors are estimated. R-Mix
does not provide segment labels, though they can be
obtained by labeling all segments with the review
label.

We also evaluate the two Segment-level models
described in Section 4.1 (with two latent states):

• S-Mix: A segment-level mixture model.

• S-HMM: A segment-level HMM (Eq. 1).

These models do not provide review labels. To ob-
tain them, we assign y = yes if any segment is la-
beled as a refinement, and y=no otherwise.

Finally, we evaluate three versions of our model
(Review + Segment and Review + Segment +

4http://nlp.stanford.edu/software/lex-parser.shtml
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Alignment) with one refinement segment label and
one background segment label5:

• RS-MixHMM: A mixture of HMMs (Eq. 2)
with constraints (1) and (2) (see Section 4).

• RS-MixMix: A variant of RS-MixHMM with-
out sequential dependencies.

• RSA-MixHMM: The full model that also in-
corporates alignment (Eq. 3).

Segment multinomials are initialized with a small
amount of random noise to break the initial symme-
try. RSA-MixHMM segment multinomials are in-
stead initialized to the RS-MixHMM solution. We
apply add-0.01 smoothing to the emission multino-
mials and add-1 smoothing to the transition multi-
nomials in the M-step. We estimate parameters with
21,887 unlabeled reviews by running EM until the
relative percentage decrease in the marginal likeli-
hood is ≤ 10−4 (typically 10-20 iterations).

The models are evaluated on refinement F1 and
accuracy for both review and segment predictions
using the annotated data described in Section 5.1.
For R-Mix and the segment (S-) models, we select
the 1:1 mapping of latent states to labels that maxi-
mizes F1. For RSA-MixHMM and the RS- models
this was not necessary (see Section 4.1).

5.3 Results
Table 1 displays the results. R-Mix fails to ac-
curately distinguish refinement and background re-
views. The words that best discriminate the two
discovered review classes are “savory ingredients”
(chicken, pepper, meat, garlic, soup) and “bak-
ing/dessert ingredients” (chocolate, cake, pie, these,
flour). In other words, reviews naturally cluster by
topics rather than whether they contain refinements.

The segment models (S-) substantially outper-
form R-Mix on all metrics, demonstrating the ben-
efit of segment-level modeling and our segmenta-
tion scheme. However, S-HMM fails to model
the “burstiness” of refinement segments (see Sec-
tion 4.1). It predicts that 76.2% of reviews con-
tain refinements, and additionally that 40.9% of seg-
ments contain refinements, whereas the true values

5Attempts at modeling refinement and background sub-
types by increasing the number of latent states failed to sub-
stantially improve the results.

are 57.8% and 23.2%, respectively. As a result, these
models provide high recall but low precision.

In comparison, our models, which model the re-
view labels6 y, yield more accurate refinement pre-
dictions. They provide statistically significant im-
provements in review and segment F1, as well as
accuracy, over the baseline models. RS-MixHMM
predicts that 62.9% of reviews contain refinements
and 28.2% of segments contain refinements, values
that are much closer to the ground truth. The re-
finement emission distributions for S-HMM and RS-
MixHMM are fairly similar, but the probabilities of
several key terms like added, used, and instead are
higher with RS-MixHMM.

The review F1 results demonstrate that our mod-
els are able to very accurately distinguish refinement
reviews from background reviews. As motivated in
Section 4.1, there are several applications that can
benefit from review-level predictions directly. Addi-
tionally, note that review labeling is not a trivial task.
We trained a supervised logistic regression model
with bag-of-words and length features (for both the
number of segments and the number of words) using
10-fold cross validation on the labeled dataset. This
supervised model yields mean review F1 of 78.4,
11.7 F1 points below the best unsupervised result7.

Augmenting RS-MixMix with sequential depen-
dencies, yielding RS-MixHMM, provides a mod-
erate (though not statistically significant) improve-
ment in segment F1. RS-MixHMM learns that re-
finement reviews typically begin and end with back-
ground segments, and that refinement segments tend
to appear in succession.

RSA-MixHMM additionally learns that segments
in refinement reviews are more likely to align to non-
NULL recipe steps. It also encourages the segment
multinomials to focus modeling effort on words that
appear only in the reviews. As a result, in addition to
yielding alignments, RSA-MixHMM provides small
improvements over RS-MixHMM (though they are
not statistically significant).

6We note that enforcing the constraint that a refinement re-
view must contain at least one refinement segment using the
method in Section 4.1 provides a statistically significant signif-
icant improvement in review F1 of 4.0 for RS-MixHMM.

7Note that we do not consider this performance to be the
upper-bound of supervised approaches; clearly, supervised ap-
proaches could benefit from additional labeled data. However,
labeled data is relatively expensive to obtain for this task.
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Model review (57.8% refinement) segment (23.2% refinement)
acc prec rec F1 acc prec rec F1

random baseline 51.2† 57.8 57.8 57.8† 64.4† 23.2 23.2 23.2†

R-Mix 61.5† 69.1 60.4 64.4† 55.8† 27.9 57.6 37.6†

S-Mix 77.5† 72.4 98.7 83.5† 80.6† 54.7 95.2 69.5†

S-HMM 79.8† 74.7 98.4 84.9† 80.3† 54.3 95.8 69.3†

RS-MixMix 87.1 85.4 93.7 89.4 86.4 65.6 86.7 74.7
RS-MixHMM 87.3 85.6 93.7 89.5 87.9 69.7 84.8 76.5
RSA-MixHMM 88.2 87.1 93.4 90.1 88.5 71.7 83.0 77.0

Table 1: Unsupervised experiments comparing models for review and segment refinement identification on the recipe
data. Bold indicates the best result, and a † next to an accuracy or F1 value indicates that the improvements obtained
by RS-MixMix, RS-MixHMM, and RSA-MixHMM are significant (p = 0.05 according to a bootstrap test).

[ I loved these muffins! ] [ I used walnuts inside 
the batter and ] [ used whole wheat flour only 
as well as flaxseed instead of wheat germ. ] 
[ They turned out great! ] [ I couldn't stop eating 
them. ] [ I've made several batches of these 
muffins and all have been great. ] [ I make tiny 
alterations each time usually. ] [ These muffins 
are great with pears as well. ] [ I think golden 
raisins are much better than regular also! ]

1. Preheat oven to 375 degrees F (190 degrees C).
2. Lightly oil 18 muffin cups, or coat with nonstick 
cooking spray.
3. In a medium bowl, whisk together eggs, egg whites, 
apple butter, oil and vanilla.
4. In a large bowl, stir together flours, sugar, cinnamon, 
baking powder, baking soda and salt.
5. Stir in carrots, apples and raisins.
6. Stir in apple butter mixture until just moistened.
7. Spoon the batter into the prepared muffin cups, filling 
them about 3/4 full.
8. In a small bowl, combine walnuts and wheat germ; 
sprinkle over the muffin tops.
9. Bake at 375 degrees F (190 degrees C) for 15 to 20 
minutes, or until the tops are golden and spring back 
when lightly pressed.

Figure 1: Example output (best viewed in color). Bold segments in the review (left) are those predicted to be refine-
ments. Red indicates an incorrect segment label, according to our gold labels. Alignments to recipe steps (right) are
indicated with colors and arrows. Segments without colors and arrows align to the NULL recipe step (see Section 4.2).

We provide an example alignment in Figure 1.
Annotating ground truth alignments is challenging
and time-consuming due to ambiguity, and we feel
that the alignments are best evaluated via a down-
stream task. Therefore, we leave thorough evalua-
tion of the quality of the alignments to future work.

6 Conclusion and Future Work

In this paper, we developed unsupervised meth-
ods based on generative models for mining refine-
ments to online instructions from reviews. The pro-
posed models leverage lexical differences in refine-
ment and background segments. By augmenting the
base models with additional structure (review labels,
alignments), we obtained more accurate predictions.

However, to further improve accuracy, more lin-
guistic knowledge and structure will need to be in-
corporated. The current models provide many false
positives in the more subtle cases, when some words

that typically indicate a refinement are present, but
the text does not describe a refinement according to
the definition in Section 3. Examples include hypo-
thetical refinements (“next time I will substitute...”)
and discussion of the recipe without modification (“I
found it strange to... but it worked ...”, “I love bal-
samic vinegar and herbs”, “they baked up nicely”).

Other future directions include improving the
alignment model, for example by allowing words in
the instruction step to be “translated” into words in
the review segment. Though we focussed on recipes,
the models we proposed are general, and could be
applied to other domains. We also plan to consider
this task in other settings such as online forums, and
develop methods for summarizing refinements.
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Abstract

Online forums are becoming a popular re-
source in the state of the art question answer-
ing (QA) systems. Because of its nature as an
online community, it contains more updated
knowledge than other places. However, go-
ing through tedious and redundant posts to
look for answers could be very time consum-
ing. Most prior work focused on extracting
only question answering sentences from user
conversations. In this paper, we introduce the
task of sentence dependency tagging. Finding
dependency structure can not only help find
answer quickly but also allow users to trace
back how the answer is concluded through
user conversations. We use linear-chain con-
ditional random fields (CRF) for sentence type
tagging, and a 2D CRF to label the depen-
dency relation between sentences. Our ex-
perimental results show that our proposed ap-
proach performs well for sentence dependency
tagging. This dependency information can
benefit other tasks such as thread ranking and
answer summarization in online forums.

1 Introduction

Automatic Question Answering (QA) systems rely
heavily on good sources of data that contain ques-
tions and answers. Question answering forums, such
as technical support forums, are places where users
find answers through conversations. Because of
their nature as online communities, question answer-
ing forums provide more updated answers to new
problems. For example, when the latest release of
Linux has a bug, we can expect to find solutions

in forums first. However, unlike other structured
knowledge bases, often it is not straightforward to
extract information such as questions and answers in
online forums because such information spreads in
the conversations among multiple users in a thread.

A lot of previous work has focused on extract-
ing the question and answer sentences from forum
threads. However, there is much richer information
in forum conversations, and simply knowing a sen-
tence is a question or answer is not enough. For
example, in technical support forums, often it takes
several iterations of asking and clarifications to de-
scribe the question. The same happens to answers.
Usually several candidate answers are provided, and
not all answers are useful. In this case users’ feed-
back is needed to judge the correctness of answers.

Figure 1 shows an example thread in a technical
support forum. Each sentence is labeled with its type
(a detailed description of sentence types is provided
Table 1). We can see from the example that ques-
tions and answers are not expressed in a single sen-
tence or a single post. Only identifying question and
answering sentences from the thread is not enough
for automatic question answering. For this example,
in order to get the complete question, we would need
to know that sentence S3 is a question that inquires
for more details about the problem asked earlier, in-
stead of stating its own question. Also, sentence S5
should not be included in the correct answer since
it is not a working solution, which is indicated by a
negative feedback in sentence S6. The correct solu-
tion should be sentence S7, because of a user’s posi-
tive confirmation S9. We define that there is a depen-
dency between a pair of sentences if one sentence
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A: [S1:M-GRET] Hi everyone. [S2:P-STAT] I
have recently purchased USB flash and I am having
trouble renaming it, please help me.
B: [S3:A-INQU] What is the size and brand of this
flash?
A: [S4:Q-CLRF] It is a 4GB SanDisk flash.
B: [S5:A-SOLU] Install gparted, select flash drive
and rename.
A: [S6:M-NEGA] I got to the Right click on
partition and the label option was there but grayed
out.
B: [S7:A-SOLU] Sorry again, I meant to right click
the partition and select Unmount and then select
Change name while in gparted.
A: [S8:C-GRAT] Thank you so much. [S9:M-
POST] I now have an “Epic USB” You Rock!

Figure 1: Example of a Question Answering Thread in
Ubuntu Support Forum

exists as a result of another sentence. For example,
question context sentences exist because of the ques-
tion itself; an answering sentence exists because of
a question; or a feedback sentence exists because of
an answer. The sentence dependency structure of
this example dialog is shown in Figure 2.

S1: M-GRET

S2: P-STAT

S3: A-INQU S4:Q-CLRF

S5:A-SOLU S6:M-NEGA S7:A-SOLU

S8:C-GRAT

S9:M-POST

Figure 2: Dependency Structure of the Above Example

This example shows that in order to extract in-
formation from QA forums accurately, we need to
understand the sentence dependency structure of a
QA thread. Towards this goal, in this paper, we de-
fine two tasks: labeling the types for sentences, and
finding the dependency relations between sentences.

For the first task of sentence type labeling, we de-
fine a rich set of categories representing the purpose

of the sentences. We use linear-chain conditional
random fields (CRF) to take advantage of many
long-distance and non-local features. The second
task is to identify relations between sentences. Most
previous work only focused on finding the answer-
question relationship between sentences. However,
other relations can also be useful for information ex-
traction from online threads, such as user’s feed-
backs on the answers, problem detail inquiry and
question clarifications. In this study, we use two
approaches for labeling of dependency relation be-
tween sentences. First each sentence is considered
as a source, and we run a linear-chain CRF to la-
bel whether each of the other sentences is its tar-
get. Because multiple runs of separate linear-chain
CRFs ignore the dependency between source sen-
tences, the second approach we propose is to use a
2D CRF that models all pair relationships jointly.

The data we used was collected from Ubuntu
forum general help section. Our experimental re-
sults show that our proposed sentence type tagging
method works very well, even for the minority cate-
gories, and that using 2D CRF further improves per-
formance over linear-chain CRFs for identifying de-
pendency relation between sentences.

The paper is organized as follows. In the follow-
ing section, we discuss related work on finding ques-
tions and answers in online environment as well as
some dialog act tagging techniques. In Section 3, we
introduce the use of CRFs for sentence type and de-
pendency tagging. Section 4 describes data collec-
tion, annotation, and some analysis. In Section 5, we
show that our approach achieves promising results
in thread sentence dependency tagging. Finally we
conclude the paper and suggest some possible future
extensions.

2 Related Work

There is a lot of useful knowledge in the user gener-
ated content such as forums. This knowledge source
could substantially help automatic question answer-
ing systems. There has been some previous work
focusing on the extraction of question and corre-
sponding answer pairs in online forums. In (Ding
et al., 2008), a two-pass approach was used to find
relevant solutions for a given question, and a skip-
chain CRF was adopted to model long range de-
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pendency between sentences. A graph propagation
method was used in (Cong et al., 2008) to rank
relevant answers to questions. An approach using
email structure to detect and summarize question an-
swer pairs was introduced in (Shrestha and Mck-
eown, 2004). These studies focused primarily on
finding questions and answers in an online envi-
ronment. In this paper, in order to provide a bet-
ter foundation for question answer detection in on-
line forums, we investigate tagging sentences with a
much richer set of categories, as well as identifying
their dependency relationships. The sentence types
we use are similar to dialog acts (DA), but defined
specifically for question answering forums. Work of
(Clark and Popescu-Belis, 2004) defined a reusable
multi-level tagset that can be mapped from conversa-
tional speech corpora such as the ICSI meeting data.
However, it is hard to reuse any available corpus or
DA tagset because our task is different, and also on-
line forum has a different style from speech data.
Automatic DA tagging has been studied a lot previ-
ously. For example, in (Stolcke et al., 2000), Hidden
Markov Models (HMMs) were used for DA tagging;
in (Ji and Bilmes, 2005), different types of graphical
models were explored.

Our study is different in several aspects: we are
using forum domains, unlike most work of DA tag-
ging on conversational speech; we use CRFs for sen-
tence type tagging; and more importantly, we also
propose to use different CRFs for sentence relation
detection. Unlike the pair-wise sentence analysis
proposed in (Boyer et al., 2009) in which HMM
was used to model the dialog structure, our model is
more flexible and does not require related sentences
to be adjacent.

3 Thread Structure Tagging

As described earlier, we decompose the structure
analysis of QA threads into two tasks, first deter-
mine the sentence type, and then identify related
sentences. This section provides details for each
task.

3.1 Sentence Type Tagging

In human conversations, especially speech conver-
sations, DAs have been used to represent the pur-
pose or intention of a sentence. Different sets of

DAs have been adopted in various studies, ranging
from very coarse categories to fine grained ones. In
this study, we define 13 fine grained sentence types
(corresponding to 4 coarse categories) tailored to our
domain of QA forum threads. Table 1 shows the cat-
egories and their description. Some tags such as P-
STAT and A-SOLU are more important in that users
try to state a problem and provide solutions accord-
ingly. These are the typical ones used in previous
work on question answering. Our set includes other
useful tags. For example, C-NEGA and C-POSI can
evaluate how good an answer is. Even though C-
GRAT does not provide any direct feedback on the
solutions, existence of such a tag often strongly im-
plies a positive feedback to an answer. These sen-
tence types can be grouped into 4 coarse categories,
as shown in Table 1.

Types Category Description

Problems
P-STAT question of problem
P-CONT problem context
P-CLRF problem clarification

Answers
A-SOLU solution sentence
A-EXPL explanation on solutions
A-INQU inquire problem details

Confirm.
C-GRAT gratitude
C-NEGA negative feedback
C-POSI positive feedback

Misc.

M-QCOM question comment
M-ACOM comment on the answer
M-GRET greeting and politeness
M-OFF off-topic sentences

Table 1: Sentence Types for QA Threads

To automatically label sentences in a thread with
their types, we adopt a sequence labeling approach,
specifically linear-chain conditional random fields
(CRFs), which have shown good performance in
many other tasks (Lafferty, 2001). Intuitively there
is a strong dependency between adjacent sentences.
For example, in our data set, 45% sentences follow-
ing a greeting sentence (M-GRET) are question re-
lated sentences; 53% sentences following a question
inquiry sentence (Q-INQ) are solution related sen-
tences. The following describes our modeling ap-
proaches and features used for sentence type tag-
ging.
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3.1.1 Linear-chain Conditional Random Field
Linear-chain CRFs is a type of undirected graphi-

cal models. Distribution of a set of variables in undi-
rected graphical models can be written as

p(x, y) =
1

Z

∏
A

ψA(xA, yA) (1)

Z is the normalization constant to guarantee valid
probability distributions. CRFs is a special case
of undirected graphical model in which ψ are log-
linear functions:

ψA(xA, yA) = exp

{∑
k

θAk
fAk

(xA, yA)

}
(2)

θA is a real value parameter vector for feature
function set fA. In the sequence labeling task, fea-
ture functions across the sequence are often tied to-
gether. In other words, feature functions at different
locations of the sequence share the same parameter
vector θ.

Figure 3: Graphical Structure of Linear-chain CRFs.

Linear-chain CRF is a special case of the general
CRFs. In linear-chain CRF, cliques only involve two
adjacent variables in the sequence. Figure 3 shows
the graphical structure of a linear-chain CRF. In our
case of sentence tagging, cliques only contain two
adjacent sentences. Given the observation x, the
probability of label sequence y is as follows:

p(y|x) =
1

Z

|y|∏
i=1

ψe(x, y, i)

|y|∏
j=0

ψv(x, y, j) (3)

ψe(x, y, i) = exp

{∑
k

θek
fek

(yi−1, yi, x, i)

}
(4)

ψv(x, y, j) = exp

{∑
k

θvk
fvk

(yj , x, j)

}
(5)

where feature templates fek
and fvk

correspond to
edge features and node features respectively.

Feature Description
Cosine similarity with previous sentence.
Quote segment within two adjacent sentences?
Code segment within two adjacent sentences?
Does this sentence belong to author’s post?
Is it the first sentence in a post?
Post author participated thread before?
Does the sentence contain any negative words?
Does the sentence contain any URL?
Does the sentence contain any positive words?
Does the sentence contain any question mark?
Length of the sentence.
Presence of verb.
Presence of adjective.
Sentence perplexity based on a background LM.
Bag of word features.

Table 2: Features Used in Sentence Type Tagging.

3.1.2 Sentence Type Tagging Features

We used various types of feature functions in sen-
tence type tagging. Table 2 shows the complete list
of features we used. Edge features are closely re-
lated to the transition between sentences. Here we
use the cosine similarity between sentences, where
each sentence is represented as a vector of words,
with term weight calculated using TD-IDF (term fre-
quency times inverse document frequency). High
similarity between adjacent sentences suggests sim-
ilar or related types. For node features, we explore
different sources of information about the sentence.
For example, the presence of a question mark indi-
cates that a sentence may be a question or inquiry.
Similarly, we include other cues, such as positive
or negative words, verb and adjective words. Since
technical forums tend to contain many system out-
puts, we include the perplexity of the sentence as a
feature which is calculated based on a background
language model (LM) learned from common En-
glish documents. We also use bag-of-word features
as in many other text categorization tasks.

Furthermore, we add features to represent post
level information to account for the structure of QA
threads, for example, whether or not a sentence be-
longs to the author’s post, or if a sentence is the be-
ginning sentence of a post.
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3.2 Sentence Dependency Tagging

Knowing only the sentence types without their de-
pendency relations is not enough for question an-
swering tasks. For example, correct labeling of an
answer without knowing which question it actually
refers to is problematic; not knowing which answer
a positive or negative feedback refers to will not be
helpful at all. In this section we describe how sen-
tence dependency information is determined. Note
that sentence dependency relations might not be a
one-to-one relation. A many-to-many relation is also
possible. Take question answer relation as an ex-
ample. There could be potentially many answers
spreading in many sentences, all depending on the
same question. Also, it is very likely that a question
is expressed in multiple sentences too.

Dependency relationship could happen between
many different types of sentences, for example, an-
swer(s) to question(s), problem clarification to ques-
tion inquiry, feedback to solutions, etc. Instead of
developing models for each dependency type, we
treat them uniformly as dependency relations be-
tween sentences. Hence, for every two sentences,
it becomes a binary classification problem, i.e.,
whether or not there exists a dependency relation
between them. For a pair of sentences, we call the
depending sentence the source sentence, and the de-
pended sentence the target sentence. As described
earlier, one source sentence can potentially depend
on many different target sentences, and one target
sentence can also correspond to multiple sources.

The sentence dependency task is formally defined
as, given a set of sentences St of a thread, find the
dependency relation {(s, t)|s ∈ St, t ∈ St}, where s
is the source sentence and t is the target sentence that
s depends on.

We propose two methods to find the dependency
relationship. In the first approach, for each source
sentence, we run a labeling procedure to find the de-
pendent sentences. From the data, we found given a
source sentence, there is strong dependency between
adjacent target sentences. If one sentence is a tar-
get sentence of the source, often the next sentence
is a target sentence too. In order to take advantage
of such adjacent sentence dependency, we use the
linear-chain CRFs for the sequence labeling. Fea-
tures used in sentence dependency labeling are listed

in Table 3. Note that a lot of the node features used
here are relative to the source sentence since the task
here is to determine if the two sentences are related.
For a thread of N sentences, we need to perform N
runs of CRF labeling, one for each sentence (as the
source sentence) in order to label the target sentence
corresponding to this source sentence.

Feature Description
* Cosine similarity with previous sentence.
* Is adjacent sentence of the same type?
* Pair of types of the adjacent target sentences.

Pair of types of the source and target sentence.
Is target in the same post as the source?
Do target and source belong to the same author?
Cosine similarity between target and source sentence.
Does target sentence happen before source?
Post distance between source and target sentence.

* indicates an edge feature

Table 3: Features Used in Sentence Dependency Labeling

The linear-chain CRFs can represent the depen-
dency between adjacent target sentences quite well.
However they cannot model the dependency be-
tween adjacent source sentences, because labeling
is done for each source sentence individually. To
model the dependency between both the source sen-
tences and the target sentences, we propose to use
2D CRFs for sentence relation labeling. 2D CRFs
are used in many applications considering two di-
mension dependencies such as object recognitions
(Quattoni et al., 2004) and web information extrac-
tion (Zhu et al., 2005). The graphical structure of
a 2D CRF is shown in Figure 4. Unlike one di-
mensional sequence labeling, a node in 2D environ-
ment is dependent on both x-axis neighbors and y-
axis neighbors. In the sentence relation task, the
source and target pair is a 2D relation in which its
label depends on labels of both its adjacent source
and its adjacent target sentence. As shown in Fig-
ure 4, looking from x-axis is the sequence of target
sentences with a fixed source sentence, and from y-
axis is the sequence of source sentences with a fixed
target sentence. This model allows us to model all
the sentence relationships jointly. 2D CRFs contain
3 templates of features: node template, x-axis edge
template, and y-axis edge template. We use the same
edge features and node features as in linear-chain
CRFs for node features and y-axis edge features in
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2D CRFs. For the x-axis edge features, we use the
same feature functions as for y-axis, except that now
they represent the relation between adjacent source
sentences.
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y00 ...
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... ... ...

y10

y01 y11 X
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Figure 4: Graphical Structure of 2D CRF for Sentence
Relation Labeling.

In a thread containing N sentences, we would
have a 2D CRF containing N2 nodes in a N × N
grid. Exact inference in such a graph is intractable.
In this paper we use loopy belief propagation algo-
rithm for the inference. Loopy belief propagation is
a message passing algorithm for graph inference. It
calculates the marginal distribution for each node in
the graph. The result is exact in some graph struc-
tures (e.g., linear-chain CRFs), and often converges
to a good approximation for general graphs.

4 Data

We used data from ubuntu community forum gen-
eral help section for the experiments and evalua-
tion. This is a technical support section that provides
answers to the latest problems in Ubuntu Linux.
Among all the threads that we have crawled, we se-
lected 200 threads for this initial study. They con-
tain between 2− 10 posts and at least 2 participants.
Sentences inside each thread are segmented using
Apache OpenNLP tools. In total, there are 706 posts
and 3,483 sentences. On average, each thread con-
tains 3.53 posts, and each post contains around 4.93
sentences. Two annotators were recruited to anno-
tate the sentence type and the dependency relation
between sentences. Annotators are both computer
science department undergraduate students. They
are provided with detailed explanation of the anno-
tation standard. The distribution of sentence types
in the annotated data is shown in Table 4, along with
inter-annotator Kappa statistics calculated using 20

common threads annotated by both annotators. We
can see that the majority of the sentences are about
problem descriptions and solutions. In general, the
agreement between the two annotators is quite good.

General Type Category Percentage Kappa

Problems
P-STAT 12.37 0.88
P-CONT 37.30 0.77
P-CLRF 1.01 0.98

Answers
A-SOLU 9.94 0.89
A-EXPL 11.60 0.89
A-INQU 1.38 0.99

Confirmation
C-GRAT 5.06 0.98
C-NEGA 1.98 0.96
C-POSI 1.84 0.96

Miscellaneous

M-QCOM 1.98 0.93
M-ACOM 1.47 0.96
M-GRET 1.01 0.96
M-OFF 7.92 0.96

Table 4: Distribution and Inter-annotator Agreement of
Sentence Types in Data

There are in total 1, 751 dependency relations
identified by the annotators among those tagged sen-
tences. Note that we are only dealing with intra-
thread sentence dependency, that is, no dependency
among sentences in different threads is labeled.
Considering all the possible sentence pairs in each
thread, the labeled dependency relations represent a
small percentage. The most common dependency
is problem description to problem question. This
shows that users tend to provide many details of
the problem. This is especially true in technical fo-
rums. Seeing questions without their context would
be confusing and hard to solve. The relation of an-
swering solutions and question dependency is also
very common, as expected. The third common re-
lation is the feedback dependency. Even though the
number of feedback sentences is small in the data
set, it plays a vital role to determine the quality of
answers. The main reason for the small number is
that, unlike problem descriptions, much fewer sen-
tences are needed to give feedbacks.

5 Experiment

In the experiment, we randomly split annotated
threads into three disjoint sets, and run a three-fold
cross validation. Within each fold, first sentence
types are labeled using linear-chain CRFs, then the
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resulting sentence type tagging is used in the sec-
ond pass to determine dependency relations. For
part-of-speech (POS) tagging of the sentences, we
used Stanford POS Tagger (Toutanova and Man-
ning, 2000). All the graphical inference and estima-
tions are done using MALLET package (McCallum,
2002).

In this paper, we evaluate the results using stan-
dard precision and recall. In the sentence type tag-
ging task, we calculate precision, recall, and F1

score for each individual tag. For the dependency
tagging task, a pair identified by the system is cor-
rect only if the exact pair appears in the reference an-
notation. Precision and recall scores are calculated
accordingly.

5.1 Sentence Type Tagging Results

The results of sentence type tagging using linear-
chain CRFs are shown in Table 5. For a comparison,
we include results using a basic first-order HMM
model. Because HMM is a generative model, we
use only bag of word features in the generative pro-
cess. The observation probability is the probabil-
ity of the sentence generated by a unigram language
model, trained for different sentence types. Since
for some applications, fine grained categories may
not be needed, for example, in the case of finding
questions and answers in a thread, we also include
in the table the tagging results when only the gen-
eral categories are used in both training and testing.

We can see from the table that using CRFs
achieves significantly better performance than
HMMs for most categories, except greeting and off-
topic types. This is mainly because of the advantage
of CRFs, allowing the incorporation of rich discrimi-
native features. For the two major types of problems
and answers, in general, our system shows very good
performance. Even for minority types like feed-
backs, it also performs reasonably well. When using
coarse types, the performance on average is better
compared to the finer grained categories, mainly be-
cause of the fewer classes in the classification task.
Using the fine grained categories, we found that the
system is able to tell the difference between “prob-
lem statement” (P-STAT) and “problem context” (P-
CONT). Note that in our task, a problem statement is
not necessarily a question sentence. Instead it could
be any sentence that expresses the need for a solu-

Linear-chain CRF First-order HMM
13 Fine Grained Types

Tag Prec. / Rec. F1 Prec. / Rec. F1

M-GRET 0.45 / 0.58 0.51 0.73 / 0.57 0.64
P-STAT 0.79 / 0.72 0.75 0.35 / 0.34 0.35
P-CONT 0.80 / 0.74 0.77 0.58 / 0.18 0.27
A-INQU 0.37 / 0.48 0.42 0.11 / 0.25 0.15
A-SOLU 0.78 / 0.64 0.71 0.27 / 0.29 0.28
A-EXPL 0.4 / 0.76 0.53 0.24 / 0.19 0.21
M-POST 0.5 / 0.41 0.45 0.04 / 0.1 0.05
C-GRAT 0.43 / 0.53 0.48 0.01 / 0.25 0.02
M-NEGA 0.67 / 0.5 0.57 0.09 / 0.31 0.14
M-OFF 0.11 / 0.23 0.15 0.20 / 0.23 0.21
P-CLRF 0.15 / 0.33 0.21 0.10 / 0.12 0.11
M-ACOM 0.27 / 0.38 0.32 0.09 / 0.1 0.09
M-QCOM 0.34 / 0.32 0.33 0.08 / 0.23 0.11

4 General Types
Tag Prec. / Rec. F1 Prec. / Rec. F1

Problem 0.85 / 0.76 0.80 0.73 / 0.27 0.39
Answers 0.65 / 0.72 0.68 0.45 / 0.36 0.40
Confirm. 0.80 / 0.74 0.77 0.06 / 0.26 0.10
Misc. 0.43 / 0.61 0.51 0.04 / 0.36 0.08

Table 5: Sentence Type Tagging Performance Using
CRFs and HMM.

tion.
We also performed some analysis of the features

using the feature weights in the trained CRF mod-
els. We find that some post level information is rela-
tively important. For example, the feature represent-
ing whether the sentence is before a “code” segment
has a high weight for problem description classifica-
tion. This is because in linux support forum, people
usually put some machine output after their problem
description. We also notice that the weights for verb
words are usually high. This is intuitive since the
“verb” of a sentence can often determine its purpose.

5.2 Sentence Dependency Tagging Results

Table 6 shows the results using linear-chain CRFs
(L-CRF) and 2D CRFs for sentence dependency tag-
ging. We use different settings in our experiments.
For the categories of sentence types, we evaluate us-
ing both the fine grained (13 types) and the coarse
categories (4 types). Furthermore, we examine two
ways to obtain the sentence types. First, we use the
output from automatic sentence type tagging. In the
second one, we use the sentence type information
from the human annotated data in order to avoid the
error propagation from automatic sentence type la-
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beling. This gives an oracle upper bound for the
second pass performance.

Using Oracle Sentence Type
Setup Precision Recall F1

13 types
L-CRF 0.973 0.453 0.618
2D-CRF 0.985 0.532 0.691

4 general
L-CRF 0.941 0.124 0.218
2D-CRF 0.956 0.145 0.252
Using System Sentence Type

Setup Precision Recall F1

13 types
L-CRF 0.943 0.362 0.523
2D-CRF 0.973 0.394 0.561

4 general
L-CRF 0.939 0.101 0.182
2D-CRF 0.942 0.127 0.223

Table 6: Sentence Dependency Tagging Performance

From the results we can see that 2D CRFs out-
perform linear-chain CRFs for all the conditions.
This shows that by modeling the 2D dependency in
source and target sentences, system performance is
improved. For the sentence types, when using auto-
matic sentence type tagging systems, there is a per-
formance drop. The performance gap between us-
ing the reference and automatic sentence types sug-
gests that there is still room for improvement from
better sentence type tagging. Regarding the cate-
gories used for the sentence types, we observe that
they have an impact on dependence tagging perfor-
mance. When using general categories, the perfor-
mance is far behind that using the fine grained types.
This is because some important information is lost
when grouping categories. For example, a depen-
dency relation can be: “A-EXPL” (explanation for
solutions) depends on “A-SOLU” (solutions); how-
ever, when using coarse categories, both are mapped
to “Solution”, and having one “Solution” depending
on another “Solution” is not very intuitive and hard
to model properly. This shows that detailed cate-
gory information is very important for dependency
tagging even though the tagging accuracy from the
first pass is far from perfect.

Currently our system does not put constraints on
the sentence types for which dependencies exist. In
the system output we find that sometimes there are
obvious dependency errors, such as a positive feed-
back depending on a negative feedback. We may
improve our models by taking into account different
sentence types and dependency relations.

6 Conclusion

In this paper, we investigated sentence dependency
tagging of question and answer (QA) threads in on-
line forums. We define the thread tagging task as a
two-step process. In the first step, sentence types
are labeled. We defined 13 sentence types in or-
der to capture rich information of sentences to bene-
fit question answering systems. Linear chain CRF
is used for sentence type tagging. In the second
step, we label actual dependency between sentences.
First, we propose to use a linear-chain CRF to label
possible target sentences for each source sentence.
Then we improve the model to consider the depen-
dency between sentences along two dimensions us-
ing a 2D CRF. Our experiments show promising
performance in both tasks. This provides a good
pre-processing step towards automatic question an-
swering. In the future, we plan to explore using
constrained CRF for more accurate dependency tag-
ging. We will also use the result from this work in
other tasks such as answer quality ranking and an-
swer summarization.
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Abstract

We predict entity type distributions in Web
search queries via probabilistic inference in
graphical models that capture how entity-
bearing queries are generated. We jointly
model the interplay between latent user in-
tents that govern queries and unobserved en-
tity types, leveraging observed signals from
query formulations and document clicks. We
apply the models to resolve entity types in new
queries and to assign prior type distributions
over an existing knowledge base. Our mod-
els are efficiently trained using maximum like-
lihood estimation over millions of real-world
Web search queries. We show that modeling
user intent significantly improves entity type
resolution for head queries over the state of the
art, on several metrics, without degradation in
tail query performance.

1 Introduction

Commercial search engines are providing ever-
richer experiences around entities. Querying for a
dish on Google yields recipe filters such as cook
time, calories, and ingredients. Querying for a
movie on Yahoo triggers user ratings, cast, tweets
and showtimes. Bing further allows the movie to
be directly added to the user’s Netflix queue. En-
tity repositories such as Freebase, IMDB, Facebook
Pages, Factual, Pricegrabber, and Wikipedia are in-
creasingly leveraged to enable such experiences.

There are, however, inherent problems in the en-
tity repositories: (a) coverage: although coverage of
head entity types is often reliable, the tail can be
sparse; (b) noise: created by spammers, extraction

errors or errors in crowdsourced content; (c) am-
biguity: multiple types or entity identifiers are of-
ten associated with the same surface string; and (d)
over-expression: many entities have types that are
never used in the context of Web search.

There is an opportunity to automatically tailor
knowledge repositories to the Web search scenario.
Desirable capabilities of such a system include: (a)
determining the prior type distribution in Web search
for each entity in the repository; (b) assigning a type
distribution to new entities; (c) inferring the correct
sense of an entity in a particular query context; and
(d) adapting to a search engine and time period.

In this paper, we build such a system by lever-
aging Web search usage logs with large numbers of
user sessions seeking or transacting on entities. We
cast the task as performing probabilistic inference
in a graphical model that captures how queries are
generated, and then apply the model to contextually
recognize entity types in new queries. We motivate
and design several generative models based on the
theory that search users’ (unobserved) intents gov-
ern the types of entities, the query formulations, and
the ultimate clicks on Web documents. We show that
jointly modeling user intent and entity type signifi-
cantly outperforms the current state of the art on the
task of entity type resolution in queries. The major
contributions of our research are:

• We introduce the idea that latent user intents
can be an important factor in modeling type dis-
tributions over entities in Web search.
• We propose generative models and inference

procedures using signals from query context,
click, entity, entity type, and user intent.
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• We propose an efficient learning technique and
a robust implementation of our models, using
real-world query data, and a realistic large set
of entity types.
• We empirically show that our models outper-

form the state of the art and that modeling latent
intent contributes significantly to these results.

2 Related Work

2.1 Finding Semantic Classes

A closely related problem is that of finding the se-
mantic classes of entities. Automatic techniques for
finding semantic classes include unsupervised clus-
tering (Schütze, 1998; Pantel and Lin, 2002), hy-
ponym patterns (Hearst, 1992; Pantel et al., 2004;
Kozareva et al., 2008), extraction patterns (Etzioni
et al., 2005), hidden Markov models (Ritter et al.,
2009), classification (Rahman and Ng, 2010) and
many others. These techniques typically lever-
age large corpora, while projects such as WordNet
(Miller et al., 1990) and Freebase (Bollacker et al.,
2008) have employed editors to manually enumerate
words and entities with their semantic classes.

The aforementioned methods do not use query
logs or explicitly determine the relative probabilities
of different entity senses. A method might learn that
there is independently a high chance of eBay being a
website and an employer, but does not specify which
usage is more common. This is especially problem-
atic, for example, if one wishes to leverage Freebase
but only needs the most commonly used senses (e.g.,
Al Gore is a US Vice President), rather than
all possible obscure senses (Freebase contains 30+
senses, including ones such as Impersonated
Celebrity and Quotation Subject). In
scenarios such as this, our proposed method can in-
crease the usability of systems that find semantic
classes. We also expand upon text corpora meth-
ods in that the type priors can adapt to Web search
signals.

2.2 Query Log Mining

Query logs have traditionally been mined to improve
search (Baeza-Yates et al., 2004; Zhang and Nas-
raoui, 2006), but they can also be used in place of
(or in addition to) text corpora for learning seman-
tic classes. Query logs can contain billions of en-

tries, they provide an independent signal from text
corpora, their timestamps allow the learning of type
priors at specific points in time, and they can contain
information such as clickthroughs that are not found
in text corpora. Sekine and Suzuki (2007) used fre-
quency features on context words in query logs to
learn semantic classes of entities. Paşca (2007) used
extraction techniques to mine instances of semantic
classes from query logs. Rüd et al. (2011) found
that cross-domain generalizations learned from Web
search results are applicable to NLP tasks such as
NER. Alfonseca et al. (2010) mined query logs to
find attributes of entity instances. However, these
projects did not learn relative probabilities of differ-
ent senses.

2.3 User Intents in Search

Learning from query logs also allows us to lever-
age the concept of user intents. When users sub-
mit search queries, they often have specific intents in
mind. Broder (2002) introduced 3 top level intents:
Informational (e.g., wanting to learn), Navigational
(wanting to visit a site), and Transactional (e.g.,
wanting to buy/sell). Rose and Levinson (2004) fur-
ther divided these into finer-grained subcategories,
and Yin and Shah (2010) built hierarchical tax-
onomies of search intents. Jansen et al. (2007), Hu
et al. (2009), and Radlinski et al. (2010) examined
how to infer the intent of queries. We are not aware
of any other work that has leveraged user intents to
learn type distributions.

2.4 Topic Modeling on Query Logs

The closest work to ours is Guo et al.’s (2009) re-
search on Named Entity Recognition in Queries.
Given an entity-bearing query, they attempt to iden-
tify the entity and determine the type posteriors. Our
work significantly scales up the type posteriors com-
ponent of their work. While they only have four
potential types (Movie, Game, Book, Music) for
each entity, we employ over 70 popular types, allow-
ing much greater coverage of real entities and their
types. Because they only had four types, they were
able to hand label their training data. In contrast,
our system self-labels training examples by search-
ing query logs for high-likelihood entities, and must
handle any errors introduced by this process. Our
models also expand upon theirs by jointly modeling

564



entity type with latent user intents, and by incorpo-
rating click signals.

Other projects have also demonstrated the util-
ity of topic modeling on query logs. Carman et
al. (2010) modeled users and clicked documents to
personalize search results and Gao et al. (2011) ap-
plied topic models to query logs in order to improve
document ranking for search.

3 Joint Model of Types and User Intents

We turn our attention now to the task of mining the
type distributions of entities and of resolving the
type of an entity in a particular query context. Our
approach is to probabilistically describe how entity-
bearing queries are generated in Web search. We
theorize that search queries are governed by a latent
user intent, which in turn influences the entity types,
the choice of query words, and the clicked hosts. We
develop inference procedures to infer the prior type
distributions of entities in Web search as well as to
resolve the type of an entity in a query, by maximiz-
ing the probability of observing a large collection of
real-world queries and their clicked hosts.

We represent a query q by a triple {n1, e, n2},
where e represents the entity mentioned in the query,
n1 and n2 are respectively the pre- and post-entity
contexts (possibly empty), referred to as refiners.
Details on how we obtain our corpus are presented
in Section 4.2.

3.1 Intent-based Model (IM)

In this section we describe our main model, IM, il-
lustrated in Figure 1. We derive a learning algorithm
for the model in Section 3.2 and an inference proce-
dure in Section 3.3.

Recall our discussion of intents from Section 2.3.
The unobserved semantic type of an entity e in a
query is strongly correlated with the unobserved
user intent. For example, if a user queries for
“song”, then she is likely looking to ‘listen to it’,
‘download it’, ‘buy it’, or ‘find lyrics’ for it. Our
model incorporates this user intent as a latent vari-
able.

The choice of the query refiner words, n1 and n2,
is also clearly influenced by the user intent. For
example, refiners such as “lyrics” and “words” are
more likely to be used in queries where the intent is

For each query/click pair {q, c}
type t ∼Multinomial(τ)
intent i ∼Multinomial(θt)
entity e ∼Multinomial(ψt)
switch s1 ∼ Bernoulli(σi)
switch s2 ∼ Bernoulli(σi)
if (s1) l-context n1 ∼Multinomial(φi)
if (s2) r-context n2 ∼Multinomial(φi)
click c ∼Multinomial(ωi)

Table 1: Model IM: Generative process for entity-
bearing queries.

to ‘find lyrics’ than in queries where the intent is to
‘listen’. The same is true for clicked hosts: clicks on
“lyrics.com” and “songlyrics.com” are more likely
to occur when the intent is to ‘find lyrics’, whereas
clicks on “pandora.com” and “last.fm” are more
likely for a ‘listen’ intent.

Model IM leverages each of these signals: latent
intent, query refiners, and clicked hosts. It generates
entity-bearing queries by first generating an entity
type, from which the user intent and entity is gen-
erated. In turn, the user intent is then used to gen-
erate the query refiners and the clicked host. In our
data analysis, we observed that over 90% of entity-
bearing queries did not contain any refiner words n1

and n2. In order to distribute more probability mass
to non-empty context words, we explicitly represent
the empty context using a switch variable that deter-
mines whether a context will be empty.

The generative process for IM is described in Ta-
ble 1. Consider the query “ymca lyrics”. Our model
first generates the type song, then given the type
it generates the entity “ymca” and the intent ‘find
lyrics’. The intent is then used to generate the pre-
and post-context words ∅ and “lyrics”, respectively,
and a click on a host such as “lyrics.com”.

For mathematical convenience, we assume that
the user intent is generated independently of the
entity itself. Without this assumption, we would
require learning a parameter for each intent-type-
entity configuration, exploding the number of pa-
rameters. Instead, we choose to include these depen-
dencies at the time of inference, as described later.

Recall that q = {n1, e, n2} and let s = {s1, s2},
where s1 = 1 if n1 is not empty and s2 = 1 if n2 is
not empty, 0 otherwise. The joint probability of the
model is the product of the conditional distributions,
as given by:
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Figure 1: Graphical models for generating entity-bearing queries. Guo′09 represents the current state of the art (Guo
et al., 2009). Models M0 and M1 add an empty context switch and click information, respectively. Model IM further
constrains the query by the latent user intent.

P (t, i, q, c | τ,Θ,Ψ, σ,Φ,Ω) =

P (t | τ)P (i | t,Θ)P (e | t,Ψ)P (c | i,Ω)

2∏
j=1

P (nj | i,Φ)I[sj=1]P (sj |i, σ)

We now define each of the terms in the joint dis-
tribution. Let T be the number of entity types. The
probability of generating a type t is governed by a
multinomial with probability vector τ :

P (t=t̂) =
T∏

j=1

τ
I[j=t̂]
j , s.t.

T∑
j=1

τj = 1

where I is an indicator function set to 1 if its condi-
tion holds, and 0 otherwise.

Let K be the number of latent user intents that
govern our query log, where K is fixed in advance.
Then, the probability of intents i is defined as a
multinomial distribution with probability vector θt

such that Θ = [θ1, θ2, ..., θT ] captures the matrix of
parameters across all T types:

P (i=î | t=t̂) =
K∏

j=1

Θ
I[j=î]

t̂,j
, s.t. ∀t

K∑
j=1

Θt,j = 1

LetE be the number of known entities. The prob-
ability of generating an entity e is similarly governed
by a parameter Ψ across all T types:

P (e=ê | t=t̂) =
E∏

j=1

Ψ
I[j=ê]

t̂,j
, s.t. ∀t

E∑
j=1

Ψt,j = 1

The probability of generating an empty or non-
empty context s given intent i is given by a Bernoulli
with parameter σi:

P (s | i=î) = σ
I[s=1]

î
(1− σî)

I[s=0]

Let V be the shared vocabulary size of all query
refiner words n1 and n2. Given an intent, i, the
probability of generating a refiner n is given by a
multinomial distribution with probability vector φi

such that Φ = [φ1, φ2, ..., φK ] represents parame-
ters across intents:

P (n=n̂ | i=î) =
V∏

v=1

Φ
I[v=n̂]

î,v
, s.t. ∀i

V∑
v=1

Φi,v = 1

Finally, we assume there areH possible click val-
ues, corresponding to H Web hosts. A click on a
host is similarly determined by an intent i and is gov-
erned by parameter Ω across all K intents:

P (c=ĉ | i=î) =

H∏
h=1

Ω
I[h=ĉ]

î,h
, s.t. ∀i

H∑
h=1

Ωi,h = 1

3.2 Learning
Given a query corpus Q consisting of N inde-
pendently and identically distributed queries qj =
{nj

1, e
j , nj

2} and their corresponding clicked hosts
cj , we estimate the parameters τ , Θ, Ψ, σ, Φ, and
Ω by maximizing the (log) probability of observing
Q. The logP (Q) can be written as:

logP (Q) =
N∑

j=1

∑
t,i

P j(t, i | q, c) logP j(q, c, t, i)

In the above equation, P j(t, i | q, c) is the poste-
rior distribution over types and user intents for the
jth query. We use the Expectation-Maximization
(EM) algorithm to estimate the parameters. The
parameter updates are obtained by computing the
derivative of logP (Q) with respect to each parame-
ter, and setting the resultant to 0.

The update for τ is given by the average of the
posterior distributions over the types:
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τt̂ =

∑N
j=1

∑
i P

j(t=t̂, i | q, c)∑N
j=1

∑
t,i P

j(t, i | q, c)

For a fixed type t, the update for θt is given by
the weighted average of the latent intents, where the
weights are the posterior distributions over the types,
for each query:

Θt̂,̂i =

∑N
j=1 P

j(t=t̂, i=î | q, c)∑N
j=1

∑
i P

j(t=t̂, i | q, c)

Similarly, we can update Ψ, the parameters that
govern the distribution over entities for each type:

Ψt̂,ê =

∑N
j=1

∑
i P

j(t=t̂, i | q, c)I[ej=ê]∑N
j=1

∑
i P

j(t=t̂, i | q, c)

Now, for a fixed user intent i, the update for
ωi is given by the weighted average of the clicked
hosts, where the weights are the posterior distribu-
tions over the intents, for each query:

Ωî,ĉ =

∑N
j=1

∑
t P

j(t, i=î | q, c)I[cj=ĉ]∑N
j=1

∑
t P

j(t, i=î | q, c)

Similarly, we can update Φ and σ, the parameters
that govern the distribution over query refiners and
empty contexts for each intent, as:

Φî,n̂=

∑N
j=1

∑
t Pj(t,i=î|q,c)

[
I[n

j
1=n̂]I[s

j
1=1]+I[n

j
2=n̂]I[s

j
2=1]

]
∑N

j=1

∑
t Pj(t,i=î|q,c)

[
I[s

j
1=1]+I[s

j
2=1]

]
and

σî =

∑N
j=1

∑
t P

j(t, i=î | q, c)
[
I[s1=1] + I[s2=1]

]
2

∑N
j=1

∑
t P

j(t, i=î | q, c)

3.3 Decoding
Given a query/click pair {q, c}, and the learned IM
model, we can apply Bayes’ rule to find the poste-
rior distribution, P (t, i | q, c), over the types and
intents, as it is proportional to P (t, i, q, c). We com-
pute this quantity exactly by evaluating the joint for
each combination of t and i, and the observed values
of q and c.

It is important to note that at runtime when a new
query is issued, we have to resolve the entity in the
absence of any observed click. However, we do have
access to historical click probabilities, P (c | q).

We use this information to compute P (t | q) by
marginalizing over i as follows:

P (t | q) =
∑

i

H∑
j=1

P (t, i | q, cj)P (cj | q) (1)

3.4 Comparative Models

Figure 1 also illustrates the current state-of-the-art
model Guo′09 (Guo et al., 2009), described in Sec-
tion 2.4, which utilizes only query refinement words
to infer entity type distributions. Two extensions to
this model that we further study in this paper are also
shown: Model M0 adds the empty context switch
parameter and Model M1 further adds click infor-
mation. In the interest of space, we omit the update
equations for these models, however they are triv-
ial to adapt from the derivations of Model IM pre-
sented in Sections 3.1 and 3.2.

3.5 Discussion

Full Bayesian Treatment: In the above mod-
els, we learn point estimates for the parameters
(τ,Θ,Ψ, σ,Φ,Ω). One can take a Bayesian ap-
proach and treat these parameters as variables (for
instance, with Dirichlet and Beta prior distribu-
tions), and perform Bayesian inference. However,
exact inference will become intractable and we
would need to resort to methods such as variational
inference or sampling. We found this extension un-
necessary, as we had a sufficient amount of training
data to estimate all parameters reliably. In addition,
our approach enabled us to learn (and perform infer-
ence in) the model with large amounts of data with
reasonable computing time.

Fitting to an existing Knowledge Base: Al-
though in general our model decodes type distribu-
tions for arbitrary entities, in many practical cases
it is beneficial to constrain the types to those ad-
missible in a fixed knowledge base (such as Free-
base). As an example, if the entity is “ymca”,
admissible types may include song, place, and
educational institution. When resolving
types, during inference, one can restrict the search
space to only these admissible types. A desirable
side effect of this strategy is that only valid ambigu-
ities are captured in the posterior distribution.
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4 Evaluation Methodology

We refer to QL as a set of English Web search
queries issued to a commercial search engine over
a period of several months.

4.1 Entity Inventory

Although our models generalize to any entity reposi-
tory, we experiment in this paper with entities cover-
ing a wide range of web search queries, coming from
73 types in Freebase. We arrived at these types by
grepping for all entities in Freebase within QL, fol-
lowing the procedure described in Section 4.2, and
then choosing the top most frequent types such that
50% of the queries are covered by an entity of one
of these types1.

4.2 Training Data Construction

In order to learn type distributions by jointly mod-
eling user intents and a large number of types, we
require a large set of training examples containing
tagged entities and their potential types. Unlike in
Guo et al. (2009), we need a method to automatically
label QL to produce these training cases since man-
ual annotation is impossible for the range of entities
and types that we consider. Reliably recognizing en-
tities in queries is not a solved problem. However,
for training we do not require high coverage of en-
tities in QL, so high precision on a sizeable set of
query instances can be a proper proxy.

To this end, we collect candidate entities in
QL via simple string matching on Freebase entity
strings within our preselected 73 types. To achieve
high precision from this initial (high-recall, low-
precision) candidate set we use a number of heuris-
tics to only retain highly likely entities. The heuris-
tics include retaining only matches on entities that
appear capitalized more than 50% in their occur-
rences in Wikipedia. Also, a standalone score fil-
ter (Jain and Pennacchiotti, 2011) of 0.9 is used,
which is based on the ratio of string occurrence as

1In this process, we omitted any non-core Freebase type
(e.g., /user/* and /base/*), types used for representation
(e.g., /common/* and /type/*), and too general types (e.g.,
/people/person and /location/location) identi-
fied by if a type contains multiple other prominent subtypes.
Finally, we conflated seven of the types that overlapped with
each other into four types (such as /book/written work
and /book/book).

an exact match in queries to how often it occurs as a
partial match.

The resulting queries are further filtered by keep-
ing only those where the pre- and post-entity con-
texts (n1 and n2) were empty or a single word (ac-
counting for a very large fraction of the queries). We
also eliminate entries with clicked hosts that have
been clicked fewer than 100 times over the entire
QL. Finally, for training we filter out any query with
an entity that has more than two potential types2.
This step is performed to reduce recognition er-
rors by limiting the number of potential ambiguous
matches. We experimented with various thresholds
on allowable types and settled on the value two.

The resulting training data consists of several mil-
lion queries, 73 different entity types, and approx-
imately 135K different entities, 100K different re-
finer words, and 40K clicked hosts.

4.3 Test Set Annotation
We sampled two datasets, HEAD and TAIL, each
consisting of 500 queries containing an entity be-
longing to one of the 73 types in our inventory, from
a frequency-weighted random sample and a uniform
random sample of QL, respectively.

We conducted a user study to establish a gold
standard of the correct entity types in each query.
A total of seven different independent and paid pro-
fessional annotators participated in the study. For
each query in our test sets, we displayed the query,
associated clicked host, and entity to the annotator,
along with a list of permissible types from our type
inventory. The annotator is tasked with identifying
all applicable types from that list, or marking the test
case as faulty because of an error in entity identifi-
cation, bad click host (e.g. dead link) or bad query
(e.g. non-English). This resulted in 2,092 test cases
({query, entity, type}-tuples). Each test case was
annotated by two annotators. Inter-annotator agree-
ment as measured by Fleiss’ κ was 0.445 (0.498
on HEAD and 0.386 on TAIL), considered moderate
agreement.

From HEAD and TAIL, we eliminated three cat-
egories of queries that did not offer any interesting
type disambiguation opportunities:

• queries that contained entities with only one
2For testing we did not omit any entity or type.
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HEAD TAIL
nDCG MAP MAPW Prec@1 nDCG MAP MAPW Prec@1

BFB 0.71 0.60 0.45 0.30 0.73 0.64 0.49 0.35

Guo′09 0.79† 0.71† 0.62† 0.51† 0.80† 0.73† 0.66† 0.52†

M0 0.79† 0.72† 0.65† 0.52† 0.82† 0.75† 0.67† 0.57†
M1 0.83‡ 0.76‡ 0.72‡ 0.61‡ 0.81† 0.74† 0.67† 0.55†
IM 0.87‡ 0.82‡ 0.77‡ 0.73‡ 0.80† 0.72† 0.66† 0.52†

Table 2: Model analysis on HEAD and TAIL. † indicates statistical significance over BFB, and ‡ over both BFB and
Guo′09. Bold indicates statistical significance over all non-bold models in the column. Significance is measured
using the Student’s t-test at 95% confidence.

potential type from our inventory;
• queries where the annotators rated all potential

types as good; and
• queries where judges rated none of the potential

types as good

The final test sets consist of 105 head queries with
359 judged entity types and 98 tail queries with 343
judged entity types.

4.4 Metrics

Our task is a ranking task and therefore the classic
IR metrics nDCG (normalized discounted cumula-
tive gain) and MAP (mean average precision) are
applicable (Manning et al., 2008).

Both nDCG and MAP are sensitive to the rank
position, but not the score (probability of a type) as-
sociated with each rank, S(r). We therefore also
evaluate a weighted mean average precision score
MAPW, which replaces the precision component
of MAP, P (r), for the rth ranked type by:

P (r) =

∑r
r̂=1 I(r̂)S(r̂)∑r

r̂=1 S(r̂)
(2)

where I(r) indicates if the type at rank r is judged
correct.

Our fourth metric is Prec@1, i.e. the precision of
only the top-ranked type of each query. This is espe-
cially suitable for applications where a single sense
must be determined.

4.5 Model Settings

We trained all models in Figure 1 using the training
data from Section 4.2 over 100 EM iterations, with
two folds per model. For Model IM, we varied the
number of user intents (K) in intervals from 100 to
400 (see Figure 3), under the assumption that multi-
ple intents would exist per entity type.

We compare our results against two baselines.
The first baseline is an assignment of Freebase types
according to their frequency in our query set BFB,
and the second is Model Guo′09 (Guo et al., 2009)
illustrated in Figure 1.

5 Experimental Results

Table 2 lists the performance of each model on the
HEAD and TAIL sets over each metric defined in
Section 4.4. On head queries, the addition of the
empty context parameter σ and click signal Ω to-
gether (Model M1) significantly outperforms both
the baseline and the state-of-the-art model Guo′09.
Further modeling the user intent in Model IM re-
sults in significantly better performance over all
models and across all metrics. Model IM shows
its biggest gains in the first position of its ranking as
evidenced by the Prec@1 metric.

We observe a different behavior on tail queries
where all models significantly outperform the base-
line BFB, but are not significantly different from
each other. In short, the strength of our proposed
model is in improving performance on the head at
no noticeable cost in the tail.

We separately tested the effect of adding the
empty context parameter σ. Figure 2 illustrates the
result on the HEAD data. Across all metrics, σ im-
proved performance over all models3. The more
expressive models benefitted more than the less ex-
pressive ones.

Table 2 reports results for Model IM using K =
200 user intents. This was determined by varying
K and selecting the top-performing value. Figure 3
illustrates the performance of Model IM with dif-
ferent values of K on the HEAD.

3Note that model M0 is just the addition of the σ parameter
over Guo′09.
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Our models can also assign a prior type distribu-
tion to each entity by further marginalizing Eq. 1
over query contexts n1 and n2. We measured the
quality of our learned type priors using the subset
of queries in our HEAD test set that consisted of
only an entity without any refiners. The results for
Model IM were: nDCG = 0.86, MAP = 0.80,
MAPW = 0.75, and Prec@1 = 0.70. All met-
rics are statistically significantly better than BFB,
Guo′09 and M0, with 95% confidence. Compared
to Model M1, Model IM is statistically signifi-
cantly better on Prec@1 and not significantly dif-
ferent on the other metrics.

Discussion and Error Analysis: Contrary to
our results, we had expected improvements for
both HEAD and TAIL. Inspection of the TAIL
queries revealed that entities were greatly skewed
towards people (e.g., actor, author, and
politician). Analysis of the latent user in-
tent parameter Θ in Model IM showed that most
people types had most of their probability mass
assigned to the same three generic and common in-
tents for people types: ‘see pictures of’, ‘find bio-
graphical information about’, and ‘see video of’. In
other words, latent intents in Model IM are over-
expressive and they do not help in differentiating
people types.

The largest class of errors came from queries
bearing an entity with semantically very similar
types where our highest ranked type was not judged
correct by the annotators. For example, for the
query “philippine daily inquirer” our system ranked
newspaper ahead of periodical but a judge
rejected the former and approved the latter. For
“ikea catalogue”, our system ranked magazine
ahead of periodical, but again a judge rejected
magazine in favor of periodical.

An interesting success case in the TAIL is high-
lighted by two queries involving the entity “ymca”,
which in our data can either be a song, place,
or educational institution. Our system
learns the following priors: 0.63, 0.29, and 0.08,
respectively. For the query “jamestown ymca ny”,
IM correctly classified “ymca” as a place and for
the query “ymca palomar” it correctly classified it
as an educational institution. We further
issued the query “ymca lyrics” and the type song
was then highest ranked.

Our method is generalizable to any entity collec-
tion. Since our evaluation focused on the Freebase
collection, it remains an open question how noise
level, coverage, and breadth in a collection will af-
fect our model performance. Finally, although we
do not formally evaluate it, it is clear that training
our model on different time spans of queries should
lead to type distributions adapted to that time period.

6 Conclusion

Jointly modeling the interplay between the under-
lying user intents and entity types in web search
queries shows significant improvements over the
current state of the art on the task of resolving entity
types in head queries. At the same time, no degrada-
tion in tail queries is observed. Our proposed models
can be efficiently trained using an EM algorithm and
can be further used to assign prior type distributions
to entities in an existing knowledge base and to in-
sert new entities into it.

Although this paper leverages latent intents in
search queries, it stops short of understanding the
nature of the intents. It remains an open problem
to characterize and enumerate intents and to iden-
tify the types of queries that benefit most from intent
models.
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Abstract
The amount of labeled sentiment data in En-
glish is much larger than that in other lan-
guages. Such a disproportion arouse interest
in cross-lingual sentiment classification, which
aims to conduct sentiment classification in the
target language (e.g. Chinese) using labeled
data in the source language (e.g. English).
Most existing work relies on machine trans-
lation engines to directly adapt labeled data
from the source language to the target lan-
guage. This approach suffers from the limited
coverage of vocabulary in the machine transla-
tion results. In this paper, we propose a gen-
erative cross-lingual mixture model (CLMM)
to leverage unlabeled bilingual parallel data.
By fitting parameters to maximize the likeli-
hood of the bilingual parallel data, the pro-
posed model learns previously unseen senti-
ment words from the large bilingual parallel
data and improves vocabulary coverage signifi-
cantly. Experiments on multiple data sets show
that CLMM is consistently effective in two set-
tings: (1) labeled data in the target language are
unavailable; and (2) labeled data in the target
language are also available.

1 Introduction

Sentiment Analysis (also known as opinion min-
ing), which aims to extract the sentiment informa-
tion from text, has attracted extensive attention in
recent years. Sentiment classification, the task of
determining the sentiment orientation (positive, neg-
ative or neutral) of text, has been the most exten-
sively studied task in sentiment analysis. There is

∗Contribution during internship atMicrosoft ResearchAsia.

already a large amount of work on sentiment classi-
fication of text in various genres and in many lan-
guages. For example, Pang et al. (2002) focus on
sentiment classification of movie reviews in English,
and Zagibalov and Carroll (2008) study the problem
of classifying product reviews in Chinese. During
the past few years, NTCIR1 organized several pi-
lot tasks for sentiment classification of news articles
written in English, Chinese and Japanese (Seki et
al., 2007; Seki et al., 2008).
For English sentiment classification, there are sev-

eral labeled corpora available (Hu and Liu, 2004;
Pang et al., 2002; Wiebe et al., 2005). However, la-
beled resources in other languages are often insuf-
ficient or even unavailable. Therefore, it is desir-
able to use the English labeled data to improve senti-
ment classification of documents in other languages.
One direct approach to leveraging the labeled data
in English is to use machine translation engines as a
black box to translate the labeled data from English
to the target language (e.g. Chinese), and then us-
ing the translated training data directly for the devel-
opment of the sentiment classifier in the target lan-
guage (Wan, 2009; Pan et al., 2011).
Although the machine-translation-based methods

are intuitive, they have certain limitations. First,
the vocabulary covered by the translated labeled
data is limited, hence many sentiment indicative
words can not be learned from the translated labeled
data. Duh et al. (2011) report low overlapping
between vocabulary of natural English documents
and the vocabulary of documents translated to En-
glish from Japanese, and the experiments of Duh

1http://research.nii.ac.jp/ntcir/index-en.html
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et al. (2011) show that vocabulary coverage has a
strong correlation with sentiment classification ac-
curacy. Second, machine translation may change the
sentiment polarity of the original text. For exam-
ple, the negative English sentence “It is too good to
be true” is translated to a positive sentence in Chi-
nese “这是好得是真实的” by Google Translate
(http://translate.google.com/), which literally means
“It is good and true”.
In this paper we propose a cross-lingual mixture

model (CLMM) for cross-lingual sentiment classifi-
cation. Instead of relying on the unreliable machine
translated labeled data, CLMM leverages bilingual
parallel data to bridge the language gap between the
source language and the target language. CLMM is
a generative model that treats the source language
and target language words in parallel data as gener-
ated simultaneously by a set of mixture components.
By “synchronizing” the generation of words in the
source language and the target language in a parallel
corpus, the proposed model can (1) improve vocabu-
lary coverage by learning sentiment words from the
unlabeled parallel corpus; (2) transfer polarity label
information between the source language and target
language using a parallel corpus. Besides, CLMM
can improve the accuracy of cross-lingual sentiment
classification consistently regardless of whether la-
beled data in the target language are present or not.
We evaluate the model on sentiment classification
of Chinese using English labeled data. The exper-
iment results show that CLMM yields 71% in accu-
racy when no Chinese labeled data are used, which
significantly improves Chinese sentiment classifica-
tion and is superior to the SVMand co-training based
methods. When Chinese labeled data are employed,
CLMMyields 83% in accuracy, which is remarkably
better than the SVM and achieve state-of-the-art per-
formance.
This paper makes two contributions: (1) we pro-

pose a model to effectively leverage large bilin-
gual parallel data for improving vocabulary cover-
age; and (2) the proposed model is applicable in both
settings of cross-lingual sentiment classification, ir-
respective of the availability of labeled data in the
target language.
The paper is organized as follows. We review re-

lated work in Section 2, and present the cross-lingual
mixture model in Section 3. Then we present the ex-

perimental studies in Section 4, and finally conclude
the paper and outline the future plan in Section 5.

2 Related Work

In this section, we present a brief review of the re-
lated work on monolingual sentiment classification
and cross-lingual sentiment classification.

2.1 Sentiment Classification
Early work of sentiment classification focuses on

English product reviews or movie reviews (Pang et
al., 2002; Turney, 2002; Hu and Liu, 2004). Since
then, sentiment classification has been investigated
in various domains and different languages (Zag-
ibalov and Carroll, 2008; Seki et al., 2007; Seki et
al., 2008; Davidov et al., 2010). There exist two
main approaches to extracting sentiment orientation
automatically. The Dictionary-based approach (Tur-
ney, 2002; Taboada et al., 2011) aims to aggregate
the sentiment orientation of a sentence (or docu-
ment) from the sentiment orientations of words or
phrases found in the sentence (or document), while
the corpus-based approach (Pang et al., 2002) treats
the sentiment orientation detection as a conventional
classification task and focuses on building classifier
from a set of sentences (or documents) labeled with
sentiment orientations.
Dictionary-based methods involve in creating or

using sentiment lexicons. Turney (2002) derives
sentiment scores for phrases by measuring the mu-
tual information between the given phrase and the
words “excellent” and “poor”, and then uses the av-
erage scores of the phrases in a document as the
sentiment of the document. Corpus-based meth-
ods are often built upon machine learning mod-
els. Pang et al. (2002) compare the performance
of three commonly used machine learning models
(Naive Bayes, Maximum Entropy and SVM). Ga-
mon (2004) shows that introducing deeper linguistic
features into SVM can help to improve the perfor-
mance. The interested readers are referred to (Pang
and Lee, 2008) for a comprehensive review of senti-
ment classification.

2.2 Cross-Lingual Sentiment Classification
Cross-lingual sentiment classification, which aims

to conduct sentiment classification in the target lan-
guage (e.g. Chinese) with labeled data in the source
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language (e.g. English), has been extensively stud-
ied in the very recent years. The basic idea is to ex-
plore the abundant labeled sentiment data in source
language to alleviate the shortage of labeled data in
the target language.
Most existing work relies on machine translation

engines to directly adapt labeled data from the source
language to target language. Wan (2009) proposes
to use ensemble method to train better Chinese sen-
timent classification model on English labeled data
and their Chinese translation. English Labeled data
are first translated to Chinese, and then two SVM
classifiers are trained on English andChinese labeled
data respectively. After that, co-training (Blum and
Mitchell, 1998) approach is adopted to leverage Chi-
nese unlabeled data and their English translation to
improve the SVM classifier for Chinese sentiment
classification. The same idea is used in (Wan, 2008),
but the ensemble techniques used are various vot-
ing methods and the individual classifiers used are
dictionary-based classifiers.
Instead of ensemblemethods, Pan et al. (2011) use

matrix factorization formulation. They extend Non-
negative Matrix Tri-Factorization model (Li et al.,
2009) to bilingual view setting. Their bilingual view
is also constructed by using machine translation en-
gines to translate original documents. Prettenhofer
and Stein (2011) use machine translation engines in
a different way. They generalize Structural Corre-
spondence Learning (Blitzer et al., 2006) to multi-
lingual setting. Instead of using machine translation
engines to translate labeled text, the authors use it to
construct the word translation oracle for pivot words
translation.

Lu et al. (2011) focus on the task of jointly im-
proving the performance of sentiment classification
on two languages (e.g. English and Chinese) . the
authors use an unlabeled parallel corpus instead of
machine translation engines. They assume paral-
lel sentences in the corpus should have the same
sentiment polarity. Besides, they assume labeled
data in both language are available. They propose
a method of training two classifiers based on maxi-
mum entropy formulation to maximize their predic-
tion agreement on the parallel corpus. However, this
method requires labeled data in both the source lan-
guage and the target language, which are not always
readily available.

3 Cross-Lingual Mixture Model for
Sentiment Classification

In this section we present the cross-lingual mix-
ture model (CLMM) for sentiment classification.
We first formalize the task of cross-lingual sentiment
classification. Then we describe the CLMM model
and present the parameter estimation algorithm for
CLMM.

3.1 Cross-lingual Sentiment Classification

Formally, the task we are concerned about is to de-
velop a sentiment classifier for the target language T
(e.g. Chinese), given labeled sentiment data DS in
the source language S (e.g. English), unlabeled par-
allel corpus U of the source language and the target
language, and optional labeled dataDT in target lan-
guage T . Aligning with previous work (Wan, 2008;
Wan, 2009), we only consider binary sentiment clas-
sification scheme (positive or negative) in this paper,
but the proposed method can be used in other classi-
fication schemes with minor modifications.

3.2 The Cross-Lingual Mixture Model

The basic idea underlying CLMM is to enlarge
the vocabulary by learning sentiment words from the
parallel corpus. CLMM defines an intuitive genera-
tion process as follows. Suppose we are going to
generate a positive or negative Chinese sentence, we
have two ways of generating words. The first way
is to directly generate a Chinese word according to
the polarity of the sentence. The other way is to first
generate an English word with the same polarity and
meaning, and then translate it to a Chinese word.
More formally, CLMM defines a generative mix-
ture model for generating a parallel corpus. The un-
observed polarities of the unlabeled parallel corpus
are modeled as hidden variables, and the observed
words in parallel corpus are modeled as generated by
a set of words generation distributions conditioned
on the hidden variables. Given a parallel corpus, we
fit CLMM model by maximizing the likelihood of
generating this parallel corpus. By maximizing the
likelihood, CLMM can estimate words generation
probabilities for words unseen in the labeled data but
present in the parallel corpus, hence expand the vo-
cabulary. In addition, CLMM can utilize words in
both the source language and target language for de-
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termining polarity classes of the parallel sentences.

POS 

NEG 

POS 

NEG 

...… 

Source 

Target 

U 

u 
wt 

ws 

Figure 1: The generation process of the
cross-lingual mixture model

Figure 1 illustrates the detailed process of gener-
ating words in the source language and target lan-
guage respectively for the parallel corpus U , from
the four mixture components in CLMM. Particu-
larly, for each pair of parallel sentences ui ∈ U , we
generate the words as follows.

1. Document class generation: Generating the
polarity class.

(a) Generating a polarity class cs from a
Bernoulli distribution Ps(C).

(b) Generating a polarity class ct from a
Bernoulli distribution Pt(C)

2. Words generation: Generating the words

(a) Generating source language wordsws from
a Multinomial distribution P (ws|cs)

(b) Generating target language words wt from
a Multinomial distribution P (wt|ct)

3. Words projection: Projecting the words onto
the other language

(a) Projecting the source language wordsws to
target language words wt by word projec-
tion probability P (wt|ws)

(b) Projecting the target language words wt to
source language words ws by word projec-
tion probability P (ws|wt)

CLMM finds parameters by using MLE (Maxi-
mum Likelihood Estimation). The parameters to be
estimated include conditional probabilities of word
to class, P (ws|c) and P (wt|c), and word projection

probabilities, P (ws|wt) and P (wt|ws). We will de-
scribe the log-likelihood function and then show how
to estimate the parameters in subsection 3.3. The
obtained word-class conditional probability P (wt|c)
can then be used to classify text in the target lan-
guages using Bayes Theorem and the Naive Bayes
independence assumption.
Formally, we have the following log-likelihood

function for a parallel corpus U2.

L(θ|U) =

|Us|∑
i=1

|C|∑
j=1

|Vs|∑
s=1

[
Nsi log

(
P (ws|cj) + P (ws|wt)P (wt|cj)

)]
+

|Ut|∑
i=1

|C|∑
j=1

|Vt|∑
t=1

[
Nti log

(
P (wt|cj) + P (wt|ws)P (ws|cj)

)]
(1)

where θ is the model parameters; Nsi (Nti) is the oc-
currences of thewordws (wt) in document di; |Ds| is
the number of documents; |C| is the number of class
labels; Vs and Vt are the vocabulary in the source lan-
guage and the vocabulary in the target language.|Us|
and |Ut| are the number of unlabeled sentences in the
source language and target language.
Meanwhile, we have the following log-likelihood

function for labeled data in the source language Ds.

L(θ|Ds) =

|Ds|∑
i=1

|C|∑
j=1

|Vs|∑
s=1

Nsi logP (ws|cj)δij (2)

where δij = 1 if the label of di is cj , and 0 otherwise.
In addition, when labeled data in the target lan-

guage is available, we have the following log-
likelihood function.

L(θ|Dt) =

|Dt|∑
i=1

|C|∑
j=1

|Vt|∑
t=1

Nti logP (wt|cj)δij (3)

Combining the above three likelihood functions
together, we have the following likelihood function.

L(θ|Dt, Ds, U) = L(θ|U) + L(θ|Ds) + L(θ|Dt)
(4)

Note that the third term on the right hand side
(L(θ|Dt)) is optional.

2For simplicity, we assume the prior distribution P (C) is
uniform and drop it from the formulas.
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3.3 Parameter Estimation
Instead of estimating word projection probability

(P (ws|wt) and P (wt|ws)) and conditional proba-
bility of word to class (P (wt|c) and P (ws|c)) si-
multaneously in the training procedure, we estimate
them separately since the word projection probabil-
ity stays invariant when estimating other parame-
ters. We estimate word projection probability using
word alignment probability generated by the Berke-
ley aligner (Liang et al., 2006). The word align-
ment probabilities serves two purposes. First, they
connect the corresponding words between the source
language and the target language. Second, they ad-
just the strength of influences between the corre-
sponding words. Figure 2 gives an example of word
alignment probability. As is shown, the three words
“tour de force” altogether express a positive mean-
ing, while in Chinese the same meaning is expressed
with only one word “杰作” (masterpiece). CLMM
use word alignment probability to decrease the in-
fluences from “杰作” (masterpiece) to “tour”, “de”
and “force” individually, using the word projection
probability (i.e. word alignment probability), which
is 0.3 in this case.

Herman Melville's Moby Dick was a tour de force. 

 

赫尔曼 梅尔维尔 的 “白鲸记” 是 一篇 杰作。 

1 1 .5 .5 1 1 .3 .3 .3 

Figure 2: Word Alignment Probability

We use Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977) to estimate the con-
ditional probability of word ws and wt given class
c, P (ws|c) and P (wt|c) respectively. We derive the
equations for EM algorithm, using notations similar
to (Nigam et al., 2000).
In the E-step, the distribution of hidden variables

(i.e. class label for unlabeled parallel sentences) is
computed according to the following equations.

P (cj |usi) = Z(cusi = cj) =∏
ws∈usi

[P (ws|cj) +
∑

P (ws|wt)>0 P (ws|wt)P (wt|cj)]∑
cj

∏
ws∈usi

[P (ws|cj) +
∑

P (ws|wt)>0 P (ws|wt)P (wt|cj)]

(5)

P (cj |uti) = Z(cuti = cj) =∏
wt∈uti

[P (wt|cj) +
∑

P (wt|ws)>0 P (wt|ws)P (ws|cj)]∑
cj

∏
wt∈uti

[P (wt|cj) +
∑

P (wt|ws)>0 P (wt|ws)P (ws|cj)]

(6)

whereZ(cusi = cj)
(
Z(cuti) = cj

)
is the probability

of the source (target) language sentence usi (uti) in
the i-th pair of sentences ui having class label cj .
In the M-step, the parameters are computed by the

following equations.

P (ws|cj) =
1 +

∑|Ds|
i=1 Λs(i)NsiP (cj |di)

|V | +
∑|Vs|

s=1 Λ(i)NsiP (cj |di)
(7)

P (wt|cj) =
1 +

∑|Dt|
i=1 Λt(i)NtiP (cj |di)

|V | +
∑|Vt|

t=1 Λ(i)NtiP (cj |di)
(8)

where Λs(i) and Λt(i) are weighting factor to con-
trol the influence of the unlabeled data. We set λs(i)(
λt(i)

)
to λs

(
λt

)
when di belongs to unlabeled

data, 1 otherwise. When di belongs to labeled data,
P (cj |di) is 1 when its label is cj and 0 otherwise.
When di belongs to unlabeled data, P (cj |di) is com-
puted according to Equation 5 or 6.

4 Experiment

4.1 Experiment Setup and Data Sets
Experiment setup: We conduct experiments on

two common cross-lingual sentiment classification
settings. In the first setting, no labeled data in the
target language are available. This setting has real-
istic significance, since in some situations we need to
quickly develop a sentiment classifier for languages
that we do not have labeled data in hand. In this
case, we classify text in the target language using
only labeled data in the source language. In the sec-
ond setting, labeled data in the target language are
also available. In this case, a more reasonable strat-
egy is to make full use of both labeled data in the
source language and target language to develop the
sentiment classifier for the target language. In our
experiments, we consider English as the source lan-
guage and Chinese as the target language.
Data sets: For Chinese sentiment classification,

we use the same data set described in (Lu et al.,
2011). The labeled data sets consist of two English
data sets and one Chinese data set. The English data
set is from the Multi-Perspective Question Answer-
ing (MPQA) corpus (Wiebe et al., 2005) and the NT-
CIR Opinion Analysis Pilot Task data set (Seki et
al., 2008; Seki et al., 2007). The Chinese data set
also comes from the NTCIR Opinion Analysis Pi-
lot Task data set. The unlabeled parallel sentences
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are selected from ISI Chinese-English parallel cor-
pus (Munteanu and Marcu, 2005). Following the
description in (Lu et al., 2011), we remove neutral
sentences and keep only high confident positive and
negative sentences as predicted by a maximum en-
tropy classifier trained on the labeled data. Table 1
shows the statistics for the data sets used in the ex-
periments. We conduct experiments on two data set-
tings: (1) MPQA + NTCIR-CH and (2) NTCIR-EN
+ NTCIR-CH.

MPQA NTCIR-EN NTCIR-CH
Positive 1,471(30%) 528 (30%) 2,378 (55%)
Negative 3,487(70%) 1,209(70%) 1,916(44%)
Total 4,958 1,737 4,294

Table 1: Statistics about the Data

CLMM includes two hyper-parameters (λs and
λt) controlling the contribution of unlabeled parallel
data. Larger weights indicate larger influence from
the unlabeled data. We set the hyper-parameters
by conducting cross validations on the labeled data.
WhenChinese labeled data are unavailable, we setλt

to 1 and λs to 0.1, since no Chinese labeled data are
used and the contribution of target language to the
source language is limited. When Chinese labeled
data are available, we set λs and λt to 0.2.
To prevent long sentences from dominating the pa-

rameter estimation, we preprocess the data set by
normalizing the length of all sentences to the same
constant (Nigam et al., 2000), the average length of
the sentences.

4.2 Baseline Methods
For the purpose of comparison, we implement the

following baseline methods.
MT-SVM:We translate the English labeled data to

Chinese using Google Translate and use the transla-
tion results to train the SVM classifier for Chinese.
SVM: We train a SVM classifier on the Chinese

labeled data.
MT-Cotrain: This is the co-training based ap-

proach described in (Wan, 2009). We summarize
the main steps as follows. First, two monolingual
SVM classifiers are trained on English labeled data
and Chinese data translated from English labeled
data. Second, the two classifiers make prediction on
Chinese unlabeled data and their English translation,

respectively. Third, the 100 most confidently pre-
dicted English and Chinese sentences are added to
the training set and the twomonolingual SVMclassi-
fiers are re-trained on the expanded training set. The
second and the third steps are repeated for 100 times
to obtain the final classifiers.
Para-Cotrain: The training process is the same as

MT-Cotrain. However, we use a different set of En-
glish unlabeled sentences. Instead of using the corre-
sponding machine translation of Chinese unlabeled
sentences, we use the parallel English sentences of
the Chinese unlabeled sentences.
Joint-Train: This is the state-of-the-art method de-

scribed in (Lu et al., 2011). This model use En-
glish labeled data and Chinese labeled data to obtain
initial parameters for two maximum entropy clas-
sifiers (for English documents and Chinese docu-
ments), and then conduct EM-iterations to update
the parameters to gradually improve the agreement
of the two monolingual classifiers on the unlabeled
parallel sentences.

4.3 Classification Using Only English Labeled
Data

The first set of experiments are conducted on us-
ing only English labeled data to create the sentiment
classifier for Chinese. This is a challenging task,
since we do not use any Chinese labeled data. And
MPQA and NTCIR data sets are compiled by differ-
ent groups using different annotation guidelines.

Method NTCIR-EN MPQA-EN
NTCIR-CH NTCIR-CH

MT-SVM 62.34 54.33
SVM N/A N/A
MT-Cotrain 65.13 59.11
Para-Cotrain 67.21 60.71
Joint-Train N/A N/A
CLMM 70.96 71.52

Table 2: Classification Accuracy Using Only
English Labeled Data

Table 2 shows the accuracy of the baseline sys-
tems as well as the proposed model (CLMM). As
is shown, sentiment classification does not bene-
fit much from the direct machine translation. For
NTCIR-EN+NTCIR-CH, the accuracy of MT-SVM
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is only 62.34%. For MPQA-EN+NTCIR-CH, the
accuracy is 54.33%, even lower than a trivial
method, which achieves 55.4% by predicting all sen-
tences to be positive. The underlying reason is that
the vocabulary coverage in machine translated data
is low, therefore the classifier learned from the la-
beled data is unable to generalize well on the test
data. Meanwhile, the accuracy of MT-SVM on
NTCIR-EN+NTCIR-CH data set is much better than
that on MPQA+NTCIR-CH data set. That is be-
cause NTCIR-EN and NTCIR-CH cover similar top-
ics. The other two methods using machine translated
data, MT-Cotrain and Para-Cotrain also do not per-
form verywell. This result is reasonable, because the
initial Chinese classifier trained on machine trans-
lated data (MT-SVM) is relatively weak. We also
observe that using a parallel corpus instead of ma-
chine translations can improve classification accu-
racy. It should be noted that we do not have the result
for Joint-Train model in this setting, since it requires
both English labeled data and Chinese labeled data.

4.4 Classification Using English and Chinese
Labeled Data

The second set of experiments are conducted on
using both English labeled data and Chinese labeled
data to develop the Chinese sentiment classifier. We
conduct 5-fold cross validations on Chinese labeled
data. We use the same baseline methods as described
in Section 4.2, but we use natural Chinese sentences
instead of translated Chinese sentences as labeled
data in MT-Cotrain and Para-Cotrain. Table 3 shows
the accuracy of baseline systems as well as CLMM.

Method NTCIR-EN MPQA-EN
NTCIR-CH NTCIR-CH

MT-SVM 62.34 54.33
SVM 80.58 80.58
MT-Cotrain 82.28 80.93
Para-Cotrain 82.35 82.18
Joint-Train 83.11 83.42
CLMM 82.73 83.02

Table 3: Classification Accuracy Using English and
Chinese Labeled Data

As is seen, SVMperforms significantly better than
MT-SVM. One reason is that we use natural Chi-

nese labeled data instead of translated Chinese la-
beled data. Another reason is that we use 5-fold
cross validations in this setting, while the previous
setting is an open test setting. In this setting, SVM
is a strong baseline with 80.6% accuracy. Never-
theless, all three methods which leverage an unla-
beled parallel corpus, namely Para-Cotrain, Joint-
Train and CLMM, still show big improvements over
the SVM baseline. Their results are comparable and
all achieve state-of-the-art accuracy of about 83%,
but in terms of training speed, CLMM is the fastest
method (Table 4). Similar to the previous setting,We
also have the same observation that using a parallel
corpus is better than using translations.

Method Iterations Total Time
Para-Cotrain 100 6 hours
Joint-Train 10 55 seconds
CLMM 10 30 seconds

Table 4: Training Speed Comparison

4.5 The Influence of Unlabeled Parallel Data

We investigate how the size of the unlabeled par-
allel data affects the sentiment classification in this
subsection. We vary the number of sentences in the
unlabeled parallel from 2,000 to 20,000. We use
only English labeled data in this experiment, since
this more directly reflects the effectiveness of each
model in utilizing unlabeled parallel data. From Fig-
ure 3 and Figure 4, we can see that when more unla-
beled parallel data are added, the accuracy of CLMM
consistently improves. The performance of CLMM
is remarkably superior than Para-Cotrain and MT-
Cotrain. When we have 10,000 parallel sentences,
the accuracy of CLMM on the two data sets quickly
increases to 68.77% and 68.91%, respectively. By
contrast, we observe that the performance of Para-
Cotrain and MT-Cotrain is able to obtain accuracy
improvement only after about 10,000 sentences are
added. The reason is that the two methods use ma-
chine translated labeled data to create initial Chinese
classifiers. As is depicted in Table 2, these classifiers
are relatively weak. As a result, in the initial itera-
tions of co-training based methods, the predictions
made by the Chinese classifiers are inaccurate, and
co-training based methods need to see more parallel
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Figure 3: Accuracy with different size of
unlabeled data for NTICR-EN+NTCIR-CH
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Figure 4: Accuracy with different size of
unlabeled data for MPQA+NTCIR-CH
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Figure 5: Accuracy with different size of
labeled data for NTCIR-EN+NTCIR-CH
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Figure 6: Accuracy with different size of
labeled data for MPQA+NTCIR-CH

sentences to refine the initial classifiers.

4.6 The Influence of Chinese Labeled Data

In this subsection, we investigate how the size of
the Chinese labeled data affects the sentiment classi-
fication. As is shown in Figure 5 and Figure 6, when
only 500 labeled sentences are used, CLMM is capa-
ble of achieving 72.52% and 74.48% in accuracy on
the two data sets, obtaining 10% and 8% improve-
ments over the SVM baseline, respectively. This
indicates that our method leverages the unlabeled
data effectively. When more sentences are used,
CLMM consistently shows further improvement in
accuracy. Para-Cotrain and Joint-Train show simi-
lar trends. When 3500 labeled sentences are used,
SVM achieves 80.58%, a relatively high accuracy
for sentiment classification. However, CLMM and
the other two models can still gain improvements.
This further demonstrates the advantages of expand-
ing vocabulary using bilingual parallel data.

5 Conclusion and Future Work

In this paper, we propose a cross-lingual mix-
ture model (CLMM) to tackle the problem of cross-
lingual sentiment classification. This method has
two advantages over the existing methods. First, the
proposed model can learn previously unseen senti-
ment words from large unlabeled data, which are not
covered by the limited vocabulary in machine trans-
lation of the labeled data. Second, CLMM can ef-
fectively utilize unlabeled parallel data regardless of
whether labeled data in the target language are used
or not. Extensive experiments suggest that CLMM
consistently improve classification accuracy in both
settings. In the future, we will work on leverag-
ing parallel sentences and word alignments for other
tasks in sentiment analysis, such as building multi-
lingual sentiment lexicons.
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Abstract

We present a novel answer summarization
method for community Question Answering
services (cQAs) to address the problem of “in-
complete answer”, i.e., the “best answer” of a
complex multi-sentence question misses valu-
able information that is contained in other an-
swers. In order to automatically generate a
novel and non-redundant community answer
summary, we segment the complex original
multi-sentence question into several sub ques-
tions and then propose a general Conditional
Random Field (CRF) based answer summary
method with group L1 regularization. Vari-
ous textual and non-textual QA features are
explored. Specifically, we explore four differ-
ent types of contextual factors, namely, the in-
formation novelty and non-redundancy mod-
eling for local and non-local sentence inter-
actions under question segmentation. To fur-
ther unleash the potential of the abundant cQA
features, we introduce the group L1 regu-
larization for feature learning. Experimental
results on a Yahoo! Answers dataset show
that our proposed method significantly outper-
forms state-of-the-art methods on cQA sum-
marization task.

1 Introduction

Community Question and Answering services
(cQAs) have become valuable resources for users
to pose questions of their interests and share their
knowledge by providing answers to questions. They
perform much better than the traditional frequently
asked questions (FAQ) systems (Jijkoun and Rijke
, 2005; Riezler et al., 2007) which are just based

on natural language processing and information re-
trieving technologies due to the need for human in-
telligence in user generated contents(Gyongyi et al.,
2007). In cQAs such as Yahoo! Answers, a resolved
question often gets more than one answers and a
“best answer” will be chosen by the asker or voted
by other community participants. This {question,
best answer} pair is then stored and indexed for fur-
ther uses such as question retrieval. It performs very
well in simple factoid QA settings, where the an-
swers to factoid questions often relate to a single
named entity like a person, time or location. How-
ever, when it comes to the more sophisticated multi-
sentence questions, it would suffer from the problem
of “incomplete answer”. That is, such question often
comprises several sub questions in specific contexts
and the asker wishes to get elaborated answers for as
many aspects of the question as possible. In which
case, the single best answer that covers just one or
few aspects may not be a good choice (Liu et al.,
2008; Takechi et al., 2007). Since “everyone knows
something” (Adamic et al., 2008), the use of a single
best answer often misses valuable human generated
information contained in other answers.

In an early literature, Liu et al.(2008) reported that
no more than 48% of the 400 best answers were in-
deed the unique best answers in 4 most popular Ya-
hoo! Answers categories. Table 1 shows an example
of the “incomplete answer” problem from Yahoo!
Answers1. The asker wishes to know why his teeth
bloods and how to prevent it. However, the best an-
swer only gives information on the reason of teeth

1http://answers.yahoo.com/question/index?qid=
20100610161858AAmAGrV
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blooding. It is clear that some valuable information
about the reasons of gums blooding and some solu-
tions are presented in other answers.

Question

Why do teeth bleed at night and how do you prevent/stop it? This
morning I woke up with blood caked between my two front teeth.
This is the third morning in a row that it has happened. I brush and
floss regularly, and I also eat a balanced, healthy diet. Why is this
happening and how do I stop it?

Best Answer - Chosen by Asker

Periodontal disease is a possibility, gingivitis, or some gum infec-
tion. Teeth don’t bleed; gums bleed.

Other Answers

Vitamin C deficiency!

Ever heard of a dentist? Not all the problems in life are solved on
the Internet.

You could be brushing or flossing too hard. Try a brush with softer
bristles or brushing/flossing lighter and slower. If this doesn’t solve
your problem, try seeing a dentist or doctor. Gums that bleed could
be a sign of a more serious issue like leukemia, an infection, gum
disease, a blood disorder, or a vitamin deficiency.

wash your mouth with warm water and salt, it will help to strengthen
your gum and teeth, also salt avoid infection. You probably have
weak gums, so just try to follow the advice, it works in many cases
of oral problems.

Table 1: An example of question with incomplete answer
problem from Yahoo! Answers. The “best answer” seems to
miss valuable information and will not be ideal for re-use when
similar question is asked again.

In general, as noted in (Jurafsky and Martin ,
2009), most interesting questions are not factoid
questions. User’s needs require longer, more infor-
mative answers than a single phrase. In fact, it is
often the case, that a complex multi-sentence ques-
tion could be answered from multiple aspects by dif-
ferent people focusing on different sub questions.
Therefore we address the incomplete answer prob-
lem by developing a novel summarization technique
taking different sub questions and contexts into con-
sideration. Specifically we want to learn a concise
summary from a set of corresponding answers as
supplement or replacement to the “best answer”.

We tackle the answer summary task as a sequen-
tial labeling process under the general Conditional
Random Fields (CRF) framework: every answer
sentence in the question thread is labeled as a sum-
mary sentence or non-summary sentence, and we
concatenate the sentences with summary label to
form the final summarized answer. The contribution
of this paper is two-fold:
First, we present a general CRF based framework

and incorporate four different contextual factors
based on question segmentation to model the local
and non-local semantic sentence interactions to ad-
dress the problem of redundancy and information
novelty. Various textual and non-textual question
answering features are exploited in the work.
Second, we propose a group L1-regularization ap-
proach in the CRF model for automatic optimal fea-
ture learning to unleash the potential of the features
and enhance the performance of answer summariza-
tion.

We conduct experiments on a Yahoo! Answers
dataset. The experimental results show that the
proposed model improve the performance signifi-
cantly(in terms of precision, recall and F1 measures)
as well as the ROUGE-1, ROUGE-2 and ROUGE-L
measures as compared to the state-of-the-art meth-
ods, such as Support Vector Machines (SVM), Lo-
gistic Regression (LR) and Linear CRF (LCRF)
(Shen et al., 2007).

The rest of the paper is arranged as follows: Sec-
tion 2 presents some definitions and a brief review
of related research. In Section 3, we propose the
summarization framework and then in Section 4 and
5 we detail the experimental setups and results re-
spectively. We conclude the paper in Section 6.

2 Definitions and Related Work

2.1 Definitions

In this subsection we define some concepts that
would be helpful to clarify our problems. First we
define a complex multi-sentence question as a ques-
tion with the following properties:

Definition: A complex multi-sentence question
is one that contains multiple sub-questions.

In the cQAs scenario a question often consists of
one or more main question sentences accompany by
some context sentences described by askers. We
treat the original question and context as a whole
single complex multi-sentence question and obtain
the sub questions by question segmentation. We
then define the incomplete answer problem as:

Definition: The incomplete answer problem is
one where the best answer of a complex multi-
sentence question is voted to be below certain star
ratings or the average similarity between the best an-
swer and all the sub questions is below some thresh-
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olds.
We study the issues of similarity threshold and the

minimal number of stars empirically in the experi-
mental section and show that they are useful in iden-
tifying questions with the incomplete answer prob-
lem.

2.2 Related Work
There exist several attempts to alleviate the answer
completeness problem in cQA. One of them is to
segment the multi-sentence question into a set of
sub-questions along with their contexts, then se-
quentially retrieve the sub questions one by one,
and return similar questions and their best answers
(Wang et al., 2010). This strategy works well in gen-
eral, however, as the automatic question segmenta-
tion is imperfect and the matched similar questions
are likely to be generated in different contextual sit-
uations, this strategy often could not combine multi-
ple independent best answers of sub questions seam-
lessly and may introduce redundancy in final answer.

On general problem of cQA answer summariza-
tion, Liu et al.(2008) manually classified both ques-
tions and answers into different taxonomies and ap-
plied clustering algorithms for answer summariza-
tion.They utilized textual features for open and opin-
ion type questions. Through exploiting metadata,
Tomasoni and Huang(2010) introduced four char-
acteristics (constraints) of summarized answer and
combined them in an additional model as well as
a multiplicative model. In order to leverage con-
text, Yang et al.(2011) employed a dual wing fac-
tor graph to mutually enhance the performance of
social document summarization with user generated
content like tweets. Wang et al. (2011) learned on-
line discussion structures such as the replying rela-
tionship by using the general CRFs and presented a
detailed description of their feature designs for sites
and edges embedded in discussion thread structures.
However there is no previous work that explores the
complex multi-sentence question segmentation and
its contextual modeling for community answer sum-
marization.

Some other works examined the evaluation of the
quality of features for answers extracted from cQA
services (Jeon et al., 2006; Hong and Davison ,
2009; Shah et al., 2010). In the work of Shah et
al.(2010), a large number of features extracted for

predicting asker-rated quality of answers was evalu-
ated by using a logistic regression model. However,
to the best of our knowledge, there is no work in
evaluating the quality of features for community an-
swer summarization. In our work we model the fea-
ture learning and evaluation problem as a group L1

regularization problem (Schmidt , 2010) on different
feature groups.

3 The Summarization Framework

3.1 Conditional Random Fields
We utilize the probabilistic graphical model to solve
the answer summarization task, Figure 1 gives some
illustrations, in which the sites correspond to the
sentences and the edges are utilized to model the
interactions between sentences. Specifically, let x
be the sentence sequence to all answers within a
question thread, and y be the corresponding label se-
quence. Every component yi of y has a binary value,
with +1 for the summary sentence and -1 otherwise.
Then under CRF (Lafferty et al., 2001), the condi-
tional probability of y given x obeys the following
distribution:

p(y|x) =
1

Z(x)
exp(

∑
v∈V,l

µlgl(v, y|v, x)

+
∑

e∈E,k

λkfk(e, y|e, x)),
(1)

where Z(x) is the normalization constant called
partition function, gl denotes the cQA feature func-
tion of site l, fk denotes the function of edge k( mod-
eling the interactions between sentences), µ and λ
are respectively the weights of function of sites and
edges, and y|t denotes the components of y related
to site (edge) t.

3.2 cQA Features and Contextual Modeling
In this section, we give a detailed description of
the different sentence-level cQA features and the
contextual modeling between sentences used in our
model for answer summarization.

Sentence-level Features
Different from the conventional multi-document

summarization in which only the textual features are
utilized, we also explore a number of non-textual
author related features (Shah et al., 2010) in cQAs.
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The textual features used are:
1. Sentence Length: The length of the sentence in the
answers with the stop words removed. It seems that a
long sentence may contain more information.
2. Position: The sentence’s position within the answer. If
a sentence is at the beginning or at the end of one answer,
it might be a generation or viewpoint sentence and will
be given higher weight in the summarization task.
3. Answer Length: The length of the answer to which the
sentence belonged, again with the stop words removed.
4. Stopwords Rate: The rate of stop words in the
sentence. If a sentence contains too many stop words, it
is more likely a spam or chitchat sentence rather than an
informative one.
5. Uppercase Rate: The rate of uppercase words.
Uppercase words are often people’s name, address or
other name entities interested by askers.
6. Has Link Whether the sentence contains a hyperlink
or not. The link often points to a more detailed informa-
tion source.
7. Similarity to Question: Semantic similarity to the
question and question context. It imports the semantic
information relevance to the question and question
context.
The non-textual features used include:
8. Best Answer Star: The stars of the best answer
received by the askers or voters.
9. Thumbs Up: The number of thumbs-ups the answer
which contains the sentence receives. Users are often
used to support one answer by giving a thumbs up after
reading some relevant or interesting information for their
intentions.
10. Author Level: The level of stars the author who gives
the answer sentence acquires. The higher the star level,
the more authoritative the asker is.
11. Best Answer Rate: Rate of answers annotated as the
best answer the author who gives the answer sentence
receives.
12. Total Answer Number: The number of total answers
by the author who gives the answer sentence. The
more answers one gives, the more experience he or she
acquires.
13. Total Points: The total points that the author who
gives the answer sentence receives.

The previous literature (Shah et al., 2010) hinted
that some cQA features, such as Sentence Length,
Has Link and Best Answer Star, may be more im-

portant than others. We also expect that some fea-
ture may be redundant when their most related fea-
tures are given, e.g., the Author Level feature is pos-
itively related with the Total Points received by an-
swerers, and Stopwords Rate is of little help when
both Sentence Length (not including stop words) and
Uppercase Rate are given. Therefore, to explore the
optimal combination of these features, we propose
a group L1 regularization term in the general CRF
model (Section 3.3) for feature learning.

All features presented here can be extracted au-
tomatically from the Yahoo! Answers website. We
normalize all these feature values to real numbers
between 0 and 1 by dividing them by the corre-
sponding maximal value of these features. These
sentence-level features can be easily utilized in the
CRF framework. For instance, if the rate of upper-
case words is prominent or the position is close to
the beginning or end of the answer, then the proba-
bility of the label +1 (summary sentence) should be
boosted by assigning it with a large value.

Contextual Modeling Under Question
Segmentation

For cQAs summarization, the semantic interac-
tions between different sentence sites are crucial,
that is, some context co-occurrences should be en-
couraged and others should be penalized for require-
ments of information novelty and non-redundancy
in the generated summary. Here we consider both
local (sentences from the same answer) and global
(sentences from different answers) settings. This
give rise to four contextual factors that we will ex-
plore for modeling the pairwise semantic interac-
tions based on question segmentation. In this paper,
we utilize a simple but effective lightweight ques-
tion segmentation method (Ding et al., 2008; Wang
et al., 2010). It mainly involves the following two
steps:

Step 1. Question sentence detection: every sen-
tence in the original multi-sentence question is clas-
sified into question sentence and non-question (con-
text) sentence. The question mark and 5W1H fea-
tures are applied.

Step 2. Context assignment: every context sen-
tence is assigned to the most relevant question sen-
tence. We compute the semantic similarity(Simpson
and Crowe, 2005) between sentences or sub ques-
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Figure 1: Four kinds of the contextual factors are considered for answer summarization in our general CRF based
models.

tions as:

sim(x, y) = 2×
∑

(w1,w2)∈M(x,y)

sim(w1, w2)

|x|+ |y| (2)

where M(x, y) denotes synset pairs matched in sen-
tences x and y; and the similarity between the two
synsets w1 and w2 is computed to be inversely pro-
portional to the length of the path in Wordnet.

One answer sentence may related to more than
one sub questions to some extent. Thus, we de-
fine the replied question Qri as the sub question
with the maximal similarity to sentence xi: Qri =
argmaxQjsim(xi, Qj). It is intuitive that different
summary sentences aim at answering different sub
questions. Therefore, we design the following two
contextual factors based on the similarity of replied
questions.
Dissimilar Replied Question Factor: Given two
answer sentences xi , xj and their corresponding
replied questions Qri, Qrj . If the similarity2 of Qri

and Qrj is below some threshold τlq, it means that
xi and xj will present different viewpoints to answer
different sub questions. In this case, it is likely that
xi and xj are both summary sentences; we ensure
this by setting the contextual factor cf1 with a large
value of exp ν, where ν is a positive real constant
often assigned to value 1; otherwise we set cf1 to
exp− ν for penalization.

cf1 =

{
exp ν, yi = yj = 1

exp− ν, otherwise

Similar Replied Question Factor: Given two an-
2We use the semantic similarity of Equation 2 for all our

similarity measurement in this paper.

swer sentences xi , xj and their corresponding
replied questions Qri, Qrj . If the similarity of Qri

and Qrj is above some upper threshold τuq, this
means that xi and xj are very similar and likely to
provide similar viewpoint to answer similar ques-
tions. In this case, we want to select either xi or
xj as answer. This is done by setting the contextual
factor cf2 such that xi and xj have opposite labels,

cf2 =

{
exp ν, yi ∗ yj = −1

exp − ν, otherwise

Assuming that sentence xi is selected as a sum-
mary sentence, and its next local neighborhood sen-
tence xi+1 by the same author is dissimilar to it but
it is relevant to the original multi-sentence question,
then it is reasonable to also pick xi+1 as a summary
sentence because it may offer new viewpoints by
the author. Meanwhile, other local and non-local
sentences which are similar to it at above the up-
per threshold will probably not be selected as sum-
mary sentences as they offer similar viewpoint as
discussed above. Therefore, we propose the follow-
ing two kinds of contextual factors for selecting the
answer sentences in the CRF model.
Local Novelty Factor: If the similarity of answer
sentence xi and xi+1 given by the same author is
below a lower threshold τls, but their respective sim-
ilarities to the sub questions both exceed an upper
threshold τus, then we will boost the probability of
selecting both as summary sentences by setting:

cf3 =

{
exp ν, yi = yi+1 = 1

exp− ν, otherwise

Redundance Factor: If the similarity of answer
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sentence xi and xj is greater than the upper thresh-
old τus, then they are likely to be redundant and
hence should be given opposite labels. This is done
by setting:

cf4 =

{
exp ν, yi ∗ yj = −1

exp− ν, otherwise

Figure 1 gives an illustration of these four con-
textual factors in our proposed general CRF based
model. The parameter estimation and model infer-
ence are discussed in the following subsection.

3.3 Group L1 Regularization for Feature
Learning

In the context of cQA summarization task, some fea-
tures are intuitively to be more important than oth-
ers. As a result, we group the parameters in our CRF
model with their related features3 and introduce a
group L1-regularization term for selecting the most
useful features from the least important ones, where
the regularization term becomes,

R(θ) = C

G∑
g=1

∥
−→
θg∥2, (3)

where C controls the penalty magnitude of the pa-
rameters, G is the number of feature groups and

−→
θg

denotes the parameters corresponding to the partic-
ular group g. Notice that this penalty term is indeed
a L(1, 2) regularization because in every particu-
lar group we normalize the parameters in L2 norm
while the weight of a whole group is summed in L1

form.
Given a set of training data D = (x(i), y(i)), i =

1, ..., N , the parameters θ = (µl, λk) of the general
CRF with the group L1-regularization are estimated
in using a maximum log likelihood function L as:

L =

N∑
i=1

log(pθ(y
(i)|x(i)))− C

G∑
g=1

∥
−→
θg∥2, (4)

3We note that every sentence-level feature discussed in Sec-
tion 3.2 presents a variety of instances (e.g., the sentence with
longer or shorter length is the different instance), and we may
call it sub-feature of the original sentence-level feature in the
micro view. Every sub-feature has its corresponding weight in
our CRF model. Whereas in a macro view, those related sub-
features can be considered as a group.

where N denotes the total number of training sam-
ples. we compute the log-likelihood gradient com-
ponent of θ in the first term of Equation 4 as in
usual CRFs. However, the second term of Equation
4 is non-differentiable when some special ∥

−→
θg∥2 be-

comes exactly zero. To tackle this problem, an ad-
ditional variable is added for each group (Schmidt ,
2010); that is, by replacing each norm ∥

−→
θg∥2 with

the variable αg, subject to the constraint αg ≥
∥
−→
θg∥2, i.e.,

L =

N∑
i=1

log(pθ(y
(i)|x(i)))− C

G∑
g=1

αg,

subject to αg ≥ ∥
−→
θg∥2,∀g.

(5)

This formulation transforms the non-differentiable
regularizer to a simple linear function and maximiz-
ing Equation 5 will lead to a solution to Equation 4
because it is a lower bound of the latter. Then, we
add a sufficient small positive constant ε when com-
puting the L2 norm (Lee et al., 2006), i.e., |

−→
θg∥2 =√∑|g|

j=1 θ2
gj + ε, where |g| denotes the number of

features in group g. To obtain the optimal value of
parameter θ from the training data, we use an effi-
cient L-BFGS solver to solve the problem, and the
first derivative of every feature j in group g is,

δL

δθgj
=

N∑
i=1

Cgj(y
(i), x(i))−

N∑
i=1

∑
y

p(y|x(i))Cgj(y, x(i))− 2C
θgj√∑|g|

l=1 θ2
gl + ε

(6)

where Cgj(y, x) denotes the count of feature j in
group g of observation-label pair (x, y). The first
two terms of Equation 6 measure the difference be-
tween the empirical and the model expected values
of feature j in group g, while the third term is the
derivative of group L1 priors.

For inference, the labeling sequence can be ob-
tained by maximizing the probability of y condi-
tioned on x,

y∗ = argmaxypθ(y|x). (7)

We use a modification of the Viterbi algorithm to
perform inference of the CRF with non-local edges
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previously used in (Galley , 2006). That is , we
replace the edge connection zt = (yt−2, yt−1, yt)
of order-2 Markov model by zt = (yNt , yt−1, yt),
where yNt represents the label at the source of the
non-local edge. Although it is an approximation of
the exact inference, we will see that it works well for
our answer summarization task in the experiments.

4 Experimental Setting

4.1 Dataset

To evaluate the performance of our CRF based an-
swer summarization model, we conduct experiments
on the Yahoo! Answers archives dataset. The Ya-
hoo! WebscopeTM Program4 opens up a number of
Yahoo! Answers datasets for interested academics
in different categories. Our original dataset con-
tains 1,300,559 questions and 2,770,896 answers in
ten taxonomies from Yahoo! Answers. After fil-
tering the questions which have less than 5 answers
and some trivial factoid questions using the features
by (Tomasoni and Huang, 2010) , we reduce the
dataset to 55,132 questions. From this sub-set, we
next select the questions with incomplete answers
as defined in Section 2.1. Specifically, we select the
questions where the average similarity between the
best answer and all sub questions is less than 0.6 or
when the star rating of the best answer is less than 4.
We obtain 7,784 questions after this step. To eval-
uate the effectiveness of this method, we randomly
choose 400 questions in the filtered dataset and in-
vite 10 graduate candidate students (not in NLP re-
search field) to verify whether a question suffers
from the incomplete answer problem. We divide the
students into five groups of two each. We consider
the questions as the “incomplete answer questions”
only when they are judged by both members in a
group to be the case. As a result, we find that 360
(90%) of these questions indeed suffer from the in-
complete answer problem, which indicates that our
automatic detection method is efficient. This ran-
domly selected 400 questions along with their 2559
answers are then further manually summarized for
evaluation of automatically generated answer sum-
maries by our model in experiments.

4http://sandbox.yahoo.com/

4.2 Evaluation Measures

When taking the summarization as a sequential bi-
classification problem, we can make use of the usual
precision, recall and F1 measures (Shen et al., 2007)
for classification accuracy evaluation.

In our experiments, we also compare the preci-
sion, recall and F1 score in the ROUGE-1, ROUGE-
2 and ROUGE-L measures (Lin , 2004) for answer
summarization performance.

5 Experimental Results

5.1 Summarization Results

We adapt the Support Vector Machine (SVM) and
Logistic Regression (LR) which have been reported
to be effective for classification and the Linear CRF
(LCRF) which is used to summarize ordinary text
documents in (Shen et al., 2007) as baselines for
comparison. To better illustrate the effectiveness of
question segmentation based contextual factors and
the group L1 regularization term, we carry the tests
in the following sequence: (a) we use only the con-
textual factors cf3 and cf4 with default L2 regular-
ization (gCRF); (b) we add the reply question based
factors cf1 and cf2 to the model (gCRF-QS); and (c)
we replace default L2 regularization with our pro-
posed group L1 regularization term (gCRF-QS-l1).
For linear CRF system, we use all our textual and
non-textual features as well as the local (exact pre-
vious and next) neighborhood contextual factors in-
stead of the features of (Shen et al., 2007) for fair-
ness. For the thresholds used in the contextual fac-
tors, we enforce τlq to be equal to τls and τuq equal
to τus for the purpose of simplifying the parameters
setting (τlq = τls = 0.4, τuq = τus = 0.8 in our ex-
periments). We randomly divide the dataset into ten
subsets (every subset with 40 questions and the as-
sociated answers), and conduct a ten-fold cross val-
idation and for each round where the nine subsets
are used to train the model and the remaining one
for testing. The precision, recall and F1 measures of
these models are presented in Table 2.

Table 2 shows that our general CRF model based
on question segmentation with group L1 regulariza-
tion out-performs the baselines significantly in all
three measures (gCRF-QS-l1 is 13.99% better than
SVM in precision, 9.77% better in recall and 11.72%
better in F1 score). We note that both SVM and LR,
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Model R1 P R1 R R1 F1 R2 P R2 R R2 F1 RL P RL R RL F1
SVM 79.2% 52.5% 63.1% 71.9% 41.3% 52.4% 67.1% 36.7% 47.4%
LR 75.2%↓ 57.4%↑ 65.1%↑ 66.1%↓ 48.5%↑ 56.0%↑ 61.6%↓ 43.2%↑ 50.8%↑

LCRF 78.7%- 61.8%↑ 69.3%- 71.4%- 54.1%↑ 61.6%↑ 67.1%- 49.6%↑ 57.0%↑
gCRF 81.9%↑ 65.2%↑ 72.6%↑ 76.8%↑ 57.3%↑ 65.7%↑ 73.9%↑ 53.5%↑ 62.1%↑

gCRF-QS 81.4%- 70.0%↑ 75.3%↑ 76.2%- 62.4%↑ 68.6%↑ 73.3%- 58.6%↑ 65.1%↑
gCRF-QS-l1 86.6%↑ 68.3%- 76.4%↑ 82.6%↑ 61.5%- 70.5%↑ 80.4%↑ 58.2%- 67.5%↑

Table 3: The Precision, Recall and F1 of ROUGE-1, ROUGE-2, ROUGE-L in the baselines SVM,LR, LCRF and our
general CRF based models (gCRF, gCRF-QS, gCRF-QS-l1). The down-arrow means performance degradation with
statistical significance.

Model Precision Recall F1
SVM 65.93% 61.96% 63.88%
LR 66.92%- 61.31%- 63.99%-

LCRF 69.80% ↑ 63.91%- 66.73%↑
gCRF 73.77%↑ 69.43%↑ 71.53%↑

gCRF-QS 74.78%↑ 72.51%↑ 73.63%↑
gCRF-QS-l1 79.92%↑ 71.73%- 75.60%↑

Table 2: The Precision, Recall and F1 measures of the
baselines SVM,LR, LCRF and our general CRF based
models (gCRF, gCRF-QS, gCRF-QS-l1). The up-arrow
denotes the performance improvement compared to the
precious method (above) with statistical significance un-
der p value of 0.05, the short line ’-’ denotes there is no
difference in statistical significance.

which just utilize the independent sentence-level
features, behave not vary well here, and there is no
statistically significant performance difference be-
tween them. We also find that LCRF which utilizes
the local context information between sentences per-
form better than the LR method in precision and F1
with statistical significance. While we consider the
general local and non-local contextual factor cf3 and
cf4 for novelty and non-redundancy constraints, the
gCRF performs much better than LCRF in all three
measures; and we obtain further performance im-
provement by adding the contextual factors based
on QS, especially in the recall measurement. This
is mainly because we have divided the question into
several sub questions, and the system is able to se-
lect more novel sentences than just treating the origi-
nal multi-sentence as a whole. In addition, when we
replace the default L2 regularization by the group
L1 regularization for more efficient feature weight
learning, we obtain a much better performance in

precision while not sacrificing the recall measure-
ment statistically.

We also compute the Precision, Recall and F1
in ROUGE-1, ROUGE-2 and ROUGE-L measure-
ments, which are widely used to measure the quality
of automatic text summarization. The experimental
results are listed in Table 3. All results in the Ta-
ble are the average of the ten-fold cross validation
experiments on our dataset.

It is observed that our gCRF-QS-l1 model im-
proves the performance in terms of precision, recall
and F1 score on all three measurements of ROUGE-
1, ROUGE-2 and ROUGE-L by a significant mar-
gin compared to other baselines due to the use of
local and non-local contextual factors and factors
based on QS with group L1 regularization. Since
the ROUGE measures care more about the recall and
precision of N-grams as well as common substrings
to the reference summary rather than the whole sen-
tence, they offer a better measurement in modeling
the user’s information needs. Therefore, the im-
provements in these measures are more encouraging
than those of the average classification accuracy for
answer summarization.

From the viewpoint of ROUGE measures we ob-
serve that our question segmentation method can en-
hance the recall of the summaries significantly due
to the more fine-grained modeling of sub questions.
We also find that the precision of the group L1 reg-
ularization is much better than that of the default
L2 regularization while not hurting the recall signifi-
cantly. In general, the experimental results show that
our proposed method is more effective than other
baselines in answer summarization for addressing
the incomplete answer problem in cQAs.
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Figure 2: The accumulated weight of each site feature
group in the group L1-regularization to our Yahoo! An-
swer dataset. The horizonal axis corresponds to the name
of each feature group.

5.2 Evaluation of Feature Learning

For group L1 regularization term, we set the ε =
10−4 in Equation 6. To see how much the dif-
ferent textual and non-textual features contribute to
community answer summarization, the accumulated
weight of each group of sentence-level features5 is
presented in Figure 2. It shows that the textual fea-
tures such as 1 (Sentence Length), 2 (Position) 3 (An-
swer Length), 6 (Has Link) and non-textual features
such as 8 (Best Answer Star) , 12 (Total Answer
Number) as well as 13 (Total Points) have larger
weights, which play a significant role in the sum-
marization task as we intuitively considered; fea-
tures 4 (Stopwords Rate), 5 (Uppercase Rate) and 9
(Thumbs Up) have medium weights relatively; and
the other features like 7 (Similarity to Question), 10
(Author Level) and 11 (Best Answer Rate) have the
smallest accumulated weights. The main reasons
that the feature 7 (Similarity to Question) has low
contribution is that we have utilized the similarity
to question in the contextual factors, and this simi-
larity feature in the single site becomes redundant.
Similarly, the features Author Level and Best An-
swer Number are likely to be redundant when other
non-textual features(Total Answer Number and To-
tal Points) are presented together. The experimental
results demonstrate that with the use of group L1-
regularization we have learnt better combination of
these features.

5Note that we have already evaluated the contribution of the
contextual factors in Section 5.1.

5.3 An Example of Summarized Answer

To demonstrate the effectiveness of our proposed
method, Table 4 shows the generated summary of
the example question which is previously illustrated
in Table 1 in the introduction section. The best an-
swer available in the system and the summarized an-
swer generated by our model are compared in Table
4. It is found that the summarized answer contains
more valuable information about the original multi-
sentence question, as it better answers the reason of
teeth blooding and offers some solution for it. Stor-
ing and indexing this summarized answer in ques-
tion archives should provide a better choice for an-
swer reuse in question retrieval of cQAs.

Question

Why do teeth bleed at night and how do you prevent/stop it? This
morning I woke up with blood caked between my two front teeth.[...]
Best Answer - Chosen by Asker
Periodontal disease is a possibility, gingivitis, or some gum infec-
tion. Teeth don’t bleed; gums bleed.

Summarized Answer Generated by Our Method
Periodontal disease is a possibility, gingivitis, or some gum infec-
tion. Teeth don’t bleed; gums bleed. Gums that bleed could be a
sign of a more serious issue like leukemia, an infection, gum dis-
ease, a blood disorder, or a vitamin deficiency. wash your mouth
with warm water and salt, it will help to strengthen your gum and
teeth, also salt avoid infection.

Table 4: Summarized answer by our general CRF based model
for the question in Table 1.

6 Conclusions

We proposed a general CRF based community an-
swer summarization method to deal with the in-
complete answer problem for deep understanding of
complex multi-sentence questions. Our main con-
tributions are that we proposed a systematic way
for modeling semantic contextual interactions be-
tween the answer sentences based on question seg-
mentation and we explored both the textual and non-
textual answer features learned via a group L1 reg-
ularization. We showed that our method is able to
achieve significant improvements in performance of
answer summarization compared to other baselines
and previous methods on Yahoo! Answers dataset.
We planed to extend our proposed model with more
advanced feature learning as well as enriching our
summarized answer with more available Web re-
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Abstract

In recent years, error mining approaches were
developed to help identify the most likely
sources of parsing failures in parsing sys-
tems using handcrafted grammars and lexi-
cons. However the techniques they use to enu-
merate and count n-grams builds on the se-
quential nature of a text corpus and do not eas-
ily extend to structured data. In this paper, we
propose an algorithm for mining trees and ap-
ply it to detect the most likely sources of gen-
eration failure. We show that this tree mining
algorithm permits identifying not only errors
in the generation system (grammar, lexicon)
but also mismatches between the structures
contained in the input and the input structures
expected by our generator as well as a few id-
iosyncrasies/error in the input data.

1 Introduction

In recent years, error mining techniques have been
developed to help identify the most likely sources
of parsing failure (van Noord, 2004; Sagot and de la
Clergerie, 2006; de Kok et al., 2009). First, the input
data (text) is separated into two subcorpora, a corpus
of sentences that could be parsed (PASS) and a cor-
pus of sentences that failed to be parsed (FAIL). For
each n-gram of words (and/or part of speech tag) oc-
curring in the corpus to be parsed, a suspicion rate is
then computed which, in essence, captures the like-
lihood that this n-gram causes parsing to fail.

These error mining techniques have been applied
with good results on parsing output and shown to
help improve the large scale symbolic grammars and

lexicons used by the parser. However the techniques
they use (e.g., suffix arrays) to enumerate and count
n-grams builds on the sequential nature of a text cor-
pus and cannot easily extend to structured data.

There are some NLP applications though where
the processed data is structured data such as trees
or graphs and which would benefit from error min-
ing. For instance, when generating sentences from
dependency trees, as was proposed recently in the
Generation Challenge Surface Realisation Task (SR
Task, (Belz et al., 2011)), it would be useful to be
able to apply error mining on the input trees to find
the most likely causes of generation failure.

In this paper, we address this issue and propose
an approach that supports error mining on trees. We
adapt an existing algorithm for tree mining which we
then use to mine the Generation Challenge depen-
dency trees and identify the most likely causes of
generation failure. We show in particular, that this
tree mining algorithm permits identifying not only
errors in the grammar and the lexicon used by gener-
ation but also a few idiosyncrasies/error in the input
data as well as mismatches between the structures
contained in the SR input and the input structures
expected by our generator. The latter is an impor-
tant point since, for symbolic approaches, a major
hurdle to participation in the SR challenge is known
to be precisely these mismatches i.e., the fact that
the input provided by the SR task fails to match the
input expected by the symbolic generation systems
(Belz et al., 2011).

The paper is structured as follows. Section 2
presents the HybridTreeMiner algorithm, a complete
and computationally efficient algorithm developed
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Figure 1: Four unordered labelled trees. The right-
most is in Breadth-First Canonical Form

by (Chi et al., 2004) for discovering frequently oc-
curring subtrees in a database of labelled unordered
trees. Section 3 shows how to adapt this algorithm
to mine the SR dependency trees for subtrees with
high suspicion rate. Section 4 presents an experi-
ment we made using the resulting tree mining algo-
rithm on SR dependency trees and summarises the
results. Section 5 discusses related work. Section 6
concludes.

2 Mining Trees

Mining for frequent subtrees is an important prob-
lem that has many applications such as XML data
mining, web usage analysis and RNA classification.
The HybridTreeMiner (HTM) algorithm presented
in (Chi et al., 2004) provides a complete and com-
putationally efficient method for discovering fre-
quently occurring subtrees in a database of labelled
unordered trees and counting them. We now sketch
the intuition underlying this algorithm1. In the next
section, we will show how to modify this algorithm
to mine for errors in dependency trees.

Given a set of trees T , the HybridTreeMiner al-
gorithm proceeds in two steps. First, the unordered
labelled trees contained in T are converted to a
canonical form called BFCF (Breadth-First Canoni-
cal Form). In that way, distinct instantiations of the
same unordered trees have a unique representation.
Second, the subtrees of the BFCF trees are enumer-
ated in increasing size order using two tree opera-
tions called join and extension and their support (the
number of trees in the database that contains each
subtree) is recorded. In effect, the algorithm builds
an enumeration tree whose nodes are the possible
subtrees of T and such that, at depth d of this enu-
meration tree, all possible frequent subtrees consist-
ing of d nodes are listed.

1For a more complete definition see (Chi et al., 2004).

The BFCF canonical form of an unordered tree
is an ordered tree t such that t has the smallest
breath-first canonical string (BFCS) encoding ac-
cording to lexicographic order. The BFCS encod-
ing of a tree is obtained by breadth-first traver-
sal of the tree, recording the string labelling each
node, “$” to separate siblings with distinct parents
and “#” to represent the end of the tree2. For in-
stance, the BFCS encodings of the four trees shown
in Figure 1 are ’A$BB$C$DC#’, ’A$BB$C$CD#’,
’A$BB$DC$C#’ and ’A$BB$CD$C#’ respectively.
Hence, the rightmost tree is the BFCF of all four
trees.

The join and extension operations used to itera-
tively enumerate subtrees are depicted in Figure 2
and can be defined as follows.

• A leg is a leaf of maximal depth.

• Extension: Given a tree t of height ht and a
node n, extending t with n yields a tree t′ (a
child of t in the enumeration tree) with height
ht′ such that n is a child of one of t’s legs and
ht′ is ht + 1.

• Join: Given two trees t1 and t2 of same height
h differing only in their rightmost leg and such
that t1 sorts lower than t2, joining t1 and t2
yields a tree t′ (a child of t1 in the enumeration
tree) of same height h by adding the rightmost
leg of t2 to t1 at level h− 1.

A

CB

D + E →Extension

A

CB

D

E

A

CB

D +

A

C

E

B

→Join

A

C

E

B

D

Figure 2: Join and Extension Operations

To support counting, the algorithm additionally
records for each subtree a list (called occurrence list)

2Assuming “#” sorts greater than “$” and both sort greater
than any other alphabets in node labels.
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of all trees in which this subtree occurs and of its po-
sition in the tree (represented by the list of tree nodes
mapped onto by the subtree). Thus for a given sub-
tree t, the support of t is the number of elements
in that list. Occurrence lists are also used to check
that trees that are combined occur in the data. For
the join operation, the subtrees being combined must
occur in the same tree at the same position (the inter-
section of their occurrence lists must be non empty
and the tree nodes must match except the last node).
For the extension operation, the extension of a tree
t is licensed for any given occurrence in the occur-
rence list only if the planned extension maps onto
the tree identified by the occurrence.

3 Mining Dependency Trees

We develop an algorithm (called ErrorTreeMiner,
ETM) which adapts the HybridTreeMiner algorithm
to mine sources of generation errors in the Gener-
ation Challenge SR shallow input data. The main
modification is that instead of simply counting trees,
we want to compute their suspicion rate. Following
(de Kok et al., 2009), we take the suspicion rate of a
given subtree t to be the proportion of cases where t
occurs in an input tree for which generation fails:

Sus(t) =
count(t|FAIL)

count(t)

where count(t) is the number of occurrences of
t in all input trees and count(t|FAIL) is the number
of occurrences of t in input trees for which no output
was produced.

Since we work with subtrees of arbitrary length,
we also need to check whether constructing a longer
subtree is useful that is, whether its suspicion rate
is equal or higher than the suspicion rate of any of
the subtrees it contains. In that way, we avoid com-
puting all subtrees (thus saving time and space). As
noted in (de Kok et al., 2009), this also permits by-
passing suspicion sharing that is the fact that, if n2

is the cause of a generation failure, and if n2 is con-
tained in larger trees n3 and n4, then all three trees
will have high suspicion rate making it difficult to
identify the actual source of failure namely n2. Be-
cause we use a milder condition however (we accept
bigger trees whose suspicion rate is equal to the sus-
picion rate of any of their subtrees), some amount of

Algorithm 1 ErrorTreeMiner(D,minsup)
Note: D consists of Dfail and Dpass

F1 ← {Frequent 1-trees}
F2 ← ∅
for i← 1, ..., |F1| do

for j ← 1, ..., |F1| do
q ← fi plus legfj

if Noord-Validation(q, minsup) then
F2 ← F2 ∪ q

end if
end for

end for
F ← F1 ∪ F2

PUSH: sort(F2)→ LQueue

Enum-Grow(LQueue, F, minsup)
return F

Algorithm 2 Enum-Grow(LQueue, F, minsup)

while LQueue 6= empty do
POP: pop(LQueue)→ C
for i← 1, ..., |C| do
�The join operation
J ← ∅
for j ← i, ..., |C| do

p← join(ci, cj)
if Noord-Validation(p, minsup) then

J ← J ∪ p
end if

end for
F ← F ∪ J
PUSH: sort(J)→ LQueue

�The extension operation
E ← ∅
for possible leg lm of ci do

for possible new leg ln(∈ F1) do
q ← extend ci with ln at position lm
if Noord-Validation(q, minsup) then

E ← E ∪ q
end if

end for
end for
F ← F ∪ E
PUSH: sort(E)→ LQueue

end for
end while
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Algorithm 3 Noord-Validation(tn, minsup)
Note: tn, tree with n nodes
if Sup(tn) ≥ minsup then

if Sus(tn) ≥ Sus(tn−1),∀tn−1 in tn then
return true

end if
end if
return false

suspicion sharing remains. As we shall see in Sec-
tion 4.3.2, relaxing this check though allows us to
extract frequent larger tree patterns and thereby get
a more precise picture of the context in which highly
suspicious items occur.

Finally, we only keep subtrees whose support is
above a given threshold where the support Sup(t)
of a tree t is defined as the ratio between the number
of times it occurs in an input for which generation
fails and the total number of generation failures:

Sup(t) =
count(t|FAIL)

count(FAIL)

The modified algorithm we use for error mining is
given in Algorithm 1, 2 and 3. It can be summarised
as follows.

First, dependency trees are converted to Breadth-
First Canonical Form whereby lexicographic order
can apply to the word forms labelling tree nodes, to
their part of speech, to their dependency relation or
to any combination thereof3.

Next, the algorithm iteratively enumerates the
subtrees occurring in the input data in increasing
size order and associating each subtree t with two
occurrence lists namely, the list of input trees in
which t occurs and for which generation was suc-
cessful (PASS(t)); and the list of input trees in which
t occurs and for which generation failed (FAIL(t)).

This process is initiated by building trees of size
one (i.e., one-node tree) and extending them to trees
of size two. It is then continued by extending the
trees using the join and extension operations. As
explained in Section 2 above, join and extension
only apply provided the resulting trees occur in the
data (this is checked by looking up occurrence lists).

3For convenience, the dependency relation labelling the
edges of dependency trees is brought down to the daughter node
of the edge.

Each time an n-node tree tn, is built, it is checked
that (i) its support is above the set threshold and (ii)
its suspicion rate is higher than or equal to the sus-
picion rate of all (n− 1)-node subtrees of tn.

In sum, the ETM algorithm differs from the HTM
algorithm in two main ways. First, while HTM ex-
plores the enumeration tree depth-first, ETM pro-
ceeds breadth-first to ensure that the suspicion rate
of (n-1)-node trees is always available when check-
ing whether an n-node tree should be introduced.
Second, while the HTM algorithm uses support to
prune the search space (only trees with a minimum
support bigger than the set threshold are stored), the
ETM algorithm drastically prunes the search space
by additionally checking that the suspicion rate of
all subtrees contained in a new tree t is smaller or
equal to the suspicion rate of t . As a result, while
ETM looses the space advantage of HTM by a small
margin4, it benefits from a much stronger pruning of
the search space than HTM through suspicion rate
checking. In practice, the ETM algorithm allows us
to process e.g., all NP chunks of size 4 and 6 present
in the SR data (roughly 60 000 trees) in roughly 20
minutes on a PC.

4 Experiment and Results

Using the input data provided by the Generation
Challenge SR Task, we applied the error mining al-
gorithm described in the preceding Section to debug
and extend a symbolic surface realiser developed for
this task.

4.1 Input Data and Surface Realisation System

The shallow input data provided by the SR Task
was obtained from the Penn Treebank using the
LTH Constituent-to-Dependency Conversion Tool
for Penn-style Treebanks (Pennconverter, (Johans-
son and Nugues, 2007)). It consists of a set
of unordered labelled syntactic dependency trees
whose nodes are labelled with word forms, part of
speech categories, partial morphosyntactic informa-
tion such as tense and number and, in some cases, a
sense tag identifier. The edges are labelled with the
syntactic labels provided by the Pennconverter. All
words (including punctuation) of the original sen-

4ETM needs to store all (n-1)-node trees in queues before
producing n-node trees.
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tence are represented by a node in the tree and the
alignment between nodes and word forms was pro-
vided by the organisers.

The surface realiser used is a system based on
a Feature-Based Lexicalised Tree Adjoining Gram-
mar (FB-LTAG) for English extended with a unifica-
tion based compositional semantics. Both the gram-
mars and the lexicon were developed in view of the
Generation Challenge and the data provided by this
challenge was used as a means to debug and extend
the system. Unknown words are assigned a default
TAG family/tree based on the part of speech they
are associated with in the SR data. The surface real-
isation algorithm extends the algorithm proposed in
(Gardent and Perez-Beltrachini, 2010) and adapts it
to work on the SR dependency input rather than on
flat semantic representations.

4.2 Experimental Setup
To facilitate interpretation, we first chunked the in-
put data in NPs, PPs and Clauses and performed er-
ror mining on the resulting sets of data. The chunk-
ing was performed by retrieving from the Penn Tree-
bank (PTB), for each phrase type, the yields of the
constituents of that type and by using the alignment
between words and dependency tree nodes provided
by the organisers of the SR Task. For instance, given
the sentence “The most troublesome report may be
the August merchandise trade deficit due out tomor-
row”, the NPs “The most troublesome report” and
“the August merchandise trade deficit due out to-
morrow” will be extracted from the PTB and the
corresponding dependency structures from the SR
Task data.

Using this chunked data, we then ran the genera-
tor on the corresponding SR Task dependency trees
and stored separately, the input dependency trees for
which generation succeeded and the input depen-
dency trees for which generation failed. Using infor-
mation provided by the generator, we then removed
from the failed data, those cases where generation
failed either because a word was missing in the lex-
icon or because a TAG tree/family was missing in
the grammar but required by the lexicon and the in-
put data. These cases can easily be detected using
the generation system and thus do not need to be
handled by error mining.

Finally, we performed error mining on the data

using different minimal support thresholds, differ-
ent display modes (sorted first by size and second by
suspicion rate vs sorted by suspicion rate) and differ-
ent labels (part of speech, words and part of speech,
dependency, dependency and part of speech).

4.3 Results

One feature of our approach is that it permits min-
ing the data for tree patterns of arbitrary size us-
ing different types of labelling information (POS
tags, dependencies, word forms and any combina-
tion thereof). In what follows, we focus on the NP
chunk data and illustrate by means of examples how
these features can be exploited to extract comple-
mentary debugging information from the data.

4.3.1 Mining on single labels (word form, POS
tag or dependency)

Mining on a single label permits (i) assessing the
relative impact of each category in a given label cat-
egory and (ii) identifying different sources of errors
depending on the type of label considered (POS tag,
dependency or word form).

Mining on POS tags Table 1 illustrates how min-
ing on a single label (in this case, POS tags) gives
a good overview of how the different categories in
that label type impact generation: two POS tags
(POS and CC) have a suspicion rate of 0.99 indicat-
ing that these categories always lead generation to
fail. Other POS tag with much lower suspicion rate
indicate that there are unresolved issues with, in de-
creasing order of suspicion rate, cardinal numbers
(CD), proper names (NNP), nouns (NN), prepositions
(IN) and determiners (DT).

The highest ranking category (POS5) points to
a mismatch between the representation of geni-
tive NPs (e.g., John’s father) in the SR Task data
and in the grammar. While our generator ex-
pects the representation of ‘John’s father’ to be FA-
THER(“S”(JOHN)), the structure provided by the SR
Task is FATHER(JOHN(“S”)). Hence whenever a
possessive appears in the input data, generation fails.
This is in line with (Rajkumar et al., 2011)’s finding
that the logical forms expected by their system for
possessives differed from the shared task inputs.

5In the Penn Treebank, the POS tag is the category assigned
to possessive ’s.
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POS Sus Sup Fail Pass
POS 0.99 0.38 3237 1
CC 0.99 0.21 1774 9
CD 0.39 0.16 1419 2148
NNP 0.35 0.32 2749 5014
NN 0.30 0.81 6798 15663
IN 0.30 0.16 1355 3128
DT 0.09 0.12 1079 10254

Table 1: Error Mining on POS tags with frequency
cutoff 0.1 and displaying only trees of size 1 sorted
by decreasing suspicion rate (Sus)

The second highest ranked category is CC for co-
ordinations. In this case, error mining unveils a
bug in the grammar trees associated with conjunc-
tion which made all sentences containing a conjunc-
tion fail. Because the grammar is compiled out of
a strongly factorised description, errors in this de-
scription can propagate to a large number of trees
in the grammar. It turned out that an error occurred
in a class inherited by all conjunction trees thereby
blocking the generation of any sentence requiring
the use of a conjunction.

Next but with a much lower suspicion rate come
cardinal numbers (CD), proper names (NNP), nouns
(NN), prepositions (IN) and determiners (DT). We
will see below how the richer information provided
by mining for larger tree patterns with mixed la-
belling information permits identifying the contexts
in which these POS tags lead to generation failure.

Mining on Word Forms Because we remove
from the failure set all cases of errors due to a miss-
ing word form in the lexicon, a high suspicion rate
for a word form usually indicates a missing or incor-
rect lexical entry: the word is present in the lexicon
but associated with either the wrong POS tag and/or
the wrong TAG tree/family. To capture such cases,
we therefore mine not on word forms alone but on
pairs of word forms and POS tag. In this way, we
found for instance, that cardinal numbers induced
many generation failures whenever they were cate-
gorised as determiners but not as nouns in our lexi-
con. As we will see below, larger tree patterns help
identify the specific contexts inducing such failures.

One interesting case stood out which pointed to
idiosyncrasies in the input data: The word form $

(Sus=1) was assigned the POS tag $ in the input
data, a POS tag which is unknown to our system and
not documented in the SR Task guidelines. The SR
guidelines specify that the Penn Treebank tagset is
used modulo the modifications which are explicitly
listed. However for the $ symbol, the Penn treebank
used SYM as a POS tag and the SR Task $, but the
modification is not listed. Similarly, while in the
Penn treebank, punctuations are assigned the SYM

POS tag, in the SR data “,” is used for the comma,
“(“ for an opening bracket and so on.

Mining on Dependencies When mining on de-
pendencies, suspects can point to syntactic construc-
tions (rather than words or word categories) that are
not easily spotted when mining on words or parts
of speech. Thus, while problems with coordination
could easily be spotted through a high suspicion rate
for the CC POS tag, some constructions are linked
neither to a specific POS tag nor to a specific word.
This is the case, for instance, for apposition which
a suspicion rate of 0.19 (286F/1148P) identified as
problematic. Similarly, a high suspicion rate (0.54,
183F/155P) on the TMP dependency indicates that
temporal modifiers are not correctly handled either
because of missing or erroneous information in the
grammar or because of a mismatch between the in-
put data and the fomat expected by the surface re-
aliser.

Interestingly, the underspecified dependency rela-
tion DEP which is typically used in cases for which
no obvious syntactic dependency comes to mind
shows a suspicion rate of 0.61 (595F/371P).

4.3.2 Mining on trees of arbitrary size and
complex labelling patterns

While error mining with tree patterns of size one
permits ranking and qualifying the various sources
of errors, larger patterns often provide more detailed
contextual information about these errors. For in-
stance, Table 1 shows that the CD POS tag has a
suspicion rate of 0.39 (1419F/2148P). The larger
tree patterns identified below permits a more specific
characterization of the context in which this POS tag
co-occurs with generation failure:

TP1 CD(IN,RBR) more than 10
TP2 IN(CD) of 1991
TP3 NNP(CD) November 1
TP4 CD(NNP(CD)) Nov. 1, 1997
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Two patterns clearly emerge: a pattern where car-
dinal numbers are parts of a date (tree patterns TP2-
TP4) and a more specific pattern (TP1) involving
the comparative construction (e.g., more than 10).
All these patterns in fact point to a missing category
for cardinals in the lexicon: they are only associated
with determiner TAG trees, not nouns, and therefore
fail to combine with prepositions (e.g., of 1991, than
10) and with proper names (e.g., November 1).

For proper names (NNP), dates also show up be-
cause months are tagged as proper names (TP3,TP4)
as well as addresses TP5:

TP5 NNP(“,”,“,”) Brooklyn, n.y.,
For prepositions (IN), we find, in addition to the

TP1-TP2, the following two main patterns:
TP6 DT(IN) those with, some of
TP7 RB(IN) just under, little more

Pattern TP6 points to a missing entry for words
such as those and some which are categorised in the
lexicon as determiners but not as nouns. TP7 points
to a mismatch between the SR data and the format
expected by the generator: while the latter expects
the structure IN(RB), the input format provided by
the SR Task is RB(IN).

4.4 Improving Generation Using the Results of
Error Mining

Table 2 shows how implementing some of the cor-
rections suggested by error mining impacts the num-
ber of NP chunks (size 4) that can be generated. In
this experiment, the total number of input (NP) de-
pendency trees is 24995. Before error mining, gen-
eration failed on 33% of these input. Correcting
the erroneous class inherited by all conjunction trees
mentioned in Section 4.3.1 brings generation failure
down to 26%. Converting the input data to the cor-
rect input format to resolve the mismatch induced
by possessive ’s (cf. Section 4.3.1) reduce gener-
ation failure to 21%6 and combining both correc-
tions results in a failure rate of 13%. In other words,
error mining permits quickly identifying two issues
which, once corrected, reduces generation failure by
20 points.

When mining on clause size chunks, other mis-
matches were identified such as in particular, mis-
matches introduced by subjects and auxiliaries:

6For NP of size 4, 3264 structures with possessive ’s were
rewritten.

NP 4 Before After
SR Data 8361 6511
Rewritten SR Data 5255 3401

Table 2: Diminishing the number of errors using in-
formation from error mining. The table compares
the number of failures on NP chunks of size 4 be-
fore (first row) and after (second row) rewriting the
SR data to the format expected by our generator and
before (second column) and after (third column) cor-
recting the grammar and lexicon errors discussed in
Section 4.3.1

while our generator expects both the subject and the
auxiliary to be children of the verb, the SR data rep-
resent the subject and the verb as children of the aux-
iliary.

5 Related Work

We now relate our proposal (i) to previous proposals
on error mining and (ii) to the use of error mining in
natural language generation.

Previous work on error mining. (van Noord,
2004) initiated error mining on parsing results with
a very simple approach computing the parsability
rate of each n-gram in a very large corpus. The
parsability rate of an n-gram wi . . . wn is the ratio
R(wi . . . wn) = C(wi...wn|OK)

C(wi...wn) with C(wi . . . wn)
the number of sentences in which the n-gram
wi . . . wn occurs and C(wi . . . wn | OK) the num-
ber of sentences containing wi . . . wn which could
be parsed. The corpus is stored in a suffix array
and the sorted suffixes are used to compute the fre-
quency of each n-grams in the total corpus and in the
corpus of parsed sentences. The approach was later
extended and refined in (Sagot and de la Clergerie,
2006) and (de Kok et al., 2009) whereby (Sagot and
de la Clergerie, 2006) defines a suspicion rate for n-
grams which takes into account the number of occur-
rences of a given word form and iteratively defines
the suspicion rate of each word form in a sentence
based on the suspicion rate of this word form in the
corpus; (de Kok et al., 2009) combined the iterative
error mining proposed by (Sagot and de la Clergerie,
2006) with expansion of forms to n-grams of words
and POS tags of arbitrary length.

Our approach differs from these previous ap-
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proaches in several ways. First, error mining is per-
formed on trees. Second, it can be parameterised to
use any combination of POS tag, dependency and/or
word form information. Third, it is applied to gener-
ation input rather than parsing output. Typically, the
input to surface realisation is a structured represen-
tation (i.e., a flat semantic representation, a first or-
der logic formula or a dependency tree) rather than a
string. Mining these structured representations thus
permits identifying causes of undergeneration in sur-
face realisation systems.

Error Mining for Generation Not much work
has been done on mining the results of surface re-
alisers. Nonetheless, (Gardent and Kow, 2007) de-
scribes an error mining approach which works on
the output of surface realisation (the generated sen-
tences), manually separates correct from incorrect
output and looks for derivation items which system-
atically occur in incorrect output but not in correct
ones. In contrast, our approach works on the input
to surface realisation, automatically separates cor-
rect from incorrect items using surface realisation
and targets the most likely sources of errors rather
than the absolute ones.

More generally, our approach is the first to our
knowledge, which mines a surface realiser for un-
dergeneration. Indeed, apart from (Gardent and
Kow, 2007), most previous work on surface reali-
sation evaluation has focused on evaluating the per-
formance and the coverage of surface realisers. Ap-
proaches based on reversible grammars (Carroll et
al., 1999) have used the semantic formulae output
by parsing to evaluate the coverage and performance
of their realiser; similarly, (Gardent et al., 2010) de-
veloped a tool called GenSem which traverses the
grammar to produce flat semantic representations
and thereby provide a benchmark for performance
and coverage evaluation. In both cases however, be-
cause it is produced using the grammar exploited by
the surface realiser, the input produced can only be
used to test for overgeneration (and performance) .
(Callaway, 2003) avoids this shortcoming by con-
verting the Penn Treebank to the format expected by
his realiser. However, this involves manually iden-
tifying the mismatches between two formats much
like symbolic systems did in the Generation Chal-
lenge SR Task. The error mining approach we pro-

pose helps identifying such mismatches automati-
cally.

6 Conclusion

Previous work on error mining has focused on appli-
cations (parsing) where the input data is sequential
working mainly on words and part of speech tags.
In this paper, we proposed a novel approach to error
mining which permits mining trees. We applied it
to the input data provided by the Generation Chal-
lenge SR Task. And we showed that this supports
the identification of gaps and errors in the grammar
and in the lexicon; and of mismatches between the
input data format and the format expected by our re-
aliser.

We applied our error mining approach to the in-
put of a surface realiser to identify the most likely
sources of undergeneration. We plan to also ex-
plore how it can be used to detect the most likely
sources of overgeneration based on the output of
this surface realiser on the SR Task data. Using the
Penn Treebank sentences associated with each SR
Task dependency tree, we will create the two tree
sets necessary to support error mining by dividing
the set of trees output by the surface realiser into a
set of trees (FAIL) associated with overgeneration
(the generated sentences do not match the original
sentences) and a set of trees (SUCCESS) associated
with success (the generated sentence matches the
original sentences). Exactly which tree should popu-
late the SUCCESS and FAIL set is an open question.
The various evaluation metrics used by the SR Task
(BLEU, NIST, METEOR and TER) could be used
to determine a threshold under which an output is
considered incorrect (and thus classificed as FAIL).
Alternatively, a strict matching might be required.
Similarly, since the surface realiser is non determin-
istic, the number of output trees to be kept will need
to be experimented with.
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Abstract

This paper studies the problem of sentence-
level semantic coherence by answering SAT-
style sentence completion questions. These
questions test the ability of algorithms to dis-
tinguish sense from nonsense based on a vari-
ety of sentence-level phenomena. We tackle
the problem with two approaches: methods
that use local lexical information, such as the
n-grams of a classical language model; and
methods that evaluate global coherence, such
as latent semantic analysis. We evaluate these
methods on a suite of practice SAT questions,
and on a recently released sentence comple-
tion task based on data taken from five Conan
Doyle novels. We find that by fusing local
and global information, we can exceed 50%
on this task (chance baseline is 20%), and we
suggest some avenues for further research.

1 Introduction

In recent years, standardized examinations have
proved a fertile source of evaluation data for lan-
guage processing tasks. They are valuable for many
reasons: they represent facets of language under-
standing recognized as important by educational ex-
perts; they are organized in various formats designed
to evaluate specific capabilities; they are yardsticks
by which society measures educational progress;
and they affect a large number of people.

Previous researchers have taken advantage of this
material to test both narrow and general language
processing capabilities. Among the narrower tasks,
the identification of synonyms and antonyms has

been studied by (Landauer and Dumais, 1997; Mo-
hammed et al., 2008; Mohammed et al., 2011; Tur-
ney et al., 2003; Turney, 2008), who used ques-
tions from the Test of English as a Foreign Lan-
guage (TOEFL), Graduate Record Exams (GRE)
and English as a Second Language (ESL) exams.
Tasks requiring broader competencies include logic
puzzles and reading comprehension. Logic puzzles
drawn from the Law School Administration Test
(LSAT) and the GRE were studied in (Lev et al.,
2004), which combined an extensive array of tech-
niques to solve the problems. The DeepRead sys-
tem (Hirschman et al., 1999) initiated a long line of
research into reading comprehension based on test
prep material (Charniak et al., 2000; Riloff and The-
len, 2000; Wang et al., 2000; Ng et al., 2000).

In this paper, we study a new class of problems
intermediate in difficulty between the extremes of
synonym detection and general question answer-
ing - the sentence completion questions found on
the Scholastic Aptitude Test (SAT). These questions
present a sentence with one or two blanks that need
to be filled in. Five possible words (or short phrases)
are given as options for each blank. All possible an-
swers except one result in a nonsense sentence. Two
examples are shown in Figure 1.

The questions are highly constrained in the sense
that all the information necessary is present in the
sentence itself without any other context. Neverthe-
less, they vary widely in difficulty. The first of these
examples is relatively simple: the second half of the
sentence is a clear description of the type of behavior
characterized by the desired adjective. The second
example is more sophisticated; one must infer from
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1. One of the characters in Milton Murayama’s
novel is considered because he deliber-
ately defies an oppressive hierarchical society.
(A) rebellious (B) impulsive (C) artistic (D)
industrious (E) tyrannical

2. Whether substances are medicines or poisons
often depends on dosage, for substances that are

in small doses can be in large.
(A) useless .. effective
(B) mild .. benign
(C) curative .. toxic
(D) harmful .. fatal
(E) beneficial .. miraculous

Figure 1: Sample sentence completion questions
(Educational-Testing-Service, 2011).

the contrast between medicine and poison that the
correct answer involves a contrast, either useless vs.
effective or curative vs. toxic. Moreover, the first, in-
correct, possibility is perfectly acceptable in the con-
text of the second clause alone; only irrelevance to
the contrast between medicine and poison eliminates
it. In general, the questions require a combination of
semantic and world knowledge as well as occasional
logical reasoning. We study the sentence comple-
tion task because we believe it is complex enough to
pose a significant challenge, yet structured enough
that progress may be possible.

As a first step, we have approached the prob-
lem from two points-of-view: first by exploiting lo-
cal sentence structure, and secondly by measuring
a novel form of global sentence coherence based
on latent semantic analysis. To investigate the use-
fulness of local information, we evaluated n-gram
language model scores, from both a conventional
model with Good-Turing smoothing, and with a re-
cently proposed maximum-entropy class-based n-
gram model (Chen, 2009a; Chen, 2009b). Also
in the language modeling vein, but with potentially
global context, we evaluate the use of a recurrent
neural network language model. In all the language
modeling approaches, a model is used to compute a
sentence probability with each of the potential com-
pletions. To measure global coherence, we propose

a novel method based on latent semantic analysis
(LSA). We find that the LSA based method performs
best, and that both local and global information can
be combined to exceed 50% accuracy. We report re-
sults on a set of questions taken from a collection
of SAT practice exams (Princeton-Review, 2010),
and further validate the methods with the recently
proposed MSR Sentence Completion Challenge set
(Zweig and Burges, 2011).

Our paper thus makes the following contributions:
First, we present the first published results on the
SAT sentence completion task. Secondly, we eval-
uate the effectiveness of both local n-gram informa-
tion, and global coherence in the form of a novel
LSA-based metric. Finally, we illustrate that the lo-
cal and global information can be effectively fused.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss related work. Section
3 describes the language modeling methods we have
evaluated. Section 4 outlines the LSA-based meth-
ods. Section 5 presents our experimental results. We
conclude with a discussion in Section 6.

2 Related Work
The past work which is most similar to ours is de-
rived from the lexical substitution track of SemEval-
2007 (McCarthy and Navigli, 2007). In this task,
the challenge is to find a replacement for a word or
phrase removed from a sentence. In contrast to our
SAT-inspired task, the original answer is indicated.
For example, one might be asked to find alternates
for match in “After the match, replace any remain-
ing fluid deficit to prevent problems of chronic de-
hydration throughout the tournament.” Two consis-
tently high-performing systems for this task are the
KU (Yuret, 2007) and UNT (Hassan et al., 2007)
systems. These operate in two phases: first they find
a set of potential replacement words, and then they
rank them. The KU system uses just an N-gram lan-
guage model to do this ranking. The UNT system
uses a large variety of information sources, and a
language model score receives the highest weight.
N-gram statistics were also very effective in (Giu-
liano et al., 2007). That paper also explores the use
of Latent Semantic Analysis to measure the degree
of similarity between a potential replacement and its
context, but the results are poorer than others. Since
the original word provides a strong hint as to the pos-
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sible meanings of the replacements, we hypothesize
that N-gram statistics are largely able to resolve the
remaining ambiguities. The SAT sentence comple-
tion sentences do not have this property and thus are
more challenging.

Related to, but predating the Semeval lexical sub-
stitution task are the ESL synonym questions pro-
posed by Turney (2001), and subsequently consid-
ered by numerous research groups including Terra
and Clarke (2003) and Pado and Lapata (2007).
These questions are similar to the SemEval task, but
in addition to the original word and the sentence
context, the list of options is provided. Jarmasz and
Szpakowicz (2003) used a sophisticated thesaurus-
based method and achieved state-of-the art perfor-
mance, which is 82%.

Other work on standardized tests includes the syn-
onym and antonym tasks mentioned in Section 1,
and more recent work on a SAT analogy task in-
troduced by (Turney et al., 2003) and extensively
used by other researchers (Veale, 2004; Turney and
Littman, 2005; D. et al., 2009).

3 Sentence Completion via Language
Modeling

Perhaps the most straightforward approach to solv-
ing the sentence completion task is to form the com-
plete sentence with each option in turn, and to eval-
uate its likelihood under a language model. As
discussed in Section 2, this was found be be very
effective in the ranking phase of several SemEval
systems. In this section, we describe the suite of
state-of-the-art language modeling techniques for
which we will present results. We begin with n-
gram models; first a classical n-gram backoff model
(Chen and Goodman, 1999), and then a recently pro-
posed class-based maximum-entropy n-gram model
(Chen, 2009a; Chen, 2009b). N-gram models have
the obvious disadvantage of using a very limited
context in predicting word probabilities. There-
fore we evaluate the recurrent neural net model of
(Mikolov et al., 2010; Mikolov et al., 2011b). This
model has produced record-breaking perplexity re-
sults in several tasks (Mikolov et al., 2011a), and has
the potential to encode sentence-span information in
the network hidden-layer activations. We have also
evaluated the use of parse scores, using an off-the-
shelf stochastic context free grammar parser. How-

ever, the grammatical structure of the alternatives is
often identical. With scores differing only in the fi-
nal non-terminal/terminal rewrites, this did little bet-
ter than chance. The use of other syntactically de-
rived features, for example based on a dependency
parse, are likely to be more effective, but we leave
this for future work.

3.1 Backoff N-gram Language Model

Our baseline model is a Good-Turing smoothed
model trained with the CMU language modeling
toolkit (Clarkson and Rosenfeld, 1997). For the SAT
task, we used a trigram language model trained on
1.1B words of newspaper data, described in Section
5.1. All bigrams occurring at least twice were re-
tained in the model, along with all trigrams occur-
ring at least three times. The vocabulary consisted
of all words occurring at least 100 times in the data,
along with every word in the development or test
sets. This resulted in a 124k word vocabulary and
59M n-grams. For the Conan Doyle data, which we
henceforth refer to as the Holmes data (see Section
5.1), the smaller amount of training data allowed us
to use 4-grams and a vocabulary cutoff of 3. This re-
sulted in 26M n-grams and a 126k word vocabulary.

3.2 Maximum Entropy Class-Based N-gram
Language Model

Word-class information provides a level of abstrac-
tion which is not available in a word-level lan-
guage model; therefore we evaluated a state-of-the-
art class based language model. Model M (Chen,
2009a; Chen, 2009b) is a recently proposed class
based exponential n-gram language model which
has shown improvements across a variety of tasks
(Chen, 2009b; Chen et al., 2009; Emami et al.,
2010). The key ideas are the modeling of word n-
gram probabilities with a maximum entropy model,
and the use of word-class information in the defini-
tion of the features. In particular, each word w is
assigned deterministically to a class c, allowing the
n-gram probabilities to be estimated as the product
of class and word parts

P (wi|wi−n+1 . . . wi−2wi−1) =
P (ci|ci−n+1 . . . ci−2ci−1, wi−n+1 . . . wi−2wi−1)

P (wi|wi−n+1 . . . wi−2wi−1, ci).
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Both components are themselves maximum entropy
n-gram models in which the probability of a word
or class label l given history h is determined by
1
Z exp(

∑
k fk(h, l)). The features fk(h, l) used are

the presence of various patterns in the concatena-
tion of hl, for example whether a particular suffix
is present in hl.

3.3 Recurrent Neural Net Language Model
Many of the questions involve long-range depen-
dencies between words. While n-gram models have
no ability to explicitly maintain long-span context,
the recently proposed recurrent neural-net model of
(Mikolov et al., 2010) does. Related approaches
have been proposed by (Sutskever et al., 2011;
Socher et al., 2011). In this model, a set of neu-
ral net activations s(t) is maintained and updated at
each sentence position t. These activations encapsu-
late the sentence history up to the tth word in a real-
valued vector which typically has several hundred
dimensions. The word at position t is represented as
a binary vector w(t) whose length is the vocabulary
size, and with a “1” in a position uniquely associated
with the word, and “0” elsewhere. w(t) and s(t) are
concatenated to predict an output distribution over
words, y(t). Updating is done with two weight ma-
trices u and v and nonlinear functions f() and g()
(Mikolov et al., 2011b):

x(t) = [w(t)T s(t − 1)T ]T

sj(t) = f(
∑

i

xi(t)uji)

yk(t) = g(
∑

j

sj(t)vkj)

with f() being a sigmoid and g() a softmax:

f(x) =
1

1 + exp(−z)
, g(zm) =

exp(zm)∑
k exp(zk)

The output y(t) is a probability distribution over
words, and the parameters u and v are trained with
back-propagation to minimize the Kullback-Leibler
(KL) divergence between the predicted and observed
distributions. Because of the recurrent connections,
this model is similar to a nonlinear infinite impulse
response (IIR) filter, and has the potential to model
long span dependencies. Theoretical considerations
(Bengio et al., 1994) indicate that for many prob-
lems, this may not be possible, but in practice it is
an empirical question.

4 Sentence Completion via Latent
Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990) is a widely used method for representing
words and documents in a low dimensional vector
space. The method is based on applying singular
value decomposition (SVD) to a matrix W repre-
senting the occurrence of words in documents. SVD
results in an approximation of W by the product
of three matrices, one in which each word is rep-
resented as a low-dimensional vector, one in which
each document is represented as a low dimensional
vector, and a diagonal scaling matrix. The simi-
larity between two words can then be quantified as
the cosine-similarity between their respective scaled
vectors, and document similarity can be measured
likewise. It has been used in numerous tasks, rang-
ing from information retrieval (Deerwester et al.,
1990) to speech recognition (Bellegarda, 2000; Coc-
caro and Jurafsky, 1998).

To perform LSA, one proceeds as follows. The
input is a collection of n documents which are ex-
pressed in terms of words from a vocabulary of size
m. These documents may be actual documents such
as newspaper articles, or simply as in our case no-
tional documents such as sentences. Next, a m x n
matrix W is formed. At its simplest, the ijth entry
contains the number of times word i has occurred in
document j - its term frequency or TF value. More
conventionally, the entry is weighted by some no-
tion of the importance of word i, for example the
negative logarithm of the fraction of documents that
contain it, resulting in a TF-IDF weighting (Salton
et al., 1975). Finally, to obtain a subspace represen-
tation of dimension d, W is decomposed as

W ≈ USV T

where U is m x d, V T is d x n, and S is a d x d diag-
onal matrix. In applications, d << n and d << m;
for example one might have a 50, 000 word vocab-
ulary and 1, 000, 000 documents and use a 300 di-
mensional subspace representation.

An important property of SVD is that the rows
of US - which represents the words - behave sim-
ilarly to the original rows of W , in the sense that
the cosine similarity between two rows in US ap-
proximates the cosine similarity between the corre-
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sponding rows in W . Cosine similarity is defined as
sim(x,y) = x·y

‖x‖‖y‖ .

4.1 Total Word Similarity
Perhaps the simplest way of doing sentence comple-
tion with LSA is to compute the total similarity of a
potential answer a with the rest of the words in the
sentence S, and to choose the most related option.
We define the total similarity as:

totsim(a,S) =
∑
w∈S

sim(a,w)

When the completion requires two words, total sim-
ilarity is the sum of the contributions for both words.
This is our baseline method for using LSA, and one
of the best methods we have found.

4.2 Sentence Reconstruction
Recall that LSA approximates a weighted word-
document matrix W as the product of low rank
matrices U and V along with a scaling matrix S:
W ≈ USV T . Using singular value decomposition,
this is done so as to minimize the mean square re-
construction error

∑
ij Q2

ij where Q = W−USV T .
From the basic definition of LSA, each column of W
(representing a document) is represented as

Wj = USV T
j , (1)

that is, as a linear combination of the set of basis
functions formed by the columns of US, with the
combination weights specified in V T

j . When a new
document is presented, it is also possible to repre-
sent it in terms of the same basis vectors. Moreover,
we may take the reconstruction error induced by this
representation to be a measure of how consistent the
new document is with the original set of documents
used to determine U S and V (Bellegarda, 2000).

It remains to represent a new document in terms
of the LSA bases. This is done as follows (Deer-
wester et al., 1990; Bellegarda, 2000), again with
the objective of minimizing the reconstruction error.
First, note that since U is column-orthonormal, (1)
implies that

Vj = W T
j US−1 (2)

Thus, if we notionally index a new document by p,
we proceed by forming a new column (document)
vector Wp using the standard term-weighting, and

then find its LSA-space representation Vp using (2).
We can evaluate the reconstruction quality by insert-
ing the result in (1). The reconstruction error is then

||(UUT − I)Wp||2

Note that if all the dimensions are retained, the re-
construction error is zero; in the case that only the
highest singular vectors are used, however, it is not.
Due to the fact that the sentences vary in length we
choose the number of retained singular vectors as a
fraction f of the sentence length. If the answer has
n words we use the top nf components. In practice,
a f of 1.2 was selected on the basis of development
set results.

4.3 A LSA N-gram Language Model
In the context of speech recognition, LSA has been
combined with classical n-gram language models
in (Coccaro and Jurafsky, 1998; Bellegarda, 2000).
The crux of this idea is to interpolate an n-gram lan-
guage model probability with one based on LSA,
with the intuition that the standard n-gram model
will do a good job predicting function words, and
the LSA model will do a good job on words pre-
dicted by their long-span context. This logic makes
sense for the sentence completion task as well, mo-
tivating us to evaluate it.

To do this, we adopt the procedure of (Coccaro
and Jurafsky, 1998), using linear interpolation be-
tween the n-gram and LSA probabilities:

p(w|history) =
αpng(w|history) + (1 − α)plsa(w|history)

The probability of a word given its history is com-
puted by the LSA model in the following way. Let h
be the sum of all the LSA word vectors in the his-
tory. Let m be the smallest cosine similarity be-
tween h and any word in the vocabulary V : m =
minw∈V sim(h, w). The probability of a word w in
the context of history h is given by

Plsa(w|h) =
sim(h, w) − m∑

q∈V (sim(h, q) − m)

Since similarity can be negative, subtracting the
minimum (m) ensures that all the estimated prob-
abilities are between 0 and 1.
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4.4 Improving Efficiency and Expressiveness

Given the basic framework described above, a num-
ber of enhancements are possible. In terms of ef-
ficiency, recall that it is necessary to perform SVD
on a term-document matrix. The data we used was
grouped into paragraph “documents,” of which there
were over 27 million, with 2.6 million unique words.
While the resulting matrix is highly sparse, it is nev-
ertheless impractical to perform SVD. We overcome
this difficulty in two ways. First, we restrict the set
of documents used to those which are “relevant” to
a given test set. This is done by requiring that a doc-
ument contain at least one of the potential answer-
words. Secondly, we restrict the vocabulary to the
set of words present in the test set. For the sentence-
reconstruction method of Section 4.2, we have found
it convenient to do data selection per-sentence.

To enhance the expressive power of LSA, the term
vocabulary can be expanded from unigrams to bi-
grams or trigrams of words, thus adding information
about word ordering. This was also used in the re-
construction technique.

5 Experimental Results
5.1 Data Resources

We present results with two datasets. The first is
taken from 11 Practice Tests for the SAT & PSAT
2011 Edition (Princeton-Review, 2010). This book
contains eleven practice tests, and we used all the
sentence completion questions in the first five tests
as a development set, and all the questions in the last
six tests as the test set. This resulted in sets with 95
and 108 questions respectively. Additionally, we re-
port results on the recently released MSR Sentence
Completion Challenge (Zweig and Burges, 2011).
This consists of a set of 1, 040 sentence completion
questions based on sentences occurring in five Co-
nan Doyle Sherlock Holmes novels, and is identical
in format to the SAT questions. Due to the source of
this data, we refer to it as the Holmes data.

To train models, we have experimented with a
variety of data sources. Since there is no publi-
cally available collection of SAT questions suitable
to training, our methods have all relied on unsu-
pervised data. Early on, we ran a set of experi-
ments to determine the relevance of different types
of data. Thinking that data from an encyclopedia

Data Dev % Correct Test % Correct
Encarta 26 33
Wikipedia 32 31
LA Times 39 42

Table 1: Effectiveness of different types of training data.

might be useful, we evaluated an electronic version
of the 2003 Encarta encyclopedia, which has ap-
proximately 29M words. Along similar lines, we
used a collection of Wikipedia articles consisting of
709M words. This data is the entire Wikipedia as of
January 2011, broken down into sentences, with fil-
tering to remove sentences consisting of URLs and
Wiki author comments. Finally, we used a com-
mercial newspaper dataset consisting of all the Los
Angeles Times data from 1985 to 2002, containing
about 1.1B words. These data sources were evalu-
ated using the baseline n-gram LM approach of Sec-
tion 3.1. Initial experiments indicated that that the
Los Angeles Times data is best suited to this task
(see Table 1), and our SAT experiments use this
source. For the MSR Sentence Completion data,
we obtained the training data specified in (Zweig
and Burges, 2011), consisting of approximately 500
19th-century novels available from Project Guten-
berg, and comprising 48M words.

5.2 Human Performance
To provide human benchmark performance, we
asked six native speaking high school students and
five graduate students to answer the questions on the
development set. The high-schoolers attained 87%
accuracy and the graduate students 95%. Zweig and
Burges (2011) cite a human performance of 91%
on the Holmes data. Statistics from a large cross-
section of the population are not available. As a fur-
ther point of comparison, we note that chance per-
formance is 20%.

5.3 Language Modeling Results
Table 2 summarizes our language modeling results
on the SAT data. With the exception of the base-
line backoff n-gram model, these techniques were
too computationally expensive to utilize the full Los
Angeles Times corpus. Instead, as with LSA, a “rel-
evant” corpus was selected of the sentences which
contain at least one answer option from either the

606



Method Data (Dev / Test) Dev Test
3-gram GT 1.1B / 1.1B 39% 42%
Model M 193M / 236M 35 41
RNN 36M / 44M 37 42
LSA-LM 293M / 358 M 48 44

Table 2: Performance of language modeling methods on
SAT questions.

Method Dev ppl Dev Test ppl Test
3-gram GT 195 36% 190 44%
Model M 178 36 175 42
RNN 147 37 144 42

Table 3: Performance of language modeling methods us-
ing identical training data and vocabularies.

development or test set. Separate subsets were made
for development and test data. This data was further
sub-sampled to obtain the training set sizes indicated
in the second column. For the LSA-LM, an interpo-
lation weight of 0.1 was used for the LSA score, de-
termined through optimization on the development
set. We see from this table that the language models
perform similarly and achieve just above 40% on the
test set.

To make a more controlled comparison that nor-
malizes for the amount of training data, we have
trained Model M, and the Good-Turing model on
the same data subset as the RNN, and with the same
vocabulary. In Table 3, we present perplexity re-
sults on a held-out set of dev/test-relevant Los Ange-
les Times data, and performance on the actual SAT
questions. Two things are notable. First, the re-
current neural net has dramatically lower perplexity
than the other methods. This is consistent with re-
sults in (Mikolov et al., 2011a). Secondly, despite
the differences in perplexity, the methods show little
difference on SAT performance. Because Model M
was not better, only uses n-gram context, and was
used in the construction of the Holmes data (Zweig
and Burges, 2011), we do not consider it further.

5.4 LSA Results

Table 4 presents results for the methods of Sections
4.1 and 4.2. Of all the methods in isolation, the sim-
ple approach of Section 4.1 - to use the total cosine
similarity between a potential answer and the other
words in the sentence - has performed best. The ap-

Method Dev Test
Total Word Similarity 46% 46%
Reconstruction Error 53 41

Table 4: SAT performance of LSA based methods.

Method Test
3-input LSA 46%
LSA + Good-Turing LM 53
LSA + Good-Turing LM + RNN 52

Table 5: SAT test set accuracy with combined methods.

proach of using reconstruction error performed very
well on the development set, but unremarkably on
the test set.

5.5 Combination Results

A well-known trick for obtaining best results from
a machine learning system is to combine a set of
diverse methods into a single ensemble (Dietterich,
2000). We use ensembles to get the highest accuracy
on both of our data sets.

We use a simple linear combination of the out-
puts of the other models discussed in this paper. For
the LSA model, the linear combination has three in-
puts: the total word similarity, the cosine similarity
between the sum of the answer word vectors and the
sum of the rest of sentence’s word vectors, and the
number of out-of-vocabulary terms in the answer.
Each additional language model beyond LSA con-
tributes an additional input: the probability of the
sentence under that language model.

We train the parameters of the linear combination
on the SAT development set. The training minimizes
a loss function of pairs of answers: one correct and
one incorrect fill-in from the same question. We use
the RankNet loss function (Burges et al., 2005):

min
~w

f(~w · (~x − ~y)) + λ||~w||2

where ~x are the input features for the incorrect an-
swer, ~y are the features for the correct answer, ~w
are the weights for the combination, and f(z) =
log(1 + exp(z)). We tune the regularizer via 5-
fold cross validation, and minimize the loss using
L-BFGS (Nocedal and Wright, 2006). The results
on the SAT test set for combining various models
are shown in Table 5.
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5.6 Holmes Data Results

To measure the robustness of our approaches, we
have applied them to the MSR Sentence Completion
set (Zweig and Burges, 2011), termed the Holmes
data. In Table 6, we present the results on this set,
along with the comparable SAT results. Note that
the latter are derived from models trained with the
Los Angeles Times data, while the Holmes results
are derived from models trained with 19th-century
novels. We see from this table that the results are
similar across the two tasks. The best performing
single model is LSA total word similarity.

For the Holmes data, combining the models out-
performs any single model. We train the linear com-
bination function via 5-fold cross-validation: the
model is trained five times, each time on 3/5 of the
data, the regularization tuned on 1/5 of the data, and
tested on 1/5. The test results are pooled across all
5 folds and are shown in Table 6. In this case, the
best combination is to blend LSA, the Good-Turing
language model, and the recurrent neural network.

6 Discussion

To verify that the differences in accuracy between
the different algorithms are not statistical flukes, we
perform a statistical significance test on the out-
puts of each algorithm. We use McNemar’s test,
which is a matched test between two classifiers (Di-
etterich, 1998). We use the False Discovery Rate
method (Benjamini and Hochberg, 1995) to control
the false positive rate caused by multiple tests. If
we allow 2% of our tests to yield incorrectly false
results, then for the SAT data, the combination of
the Good-Turing smoothed language model with an
LSA-based global similarity model (52% accuracy)
is better that the baseline alone (42% accuracy).

Secondly, for the Holmes data, we can state that
LSA total similarity beats the recurrent neural net-
work, which in turn is better than the baseline n-
gram model. The combination of all three is sig-
nificantly better than any of the individual models.

To better understand the system performance and
gain insight into ways of improving it, we have ex-
amined the system’s errors. Encouragingly, one-
third of the errors involve single-word questions
which test the dictionary definition of a word. This
is done either by stating the definition, or provid-

Method SAT Holmes
Chance 20% 20%
GT N-gram LM 42 39
RNN 42 45
LSA Total Similarity 46 49
Reconstruction Error 41 41
LSA-LM 44 42
Combination 53 52
Human 87 to 95 91

Table 6: Performance of methods on the MSR Sentence
Completion Challenge, contrasted with SAT test set.

ing a stereotypical use of the word. An example of
the first case is: “Great artists are often prophetic
(visual): they perceive what we cannot and antici-
pate the future long before we do.” (The system’s
incorrect answer is in parentheses.) An example
of the second is: “One cannot help but be moved
by Theresa’s heartrending (therapeutic) struggle to
overcome a devastating and debilitating accident.”

At the other end of the difficulty spectrum are
questions involving world knowledge and/or logical
implications. An example requiring both is, “Many
fear that the ratification (withdrawal) of more le-
nient tobacco advertising could be detrimental to
public health.” About 40% of the errors require this
sort of general knowledge to resolve. Based on our
analysis, we believe that future research could prof-
itably exploit the structured information present in
a dictionary. However, the ability to identify and
manipulate logical relationships and embed world
knowledge in a manner amenable to logical manip-
ulation may be necessary for a full solution. It is
an interesting research question if this could be done
implicitly with a machine learning technique, for ex-
ample recurrent or recursive neural networks.

7 Conclusion
In this paper we have investigated methods for
answering sentence-completion questions. These
questions are intriguing because they probe the abil-
ity to distinguish semantically coherent sentences
from incoherent ones, and yet involve no more con-
text than the single sentence. We find that both local
n-gram information and an LSA-based global coher-
ence model do significantly better than chance, and
that they can be effectively combined.
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Abstract

Sequential modeling has been widely used in
a variety of important applications including
named entity recognition and shallow pars-
ing. However, as more and more real time
large-scale tagging applications arise, decod-
ing speed has become a bottleneck for exist-
ing sequential tagging algorithms. In this pa-
per we propose 1-best A*, 1-best iterative A*,
k-best A* and k-best iterative Viterbi A* al-
gorithms for sequential decoding. We show
the efficiency of these proposed algorithms for
five NLP tagging tasks. In particular, we show
that iterative Viterbi A* decoding can be sev-
eral times or orders of magnitude faster than
the state-of-the-art algorithm for tagging tasks
with a large number of labels. This algorithm
makes real-time large-scale tagging applica-
tions with thousands of labels feasible.

1 Introduction

Sequence tagging algorithms including HMMs (Ra-
biner, 1989), CRFs (Lafferty et al., 2001), and
Collins’s perceptron (Collins, 2002) have been
widely employed in NLP applications. Sequential
decoding, which finds the best tag sequences for
given inputs, is an important part of the sequential
tagging framework. Traditionally, the Viterbi al-
gorithm (Viterbi, 1967) is used. This algorithm is
quite efficient when the label size of problem mod-
eled is low. Unfortunately, due to its O(TL2) time
complexity, where T is the input token size and L
is the label size, the Viterbi decoding can become
prohibitively slow when the label size is large (say,
larger than 200).

It is not uncommon that the problem modeled
consists of more than 200 labels. The Viterbi al-
gorithm cannot find the best sequences in tolerable

response time. To resolve this, Esposito and Radi-
cioni (2009) have proposed a Carpediem algorithm
which opens only necessary nodes in searching the
best sequence. More recently, Kaji et al. (2010) pro-
posed a staggered decoding algorithm, which proves
to be very efficient on datasets with a large number
of labels.

What the aforementioned literature does not cover
is the k-best sequential decoding problem, which is
indeed frequently required in practice. For example
to pursue a high recall ratio, a named entity recogni-
tion system may have to adopt k-best sequences in
case the true entities are not recognized at the best
one. The k-best parses have been extensively stud-
ied in syntactic parsing context (Huang, 2005; Pauls
and Klein, 2009), but it is not well accommodated
in sequential decoding context. To our best knowl-
edge, the state-of-the-art k-best sequential decoding
algorithm is Viterbi A* 1. In this paper, we general-
ize the iterative process from the work of (Kaji et al.,
2010) and propose a k-best sequential decoding al-
gorithm, namely iterative Viterbi A*. We show that
the proposed algorithm is several times or orders of
magnitude faster than the state-of-the-art in all tag-
ging tasks which consist of more than 200 labels.

Our contributions can be summarized as follows.
(1) We apply the A* search framework to sequential
decoding problem. We show that A* with a proper
heuristic can outperform the classic Viterbi decod-
ing. (2) We propose 1-best A*, 1-best iterative A*
decoding algorithms which are the second and third
fastest decoding algorithms among the five decod-
ing algorithms for comparison, although there is a
significant gap to the fastest 1-best decoding algo-
rithm. (3) We propose k-best A* and k-best iterative
Viterbi A* algorithms. The latter is several times or
orders of magnitude faster than the state-of-the-art

1Implemented in both CRFPP (http://crfpp.sourceforge.net/)
and LingPipe (http://alias-i.com/lingpipe/) packages.
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k-best decoding algorithm. This algorithm makes
real-time large-scale tagging applications with thou-
sands of labels feasible.

2 Problem formulation
In this section, we formulate the sequential decod-
ing problem in the context of perceptron algorithm
(Collins, 2002) and CRFs (Lafferty et al., 2001). All
the discussions apply to HMMs as well. Formally, a
perceptron model is

f(y,x) =
T∑

t=1

K∑
k=1

θkfk(yt, yt−1,xt), (1)

and a CRFs model is

p(y|x) =
1

Z(x)
exp{

T∑
t=1

K∑
k=1

θkfk(yt, yt−1,xt)}, (2)

where x and y is an observation sequence and a la-
bel sequence respectively, t is the sequence position,
T is the sequence size, fk are feature functions and
K is the number of feature functions. θk are the pa-
rameters that need to be estimated. They represent
the importance of feature functions fk in prediction.
For CRFs, Z(x) is an instance-specific normaliza-
tion function

Z(x) =
∑
y

exp{
T∑

t=1

K∑
k=1

θkfk(yt, yt−1,xt)}. (3)

If x is given, the decoding is to find the best y which
maximizes the score of f(y,x) for perceptron or the
probability of p(y|x) for CRFs. As Z(x) is a con-
stant for any given input sequence x, the decoding
for perceptron or CRFs is identical, that is,

arg max
y

f(y,x). (4)

To simplify the discussion, we divide the features
into two groups: unigram label features and bi-
gram label features. Unigram features are of form
fk(yt,xt) which are concerned with the current la-
bel and arbitrary feature patterns from input se-
quence. Bigram features are of form fk(yt, yt−1,xt)
which are concerned with both the previous and the
current labels. We thus rewrite the decoding prob-
lem as

arg max
y

T∑
t=1

(

K1∑
k=1

θ1kf
1
k (yt,xt)+

K2∑
k=1

θ2kf
2
k (yt, yt−1,xt)).

(5)
For a better understanding, one can inter-
pret the term

∑K1
k=1 θ

1
kf

1
k (yt,xt) as node yt’s

score at position t, and interpret the term

∑K2
k=1 θ

2
kf

2
k (yt, yt−1,xt) as edge (yt−1, yt)’s

score. So the sequential decoding problem is cast as
a max score pathfinding problem2. In the discussion
hereafter, we assume scores of nodes and edges are
pre-computed (denoted as n(yt) and e(yt−1, yt)),
and we can thus focus on the analysis of different
decoding algorithms.

3 Background
We present the existing algorithms for both 1-best
and k-best sequential decoding in this section. These
algorithms serve as basis for the proposed algo-
rithms in Section 4.

3.1 1-Best Viterbi
The Viterbi algorithm is a classic dynamic program-
ming based decoding algorithm. It has the computa-
tional complexity of O(TL2), where T is the input
sequence size and L is the label size3. Formally, the
Viterbi computes α(yt), the best score from starting
position to label yt, as follows.

max
yt−1

(αyt−1 + e(yt−1, yt)) + n(yt), (6)

where e(yt−1, yt) is the edge score between nodes
yt−1 and yt, n(yt) is the node score for yt. Note
that the terms αyt−1 and e(yt−1, yt) take value 0 for
t = 0 at initialization. Using the recursion defined
above, we can compute the highest score at end po-
sition T − 1 and its corresponding sequence. The
recursive computation of αyt is denoted as forward
pass since the computing traverses the lattice from
left to right. Conversely, the backward pass com-
putes βyt as the follows.

max
yt+1

(βyt+1 + e(yt, yt+1) + n(yt+1)). (7)

Note that βyT−1 = 0 at initialization. The max
score can be computed using maxy0(β0 + n(y0)).
We can use either forward or backward pass to
compute the best sequence. Table 1 summarizes
the computational complexity of all decoding algo-
rithms including Viterbi, which has the complexity
of TL2 for both best and worst cases. Note that
N/A means the decoding algorithms are not applica-
ble (for example, iterative Viterbi is not applicable
to k-best decoding). The proposed algorithms (see
Section 4) are highlighted in bold.

3.2 1-Best iterative Viterbi
Kaji et al. (Kaji et al., 2010) presented an efficient
sequential decoding algorithm named staggered de-
coding. We use the name iterative Viterbi to describe

2With the constraint that the path consists of one and only
one node at each position.

3We ignore the feature size terms for simplicity.

612



this algorithm for the reason that the iterative pro-
cess plays a central role in this algorithm. Indeed,
this iterative process is generalized in this paper to
handle k-best sequential decoding (see Section 4.4).

The main idea is to start with a coarse lattice
which consists of both active labels and degenerate
labels. A label is referred to as an active label if it
is not grouped (e.g., all labels in Fig. 1 (a) and la-
bel A at each position in Fig. 1 (b)), and otherwise
as an inactive label (i.e., dotted nodes). The new la-
bel, which is made by grouping the inactive labels,
is referred to as a degenerate label (i.e., large nodes
covering the dotted ones). Fig. 1 (a) shows a lattice
which consists of active labels only and (b) shows
a lattice which consists of both active and degener-
ate ones. The score of a degenerate label is the max
score of inactive labels which are included in the de-
generate label. Similarly, the edge score between a
degenerate label z and an active label y′ is the max
edge score between any inactive label y ∈ z and y′,
and the score of two degenerate labels z and z′ is the
max edge score between any inactive label y ∈ z
and y′ ∈ z′. Using the above definitions, the best
sequence derived from a degenerate lattice would be
the upper bound of the sequence derived from the
original lattice. If the best sequence does not include
any degenerate labels, it is indeed the best sequence
for the original lattice.
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Figure 1: (a) A lattice consisting of active labels only.
(b) A lattice consisting of both active labels and degener-
ate ones. Each position has one active label (A) and one
degenerate label (consisting of B, C. D, E, and F).

The pseudo code for this algorithm is shown in
Algorithm 1. The lattice is initialized to include one
active label and one degenerate label at each position
(see Figure 1 (b)). Note that the labels are ranked
by the probabilities estimated from the training data.
The Viterbi algorithm is applied to the lattice to find
the best sequence. If the sequence consists of ac-
tive labels only, the algorithm terminates and returns
such a sequence. Otherwise, the lower bound lb4 of
the active sequence in the lattice is updated and the
lattice is expanded. The lower bound can be initial-
ized to the best sequence score using a beam search
(with beam size being 1). After either a forward or
a backward pass, the lower bound is assigned with

4The maximum score of the active sequences found so far.

the best active sequence score best(lattice)5 if the
former is less than the latter. The expansion of lat-
tice ensures that the lattice has twice active labels
as before at a given position. Figure 2 shows the
column-wise expansion step. The number of active
labels in the column is doubled only if the best se-
quence of the degenerate lattice passes through the
degenerate label of that column.

Algorithm 1 Iterative Viterbi Algorithm
1: lb = best score from beam search
2: init lattice
3: for i=0;;i++ do
4: if i %2 == 0 then
5: y = forward()
6: else
7: y = backward()
8: end if
9: if y consists of active labels only then

10: return y
11: end if
12: if lb < best(lattice) then
13: lb = best(lattice)
14: end if
15: expand lattice
16: end for

Algorithm 2 Forward
1: for i=0; i < T; i++ do
2: Compute α(yi) and β(yi) according to Equations (6) and (7)
3: if α(yi) + β(yi) < lb then
4: prune yi from the current lattice
5: end if
6: end for
7: Node b = arg maxyT−1

α(yT−1)

8: return sequence back tracked by b
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Figure 2: Column-wise lattice expansion: (a) The best
sequence of the initial degenerate lattice, which does not
pass through the degenerate label in the first column. (b)
Column-wise expansion is performed and the best se-
quence is searched again. Notice that the active label in
the first column is not expanded. (c) The final result.

Algorithm 2 shows the forward pass in which the
node pruning is performed. That is, for any node,
if the best score of sequence which passes such a
node is less than the lower bound lb, such a node
is removed from the lattice. This removal is safe
as such a node does not have a chance to form an
optimal sequence. It is worth noting that, if a node
is removed, it can no longer be added into the lattice.

5We do not update the lower bound lb if we cannot find an
active sequence.
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This property ensures the efficiency of the iterative
Viterbi algorithm. The backward pass is similar to
the forward one and it is thus omitted.

The alternative calls of forward and backward
passes (in Algorithm 1) ensure the alternative updat-
ing/lowering of node forward and backward scores,
which makes the node pruning in either forward pass
(see Algorithm 2) or backward pass more efficient.
The lower bound lb is updated once in each iteration
of the main loop in Algorithm 1. While the forward
and backwards scores of nodes gradually decrease
and the lower bound lb increases, more and more
nodes are pruned.

The iterative Viterbi algorithm has computational
complexity of T and TL2 for best and worst cases
respectively. This can be proved as follows (Kaji et
al., 2010). At the m-th iteration in Algorithm 1, it-
erative Viterbi decoding requires order of T4m time
because there are 2m active labels (plus one degen-
erate label). Therefore, it has

∑m
i=0 T4i time com-

plexity if it terminates at the m-th iteration. In the
best case in which m = 0, the time complexity is T .
In the worst case in which m = dlog2 Le − 1 (d.e is
the ceiling function which maps a real number to the
smallest following integer), the time complexity is
order of TL2 because

∑dlog2 Le−1
i=0 T4i < 4/3TL2.

3.3 1-Best Carpediem
Esposito and Radicioni (2009) have proposed a
novel 1-best6 sequential decoding algorithm, Car-
pediem, which attempts to open only necessary
nodes in searching the best sequence in a given lat-
tice. Carpediem has the complexity of TL logL and
TL2 for the best and worst cases respectively. We
skip the description of this algorithm due to space
limitations. Carpediem is used as a baseline in our
experiments for decoding speed comparison.

3.4 K-Best Viterbi
In order to produce k-best sequences, it is not
enough to store 1-best label per node, as the k-
best sequences may include suboptimal labels. The
k-best sequential decoding gives up this 1-best
label memorization in the dynamic programming
paradigm. It stores up to k-best labels which are nec-
essary to form k-best sequences. The k-best Viterbi
algorithm thus has the computational complexity of
KTL2 for both best and worst cases.

Once we store the k-best labels per node in a lat-
tice, the k-best Viterbi algorithm calls either the for-
ward or the backward passes just in the same way as
the 1-best Viterbi decoding does. We can compute

6They did not provide k-best solutions.

the k highest score at the end position T − 1 and the
corresponding k-best sequences.

3.5 K-Best Viterbi A*
To our best knowledge the most efficient k-best se-
quence algorithm is the Viterbi A* algorithm as
shown in Algorithm 3. The algorithm consists of one
forward pass and an A* backward pass. The forward
pass computes and stores the Viterbi forward scores,
which are the best scores from the start to the cur-
rent nodes. In addition, each node stores a backlink
which points to its predecessor.

The major part of Algorithm 3 describes the back-
ward A* pass. Before describing the algorithm, we
note that each node in the agenda represents a se-
quence. So the operations on nodes (push or pop)
correspond to the operations on sequences. Initially,
the L nodes at position T − 1 are pushed to an
agenda. Each of the L nodes ni, i = 0, . . . , L − 1,
represents a sequence. That is, node ni represents
the best sequence from the start to itself. The best of
the L sequences is the globally best sequence. How-
ever, the i-th best, i = 2, . . . , k, of the L sequence
may not be the globally i-th best sequence. The pri-
ority of each node is set as the score of the sequence
which is derived by such a node. The algorithm then
goes to a loop of k. In each loop, the best node is
popped off from the agenda and is stored in a set r.
The algorithm adds alternative candidate nodes (or
sequences) to the agenda via a double nested loop.
The idea is that, when an optimal node (or sequence)
is popped off, we have to push to the agenda all
nodes (sequences) which are slightly worse than the
just popped one. The interpretation of slightly worse
is to replace one edge from the popped node (se-
quence). The slightly worse sequences can be found
by the exact heuristic derived from the first Viterbi
forward pass.

Figure 3 shows an example of the push operations
for a lattice of T = 4, Y = 4. Suppose an optimal
node 2:B (in red, standing for node B at position 2,
representing the sequence of 0:A 1:D 2:B 3:C) is
popped off, new nodes of 1:A, 1:B, 1:C and 0:B,
0:C and 0:D are pushed to the agenda according to
the double nested for loop in Algorithm 3. Each
of the pushed nodes represents a sequence, for ex-
ample, node 1:B represents a sequence which con-
sists of three parts: Viterb sequence from start to
1:B (0:C 1:B), 2:B and forward link of 2:B (3:C
in this case). All of these pushed nodes (sequences)
are served as candidates for the next agenda pop op-
eration.

The algorithm terminates the loop once it has op-
timal k nodes. The k-best sequences can be de-
rived by the k optimal nodes. This algorithm has
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Figure 3: Alternative nodes push after popping an opti-
mal node.

computation complexity of TL2 + TL for both best
and worst cases, with the first term accounting for
Viterbi forward pass and the second term account-
ing for A* backward process. The bottleneck is thus
at the Viterbi forward pass.

Algorithm 3 K-Best Viterbi A* algorithm
1: forward()
2: push L best nodes to agenda q
3: c = 0
4: r = {}
5: while c < K do
6: Node n = q.pop()
7: r = r ∪ n
8: for i = n.t− 1; i ≥ 0; i−− do
9: for j = 0; j < L; j + + do

10: if j! = n.backlink.y then
11: create new node s at position i and label j
12: s.forwardlink = n
13: q.push(s)
14: end if
15: end for
16: n = n.backlink
17: end for
18: c+ +
19: end while
20: return K best sequences derived by r

4 Proposed Algorithms

In this section, we propose A* based sequen-
tial decoding algorithms that can efficiently handle
datasets with a large number of labels. In particular,
we first propose the A* and the iterative A* decod-
ing algorithm for 1-best sequential decoding. We
then extend the 1-best A* algorithm to a k-best A*
decoding algorithm. We finally apply the iterative
process to the Viterbi A* algorithm, resulting in the
iterative Viterbi A* decoding algorithm.

4.1 1-Best A*
A*(Hart et al., 1968; Russell and Norvig, 1995), as
a classic search algorithm, has been successfully ap-
plied in syntactic parsing (Klein and Manning, 2003;
Pauls and Klein, 2009). The general idea of A* is to
consider labels yt which are likely to result in the
best sequence using a score f as follows.

f(y) = g(y) + h(y), (8)

where g(y) is the score from start to the current node
and h(y) is a heuristic which estimates the score

from the current node to the target. A* uses an
agenda (based on the f score) to decide which nodes
are to be processed next. If the heuristic satisfies the
condition h(yt−1) ≥ e(yt−1, yt) + h(yt), then h is
called monotone or admissible. In such a case, A* is
guaranteed to find the best sequence. We start with
the naive (but admissible) heuristic as follows

h(yt) =
T−1∑
i=t+1

(maxn(yi) + max e(yi−1, yi)). (9)

That is, the heuristic of node yt to the end is the sum
of max edge scores between any two positions and
max node scores per position. Similar to (Pauls and
Klein, 2009) we explore the heuristic in different
coarse levels. We apply the Viterbi backward pass
to different degenerate lattices and use the Viterbi
backward scores as different heuristics. Different
degenerate lattices are generated from different it-
erations of Algorithm 1: The m-th iteration corre-
sponds to a lattice of (2m+1)∗T nodes. A largerm
indicates a more accurate heuristic, which results in
a more efficient A* search (fewer nodes being pro-
cessed). However, this efficiency comes with the
price that such an accurate heuristic requires more
computation time in the Viterbi backward pass. In
our experiments, we try the naive heuristic and the
following values of m: 0, 3, 6 and 9.

In the best case, A* expands one node per posi-
tion, and each expansion results in the push of all
nodes at next position to the agenda. The search is
similar to the beam search with beam size being 1.
The complexity is thus TL. In the worst case, A*
expands every node per position, and each expan-
sion results in the push of all nodes at next position
to the agenda. The complexity thus becomes TL2.

4.2 1-Best Iterative A*
The iterative process as described in the iterative
Viterbi decoding can be used to boost A* algorithm,
resulting in the iterative A* algorithm. For simplic-
ity, we only make use of the naive heuristic in Equa-
tion (9) in the iterative A* algorithm. We initialize
the lattice with one active label and one degenerate
label at each position (see Figure 1 (b)). We then run
A* algorithm on the degenerate lattice and get the
best sequence. If the sequence is active we return
it. Otherwise we expand the lattice in each iteration
until we find the best active sequence. Similar to
iterative Viterbi algorithm, iterative A* has the com-
plexity of T and TL2 for the best and worst cases
respectively.

4.3 K-Best A*
The extension from 1-best A* to k-best A* is again
due to the memorization of k-best labels per node.
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Table 1: Best case and worst case computational complexity of various decoding algorithms.
1-best decoding K-best decoding

best case worst case best case worst case
beam TL TL KTL KTL
Viterbi TL2 TL2 KTL2 KTL2

iterative Viterbi T TL2 N/A N/A
Carpediem TL logL TL2 N/A N/A
A* TL TL2 KTL KTL2

iterative A* T TL2 N/A N/A
Viterbi A* N/A N/A TL2 +KTL TL2 +KTL
iterative Viterbi A* N/A N/A T +KT TL2 +KTL

We use either the naive heuristic (Equation (9)) or
different coarse level heuristics by setting m to be 0,
3, 6 or 9 (see Section 4.1). The first k nodes which
are popped off the agenda can be used to back track
the k-best sequences. The k-best A* algorithm has
the computational complexity of KTL and KTL2

for best and worst cases respectively.

4.4 K-Best Iterative Viterbi A*

We now present the k-best iterative Viterbi A* algo-
rithm (see Algorithm 4) which applies the iterative
process to k-best Viterbi A* algorithm. The major
difference between 1-best iterative Viterbi A* algo-
rithm (Algorithm 1) and this algorithm is that the
latter calls the k-best Vitebi A* (Algorithm 3) after
the best sequence is found. If the k-best sequences
are all active, we terminate the algorithm and return
the k-best sequences. If we cannot find either the
best active sequence or the k-best active sequences,
we expand the lattice to continue the search in the
next iteration.

As in the iterative Viterbi algorithm (see Section
3.2), nodes are pruned at each position in forward
or backward passes. Efficient pruning contributes
significantly to speeding up decoding. Therefore, to
have a tighter (higher) lower bound lb is important.
We initialize the lower bound lb with the k-th best
score from beam search (with beam size being k) at
line 1. Note that the beam search is performed on the
original lattice which consists of L active labels per
position. The beam search time is negligible com-
pared to the total decoding time. At line 16, we up-
date lb as follows. We enumerate the best active se-
quences backtracked by the nodes at position T − 1.
If the current lb is less than the k-th active sequence
score, we update the lbwith the k-th active sequence
score (we do not update lb if there are less than k ac-
tive sequences). At line 19, we use the sequences
returned from Viterbi A* algorithm to update the lb
in the same manner. To enable this update, we re-
quest the Viterbi A* algorithm to return k′, k′ > k,
sequences (line 10). A larger number of k′ results
in a higher chance to find the k-th active sequence,

which in turn offers a tighter (higher) lb, but it comes
with the expense of additional time (the backward
A* process takes O(TL) time to return one more
sequence). In experiments, we found the lb updates
on line 1 and line 16 are essential for fast decoding.
The updating of lb using Viterbi A* sequences (line
19) can boost the decoding speed further. We exper-
imented with different k′ values (k′ = nk, where n
is an integer) and selected k′ = 2k which results in
the largest decoding speed boost.

Algorithm 4 K-Best iterative Viterbi A* algorithm
1: lb = k-th best (original lattice)
2: init lattice
3: for i = 0; ; i+ + do
4: if i%2 == 0 then
5: y = forward()
6: else
7: y = backward()
8: end if
9: if y consists of active labels only then

10: ys= k-best Viterbi A* (Algorithm 3)
11: if ys consists of active sequences only then
12: return ys
13: end if
14: end if
15: if lb < k-th best(lattice) then
16: lb = k-th best(lattice)
17: end if
18: if lb < k-th best(ys) then
19: lb = k-th best(ys)
20: end if
21: expand lattice
22: end for

5 Experiments
We compare aforementioned 1-best and k-best se-
quential decoding algorithms using five datasets in
this section.

5.1 Experimental setting
We apply 1-best and k-best sequential decoding al-
gorithms to five NLP tagging tasks: Penn TreeBank
(PTB) POS tagging, CoNLL2000 joint POS tag-
ging and chunking, CoNLL 2003 joint POS tagging,
chunking and named entity tagging, HPSG supertag-
ging (Matsuzaki et al., 2007) and a search query
named entity recognition (NER) dataset. We used

616



sections 02-21 of PTB for training and section 23
for testing in POS task. As in (Kaji et al., 2010),
we combine the POS tags and chunk tags to form
joint tags for CoNLL 2000 dataset, e.g., NN|B-NP.
Similarly we combine the POS tags, chunk tags, and
named entity tags to form joint tags for CoNLL 2003
dataset, e.g., PRP$|I-NP|O. Note that by such tag
joining, we are able to offer different tag decodings
(for example, chunking and named entity tagging)
simultaneously. This indeed is one of the effective
approaches for joint tag decoding problems. The
search query NER dataset is an in-house annotated
dataset which assigns semantic labels, such as prod-
uct, business tags to web search queries.

Table 2 shows the training and test sets size (sen-
tence #), the average token length of test dataset and
the label size for the five datasets. POS and su-
pertag datasets assign tags to tokens while CoNLL
2000 , CoNLL 2003 and search query datasets as-
sign tags to phrases. We use the standard BIO en-
coding for CoNLL 2000, CoNLL 2003 and search
query datasets.

Table 2: Training and test datasets size, average token
length of test set and label size for five datasets.

training # test # token length label size
POS 39831 2415 23 45
CoNLL2000 8936 2012 23 319
CoNLL2003 14987 3684 12 443
Supertag 37806 2291 22 2602
search query 79569 6867 3 323

Due to the long CRF training time (days to weeks
even for stochastic gradient descent training) for
these large label size datasets, we choose the percep-
tron algorithm for training. The models are averaged
over 10 iterations (Collins, 2002). The training time
takes minutes to hours for all datasets. We note that
the selection of training algorithm does not affect
the decoding process: the decoding is identical for
both CRF and perceptron training algorithms. We
use the common features which are adopted in previ-
ous studies, for example (Sha and Periera, 2003). In
particular, we use the unigrams of the current and its
neighboring words, word bigrams, prefixes and suf-
fixes of the current word, capitalization, all-number,
punctuation, and tag bigrams for POS, CoNLL2000
and CoNLL 2003 datasets. For supertag dataset,
we use the same features for the word inputs, and
the unigrams and bigrams for gold POS inputs. For
search query dataset, we use the same features plus
gazetteer based features.

5.2 Results
We report the token accuracy for all datasets to facil-
itate comparison to previous work. They are 97.00,
94.70, 95.80, 90.60 and 88.60 for POS, CoNLL
2000, CoNLL 2003, supertag, and search query re-

spectively. We note that all decoding algorithms as
listed in Section 3 and Section 4 are exact. That is,
they produce exactly the same accuracy. The accu-
racy we get for the first four tasks is comparable to
the state-of-the-art. We do not have a baseline to
compare with for the last dataset as it is not pub-
licly available7. Higher accuracy may be achieved if
more task specific features are introduced on top of
the standard features. As this paper is more con-
cerned with the decoding speed, the feature engi-
neering is beyond the scope of this paper.

Table 3 shows how many iterations in average
are required for iterative Viterbi and iterative Viterbi
A* algorithms. Although the max iteration size is
bounded to dlog2 Le for each position (for exam-
ple, 9 for CoNLL 2003 dataset), the total iteration
number for the whole lattice may be greater than
dlog2 Le as different positions may not expand at
the same time. Despite the large number of itera-
tions used in iterative based algorithms (especially
iterative Viterbi A* algorithm), the algorithms are
still very efficient (see below).

Table 3: Iteration numbers of iterative Viterbi and itera-
tive Viterbi A* algorithms for five datasets.

POS CoNLL2000 CoNLL2003 Supertag search query
iter Viter 6.32 8.76 9.18 10.63 6.71
iter Viter A* 14.42 16.40 15.41 18.62 9.48

Table 4 and 5 show the decoding speed (sen-
tences per second) of 1-best and 5-best decoding al-
gorithms respectively. The proposed decoding algo-
rithms and the largest decoding speeds across differ-
ent decoding algorithms (other than beam) are high-
lighted in bold. We exclude the time for feature ex-
traction in computing the speed. The beam search
decoding is also shown as a baseline. We note that
beam decoding is the only approximate decoding al-
gorithm in this table. All other decoding algorithms
produce exactly the same accuracy, which is usually
much better than the accuracy of beam decoding.

For 1-best decoding, iterative Viterbi always out-
performs other ones. A* with a proper heuristic de-
noted as A* (best), that is, the best A* using naive
heuristic or the values of m being 0, 3, 6 or 9 (see
Section 4.1), can be the second best choice (ex-
cept for the POS task), although the gap between
iterative Viterbi and A* is significant. For exam-
ple, for CoNLL 2003 dataset, the former can de-
code 2239 sentences per second while the latter only
decodes 225 sentences per second. The iterative
process successfully boosts the decoding speed of
iterative Viterbi compared to Viterbi, but it slows
down the decoding speed of iterative A* compared

7The lower accuracy is due to the dynamic nature of queries:
many of test query tokens are unseen in the training set.
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to A*(best). This is because in the Viterbi case,
the iterative process has a node pruning procedure,
while it does not have such pruning in A*(best)
algorithm. Take CoNLL 2003 data as an exam-
ple, the removal of the pruning slows down the 1-
best iterative Viterbi decoding from 2239 to 604
sentences/second. Carpediem algorithm performs
poorly in four out of five tasks. This can be ex-
plained as follows. The Carpediem implicitly as-
sumes that the node scores are the dominant factors
to determine the best sequence. However, this as-
sumption does not hold as the edge scores play an
important role.

For 5-best decoding, k-best Viterbi decoding is
very slow. A* with a proper heuristic is still slow.
For example, it only reaches 11 sentences per second
for CoNLL 2003 dataset. The classic Viterbi A* can
usually obtain a decent decoding speed, for example,
40 sentences per second for CoNLL 2003 dataset.
The only exception is supertag dataset, on which the
Viterbi A* decodes 0.1 sentence per second while
the A* decodes 3. This indicates the scalability is-
sue of Viterbi A* algorithm for datasets with more
than one thousand labels. The proposed iterative
Viterbi A* is clearly the winner. It speeds up the
Viterbi A* to factors of 4, 7, 360, and 3 for CoNLL
2000, CoNLL 2003, supertag and query search data
respectively. The decoding speed of iterative Viterbi
A* can even be comparable to that of beam search.

Figure 4 shows k-best decoding algorithms de-
coding speed with respect to different k values for
CoNLL 2003 data . The Viterbi A* and iterative
Viterbi A* algorithms are significantly faster than
the Viterbi and A*(best) algorithms. Although the
iterative Viterbi A* significantly outperforms the
Viterbi A* for k < 30, the speed of the former con-
verges to the latter when k becomes 90 or larger.
This is expected as the k-best sequences span over
the whole lattice: the earlier iteration in iterative
Viterbi A* algorithm cannot provide the k-best se-
quences using the degenerate lattice. The over-
head of multiple iterations slows down the decoding
speed compared to the Viterbi A* algorithm.
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Figure 4: Decoding speed of k-best decoding algorithms
for various k for CoNLL 2003 dataset.

6 Related work
The Viterbi algorithm is the only exact algorithm
widely adopted in the NLP applications. Esposito
and Radicioni (2009) proposed an algorithm which
opens necessary nodes in a lattice in searching the
best sequence. The staggered decoding (Kaji et al.,
2010) forms the basis for our work on iterative based
decoding algorithms. Apart from the exact decod-
ing, approximate decoding algorithms such as beam
search are also related to our work. Tsuruoka and
Tsujii (2005) proposed easiest-first deterministic de-
coding. Siddiqi and Moore (2005) presented the pa-
rameter tying approach for fast inference in HMMs.
A similar idea was applied to CRFs as well (Cohn,
2006; Jeong, 2009). We note that the exact algo-
rithm always guarantees the optimality which can-
not be attained in approximate algorithms.

In terms of k-best parsing, Huang and Chiang
(2005) proposed an efficient algorithm which is sim-
ilar to the k-best Viterbi A* algorithm presented in
this paper. Pauls and Klein (2009) proposed an algo-
rithm which replaces the Viterbi forward pass with
an A* search. Their algorithm optimizes the Viterbi
pass, while the proposed iterative Viterbi A* algo-
rithm optimizes both Viterbi and A* passes.

This paper is also related to the coarse to fine
PCFG parsing (Charniak et al., 2006) as the degen-
erate labels can be treated as coarse levels. How-
ever, the difference is that the coarse-to-fine parsing
is an approximate decoding while ours is exact one.
In terms of different coarse levels of heuristic used
in A* decoding, this paper is related to the work of
hierarchical A* framework (Raphael, 2001; Felzen-
szwalb et al., 2007). In terms of iterative process,
this paper is close to (Burkett et al., 2011) as both
exploit the search-and-expand approach.

7 Conclusions
We have presented and evaluated the A* and itera-
tive A* algorithms for 1-best sequential decoding in
this paper. In addition, we proposed A* and iterative
Viterbi A* algorithm for k-best sequential decoding.
K-best Iterative A* algorithm can be several times
or orders of magnitude faster than the state-of-the-
art k-best decoding algorithm. It makes real-time
large-scale tagging applications with thousands of
labels feasible.
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Table 4: Decoding speed (sentences per second) of 1-best decoding algorithms for five datasets.
POS CoNLL2000 CoNLL2003 supertag query search

beam 7252 1381 1650 395 7571
Viterbi 2779 51 41 0.19 443
iterative Viterbi 5833 972 2239 213 6805
Carpediem 2638 14 20 0.15 243
A* (best) 802 131 225 8 880
iterative A* 1112 84 109 3 501

Table 5: Decoding speed (sentences per second) of 5-best decoding algorithms for five datasets.
POS CoNLL2000 CoNLL2003 supertag query search

beam 2760 461 592 75 4354
Viterbi 19 0.41 0.25 0.12 3.83
A* (best) 205 4 11 3 92
Viterbi A* 1266 47 40 0.1 357
iterative Viterbi A* 788 200 295 36 1025
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Abstract
Bootstrapping a classifier from a small set
of seed rules can be viewed as the propaga-
tion of labels between examples via features
shared between them. This paper introduces a
novel variant of the Yarowsky algorithm based
on this view. It is a bootstrapping learning
method which uses a graph propagation algo-
rithm with a well defined objective function.
The experimental results show that our pro-
posed bootstrapping algorithm achieves state
of the art performance or better on several dif-
ferent natural language data sets.

1 Introduction
In this paper, we are concerned with a case of semi-
supervised learning that is close to unsupervised
learning, in that the labelled and unlabelled data
points are from the same domain and only a small
set of seed rules is used to derive the labelled points.
We refer to this setting as bootstrapping. In contrast,
typical semi-supervised learning deals with a large
number of labelled points, and a domain adaptation
task with unlabelled points from the new domain.

The two dominant discriminative learning meth-
ods for bootstrapping are self-training (Scud-
der, 1965) and co-training (Blum and Mitchell,
1998). In this paper we focus on a self-training
style bootstrapping algorithm, the Yarowsky algo-
rithm (Yarowsky, 1995). Variants of this algorithm
have been formalized as optimizing an objective
function in previous work by Abney (2004) and Haf-
fari and Sarkar (2007), but it is not clear that any
perform as well as the Yarowsky algorithm itself.

We take advantage of this formalization and in-
troduce a novel algorithm called Yarowsky-prop
which builds on the algorithms of Yarowsky (1995)
and Subramanya et al. (2010). It is theoretically

∗This research was partially supported by an NSERC,
Canada (RGPIN: 264905) grant. We would like to thank Gho-
lamreza Haffari and the anonymous reviewers for their com-
ments. We particularly thank Michael Collins, Jason Eisner, and
Damianos Karakos for the data we used in our experiments.

x denotes an example
f , g denote features
i, k denote labels
X set of training examples
Fx set of features for example x
Y current labelling of X
Yx current label for example x
⊥ value of Yx for unlabelled examples
L number of labels (not including ⊥)
Λ set of currently labelled examples
V set of currently unlabelled examples
Xf set of examples with feature f
Λf set of currently labelled examples with f
Vf set of currently unlabelled examples with f
Λj set of examples currently labelled with j
Λfj set of examples with f currently labelled with j

Table 1: Notation of Abney (2004).

well-understood as minimizing an objective func-
tion at each iteration, and it obtains state of the art
performance on several different NLP data sets. To
our knowledge, this is the first theoretically mo-
tivated self-training bootstrapping algorithm which
performs as well as the Yarowsky algorithm.

2 Bootstrapping

Abney (2004) defines useful notation for semi-
supervised learning, shown in table 1. Note that Λ,
V , etc. are relative to the current labelling Y . We
additionally define F to be the set of all features,
and use U to denote the uniform distribution. In the
bootstrapping setting the learner is given an initial
partial labelling Y (0) where only a few examples are
labelled (i.e. Y (0)

x = ⊥ for most x).
Abney (2004) defines three probability distribu-

tions in his analysis of bootstrapping: θfj is the pa-
rameter for feature f with label j, taken to be nor-
malized so that θf is a distribution over labels. φx is
the labelling distribution representing the current Y ;
it is a point distribution for labelled examples and
uniform for unlabelled examples. πx is the predic-
tion distribution over labels for example x.

The approach of Haghighi and Klein (2006b) and
Haghighi and Klein (2006a) also uses a small set of
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Algorithm 1: The basic Yarowsky algorithm.

Require: training data X and a seed DL θ(0)

1: apply θ(0) to X produce a labelling Y (0)

2: for iteration t to maximum or convergence do
3: train a new DL θ on Y (t)

4: apply θ to X , to produce Y (t+1)

5: end for

seed rules but uses them to inject features into a joint
model p(x, j) which they train using expectation-
maximization for Markov random fields. We focus
on discriminative training which does not require
complex partition functions for normalization. Blum
and Chawla (2001) introduce an early use of trans-
ductive learning using graph propagation. X. Zhu
and Z. Ghahramani and J. Lafferty (2003)’s method
of graph propagation is predominantly transductive,
and the non-transductive version is closely related to
Abney (2004) c.f. Haffari and Sarkar (2007).1

3 Existing algorithms
3.1 Yarowsky

A decision list (DL) is a (ordered) list of feature-
label pairs (rules) which is produced by assigning
a score to each rule and sorting on this score. It
chooses a label for an example from the first rule
whose feature is a feature of the example. For a
DL the prediction distribution is defined by πx(j) ∝
maxf∈Fx θfj . The basic Yarowsky algorithm is
shown in algorithm 1. Note that at any point some
training examples may be left unlabelled by Y (t).

We use Collins and Singer (1999) for our exact
specification of Yarowsky.2 It uses DL rule scores

θfj ∝
|Λfj |+ ε

|Λf |+ Lε
(1)

where ε is a smoothing constant. When constructing
a DL it keeps only the rules with (pre-normalized)
score over a threshold ζ. In our implementation we
add the seed rules to each subsequent DL.3

1Large-scale information extraction, e.g. (Hearst, 1992),
Snowball (Agichtein and Gravano, 2000), AutoSlog (Riloff and
Shepherd, 1997), and Junto (Talukdar, 2010) among others, also
have similarities to our approach. We focus on the formal anal-
ysis of the Yarowsky algorithm by Abney (2004).

2It is similar to that of Yarowsky (1995) but is better spec-
ified and omits word sense disambiguation optimizations. The
general algorithm in Yarowsky (1995) is self-training with any
kind of underlying supervised classifier, but we follow the con-
vention of using Yarowsky to refer to the DL algorithm.

3This is not clearly specified in Collins and Singer (1999),

3.2 Yarowsky-cautious

Collins and Singer (1999) also introduce a variant
algorithm Yarowsky-cautious. Here the DL training
step keeps only the top n rules (f, j) over the thresh-
old for each label j, ordered by |Λf |. Additionally
the threshold ζ is checked against |Λfj |/|Λf | instead
of the smoothed score. n begins at n0 and is incre-
mented by ∆n at each iteration. We add the seed DL
to the new DL after applying the cautious pruning.
Cautiousness limits not only the size of the DL but
also the number of labelled examples, prioritizing
decisions which are believed to be of high accuracy.

At the final iteration Yarowsky-cautious uses the
current labelling to train a DL without a threshold
or cautiousness, and this DL is used for testing. We
call this the retraining step.4

3.3 DL-CoTrain

Collins and Singer (1999) also introduce the co-
training algorithm DL-CoTrain. This algorithm al-
ternates between two DLs using disjoint views of
the features in the data. At each step it trains a DL
and then produces a new labelling for the other DL.
Each DL uses thresholding and cautiousness as we
describe for Yarowsky-cautious. At the end the DLs
are combined, the result is used to label the data, and
a retraining step is done from this single labelling.

3.4 Y-1/DL-1-VS

One of the variant algorithms of Abney (2004) is
Y-1/DL-1-VS (referred to by Haffari and Sarkar
(2007) as simply DL-1). Besides various changes
in the specifics of how the labelling is produced,
this algorithm has two differences versus Yarowsky.
Firstly, the smoothing constant ε in (1) is replaced
by 1/|Vf |. Secondly, π is redefined as πx(j) =

1
|Fx|

∑
f∈Fx

θfj , which we refer to as the sum def-
inition of π. This definition does not match a literal
DL but is easier to analyze.

We are not concerned here with the details of
Y-1/DL-1-VS, but we note that Haffari and Sarkar

but is used for DL-CoTrain in the same paper.
4The details of Yarowsky-cautious are not clearly specified

in Collins and Singer (1999). Based on similar parts of DL-
CoTrain we assume the that the top n selection is per label
rather in total, that the thresholding value is unsmoothed, and
that there is a retraining step. We also assume their notation
Count′(x) to be equivalent to |Λf |.
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(2007) provide an objective function for this al-
gorithm using a generalized definition of cross-
entropy in terms of Bregman distance, which mo-
tivates our objective in section 4. The Breg-
man distance between two discrete probability dis-
tributions p and q is defined as Bψ(p, q) =∑

i [ψ(pi)− ψ(qi)− ψ′(qi)(pi − qi)]. As a specific
case we have Bt2(p, q) =

∑
i(pi− qi)2 = ||p− q||2.

Then Bregman distance-based entropy is Ht2(p) =
−

∑
i p

2
i , KL-Divergence is Bt2 , and cross-entropy

follows the standard definition in terms of Ht2 and
Bt2 . The objective minimized by Y-1/DL-1-VS is:

∑
x∈X
f∈Fx

Ht2(φx||θf ) =
∑
x∈X
f∈Fx

[
Bt2(φx||θf )−

∑
y

φ2
x

]
.

(2)

3.5 Yarowsky-sum

As a baseline for the sum definition of π, we intro-
duce the Yarowsky-sum algorithm. It is the same
as Yarowsky except that we use the sum definition
when labelling: for example x we choose the label j
with the highest (sum) πx(j), but set Yx = ⊥ if the
sum is zero. Note that this is a linear model similar
to a conditional random field (CRF) (Lafferty et al.,
2001) for unstructured multiclass problems.

3.6 Bipartite graph algorithms

Haffari and Sarkar (2007) suggest a bipartite
graph framework for semi-supervised learning
based on their analysis of Y-1/DL-1-VS and objec-
tive (2). The graph has vertices X ∪ F and edges
{(x, f) : x ∈ X, f ∈ Fx}, as in the graph shown
in figure 1(a). Each vertex represents a distribution
over labels, and in this view Yarowsky can be seen as
alternately updating the example distributions based
on the feature distributions and visa versa.

Based on this they give algorithm 2, which
we call HS-bipartite. It is parametrized by two
functions which are called features-to-example and
examples-to-feature here. Each can be one of
two choices: average(S) is the normalized aver-
age of the distributions of S, while majority(S)
is a uniform distribution if all labels are supported
by equal numbers of distributions of S, and other-
wise a point distribution with mass on the best sup-
ported label. The average-majority form is similar

Algorithm 2: HS-bipartite.

1: apply θ(0) to X produce a labelling Y (0)

2: for iteration t to maximum or convergence do
3: for f ∈ F do
4: let p = examples-to-feature({φx : x ∈ Xf})
5: if p 6= U then let θf = p
6: end for
7: for x ∈ X do
8: let p = features-to-example({θf : f ∈ Fx})
9: if p 6= U then let φx = p

10: end for
11: end for

to Y-1/DL-1-VS, and the majority-majority form
minimizes a different objective similar to (2).

In our implementation we label training data (for
the convergence check) with the φ distributions from
the graph. We label test data by constructing new
φx = examples-to-feature(Fx) for the unseen x.

3.7 Semi-supervised learning algorithm of Sub-
ramanya et al. (2010)

Subramanya et al. (2010) give a semi-supervised al-
gorithm for part of speech tagging. Unlike the algo-
rithms described above, it is for domain adaptation
with large amounts of labelled data rather than boot-
strapping with a small number of seeds.

This algorithm is structurally similar to Yarowsky
in that it begins from an initial partial labelling and
repeatedly trains a classifier on the labelling and
then relabels the data. It uses a CRF (Lafferty et al.,
2001) as the underlying supervised learner. It dif-
fers significantly from Yarowsky in two other ways:
First, instead of only training a CRF it also uses a
step of graph propagation between distributions over
the n-grams in the data. Second, it does the propa-
gation on distributions over n-gram types rather than
over n-gram tokens (instances in the data).

They argue that using propagation over types al-
lows the algorithm to enforce constraints and find
similarities that self-training cannot. We are not con-
cerned here with the details of this algorithm, but
it motivates our work firstly in providing the graph
propagation which we will describe in more detail in
section 4, and secondly in providing an algorithmic
structure that we use for our algorithm in section 5.

3.8 Collins and Singer (1999)’s EM

We implemented the EM algorithm of Collins and
Singer (1999) as a baseline for the other algorithms.
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Method V N (u) qu
φ-θ X ∪ F Nx = Fx, Nf = Xf qx = φx, qf = θf
π-θ X ∪ F Nx = Fx, Nf = Xf qx = πx, qf = θf
θ-only F Nf =

⋃
x∈Xf

Fx \ f qf = θf
θT-only F Nf =

⋃
x∈Xf

Fx \ f qf = θT
f

Table 2: Graph structures for propagation.

They do not specify tuning details, but to get com-
parable accuracy we found it was necessary to do
smoothing and to include weights λ1 and λ2 on the
expected counts of seed-labelled and initially unla-
belled examples respectively (Nigam et al., 2000).

4 Graph propagation
The graph propagation of Subramanya et al. (2010)
is a method for smoothing distributions attached to
vertices of a graph. Here we present it with an alter-
nate notation using Bregman distances as described
in section 3.4.5 The objective is

µ
∑
u∈V

v∈N (i)

wuvBt2(qu, qv) + ν
∑
u∈V

Bt2(qu, U) (3)

where V is a set of vertices, N (v) is the neighbour-
hood of vertex v, and qv is an initial distribution for
each vertex v to be smoothed. They give an iterative
update to minimize (3). Note that (3) is independent
of their specific graph structure, distributions, and
semi-supervised learning algorithm.

We propose four methods for using this propaga-
tion with Yarowsky. These methods all use con-
stant edge weights (wuv = 1). The distributions
and graph structures are shown in table 2. Figure 1
shows example graphs for φ-θ and θ-only. π-θ and
θT-only are similar, and are described below.

The graph structure of φ-θ is the bipartite graph
of Haffari and Sarkar (2007). In fact, φ-θ the propa-
gation objective (3) and Haffari and Sarkar (2007)’s
Y-1/DL-1-VS objective (2) are identical up to con-
stant coefficients and an extra constant term.6 φ-θ

5We omit the option to hold some of the distributions at fixed
values, which would add an extra term to the objective.

6The differences are specifically: First, (3) adds the con-
stant coefficients µ and ν. Second, (3) sums over each edge
twice (once in each direction), while (2) sums over each only
once. Since wuv = wvu and Bt2(qu, qv) = Bt2(qv, qu), this
can be folded into the constant µ. Third, after expanding (2)
there is a term |Fx| inside the sum for Ht2(φx) which is not
present in (3). This does not effect the direction of minimiza-
tion. Fourth, Bt2(qu, U) in (3) expands to Ht2(qu) plus a con-
stant, adding an extra constant term to the total.

θf|F |

θf4

θf3

θf2

θf1 φx1

φx2

φx3

φx4

φx|X|

... ...
(a) φ-θ method

θf1

θf|F |

θf2

θf4

θf3

...

(b) θ-only method

Figure 1: Example graphs for φ-θ and θ-only propagation.

therefore gives us a direct way to optimize (2).
The other three methods do not correspond to the

objective of Haffari and Sarkar (2007). The π-θ
method is like φ-θ except for using π as the distribu-
tion for example vertices.

The bipartite graph of the first two methods dif-
fers from the structure used by Subramanya et al.
(2010) in that it does propagation between two dif-
ferent kinds of distributions instead of only one kind.
We also adopt a more comparable approach with a
graph over only features. Here we define adjacency
by co-occurrence in the same example. The θ-only
method uses this graph and θ as the distribution.

Finally, we noted in section 3.7 that the algo-
rithm of Subramanya et al. (2010) does one addi-
tional step in converting from token level distribu-
tions to type level distributions. The θT-only method
therefore uses the feature-only graph but for the dis-
tribution uses a type level version of θ defined by
θT
fj = 1

|Xf |
∑

x∈Xf
πx(j).

5 Novel Yarowsky-prop algorithm

We call our graph propagation based algorithm
Yarowsky-prop. It is shown with θT-only propaga-
tion in algorithm 3. It is based on the Yarowsky al-
gorithm, with the following changes: an added step
to calculate θT (line 4), an added step to calculate θP

(line 5), the use of θP rather than the DL to update
the labelling (line 6), and the use of the sum defini-
tion of π. Line 7 does DL training as we describe in
sections 3.1 and 3.2. Propagation is done with the
iterative update of Subramanya et al. (2010).

This algorithm is adapted to the other propagation
methods described in section 4 by changing the type
of propagation on line 5. In θ-only, propagation is
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Algorithm 3: Yarowsky-prop.
1: let θfj be the scores of the seed rules // crf train
2: for iteration t to maximum or convergence do
3: let πx(j) = 1

|Fx|
∑
f∈Fx

θfj // post. decode

4: let θT
fj =

P
x∈Xf

πx(j)

|Xf | // token to type
5: propagate θT to get θP // graph propagate
6: label the data with θP // viterbi decode
7: train a new DL θfj // crf train
8: end for

done on θ, using the graph of figure 1(b). In φ-θ and
π-θ propagation is done on the respective bipartite
graph (figure 1(a) or the equivalent with π). Line
4 is skipped for these methods, and φ is as defined
in section 2. For the bipartite graph methods φ-θ
and π-θ only the propagated θ values on the feature
nodes are used for θP (the distributions on the exam-
ple nodes are ignored after the propagation itself).

The algorithm uses θfj values rather than an ex-
plicit DL for labelling. The (pre-normalized) score
for any (f, j) not in the DL is taken to be zero. Be-
sides using the sum definition of π when calculating
θT, we also use a sum in labelling. When labelling
an example x (at line 6 and also on testing data) we
use arg maxj

∑
f∈Fx: θP

f 6=U
θP
fj , but set Yx = ⊥ if

the sum is zero. Ignoring uniform θP
f values is in-

tended to provide an equivalent to the DL behaviour
of using evidence only from rules that are in the list.

We include the cautiousness of Yarowsky-
cautious (section 3.2) in the DL training on line 7. At
the labelling step on line 6 we label only examples
which the pre-propagated θ would also assign a label
(using the same rules described above for θP). This
choice is intended to provide an equivalent to the
Yarowsky-cautious behaviour of limiting the num-
ber of labelled examples; most θP

f are non-uniform,
so without it most examples become labelled early.

We observe further similarity between the
Yarowsky algorithm and the general approach of
Subramanya et al. (2010) by comparing algorithm
3 here with their algorithm 1. The comments in al-
gorithm 3 give the corresponding parts of their algo-
rithm. Note that each line has a similar purpose.

6 Evaluation

6.1 Tasks and data

For evaluation we use the tasks of Collins and Singer
(1999) and Eisner and Karakos (2005), with data

Rank Score Feature Label
1 0.999900 New-York loc.
2 0.999900 California loc.
3 0.999900 U.S. loc.
4 0.999900 Microsoft org.
5 0.999900 I.B.M. org.
6 0.999900 Incorporated org.
7 0.999900 Mr. per.
8 0.999976 U.S. loc.
9 0.999957 New-York-Stock-Exchange loc.
10 0.999952 California loc.
11 0.999947 New-York loc.
12 0.999946 court-in loc.
13 0.975154 Company-of loc.

...
Figure 2: A DL from iteration 5 of Yarowsky on the named en-
tity task. Scores are pre-normalized values from the expression
on the left side of (1), not θfj values. Context features are indi-
cated by italics; all others are spelling features. Specific feature
types are omitted. Seed rules are indicated by bold ranks.

kindly provided by the respective authors.
The task of Collins and Singer (1999) is named

entity classification on data from New York Times
text.7 The data set was pre-processed by a statisti-
cal parser (Collins, 1997) and all noun phrases that
are potential named entities were extracted from the
parse tree. Each noun phrase is to be labelled as
a person, organization, or location. The parse tree
provides the surrounding context as context features
such as the words in prepositional phrase and rela-
tive clause modifiers, etc., and the actual words in
the noun phrase provide the spelling features. The
test data additionally contains some noise examples
which are not in the three named entity categories.
We use the seed rules the authors provide, which are
the first seven items in figure 2. For DL-CoTrain,
we use their two views: one view is the spelling fea-
tures, and the other is the context features. Figure 2
shows a DL from Yarowsky training on this task.

The tasks of Eisner and Karakos (2005) are word
sense disambiguation on several English words
which have two senses corresponding to two dif-
ferent words in French. Data was extracted from
the Canadian Hansards, using the English side to
produce training and test data and the French side
to produce the gold labelling. Features are the
original and lemmatized words immediately adja-

7We removed weekday and month examples from the test set
as they describe. They note 88962 examples in their training set,
but the file has 89305. We did not find any filtering criteria that
produced the expected size, and therefore used all examples.
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cent to the word to be disambiguated, and origi-
nal and lemmatized context words in the same sen-
tence. Their seeds are pairs of adjacent word fea-
tures, with one feature for each label (sense). We
use the ‘drug’, ‘land’, and ‘sentence’ tasks, and
the seed rules from their best seed selection: ‘alco-
hol’/‘medical’, ‘acres’/‘court’, and ‘reads’/‘served’
respectively (they do not provide seeds for their
other three tasks). For DL-CoTrain we use adjacent
words for one view and context words for the other.

6.2 Experimental set up

Where applicable we use smoothing ε = 0.1, a
threshold ζ = 0.95, and cautiousness parameters
n0 = ∆n = 5 as in Collins and Singer (1999)
and propagation parameters µ = 0.6, ν = 0.01 as
in Subramanya et al. (2010). Initial experiments
with different propagation parameters suggested that
as long as ν was set at this value changing µ had
relatively little effect on the accuracy. We did not
find any propagation parameter settings that outper-
formed this choice. For the Yarowsky-prop algo-
rithms we perform a single iteration of the propa-
gation update for each iteration of the algorithm.

For EM we use weights λ1 = 0.98, and λ2 = 0.02
(see section 3.8), which were found in initial experi-
ments to be the best values, and results are averaged
over 10 random initializations.

The named entity test set contains some examples
that are neither person, organization, nor location.
Collins and Singer (1999) define noise accuracy as
accuracy that includes such instances, and clean ac-
curacy as accuracy calculated across only the exam-
ples which are one of the known labels. We report
only clean accuracy in this paper; noise accuracy
tracks clean accuracy but is a little lower. There is
no difference on the word sense data sets. We also
report (clean) non-seeded accuracy, which we define
to be clean accuracy over only examples which are
not assigned a label by the seed rules. This is in-
tended to evaluate what the algorithm has learned,
rather than what it can achieve by using the input
information directly (Daume, 2011).

We test Yarowsky, Yarowsky-cautious,
Yarowsky-sum, DL-CoTrain, HS-bipartite in
all four forms, and Yarowsky-prop cautious and
non-cautious and in all four forms. For each algo-
rithm except EM we perform a final retraining step

Gold Spelling features Context features
loc. Waukegan maker, LEFT
loc. Mexico, president, of president-of, RIGHT
loc. La-Jolla, La Jolla company, LEFT

Figure 3: Named entity test set examples where Yarowsky-prop
θ-only is correct and no other tested algorithms are correct. The
specific feature types are omitted.

as described for Yarowsky-cautious (section 3.2).
Our programs and experiment scripts have been
made available.8

6.3 Accuracy

Table 3 shows the final test set accuracies for the
all the algorithms. The seed DL accuracy is also
included for reference.

The best performing form of our novel algo-
rithm is Yarowsky-prop-cautious θ-only. It numer-
ically outperforms DL-CoTrain on the named entity
task, is not (statistically) significantly worse on the
drug and land tasks, and is significantly better on
the sentence task. It also numerically outperforms
Yarowsky-cautious on the named entity task and is
significantly better on the drug task. Is significantly
worse on the land task, where most algorithms con-
verge at labelling all examples with the first sense. It
is significantly worse on the sentence task, although
it is the second best performing algorithm and sev-
eral percent above DL-CoTrain on that task.

Figure 3 shows (all) three examples from the
named entity test set where Yarowsky-prop-cautious
θ-only is correct but none of the other Yarowsky
variants are. Note that it succeeds despite mis-
leading features; “maker” and “company” might be
taken to indicate a company and “president-of” an
organization, but all three examples are locations.

Yarowsky-prop-cautious φ-θ and π-θ also per-
form respectably, although not as well. Yarowsky-
prop-cautious θT-only and the non-cautious versions
are significantly worse. Although θT-only was in-
tended to incorporate Subramanya et al. (2010)’s
idea of type level distributions, it in fact performs
worse than θ-only. We believe that Collins and
Singer (1999)’s definition (1) of θ incorporates suf-
ficient type level information that the creation of a
separate distribution is unnecessary in this case.

Figure 4 shows the test set non-seeded accuracies
as a function of the iteration for many of the algo-

8The software is included with the paper submission and
will be maintained at https://github.com/sfu-natlang/yarowsky.
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Algorithm
Task

named entity drug land sentence

EM
81.05 78.64 55.96 54.85 32.86 31.07 67.88 65.42
±0.31 ±0.34 ±0.41 ±0.43 ±0.00 ±0.00 ±3.35 ±3.57

Seed DL 11.29 0.00 5.18 0.00 2.89 0.00 7.18 0.00
DL-CoTrain (cautious) 91.56 90.49 59.59 58.17 78.36 77.72 68.16 65.69
Yarowsky 81.19 78.79 55.70 54.02 79.03 78.41 62.91 60.04
Yarowsky-cautious 91.11 89.97 54.40 52.63 79.10 78.48 78.64 76.99
Yarowsky-cautious sum 91.56 90.49 54.40 52.63 78.36 77.72 78.64 76.99
HS-bipartite avg-avg 45.84 45.89 52.33 50.42 78.36 77.72 54.56 51.05
HS-bipartite avg-maj 81.98 79.69 52.07 50.14 78.36 77.72 55.15 51.67
HS-bipartite maj-avg 73.55 70.18 52.07 50.14 78.36 77.72 55.15 51.67
HS-bipartite maj-maj 73.66 70.31 52.07 50.14 78.36 77.72 55.15 51.67
Yarowsky-prop φ-θ 80.39 77.89 53.63 51.80 78.36 77.72 55.34 51.88
Yarowsky-prop π-θ 78.34 75.58 54.15 52.35 78.36 77.72 54.56 51.05
Yarowsky-prop θ-only 78.56 75.84 54.66 52.91 78.36 77.72 54.56 51.05
Yarowsky-prop θT-only 77.88 75.06 52.07 50.14 78.36 77.72 54.56 51.05
Yarowsky-prop-cautious φ-θ 90.19 88.95 56.99 55.40 78.36 77.72 74.17 72.18
Yarowsky-prop-cautious π-θ 89.40 88.05 58.55 57.06 78.36 77.72 70.10 67.78
Yarowsky-prop-cautious θ-only 92.47 91.52 58.55 57.06 78.36 77.72 75.15 73.22
Yarowsky-prop-cautious θT-only 78.45 75.71 58.29 56.79 78.36 77.72 54.56 51.05
Num. train/test examples 89305 / 962 134 / 386 1604 / 1488 303 / 515

Table 3: Test set percent accuracy and non-seeded test set percent accuracy (respectively) for the algorithms on all tasks. Bold
items are a maximum in their column. Italic items have a statistically significant difference versus DL-CoTrain (p < 0.05 with a
McNemar test). For EM, ± indicates one standard deviation but statistical significance was not measured.

rithms on the named entity task. The Yarowsky-prop
non-cautious algorithms quickly converge to the fi-
nal accuracy and are not shown. While the other
algorithms (figure 4(a)) make a large accuracy im-
provement in the final retraining step, the Yarowsky-
prop (figure 4(b)) algorithms reach comparable ac-
curacies earlier and gain much less from retraining.

We did not implement Collins and Singer (1999)’s
CoBoost; however, in their results it performs com-
parably to DL-CoTrain and Yarowsky-cautious. As
with DL-CoTrain, CoBoost requires two views.

6.4 Cautiousness

Cautiousness appears to be important in the perfor-
mance of the algorithms we tested. In table 3, only
the cautious algorithms are able to reach the 90%
accuracy range.

To evaluate the effects of cautiousness we ex-
amine the Yarowsky-prop θ-only algorithm on the
named entity task in more detail. This algorithm has
two classifiers which are trained in conjunction: the
DL and the propagated θP. Figure 5 shows the train-
ing set coverage (of the labelling on line 6 of algo-
rithm 3) and the test set accuracy of both classifiers,
for the cautious and non-cautious versions.

The non-cautious version immediately learns a
DL over all feature-label pairs, and therefore has full

coverage after the first iteration. The DL and θP con-
verge to similar accuracies within a few more itera-
tions, and the retraining step increases accuracy by
less than one percent. On the other hand, the cau-
tious version gradually increases the coverage over
the iterations. The DL accuracy follows the cover-
age closely (similar to the behaviour of Yarowsky-
cautious, not shown here), while the propagated
classifier accuracy jumps quickly to near 90% and
then increases only gradually.

Although the DL prior to retraining achieves a
roughly similar accuracy in both versions, only the
cautious version is able to reach the 90% accuracy
range in the propagated classifier and retraining.
Presumably the non-cautious version makes an early
mistake, reaching a local minimum which it cannot
escape. The cautious version avoids this by making
only safe rule selection and labelling choices.

Figure 5(b) also helps to clarify the difference in
retraining that we noted in section 6.3. Like the
non-propagated DL algorithms, the DL component
of Yarowsky-prop has much lower accuracy than the
propagated classifier prior to the retraining step. But
after retraining, the DL and θP reach very similar ac-
curacies.
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Figure 4: Non-seeded test accuracy versus iteration for various
algorithms on named entity. The results for the Yarowsky-prop
algorithms are for the propagated classifier θP , except for the
final DL retraining iteration.

6.5 Objective function

The propagation method φ-θ was motivated by opti-
mizing the equivalent objectives (2) and (3) at each
iteration. Figure 6 shows the graph propagation ob-
jective (3) along with accuracy for Yarowsky-prop
φ-θ without cautiousness. The objective value de-
creases as expected, and converges along with accu-
racy. Conversely, the cautious version (not shown
here) does not clearly minimize the objective, since
cautiousness limits the effect of the propagation.

7 Conclusions
Our novel algorithm achieves accuracy compara-
ble to Yarowsky-cautious, but is better theoretically
motivated by combining ideas from Haffari and
Sarkar (2007) and Subramanya et al. (2010). It also
achieves accuracy comparable to DL-CoTrain, but
does not require the features to be split into two in-
dependent views.

As future work, we would like to apply our al-
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Figure 5: Internal train set coverage and non-seeded test accu-
racy (same scale) for Yarowsky-prop θ-only on named entity.
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Figure 6: Non-seeded test accuracy (left axis), coverage (left
axis, same scale), and objective value (right axis) for Yarowsky-
prop φ-θ. Iterations are shown on a log scale. We omit the first
iteration (where the DL contains only the seed rules) and start
the plot at iteration 2 where there is a complete DL.

gorithm to a structured task such as part of speech
tagging. We also believe that our method for adapt-
ing Collins and Singer (1999)’s cautiousness to
Yarowsky-prop can be applied to similar algorithms
with other underlying classifiers, even to structured
output models such as conditional random fields.
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Abstract

We present a novel algorithm for multilin-
gual dependency parsing that uses annotations
from a diverse set of source languages to parse
a new unannotated language. Our motiva-
tion is to broaden the advantages of multilin-
gual learning to languages that exhibit signif-
icant differences from existing resource-rich
languages. The algorithm learns which as-
pects of the source languages are relevant for
the target language and ties model parame-
ters accordingly. The model factorizes the
process of generating a dependency tree into
two steps: selection of syntactic dependents
and their ordering. Being largely language-
universal, the selection component is learned
in a supervised fashion from all the training
languages. In contrast, the ordering decisions
are only influenced by languages with simi-
lar properties. We systematically model this
cross-lingual sharing using typological fea-
tures. In our experiments, the model con-
sistently outperforms a state-of-the-art multi-
lingual parser. The largest improvement is
achieved on the non Indo-European languages
yielding a gain of 14.4%.1

1 Introduction

Current top performing parsing algorithms rely on
the availability of annotated data for learning the
syntactic structure of a language. Standard ap-
proaches for extending these techniques to resource-
lean languages either use parallel corpora or rely on

1The source code for the work presented in this paper is
available at http://groups.csail.mit.edu/rbg/code/unidep/

annotated trees from other source languages. These
techniques have been shown to work well for lan-
guage families with many annotated resources (such
as Indo-European languages). Unfortunately, for
many languages there are no available parallel cor-
pora or annotated resources in related languages.
For such languages the only remaining option is to
resort to unsupervised approaches, which are known
to produce highly inaccurate results.

In this paper, we present a new multilingual al-
gorithm for dependency parsing. In contrast to pre-
vious approaches, this algorithm can learn depen-
dency structures using annotations from a diverse
set of source languages, even if this set is not re-
lated to the target language. In our selective shar-
ing approach, the algorithm learns which aspects of
the source languages are relevant for the target lan-
guage and ties model parameters accordingly. This
approach is rooted in linguistic theory that charac-
terizes the connection between languages at various
levels of sharing. Some syntactic properties are uni-
versal across languages. For instance, nouns take ad-
jectives and determiners as dependents, but not ad-
verbs. However, the order of these dependents with
respect to the parent is influenced by the typological
features of each language.

To implement this intuition, we factorize genera-
tion of a dependency tree into two processes: selec-
tion of syntactic dependents and their ordering. The
first component models the distribution of depen-
dents for each part-of-speech tag, abstracting over
their order. Being largely language-universal, this
distribution can be learned in a supervised fashion
from all the training languages. On the other hand,
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ordering of dependents varies greatly across lan-
guages and therefore should only be influenced by
languages with similar properties. Furthermore, this
similarity has to be expressed at the level of depen-
dency types – i.e., two languages may share noun-
adposition ordering, but differ in noun-determiner
ordering. To systematically model this cross-lingual
sharing, we rely on typological features that reflect
ordering preferences of a given language. In addi-
tion to the known typological features, our parsing
model embeds latent features that can capture cross-
lingual structural similarities.

While the approach described so far supports a
seamless transfer of shared information, it does not
account for syntactic properties of the target lan-
guage unseen in the training languages. For in-
stance, in the CoNLL data, Arabic is the only lan-
guage with the VSO ordering. To handle such cases,
our approach augments cross-lingual sharing with
unsupervised learning on the target languages.

We evaluated our selective sharing model on 17
languages from 10 language families. On this di-
verse set, our model consistently outperforms state-
of-the-art multilingual dependency parsers. Per-
formance gain, averaged over all the languages, is
5.9% when compared to the highest baseline. Our
model achieves the most significant gains on non-
Indo-European languages, where we see a 14.4%
improvement. We also demonstrate that in the ab-
sence of observed typological information, a set of
automatically induced latent features can effectively
work as a proxy for typology.

2 Related Work

Traditionally, parallel corpora have been a main-
stay of multilingual parsing (Wu, 1997; Kuhn, 2004;
Smith and Smith, 2004; Hwa et al., 2005; Xi and
Hwa, 2005; Burkett and Klein, 2008; Snyder et al.,
2009). However, recent work in multilingual pars-
ing has demonstrated the feasibility of transfer in the
absence of parallel data. As a main source of guid-
ance, these methods rely on the commonalities in de-
pendency structure across languages. For instance,
Naseem et al. (2010) explicitly encode these similar-
ities in the form of universal rules which guide gram-
mar induction in the target language. An alterna-
tive approach is to directly employ a non-lexicalized

parser trained on one language to process a target
language (Zeman and Resnik, 2008; McDonald et
al., 2011; Søgaard, 2011). Since many unlexicalized
dependencies are preserved across languages, these
approaches are shown to be effective for related
languages. For instance, when applied to the lan-
guage pairs within the Indo-European family, such
parsers outperform unsupervised monolingual tech-
niques by a significant margin.

The challenge, however, is to enable dependency
transfer for target languages that exhibit structural
differences from source languages. In such cases,
the extent of multilingual transfer is determined by
the relation between source and target languages.
Berg-Kirkpatrick and Klein (2010) define such a re-
lation in terms of phylogenetic trees, and use this
distance to selectively tie the parameters of mono-
lingual syntactic models. Cohen et al. (2011) do not
use a predefined linguistic hierarchy of language re-
lations, but instead learn the contribution of source
languages to the training mixture based on the like-
lihood of the target language. Søgaard (2011)
proposes a different measure of language related-
ness based on perplexity between POS sequences
of source and target languages. Using this measure,
he selects a subset of training source sentences that
are closer to the target language. While all of the
above techniques demonstrate gains from modeling
language relatedness, they still underperform when
the source and target languages are unrelated.

Our model differs from the above approaches in
its emphasis on the selective information sharing
driven by language relatedness. This is further com-
bined with monolingual unsupervised learning. As
our evaluation demonstrates, this layered approach
broadens the advantages of multilingual learning to
languages that exhibit significant differences from
the languages in the training mix.

3 Linguistic Motivation

Language-Independent Dependency Properties
Despite significant syntactic differences, human lan-
guages exhibit striking similarity in dependency pat-
terns. For a given part-of-speech tag, the set of tags
that can occur as its dependents is largely consistent
across languages. For instance, adverbs and nouns
are likely to be dependents of verbs, while adjectives
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are not. Thus, these patterns can be freely trans-
ferred across languages.
Shared Dependency Properties Unlike dependent
selection, the ordering of dependents in a sentence
differs greatly across languages. In fact, cross-
lingual syntactic variations are primarily expressed
in different ordering of dependents (Harris, 1968;
Greenberg, 1963). Fortunately, the dimensions of
these variations have been extensively studied in lin-
guistics and are documented in the form of typo-
logical features (Comrie, 1989; Haspelmath et al.,
2005). For instance, most languages are either dom-
inantly prepositional like English or post-positional
like Urdu. Moreover, a language may be close to dif-
ferent languages for different dependency types. For
instance, Portuguese is a prepositional language like
English, but the order of its noun-adjective depen-
dency is different from English and matches that of
Arabic. Therefore, we seek a model that can express
parameter sharing at the level of dependency types
and can benefit from known language relations.
Language-specific Dependency Variations Not
every aspect of syntactic structure is shared across
languages. This is particularly true given a limited
number of supervised source languages; it is quite
likely that a target language will have previously un-
seen syntactic phenomena. In such a scenario, the
raw text in the target language might be the only
source of information about its unique aspects.

4 Model

We propose a probabilistic model for generating
dependency trees that facilitates parameter sharing
across languages. We assume a setup where de-
pendency tree annotations are available for a set of
source languages and we want to use these annota-
tions to infer a parser for a target language. Syn-
tactic trees for the target language are not available
during training. We also assume that both source
and target languages are annotated with a coarse
parts-of-speech tagset which is shared across lan-
guages. Such tagsets are commonly used in multilin-
gual parsing (Zeman and Resnik, 2008; McDonald
et al., 2011; Søgaard, 2011; Naseem et al., 2010).

The key feature of our model is a two-tier ap-
proach that separates the selection of dependents
from their ordering:

1. Selection Component: Determines the depen-
dent tags given the parent tag.

2. Ordering Component: Determines the position
of each dependent tag with respect to its parent
(right or left) and the order within the right and
left dependents.

This factorization constitutes a departure from
traditional parsing models where these decisions are
tightly coupled. By separating the two, the model
is able to support different degrees of cross-lingual
sharing on each level.

For the selection component, a reasonable ap-
proximation is to assume that it is the same for all
languages. This is the approach we take here.

As mentioned in Section 3, the ordering of depen-
dents is largely determined by the typological fea-
tures of the language. We assume that we have a
set of such features for every language l, and denote
this feature vector by vl. We also experiment with a
variant of our model where typological features are
not observed. Instead, the model captures structural
variations across languages by means of a small set
of binary latent features. The values of these fea-
tures are language dependent. We denote the set of
latent features for language l by bl.

Finally, based on the well known fact that long
distance dependencies are less likely (Eisner and
Smith, 2010), we bias our model towards short de-
pendencies. This is done by imposing a corpus-level
soft constraint on dependency lengths using the pos-
terior regularization framework (Graça et al., 2007).

4.1 Generative Process

Our model generates dependency trees one fragment
at a time. A fragment is defined as a subtree com-
prising the immediate dependents of any node in the
tree. The process recursively generates fragments
in a head outwards manner, where the distribution
over fragments depends on the head tag. If the gen-
erated fragment is not empty then the process con-
tinues for each child tag in the fragment, drawing
new fragments from the distribution associated with
the tag. The process stops when there are no more
non-empty fragments.

A fragment with head node h is generated in lan-
guage l via the following stages:
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(a) (b) (c)

Figure 1: The steps of the generative process for a fragment with head h. In step (a), the unordered set of dependents
is chosen. In step (b) they are partitioned into left and right unordered sets. Finally, each set is ordered in step (c).

• Generate the set of dependents of h via a distri-
bution Psel(S|h). Here S is an unordered set of
POS tags. Note that this part is universal (i.e.,
it does not depend on the language l).

• For each element in S decide whether it should
go to the right or left of h as follows: for every
a ∈ S, draw its direction from the distribution
Pord(d|a, h, l), where d ∈ {R,L}. This results
in two unordered sets SR, SL, the right and left
dependents of h. This part does depend on the
language l, since the relative ordering of depen-
dents is not likely to be universal.

• Order the sets SR, SL. For simplicity, we as-
sume that the order is drawn uniformly from
all the possible unique permutations over SR
and SL. We denote the number of such unique
permutations of SR by n(SR).2 Thus the prob-
ability of each permutation of SR is 1

n(SR)
3.

Figure 1 illustrates the generative process. The first
step constitutes the selection component and the last
two steps constitute the ordering component. Given
this generation scheme, the probability P (D) of
generating a given fragment D with head h will be:

Psel({D}|h)
∏
a∈D

Pord(dD(a)|a, h, l) 1

n(DR)n(DL)

(1)
Where we use the following notations:

• DR, DL denote the parts of the fragment that
are to the left and right of h.

2This number depends on the count of each distinct tag in
SR. For example if SR = {N, N, N} then n(SR) = 1. If
SR = {N, D, V } then n(SR) = 3!.

3We acknowledge that assuming a uniform distribution over
the permutations of the right and left dependents is linguistically
counterintuitive. However, it simplifies the model by greatly
reducing the number of parameters to learn.

• {D} is the unordered set of tags in D.

• dD(a) is the position (either R or L) of the de-
pendent a w.r.t. the head of D.

In what follows we discuss the parameterizations
of the different distributions.

4.1.1 Selection Component
The selection component draws an unordered set

of tags S given the head tag h. We assume that the
process is carried out in two steps. First the number
of dependents n is drawn from a distribution:

Psize(n|h) = θsize(n|h) (2)

where θsize(n|h) is a parameter for each value of
n and h. We restrict the maximum value of n to
four, since this is a reasonable bound on the total
number of dependents for a single parent node in
a tree. These parameters are non-negative and sat-
isfy

∑
n θsize(n|h) = 1. In other words, the size

is drawn from a categorical distribution that is fully
parameterized.

Next, given the size n, a set S with |S| = n is
drawn according to the following log-linear model:

Pset(S|h, n) =
1

Zset(h, n)
e
∑

Si∈S θsel(Si|h)

Zset(h, n) =
∑

S:|S|=n

e
∑

Si∈S θsel(Si|h)

In the above, Si is the ith POS tag in the unordered
set S, and θsel(Si|h) are parameters. Thus, large val-
ues of θsel(Si|h) indicate that POS Si is more likely
to appear in the subset with parent POS h.

Combining the above two steps we have the fol-
lowing distribution for selecting a set S of size n:

Psel(S|h) = Psize(n|h)Pset(S|h, n) . (3)
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ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-Adjective
88A Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative
89A Order of Numeral and Noun Numeral-Noun, Noun-Numeral

Table 1: The set of typological features that we use in our model. For each feature, the first column gives the ID of
the feature as used in WALS, the second column describes the feature and the last column enumerates the allowable
values for the feature. Besides these values, each feature can also have a value of ‘No dominant order’.

4.1.2 Ordering Component
The ordering component consists of distributions

Pord(d|a, h, l) that determine whether tag a will be
mapped to the left or right of the head tag h. We
model it using the following log-linear model:

Pord(d|a, h, l) =
1

Zord(a, h, l)
eword·g(d,a,h,vl)

Zord(a, h, l) =
∑

d∈{R,L}

eword·g(d,a,h,vl)

Note that in the above equations the ordering
component depends on the known typological fea-
tures vl. In the setup when typological features are
not known, vl is replaced with the latent ordering
feature set bl.

The feature vector g contains indicator features
for combinations of a, h, d and individual features
vli (i.e., the ith typological features for language l).

4.2 Typological Features
The typological features we use are a subset of
order-related typological features from “The World
Atlas of Language Structure” (Haspelmath et al.,
2005). We include only those features whose val-
ues are available for all the languages in our dataset.
Table 1 summarizes the set of features that we use.
Note that we do not explicitly specify the correspon-
dence between these features and the model param-
eters. Instead, we leave it for the model to learn this
correspondence automatically.

4.3 Dependency Length Constraint
To incorporate the intuition that long distance de-
pendencies are less likely, we impose a posterior
constraint on dependency length. In particular, we
use the Posterior Regularization (PR) framework of
Graça et al. (2007). The PR framework incorporates

constraints by adding a penalty term to the standard
likelihood objective. This term penalizes the dis-
tance of the model posterior from a set Q, where
Q contains all the posterior distributions that satisfy
the constraints. In our case the constraint is that the
expected dependency length is less than or equal to
a pre-specified threshold value b. If we denote the
latent dependency trees by z and the observed sen-
tences by x then

Q = {q(z|x) : Eq[f(x, z)] ≤ b} (4)

where f(x, z) computes the sum of the lengths of all
dependencies in z with respect to the linear order of
x. We measure the length of a dependency relation
by counting the number of tokens between the head
and its modifier. The PR objective penalizes the KL-
divergence of the model posterior from the set Q:

Lθ(x)−KL (Q ‖ pθ(z|x))

where θ denotes the model parameters and the first
term is the log-likelihood of the data. This objective
can be optimized using a modified version of the EM
algorithm (Graça et al., 2007).

5 Parameter Learning

Our model is parameterized by the parameters θsel,
θsize and word. We learn these by maximizing the
likelihood of the training data. As is standard, we
add `2 regularization on the parameters and tune it
on source languages. The likelihood is marginalized
over all latent variables. These are:
• For sentences in the target language: all pos-

sible derivations that result in the observed
POS tag sequences. The derivations include
the choice of unordered sets size n, the un-
ordered sets themselves S, their left/right al-
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locations and the orderings within the left and
right branches.

• For all languages: all possible values of the la-
tent features bl.4

Since we are learning with latent variables, we use
the EM algorithm to monotonically improve the
likelihood. At each E step, the posterior over latent
variables is calculated using the current model. At
the M step this posterior is used to maximize the
likelihood over the fully observed data. To com-
pensate for the differences in the amount of training
data, the counts from each language are normalized
before computing the likelihood.

The M step involves finding maximum likelihood
parameters for log-linear models in Equations 3 and
4. This is done via standard gradient based search;
in particular, we use the method of BFGS.

We now briefly discuss how to calculate the pos-
terior probabilities. For estimating the word param-
eters we require marginals of the type P (bli|Dl;wt)
where Dl are the sentences in language l, bli is the
ith latent feature for the language l and wt are the
parameter values at iteration t. Consider doing this
for a source language l. Since the parses are known,
we only need to marginalize over the other latent
features. This can be done in a straightforward man-
ner by using our probabilistic model. The complex-
ity is exponential in the number of latent features,
since we need to marginalize over all features other
than bli. This is feasible in our case, since we use a
relatively small number of such features.

When performing unsupervised learning for the
target language, we need to marginalize over possi-
ble derivations. Specifically, for the M step, we need
probabilities of the form P (a modifies h|Dl;wt).
These can be calculated using a variant of the inside
outside algorithm. The exact version of this algo-
rithm would be exponential in the number of depen-
dents due to the 1

n(Sr) term in the permutation factor.
Although it is possible to run this exact algorithm in
our case, where the number of dependents is limited
to 4, we use an approximation that works well in
practice: instead of 1

n(Sr) we use 1
|Sr|! . In this case

the runtime is no longer exponential in the number
of children, so inference is much faster.

4This corresponds to the case when typological features are
not known.

Finally, given the trained parameters we generate
parses in the target language by calculating the max-
imum a posteriori derivation. This is done using a
variant of the CKY algorithm.

6 Experimental Setup

Datasets and Evaluation We test the effectiveness
of our approach on 17 languages: Arabic, Basque,
Bulgarian, Catalan, Chinese, Czech, Dutch, English,
German, Greek, Hungarian, Italian, Japanese, Por-
tuguese, Spanish, Swedish and Turkish. We used
datasets distributed for the 2006 and 2007 CoNLL
Shared Tasks (Buchholz and Marsi, 2006; Nivre
et al., 2007). Each dataset provides manually an-
notated dependency trees and POS tags. To en-
able crosslingual sharing, we map the gold part-
of-speech tags in each corpus to a common coarse
tagset (Zeman and Resnik, 2008; Søgaard, 2011;
McDonald et al., 2011; Naseem et al., 2010). The
coarse tagset consists of 11 tags: noun, verb, ad-
jective, adverb, pronoun, determiner, adposition, nu-
meral, conjunction, particle, punctuation mark, and
X (a catch-all tag). Among several available fine-
to-coarse mapping schemes, we employ the one of
Naseem et al. (2010) that yields consistently better
performance for our method and the baselines than
the mapping proposed by Petrov et al. (2011).

As the evaluation metric, we use directed depen-
dency accuracy. Following standard evaluation prac-
tices, we do not evaluate on punctuation. For both
the baselines and our model we evaluate on all sen-
tences of length 50 or less ignoring punctuation.

Training Regime Our model typically converges
quickly and does not require more than 50 iterations
of EM. When the model involves latent typological
variables, the initialization of these variables can im-
pact the final performance. As a selection criterion
for initialization, we consider the performance of the
final model averaged over the supervised source lan-
guages. We perform ten random restarts and select
the best according to this criterion. Likewise, the
threshold value b for the PR constraint on the depen-
dency length is tuned on the source languages, using
average test set accuracy as the selection criterion.

Baselines We compare against the state-of-the-art
multilingual dependency parsers that do not use par-
allel corpora for training. All the systems were eval-
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uated using the same fine-to-coarse tagset mapping.
The first baseline, Transfer, uses direct transfer of a
discriminative parser trained on all the source lan-
guages (McDonald et al., 2011). This simple base-
line achieves surprisingly good results, within less
than 3% difference from a parser trained using par-
allel data. In the second baseline (Mixture), pa-
rameters of the target language are estimated as a
weighted mixture of the parameters learned from an-
notated source languages (Cohen et al., 2011). The
underlying parsing model is the dependency model
with valance (DMV) (Klein and Manning, 2004).
Originally, the baseline methods were evaluated on
different sets of languages using a different tag map-
ping. Therefore, we obtained new results for these
methods in our setup. For the Transfer baseline,
for each target language we trained the model on
all other languages in our dataset. For the Mixture
baseline, we trained the model on the same four lan-
guages used in the original paper — English, Ger-
man, Czech and Italian. When measuring the per-
formance on these languages, we selected another
set of four languages with a similar level of diver-
sity.5

7 Results

Table 2 summarizes the performance for different
configurations of our model and the baselines.

Comparison against Baselines On average, the
selective sharing model outperforms both base-
lines, yielding 8.9% gain over the weighted mixture
model (Cohen et al., 2011) and 5.9% gain over the
direct transfer method (McDonald et al., 2011). Our
model outperforms the weighted mixture model on
15 of the 17 languages and the transfer method on
12 of the 17 languages. Most of the gains are ob-
tained on non-Indo-European languages, that have
little similarity with the source languages. For this
set, the average gain over the transfer baseline is
14.4%. With some languages, such as Japanese,
achieving gains of as much as 30%.

On Indo-European languages, the model perfor-
mance is almost equivalent to that of the best per-
forming baseline. To explain this result we con-

5We also experimented with a version of the Cohen et al.
(2011) model trained on all the source languages. This setup
resulted in decreased performance. For this reason, we chose to
train the model on the four languages.

sider the performance of the supervised version of
our model which constitutes an upper bound on the
performance. The average accuracy of our super-
vised model on these languages is 66.8%, compared
to the 76.3% of the unlexicalized MST parser. Since
Indo-European languages are overrepresented in our
dataset, a target language from this family is likely
to exhibit more similarity to the training data. When
such similarity is substantial, the transfer baseline
will benefit from the power of a context-rich dis-
criminative parser.

A similar trait can be seen by comparing the per-
formance of our model to an oracle version of our
model which selects the optimal source language
for a given target language (column 7). Overall,
our method performs similarly to this oracle variant.
However, the gain for non Indo-European languages
is 1.9% vs -1.3% for Indo-European languages.

Analysis of Model Properties We first test our
hypothesis about the universal nature of the depen-
dent selection. We compare the performance of
our model (column 6) against a variant (column 8)
where this component is trained from annotations on
the target language. The performance of the two is
very close – 1.8%, supporting the above hypothesis.

To assess the contribution of other layers of selec-
tive sharing, we first explore the role of typological
features in learning the ordering component. When
the model does not have access to observed typo-
logical features, and does not use latent ones (col-
umn 4), the accuracy drops by 2.6%6. For some
languages (e.g., Turkish) the decrease is very pro-
nounced. Latent typological features (column 5) do
not yield the same gain as observed ones, but they do
improve the performance of the typology-free model
by 1.4%.

Next, we show the importance of using raw tar-
get language data in training the model. When
the model has to make all the ordering decisions
based on meta-linguistic features without account
for unique properties of the target languages, the
performance decreases by 0.9% (see column 3).

To assess the relative difficulty of learning the
ordering and selection components, we consider
model variants where each of these components is

6In this setup, the ordering component is trained in an unsu-
pervised fashion on the target language.
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Baselines Selective Sharing Model
Mixture Transfer (D-,To) (D+) (D+,Tl) (D+,To) Best Pair Sup. Sel. Sup. Ord. MLE

Catalan 64.9 69.5 71.9 66.1 66.7 71.8 74.8 70.2 73.2 72.1
Italian 61.9 68.3 68.0 65.5 64.2 65.6 68.3 65.1 70.7 72.3
Portuguese 72.9 75.8 76.2 72.3 76.0 73.5 76.4 77.4 77.6 79.6
Spanish 57.2 65.9 62.3 58.5 59.4 62.1 63.4 61.5 62.6 65.3
Dutch 50.1 53.9 56.2 56.1 55.8 55.9 57.8 56.3 58.6 58.0
English 45.9 47.0 47.6 48.5 48.1 48.6 44.4 46.3 60.0 62.7
German 54.5 56.4 54.0 53.5 54.3 53.7 54.8 52.4 56.2 58.0
Swedish 56.4 63.6 52.0 61.4 60.6 61.5 63.5 67.9 67.1 73.0
Bulgarian 67.7 64.0 67.6 63.5 63.9 66.8 66.1 66.2 69.5 71.0
Czech 39.6 40.3 43.9 44.7 45.4 44.6 47.5 53.2 51.2 58.9
Arabic 44.8 40.7 57.2 58.8 60.3 58.9 57.6 62.9 61.9 64.2
Basque 32.8 32.4 39.7 40.1 39.8 47.6 42.0 46.2 47.9 51.6
Chinese 46.7 49.3 59.9 52.2 52.0 51.2 65.4 62.3 65.5 73.5
Greek 56.8 60.4 61.9 67.5 67.3 67.4 60.6 67.2 69.0 70.5
Hungarian 46.8 54.3 56.9 58.4 58.8 58.5 57.0 57.4 62.0 61.6
Japanese 33.5 34.7 62.3 56.8 61.4 64.0 54.8 63.4 69.7 75.6
Turkish 28.3 34.3 59.1 43.6 57.8 59.2 56.9 66.6 59.5 67.6
Average 50.6 53.6 58.6 56.9 58.3 59.5 59.5 61.3 63.7 66.8

Table 2: Directed dependency accuracy of different variants of our selective sharing model and the baselines. The
first section of the table (column 1 and 2) shows the accuracy of the weighted mixture baseline (Cohen et al., 2011)
(Mixture) and the multi-source transfer baseline (McDonald et al., 2011) (Transfer). The middle section shows the
performance of our model in different settings. D± indicates the presence/absence of raw target language data during
training. To indicates the use of observed typological features for all languages and Tl indicates the use of latent
typological features for all languages. The last section shows results of our model with different levels of oracle
supervision: a. (Best Pair) Model parameters are borrowed from the best source language based on the accuracy on
the target language b. (Sup. Sel.) Selection component is trained using MLE estimates from target language c. (Sup.
Ord.) Ordering component is trained using MLE estimates from the target language d. (MLE) All model parameters
are trained on the target language in a supervised fashion. The horizontal partitions separate language families. The
first three families are sub-divisions of the Indo-European language family.

trained using annotations in the target language. As
shown in columns 8 and 9, these two variants out-
perform the original model, achieving 61.3% for su-
pervised selection and 63.7% for supervised order-
ing. Comparing these numbers to the accuracy of
the original model (column 6) demonstrates the dif-
ficulty inherent in learning the ordering information.
This finding is expected given that ordering involves
selective sharing from multiple languages.

Overall, the performance gap between the selec-
tive sharing model and its monolingual supervised
counterpart is 7.3%. In contrast, the unsupervised
monolingual variant of our model achieves a mea-
ger 26%.7 This demonstrates that our model can ef-
fectively learn relevant aspects of syntactic structure
from a diverse set of languages.

7This performance is comparable to other generative models
such as DMV (Klein and Manning, 2004).

8 Conclusions

We present a novel algorithm for multilingual de-
pendency parsing that uses annotations from a di-
verse set of source languages to parse a new unan-
notated language. Overall, our model consistently
outperforms the multi-source transfer based depen-
dency parser of McDonald et al. (2011). Our ex-
periments demonstrate that the model is particularly
effective in processing languages that exhibit signif-
icant differences from the training languages.
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Abstract 

Metalanguage is an essential linguistic 
mechanism which allows us to communicate 
explicit information about language itself. 
However, it has been underexamined in 
research in language technologies, to the 
detriment of the performance of systems that 
could exploit it. This paper describes the 
creation of the first tagged and delineated 
corpus of English metalanguage, accompanied 
by an explicit definition and a rubric for 
identifying the phenomenon in text. This 
resource will provide a basis for further studies 
of metalanguage and enable its utilization in 
language technologies. 

1 Introduction 

In order to understand the language that we speak, 
we sometimes must refer to the language itself. 
Language users do this through an understanding 
of the use-mention distinction, as exhibited by the 
mechanism of metalanguage: that is, language that 
describes language. The use-mention distinction is 
illustrated simply in Sentences (1) and (2) below: 

(1) I watch football on weekends. 
(2) Football may refer to one of several sports. 
A reader understands that football in Sentence (1) 

refers to a sporting activity, while the same word in 
Sentence (2) refers to the term football itself. 
Evidence suggests that human communication 
frequently employs metalanguage (Anderson et al. 
2002), and the phenomenon is essential for many 
activities, including the introduction of new 

                                                           
* This research was performed during a prior affiliation with 
the University of Maryland at College Park. 

vocabulary, attribution of statements, explanation 
of meaning, and assignment of names (Saka 2003). 
Sentences (3) through (8) below further illustrate 
the phenomenon, highlighted in bold. 

(3) This is sometimes called tough love. 
(4) I wrote “meet outside” on the chalkboard. 
(5) Has is a conjugation of the verb have. 
(6) The button labeled go was illuminated. 
(7) That bus, was its name 61C? 
(8) Mississippi is fun to spell. 

Recognizing a wide variety of metalinguistic 
constructions is a skill that humans take for granted 
in fellow interlocutors (Perlis, Purang & Andersen 
1998), and it is a core language skill that children 
demonstrate at an early age (Clark & Schaefer 
1989). Regardless of context, topic, or mode of 
communication (spoken or written), we are able to 
refer directly to language, and we expect others to 
recognize and understand when we do so. 

The study of the syntax and semantics of 
metalanguage is well developed for formal 
languages. However, the study of the phenomenon 
in natural language is relatively nascent, and its 
incorporation into language technologies is almost 
non-existent. Parsing the distinction is difficult, as 
shown in Figure 1 below: go does not function as a 
verb in Sentence (6), but it is tagged as such. 
Delineating an instance of metalanguage with 
quotation marks is a common convention, but this 
often fails to ameliorate the parsing problem. 
Quotation marks, italic text, and bold text—three 
common conventions used to highlight 
metalanguage—are inconsistently applied and are 
already “overloaded” with several distinct uses. 

Moreover, applications of natural language 
processing generally lack the ability to recognize 
and interpret metalanguage (Anderson et al. 2002). 
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Systems using sentiment analysis are affected, as 
sentiment-suggestive terms appearing in 
metalanguage (especially in quotation, a form of 
the phenomenon (Maier 2007)) are not necessarily 
reflective of the writer or speaker. Applications of 
natural language understanding cannot process 
metalanguage without detecting it, especially when 
upstream components (such as parsers) mangle its 
structure. Interactive systems that could leverage 
users’ expectations of metalanguage competency 
currently fail to do so. Figure 2 below shows a 
fragment of conversation with the Let’s Go! (Raux 
et al. 2005) spoken dialog system, designed to help 
users plan trips on Pittsburgh’s bus system. 
 

(ROOT 
  (S 
    (NP 
      (NP (DT The) (NN button)) 
      (VP (VBN labeled) 
        (S 
          (VP (VB go))))) 
    (VP (VBD was) 
      (VP (VBN illuminated))) 
    (. .))) 

 
Figure 1. Output of the Stanford Parser (Klein & 
Manning 2003) for Sentence (6). Adding quotation 
marks around go alters the parser output slightly 
(not shown), but go remains labeled VB. 
 

Let’s Go!: Where do you wish to depart 
from? 
User: Arlington. 
Let’s Go!: Departing from Allegheny 
West. Is this right? 
User: No, I said “Arlington”. 
Let’s Go!: Please say where you are 
leaving from. 

 
Figure 2: A conversation with Let’s Go! in which 
the user responds to a speech recognition error. 
 

The exchange shown in Figure 2 is 
representative of the reactions of nearly all dialog 
systems: in spite of the domain generality of 
metalanguage and the user’s expectation of its 
availability, the system does not recognize it and 
instead “talks past” the user. In effect, language 
technologies that ignore metalanguage are 
discarding the most direct source of linguistic 
information that text or utterances can provide. 

This paper describes the first substantial study to 
characterize and gather instances of English 
metalanguage. Section 2 presents a definition and a 
rubric for metalanguage in the form of mentioned 
language. Section 3 describes the procedure used 
to create the corpus and some notable properties of 
its contents, and Section 4 discusses insights 
gained into the phenomenon. The remaining 
sections discuss the context of these results and 
future directions for this research. 

2 Metalanguage and the Use-Mention 
Distinction1 

Although the reader is likely to be familiar with the 
terms use-mention distinction and metalanguage, 
the topic merits further explanation to precisely 
establish the phenomenon being studied. 
Intuitively, the vast majority of utterances are 
produced for use rather than mention, as the roles 
of language-mention are auxiliary (albeit 
indispensible) to language use. This paper will 
adopt the term mentioned language to describe the 
literal, delineable phenomenon illustrated in 
examples thus far. Other forms of metalanguage 
occur through deictic references to linguistic 
entities that do not appear in the relevant statement. 
(For example, consider “That word was 
misspelled” where the referred-to word resides 
outside of the sentence.) For technical tractability, 
this study focuses on mentioned language. 

2.1 Definition 

Although the use-mention distinction has enjoyed a 
long history of theoretical discussion, attempts to 
explicitly define one or both of the distinction’s 
disjuncts are difficult (or impossible) to find. 
Below is the definition of mentioned language 
adopted by this study, followed by clarifications. 

Definition: For T a token or a set of tokens in a 
sentence, if T is produced to draw attention to a 
property of the token T or the type of T, then T is 
an instance of mentioned language. 

Here, a token is the specific, situated (i.e., as 
appearing in the sentence) instantiation of a 
linguistic entity: a letter, symbol, sound, word, 
phrase, or another related entity. A property might 
                                                           
1  The definition and rubric in this section were originally 
introduced by Wilson (2011a). For brevity, their full 
justifications and the argument for equivalence between the 
two are not reproduced here. 
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be a token’s spelling, pronunciation, meaning (for 
a variety of interpretations of meaning), structure, 
connotation, original source (in cases of quotation), 
or another aspect for which language is shown or 
demonstrated. The type of T is relevant in most 
instances of mentioned language, but the token 
itself is relevant in others, as in the sentence below: 

(9) “The” appears between quote marks here. 
Constructions like (9) are unusual and are of 

limited practical value, but the definition 
accommodates them for completeness. 

The adoption of this definition was motivated by 
a desire to study mentioned language with precise, 
repeatable results. However, it was too abstract to 
consistently apply to large quantities of candidate 
phrases in sentences, a necessity for corpus 
creation. A brief attempt to train annotators using 
the definition was unsuccessful, and instead a 
rubric was created for this purpose. 

2.2 Annotation Rubric 

A human reader with some knowledge of the use-
mention distinction can often intuit the presence of 
mentioned language in a sentence. However, to 
operationalize the concept and move toward corpus 
construction, it was necessary to create a rubric for 
labeling it. The rubric is based on substitution, and 
it may be applied, with caveats described below, to 
determine whether a linguistic entity is mentioned 
by the sentence in which it occurs. 

Rubric: Suppose X is a linguistic entity in a 
sentence S. Construct sentence S' as follows: 
replace X in S with a phrase X' of the form "that 
[item]", where [item] is the appropriate term for X 
in the context of S (e.g., "letter", "symbol", "word", 
"name", "phrase", "sentence", etc.). X is an 
instance of mentioned language if, when assuming 
that X' refers to X, the meaning of S' is equivalent 
to the meaning of S. 

To further operationalize the rubric, Figure 3 
shows it rewritten in pseudocode form. To verify 
the rubric, the reader can follow a positive example 
and a negative example in Figure 4. 

To maintain coherency, minor adjustments in 
sentence wording will be necessary for some 
candidate phrases. For instance, Sentence (10) 
below must be rewritten as (11): 

(10) The word cat is spelled with three letters. 
(11) Cat is spelled with three letters. 

This is because S’ for (10) and (11) are 
respectively (12) and (13): 

(12) The word that word is spelled with three  
        letters. 
(13) That word is spelled with three letters. 

 

Given S a sentence and X a copy of a 
linguistic entity in S: 
(1) Create X': the phrase “that [item]”, 

where [item] is the appropriate term 
for linguistic entity X in the 
context of S. 

(2) Create S': copy S and replace the 
occurrence of X with X'. 

(3) Create W: the set of truth 
conditions of S. 

(4) Create W': the set of truth 
conditions of S', assuming that X' 
in S' is understood to refer 
deictically to X. 

(5) Compare W and W'. If they are equal, 
X is mentioned language in S. Else, 
X is not mentioned language in S. 

 
Figure 3: Pseudocode equivalent of the rubric. 
 

Positive Example 
S: Spain is the name of a European 
country. 
X: Spain. 
(1) X': that name 
(2) S': That name is the name of a 

European country. 
(3) W: Stated briefly, Spain is the name 

of a European country. 
(4) W': Stated briefly, Spain is the 

name of a European country. 
(5) W and W' are equal. Spain is 

mentioned language in S. 
 
Negative Example 
S: Spain is a European country. 
X: Spain. 
(1) X': that name 
(2) S': That name is a European country. 
(3) W: Stated briefly, Spain is a 

European country. 
(4) W': Stated briefly, the name Spain 

is a European country. 
(5) W and W' are not equal. Spain is not 

mentioned language in S. 

 
Figure 4: Examples of rubric application using the 
pseudocode in Figure 3. 
 

Also, quotation marks around or inside of a 
candidate phrase require special attention, since 
their inclusion or exclusion in X can alter the 
meaning of S’. For this discussion, quotation marks 
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and other stylistic cues are considered informal 
cues which aid a reader in detecting mentioned 
language. Style conventions may call for them, and 
in some cases they might be strictly necessary, but 
a competent language user possesses sufficient 
skill to properly discard or retain them as each 
instance requires (Saka 1998). 

3 The Mentioned Language Corpus 

“Laboratory examples” of mentioned language 
(such as the examples thus far in this paper) only 
begin to illustrate the variation in the phenomenon. 
To conduct an empirical examination of mentioned 
language and to study the feasibility of automatic 
identification, it was necessary to gather a large, 
diverse set of samples. This section describes the 
process of building a series of three progressively 
more sophisticated corpora of mentioned language. 
The first two were previously constructed by 
Wilson (2010; 2011b) and will be described only 
briefly. The third was built with insights from the 
first two, and it will be described in greater detail. 
This third corpus is the first to delineate mentioned 
language: that is, it identifies precise subsequences 
of words in a sentence that are subject to the 
phenomenon. Doing so will enable analysis of the 
syntax and semantics of English metalanguage. 

3.1 Approach 

The article set of English Wikipedia2 was chosen as 
a source for text, from which instances were mined 
using a combination of automated and manual 
efforts. Four factors led to its selection: 
1) Wikipedia is collaboratively written. Since any 

registered user can contribute to articles, 
Wikipedia reflects the language habits of a large 
sample of English writers (Adler et al. 2008). 

2) Stylistic cues that sometimes delimit mentioned 
language are present in article text. 
Contributors tend to use quote marks, italic text, 
or bold text to delimit mentioned language3, thus 
following conventions respected across many 
domains of writing (Strunk & White 1979; 
Chicago Editorial Staff 2010; American 
Psychological Association. 2001). Discussion 

                                                           
2 Described in detail at 
http://en.wikipedia.org/wiki/English_Wikipedia. 
3 These conventions are stated in Wikipedia’s style manual, 
though it is unclear whether most contributors read the manual 
or follow the conventions out of habit. 

boards and other sources of informal language 
were considered, but the lack of consistent (or 
any) stylistic cues would have made candidate 
phrase collection untenably time-consuming. 

3) Articles are written to introduce a wide variety 
of concepts to the reader. Articles are written 
informatively and they generally assume the 
reader is unfamiliar with their topics, leading to 
frequent instances of mentioned language. 

4) Wikipedia is freely available. Various language 
learning materials were also considered, but 
legal and technical obstacles made them 
unsuitable for creating a freely available corpus. 
To construct each of the three corpora, a general 

procedure was followed. First, a set of current 
article revisions was downloaded from Wikipedia. 
Then, the main bodies of article text (excluding 
discussion pages, image captions, and other 
peripheral text) were scanned for sentences that 
contained instances of highlighted text (i.e., text 
inside of the previously mentioned stylistic cues). 
Since stylistic cues are also used for other language 
tasks, candidate instances were heuristically 
filtered and then annotated by human readers. 

3.2 Previous Efforts 

In previous work, a pilot corpus was constructed to 
verify the fertility of Wikipedia as a source for 
mentioned language. From 1,000 articles, 1,339 
sentences that contained stylistic cues were 
examined by a human reader, and 171 were found 
to contain at least one instance of mentioned 
language. Although this effort verified Wikipedia’s 
viability for the project, it also revealed that the 
hand-labeling procedure was time-consuming, and 
prior heuristic filtering would be necessary. 

Next, the “Combined Cues” corpus was 
constructed to test the combination of stylistic 
filtering and a new lexical filter for selecting 
candidate instances. A set of 23 “mention-
significant” words was gathered informally from 
the pilot corpus, consisting of nouns and verbs: 

Nouns: letter, meaning, name, phrase, 
pronunciation, sentence, sound, symbol, term, title, 
word 

Verbs: ask, call, hear, mean, name, pronounce, 
refer, say, tell, title, translate, write 

Instances of highlighted text were only 
promoted to the hand annotation stage if they 
contained at least one of these words within the 
three-word phrase directly preceding the 
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highlighted text. From 3,831 articles, a set of 898 
sentences were found to contain 1,164 candidate 
instances that passed the combination of stylistic 
and lexical filters. Hand annotation of those 
candidates yielded 1,082 instances of mentioned 
language. Although the goal of the filters was only 
to ease hand annotation, it could be stated that the 
filters had almost 93% precision in detecting the 
phenomenon. It did not seem plausible that the set 
of mention-significant words was complete enough 
to justify that high percentage, and concerns were 
raised that the lexical filter was rejecting many 
instances of mentioned language. 

3.3 The “Enhanced Cues” Corpus 

The construction of the present corpus (referred to 
as the “Enhanced Cues” Corpus) was similar to 
previous efforts but used a much-enlarged set of 
mention-significant nouns and verbs gathered from 
the WordNet (Fellbaum 1998) lexical ontology. 
For each of the 23 original mention-significant 
words, a human reader started with its containing 
synset and followed hypernym links until a synset 
was reached that did not refer to a linguistic entity. 
Then, backtracking one synset, all lemmas of all 
descendants of the most general linguistically-
relevant synset were gathered. Figure 5 illustrates 
this procedure with an example. 

 

 
 
Figure 5: Gathering mention-significant words 
from WordNet using the seed noun “term”. Here, 
“Language unit”, “word”, “syllable”, “anagram”, 
and all their descendants are gathered. 

Using the combination of stylistic and lexical 
cues, 2,393 candidate instances were collected, and 
the researcher used the rubric and definition from 
Section 2 to identify 629 instances of mentioned 
language 4 . The researcher also identified four 
categories of mentioned language based on the 
nature of the substitution phrase X’ specified by 
the rubric. These categories will be discussed in 
the following subsection. Figure 6 summarizes this 
procedure and the numeric outcomes. 

 

 
 
Figure 6: The procedure used to create the 
Enhanced Cues Corpus. 

3.4 Corpus Composition 

As stated previously, categories for mentioned 
language were identified based on intuitive 
relationships among the substitution phrases 
created for the rubric (e.g., “that word”, “that title”, 
“that symbol”). The categories are: 
1) Words as Words (WW): Within the context of 

the sentence, the candidate phrase is used to 
refer to the word or phrase itself and not what it 
usually refers to. 

                                                           
4 This corpus is available at 
 http://www.cs.cmu.edu/~shomir/um_corpus.html. 

x 

term.n.01 

part.n.01 

word.n.01 

language unit.n.01 language unit.n.01

word.n.01 

Automated mass 
collection of hyponyms 

anagram.n.01 

syllable.n.01

629 instances of mentioned language 
1,764 negative instances 

5,000 Wikipedia articles (in HTML) 

Main body text of articles 

17,753 sentences containing 
25,716 instances of highlighted text 

Article section filtering 
and sentence tokenizer 

Stylistic cue filter and  
heuristics 

Human annotator 

1,914 sentences containing 
2,393 candidate instances 

Mention word proximity 
filter 

100 instances labeled by three 
additional human annotators 

Random selection 
procedure for  
100 instances 

23 hand selected 
mention words

8,735 mention 
words and 

co-locations 

WordNet 
crawl 

Manual search for 
relevant hypernyms 
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2) Names as Names (NN): The sentence directly 
refers to the candidate phrase as a proper name, 
nickname, or title. 

3) Spelling or Pronunciation (SP): The candidate 
text appears only to illustrate spelling, 
pronunciation, or a character symbol. 

4) Other Mention/Interesting (OM): The candidate 
phrase is an instance of mentioned language that 
does not fit the above three categories. 

5) Not Mention (XX): The candidate phrase is not 
mentioned language. 

Table 1 presents the frequencies of each category 
in the Enhanced Cues corpus, and Table 2 provides 
examples for each from the corpus. WW was by 
far the most common label to appear, which is 
perhaps an artifact of the use of Wikipedia as the 
text source. Although Wikipedia articles contain 
many names, NN was not as common, and 
informal observations suggested that names and 
titles are not as frequently introduced via 
metalanguage. Instead, their referents are 
introduced directly by the first appearance of the 
referring text. Spelling and pronunciation were 
particularly sparse; again, a different source might 
have yielded more examples for this category. The 
OM category was occupied mostly by instances of 
speech or language production by an agent, as 
illustrated by the two OM examples in Table 2. 
 

Category Code Frequency 
Words as Words WW 438 
Names as Names NN 117 

Spelling or Pronunciation SP 48 
Other Mention/Interesting OM 26 

Not Mention XX 1,764 
 
Table 1: The by-category composition of candidate 
instances in the Enhanced Cues corpus. 
 

In the interest of revealing both lexical and 
syntactic cues for mentioned language, part-of-
speech tags were computed (using NLTK (Loper 
& Bird 2002)) for words in all of the sentences 
containing candidate instances. Tables 3 and 4 list 
the ten most common words (as POS-tagged) in 
the three-word phrases before and after 
(respectively) candidate instances. Although the 
heuristics for collecting candidate instances were 
not intended to function as a classifier, figures for 
precision are shown for each word: these represent 

the percentage of occurrences of the word which 
were associated with candidates identified as 
mentioned language. For example, 80% of 
appearances of the verb call preceded a candidate 
instance that was labeled as mentioned language. 
 
Code Example 
WW The IP Multimedia Subsystem architecture 

uses the term transport plane to describe a 
function roughly equivalent to the routing 
control plane. 
The material was a heavy canvas known as 
duck, and the brothers began making work 
pants and shirts out of the strong material. 

NN Digeri is the name of a Thracian tribe 
mentioned by Pliny the Elder, in The 
Natural History. 
Hazrat Syed Jalaluddin Bukhari's 
descendants are also called Naqvi al-
Bukhari. 

SP The French changed the spelling to 
bataillon, whereupon it directly entered 
into German. 
Welles insisted on pronouncing the word 
apostles with a hard t. 

OM He kneels over Fil, and seeing that his 
eyes are open whispers: brother. 
During Christmas 1941, she typed The end
on the last page of Laura. 

XX NCR was the first U.S. publication to 
write about the clergy sex abuse scandal. 
Many Croats reacted by expelling all 
words in the Croatian language that had, in 
their minds, even distant Serbian origin. 

 
Table 2: Two examples from the corpus for each 
category. Candidate phrases appear underlined, 
with the original stylistic cues removed. 
 

Many of these words appeared as mention words 
for the Combined Cues corpus, indicating that 
prior intuitions about framing metalanguage were 
correct. In particular, call (v), word(n), and term (n) 
were exceptionally frequent and effective at 
associating  with mentioned language. In contrast, 
the distribution of frequencies for the words 
following candidate instances exhibited a “long 
tail”, indicating greater variation in vocabulary. 
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Rank Word Freq. Precision (%)
1 call (v) 92 80 
2 word (n) 68 95.8 
3 term (n) 60 95.2 
4 name (n) 31 67.4 
5 use (v) 17 70.8 
6 know (v) 15 88.2 
7 also (rb) 13 59.1 
8 name (v) 11 100 
9 sometimes (rb) 9 81.9 
10 Latin (n) 9 69.2 

 
Table 3: The top ten words appearing in the three-
word sequences before candidate instances, with 
precisions of association with mentioned language. 
 

Rank Word Freq. Precision (%)
1 mean (v) 31 83.4 
2 name (n) 24 63.2 
3 use (v) 11 55 
4 meaning (n) 8 57.1 
5 derive (v) 8 80 
6 refers (n) 7 87.5 
7 describe (v) 6 60 
8 refer (v) 6 54.5 
9 word (n) 6 50 
10 may (md) 5 62.5 

 
Table 4: The top ten words appearing in the three-
word sequences after candidate instances, with 
precisions of association with mentioned language. 

3.5 Reliability and Consistency of Annotation 

To provide some indication of the reliability and 
consistency of the Enhanced Cues Corpus, three 
additional expert annotators were recruited to label 
a subset of the candidate instances. These 
additional annotators received guidelines for 
annotation that included the five categories, and 
they worked separately (from each other and from 
the primary annotator) to label 100 instances 
selected randomly with quotas for each category.  

Calculations first were performed to determine 
the level of agreement on the mere presence of 
mentioned language, by mapping labels WW, NN, 
SP, and OM to true and XX to false. All four 
annotators agreed upon a true label for 46 
instances and a false label for 30 instances, with an 
average pairwise Kappa (computed via NTLK) of 
0.74. Kappa between the primary annotator and a 

hypothetical “majority voter” of the three 
additional annotators was 0.90. These results were 
taken as moderate indication of the reliability of 
“simple” use-mention labeling. 

However, the per-category results showed 
reduced levels of agreement. Kappa was calculated 
to be 0.61 for the original coding. Table 5 shows 
the Kappa statistic for binary re-mapping for each 
of the categories. This was done similarly to the 
“XX versus all others” procedure described above. 

 
Code Frequency K 
WW 17 0.38 
NN 17 0.72 
SP 16 0.66 

OM 4 0.09 
XX 46 0.74 

 
Table 5: Frequencies of each category in the subset 
labeled by additional annotators and the values of 
the Kappa statistic for binary relabelings. 
 
The low value for remapped OM was expected, 
since the category was small and intentionally not 
well-defined. The relatively low value for WW 
was not expected, though it seems possible that the 
redaction of specific stylistic cues made annotators 
less certain when to apply this category. Overall, 
these numbers suggest that, although annotators 
tend to agree whether a candidate instance is 
mentioned language or not, there is less of a 
consensus on how to qualify positive instances. 

4 Discussion 

The Enhanced Cues corpus confirms some of the 
hypothesized properties of metalanguage and 
yields some unexpected insights. Stylistic cues 
appear to be strongly associated with mentioned 
language; although the examination of candidate 
phrases was limited to “highlighted” text, informal 
perusal of the remainder of article text confirmed 
this association. Further evidence can be seen in 
examples from other texts, shown below with their 
original stylistic cues intact: 
 Like so many words, the meaning of “addiction” 

has varied wildly over time, but the trajectory 
might surprise you.5 

                                                           
5 News article from CNN.com: 
http://www.cnn.com/2011/LIVING/03/23/addicted.t
o.addiction/index.html 
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 Sending a signal in this way is called a speech 
act.6 

 M1 and M2 are Slashdot shorthand for 
“moderation” and “metamoderation,” 
respectively.7 

 He could explain foreordination thoroughly, and 
he used the terms “baptize” and “Athanasian.”8  

 They use Kabuki precisely because they and 
everyone else have only a hazy idea of the 
word’s true meaning, and they can use it purely 
on the level of insinuation.9 
However, the connection between mentioned 

language and stylistic cues is only valuable when 
stylistic cues are available. Still, even in their 
absence there appears to be an association between 
mentioned language and a core set of nouns and 
verbs. Recurring patterns were observed in how 
mention-significant words related to mentioned 
language. Two were particularly common: 
 Noun apposition between a mention-significant 

noun and mentioned language. An example of 
this appears in Sentence (5), consisting of the 
noun verb and the mentioned word have. 

 Mentioned language appearing in appropriate 
semantic roles for mention-significant verbs. 
Sentence (3) illustrates this, with the verb call 
assigning the label tough love as an attribute of 
the sentence subject. 

With further study, it should be possible to exploit 
these relationships to automatically detect 
mentioned language in text. 

5 Related Work 

The use-mention distinction has enjoyed a long 
history of chiefly theoretical discussion. Beyond 
those authors already cited, many others have 
addressed it as the formal topic of quotation 
(Davidson 1979; Cappelen & Lepore 1997; García-
Carpintero 2004; Partee 1973; Quine 1940; Tarski 
1933). Nearly all of these studies have eschewed 
empirical treatments, instead hand-picking 
illustrations of the phenomenon. 

                                                           
6 Page 684 of Russell and Norvig’s 1995 edition of Artificial 
Intelligence, a textbook. 
7 Frequently Asked Questions (FAQ) list on Slashdot.org: 
http://slashdot.org/faq/metamod.shtml 
8 Novel Elmer Gantry by Sinclair Lewis. 
9 Opinion column on Slate.com: 
http://www.slate.com/id/2250081/ 

One notable exception was a study by Anderson 
et al. (2004), who created a corpus of 
metalanguage from a subset of the British National 
Corpus, finding that approximately 11% of spoken 
utterances contained some form (whether explicit 
or implicit) of metalanguage. However, limitations 
in the Anderson corpus’ structure (particularly lack 
of word- or phrase-level annotations) and content 
(the authors admit it is noisy) served as compelling 
reasons to start afresh and create a richer resource. 

6 Future Work 

As explained in the introduction, the long-term 
goal of this research program is to apply an 
understanding of metalanguage to enhance 
language technologies. However, the more 
immediate goal for creating this corpus was to 
enable (and to begin) progress in research on 
metalanguage. Between these long-term and 
immediate goals lies an intermediate step: methods 
must be developed to detect and delineate 
metalanguage automatically. 

Using the Enhanced Cues Corpus, a two-stage 
approach to automatic identification of mentioned 
language is being developed. The first stage is 
detection, the determination of whether a sentence 
contains an instance of mentioned language. 
Preliminary results indicate that approximately 
70% of instances can be detected using simple 
machine learning methods (e.g., bag of words input 
to a decision tree). The remaining instances will 
require more advanced methods to detect, such as 
word sense disambiguation to validate occurrences 
of mention-significant words. The second stage is 
delineation, the determination of the subsequence 
of words in a sentence that functions as mentioned 
language. Early efforts have focused on the 
associations discussed in Section 5 between 
mentioned language and mention-significant words. 
The total number of such associations appears to 
be small, making their collection a tractable 
activity. 
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Abstract

We argue that multilingual parallel data pro-
vides a valuable source of indirect supervision
for induction of shallow semantic representa-
tions. Specifically, we consider unsupervised
induction of semantic roles from sentences an-
notated with automatically-predicted syntactic
dependency representations and use a state-
of-the-art generative Bayesian non-parametric
model. At inference time, instead of only
seeking the model which explains the mono-
lingual data available for each language, we
regularize the objective by introducing a soft
constraint penalizing for disagreement in ar-
gument labeling on aligned sentences. We
propose a simple approximate learning algo-
rithm for our set-up which results in efficient
inference. When applied to German-English
parallel data, our method obtains a substantial
improvement over a model trained without us-
ing the agreement signal, when both are tested
on non-parallel sentences.

1 Introduction

Learning in the context of multiple languages simul-
taneously has been shown to be beneficial to a num-
ber of NLP tasks from morphological analysis to
syntactic parsing (Kuhn, 2004; Snyder and Barzilay,
2010; McDonald et al., 2011). The goal of this work
is to show that parallel data is useful in unsupervised
induction of shallow semantic representations.

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002) involves predicting predicate argument
structure, i.e. both the identification of arguments

and their assignment to underlying semantic roles.
For example, in the following sentences:

(a) [A0Peter] blamed [A1Mary] [A2for planning a theft].

(b) [A0Peter] blamed [A2planning a theft] [A1on Mary].

(c) [A1Mary] was blamed [A2for planning a theft] [A0by
Peter]

the arguments ‘Peter’, ‘Mary’, and ‘planning a theft’
of the predicate ‘blame’ take the agent (A0), patient
(A1) and reason (A2) roles, respectively. In this
work, we focus on predicting argument roles.

SRL representations have many potential appli-
cations in NLP and have recently been shown
to benefit question answering (Shen and Lapata,
2007; Kaisser and Webber, 2007), textual entailment
(Sammons et al., 2009), machine translation (Wu
and Fung, 2009; Liu and Gildea, 2010; Wu et al.,
2011; Gao and Vogel, 2011), and dialogue systems
(Basili et al., 2009; van der Plas et al., 2011), among
others. Though syntactic representations are often
predictive of semantic roles (Levin, 1993), the inter-
face between syntactic and semantic representations
is far from trivial. Lack of simple deterministic rules
for mapping syntax to shallow semantics motivates
the use of statistical methods.

Most of the current statistical approaches to SRL
are supervised, requiring large quantities of human
annotated data to estimate model parameters. How-
ever, such resources are expensive to create and only
available for a small number of languages and do-
mains. Moreover, when moved to a new domain,
performance of these models tends to degrade sub-
stantially (Pradhan et al., 2008). Sparsity of anno-
tated data motivates the need to look to alternative
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resources. In this work, we make use of unsuper-
vised data along with parallel texts and learn to in-
duce semantic structures in two languages simulta-
neously. As does most of the recent work on unsu-
pervised SRL, we assume that our data is annotated
with automatically-predicted syntactic dependency
parses and aim to induce a model of linking between
syntax and semantics in an unsupervised way.

We expect that both linguistic relatedness and
variability can serve to improve semantic parses in
individual languages: while the former can pro-
vide additional evidence, the latter can serve to re-
duce uncertainty in ambiguous cases. For example,
in our sentences (a) and (b) representing so-called
blame alternation (Levin, 1993), the same informa-
tion is conveyed in two different ways and a success-
ful model of semantic role labeling needs to learn
the corresponding linkings from the data. Induc-
ing them solely based on monolingual data, though
possible, may be tricky as selectional preferences
of the roles are not particularly restrictive; similar
restrictions for patient and agent roles may further
complicate the process. However, both sentences
(a) and (b) are likely to be translated in German
as ‘[A0Peter] beschuldigte [A1Mary] [A2einen Dieb-
stahl zu planen]’. Maximizing agreement between
the roles predicted for both languages would pro-
vide a strong signal for inducing the proper linkings
in our examples.

In this work, we begin with a state-of-the-art
monolingual unsupervised Bayesian model (Titov
and Klementiev, 2012) and focus on improving its
performance in the crosslingual setting. It induces
a linking between syntax and semantics, encoded as
a clustering of syntactic signatures of predicate ar-
guments. The clustering implicitly defines the set of
permissible alternations. For predicates present in
both sides of a bitext, we guide models in both lan-
guages to prefer clusterings which maximize agree-
ment between predicate argument structures pre-
dicted for each aligned predicate pair. We experi-
mentally show the effectiveness of the crosslingual
learning on the English-German language pair.

Our model admits efficient inference: the estima-
tion time on CoNLL 2009 data (Hajič et al., 2009)
and Europarl v.6 bitext (Koehn, 2005) does not ex-
ceed 5 hours on a single processor and the infer-
ence algorithm is highly parallelizable, reducing in-

ference time down to less than half an hour on mul-
tiple processors. This suggests that the models scale
to much larger corpora, which is an important prop-
erty for a successful unsupervised learning method,
as unlabeled data is abundant.

In summary, our contributions are as follows.

• This work is the first to consider the crosslin-
gual setting for unsupervised SRL.

• We propose a form of agreement penalty and
show its efficacy on English-German language
pair when used in conjunction with a state-of-
the-art non-parametric Bayesian model.

• We demonstrate that efficient approximate in-
ference is feasible in the multilingual setting.

The rest of the paper is organized as follows. Sec-
tion 2 begins with a definition of the crosslingual
semantic role induction task we address in this pa-
per. In Section 3, we describe the base monolingual
model, and in Section 4 we propose an extension for
the crosslingual setting. In Section 5, we describe
our inference procedure. Section 6 provides both
evaluation and analysis. Finally, additional related
work is presented in Section 7.

2 Problem Definition

As we mentioned in the introduction, in this work
we focus on the labeling stage of semantic role la-
beling. Identification, though an important prob-
lem, can be tackled with heuristics (Lang and Lap-
ata, 2011a; Grenager and Manning, 2006; de Marn-
effe et al., 2006) or potentially by using a supervised
classifier trained on a small amount of data.

Instead of assuming the availability of role an-
notated data, we rely only on automatically gener-
ated syntactic dependency graphs in both languages.
While we cannot expect that syntactic structure can
trivially map to a semantic representation1, we can
make use of syntactic cues. In the labeling stage,
semantic roles are represented by clusters of ar-
guments, and labeling a particular argument corre-
sponds to deciding on its role cluster. However, in-
stead of dealing with argument occurrences directly,

1Although it provides a strong baseline which is difficult to
beat (Grenager and Manning, 2006; Lang and Lapata, 2010;
Lang and Lapata, 2011a).
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we represent them as predicate-specific syntactic
signatures, and refer to them as argument keys. This
representation aids our models in inducing high pu-
rity clusters (of argument keys) while reducing their
granularity. We follow (Lang and Lapata, 2011a)
and use the following syntactic features for English
to form the argument key representation:

• Active or passive verb voice (ACT/PASS).

• Arg. position relative to predicate (LEFT/RIGHT).

• Syntactic relation to its governor.

• Preposition used for argument realization.

In the example sentences in Section 1, the argu-
ment keys for candidate arguments Peter for sen-
tences (a) and (c) would be ACT:LEFT:SBJ and
PASS:RIGHT:LGS->by,2 respectively. While aim-
ing to increase the purity of argument key clusters,
this particular representation will not always pro-
duce a good match: e.g. planning a theft in sen-
tence (b) will have the same key as Mary in sen-
tence (a). Increasing the expressiveness of the ar-
gument key representation by using features of the
syntactic frame would enable us to distinguish that
pair of arguments. However, we keep this particular
representation, in part to compare with the previous
work. In German, we do not include the relative po-
sition features, because they are not very informative
due to variability in word order.

In sum, we treat the unsupervised semantic role
labeling task as clustering of argument keys. Thus,
argument occurrences in the corpus whose keys are
clustered together are assigned the same semantic
role. The objective of this work is to improve ar-
gument key clusterings by inducing them simulta-
neously in two languages.

3 Monolingual Model

In this section we describe one of the Bayesian mod-
els for semantic role induction proposed in (Titov
and Klementiev, 2012). Before describing our
method, we briefly introduce the central compo-
nents of the model: the Chinese Restaurant Pro-
cesses (CRPs) and Dirichlet Processes (DPs) (Fer-
guson, 1973; Pitman, 2002). For more details we
refer the reader to (Teh, 2007).

2LGS denotes a logical subject in a passive construction
(Surdeanu et al., 2008).

3.1 Chinese Restaurant Processes

CRPs define probability distributions over partitions
of a set of objects. An intuitive metaphor for de-
scribing CRPs is assignment of tables to restaurant
customers. Assume a restaurant with a sequence of
tables, and customers who walk into the restaurant
one at a time and choose a table to join. The first
customer to enter is assigned the first table. Sup-
pose that when a client number i enters the restau-
rant, i − 1 customers are sitting at each of the k ∈
(1, . . . ,K) tables occupied so far. The new cus-
tomer is then either seated at one of the K tables
with probability Nk

i−1+α , where Nk is the number of
customers already sitting at table k, or assigned to a
new table with the probability α

i−1+α , α > 0.
If we continue and assume that for each table ev-

ery customer at a table orders the same meal, with
the meal for the table chosen from an arbitrary base
distributionH , then all ordered meals will constitute
a sample from the Dirichlet Process DP (α,H).

An important property of the non-parametric pro-
cesses is that a model designer does not need to spec-
ify the number of tables (i.e. clusters) a-priori as it
is induced automatically on the basis of the data and
also depending on the choice of the concentration
parameter α. This property is crucial for our task,
as the intended number of roles cannot possibly be
specified for every predicate.

3.2 The Generative Story

In Section 2 we defined our task as clustering of ar-
gument keys, where each cluster corresponds to a
semantic role. If an argument key k is assigned to a
role r (k ∈ r), all of its occurrences are labeled r.

The Bayesian model encodes two common as-
sumptions about semantic roles. First, it enforces the
selectional restriction assumption: namely it stip-
ulates that the distribution over potential argument
fillers is sparse for every role, implying that ‘peaky’
distributions of arguments for each role r are pre-
ferred to flat distributions. Second, each role nor-
mally appears at most once per predicate occur-
rence. The inference algorithm will search for a
clustering which meets the above requirements to
the maximal extent.

The model associates two distributions with each
predicate: one governs the selection of argument
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fillers for each semantic role, and the other mod-
els (and penalizes) duplicate occurrence of roles.
Each predicate occurrence is generated indepen-
dently given these distributions. Let us describe the
model by first defining how the set of model param-
eters and an argument key clustering are drawn, and
then explaining the generation of individual predi-
cate and argument instances. The generative story is
formally presented in Figure 1.

For each predicate p, we start by generating a par-
tition of argument keys Bp with each subset r ∈
Bp representing a single semantic role. The parti-
tions are drawn from CRP(α) independently for each
predicate. The crucial part of the model is the set of
selectional preference parameters θp,r, the distribu-
tions of arguments x for each role r of predicate p.
We represent arguments by lemmas of their syntac-
tic heads.3

The preference for sparseness of the distributions
θp,r is encoded by drawing them from the DP prior
DP (β,H(A)) with a small concentration parameter
β, the base probability distribution H(A) is just the
normalized frequencies of arguments in the corpus.
The geometric distribution ψp,r is used to model the
number of times a role r appears with a given predi-
cate occurrence. The decision whether to generate at
least one role r is drawn from the uniform Bernoulli
distribution. If 0 is drawn then the semantic role is
not realized for the given occurrence, otherwise the
number of additional roles r is drawn from the ge-
ometric distribution Geom(ψp,r). The Beta priors
over ψ can indicate the preference towards generat-
ing at most one argument for each role.

Now, when parameters and argument key clus-
terings are chosen, we can summarize the remain-
der of the generative story as follows. We begin by
independently drawing occurrences for each predi-
cate. For each predicate role we independently de-
cide on the number of role occurrences. Then each
of the arguments is generated (see GenArgument)
by choosing an argument key kp,r uniformly from
the set of argument keys assigned to the cluster r,
and finally choosing its filler xp,r, where the filler is
the lemma of the syntactic head of the argument.

3For prepositional phrases, the head noun of the object noun
phrase is taken as it encodes crucial lexical information. How-
ever, the preposition is not ignored but rather encoded in the
corresponding argument key, as explained in Section 2.

Clustering of argument keys:

for each predicate p = 1, 2, . . . :
Bp ∼ CRP (α) [partition of arg keys]

Parameters:

for each predicate p = 1, 2, . . . :
for each role r ∈ Bp:
θp,r ∼ DP (β,H(A)) [distrib of arg fillers]
ψp,r ∼ Beta(η0, η1) [geom distr for dup roles]

Data generation:

for each predicate p = 1, 2, . . . :
for each occurrence s of p:

for every role r ∈ Bp:
if [n ∼ Unif(0, 1)] = 1: [role appears at least once]

GenArgument(p, r) [draw one arg]
while [n ∼ ψp,r] = 1: [continue generation]

GenArgument(p, r) [draw more args]

GenArgument(p, r):
kp,r ∼ Unif(1, . . . , |r|) [draw arg key]
xp,r ∼ θp,r [draw arg filler]

Figure 1: The generative story for predicate-argument
structure.

4 Multilingual Extension

As we argued in Section 1, our goal is to penalize
for disagreement in semantic structures predicted for
each language on parallel data. In doing so, as in
much of previous work on unsupervised induction of
linguistic structures, we rely on automatically pro-
duced word alignments. In Section 6, we describe
how we use word alignment to decide if two argu-
ments are aligned; for now, we assume that (noisy)
argument alignments are given.

Intuitively, when two arguments are aligned in
parallel data, we expect them to be labeled with the
same semantic role in both languages. This corre-
spondence is simpler than the one expected in mul-
tilingual induction of syntax and morphology where
systematic but unknown relation between structures
in two language is normally assumed (e.g., (Snyder
et al., 2008)). A straightforward implementation of
this idea would require us to maintain one-to-one
mapping between semantic roles across languages.
Instead of assuming this correspondence, we penal-
ize for the lack of isomorphism between the sets of
roles in aligned predicates with the penalty depen-
dent on the degree of violation. This softer approach
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is more appropriate in our setting, as individual ar-
gument keys do not always deterministically map to
gold standard roles4 and strict penalization would
result in the propagation of the corresponding over-
coarse clusters to the other language. Empirically,
we observed this phenomenon on the held-out set
with the increase of the penalty weight.

Encoding preference for the isomorphism directly
in the generative story is problematic: sparse Dirich-
let priors can be used in a fairly trivial way to encode
sparsity of the mapping in one direction or another
but not in both. Instead, we formalize this preference
with a penalty term similar to the expectation criteria
in KL-divergence form introduced in McCallum et
al. (2007). Specifically, we augment the joint proba-
bility with a penalty term computed on parallel data:∑
p(1), p(2)

(
− γ(1)

∑
r(1)∈B

p(1)

fr(1) arg max
r(2)∈B

p(2)

log P̂ (r(2)|r(1))

−γ(2)
∑

r(2)∈B
p(2)

fr(2) arg max
r(1)∈B

p(1)

log P̂ (r(1)|r(2))
)
,

where P̂ (r(l)|r(l′)) is the proportion of times the role
r(l

′) of predicate p(l′) in language l′ is aligned to the
role r(l) of predicate p(l) in language l, and fr(l) is
the total number of times the role is aligned, γ(l) is a
non-negative constant. The rationale for introducing
the individual weighting fr(l) is two-fold. First, the
proportions P̂ (r(l)|r(l′)) are more ‘reliable’ when
computed from larger counts. Second, more fre-
quent roles should have higher penalty as they com-
pete with the joint probability term, the likelihood
part of which scales linearly with role counts.

Space restrictions prevent us from discussing the
close relation between this penalty formulation and
the existing work on injecting prior and side infor-
mation in learning objectives in the form of con-
straints (McCallum et al., 2007; Ganchev et al.,
2010; Chang et al., 2007).

In order to support efficient and parallelizable in-
ference, we simplify the above penalty by consider-
ing only disjoint pairs of predicates, instead of sum-
ming over all pairs p(1) and p(2). When choosing

4The average purity for argument keys with automatic argu-
ment identification and using predicted syntactic trees, before
any clustering, is approximately 90.2% on English and 87.8%
on German.

the pairs, we aim to cover the maximal number of
alignment counts so as to preserve as much informa-
tion from parallel corpora as possible. This objective
corresponds to the classic maximum weighted bipar-
tite matching problem with the weight for each edge
p(1) and p(2) equal to the number of times the two
predicates were aligned in parallel data. We use the
standard polynomial algorithm (the Hungarian algo-
rithm, (Kuhn, 1955)) to find an optimal solution.

5 Inference

An inference algorithm for an unsupervised model
should be efficient enough to handle vast amounts
of unlabeled data, as it can easily be obtained and is
likely to improve results. We use a simple approx-
imate inference algorithm based on greedy search.
We start by discussing search for the maximum a-
posteriori clustering of argument keys in the mono-
lingual set-up and then discuss how it can be ex-
tended to accommodate the role alignment penalty.

5.1 Monolingual Setting

In the model, a linking between syntax and seman-
tics is induced independently for each predicate.
Nevertheless, searching for a MAP clustering can
be expensive: even a move involving a single ar-
gument key implies some computations for all its
occurrences in the corpus. Instead of more com-
plex MAP search algorithms (see, e.g., (Daume III,
2007)), we use a greedy procedure where we start
with each argument key assigned to an individual
cluster, and then iteratively try to merge clusters.
Each move involves (1) choosing an argument key
and (2) deciding on a cluster to reassign it to. This is
done by considering all clusters (including creating
a new one) and choosing the most probable one.

Instead of choosing argument keys randomly at
the first stage, we order them by corpus frequency.
This ordering is beneficial as getting clustering right
for frequent argument keys is more important and
the corresponding decisions should be made earlier.5

We used a single iteration in our experiments, as we
have not noticed any benefit from using multiple it-
erations.

5This has been explored before for shallow semantic rep-
resentations (Lang and Lapata, 2011a; Titov and Klementiev,
2011).
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5.2 Incorporating the Alignment Penalty

Inference in the monolingual setting is done inde-
pendently for each predicate, as the model factor-
izes over the predicates. The role alignment penalty
introduces interdependencies between the objectives
for each bilingual predicate pair chosen by the as-
signment algorithm as discussed in Section 4. For
each pair of predicates, we search for clusterings
to maximize the sum of the log-probability and the
negated penalty term.

At first glance it may seem that the alignment
penalty can be easily integrated into the greedy MAP
search algorithm: instead of considering individual
argument keys, one could use pairs of argument keys
and decide on their assignment to clusters jointly.
However, given that there is no isomorphic mapping
between argument keys across languages, this solu-
tion is unlikely to be satisfactory.6 Instead, we use
an approximate inference procedure similar in spirit
to annotation projection techniques.

For each predicate, we first induce semantic roles
independently for the first language, as described
in Section 5.1, and then use the same algorithm for
the second language but take the penalty term into
account. Then we repeat the process in the reverse
direction. Among these two solutions, we choose
the one which yields the higher objective value. In
this way, we begin with producing a clustering for
the side which is easier to cluster and provides more
clues for the other side.7

6 Empirical Evaluation

We begin by describing the data and evaluation met-
rics we use before discussing results.

6.1 Data

We run our main experiments on the English-
German section of Europarl v6 parallel corpus

6We also considered a variation of this idea where a pair of
argument keys is chosen randomly proportional to their align-
ment frequency and multiple iterations are repeated. Despite
being significantly slower than our method, it did not provide
any improvement in accuracy.

7In preliminary experiments, we studied an even simpler in-
ference method where the projection direction was fixed for all
predicates. Though this approach did outperform the monolin-
gual model, the results were substantially worse than achieved
with our method.

(Koehn, 2005) and the CoNLL 2009 distributions
of the Penn Treebank WSJ corpus (Marcus et al.,
1993) for English and the SALSA corpus (Burchardt
et al., 2006) for German. As standard for unsuper-
vised SRL, we use the entire CoNLL training sets
for evaluation, and use held-out sets for model se-
lection and parameter tuning.

Syntactic annotation. Although the CoNLL 2009
dataset already has predicted dependency structures,
we could not reproduce them so that we could use
the same parser to annotate Europarl. We chose to
reannotate it, since using different parsing models
for both datasets would be undesirable. We used
MaltParser (Nivre et al., 2007) for English and the
syntactic component of the LTH system (Johansson
and Nugues, 2008) for German.

Predicate and argument identification. We select all
non-auxiliary verbs as predicates. For English, we
identify their arguments using a heuristic proposed
in (Lang and Lapata, 2011a). It is comprised of a
list of 8 rules, which use nonlexicalized properties
of syntactic paths between a predicate and a candi-
date argument to iteratively discard non-arguments
from the list of all words in a sentence. For Ger-
man, we use the LTH argument identification classi-
fier. Accuracy of argument identification on CoNLL
2009 using predicted syntactic analyses was 80.7%
and 86.5% for English and German, respectively.

Argument alignment. We use GIZA++ (Och and
Ney, 2003) to produce word alignments in Europarl:
we ran it in both directions and kept the intersec-
tion of the induced word alignments. For every ar-
gument identified in the previous stage, we chose a
set of words consisting of the argument’s syntactic
head and, for prepositional phrases, the head noun
of the object noun phrase. We mark arguments in
two languages as aligned if there is any word align-
ment between the corresponding sets and if they are
arguments of aligned predicates.

6.2 Evaluation Metrics

We use the standard purity (PU) and collocation
(CO) metrics as well as their harmonic mean (F1) to
measure the quality of the resulting clusters. Purity
measures the degree to which each cluster contains
arguments sharing the same gold role:
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PU =
1
N

∑
i

max
j
|Gj ∩ Ci|

where Ci is the set of arguments in the i-th induced
cluster, Gj is the set of arguments in the jth gold
cluster, and N is the total number of arguments.
Collocation evaluates the degree to which arguments
with the same gold roles are assigned to a single
cluster:

CO =
1
N

∑
j

max
i
|Gj ∩ Ci|

We compute the aggregate PU, CO, and F1 scores
over all predicates in the same way as (Lang and La-
pata, 2011a) by weighting the scores of each pred-
icate by the number of its argument occurrences.
Since our goal is to evaluate the clustering algo-
rithms, we do not include incorrectly identified ar-
guments when computing these metrics.

6.3 Parameters and Set-up

Our models are robust to parameter settings; the pa-
rameters were tuned (to an order of magnitude) to
optimize the F1 score on the held-out development
set and were as follows. Parameters governing du-
plicate role generation, η(·)

0 and η
(·)
1 , and penalty

weights γ(·) were set to be the same for both lan-
guages, and are 100, 1.e-3 and 10, respectively. The
concentration parameters were set as follows: for
English, they were set to α(1) = 1.e-3, β(1) = 1.e-3,
and, for German, they were α(2) = 0.1, β(2) = 1.

Domains of Europarl (parliamentary proceedings)
and German/English CoNLL data (newswire) are
substantially different. Since the influence of do-
main shift is not the focus of work, we try to min-
imize its effect by computing the likelihood part of
the objective on CoNLL data alone. This also makes
our setting more comparable to prior work.8

6.4 Results

Base monolingual model. We begin by evaluat-
ing our base monolingual model MonoBayes alone
against the current best approaches to unsupervised
semantic role induction. Since we do not have ac-
cess to the systems, we compare on the marginally
different English CoNLL 2008 (Surdeanu et al.,

8Preliminary experiments on the entire dataset show a slight
degradation in performance.

PU CO F1
LLogistic 79.5 76.5 78.0
GraphPart 88.6 70.7 78.6
SplitMerge 88.7 73.0 80.1
MonoBayes 88.1 77.1 82.2
SyntF 81.6 77.5 79.5

Table 1: Argument clustering performance with gold
argument identification and gold syntactic parses on
CoNLL 2008 shared-task dataset. Bold-face is used to
highlight the best F1 scores.

2008) shared task dataset used in their experiments.
We report the results using gold argument identifi-
cation and gold syntactic parses in order to focus
the evaluation on the argument labeling stage and to
minimize the noise due to automatic syntactic anno-
tations. The methods are Latent Logistic classifica-
tion (Lang and Lapata, 2010), Split-Merge cluster-
ing (Lang and Lapata, 2011a), and Graph Partition-
ing (Lang and Lapata, 2011b) (labeled LLogistic,
SplitMerge, and GraphPart, respectively) achieving
the current best unsupervised SRL results in this set-
ting. Additionally, we compute the syntactic func-
tion baseline (SyntF), which simply clusters predi-
cate arguments according to the dependency relation
to their head. Following (Lang and Lapata, 2010),
we allocate a cluster for each of 20 most frequent
relations in the CoNLL dataset and one cluster for
all other relations. Our model substantially outper-
forms other models (see Table 1).

Multilingual extensions. Next, we improve our
model performance using agreement as an addi-
tional supervision signal during training (see Sec-
tion 4). We compare the performance of indi-
vidual English and German models induced sepa-
rately (MonoBayes) with the jointly induced mod-
els (MultiBayes) as well as the syntactic baseline,
see Table 2.9 While we see little improvement
in F1 for English, the German system improves
by 1.8%. For German, the crosslingual learning
also results in 1.5% improvement over the syntac-
tic baseline, which is considered difficult to outper-
form (Grenager and Manning, 2006; Lang and Lap-
ata, 2010). Note that recent unsupervised SRL meth-

9Note that the scores are computed on correctly identified ar-
guments only, and tend to be higher in these experiments prob-
ably because the complex arguments get discarded by the argu-
ment identifier.
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English German
PU CO F1 PU CO F1

MonoBayes 87.5 80.1 83.6 86.8 75.7 80.9
MultiBayes 86.8 80.7 83.7 85.0 80.6 82.7
SyntF 81.5 79.4 80.4 83.1 79.3 81.2

Table 2: Results on CoNLL 2009 with automatic argu-
ment identification and automatic syntactic parses.

ods do not always improve on it, see Table 1.
The relatively low expressivity and limited purity

of our argument keys (see discussion in Section 4)
are likely to limit potential improvements when us-
ing them in crosslingual learning. The natural next
step would be to consider crosslingual learning with
a more expressive model of the syntactic frame and
syntax-semantics linking.

7 Related Work

Unsupervised learning in crosslingual setting has
been an active area of research in recent years. How-
ever, most of this research has focused on induc-
tion of syntactic structures (Kuhn, 2004; Snyder
et al., 2009) or morphologic analysis (Snyder and
Barzilay, 2008) and we are not aware of any pre-
vious work on induction of semantic representa-
tions in the crosslingual setting. Learning of se-
mantic representations in the context of monolin-
gual weakly-parallel data was studied in Titov and
Kozhevnikov (2010) but their setting was semi-
supervised and they experimented only on a re-
stricted domain.

Most of the SRL research has focused on the
supervised setting, however, lack of annotated re-
sources for most languages and insufficient cover-
age provided by the existing resources motivates
the need for using unlabeled data or other forms
of weak supervision. This includes methods based
on graph alignment between labeled and unlabeled
data (Fürstenau and Lapata, 2009), using unlabeled
data to improve lexical generalization (Deschacht
and Moens, 2009), and projection of annotation
across languages (Pado and Lapata, 2009; van der
Plas et al., 2011). Semi-supervised and weakly-
supervised techniques have also been explored for
other types of semantic representations but these
studies again have mostly focused on restricted do-
mains (Kate and Mooney, 2007; Liang et al., 2009;
Goldwasser et al., 2011; Liang et al., 2011).

Early unsupervised approaches to the SRL task
include (Swier and Stevenson, 2004), where the
VerbNet verb lexicon was used to guide unsuper-
vised learning, and a generative model of Grenager
and Manning (2006) which exploits linguistic priors
on syntactic-semantic interface.

More recently, the role induction problem has
been studied in Lang and Lapata (2010) where it
has been reformulated as a problem of detecting al-
ternations and mapping non-standard linkings to the
canonical ones. Later, Lang and Lapata (2011a) pro-
posed an algorithmic approach to clustering argu-
ment signatures which achieves higher accuracy and
outperforms the syntactic baseline. In Lang and La-
pata (2011b), the role induction problem is formu-
lated as a graph partitioning problem: each vertex in
the graph corresponds to a predicate occurrence and
edges represent lexical and syntactic similarities be-
tween the occurrences. Unsupervised induction of
semantics has also been studied in Poon and Domin-
gos (2009) and Titov and Klementiev (2011) but the
induced representations are not entirely compatible
with the PropBank-style annotations and they have
been evaluated only on a question answering task
for the biomedical domain. Also, a related task of
unsupervised argument identification has been con-
sidered in Abend et al. (2009).

8 Conclusions

This work adds unsupervised semantic role labeling
to the list of NLP tasks benefiting from the crosslin-
gual induction setting. We show that an agreement
signal extracted from parallel data provides indi-
rect supervision capable of substantially improving
a state-of-the-art model for semantic role induction.

Although in this work we focused primarily on
improving performance for each individual lan-
guage, cross-lingual semantic representation could
be extracted by a simple post-processing step. In
future work, we would like to model cross-lingual
semantics explicitly.
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Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies in
multiple languages. In CoNLL 2009: Shared Task.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based semantic role labeling of Prop-
Bank. In EMNLP.

Michael Kaisser and Bonnie Webber. 2007. Question
answering based on semantic roles. In ACL Workshop
on Deep Linguistic Processing.

Rohit J. Kate and Raymond J. Mooney. 2007. Learning
language semantics from ambigous supervision. In
AAAI.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
MT Summit.

Harold W. Kuhn. 1955. The hungarian method for the
assignment problem. Naval Research Logistics Quar-
terly, 2:83–97.

Jonas Kuhn. 2004. Experiments in parallel-text based
grammar induction. In ACL.

Joel Lang and Mirella Lapata. 2010. Unsupervised in-
duction of semantic roles. In ACL.

Joel Lang and Mirella Lapata. 2011a. Unsupervised se-
mantic role induction via split-merge clustering. In
ACL.

Joel Lang and Mirella Lapata. 2011b. Unsupervised
semantic role induction with graph partitioning. In
EMNLP.

Beth Levin. 1993. English Verb Classes and Alter-
nations: A Preliminary Investigation. University of
Chicago Press.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less supervi-
sion. In ACL-IJCNLP.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional semantics.
In ACL: HLT.

Ding Liu and Daniel Gildea. 2010. Semantic role fea-
tures for machine translation. In Coling.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Andrew McCallum, Gideon Mann, and Gregory Druck.
2007. Generalized expectation criteria. Techni-
cal Report TR 2007-60, University of Massachusetts,
Amherst, MA.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In EMNLP.
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Abstract

This paper presents a novel top-down head-
driven parsing algorithm for data-driven pro-
jective dependency analysis. This algorithm
handles global structures, such as clause and
coordination, better than shift-reduce or other
bottom-up algorithms. Experiments on the
English Penn Treebank data and the Chinese
CoNLL-06 data show that the proposed algo-
rithm achieves comparable results with other
data-driven dependency parsing algorithms.

1 Introduction

Transition-based parsing algorithms, such as shift-
reduce algorithms (Nivre, 2004; Zhang and Clark,
2008), are widely used for dependency analysis be-
cause of the efficiency and comparatively good per-
formance. However, these parsers have one major
problem that they can handle only local information.
Isozaki et al. (2004) pointed out that the drawbacks
of shift-reduce parser could be resolved by incorpo-
rating top-down information such as root finding.

This work presents an O(n2) top-down head-
driven transition-based parsing algorithm which can
parse complex structures that are not trivial for shift-
reduce parsers. The deductive system is very similar
to Earley parsing (Earley, 1970). The Earley predic-
tion is tied to a particular grammar rule, but the pro-
posed algorithm is data-driven, following the current
trends of dependency parsing (Nivre, 2006; McDon-
ald and Pereira, 2006; Koo et al., 2010). To do the
prediction without any grammar rules, we introduce
a weighted prediction that is to predict lower nodes
from higher nodes with a statistical model.

To improve parsing flexibility in deterministic
parsing, our top-down parser uses beam search al-
gorithm with dynamic programming (Huang and
Sagae, 2010). The complexity becomes O(n2 ∗ b)
where b is the beam size. To reduce prediction er-
rors, we propose a lookahead technique based on a
FIRST function, inspired by the LL(1) parser (Aho
and Ullman, 1972). Experimental results show that
the proposed top-down parser achieves competitive
results with other data-driven parsing algorithms.

2 Definition of Dependency Graph

A dependency graph is defined as follows.

Definition 2.1 (Dependency Graph) Given an in-
put sentence W = n0 . . .nn where n0 is a spe-
cial root node $, a directed graph is defined as
GW = (VW , AW ) where VW = {0, 1, . . . , n} is a
set of (indices of) nodes and AW ⊆ VW × VW is a
set of directed arcs. The set of arcs is a set of pairs
(x, y) where x is a head and y is a dependent of x.
x →∗ l denotes a path from x to l. A directed graph
GW = (VW , AW ) is well-formed if and only if:

• There is no node x such that (x, 0) ∈ AW .
• If (x, y) ∈ AW then there is no node x′ such

that (x′, y) ∈ AW and x′ ̸= x.
• There is no subset of arcs {(x0, x1), (x1, x2),

. . . , (xl−1, xl)} ⊆ AW such that x0 = xl.

These conditions are refered to ROOT, SINGLE-
HEAD, and ACYCLICITY, and we call an well-
formed directed graph as a dependency graph.

Definition 2.2 (PROJECTIVITY) A dependency
graph GW = (VW , AW ) is projective if and only if,
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input: W = n0 . . .nn

axiom(p0): 0 : ⟨1, 0, n + 1,n0⟩ : ∅

predx:

state p︷ ︸︸ ︷
ℓ : ⟨i, h, j, sd|...|s0⟩ :

ℓ + 1 : ⟨i, k, h, sd−1|...|s0|nk⟩ : {p}
∃k : i ≤ k < h

predy:

state p︷ ︸︸ ︷
ℓ : ⟨i, h, j, sd|...|s0⟩ :

ℓ + 1 : ⟨i, k, j, sd−1|...|s0|nk⟩ : {p}
∃k : i ≤ k < j ∧ h < i

scan:
ℓ : ⟨i, h, j, sd|...|s0⟩ : π

ℓ + 1 : ⟨i + 1, h, j, sd|...|s0⟩ : π
i = h

comp:

state q︷ ︸︸ ︷
: ⟨ , h′, j′, s′d|...|s′0⟩ : π′

state p︷ ︸︸ ︷
ℓ : ⟨i, h, j, sd|...|s0⟩ : π

ℓ + 1 : ⟨i, h′, j′, s′d|...|s′1|s′0ys0⟩ : π′ q ∈ π, h < i

goal: 3n : ⟨n + 1, 0, n + 1, s0⟩ : ∅

Figure 1: The non-weighted deductive system of top-down dependency parsing algorithm: means “take anything”.

for every arc (x, y) ∈ AW and node l in x < l < y
or y < l < x, there is a path x →∗ l or y →∗ l.

The proposed algorithm in this paper is for projec-
tive dependency graphs. If a projective dependency
graph is connected, we call it a dependency tree,
and if not, a dependency forest.

3 Top-down Parsing Algorithm

Our proposed algorithm is a transition-based algo-
rithm, which uses stack and queue data structures.
This algorithm formally uses the following state:

ℓ : ⟨i, h, j, S⟩ : π

where ℓ is a step size, S is a stack of trees sd|...|s0

where s0 is a top tree and d is a window size for
feature extraction, i is an index of node on the top
of the input node queue, h is an index of root node
of s0, j is an index to indicate the right limit (j −
1 inclusive) of predy, and π is a set of pointers to
predictor states, which are states just before putting
the node in h onto stack S. In the deterministic case,
π is a singleton set except for the initial state.

This algorithm has four actions, predictx(predx),
predicty(predy), scan and complete(comp). The
deductive system of the top-down algorithm is
shown in Figure 1. The initial state p0 is a state ini-
tialized by an artificial root node n0. This algorithm

applies one action to each state selected from appli-
cable actions in each step. Each of three kinds of
actions, pred, scan, and comp, occurs n times, and
this system takes 3n steps for a complete analysis.

Action predx puts nk onto stack S selected from
the input queue in the range, i ≤ k < h, which is
to the left of the root nh in the stack top. Similarly,
action predy puts a node nk onto stack S selected
from the input queue in the range, h < i ≤ k < j,
which is to the right of the root nh in the stack top.
The node ni on the top of the queue is scanned if it
is equal to the root node nh in the stack top. Action
comp creates a directed arc (h′, h) from the root h′

of s′0 on a predictor state q to the root h of s0 on a
current state p if h < i 1.

The precondition i < h of action predx means
that the input nodes in i ≤ k < h have not been
predicted yet. Predx, scan and predy do not con-
flict with each other since their preconditions i < h,
i = h and h < i do not hold at the same time.
However, this algorithm faces a predy-comp con-
flict because both actions share the same precondi-
tion h < i, which means that the input nodes in
1 ≤ k ≤ h have been predicted and scanned. This

1In a single root tree, the special root symbol $0 has exactly
one child node. Therefore, we do not apply comp action to a
state if its condition satisfies s1.h = n0 ∧ ℓ ̸= 3n− 1.
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step state stack queue action state information
0 p0 $0 I1 saw2 a3 girl4 – ⟨1, 0, 5⟩ : ∅
1 p1 $0|saw2 I1 saw2 a3 girl4 predy ⟨1, 2, 5⟩ : {p0}
2 p2 saw2|I1 I1 saw2 a3 girl4 predx ⟨1, 1, 2⟩ : {p1}
3 p3 saw2|I1 saw2 a3 girl4 scan ⟨2, 1, 2⟩ : {p1}
4 p4 $0|I1xsaw2 saw2 a3 girl4 comp ⟨2, 2, 5⟩ : {p0}
5 p5 $0|I1xsaw2 a3 girl4 scan ⟨3, 2, 5⟩ : {p0}
6 p6 I1xsaw2|girl4 a3 girl4 predy ⟨3, 4, 5⟩ : {p5}
7 p7 girl4|a3 a3 girl4 predx ⟨3, 3, 4⟩ : {p6}
8 p8 girl4|a3 girl4 scan ⟨4, 3, 4⟩ : {p6}
9 p9 I1xsaw2|a3

xgirl4 girl4 comp ⟨4, 4, 5⟩ : {p5}
10 p10 I1xsaw2|a3

xgirl4 scan ⟨5, 4, 5⟩ : {p5}
11 p11 $0|I1xsaw2

ygirl4 comp ⟨5, 2, 5⟩ : {p0}
12 p12 $0

ysaw2 comp ⟨5, 0, 5⟩ : ∅

Figure 2: Stages of the top-down deterministic parsing process for a sentence “I saw a girl”. We follow a convention
and write the stack with its topmost element to the right, and the queue with its first element to the left. In this example,
we set the window size d to 1, and write the descendants of trees on stack elements s0 and s1 within depth 1.

parser constructs left and right children of a head
node in a left-to-right direction by scanning the head
node prior to its right children. Figure 2 shows an
example for parsing a sentence “I saw a girl”.

4 Correctness

To prove the correctness of the system in Figure
1 for the projective dependency graph, we use the
proof strategy of (Nivre, 2008a). The correct deduc-
tive system is both sound and complete.

Theorem 4.1 The deductive system in Figure 1 is
correct for the class of dependency forest.

Proof 4.1 To show soundness, we show that Gp0 =
(VW , ∅), which is a directed graph defined by the
axiom, is well-formed and projective, and that every
transition preserves this property.

• ROOT: The node 0 is a root in Gp0 , and the
node 0 is on the top of stack of p0. The two pred
actions put a word onto the top of stack, and
predict an arc from root or its descendant to
the child. The comp actions add the predicted
arcs which include no arc of (x, 0).

• SINGLE-HEAD: Gp0 is single-head. A node
y is no longer in stack and queue after a comp
action creates an arc (x, y). The node y cannot
make any arc (x′, y) after the removal.

• ACYCLICITY: Gp0 is acyclic. A cycle is cre-
ated only if an arc (x, y) is added when there
is a directed path y →∗ x. The node x is no

longer in stack and queue when the directed
path y →∗ x was made by adding an arc (l, x).
There is no chance to add the arc (x, y) on the
directed path y →∗ x.

• PROJECTIVITY: Gp0 is projective. Projec-
tivity is violated by adding an arc (x, y) when
there is a node l in x < l < y or y < l < x
with the path to or from the outside of the span
x and y. When predy creates an arc relation
from x to y, the node y cannot be scanned be-
fore all nodes l in x < l < y are scanned and
completed. When predx creates an arc rela-
tion from x to y, the node y cannot be scanned
before all nodes k in k < y are scanned and
completed, and the node x cannot be scanned
before all nodes l in y < l < x are scanned
and completed. In those processes, the node l
in x < l < y or y < l < x does not make a
path to or from the outside of the span x and y,
and a path x →∗ l or y →∗ l is created. 2

To show completeness, we show that for any sen-
tence W , and dependency forest GW = (VW , AW ),
there is a transition sequence C0,m such that Gpm =
GW by an inductive method.

• If |W | = 1, the projective dependency graph
for W is GW = ({0}, ∅) and Gp0 = GW .

• Assume that the claim holds for sentences with
length less or equal to t, and assume that
|W | = t + 1 and GW = (VW , AW ). The sub-
graph GW ′ is defined as (VW − t, A−t) where

659



.

.

..s2.h

.

.

.

... . .

. .. ..

.

.

..s1.h

.

.

.

.

.

.

.

.

.

... . .

. .. ... . . .

..s1.l

. .. ... . . .

... . .

. .. ... . . .

..s1.r

. .. ... . .

.

.

..s0.h

.

.

.

.

.

.

.

.

.

... . .

. .. ... . . .

..s0.l

. .. ... . . .

... . .

. .. ... . . .

..s0.r

. .. ... . .

Figure 3: Feature window of trees on stack S: The win-
dow size d is set to 2. Each x.h, x.l and x.r denotes root,
left and right child nodes of a stack element x.

A−t = AW −{(x, y)|x = t∨ y = t}. If GW is
a dependency forest, then GW ′ is also a depen-
dency forest. It is obvious that there is a transi-
tion sequence for constructing GW except arcs
which have a node t as a head or a dependent2.
There is a state pq = q : ⟨i, x, t + 1⟩ :
for i and x (0 ≤ x < i < t + 1). When
x is the head of t, predy to t creates a state
pq+1 = q + 1 : ⟨i, t, t + 1⟩ : {pq}. At least one
node y in i ≤ y < t becomes the dependent of
t by predx and there is a transition sequence
for constructing a tree rooted by y. After con-
structing a subtree rooted by t and spaned from
i to t, t is scaned, and then comp creates an
arc from x to t. It is obvious that the remaining
transition sequence exists. Therefore, we can
construct a transition sequence C0,m such that
Gpm = GW . 2

The deductive sysmtem in Figure 1 is both sound and
complete. Therefore, it is correct. 2

5 Weighted Parsing Model

5.1 Stack-based Model
The proposed algorithm employs a stack-based
model for scoring hypothesis. The cost of the model
is defined as follows:

cs(i, h, j, S) = θs · fs,act(i, h, j, S) (1)

where θs is a weight vector, fs is a feature function,
and act is one of the applicable actions to a state ℓ :
⟨i, h, j, S⟩ : π. We use a set of feature templates of
(Huang and Sagae, 2010) for the model. As shown
in Figure 3, left children s0.l and s1.l of trees on

2This transition sequence is defined for GW ′ , but it is pos-
sible to be regarded as the definition for GW as long as the
transition sequence is indifferent from the node t.

Algorithm 1 Top-down Parsing with Beam Search
1: input W = n0, . . . ,nn

2: start← ⟨1, 0, n + 1,n0⟩
3: buf [0]← {start}
4: for ℓ← 1 . . . 3n do
5: hypo← {}
6: for each state in buf [ℓ− 1] do
7: for act←applicableAct(state) do
8: newstates←actor(act, state)
9: addAll newstates to hypo

10: add top b states to buf [ℓ] from hypo
11: return best candidate from buf [3n]

stack for extracting features are different from those
of Huang and Sagae (2010) because in our parser the
left children are generated from left to right.

As mentioned in Section 1, we apply beam search
and Huang and Sagae (2010)’s DP techniques to
our top-down parser. Algorithm 1 shows the our
beam search algorithm in which top most b states
are preserved in a buffer buf [ℓ] in each step. In
line 10 of Algorithm 1, equivalent states in the step
ℓ are merged following the idea of DP. Two states
⟨i, h, j, S⟩ and ⟨i′, h′, j′, S′⟩ in the step ℓ are equiv-
alent, notated ⟨i, h, j, S⟩ ∼ ⟨i′, h′, j′, S′⟩, iff

fs,act(i, h, j, S) = fs,act(i
′, h′, j′, S′). (2)

When two equivalent predicted states are merged,
their predictor states in π get combined. For fur-
ther details about this technique, readers may refer
to (Huang and Sagae, 2010).

5.2 Weighted Prediction
The step 0 in Figure 2 shows an example of predic-
tion for a head node “$0”, where the node “saw2” is
selected as its child node. To select a probable child
node, we define a statistical model for the prediction.
In this paper, we integrate the cost from a graph-
based model (McDonald and Pereira, 2006) which
directly models dependency links. The cost of the
1st-order model is defined as the relation between a
child node c and a head node h:

cp(h, c) = θp · fp(h, c) (3)

where θp is a weight vector and fp is a features func-
tion. Using the cost cp, the top-down parser selects
a probable child node in each prediction step.

When we apply beam search to the top-down
parser, then we no longer use ∃ but ∀ on predx and
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Figure 4: An example of tree structure: Each h, l and r
denotes head, left and right child nodes.

predy in Figure 1. Therefore, the parser may predict
many nodes as an appropriate child from a single
state, causing many predicted states. This may cause
the beam buffer to be filled only with the states, and
these may exclude other states, such as scanned or
completed states. Thus, we limit the number of pre-
dicted states from a single state by prediction size
implicitly in line 10 of Algorithm 1.

To improve the prediction accuracy, we introduce
a more sophisticated model. The cost of the sibling
2nd-order model is defined as the relationship be-
tween c, h and a sibling node sib:

cp(h, sib, c) = θp · fp(h, sib, c). (4)

The 1st- and sibling 2nd-order models are the same
as McDonald and Pereira (2006)’s definitions, ex-
cept the cost factors of the sibling 2nd-order model.
The cost factors for a tree structure in Figure 4 are
defined as follows:

cp(h,−, l1) +

l−1∑
y=1

cp(h, ly, ly+1)

+cp(h,−, r1) +

m−1∑
y=1

cp(h, ry, ry+1).

This is different from McDonald and Pereira (2006)
in that the cost factors for left children are calcu-
lated from left to right, while those in McDonald and
Pereira (2006)’s definition are calculated from right
to left. This is because our top-down parser gener-
ates left children from left to right. Note that the
cost of weighted prediction model in this section is
incrementally calculated by using only the informa-
tion on the current state, thus the condition of state
merge in Equation 2 remains unchanged.

5.3 Weighted Deductive System
We extend deductive system to a weighted one, and
introduce forward cost and inside cost (Stolcke,

1995; Huang and Sagae, 2010). The forward cost is
the total cost of a sequence from an initial state to the
end state. The inside cost is the cost of a top tree s0

in stack S. We define these costs using a combina-
tion of stack-based model and weighted prediction
model. The forward and inside costs of the combi-
nation model are as follows:{

cfw = cfw
s + cfw

p
cin = cin

s + cin
p

(5)

where cfw
s and cin

s are a forward cost and an inside
cost for stack-based model, and cfw

p and cin
p are a for-

ward cost and an inside cost for weighted prediction
model. We add the following tuple of costs to a state:

(cfw
s , cin

s , cfw
p , cin

p ).

For each action, we define how to efficiently cal-
culate the forward and inside costs3 , following Stol-
cke (1995) and Huang and Sagae (2010)’s works. In
either case of predx or predy,

(cfw
s , , cfw

p , )

(cfw
s + λ, 0, cfw

p + cp(s0.h,nk), 0)

where

λ =

{
θs · fs,predx(i, h, j, S) if predx
θs · fs,predy(i, h, j, S) if predy

(6)

In the case of scan,

(cfw
s , cin

s , cfw
p , cin

p )

(cfw
s + ξ, cin

s + ξ, cfw
p , cin

p )

where
ξ = θs · fs,scan(i, h, j, S). (7)

In the case of comp,

(c′fws , c′ins , c′fwp , c′inp ) (cfw
s , cin

s , cfw
p , cin

p )

(c′fws + cin
s + µ, c′ins + cin

s + µ,

c′
fw
p + cin

p + cp(s
′
0.h, s0.h),

c′
in
p + cin

p + cp(s
′
0.h, s0.h))

where

µ = θs · fs,comp(i, h, j, S) + θs · fs,pred ( , h′, j′, S′).
(8)

3For brevity, we present the formula not by 2nd-order model
as equation 4 but a 1st-order one for weighted prediction.
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Pred takes either predx or predy. Beam search is
performed based on the following linear order for
the two states p and p′ at the same step, which have
(cfw, cin) and (c′fw, c′in) respectively:

p ≻ p′ iff cfw < c′
fw or cfw = c′

fw ∧ cin < c′
in
. (9)

We prioritize the forward cost over the inside cost
since forward cost pertains to longer action sequence
and is better suited to evaluate hypothesis states than
inside cost (Nederhof, 2003).

5.4 FIRST Function for Lookahead

Top-down backtrack parser usually reduces back-
tracking by precomputing the set FIRST(·) (Aho and
Ullman, 1972). We define the set FIRST(·) for our
top-down dependency parser:

FIRST(t’) = {ld.t|ld ∈ lmdescendant(Tree, t’)

Tree ∈ Corpus} (10)

where t’ is a POS-tag, Tree is a correct depen-
dency tree which exists in Corpus, a function
lmdescendant(Tree, t’) returns the set of the leftmost
descendant node ld of each nodes in Tree whose
POS-tag is t’, and ld.t denotes a POS-tag of ld.
Though our parser does not backtrack, it looks ahead
when selecting possible child nodes at the prediction
step by using the function FIRST. In case of predx:

∀k : i ≤ k < h ∧ ni.t ∈ FIRST(nk.t)
state p︷ ︸︸ ︷

ℓ : ⟨i, h, j, sd|...|s0⟩ :

ℓ + 1 : ⟨i, k, h, sd−1|...|s0|nk⟩ : {p}

where ni.t is a POS-tag of the node ni on the top of
the queue, and nk.t is a POS-tag in kth position of
an input nodes. The case for predy is the same. If
there are no nodes which satisfy the condition, our
top-down parser creates new states for all nodes, and
pushes them into hypo in line 9 of Algorithm 1.

6 Time Complexity

Our proposed top-down algorithm has three kinds
of actions which are scan, comp and predict. Each
scan and comp actions occurs n times when parsing
a sentence with the length n. Predict action also oc-
curs n times in which a child node is selected from

a node sequence in the input queue. Thus, the algo-
rithm takes the following times for prediction:

n + (n− 1) + · · ·+ 1 =
n∑
i

i =
n(n + 1)

2
. (11)

As n2 for prediction is the most dominant factor, the
time complexity of the algorithm is O(n2) and that
of the algorithm with beam search is O(n2 ∗ b).

7 Related Work

Alshawi (1996) proposed head automaton which
recognizes an input sentence top-down. Eisner
and Satta (1999) showed that there is a cubic-time
parsing algorithm on the formalism of the head
automaton grammars, which are equivalently con-
verted into split-head bilexical context-free gram-
mars (SBCFGs) (McAllester, 1999; Johnson, 2007).
Although our proposed algorithm does not employ
the formalism of SBCFGs, it creates left children
before right children, implying that it does not have
spurious ambiguities as well as parsing algorithms
on the SBCFGs. Head-corner parsing algorithm
(Kay, 1989) creates dependency tree top-down, and
in this our algorithm has similar spirit to it.

Yamada and Matsumoto (2003) applied a shift-
reduce algorithm to dependency analysis, which is
known as arc-standard transition-based algorithm
(Nivre, 2004). Nivre (2003) proposed another
transition-based algorithm, known as arc-eager al-
gorithm. The arc-eager algorithm processes right-
dependent top-down, but this does not involve the
prediction of lower nodes from higher nodes. There-
fore, the arc-eager algorithm is a totally bottom-up
algorithm. Zhang and Clark (2008) proposed a com-
bination approach of the transition-based algorithm
with graph-based algorithm (McDonald and Pereira,
2006), which is the same as our combination model
of stack-based and prediction models.

8 Experiments

Experiments were performed on the English Penn
Treebank data and the Chinese CoNLL-06 data. For
the English data, we split WSJ part of it into sections
02-21 for training, section 22 for development and
section 23 for testing. We used Yamada and Mat-
sumoto (2003)’s head rules to convert phrase struc-
ture to dependency structure. For the Chinese data,
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time accuracy complete root
McDonald05,06 (2nd) 0.15 90.9, 91.5 37.5, 42.1 –
Koo10 (Koo and Collins, 2010) – 93.04 – –
Hayashi11 (Hayashi et al., 2011) 0.3 92.89 – –
2nd-MST∗ 0.13 92.3 43.7 96.0
Goldberg10 (Goldberg and Elhadad, 2010) – 89.7 37.5 91.5
Kitagawa10 (Kitagawa and Tanaka-Ishii, 2010) – 91.3 41.7 –
Zhang08 (Sh beam 64) – 91.4 41.8 –
Zhang08 (Sh+Graph beam 64) – 92.1 45.4 –
Huang10 (beam+DP) 0.04 92.1 – –
Huang10∗ (beam 8, 16, 32+DP) 0.03, 0.06, 0.10 92.3, 92.27, 92.26 43.5, 43.7, 43.8 96.0, 96.0, 96.1
Zhang11 (beam 64) (Zhang and Nivre, 2011) – 93.07 49.59 –
top-down∗ (beam 8, 16, 32+pred 5+DP) 0.07, 0.12, 0.22 91.7, 92.3, 92.5 45.0, 45.7, 45.9 94.5, 95.7, 96.2
top-down∗ (beam 8, 16, 32+pred 5+DP+FIRST) 0.07, 0.12, 0.22 91.9, 92.4, 92.6 45.0, 45.3, 45.5 95.1, 96.2, 96.6

Table 1: Results for test data: Time measures the parsing time per sentence in seconds. Accuracy is an unlabeled
attachment score, complete is a sentence complete rate, and root is a correct root rate. ∗ indicates our experiments.
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Figure 5: Scatter plot of parsing time against sentence
length, comparing with top-down, 2nd-MST and shift-
reduce parsers (beam size: 8, pred size: 5)

we used the information of words and fine-grained
POS-tags for features. We also implemented and ex-
perimented Huang and Sagae (2010)’s arc-standard
shift-reduce parser. For the 2nd-order Eisner-Satta
algorithm, we used MSTParser (McDonald, 2012).

We used an early update version of averaged per-
ceptron algorithm (Collins and Roark, 2004) for
training of shift-reduce and top-down parsers. A
set of feature templates in (Huang and Sagae, 2010)
were used for the stack-based model, and a set of
feature templates in (McDonald and Pereira, 2006)
were used for the 2nd-order prediction model. The
weighted prediction and stack-based models of top-
down parser were jointly trained.

8.1 Results for English Data

During training, we fixed the prediction size and
beam size to 5 and 16, respectively, judged by pre-

accuracy complete root
oracle (sh+mst) 94.3 52.3 97.7
oracle (top+sh) 94.2 51.7 97.6

oracle (top+mst) 93.8 50.7 97.1
oracle (top+sh+mst) 94.9 55.3 98.1

Table 2: Oracle score, choosing the highest accuracy
parse for each sentence on test data from results of top-
down (beam 8, pred 5) and shift-reduce (beam 8) and
MST(2nd) parsers in Table 1.

accuracy complete root
top-down (beam:8, pred:5) 90.9 80.4 93.0

shift-reduce (beam:8) 90.8 77.6 93.5
2nd-MST 91.4 79.3 94.2

oracle (sh+mst) 94.0 85.1 95.9
oracle (top+sh) 93.8 84.0 95.6

oracle (top+mst) 93.6 84.2 95.3
oracle (top+sh+mst) 94.7 86.5 96.3

Table 3: Results for Chinese Data (CoNLL-06)

liminary experiments on development data. After
25 iterations of perceptron training, we achieved
92.94 unlabeled accuracy for top-down parser with
the FIRST function and 93.01 unlabeled accuracy
for shift-reduce parser on development data by set-
ting the beam size to 8 for both parsers and the pre-
diction size to 5 in top-down parser. These trained
models were used for the following testing.

We compared top-down parsing algorithm with
other data-driven parsing algorithms in Table 1.
Top-down parser achieved comparable unlabeled ac-
curacy with others, and outperformed them on the
sentence complete rate. On the other hand, top-
down parser was less accurate than shift-reduce
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No.717 Little Lily , as Ms. Cunningham calls7 herself in the book , really was14 n’t ordinary .

shift-reduce 2 7 2 2 6 4 14 7 7 11 9 7 14 0 14 14 14
2nd-MST 2 14 2 2 6 7 4 7 7 11 9 2 14 0 14 14 14
top-down 2 14 2 2 6 7 4 7 7 11 9 2 14 0 14 14 14

correct 2 14 2 2 6 7 4 7 7 11 9 2 14 0 14 14 14

No.127 resin , used to make garbage bags , milk jugs , housewares , toys and meat packaging25 , among other items .
shift-reduce 25 9 9 13 11 15 13 25 18 25 25 25 25 25 25 25 7 25 25 29 27 4

2nd-MST 29 9 9 13 11 15 13 29 18 29 29 29 29 25 25 25 29 25 25 29 7 4
top-down 7 9 9 13 11 15 25 25 18 25 25 25 25 25 25 25 13 25 25 29 27 4

correct 7 9 9 13 11 15 25 25 18 25 25 25 25 25 25 25 13 25 25 29 27 4

Table 4: Two examples on which top-down parser is superior to two bottom-up parsers: In correct analysis, the boxed
portion is the head of the underlined portion. Bottom-up parsers often mistake to capture the relation.

parser on the correct root measure. In step 0, top-
down parser predicts a child node, a root node of
a complete tree, using little syntactic information,
which may lead to errors in the root node selection.
Therefore, we think that it is important to seek more
suitable features for the prediction in future work.

Figure 5 presents the parsing time against sen-
tence length. Our proposed top-down parser is the-
oretically slower than shift-reduce parser and Fig-
ure 5 empirically indicates the trends. The domi-
nant factor comes from the score calculation, and
we will leave it for future work. Table 2 shows
the oracle score for test data, which is the score
of the highest accuracy parse selected for each sen-
tence from results of several parsers. This indicates
that the parses produced by each parser are differ-
ent from each other. However, the gains obtained by
the combination of top-down and 2nd-MST parsers
are smaller than other combinations. This is because
top-down parser uses the same features as 2nd-MST
parser, and these are more effective than those of
stack-based model. It is worth noting that as shown
in Figure 5, our O(n2∗b) (b = 8) top-down parser is
much faster than O(n3) Eisner-Satta CKY parsing.

8.2 Results for Chinese Data (CoNLL-06)

We also experimented on the Chinese data. Fol-
lowing English experiments, shift-reduce parser was
trained by setting beam size to 16, and top-down
parser was trained with the beam size and the predic-
tion size to 16 and 5, respectively. Table 3 shows the
results on the Chinese test data when setting beam
size to 8 for both parsers and prediction size to 5 in
top-down parser. The trends of the results are almost

the same as those of the English results.

8.3 Analysis of Results

Table 4 shows two interesting results, on which top-
down parser is superior to either shift-reduce parser
or 2nd-MST parser. The sentence No.717 contains
an adverbial clause structure between the subject
and the main verb. Top-down parser is able to han-
dle the long-distance dependency while shift-reudce
parser cannot correctly analyze it. The effectiveness
on the clause structures implies that our head-driven
parser may handle non-projective structures well,
which are introduced by Johansonn’s head rule (Jo-
hansson and Nugues, 2007). The sentence No.127
contains a coordination structure, which it is diffi-
cult for bottom-up parsers to handle, but, top-down
parser handles it well because its top-down predic-
tion globally captures the coordination.

9 Conclusion

This paper presents a novel head-driven parsing al-
gorithm and empirically shows that it is as practi-
cal as other dependency parsing algorithms. Our
head-driven parser has potential for handling non-
projective structures better than other non-projective
dependency algorithms (McDonald et al., 2005; At-
tardi, 2006; Nivre, 2008b; Koo et al., 2010). We are
in the process of extending our head-driven parser
for non-projective structures as our future work.
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Abstract

The language MIX consists of all strings over
the three-letter alphabet {a, b, c} that contain
an equal number of occurrences of each letter.
We prove Joshi’s (1985) conjecture that MIX
is not a tree-adjoining language.

1 Introduction

The language

MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }
has attracted considerable attention in computational
linguistics.1 This language was used by Bach (1981)
in an exercise to show that the permutation closure
of a context-free language is not necessarily context-
free.2 MIX may be considered a prototypical exam-
ple of free word order language, but, as remarked by
Bach (1981), it seems that no human language “has
such complete freedom for order”, because “typi-
cally, certain constituents act as ‘boundary domains’
for scrambling”. Joshi (1985) refers to MIX as rep-
resenting “an extreme case of the degree of free
word order permitted in a language”, which is “lin-
guistically not relevant”. Gazdar (1988) adopts a
similar position regarding the relation between MIX

1If w is a string and d is a symbol, we write |w|d to mean the
number of occurrences of d in w. We will use the notation |w| to
denote the length of w, i.e., the total number of occurrences of
symbols in w.

2According to Gazdar (1988), “MIX was originally de-
scribed by Emmon Bach and was so-dubbed by students in
the 1983 Hampshire College Summer Studies in Mathematics”.
According to Bach (1988), the name MIX was “the happy in-
vention of Bill Marsh”.

and natural languages, noting that “it seems rather
unlikely that any natural language will turn out to
have a MIX-like characteristic”.
It therefore seems natural to assume that lan-

guages such as MIX should be excluded from any
class of formal languages that purports to be a tight
formal characterization of the possible natural lan-
guages. It was in this spirit that Joshi et al. (1991)
suggested that MIX should not be in the class of so-
called mildly context-sensitive languages:

“[mildly context-sensitive grammars] cap-
ture only certain kinds of dependencies,
e.g., nested dependencies and certain lim-
ited kinds of cross-serial dependencies
(for example, in the subordinate clause
constructions in Dutch or some variations
of them, but perhaps not in the so-called
MIX (or Bach) language) . . . .”

Mild context-sensitivity is an informally defined no-
tion first introduced by Joshi (1985); it consists of
the three conditions of limited cross-serial depen-
dencies, constant growth, and polynomial parsing.
The first condition is only vaguely formulated, but
the other two conditions are clearly satisfied by tree-
adjoining grammars. The suggestion of Joshi et al.
(1991) was that MIX should be regarded as a vio-
lation of the condition of limited cross-serial depen-
dencies.
Joshi (1985) conjectured rather strongly that MIX

is not a tree-adjoining language: “TAGs cannot gen-
erate this language, although for TAGs the proof is
not in hand yet”. An even stronger conjecture was
made by Marsh (1985), namely, that MIX is not an
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indexed language.3 (It is known that the indexed
languages properly include the tree-adjoining lan-
guages.) Joshi et al. (1991), however, expressed a
more pessimistic view about the conjecture:

“It is not known whether TAG . . . can
generate MIX. This has turned out to be
a very difficult problem. In fact, it is
not even known whether an IG [(indexed
grammar)] can generate MIX.”

This open question has become all the more press-
ing after a recent result by Salvati (2011). This re-
sult says that MIX is in the class of multiple context-
free languages (Seki et al., 1991), or equivalently,
languages of linear context-free rewriting systems
(Vijay-Shanker et al., 1987; Weir, 1988), which has
been customarily regarded as a formal counterpart
of the informal notion of a mildly context-sensitive
language.4 It means that either we have to aban-
don the identification of multiple context-free lan-
guages with mildly context-sensitive languages, or
we should revise our conception of limited cross-
serial dependencies and stop regarding MIX-like
languages as violations of this condition. Surely, the
resolution of Joshi’s (1985) conjecture should cru-
cially affect the choice between these two alterna-
tives.
In this paper, we prove that MIX is not a tree-

adjoining language. Our proof is cast in terms of the
formalism of head grammar (Pollard, 1984; Roach,
1987), which is known to be equivalent to TAG
(Vijay-Shanker and Weir, 1994). The key to our
proof is the notion of an n-decomposition of a string
over {a, b, c}, which is similar to the notion of a
derivation in head grammars, but independent of any
particular grammar. The parameter n indicates how
unbalanced the occurrence counts of the three let-
ters can be at any point in a decomposition. We first

3The relation of MIX with indexed languages is also of in-
terest in combinatorial group theory. Gilman (2005) remarks
that “it does not . . . seem to be known whether or not the
word problem of Z × Z is indexed”, alluding to the language
O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā, |w|b = |w|b̄ }. Since O2 and
MIX are rationally equivalent, O2 is indexed if and only if MIX
is indexed (Salvati, 2011).

4Joshi et al. (1991) presented linear context-free rewriting
systems as mildly context-sensitive grammars. Groenink (1997)
wrote “The class of mildly context-sensitive languages seems to
be most adequately approached by LCFRS.”

show that if MIX is generated by some head gram-
mar, then there is an n such that every string in MIX
has an n-decomposition. We then prove that if every
string in MIX has an n-decomposition, then every
string in MIX must have a 2-decomposition. Finally,
we exhibit a particular string in MIX that has no 2-
decomposition. The length of this string is 87, and
the fact that it has no 2-decomposition was first ver-
ified by a computer program accompanying this pa-
per. We include here a rigorous, mathematical proof
of this fact not relying on the computer verification.

2 Head Grammars

A head grammar is a quadruple G = (N,Σ, P, S),
where N is a finite set of nonterminals, Σ is a fi-
nite set of terminal symbols (alphabet), S is a distin-
guished element of N, and P is a finite set of rules.
Each nonterminal is interpreted as a binary predicate
on strings in Σ∗. There are four types of rules:

A(x1x2y1, y2)← B(x1, x2),C(y1, y2)

A(x1, x2y1y2)← B(x1, x2),C(y1, y2)

A(x1y1, y2x2)← B(x1, x2),C(y1, y2)

A(w1,w2)←
Here, A, B,C ∈ N, x1, x2, y1, y2 are variables, and
w1,w2 ∈ Σ ∪ {ε}.5 Rules of the first three types are
binary rules and rules of the last type are terminat-
ing rules. This definition of a head grammar actu-
ally corresponds to a normal form for head gram-
mars that appears in section 3.3 of Vijay-Shanker
and Weir’s (1994) paper.6

The rules of head grammars are interpreted as im-
plications from right to left, where variables can be
instantiated to any terminal strings. Each binary

5We use ε to denote the empty string.
6This normal form is also mentioned in chapter 5, section 4

of Kracht’s (2003) book. The notation we use to express rules
of head grammars is borrowed from elementary formal sys-
tems (Smullyan, 1961; Arikawa et al., 1992), also known as
literal movement grammars (Groenink, 1997; Kracht, 2003),
which are logic programs over strings. In Vijay-Shanker and
Weir’s (1994) notation, the four rules are expressed as follows:

A→ C2,2(B,C)

A→ C1,2(B,C)

A→ W(B,C)

A→ C1,1(w1 ↑ w2)
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rule involves an operation that combines two pairs
of strings to form a new pair. The operation in-
volved in the third rule is known as wrapping; the
operations involved in the first two rules we call left
concatenation and right concatenation, respectively.
If G = (N,Σ, P, S) is a head grammar, A ∈ N, and
w1,w2 ∈ Σ∗, then we say that a fact A(w1,w2) is
derivable and write �G A(w1,w2), if A(w1,w2) can
be inferred using the rules in P. More formally, we
have �G A(w1,w2) if one of the following conditions
holds:

• A(w1,w2)← is a terminating rule in P.

• �G B(u1, u2), �G C(v1, v2), and there is a bi-
nary rule A(α1, α2) ← B(x1, x2),C(y1, y2) in
P such that (w1,w2) is the result of substitut-
ing u1, u2, v1, v2 for x1, x2, y1, y2, respectively,
in (α1, α2).

The language of G is

L(G) = {w1w2 | �G S(w1,w2) }.
Example 1. Let G = (N,Σ, P, S), where N =

{S, A, A′,C,D, E, F}, Σ = {a, ā, #}, and P consists of
the following rules:

S(x1y1, y2x2)← D(x1, x2),C(y1, y2)

C(ε, #)←
D(ε, ε)←
D(x1y1, y2x2)← F(x1, x2),D(y1, y2)

F(x1y1, y2x2)← A(x1, x2), E(y1, y2)

A(a, a) ←
E(x1y1, y2x2)← D(x1, x2), A′(y1, y2)
A′(ā, ā)←

We have L(G) = {w#wR | w ∈ D{a,ā} }, where D{a,ā}
is the Dyck language over {a, ā} and wR is the re-
versal of w. All binary rules of this grammar are
wrapping rules.

If �G A(w1,w2), a derivation tree for A(w1,w2) is
a finite binary tree whose nodes are labeled by facts
that are derived during the derivation of A(w1,w2).
A derivation tree for A(w1,w2) represents a “proof”
of �G A(w1,w2), and is formally defined as follows:

• If A(w1,w2)← is a terminating rule, then a tree
with a single node labeled by A(w1,w2) is a
derivation tree for A(w1,w2).

S(aaāāaā, #āaāāaa)

D(aaāāaā, āaāāaa)

F(aaāā, āāaa)

A(a, a) E(aāā, āāa)

D(aā, āa)

F(aā, āa)

A(a, a) E(ā, ā)

D(ε, ε) A′(ā, ā)

D(ε, ε)

A′(ā, ā)

D(aā, āa)

F(aā, āa)

A(a, a) E(ā, ā)

D(ε, ε) A′(ā, ā)

D(ε, ε)

C(ε, #)

Figure 1: An example of a derivation tree of a head gram-
mar.

• If �G A(w1,w2) is derived from �G B(u1, u2)
and �G C(v1, v2) by some binary rule, then a
binary tree whose root is labeled by A(w1,w2)
and whose immediate left (right) subtree is a
derivation tree for B(u1, u2) (for C(v1, v2), re-
spectively) is a derivation tree for A(w1,w2).

If w ∈ L(G), a derivation tree for w is a derivation
tree for some S(w1,w2) such that w1w2 = w.

Example 1 (continued). Figure 1 shows a derivation
tree for aaāāaā#āaāāaa.

The following lemma should be intuitively clear
from the definition of a derivation tree:

Lemma 1. Let G = (N,Σ, P, S) be a head grammar
and A be a nonterminal in N. Suppose that w ∈
L(G) has a derivation tree in which a fact A(v1, v2)
appears as a label of a node. Then there are strings
z0, z1, z2 with the following properties:

(i) w = z0v1z1v2z2, and

(ii) �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G).
Proof. We can prove by straightforward induction
on the height of derivation trees that whenever
A(v1, v2) appears on a node in a derivation tree for
B(w1,w2), then there exist z0, z1, z2, z3 that satisfy
one of the following conditions:

(a) w1 = z0v1z1v2z2, w2 = z3, and �G A(u1, u2)
implies �G B(z0u1z1u2z2, z3).

(b) w1 = z0, w2 = z1v1z2v2z3, and �G A(u1, u2)
implies �G B(z0, z1u1z2u2z3).
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(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)
implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammarG use-
less if A does not appear in any derivation trees for
strings in L(G). Clearly, useless nonterminals can be
eliminated from any head grammar without affecting
the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-
tegers. Define functions ψ1, ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w), ψ2(w)).

Clearly, we have ψ(a) = (1, 0), ψ(b) = (0, 1), ψ(c) =
(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =
ψ(w1)+ψ(w2). In other words, ψ is a homomorphism
from the free monoid Σ∗ to Z × Z with addition as
the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for
each nonterminal A of G, there is a derivation tree
for some string in L(G) in which A appears in a node
label. By Lemma 1, there are strings z0, z1, z2 such
that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since
L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and
hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree
satisfying the following conditions:

• the root is labeled by some (w1,w2) such that
w = w1w2,

• each internal node whose left and right children
are labeled by (u1, u2) and (v1, v2), respectively,
is labeled by one of (u1u2v1, v2), (u1, u2v1v2),
(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such
that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-
tion is obtained from the labels of its children by left
concatenation, right concatenation, or wrapping. It
is easy to see that ifG is a head grammar over the al-
phabet Σ, any derivation for w ∈ L(G) induces a de-
composition ofw. (Just strip off nonterminals.) Note
that unlike with derivation trees, we have placed no
bound on the length of a string that may appear on
a leaf node of a decomposition. This will be conve-
nient in some of the proofs below.
When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of
w an n-decomposition if each of its nodes is labeled
by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].
Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.
Proof. We may suppose without loss of generality
that G has no useless nonterminal. Since MIX =
L(G), there is a function ΨG satisfying the condition
of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation
tree for w ∈ L(G) induces an n-decomposition of
w. �

If w = d1 . . . dm ∈ Σm, then for 0 ≤ i ≤ j ≤ m,
we write w[i, j] to refer to the substring di+1 . . . dj
of w. (As a special case, we have w[i, i] = ε.) The
following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-
decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = a
n,

γn(b) = b
n,

γn(c) = c
n.
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Clearly, γn is an injection, and we have ψ(γn(v)) =
n · ψ(v) for all v ∈ Σ∗.
Let w ∈ MIX with |w| = m. Then w′ = γn(w) ∈

MIX and |w′| = mn. By assumption, w′ has an n-
decomposition D. We assign a 4-tuple (i, j, k, l) of
natural numbers to each node of D in such a way
that (w′[i, j],w′[k, l]) equals the label of the node.
This is done recursively in an obvious way, start-
ing from the root. If the root is labeled by (w1,w2),
then it is assigned (0, |w1|, |w1|, |w1w2|). If a node is
assigned a tuple (i, j, k, l) and has two children la-
beled by (u1, u2) and (v1, v2), respectively, then the
4-tuples assigned to the children are determined ac-
cording to how (u1, u2) and (v1, v2) are combined at
the parent node:

u1 u2 v1 v2
i j k l

i + |u1| i + |u1u2|

u1 u2 v1 v2
i j k l

k + |u2| k + |u2v1|

u1 v1 v2 u2
i j k l

i + |u1| k + |v2|
Now define a function f : [0,mn] → { kn | 0 ≤

k ≤ m } by

f (i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i if n divides i,

n · �i/n
 if n does not divide i and

w′[i − 1, i] ∈ {a, b},
n · �i/n� if n does not divide i and

w′[i − 1, i] = c.
Clearly, f is weakly increasing in the sense that i ≤ j
implies f (i) ≤ f ( j). LetD′ be the result of replacing
the label of each node inD by

(w′[ f (i), f ( j)],w′[ f (k), f (l)]),

where (i, j, k, l) is the 4-tuple of natural numbers as-
signed to that node by the above procedure. It is easy
to see that D′ is another decomposition of w′. Note
that since each of f (i), f ( j), f (k), f (l) is an integral
multiple of n, we always have

(w′[ f (i), f ( j)],w′[ f (k), f (l)]) = (γn(u), γn(v))

for some substrings u, v of w. This implies that for
h = 1, 2,

ψh(w
′[ f (i), f ( j)]w′[ f (k), f (l)])

is an integral multiple of n.

Claim. D′ is a 2n-decomposition.
We have to show that every node label (v1, v2) in D′
satisfies ψ(v1v2) ∈ [−2n, 2n] × [−2n, 2n]. For h =
1, 2, define ϕh : [0,mn] × [0,mn]→ Z as follows:

ϕh(i, j) =

⎧
⎪⎪⎨
⎪⎪⎩

ψh(w′[i, j]) if i ≤ j,

−ψh(w′[ j, i]) otherwise.

Then it is easy to see that for all i, j, i′, j′ ∈ [0,mn],

ϕh(i
′, j′) = ϕh(i′, i) + ϕh(i, j) + ϕh( j, j′).

Inspecting the definition of the function f , we can
check that

ϕh( f (i), i) ∈ [0, n − 1]
always holds. Suppose that (i, j, k, l) is assigned
to a node in D. By assumption, we have
ψh(w′[i, j]w′[k, l]) ∈ [−n, n], and

ψh(w
′[ f (i), f ( j)]w′[ f (k), f (l)])

= ψh(w
′[ f (i), f ( j)]) + ψh(w′[ f (k), f (l)])

= ϕh( f (i), f ( j)) + ϕh( f (k), f (l))

= ϕh( f (i), i) + ϕh(i, j) + ϕh( j, f ( j))

+ ϕh( f (k), k) + ϕh(k, l) + ϕh(l, f (l))

= ϕh( f (i), i) + ψh(w
′[i, j]) + ϕh( j, f ( j))

+ ϕh( f (k), k) + ψh(w
′[k, l]) + ϕh(l, f (l))

= ψh(w
′[i, j]w′[k, l]) + ϕh( f (i), i) + ϕh( f (k), k)

+ ϕh( j, f ( j)) + ϕh(l, f (l))

∈ { p + q1 + q2 + r1 + r2 | p ∈ [−n, n],
q1, q2 ∈ [0, n − 1], r1, r2 ∈ [−n + 1, 0] }

= [−3n + 2, 3n − 2].

Since ψh(w′[ f (i), f ( j)]w′[ f (k), f (l)]) must be an in-
tegral multiple of n, it follows that

ψh(w
′[ f (i), f ( j)]w′[ f (k), f (l)]) ∈ {−2n,−n, 0, n, 2n}.

This establishes the claim.
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We have shown that each node ofD′ is labeled by
a pair of strings of the form (γn(u), γn(v)) such that

ψ(γn(u)γn(v)) ∈
{−2n,−n, 0, n, 2n} × {−2n,−n, 0, n, 2n}.

Now it is easy to see that inverting the homomor-
phism γn at each node of D′

(γn(u), γn(v)) �→ (u, v)

gives a 2-decomposition of w. �

4 A String in MIX That Has No
2-Decomposition

By Lemmas 3 and 4, in order to prove that there is no
head grammar for MIX, it suffices to exhibit a string
in MIX that has no 2-decomposition. The following
is such a string:

z = a5b14a19c29b15a5.

In this section, we prove that the string z has no 2-
decomposition.7

It helps to visualize strings in MIX as closed
curves in a plane. If w is a string in MIX, by plotting
the coordinates of ψ(v) for each prefix v of w, we can
represent w by a closed curve C together with a map
t : [0, |w|] → C. The representation of the string z is
given in Figure 2.
Let us call a string w ∈ {a, b, c}∗ such that ψ(w) ∈

[−2, 2] × [−2, 2] long if w contains all three letters,
and short otherwise. (If ψ(w) � [−2, 2] × [−2, 2],
then w is neither short nor long.) It is easy to see
that a short string w always satisfies

|w|a ≤ 4, |w|b ≤ 4, |w|c ≤ 2.

The maximal length of a short string is 6. (For ex-
ample, a4c2 and b4c2 are short strings of length 6.)
We also call a pair of strings (v1, v2) long (or short)
if v1v2 is long (or short, respectively).
According to the definition of an n-

decomposition, a leaf node in a 2-decomposition

7This fact was first verified by the computer program ac-
companying this paper. The program, written in C, imple-
ments a generic, memoized top-down recognizer for the lan-
guage {w ∈ MIX | w has a 2-decomposition }, and does not rely
on any special properties of the string z.

0 5

19 38

67

82
87 a5

b14

a19

c29

b15

a5

Figure 2: Graphical representation of the string z =
a5b14a19c29b15a5. Note that every point (i, j) on the di-
agonal segment has i > 7 or j < −2.

must be labeled by a short pair of strings. We call
a 2-decomposition normal if the label of every
internal node is long. Clearly, any 2-decomposition
can be turned into a normal 2-decomposition by
deleting all nodes that are descendants of nodes
with short labels.
One important property of the string z is the fol-

lowing:

Lemma 5. If z = x1vx2 and ψ(v) ∈ [−2, 2]× [−2, 2],
then either v or x1x2 is short.

Proof. This is easy to see from the graphical rep-
resentation in Figure 2. If a substring v of z has
ψ(v) ∈ [−2, 2] × [−2, 2], then the subcurve corre-
sponding to v must have initial and final coordi-
nates whose difference lies in [−2, 2] × [−2, 2]. If
v contains all three letters, then it must contain as
a substring at least one of ba19c, ac29b, and cb15a.
The only way to satisfy both these conditions is to
have the subcurve corresponding to v start and end
very close to the origin, so that x1x2 is short. (Note
that the distance between the coordinate (5, 0) corre-
sponding to position 5 of z and the diagonal segment
corresponding to the substring c29 is large enough
that it is impossible for v to start at position 5 and
end in the middle of c29 without violating the condi-
tion ψ(v) ∈ [−2, 2] × [−2, 2].) �

Lemma 5 leads to the following observation. Let
us call a decomposition of a string concatenation-
free if each of its non-leaf labels is the wrapping of
the labels of the children.
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Lemma 6. If z has a 2-decomposition, then z has a
normal, concatenation-free 2-decomposition.

Proof. Let D be a 2-decomposition of z. Without
loss of generality, we may assume that D is nor-
mal. Suppose that D contains a node μ whose la-
bel is the left or right concatenation of the labels
of its children, (u1, u2) and (v1, v2). We only con-
sider the case of left concatenation since the case
of right concatenation is entirely analogous; so we
suppose that the node μ is labeled by (u1u2v1, v2).
It follows that z = x1u1u2x2 for some x1, x2, and
by Lemma 5, either u1u2 or x1x2 is short. If u1u2
is short, then the left child of μ is a leaf because
D is normal. We can replace its label by (u1u2, ε);
the label (u1u2v1, v2) of μ will now be the wrapping
(as well as left concatenation) of the two child la-
bels, (u1u2, ε) and (v1, v2). If x1x2 is short, then we
can combine by wrapping a single node labeled by
(x1, x2) with the subtree ofD rooted at the left child
of μ, to obtain a new 2-decomposition of z. In ei-
ther case, the result is a normal 2-decomposition of
z with fewer instances of concatenation. Repeat-
ing this procedure, we eventually obtain a normal,
concatenation-free 2-decomposition of z. �

Another useful property of the string z is the fol-
lowing:

Lemma 7. Suppose that the following conditions
hold:

(i) z = x1u1v1yv2u2x2,

(ii) x1yx2 is a short string, and

(iii) both ψ(u1u2) and ψ(v1v2) are in [−2, 2] ×
[−2, 2].

Then either (u1, u2) or (v1, v2) is short.

Proof. Suppose (u1, u2) and (v1, v2) are both long.
Since (u1, u2) and (v1, v2) must both contain c, either
u1 ends in c and v1 starts in c, or else v2 ends in c
and u2 starts in c.
Case 1. u1 ends in c and v1 starts in c. Since

(v1, v2) must contain at least one occurrence of a,
the string v1yv2 must contain cb15a as a substring.

a5b14 a19 c29 b15 a5

v1yv2

Since x1yx2 is short, we have |y|b ≤ 4. It follows that
|v1v2|b ≥ 11. But v1yv2 is a substring of c28b15a5,
so |v1v2|a ≤ 5. This clearly contradicts ψ(v1v2) ∈
[−2, 2] × [−2, 2].
Case 2. v2 ends in c and u2 starts in c. In this

case, cb15a5 is a suffix of u2x2. Since x1yx2 is short,
|x2|a ≤ 4. This means that cb15a is a substring of u2
and hence |u2|b = 15.

a5b14 a19 c29 b15 a5

u2 x2v1yv2u1

On the other hand, since (v1, v2) must contain at least
one occurrence of b, the string v1yv2 must contain
ba19c as a substring. This implies that |u1u2|a ≤ 10.
But since |u2|b = 15, we have |u1u2|b ≥ 15. This
clearly contradicts ψ(u1u2) ∈ [−2, 2] × [−2, 2]. �

We now assume that z has a normal,
concatenation-free 2-decomposition D and de-
rive a contradiction. We do this by following
a certain path in D. Starting from the root, we
descend in D, always choosing a non-leaf child, as
long as there is one. We show that this path will
never terminate.
The i-th node on the path will be denoted by

μi, counting the root as the 0-th node. The la-
bel of μi will be denoted by (wi,1,wi,2). With each
i, we associate three strings xi,1, yi, xi,2 such that
xi,1wi,1yiwi,2xi,2 = z, analogously to Lemma 1. Since
ψ(wi,1wi,2) ∈ [−2, 2] × [−2, 2] and ψ(z) = (0, 0), we
will always have ψ(xi,1yixi,2) ∈ [−2, 2] × [−2, 2].
Initially, (w0,1,w0,2) is the label of the root μ0 and

x0,1 = y0 = x0,2 = ε. If μi is not a leaf node, let
(ui,1, ui,2) and (vi,1, vi,2) be the labels of the left and
right children of μi, respectively. If the left child
is not a leaf node, we let μi+1 be the left child,
in which case we have (wi+1,1,wi+1,2) = (ui,1, ui,2),
xi+1,1 = xi,1, xi+1,2 = xi,2, and yi+1 = vi,1yvi,2. Oth-
erwise, μi+1 will be the right child of μi, and we
have (wi+1,1,wi+1,2) = (vi,1, vi,2), xi+1,1 = xi,1ui,1,
xi+1,2 = ui,2xi,2, and yi+1 = yi.
The path μ0, μ1, μ2, . . . is naturally divided into

two parts. The initial part of the path consists of
nodes where xi,1yixi,2 is short. Note that x0,1y0x0,2 =
ε is short. As long as xi,1yixi,2 is short, (wi,1,wi,2)
must be long and μi has two children labeled
by (ui,1, ui,2) and (vi,1, vi,2). By Lemma 7, either
(ui,1, ui,2) or (vi,1, vi,2) must be short. Since the length
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of z is 87 and the length of a short string is at most 6,
exactly one of (ui,1, ui,2) and (vi,1, vi,2) must be long.
We must eventually enter the second part of

the path, where xi,1yixi,2 is no longer short. Let
μm be the first node belonging to this part of the
path. Note that at μm, we have ψ(xm,1ymxm,2) =
ψ(xm−1,1ym−1xm−1,2) + ψ(v) for some short string v.
(Namely, v = um−1,1um−1,2 or v = vm−1,1vm−1,2.)
Lemma 8. If u and v are short strings and ψ(uv) ∈
[−2, 2]× [−2, 2], then |uv|d ≤ 4 for each d ∈ {a, b, c}.
Proof. Since u and v are short, we have |u|a ≤
4, |u|b ≤ 4, |u|c ≤ 2 and |v|a ≤ 4, |v|b ≤ 4, |v|c ≤ 2. It
immediately follows that |uv|c ≤ 4. We distinguish
two cases.
Case 1. |uv|c ≤ 2. Since ψ(uv) ∈ [−2, 2] × [−2, 2],

we must have |uv|a ≤ 4 and |uv|b ≤ 4.
Case 2. |uv|c ≥ 3. Since |u|c ≤ 2 and |v|c ≤ 2,

we must have |u|c ≥ 1 and |v|c ≥ 1. Also, ψ(uv) ∈
[−2, 2] × [−2, 2] implies that |uv|a ≥ 1 and |uv|b ≥ 1.
Since u and v are short, it follows that one of the
following two conditions must hold:

(i) |u|a ≥ 1, |u|b = 0 and |v|a = 0, |v|b ≥ 1.
(ii) |u|a = 0, |u|b ≥ 1 and |v|a ≥ 1, |v|b = 0.
In the former case, |uv|a = |u|a ≤ 4 and |uv|b = |v|b ≤
4. In the latter case, |uv|a = |v|a ≤ 4 and |uv|b =
|u|b ≤ 4. �

By Lemma 8, the number of occurrences of each
letter in xm,1ymxm,2 is in [1, 4]. This can only be if

xm,1xm,2 = a
j,

ym = c
kbl,

for some j, k, l ∈ [1, 4]. This means that the string z
must have been split into two strings (w0,1,w0,2) at
the root of D somewhere in the vicinity of position
67 (see Figure 2).
It immediately follows that for all i ≥ m, wi,1 is

a substring of a5b14a19c28 and wi,2 is a substring of
b14a5. We show by induction that for all i ≥ m, the
following condition holds:

(†) ba19c17 is a substring of wi,1.
The condition (†) clearly holds for i = m. Now as-
sume (†). Then (wi,1,wi,2) is long, and μi has left and

right children, labeled by (ui,1, ui,2) and (vi,1, vi,2), re-
spectively, such that wi,1 = ui,1vi,1 and wi,2 = vi,2ui,2.
We consider two cases.
Case 1. ui,1 contains c. Then ba19c is a substring

of ui,1. Since ui,2 is a substring of b14a5, it cannot
contain any occurrences of c. Since ψ1(ui,1ui,2) ∈
[−2, 2], it follows that ui,1 must contain at least 17
occurrences of c; hence ba19c17 is a substring of ui,1.
Since (ui,1, ui,2) is long, (wi+1,1,wi+1,2) = (ui,1, ui,2).
Therefore, the condition (†) holds with i+ 1 in place
of i.
Case 2. ui,1 does not contain c. Then (ui,1, ui,2) is

short and (wi+1,1,wi+1,2) = (vi,1, vi,2). Note that vi,1
must contain at least 17 occurrences of c, but vi,2 is
a substring of b14a5 and hence cannot contain more
than 14 occurrences of b. Since ψ2(vi,1vi,2) ∈ [−2, 2],
it follows that vi,1 must contain at least one occur-
rence of b. Therefore, ba19c17 must be a substring
of vi,1 = wi+1,1, which shows that (†) holds with i+1
in place of i.
We have proved that (†) holds for all i ≥ m. It fol-

lows that for all i, μi has two children and hence μi+1
is defined. This means that the path μ0, μ1, μ2, . . .
is infinite, contradicting the assumption that D is a
2-decomposition of z.
We have proved the following:

Lemma 9. There is a string in MIX that has no 2-
decomposition.

Theorem 10. There is no head grammar G such that
L(G) = MIX.

Proof. Immediate from Lemmas 3, 4, and 9. �
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Abstract

We present a simple and effective framework
for exploiting multiple monolingual treebanks
with different annotation guidelines for pars-
ing. Several types oftransformation patterns
(TP) are designed to capture the systematic an-
notation inconsistencies among different tree-
banks. Based on such TPs, we designquasi-
synchronous grammarfeatures to augment the
baseline parsing models. Our approach can
significantly advance the state-of-the-art pars-
ing accuracy on two widely used target tree-
banks (Penn Chinese Treebank 5.1 and 6.0)
using the Chinese Dependency Treebank as
the source treebank. The improvements are
respectively 1.37% and 1.10% with automatic
part-of-speech tags. Moreover, an indirect
comparison indicates that our approach also
outperforms previous work based on treebank
conversion.

1 Introduction

The scale of available labeled data significantly af-
fects the performance of statistical data-driven mod-
els. As a structural classification problem that is
more challenging than binary classification and se-
quence labeling problems, syntactic parsing is more
prone to suffer from the data sparseness problem.
However, the heavy cost of treebanking typically
limits one single treebank in both scale and genre.
At present, learning from one single treebank seems
inadequate for further boosting parsing accuracy.1

∗Correspondence author: tliu@ir.hit.edu.cn
1Incorporating an increased number of global features, such

as third-order features in graph-based parsers, slightly affects
parsing accuracy (Koo and Collins, 2010; Li et al., 2011).

Treebanks# of Words Grammar
CTB5 0.51 million Phrase structure
CTB6 0.78 million Phrase structure
CDT 1.11 million Dependency structure
Sinica 0.36 million Phrase structure
TCT about 1 million Phrase structure

Table 1: Several publicly available Chinese treebanks.

Therefore, studies have recently resorted to other re-
sources for the enhancement of parsing models, such
as large-scale unlabeled data (Koo et al., 2008; Chen
et al., 2009; Bansal and Klein, 2011; Zhou et al.,
2011), and bilingual texts or cross-lingual treebanks
(Burkett and Klein, 2008; Huang et al., 2009; Bur-
kett et al., 2010; Chen et al., 2010).

The existence of multiple monolingual treebanks
opens another door for this issue. For example, ta-
ble 1 lists a few publicly available Chinese treebanks
that are motivated by different linguistic theories or
applications. In the current paper, we utilize the
first three treebanks, i.e., the Chinese Penn Tree-
bank 5.1 (CTB5) and 6.0 (CTB6) (Xue et al., 2005),
and the Chinese Dependency Treebank (CDT) (Liu
et al., 2006). The Sinica treebank (Chen et al., 2003)
and the Tsinghua Chinese Treebank (TCT) (Qiang,
2004) can be similarly exploited with our proposed
approach, which we leave as future work.

Despite the divergence of annotation philosophy,
these treebanks contain rich human knowledge on
the Chinese syntax, thereby having a great deal of
common ground. Therefore, exploiting multiple
treebanks is very attractive for boosting parsing ac-
curacy. Figure 1 gives an example with different an-
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Figure 1: Example with annotations from CTB5 (upper)
and CDT (under).

notations from CTB5 and CDT.2 This example illus-
trates that the two treebanks annotate coordination
constructions differently. In CTB5, the last noun is
the head, whereas the first noun is the head in CDT.

One natural idea for multiple treebank exploita-
tion is treebank conversion. First, the annotations
in the source treebank are converted into the style
of the target treebank. Then, both the converted
treebank and the target treebank are combined. Fi-
nally, the combined treebank are used to train a
better parser. However, the inconsistencies among
different treebanks are normally nontrivial, which
makes rule-based conversion infeasible. For exam-
ple, a number of inconsistencies between CTB5 and
CDT are lexicon-sensitive, that is, they adopt dif-
ferent annotations for some particular lexicons (or
word senses). Niu et al. (2009) use sophisticated
strategies to reduce the noises of the converted tree-
bank after automatic treebank conversion.

The present paper proposes a simple and effective
framework for this problem. The proposed frame-
work avoids directly addressing the difficult anno-
tation transformation problem, but focuses on mod-
eling the annotation inconsistencies usingtransfor-
mation patterns(TP). The TPs are used to compose
quasi-synchronous grammar(QG) features, such
that the knowledge of the source treebank can in-
spire the target parser to build better trees. We con-
duct extensive experiments using CDT as the source
treebank to enhance two target treebanks (CTB5 and
CTB6). Results show that our approach can signifi-
cantly boost state-of-the-art parsing accuracy. More-
over, an indirect comparison indicates that our ap-

2CTB5 is converted to dependency structures following the
standard practice of dependency parsing (Zhang and Clark,
2008b). Notably, converting a phrase-structure tree into its
dependency-structure counterpart is straightforward andcan be
performed by applying heuristic head-finding rules.

proach also outperforms the treebank conversion ap-
proach of Niu et al. (2009).

2 Related Work

The present work is primarily inspired by Jiang et
al. (2009) and Smith and Eisner (2009). Jiang et al.
(2009) improve the performance of word segmen-
tation and part-of-speech (POS) tagging on CTB5
using another large-scale corpus of different annota-
tion standards (People’s Daily). Their framework is
similar to ours. However, handling syntactic anno-
tation inconsistencies is significantly more challeng-
ing in our case of parsing. Smith and Eisner (2009)
propose effective QG features for parser adaptation
and projection. The first part of their work is closely
connected with our work, but with a few impor-
tant differences. First, they conduct simulated ex-
periments on one treebank by manually creating a
few trivial annotation inconsistencies based on two
heuristic rules. They then focus on better adapting a
parser to a new annotation style with few sentences
of the target style. In contrast, we experiment with
two real large-scale treebanks, and boost the state-
of-the-art parsing accuracy using QG features. Sec-
ond, we explore much richer QG features to fully
exploit the knowledge of the source treebank. These
features are tailored to the dependency parsing prob-
lem. In summary, the present work makes substan-
tial progress in modeling structural annotation in-
consistencies with QG features for parsing.

Previous work on treebank conversion primar-
ily focuses on converting one grammar formalism
of a treebank into another and then conducting a
study on the converted treebank (Collins et al., 1999;
Xia et al., 2008). The work by Niu et al. (2009)
is, to our knowledge, the only study to date that
combines the converted treebank with the existing
target treebank. They automatically convert the
dependency-structure CDT into the phrase-structure
style of CTB5 using a statistical constituency parser
trained on CTB5. Their experiments show that
the combined treebank can significantly improve
the performance of constituency parsers. However,
their method requires several sophisticated strate-
gies, such as corpus weighting and score interpo-
lation, to reduce the influence of conversion errors.
Instead of using the noisy converted treebank as ad-
ditional training data, our approach allows the QG-
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enhanced parsing models to softly learn the system-
atic inconsistencies based on QG features, making
our approach simpler and more robust.

Our approach is also intuitively related tostacked
learning (SL), a machine learning framework that
has recently been applied to dependency parsing
to integrate two main-stream parsing models, i.e.,
graph-based and transition-based models (Nivre and
McDonald, 2008; Martins et al., 2008). However,
the SL framework trains two parsers on the same
treebank and therefore does not need to consider the
problem of annotation inconsistencies.

3 Dependency Parsing

Given an input sentencex = w0w1...wn and its POS
tag sequencet = t0t1...tn, the goal of dependency
parsing is to build a dependency tree as depicted in
Figure 1, denoted byd = {(h,m, l) : 0 ≤ h ≤
n, 0 < m ≤ n, l ∈ L}, where(h,m, l) indicates an
directed arc from thehead word(also calledfather)
wh to themodifier (also calledchild or dependent)
wm with a dependency labell, andL is the label set.
We omit the labell because we focus on unlabeled
dependency parsing in the present paper. The artifi-
cial nodew0, which always points to the root of the
sentence, is used to simplify the formalizations.

In the current research, we adopt the graph-based
parsing models for their state-of-the-art performance
in a variety of languages.3 Graph-based models
view the problem as finding the highest scoring tree
from a directed graph. To guarantee the efficiency of
the decoding algorithms, the score of a dependency
tree is factored into the scores of some small parts
(subtrees).

Scorebs(x, t,d) = wbs · fbs(x, t,d)

=
∑

p⊆d

wpart · fpart(x, t, p)

wherep is a scoring part which contains one or more
dependencies ofd, andfbs(.) denotes thebasic pars-
ing features, as opposed to theQG features. Figure
2 lists the scoring parts used in our work, whereg,
h, m, ands, are word indices.

We implement three parsing models of varying
strengths in capturing features to better understand
the effect of the proposed QG features.

3Our approach can equally be applied to transition-based
parsing models (Yamada and Matsumoto, 2003; Nivre, 2003)
with minor modifications.

dependency sibling grandparent

h

m

h

ms

h

m

g

Figure 2: Scoring parts used in our graph-based parsing
models.

• The first-order model (O1) only incorporates
dependency parts (McDonald et al., 2005), and
requiresO(n3) parsing time.

• The second-order model using only sibling
parts (O2sib) includes both dependency and
sibling parts (McDonald and Pereira, 2006),
and needsO(n3) parsing time.

• The second-order model (O2)uses all the
scoring parts in Figure 2 (Koo and Collins,
2010). The time complexity of the decoding
algorithm isO(n4).4

For the O2 model, the score function is rewritten as:

Scorebs(x, t,d) =
∑

{(h,m)}⊆d

wdep · fdep(x, t, h,m)

+
∑

{(h,s),(h,m)}⊆d

wsib · fsib(x, t, h, s,m)

+
∑

{(g,h),(h,m)}⊆d

wgrd · fgrd(x, t, g, h,m)

where fdep(.), fsib(.) and fgrd(.) correspond to the
features for the three kinds of scoring parts. We
adopt the standard features following Li et al.
(2011). For the O1 and O2sib models, the above
formula is modified by deactivating the extra parts.

4 Dependency Parsing with QG Features

Smith and Eisner (2006) propose the QG for ma-
chine translation (MT) problems, allowing greater
syntactic divergences between the two languages.
Given a source sentencex′ and its syntactic tree
d
′, a QG defines a monolingual grammar that gen-

erates translations ofx′, which can be denoted by
p(x,d,a|x′,d′), wherex andd refer to a translation
and its parse, anda is a cross-language alignment.
Under a QG, any portion ofd can be aligned to any

4We use the coarse-to-fine strategy to prune the search
space, which largely accelerates the decoding procedure (Koo
and Collins, 2010).
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Figure 3: Framework of our approach.

portion ofd′, and the construction ofd can be in-
spired by arbitrary substructures ofd

′. To date, QGs
have been successfully applied to various tasks, such
as word alignment (Smith and Eisner, 2006), ma-
chine translation (Gimpel and Smith, 2011), ques-
tion answering (Wang et al., 2007), and sentence
simplification (Woodsend and Lapata, 2011).

In the present work, we utilize the idea of the QG
for the exploitation of multiple monolingual tree-
banks. The key idea is to let the parse tree of one
style inspire the parsing process of another style.
Different from a MT process, our problem consid-

ers one single sentence (x = x
′), and the alignment

a is trivial. Figure 3 shows the framework of our
approach. First, we train a statistical parser on the
source treebank, which is called thesource parser.
The source parser is then used to parse the wholetar-
get treebank. At this point, the target treebank con-
tains two sets of annotations, one conforming to the
source style, and the other conforming to the target
style. During both the training and test phases, the
target parserare inspired by the source annotations,
and the score of a target dependency tree becomes

Score(x, t,d′,d) =Scorebs(x, t,d)

+Scoreqg(x, t,d
′,d)

The first part corresponds to the baseline model,
whereas the second part is affected by the source tree
d
′ and can be rewritten as

Scoreqg(x, t,d
′,d) = wqg · fqg(x, t,d

′,d)

wherefqg(.) denotes theQG features. We expect the
QG features to encourage or penalize certain scor-
ing parts in the target side according to the source
treed

′. Taking Figure 1 as an example, suppose
that the upper structure is the target. The target
parser can raise the score of the candidate depen-
dence“and” ← “industry” , because the depen-
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dency also appears in the source structure, and ev-
idence in the training data shows that both annota-
tion styles handle conjunctions in the same manner.
Similarly, the parser may add weight to“trade” ←
“industry” , considering that thereversearc is in
the source structure. Therefore, the QG-enhanced
model must learn the systematic consistencies and
inconsistencies from the training data.

To model such consistency or inconsistency sys-
tematicness, we propose the use of TPs for encoding
the structural correspondence between the source
and target styles. Figure 4 presents the three kinds
of TPs used in our model, which correspond to the
three scoring parts of our parsing models.

Dependency TPs shown in the first row consider
how one dependency in the target side is trans-
formed in the source annotations. We only consider
the five cases shown in the figure. The percentages
in the lower boxes refer to the proportion of the
corresponding pattern, which are counted from the
training data of the target treebank with source anno-
tationsT+S. We can see that the noisy source struc-
tures and the gold-standard target structures have
55.4% common dependencies. If the source struc-
ture does not belong to any of the listed five cases,
ψdep(d

′, h,m) returns “else” (12.9%). We could
consider more complex structures, such ash being
the grand grand father ofm, but statistics show that
more complex transformations become very scarce
in the training data.

For the reason that dependency TPs can only
model how one dependency in the target structure is
transformed, we consider more complex transforma-
tions for the other two kinds of scoring parts of the
target parser, i.e., the sibling and grand TPs shown
in the bottom two rows. We only use high-frequency
TPs of a proportion larger than 1.0%, aggregate oth-
ers as“else” , which leaves us with 21 sibling TPs
and 22 grand TPs.

Based on these TPs, we propose the QG fea-
tures for enhancing the baseline parsing models,
which are shown in Table 2. The type of the
TP is conjoined with the related words and POS
tags, such that the QG-enhanced parsing models can
make more elaborate decisions based on the context.
Then, the score contributed by the QG features can

be redefined as

Scoreqg(x, t,d
′,d) =

∑

{(h,m)}⊆d

wqg-dep · fqg-dep(x, t,d
′, h,m)

+
∑

{(h,s),(h,m)}⊆d

wqg-sib · fqg-sib(x, t,d
′, h, s,m)

+
∑

{(g,h),(h,m)}⊆d

wqg-grd · fqg-grd(x, t,d
′, g, h,m)

which resembles the baseline model and can be nat-
urally handled by the decoding algorithms.

5 Experiments and Analysis

We use the CDT as the source treebank (Liu et
al., 2006). CDT consists of 60,000 sentences from
the People’s Daily in 1990s. For the target tree-
bank, we use two widely used versions of Penn Chi-
nese Treebank, i.e., CTB5 and CTB6, which con-
sist of Xinhua newswire, Hong Kong news and ar-
ticles from Sinarama news magazine (Xue et al.,
2005). To facilitate comparison with previous re-
sults, we follow Zhang and Clark (2008b) for data
split and constituency-to-dependency conversion of
CTB5. CTB6 is used as the Chinese data set in the
CoNLL 2009 shared task (Hajič et al., 2009). There-
fore, we adopt the same setting.

CDT and CTB5/6 adopt different POS tag sets,
and converting from one tag set to another is difficult
(Niu et al., 2009).5 To overcome this problem, we
use the People’s Daily corpus (PD),6 a large-scale
corpus annotated with word segmentation and POS
tags, to train a statistical POS tagger. The tagger
produces a universal layer of POS tags for both the
source and target treebanks. Based on the common
tags, the source parser projects the source annota-
tions into the target treebanks. PD comprises ap-
proximately 300 thousand sentences of with approx-
imately 7 million words from the first half of 1998
of People’s Daily.

Table 3 summarizes the data sets used in the
present work. CTB5X is the same with CTB5 but
follows the data split of Niu et al. (2009). We use
CTB5X to compare our approach with their treebank
conversion method (see Table 9).

5The word segmentation standards of the two treebanks also
slightly differs, which are not considered in this work.

6http://icl.pku.edu.cn/icl_groups/
corpustagging.asp
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fqg-dep(x, t,d
′, h,m) fqg-sib(x, t,d

′, h, s,m) fqg-grd(x, t,d
′, g, h,m)

⊕dir(h,m) ◦ dist(h,m) ⊕dir(h,m) ⊕dir(h,m) ◦ dir(g, h)
ψdep(d

′, h,m) ◦ th ◦ tm ψsib(d
′, h, s,m) ◦ th ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ th ◦ tm
ψdep(d

′, h,m) ◦ wh ◦ tm ψsib(d
′, h, s,m) ◦ wh ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ wg ◦ th ◦ tm
ψdep(d

′, h,m) ◦ th ◦ wm ψsib(d
′, h, s,m) ◦ th ◦ ws ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ wh ◦ tm
ψdep(d

′, h,m) ◦ wh ◦ wm ψsib(d
′, h, s,m) ◦ th ◦ ts ◦ wm ψgrd(d

′, g, h,m) ◦ tg ◦ th ◦ wm

ψsib(d
′, h, s,m) ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ tm

Table 2: QG features used to enhance the baseline parsing models.dir(h,m) denotes the direction of the dependency
(h,m), whereasdist(h,m) is the distance|h −m|. ⊕dir(h,m) ◦ dist(h,m) indicates that the features listed in the
corresponding column are also conjoined withdir(h,m) ◦ dist(h,m) to form new features.

Corpus Train Dev Test
PD 281,311 5,000 10,000
CDT 55,500 1,500 3,000
CTB5 16,091 803 1,910
CTB5X 18,104 352 348
CTB6 22,277 1,762 2,556

Table 3: Data used in this work (in sentence number).

We adoptunlabeled attachment score(UAS) as
the primary evaluation metric. We also useRoot ac-
curacy(RA) andcomplete match rate(CM) to give
more insights. All metrics exclude punctuation. We
adopt Dan Bikel’s randomized parsing evaluation
comparator for significance test (Noreen, 1989).7

For all models used in current work (POS tagging
and parsing), we adopt averaged perceptron to train
the feature weights (Collins, 2002). We train each
model for 10 iterations and select the parameters that
perform best on the development set.

5.1 Preliminaries

This subsection describes how we project the source
annotations into the target treebanks. First, we train
a statistical POS tagger on the training set of PD,
which we nameTaggerPD.8 The tagging accuracy
on the test set of PD is 98.30%.

We then useTaggerPD to produce POS tags for
all the treebanks (CDT, CTB5, and CTB6).

Based on the common POS tags, we train a
second-order source parser (O2) on CDT, denoted
by ParserCDT . The UAS on CDT-test is 84.45%.
We then useParserCDT to parse CTB5 and CTB6.

7http://www.cis.upenn.edu/[normal-wave ˜ ]
dbikel/software.html

8We adopt the Chinese-oriented POS tagging features pro-
posed in Zhang and Clark (2008a).

Models without QG with QG
O2 86.13 86.44 (+0.31,p = 0.06)
O2sib 85.63 86.17 (+0.54,p = 0.003)
O1 83.16 84.40 (+1.24,p < 10−5)
Li11 86.18 —
Z&N11 86.00 —

Table 4: Parsing accuracy (UAS) comparison on CTB5-
test with gold-standard POS tags. Li11 refers to the
second-order graph-based model of Li et al. (2011),
whereas Z&N11 is the feature-rich transition-based
model of Zhang and Nivre (2011).

At this point, both CTB5 and CTB6 contain depen-
dency structures conforming to the style of CDT.

5.2 CTB5 as the Target Treebank

Table 4 shows the results when the gold-standard
POS tags of CTB5 are adopted by the parsing mod-
els. We aim to analyze the efficacy of QG features
under the ideal scenario wherein the parsing mod-
els suffer from no error propagation of POS tag-
ging. We determine that our baseline O2 model
achieves comparable accuracy with the state-of-the-
art parsers. We also find that QG features can
boost the parsing accuracy by a large margin when
the baseline parser is weak (O1). The improve-
ment shrinks for stronger baselines (O2sib and O2).
This phenomenon is understandable. When gold-
standard POS tags are available, the baseline fea-
tures are very reliable and the QG features becomes
less helpful for more complex models. The p-values
in parentheses present the statistical significance of
the improvements.

We then turn to the more realistic scenario
wherein the gold-standard POS tags of the target
treebank are unavailable. We train a POS tagger on
the training set of CTB5 to produce the automatic
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Models without QG with QG
O2 79.67 81.04 (+1.37)
O2sib 79.25 80.45 (+1.20)
O1 76.73 79.04 (+2.31)
Li11 joint 80.79 —
Li11 pipeline 79.29 —

Table 5: Parsing accuracy (UAS) comparison on CTB5-
test with automatic POS tags. The improvements shown
in parentheses are all statistically significant (p < 10−5).

Setting UAS CM RA
fbs(.) 79.67 26.81 73.82
fqg(.) 79.15 26.34 74.71
fbs(.) + fqg(.) 81.04 29.63 77.17
fbs(.) + fqg-dep(.) 80.82 28.80 76.28
fbs(.) + fqg-sib(.) 80.86 28.48 76.18
fbs(.) + fqg-grd(.) 80.88 28.90 76.34

Table 6: Feature ablation for Parser-O2 on CTB5-test
with automatic POS tags.

POS tags for the development and test sets of CTB5.
The tagging accuracy is 93.88% on the test set. The
automatic POS tags of the training set are produced
using 10-fold cross-validation.9

Table 5 shows the results. We find that QG fea-
tures result in a surprisingly large improvement over
the O1 baseline and can also boost the state-of-
the-art parsing accuracy by a large margin. Li et
al. (2011) show that a joint POS tagging and de-
pendency parsing model can significantly improve
parsing accuracy over a pipeline model. Our QG-
enhanced parser outperforms their best joint model
by 0.25%. Moreover, the QG features can be used to
enhance a joint model and achieve higher accuracy,
which we leave as future work.

5.3 Analysis Using Parser-O2 with AUTO-POS

We then try to gain more insights into the effect of
the QG features through detailed analysis. We se-
lect the state-of-the-art O2 parser and focus on the
realistic scenario with automatic POS tags.

Table 6 compares the efficacy of different feature
sets. The first major row analyzes the efficacy of

9We could use the POS tags produced byTaggerPD in Sec-
tion 5.1, which however would make it difficult to compare our
results with previous ones. Moreover, inferior results maybe
gained due to the differences between CTB5 and PD in word
segmentation standards and text sources.

the basic featuresfbs(.) and the QG featuresfqg(.).
When using the few QG features in Table 2, the ac-
curacy is very close to that when using the basic
features. Moreover, using both features generates
a large improvement. The second major row com-
pares the efficacy of the three kinds of QG features
corresponding to the three types of scoring parts. We
can see that the three feature sets are similarly effec-
tive and yield comparable accuracies. Combining
these features generate an additional improvement
of approximately 0.2%. These results again demon-
strate that all the proposed QG features are effective.

Figure 5 describes how the performance varies
when the scale of CTB5 and CDT changes. In
the left subfigure, the parsers are trained on part
of the CTB5-train, and “16” indicates the use of
all the training instances. Meanwhile, the source
parserParserCDT is trained on the whole CDT-
train. We can see that QG features render larger
improvement when the target treebank is of smaller
scale, which is quite reasonable. More importantly,
the curves indicate thata QG-enhanced parser
trained on a target treebank of 16,000 sentences
may achieve comparable accuracy with a base-
line parser trained on a treebank that is double
the size (32,000), which is very encouraging.

In the right subfigure, the target treebank is
trained on the whole CTB5-train, whereas the source
parser is trained on part of the CDT-train, and “55.5”
indicates the use of all. The curve clearly demon-
strates that the QG features are more helpful when
the source treebank gets larger, which can be ex-
plained as follows. A larger source treebank can
teach a source parser of higher accuracy; then, the
better source parser can parse the target treebank
more reliably; and finally, the target parser can better
learn the annotation divergences based on QG fea-
tures. These results demonstrate the effectiveness
and stability of our approach.

Table 7 presents the detailed effect of the QG fea-
tures on different dependency patterns. A pattern
“VV → NN” refers to a right-directed dependency
with the head tagged as “VV” and the modifier
tagged as “NN”. whereas “←” means left-directed.
The “w/o QG” column shows the number of the cor-
responding dependency pattern that appears in the
gold-standard trees but misses in the results of the
baseline parser, whereas the signed figures in the
“+QG” column are the changes made by the QG-
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Figure 5: Parsing accuracy (UAS) comparison on CTB5-
test when the scale of CDT and CTB5 varies (thousands
in sentence number).

Dependencyw/o QG+QG Descriptions
NN← NN 858 -78noun modifier or coordinating nouns
VV → VV 777 -41 object clause or coordinating verbs
VV ← VV 570 -38 subject clause
VV → NN 509 -79 verb and its object
w0 → VV 357 -57 verb as sentence root
VV ← NN 328 -32 attributive clause
P← VV 278 -37 preposition phrase attachment
VV → DEC 233 -33 attributive clause and auxiliary DE
P→ NN 175 -35 preposition and its object

Table 7: Detailed effect of QG features on different de-
pendency patterns.

enhanced parser. We only list the patterns with an
absolute change larger than 30. We find that the QG
features can significantly help a variety of depen-
dency patterns (i.e., reducing the missing number).

5.4 CTB6 as the Target Treebank

We use CTB6 as the target treebank to further verify
the efficacy of our approach. Compared with CTB5,
CTB6 is of larger scale and is converted into de-
pendency structures according to finer-grained head-
finding rules (Hajič et al., 2009). We directly adopt
the same transformation patterns and features tuned
on CTB5. Table 8 shows results. The improvements
are similar to those on CTB5, demonstrating that our
approach is effective and robust. We list the top three
systems of the CoNLL 2009 shared task in Table 8,
showing that our approach also advances the state-
of-the-art parsing accuracy on this data set.10

10We reproduce their UASs using the data released
by the organizer: http://ufal.mff.cuni.cz/conll2009-st/results/
results.php. The parsing accuracies of the top systems may be
underestimated since the accuracy of the provided POS tags in
CoNLL 2009 is only 92.38% on the test set, while the POS tag-
ger used in our experiments reaches 94.08%.

Models without QG with QG
O2 83.23 84.33 (+1.10)
O2sib 82.87 84.11 (+1.37)
O1 80.29 82.76 (+2.47)
Bohnet (2009) 82.68 —
Che et al. (2009) 82.11 —
Gesmundo et al. (2009) 81.70 —

Table 8: Parsing accuracy (UAS) comparison on CTB6-
test with automatic POS tags. The improvements shown
in parentheses are all statistically significant (p < 10−5).

Models baseline with another treebank
Ours 84.16 86.67 (+2.51)
GP (Niu et al., 2009) 82.42 84.06 (+1.64)

Table 9: Parsing accuracy (UAS) comparison on the test
set of CTB5X. Niu et al. (2009) use the maximum en-
tropy inspired generative parser (GP) of Charniak (2000)
as their constituent parser.

5.5 Comparison with Treebank Conversion

As discussed in Section 2, Niu et al. (2009) automat-
ically convert the dependency-structure CDT to the
phrase-structure annotation style of CTB5X and use
the converted treebank as additional labeled data.
We convert their phrase-structure results on CTB5X-
test into dependency structures using the same head-
finding rules. To compare with their results, we
run our baseline and QG-enhanced O2 parsers on
CTB5X. Table 9 presents the results.11 The indirect
comparison indicates that our approach can achieve
larger improvement than their treebank conversion
based method.

6 Conclusions

The current paper proposes a simple and effective
framework for exploiting multiple large-scale tree-
banks of different annotation styles. We design
rich TPs to model the annotation inconsistencies and
consequently propose QG features based on these
TPs. Extensive experiments show that our approach
can effectively utilize the syntactic knowledge from
another treebank and significantly improve the state-
of-the-art parsing accuracy.

11We thank the authors for sharing their results. Niu et al.
(2009) also use the reranker (RP) of Charniak and Johnson
(2005) as a stronger baseline, but the results are missing. They
find a less improvement on F score with RP than with GP (0.9%
vs. 1.1%). We refer to their Table 5 and 6 for details.
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Abstract

We present a statistical model for canonicalizing
named entity mentions into a table whose rows rep-
resent entities and whose columns are attributes (or
parts of attributes). The model is novel in that it
incorporates entity context, surface features, first-
order dependencies among attribute-parts, and a no-
tion of noise. Transductive learning from a few
seeds and a collection of mention tokens combines
Bayesian inference and conditional estimation. We
evaluate our model and its components on two
datasets collected from political blogs and sports
news, finding that it outperforms a simple agglom-
erative clustering approach and previous work.

1 Introduction

Proper handling of mentions in text of real-world
entities—identifying and resolving them—is a cen-
tral part of many NLP applications. We seek an al-
gorithm that infers a set of real-world entities from
mentions in a text, mapping each entity mention to-
ken to an entity, and discovers general categories of
words used in names (e.g., titles and last names).
Here, we use a probabilistic model to infer a struc-
tured representation of canonical forms of entity at-
tributes through transductive learning from named
entity mentions with a small number of seeds (see
Table 1). The input is a collection of mentions found
by a named entity recognizer, along with their con-
texts, and, following Eisenstein et al. (2011), the
output is a table in which entities are rows (the num-
ber of which is not pre-specified) and attribute words
are organized into columns.

This paper contributes a model that builds on the
approach of Eisenstein et al. (2011), but also:
• incorporates context of the mention to help with

disambiguation and to allow mentions that do not
share words to be merged liberally;
• conditions against shape features, which improve

the assignment of words to columns;

• is designed to explicitly handle some noise; and
• is learned using elements of Bayesian inference

with conditional estimation (see §2).

We experiment with variations of our model,
comparing it to a baseline clustering method and the
model of Eisenstein et al. (2011), on two datasets,
demonstrating improved performance over both at
recovering a gold standard table. In a political
blogs dataset, the mentions refer to political fig-
ures in the United States (e.g., Mrs. Obama and
Michelle Obama). As a result, the model discov-
ers parts of names—〈Mrs., Michelle, Obama〉—
while simultaneously performing coreference res-
olution for named entity mentions. In the sports
news dataset, the model is provided with named en-
tity mentions of heterogenous types, and success
here consists of identifying the correct team for ev-
ery player (e.g., Kobe Bryant and Los Angeles Lak-
ers). In this scenario, given a few seed examples,
the model begins to identify simple relations among
named entities (in addition to discovering attribute
structures), since attributes are expressed as named
entities across multiple mentions. We believe this
adaptability is important, as the salience of different
kinds of names and their usages vary considerably
across domains.

Bill Clinton Mr.
George Bush Mr. W.
Barack Obama Sen. Hussein
Hillary Clinton Mrs. Sen.
Bristol Palin Ms.
Emil Jones Jr.
Kay Hutchison Bailey

Ben Roethlisberger Steelers
Bryant Los Angeles

Derek Jeter New York

Table 1: Seeds for politics (above) and sports (below).
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Figure 1: Graphical representation of our model. Top,
the generation of the table: C is the number of at-
tributes/columns, the number of rows is infinite, α is a
vector of concentration parameters, φ is a multinomial
distribution over strings, and x is a word in a table cell.
Lower left, for choosing entities to be mentioned: τ deter-
mines the stick lengths and η is the distribution over en-
tities to be selected for mention. Middle right, for choos-
ing attributes to use in a mention: f is the feature vector,
and β is the weight vector drawn from a Laplace distri-
bution with mean zero and variance µ. Center, for gen-
erating mentions: M is the number of mentions in the
data, w is a word token set from an entity/row r and at-
tribute/column c. Lower right, for generating contexts: s
is a context word, drawn from a multinomial distribution
θ with a Dirichlet prior λ. Variables that are known or
fixed are shaded; variables that are optimized are double
circled. Others are latent; dashed lines imply collapsing.

2 Model

We begin by assuming as input a set of mention to-
kens, each one or more words. In our experiments
these are obtained by running a named entity recog-
nizer. The output is a table in which rows are un-
derstood to correspond to entities (types, not men-
tion tokens) and columns are fields, each associated
with an attribute or a part of it. Our approach is
based on a probabilistic graphical model that gener-
ates the mentions, which are observed, and the table,
which is mostly unobserved, similar to Eisenstein et
al. (2011). Our learning procedure is a hybrid of
Bayesian inference and conditional estimation. The
generative story, depicted in Figure 1, is:
• For each column j ∈ {1, . . . , C}:
◦ Draw a multinomial distribution φj over the

vocabulary from a Dirichlet process: φj ∼
DP(αj , G0). This is the lexicon for field j.
◦ Generate table entries. For each row i (of which

there are infinitely many), draw an entry xi,j
for cell i, j from φj . A few of these entries (the
seeds) are observed; we denote those x̃.
◦ Draw weights βj that associate shape and po-

sitional features with columns from a 0-mean,
µ-variance Laplace distribution.

• Generate the distribution over entities to be men-
tioned in general text: η ∼ GEM(τ) (“stick-
breaking” distribution).
• Generate context distributions. For each row r:
◦ Draw a multinomial over the context vocabu-

lary (distinct from mention vocabulary) from a
Dirichlet distribution, θr ∼ Dir(λ).

• For each mention token m:
◦ Draw an entity/row r ∼ η.
◦ For each word in the mention w, given some of

its features f (assumed observed):
. Choose a column c ∼ 1

Z exp(β>c f). This
uses a log-linear distribution with partition
function Z. In one variation of our model,
first-order dependencies among the columns
are enabled; these introduce a dynamic char-
acter to the graphical model that is not shown
in Figure 1.

. With probability 1 − ε, set the text wm` to
be xrc. Otherwise, generate any word from a
unigram-noise distribution.

◦ Generate mention context. For each of the T =
10 context positions (five before and five after
the mention), draw the word s from θr.

Our choices of prior distributions reflect our be-
liefs about the shapes of the various distributions.
We expect field lexicons φj and the distributions
over mentioned entities η to be “Zipfian” and so use
tools from nonparametric statistics to model them.
We expect column-feature weights β to be mostly
zero, so a sparsity-inducing Laplace prior is used
(Tibshirani, 1996).

Our goal is to maximize the conditional likeli-
hood of most of the evidence (mentions, contexts,
and seeds), p(w, s, x̃ | α,β, λ, τ, µ, ε,f) =

∑
r

∑
c

∑
x\x̃
∫
dθ
∫
dη
∫
dφ

p(w, s, r, c, x, θ, η, φ | α,β, λ, τ, µ, ε,f)
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with respect to β and τ . We fix α (see §3.3 for the
values of α for each dataset), λ = 2 (equivalent to
add-one smoothing), µ = 2 × 10−8, ε = 10−10,
and each mention word’s f . Fixing λ, µ, and α is
essentially just “being Bayesian,” or fixing a hyper-
parameter based on prior beliefs. Fixing f is quite
different; it is conditioning our model on some ob-
servable features of the data, in this case word shape
features. We do this to avoid integrating over fea-
ture vector values. These choices highlight that the
design of a probabilistic model can draw from both
Bayesian and discriminative tools. Observing some
of x as seeds (x̃) renders this approach transductive.

Exact inference in this model is intractable, so we
resort to an approximate inference technique based
on Markov Chain Monte Carlo simulation. The opti-
mization of β can be described as “contrastive” esti-
mation (Smith and Eisner, 2005), in which some as-
pects of the data are conditioned against for compu-
tational convenience. The optimization of τ can be
described as “empirical Bayesian” estimation (Mor-
ris, 1983) in which the parameters of a prior are
fit to data. Our overall learning procedure is a
Monte Carlo Expectation Maximization algorithm
(Wei and Tanner, 1990).

3 Learning and Inference

Our learning procedure is an iterative algorithm con-
sisting of two steps. In the E-step, we perform col-
lapsed Gibbs sampling to obtain distributions over
row and column indices for every mention, given the
current value of the hyperparamaters. In the M-step,
we obtain estimates for the hyperparameters, given
the current posterior distributions.

3.1 E-step
For the mth mention, we sample row index r, then
for each word wm`, we sample column index c.

3.1.1 Sampling Rows
Similar to Eisenstein et al. (2011), when we sam-

ple the row for a mention, we use Bayes’ rule and
marginalize the columns. We further incorporate
context information and a notion of noise.

p(rm = r | . . .) ∝ p(rm = r | r−m, η)
(
∏
`

∑
c p(wm` | x, rm = r, cm` = c))

(
∏
t p(smt | rm = r))

We consider each quantity in turn.
Prior. The probability of drawing a row index fol-
lows a stick breaking distribution. This allows us
to have an unbounded number of rows and let the
model infer the optimal value from data. A standard
marginalization of η gives us:

p(rm = r | r−m, τ) =

{
N−m

r
N+τ if N−mr > 0
τ

N+τ otherwise,

where N is the number of mentions, Nr is the num-
ber of mentions assigned to row r, and N−mr is the
number of mentions assigned to row r, excludingm.
Mention likelihood. In order to compute the likeli-
hood of observing mentions in the dataset, we have
to consider a few cases. If a cell in a table has al-
ready generated a word, it can only generate that
word. This hard constraint was a key factor in the
inference algorithm of Eisenstein et al. (2011); we
speculate that softening it may reduce MCMC mix-
ing time, so introduce a notion of noise. With proba-
bility ε = 10−10, the cell can generate any word. If a
cell has not generated any word, its probability still
depends on other elements of the table. With base
distribution G0,1 and marginalizing φ, we have:

p(wm` | x, rm = r, cm` = c, αc) = (1)
1− ε if xrc = wm`
ε if xrc 6∈ {wm`,∅}

N−m`
cw

N−m`
c +αc

if xrc = ∅ and Ncw > 0
G0(wm`) αc

N−m`
c +αc

if xrc = ∅ and Ncw = 0

where N−m`c is the number of cells in column c that
are not empty and N−m`cw is the number of cells in
column c that are set to the word wm`; both counts
excluding the current word under consideration.
Context likelihood. It is important to be able to
use context information to determine which row
a mention should go into. As a novel extension,
our model also uses surrounding words of a men-
tion as its “context”—similar context words can en-
courage two mentions that do not share any words
to be merged. We choose a Dirichlet-multinomial
distribution for our context distribution. For every
row in the table, we have a multinomial distribution
over context vocabulary θr from a Dirichlet prior λ.

1We let G0 be a uniform distribution over the vocabulary.
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Therefore, the probability of observing the tth con-
text word for mention m is p(smt | rm = r, λ)

=

{
N−mt

rs +λs−1

N−mt
r +

P
v λv−V

if N−mtr > 0
λs−1P
v λv−V otherwise,

whereN−mtr is the number of context words of men-
tions assigned to row r, N−mtrs is the number of con-
text words of mentions assigned to row r that are
smt, both excluding the current context word, and v
ranges over the context vocabulary of size V .

3.1.2 Sampling Columns
Our column sampling procedure is novel to this

work and substantially differs from that of Eisen-
stein et al. (2011). First, we note that when we sam-
ple column indices for each word in a mention, the
row index for the mention r has already been sam-
pled. Also, our model has interdependencies among
column indices of a mention.2 Standard Gibbs sam-
pling procedure breaks down these dependencies.
For faster mixing, we experiment with first-order
dependencies between columns when sampling col-
umn indices. This idea was suggested by Eisenstein
et al. (2011, footnote 1) as a way to learn structure
in name conventions. We suppressed this aspect of
the model in Figure 1 for clarity.

We sample the column index c1 for the first word
in the mention, marginalizing out probabilities of
other words in the mention. After we sample the
column index for the first word, we sample the col-
umn index c2 for the second word, fixing the pre-
vious word to be in column c1, and marginalizing
out probabilities of c3, . . . , cL as before. We repeat
the above procedure until we reach the last word
in the mention. In practice, this can be done effi-
ciently using backward probabilities computed via
dynamic programming. This kind of blocked Gibbs
sampling was proposed by Jensen et al. (1995) and
used in NLP by Mochihashi et al. (2009). We have:
p(cm` = c | . . .) ∝

p(cm` = c | fm`, β)p(cm` = c | cm`− = c−)(∑
c+
pb(cm` = c | cm`+ = c+)

)
p(wm` | x, rm = r, cm` = c, αc),

2As shown in Figure 1, column indices in a mention form
“v-structures” with the row index r. Since everyw` is observed,
there is an active path that goes through all these nodes.

where `− is the preceding word and c− is its sam-
pled index, `+ is the following word and c+ is its
possible index, and pb(·) are backward probabilities.
Alternatively, we can perform standard Gibbs sam-
pling and drop the dependencies between columns,
which makes the model rely more heavily on the fea-
tures. For completeness, we detail the computations.
Featurized log linear distribution. Our model can
use arbitrary features to choose a column index.
These features are incorporated as a log-linear dis-
tribution, p(cm` = c | fm`,β) = exp(β>c fm`)P

c′ exp(β>
c′fm`)

.

The list of features used in our experiments is:
1{w is the first word in the mention}; 1{w ends
with a period}; 1{w is the last word in the men-
tion}; 1{w is a Roman numeral}; 1{w starts with
an upper-case letter}; 1{w is an Arabic number};
1{w ∈ {mr,mrs,ms,miss, dr,mdm} }; 1{w con-
tains ≥ 1 punctuation symbol}; 1{w ∈ {jr, sr}};
1{w ∈ {is, in, of, for}}; 1{w is a person entity};
1{w is an organization entity}.
Forward and backward probabilities. Since
we introduce first-order dependencies between
columns, we have forward and backward probabili-
ties, as in HMMs. However, we always sample from
left to right, so we do not need to marginalize ran-
dom variables to the left of the current variable be-
cause their values are already sampled. Our transi-
tion probabilities are as follows:

p(cm` = c | cm`− = c−) =
N−m

c−,cP
c′−

N−m

c′−,c

,

whereN−mc−,c is the number of times we observe tran-
sitions from column c− to c, excluding mention m.
The forward and backward equations are simple (we
omit them for space).
Mention likelihood. Mention likelihood p(wm` |
x, rm = r, cm` = c, αc) is identical to when we
sample the row index (Eq. 1).

3.2 M-step

In the M-step, we use gradient-based optimization
routines, L-BFGS (Liu and Nocedal, 1989) and
OWL-QN (Andrew and Gao, 2007) respectively, to
maximize with respect to τ and β.
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3.3 Implementation Details

We ran Gibbs sampling for 500 iterations,3 discard-
ing the first 200 for burn-in and averaging counts
over every 10th sample to reduce autocorrelation.

For each word in a mention w, we introduced 12
binary features f for our featurized log-linear distri-
bution (§3.1.2).

We then downcased all words in mentions for the
purpose of defining the table and the mention words
w. Ten context words (5 each to the left and right)
define s for each mention token.

For non-convex optimization problems like ours,
initialization is important. To guide the model to
reach a good local optimum without many restarts,
we manually initialized feature weights and put a
prior on transition probabilities to reflect phenom-
ena observed in the initial seeds. The initializer was
constructed once and not tuned across experiments.4

The M-step was performed every 50 Gibbs sampling
iterations. After inference, we filled each cell with
the word that occurred at least 80% of the time in the
averaged counts for the cell, if such a word existed.

4 Experiments

We compare several variations of our model to
Eisenstein et al. (2011) (the authors provided their
implementation to us) and a clustering baseline.

4.1 Datasets

We collected named entity mentions from two cor-
pora: political blogs and sports news. The political
blogs corpus is a collection of blog posts about poli-
tics in the United States (Eisenstein and Xing, 2010),
and the sports news corpus contains news summaries
of major league sports games (National Basketball

3On our moderate-sized datasets (see §4.1), each iteration
takes approximately three minutes on a 2.2GHz CPU.

4For the politics dataset, we set C = 6, α =
〈1.0, 1.0, 10−12, 10−15, 10−12, 10−8〉, initialized τ = 1, and
used a Dirichlet prior on transition counts such that before ob-
serving any data: N0,1 = 10, N0,5 = 5, N2,0 = 10, N2,1 =
10, N2,3 = 10, N2,4 = 5, N3,0 = 10, N3,1 = 10, N5,1 = 15
(others are set to zero). For the sports dataset, we set C = 5,
α = 〈1.0, 1.0, 10−15, 10−6, 10−6〉, initialized τ = 1, and
used a Dirichlet prior on transition counts N0,1 = 10, N2,3 =
20, N3,4 = 10 (others are set to zero). We also manually initial-
ized the weights of some features β for both datasets. These val-
ues were obtained from preliminary experiments on a smaller
sample of the datasets, and updated on the first EM iteration.

Politics Sports
# source documents 3,000 700

# mentions 10,647 13,813
# unique mentions 528 884

size of mention vocabulary 666 1,177
size of context vocabulary 2,934 2,844

Table 2: Descriptive statistics about the datasets.

Association, National Football League, and Major
League Baseball) in 2009. Due to the large size of
the corpora, we uniformly sampled a subset of doc-
uments for each corpus and ran the Stanford NER
tagger (Finkel et al., 2005), which tagged named en-
tities mentions as person, location, and organization.
We used named entity of type person from the po-
litical blogs corpus, while we are interested in per-
son and organization entities for the sports news cor-
pus. Mentions that appear less than five times are
discarded. Table 2 summarizes statistics for both
datasets of named entity mentions.
Reference tables. We use Eisenstein et al.’s man-
ually built 125-entity (282 vocabulary items) refer-
ence table for the politics dataset. Each entity in the
table is represented by the set of all tokens that app-
pear in its references, and the tokens are placed in its
correct column. For the sports data, we obtained a
roster of all NBA, NFL, and MLB players in 2009.
We built our sports reference table using the play-
ers’ names, teams and locations, to get 3,642 play-
ers and 15,932 vocabulary items. The gold standard
table for the politics dataset is incomplete, whereas
it is complete for the sports dataset.
Seeds. Table 1 shows the seeds for both datasets.

4.2 Evaluation Scores
We propose both a row evaluation to determine
how well a model disambiguates entities and merges
mentions of the same entity and a column evaluation
to measure how well the model relates words used in
different mentions. Both scores are new for this task.

The first step in evaluation is to find a maximum
score bipartite matching between rows in the re-
sponse and reference table.5 Given the response and

5Treating each row as a set of words, we can optimize the
matching using the Jonker and Volgenant (1987) algorithm.
The column evaluation is identical, except that sets of words
that are matched are defined by columns. We use the Jaccard
similarity—for two sets A and B, |A∩B|

|A∪B|—for our similarity
function, Sim(i, j).
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reference tables, xres and xref , we can compute:

Sres = 1
|xres |

∑
i∈xres ,j∈xref :Match(i,j)=1 Sim(i, j)

Sref = 1

|xref |
∑

i∈xres ,j∈xref :Match(i,j)=1 Sim(i, j)

where i and j denote rows, Match(i, j) is one if i and
j are matched to each other in the optimal matching
or zero otherwise. Sres is a precision-like score, and
Sref is a recall-like score.6 Column evaluation is the
same, but compares columns instead.

4.3 Baselines

Our simple baseline is an agglomerative clustering
algorithm that clusters mentions into entities using
the single-linkage criterion. Initially, each unique
mention forms its own cluster that we incremen-
tally merge together to form rows in the table. This
method requires a similarity score between two clus-
ters. For the politics dataset, we follow Eisenstein et
al. (2011) and use the string edit distance between
mention strings in each cluster to define the score.
For the sports dataset, since mentions contain per-
son and organization named entity types, our score
for clustering uses the Jaccard distance between con-
text words of the mentions. However, such cluster-
ings do not produce columns. Therefore, we first
match words in mentions of type person against
a regular expression to recognize entity attributes
from a fixed set of titles and suffixes, and the first,
middle and last names. We treat words in mentions
of type organization as a single attribute.7 As we
merge clusters together, we arrange words such that

6Eisenstein et al. (2011) used precision and recall for their
similarity function. Precision prefers a more compact response
row (or column), which unfairly penalizes situations like those
of our sports dataset, where rows are heterogeneous (e.g., in-
cluding people and organizations). Consider a response ta-
ble made up of two rows: 〈Kobe, Bryant〉 and 〈Los, Ange-
les, Lakers〉, and a reference table containing all NBA play-
ers and their team names, e.g., 〈Kobe, Bryant, Los, Angeles,
Lakers〉. Evaluating with the precision similarity function, we
will have perfect precision by matching the first row to the ref-
erence row for Kobe Bryant and the latter row to any Lakers
player. The system is not rewarded for merging the two rows
together, even if they are describing the same entity. Our eval-
uation scores, however, reward the system for accurately filling
in more cells.

7Note that the baseline system uses NER tags, list of titles
and suffixes; which are also provided to our model through the
features in §3.1.2.

all words within a column belong to the same at-
tribute, creating columns as necessary to accomo-
date multiple similar attributes as a result of merg-
ing. We can evaluate the tables produced by each
step of the clustering to obtain the entire sequence
of response-reference scores.

As a strong baseline, we also compare our ap-
proach with the original implementation of the
model of Eisenstein et al. (2011), denoted by EEA.

4.4 Results
For both the politics and sports dataset, we run the
procedure in §3.3 three times and report the results.
Politics. The results for the politics dataset are
shown in Figure 2. Our model consistently outper-
formed both baselines. We also analyze how much
each of our four main extensions (shape features,
context information, noise, and first-order column
dependencies) to EEA contributes to overall per-
formance by ablating each in turn (also shown in
Fig. 2). The best-performing complete model has
415 rows, of which 113 were matched to the ref-
erence table. Shape features are useful: remov-
ing them was detrimental, and they work even bet-
ter without column dependencies. Indeed, the best
model did not have column dependencies. Remov-
ing context features had a strong negative effect,
though perhaps this could be overcome with a more
carefully tuned initializer.

In row evaluation, the baseline system can achieve
a high reference score by creating one entity row per
unique string, but as it merges strings, the clusters
encompass more word tokens, improving response
score at the expense of reference score. With fewer
clusters, there are fewer entities in the response ta-
ble for matching and the response score suffers. Al-
though we use the same seed table in both exper-
iments, the results from EEA are below the base-
line curve because it has the additional complexity
of inferring the number of columns from data. Our
model is simpler in this regard since it assumes that
the number of columns is known (C = 6). In col-
umn evaluation, our method without column depen-
dencies was best.
Sports. The results for the sports dataset are shown
in Figure 3. Our best-performing complete model’s
response table contains 599 rows, of which 561
were matched to the reference table. In row eval-
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Figure 2: Row (left) and column (right) scores for the politics dataset. For all but “baseline” (clustering), each point
denotes a unique sampling run. Note the change in scale in the left plot at y = 0.25. For the clustering baseline, points
correspond to iterations.
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Figure 3: Row (left) and column (right) scores for the sports dataset. Each point denotes a unique sampling run. The
reference score is low since the reference set includes all entities in the NBA, NFL, and MLB, but most of them were
not mentioned in our dataset.

uation, our model lies above the baseline response-
reference score curve, demonstrating its ability to
correctly identify and combine player mentions with
their team names. Similar to the previous dataset,
our model is also substantially better in column eval-
uation, indicating that it mapped mention words into
a coherent set of five columns.

4.5 Discussion
The two datasets illustrate that our model adapts to
somewhat different tasks, depending on its input.
Furthermore, fixing C (unlike EEA) does appear to
have benefits.

In the politics dataset, most of the mentions con-
tain information about people. Therefore, besides
canonicalizing named entities, the model also re-
solves within-document and cross-document coref-
erence, since it assigned a row index for every men-
tion. For example, our model learned that most men-
tions of John McCain, Sen. John McCain, Sen. Mc-
Cain, and Mr. McCain refer to the same entity. Ta-
ble 3 shows a few noteworthy entities from our com-
plete model’s output table.

Barack Obama Mr. Sen. Hussein
Michelle Obama Mrs.

Norm Coleman Sen.
Sarah Palin Ms.
John McCain Mr. Sen. Hussein

Table 3: A small segment of the output table for the poli-
tics dataset, showing a few noteworthy correct (blue) and
incorrect (red) examples. Black indicates seeds. Though
Ms. is technically correct, there is variation in prefer-
ences and conventions. Our data include eight instances
of Ms. Palin and none of Mrs. Palin or Mrs. Sarah
Palin.

The first entity is an easy example since it only
had to complete information provided in the seed ta-
ble. The model found the correct gender-specific ti-
tle for Barack Obama, Mr.. The rest of the examples
were fully inferred from the data. The model was es-
sentially correct for the second, third, and fourth en-
tities. The last row illustrates a partially erroneous
example, in which the model confused the middle
name of John McCain, possibly because of a com-
bination of a strong prior to reuse this row and the
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Derek Jeter New York
Ben Roethlisberger Pittsburgh Steelers
Alex Rodriguez New York Yankees

Michael Vick Philadelphia Eagles
Kevin Garnett Los Angeles Lakers
Dave Toub The Bears

Table 4: A small segment of the output table for the sports
dataset, showing a few noteworthy correct (blue) and in-
correct (red) examples. Black indicates seed examples.

introduction of a notion of noise.

In the sports dataset, persons and organizations
are mentioned. Recall that success here consists of
identifying the correct team for every player. The
EEA model is not designed for this and performed
poorly. Our model can do better, since it makes use
of context information and features, and it can put a
person and an organization in one row even though
they do not share common words. Table 4 shows a
few noteworthy entities from our complete model’s
output.

Surprisingly, the model failed to infer that Derek
Jeter plays for New York Yankees, although men-
tions of the organization New York Yankees can be
found in our dataset. This is because the model did
not see enough evidence to put them in the same row.
However, it successfully inferred the missing infor-
mation for Ben Roethlisberger. The next two rows
show cases where our model successfully matched
players with their teams and put each word token to
its respective column. The most frequent error, by
far, is illustrated in the fifth row, where a player is
matched with a wrong team. Kevin Garnett plays for
the Boston Celtics, not the Los Angeles Lakers. It
shows that in some cases context information is not
adequate, and a possible improvement might be ob-
tained by providing more context to the model. The
sixth row is interesting because Dave Toub is indeed
affiliated with the Chicago Bears. However, when
the model saw a mention token The Bears, it did not
have any other columns to put the word token The,
and decided to put it in the fourth column although it
is not a location. If we added more columns, deter-
miners could become another attribute of the entities
that might go into one of these new columns.

5 Related Work

There has been work that attempts to fill predefined
templates using Bayesian nonparametrics (Haghighi
and Klein, 2010) and automatically learns template
structures using agglomerative clustering (Cham-
bers and Jurafsky, 2011). Charniak (2001) and El-
sner et al. (2009) focused specifically on names and
discovering their structure, which is a part of the
problem we consider here. More similar to our
work, Eisenstein et al. (2011) introduced a non-
parametric Bayesian approach to extract structured
databases of entities. A fundamental difference of
our approach from any of the previous work is it
maximizes conditional likelihood and thus allows
beneficial incorporation of arbitrary features.

Our model is focused on the problem of canoni-
calizing mention strings into their parts, though its r
variables (which map mentions to rows) could be in-
terpreted as (within-document and cross-document)
coreference resolution, which has been tackled us-
ing a range of probabilistic models (Li et al., 2004;
Haghighi and Klein, 2007; Poon and Domingos,
2008; Singh et al., 2011). We have not evaluated it
as such, believing that further work should be done
to integrate appropriate linguistic cues before such
an application.

6 Conclusions

We presented an improved probabilistic model for
canonicalizing named entities into a table. We
showed that the model adapts to different tasks de-
pending on its input and seeds, and that it improves
over state-of-the-art performance on two corpora.
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Abstract

In this paper we propose a method to auto-
matically label multi-lingual data with named
entity tags. We build on prior work utiliz-
ing Wikipedia metadata and show how to ef-
fectively combine the weak annotations stem-
ming from Wikipedia metadata with infor-
mation obtained through English-foreign lan-
guage parallel Wikipedia sentences. The com-
bination is achieved using a novel semi-CRF
model for foreign sentence tagging in the con-
text of a parallel English sentence. The model
outperforms both standard annotation projec-
tion methods and methods based solely on
Wikipedia metadata.

1 Introduction

Named Entity Recognition (NER) is a frequently
needed technology in NLP applications. State-of-
the-art statistical models for NER typically require
a large amount of training data and linguistic exper-
tise to be sufficiently accurate, which makes it nearly
impossible to build high-accuracy models for a large
number of languages.

Recently, there have been two lines of work which
have offered hope for creating NER analyzers in
many languages. The first has been to devise an
algorithm to tag foreign language entities using
metadata from the semi-structured Wikipedia repos-
itory: inter-wiki links, article categories, and cross-
language links (Richman and Schone, 2008). The
second has been to use parallel English-foreign lan-
guage data, a high-quality NER tagger for English,
and projected annotations for the foreign language
(Yarowsky et al., 2001; Das and Petrov, 2011). Par-
allel data has also been used to improve existing
monolingual taggers or other analyzers in two lan-
guages (Burkett et al., 2010a; Burkett et al., 2010b).

∗This research was conducted during the author’s internship
at Microsoft Research

The goal of this work is to create high-accuracy
NER annotated data for foreign languages. Here
we combine elements of both Wikipedia metadata-
based approaches and projection-based approaches,
making use of parallel sentences extracted from
Wikipedia. We propose a statistical model which
can combine the two types of information. Simi-
larly to the joint model of Burkett et al. (2010a), our
model can incorporate both monolingual and bilin-
gual features in a log-linear framework. The advan-
tage of our model is that it is much more efficient
as it does not require summing over matchings of
source and target entities. It is a conditional model
for target sentence annotation given an aligned En-
glish source sentence, where the English sentence is
used only as a source of features. Exact inference is
performed using standard semi-markov CRF model
inference techniques (Sarawagi and Cohen, 2004).

Our results show that the semi-CRF model im-
proves on the performance of projection models by
more than 10 points in F-measure, and that we can
achieve tagging F-measure of over 91 using a very
small number of annotated sentence pairs.

The paper is organized as follows: We first
describe the datasets and task setting in Section
2. Next, we present our two baseline methods:
A Wikipedia metadata-based tagger and a cross-
lingual projection tagger in Sections 3 and 4, re-
spectively. We present our direct semi-CRF tagging
model in Section 5.

2 Data and task

As a case study, we focus on two very dif-
ferent foreign languages: Korean and Bulgarian.
The English and foreign language sentences that
comprise our training and test data are extracted
from Wikipedia (http://www.wikipedia.org). Cur-
rently there are more than 3.8 million articles in
the English Wikipedia, 125,000 in the Bulgarian
Wikipedia, and 131,000 in the Korean Wikipedia.
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Figure 1: A parallel sentence-pair showing gold-standard NE labels and word alignments.

To create our dataset, we followed Smith et al.
(2010) to find parallel-foreign sentences using com-
parable documents linked by inter-wiki links. The
approach uses a small amount of manually annotated
article-pairs to train a document-level CRF model
for parallel sentence extraction. A total of 13,410
English-Bulgarian and 8,832 English-Korean sen-
tence pairs were extracted.

Of these, we manually annotated 91 English-
Bulgarian and 79 English-Korean sentence pairs
with source and target named entities as well as
word-alignment links among named entities in the
two languages. Figure 1 illustrates a Bulgarian-
English sentence pair with alignment.

The named entity annotation scheme followed has
the labels GPE (Geopolitical entity), PER (Person),
ORG (Organization), and DATE. It is based on the
MUC-7 annotation guidelines, and GPE is synony-
mous with Location. The annotation process was
not as rigorous as one might hope, due to lack of re-
sources. The English-Bulgarian and English-Korean
datasets were labeled by one annotator each and then
annotations on the English sentences were double-
checked by the other annotator. Disagreements were
rare and were resolved after discussion.

The task we evaluate on is tagging of foreign lan-
guage sentences. We measure performance by la-
beled precision, recall, and F-measure. We give par-
tial credit if entities partially overlap on their span of
words and match on their labels.

Table 1 shows the total number of English,
Bulgarian and Korean entities and the percent-
age of entities that were manually aligned to an
entity of the same type in the other language.
The data sizes are fairly small as the data is

Language Entities Aligned %
English 342 93.9%
Bulgarian 344 93.3%
English 414 88.4%
Korean 423 86.5%

Table 1: English-Bulgarian and English-Korean data
characteristics.

used only to train models with very few coarse-
grained features and for evaluation. These datasets
are available at http://research.microsoft.com/en-
us/people/kristout/nerwikidownload.aspx.

As we can see, less than 100% of entities have
parallels in the other language. This is due to two
phenomena: one is that the parallel sentences some-
times contain different amounts of information and
one language might use more detail than the other.
The other is that the same information might be ex-
pressed using a named entity in one language, and
using a non-entity phrase in the other language (e.g.
“He is from Bulgaria” versus “He is Bulgarian”).
Both of these causes of divergence are much more
common in the English-Korean dataset than in the
English-Bulgarian one.

3 Wiki-based tagger: annotating sentences
based on Wikipedia metadata

We followed the approach of Richman and Schone
(2008) to derive named entity annotations of both
English and foreign phrases in Wikipedia, using
Wikipedia metadata. The following sources of in-
formation were used from Wikipedia: category an-
notations on English documents, article links which
link from phrases in an article to another article in
the same language, and interwiki links which link
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Figure 2: Candidate NEs for the English and Bulgarian
sentences according to baseline taggers.

from articles in one language to comparable (seman-
tically equivalent) articles in the other language. In
addition to the Wikipedia-derived resources, the ap-
proach requires a manually specified map from En-
glish category key-phrases to NE tags, but does not
require expert knowledge for any non-English lan-
guage. We implemented the main ideas of the ap-
proach but some implementation details may differ.

To tag English language phrases, we first derived
named entity categorizations of English article titles,
by assigning a tag based on the article’s category
information. The category-to-NE map used for the
assignment is a small manually specified map from
phrases appearing in category titles to NE tags. For
example, if an article has categories “People by”,
“People from”, “Surnames” etc., it is classified as
PER. Looking at the example in Figure 1, the article
with title ”Igor Tudor” is classified as PER because
one of its categories is “Living people”. The full
map we use is taken from the paper (Richman and
Schone, 2008).

Using the article-level annotations and article
links we define a local English wiki-based tagger
and a global English wiki-based tagger, which will
be described in detail next.
Local English Wiki-based tagger. This Wiki-based
tagger tags phrases in an English article based on the
article links from these phrases to NE-tagged arti-
cles. For example, suppose that the phrase “Split” in
the article with title “Igor Tudor” is linked to the ar-
ticle with title “Split”, which is classified as GPE.
Thus the local English Wiki-based tagger can tag
this phrase as GPE. If, within the same article, the
phrase “Split” occurs again, it can be tagged again
even if it is not linked to a tagged article (this is
the one sense per document assumption). Addition-

ally, the tagger tags English phrases as DATE if they
match a set of manually specified regular expres-
sions. As a filter, phrases that do not contain a cap-
italized word or a number are not tagged with NE
tags.
Global English Wiki-based tagger. This tagger
tags phrases with NE tags if these phrases have ever
been linked to a categorized article (the most fre-
quent label is used). For example, if “Split” does
not have a link anywhere in the current article, but
has been linked to the GPE-labeled article with ti-
tle “Split” in another article, it will still be tagged
as GPE. We also apply a local+global Wiki-tagger,
which tags entities according to the local Wiki-
tagger and additionally tags any non-conflicting en-
tities according to the global tagger.
Local foreign Wiki-based tagger. The idea is the
same as for the local English tagger, with the dif-
ference that we first assign NE tags to foreign lan-
guage articles by using the NE tags assigned to En-
glish articles to which they are connected with inter-
wiki links. Because we do not have maps from cate-
gory phrases to NE tags for foreign languages, using
inter-wiki links is a way to transfer this knowledge
to the foreign languages. After we have categorized
foreign language articles we follow the same algo-
rithm as for the local English Wiki-based tagger. For
Bulgarian we also filtered out entities based on cap-
italization and numbers, but did not do that for Ko-
rean as it has no concept of capitalization.
Global foreign Wiki-based tagger The global and
local+global taggers are analogous, using the cate-
gorization of foreign articles as above.

Figure 2 shows the tags assigned to English and
Bulgarian strings according to the local and global
Wiki-based taggers. The global Wiki-based tag-
ger could assign multiple labels to the same string
(corresponding to different senses in different oc-
currences). In case of multiple possible labels, the
most frequent one is denoted by * in the Figure. The
Figure also shows the results of the Stanford NER
tagger for English (Finkel et al., 2005) (we used the
MUC-7 classifier).

Table 2 reports the performance of the local (L
Wiki-tagger), local+global (LG Wiki tagger) and the
Stanford tagger. We can see that the local Wiki tag-
gers have higher precision but lower recall than the
local+global Wiki taggers. The local+global taggers
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Language L Wiki-tagger LG Wiki-tagger Stanford Tagger
Prec Rec F1 Prec Rec F1 Prec Rec F1

English 92.8 75.1 83.0 79.7 89.5 84.3 86.5 77.5 81.7
Bulgarian 94.1 48.7 64.2 86.8 79.9 83.2
English 92.6 75.6 83.2 84.1 86.7 85.4 82.2 71.9 76.7
Korean 89.5 57.3 69.9 43.2 78.0 55.6

Table 2: English-Bulgarian and English-Korean Wiki-based tagger performance.

are overall best for English and Bulgarian. The lo-
cal tagger is best for Korean, as the precision suffers
too much due to the global tagger. This is perhaps
due in part to the absence of the capitalization filter
for Korean which improved precision for Bulgarian
and English. The Stanford tagger is worse than the
Wiki-based tagger, but it is different enough that it
contributes useful information to the task.

4 Projection Model

From Table 2 we can see that the English Wiki-
based taggers are better than the Bulgarian and Ko-
rean ones, which is due to the abundance and com-
pleteness of English data in Wikipedia. In such cir-
cumstances, previous research has shown that one
can project annotations from English to the more
resource-poor language (Yarowsky et al., 2001).
Here we follow the approach of Feng et al. (2004)
to train a log-linear model for projection.

Note that the Wiki-based taggers do not require
training data and can be applied to any sentences
from Wikipedia articles. The projection model de-
scribed in this section and the Semi-CRF model
described in Section 5 are trained using annotated
data. They can be applied to tag foreign sen-
tences in English-foreign sentence pairs extracted
from Wikipedia.

The task of projection is re-cast as a ranking task,
where for each source entity Si, we rank all possible
candidate target entity spans Tj and select the best
span as corresponding to this source entity. Each
target span is labeled with the NE label of the corre-
sponding source entity. The probability distribution
over target spans Tj for a given source entity Si is
defined as follows:

p(Si|Tj) =
exp(λf(Si, Tj))∑
j′ exp(λf(Si, T ′j))

where λ is a parameter vector, and f(Si, Tj) is a fea-

ture vector for the candidate entity pair.
From this formulation we can see that a fixed set

of English source entities Si is required as input.
The model projects these entities to corresponding
foreign entities. We train and evaluate the projection
model using 10-fold cross-validation on the dataset
from Table 1. For training, we use the human-
annotated gold English entities and the manually-
specified entity alignments to derive corresponding
target entities. At test time we use the local+global
Wiki-based tagger to define the English entities and
we don’t use the manually annotated alignments.

4.1 Features

We present the features for this model in a lot of
detail since analogous feature types are also used in
our final direct semi-CRF model. The features are
grouped into four categories.

Word alignment features
We exploit a feature set based on HMM word align-
ments in both directions (Och and Ney, 2000). To
define the features we make use of the posterior
alignment link probabilities as well as the most
likely (Viterbi) alignments. The posterior proba-
bilities are the probabilities of links in both direc-
tions given the source and target sentences: P (ai =
j|s, t) and P (aj = i|s, t).

If a source entity consists of positions i1, . . . , im
and a potential corresponding target entity consists
of positions j1, . . . , jn, the word-alignment derived
features are:

• Probability that each word from one of the en-
tities is aligned to a word from the other entity,
estimated as:∏

i∈i1...im

∑
j∈j1...jn

P (ai = j|s, t) We use an
analogous estimate for the probability in the
other direction.
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• Sum of posterior probabilities of links from
words inside one entity to words outside an-
other entity

∑
i∈i1...im

(1 −
∑

j∈j1...jn
P (ai =

j|s, t)). Probabilities from the other HMM di-
rection are estimated analogously.

• Indicator feature for whether the source and
target entity can be extracted as a phrase pair
according to the combined Viterbi alignments
(grow-diag-final) and the standard phrase ex-
traction heuristic (Koehn et al., 2003).

Phonetic similarity features
These features measure the similarity between a
source and target entity based on pronunciation. We
utilize a transliteration model (Cherry and Suzuki,
2009), trained from pairs of English person names
and corresponding foreign language names, ex-
tracted from Wikipedia. The transliteration model
can return an n-best list of transliterations of a for-
eign string, together with scores. For example the
top 3 transliterations in English of the Bulgarian
equivalent of “Igor Tudor” from Figure 1 are Igor
Twoodor, Igor Twoodore, and Igore Twoodore.

We estimate phonetic similarity between a source
and target entity by computing Levenshtein and
other distance metrics between the source entity
and the closest transliteration of the target (out of a
10-best list of transliterations). We use normalized
and un-normalized Levenshtein distance. We
also use a BLEU-type measure which estimates
character n-gram overlap.

Position/Length features
These report relative length and position of the
English and foreign entity following (Feng et al.,
2004).

Wiki-based tagger features
These features look at the degree of match between
the source and target entities based on the tags as-
signed to them by the local and global Wiki-taggers
for English and the foreign language, and by the
Stanford tagger for English. These are indicator fea-
tures separate for the different source-target tagger
combinations, looking at whether the taggers agree
in their assignments to the candidate entities.

4.2 Model Evaluation

We evaluate the tagging F-measure for projec-
tion models on the English-Bulgarian and English-
Korean datasets. 10-fold cross-validation was used
to estimate model performance. The foreign lan-
guage NE F-measure is reported in Table 3. The best
Wiki-based tagger performance is shown on the last
line as a baseline (repeated from Table 2).

We present a detailed evaluation of the model to
gain understanding of the strengths and limitations
of the projection approach and to motivate our direct
semi-CRF model. To give an estimate of the upper
bound on performance for the projection model, we
first present two oracles. The goal of the oracles it
to estimate the impact of two sources of error for the
projection model: the first is the error in detecting
English entities, and the second is the error in deter-
mining the corresponding foreign entity for a given
English entity.

The first oracle ORACLE1 has access to the gold-
standard English entities and gold-standard word
alignments among English and foreign words. For
each source entity, ORACLE1 selects the longest for-
eign language sequence of words that could be ex-
tracted in a phrase pair coupled with the source en-
tity word sequence (according the standard phrase
extraction heuristic (Koehn et al., 2003)), and labels
it with the label of the source entity. Note that the
word alignments do not uniquely identify the corre-
sponding foreign phrase for each English phrase and
some error is possible due to this. The performance
of this oracle is closely related to the percentage of
linked source-target entities reported in Table 1. The
second oracle ORACLE2 provides the performance
of the projection model when gold-standard source
entities are known, but the corresponding target en-
tities still have to be determined by the projection
model (gold-standard alignments are not known). In
other words, ORACLE2 is the projection model with
all features, where in the test set we provide the gold
standard English entities as input. The performance
of ORACLE2 is determined by the error in automatic
word alignment and in determining phonetic corre-
spondence. As we can see the drop due to this error
is very large, especially on Korean, where perfor-
mance drops from 90.0 to 81.9 F-measure.

The next section in the Table presents the perfor-
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Method English-Bulgarian English-Korean
Prec Rec F1 Prec Rec F1

ORACLE1 98.3 92.9 95.5 95.5 85.1 90.0
ORACLE2 96.7 86.3 91.2 90.5 74.7 81.9
PM-WF 71.7 80.0 75.7 85.1 72.2 78.1
PM+WF 73.6 81.3 77.2 87.6 74.9 80.8
Wiki-tagger 86.8 79.9 83.2 89.5 57.3 69.9

Table 3: English-Bulgarian and English-Korean Projection tagger performance.

mance of non-oracle projection models, which do
not have access to any manually labeled informa-
tion. The local+global Wiki-based tagger is used to
define English entities, and only automatically de-
rived alignment information is used. PM+WF is the
projection model using all features. The line above,
PM-WF represents the projection model without
the Wiki-tagger derived features, and is included to
show that the gain from using these features is sub-
stantial. The difference in accuracy between the pro-
jection model and ORACLE2 is very large, and is due
to the error of the Wiki-based English taggers. The
drop for Bulgarian is so large that the best projec-
tion model PM+WF does not reach the performance
of 83.2 achieved by the baseline Wiki-based tagger.
When source entities are assigned with error for this
language pair, projecting entity annotations from the
source is not better than using the target Wiki-based
annotations directly. For Korean while the trend in
model performance is similar as oracle information
is removed, the projection model achieves substan-
tially better performance (80.8 vs 69.9) due to the
much larger difference in performance between the
English and Korean Wiki-based taggers.

The drawback of the projection model is that it
determines target entities only by assigning the best
candidate for each source entity. It cannot create tar-
get entities that do not correspond to source entities,
it is not able to take into account multiple conflicting
source NE taggers as sources of information, and it
does not make use of target sentence context and en-
tity consistency constraints. To address these short-
comings we propose a direct semi-CRF model, de-
scribed in the next section.

5 Semi-CRF Model

Semi-Markov conditional random fields (semi-
CRFs) are a generalization of CRFs. They assign la-
bels to segments of an input sequence x, rather than

to individual elements xi and features can be de-
fined on complete segments. We apply Semi-CRFs
to learn a NE tagger for labeling foreign sentences in
the context of corresponding source sentences with
existing NE annotations.

The semi-CRF defines a distribution over foreign
sentence labeled segmentations (where the segments
are named entities with their labels, or segments of
length one with label “NONE”). To formally define
the distribution, we introduce some notation follow-
ing Sarawagi and Cohen (2005):

Let s = 〈s1, . . . , sp〉 denote a segmentation of
the foreign sentence x, where a segment sj =
〈tj , uj , yj〉 is determined by its start position tj , end
position uj , and label yj . Features are defined on
segments and adjacent segment labels. In our appli-
cation, we only use features on segments. The fea-
tures on segments can also use information from the
corresponding English sentence e along with exter-
nal annotations on the sentence pair A.

The feature vector for each segment can be de-
noted by F (j, s,x, e,A) and the weight vector for
features by w. The probability of a segmentation is
then defined as:

P (s|x, e,A) =

∑
j expw′F (j, s,x, e,A)

Z(x, e,A)

In the equation above Z represents a normalizer
summing over valid segmentations.

5.1 Features
We use both boolean and real-valued features in the
semi-CRF model. Example features and their val-
ues are given in Table 4. The features are the ones
that fire on the segment of length 1 containing the
Bulgarian equivalent of the word “Split” and la-
beled with label GPE (tj=13,uj=13,yj=GPE), from
the English-Bulgarian sentence pair in Figure 1.
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The features look at the English and foreign sen-
tence as well as external annotations A. Note that
the semi-CRF model formulation does not require a
fixed labeling of the English sentence. Different and
possibly conflicting NE tags for candidate English
and foreign sentence substrings according to the
Wiki-based taggers and the Stanford tagger are spec-
ified as one type of external annotations (see Figure
2). Another annotation type is derived from HMM-
based word alignments and the transliteration model
described in Section 4. They provide two kinds of
alignment links between English and foreign tokens:
one based on the HMM-word alignments (poste-
rior probability of the link in both directions), and
another based on different character-based distance
metrics between transliterations of foreign words
and English words. The transliteration model and
distance metrics were described in Section 4 as well.
For the example Bulgarian correspondent of “Split”
in the figure, the English “Split” is linked to it ac-
cording to both the forward and backward HMM,
and according to two out of the three transliteration
distance measures. A third annotation type is au-
tomatically derived links between foreign candidate
entity strings (sequences of tokens) and best corre-
sponding English candidate entities. The candidate
English entities are defined by the union of entities
proposed by the Wiki-based taggers and the Stan-
ford tagger. Note that these English candidate en-
tities can be overlapping and inconsistent without
harming the model. We link foreign candidate seg-
ments with English candidate entities based on the
projection model described in Section 4 and trained
on the same data. The projection model scores every
source-target entity pair and selects the best source
for each target candidate entity. For our example
target segment, the corresponding source candidate
entity is “Split”, labeled GPE by the local+global
Wiki-tagger and by the global Wiki-tagger.

The features are grouped into three categories:
Group 1. Foreign Wiki-based tagger features.
These features look at target segments and extract
indicators of whether the label of the segment agrees
with the label assigned by the local, global, and/or
local+global wiki tagger. For the example segment
from the sentence in Figure 1, since neither the local
nor global tagger have assigned a label GPE, the first
three features have value zero. In addition to tags on

the whole segment, we look at tag combinations for
individual words within the segment as well as two
words to the left and right outside the segment. In
the first section in Table 4 we can see several feature
types and and their values for our example.
Group 2. Foreign surface-based features. These
features look at orthographic properties of the words
and distinguish several word types. The types are
based on capitalization and also distinguish numbers
and punctuation. In addition, we make use of word-
clusters generated by JCluster. 1

We look at properties of the individual words as
well as the concatenation for all words in the seg-
ment. In addition, there are features for words two
words to the left and two words to the right outside
the segment. The second section in the Table shows
several features of this type with their values.
Group 3. Label match between English and
aligned foreign entities. These features look at
the linked English segment for the candidate tar-
get segment and compare the tags assigned to the
English segment by the different English taggers to
the candidate target label. In addition to segment-
level comparisons, they also look at tag assignments
for individual source tokens linked to the individual
target tokens (by word alignment and transliteration
links). The last section in the Table contains sample
features with their values. The feature SOURCE-E-
WIKI-TAG-MATCH looks at whether the correspond-
ing source entity has the same local+global Wiki-
tagger assigned tag as the candidate target entity.
The next two features look at the Stanford tagger
and the global Wiki-tagger. The real-valued fea-
tures like SCORE-SOURCE-E-WIKI-TAG-MATCH re-
turn the score of the matching between the source
and target candidate entities (according to the pro-
jection model), if the labels match. In this way, more
confident matchings can impact the target tags more
than less confident ones.

5.2 Experimental results

Our main results are listed in Table 5. We perform
10-fold cross-validation as in the projection experi-
ments. The best Wiki-based and projection models
are listed as baselines at the bottom of the table.

1Software distributed by Joshua Goodman
http://research.microsoft.com/en-us/downloads/0183a49d-
c86c-4d80-aa0d-53c97ba7350a/default.aspx.
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Method English-Bulgarian English-Korean
Prec Rec F1 Prec Rec F1

MONO 86.7 79.4 82.9 89.1 57.1 69.6
BI 90.1 83.3 86.6 88.6 79.8 84.0
MONO-ALL 94.7 86.2 90.3 90.2 84.3 87.2
BI-ALL-WT 95.7 87.6 91.5 92.4 87.6 89.9
BI-ALL 96.4 89.4 92.8 94.7 87.9 91.2
Wiki-tagger 86.8 79.9 83.2 89.5 57.3 69.9
PM+WF 73.6 81.3 77.2 87.6 74.9 80.8

Table 5: English-Bulgarian and English-Korean semi-CRF tagger performance.

Feature Description Example Value
WIKI-TAG-MATCH 0
WIKI-GLOBAL-TAG-MATCH 0
WIKIGLOBAL-POSSIBLE-TAG 0
WIKI-TAG&LABEL NONE&GPE
WIKI-GLOBAL-TAG&LABEL NONE&GPE
FIRST-WORD-CAP 1
CONTAINS-NUMBER 0
PREV-WORD-CAP 0
WORD-TYPE&LABEL Xxxx&GPE
WORD-CLUSTER& LABEL 101&GPE
SEGMENT-WORD-TYPE&LABEL Xxxx&GPE
SEGMENT-WORD-CLUSTER&LABEL Xxxx&GPE
SOURCE-E-WIKI-TAG-MATCH 1
SOURCE-E-STANFORD-TAG-MATCH 0
SOURCE-E-WIKI-GLOBAL-TAG-MATCH 1
SOURCE-E-POSSIBLE-GLOBAL 1
SOURCE-E-ALL-TAG-MATCH 0
SOURCE-W-FWA-TAG & LABEL GPE & GPE
SOURCE-W-BWA-TAG & LABEL GPE & GPE
SCORE-SOURCE-E-WIKI-TAG-MATCH -0.009
SCORE-SOURCE-E-GLOBAL-TAG-MATCH -0.009
SCORE-SOURCE-E-STANFORD-TAG-MATCH -1

Table 4: Features with example values.

We look at performance using four sets of fea-
tures: (i) Monolingual Wiki-tagger based, using
only the features in Group 1 (MONO); (ii) Bilingual
label match and Wiki-tagger based, using features
in Groups 1 and 3 (BI); (iii) Monolingual all, us-
ing features in Groups 1 and 2 (MONO-ALL), and
(iv) Bilingual all, using all features (BI-ALL). Ad-
ditionally, we report performance of the full bilin-
gual model with all features, but when English can-
didate entities are generated only according to the
local+global Wiki-taggger (BI-ALL-WT).

The main results show that the full semi-CRF
model greatly outperforms the baseline projection
and Wiki-taggers. For Bulgarian, the F-measure of
the full model is 92.8 compared to the best base-
line result of 83.2. For Korean, the F-measure of the
semi-CRF is 91.2, more than 10 points higher than
the performance of the projection model.

Within the semi-CRF model, the contribution of
English sentence context was substantial, leading to
2.5 point increase in F-measure for Bulgarian (92.8
versus 90.3 F-measure), and 4.0 point increase for
Korean (91.2 versus 87.2).

The additional gain due to considering candidate
source entities generated from all English taggers
was 1.3 F-measure points for both language pairs
(comparing models BI-ALL and BI-ALL-WT).

If we restrict the semi-CRF to use only features
similar to the ones used by the projection model, we
still obtain performance much better than that of the
projection model: comparing BI to the projection
model, we see gains of 9.4 points for Bulgarian, and
4 points for Korean. This is due to the fact that the
semi-CRF is able to relax the assumption of one-to-
one correspondence between source and target enti-
ties, and can effectively combine information from
multiple source and target taggers.

We should note that the proposed method can only
tag foreign sentences in English-foreign sentence
pairs. The next step for this work is to train mono-
lingual NE taggers for the foreign languages, which
can work on text within or outside of Wikipedia.
Preliminary results show performance of over 80 F-
measure for such monolingual models.

6 Related Work

As discussed throughout the paper, our model builds
upon prior work on Wikipedia metadata-based NE
tagging (Richman and Schone, 2008) and cross-
lingual projection for named entities (Feng et al.,
2004). Other interesting work on aligning named
entities in two languages is reported in (Huang and
Vogel, 2002; Moore, 2003).

Our direct semi-CRF tagging approach is related
to bilingual labeling models presented in previous
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work (Burkett et al., 2010a; Smith and Smith, 2004;
Snyder and Barzilay, 2008). All of these models
jointly label aligned source and target sentences. In
contrast, our model is not concerned with tagging
English sentences but only tags foreign sentences in
the context of English sentences. Compared to the
joint log-linear model of Burkett et al. (2010a), our
semi-CRF approach does not require enumeration of
n-best candidates for the English sentence and is not
limited to n-best candidates for the foreign sentence.
It enables the use of multiple unweighted and over-
lapping entity annotations on the English sentence.

7 Conclusions

In this paper we showed that using resources from
Wikipedia, it is possible to combine metadata-based
approaches and projection-based approaches for in-
ducing named entity annotations for foreign lan-
guages. We presented a direct semi-CRF tagging
model for labeling foreign sentences in parallel sen-
tence pairs, which outperformed projection by more
than 10 F-measure points for Bulgarian and Korean.
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Abstract

In this paper, we propose a computational ap-
proach to generate neologisms consisting of
homophonic puns and metaphors based on the
category of the service to be named and the
properties to be underlined. We describe all
the linguistic resources and natural language
processing techniques that we have exploited
for this task. Then, we analyze the perfor-
mance of the system that we have developed.
The empirical results show that our approach
is generally effective and it constitutes a solid
starting point for the automation of the naming
process.

1 Introduction

A catchy, memorable and creative name is an im-
portant key to a successful business since the name
provides the first image and defines the identity of
the service to be promoted. A good name is able to
state the area of competition and communicate the
promise given to customers by evoking semantic as-
sociations. However, finding such a name is a chal-
lenging and time consuming activity, as only few
words (in most cases only one or two) can be used to
fulfill all these objectives at once. Besides, this task
requires a good understanding of the service to be
promoted, creativity and high linguistic skills to be
able to play with words. Furthermore, since many
new products and companies emerge every year, the
naming style is continuously changing and creativ-
ity standards need to be adapted to rapidly changing
requirements.

The creation of a name is both an art and a science
(Keller, 2003). Naming has a precise methodology

and effective names do not come out of the blue. Al-
though it might not be easy to perceive all the effort
behind the naming process just based on the final
output, both a training phase and a long process con-
sisting of many iterations are certainly required for
coming up with a good name.

From a practical point of view, naming agencies
and branding firms, together with automatic name
generators, can be considered as two alternative ser-
vices that facilitate the naming process. However,
while the first type is generally expensive and pro-
cessing can take rather long, the current automatic
generators are rather naı̈ve in the sense that they are
based on straightforward combinations of random
words. Furthermore, they do not take semantic rea-
soning into account.

To overcome the shortcomings of these two alter-
native ways (i.e. naming agencies and naı̈ve gener-
ators) that can be used for obtaining name sugges-
tions, we propose a system which combines several
linguistic resources and natural language processing
(NLP) techniques to generate creative names, more
specifically neologisms based on homophonic puns
and metaphors. In this system, similarly to the pre-
viously mentioned generators, users are able to de-
termine the category of the service to be promoted
together with the features to be emphasized. Our
improvement lies in the fact that instead of random
generation, we take semantic, phonetic, lexical and
morphological knowledge into consideration to au-
tomatize the naming process.

Although various resources provide distinct tips
for inventing creative names, no attempt has been
made to combine all means of creativity that can be
used during the naming process. Furthermore, in
addition to the devices stated by copywriters, there
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might be other latent methods that these experts un-
consciously use. Therefore, we consider the task
of discovering and accumulating all crucial features
of creativity to be essential before attempting to au-
tomatize the naming process. Accordingly, we cre-
ate a gold standard of creative names and the corre-
sponding creative devices that we collect from var-
ious sources. This resource is the starting point of
our research in linguistic creativity for naming.

The rest of the paper is structured as follows.
First, we review the state-of-the-art relevant to the
naming task. Then, we give brief information about
the annotation task that we have conducted. Later
on, we describe the model that we have designed
for the automatization of the naming process. Af-
terwards, we summarize the annotation task that we
have carried out and analyze the performance of
the system with concrete examples by discussing its
virtues and limitations. Finally, we draw conclu-
sions and outline ideas for possible future work.

2 Related Work

In this section, we will analyze the state of the art
concerning the naming task from three different as-
pects: i) linguistic ii) computational iii) commercial.

2.1 Linguistic
Little research has been carried out to investigate
the linguistic aspects of the naming mechanism.
B. V. Bergh (1987) built a four-fold linguistic topol-
ogy consisting of phonetic, orthographic, morpho-
logical and semantic categories to evaluate the fre-
quency of linguistic devices in brand names. Bao
et al. (2008) investigated the effects of relevance,
connotation, and pronunciation of brand names on
preferences of consumers. Klink (2000) based
his research on the area of sound symbolism (i.e.
“the direct linkage between sound and meaning”
(Leanne Hinton, 2006)) by investigating whether the
sound of a brand name conveys an inherent mean-
ing and the findings showed that both vowels and
consonants of brand names communicate informa-
tion related to products when no marketing com-
munications are available. Kohli et al. (2005) ana-
lyzed consumer evaluations of meaningful and non-
meaningful brand names and the results suggested
that non-meaningful brand names are evaluated less
favorably than meaningful ones even after repeated
exposure. Lastly, cog (2011) focused on the seman-
tics of branding and based on the analysis of several

international brand names, it was shown that cogni-
tive operations such as domain reduction/expansion,
mitigation, and strengthening might be used uncon-
sciously while creating a new brand name.

2.2 Computational
To the best of our knowledge, there is only one com-
putational study in the literature that can be applied
to the automatization of name generation. Stock and
Strapparava (2006) introduce an acronym ironic re-
analyzer and generator called HAHAcronym. This
system both makes fun of existing acronyms, and
produces funny acronyms that are constrained to be
words of the given language by starting from con-
cepts provided by users. HAHAcronym is mainly
based on lexical substitution via semantic field op-
position, rhyme, rhythm and semantic relations such
as antonyms retrieved from WordNet (Stark and
Riesenfeld, 1998) for adjectives.

As more naı̈ve solutions, automatic name gener-
ators can be used as a source of inspiration in the
brainstorming phase to get ideas for good names.
As an example, www.business-name-generators.
com randomly combines abbreviations, syllables and
generic short words from different domains to ob-
tain creative combinations. The domain genera-
tor on www.namestation.com randomly generates
name ideas and available domains based on allit-
erations, compound words and custom word lists.
Users can determine the prefix and suffix of the
names to be generated. The brand name generator
on www.netsubstance.com takes keywords as in-
puts and here users can configure the percentage of
the shifting of keyword letters. Lastly, the mecha-
nism of www.naming.net is based on name combi-
nations among common words, Greek and Latin pre-
fixes, suffixes and roots, beginning and ending word
parts and rhymes. A shortcoming of these kinds of
automatic generators is that random generation can
output so many bad suggestions and users have to be
patient to find the name that they are looking for. In
addition, these generations are based on straightfor-
ward combinations of words and they do not include
a mechanism to also take semantics into account.

2.3 Commercial
Many naming agencies and branding firms1 provide
professional service to aid with the naming of new

1e.g. www.eatmywords.com, www.designbridge.
com, www.ahundredmonkeys.com
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products, domains, companies and brands. Such ser-
vices generally require customers to provide brief
information about the business to be named, fill in
questionnaires to learn about their markets, competi-
tors, and expectations. In the end, they present a list
of name candidates to be chosen from. Although the
resulting names can be successful and satisfactory,
these services are very expensive and the processing
time is rather long.

3 Dataset and Annotation

In order to create a gold standard for linguistic cre-
ativity in naming, collect the common creativity de-
vices used in the naming process and determine the
suitable ones for automation, we conducted an an-
notation task on a dataset of 1000 brand and com-
pany names from various domains (Özbal et al.,
2012). These names were compiled from a book
dedicated to brand naming strategies (Botton and
Cegarra, 1990) and various web resources related
to creative naming such as adslogans.co.uk and
brandsandtags.com.

Our list contains names which were invented via
various creativity methods. While the creativity in
some of these names is independent of the context
and the names themselves are sufficient to realize the
methods used (e.g. alliteration in Peak Performance,
modification of one letter in Vimeo), for some of
them the context information such as the description
of the product or the area of the company is also
necessary to fully understand the methods used. For
instance, Thanks a Latte is a coffee bar name where
the phonetic similarity between “lot” and “latte” (a
coffee type meaning “milk” in Italian) is exploited.
The name Caterpillar, which is an earth-moving
equipment company, is used as a metaphor. There-
fore, we need extra information regarding the do-
main description in addition to the names. Accord-
ingly, while building our dataset, we conducted two
separate branches of annotation. The first branch re-
quired the annotators to fill in the domain descrip-
tion of the names in question together with their et-
ymologies if required, while the second asked them
to determine the devices of creativity used in each
name.

In order to obtain the list of creativity devices, we
collected a total of 31 attributes used in the naming
process from various resources including academic
papers, naming agents, branding and advertisement
experts. To facilitate the task for the annotators,

we subsumed the most similar attributes when re-
quired. Adopting the four-fold linguistic topology
suggested by Bergh et al. (B. V. Bergh, 1987), we
mapped these attributes into phonetic, orthographic,
morphological and semantic categories. The pho-
netic category includes attributes such as rhyme (i.e.
repetition of similar sounds in two or more words
- e.g. Etch-a-sketch) and reduplication (i.e. repeat-
ing the root or stem of a word or part of it exactly
or with a slight change - e.g. Teenie Weenie), while
the orthographic category consists of devices such as
acronyms (e.g. BMW) and palindromes (i.e. words,
phrases, numbers that can be read the same way in
either direction e.g. Honda “Civic”). The third cat-
egory is the morphology which contains affixation
(i.e. forming different words by adding morphemes
at the beginning, middle or end of words - e.g.
Nutella) and blending (i.e. forming a word by blend-
ing sounds from two or more distinct words and
combining their meanings - e.g. Wikipedia by blend-
ing “Wiki” and “encyclopedia”). Finally, the seman-
tic category includes attributes such as metaphors
(i.e. Expressing an idea through the image of another
object - e.g. Virgin) and punning (i.e. using a word
in different senses or words with sound similarity to
achieve specific effect such as humor - e.g. Thai Me
Up for a Thai restaurant).

4 System Description

The resource that we have obtained after the anno-
tation task provides us with a starting point to study
and try to replicate the linguistic and cognitive pro-
cesses behind the creation of a successful name. Ac-
cordingly, we have made a systematic attempt to
replicate these processes, and implemented a system
which combines methods and resources used in var-
ious areas of Natural Language Processing (NLP) to
create neologisms based on homophonic puns and
metaphors. While the variety of creativity devices
is actually much bigger, our work can be consid-
ered as a starting point to investigate which kinds of
technologies can successfully be exploited in which
way to support the naming process. The task that we
deal with requires: 1) reasoning of relations between
entities and concepts; 2) understanding the desired
properties of entities determined by users; 3) identi-
fying semantically related terms which are also con-
sistent with the objectives of the advertisement; 4)
finding terms which are suitable metaphors for the
properties that need to be emphasized; 5) reasoning
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about phonetic properties of words; 6) combining
all this information to create natural sounding neol-
ogisms.

In this section, we will describe in detail the work
flow of the system that we have designed and imple-
mented to fulfill these requirements.

4.1 Specifying the category and properties

Our design allows users to determine the category
of the product/brand/company to be advertised (e.g.
shampoo, car, chocolate) optionally together with
the properties (e.g. softening, comfortable, addic-
tive) that they want to emphasize. In the current
implementation, categories are required to be nouns
while properties are required to be adjectives. These
inputs that are specified by users constitute the main
ingredients of the naming process. After the de-
termination of these ingredients, several techniques
and resources are utilized to enlarge the ingredient
list, and thereby to increase the variety of new and
creative names.

4.2 Adding common sense knowledge

After the word defining the category is determined
by the user, we need to automatically retrieve more
information about this word. For instance, if the cat-
egory has been determined as “shampoo”, we need
to learn that “it is used for washing hair” or “it
can be found in the bathroom”, so that all this ex-
tra information can be included in the naming pro-
cess. To achieve that, we use ConceptNet (Liu and
Singh, 2004), which is a semantic network contain-
ing common sense, cultural and scientific knowl-
edge. This resource consists of nodes representing
concepts which are in the form of words or short
phrases of natural language, and labeled relations
between them.

ConceptNet has a closed class of relations ex-
pressing connections between concepts. After the
analysis of these relations according to the require-
ments of the task, we have decided to use the ones
listed in Table 1 together with their description in
the second column. The third column states whether
the category word should be the first or second ar-
gument of the relation in order for us to consider
the new word that we discover with that relation.
Since, for instance, the relations MadeOf(milk, *)
and MadeOf(*, milk) can be used for different goals
(the former to obtain the ingredients of milk, and
the latter to obtain products containing milk), we

Relation Description # POS

HasA What does it possess? 1 n
PartOf What is it part of? 2 n
UsedFor What do you use it for? 1 n,v
AtLocation Where would you find it? 2 n
MadeOf What is it made of 1 n
CreatedBy How do you bring it into existence? 1 n
HasSubevent What do you do to accomplish it? 2 v
Causes What does it make happen? 1 n,v
Desires What does it want? 1 n,v
CausesDesire What does it make you want to do? 1 n,v
HasProperty What properties does it have? 1 a
ReceivesAction What can you do to it? 1 v

Table 1: ConceptNet relations.

need to make this differentiation. Via ConceptNet 5,
the latest version of ConceptNet, we obtain a list of
relations such as AtLocation(shampoo, bathroom),
UsedFor(shampoo, clean) and MadeOf(shampoo,
perfume) with the query word “shampoo”. We add
all the words appearing in relations with the category
word to our ingredient list. Among these new words,
multiwords are filtered out since most of them are
noisy and for our task a high precision is more im-
portant than a high recall.

Since sense information is not provided, one of
the major problems in utilizing ConceptNet is the
difficulty in disambiguating the concepts. In our
current design, we only consider the most common
senses of words. As another problem, the part-of-
speech (POS) information is not available in Con-
ceptNet. To handle this problem, we have deter-
mined the required POS tags of the new words that
can be obtained from the relations with an additional
goal of filtering out the noise. These tags are stated
in the fourth column of Table 1.

4.3 Adding semantically related words

To further increase the size of the ingredient list,
we utilize another resource called WordNet (Miller,
1995), which is a large lexical database for English.
In WordNet, nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms called
synsets. Each synset in WordNet expresses a dif-
ferent concept and they are connected to each other
with lexical, semantic and conceptual relations.

We use the direct hypernym relation of WordNet
to retrieve the superordinates of the category word
(e.g. cleansing agent, cleanser and cleaner for the
category word shampoo). We prefer to use this re-
lation of WordNet instead of the relation “IsA” in
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ConceptNet to avoid getting too general words. Al-
though we can obtain only the direct hypernyms in
WordNet, no such mechanism exists in ConceptNet.
In addition, while WordNet has been built by lin-
guists, ConceptNet is built from the contributions of
many thousands of people across the Web and natu-
rally it also contains a lot of noise.

In addition to the direct hypernyms of the cate-
gory word, we increase the size of the ingredient list
by adding synonyms of the category word, the new
words coming from the relations and the properties
determined by the user.

It should be noted that we do not consider any
other statistical or knowledge based techniques for
semantic relatedness. Although they would allow us
to discover more concepts, it is difficult to under-
stand if and how these concepts pertain to the con-
text. In WordNet we can decide what relations to
explore, with the result of a more precise process
with possibly less recall.

4.4 Retrieving metaphors

A metaphor is a figure of speech in which an implied
comparison is made to indicate how two things that
are not alike in most ways are similar in one impor-
tant way. Metaphors are common devices for evo-
cation, which has been found to be a very important
technique used in naming according to the analysis
of our dataset.

In order to generate metaphors, we start with the
set of properties determined by the user and adopt
a similar technique to the one proposed by (Veale,
2011). In this work, to metaphorically ascribe a
property to a term, stereotypes for which the prop-
erty is culturally salient are intersected with stereo-
types to which the term is pragmatically compara-
ble. The stereotypes for a property are found by
querying on the web with the simile pattern “as
〈property〉 as *”. Unlike the proposed approach,
we do not apply any intersection with comparable
stereotypes since the naming task should favor fur-
ther terms to the category word in order to exagger-
ate, to evoke and thereby to be more effective.

The first constituent of our approach uses the
pattern “as 〈property〉 as *” with the addition of
“〈property〉 like *”, which is another important
block for building similes. Given a property, these
patterns are harnessed to make queries through the
web api of Google Suggest. This service performs
auto-completion of search queries based on popu-

lar searches. Although top 10 (or fewer) sugges-
tions are provided for any query term by Google
Suggest, we expand these sets by adding each let-
ter of the alphabet at the end of the provided phrase.
Thereby, we obtain 10 more suggestions for each of
these queries. Among the metaphor candidates that
we obtain, we filter out multiwords to avoid noise as
much as possible. Afterwards, we conduct a lemma-
tization process on the rest of the candidates. From
the list of lemmas, we only consider the ones which
appear in WordNet as a noun. Although the list
that we obtain in the end has many potentially valu-
able metaphors (e.g. sun, diamond, star, neon for
the property bright), it also contains a lot of uncom-
mon and unrelated words (e.g. downlaod, myspace,
house). Therefore, we need a filtering mechanism to
remove the noise and keep only the best metaphors.

To achieve that, the second constituent of the
metaphor retrieval mechanism makes a query in
ConceptNet with the given property. Then, all the
nouns coming from the relations in the form of
HasProperty(*, property) are collected to find words
having that property. The POS check to obtain only
nouns is conducted with a look-up in WordNet as
before. It should be noted that this technique would
not be enough to retrieve metaphors alone since it
can also return noise (e.g. blouse, idea, color, home-
schooler for the property bright).

After we obtain two different lists of metaphor
candidates with the two mechanisms mentioned
above, we take the intersection of these lists and
consider only the words appearing in both lists as
metaphors. In this manner, we aim to remove the
noise coming from each list and obtain more reli-
able metaphors. To illustrate, for the same example
property bright, the metaphors obtained at the end
of the process are sun, light and day.

4.5 Generating neologisms

After the ingredient list is complete, the phonetic
module analyzes all ingredient pairs to generate ne-
ologisms with possibly homophonic puns based on
phonetic similarity.

To retrieve the pronunciation of the ingredients,
we utilize the CMU Pronouncing Dictionary (Lenzo,
2007). This resource is a machine-readable pro-
nunciation dictionary of English which is suitable
for uses in speech technology, and it contains over
125,000 words together with their transcriptions. It
has mappings from words to their pronunciations
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Input Successful output Unsuccessful output

Category Properties Word Ingredients Word Ingredients

bar irish lively wooden traditional
warm hospitable friendly

beertender bartender, beer barkplace workplace, bar
barty party, bar barl girl, bar
giness guinness, gin bark work, bar

perfume
attractive strong intoxicating
unforgettable feminine mystic
sexy audacious provocative

mysticious mysterious, mystic provocadeepe provocative, deep
bussling buss, puzzling
mysteelious mysterious, steel

sunglasses cool elite though authentic
cheap sporty

spectacools spectacles, cool spocleang sporting, clean
electacles spectacles, elect
polarice polarize, ice

restaurant warm elegant friendly original
italian tasty cozy modern

eatalian italian, eat dusta pasta, dust
pastarant restaurant, pasta hometess hostess, home
peatza pizza, eat

shampoo smooth bright soft volumizing
hydrating quality

fragrinse fragrance, rinse furl girl, fur
cleansun cleanser, sun sasun satin, sun

Table 2: A selection of succesful and unsuccessful neologisms generated by the model.

and the current phoneme set contains 39 phonemes
based on the ARPAbet symbol set, which has been
developed for speech recognition uses. We con-
ducted a mapping from the ARPAbet phonemes to
the international phonetic alphabet (IPA) phonemes
and we grouped the IPA phonemes based on the
phoneme classification documented in IPA. More
specifically, we grouped the ones which appear in
the same category such as p-b, t-d and s-z for the
consonants; i-y and e-ø for the vowels.

After having the pronunciation of each word in
the ingredient list, shorter pronunciation strings are
compared against the substrings of longer ones.
Among the different possible distance metrics that
can be applied for calculating the phonetic similarity
between two pronunciation strings, we have chosen
the Levenshtein distance (Levenshtein, 1966). This
distance is a metric for measuring the amount of dif-
ference between two sequences, defined as the min-
imum number of edits required for the transforma-
tion of one sequence into the other. The allowable
edit operations for this transformation are insertion,
deletion, or substitution of a single character. For ex-
ample, the Levenshtein distance between the strings
“kitten” and “sitting” is 3, since the following three
edits change one into the other, and there is no way
to do it with fewer than three edits: kitten→ sitten
(substitution of ‘k’ with ’s’), sitten→ sittin (substi-
tution of ‘e’ with ‘i’), sittin → sitting (insertion of
‘g’ at the end). For the distance calculation, we em-
ploy relaxation by giving a smaller penalty for the

phonemes appearing in the same phoneme groups
mentioned previously. We normalize each distance
by the length of the pronunciation string considered
for the distance calculation and we only allow the
combination of word pairs that have a normalized
distance score less than 0.5, which was set empiri-
cally.

Since there is no one-to-one relationship between
letters and phonemes and no information about
which phoneme is related to which letter(s) is avail-
able, it is not straightforward to combine two words
after determining the pairs via Levenshtein distance
calculation. To solve this issue, we use the Berke-
ley word aligner2 for the alignment of letters and
phonemes. The Berkeley Word Aligner is a sta-
tistical machine translation tool that automatically
aligns words in a sentence-aligned parallel corpus.
To adapt this tool according to our needs, we split
all the words in our dictionary into letters and their
mapped pronunciation to their phonemes, so that the
aligner could learn a mapping from phonemes to
characters. The resulting alignment provides the in-
formation about from which index to which index
the replacement of the substring of a word should
occur. Accordingly, the substring of the word which
has a high phonetic similarity with a specific word
is replaced with that word. As an example, if the
first ingredient is bright and the second ingredient is
light, the name blight can be obtained at the end of

2http://code.google.com/p/berkeleyaligner/
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this process.

4.6 Checking phonetic likelihood
To check the likelihood and well-formedness of the
new string after the replacement, we learn a 3-gram
language model with absolute smoothing. For learn-
ing the language model, we only consider the words
in the CMU pronunciation dictionary which also ex-
ist in WordNet. This filtering is required in order
to eliminate a large number of non-English trigrams
which would otherwise cause too high probabilities
to be assigned to very unlikely sequences of charac-
ters. We remove the words containing at least one
trigram which is very unlikely according to the lan-
guage model. The threshold to determine the un-
likely words is set to the probability of the least fre-
quent trigram observed in the training data.

5 Evaluation

We evaluated the performance of our system with
a manual annotation in which 5 annotators judged
a set of neologisms along 4 dimensions: 1) appro-
priateness, i.e. the number of ingredients (0, 1 or
2) used to generate the neologism which are appro-
priate for the input; 2) pleasantness, i.e. a binary de-
cision concerning the conformance of the neologism
to the sound patterns of English; 3) humor/wittiness,
i.e. a binary decision concerning the wittiness of the
neologism; 4) success, i.e. an assessment of the fit-
ness of the neologism as a name for the target cate-
gory/properties (unsuccessful, neutral, successful).

To create the dataset, we first compiled a list
of 50 categories by selecting 50 hyponyms of the
synset consumer goods in WordNet. To determine
the properties to be underlined, we asked two anno-
tators to state the properties that they would expect
to have in a product or company belonging to each
category in our category list. Then, we merged the
answers coming from the two annotators to create
the final set of properties for each category.

Although our system is actually able to produce
a limitless number of results for a given input, we
limited the number of outputs for each input to
reduce the effort required for the annotation task.
Therefore, we implemented a ranking mechanism
which used a hybrid scoring method by giving equal
weights to the language model and the normalized
phonetic similarity. Among the ranked neologisms
for each input, we only selected the top 20 to build
the dataset. It should be noted that for some input

Dimension

APP PLE HUM SUX

2 9.54 0 0 27.04
3 33.3 25.34 32.77 49.52
4 41.68 38.6 34.57 18.77
5 15.48 36.06 32.66 4.67

3+ 90.46 100 100 72.96

Table 3: Inter-annotator agreement (in terms of majority
class, MC) on the four annotation dimensions.

combinations the system produced less than 20 neol-
ogisms. Accordingly, our dataset consists of a total
number of 50 inputs and 943 neologisms.

To have a concrete idea about the agreement be-
tween annotators, we calculated the majority class
for each dimension. With 5 annotators, a majority
class greater than or equal to 3 means that the abso-
lute majority of the annotators agreed on the same
decision. Table 3 shows the distribution of majority
classes along the four dimensions of the annotation.
For pleasantness (PLE) and humor (HUM), the ab-
solute majority of the annotators (i.e. 3/5) agreed on
the same decision in 100% of the cases, while for ap-
propriateness (APP) the figure is only slightly lower.
Concerning success, arguably the most subjective of
the four dimensions, in 27% of the cases it is not
possible to take a majority decision. Nevertheless,
in almost 73% of the cases the absolute majority of
the annotators agreed on the annotation of this di-
mension.

Table 4 shows the micro and macro-average of
the percentage of cases in which at least 3 anno-
tators have labeled the ingredients as appropriate
(APP), and the neologisms as pleasant (PLE), hu-
morous (HUM) or successful (SUX). The system se-
lects appropriate ingredients in approximately 60%
of the cases, and outputs pleasant, English-sounding
names in ∼87% of the cases. Almost one name out
of four is labeled as successful by the majority of the
annotators, which we regard as a very positive result
considering the difficulty of the task. Even though
we do not explicitly try to inject humor in the neol-
ogisms, more than 15% of the generated names turn
out to be witty or amusing. The system managed to
generate at least one successful name for all 50 input
categories and at least one witty name for 42. As ex-
pected, we found out that there is a very high corre-
lation (91.56%) between the appropriateness of the
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Dimension

Accuracy APP PLE HUM SUX

micro 59.60 87.49 16.33 23.86
macro 60.76 87.01 15.86 24.18

Table 4: Accuracy of the generation process along the
four dimensions.

ingredients and the success of the name. A success-
ful name is also humorous in 42.67% of the cases,
while 62.34% of the humorous names are labeled as
successful. This finding confirms our intuition that
amusing names have the potential to be very appeal-
ing to the customers. In more than 76% of the cases,
a humorous name is the product of the combination
of appropriate ingredients.

In Table 2, we show a selection of successful
and unsuccessful outputs generated for the category
and the set of properties listed under the block of
columns labeled as Input according to the majority
of annotators (i.e. 3 or more). As an example of pos-
itive outcomes, we can focus on the columns under
Successful output for the input target word restau-
rant. The model correctly selects the ingredients
eat (a restaurant is UsedFor eating), pizza and pasta
(which are found AtLocation restaurant) to generate
an appropriate name. The three “palatable” neolo-
gisms generated are eatalian (from the combination
of eat and Italian), pastarant (pasta + restaurant)
and peatza (pizza + eat). These three suggestions are
amusing and have a nice ring to them. As a matter
of fact, it turns out that the name Eatalian is actually
used by at least one real Italian restaurant located in
Los Angeles, CA3.

For the same set of stimuli, the model also se-
lects some ingredients which are not really related
to the use-case, e.g., dust and hostess (both of which
can be found AtLocation restaurant) and home (a
synonym for plate, which can be found AtLocation
restaurant, in the baseball jargon). With these in-
gredients, the model produces the suggestion dusta
which sounds nice but has a negative connotation,
and hometess which can hardly be associated to the
input category.

A rather common class of unsuccessful outputs
include words that, by pure chance, happen to be
already existing in English. In these cases, no actual
neologism is generated. Sometimes, the generated

3http://www.eataliancafe.com/

words have rather unpleasant or irrelevant meanings,
as in the case of bark for bar. Luckily enough, these
kinds of outputs can easily be eliminated by filtering
out all the output words which can already be found
in an English dictionary or which are found to have
a negative valence with state-of-the-art techniques
(e.g. SentiWordNet (Esuli and Sebastiani, 2006)).
Another class of negative results includes neolo-
gisms generated from ingredients that the model
cannot combine in a good English-sounding neol-
ogism (e.g. spocleang from sporting and clean for
sunglasses or sasun from satin and sun for sham-
poo).

6 Conclusion

In this paper, we have focused on the task of automa-
tizing the naming process and described a computa-
tional approach to generate neologisms with homo-
phonic puns based on phonetic similarity. This study
is our first step towards the systematic emulation of
the various creative devices involved in the naming
process by means of computational methods.

Due to the complexity of the problem, a unified
model to handle all the creative devices at the same
time seems outside the reach of the current state-of-
the-art NLP techniques. Nevertheless, the resource
that we collected, together with the initial imple-
mentation of this model should provide a good start-
ing point for other researchers in the area. We be-
lieve that our contribution will motivate other re-
search teams to invest more effort in trying to tackle
the related research problems.

As future work, we plan to improve the quality of
the output by considering word sense disambigua-
tion techniques to reduce the effect of inappropriate
ingredients. We also want to extend the model to in-
clude multiword ingredients and to generate not only
words but also short phrases. Then, we would like
to focus on other classes of creative devices, such
as affixation or rhyming. Lastly, we plan to make
the system that we have developed publicly avail-
able and collect user feedback for further develop-
ment and improvement.
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Abstract

To discover relation types from text, most
methods cluster shallow or syntactic patterns
of relation mentions, but consider only one
possible sense per pattern. In practice this
assumption is often violated. In this paper
we overcome this issue by inducing clusters
of pattern senses from feature representations
of patterns. In particular, we employ a topic
model to partition entity pairs associated with
patterns into sense clusters using local and
global features. We merge these sense clus-
ters into semantic relations using hierarchical
agglomerative clustering. We compare against
several baselines: a generative latent-variable
model, a clustering method that does not dis-
ambiguate between path senses, and our own
approach but with only local features. Exper-
imental results show our proposed approach
discovers dramatically more accurate clusters
than models without sense disambiguation,
and that incorporating global features, such as
the document theme, is crucial.

1 Introduction

Relation extraction (RE) is the task of determin-
ing semantic relations between entities mentioned in
text. RE is an essential part of information extraction
and is useful for question answering (Ravichandran
and Hovy, 2002), textual entailment (Szpektor et al.,
2004) and many other applications.

A common approach to RE is to assume that rela-
tions to be extracted are part of a predefined ontol-
ogy. For example, the relations are given in knowl-
edge bases such as Freebase (Bollacker et al., 2008)
or DBpedia (Bizer et al., 2009). However, in many
applications, ontologies do not yet exist or have low

coverage. Even when they do exist, their mainte-
nance and extension are considered to be a substan-
tial bottleneck. This has led to considerable inter-
est in unsupervised relation discovery (Hasegawa et
al., 2004; Banko and Etzioni, 2008; Lin and Pantel,
2001; Bollegala et al., 2010; Yao et al., 2011). Here,
the relation extractor simultaneously discovers facts
expressed in natural language, and the ontology into
which they are assigned.

Many relation discovery methods rely exclusively
on the notion of either shallow or syntactic patterns
that appear between two named entities (Bollegala et
al., 2010; Lin and Pantel, 2001). Such patterns could
be sequences of lemmas and Part-of-Speech tags, or
lexicalized dependency paths. Generally speaking,
relation discovery attempts to cluster such patterns
into sets of equivalent or similar meaning. Whether
we use sequences or dependency paths, we will en-
counter the problem of polysemy. For example, a
pattern such as “A beat B” can mean that person A
wins over B in competing for a political position,
as pair “(Hillary Rodham Clinton, Jonathan Tasini)”
in “Sen Hillary Rodham Clinton beats rival Jonathan
Tasini for Senate.” It can also indicate that an athlete
A beat B in a sports match, as pair “(Dmitry Tur-
sunov, Andy Roddick)” in “Dmitry Tursunov beat
the best American player Andy Roddick.” More-
over, it can mean “physically beat” as pair “(Mr.
Harris, Mr. Simon)” in “On Sept. 7, 1999, Mr. Har-
ris fatally beat Mr. Simon.” This is known as poly-
semy. If we work with patterns alone, our extractor
will not be able to differentiate between these cases.

Most previous approaches do not explicitly ad-
dress this problem. Lin and Pantel (2001) assumes
only one sense per path. In (Pantel et al., 2007),
they augment each relation with its selectional pref-
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erences, i.e. fine-grained entity types of two ar-
guments, to handle polysemy. However, such fine
grained entity types come at a high cost. It is difficult
to discover a high-quality set of fine-grained entity
types due to unknown criteria for developing such
a set. In particular, the optimal granularity of en-
tity types depends on the particular pattern we con-
sider. For example, a pattern like “A beat B” could
refer to A winning a sports competition against B, or
a political election. To differentiate between these
senses we need types such as “Politician” or “Ath-
lete”. However, for “A, the parent of B” we only
need to distinguish between persons and organiza-
tions (for the case of the sub-organization relation).
In addition, there are senses that just cannot be de-
termined by entity types alone: Take the meaning
of “A beat B” where A and B are both persons; this
could mean A physically beats B, or it could mean
that A defeated B in a competition.

In this paper we address the problem of polysemy,
while we circumvent the problem of finding fine-
grained entity types. Instead of mapping entities to
fine-grained types, we directly induce pattern senses
by clustering feature representations of pattern con-
texts, i.e. the entity pairs associated with a pattern.
This allows us to employ not only local features such
as words, but also global features such as the docu-
ment and sentence themes.

To cluster the entity pairs of a single relation pat-
tern into senses, we develop a simple extension to
Latent Dirichlet Allocation (Blei et al., 2003). Once
we have our pattern senses, we merge them into
clusters of different patterns with a similar sense.
We employ hierarchical agglomerative clustering
with a similarity metric that considers features such
as the entity arguments, and the document and sen-
tence themes.

We perform experiments on New York Times ar-
ticles and consider lexicalized dependency paths as
patterns in our data. In the following we shall use
the term path and pattern exchangeably. We com-
pare our approach with several baseline systems, in-
cluding a generative model approach, a clustering
method that does not disambiguate between senses,
and our approach with different features. We per-
form both automatic and manual evaluations. For
automatic evaluation, we use relation instances in
Freebase as ground truth, and employ two clustering

metrics, pairwise F-score and B3 (as used in cofer-
ence). Experimental results show that our approach
improves over the baselines, and that using global
features achieves better performance than using en-
tity type based features. For manual evaluation, we
employ a set intrusion method (Chang et al., 2009).
The results also show that our approach discovers re-
lation clusters that human evaluators find coherent.

2 Our Approach

We induce pattern senses by clustering the entity
pairs associated with a pattern, and discover seman-
tic relations by clustering these sense clusters. We
represent each pattern as a list of entity pairs and
employ a topic model to partition them into different
sense clusters using local and global features. We
take each sense cluster of a pattern as an atomic clus-
ter, and use hierarchical agglomerative clustering to
organize them into semantic relations. Therefore, a
semantic relation comprises a set of sense clusters of
patterns. Note that one pattern can fall into different
semantic relations when it has multiple senses.

2.1 Sense Disambiguation

In this section, we discuss the details of how we dis-
cover senses of a pattern. For each pattern, we form
a clustering task by collecting all entity pairs the pat-
tern connects. Our goal is to partition these entity
pairs into sense clusters. We represent each pair by
the following features.
Entity names: We use the surface string of the en-
tity pair as features. For example, for pattern “A play
B”, pairs which contain B argument “Mozart” could
be in one sense, whereas pairs which have “Mets”
could be in another sense.
Words: The words between and around the two
entity arguments can disambiguate the sense of a
path. For example, “A’s parent company B” is dif-
ferent from “A’s largest company B” although they
share the same path “A’s company B”. The former
describes the sub-organization relationship between
two companies, while the latter describes B as the
largest company in a location A. The two words to
the left of the source argument, and to the right of the
destination argument also help sense discovery. For
example, in “Mazurkas played by Anna Kijanowska,
pianist”, “pianist” tells us pattern “A played by B”
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takes the “music” sense.
Document theme: Sometimes, the same pattern
can express different relations in different docu-
ments, depending on the document’s theme. For
instance, in a document about politics, “A defeated
B” is perhaps about a politician that won an elec-
tion against another politician. While in a document
about sports, it could be a team that won against an-
other team in a game, or an athlete that defeated an-
other athlete. In our experiments, we use the meta-
descriptors of a document as side information and
train a standard LDA model to find the theme of a
document. See Section 3.1 for details.
Sentence theme: A document may cover several
themes. Moreover, sometimes the theme of a doc-
ument is too general to disambiguate senses. We
therefore also extract the theme of a sentence as a
feature. Details are in 3.1.

We call entity name and word features local, and
the two theme features global.

We employ a topic model to discover senses for
each path. Each path pi forms a document, and it
contains a list of entity pairs co-occurring with the
path in the tuples. Each entity pair is represented
by a list of features fk as we described. For each
path, we draw a multinomial distribution θ over top-
ics/senses. For each feature of an entity pair, we
draw a topic/sense from θpi . Formally, the gener-
ative process is as follows:

θpi ∼ Dirichlet(α)
φz ∼ Dirichlet(β)
ze ∼ Multinomial(θpi)
fk ∼ Multinomial(φze)

Assume we have m paths and l entity pairs for each
path. We denote each entity pair of a path as e(pi) =
(f1, . . . , fn). Hence we have:

P (e1(pi), e2(pi), . . . , el(pi)|z1, z2, . . . , zl)

=
l∏

j=1

n∏
k=1

p(fk|zj)p(zj)

We assume the features are conditionally indepen-
dent given the topic assignments. Each feature is
generated from a multinomial distribution φ. We
use Dirichlet priors on θ and φ. Figure 1 shows the
graphical representation of this model.

S
p

φ
e(p)

fα θ z βn

Figure 1: Sense-LDA model.

This model is a minor variation on standard LDA
and the difference is that instead of drawing an ob-
servation from a hidden topic variable, we draw
multiple observations from a hidden topic variable.
Gibbs sampling is used for inference. After infer-
ence, each entity pair of a path is assigned to one
topic. One topic is one sense. Entity pairs which
share the same topic assignments form one sense
cluster.

2.2 Hierarchical Agglomerative Clustering

After discovering sense clusters of paths, we employ
hierarchical agglomerative clustering (HAC) to dis-
cover semantic relations from these sense clusters.
We apply the complete linkage strategy and take co-
sine similarity as the distance function. The cutting
threshold is set to 0.1.

We represent each sense cluster as one vector by
summing up features from each entity pair in the
cluster. The weight of a feature indicates how many
entity pairs in the cluster have the feature. Some
features may get larger weights and dominate the co-
sine similarity. We down-weigh these features. For
example, we use binary features for word “defeat”
in sense clusters of pattern “A defeat B”. The two
theme features are extracted from generative mod-
els, and each is a topic number.

Our approach produces sense clusters for each
path and semantic relation clusters of the whole data.
Table 1 and 2 show some example output.

3 Experiments

We carry out experiments on New York Times ar-
ticles from years 2000 to 2007 (Sandhaus, 2008).
Following (Yao et al., 2011), we filter out noisy doc-
uments and use natural language packages to anno-
tate the documents, including NER tagging (Finkel
et al., 2005) and dependency parsing (Nivre et al.,
2004). We extract dependency paths for each pair of
named entities in one sentence. We use their lemmas
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Path 20:sports 30:entertainment 25:music/art

A play B

Americans, Ireland Jean-Pierre Bacri, Jacques Daniel Barenboim, recital of Mozart
Yankees, Angels Rita Benton, Gay Head Dance Mr. Rose, Ballade
Ecuador, England Jeanie, Scrabble Gil Shaham, Violin Romance
Redskins, Detroit Meryl Streep, Leilah Ms. Golabek, Steinways

Red Bulls, F.C. Barcelona Kevin Kline, Douglas Fairbanks Bruce Springsteen, Saints
doc theme sports music books television music theater
sen theme game yankees theater production book film show music reviews opera

lexical words beat victory num-num won played plays directed artistic director conducted production
entity names - r:theater r:theater r:hall r:york l:opera

Table 1: Example sense clusters produced by sense disambiguation. For each sense, we randomly sample 5 entity
pairs. We also show top features for each sense. Each row shows one feature type, where “num” stands for digital
numbers, and prefix “l:” for source argument, prefix “r:” for destination argument. Some features overlap with each
other. We manually label each sense for easy understanding. We can see the last two senses are close to each other.
For two theme features, we replace the theme number with the top words. For example, the document theme of the
first sense is Topic30, and Topic30 has top words “sports”.

relation paths
entertainment A, who play B:30; A play B:30; star A as B:30

sports lead A to victory over B:20; A play to B:20; A play B:20; A’s loss to B:20; A beat B:20; A trail B:20;
A face B:26; A hold B:26; A play B:26; A acquire (X) from B:26; A send (X) to B:26;

politics A nominate B:39; A name B:39; A select B:39; A name B:42; A select B:42;
A ask B:42; A choose B:42; A nominate B:42; A turn to B:42;

law A charge B:39; A file against B:39; A accuse B:39; A sue B:39

Table 2: Example semantic relation clusters produced by our approach. For each cluster, we list the top paths in it,
and each is followed by “:number”, indicating its sense obtained from sense disambiguation. They are ranked by the
number of entity pairs they take. The column on the left shows sense of each relation. They are added manually by
looking at the sense numbers associated with each path.

for words on the dependency paths. Each entity pair
and the dependency path which connects them form
a tuple.

We filter out paths which occur fewer than 200
times and use some heuristic rules to filter out paths
which are unlikely to represent a relation, for exam-
ple, paths in with both arguments take the syntac-
tic role “dobj” (direct objective) in the dependency
path. In such cases both arguments are often part
of a coordination structure, and it is unlikely that
they are related. In summary, we collect about one
million tuples, 1300 patterns and half million named
entities. In terms of named entities, the data is very
sparse. On average one named entity occurs four
times.

3.1 Feature Extraction

For the entity name features, we split each entity
string of a tuple into tokens. Each token is a fea-

ture. The source argument tokens are augmented
with prefix “l:”, and the destination argument tokens
with prefix “r:”. We use tokens to encourage overlap
between different entities.

For the word features, we extract all the words be-
tween the two arguments, removing stopwords and
the words with capital letters. Words with capital
letters are usually named entities, and they do not
tend to indicate relations. We also extract neigh-
boring words of source and destination arguments.
The two words to the left of the source argument are
added with prefix “lc:”. Similarly the two words to
the right of the destination arguments are added with
prefix “rc:”.

Each document in the NYT corpus is associated
with many descriptors, indicating the topic of the
document. For example, some documents are la-
beled as “Sports”, “Dallas Cowboys”, “New York
Giants”, “Pro Football” and so on. Some are labeled
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as “Politics and Government”, and “Elections”. We
shall extract a theme feature for each document from
these descriptors. To this end we interpret the de-
scriptors as words in documents, and train a standard
LDA model based on these documents. We pick the
most frequent topic as the theme of a document.

We also train a standard LDA model to obtain
the theme of a sentence. We use a bag-of-words
representation for a document and ignore sentences
from which we do not extract any tuples. The LDA
model assigns each word to a topic. We count the
occurrences of all topics in one sentence and pick
the most frequent one as its theme. This feature
captures the intuition that different words can indi-
cate the same sense, for example, “film’”, “show”,
“series” and “television” are about “entertainment”,
while “coach”, “game”, “jets”, “giants” and “sea-
son” are about “sports”.

3.2 Sense clusters and relation clusters
For the sense disambiguation model, we set the
number of topics (senses) to 50. We experimented
with other numbers, but this setting yielded the best
results based on our automatic evaluation measures.
Note that a path has a multinomial distribution over
50 senses but only a few senses have non-zero prob-
abilities.

We look at some sense clusters of paths. For
path “A play B”, we examine the top three senses,
as shown in Table 1. The last two senses “enter-
tainment” and “music” are close. Randomly sam-
pling some entity pairs from each of them, we find
that the two sense clusters are precise. Only 1% of
pairs from the sense cluster “entertainment” should
be assigned to the “music” sense. For the path “play
A in B” we discover two senses which take the
most probabilities: “sports” and “art”. Both clus-
ters are precise. However, the “sports” sense may
still be split into more fine-grained sense clusters. In
“sports”, 67% pairs mean “play another team in a
location” while 33% mean “play another team in a
game”.

We also closely investigate some relation clusters,
shown in Table 2. Both the first and second relation
contain path “A play B” but with different senses.
For the second relation, most paths state “play” re-
lations between two teams, while a few of them
express relations of teams acquiring players from

other teams. For example, the entity pair ”(Atlanta
Hawks, Dallas Mavericks)” mentioned in sentence
”The Atlanta Hawks acquired point guard Anthony
Johnson from the Dallas Mavericks.” This is due to
that they share many entity pairs of team-team.

3.3 Baselines
We compare our approach against several baseline
systems, including a generative model approach and
variations of our own approach.
Rel-LDA: Generative models have been suc-
cessfully applied to unsupervised relation extrac-
tion (Rink and Harabagiu, 2011; Yao et al., 2011).
We compare against one such model: An extension
to standard LDA that falls into the framework pre-
sented by Yao et al. (2011). Each document con-
sists of a list of tuples. Each tuple is represented by
features of the entity pair, as listed in 2.1, and the
path. For each document, we draw a multinomial
distribution over relations. For each tuple, we draw
a relation topic and independently generate all the
features. The intuition is that each document dis-
cusses one domain, and has a particular distribution
over relations.

In our experiments, we test different numbers of
relation topics. As the number goes up, precision in-
creases whereas recall drops. We report results with
300 and 1000 relation topics.
One sense per path (HAC): This system uses
only hierarchical clustering to discover relations,
skipping sense disambiguation. This is similar to
DIRT (Lin and Pantel, 2001). In DIRT, each path
is represented by its entity arguments. DIRT cal-
culates distributional similarities between different
paths to find paths which bear the same semantic re-
lation. It does not employ global topic model fea-
tures extracted from documents and sentences.
Local: This system uses our approach (both sense
clustering with topic models and hierarchical clus-
tering), but without global features.
Local+Type This system adds entity type features to
the previous system. This allows us to compare per-
formance of using global features against entity type
features. To determine entity types, we link named
entities to Wikipedia pages using the Wikifier (Rati-
nov et al., 2011) package and extract categories from
the Wikipedia page. Generally Wikipedia provides
many types for one entity. For example, “Mozart” is
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a person, musician, pianist, composer, and catholic.
As we argued in Section 1, it is difficult to determine
the right granularity of the entity types to use. In our
experiments, we use all of them as features. In hier-
archical clustering, for each sense cluster of a path,
we pick the most frequent entity type as a feature.
This approach can be seen as a proxy to ISP (Pantel
et al., 2007), since selectional preferences are one
way of distinguishing multiple senses of a path.
Our Approach+Type This system adds Wikipedia
entity type features to our approach. The Wikipedia
feature is the same as used in the previous system.

4 Evaluations

4.1 Automatic Evaluation against Freebase

We evaluate relation clusters discovered by all ap-
proaches against Freebase. Freebase comprises a
large collection of entities and relations which come
from varieties of data sources, including Wikipedia
infoboxes. Many users also contribute to Freebase
by annotating relation instances. We use coreference
evaluation metrics: pairwise F-score and B3 (Bagga
and Baldwin, 1998). Pairwise metrics measure how
often two tuples which are clustered in one seman-
tic relation are labeled with the same Freebase label.
We evaluate approximately 10,000 tuples which oc-
cur in both our data and Freebase. Since our sys-
tem predicts fine-grained clusters comparing against
Freebase relations, the measure of recall is underes-
timated. The precision measure is more reliable and
we employ F-0.5 measure, which places more em-
phasis on precision.

Matthews correlation coefficient (MCC) (Baldi et
al., 2000) is another measure used in machine learn-
ing, which takes into account true and false positives
and negatives and is generally regarded as a bal-
anced measure which can be used when the classes
are of very different sizes. In our case, the true nega-
tive number is 100 times larger than the true positive
number. Therefor we also employ MCC, calculated
as

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

The MCC score is between -1 and 1. The larger the
better. In perfect predictions, FP and FN are 0, and
the MCC score is 1. A random prediction results in
score 0.

Table 3 shows the results of all systems. Our ap-
proach achieves the best performance in most mea-
sures. Without using sense disambiguation, the per-
formance of hierarchical clustering decreases signif-
icantly, losing 17% in precision in the pairwise mea-
sure, and 15% in terms ofB3. The generative model
approach with 300 topics achieves similar precision
to the hierarchical clustering approach. With more
topics, the precision increases, however, the recall
of the generative model is much lower than those
of other approaches. We also show the results of
our approach without global document and sentence
theme features (Local). In this case, both precision
and recall decrease. We compare global features
(Our approach) against Wikipedia entity type fea-
tures (Local+Type). We see that using global fea-
tures achieves better performance than using entity
type based features. When we add entity type fea-
tures to our approach, the performance does not in-
crease. The entity type features do not help much
is due to that we cannot determine which particular
type to choose for an entity pair. Take pair “(Hillary
Rodham Clinton, Jonathan Tasini)” as an example,
choosing politician for both arguments instead of
person will help.

We should note that these measures provide com-
parison between different systems although they
are not accurate. One reason is the following:
some relation instances should have multiple la-
bels but they have only one label in Freebase.
For example, instances of a relation that a per-
son “was born in” a country could be labeled
as “/people/person/place of birth” and as “/peo-
ple/person/nationality”. This decreases the pairwise
precision. Further discussion is in Section 4.3.

4.2 Path Intrusion

We also evaluate coherence of relation clusters pro-
duced by different approaches by creating path in-
trusion tasks (Chang et al., 2009). In each task, some
paths from one cluster and an intruding path from
another are shown, and the annotator’s job is to iden-
tify one single path which is out of place. For each
path, we also show the annotators one example sen-
tence. Three graduate students in natural language
processing annotate intruding paths. For disagree-
ments, we use majority voting. Table 4 shows one
example intrusion task.
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System Pairwise B3

Prec. Rec. F-0.5 MCC Prec. Rec. F-0.5
Rel-LDA/300 0.593 0.077 0.254 0.191 0.558 0.183 0.396

Rel-LDA/1000 0.638 0.061 0.220 0.177 0.626 0.160 0.396
HAC 0.567 0.152 0.367 0.261 0.523 0.248 0.428
Local 0.625 0.136 0.364 0.264 0.626 0.225 0.462

Local+Type 0.718 0.115 0.350 0.265 0.704 0.201 0.469
Our Approach 0.736 0.156 0.422 0.314 0.677 0.233 0.490

Our Approach+Type 0.682 0.110 0.334 0.250 0.687 0.199 0.460

Table 3: Pairwise and B3 evaluation for various systems. Since our systems predict more fine-grained clusters than
Freebase, the recall measure is underestimated.

Path Example sentence
A beat B Dmitry Tursunov beat the best American player, Andy Roddick

A, who lose to B Sluman, Loren Roberts (who lost a 1994 Open playoff to Ernie Els at Oakmont ...
A, who beat B ... offender seems to be the Russian Mariya Sharapova, who beat Jelena Dokic

A, a broker at B Robert Bewkes, a broker at UBS for 12 years
A meet B Howell will meet Geoff Ogilvy, Harrington will face Davis Love III

Table 4: A path intrusion task. We show 5 paths and ask the annotator to identify one path which does not belong to
the cluster. And we show one example sentence for each path. The entities (As and Bs) in the sentences are bold. And
the italic row here indicates the intruder.

System Correct
Rel-LDA/300 0.737

Rel-LDA/1000 0.821
HAC 0.852

Local+Type 0.773
Our approach 0.887

Table 5: Results of intruding tasks of all systems.

From Table 5, we see that our approach achieves
the best performance. We concentrate on some in-
trusion tasks and compare the clusters produced by
different systems.

The clusters produced by HAC (without sense dis-
ambiguation) is coherent if all the paths in one rela-
tion take a particular sense. For example, one task
contains paths “A, director at B”, “A, specialist at
B”, “A, researcher at B”, “A, B professor” and “A’s
program B”. It is easy to identify “A’s program B”
as an intruder when the annotators realize that the
other four paths state the relation that people work
in an educational institution. The generative model
approach produces more coherent clusters when the
number of relation topics increases.

The system which employs local and entity type
features (Local+Type) produces clusters with low

coherence because the system puts high weight on
types. For example, (United States, A talk with B,
Syria) and (Canada, A defeat B, United States) are
clustered into one relation since they share the argu-
ment types “country”-“country”. Our approach us-
ing the global theme features can correct such errors.

4.3 Error Analysis

We also closely analyze the pairwise errors that we
encounter when comparing against Freebase labels.
Some errors arise because one instance can have
multiple labels, as we explained in Section 4.1. One
example is the following: Our approach predicts that
(News Corporation, buy, MySpace) and (Dow Jones
& Company, the parent of, The Wall Street Journal)
are in one relation. In Freebase, one is labeled as
“/organization/parent/child”, the other is labeled as
“/book/newspaper owner/newspapers owned”. The
latter is a sub-relation of the former. We can over-
come this issue by introducing hierarchies in relation
labels.

Some errors are caused by selecting the incorrect
sense for an entity pair of a path. For instance, we
put (Kenny Smith, who grew up in, Queens) and
(Phil Jackson, return to, Los Angeles Lakers) into
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the “/people/person/place of birth” relation cluster
since we do not detect the “sports” sense for the en-
tity pair “(Phil Jackson, Los Angeles Lakers)”.

5 Related Work

There has been considerable interest in unsupervised
relation discovery, including clustering approach,
generative models and many other approaches.

Our work is closely related to DIRT (Lin and Pan-
tel, 2001). Both DIRT and our approach represent
dependency paths using their arguments. Both use
distributional similarity to find patterns representing
similar semantic relations. Based on DIRT, Pantel
et al. (2007) addresses the issue of multiple senses
per path by automatically learning admissible argu-
ment types where two paths are similar. They cluster
arguments to fine-grained entity types and rank the
associations of a relation with these entity types to
discover selectional preferences. Selectional prefer-
ences discovery (Ritter et al., 2010; Seaghdha, 2010)
can help path sense disambiguation, however, we
show that using global features performs better than
entity type features.

Our approach is also related to feature parti-
tioning in cross-cutting model of lexical seman-
tics (Reisinger and Mooney, 2011). And our sense
disambiguation model is inspired by this work.
There they partition features of words into views and
cluster words inside each view. In our case, each
sense of a path can be seen as one view. However,
we allow different views to be merged since some
views overlap with each other.

Hasegawa et al. (2004) cluster pairs of named en-
tities according to the similarity of context words in-
tervening between them. Hachey (2009) uses topic
models to perform dimensionality reduction on fea-
tures when clustering entity pairs into relations. Bol-
legala et al. (2010) employ co-clustering to find clus-
ters of entity pairs and patterns jointly. All the ap-
proaches above neither deal with polysemy nor in-
corporate global features, such as sentence and doc-
ument themes.

Open information extraction aims to discover re-
lations independent of specific domains (Banko et
al., 2007; Banko and Etzioni, 2008). They employ
a self-learner to extract relation instances, but no
attempt is made to cluster instances into relations.

Yates and Etzioni (2009) present RESOLVER for
discovering relational synonyms as a post process-
ing step. Our approach falls into the same category.
Moreover, we explore path senses and global fea-
tures for relation discovery.

Many generative probabilistic models have been
applied to relation extraction. For example, vari-
eties of topic models are employed for both open
domain (Yao et al., 2011) and in-domain relation
discovery (Chen et al., 2011; Rink and Harabagiu,
2011). Our approach employs generative models
for path sense disambiguation, which achieves better
performance than directly applying generative mod-
els to unsupervised relation discovery.

6 Conclusion

We explore senses of paths to discover semantic re-
lations. We employ a topic model to partition en-
tity pairs of a path into different sense clusters and
use hierarchical agglomerative clustering to merge
senses into semantic relations. Experimental results
show our approach discovers precise relation clus-
ters and outperforms a generative model approach
and a clustering method which does not address
sense disambiguation. We also show that using
global features improves the performance of unsu-
pervised relation discovery over using entity type
based features.
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Abstract

In relation extraction, distant supervision

seeks to extract relations between entities

from text by using a knowledge base, such as

Freebase, as a source of supervision. When

a sentence and a knowledge base refer to the

same entity pair, this approach heuristically la-

bels the sentence with the corresponding re-

lation in the knowledge base. However, this

heuristic can fail with the result that some sen-

tences are labeled wrongly. This noisy labeled

data causes poor extraction performance. In

this paper, we propose a method to reduce

the number of wrong labels. We present a

novel generative model that directly models

the heuristic labeling process of distant super-

vision. The model predicts whether assigned

labels are correct or wrong via its hidden vari-

ables. Our experimental results show that this

model detected wrong labels with higher per-

formance than baseline methods. In the ex-

periment, we also found that our wrong label

reduction boosted the performance of relation

extraction.

1 Introduction

Machine learning approaches have been developed

to address relation extraction, which is the task of

extracting semantic relations between entities ex-

pressed in text. Supervised approaches are limited in

scalability because labeled data is expensive to pro-

duce. A particularly attractive approach, called dis-

tant supervision (DS), creates labeled data by heuris-

tically aligning entities in text with those in a knowl-

edge base, such as Freebase (Mintz et al., 2009).
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Figure 1: Automatic labeling by distant supervision. Up-

per sentence: correct labeling; lower sentence: incorrect

labeling.

With DS it is assumed that if a sentence contains

an entity pair in a knowledge base, such a sentence

actually expresses the corresponding relation in the

knowledge base.

However, the DS assumption can fail, which re-

sults in noisy labeled data and this causes poor ex-

traction performance. An entity pair in a target text

generally expresses more than one relation while

a knowledge base stores a subset of the relations.

The assumption ignores this possibility. For in-

stance, consider the place of birth relation between

Michael Jackson and Gary in Figure 1. The upper

sentence indeed expresses the place of birth relation

between the two entities. In DS place of birth is as-

signed to the sentence, and it becomes a useful train-

ing example. On the other hand, the lower sentence

does not express this relation between the two enti-

ties, but the DS heuristic wrongly labels the sentence

as expressing it.

Riedel et al. (2010) relax the DS assumption as

at least one sentence containing an entity pair ex-
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pressing the corresponding relation in the knowl-

edge base. They cast the relaxed assumption as

multi-instance learning. However, even the relaxed

assumption can fail. The relaxation is equivalent to

the DS assumption when a labeled pair of entities

is mentioned once in a target corpus (Riedel et al.,

2010). In fact, 91.7% of entity pairs appear only

once in Wikipedia articles (see Section 7).

In this paper, we propose a method to reduce the

number of wrong labels generated by DS without

using either of these assumptions. Given the labeled

corpus created with the DS assumption, we first pre-

dict whether each pattern, which frequently appears

in text to express a relation (see Section 4), expresses

a target relation. Patterns that are predicted not to ex-

press the relation are used to form a negative pattern

list for removing wrong labels of the relation.

The main contributions of this paper are as fol-

lows:

• To make the pattern prediction, we propose a

generative model that directly models the pro-

cess of automatic labeling in DS. Without any

strong assumptions like Riedel et al. (2010)’s,

the model predicts whether each pattern ex-

presses each relation via hidden variables (see

Section 5).

• Our variational inference for our generative

model lets us automatically calibrate parame-

ters for each relation, which are sensitive to the

performance (see Section 6).

• We applied our method to Wikipedia articles

using Freebase as a knowledge base and found

that (i) our model identified patterns express-

ing a given relation more accurately than base-

line methods and (ii) our method led to bet-

ter extraction performance than the original DS

(Mintz et al., 2009) and MultiR (Hoffmann et

al., 2011), which is a state-of-the-art multi-

instance learning system for relation extraction

(see Section 7).

2 Related Work

The increasingly popular approach, called distant

supervision (DS), or weak supervision, utilizes a

knowledge base to heuristically label a corpus (Wu

and Weld, 2007; Bellare and McCallum, 2007; Pal

et al., 2007). Our work was inspired by Mintz et al.

(2009) who used Freebase as a knowledge base by

making the DS assumption and trained relation ex-

tractors on Wikipedia. Previous works (Hoffmann

et al., 2010; Yao et al., 2010) have pointed out that

the DS assumption generates noisy labeled data, but

did not directly address the problem. Wang et al.

(2011) applied a rule-based method to the problem

by using popular entity types and keywords for each

relation. In (Bellare and McCallum, 2007; Riedel et

al., 2010; Hoffmann et al., 2011), they used multi-

instance learning, which deals with uncertainty of

labels, to relax the DS assumption. However, the re-

laxed assumption can fail when a labeled entity pair

is mentioned only once in a corpus (Riedel et al.,

2010). Our approach relies on neither of these as-

sumptions.

Bootstrapping for relation extraction (Riloff and

Jones, 1999; Pantel and Pennacchiotti, 2006; Carl-

son et al., 2010) is related to our method. In boot-

strapping, seed entity pairs of the target relation are

given in order to select reliable patterns, which are

used to extract new entity pairs. To avoid the selec-

tion of unreliable patterns, bootstrapping introduces

scoring functions for each pattern candidate. This

can be applied to our approach, which seeks to re-

duce the number of unreliable patterns by using a set

of given entity pairs. However, the bootstrapping-

like approach suffers from sensitive parameters that

are critical to its performance. Ideally, the parame-

ters such as a threshold for scoring function should

be determined for each relation, but there are no

principled methods (Komachi et al., 2008). In our

approach, parameters are calibrated for each rela-

tion by maximizing the likelihood of our generative

model.

3 Knowledge-based Distant Supervision

In this section, we describe DS for relation extrac-

tion. We use the term relation as the relation be-

tween two entities. A relation instance is a tuple

consisting of two entities and relation r. For exam-

ple, place of birth(Michael Jackson, Gary) in Fig-

ure 1 is a relation instance.

Relation extraction seeks to extract relation in-

stances from text. An entity is mentioned as a named

entity in text. We extract a relation instance from a
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single sentence. For example, from the upper sen-

tence in Figure 1 we extract place of birth(Michael

Jackson, Gary). Since two entities mentioned in a

sentence do not always have a relation, we select en-

tity pairs from a corpus when: (i) the path of the de-

pendency parse tree between the corresponding two

named entities in the sentence is no longer than 4

and (ii) the path does not contain a sentence-like

boundary, such as a relative clause1 (Banko et al.,

2007; Banko and Etzioni, 2008). Banko and Et-

zioni (2008) found that a set of eight lexico-syntactic

forms covers nearly 95% of relation phrases in their

corpus. (Fader et al. (2011) found that this set covers

69% of their corpus). Our rule is designed to cover

at least the eight lexico-syntactic forms. We use the

entity pairs extracted by this rule.

DS uses a knowledge base to create labeled data

for relation extraction by heuristically matching en-

tity pairs. A knowledge base is a set of relation

instances about predefined relations. For each sen-

tence in the corpus, we extract all of its entity pairs.

Then, for each entity pair, we try to retrieve the rela-

tion instances about the entity pair from the knowl-

edge base. If we found such a relation instance, then

the set of its relation, the entity pair, and the sentence

is stored as a positive example. If not, then the set of

the entity pair and the sentence is stored as a nega-

tive example. Features of an entity pair are extracted

from the sentence containing the entity pair.

As mentioned in Section 1, the assumption of DS

can fail, resulting in wrong assignments of a relation

to sentences that do not express the relation. We call

such assignments wrong labels. An example of a

wrong label is place of birth assigned to the lower

sentence in Figure 1.

4 Wrong Label Reduction

We define a pattern as the entity types of an entity

pair2 as well as the sequence of words on the path

of the dependency parse tree from the first entity to

the second one. For example, from “Michael Jack-

son was born in Gary” in Figure 1, the pattern “[Per-

son] born in [Location]” is extracted. We use entity

1We reject sentence-like dependencies such as ccomp, com-

plm and mark
2If we use a standard named entity tagger, the entity types

are Person, Location, and Organization.

Algorithm 1 Wrong Label Reduction

labeled data generated by DS: LD
negative patterns for relation r: NegPat(r)
for each entry (r, Pair, Sentence) in LD do

pattern Pat← the pattern from (Pair, Sentence)

if Pat ∈ NegPat(r) then

remove (r, Pair, Sentence) from LD
end if

end for

return LD

types to distinguish the sentences that express differ-

ent relations with the same dependency path, such

as “ABBA was formed in Stockholm.” and “ABBA

was formed in 1970.”

Our aim is to remove wrong labels assigned to

frequent patterns, which cause poor precision. In-

deed, in our Wikipedia corpus, more than 6% of the

sentences containing the pattern “[Person] moved to

[Location]”, which does not express place of death,

are labeled as place of death, and the labels as-

signed to these sentences hurt extraction perfor-

mance (see Section 7.3.3). We would like to remove

place of death from the sentences that contain this

pattern.

In our method, we reduce the number of wrong

labels as follows: (i) given a labeled corpus with the

DS assumption, we first predict whether a pattern

expresses a relation and then (ii) remove wrong la-

bels using the negative pattern list, which is defined

as patterns that are predicted not to express the rela-

tion. In the first step, we introduce the novel gener-

ative model that directly models DS’s labeling pro-

cess and make the prediction (see Section 5). The

second step is formally described in Algorithm 1.

For relation extraction, we train a classifier for en-

tity pairs using the resultant labeled data.

5 Generative Model

We now describe our generative model, which pre-

dicts whether a pattern expresses relation r or not

via hidden variables. In this section, we consider re-

lation r since parameters are conditionally indepen-

dent if relation r and the hyperparameter are given.

An observation of our model is whether entity

pair i appearing with pattern s in the corpus is la-

beled with relation r or not. Our binary observa-

tions are written as Xr = {(xrsi)|s = 1, . . . , S, i =
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Figure 2: Graphical model representation of our model.

R indicates the number of relations. S is the number of

patterns. Ns is the number of entity pairs that appear

with pattern s in the corpus. xrsi is the observed vari-

ables. The circled variables except xrsi are parameters

or hidden variables. λ is the hyperparameter and mst is

constant. The boxes are “plates” representing replicates.

1, . . . , Ns},
3 where we define S to be the number of

patterns and Ns to be the number of entity pairs ap-

pearing with pattern s. Note that we count an entity

pair for given pattern s once even if the entity pair

is mentioned with pattern s more than once in the

corpus, because DS assigns the same relation to all

mentions of the entity pair.

Given relation r, our model assumes the follow-

ing generative process:

1. For each pattern s
Choose whether s expresses relation r or not

zrs ∼ Be(θr)
2. For each entity pair i appearing with pattern s

Choose whether i is labeled or not

xrsi ∼ P (xrsi|Zr, ar, dr, λ,M),

where Be(θr) is a Bernoulli distribution with pa-

rameter θr, zrs is a binary hidden variable that is 1

if pattern s expresses relation r and 0 otherwise, and

Zr = {(zrs)|s = 1, . . . , S}. Given a value of zrs,

we model two kinds of probabilities: one for pat-

terns that actually express relation r, i.e., P (xrsi =
1|zrs = 1), and one for patterns that do not express

r, i.e., P (xrsi = 1|zrs = 0). The former is simply

parameterized as 0 ≤ ar ≤ 1. We express the lat-

ter as brs = P (xrsi = 1|Zr, ar, dr, λ,M), which is

a function of Zr, ar, dr, λ and M; we explain its

modeling in the following two subsections.

3Since a set of entity pairs appearing with pattern s is differ-

ent, i should be written as is. For simplicity, however, we use i

for each pattern.
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Figure 3: Venn diagram-like description. E1 and E2 are

sets of entity pairs. E1/E2 has 6/4 entity pairs because

the 6/4 entity pairs appear with pattern 1/2 in the target

corpus. Pattern 1 expresses relation r and pattern 2 does

not. Elements in E1 are labeled with probability ar =
3/6 = 0.5. Those in E2 are labeled with probability

br2 = ar(|E1 ∩ E2|/|E2|) = 0.5(2/4) = 0.25.

The graphical model of our model is shown in

Figure 2.

5.1 Example of Wrong Labeling

Using a simple example, we describe how we model

brs, the probability with which DS assigns relation r
to pattern s via entity pairs when pattern s does not

express relation r.

Consider two patterns: pattern 1 that expresses re-

lation r and pattern 2 that does not (i.e., zr1 = 1 and

zr2 = 0). We also assume that there are entity pairs

that appear with pattern 1 as well as with pattern 2 in

different places in the corpus (for example, Michael

Jackson and Gary in Figure 1). When such entity

pairs are labeled, relation r is assigned to pattern 1
and at the same time to wrong pattern 2. Such entity

pairs are observed as elements in the intersection of

the two sets of entity pairs, E1 and E2. Here, Es is

the set of entity pairs that appear with pattern s in

the corpus. This situation is described in Figure 3.

We model probability br2 as follows. In E1, an

entity pair is labeled with probability ar. We as-

sume that entity pairs in the intersection, E1 ∩ E2,

are also labeled with ar. From the viewpoint of E2,

entity pairs in its subset, E1 ∩ E2, are labeled with

ar. Therefore, br2 is modeled as

br2 = ar
|E1 ∩ E2|

|E2|
,

where |E| denotes the number of elements in set E.

An example of this calculation is shown in Figure 3.
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We generalize the example in the next subsection.

5.2 Modeling of Probability brs

We model brs so that it is proportional to the number

of entity pairs that are shared with correct patterns

whose zrs = 1, i.e.,

brs = ar

∣

∣

∣

(

⋂

{t|zrt=1,t 6=s}Et

)

∩ Es

∣

∣

∣

|Es|
, (1)

where
⋂

indicates set intersections. However, the

enumeration in Eq.1 requires O(SN2

s ) computa-

tional cost and a huge amount of memory to store

all of the entity pairs. We approximate the right-

hand side of Eq.1 as

brs ≈ ar



1−
S

∏

t=1,t 6=s

(

1−
|Et ∩ Es|

|Es|

)zrt



 .

This approximation is made, given the sizes of all

Ess and those of all intersections of two Ess. This

has a lower computational cost of O(S) and let us

use less memory. We define S×S matrix M whose

elements are mst = |Et ∩ Es|/|Es|.
In reality, factors other than the process described

in the previous subsection can cause wrong labeling

(for example, errors in the knowledge base). We in-

troduce a parameter 0 ≤ dr ≤ 1 that covers such

factors. Finally, we define brs as

brs≡ar



λ



1−
S

∏

t=1,t 6=s

(1−mst)
zrt



+(1−λ) dr



, (2)

where 0 ≤ λ ≤ 1 is the hyperparameter that con-

trols how strongly brs is affected by the main label-

ing process explained in the previous subsection.

5.3 Likelihood

Given observation Xr, the likelihood of our model

is

P (Xr|θr, ar, dr, λ,M)

=
∑

Zr

P (Zr|θr)P (Xr|Zr, ar, dr, λ,M) ,

where

P (Zr|θr) =
S

∏

s=1

θzrsr (1− θr)
1−zrs .

For each pattern s, we define nrs as the number

of entity pairs to which relation r is assigned (i.e.,

nrs =
∑

i xrsi).

p (Xr|Zr, ar, dr, λ,M) =
S

∏

s=1

{

anrs

r (1− ar)
Ns−nrs

}zrs

{

bnrs

rs (1− brs)
Ns−nrs

}

1−zrs
, (3)

where brs is in Eq.2.

6 Learning

We learn parameters ar, θr, and dr and infer hidden

variables Zr by maximizing the log likelihood given

Xr. Estimated Zr is used to predict which patterns

express relation r.

To infer zrs, we would like to calculate the pos-

terior probability of zrs. However, this calculation

is intractable because each zrs depends on the oth-

ers, {(zrt)|t 6= s}, as shown in Eqs.2 and 3. This

prevents us from using the EM algorithm. Instead,

we apply variational approximation to the posterior

distribution by using the following trial distribution:

Q (Zr|Φr) =
S

∏

s=1

φzrs
rs (1− φrs)

1−zrs ,

where 0 ≤ φrs ≤ 1 is a parameter for the trial dis-

tribution.

The following function Fr is a lower bound of the

log likelihood, and maximizing this function with

respect to Φr is equivalent to minimizing the KL di-

vergence between the trial distribution and the pos-

terior distribution of Zr.

Fr = EQ[logP (Zr,Xr|θr, ar, dr, λ,M)]

− EQ [logQ (Zr|Φr)] . (4)

EQ[•] represents the expectation over trial distribu-

tion Q. We maximize function Fr with respect to

the parameters instead of the log likelihood.

However, we need further approximation for two

terms on expanding Eq.4. Both of the terms are ex-

pressed as EQ[log(f(Zr))], where f(Zr) is a func-

tion of Zr. We apply the following approximation

(Asuncion et al., 2009).

EQ [log(f(Zr))] ≈ log (EQ [f(Zr)]) .
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This is based on the Taylor series of log at

EQ[f(Zr)]. In our problem, since the second deriva-

tive is sufficiently small, we use the zeroth-order ap-

proximation.4

Our learning algorithm is derived by calculating

the stationary condition of the resultant evaluation

function with respect to each parameter. We have the

exact solution for θr. For each φrs and dr, we derive

a fixed point iteration. We update ar by using the

steepest ascent. We update each parameter in turn

while keeping the other parameters fixed. Parameter

updating proceeds until a termination condition is

met.

After learning, we have φrs for each pair of rela-

tion r and pattern s. The greater the value of φrs is,

the more likely it is that pattern s expresses relation

r. We set a threshold and determine zrs = 0 when

φrs is less than the threshold.

7 Experiments

We performed two sets of experiments.

Experiment 1 aimed to evaluate the performance of

our generative model itself, which predicts whether

a pattern expresses a relation, given a labeled corpus

created with the DS assumption.

Experiment 2 aimed to evaluate how much our

wrong label reduction in Section 4 improved the per-

formance of relation extraction. In our method, we

trained a classifier with a labeled corpus cleaned by

Algorithm 1 using the negative pattern list predicted

by the generative model.

7.1 Dataset

Following Mintz et al. (2009), we carried out our

experiments using Wikipedia as the target corpus

and Freebase (September, 2009, (Google, 2009)) as

the knowledge base. We used more than 1,300,000

Wikipedia articles in the wex dump data (September,

2009, (Metaweb Technologies, 2009)). The proper-

ties of our data are shown in Table 1.

In Wikipedia articles, named entities were iden-

tified by anchor text linking to another article and

starting with a capital letter (Yan et al., 2009). We

applied Open NLP POS tagger5 and MaltParser

(Nivre et al., 2007) to sentences containing more

4The first-order information becomes zero in this case.
5http://opennlp.sourceforge.net/

Table 1: Properties of Wikipedia dataset

documents 1,303,000

entity pairs 2,017,000

(matched to Freebase) 129,000

(with entity types) 913,000

frequent patterns 3,084

relations 24

than one named entity. We then extracted sentences

containing related entity pairs with the method ex-

plained in Section 3. To match entity pairs, we used

ID mapping between the dump data and Freebase.

We used the most frequent 24 relations.

7.2 Experiment 1: Pattern Prediction

We compared our model with baseline methods in

terms of ability to predict patterns that express a

given relation.

The input of this task was Xrs, which expresses

whether or not each entity pair appearing with each

pattern is labeled with relation r, as explained in

Section 5. In Experiment 1, since we needed entity

types for patterns, we restricted ourselves to entities

matched with Freebase, which also provides entity

types for entities. We used patterns that appear more

than 20 times in the corpus.

7.2.1 Evaluation

We split the data into training data and test data.

The training data was Xrs for 12 relations and the

test data was that for the remaining 12 relations. The

training data was used to calibrate parameters (see

the following subsection for details). The test data

was used for evaluation. We randomly split the data

five times and took the average of the following eval-

uation values.

We evaluated the performance by precision, re-

call, and F value. They were calculated using gold

standard data, which was constructed by hand. We

manually selected patterns that actually express a

target relation as positive patterns for the relation. 6

We averaged the evaluation values in terms of macro

average over relations before averaging over the data

splits.

6Patterns that ambiguously express the relation, for instance

“[Person] in [Location]” for place of birth, were not selected as

positive patterns.
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Table 2: Averages of precision, recall, and F value in Ex-

periment 1. The averages of threshold of RS(rank) and

RS(value) were 6.2 ± 3.2 and 0.10 ± 0.06, respectively.

The averages of hyperparameters of PROP were 0.84 ±
0.05 for λ and 0.85 ± 0.10 for the threshold.

Precision Recall F value

Baseline 0.339 1.000 0.458

RS(rank) 0.749 0.549 0.467

RS(value) 0.601 0.647 0.545

PROP 0.782 0.688 0.667

7.2.2 Methods

We compared the following methods:

Baseline: This method assigns relation r to a pat-

tern when the pattern is mentioned with at least one

entity pair corresponding to relation r in Freebase.

This method is based on the DS assumption.

Ratio-based Selection (RS): Given relation r and

pattern s, this method calculates nrs/Ns, which is

the ratio of the number of labeled entity pairs ap-

pearing with pattern s to the number of entity pairs

including unlabeled ones. RS then selects the top

n patterns (RS(rank)). We also tested a version us-

ing a real-valued threshold (RS(value)). In train-

ing, we selected the threshold that maximized the

F value. Some bootstrapping approaches (Carlson et

al., 2010) use a rank-based threshold like RS(rank).

Proposed Model (PROP): Using the training data,

we determined the two hyperparameters, λ and the

threshold to round φrs to 1 or 0, so that they max-

imized the F value. When φrs is greater than the

threshold, we select pattern s as one expressing re-

lation r.

7.2.3 Result and Discussion

The results of Experiment 1 are shown in Table 2.

Our model achieved the best precision, recall, and F

value. RS(value) had the second best F value, but it

completely removed more than one infrequent rela-

tion on average in test sets. This is problematic for

real situations. RS(rank) achieved the second high-

est precision. However, its recall, which is also im-

portant in our task, was the lowest and its F value

was almost the same as naive Baseline.

The thresholds of RS, which directly affect their

performance, should be calibrated for each relation,

but it is hard to do this in advance. On the other

Table 3: Example of estimated φrs for r =
place of birth . Entity types are omitted in patterns.

nrs/Ns is the ratio of the number of labeled entity pairs

to the number of entity pairs appearing with pattern s.

pattern s nrs/Ns φrs expresses r?

born in 0.512 0.999 true

actor from 0.480 0.999 true

elected Mayor of 0.384 0.855 false

family moved from 0.344 0.055 false

native of 0.327 0.999 true

grew in 0.162 0.000 false

hand, our model learns parameters such as ar for

each relation and thus the hyperparameter of our

model does not directly affect its performance. This

results in a high prediction performance.

Examples of estimated φrs, the probability with

which pattern s expresses relation r, are shown in

Table 3. The pattern, “[Person] family moved from

[Location]”, which does not express place of birth,

had low φrs in spite of having higher nrs/Ns than

the valid pattern “[Person] native of [Location]”.

The former pattern had higher brs, the probability

with which relation r is wrongly assigned to pat-

tern s via entity pairs, because there were more en-

tity pairs that appeared not only with this pattern

but also with patterns that was predicted to express

place of birth.

7.3 Experiment 2: Relation Extraction

We investigated the performance of relation extrac-

tion using our wrong label reduction, which uses the

results of the pattern prediction.

Following Mintz et al. (2009), we performed an

automatic held-out evaluation and a manual evalu-

ation. In both cases, we used 400,000 articles for

testing and the remaining 903,000 for training.

7.3.1 Configuration of Classifiers

Following Mintz et al. (2009), we used a multi-

class logistic classifier optimized using L-BFGS

with Gaussian regularization to classify entity pairs

to the predefined 24 relations and NONE. In order to

train the NONE class, we randomly picked 100,000

examples that did not match to Freebase as pairs.

(Several entities in the examples matched and had

entity types of Freebase.) In this experiment, we
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Figure 4: Precision-recall curves in held-out evaluation.

Precision is reported at recall levels from 5 to 50,000.

used not only entity pairs matched to Freebase but

also ones not matched to Freebase (i.e., entity pairs

that do not have entity types). We used syntactic

features (i.e., features obtained from the dependency

parse tree of a sentence) and lexical features, and en-

tity types, which essentially correspond to the ones

developed by Mintz et al. (2009).

We compared the following methods: logistic re-

gression with the labeled data cleaned by the pro-

posed method (PROP), logistic regression with the

standard DS labeled data (LR), and MultiR proposed

in (Hoffmann et al., 2011) as a state-of-the-art multi-

instance learning system.7 For logistic regression,

when more than one relation is assigned to a sen-

tence, we simply copied the feature vector and cre-

ated a training example for each relation. In PROP,

we used training articles for pattern prediction.8

7.3.2 Held-out Evaluation

In the held-out evaluation, relation instances dis-

covered from testing articles were automatically

compared with those in Freebase. This let us calcu-

late the precision of each method for the best n re-

lation instances. The precisions are underestimated

because this evaluation suffers from false negatives

due to the incompleteness of Freebase. We changed

n from 5 to 50,000 and measured precision and re-

call. Precision-recall curves for the held-out data are

7For MultiR, we used the authors’ implementation from

http://www.cs.washington.edu/homes/raphaelh/mr/
8In Experiment 2 we set λ = 0.85 and the threshold at 0.95.

Table 4: Averages of precisions at 50 for the most fre-

quent 15 relations as well as example relations.

PROP MultiR LR

place of birth 1.0 1.0 0.56

place of death 1.0 0.7 0.84

average 0.89±0.14 0.83±0.21 0.82±0.23

shown in Figure 4.

PROP achieved comparable or higher precision at

most recall levels compared with LR and MultiR. Its

performance at n = 50,000 is much higher than that

of the others. While our generative model does not

use unlabeled examples as negative ones in detecting

wrong labels, classifier-based approaches including

MultiR do, suffering from false negatives.

7.3.3 Manual Evaluation

For manual evaluation, we picked the top ranked

50 relation instances for the most frequent 15 rela-

tions. The manually evaluated precisions averaged

over the 15 relations are shown in table 4.

PROP achieved the best average precision. For

place of birth, LR wrongly extracted entity pairs

with “[Person] played with club [Location]”, which

does not express the relation. PROP and MultiR

avoided this mistake. For place of death, LR and

MultiR wrongly extracted entity pairs with “[Per-

son] moved to [Location]”. Multi-instance learning

does not work for wrong labels assigned to entity

pairs that appear only once in a corpus. In fact, 72%

of entity pairs that appeared with this pattern and

were wrongly labeled as place of death appeared

only once in the corpus. Only PROP avoided mis-

takes of this kind because our method works in such

situations.

8 Conclusion

We proposed a method that reduces the number of

wrong labels created with the DS assumption, which

is widely applied. Our generative model directly

models the labeling process of DS and predicts pat-

terns that are wrongly labeled with a relation. The

predicted patterns are used for wrong label reduc-

tion. The experimental results show that this method

successfully reduced the number of wrong labels

and boosted the performance of relation extraction.
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Véronique Moriceau
Univ. Paris-Sud, LIMSI-CNRS

Orsay, France
moriceau@limsi.fr
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Abstract
We present an approach for detecting salient
(important) dates in texts in order to auto-
matically build event timelines from a search
query (e.g. the name of an event or person,
etc.). This work was carried out on a corpus
of newswire texts in English provided by the
Agence France Presse (AFP). In order to ex-
tract salient dates that warrant inclusion in an
event timeline, we first recognize and normal-
ize temporal expressions in texts and then use
a machine-learning approach to extract salient
dates that relate to a particular topic. We fo-
cused only on extracting the dates and not the
events to which they are related.

1 Introduction

Our aim here was to build thematic timelines for
a general domain topic defined by a user query.
This task, which involves the extraction of important
events, is related to the tasks of Retrospective Event
Detection (Yang et al., 1998), or New Event Detec-
tion, as defined for example in Topic Detection and
Tracking (TDT) campaigns (Allan, 2002).

The majority of systems designed to tackle this
task make use of textual information in a bag-of-
words manner. They use little temporal informa-
tion, generally only using document metadata, such
as the document creation time (DCT). The few sys-
tems that do make use of temporal information (such
as the now discontinued Google timeline), only ex-
tract absolute, full dates (that feature a day, month
and year). In our corpus, described in Section 3.1,
we found that only 7% of extracted temporal expres-
sions are absolute dates.

We distinguish our work from that of previous re-
searchers in that we have focused primarily on ex-
tracted temporal information as opposed to other
textual content. We show that using linguistic tem-
poral processing helps extract important events in
texts. Our system extracts a maximum of temporal
information and uses only this information to detect
salient dates for the construction of event timelines.
Other types of content are used for initial thematic
document retrieval. Output is a list of dates, ranked
from most important to least important with respect
to the given topic. Each date is presented with a set
of relevant sentences.

We can see this work as a new, easily evaluable
task of “date extraction”, which is an important com-
ponent of timeline summarization.

In what follows, we first review some of the re-
lated work in Section 2. Section 3 presents the re-
sources used and gives an overview of the system.
The system used for temporal analysis is described
in Section 4, and the strategy used for indexing and
finding salient dates, as well as the results obtained,
are given in Section 51.

2 Related Work

The ISO-TimeML language (Pustejovsky et al.,
2010) is a specification language for manual anno-
tation of temporal information in texts, but, to the
best of our knowledge, it has not yet actually been
used in information retrieval systems. Neverthe-

1This work has been partially funded by French National
Research Agency (ANR) under project Chronolines (ANR-10-
CORD-010). We would like to thank the French News Agency
(AFP) for providing us with the corpus.
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less, (Alonso et al., 2007; Alonso, 2008; Kanhabua,
2009) and (Mestl et al., 2009), among others, have
highlighted that the analysis of temporal informa-
tion is often an essential component in text under-
standing and is useful in a wide range of informa-
tion retrieval applications. (Harabagiu and Bejan,
2005; Saquete et al., 2009) highlight the importance
of processing temporal expressions in Question An-
swering systems. For example, in the TREC-10 QA
evaluation campaign, more than 10% of questions
required an element of temporal processing in order
to be correctly processed (Li et al., 2005a). In multi-
document summarization, temporal processing en-
ables a system to detect redundant excerpts from
various texts on the same topic and to present re-
sults in a relevant chronological order (Barzilay and
Elhadad, 2002). Temporal processing is also useful
for aiding medical decision-making. (Kim and Choi,
2011) present work on the extraction of temporal in-
formation in clinical narrative texts. Similarly, (Jung
et al., 2011) present an end-to-end system that pro-
cesses clinical records, detects events and constructs
timelines of patients’ medical histories.

The various editions of the TDT task have given
rise to the development of different systems that de-
tect novelty in news streams (Allan, 2002; Kumaran
and Allen, 2004; Fung et al., 2005). Most of these
systems are based on statistical bag-of-words mod-
els that use similarity measures to determine prox-
imity between documents (Li et al., 2005b; Brants
et al., 2003). (Smith, 2002) used spatio-temporal in-
formation from texts to detect events from a digital
library. His method used place/time collocations and
ranked events according to statistical measures.

Some efforts have been made for automatically
building textual and graphical timelines. For ex-
ample, (Allan et al., 2001) present a system that
uses measures of pertinence and novelty to con-
struct timelines that consist of one sentence per date.
(Chieu and Lee, 2004) propose a similar system that
extracts events relevant to a query from a collection
of documents. Important events are those reported
in a large number of news articles and each event is
constructed according to one single query and rep-
resented by a set of sentences. (Swan and Allen,
2000) present an approach to generating graphical
timelines that involves extracting clusters of noun
phrases and named entities. More recently, (Yan et

al., 2011b; Yan et al., 2011a) used a summarization-
based approach to automatically generate timelines,
taking into account the evolutionary characteristics
of news.

3 Resources and System Overview

3.1 AFP Corpus

For this work, we used a corpus of newswire texts
provided by the AFP French news agency. The En-
glish AFP corpus is composed of 1.3 million texts
that span the 2004-2011 period (511 documents/day
in average and 426 millions words). Each document
is an XML file containing a title, a date of creation
(DCT), set of keywords, and textual content split
into paragraphs.

3.2 AFP Chronologies

AFP “chronologies” (textual event timelines) are a
specific type of articles written by AFP journal-
ists in order to contextualize current events. These
chronologies may concern any topic discussed in the
media, and consist in a list of dates (typically be-
tween 10 and 20) associated with a text describing
the related event(s). Figure 1 shows an example of
such a chronology. Further examples are given in
Figure 2. We selected 91 chronologies satisfying the
following constraints:

• All dates in the chronologies are between 2004
and 2011 to be sure that the related events
are described in the corpus. For example,
“Chronology of climax to Vietnam War” was
excluded because its corresponding dates do
not appear in the content of the articles.

• All dates in the chronology are anterior to the
chronology’s creation date. For example, the
chronology “Space in 2005: A calendar”, pub-
lished in January 2005 and listing scheduled
events, was not selected (because almost no
rocket launches finally happened on the ex-
pected day).

• The temporal granularity of the chronology is
the day. For example, “A timeline of how the
London transport attacks unfolded”, relating
the events hour by hour, is not in our focus.
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<NewsML Version="1.2">

<NewsItem xml:lang="en">

<HeadLine>Key dates in Thai-
land’s political crisis</HeadLine>
<DateId>20100513T100519Z</DateId>
<NameLabel>Thailand-politics</NameLabel>

<DataContent>

<p>The following is a timeline of events since
the protests began, soon after Thailand’s Supreme
Court confiscated 1.4 billion dollars of Thaksin’s
wealth for abuse of power.</p>
<p>March 14: Tens of thousands of Red Shirts
demonstrate in the capital calling for Abhisit’s gov-
ernment to step down, [...]</p>
<p>March 28: The government and the Reds en-
ter into talks but hit a stalemate after two days
[...]</p>
<p>April 3: Tens of thousands of protesters move
from Bangkok’s historic district into the city’s com-
mercial heart [...]</p>
<p>April 7: Abhisit declares state of emergency
in capital after Red Shirts storm parliament.</p>
<p>April 8: Authorities announce arrest warrants
for protest leaders.</p>
. . .

</DataContent>

</NewsItem>

</NewsML>

Figure 1: Example of an AFP manual chronology.

For learning and evaluation purposes, all
chronologies were converted to a single XML
format. Each document was manually associated
with a user search query made up of the keywords
required to retrieve the chronology.

3.3 System Overview

Figure 3 shows the general architecture of the sys-
tem. First, pre-processing of the AFP corpus tags
and normalizes temporal expressions in each of the
articles (step ¬ in the Figure). Next, the corpus is
indexed by the Lucene search engine2 (step ­).

Given a query, a number of documents are re-
trieved by Lucene (®). These documents can be fil-
tered (¯), and dates are extracted from the remain-
ing documents. These dates are then ranked in order
to show the most important ones to the user (°), to-

2http://lucene.apache.org

- Chronology of 18 months of trouble in Ivory Coast
- Chechen rebels’ history of hostage-takings
- Iraqi political wrangling since March 7 election
- Athletics: Timeline of men’s 800m world record
- Major accidents in Chinese mines
- Space in 2005: A calendar
- Developments in Iranian nuclear standoff
- Chronology of climax to Vietnam War
- Timeline of ex-IMF chief’s sex attack case
- A timeline of how the London transport attacks un-
folded

Figure 2: Examples of AFP chronologies.

Figure 3: System overview.

gether with the sentences that contain them.

4 Temporal and Linguistic Processing

In this section, we describe the linguistic and tempo-
ral information extracted during the pre-processing
phase and how the extraction is carried out. We
rely on the powerful linguistic analyzer XIP (Aı̈t-
Mokhtar et al., 2002), that we adapted for our pur-
poses.

4.1 XIP
The linguistic analyzer we use performs a deep syn-
tactic analysis of running text. It takes as input
XML files and analyzes the textual content enclosed
in the various XML tags in different ways that are
specified in an XML guide (a file providing instruc-
tions to the parser, see (Roux, 2004) for details).
XIP performs complete linguistic processing rang-
ing from tokenization to deep grammatical depen-
dency analysis. It also performs named entity recog-
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nition (NER) of the most usual named entity cat-
egories and recognizes temporal expressions. Lin-
guistic units manipulated by the parser are either
terminal categories or chunks. Each of these units
is associated with an attribute-value matrix that con-
tains the unit’s relevant morphological, syntactic and
semantic information. Linguistic constituents are
linked by oriented and labelled n-ary relations de-
noting syntactic or semantic properties of the input
text. A Java API is provided with the parser so that
all linguistic structures and relations can be easily
manipulated by Java code.

In the following subsections, we give details of
the linguistic information that is used for the detec-
tion of salient dates.

4.2 Named Entity Recognition

Named Entity (NE) Recognition is one of the out-
puts provided by XIP. NEs are represented as unary
relations in the parser output. We used the exist-
ing NE recognition module of the English grammar
which tags the following NE types: location names,
person names and organization names. Ambigu-
ous NE types (ambiguity between type location or
organization for country names for instance) are
also considered.

4.3 Temporal Analysis

A previous module for temporal analysis was de-
veloped and integrated into the English grammar
(Hagège and Tannier, 2008), and evaluated during
TempEval campaign (Verhagen et al., 2007). This
module was adapted for tagging salient dates. Our
goal with temporal analysis is to be able to tag and
normalize3 a selected subset of temporal expressions
(TEs) which we consider to be relevant for our task.
This subset of expressions is described in the follow-
ing sections.

4.3.1 Absolute Dates
Absolute dates are dates that can be normalized

without external or contextual knowledge. This is
the case, for instance, of “On January 5th 2003”.
In these expressions, all information needed for nor-
malization is contained in the linguistic expression.

3We call normalization the operation of turning a temporal
expression into a formated, fully specified representation. This
includes finding the absolute value of relative dates.

However, absolute dates are relatively infrequent in
our corpus (7%), so in order to broaden the cover-
age for the detection of salient dates, we decided to
consider relative dates, which are far more frequent.

4.3.2 DCT-relative Dates
DCT-relative temporal expressions are those

which are relative to the creation date of the docu-
ment. This class represents 40% of dates extracted
from the AFP corpus. Unlike the absolute dates, the
linguistic expression does not provide all the infor-
mation needed for normalization. External informa-
tion is required, in particular, the date which corre-
sponds to the moment of utterance. In news articles,
this is the DCT. Two sub-classes of relative TEs can
be distinguished. The first sub-class only requires
knowledge of the DCT value to perform the normal-
ization. This is the case of expressions like next Fri-
day, which correspond to the calendar date of the
first Friday following the DCT. The second sub-class
requires further contextual knowledge for normal-
ization. For example, on Friday will correspond ei-
ther to last Friday or to next Friday depending on
the context where this expression appears (e.g. He
is expected to come on Friday corresponds to next
Friday while He arrived on Friday corresponds to
last Friday). In such cases, the tense of the verb
that governs the TE is essential for normalization.
This information is provided by the linguistic analy-
sis carried out by XIP.

4.3.3 Underspecified Dates
Considering the kind of corpus we deal with

(news), we decided to consider TEs whose granu-
larity is at least equal to a day. As a result, TEs
were normalized to a numerical YYYYMMDD for-
mat (where YYYY corresponds to the year, MM to
the month and DD to the day). In case of TEs with
a granularity superior to the day or month, DD and
MM fields remain unspecified accordingly. How-
ever, these underspecified dates are not used in our
experiments.

4.4 Modality and Reported Speech

An important issue that can affect the calculation of
salient dates is the modality associated with time-
stamped events in text. For instance, the status of a
salient date candidate in a sentence like “The meet-

733



ing takes place on Friday” has to be distinguished
from the one in “The meeting should take place on
Friday” or “The meeting will take place on Friday,
Mr. Hong said”. The time-stamped event meeting
takes place is factual in the first example and can
be taken as granted. In the second and third exam-
ples, however, the event does not necessarily occur.
This is expressed by the modality introduced by the
modal auxiliary should (second example), or by the
use of the future tense or reported speech (third ex-
ample). We annotate TEs with information regard-
ing the factuality of the event they modify. More
specifically, we consider the following features:

Events that are mentioned in the future: If a
time-stamped event is in the future tense, we add a
specific attribute MODALITY with value FUTURE to
the corresponding TE annotation.

Events used with a modal verb: If a time-
stamped event is introduced by a modal verb such
as should or would, then attribute MODALITY to the
corresponding TE annotation has the value MODAL.

Reported speech verbs: Reported speech verbs
(or verbs of speaking) introduce indirect or reported
speech. We dealt with time-stamped events gov-
erned by a reported speech verb, or otherwise ap-
pearing in reported speech. Once again, XIP’s lin-
guistic analysis provided the necessary information,
including the marking of reported speech verbs and
clause segmentation of complex sentences. If a rel-
evant TE modifies a reported speech verb, the anno-
tation of this TE contains a specific attribute, DE-
CLARATION=”YES”. If the relevant TE modifies
a verb that appears in a clause introduced by a re-
ported speech verb then the annotation contains the
attribute REPORTED=”YES”.

Note that the different annotations can be com-
bined (e.g. modality and reported speech can occur
for a same time-stamped event). For example, the
TE Friday in “The meeting should take place on Fri-
day, Mr. Hong said” is annotated with both modality
and reported speech attributes.

4.5 Corpus-dependent Special Cases

While we developed the linguistic and temporal an-
notators, we took into account some specificities of
our corpus. We decided that the TEs today and

<DCT value="20050105"/>
<EC TYPE="TIMEX" value="unknown">The year
2004</EC> was the deadliest <EC TYPE="TIMEX"
value="unknown">in a decade</EC> for journalists
around the world, mainly because of the number of reporters
killed in <EC TYPE="LOCORG">Iraq</EC>, the
media rights group <EN TYPE="ORG">Reporters
Sans Frontieres</EN> (Reporters Without Bor-
ders) said <EC TYPE="DATE" SUBTYPE="REL"
REF="ST" DECLARATION="YES" value
="20050105">Wednesday</EC>.

Figure 4: Example of XIP output for a sample article.

now were not relevant for the detection of salient
dates. In the AFP news corpus, these expressions
are mostly generic expressions synomymous with
nowadays and do not really time-stamp an event
with respect to the DCT. Another specificity of the
corpus is the fact that if the DCT corresponds to a
Monday, and if an event in a past tense is described
with the associated TE on Monday or Monday, it
means that this event occurs on the DCT day itself,
and not on the Monday before. We adapted the TE
normalizer to these special cases.

4.6 Implementation and Example
As said previously, a NER module is integrated into
the XIP parser, which we used “as is”. The TE tag-
ger and normalizer was adapted from (Hagège and
Tannier, 2008). We used the Java API provided with
the parser to perform the annotation and normal-
ization of TEs. The output for the linguistic and
temporal annotation consists in XML files where
only selected information is kept (structural infor-
mation distinguishing headlines from news content,
DCT), and enriched with the linguistic annotations
described before (NEs and TEs with relevant at-
tributes corresponding to the normalization and typ-
ing). Information concerning modality, future tense
and reported speech, appears as attributes on the TE
tag. Figure 4 shows an example of an analyzed ex-
cerpt of a news article.

In this news excerpt, only one TE (Wednesday) is
normalized as both The year 2004 and in a decade
are not considered to be relevant. The first one being
a generic TE and the second one being of granular-
ity superior to a year. The annotation of the relevant
TE has the attribute indicating that it time-stamps an
event realized by a reported speech verb. The nor-
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malized value of the TE corresponds to the 5th of
January 2005, which is a Wednesday. NEs are also
annotated.

In the entire AFP corpus, 11.5 millions temporal
expressions were detected, among which 845,000
absolute dates (7%) and 4.6 millions normalized
relative dates (40%). Although we have not yet
evaluated our tagging of relative dates, the system
on which our current date normalization is based
achieved good results in the TempEval (Verhagen et
al., 2007) campaign.

5 Experiments and Results

In Section 5.1, we propose two baseline approaches
in order to give a good idea of the difficulty of the
task (Section 5.4 also discusses this point). In Sec-
tion 5.2, we present our experiments using simple
filtering and statistics on dates calculated by Lucene.
Finally, Section 5.3 gives details of our experiments
with a learning approach. In our experiments, we
used three different values to rank dates:

• occ(d) is the number of textual units (docu-
ments or sentences) containing the date d.

• Lucene provides ranked documents together
with their relevance score. luc(d) is the sum of
Lucene scores for textual units containing the
date d.

• An adaptation of classical tf.idf for dates:

tf.idf(d) = f(d).log
N

df(d)

where f(d) is the number of occurrences of
date d in the sentence (generally, f(d) = 1), N
is the number of indexed sentences and df(d)
is the number of sentences containing date d.

In all experiments (including baselines), timelines
have been built by considering only dates between
the first and the last dates of the corresponding man-
ual chronology. Processing runs were evaluated on
manually-written chronologies (see Section 3.2) ac-
cording to Mean Average Precision (MAP), which
is a widely accepted metric for ranked lists. MAP
gives a higher weight to higher ranked elements than
lower ranked elements. Significance of evaluation
results are indicated by the p-value results of the Stu-
dent’s t-test (t(90) = 1.9867).

Baselines “only DCTs”
Model BLocc

DCT BLluc
DCT BLtf.idf

DCT

MAP Score 0.5036 0.5521 0.5523
Baselines “only absolute dates”

Model BLocc
abs BLluc

abs BLtf.idf
abs

MAP Score 0.2627 0.2782 0.2778
Baselines “absolute dates or alternatively DCTs”

Model BLocc
mix BLluc

mix BLtf.idf
mix

MAP Score 0.4005 0.4110 0.4135

Table 1: MAP results for baseline runs.

5.1 Baseline Runs
BLDCT . Indexing and search were done at docu-

ment level (i.e. each AFP article, with its title
and keywords, is a document). Given a query,
the top 10,000 documents were retrieved. In
these runs, only the DCT for each document
was considered. Dates were ranked by one of
the three values described above (occ, luc or
tf.idf ) leading to runs BLocc

DCT , BLluc
DCT and

BLtfidf
DCT .

BLabs. Indexing and search were done at sentence
level (document title and keywords are added
to sentence text). Given a query, the top 10,000
sentences were retrieved. Only absolute dates
in these sentences were considered. We thus
obtained runs BLocc

abs, BLluc
abs and BLtfidf

abs .

Note that in this baseline, as well as in all the
subsequent runs, the information unit was the
sentence because a date was associated to a
small part of the text. The rest of the document
generally contained text that was not related to
the specific date.

BLmix. Same as BLabs, except that sentences con-
taining no absolute dates were considered and
associated to the DCT.

Table 1 shows results for these baseline runs.
Using only DCTs with Lucene scores or tf.idf(d)
already yielded interesting results, with MAP
around 0.55.

5.2 Salient Date Extraction with XIP Results
and Simple Filtering

In these experiments, we considered a Lucene index
to be built as follows: each document was taken to
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Model MAP Score Model MAP Score
Salient date runs with all dates

SDluc 0.6962 SDtf.idf 0.6982
Salient dates runs with filtering

SDluc
R 0.6975 SDtf.idf

R 0.6996
SDluc

F 0.6967 SDtf.idf
F 0.6993 ∗∗

SDluc
M 0.6978 SDtf.idf

M 0.7005 ∗

SDluc
D 0.7066 ∗∗ SDtf.idf

D 0.7091 ∗∗

SDluc
FMD 0.7086 ∗∗ SDtf.idf

FMD 0.7112 ∗∗

SDluc
RFMD 0.7127 ∗∗ SDtf.idf

RFMD 0.7146 ∗∗

Table 2: MAP results for salient date extraction with XIP
and simple filtering. The significance of the improvement
due to filtering wrt no filtering is indicated by the Student
t-test (∗: p < 0.05 (significant); ∗∗: p < 0.01 (highly
significant)). The improvement due to using tf.idf(d) as
opposed to occ(d) is also highly significant.

be a sentence containing a normalized date. This
sentence was indexed with the title and keywords of
the AFP article containing it. Given a query, the top
10,000 documents were retrieved. Combinations be-
tween the following filtering operations were pos-
sible, by removing all dates associated with a re-
ported speech verb (R), a modal verb (M ) and/or
a future verb (F ). All these filtering operations were
intended to remove references to events that were
not certain, thereby minimizing noise in results.

These processing runs are named SD runs, with
indices representing the filtering operations. For ex-
ample, a run obtained by filtering modal and future
verbs is called SDM,F . In all combinations, dates
were ranked by the sum of Lucene scores for these
sentences (luc) or by tf.idf4.

Table 2 presents the results for this series of ex-
periments. MAP values are much higher than for
baselines. Using tf.idf(d) is only very slightly bet-
ter than luc. Filtering operations bring significant
improvement but the benefits of these different tech-
niques have to be further investigated.

5.3 Machine-Learning Runs
We used our set of manually-written chronologies
as a training corpus to perform machine learning
experiments. We used IcsiBoost5, an implementa-

4We do not present runs where dates are ranked by the num-
ber of times they appear in retrieved sentences (occ), as we did
for baselines, since results are systematically lower.

5http://code.google.com/p/icsiboost/

tion of adaptative boosting (AdaBoost (Freund and
Schapire, 1997)).

In our approach, we consider two classes: salient
dates are dates that have an entry in the manual
chronologies, while non-salient dates are all other
dates. This choice does, however, represent an im-
portant bias. The choices of journalists are indeed
very subjective, and chronologies must not exceed a
certain length, which means that relevant dates can
be thrown away. These issues will be discussed in
Section 5.4.

The classifier instances were not all sentences re-
trieved by the search engine. Using all sentences
would not yield a useful feature set. We rather ag-
gregated all sentences corresponding to the same
date before learning the classifier. Therefore, each
instance corresponded to a single date, and features
were figures concerning the set of sentences contain-
ing this date.

Features used in this series of runs are as follows:

1. Features representing the fact that the more
a date is mentioned, the more important it is
likely to be: 1) Sum of the Lucene scores for
all sentences containing the date 2) Number of
sentences containing the date 3) Ratio between
the total weights of the date and weights of all
returned dates 4) Ratio between the frequency
of the date and frequency of all returned dates;

2. Features representing the fact that an important
event is still written about, a long time after it
occurs: 1) Distance between the date and the
most recent mention of this date 2) Distance be-
tween the date and the DCT;

3. Other features: 1) Lucene’s best ranking of the
date 2) Number of times where the date is ab-
solute in the text 3) Number of times where
the date is relative (but normalized) in the text
4) Total number of keywords of the query in the
title, sentence and named entities of retrieved
documents 5) Number of times where the date
modifies a reported speech verb or is extracted
from reported speech.

We did not aim to classify dates, but rather to rank
them. Instead, we used the predicted probability
P (d) returned by the classifier, and mixed it with
the Lucene score of sentences, or with date tf.idf :
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Model MAP Score
Machine-Learning Runs

MLluc
base 0.7033

MLluc 0.7905 ∗∗

MLtf.idf 0.7918 ∗∗

Table 3: MAP results for salient date extraction with
machine-learning. MLluc

base used Lucene scores and only
the first set of features described above. MLluc and
MLtf.idf used the three sets of features. They are both
highly significant under the t-test (p ≈ 6.10−4) wrt re-
spectively SDluc and SDtf.idf .

score(d) = P (d)× val(d)

where val(d) is either luc(d) or tf.idf(d).
Because the task is very subjective and (above

all) because of the low quantity of learning data, we
prefered not to opt for a “learning to rank” approach.

We evaluated this approach with a classic 4-fold
cross-validation. Our 91 chronologies were ran-
domly divided into 4 sub-samples, each of them be-
ing used once as test data. The final scores, pre-
sented in Table 3, are the average of these 4 pro-
cesses. As shown in this table, the learning approach
improves MAP results by about 0.05 point.

5.4 Discussion and Final Experiment

Chronologies hand-written by journalists are a very
useful resources for evaluation of our system, as they
are completely dissociated from our research and are
an exact representation of the output we aim to ob-
tain. However, assembling such a chronology is a
very subjective task, and no clear method for evalu-
ation agreement between two journalists seems im-
mediately apparent. Only experts can build such
chronologies, and calculating this agreement would
require at least two experts from each domain, which
are hard to come by. One may then consider our sys-
tem as a useful tool for building a chronology more
objectively.

To illustrate this point, we chose four specific top-
ics6 and showed one of our runs on each topic to an
AFP expert for these subjects. We asked him to as-
sess the first 30 dates of these runs.

6Namely, “Arab revolt timeline for Morocco”, “Kyrgyzs-
tan unrest timeline”, “Lebanon’s new government: a timeline”,
“Libya timeline”.

Topic APC APE

Morocco 0.5847 0.5718
Kyrgyzstan 0.6125 0.9989
Libya 0.7856 1
Lebanon 0.4673 0.7652

Table 4: Average precision results for manual evaluation
on 4 topics, against the original chronologies (APC), and
the expert assessment (APE).

Table 4 presents results for this evaluation, com-
paring average precision values obtained 1) against
the original, manual chronologies (APC), and 2)
against the expert assessment (APE). These values
show that, for 3 runs out of 4, many dates returned
by the system are considered as valid by the expert,
even if not presented in the original chronology.

Even if this experiment is not strong enough to
lead to a formal conclusion (post-hoc evaluation
with only 4 topics and a single assessor), this tends
to show that our system produces usable outputs and
that our system can be of help to journalists by pro-
viding them with chronologies that are as useful and
objective as possible.

6 Conclusion and Future Work

This article presents a task of “date extraction” and
shows the importance of taking temporal informa-
tion into consideration and how with relatively sim-
ple temporal processing, we were able to indirectly
point to important events using the temporal infor-
mation associated with these events. Of course, as
our final goal consists in the detection of important
events, we need to take into account the textual con-
tent. In future work, we envisage providing, together
with the detection of salient dates, a semantic analy-
sis that will help determine the importance of events.
Another interesting direction in which we soon aim
to work is to consider all textual excerpts that are as-
sociated with salient dates, and use clustering tech-
niques to determine if textual excerpts correspond to
the same event or not. Finally, as our news corpus
is available both for English and French (compara-
ble corpus, not necessarily translations), we aim to
investigate cross-lingual extraction of salient dates
and salient events.
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Abstract

We propose a latent variable model to enhance
historical analysis of large corpora. This work
extends prior work in topic modelling by in-
corporating metadata, and the interactions be-
tween the components in metadata, in a gen-
eral way. To test this, we collect a corpus
of slavery-related United States property law
judgements sampled from the years 1730 to
1866. We study the language use in these
legal cases, with a special focus on shifts in
opinions on controversial topics across differ-
ent regions. Because this is a longitudinal
data set, we are also interested in understand-
ing how these opinions change over the course
of decades. We show that the joint learning
scheme of our sparse mixed-effects model im-
proves on other state-of-the-art generative and
discriminative models on the region and time
period identification tasks. Experiments show
that our sparse mixed-effects model is more
accurate quantitatively and qualitatively inter-
esting, and that these improvements are robust
across different parameter settings.

1 Introduction

Many scientific subjects, such as psychology, learn-
ing sciences, and biology, have adopted computa-
tional approaches to discover latent patterns in large
scale datasets (Chen and Lombardi, 2010; Baker and
Yacef, 2009). In contrast, the primary methods for
historical research still rely on individual judgement
and reading primary and secondary sources, which
are time consuming and expensive. Furthermore,
traditional human-based methods might have good
precision when searching for relevant information,
but suffer from low recall. Even when language
technologies have been applied to historical prob-
lems, their focus has often been on information re-
trieval (Gotscharek et al., 2009), to improve acces-
sibility of texts. Empirical methods for analysis and
interpretation of these texts is therefore a burgeoning
new field.

Court opinions form one of the most important
parts of the legal domain, and can serve as an excel-
lent resource to understand both legal and political
history (Popkin, 2007). Historians often use court
opinions as a primary source for constructing in-
terpretations of the past. They not only report the
proceedings of a court, but also express a judges’
views toward the issues at hand in a case, and reflect
the legal and political environment of the region and
period. Since there exists many thousands of early
court opinions, however, it is difficult for legal his-
torians to manually analyze the documents case by
case. Instead, historians often restrict themselves to
discussing a relatively small subset of legal opinions
that are considered decisive. While this approach
has merit, new technologies should allow extraction
of patterns from large samples of opinions.

Latent variable models, such as latent Dirichlet al-
location (LDA) (Blei et al., 2003) and probabilistic
latent semantic analysis (PLSA) (Hofmann, 1999),
have been used in the past to facilitate social science
research. However, they have numerous drawbacks,
as many topics are uninterpretable, overwhelmed by
uninformative words, or represent background lan-
guage use that is unrelated to the dimensions of anal-
ysis that qualitative researchers are interested in.

SAGE (Eisenstein et al., 2011a), a recently pro-
posed sparse additive generative model of language,
addresses many of the drawbacks of LDA. SAGE
assumes a background distribution of language use,
and enforces sparsity in individual topics. Another
advantage, from a social science perspective, is that
SAGE can be derived from a standard logit random-
utility model of judicial opinion writing, in contrast
to LDA. In this work we extend SAGE to the su-
pervised case of joint region and time period pre-
diction. We formulate the resulting sparse mixed-
effects (SME) model as being made up of mixed
effects that not only contain random effects from
sparse topics, but also mixed effects from available
metadata. To do this we augment SAGE with two
sparse latent variables that model the region and
time of a document, as well as a third sparse latent
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variable that captures the interactions among the re-
gion, time and topic latent variables. We also intro-
duce a multiclass perceptron-style weight estimation
method to model the contributions from different
sparse latent variables to the word posterior prob-
abilities in this predictive task. Importantly, the re-
sulting distributions are still sparse and can therefore
be qualitatively analyzed by experts with relatively
little noise.

In the next two sections, we overview work re-
lated to qualitative social science analysis using la-
tent variable models, and introduce our slavery-
related early United States court opinion data. We
describe our sparse mixed-effects model for joint
modeling of region, time, and topic in section 4.
Experiments are presented in section 5, with a ro-
bust analysis from qualitative and quantitative stand-
points in section 5.2, and we discuss the conclusions
of this work in section 6.

2 Related Work

Natural Language Processing (NLP) methods for
automatically understanding and identifying key
information in historical data have not yet been
explored until recently. Related research efforts
include using the LDA model for topic model-
ing in historical newspapers (Yang et al., 2011),
a rule-based approach to extract verbs in histor-
ical Swedish texts (Pettersson and Nivre, 2011),
a system for semantic tagging of historical Dutch
archives (Cybulska and Vossen, 2011).

Despite our historical data domain, our approach
is more relevant to text classification and topic mod-
elling. Traditional discriminative methods, such as
support vector machine (SVM) and logistic regres-
sion, have been very popular in various text cate-
gorization tasks (Joachims, 1998; Wang and McKe-
own, 2010) in the past decades. However, the main
problem with these methods is that although they are
accurate in classifying documents, they do not aim
at helping us to understand the documents.

Another problem is lack of expressiveness. For
example, SVM does not have latent variables to
model the subtle differences and interactions of fea-
tures from different domains (e.g. text, links, and
date), but rather treats them as a “bag-of-features”.
Generative methods, by contrast, can show the
causes to effects, have attracted attentions in re-
cent years due to the rich expressiveness of the
models and competitive performances in predictive
tasks (Wang et al., 2011). For example, Nguyen et
al. (2010) study the effect of the context of inter-
action in blogs using a standard LDA model. Guo
and Diab (2011) show the effectiveness of using se-

mantic information in multifaceted topic models for
text categorization. Eisenstein et al. (2010) use a
latent variable model to predict geolocation infor-
mation of Twitter users, and investigate geographic
variations of language use. Temporally, topic mod-
els have been used to show the shift in language use
over time in online communities (Nguyen and Rosé,
2011) and the evolution of topics over time (Shub-
hankar et al., 2011).

When evaluating understandability, however,
dense word distributions are a serious issue in many
topic models as well as other predictive tasks. Such
topic models are often dominated by function words
and do not always effectively separate topics. Re-
cent work have shown significant gains in both pre-
dictiveness and interpretatibility by enforcing spar-
sity, such as in the task of discovering sociolinguistic
patterns of language use (Eisenstein et al., 2011b).

Our proposed sparse mixed-effects model bal-
ances the pros and cons the above methods, aim-
ing at higher classification accuracies using the SME
model for joint geographic and temporal aspects pre-
diction, as well as richer interaction of components
from metadata to enhance historical analysis in legal
opinions. To the best of our knowledge, this study is
the first of its kind to discover region and time spe-
cific topical patterns jointly in historical texts.

3 Data
We have collected a corpus of slavery-related United
States supreme court legal opinions from Lexis
Nexis. The dataset includes 5,240 slavery-related
state supreme court cases from 24 states, during the
period of 1730 - 1866. Optical character recognition
(OCR) software was used by Lexis Nexis to digitize
the original documents. In our region identification
task, we wish to identify whether an opinion was
written in a free state1 (R1) or a slave state (R2)2.
In our time identification experiment, we approx-
imately divide the legal documents into four time
quartiles (Q1, Q2, Q3, and Q4), and predict which
quartile the testing document belongs to. Q1 con-
tains cases from 1837 or earlier, where as Q2 is for
1838-1848, Q3 is for 1849-1855, and Q4 is for 1856
and later.

4 The Sparse Mixed-Effects Model
To address the over-parameterization, lack of ex-
pressiveness and robustness issues in LDA, the
SAGE (Eisenstein et al., 2011a) framework draws a

1Including border states, this set includes CT, DE, IL, KY,
MA, MD, ME, MI, NH, NJ, NY, OH, PA, and RI.

2These states include AR, AL, FL, GA, MS, NC, TN, TX,
and VA.
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Figure 1: Plate diagram representation of the proposed
Sparse Mixed-Effects model with K topics, Q time peri-
ods, and R regions.

constant background distribution m, and additively
models the sparse deviation η from the background
in log-frequency space. It also incorporates latent
variables τ to model the variance for each sparse de-
viation η. By enforcing sparsity, the model might be
less likely to overfit the training data, and requires
estimation of fewer parameters.

This paper further extends SAGE to analyze mul-
tiple facets of a document collection, such as the
regional and temporal differences. Figure 1 shows
the graphical model of our proposed sparse mixed-
effects (SME) model. In this SME model, we still
have the same Dirichlet α, the latent topic proportion
θ, and the latent topic variable z as the original LDA
model. For each document d, we are able to ob-
serve two labels: the region label y(R)

d and the time
quartile label y(Q)

d . We also have a background dis-
tributionm that is drawn from a uninformative prior.
The three major sparse deviation latent variables are
η

(T )
k for topics, η(R)

j for regions, and η(Q)
q for time

periods. All of the three latent variables are condi-
tioned on another three latent variables, which are
their corresponding variances τ (T )

k , τ
(R)
j and τ

(Q)
q .

In the intersection of the plates for topics, regions,
and time quartiles, we include another sparse latent
variable η(I)

qjk, which is conditioned on a variance

τ
(I)
qjk, to model the interactions among topic, region

and time. η(I)
qjk is the linear combination of time pe-

riod, region and topic sparse latent variables, which
absorbs the residual variation that is not captured in
the individual effects.

In contrast to traditional multinomial distribution
of words in LDA models, we approximate the con-
ditional word distribution in the document d as the

exponentiated sum β of all latent sparse deviations
η

(T )
k , η(R)

j , η(Q)
q , and η(I)

qjk, as well as the background
m:

P (w(d)
n |z(d)

n , η,m, y
(R)
d , y

(Q)
d ) ∝ β

= exp
(
m+ η

(T )

z
(d)
n

+ λ(R)η
(R)

y(r)

+ λ(Q)η
(Q)

y(q) + η
(I)

y(r),y(q),z
(d)
n

)
Despite SME learns in a Bayesian framework, the

above λ(R) and λ(Q) are dynamic parameters that
weight the contributions of η(R)

y(r) and η
(Q)

y(q) to the
approximated word posterior probability. A zero-
mean Laplace prior τ , which is conditioned on pa-
rameter γ, is introduced to induce sparsity, where
its distribution is equivalent to the joint distribution,∫
N (η;m, τ)ε(τ ;σ)dτ , and ε(τ ;σ)dτ is the Expo-

nential distribution (Lange and Sinsheimer, 1993).
We first describe a generative story for this SME
model:
• Draw a background m from corpus mean and ini-

tialize η(T ), η(R), η(Q) and η(I) sparse deviations
from corpus

• For each topic k

– For each word i
∗ Draw τ

(T )
k,i ∼ ε(γ)

∗ Draw η
(T )
k,i ∼ N (0, τ

(T )
k,i )

– Set βk ∝ exp(m+ηk+λ(R)η(R)+λ(Q)η(Q)+
η(I))

• For each region j

– For each word i
∗ Draw τ

(R)
j,i ∼ ε(γ)

∗ Draw η
(R)
j,i ∼ N (0, τ

(R)
j,i )

– Update βj ∝ exp(m + λ(R)ηj + η(T ) +

λ(Q)η(Q) + η(I))

• For each time quartile q

– For each word i
∗ Draw τ

(Q)
q,i ∼ ε(γ)

∗ Draw η
(Q)
q,i ∼ N (0, τ

(Q)
q,i )

– Update βq ∝ exp(m + λ(Q)ηq + η(T ) +

λ(R)η(R) + η(I))

• For each time quartile q, for each region j, for each
topic k

– For each word i
∗ Draw τ

(I)
q,j,k,i ∼ ε(γ)

∗ Draw η
(I)
q,j,k,i ∼ N (0, τ

(I)
q,j,k,i)

– Update βq,j,k ∝ exp(m + ηq,j,k + η(T ) +

λ(R)η(R) + λ(Q)η(Q))
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• For each document d

– Draw the region label y(R)
d

– Draw the time quartile label y(Q)
d

– For each word n, draw w
(d)
n ∼ βyd

4.1 Parameter Estimation

We follow the MAP estimation method that Eisen-
stein et al. (2011a) used to train all sparse latent vari-
ables η, and perform Bayesian inference on other la-
tent variables. The estimation of all variance vari-
ables τ remains as plugging the compound distri-
bution of Normal-Jeffrey’s prior, where the latter is
a replacement of the Exponential prior. When per-
forming Expectation-Maximization (EM) algorithm
to infer the latent variables in SME, we derive the
following likelihood function:

L =
∑

d

〈logP (θd|α)〉+
〈
logP (Z(d)

n |θd)
〉

+

Nd∑
n

〈
logP (w(d)

n |z(d)
n , η,m, y

(R)
d , y

(Q)
d )

〉
+
∑

k

〈logP (η
(T )
k |0, τ

(T )
k )〉+

∑
k

〈logP (τ
(T )
k |γ)〉

+
∑

j

〈logP (η
(R)
j |0, τ (R)

j )〉+
∑

j

〈logP (τ
(R)
j |γ)〉

+
∑

q

〈logP (η(Q)
q |0, τQ)

q )〉+
∑

q

〈logP (τ (Q)
q |γ)〉

+
∑

q

∑
j

∑
k

〈logP (η
(I)
q,j,k|0, τ

(I)
q,j,k)〉

+
∑

q

∑
j

∑
k

〈logP (τ
(I)
q,j,k|γ)〉

−
〈
logQ(τ, z, θ)

〉
The above E step likelihood score can be intuitively
interpreted as the sum of topic proportion scores, la-
tent topic scores, the word scores, the η scores with
their priors, and minus the joint variance. In the M
step, when we use Newton’s method to optimize the
sparse deviation ηk parameter, we need to modify
the original likelihood function in SAGE and its cor-
responding first and second order derivatives when
deriving the gradient and Hessian matrix. The like-
lihood function for sparse topic deviation ηk is:

L(ηk) = 〈c(T )
k 〉Tηk

− Cd log
∑

q

∑
j

∑
i

exp(λ(Q)ηqi + λ(R)ηji

+ ηki + ηqjki +mi)− ηkTdiag(〈(τ (T )
k )−1〉)η(T )

k /2

and we can derive the gradient when taking the first
order partial derivative:

∂L
∂η

(T )
k

=〈c(T )
k 〉 −

∑
q

∑
j

〈Cqjk〉βqjk

− diag(〈(τ (T )
k )−1〉)η(T )

k

where c(T )
k is the true count, and βqjk is the log

word likelihood in the original likelihood function.
Cqjk is the expected count from combinations of
time, region and topic.

∑
q

∑
j〈Cqjk〉βqjk will then

be taken the second order derivative to form the Hes-
sian matrix, instead of 〈Ck〉βk in the previous SAGE
setting.

To learn the weight parameters λ(R) and λ(Q),
we can approximate the weights using a multiclass
perceptron-style (Collins, 2002) learning method. If
we say that the notation of

∑
V (R̄) is to marginalize

out all other variables in β except η(R), and P (y
(R)
d )

is the prior for the region prediction task, we can pre-
dict the expected region value ŷ(R)

d of a document d:

ŷ
(R)
d ∝ arg max

ŷ
(R)
d

exp
(∑

V (R̄) log β + logP (y
(R)
d )

)
= arg max

ŷ
(R)
d

(
exp

(∑
V (R̄)

(
m+ η

(T )

z
(d)
n

+ λ(R)η
(R)

y
(R)
d

+ λ(Q)η
(Q)

y
(Q)
d

+ η
(I)

y
(R)
d ,y

(Q)
d ,z

(d)
n

))
P (y

(R)
d )

)
If the symbol δ is the hyperprior for the learning

rate and ẏ(R)
d is the true label, the update procedure

for the weights becomes:

λ
(R′)
d = λ

(R)
d + δ(ẏ

(R)
d − ŷ(R)

d )

Similarly, we derive the λ(Q) parameter using the
above formula. It is necessary to normalize the
weights in each EM loop to preserve the sparsity
property of latent variables. The weight update of
λ(R) and λ(Q) is bound by the averaged accuracy
of the two classification tasks in the training data,
which is similar to the notion of minimizing empiri-
cal risk (Bahl et al., 1988). Our goal is to choose the
two weight parameters that minimize the empirical
classification error rate on training data when learn-
ing the word posterior probability.

5 Prediction Experiments
We perform three quantitative experiments to evalu-
ate the predictive power of the sparse mixed-effects
model. In these experiments, to predict the region
and time period labels of a given document, we
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jointly learn the two labels in the SME model, and
choose the pair which maximizes the probability of
the document.

In the first experiment, we compare the prediction
accuracy of our SME model to a widely used dis-
criminative learner in NLP – the linear kernel sup-
port vector machine (SVM)3. In the second experi-
ment, in addition to the linear kernel SVM, we also
compare our SME model to a state-of-the-art sparse
generative model of text (Eisenstein et al., 2011a),
and vary the size of input vocabulary W exponen-
tially from 29 to the full size of our training vocab-
ulary4. In the third experiment, we examine the ro-
bustness of our model by examining how the number
of topics influences the prediction accuracy when
varying the K from 10 to 50.

Our data consists of 4615 training documents and
625 held-out documents for testing. While individ-
ual judges wrote multiple opinions in our corpus,
no judges overlapped between training and test sets.
When measuring by the majority class in the testing
condition, the chance baseline for the region iden-
tification task is 57.1% and the time identification
task is 32.3%. We use three-fold cross-validation to
infer the learning rate δ and cost C hyperpriors in
the SME and SVM model respectively. We use the
paired student t-test to measure the statistical signif-
icance.

5.1 Quantitative Results
5.1.1 Comparing SME to SVM

We show in this section the predictive power of
our sparse mixed-effects model, comparing to a lin-
ear kernel SVM learner. To compare the two mod-
els in different settings, we first empirically set the
number of topics K in our SME model to be 25, as
this setting was shown to yield a promising result in
a previous study (Eisenstein et al., 2011a) on sparse
topic models. In terms of the size of vocabulary W
for both the SME and SVM learner, we select three
values to represent dense, medium or sparse feature
spaces: W1 = 29, W2 = 212, and the full vocabu-
lary size of W3 = 213.8. Table 1 shows the accuracy
of both models, as well as the relative improvement
(gain) of SME over SVM.

When looking at the experiment results under dif-
ferent settings, we see that the SME model always
outperforms the SVM learner. In the time quar-
tile prediction task, the advantage of SME model

3In our implementation, we use LibSVM (Chang and Lin,
2011).

4To select the vocabulary size W , we rank the vocabulary
by word frequencies in a descending order, and pick the top-W
words.

Method Time Gain Region Gain

SVM (W1) 33.2% – 69.7% –
SME (W1) 36.4% 9.6% 71.4% 2.4%

SVM (W2) 35.8% – 72.3% –
SME (W2) 40.9% 14.2% 74.0% 2.4%

SVM (W3) 36.1% – 73.5% –
SME (W3) 41.9% 16.1% 74.8% 1.8%

Table 1: Compare the accuracy of the linear kernel sup-
port vector machine to our sparse mixed-effects model in
the region and time identification tasks (K = 25). Gain:
the relative improvement of SME over SVM.

is more salient. For example, with a medium den-
sity feature space of 212, SVM obtained an accuracy
of 35.8%, but SME achieved an accuracy of 40.9%,
which is a 14.2% relative improvement (p < 0.001)
over SVM. When the feature space becomes sparser,
the SME obtains an increased relative improvement
(p < 0.001) of 16.1%, using full size of vocabu-
lary. The performance of SVM in the binary region
classification is stronger than in the previous task,
but SME is able to outperform SVM in all three set-
tings, with tightened advantages (p < 0.05 in W2

and p < 0.001 in W3). We hypothesize that it might
because that SVM, as a strong large margin learner,
is a more natural approach in a binary classification
setting, but might not be the best choice in a four-
way or multiclass classification task.

5.1.2 Comparing SME to SAGE
In this experiment, we compare SME with a state-

of-the-art sparse generative model: SAGE (Eisen-
stein et al., 2011a).

Most studies on topic modelling have not been
able to report results when using different sizes of
vocabulary for training. Because of the importance
of interpretability for social science research, the
choice of vocabulary size is critical to ensure un-
derstandable topics. Thus we report our results at
various vocabulary sizes W on SME and SAGE. To
better validate the performance of SME, we also in-
clude the performance of SVM in this experiment,
and fix the number of topics K = 10 for the SME
and SAGE models, which is a different value for the
number of topicsK than the empiricalK we used in
the experiment of Section 5.1.1. Figure 2 and Fig-
ure 3 show the experiment results in both time and
region classification task.

In Figure 2, we evaluate the impacts of W on our
time quartile prediction task. The advantage of the
SME model is very obvious throughout the experi-
ments. Interestingly, when we continue to increase
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Figure 2: Accuracy on predicting the time quartile vary-
ing the vocabulary size W , while K is fixed to 10.

Figure 3: Accuracy on predicting the region varying the
vocabulary size W , while K is fixed to 10.

the vocabulary size W exponentially and make the
feature space more sparse, SME obtains its best re-
sult at W = 213, where the relative improvement
over SAGE and SVM is 16.8% and 22.9% respec-
tively (p < 0.001 under all comparisons).

Figure 3 shows the impacts of W on the accu-
racy of SAGE and SME in the region identification
task. In this experiment, the results of SME model
are in line with SAGE and SVM when the feature
space is dense. However, when W reaches the full
vocabulary size, we have observed significantly bet-
ter results (p < 0.001 in the comparison to SAGE
and p < 0.05 with SVM). We hypothesize that there
might be two reasons: first, the K parameter is set
to 10 in this experiment, which is much denser than
the experiment setting in Section 5.1.1. Under this
condition, the sparse topic advantage of SME might
be less salient. Secondly, in the two tasks, it is ob-
served that the accuracy of the binary region classi-
fication task is much higher than the four-way task,
thus while the latter benefits significantly from this
joint learning scheme of the SME model, but the for-
mer might not have the equivalent gain5.

5We hypothesize that this problem might be eliminated if

5.1.3 Influence of the number of topics K

Figure 4: Accuracy on predicting the time quartile vary-
ing the number of topics K, while W is fixed to 29.

Figure 5: Accuracy on predicting the region varying the
number of topics K, while W is fixed to 29.

Unlike hierarchical Dirichlet processes (Teh et al.,
2006), in parametric Bayesian generative models,
the number of topics K is often set manually, and
can influence the model’s accuracy significantly. In
this experiment, we fix the input vocabulary W to
29, and compare the mixed-effect model with SAGE
in both region and time identification tasks.

Figure 4 shows how the variations of K can in-
fluence the system performance in the time quartile
prediction task. We can see that the sparse mixed-
effects model (SME) reaches its best performance
when the K is 40. After increasing the number of
topics K, we can see SAGE consistently increase
its accuracy, obtaining its best result when K = 30.
When comparing these two models, SME’s best per-
formance outperforms SAGE’s with an absolute im-
provement of 3%, which equals to a relative im-
provement (p < 0.001) of 8.4%. Figure 5 demon-
strates the impacts of K on the predictive power of
SME and SAGE in the region identification task.

the two tasks in SME have similar difficulties and accuracies,
but this needs to be verified in future work.
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Keywords discovered by the SME model

Prior to 1837 (Q1) pauperis, footprints, American Colonization Society, manumissions, 1797
1838 - 1848 (Q2) indentured, borrowers, orphan’s, 1841, vendee’s, drawer’s, copartners
1849 - 1855 (Q3) Frankfort, negrotrader, 1851, Kentucky Assembly, marshaled, classed
After 1856 (Q4) railroadco, statute, Alabama, steamboats, Waterman’s, mulattoes, man-trap

Free Region (R1) apprenticed, overseer’s, Federal Army, manumitting, Illinois constitution
Slave Region (R2) Alabama, Clay’s Digest, oldest, cotton, reinstatement, sanction, plantation’s

Topic 1 in Q1 R1 imported, comaker, runs, writ’s, remainderman’s, converters, runaway
Topic 1 in Q1 R2 comaker, imported, deceitful, huston, send, bright, remainderman’s

Topic 2 in Q1 R1 descendent, younger, administrator’s, documentary, agreeable, emancipated
Topic 2 in Q1 R2 younger, administrator’s, grandmother’s, plaintiffs, emancipated, learnedly

Topic 3 in Q2 R1 heir-at-law, reconsidered, manumissions, birthplace, mon, mother-in-law
Topic 3 in Q2 R2 heir-at-law, reconsideration, mon, confessions, birthplace, father-in-law’s

Topic 4 in Q2 R1 indentured, apprenticed, deputy collector, stepfather’s, traded, seizes
Topic 4 in Q2 R2 deputy collector, seizes, traded, hiring, stepfather’s, indentured, teaching

Topic 5 in Q4 R1 constitutionality, constitutional, unconstitutionally, Federal Army, violated
Topic 5 in Q4 R2 petition, convictions, criminal court, murdered, constitutionality, man-trap

Table 2: A partial listing of an example for early United States state supreme court opinion keywords generated from
the time quartile η(Q) , region η(R) and topic-region-time η(I) interactive variables in the sparse mixed-effects model.

Except that the two models tie up when K = 10,
SME outperforms SAGE for all subsequent varia-
tions ofK. Similar to the region task, SME achieves
the best result when K is sparser (p < 0.01 when
K = 40 and K = 50).

5.2 Qualitative Analysis
In this section, we qualitatively evaluate the topics
generated vis-a-vis the secondary literature on the
legal and political history of slavery in the United
States. The effectiveness of SME could depend not
just on its predictive power, but also in its ability
to generate topics that will be useful to historians
of the period. Supreme court opinions on slavery
are of significant interest for American political his-
tory. The conflict over slave property rights was at
the heart of the “cold war” (Wright, 2006) between
North and South leading up to the U.S. Civil War.
The historical importance of this conflict between
Northern and Southern legal institutions is one of the
motivations for choosing our data domain.

We conduct qualitative analyses on the top-ranked
keywords6 that are associated with different geo-
graphical locations and different temporal frames,
generated by our SME model. In our analysis, for

6Keywords were ranked by word posterior probabilities.

each interaction of topic, region, and time period, a
list of the most salient vocabulary words was gener-
ated. These words were then analyzed in the context
of existing historical literature on the shift in atti-
tudes and views over time and across regions. Table
2 shows an example of relevant keywords and topics.

This difference between Northern and Southern
opinion can be seen in some of the topics generated
by the SME. Topic 1 deals with transfers of human
beings as slave property. The keyword “remainder-
man” designates a person who inherits or is entitled
to inherit property upon the termination of an es-
tate, typically after the death of a property owner,
and appears in Northern and Southern cases. How-
ever, in Topic 1 “runaway” appears as a keyword in
decisions from free states but not in decisions from
slave states. The fact that “runaway” is not a top
word in the same topic in the Southern legal opin-
ions is consistent with a spatial (geolocational) di-
vision in which the property claims of slave owners
over runaways were not heavily contested in South-
ern courts.

Topic 3 concerns bequests, as indicated by the
term “heir-at-law”, but again the term “manumis-
sions”, ceases to show up in the slave states after the
first time quartile, perhaps reflecting the hostility to
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manumissions that southern courts exhibited as the
conflict over slavery deepened.

Topic 4 concerns indentures and apprentices. In-
terestingly, the terms indentures and apprenticeships
are more prominent in the non-slave states, reflect-
ing the fact that apprenticeships and indentures were
used in many border states as a substitute for slavery,
and these were often governed by continued usage of
Master and Servant law (Orren, 1992).

Topic 5 shows the constitutional crisis in the
states. In particular, the anti-slavery state courts are
prone to use the term “unconstitutional” much more
often than the slave states. The word “man-trap”, a
term used to refer to states where free blacks could
be kidnapped purpose of enslaving them. The fugi-
tive slave conflicts of the mid-19th century that led
to the civil war were precisely about this aversion
of the northern states to having to return runaway
slaves to the Southern states.

Besides these subjective observations about the
historical significance of the SME topics, we also
conduct a more formal analysis comparing the SME
classification to that conducted by a legal histo-
rian. Wahl (2002) analyses and classifies by hand
10989 slave cases in the US South into 6 categories:
“Hires”, “Sales”, “Transfers”, “Common Carrier”,
“Black Rights” and “Other”. An example of “Hires”
is Topic 4. Topics 1, 2, and 3 concern “Transfers” of
slave property between inheritors, descendants and
heirs-at-law. Topic 5 would be classified as “Other”.

We take each of our 25 modelled topics and clas-
sify them along Wahl’s categories, using “Other”
when a classification could not be obtained. The
classifications are quite transparent in virtually all
cases, as certain words (such as “employer” or “be-
quest”) clearly designate certain categories (respec-
tively, such as “Hires” or “Transfers”). We then cal-
culate the probability of each of Wahl’s categories in
Region 2. We then compare these to the relative fre-
quencies of Wahl’s categorization in the states that
overlap with our Region 2 in Figure 6 and do a χ2

test for goodness of fit, which allows us to reject dif-
ference at 0.1% confidence.

The SME model thus delivers topics that, at a first
pass, are consistent with the history of the period
as well as previous work by historians, showing the
qualitative benefits of the model. We plan to conduct
more vertical and temporal analyses using SME in
the future.

6 Conclusion and Future Work

In this work, we propose a sparse mixed-effects
model for historical analysis of text. This model is
built on the state-of-the-art in latent variable mod-

Figure 6: Comparison with Wahl (2002) classification.

elling and extends that model to a setting where
metadata is available for analysis. We jointly model
those observed labels as well as unsupervised topic
modelling. In our experiments, we have shown that
the resulting model jointly predicts the region and
the time of a given court document. Across vocab-
ulary sizes and number of topics, we have achieved
better system accuracy than state-of-the-art genera-
tive and discriminative models of text. Our quantita-
tive analysis shows that early US state supreme court
opinions are predictable, and contains distinct views
towards slave-related topics, and the shifts among
opinions depending on different periods of time. In
addition, our model has been shown to be effective
for qualitative analysis of historical data, revealing
patterns that are consistent with the history of the
period.

This approach to modelling text is not limited
to the legal domain. A key aspect of future work
will be to extend the Sparse Mixed-Effects paradigm
to other problems within the social sciences where
metadata is available but qualitative analysis at a
large scale is difficult or impossible. In addition
to historical documents, this can include humani-
ties texts, which are often sorely lacking in empir-
ical justifications, and analysis of online communi-
ties, which are often rife with available metadata but
produce content far faster than it can be analyzed by
experts.
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Abstract

Previous work using topic model for statis-
tical machine translation (SMT) explore top-
ic information at the word level. Howev-
er, SMT has been advanced from word-based
paradigm to phrase/rule-based paradigm. We
therefore propose a topic similarity model to
exploit topic information at the synchronous
rule level for hierarchical phrase-based trans-
lation. We associate each synchronous rule
with a topic distribution, and select desirable
rules according to the similarity of their top-
ic distributions with given documents. We
show that our model significantly improves
the translation performance over the baseline
on NIST Chinese-to-English translation ex-
periments. Our model also achieves a better
performance and a faster speed than previous
approaches that work at the word level.

1 Introduction

Topic model (Hofmann, 1999; Blei et al., 2003) is
a popular technique for discovering the underlying
topic structure of documents. To exploit topic infor-
mation for statistical machine translation (SMT), re-
searchers have proposed various topic-specific lexi-
con translation models (Zhao and Xing, 2006; Zhao
and Xing, 2007; Tam et al., 2007) to improve trans-
lation quality.

Topic-specific lexicon translation models focus
on word-level translations. Such models first esti-
mate word translation probabilities conditioned on
topics, and then adapt lexical weights of phrases

∗Corresponding author

by these probabilities. However, the state-of-the-
art SMT systems translate sentences by using se-
quences of synchronous rules or phrases, instead of
translating word by word. Since a synchronous rule
is rarely factorized into individual words, we believe
that it is more reasonable to incorporate the topic
model directly at the rule level rather than the word
level.

Consequently, we propose a topic similari-
ty model for hierarchical phrase-based translation
(Chiang, 2007), where each synchronous rule is as-
sociated with a topic distribution. In particular,

• Given a document to be translated, we cal-
culate the topic similarity between a rule and
the document based on their topic distributions.
We augment the hierarchical phrase-based sys-
tem by integrating the proposed topic similarity
model as a new feature (Section 3.1).

• As we will discuss in Section 3.2, the similarity
between a generic rule and a given source docu-
ment computed by our topic similarity model is
often very low. We don’t want to penalize these
generic rules. Therefore we further propose a
topic sensitivity model which rewards generic
rules so as to complement the topic similarity
model.

• We estimate the topic distribution for a rule
based on both the source and target side topic
models (Section 4.1). In order to calculate sim-
ilarities between target-side topic distributions
of rules and source-side topic distributions of
given documents during decoding, we project
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tional capability
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(b) 给予X1 ⇒ grands X1
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(c) 给予X1 ⇒ give X1
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(d) X1 举行 会谈 X2 ⇒
held talks X1 X2

Figure 1: Four synchronous rules with topic distributions. Each sub-graph shows a rule with its topic distribution,
where the X-axis means topic index and the Y-axis means the topic probability. Notably, the rule (b) and rule (c) shares
the same source Chinese string, but they have different topic distributions due to the different English translations.

the target-side topic distributions of rules into
the space of source-side topic model by one-to-
many projection (Section 4.2).

Experiments on Chinese-English translation tasks
(Section 6) show that, our method outperforms the
baseline hierarchial phrase-based system by +0.9
BLEU points. This result is also +0.5 points high-
er and 3 times faster than the previous topic-specific
lexicon translation method. We further show that
both the source-side and target-side topic distribu-
tions improve translation quality and their improve-
ments are complementary to each other.

2 Background: Topic Model

A topic model is used for discovering the topics
that occur in a collection of documents. Both La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
and Probabilistic Latent Semantic Analysis (PLSA)
(Hofmann, 1999) are types of topic models. LDA
is the most common topic model currently in use,
therefore we exploit it for mining topics in this pa-
per. Here, we first give a brief description of LDA.

LDA views each document as a mixture pro-
portion of various topics, and generates each word
by multinomial distribution conditioned on a topic.
More specifically, as a generative process, LDA first
samples a document-topic distribution for each doc-
ument. Then, for each word in the document, it sam-
ples a topic index from the document-topic distribu-
tion and samples the word conditioned on the topic
index according the topic-word distribution.

Generally speaking, LDA contains two types of
parameters. The first one relates to the document-
topic distribution, which records the topic distribu-
tion of each document. The second one is used for
topic-word distribution, which represents each topic

as a distribution over words. Based on these param-
eters (and some hyper-parameters), LDA can infer a
topic assignment for each word in the documents. In
the following sections, we will use these parameters
and the topic assignments of words to estimate the
parameters in our method.

3 Topic Similarity Model

Sentences should be translated in consistence with
their topics (Zhao and Xing, 2006; Zhao and Xing,
2007; Tam et al., 2007). In the hierarchical phrase
based system, a synchronous rule may be related to
some topics and unrelated to others. In terms of
probability, a rule often has an uneven probability
distribution over topics. The probability over a topic
is high if the rule is highly related to the topic, other-
wise the probability will be low. Therefore, we use
topic distribution to describe the relatedness of rules
to topics.

Figure 1 shows four synchronous rules (Chiang,
2007) with topic distributions, some of which con-
tain nonterminals. We can see that, although the
source part of rule (b) and (c) are identical, their top-
ic distributions are quite different. Rule (b) contains
a highest probability on the topic about “China-U.S.
relationship”, which means rule (b) is much more
related to this topic. In contrast, rule (c) contains
an even distribution over various topics. Thus, giv-
en a document about “China-U.S. relationship”, we
hope to encourage the system to apply rule (b) but
penalize the application of rule (c). We achieve this
by calculating similarity between the topic distribu-
tions of a rule and a document to be translated.

More formally, we associate each rule with a rule-
topic distribution P (z|r), where r is a rule, and z is
a topic. Suppose there are K topics, this distribution
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can be represented by a K-dimension vector. The
k-th component P (z = k|r) means the probability
of topic k given the rule r. The estimation of such
distribution will be described in Section 4.

Analogously, we represent the topic information
of a document d to be translated by a document-
topic distribution P (z|d), which is also a K-
dimension vector. The k-th dimension P (z = k|d)
means the probability of topic k given document d.
Different from rule-topic distribution, the document-
topic distribution can be directly inferred by an off-
the-shelf LDA tool.

Consequently, based on these two distribution-
s, we select a rule for a document to be translat-
ed according to their topic similarity (Section 3.1),
which measures the relatedness of the rule to the
document. In order to encourage the application
of generic rules which are often penalized by our
similarity model, we also propose a topic sensitivity
model (Section 3.2).

3.1 Topic Similarity
By comparing the similarity of their topic distribu-
tions, we are able to decide whether a rule is suitable
for a given source document. The topic similarity
computes the distance of two topic distributions. We
calculate the topic similarity by Hellinger function:

Similarity(P (z|d), P (z|r))

=
K∑

k=1

(√
P (z = k|d)−

√
P (z = k|r)

)2
(1)

Hellinger function is used to calculate distribution
distance and is popular in topic model (Blei and Laf-
ferty, 2007).1 By topic similarity, we aim to encour-
age or penalize the application of a rule for a giv-
en document according to their topic distributions,
which then helps the SMT system make better trans-
lation decisions.

3.2 Topic Sensitivity
Domain adaptation (Wu et al., 2008; Bertoldi and
Federico, 2009) often distinguishes general-domain
data from in-domain data. Similarly, we divide the
rules into topic-insensitive rules and topic-sensitive

1We also try other distance functions, including Euclidean
distance, Kullback-Leibler divergence and cosine function.
They produce similar results in our preliminary experiments.

rules according to their topic distributions. Let’s
revisit Figure 1. We can easily find that the topic
distribution of rule (c) distribute evenly. This in-
dicates that it is insensitive to topics, and can be
applied in any topics. We call such a rule a topic-
insensitive rule. In contrast, the distributions of the
rest rules peak on a few topics. Such rules are called
topic-sensitive rules. Generally speaking, a topic-
insensitive rule has a fairly flat distribution, while a
topic-sensitive rule has a sharp distribution.

A document typically focuses on a few topics, and
has a sharp topic distribution. In contrast, the distri-
bution of topic-insensitive rule is fairly flat. Hence,
a topic-insensitive rule is always less similar to doc-
uments and is punished by the similarity function.

However, topic-insensitive rules may be more
preferable than topic-sensitive rules if neither of
them are similar to given documents. For a doc-
ument about the “military” topic, the rule (b) and
(c) in Figure 1 are both dissimilar to the document,
because rule (b) relates to the “China-U.S. relation-
ship” topic and rule (c) is topic-insensitive. Never-
theless, since rule (c) occurs more frequently across
various topics, it may be better to apply rule (c).

To address such issue of the topic similarity mod-
el, we further introduce a topic sensitivity model to
describe the topic sensitivity of a rule using entropy
as a metric:

Sensitivity(P (z|r))

= −
K∑

k=1

P (z = k|r)× log (P (z = k|r)) (2)

According to the Eq. (2), a topic-insensitive rule has
a large entropy, while a topic-sensitive rule has a s-
maller entropy. By incorporating the topic sensitivi-
ty model with the topic similarity model, we enable
our SMT system to balance the selection of these t-
wo types of rules. Given rules with approximately
equal values of Eq. (1), we prefer topic-insensitive
rules.

4 Estimation

Unlike document-topic distribution that can be di-
rectly learned by LDA tools, we need to estimate the
rule-topic distribution according to our requirement.
In this paper, we try to exploit the topic information
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of both source and target language. To achieve this
goal, we use both source-side and target-side mono-
lingual topic models, and learn the correspondence
between the two topic models from word-aligned
bilingual corpus.

Specifically, we use two types of rule-topic dis-
tributions: one is source-side rule-topic distribution
and the other is target-side rule-topic distribution.
These two rule-topic distributions are estimated by
corresponding topic models in the same way (Sec-
tion 4.1). Notably, only source language documents
are available during decoding. In order to compute
the similarity between the target-side topic distribu-
tion of a rule and the source-side topic distribution
of a given document，we need to project the target-
side topic distribution of a synchronous rule into the
space of the source-side topic model (Section 4.2).

A more principle way is to learn a bilingual topic
model from bilingual corpus (Mimno et al., 2009).
However, we may face difficulty during decoding,
where only source language documents are avail-
able. It requires a marginalization to infer the mono-
lingual topic distribution using the bilingual topic
model. The high complexity of marginalization pro-
hibits such a summation in practice. Previous work
on bilingual topic model avoid this problem by some
monolingual assumptions. Zhao and Xing (2007)
assume that the topic model is generated in a mono-
lingual manner, while Tam et al., (2007) construct
their bilingual topic model by enforcing a one-to-
one correspondence between two monolingual topic
models. We also estimate our rule-topic distribution
by two monolingual topic models, but use a differ-
ent way to project target-side topics onto source-side
topics.

4.1 Monolingual Topic Distribution Estimation
We estimate rule-topic distribution from word-
aligned bilingual training corpus with documen-
t boundaries explicitly given. The source and tar-
get side distributions are estimated in the same way.
For simplicity, we only describe the estimation of
source-side distribution in this section.

The process of rule-topic distribution estimation
is analogous to the traditional estimation of rule
translation probability (Chiang, 2007). In addition
to the word-aligned corpus, the input for estimation
also contains the source-side topic-document distri-

bution of every documents inferred by LDA tool.
We first extract synchronous rules from training

data in a traditional way. When a rule r is extracted
from a document d with topic distribution P (z|d),
we collect an instance (r, P (z|d), c), where c is the
fraction count of an instance as described in Chiang,
(2007). After extraction, we get a set of instances
I = {(r, P (z|d), c)} with different document-topic
distributions for each rule. Using these instances,
we calculate the topic probability P (z = k|r) as
follows:

P (z = k|r) =

∑
I∈I c× P (z = k|d)∑K

k′=1

∑
I∈I c× P (z = k′|d)

(3)

By using both source-side and target-side
document-topic distribution, we obtain two rule-
topic distributions for each rule in total.

4.2 Target-side Topic Distribution Projection

As described in the previous section, we also esti-
mate the target-side rule-topic distribution. How-
ever, only source document-topic distributions are
available during decoding. In order to calculate
the similarity between the target-side rule-topic dis-
tribution of a rule and the source-side document-
topic distribution of a source document, we need to
project target-side topics into the source-side topic
space. The projection contains two steps:

• In the first step, we learn the topic-to-topic cor-
respondence probability p(zf |ze) from target-
side topic ze to source-side topic zf .

• In the second step, we project the target-side
topic distribution of a rule into source-side top-
ic space using the correspondence probability.

In the first step, we estimate the correspondence
probability by the co-occurrence of the source-side
and the target-side topic assignment of the word-
aligned corpus. The topic assignments are output
by LDA tool. Thus, we denotes each sentence pair
by (zf , ze,a), where zf and ze are the topic as-
signments of source-side and target-side sentences
respectively, and a is a set of links {(i, j)}. A
link (i, j) means a source-side position i aligns to
a target-side position j. Thus, the co-occurrence of
a source-side topic with index kf and a target-side
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e-topic f-topic 1 f-topic 2 f-topic 3
enterprises 农业(agricultural) 企业(enterprise) 发展(develop)

rural 农村(rural) 市场(market) 经济(economic)
state 农民(peasant) 国有(state) 科技(technology )

agricultural 改革(reform) 公司(company) 我国(China)
market 财政(finance) 金融(finance) 技术(technique)
reform 社会(social) 银行(bank) 产业(industry)

production 保障(safety) 投资(investment) 结构(structure)
peasants 调整(adjust) 管理(manage) 创新(innovation)
owned 政策(policy) 改革(reform) 加快(accelerate)

enterprise 收入(income) 经营(operation) 改革(reform)
p(zf |ze) 0.38 0.28 0.16

Table 1: Example of topic-to-topic correspondence. The
last line shows the correspondence probability. Each col-
umn means a topic represented by its top-10 topical word-
s. The first column is a target-side topic, while the rest
three columns are source-side topics.

topic ke is calculated by:∑
(zf ,ze,a)

∑
(i,j)∈a

δ(zfi
, kf ) ∗ δ(zej , ke) (4)

where δ(x, y) is the Kronecker function, which is 1
if x = y and 0 otherwise. We then compute the
probability of P (z = kf |z = ke) by normalizing
the co-occurrence count. Overall, after the first step,
we obtain an correspondence matrix MKe×Kf

from
target-side topic to source-side topic, where the item
Mi,j represents the probability P (zf = i|ze = j).

In the second step, given the correspondence ma-
trix MKe×Kf

, we project the target-side rule-topic
distribution P (ze|r) to the source-side topic space
by multiplication as follows:

T (P (ze|r)) = P (ze|r)⊗MKe×Kf
(5)

In this way, we get a second distribution for a rule
in the source-side topic space, which we called pro-
jected target-side topic distribution T (P (ze|r)).

Obviously, our projection method allows one
target-side topic to align to multiple source-side top-
ics. This is different from the one-to-one correspon-
dence used by Tam et al., (2007). From the training
result of the correspondence matrix MKe×Kf

, we
find that the topic correspondence between source
and target language is not necessarily one-to-one.
Typically, the probability P (z = kf |z = ke) of a
target-side topic mainly distributes on two or three
source-side topics. Table 1 shows an example of
a target-side topic with its three mainly aligned
source-side topics.

5 Decoding

We incorporate our topic similarity model as a
new feature into a traditional hiero system (Chi-
ang, 2007) under discriminative framework (Och
and Ney, 2002). Considering there are a source-
side rule-topic distribution and a projected target-
side rule-topic distribution, we add four features in
total:

• Similarity (P (zf |d), P (zf |r))

• Similarity(P (zf |d), T (P (ze|r)))

• Sensitivity(P (zf |r))

• Sensitivity(T (P (ze|r))

To calculate the total score of a derivation on each
feature listed above during decoding, we sum up the
correspondent feature score of each applied rule.2

The source-side and projected target-side rule-
topic distribution are calculated before decoding.
During decoding, we first infer the topic distribution
P (zf |d) for a given document on source language.
When applying a rule, it is straightforward to calcu-
late these topic features. Obviously, the computa-
tional cost of these features is rather small.

In the topic-specific lexicon translation model,
given a source document, it first calculates the topic-
specific translation probability by normalizing the
entire lexicon translation table, and then adapts the
lexical weights of rules correspondingly. This makes
the decoding slower. Therefore, comparing with the
previous topic-specific lexicon translation method,
our method provides a more efficient way for incor-
porating topic model into SMT.

6 Experiments

We try to answer the following questions by experi-
ments:

1. Is our topic similarity model able to improve
translation quality in terms of BLEU? Further-
more, are source-side and target-side rule-topic
distributions complementary to each other?

2Since glue rule and rules of unknown words are not extract-
ed from training data, here, we just ignore the calculation of the
four features for them.
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System MT06 MT08 Avg Speed
Baseline 30.20 21.93 26.07 12.6

TopicLex 30.65 22.29 26.47 3.3
SimSrc 30.41 22.69 26.55 11.5
SimTgt 30.51 22.39 26.45 11.7

SimSrc+SimTgt 30.73 22.69 26.71 11.2
Sim+Sen 30.95 22.92 26.94 10.2

Table 2: Result of our topic similarity model in terms of BLEU and speed (words per second), comparing with the
traditional hierarchical system (“Baseline”) and the topic-specific lexicon translation method (“TopicLex”). “SimSrc”
and “SimTgt” denote similarity by source-side and target-side rule-distribution respectively, while “Sim+Sen” acti-
vates the two similarity and two sensitivity features. “Avg” is the average BLEU score on the two test sets. Scores
marked in bold mean significantly (Koehn, 2004) better than Baseline (p < 0.01).

2. Is it helpful to introduce the topic sensitivi-
ty model to distinguish topic-insensitive and
topic-sensitive rules?

3. Is it necessary to project topics by one-to-many
correspondence instead of one-to-one corre-
spondence?

4. What is the effect of our method on various
types of rules, such as phrase rules and rules
with non-terminals?

6.1 Data

We present our experiments on the NIST Chinese-
English translation tasks. The bilingual training da-
ta contains 239K sentence pairs with 6.9M Chinese
words and 9.14M English words, which comes from
the FBIS portion of LDC data. There are 10,947
documents in the FBIS corpus. The monolingual da-
ta for training English language model includes the
Xinhua portion of the GIGAWORD corpus, which
contains 238M English words. We used the NIST
evaluation set of 2005 (MT05) as our development
set, and sets of MT06/MT08 as test sets. The num-
bers of documents in MT05, MT06, MT08 are 100,
79, and 109 respectively.

We obtained symmetric word alignments of train-
ing data by first running GIZA++ (Och and Ney,
2003) in both directions and then applying re-
finement rule “grow-diag-final-and” (Koehn et al.,
2003). The SCFG rules are extracted from this
word-aligned training data. A 4-gram language
model was trained on the monolingual data by the
SRILM toolkit (Stolcke, 2002). Case-insensitive
NIST BLEU (Papineni et al., 2002) was used to mea-

sure translation performance. We used minimum er-
ror rate training (Och, 2003) for optimizing the fea-
ture weights.

For the topic model, we used the open source L-
DA tool GibbsLDA++ for estimation and inference.3

GibssLDA++ is an implementation of LDA using
gibbs sampling for parameter estimation and infer-
ence. The source-side and target-side topic models
are estimated from the Chinese part and English part
of FBIS corpus respectively. We set the number of
topic K = 30 for both source-side and target-side,
and use the default setting of the tool for training and
inference.4 During decoding, we first infer the top-
ic distribution of given documents before translation
according to the topic model trained on Chinese part
of FBIS corpus.

6.2 Effect of Topic Similarity Model

We compare our method with two baselines. In addi-
tion to the traditional hiero system, we also compare
with the topic-specific lexicon translation method in
Zhao and Xing (2007). The lexicon translation prob-
ability is adapted by:

p(f |e,DF ) ∝ p(e|f,DF )P (f |DF ) (6)

=
∑

k

p(e|f, z = k)p(f |z = k)p(z = k|DF ) (7)

However, we simplify the estimation of p(e|f, z =
k) by directly using the word alignment corpus with

3http://gibbslda.sourceforge.net/
4We determine K by testing {15, 30, 50, 100, 200} in our

preliminary experiments. We find that K = 30 produces a s-
lightly better performance than other values.
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Type Count Src% Tgt%
Phrase-rule 3.9M 83.4 84.4

Monotone-rule 19.2M 85.3 86.1
Reordering-rule 5.7M 85.9 86.8

All-rule 28.8M 85.1 86.0

Table 3: Percentage of topic-sensitive rules of various
types of rule according to source-side (“Src”) and target-
side (“Tgt”) topic distributions. Phrase rules are fully
lexicalized, while monotone and reordering rules contain
nonterminals (Section 6.5).

topic assignment that is inferred by the GibbsL-
DA++. Despite the simplification of estimation, the
improvement of our implementation is comparable
with the improvement in Zhao et al.,(2007). Given a
new document, we need to adapt the lexical transla-
tion weights of the rules based on topic model. The
adapted lexicon translation model is added as a new
feature under the discriminative framework.

Table 2 shows the result of our method compar-
ing with the traditional system and the topic-lexicon
specific translation method described as above. By
using all the features (last line in the table), we im-
prove the translation performance over the baseline
system by 0.87 BLEU point on average. Our method
also outperforms the topic-lexicon specific transla-
tion method by 0.47 points. This verifies that topic
similarity model can improve the translation quality
significantly.

In order to gain insights into why our model is
helpful, we further investigate how many rules are
topic-sensitive. As described in Section 3.2, we use
entropy to measure the topic sensitivity. If the en-
tropy of a rule is smaller than a certain threshold,
then the rule is topic sensitive. Since documents of-
ten focus on some topics, we use the average entropy
of document-topic distribution of all training docu-
ments as the threshold. We compare both source-
side and target-side distribution shown in Table 3.
We find that more than 80 percents of the rules are
topic-sensitive, thus provides us a large space to im-
prove the translation by exploiting topics.

We also compare these methods in terms of the
decoding speed (words/second). The baseline trans-
lates 12.6 words per second, while the topic-specific
lexicon translation method only translates 3.3 word-
s in one second. The overhead of the topic-specific

System MT06 MT08 Avg
Baseline 30.20 21.93 26.07

One-to-One 30.27 22.12 26.20
One-to-Many 30.51 22.39 26.45

Table 4: Effects of one-to-one and one-to-many topic pro-
jection.

lexicon translation method mainly comes from the
adaptation of lexical weights. It takes 72.8% of
the time to do the adaptation, despite only lexical
weights of the used rules are adapted. In contrast,
our method has a speed of 10.2 words per second for
each sentence on average, which is three times faster
than the topic-specific lexicon translation method.

Meanwhile, we try to separate the effects of
source-side topic distribution from the target-side
topic distribution. From lines 4-6 of Table 2. We
clearly find that the two rule-topic distributions im-
prove the performance by 0.48 and 0.38 BLEU

points over the baseline respectively. It seems that
the source-side topic model is more helpful. Fur-
thermore, when combine these two distributions, the
improvement is increased to 0.64 points. This indi-
cates that the effects of source-side and target-side
distributions are complementary.

6.3 Effect of Topic Sensitivity Model

As described in Section 3.2, because the similari-
ty features always punish topic-insensitive rules, we
introduce topic sensitivity features as a complemen-
t. In the last line of Table 2, we obtain a fur-
ther improvement of 0.23 points, when incorporat-
ing topic sensitivity features with topic similarity
features. This suggests that it is necessary to dis-
tinguish topic-insensitive and topic-sensitive rules.

6.4 One-to-One Vs. One-to-Many Topic
Projection

In Section 4.2, we find that source-side topic and
target-side topics may not exactly match, hence we
use one-to-many topic correspondence. Yet anoth-
er method is to enforce one-to-one topic projection
(Tam et al., 2007). We achieve one-to-one projection
by aligning a target topic to the source topic with the
largest correspondence probability as calculated in
Section 4.2.

Table 4 compares the effects of these two method-
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System MT06 MT08 Avg
Baseline 30.20 21.93 26.07

Phrase-rule 30.53 22.29 26.41
Monotone-rule 30.72 22.62 26.67

Reordering-rule 30.31 22.40 26.36
All-rule 30.95 22.92 26.94

Table 5: Effect of our topic model on three types of rules.
Phrase rules are fully lexicalized, while monotone and
reordering rules contain nonterminals.

s. We find that the enforced one-to-one topic method
obtains a slight improvement over the baseline sys-
tem, while one-to-many projection achieves a larger
improvement. This confirms our observation of the
non-one-to-one mapping between source-side and
target-side topics.

6.5 Effect on Various Types of Rules

To get a more detailed analysis of the result, we
further compare the effect of our method on differ-
ent types of rules. We divide the rules into three
types: phrase rules, which only contain terminal-
s and are the same as the phrase pairs in phrase-
based system; monotone rules, which contain non-
terminals and produce monotone translations; re-
ordering rules, which also contain non-terminals but
change the order of translations. We define the
monotone and reordering rules according to Chiang
et al., (2008).

Table 5 show the results. We can see that our
method achieves improvements on all the three type-
s of rules. Our topic similarity method on mono-
tone rule achieves the most improvement which is
0.6 BLEU points, while the improvement on reorder-
ing rules is the smallest among the three types. This
shows that topic information also helps the selec-
tions of rules with non-terminals.

7 Related Work

In addition to the topic-specific lexicon transla-
tion method mentioned in the previous sections,
researchers also explore topic model for machine
translation in other ways.

Foster and Kunh (2007) describe a mixture-model
approach for SMT adaptation. They first split a
training corpus into different domains. Then, they
train separate models on each domain. Finally, they

combine a specific domain translation model with a
general domain translation model depending on var-
ious text distances. One way to calculate the dis-
tance is using topic model.

Gong et al. (2010) introduce topic model for fil-
tering topic-mismatched phrase pairs. They first as-
sign a specific topic for the document to be translat-
ed. Similarly, each phrase pair is also assigned with
one specific topic. A phrase pair will be discarded if
its topic mismatches the document topic.

Researchers also introduce topic model for cross-
lingual language model adaptation (Tam et al., 2007;
Ruiz and Federico, 2011). They use bilingual topic
model to project latent topic distribution across lan-
guages. Based on the bilingual topic model, they ap-
ply the source-side topic weights into the target-side
topic model, and adapt the n-gram language model
of target side.

Our topic similarity model uses the document top-
ic information. From this point, our work is related
to context-dependent translation (Carpuat and Wu,
2007; He et al., 2008; Shen et al., 2009). Previous
work typically use neighboring words and sentence
level information, while our work extents the con-
text into the document level.

8 Conclusion and Future Work

We have presented a topic similarity model which
incorporates the rule-topic distributions on both the
source and target side into traditional hierarchical
phrase-based system. Our experimental results show
that our model achieves a better performance with
faster decoding speed than previous work on topic-
specific lexicon translation. This verifies the advan-
tage of exploiting topic model at the rule level over
the word level. Further improvement is achieved by
distinguishing topic-sensitive and topic-insensitive
rules using the topic sensitivity model.

In the future, we are interesting to find ways to
exploit topic model on bilingual data without docu-
ment boundaries, thus to enlarge the size of training
data. Furthermore, our training corpus mainly focus
on news, it is also interesting to apply our method on
corpus with more diverse topics. Finally, we hope to
apply our method to other translation models, espe-
cially syntax-based models.
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Abstract
In this paper, we encode topic dependencies
in hierarchical multi-label Text Categoriza-
tion (TC) by means of rerankers. We rep-
resent reranking hypotheses with several in-
novative kernels considering both the struc-
ture of the hierarchy and the probability of
nodes. Additionally, to better investigate the
role of category relationships, we consider two
interesting cases: (i) traditional schemes in
which node-fathers include all the documents
of their child-categories; and (ii) more gen-
eral schemes, in which children can include
documents not belonging to their fathers. The
extensive experimentation on Reuters Corpus
Volume 1 shows that our rerankers inject ef-
fective structural semantic dependencies in
multi-classifiers and significantly outperform
the state-of-the-art.

1 Introduction
Automated Text Categorization (TC) algorithms for
hierarchical taxonomies are typically based on flat
schemes, e.g., one-vs.-all, which do not take topic
relationships into account. This is due to two major
problems: (i) complexity in introducing them in the
learning algorithm and (ii) the small or no advan-
tage that they seem to provide (Rifkin and Klautau,
2004).

We speculate that the failure of using hierarchi-
cal approaches is caused by the inherent complexity
of modeling all possible topic dependencies rather
than the uselessness of such relationships. More pre-
cisely, although hierarchical multi-label classifiers
can exploit machine learning algorithms for struc-
tural output, e.g., (Tsochantaridis et al., 2005; Rie-
zler and Vasserman, 2010; Lavergne et al., 2010),

they often impose a number of simplifying restric-
tions on some category assignments. Typically, the
probability of a document d to belong to a subcate-
gory Ci of a category C is assumed to depend only
on d and C, but not on other subcategories of C,
or any other categories in the hierarchy. Indeed, the
introduction of these long-range dependencies lead
to computational intractability or more in general to
the problem of how to select an effective subset of
them. It is important to stress that (i) there is no
theory that can suggest which are the dependencies
to be included in the model and (ii) their exhaustive
explicit generation (i.e., the generation of all hierar-
chy subparts) is computationally infeasible. In this
perspective, kernel methods are a viable approach
to implicitly and easily explore feature spaces en-
coding dependencies. Unfortunately, structural ker-
nels, e.g., tree kernels, cannot be applied in struc-
tured output algorithms such as (Tsochantaridis et
al., 2005), again for the lack of a suitable theory.

In this paper, we propose to use the combination
of reranking with kernel methods as a way to han-
dle the computational and feature design issues. We
first use a basic hierarchical classifier to generate a
hypothesis set of limited size, and then apply rerank-
ing models. Since our rerankers are simple binary
classifiers of hypothesis pairs, they can encode com-
plex dependencies thanks to kernel methods. In par-
ticular, we used tree, sequence and linear kernels ap-
plied to structural and feature-vector representations
describing hierarchical dependencies.

Additionally, to better investigate the role of topi-
cal relationships, we consider two interesting cases:
(i) traditional categorization schemes in which node-
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fathers include all the documents of their child-
categories; and (ii) more general schemes, in which
children can include documents not belonging to
their fathers. The intuition under the above setting
is that shared documents between categories create
semantic links between them. Thus, if we remove
common documents between father and children, we
reduce the dependencies that can be captured with
traditional bag-of-words representation.

We carried out experiments on two entire hierar-
chies TOPICS (103 nodes organized in 5 levels) and
INDUSTRIAL (365 nodes organized in 6 levels) of
the well-known Reuters Corpus Volume 1 (RCV1).
We first evaluate the accuracy as well as the ef-
ficiency of several reranking models. The results
show that all our rerankers consistently and signif-
icantly improve on the traditional approaches to TC
up to 10 absolute percent points. Very interestingly,
the combination of structural kernels with the lin-
ear kernel applied to vectors of category probabil-
ities further improves on reranking: such a vector
provides a more effective information than the joint
global probability of the reranking hypothesis.

In the rest of the paper, Section 2 describes the hy-
pothesis generation algorithm, Section 3 illustrates
our reranking approach based on tree kernels, Sec-
tion 4 reports on our experiments, Section 5 illus-
trates the related work and finally Section 6 derives
the conclusions.

2 Hierarchy classification hypotheses from
binary decisions

The idea of the paper is to build efficient models
for hierarchical classification using global depen-
dencies. For this purpose, we use reranking mod-
els, which encode global information. This neces-
sitates of a set of initial hypotheses, which are typ-
ically generated by local classifiers. In our study,
we used n one-vs.-all binary classifiers, associated
with the n different nodes of the hierarchy. In the
following sections, we describe a simple framework
for hypothesis generation.

2.1 Top k hypothesis generation

Given n categories, C1, . . . , Cn, we can define
p1

Ci
(d) and p0

Ci
(d) as the probabilities that the clas-

sifier i assigns the document d to Ci or not, respec-
tively. For example, ph

Ci
(d) can be computed from

M132 

M11 M12 M13 M14 

M143 M142 M141 

MCAT 

M131 

Figure 1: A subhierarchy of Reuters.

-M132 

M11 -M12 M13 M14 

 M143 -M142 -M141 

MCAT 

-M131 

Figure 2: A tree representing a category assignment hy-
pothesis for the subhierarchy in Fig. 1.

the SVM classification output (i.e., the example mar-
gin). Typically, a large margin corresponds to high
probability for d to be in the category whereas small
margin indicates low probability1. Let us indicate
with h = {h1, .., hn} ∈ {0, 1}n a classification hy-
pothesis, i.e., the set of n binary decisions for a doc-
ument d. If we assume independence between the
SVM scores, the most probable hypothesis on d is

h̃ = argmax
h∈{0,1}n

n∏
i=1

phi
i (d) =

(
argmax
h∈{0,1}

ph
i (d)

)n

i=1
.

Given h̃, the second best hypothesis can be ob-
tained by changing the label on the least probable
classification, i.e., associated with the index j =

argmin
i=1,..,n

ph̃i
i (d). By storing the probability of the

k − 1 most probable configurations, the next k best
hypotheses can be efficiently generated.

3 Structural Kernels for Reranking
Hierarchical Classification

In this section we describe our hypothesis reranker.
The main idea is to represent the hypotheses as a
tree structure, naturally derived from the hierarchy
and then to use tree kernels to encode such a struc-
tural description in a learning algorithm. For this
purpose, we describe our hypothesis representation,
kernel methods and the kernel-based approach to
preference reranking.

3.1 Encoding hypotheses in a tree

Once hypotheses are generated, we need a represen-
tation from which the dependencies between the dif-

1We used the conversion of margin into probability provided
by LIBSVM.
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M11 M13 M14 

 M143 

MCAT 

Figure 3: A compact representation of the hypothesis in
Fig. 2.

ferent nodes of the hierarchy can be learned. Since
we do not know in advance which are the important
dependencies and not even the scope of the interac-
tion between the different structure subparts, we rely
on automatic feature engineering via structural ker-
nels. For this paper, we consider tree-shaped hier-
archies so that tree kernels, e.g. (Collins and Duffy,
2002; Moschitti, 2006a), can be applied.

In more detail, we focus on the Reuters catego-
rization scheme. For example, Figure 1 shows a sub-
hierarchy of the Markets (MCAT) category and its
subcategories: Equity Markets (M11), Bond Mar-
kets (M12), Money Markets (M13) and Commod-
ity Markets (M14). These also have subcategories:
Interbank Markets (M131), Forex Markets (M132),
Soft Commodities (M141), Metals Trading (M142)
and Energy Markets (M143).

As the input of our reranker, we can simply use
a tree representing the hierarchy above, marking the
negative assignments of the current hypothesis in the
node labels with “-”, e.g., -M142 means that the doc-
ument was not classified in Metals Trading. For ex-
ample, Figure 2 shows the representation of a classi-
fication hypothesis consisting in assigning the target
document to the categories MCAT, M11, M13, M14
and M143.

Another more compact representation is the hier-
archy tree from which all the nodes associated with
a negative classification decision are removed. As
only a small subset of nodes of the full hierarchy will
be positively classified the tree will be much smaller.
Figure 3 shows the compact representation of the hy-
pothesis in Fig. 2. The next sections describe how to
exploit these kinds of representations.

3.2 Structural Kernels
In kernel-based machines, both learning and classi-
fication algorithms only depend on the inner prod-
uct between instances. In several cases, this can be
efficiently and implicitly computed by kernel func-
tions by exploiting the following dual formulation:

∑
i=1..l yiαiφ(oi)φ(o) + b = 0, where oi and o are

two objects, φ is a mapping from the objects to fea-
ture vectors ~xi and φ(oi)φ(o) = K(oi, o) is a ker-
nel function implicitly defining such a mapping. In
case of structural kernels,K determines the shape of
the substructures describing the objects above. The
most general kind of kernels used in NLP are string
kernels, e.g. (Shawe-Taylor and Cristianini, 2004),
the Syntactic Tree Kernels (Collins and Duffy, 2002)
and the Partial Tree Kernels (Moschitti, 2006a).

3.2.1 String Kernels
The String Kernels (SK) that we consider count

the number of subsequences shared by two strings
of symbols, s1 and s2. Some symbols during the
matching process can be skipped. This modifies
the weight associated with the target substrings as
shown by the following SK equation:

SK(s1, s2) =
∑

u∈Σ∗

φu(s1) · φu(s2) =∑
u∈Σ∗

∑
~I1:u=s1[~I1]

∑
~I2:u=s2[~I2]

λd(~I1)+d(~I2)

where, Σ∗ =
⋃∞

n=0 Σn is the set of all strings, ~I1 and
~I2 are two sequences of indexes ~I = (i1, ..., i|u|),
with 1 ≤ i1 < ... < i|u| ≤ |s|, such that u = si1 ..si|u| ,
d(~I) = i|u| − i1 + 1 (distance between the first and
last character) and λ ∈ [0, 1] is a decay factor.

It is worth noting that: (a) longer subsequences
receive lower weights; (b) some characters can be
omitted, i.e. gaps; (c) gaps determine a weight since
the exponent of λ is the number of characters and
gaps between the first and last character; and (c)
the complexity of the SK computation is O(mnp)
(Shawe-Taylor and Cristianini, 2004), where m and
n are the lengths of the two strings, respectively and
p is the length of the largest subsequence we want to
consider.

In our case, given a hypothesis represented as
a tree like in Figure 2, we can visit it and derive
a linearization of the tree. SK applied to such
a node sequence can derive useful dependencies
between category nodes. For example, using the
Breadth First Search on the compact representa-
tion, we get the sequence [MCAT, M11, M13,
M14, M143], which generates the subsequences,
[MCAT, M11], [MCAT, M11, M13, M14],
[M11, M13, M143], [M11, M13, M143]
and so on.
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M11 -M12   M13 M14 
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-M132 -M131 

-M132 -M131 

  M14 

 M143 -M142 -M141 
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 M143 -M142 -M141 
  M13 

Figure 4: The tree fragments of the hypothesis in Fig. 2
generated by STK

M14 

-M143 -M142 -M141 -M132 

M13 

-M131 

M11 -M12   M13 M14 

MCAT 

M11 

  MCAT 

-M132 

 M13 

-M131 

M13 

MCAT 

-M131 

-M132 

  M13 M14 

-M142 -M141 
M11 -M12 M13 

MCAT 
MCAT 

MCAT 

Figure 5: Some tree fragments of the hypothesis in Fig. 2
generated by PTK

3.2.2 Tree Kernels
Convolution Tree Kernels compute the number

of common substructures between two trees T1

and T2 without explicitly considering the whole
fragment space. For this purpose, let the set
F = {f1, f2, . . . , f|F|} be a tree fragment space and
χi(n) be an indicator function, equal to 1 if the
target fi is rooted at node n and equal to 0 oth-
erwise. A tree-kernel function over T1 and T2 is
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), NT1

and NT2 are the sets of the T1’s and T2’s nodes,
respectively and ∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

The latter is equal to the number of common frag-
ments rooted in the n1 and n2 nodes. The ∆ func-
tion determines the richness of the kernel space and
thus different tree kernels. Hereafter, we consider
the equation to evaluate STK and PTK.2

Syntactic Tree Kernels (STK) To compute STK,
it is enough to compute ∆STK(n1, n2) as follows
(recalling that since it is a syntactic tree kernels, each
node can be associated with a production rule): (i)
if the productions at n1 and n2 are different then
∆STK(n1, n2) = 0; (ii) if the productions at n1

and n2 are the same, and n1 and n2 have only
leaf children then ∆STK(n1, n2) = λ; and (iii) if
the productions at n1 and n2 are the same, and n1

and n2 are not pre-terminals then ∆STK(n1, n2) =

λ
∏l(n1)

j=1 (1 + ∆STK(cjn1 , c
j
n2)), where l(n1) is the

2To have a similarity score between 0 and 1, a normalization
in the kernel space, i.e. TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
is applied.

number of children of n1 and cjn is the j-th child
of the node n. Note that, since the productions
are the same, l(n1) = l(n2) and the computational
complexity of STK is O(|NT1 ||NT2 |) but the aver-
age running time tends to be linear, i.e. O(|NT1 | +
|NT2 |), for natural language syntactic trees (Mos-
chitti, 2006a; Moschitti, 2006b).

Figure 4 shows the five fragments of the hypothe-
sis in Figure 2. Such fragments satisfy the constraint
that each of their nodes includes all or none of its
children. For example, [M13 [-M131 -M132]] is an
STF, which has two non-terminal symbols, -M131
and -M132, as leaves while [M13 [-M131]] is not an
STF.
The Partial Tree Kernel (PTK) The compu-
tation of PTK is carried out by the following
∆PTK function: if the labels of n1 and n2 are dif-
ferent then ∆PTK(n1, n2) = 0; else ∆PTK(n1, n2) =

µ
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆P T K(cn1(~I1j), cn2(~I2j))
)

where d(~I1) = ~I1l(~I1) − ~I11 and d(~I2) = ~I2l(~I2) −
~I21. This way, we penalize both larger trees and
child subsequences with gaps. PTK is more gen-
eral than STK as if we only consider the contribu-
tion of shared subsequences containing all children
of nodes, we implement STK. The computational
complexity of PTK isO(pρ2|NT1 ||NT2 |) (Moschitti,
2006a), where p is the largest subsequence of chil-
dren that we want consider and ρ is the maximal out-
degree observed in the two trees. However the aver-
age running time again tends to be linear for natural
language syntactic trees (Moschitti, 2006a).

Given a target T , PTK can generate any subset of
connected nodes of T , whose edges are in T . For
example, Fig. 5 shows the tree fragments from the
hypothesis of Fig. 2. Note that each fragment cap-
tures dependencies between different categories.

3.3 Preference reranker
When training a reranker model, the task of the ma-
chine learning algorithm is to learn to select the best
candidate from a given set of hypotheses. To use
SVMs for training a reranker, we applied Preference
Kernel Method (Shen et al., 2003). The reduction
method from ranking tasks to binary classification is
an active research area; see for instance (Balcan et
al., 2008) and (Ailon and Mohri, 2010).
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Category Child-free Child-full
Train Train1 Train2 TEST Train Train1 Train2 TEST

C152 837 370 467 438 837 370 467 438
GPOL 723 357 366 380 723 357 366 380
M11 604 309 205 311 604 309 205 311

.. .. .. .. .. .. .. .. ..
C31 313 163 150 179 531 274 257 284
E41 191 89 95 102 223 121 102 118

GCAT 345 177 168 173 3293 1687 1506 1600
.. .. .. .. .. .. .. .. ..

E31 11 4 7 6 32 21 11 19
M14 96 49 47 58 1175 594 581 604
G15 5 4 1 0 290 137 153 146

Total: 103 10,000 5,000 5,000 5,000 10,000 5,000 5,000 5,000

Table 1: Instance distributions of RCV1: the most populated categories are on the top, the medium sized ones follow
and the smallest ones are at the bottom. There are some difference between child-free and child-full setting since for
the former, from each node, we removed all the documents in its children.

In the Preference Kernel approach, the reranking
problem – learning to pick the correct candidate h1

from a candidate set {h1, . . . , hk} – is reduced to a
binary classification problem by creating pairs: pos-
itive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and
negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This train-
ing set can then be used to train a binary classifier.
At classification time, pairs are not formed (since the
correct candidate is not known); instead, the stan-
dard one-versus-all binarization method is still ap-
plied.

The kernels are then engineered to implicitly
represent the differences between the objects in
the pairs. If we have a valid kernel K over the
candidate space T , we can construct a preference
kernel PK over the space of pairs T ×T as follows:
PK(x, y) =

PK(〈x1, x2〉, 〈y1, y2〉) = K(x1, y1)+

K(x2, y2)−K(x1, y2)−K(x2, y1),
(1)

where x, y ∈ T × T . It is easy to show (Shen et al.,
2003) that PK is also a valid Mercer’s kernel. This
makes it possible to use kernel methods to train the
reranker.

We explore innovative kernels K to be used in
Eq. 1:
KJ = p(x1) × p(y1) + S, where p(·) is the global

joint probability of a target hypothesis and S is
a structural kernel, i.e., SK, STK and PTK.

KP = ~x1 · ~y1 + S, where ~x1={p(x1, j)}j∈x1
,

~y1 = {p(y1, j)}j∈y1
, p(t, n) is the classifica-

tion probability of the node (category) n in the

F1 BL BOL SK STK PTK
Micro-F1 0.769 0.771 0.786 0.790 0.790
Macro-F1 0.539 0.541 0.542 0.547 0.560

Table 2: Comparison of rerankers using different kernels,
child-full setting (KJ model).

F1 BL BOL SK STK PTK
Micro-F1 0.640 0.649 0.653 0.677 0.682
Macro-F1 0.408 0.417 0.431 0.447 0.447

Table 3: Comparison of rerankers using different kernels,
child-free setting (KJ model).

tree t ∈ T and S is again a structural kernel,
i.e., SK, STK and PTK.

For comparative purposes, we also use for S a lin-
ear kernel over the bag-of-labels (BOL). This is
supposed to capture non-structural dependencies be-
tween the category labels.

4 Experiments
The aim of the experiments is to demonstrate that
our reranking approach can introduce semantic de-
pendencies in the hierarchical classification model,
which can improve accuracy. For this purpose, we
show that several reranking models based on tree
kernels improve the classification based on the flat
one-vs.-all approach. Then, we analyze the effi-
ciency of our models, demonstrating their applica-
bility.

4.1 Setup
We used two full hierarchies, TOPICS and INDUS-
TRY of Reuters Corpus Volume 1 (RCV1)3 TC cor-

3trec.nist.gov/data/reuters/reuters.html
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pus. For most experiments, we randomly selected
two subsets of 10k and 5k of documents for train-
ing and testing from the total 804,414 Reuters news
from TOPICS by still using all the 103 categories
organized in 5 levels (hereafter SAM). The distri-
bution of the data instances of some of the dif-
ferent categories in such samples can be observed
in Table 1. The training set is used for learning
the binary classifiers needed to build the multiclass-
classifier (MCC). To compare with previous work
we also considered the Lewis’ split (Lewis et al.,
2004), which includes 23,149 news for training and
781,265 for testing.

Additionally, we carried out some experiments on
INDUSTRY data from RCV1. This contains 352,361
news assigned to 365 categories, which are orga-
nized in 6 levels. The Lewis’ split for INDUSTRY in-
cludes 9,644 news for training and 342,117 for test-
ing. We used the above datasets with two different
settings: the child-free setting, where we removed
all the document belonging to the child nodes from
the parent nodes, and the normal setting which we
refer to as child-full.

To implement the baseline model, we applied the
state-of-the-art method used by (Lewis et al., 2004)
for RCV1, i.e.,: SVMs with the default parameters
(trade-off and cost factor = 1), linear kernel, normal-
ized vectors, stemmed bag-of-words representation,
log(TF + 1) × IDF weighting scheme and stop
list4. We used the LIBSVM5 implementation, which
provides a probabilistic outcome for the classifica-
tion function. The classifiers are combined using the
one-vs.-all approach, which is also state-of-the-art
as argued in (Rifkin and Klautau, 2004). Since the
task requires us to assign multiple labels, we simply
collect the decisions of the n classifiers: this consti-
tutes our MCC baseline.

Regarding the reranker, we divided the training
set in two chunks of data: Train1 and Train2. The
binary classifiers are trained on Train1 and tested on
Train2 (and vice versa) to generate the hypotheses
on Train2 (Train1). The union of the two sets con-
stitutes the training data for the reranker. We imple-

4We have just a small difference in the number of tokens,
i.e., 51,002 vs. 47,219 but this is both not critical and rarely
achievable because of the diverse stop lists or tokenizers.

5http://www.csie.ntu.edu.tw/˜cjlin/
libsvm/
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Figure 6: Learning curves of the reranking models using
STK in terms of MicroAverage-F1, according to increas-
ing training set (child-free setting).
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Figure 7: Learning curves of the reranking models using
STK in terms of MacroAverage-F1, according to increas-
ing training set (child-free setting).

mented two rerankers: RR, which use the represen-
tation of hypotheses described in Fig. 2; and FRR,
i.e., fast RR, which uses the compact representation
described in Fig. 3.

The rerankers are based on SVMs and the Prefer-
ence Kernel (PK) described in Sec. 1 built on top of
SK, STK or PTK (see Section 3.2.2). These are ap-
plied to the tree-structured hypotheses. We trained
the rerankers using SVM-light-TK6, which enables
the use of structural kernels in SVM-light (Joachims,
1999). This allows for applying kernels to pairs of
trees and combining them with vector-based kernels.
Again we use default parameters to facilitate replica-
bility and preserve generality. The rerankers always
use 8 best hypotheses.

All the performance values are provided by means
of Micro- and Macro-Average F1, evaluated on test

6disi.unitn.it/moschitti/Tree-Kernel.htm
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Cat. Child-free Child-full
BL KJ KP BL KJ KP

C152 0.671 0.700 0.771 0.671 0.729 0.745
GPOL 0.660 0.695 0.743 0.660 0.680 0.734
M11 0.851 0.891 0.901 0.851 0.886 0.898

.. .. .. .. .. .. ..
C31 0.225 0.311 0.446 0.356 0.421 0.526
E41 0.643 0.714 0.719 0.776 0.791 0.806

GCAT 0.896 0.908 0.917 0.908 0.916 0.926
.. .. .. .. .. .. ..

E31 0.444 0.600 0.600 0.667 0.765 0.688
M14 0.591 0.600 0.575 0.887 0.897 0.904
G15 0.250 0.222 0.250 0.823 0.806 0.826

103 cat.
Mi-F1 0.640 0.677 0.731 0.769 0.794 0.815
Ma-F1 0.408 0.447 0.507 0.539 0.567 0.590

Table 4: F1 of some binary classifiers along with the
Micro and Macro-Average F1 over all 103 categories
of RCV1, 8 hypotheses and 32k of training data for
rerankers using STK.

data over all categories (103 or 363). Additionally,
the F1 of some binary classifiers are reported.

4.2 Classification Accuracy

In the first experiments, we compared the different
kernels using the KJ combination (which exploits
the joint hypothesis probability, see Sec. 3.3) on
SAM. Tab. 2 shows that the baseline (state-of-the-
art flat model) is largely improved by all rerankers.
BOL cannot capture the same dependencies as the
structural kernels. In contrast, when we remove the
dependencies generated by shared documents be-
tween a node and its descendants (child-free setting)
BOL improves on BL. Very interestingly, TK and
PTK in this setting significantly improves on SK
suggesting that the hierarchical structure is more im-
portant than the sequential one.

To study how much data is needed for the
reranker, the figures 6 and 7 report the Micro and
Macro Average F1 of our rerankers over 103 cate-
gories, according to different sets of training data.
This time, KJ is applied to only STK. We note that
(i) a few thousands of training examples are enough
to deliver most of the RR improvement; and (ii) the
FRR produces similar results as standard RR. This is
very interesting since, as it will be shown in the next
section, the compact representation produces much
faster models.

Table 4 reports the F1 of some individual cate-
gories as well as global performance. In these exper-
iments we used STK in KJ and KP . We note that
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Figure 8: Training and test time of the rerankers trained
on data of increasing size.

KP highly improves on the baseline on child-free
setting by about 7.1 and 9.9 absolute percent points
in Micro-and Macro-F1, respectively. Also the im-
provement on child-full is meaningful, i.e., 4.6 per-
cent points. This is rather interesting as BOL (not
reported in the table) achieved a Micro-average of
80.4% and a Macro-average of 57.2% when used in
KP , i.e., up to 2 points below STK. This means that
the use of probability vectors and combination with
structural kernels is a very promising direction for
reranker design.

To definitely assess the benefit of our rerankers
we tested them on the Lewis’ split of two different
datasets of RCV1, i.e., TOPIC and INDUSTRY. Ta-
ble 5 shows impressive results, e.g., for INDUSTRY,
the improvement is up to 5.2 percent points. We car-
ried out statistical significance tests, which certified
the significance at 99%. This was expected as the
size of the Lewis’ test sets is in the order of several
hundreds thousands.

Finally, to better understand the potential of
reranking, Table 6 shows the oracle performance
with respect to the increasing number of hypothe-
ses. The outcome clearly demonstrates that there is
large margin of improvement for the rerankers.

4.3 Running Time
To study the applicability of our rerankers, we have
analyzed both the training and classification time.
Figure 8 shows the minutes required to train the dif-
ferent models as well as to classify the test set ac-
cording to data of increasing size.

It can be noted that the models using the compact
hypothesis representation are much faster than those
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F1 Topic Industry
BL (Lewis) BL (Ours) KJ (BOL) KJ KP BL (Lewis) BL (Ours) KJ (BOL) KJ KP

Micro-F1 0.816 0.815 0.818 0.827 0.849 0.512 0.562 0.566 0.576 0.628
Macro-F1 0.567 0.566 0.571 0.590 0.615 0.263 0.289 0.243 0.314 0.341

Table 5: Comparison between rankers using STK or BOL (when indicated) with the KJ and KP schema. 32k
examples are used for training the rerankers with child-full setting.

k Micro-F1 Macro-F1

1 0.640 0.408
2 0.758 0.504
4 0.821 0.566
8 0.858 0.610

16 0.898 0.658

Table 6: Oracle performance according to the number of
hypotheses (child-free setting).

using the complete hierarchy as representation, i.e.,
up to five times in training and eight time in test-
ing. This is not surprising as, in the latter case,
each kernel evaluation requires to perform tree ker-
nel evaluation on trees of 103 nodes. When using
the compact representation the number of nodes is
upper-bounded by the maximum number of labels
per documents, i.e., 6, times the depth of the hierar-
chy, i.e., 5 (the positive classification on the leaves
is the worst case). Thus, the largest tree would con-
tain 30 nodes. However, we only have 1.82 labels
per document on average, therefore the trees have
an average size of only about 9 nodes.

5 Related Work
Tree and sequence kernels have been successfully
used in many NLP applications, e.g.: parse rerank-
ing and adaptation (Collins and Duffy, 2002; Shen
et al., 2003; Toutanova et al., 2004; Kudo et al.,
2005; Titov and Henderson, 2006), chunking and
dependency parsing (Kudo and Matsumoto, 2003;
Daumé III and Marcu, 2004), named entity recog-
nition (Cumby and Roth, 2003), text categorization
(Cancedda et al., 2003; Gliozzo et al., 2005) and re-
lation extraction (Zelenko et al., 2002; Bunescu and
Mooney, 2005; Zhang et al., 2006).

To our knowledge, ours is the first work explor-
ing structural kernels for reranking hierarchical text
categorization hypotheses. Additionally, there is a
substantial lack of work exploring reranking for hi-
erarchical text categorization. The work mostly re-
lated to ours is (Rousu et al., 2006) as they directly
encoded global dependencies in a gradient descen-
dent learning approach. This kind of algorithm is
less efficient than ours so they could experiment

with only the CCAT subhierarchy of RCV1, which
only contains 34 nodes. Other relevant work such
as (McCallum et al., 1998) and (Dumais and Chen,
2000) uses a rather different datasets and a different
idea of dependencies based on feature distributions
over the linked categories. An interesting method is
SVM-struct (Tsochantaridis et al., 2005), which has
been applied to model dependencies expressed as
category label subsets of flat categorization schemes
but no solution has been attempted for hierarchical
settings. The approaches in (Finley and Joachims,
2007; Riezler and Vasserman, 2010; Lavergne et al.,
2010) can surely be applied to model dependencies
in a tree, however, they need that feature templates
are specified in advance, thus the meaningful depen-
dencies must be already known. In contrast, kernel
methods allow for automatically generating all pos-
sible dependencies and reranking can efficiently en-
code them.

6 Conclusions
In this paper, we have described several models for
reranking the output of an MCC based on SVMs
and structural kernels, i.e., SK, STK and PTK.
We have proposed a simple and efficient algorithm
for hypothesis generation and their kernel-based
representations. The latter are exploited by SVMs
using preference kernels to automatically derive
features from the hypotheses. When using tree
kernels such features are tree fragments, which can
encode complex semantic dependencies between
categories. We tested our rerankers on the entire
well-known RCV1. The results show impressive
improvement on the state-of-the-art flat TC models,
i.e., 3.3 absolute percent points on the Lewis’ split
(same setting) and up to 10 absolute points on
samples using child-free setting.
Acknowledgements This research is partially sup-
ported by the EC FP7/2007-2013 under the grants:
247758 (ETERNALS), 288024 (LIMOSINE) and 231126
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Abstract

Prepositions and conjunctions are two of
the largest remaining bottlenecks in parsing.
Across various existing parsers, these two
categories have the lowest accuracies, and
mistakes made have consequences for down-
stream applications. Prepositions and con-
junctions are often assumed to depend on lex-
ical dependencies for correct resolution. As
lexical statistics based on the training set only
are sparse, unlabeled data can help amelio-
rate this sparsity problem. By including un-
labeled data features into a factorization of
the problem which matches the representation
of prepositions and conjunctions, we achieve
a new state-of-the-art for English dependen-
cies with 93.55% correct attachments on the
current standard. Furthermore, conjunctions
are attached with an accuracy of 90.8%, and
prepositions with an accuracy of 87.4%.

1 Introduction

Prepositions and conjunctions are two large remain-
ing bottlenecks in parsing. Across various exist-
ing parsers, these two categories have the lowest
accuracies, and mistakes made on these have con-
sequences for downstream applications. Machine
translation is sensitive to parsing errors involving
prepositions and conjunctions, because in some lan-
guages different attachment decisions in the parse
of the source language sentence produce differ-
ent translations. Preposition attachment mistakes
are particularly bad when translating into Japanese
(Schwartz et al., 2003) which uses a different post-
position for different attachments; conjunction mis-

takes can cause word ordering mistakes when trans-
lating into Chinese (Huang, 1983).

Prepositions and conjunctions are often assumed
to depend on lexical dependencies for correct resolu-
tion (Jurafsky and Martin, 2008). However, lexical
statistics based on the training set only are typically
sparse and have only a small effect on overall pars-
ing performance (Gildea, 2001). Unlabeled data can
help ameliorate this sparsity problem. Backing off
to cluster membership features (Koo et al., 2008) or
by using association statistics from a larger corpus,
such as the web (Bansal and Klein, 2011; Zhou et
al., 2011), have both improved parsing.

Unlabeled data has been shown to improve the ac-
curacy of conjunctions within complex noun phrases
(Pitler et al., 2010; Bergsma et al., 2011). How-
ever, it has so far been less effective within full
parsing — while first-order web-scale counts notice-
ably improved overall parsing in Bansal and Klein
(2011), the accuracy on conjunctions actually de-
creased when the web-scale features were added
(Table 4 in that paper).

In this paper we show that unlabeled data can help
prepositions and conjunctions, provided that the de-
pendency representation is compatible with how the
parsing problem is decomposed for learning and in-
ference. By incorporating unlabeled data into factor-
izations which capture the relevant dependencies for
prepositions and conjunctions, we produce a parser
for English which has an unlabeled attachment ac-
curacy of 93.5%, over an 18% reduction in error
over the best previously published parser (Bansal
and Klein, 2011) on the current standard for depen-
dency parsing. The best model for conjunctions at-
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taches them with 90.8% accuracy (42.5% reduction
in error over MSTParser), and the best model for
prepositions with 87.4% accuracy (18.2% reduction
in error over MSTParser).

We describe the dependency representations of
prepositions and conjunctions in Section 2. We dis-
cuss the implications of these representations for
how learning and inference for parsing are decom-
posed (Section 3) and how unlabeled data may be
used (Section 4). We then present experiments ex-
ploring the connection between representation, fac-
torization, and unlabeled data in Sections 5 and 6.

2 Dependency Representations

A dependency tree is a rooted, directed tree (or ar-
borescence), in which the vertices are the words in
the sentence plus an artificial root node, and each
edge (h, m) represents a directed dependency rela-
tion from the head h to the modifier m. Through-
out this section, we will use Y to denote a particular
parse tree, and (h, m) ∈ Y to denote a particular
edge in Y .

The Wall Street Journal Penn Treebank (PTB)
(Marcus et al., 1993) contains parsed constituency
trees (where each sentence is represented as a
context-free-grammar derivation). Dependency
parsing requires a conversion from these con-
stituency trees to dependency trees. The Tree-
bank constituency trees left noun phrases (NPs)
flat, although there have been subsequent projects
which annotate the internal structure of noun phrases
(Vadas and Curran, 2007; Weischedel et al., 2011).
The presence or absence of these noun phrase in-
ternal annotations interacts with constituency-to-
dependency conversion program in ways which have
effects on conjunctions and prepositions.

We consider two such mapping regimes here:

1. PTB trees→ Penn2Malt1 → Dependencies

2. PTB trees patched with NP-internal annota-
tions (Vadas and Curran, 2007) → penncon-
verter2 → Dependencies

1http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html

2Johansson and Nugues (2007) http://nlp.cs.lth.
se/software/treebank_converter/

Regime (1) is very commonly done in papers
which report dependency parsing experiments (e.g.,
(McDonald and Pereira, 2006; Nivre et al., 2007;
Zhang and Clark, 2008; Huang and Sagae, 2010;
Koo and Collins, 2010)). Penn2Malt uses the head
finding table from Yamada and Matsumoto (2003).

Regime (2) is based on the recommendations of
the two converter tools; as of the date of this writing,
the Penn2Malt website says: “Penn2Malt has been
superseded by the more sophisticated pennconverter,
which we strongly recommend”. The pennconverter
website “strongly recommends” patching the Tree-
bank with the NP annotations of Vadas and Curran
(2007). A version of pennconverter was used to pre-
pare the data for the CoNLL Shared Tasks of 2007-
2009, so the trees produced by Regime 2 are similar
(but not identical)3 to these shared tasks. As far as
we are aware, Bansal and Klein (2011) is the only
published work which uses both steps in Regime (2).

The dependency representations produced by
Regime 2 are designed to be more useful for ex-
tracting semantics (Johansson and Nugues, 2007).
The parsing attachment accuracy of MALTPARSER
(Nivre et al., 2007) was lower using pennconverter
than Penn2Malt, but using the output of MALT-
PARSER under the new format parses produces a
much better semantic role labeler than using its out-
put with Penn2Malt (Johansson and Nugues, 2007).

Figures 1 and 2 show how conjunctions and
prepositions, respectively, are represented after the
two different conversion processes. These differ-
ences are not rare–70.7% of conjunctions and 5.2%
of prepositions in the development set have a differ-
ent parent under the two conversion types. These
representational differences have serious implica-
tions for how well various factorizations will be able
to capture these two phenomena.

3 Implications of Representations on the
Scope of Factorization

Parsing requires a) learning to score potential parse
trees, and b) given a particular scoring function,
finding the highest scoring tree according to that
function. The number of potential trees for a sen-

3The CoNLL data does not include the NP annotations; it
does include annotations of named entities (Weischedel and
Brunstein, 2005) so had some internal NP edges.
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Conversion 1 Conversion 2

Committee

the House
Ways

and Means
(a)

Committee

the House
Ways

and

Means
(b)

debt

notes and other
(c)

notes

and

debt

other
(d)

sell

or merge 600 by
(e)

sell

or

merge

600 by

(f)

Figure 1: Examples of conjunctions: the House Ways
and Means Committee, notes and other debt, and sell or
merge 600 by. The conjunction is bolded, the left con-
junct (in the linear order of the sentence) is underlined,
and the right conjunct is italicized.

tence is exponential, so parsing is made tractable by
decomposing the problem into a set of local sub-
structures which can be combined using dynamic
programming. Four possible factorizations are: sin-
gle edges (edge-based), pairs of edges which share
a parent (siblings), pairs of edges where the child
of one is the parent of the other (grandparents), and
triples of edges where the child of one is the parent
of two others (grandparent+sibling). In this section,
we discuss these factorizations and their relevance
to conjunction and preposition representations.

3.1 Edge-based Scoring
One possible factorization corresponds to first-order
parsing, in which the score of a parse tree Y decom-
poses completely across the edges in the tree:

S(Y ) =
∑

(h,m)∈Y

S(h, m) (1)

Conversion 1 Conversion 2

plan

in

law
(a)

plan

in

law
(b)

yesterday

opening of

trading

here

(c)

opening

of

trading

here yesterday

(d)

whose

plans
for

issues
(e)

plans

whose
for

issues
(f)

Figure 2: Examples of prepositions: plan in the S&L
bailout law, opening of trading here yesterday, and whose
plans for major rights issues. The preposition is bolded
and the (semantic) head is underlined.

Conjunctions: Under Conversion 1, we can see
three different representations of conjunctions in
Figures 1(a), 1(c), and 1(e). Under edge-based scor-
ing, the conjunction would be scored along with nei-
ther of its conjuncts in 1(a). In Figure 1(c), the con-
junction is scored along with its right conjunct only;
in figure 1(e) along with its left conjunct only. The
inconsistency here is likely to make learning more
difficult, as what is learned is split across these three
cases. Furthermore, the conjunction is connected
with an edge to either zero or one of its two argu-
ments; at least one of the arguments is completely
ignored in terms of scoring the conjunction.

In Figures 1(c) and 1(e), the words being con-
joined are connected to each other by an edge. This
overloads the meaning of an edge; an edge indicates
both a head-modifier relationship and a conjunction
relationship. For example, compare the two natural
phrases dogs and cats and really nice. dogs and cats
are a good pair to conjoin, but cats is not a good
modifier for dogs, so there is a tension when scoring
an edge like (dogs, cats): it should get a high score
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when actually indicating a conjunction and low oth-
erwise. (nice, really) shows the opposite pattern–
really is a good modifier for nice, but nice and re-
ally are not two words which should be conjoined.
This may be partially compensated for by including
features about the surrounding words (McDonald et
al., 2005), but any feature templates which would be
identical across the two contexts will be in tension.

In Figures 1(b), 1(d) and 1(f), the conjunction par-
ticipates in a directed edge with each of the con-
juncts. Thus, in edge-based scoring, at least under
Conversion 2 neither of the conjuncts is being ig-
nored; however, the factorization scores each edge
independently, so how compatible these two con-
juncts are with each other cannot be included in the
scoring of a tree.
Prepositions: For all of the examples in Figure 2,
there is a directed edge from the head of the phrase
that the preposition modifies to the preposition. Dif-
ferences in head finding rules account for the dif-
ferences in preposition representations. In the sec-
ond example, the first conversion scheme chooses
yesterday as the head of the overall NP, resulting in
the edge yesterday→ of, while the second conver-
sion scheme ignores temporal phrases when finding
the head, resulting in the more semantically mean-
ingful opening→of. Similarly, in the third example,
the preposition for attaches to the pronoun whose in
the first conversion scheme, while it attaches to the
noun plans in the second.

With edge-based scoring, the object is not acces-
sible when scoring where the preposition should at-
tach, and PP-attachment is known to depend on the
object of the preposition (Hindle and Rooth, 1993).

3.2 Sibling Scoring
Another alternative factorization is to score sib-
lings as well as parent-child edges (McDonald and
Pereira, 2006). Scores decompose as:

S(Y ) =
∑

 (h, m, s) (h, m) ∈ Y, (h, s) ∈ Y,
(m, s) ∈ Sib(Y )


S(h, m, s) (2)

where Sib(Y ) is the set containing ordered and ad-
jacent sibling pairs in Y : if (m, s) ∈ Sib(Y ), there
must exist a shared parent h such that (h, m) ∈ Y
and (h, s) ∈ Y , m and s must be on the same side
of h, m must be closer to h than s in the linear order

of the sentence, and there must not exist any other
children of h in between m and s.

Under this factorization, two of the three ex-
amples in Conversion 1 (and none of the exam-
ples in Conversion 2) in Figure 1 now include the
conjunction and both conjuncts in the same score
(Figures 1(c) and 1(e)). The scoring for head-
modifier dependencies and conjunction dependen-
cies are again being overloaded: (debt, notes, and)
and (debt, and, other) are both sibling parts in Fig-
ure 1(c), yet only one of them represents a conjunc-
tion. The position of the conjunction in the sibling
is not enough to determine whether one is scoring a
true conjunction relation or just the conjunction and
a different sibling; in 1(c) the conjunction is on the
right of its sibling argument, while in 1(e) the con-
junction is on the left.

For none of the other preposition or conjunc-
tion examples does a sibling factorization bring
more of the arguments into the scope of what is
scored along with the preposition/conjunction. Sib-
ling scoring may have some benefit in that preposi-
tions/conjunctions should have only one argument,
so for prepositions (under both conversions) and
conjunctions (under Conversion 2), the model can
learn to disprefer the existence of any siblings and
thus enforce choosing a single child.

3.3 Grandparent Scoring
Another alternative over pairs of edges scores grand-
parents instead of siblings, with factorization:

S(Y ) =
∑

{
(h, m, c) (h, m) ∈ Y, (m, c) ∈ Y

}S(h, m, c) (3)

Under Conversion 2, we would expect this fac-
torization to perform much better on conjunctions
and prepositions than edge-based or sibling-based
factorizations. Both conjunctions and prepositions
are consistently represented by exactly one grand-
parent relation (with one relevant argument as the
grandparent, the preposition/conjunction as the par-
ent, and the other argument as the child), so this is
the first factorization that has allowed the compati-
bility of the two arguments to affect the attachment
of the preposition/conjunction.

Under Conversion 1, this factorization is particu-
larly appropriate for prepositions, but would be un-
likely to help conjunctions, which have no children.
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3.4 Grandparent-Sibling Scoring
A further widening of the factorization takes grand-
parents and siblings simultaneously:

S(Y ) =
∑

 (g, h, m, s) (g, h) ∈ Y, (h, m) ∈ Y,
(h, s) ∈ Y, (m, s) ∈ Sib(Y )


S(g, h, m, s) (4)

For projective parsing, dynamic programming for
this factorization was derived in Koo and Collins
(2010) (Model 1 in that paper), and for non-
projective parsing, dual decomposition was used for
this factorization in Koo et al. (2010).

This factorization should combine all the ben-
efits of the sibling and grandparent factorizations
described above–for Conversion 1, sibling scoring
may help conjunctions and grandparent scoring may
help prepositions, and for Conversion 2, grandparent
scoring should help both, while sibling scoring may
or may not add some additional gains.

4 Using Unlabeled Data Effectively

Associations from unlabeled data have the poten-
tial to improve both conjunctions and prepositions.
We predict that web counts which include both con-
juncts (for conjunctions), or which include both the
attachment site and the object of a preposition (for
prepositions) will lead to the largest improvements.

For the phrase dogs and cats, edge-based counts
would measure the associations between dogs and
and, and and and cats, but never any web counts
that include both dogs and cats. For the phrase ate
spaghetti with a fork, edge-based scoring would not
use any web counts involving both ate and fork.

We use associations rather than raw counts. The
phrases trading and transacting versus trading and
what provide an example of the difference between
associations and counts. The phrase trading and
what has a higher count than the phrase trading and
transacting, but trading and transacting are more
highly associated. In this paper, we use point-wise
mutual information (PMI) to measure the strength of
associations of words participating in potential con-
junctions or prepositions.4 For three words h, m, c,
this is calculated with:

PMI(h, m, c) = log
P (h .* m .* c)

P (h)P (m)P (c)
(5)

4PMI can be unreliable when frequency counts are small
(Church and Hanks, 1990), however the data used was thresh-
olded, so all counts used are at least 10.

The probabilities are estimated using web-scale
n-gram counts, which are looked up using the
tools and web-scale n-grams described in Lin et al.
(2010). Defining the joint probability using wild-
cards (rather than the exact sequence h m c) is
crucially important, as determiners, adjectives, and
other words may naturally intervene between the
words of interest.

Approaches which cluster words (i.e., Koo et
al. (2008)) are also designed to identify words
which are semantically related. As manually labeled
parsed data is sparse, this may help generalize across
similar words. However, if edges are not connected
to the semantic head, cluster-based methods may be
less effective. For example, the choice of yesterday
as the head of opening of trading here yesterday in
Figure 2(c) or whose in 2(e) may make cluster-based
features less useful than if the semantic heads were
chosen (opening and plans, respectively).

5 Experiments

The previous section motivated the use of unlabeled
data for attaching prepositions and conjunctions. We
have also hypothesized that these features will be
most effective when the data representation and the
learning representation both capture relevant prop-
erties of prepositions and conjunctions. We predict
that Conversion 2 and a factorization which includes
grand-parent scoring will achieve the highest perfor-
mance. In this section, we investigate the impact
of unlabeled data on parsing accuracy using the two
conversions and using each of the factorizations de-
scribed in Section 3.1-3.4.

5.1 Unlabeled Data Feature Set
Clusters: We replicate the cluster-based features
from Koo et al. (2008), which includes features over
all edges (h, m), grand-parent triples (h, m, c), and
parent sibling triples (h, m, s). The features were
all derived from the publicly available clusters pro-
duced by running the Brown clustering algorithm
(Brown et al., 1992) over the BLLIP corpus with the
Penn Treebank sentences excluded.5

Preposition and conjunction-inspired features
(motivated by Section 4) are described below:

5people.csail.mit.edu/maestro/papers/
bllip-clusters.gz
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Web Counts: For each set of words of interest, we
compute the PMI between the words, and then in-
clude binary features for whether the mutual infor-
mation is undefined, if it is negative, and whether it
is greater than each positive integer.

For conjunctions, we only do this for triples of
both conjunct and the conjunction (and if the con-
junction is and or or and the two potential conjuncts
are the same coarse grained part-of-speech). For
prepositions, we consider only cases in which the
parent is a noun or a verb and the child is a noun
(this corresponds to the cases considered by Hindle
and Rooth (1993) and others). Prepositions use as-
sociation features to score both the triple (parent,
preposition, child) and all pairs within that triple.
The counts features are not used if all the words in-
volved are stopwords. For the scope of this paper we
use only the above counts related to prepositions and
conjunctions.

5.2 Parser

We use the Model 1 version of dpo3, a state-of-the-
art third-order dependency parser (Koo and Collins,
2010))6. We augment the feature set used with the
web-counts-based features relevant to prepositions
and conjunctions and the cluster-based features. The
only other change to the parser’s existing feature set
was the addition of binary features for the part-of-
speech tag of the child of the root node, alone and
conjoined with the tags of its children. For further
details about the parser, see Koo and Collins (2010).

5.3 Experimental Set-up

Training was done on Section 2-21 of the Penn
Treebank. Section 22 was used for development,
and Section 23 for test. We use automatic part-
of-speech tags for both training and testing (Rat-
naparkhi, 1996). The set of potential edges was
pruned using the marginals produced by a first-order
parser trained using exponentiated gradient descent
(Collins et al., 2008) as in Koo and Collins (2010).
We train the full parser for 15 iterations of averaged
perceptron training (Collins, 2002), choose the itera-
tion with the best unlabeled attachment score (UAS)
on the development set, and apply the model after
that iteration to the test set.

6http://groups.csail.mit.edu/nlp/dpo3/

We also ran MSTParser (McDonald and Pereira,
2006), the Berkeley constituency parser (Petrov and
Klein, 2007), and the unmodified dpo3 Model 1
(Koo and Collins, 2010) using Conversion 2 (the
current recommendations) for comparison. Since
the converted Penn Treebank now contains a few
non-projective sentences, we ran both the projective
and non-projective versions of the second order (sib-
ling) MSTParser. The Berkeley parser was trained
on the constituency trees of the PTB patched with
Vadas and Curran (2007), and then the predicted
parses were converted using pennconverter.

6 Results and Discussion

Table 1 shows the unlabeled attachment scores,
complete sentence exact match accuracies, and the
accuracies of conjunctions and prepositions under
Conversion 2.7 The incorporation of the unlabeled
data features (clusters and web counts) into the dpo3
parser yields a significantly better parser than dpo3
alone (93.54 UAS versus 93.21)8, and is more than
a 1.5% improvement over MSTParser.

6.1 Impact of Factorization

In all four metrics (attachment of all non-
punctuation tokens, sentence accuracy, prepositions,
and conjunctions), there is no significant difference
between the version of the parser which uses the
grandparent and sibling factorization (Grand+Sib)
and the version which uses just the grandparent fac-
torization (Grand). A parser which uses only grand-
parents (referred to as Model 0 in Koo and Collins
(2010)) may therefore be preferable, as it contains
far fewer parameters than a third-order parser.

While the grandparent factorization and the sib-
ling factorization (Sib) are both “second-order”
parsers, scoring up to two edges (involving three
words) simultaneously, their results are quite dif-
ferent, with the sibling factorization scoring much
worse. This is particularly notable in the conjunc-
tion case, where the sibling model is over 5% abso-
lute worse in accuracy than the grandparent model.

7As is standard for English dependency parsing, five punc-
tuation symbols :, ,, “, ”, and . are excluded from the results
(Yamada and Matsumoto, 2003).

8If the (deprecated) Conversion 1 is used, the new features
improve the UAS of dpo3 from 93.04 to 93.51.
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Model UAS Exact Match Conjunctions Prepositions
MSTParser (proj) 91.96 38.9 84.0 84.2
MSTParser (non-proj) 91.98 38.7 83.8 84.6
Berkeley (converted) 90.98 36.0 85.6 84.3
dpo3 (Grand+Sib) 93.21 44.8 89.6 86.9
dpo3+Unlabeled (Edges) 93.12 43.6 85.3 87.0
dpo3+Unlabeled (Sib) 93.15 43.7 85.5 86.8
dpo3+Unlabeled (Grand) 93.55 46.1 90.6 87.5
dpo3+Unlabeled (Grand+Sib) 93.54 46.0 90.8 87.4

- Clusters 93.10 45.0 90.5 87.5
- Prep,Conj Counts 93.52 45.8 89.9 87.1

Table 1: Test set accuracies under Conversion 2 of unlabeled attachment scores, complete sentence exact match accu-
racies, conjunction accuracy, and preposition accuracy. Bolded items are the best in each column, or not significantly
different from the best in that column (sign test, p < .05).

6.2 Impact of Unlabeled Data

The unlabeled data features improved the already
state-of-the-art dpo3 parser in UAS, complete sen-
tence accuracy, conjunctions, and prepositions.
However, because the sample sizes are much smaller
for the latter three cases, only the UAS improvement
is statistically significant.9 Overall, the results in Ta-
ble 1 show that while the inclusion of unlabeled data
improves parser performance, increasing the size of
factorization matters even more. Ablation experi-
ments showed that cluster features have a larger im-
pact on overall UAS, while count features have a
larger impact on prepositions and conjunctions.

6.3 Comparison with Other Parsers

The resulting dpo3+Unlabeled parser is significantly
better than both versions of MSTParser and the
Berkeley parser converted to dependencies across all
four evaluations. dpo3+Unlabeled has an UAS 1.5%
higher than MSTParser, which has an UAS 1.0%
higher than the converted constituency parser. The
MSTParser uses sibling scoring, so it is unsurpris-
ing that it performs less well on the new conversion.

While the converted constituency parser is not
as good on dependencies as MSTParser overall,
note that it is over a percent and a half better than
MSTParser on attaching conjunctions (85.6% versus
84.0%). Conjunction scope may benefit from paral-
lelism and higher-level structure, which is easily ac-
cessible when joining two matching non-terminals

9There are 52,308 non-punctuation tokens in the test set,
compared with 2416 sentences, 1373 conjunctions, and 5854
prepositions.

in a context-free grammar, but much harder to
determine in the local views of graph-based de-
pendency parsers. The dependencies arising from
the Berkeley constituency trees have higher con-
junction accuracies than either the edge-based or
sibling-based dpo3+Unlabeled parser. However,
once grandparents are included in the factorization,
the dpo3+Unlabeled is significantly better at attach-
ing conjunctions than the constituency parser, at-
taching conjunctions with an accuracy over 90%.
Therefore, some of the disadvantages of dependency
parsing compared with constituency parsing can be
compensated for with larger factorizations.

Conjunctions
Conversion 1 Conversion 2

Scoring (deprecated)
Edge 86.3 85.3
Sib 87.8 85.5
Grand 87.2 90.6
Grand+Sib 88.3 90.8

Table 2: Unlabeled attachment accuracy for conjunc-
tions. Bolded items are the best in each column, or not
significantly different (sign test, p < .05).

6.4 Impact of Data Representation

Tables 2 and 3 show the results of the
dpo3+Unlabeled parser for conjunctions and
prepositions, respectively, under the two different
conversions. The data representation has an impact
on which factorizations perform best. Under
Conversion 1, conjunctions are more accurate under
a sibling parser than a grandparent parser, while the
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Prepositions
Conversion 1 Conversion 2

Scoring (deprecated)
Edge 87.4 87.0
Sib 87.5 86.8
Grand 87.9 87.5
Grand+Sib 88.4 87.4

Table 3: Unlabeled attachment accuracy for prepositions.
Bolded items are the best in each column, or not signifi-
cantly different (sign test, p < .05).

pattern is reversed for Conversion 2.
Conjunctions show a much stronger need for

higher order factorizations than prepositions do.
This is not too surprising, as prepositions have more
of a selectional preference than conjunctions, and
so the preposition itself is more informative about
where it should attach. While prepositions do im-
prove with larger factorizations, the improvement
beyond edge-based is not significant for Conversion
2. One hypothesis for why Conversion 1 shows more
of an improvement is that the wider scope leads to
the semantic head being included; in Conversion
2, the semantic head is chosen as the parent of the
preposition, so the wider scope is less necessary.

6.5 Preposition Error Analysis

Prepositions are still the largest source of errors in
the dpo3+Unlabeled parser. We therefore analyze
the errors made on the development set to determine
whether the difficult remaining cases for parsers cor-
respond to the Hindle and Rooth (1993) style PP-
attachment classification task. In the PP-attachment
classification task, the two choices for where the
preposition attaches are the previous verb or the pre-
vious noun, and the preposition itself has a noun ob-
ject. The ones that do attach to the preceeding noun
or verb (not necessarily the preceeding word) and
have a noun object (2323 prepositions) are attached
by the dpo3+Unlabeled grandparent-scoring parser
with 92.4% accuracy, while those that do not fit that
categorization (1703 prepositions) have the correct
parent only 82.7% of the time.

Local attachments are more accurate — preposi-
tions are attached with 94.8% accuracy if the correct
parent is the immediately preceeding word (2364
cases) and only 79.1% accuracy if it is not (1662
cases). The preference is not necessarily for low

attachments though: the prepositions whose parent
is not the preceeding word are attached more accu-
rately if the parent is the root word (usually corre-
sponding to the main verb) of the sentence (90.8%,
587 cases) than if the parent is lower in the tree
(72.7%, 1075 cases).

7 Conclusion

Features derived from unlabeled data (clusters and
web counts) significantly improve a state-of-the-art
dependency parser for English. We showed how
well various factorizations are able to take advantage
of these unlabeled data features, focusing our anal-
ysis on conjunctions and prepositions. Including
grandparents in the factorization increases the accu-
racy of conjunctions over 5% absolute over edge-
based or sibling-based scoring. The representation
of the data is extremely important for how the prob-
lem should be factored–under the old Penn2Malt de-
pendency representation, a sibling parser was more
accurate than a grandparent parser. As some impor-
tant relationships were represented as siblings and
some as grandparents, there was a need to develop
third-order parsers which could exploit both simul-
taneously (Koo and Collins, 2010). Under the new
pennconverter standard, a grandparent parser is sig-
nificantly better than a sibling parser, and there is no
significant improvement when including both.
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�LIPN, Université Paris Nord & CNRS,Villetaneuse, France

?Computer Engineering Department, Sharif university of Technology, Tehran, Iran
(ghasem.mirroshandel@lif.univ-mrs.fr, alexis.nasr@lif.univ-mrs.fr,

leroux@univ-paris13.fr)

Abstract

Treebanks are not large enough to reliably
model precise lexical phenomena. This de-
ficiency provokes attachment errors in the
parsers trained on such data. We propose
in this paper to compute lexical affinities,
on large corpora, for specific lexico-syntactic
configurations that are hard to disambiguate
and introduce the new information in a parser.
Experiments on the French Treebank showed
a relative decrease of the error rate of 7.1% La-
beled Accuracy Score yielding the best pars-
ing results on this treebank.

1 Introduction

Probabilistic parsers are usually trained on treebanks
composed of few thousands sentences. While this
amount of data seems reasonable for learning syn-
tactic phenomena and, to some extent, very frequent
lexical phenomena involving closed parts of speech
(POS), it proves inadequate when modeling lexical
dependencies between open POS, such as nouns,
verbs and adjectives. This fact was first recognized
by (Bikel, 2004) who showed that bilexical depen-
dencies were barely used in Michael Collins’ parser.

The work reported in this paper aims at a better
modeling of such phenomena by using a raw corpus
that is several orders of magnitude larger than the
treebank used for training the parser. The raw cor-
pus is first parsed and the computed lexical affinities
between lemmas, in specific lexico-syntactic config-
urations, are then injected back in the parser. Two
outcomes are expected from this procedure, the first

is, as mentioned above, a better modeling of bilexi-
cal dependencies and the second is a method to adapt
a parser to new domains.

The paper is organized as follows. Section 2 re-
views some work on the same topic and highlights
their differences with ours. In section 3, we describe
the parser that we use in our experiments and give
a detailed description of the frequent attachment er-
rors. Section 4 describes how lexical affinities be-
tween lemmas are calculated and their impact is then
evaluated with respect to the attachment errors made
by the parser. Section 5 describes three ways to in-
tegrate the lexical affinities in the parser and reports
the results obtained with the three methods.

2 Previous Work

Coping with lexical sparsity of treebanks using raw
corpora has been an active direction of research for
many years.

One simple and effective way to tackle this prob-
lem is to put together words that share, in a large
raw corpus, similar linear contexts, into word clus-
ters. The word occurrences of the training treebank
are then replaced by their cluster identifier and a new
parser is trained on the transformed treebank. Us-
ing such techniques (Koo et al., 2008) report signi-
ficative improvement on the Penn Treebank (Marcus
et al., 1993) and so do (Candito and Seddah, 2010;
Candito and Crabbé, 2009) on the French Treebank
(Abeillé et al., 2003).

Another series of papers (Volk, 2001; Nakov
and Hearst, 2005; Pitler et al., 2010; Zhou et al.,
2011) directly model word co-occurrences. Co-
occurrences of pairs of words are first collected in a
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raw corpus or internet n-grams. Based on the counts
produced, lexical affinity scores are computed. The
detection of pairs of words co-occurrences is gen-
erally very simple, it is either based on the direct
adjacency of the words in the string or their co-
occurrence in a window of a few words. (Bansal
and Klein, 2011; Nakov and Hearst, 2005) rely on
the same sort of techniques but use more sophisti-
cated patterns, based on simple paraphrase rules, for
identifying co-occurrences.

Our work departs from those approaches by the
fact that we do not extract the lexical information
directly on a raw corpus, but we first parse it and
then extract the co-occurrences on the parse trees,
based on some predetermined lexico-syntactic pat-
terns. The first reason for this choice is that the lin-
guistic phenomena that we are interested in, such as
as PP attachment, coordination, verb subject and ob-
ject can range over long distances, beyond what is
generally taken into account when working on lim-
ited windows. The second reason for this choice was
to show that the performances that the NLP commu-
nity has reached on parsing, combined with the use
of confidence measures allow to use parsers to ex-
tract accurate lexico-syntactic information, beyond
what can be found in limited annotated corpora.

Our work can also be compared with self train-
ing approaches to parsing (McClosky et al., 2006;
Suzuki et al., 2009; Steedman et al., 2003; Sagae
and Tsujii, 2007) where a parser is first trained on
a treebank and then used to parse a large raw cor-
pus. The parses produced are then added to the ini-
tial treebank and a new parser is trained. The main
difference between these approaches and ours is that
we do not directly add the output of the parser to the
training corpus, but extract precise lexical informa-
tion that is then re-injected in the parser. In the self
training approach, (Chen et al., 2009) is quite close
to our work: instead of adding new parses to the tree-
bank, the occurrence of simple interesting subtrees
are detected in the parses and introduced as new fea-
tures in the parser.

The way we introduce lexical affinity measures in
the parser, in 5.1, shares some ideas with (Anguiano
and Candito, 2011), who modify some attachments
in the parser output, based on lexical information.
The main difference is that we only take attachments
that appear in an n-best parse list into account, while

they consider the first best parse and compute all po-
tential alternative attachments, that may not actually
occur in the n-best forests.

3 The Parser

The parser used in this work is the second order
graph based parser (McDonald et al., 2005; Kübler
et al., 2009) implementation of (Bohnet, 2010). The
parser was trained on the French Treebank (Abeillé
et al., 2003) which was transformed into dependency
trees by (Candito et al., 2009). The size of the tree-
bank and its decomposition into train, development
and test sets is represented in table 1.

nb of sentences nb of words
FTB TRAIN 9 881 278 083

FTB DEV 1 239 36 508

FTB TEST 1 235 36 340

Table 1: Size and decomposition of the French Treebank

The part of speech tagging was performed with
the MELT tagger (Denis and Sagot, 2010) and lem-
matized with the MACAON tool suite (Nasr et al.,
2011). The parser gave state of the art results for
parsing of French, reported in table 2.

pred. POS tags gold POS tags
punct no punct punct no punct

LAS 88.02 90.24 88.88 91.12

UAS 90.02 92.50 90.71 93.20

Table 2: Labeled and unlabeled accuracy score for auto-
matically predicted and gold POS tags with and without
taking into account punctuation on FTB TEST.

Figure 1 shows the distribution of the 100 most
common error types made by the parser. In this
figure, x axis shows the error types and y axis
shows the error ratio of the related error type
( number of errors of the specific type

total number of errors ). We define an error
type by the POS tag of the governor and the POS
tag of the dependent. The figure presents a typical
Zipfian distribution with a low number of frequent
error types and a large number of unfrequent error
types. The shape of the curve shows that concen-
trating on some specific frequent errors in order to
increase the parser accuracy is a good strategy.
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Figure 1: Distribution of the types of errors

Table 3 gives a finer description of the most com-
mon types of error made by the parser. Here we
define more precise patterns for errors, where some
lexical values are specified (for prepositions) and, in
some cases, the nature of the dependency is taken
into account. Every line of the table corresponds to
one type of error. The first column describes the
error type. The second column indicates the fre-
quency of this type of dependency in the corpus. The
third one displays the accuracy for this type of de-
pendency (the number of dependencies of this type
correctly analyzed by the parser divided by the to-
tal number of dependencies of this type). The fourth
column shows the contribution of the errors made on
this type of dependency to the global error rate. The
last column associates a name with some of the error
types that will prove useful in the remainder of the
paper to refer to the error type.

Table 3 shows two different kinds of errors that
impact the global error rate. The first one concerns
very common dependencies that have a high accu-
racy but, due to their frequency, hurt the global er-
ror rate of the parser. The second one concerns low
frequency, low accuracy dependency types. Lines 2
and 3, respectively attachment of the preposition à to
a verb and the subject dependency illustrate such a
contrast. They both impact the total error rate in the
same way (2.53% of the errors). But the first one
is a low frequency low accuracy type (respectively
0.88% and 69.11%) while the second is a high fre-
quency high accuracy type (respectively 3.43% and
93.03%). We will see in 4.2.2 that our method be-
haves quite differently on these two types of error.

dependency freq. acc. contrib. name
N→N 1.50 72.23 2.91

V→ à 0.88 69.11 2.53 VaN
V—suj→ N 3.43 93.03 2.53 SBJ
N→ CC 0.77 69.78 2.05 NcN
N→ de 3.70 92.07 2.05 NdeN
V→ de 0.66 74.68 1.62 VdeN
V—obj→ N 2.74 90.43 1.60 OBJ
V→ en 0.66 81.20 1.24

V→ pour 0.46 67.78 1.10

N→ ADJ 6.18 96.60 0.96 ADJ
N→ à 0.29 70.64 0.72 NaN
N→ pour 0.12 38.64 0.67

N→ en 0.15 47.69 0.57

Table 3: The 13 most common error types

4 Creating the Lexical Resource

The lexical resource is a collection of tuples
〈C, g, d, s〉 where C is a lexico-syntactic configu-
ration, g is a lemma, called the governor of the
configuration, d is another lemma called the depen-
dent and s is a numerical value between 0 and 1,
called the lexical affinity score, which accounts for
the strength of the association between g and d in

the context C. For example the tuple 〈(V, g)
obj→

(N, d), eat , oyster , 0.23〉 defines a simple configu-

ration (V, g)
obj→ (N, d) that is an object depen-

dency between verb g and noun d. When replac-
ing variables g and d in C respectively with eat
and oyster , we obtain the fully specified lexico syn-

tactic pattern(V, eat)
obj→ (N, oyster), that we call

an instantiated configuration. The numerical value
0.23 accounts for how much eat and oyster like
to co-occur in the verb-object configuration. Con-
figurations can be of arbitrary complexity but they
have to be generic enough in order to occur fre-
quently in a corpus yet be specific enough to model
a precise lexico syntactic phenomenon. The context
(∗, g)

∗→ (∗, d), for example is very generic but does
not model a precise linguistic phenomenon, as selec-
tional preferences of a verb, for example. Moreover,
configurations need to be error-prone. In the per-
spective of increasing a parser performances, there
is no point in computing lexical affinity scores be-
tween words that appear in a configuration for which
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the parser never makes mistakes.
The creation of the lexical resource is a three stage

process. The first step is the definition of configura-
tions, the second one is the collection of raw counts
from the machine parsed corpora and the third one is
the computation of lexical affinities based on the raw
counts. The three steps are described in the follow-
ing subsection while the evaluation of the created
resource is reported in subsection 4.2.

4.1 Computing Lexical Affinities

A set of 9 configurations have been defined. Their
selection is a manual process based on the analysis
of the errors made by the parser, described in sec-
tion 3, as well as on the linguistic phenomena they
model. The list of the 9 configurations is described
in Table 4. As one can see on this table, configu-
rations are usually simple, made up of one or two
dependencies. Linguistically, configurations OBJ
and SBJ concern subject and object attachments,
configuration ADJ is related to attachments of ad-
jectives to nouns and configurations NdeN, VdeN,
VaN, and NaN indicate prepositional attachments.
We have restricted ourselves here to two common
French prepositions à and de. Configurations NcN
and VcV deal respectively with noun and verb coor-
dination.

Name Description

OBJ (V, g)
obj→ (N, d)

SBJ (V, g)
subj→ (N, d)

ADJ (N, g) → ADJ

NdeN (N, g) → (P, de)→ (N, d)

VdeN (V, g) → (P, de)→ (N, d)

NaN (N, g) → (P, à)→ (N, d)

VaN (V, g) → (P, à)→ (N, d)

NcN (N, g) → (CC, ∗)→ (N, d)

VcV (V, g) → (CC, ∗)→ (V, d)

Table 4: List of the 9 configurations.

The computation of the number of occurrences of
an instantiated configuration in the corpus is quite
straightforward, it consists in traversing the depen-
dency trees produced by the parser and detect the
occurrences of this configuration.

At the end of the counts collection, we have gath-

CORPUS Sent. nb. Tokens nb.
AFP 1 024 797 31 486 618

EST REP 1 103 630 19 635 985

WIKI 1 592 035 33 821 460

TOTAL 3 720 462 84 944 063

Table 5: sizes of the corpora used to gather lexical counts

ered for every lemma l its number of occurrences as
governor (resp. dependent) of configurationC in the
corpus, noted C(C, l, ∗) (resp. C(C, ∗, l)), as well as
the number of occurrences of configuration C with
lemma lg as a governor and lemma ld as a depen-
dent, noted C(C, lg, ld). We are now in a position
to compute the score s(C, lg, ld). This score should
reflect the tendency of lg and ld to appear together
in configuration C. It should be maximal if when-
ever lg occurs as the governor of configuration C,
the dependent position is occupied by ld and, sym-
metrically, if whenever ld occurs as the dependent of
configuration C, the governor position is occupied
by lg. A function that conforms such a behavior is
the following:

s(C, lg, ld) =
1

2

(
C(C, lg, ld)
C(C, lg, ∗)

+
C(C, lg, ld)
C(C, ∗, ld)

)
it takes its values between 0 (lg and ld never

co-occur) and 1 (g and d always co-occur). This
function is close to pointwise mutual information
(Church and Hanks, 1990) but takes its values be-
tween 0 and 1.

4.2 Evaluation
Lexical affinities were computed on three corpora of
slightly different genres. The first one, is a collection
of news report of the French press agency Agence
France Presse, the second is a collection of news-
paper articles from a local French newspaper : l’Est
Républicain. The third one is a collection of articles
from the French Wikipedia. The size of the different
corpora are detailed in table 5. The corpus was first
POS tagged, lemmatized and parsed in order to get
the 50 best parses for every sentence. Then the lexi-
cal resource was built, based on the 9 configurations
described in table 4.

The lexical resource has been evaluated on
FTB DEV with respect to two measures: coverage
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and correction rate, described in the next two sec-
tions.

4.2.1 Coverage
Coverage measures the instantiated configura-

tions present in the evaluation corpus that are in the
resource. The results are presented in table 6. Every
line represents a configuration, the second column
indicates the number of different instantiations of
this configuration in the evaluation corpus, the third
one indicates the number of instantiated configura-
tions that were actually found in the lexical resource
and the fourth column shows the coverage for this
configuration, which is the ratio third column over
the second. Last column represents the coverage of
the training corpus (the lexical resource is extracted
on the training corpus) and the last line represents
the same quantities computed on all configurations.

Table 6 shows two interesting results: firstly the
high variability of coverage with respect to configu-
rations, and secondly the low coverage when the lex-
ical resource is computed on the training corpus, this
fact being consistent with the conclusions of (Bikel,
2004). A parser trained on a treebank cannot be ex-
pected to reliably select the correct governor in lex-
ically sensitive cases.

Conf. occ. pres. cov. T cov.
OBJ 1017 709 0.70 0.21

SBJ 1210 825 0.68 0.24

ADJ 1791 1239 0.69 0.33

NdeN 1909 1287 0.67 0.31

VdeN 189 107 0.57 0.16

NaN 123 61 0.50 0.20

VaN 422 273 0.65 0.23

NcN 220 55 0.25 0.10

VcV 165 93 0.56 0.04

Σ 7046 4649 0.66 0.27

Table 6: Coverage of the lexical resource over FTB DEV.

4.2.2 Correction Rate
While coverage measures how many instantiated

configurations that occur in the treebank are actu-
ally present in the lexical resource, it does not mea-
sure if the information present in the lexical resource
can actually help correcting the errors made by the
parser.

We define Correction Rate (CR) as a way to ap-
proximate the usefulness of the data. Given a word
d present in a sentence S and a configuration C, the
set of all potential governors of d in configuration
C, in all the n-best parses produced by the parser is
computed. This set is noted G = {g1, . . . , gj}. Let
us note GL the element of G that maximizes the lex-
ical affinity score. When the lexical resource gives
no score to any of the elements of G, GL is left un-
specified.

Ideally, G should not be the set of governors in
the n-best parses but the set of all possible governors
for d in sentence S. Since we have no simple way
to compute the latter, we will content ourselves with
the former as an approximation of the latter.

Let us note GH the governor of d in the (first)
best parse produced and GR the governor of d in the
correct parse. CR measures the effect of replacing
GH with GL.

We have represented in table 7 the different sce-
narios that can happen when comparing GH , GR
and GL.

GL = GR or GL unspec. CC
GH = GR GL 6= GR CE

GL = GR EC
GH 6= GR GL 6= GR or GL unspec. EE

GR /∈ G NA

Table 7: Five possible scenarios when comparing the
governor of a word produced by the parser (GH ), in
the reference parse (GR) and according to the lexical re-
source (GL).

In scenarios CC and CE, the parser did not make
a mistake (the first letter, C, stands for correct). In
scenario CC, the lexical affinity score was compat-
ible with the choice of the parser or the lexical re-
source did not select any candidate. In scenario CE,
the lexical resource introduced an error. In scenar-
ios EC and EE, the parser made an error. In EC,
the error was corrected by the lexical resource while
in EE, it wasn’t. Either because the lexical resource
candidate was not the correct governor or it was un-
specified. The last case, NA, indicates that the cor-
rect governor does not appear in any of the n-best
parses. Technically this case could be integrated in
EE (an error made by the parser was not corrected
by the lexical resource) but we chose to keep it apart
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since it represents a case where the right solution
could not be found in the n-best parse list (the cor-
rect governor is not a member of set G).

Let’s note nS the number of occurrences of sce-
nario S for a given configuration. We compute CR
for this configuration in the following way:

CR =
old error number - new error number

old error number

=
nEC − nCE

nEE + nEC + nNA

When CR is equal to 0, the correction did not have
any impact on the error rate. When CR> 0, the error
rate is reduced and if CR < 0 it is increased1.

CR for each configuration is reported in table 8.
The counts of the different scenarios have also been
reported.

Conf. nCC nCE nEC nEE nNA CR
OBJ 992 30 51 5 17 0.29

SBJ 1131 35 61 16 34 0.23

ADJ 2220 42 16 20 6 -0.62

NdeN 2083 93 42 44 21 -0.48

VdeN 150 2 49 1 13 0.75

NaN 89 5 21 10 2 0.48

VaN 273 19 132 8 11 0.75

NcN 165 17 12 31 12 -0.09

VcN 120 21 14 11 5 -0.23

Σ 7223 264 398 146 121 0.20

Table 8: Correction Rate of the lexical resource with re-
spect to FTB DEV.

Table 8 shows very different results among con-
figurations. Results for PP attachments VdeN, VaN
and NaN are quite good (a CR of 75% for a given
configuration, as VdeN indicates that the number of
errors on such a configuration is decreased by 25%).
It is interesting to note that the parser behaves quite
badly on these attachments: their accuracy (as re-
ported in table 3) is, respectively 74.68, 69.1 and
70.64. Lexical affinity helps in such cases. On
the other hand, some attachments like configuration
ADJ and NdeN, for which the parser showed very
good accuracy (96.6 and 92.2) show very poor per-
formances. In such cases, taking into account lexical
affinity creates new errors.

1One can note, that contrary to coverage, CR does not mea-
sure a characteristic of the lexical resource alone, but the lexical
resource combined with a parser.

On average, using the lexical resource with this
simple strategy of systematically replacing GH with
GL allows to decrease by 20% the errors made on
our 9 configurations and by 2.5% the global error
rate of the parser.

4.3 Filtering Data with Ambiguity Threshold

The data used to extract counts is noisy: it con-
tains errors made by the parser. Ideally, we would
like to take into account only non ambiguous sen-
tences, for which the parser outputs a single parse
hypothesis, hopefully the good one. Such an ap-
proach is obviously doomed to fail since almost ev-
ery sentence will be associated to several parses.
Another solution would be to select sentences for
which the parser has a high confidence, using confi-
dence measures as proposed in (Sánchez-Sáez et al.,
2009; Hwa, 2004). But since we are only interested
in some parts of sentences (usually one attachment),
we don’t need high confidence for the whole sen-
tence. We have instead used a parameter, defined on
single dependencies, called the ambiguity measure.

Given the n best parses of a sentence and a depen-
dency δ, present in at least one of the n best parses,
let us note C(δ) the number of occurrences of δ in
the n best parse set. We note AM(δ) the ambiguity
measure associated to δ. It is computed as follows:

AM(δ) = 1− C(δ)
n

An ambiguity measure of 0 indicates that δ is non
ambiguous in the set of the n best parses (the word
that constitutes the dependent in δ is attached to the
word that constitutes the governor in δ in all the n-
best analyses). When n gets large enough this mea-
sure approximates the non ambiguity of a depen-
dency in a given sentence.

Ambiguity measure is used to filter the data when
counting the number of occurrences of a configura-
tion: only occurrences that are made of dependen-
cies δ such that AM(δ) ≤ τ are taken into account.
τ is called the ambiguity threshold.

The results of coverage and CR given above were
computed for τ equal to 1, which means that, when
collecting counts, all the dependencies are taken into
account whatever their ambiguity is. Table 9 shows
coverage and CR for different values of τ . As ex-
pected, coverage decreases with τ . But, interest-
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ingly, decreasing τ , from 1 down to 0.2 has a posi-
tive influence on CR. Ambiguity threshold plays the
role we expected: it allows to reduce noise in the
data, and corrects more errors.

τ = 1.0 τ = 0.4 τ = 0.2 τ = 0.0
cov/CR cov/CR cov/CR cov/CR

OBJ 0.70/0.29 0.58/0.36 0.52/0.36 0.35/0.38
SBJ 0.68/0.23 0.64/0.23 0.62/0.23 0.52/0.23
ADJ 0.69/-0.62 0.61/-0.52 0.56/-0.52 0.43/-0.38

NdeN 0.67/-0.48 0.58/-0.53 0.52/-0.52 0.38/-0.41
VdeN 0.57/0.75 0.44/0.73 0.36/0.73 0.20/0.30
NaN 0.50/0.48 0.34/0.42 0.28/0.45 0.15/0.48
VaN 0.65/0.75 0.50/0.8 0.41/0.80 0.26/0.48
NcN 0.25/-0.09 0.19/0 0.16/0.02 0.07/0.13
VcV 0.56/-0.23 0.42/-0.07 0.28/0.03 0.08/0.07
Avg 0.66/0.2 0.57/0.23 0.51/0.24 0.38/0.17

Table 9: Coverage and Correction Rate on FTB DEV for
several values of ambiguity threshold.

5 Integrating Lexical Affinity in the Parser

We have devised three methods for taking into ac-
count lexical affinity scores in the parser. The first
two are post-processing methods, that take as input
the n-best parses produced by the parser and mod-
ify some attachments with respect to the information
given by the lexical resource. The third method in-
troduces the lexical affinity scores as new features in
the parsing model. The three methods are described
in 5.1, 5.2 and 5.3. They are evaluated in 5.4.

5.1 Post Processing Method

The post processing method is quite simple. It is
very close to the method that was used to compute
the Correction Rate of the lexical resource, in 4.2.2:
it takes as input the n-best parses produced by the
parser and, for every configuration occurrence C
found in the first best parse, the set (G) of all po-
tential governors of C, in the n-best parses, is com-
puted and among them, the word that maximizes the
lexical affinity score (GL) is identified.

Once GL is identified, one can replace the choice
of the parser (GH ) with GL. This method is quite
crude since it does not take into account the confi-
dence the parser has in the solution proposed. We
observed, in 4.2.2 that CR was very low for configu-
rations for which the parser achieves good accuracy.
In order to introduce the parser confidence in the fi-
nal choice of a governor, we compute C(GH) and

C(GL) which respectively represent the number of
times GH and GL appear as the governor of config-
uration C. The choice of the final governor, noted
Ĝ, depends on the ratio of C(GH) and C(GL). The
complete selection strategy is the following:

1. if GH = GL or GL is unspecified, Ĝ = GH .

2. if GH 6= GL, Ĝ is determined as follows:

Ĝ =

{
GH if C(GH)

C(GL) > α

GL otherwise

where α is a coefficient that is optimized on the
development data set.

We have reported, in table 10 the values of CR,
for the 9 different features, using this strategy, for
τ = 1. We do not report the values of CR for other
values of τ since they are very close to each other.
The table shows several noticeable facts. First, the
new strategy performs much better than the former
one (crudely replacing GH by GL), the value of CR
increased from 0.2 to 0.4, which means that the er-
rors made on the nine configurations are now de-
creased by 40%. Second, CR is now positive for ev-
ery configuration: the number of errors is decreased
for every configuration.

Conf. OBJ SUJ ADJ NdeN VdeN
CR 0.45 0.46 0.14 0.05 0.73

Conf. NaN VaN NcN VcV Σ

CR 0.12 0.8 0.12 0.1 0.4

Table 10: Correction Rate on FTB DEV when taking into
account parser confidence.

5.2 Double Parsing Method
The post processing method performs better than the
naive strategy that was used in 4.2.2. But it has an
important drawback: it creates inconsistent parses.
Recall that the parser we are using is based on a sec-
ond order model, which means that the score of a de-
pendency depends on some neighboring ones. Since
with the post processing method only a subset of the
dependencies are modified, the resulting parse is in-
consistent: the score of some dependencies is com-
puted on the basis of other dependencies that have
been modified.
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In order to compute a new optimal parse tree
that preserves the modified dependencies, we have
used a technique proposed in (Mirroshandel and
Nasr, 2011) that modifies the scoring function of the
parser in such a way that the dependencies that we
want to keep in the parser output get better scores
than all competing dependencies.

The double parsing method is therefore a three
stage method. First, sentence S is parsed, producing
the n-best parses. Then, the post processing method
is used, modifying the first best parse. Let’s note
D the set of dependencies that were changed in this
process. In the last stage, a new parse is produced,
that preserves D.

5.3 Feature Based Method

In the feature based method, new features are
added to the parser that rely on lexical affinity
scores. These features are of the following form:
〈C, lg, ld, δC(s)〉, where C is a configuration num-
ber, s is the lexical affinity score (s = s(C, lg, ld))
and δc(·) is a discretization function.

Discretization of the lexical affinity scores is nec-
essary in order to fight against data sparseness. In
this work, we have used Weka software (Hall et al.,
2009) to discretize the scores with unsupervised bin-
ning. Binning is a simple process which divides
the range of possible values a parameter can take
into subranges called bins. Two methods are im-
plemented in Weka to find the optimal number of
bins: equal-frequency and equal-width. In equal-
frequency binning, the range of possible values are
divided into k bins, each of which holds the same
number of instances. In equal-width binning, which
is the method we have used, the range are divided
into k subranges of the same size. The optimal num-
ber of bins is the one that minimizes the entropy of
the data. Weka computes different number of bins
for different configurations, ranging from 4 to 10.
The number of new features added to the parser is
equal to

∑
C B(C) where C is a configuration and

B(C) is the number of bins for configuration C.

5.4 Evaluation

The three methods described above have been evalu-
ated on FTB TEST. Results are reported in table 11.
The three methods outperformed the baseline (the
state of the art parser for French which is a second

order graph based method) (Bohnet, 2010). The best
performances were obtained by the Double Parsing
method that achieved a labeled relative error reduc-
tion of 7, 1% on predicted POS tags, yielding the
best parsing results on the French Treebank. It per-
forms better than the Post Processing method, which
means that the second parsing stage corrects some
inconsistencies introduced in the Post Processing
method. The performances of the Feature Based
method are disappointing, it achieves an error reduc-
tion of 1.4%. This result is not easy to interpret. It
is probably due to the limited number of new fea-
tures introduced in the parser. These new features
probably have a hard time competing with the large
number of other features in the training process.

pred. POS tags gold POS tags
punct no punct punct no punct

BL LAS 88.02 90.24 88.88 91.12
UAS 90.02 92.50 90.71 93.20

PP LAS 88.45 90.73 89.46 91.78
UAS 90.61 93.20 91.44 93.86

DP LAS 88.87 91.10 89.72 91.90
UAS 90.84 93.30 91.58 93.99

FB LAS 88.19 90.33 89.29 91.43
UAS 90.22 92.62 91.09 93.46

Table 11: Parser accuracy on FTB TEST using the
standard parser (BL) the post processing method (PP),
the double parsing method (DP) and the feature based
method.

6 Conclusion

Computing lexical affinities, on large corpora, for
specific lexico-syntactic configurations that are hard
to disambiguate has shown to be an effective way
to increase the performances of a parser. We have
proposed in this paper one method to compute lexi-
cal affinity scores as well as three ways to introduce
this new information in a parser. Experiments on a
French corpus showed a relative decrease of the er-
ror rate of 7.1% Labeled Accuracy Score.
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A. Nasr, F. Béchet, J-F. Rey, B. Favre, and Le Roux J.
2011. MACAON: An NLP tool suite for processing
word lattices. In Proceedings of ACL.

E. Pitler, S. Bergsma, D. Lin, and K. Church. 2010. Us-
ing web-scale N-grams to improve base NP parsing
performance. In Proceedings of COLING, pages 886–
894.

K. Sagae and J. Tsujii. 2007. Dependency parsing and
domain adaptation with lr models and parser ensem-
bles. In Proceedings of the CoNLL shared task session
of EMNLP-CoNLL, volume 7, pages 1044–1050.

R. Sánchez-Sáez, J.A. Sánchez, and J.M. Benedı́. 2009.
Statistical confidence measures for probabilistic pars-
ing. In Proceedings of RANLP, pages 388–392.

M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa,
J. Hockenmaier, P. Ruhlen, S. Baker, and J. Crim.
2003. Bootstrapping statistical parsers from small
datasets. In Proceedings of EACL, pages 331–338.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009.
An empirical study of semi-supervised structured con-
ditional models for dependency parsing. In Proceed-
ings of EMNLP, pages 551–560.

M. Volk. 2001. Exploiting the WWW as a corpus to
resolve PP attachment ambiguities. In Proceedings of
Corpus Linguistics.

G. Zhou, J. Zhao, K. Liu, and L. Cai. 2011. Exploiting
web-derived selectional preference to improve statisti-
cal dependency parsing. In Proceedings of HLT-ACL,
pages 1556–1565.

785



Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 786–794,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Chinese Comma Disambiguation for Discourse Analysis

Yaqin Yang
Brandeis University

415 South Street
Waltham, MA 02453, USA
yaqin@brandeis.edu

Nianwen Xue
Brandeis University

415 South Street
Waltham, MA 02453, USA
xuen@brandeis.edu

Abstract

The Chinese comma signals the boundary of
discourse units and also anchors discourse
relations between adjacent text spans. In
this work, we propose a discourse structure-
oriented classification of the comma that can
be automatically extracted from the Chinese
Treebank based on syntactic patterns. We
then experimented with two supervised learn-
ing methods that automatically disambiguate
the Chinese comma based on this classifica-
tion. The first method integrates comma clas-
sification into parsing, and the second method
adopts a “post-processing” approach that ex-
tracts features from automatic parses to train
a classifier. The experimental results show
that the second approach compares favorably
against the first approach.

1 Introduction

The Chinese comma, which looks graphically very
similar to its English counterpart, is functionally
quite different. It has attracted a significant amount
of research that studied the problem from the view-
point of natural language processing. For exam-
ple, Jin et al ( 2004) and Li et al ( 2005) view
the disambiguation of the Chinese comma as a way
of breaking up long Chinese sentences into shorter
ones to facilitate parsing. The idea is to split a
long sentence into multiple comma-separated seg-
ments, parse them individually, and reconstruct the
syntactic parse for the original sentence. Although
both studies show a positive impact of this approach,
comma disambiguation is viewed merely as a con-
venient tool to help achieve a more important goal.

Xue and Yang ( 2011) point out that the very rea-
son for the existence of these long Chinese sentences
is because the Chinese comma is ambiguous and in
some context, it identifies the boundary of a sentence
just as a period, a question mark, or an exclamation
mark does. The disambiguation of comma is viewed
as a necessary step to detect sentence boundaries in
Chinese and it can benefit a whole range of down-
stream NLP applications such as syntactic parsing
and Machine Translation. In Machine Translation,
for example, it is very typical for “one” Chinese
sentence to be translated into multiple English sen-
tences, with each comma-separated segment corre-
sponding to one English sentence. In the present
work, we expand this view and propose to look at
the Chinese comma in the context of discourse anal-
ysis. The Chinese comma is viewed as a delimiter
of elementary discourse units (EDUs), in the sense
of the Rhetorical Structure Theory (Carlson et al.,
2002; Mann et al., 1988). It is also considered to
be the anchor of discourse relations, in the sense of
the Penn Discourse Treebank (PDT) (Prasad et al.,
2008). Disambiguating the comma is thus necessary
for the purpose of discourse segmentation, the iden-
tification of EDUs, a first step in building up the dis-
course structure of a Chinese text.

Developing a supervised or semi-supervised
model of discourse segmentation would require
ground truth annotated based on a well-established
representation scheme, but as of right now no such
annotation exists for Chinese to the best of our
knowledge. However, syntactically annotated tree-
banks often contain important clues that can be used
to infer discourse-level information. We present
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a method of automatically deriving a preliminary
form of discourse structure anchored by the Chinese
comma from the Penn Chinese Treebank (CTB)
(Xue et al., 2005), and using this information to
train and test supervised models. This discourse
information is formalized as a classification of the
Chinese comma, with each class representing the
boundary of an elementary discourse unit as well
as the anchor of a coarse-grained discourse rela-
tion between the two discourse units that it delimits.
We then develop two comma classification methods.
In the first method, we replace the part-of-speech
(POS) tag of each comma in the CTB with a de-
rived discourse category and retrain a state-of-the-
art Chinese parser on the relabeled data. We then
evaluate how accurately the commas are classified
in the parsing process. In the second method, we
parse these sentences and extract lexical and syn-
tactic information as features to predict these new
discourse categories. The second approach gives us
more control over what features to extract and our
results show that it compares favorably against the
first approach.

The rest of the paper is organized as follows. In
Section 2, we present our approach to automati-
cally extract discourse information from a syntac-
tically annotated treebank and present our classifi-
cation scheme. In Section 3, we describe our su-
pervised learning methods and the features we ex-
tracted. Section 4 presents our experiment setup and
experimental results. Related work is reviewed in
Section 5. We conclude in Section 6.

2 Chinese comma classification

There are many ways to conceptualize the discourse
structure of a text (Mann et al., 1988; Prasad et
al., 2008), but there is more of a consensus among
researchers about the fundamental building blocks
of the discourse structure. For the Rhetorical Dis-
course Theory, the building blocks are Elementary
Discourse Units (EDUs). For the PDT, the build-
ing blocks are abstract objects such as propositions,
facts. Although they are phrased in different ways,
syntactically these discourse units are generally re-
alized as clauses or built on top of clauses. So the
first step in building the discourse structure of a text
is to identify these discourse units.

In Chinese, these elementary discourse units are
generally delimited by the comma, but not all com-
mas mark the boundaries of a discourse unit. In (1),
for example, Comma [1] marks the boundary of a
discourse unit while Comma [2] does not. This is
reflected in its English translation: while the first
comma corresponds to an English comma, the sec-
ond comma is not translated at all, as it marks the
boundary between a subject and its predicate, where
no comma is needed in English. Disambiguating
these two types of commas is thus an important first
step in identifying elementary discourse units and
building up the discourse structure of a text.

(1) 王翔
Wang Xiang

虽
although

年
age
过
over
半百
50

，[1]
,

但
but

其
his
充沛
abundant

的
DE
精力
energy

和
and
敏捷
quick

的
DE

思维
thinking

，[2]
,

给
give
人
people

一
one
个
CL
挑战者
challenger

的
DE
印象
impression

。
.

“Although Wang Xiang is over 50 years old, his
abundant energy and quick thinking leave peo-
ple the impression of a challenger.”

Although to the best of our knowledge, no such
discourse segmented data for Chinese exists in the
public domain, this information can be extracted
from the syntactic annotation of the CTB. In the
syntactic annotation of the sentence, illustrated in
(a), it is clear that while the first comma in the sen-
tence marks the boundary of a clause, the second
one marks the demarcation between the subject NP
and the predicate VP and thus is not an indicator of
a discourse boundary.

(a)

IP

IP-CND , 1

ADVP NP , 2 VP

In addition to a binary distinction of whether a
comma marks the boundary of a discourse unit,
the CTB annotation also allows the extraction of a
more elaborate classification of commas based on
coordination and subordination relations of comma-
separated clauses. This classification of the Chinese
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comma can be viewed as a first approximation of the
discourse relations anchored by the comma that can
be refined later via a manual annotation process.

Based on the syntactic annotation in the CTB, we
classify the Chinese comma into seven hierarchi-
cally organized categories, as illustrated in Figure
1. The first distinction is made between commas
that indicate a discourse boundary (RELATION)
and those that do not (OTHER). Commas that in-
dicate discourse boundaries are further divided into
commas that separate coordinated discourse units
(COORD) vs commas that separate discourse units
in a subordination relation (SUBORD). Based on
the levels of embedding and the syntactic category
of the coordinated structures, we define three dif-
ferent types of coordination (SB, IP COORD and
VP COORD). We also define three types of subordi-
nation relations (ADJ, COMP, Sent SBJ), based on
the syntactic structure. As we will show below, each
of the six relations has a clear syntactic pattern that
can be exploited for their automatic detection.

ALL

OTHER RELATION

SB COORD_IP COORD_VP ADJ COMP Sent_SBJ

COORD SUBORD

Figure 1: Comma classification

Sentence Boundary (SB): Following (Xue and
Yang, 2011), we consider the loosely coordinated
IPs that are the immediate children of the root IP to
be independent sentences, and the commas separat-
ing them to be delimiters of sentence boundary. This
is illustrated in (2), where a Chinese sentence can be
split into two independent shorter sentences at the
comma. We view this comma to be a marker of the
sentence boundary and it serves the same function as
the unambiguous sentence boundary delimitors (pe-
riods, question marks, exclamation marks) in Chi-
nese. The syntactic pattern that is used to infer this
relation is illustrated in (b).

(2) 广东省
Guangdong province

建立
establish

了
ASP

自然
natural

科学
science

基金
foundation

，[3]
,

每年
every year

投入
investment

在
at
一亿
one hundred millioin

元
yuan

以上
above

。
.

“Natural Science Foundation is established in
Guangdong Province. More than one hundred
million yuan is invested every year.”

(b) IP-Root

IP

Clause

, IP

Clause

IP Coordination (IP COORD): Coordinated IPs
that are not the immediate children of the root IP are
also considered to be discourse units and the com-
mas linking them are labeled IP COORD. Different
from the sentence boundary cases, these coordinated
IPs are often embedded in a larger structure. An ex-
ample is given in (3) and its typical syntactic pattern
is illustrated in (c).

(3) 据
According to

陆仁法
Lu Renfa

介绍
presentation

，[4]
,

全国
the whole country

税收
revenue

任务
goal
已
already

超额
exceeding quota

完成
complete

，[5]
,

总体
overall

情况
situation

比较
fairly

好。
good .

“According to Lu Renfa, the national revenue
goal is met and exceeded, and the overall situa-
tion is fairly good.”

(c) IP

PP

Modifier

, IP

IP

Conjunct

, IP

Conjunct

VP Coordination (VP COORD): Coordinated
VPs, when separated by the comma, are not seman-
tically different from coordinated IPs. The only dif-
ference is that in the latter case, the coordinated VPs
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share a subject, while coordinated IPs tend to have
different subjects. Maintaining this distinction allow
us to model subject (dis)continuity, which helps re-
cover a subject when it is dropped, a prevalent phe-
nomenon in Chinese. As shown in (4), the VPs in the
text spans separated by Comma [6] have the same
subject, thus the subject in the second VP is dropped.
The syntactic pattern that allows us to extract this
structure is given in (d).

(4) 中国
China

银行
Bank

是
is
四大
four major

国有
state-owned

商业
commercial

银行
bank

之一
one of these

，[6]
,

也
also
是
is

中国
China

的
DE
主要
major

外汇
foreign exchange

银行
bank

。
.

“Bank of China is one of the four major state-
owned commercial banks, and it is also China’s
major foreign exchange bank.”

(d) IP

NP

Subject

VP

VP

Conjunct

, VP

Conjunct

Adjunction (ADJ): Adjunction is one of three
types of subordination relations we define. It holds
between a subordinate clause and its main clause.
The subordinate clause is normally introduced by a
subordinating conjunction and it typically provides
the cause, purpose, manner, or condition for the
main clause. In the PDT terms, these subordinate
conjunctions are discourse connectives that anchor
a discourse relation between the subordinate clause
and the main clause. In Chinese, with few excep-
tions, the subordinate clause comes before the main
clause. (5) is an example of this relation.

(5) 若
if
工程
project

发生
happen

保险
insurance

责任
liability

范围
scope

内
inside

的
DE
自然
natural

灾害
disaster

，[7]
,

中保
China Insurance

财产
property

保险
insurance

公司
company

将
will
按
according to

规定
provision

进行
excecute

赔偿
compensation

。
.

“If natural disasters within the scope of the in-
surance liability happen in the project, PICC
Property Insurance Company will provide
compensations according to the provisions.”

(e) IP

CP/IP-CND

Subordinate Clause

,
Main Clause

(e) shows how (5) is represented in the syntac-
tic structure in the CTB. Extracting this relation re-
quires more than just the syntactic configuration be-
tween these two clauses. We also take advantage
of the functional (dash) tags provided in the tree-
bank. The functional tags are attached to the sub-
ordinate clause and they include CND (conditional),
PRP (purpose or reason), MNR (manner), or ADV
(other types of subordinate clauses that are adjuncts
to the main clause).

Complementation (COMP): When a comma
separates a verb governor and its complement
clause, this verb and its subject generally describe
the attribution of the complement clause. Attribu-
tion is an important notion in discourse analysis in
both the RST framework and in the PDT. An exam-
ple of this is given in (6), and the syntactic pattern
used to extract this relation is illustrated in (f).

(6) 该
The
公司
company

介绍
present

，[8]
,

在
at
未来
future

的
DE

五年
five year

内
within

他们
they
将
will
追加
additionally

投资
invest

九千万
ninety million

美元
U.S. dollars

，[9]
,

预计
estimate

年产值
annual output

可
will
达
reach

三亿
three hundred million

美元
U.S. dollars

。
.

“According to the the company’s presentation,
they will invest an additional ninety million

789



U.S. dollars in the next five years, and the esti-
mated annual output will reach $ 300 million.”

(f) IP

....
VP

VV , IP

......

Sentential Subject (SBJ): This category is for
commas that separate a sentential subject from its
predicate VP. An example is given in (7) and the
syntactic pattern used to extract this relation is il-
lustrated in (g).

(7) 出口
export

快速
rapid

增长
grow

，[10]
,

成为
become

推动
promote

经济
economy

增长
growth

的
DE
重要
important

力量
force

。
.

“The rapid growth of export becomes an impor-
tant force in promoting economic growth.”

(g) IP

IP-SBJ

Sentential Subject

, VP

......

Others (OTHER): The remaining cases of
comma receive the OTHER label, indicating they do
not mark the boundary of a discourse segment.

Our proposed comma classification scheme
serves the dual purpose of identifying elementary
discourse units and at the same time detecting
coarse-grained discourse relations anchored by the
comma. The discourse relations identified in this
manner by no means constitute the full discourse
analysis of a text, they are, however, a good first
approximation. The advantage of our approach is
that we do not require manual discourse annotations,
and all the information we need is automatically ex-
tracted from the syntactic annotation of the CTB
and attached to instances of the comma in the cor-
pus. This makes it possible for us to train supervised
models to automatically classify the commas in any
Chinese text.

3 Two comma classification methods

Given the gold standard parses, based on the syntac-
tic patterns described in Section 2, we can map the
POS tag of each comma instance in the CTB to one
of the seven classes described in Section 2. Using
this relabeled data as training data, we experimented
with two automatic comma disambiguation meth-
ods. In the first method, we simply retrained the
Berkeley parser (Petrov and Klein, 2007) on the re-
labeled data and computed how accurately the com-
mas are labeled in a held-out test set. In the second
method, we trained a Maximum Entropy classifier
with the Mallet (McCallum et al., 2002) machine
learning package to classify the commas. The fea-
tures are extracted from the CTB data automatically
parsed with the Berkeley parser. We implemented
features described in (Xue and Yang, 2011), and
also experimented with a set of new features as fol-
lows. In general, these new features are extracted
from the two text spans surrounding the comma.
Given a comma, we define the preceding text span as
i span and the following text span as j span. We also
collected a number of subject-predicate pairs from a
large corpus that doesn’t overlap with the CTB. We
refer to this corpus as the auxiliary corpus.

Subject and Predicate features: We explored
various combinations of the subject (sbj), predicate
(pred) and object (obj) of the two spans. The sub-
ject of i span is represented as sbji, etc.

1. The existence of sbji, sbjj , both, or neither.
2. The lemma of predi, the lemma of predj , the

conjunction of sbji and predj , the conjunction
of predi and sbjj

3. whether the conjunction of sbji and predj oc-
curs more than 2 times in the auxiliary corpus
when j does not have a subject.

4. whether the conjunction of obji and predj oc-
curs more than 2 times in the auxiliary corpus
when j does not have a subject

5. Whether the conjunction of predi and sbjj oc-
curs more than 2 times in the auxiliary corpus
when i does not have a subject.

Mutual Information features: Mutual informa-
tion is intended to capture the association strength
between the subject of a previous span and the predi-
cate of the current span. We use Mutual Information
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(Church and Hanks, 1989) as shown in Equation
(1) and the frequency count computed based on the
auxiliary corpus to measure such constraints.

MI = log2

# co-occur of S and P * corpus size

# S occur * # P occur
(1)

1. The conjunction of sbji and predj when j does
not have a subject if their MIvalue is greater
than -8.0, an empirically established threshold.

2. Whether obji and predj has an MI value
greater than 5.0 if j does not have a subject.

3. Whether the MI value of sbji and predj is
greater than 0.0, and they occur 2 times in the
auxiliary corpus when j doesn’t have a subject.

4. Whether the MI value of obji and predj is
greater than 0.0 and they occur 2 times in the
auxiliary corpus when j doesn’t have a subject.

5. Whether the MI value of predi and sbjj is
greater than 0.0 and they occur more than 2
times in the auxiliary corpus when i does not
have a subject.

Span features: We used span features to cap-
ture syntactic information, e.g. the comma separated
spans are constituents in Tree (b) but not in Tree (d).

1. Whether i forms a single constituent, whether
j forms a single constituent.

2. The conjunction and hierarchical relation of all
constituent labels in i/j, if i/j does not form
a single constituent. The conjunction of all
constituent labels in both spans, if neither span
form a single constituent.

Lexical features:

1. The first word in i if it is an adverb, the first
word in j if it is an adverb.

2. The first word in i span if it is a coordinating
conjunction, the first word in j if it is a coordi-
nating conjunction.

4 Experiments

4.1 Datasets

We use the CTB 6.0 in our experiments and divide
it into training, development and test sets using the
data split recommended in the CTB 6.0 documenta-
tion, as shown in Table 1. There are 5436 commas

in the test set, including 1327 commas that are sen-
tence boundaries (SB), 539 commas that connect co-
ordinated IPs (IP COORD), 1173 commas that join
coordinated VPs (VP COORD), 379 commas that
delimits a subordinate clause and its main clause
(ADJ), 314 commas that anchor complementation
relations (COMP), and 1625 commas that belong to
the OTHER category.

4.2 Results

As mentioned in Section 3, we experimented with
two comma classification methods. In the first
method, we replace the part-of-speech (POS) tags of
the commas with the seven classes defined in Sec-
tion 2. We then retrain the Berkeley parser (Petrov
and Klein, 2007) using the training set as presented
in Table 1, parse the test set, and evaluate the comma
classification accuracy.

In the second method, we use the relabeled com-
mas as the gold-standard data to train a supervised
classifier to automatically classify the commas. As
shown in the previous section, syntactic structures
are an important source of information for our clas-
sifier. For feature extraction purposes, the entire
CTB6.0 is automatically parsed in a round-robin
fashion. We divided CTB 6.0 into 10 portions,
and parsed each portion with a model trained on
other portions, using the Berkeley parser (Petrov and
Klein, 2007). Measured by the ParsEval metric
(Black et al., 1991), the parsing accuracy on the
CTB test set stands at 83.29% (F-score), with a pre-
cision of 85.18% and a recall of 81.49%.

The results are presented in Table 2, which shows
the overall accuracy of the two methods as well as
the results for each individual category. As should
be clear from Table 2, the results for the two meth-
ods are very comparable, with the second method
performing modestly better than the first method.

4.2.1 Subject continuity
One of the goals for this classification scheme is

to model subject continuity, which answers the ques-
tion of how accurately we can predict whether two
comma-separated text spans have the same subject
or different subjects. When the two spans share
the same subject, the comma belongs to the cate-
gory VP COORD. When they have different sub-
jects, they belong to the categories IP COORD or
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Data Train Dev Test

CTB-6.0

81-325, 400-454, 500-554 41-80 (1-40,901-931 newswire)
590-596, 600-885, 900 1120-1129 (1018, 1020, 1036, 1044

1001-1017, 1019, 1021-1035 2140-2159 1060-1061,
1037-1043, 1045-1059,1062-1071 2280-2294 1072, 1118-1119, 1132
1073-1078, 1100-1117, 1130-1131 2550-2569 1141-1142, 1148 magazine)
1133-1140, 1143-1147, 1149-1151 2775-2799 (2165-2180, 2295-2310
2000-2139, 2160-2164, 2181-2279 3080-3109 2570-2602, 2800-2819
2311-2549, 2603-2774, 2820-3079 3110-3145 broadcast news)

Table 1: CTB 6.0 data set division.

SB. When this question is meaningless, e.g., when
one of the span does not even have a subject, the
comma belongs to other categories. To evaluate the
performance of our model on this problem, we re-
computed the results by putting IP COORD and SB
in one category, putting VP COORD in another cat-
egory and the rest of the labels in a third category.
The results are presented in Table 3.

4.2.2 The effect of genre
CTB 6.0 consists of data from three different gen-

res, including newswire, magazine and broadcast
news. Data genres may have very different char-
acteristics. To evaluate how our model works on
different genres, we train a model using training
and development sets, and test the model on differ-
ent genres as described in Table 1. The results on
these three genres are presented in Table 4, and they
shows a significant fluctuation across genres. Our
model works the best on newswire, but not as good
on broadcast news and magazine articles.

4.2.3 Comparison with prior work
(Xue and Yang, 2011) presented results on a

binary classification of whether or not a comma
marks a sentence boundary, while the present work
addresses a multi-category classification problem
aimed at identifying discourse segments and prelim-
inary discourse relations anchored by the comma.
However, since we also have a SB category, com-
parison is possible. For comparison purposes, we
retrained our model on their data sets, and computed
the results of SB vs other categories. The results are
shown in Table 5. Our results are very comparable
with (Xue and Yang, 2011) despite that we are per-
forming a multicategory classification.

4.3 Error analysis

Even though our feature-based approach can the-
oretically “correct” parsing errors, meaning that a
comma can in theory be classified correctly even if a
sentence is incorrectly parsed, when examining the
system output, errors in automatic parses often lead
to errors in comma classification. A common pars-
ing error is the confusion between Structures (h) and
(i). If the subject of the text span after a comma is
dropped as shown in (h), the parser often produces
a VP coordination structure as shown in (i) and vice
versa. This kind of parsing errors would lead to er-
rors in our syntactic features and thus directly affect
the accuracy of our model.

(h) IP

IP

NP VP

, IP

VP

(i) IP

NP VP

VP , VP

5 Related Work

There is a large body of work on discourse analysis
in the field of Natural Language Processing. Most of
the work, however, are on English. An unsupervised
approach was proposed to recognize discourse rela-
tions in (Marcu and Echihabi, 2002), which extracts
discourse relations that hold between arbitrary spans
of text making use of cue phrases. Like the present
work, a lot of research on discourse analysis is car-
ried out at the sentence level. (Soricut and Marcu,
2003; Sporleder and Lapata, 2005; Polanyi et al.,
2004). (Soricut and Marcu, 2003) and (Polanyi et
al., 2004) implement models to perform discourse
parsing, while (Sporleder and Lapata, 2005) intro-
duces discourse chunking as an alternative to full-
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Class Metric Method 1 Method 2
all acc. (%) 71.5 72.9

SB
Prec. (%) 65.6 66.2
Rec. (%) 71.7 73.1

F. (%) 68.5 69.5

IP COORD
Prec. (%) 53.3 56.0
Rec. (%) 50.5 48.6

F. (%) 52.0 52.0

VP Coord
Prec. (%) 65.6 68.3
Rec. (%) 76.3 78.2

F. (%) 70.5 72.9

ADJ
Prec. (%) 66.9 66.8
Rec. (%) 29.3 37.7

F. (%) 40.8 48.2

Comp
Prec. (%) 88.3 91.2
Rec. (%) 93.9 92.4

F. (%) 91.0 91.8

SentSBJ
Prec. (%) 25.0 31.8
Rec. (%) 6 10

F. (%) 9.7 15.6

Other
Prec. (%) 86.9 85.6
Rec. (%) 83.4 84.1

F. (%) 85.1 84.8

Table 2: Overall accuracy of the two methods as well as
the results for each individual category.

scale discourse parsing.
The emergence of linguistic corpora annotated

with discourse structure such as the RST Discourse
Treebank (Carlson et al., 2002) and PDT (Miltsakaki
et al., 2004; Prasad et al., 2008) have changed the
landscape of discourse analysis. More robust, data-
driven models are starting to emerge.

Compared with English, much less work has
been done in Chinese discourse analysis, presum-
ably due to the lack of discourse resources in Chi-
nese. (Huang and Chen, 2011) constructs a small
corpus following the PDT annotation scheme and

Prec. (%) Rec. (%) F. (%)
VP COORD 68.3 78.2 72.9

IP COORD+SB 76.0 78.7 77.3
Other 89.0 80.2 84.4

Table 3: Subject continuity results based on Maximum
Entropy model

Genre NW BN MZ
Accuracy. (%) 79.1 73.6 67.7

Table 4: Results on different genres based on Maximum
Entropy model

Xue and Yang our model
(%) p r f1 p r f1
Overall 89.2 88.7
EOS 64.7 76.4 70.1 63.0 77.9 69.7
NEOS 95.1 91.7 93.4 95.3 90.8 93.0

Table 5: Comparison of (Xue and Yang, 2011) and the
present work based on Maximum Entropy model

trains a statistical classifier to recognize discourse
relations. Their work, however, is only concerned
with discourse relations between adjacent sentences,
thus side-stepping the hard problem of disambiguat-
ing the Chinese comma and analyzing intra-sentence
discourse relations. To the best of our knowledge,
our work is the first in attempting to disambiguating
the Chinese comma as the first step in performing
Chinese discourse analysis.

6 Conclusions and future work

We proposed a approach to disambiguate the Chi-
nese comma as a first step toward discourse analy-
sis. Training and testing data are automatically de-
rived from a syntactically annotated corpus. We pre-
sented two automatic comma disambiguation meth-
ods that perform comparably. In the first method,
comma disambiguation is integrated into the parsing
process while in the second method we train a super-
vised classifier to classify the Chinese comma, us-
ing features extracted from automatic parses. Much
needs to be done in the area, but we believe our work
provides insight into the intricacy and complexity of
discourse analysis in Chinese.
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Abstract

Previous work on classifying information sta-

tus (Nissim, 2006; Rahman and Ng, 2011)

is restricted to coarse-grained classification

and focuses on conversational dialogue. We

here introduce the task of classifying fine-

grained information status and work on writ-

ten text. We add a fine-grained information

status layer to the Wall Street Journal portion

of the OntoNotes corpus. We claim that the

information status of a mention depends not

only on the mention itself but also on other

mentions in the vicinity and solve the task by

collectively classifying the information status

of all mentions. Our approach strongly outper-

forms reimplementations of previous work.

1 Introduction

Speakers present already known and yet to be es-

tablished information according to principles re-

ferred to as information structure (Prince, 1981;

Lambrecht, 1994; Kruijff-Korbayová and Steedman,

2003, inter alia). While information structure af-

fects all kinds of constituents in a sentence, we here

adopt the more restricted notion of information sta-

tus which concerns only discourse entities realized

as noun phrases, i.e. mentions1. Information status

(IS henceforth) describes the degree to which a dis-

course entity is available to the hearer with regard to

the speaker’s assumptions about the hearer’s knowl-

edge and beliefs (Nissim et al., 2004). Old men-

tions are known to the hearer and have been referred

1Since not all noun phrases are referential, we call noun

phrases which carry information status mentions.

to previously. Mediated mentions have not been

mentioned before but are also not autonomous, i.e.,

they can only be correctly interpreted by reference

to another mention or to prior world knowledge. All

other mentions are new.

IS can be beneficial for a number of NLP tasks,

though the results have been mixed. Nenkova et

al. (2007) used IS as a feature for generating pitch

accent in conversational speech. As IS is restricted

to noun phrases, while pitch accent can be assigned

to any word in an utterance, the experiments were

not conclusive. For determining constituent order of

German sentences, Cahill and Riester (2009) incor-

porate features modeling IS to good effect. Rahman

and Ng (2011) showed that IS is a useful feature for

coreference resolution.

Previous work on learning IS (Nissim, 2006; Rah-

man and Ng, 2011) is restricted in several ways.

It deals with conversational dialogue, in particular

with the corpus annotated by Nissim et al. (2004).

However, many applications that can profit from IS

concentrate on written texts, such as summariza-

tion. For example, Siddharthan et al. (2011) show

that solving the IS subproblem of whether a per-

son proper name is already known to the reader im-

proves automatic summarization of news. There-

fore, we here model IS in written text, creating a

new dataset which adds an IS layer to the already

existing comprehensive annotation in the OntoNotes

corpus (Weischedel et al., 2011). We also report

the first results on fine-grained IS classification by

modelling further distinctions within the category

of mediated mentions, such as comparative and

bridging anaphora (see Examples 1 and 2, re-
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spectively).2 Fine-grained IS is a prerequisite to

full bridging/comparative anaphora resolution, and

therefore necessary to fill gaps in entity grids (Barzi-

lay and Lapata, 2008) based on coreference only.

Thus, Examples 1 and 2 do not exhibit any corefer-

ential entity coherence but coherence can be estab-

lished when the comparative anaphor others is re-

solved to others than freeway survivor Buck Helm,

and the bridging anaphor the streets is resolved to

the streets of Oranjemund, respectively.

(1) the condition of freeway survivor Buck

Helm . . . , improved, hospital officials said.

Rescue crews, however, gave up hope that

others would be found.

(2) Oranjemund, the mine headquarters, is a

lonely corporate oasis of 9,000 residents.

Jackals roam the streets at night . . .

We approach the challenge of modeling IS via

collective classification, using several novel linguis-

tically motivated features. We reimplement Nissim’s

(2006) and Rahman and Ng’s (2011) approaches as

baselines and show that our approach outperforms

these by a large margin for both coarse- and fine-

grained IS classification.

2 Related Work

IS annotation schemes and corpora. We en-

hance the approach in Nissim et al. (2004) in two

major ways (see also Section 3.1). First, compar-

ative anaphora are not specifically handled in Nis-

sim et al. (2004) (and follow-on work such as Ritz

et al. (2008) and Riester et al. (2010)), although

some of them might be included in their respective

bridging subcategories. Second, we apply the

annotation scheme reliably to a new genre, namely

news. This is a non-trivial extension: Ritz et al.

(2008) applied a variation of the Nissim et al. (2004)

scheme to a small set of 220 NPs in a German

news/commentary corpus but found that reliability

then dropped significantly to the range of κ = 0.55

to 0.60. They attributed this to the higher syntac-

tic complexity and semantic vagueness in the com-

mentary corpus. Riester et al. (2010) annotated a

2All examples in this paper are from the OntoNotes cor-

pus. The mention in question is typed in boldface; antecedents,

where applicable, are displayed in italics.

German news corpus marginally reliable (κ = 0.66)

for their overall scheme but their confusion ma-

trix shows even lower reliability for several subcate-

gories, most importantly deixis and bridging.

While standard coreference corpora do not con-

tain IS annotation, some corpora annotated for

bridging are emerging (Poesio, 2004; Korzen and

Buch-Kromann, 2011) but they are (i) not annotated

for comparative anaphora or other IS categories, (ii)

often not tested for reliability or reach only low reli-

ability, (iii) often very small (Poesio, 2004).

To the best of our knowledge, we therefore

present the first English corpus reliably annotated

for a wide range of IS categories as well as full

anaphoric information for three main anaphora types

(coreference, bridging, comparative).

Automatic recognition of IS. Vieira and Poesio

(2000) describe heuristics for processing definite de-

scriptions in news text. As their approach is re-

stricted to definites, they only analyse a subset of

the mentions we consider carrying IS. Siddharthan

et al. (2011) also concentrate on a subproblem of IS

only, namely the hearer-old/hearer-new distinctions

for person proper names.

Nissim (2006) and Rahman and Ng (2011) both

present algorithms for IS detection on Nissim et

al.’s (2004) Switchboard corpus. Both papers treat

IS classification as a local classification problem

whereas we look at dependencies between the IS

status of different mentions, leading to collective

classification. In addition, they only distinguish the

three main categories old, mediated and new.

Finally, we work on news corpora which poses dif-

ferent problems from dialogue.

Anaphoricity determination (Ng, 2009; Zhou and

Kong, 2009) identifies many or most old men-

tions. However, no distinction between mediated

and new mentions is made. Most approaches to

bridging resolution (Meyer and Dale, 2002; Poe-

sio et al., 2004) or comparative anaphora (Mod-

jeska et al., 2003; Markert and Nissim, 2005)

address only the selection of the antecedent for

the bridging/comparative anaphor, not its recogni-

tion. Sasano and Kurohashi (2009) do also tackle

bridging recognition, but they depend on language-

specific non-transferrable features for Japanese.
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3 Corpus Creation

3.1 Annotation Scheme

Our scheme follows Nissim et al. (2004) in dis-

tinguishing three major IS categories old, new

and mediated. A mention is old if it is ei-

ther coreferential with an already introduced entity

or a generic or deictic pronoun. We follow the

OntoNotes (Weischedel et al., 2011) definition of

coreference to be able to integrate our annotations

with it. This definition includes coreference with

noun phrase as well as verb phrase antecedents3 .

Mediated refers to entities which have not yet

been introduced in the text but are inferrable via

other mentions or are known via world knowl-

edge. We distinguish the following six subcate-

gories: The category mediated/comparative

comprises mentions compared via either a contrast

or similarity to another one (see Example 1). This

category is novel in our scheme. We also in-

clude a category mediated/bridging (see Ex-

amples 2, 3 and 4). Bridging anaphora can be

any noun phrase and are not limited to definite NPs

as in Poesio et al. (2004), Gardent and Manuélian

(2005), Riester et al. (2010). In contrast to Nissim

et al. (2004), antecedents for both comparative and

bridging categories are annotated and can be noun

phrases, verb phrases or even clauses. The category

mediated/knowledge is inspired by the hearer-

old distinction introduced by Prince (1992) and cov-

ers entities generally known to the hearer. It includes

many proper names, such as Poland.4 Mentions that

are syntactically linked via a possessive relation or a

PP modification to other, old or mediated men-

tions fall into the type mediated/synt (see Ex-

amples 5 and 6).5 With no change to Nissim et al.’s

scheme, coordinated mentions where at least one el-

ement in the conjunction is old or mediated are

covered by the category mediated/aggregate,

and mentions referring to a value of a previously

mentioned function by the type mediated/func.

All other mentions are annotated as new, includ-

3In contrast to Nissim et al. (2004), but in accordance with

OntoNotes, we do not consider generics for coreference.
4This class corresponds roughly to Nissim et al.’s (2004)

mediated/general.
5This class expands Nissim et al.’s (2004) poss category

that only considers possessives but not PP modification.

ing most generics as well as newly introduced, spe-

cific mentions such as Example 7.

(3) Initial steps were taken at Poland’s first en-

vironmental conference, which I attended

last month. . . . it was no accident that par-

ticipants urged the free flow of information

(4) The Bakersfield supermarket went out of

business last May. The reason was . . .

(5) One Washington couple sold their liquor

store

(6) the main artery into San Francisco

(7) the owner was murdered by robbers

3.2 Agreement Study

We carried out an agreement study with 3 annota-

tors, of which Annotator A was the scheme devel-

oper and first author of this paper. All texts used

were from the Wall Street Journal (WSJ) portion of

OntoNotes. There were no restrictions on which

texts to include apart from (i) exclusion of letters

to the editor as they contain cross-document links

and (ii) a preference for longer texts with potentially

richer discourse structure.

Mentions were automatically preselected for the

annotators using the gold-standard syntactic annota-

tion.6 The existing coreference annotation was auto-

matically carried over to the IS task by marking all

mentions in a coreference chain (apart from the first

mention in the chain) as old. The annotation task

consisted of marking all mentions for their IS (old,

mediated or new) as well as marking mediated

subcategories (see Section 3.1) and the antecedents

for comparative and bridging anaphora.

The scheme was developed on 9 texts, which were

also used for training the annotators. Inter-annotator

agreement was measured on 26 new texts, which in-

cluded 5905 pre-marked potential mentions. The an-

notations of 1499 of these were carried over from

OntoNotes, leaving 4406 potential mentions for an-

notation and agreement measurement. In addition to

6Some non-mentions such as idioms could not be filtered

out via the syntactic annotation and had to be excluded during

human annotation.
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A-B A-C B-C

Overall Percentage coarse 87.5 86.3 86.5

Overall κ coarse 77.3 75.2 74.7

Overall Percentage fine 86.6 85.3 85.7

Overall κ fine 80.1 77.7 77.3

Table 1: Agreement Results

A-B A-C B-C

κ Non-mention 81.5 78.9 86.0

κ Old 80.5 83.2 79.3

κ New 76.6 74.0 74.3

κMediated/Knowledge 82.1 78.4 74.1

κMediated/Synt 88.4 87.8 87.6

κMediated/Aggregate 87.0 85.4 86.0

κMediated/Func 6.0 83.2 6.9

κMediated/Comp 81.8 78.3 81.2

κMediated/Bridging 70.8 60.6 62.3

Table 2: Agreement Results for individual categories

percentage agreement, we measured Cohen’s κ (Art-

stein and Poesio, 2008) between all 3 possible anno-

tator pairings. We also report single-category agree-

ment for each category, where all categories but one

are merged and then κ is computed as usual. Table 1

shows agreement results for the overall scheme at

the coarse-grained (4 categories: non-mention, old,

new, mediated) and the fine-grained level (9 cate-

gories: non-mention, old, new and the 6 mediated

subtypes). The results show that the scheme is over-

all reliable, with not too many differences between

the different annotator pairings.7

Table 2 shows the individual category agreement

for all 9 categories. We achieve high reliability for

most categories.8 Particularly interesting is the fact

that hearer-old entities (mediated/knowledge)

can be identified reliably although all annotators had

substantially different backgrounds. The reliabil-

ity of the category bridging is more annotator-

dependent, although still higher, sometimes con-

siderably, than other previous attempts at bridg-

7Often, annotation is considered highly reliable when κ ex-

ceeds 0.80 and marginally reliable when between 0.67 and 0.80

(Carletta, 1996). However, the interpretation of κ is still under

discussion (Artstein and Poesio, 2008).
8The low reliability of the rare category func, when involv-

ing Annotator B, was explained by Annotator B forgetting about

this category after having used it once. Pair A-C achieved high

reliability (κ 83.2 for pair A-C).

ing annotation (Poesio et al., 2004; Gardent and

Manuélian, 2005; Riester et al., 2010).

3.3 Gold Standard

Our final gold standard corpus consists of 50 texts

from the WSJ portion of the OntoNotes corpus-

The corpus will be made publically available as

OntoNotes annotation layer via http://www.

h-its.org/nlp/download.

Disagreements in the 35 texts used for annota-

tor training (9 texts) and testing (26 texts) were re-

solved via discussion between the annotators. An

additional 15 texts were annotated by Annotator A.

Finally, Annotator A carried out consistency checks

over all texts. – The gold standard includes 10,980

true mentions (see Table 3).

Texts 50

Mentions 10,980

old 3237

coref 3,143

generic deictic pr 94

mediated 3,708

world knowledge 924

syntactic 1,592

aggregate 211

func 65

comparative 253

bridging 663

new 4,035

Table 3: Gold Standard Distribution

4 Features

In this Section, we describe both the local as well as

the relational features we use.

4.1 Features for Local Classification

We use the following local features, including the

features in Nissim (2006) and Rahman and Ng

(2011) to be able to gauge how their systems fare on

our corpus and as a comparison point for our novel

collective classification approach.

The features developed by Nissim (2006) are

shown in Table 4. Nissim shows clearly that

these features are useful for IS classification.

Thus, subjects are more likely to be old as as-

sumed by, e.g., centering theory (Grosz et al.,
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Feature Value

full prev mention {yes, no, NA}9

mention time {first, second, more}
partial prev mention {yes, no, NA}
determiner {bare, def, dem, indef, poss, NA}
NP type {pronoun, common, proper, other}
NP length numeric

grammatical role {subject, subjpass, pp, other}

Table 4: Nissim’s (2006) feature set

1995). Also, previously unmentioned proper names

are more likely to be hearer-old and therefore

mediated/knowledge, although their exact sta-

tus will depend on how well known a particular

proper name is.

Rahman and Ng (2011) add all unigrams appear-

ing in any mention in the training set as features.

They also integrated (via a convolution tree-kernel

SVM (Collins and Duffy, 2001)) partial parse trees

that capture the generalised syntactic context of a

mention e and include the mention’s parent and sib-

ling nodes without lexical leaves. However, they use

no structure underneath the mention node e itself,

assuming that “any NP-internal information has pre-

sumably been captured by the flat features”.

To these feature sets, we add a small set of other

local features otherlocal. These track partial previ-

ous mentions by also counting partial previous men-

tion time as well as the previous mention of con-

tent words only. We also add a mention’s number as

one of singular, plural or unknown, and whether the

mention is modified by an adjective. Another feature

encapsulates whether the mention is modified by a

comparative marker, using a small set of 10 markers

such as another, such, similar . . . and the presence

of adjectives or adverbs in the comparative. Finally,

we include the mention’s semantic class as one of 12

coarse-grained classes, including location, organisa-

tion, person and several classes for numbers (such as

date, money or percent).

4.2 Relations for Collective Classification

Both Nissim (2006) and Rahman and Ng (2011)

classify each mention individually in a standard su-

pervised ML setting, not considering potential de-

pendencies between the IS categories of different

9We changed the value of “full prev mention” from “nu-

meric’ to {yes, no, NA}.

mentions. However, collective or joint classifica-

tion has made substantial impact in other NLP tasks,

such as opinion mining (Pang and Lee, 2004; Soma-

sundaran et al., 2009), text categorization (Yang et

al., 2002; Taskar et al., 2002) and the related task of

coreference resolution (Denis and Baldridge, 2007).

We investigate two types of relations between men-

tions that might impact on IS classification.

Syntactic parent-child relations. Two media-

ted subcategories account for accessibility via syn-

tactic links to another old or mediated men-

tion: mediated/synt is used when at least one

child of a mention is mediated or old, with child

relations restricted to pre- or postnominal posses-

sives as well as PP children in our scheme (see Sec-

tion 3.1). mediated/aggregate is for coordi-

nations in which at least one of the children is old

or mediated. In these two cases, a mention’s

IS depends directly on the IS of its children. We

therefore link a mention m1 to a mention m2 via a

hasChild relation if (i) m2 is a possessive or prepo-

sitional modification ofm1, or (ii)m1 is a coordina-

tion and m2 is one of its children.

Using such a relational feature catches two birds

with one stone: firstly, it integrates the internal struc-

ture of a mention into the algorithm, which Rah-

man and Ng (2011) ignore; secondly, it captures de-

pendencies between parent and child classification,

which would not be possible if we integrated the in-

ternal structure via flat features or additional tree

kernels. We hypothesise that the higher syntactic

complexity of our news genre (14.5% of all men-

tions are mediated/synt) will make this feature

highly effective in distinguishing between new and

mediated categories.

Syntactic precedence relations. IS is said to in-

fluence word order (Birner and Ward, 1998; Cahill

and Riester, 2009) and this fact has been exploited

in work on generation (Prevost, 1996; Filippova and

Strube, 2007; Cahill and Riester, 2009). Therefore,

we integrate dependencies between the IS classifica-

tion of mentions in precedence relations.

m1 precedes m2 if (i) m1 and m2 are in the same

clause, allowing for trace subjects in gerund and in-

finitive constructions, (ii) m1 and m2 are dependent

on the same verb or noun, allowing for interven-

ing nodes via modal, auxiliary, gerund and infinitive
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constructions, (iii) m1 is neither a child nor a parent

of m2, and (iv) m1 occurs before m2.

For Example 8 (slightly simplified) we extract the

precedence relations shown in Table 5.

(8) She was sent by her mother to a white

woman’s house to do chores in exchange for

meals and a place to sleep.

(She)old >p (her mother)med/synt

(She)old >p (a white-woman’s house)new
(She)old >p (chores)new
(She)old >p (exchange .....sleep)new
(her mother)med/synt >p (a white woman’s house)new
(chores)new >p (exchange . . . sleep)new
(meals)new >p (a place to sleep)new

Table 5: Precedence Relations for Example 8. She is a

trace subject for do.

Proper names behave differently from common

nouns. For example, they can occur at many differ-

ent places in the clause when functioning as spatial

or temporal scene-setting elements, such as In New

York. We therefore exclude all precedence relations

where one element of the pair is a proper name.

We extract 2855 precedence relations. Table 6

shows the statistics on precedence with the first men-

tion in a pair in rows and the second in columns. Me-

diated and new mentions indeed rarely precede old

mentions, so that precedence should improve sepa-

rating of old vs other mentions.

old mediated new

old 136 387 519

mediated 88 357 379

new 85 291 613

Table 6: Precedence relations in our corpus

5 Experiments

5.1 Experimental Setup

We use our gold standard corpus (see Section 3.3)

via 10-fold cross-validation on documents for all ex-

periments. Following Nissim (2006) and Rahman

and Ng (2011), we perform all experiments on gold

standard mentions and use the human WSJ syntac-

tic annotation for feature extraction, when neces-

sary. For the extraction of semantic class, we use

OntoNotes entity type annotation for proper names

and an automatic assignment of semantic class via

WordNet hypernyms for common nouns.

Coarse-grained versions of all algorithms distin-

guish only between the three old, mediated,

new categories. Fine-grained versions distinguish

between the categories old, the six mediated

subtypes, and new. We report overall accuracy as

well as precision, recall and F-measure per category.

Significance tests are conducted using McNemar’s

test on overall algorithm accuracy, at the level of 1%.

5.2 Local Classifiers

We reimplemented the algorithms in Nissim (2006)

and Rahman and Ng (2011) as comparison base-

lines, using their feature and algorithm choices. Al-

gorithm Nissim is therefore a decision tree J48 with

standard settings in WEKA with the features in Ta-

ble 4. Algorithm RahmanNg is an SVMwith a com-

posite kernel and one-vs-all training/testing (toolkit

SVMLight). They use the features in Table 4 plus

unigram and tree kernel features, described in Sec-

tion 4.1. We add our additional set of otherlocal

features to both baseline algorithms (yielding Nis-

sim+ol and RahmanNg+ol) as they aim specifically

at improving fine-grained classification.

5.3 Collective Classification

For incorporating our inter-mention links, we use a

variant of Iterative Collective classification (ICA),

which has shown good performance over a variety

of tasks (Lu and Getoor, 2003) and has been used

in NLP for example for opinion mining (Somasun-

daran et al., 2009). ICA is normally faster than

Gibbs sampling and — in initial experiments — did

not yield significantly different results from it.

ICA initializes each mention with its most likely

IS, according to the local classifier and features. It

then iterates a relational classifier, which uses both

local and relational features (our hasChild and pre-

cedes features) taking IS assignments to neighbour-

ing mentions into account. We use the exist aggre-

gator to define the dependence between mentions.

We use NetKit (Macskassy and Provost, 2007)

with its standard ICA settings for collective infer-

ence, as it allows direct comparison between local

and collective classification. The relational classi-

fiers are always exactly the same classifiers as the
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local collective

Nissim+ol Nissim+ol
Nissim Nissim+ol

+hasChild +hasChild+precedes

R P F R P F R P F R P F

Coarse

old 82.2 86.4 84.2 81.2 88.6 84.8 81.7 88.6 85.0 80.9 89.1 84.8

mediated 51.9 60.2 55.7 57.8 64.6 61.0 68.4 77.4 72.6 68.8 76.9 72.6

new 74.2 63.6 68.5 78.4 67.3 72.4 87.7 75.1 80.9 87.9 75.0 80.9

acc 69.0 72.3 79.4 79.4

Fine

old 84.0 83.3 83.6 85.0 83.9 84.5 84.3 84.7 84.5 84.1 85.2 84.6

med/knowledge 61.3 60.0 60.6 61.0 69.5 65.0 62.3 70.0 65.9 60.6 70.0 65.0

med/synt 37.2 59.7 45.8 44.7 60.0 51.3 76.8 81.4 79.0 75.7 80.1 77.9

med/agg 26.0 42.0 32.2 20.4 38.4 26.6 42.6 55.9 48.4 43.1 55.8 48.7

med/func 0.0 NA NA 32.3 65.6 43.3 33.8 53.7 41.5 35.4 53.5 48.7

med/comp 0.4 7.70 0.7 79.0 82.6 80.0 80.6 82.9 81.8 81.4 82.0 81.7

med/bridging 6.6 26.2 10.6 8.9 30.9 13.8 9.6 34.4 15.1 12.2 41.7 18.9

new 82.6 61.0 70.2 82.7 65.1 72.8 88.0 74.0 80.4 87.7 73.3 79.8

acc 66.6 70.0 77.0 76.8

Table 7: Collective classification compared to Nissim’s local classifier. Best performing algorithms are bolded.

local ones with the relational features added: thus, if

the local classifier is a tree kernel SVM so is the rela-

tional one. One problem when using the SVM Tree

kernel as relational classifier is that it allows only for

binary classification so that we need to train several

binary networks in a one-vs-all paradigm (see also

(Rahman and Ng, 2011)), which will not be able to

use the multiclass dependencies of the relational fea-

tures to optimum effect.

5.4 Results

Table 7 shows the comparison of collective classifi-

cation to local classification, using Nissim’s frame-

work and features, and Table 8 the equivalent table

for Rahman and Ng’s approach.

The improvements using the additional local fea-

tures over the original local classifiers are sta-

tistically significant in all cases. In particu-

lar, the inclusion of semantic classes improves

mediated/knowledge and mediated/func,

and comparative anaphora are recognised highly re-

liably via a small set of comparative markers.

The hasChild relation leads to significant im-

provement in accuracy over local classification in

all cases, showing the value of collective clas-

sification. The improvement here is centered

on the categories of mediated/synt (for both

cases) and mediated/aggregate (for Nis-

sim+ol+hasChild) as well as their distinction from

new.10 It is also interesting that collective clas-

sification with a concise feature set and a sim-

ple decision tree as used in Nissim+ol+hasChild,

performs equally well as RahmanNg+ol+hasChild,

which uses thousands of unigram and tree features

and a more sophisticated local classifier. It also

shows more consistent improvements over all fine-

grained classes.

The precedes relation does not lead to any fur-

ther improvement. We investigated several varia-

tions of the precedence link, such as restricting it

to certain grammatical relations, taking into account

definiteness or NP type but none of them led to

any improvement. We think there are two reasons

for this lack of success. First, the precedence of

mediated vs. new mentions does not follow a

clear order and is therefore not a very predictive fea-

ture (see Table 6). At first, this seems to contradict

studies such as Cahill and Riester (2009) that find

a variety of precedences according to information

status. However, many of the clearest precedences

they find are more specific variants of the old >p

mediated or old >p new precedence or they

are preferences at an even finer level than the one we

annotate, including for example the identification of

generics. Second, the clear old >p mediated

10For RhamanNg+ol+hasChild, the aggregate class suf-

fers from collective classification. We hypothesise that this is

an artefact of the one-vs-all training/testing for rare categories.
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local collective

RahmanNg+ol RahmanNg+ol
RahmanNg RahmanNg+ol

+hasChild +hasChild+precedes

R P F R P F R P F R P F

Coarse

old 81.3 90.1 85.5 82.6 91.4 86.8 83.5 87.8 85.6 82.9 87.2 85.0

mediated 61.4 68.6 64.8 61.5 71.9 66.3 66.7 79.5 72.6 64.8 76.7 70.3

new 82.1 69.9 75.5 84.9 70.1 76.8 89.0 74.9 81.3 86.9 73.5 79.6

acc 74.9 76.3 79.8 78.3

Fine

old 85.1 87.0 86.0 85.6 87.9 86.7 85.3 87.4 86.3 85.8 87.5 86.4

med/knowledge 65.8 67.2 66.5 64.8 72.6 68.5 67.1 69.6 68.3 64.7 73.2 68.7

med/synt 55.8 72.1 62.9 55.8 72.6 63.1 79.8 78.1 78.9 79.8 78.1 78.9

med/agg 29.9 75.9 42.9 29.9 75.9 42.9 17.1 53.7 25.9 14.2 49.2 22.1

med/func 27.7 38.3 32.1 38.5 69.4 49.5 40.0 44.1 42.0 40.0 40.0 40.0

med/comp 25.3 86.5 39.1 76.7 82.2 79.3 74.3 62.7 68.0 74.3 62.7 68.0

med/bridging 10.6 44.6 17.1 9.0 47.2 15.2 1.0 15.2 2.0 1.0 13.7 1.9

new 87.3 66.3 75.4 89.0 67.8 77.0 89.2 74.6 81.2 89.2 74.6 81.2

acc 72.6 74.6 77.5 77.4

Table 8: Collective classification compared to Rahman and Ng’s local classifier. Best performing algorithms are

bolded.

and old >p new preferences are partially already

captured by the local features, especially the gram-

matical role, as, for example, subjects are often both

old as well as early on in a sentence.

With regard to fine-grained classification, many

categories including comparative anaphora, are

identified quite reliably, especially in the multiclass

classification setting (Nissim+ol+hasChild). Bridg-

ing seems to be the by far most difficult category

to identify with final best F-measures still very low.

Most bridging mentions do not have any clear inter-

nal structure or external syntactic contexts that sig-

nal their presence. Instead, they rely more on lexi-

cal and world knowledge for recognition. Unigrams

could potentially encapsulate some of this lexical

knowledge but — without generalization — are too

sparse for a relatively rare category such as bridg-

ing (6% of all mentions) to perform well. The diffi-

culty of bridging recognition is an important insight

of this paper as it casts doubt on the strategy in pre-

vious research to concentrate almost exclusively on

antecedent selection (see Section 2).

6 Conclusions

We presented a new approach to information sta-

tus classification in written text, for which we also

provide the first reliably annotated English language

corpus. Based on linguistic intuition, we define fea-

tures for classifying mentions collectively. We show

that our collective classification approach outper-

forms the state-of-the-art in coarse-grained IS classi-

fication by about 10% (Nissim, 2006) and 5% (Rah-

man and Ng, 2011) accuracy. The gain is almost

entirely due to improvements in distinguishing be-

tween new and mediatedmentions. For the latter,

we also report the – to our knowledge – first fine-

grained IS classification results.

Since the work reported in this paper relied – fol-

lowing Nissim (2006) and Rahman and Ng (2011)

– on gold standard mentions and syntactic anno-

tations, we plan to perform experiments with pre-

dicted mentions as well. We also have to im-

prove the recognition of bridging, ideally combining

recognition and antecedent selection for a complete

resolution component. In addition, we plan to inte-

grate IS resolution with our coreference resolution

system (Cai et al., 2011) to provide us with a more

comprehensive discourse processing system.
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Abstract

Large e-commerce enterprises feature mil-
lions of items entered daily by a large vari-
ety of sellers. While some sellers provide
rich, structured descriptions of their items, a
vast majority of them provide unstructured
natural language descriptions. In the paper
we present a 2 steps method for structuring
items into descriptive properties. The first step
consists in unsupervised property discovery
and extraction. The second step involves su-
pervised property synonym discovery using a
maximum entropy based clustering algorithm.
We evaluate our method on a year worth of e-
commerce data and show that it achieves ex-
cellent precision with good recall.

1 Introduction

Online commerce has gained a lot of popularity over
the past decade. Large on-line C2C marketplaces
like eBay and Amazon, feature a very large and
long-tail inventory with millions of items (product
offers) entered into the marketplace every day by a
large variety of sellers. While some sellers (gener-
ally large professional ones) provide rich, structured
description of their products (using schemas or via
a global trade item number), the vast majority only
provide unstructured natural language descriptions.

To manage items effectively and provide the best
user experience, it is critical for these marketplaces
to structure their inventory into descriptive name-
value pairs (called properties) and ensure that items
of the same kind (digital cameras for instance) are
described using a unique set of property names

(brand, model, zoom, resolution, etc.) and values.
For example, this is important for measuring item
similarity and complementarity in merchandising,
providing faceted navigation and various business
intelligence applications. Note that structuring items
does not necessarily mean identifying products as
not all e-commerce inventory is manufactured (an-
imals for examples).

Structuring inventory in the e-commerce domain
raises several challenges. First, one needs to iden-
tify and extract the names and the values used by
individual sellers from unstructured textual descrip-
tions. Second, different sellers may describe the
same product in very different ways, using differ-
ent terminologies. For example, Figure 1 shows
3 item descriptions of hard drives from 3 different
sellers. The left description mentions ”rotational
speed” in a specification table while the other two
descriptions use the synonym ”spindle speed” in a
bulleted list (top right) or natural language speci-
fications (bottom right). This requires discovering
semantically equivalent property names and values
across inventories from multiple sellers. Third, the
scale at which on-line marketplaces operate makes
impractical to solve any of these problems manually.
For instance, eBay reported 99 million active users
in 2011, many of whom are sellers, which may trans-
late into thousands or even millions of synonyms to
discover accross more than 20,000 categories rang-
ing from consumer electronics to collectible and art.

This paper describes a two step process for struc-
turing items in the e-commerce domain. The first
step consists in an unsupervised property extrac-
tion technique which allows discovering name-value
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pairs from unstructured item descriptions. The sec-
ond step consists in identifying semantically equiv-
alent property names amongst these extracted prop-
erties. This is accomplished using supervised max-
imum entropy based clustering. Note that, although
value synonym discovery is an equally important
task for structuring items, this is still an area of on-
going research and is not addressed in this paper.

The remainder of this paper is structured as fol-
lows. We first review related work. We then describe
the two steps of our approach: 1) unsupervised prop-
erty discovery and extraction and 2) property name
synonym discovery. Finally, we present experimen-
tal results on real large-scale e-commerce data.

2 Related Work

This section reviews related work for the two com-
ponents of our method, namely unsupervised prop-
erty extraction and supervised property name syn-
onym discovery.

2.1 Unsupervised Property Extraction

A lot of progress has been accomplished in the area
of property discovery from product reviews since the
pioneering work by (Hu and Liu, 2004). Most of
this work is based on the observation, later formal-
ized as double propagation by (Qiu et al., 2009),
that in reviews, opinion words are usually asso-
ciated with product properties in some ways, and
thus product properties can be identified from opin-
ion words and opinion words from properties alter-
nately and iteratively. While (Hu and Liu, 2004) ini-
tially used association mining techniques; (Liu et al.,
2005) used Part-Of-Speech and supervised rule min-
ing to generate language patterns and identify prod-
uct properties; (Popescu and Etzioni, 2005) used
point wise mutual information between candidate
properties and meronymy discriminators; (Zhuang
et al., 2006; Qiu et al., 2009) improved on previous
work by using dependency parsing; (Kobayashi et
al., 2007) mined property-opinion patterns using sta-
tistical and contextual cues; (Wang and Wang, 2008)
leveraged property-opinion mutual information and
linguistic rules to identify infrequent properties; and
(Zhang et al., 2010) proposed a ranking scheme to
improve double propagation precision. In this pa-
per, we are focusing on extracting properties from

product descriptions which do not contain opinion
words.

In a sense, item properties can be viewed as slots
of product templates and our work bears similari-
ties with template induction methods. (Chambers
and Jurafsky, 2011) proposed a method for inferring
event templates based on word clustering according
to their proximity in the corpus and syntactic func-
tion clustering. Unfortunately, this technique can-
not be applied to our problem due to the lack of dis-
course redundancy within item descriptions.

(Putthividhya and Hu, 2011) and (Sachan et al.,
2011) also addressed the problem of structuring
items in the e-commerce domain. However, these
works assume that property names are known in
advance and focus on discovering values for these
properties from very short product titles.

Although we are primarily concerned with unsu-
pervised property discovery, it is worth mentioning
(Peng and McCallum, 2004) and (Ghani et al., 2006)
who approached the problem using supervised ma-
chine learning techniques and require labeled data.

2.2 Property Name Synonym Discovery
Our work is related to the synonym discovery re-
search which aims at identifying groups of words
that are semantically identical based on some de-
fined similarity metric. The body of work on
this problem can be divided into two major ap-
proaches (Agirre et al., 2009): methods that are
based on the available knowledge resources (e.g.,
WordNet, or available taxonomies) (Yang and Pow-
ers, 2005; Alvarez and Lim, 2007; Hughes and Ra-
mage, ), and methods that use contextual/property
distribution around the words (Pereira et al., 1993;
Chen et al., 2006; Sahami and Heilman, 2006; Pan-
tel et al., 2009). (Zhai et al., 2010) propose a con-
strained semi-supervised learning method using a
naive Bayes formulation of EM seeded by a small
set of labeled data and a set of soft constraints based
on the prior knowledge of the problem. There has
been also some recent work on applying topic mod-
eling (e.g., LDA) for solving this problem (Guo et
al., 2009).

Our work is also related to the existing research
on schema matching problem where the objective is
to identify objects that are semantically related cross
schemas. There has been an extensive study on the
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Figure 1: Three examples of item descriptions containing a specification table (left image), a bulleted list (top right)
and natural language specifications (bottom right).

problem of schema matching (for a comprehensive
survey see (Rahm and Bernstein, 2001; Bellahsene
et al., 2011; Bernstein et al., 2011)). In general the
work can be classified into rule-based and learning-
based approaches. Rule-based systems (Castano
and de Antonellis, 1999; Milo and Zohar, 1998;
L. Palopol and Ursino, 1998) often utilize only the
schema information (e.g., elements, domain types
of schema elements, and schema structure) to define
a similarity metric for performing matching among
the schema elements in a hard coded fashion. In
contrast learning based approaches learn a similar-
ity metric based on both the schema information
and the data. Earlier learning based systems (Li
and Clifton, 2000; Perkowitz and Etzioni, 1995;
Clifton et al., 1997) often rely on one type of learn-
ing (e.g., schema meta-data, statistics of the data
content, properties of the objects shared between
the schemas, etc). These systems do not exploit
the complete textual information in the data con-
tent therefore have limited applicability. Most re-
cent systems attempt to incorporate the textual con-
tents of the data sources into the system. Doan et

al. (2001) introduce LSD which is a semi-automatic
machine learning based matching framework that
trains a set of base learners using a set of user pro-
vided semantic mappings over a small data sources.
Each base learner exploits a different type of in-
formation, e.g. source schema information and in-
formation in the data source. Given a new data
source, the base learners are used to discover se-
mantic mappings and their prediction is combined
using a meta-learner. Similar to LSD, GLUE (Doan
et al., 2003) also uses a set of base learners com-
bined into a meta-learner for solving the match-
ing problem between two ontologies. Our work is
mostly related to (Wick et al., 2008) where they
propose a general framework for performing jointly
schema matching, co-reference and canonicalization
using a supervised machine learning approach. In
this approach the matching problem is treated as
a clustering problem in the schema attribute space,
where a cluster captures a matched set of attributes.
A conditional random field (CRF) (Lafferty et al.,
2001) is trained using user provided mappings be-
tween example schemas, or ontologies. CRF bene-
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fits from first order logic features that capture both
schema/ontology information as well as textual fea-
tures in the related data sources.

3 Unsupervised Property Extraction

The first step of our solution to structuring e-
commerce inventory aims at discovering and ex-
tracting relevant properties from items.

Our method is unsupervised and requires no prior
knowledge of relevant properties or any domain
knowledge as it operates the exact same way for
all items and categories. It maintains a set of pre-
viously discovered properties called known proper-
ties with popularity information. The popularity of
a given property name N (resp. value V ) is defined
as the number of sellers who are using N (resp. V ).
A seller is said to use a name or a value if we are
able to extract the property name or value from at
least one of its item descriptions. The method is
incremental in that it starts with an empty set of
known properties, mines individual items indepen-
dently and incrementally builds and updates the set
of known properties.

The key intuition is that the abundance of data
in e-commerce allows simple and scalable heuris-
tic to perform very well. For property extraction this
translates into the following observation: although
we may need complex natural language processing
for extracting properties from each and every item,
simple patterns can extract most of the relevant prop-
erties from a subset of the items due to redundancy
between sellers. In other words, popular properties
are used by many sellers and some of them write
their descriptions in a manner that makes these prop-
erties easy to extract. For example one pattern that
some sellers use to describe product properties often
starts by a property name followed by a colon and
then the property value (we refer to this pattern as
the colon pattern). Using this pattern we can mine
colon separated short strings like ”size : 20 inches”
or ”color : light blue” which enables us to discover
most relevant property names. However, such a pat-
tern extracts properties from a fraction of the inven-
tory only and does not suffice. We are using 4 pat-
terns which are formally defined in Table 1.

All patterns run on the entire item description.
Pattern 1 skips the html markers and scripts and

applies only to the content sentences. It ignores
any candidate property which name is longer than
30 characters and values longer than 80 characters.
These length thresholds may be domain dependent.
They have been chosen empirically. Pattern 2, 3 and
4 search for known property names. Pattern 2 ex-
tracts the closest value to the right of the name. It al-
lows the name and the value to be separated by spe-
cial characters or some html markups (like ”<TR>”,
”<TD>”, etc.). It captures a wide range of name
value pair occurrences including rows of specifica-
tion tables.

Syntactic cleaning and validation is performed
on all the extracted properties. Cleaning consists
mainly in removing bullets from the beginning of
names and punctuation at the end of names and val-
ues. Validation rejects properties which names are
pure numbers, properties that contain some special
characters and names which are less than 3 charac-
ters long. All discovered properties are added to the
set of known properties and their popularity counts
are updated.

Note that for efficiency reasons, Part-Of-Speech
(POS) tagging is performed only on sentences con-
taining the anchor of a pattern. The anchor of pat-
tern 1 is the colon sign while the anchor of the other
patterns is the known property name KN. We use
(Toutanova et al., 2003) for POS tagging.

4 Property Synonym Discovery

In this section we briefly overview a probabilistic
pairwise property synonym model inspired by (Cu-
lotta et al., 2007).

4.1 Probabilistic Model

Given a category C, let XC = {x1, x2, . . . , xn} be
the raw set of n property names (prior to synonym
discovery) extracted from a corpus of data associ-
ated with that category. Every property name is as-
sociated with pairs of values and popularity count
(as defined in Section 3) Vxi = {〈vi

j , c
i(vi

j)〉}m
j=1,

where vi
j is the jth value associated for the prop-

erty name xi and ci(vi
j) is the popularity of value vi

j .
Given a pair of property names xij = {xi, xj}, let
the binary random variable yij be 1 if xi and xj are
synonyms. Let F = {fk(xij , y)} be a set of fea-
tures over xij . For example, fk(xij , y) may indicate
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# Pattern Example
1 [NP][:][optional DT][NP] ”color : light blue”
2 [KN][optional html][NP] ”size</TD><TD><FONT COLOR="red">20 inches”
3 [!IN][KN]["is" or "are"][NP] ”color is red”
4 [NP][KN] ”red color”

Table 1: Patterns used to extract properties from item description. The macro tag NP denotes any of the tags NN,
NNP, NNS, NNPS, JJ, JJS or CD. The KN tag is defined as a NP tag over a known property name. Pattern 1 only can
discover new names; patterns 2 to 4 aim at capturing values for known property names.

whether xi and xj have both numerical values. Each
feature fk has an associated real-valued parameter
λk. The pairwise model is given by:

P(yij |xij) =
1

Zxij

exp
∑

k

λkfk(xij , yij) (1)

where Zxij is a normalizer that sums over the two
settings of yij . This is a maximum-entropy classifier
(i.e. logistic regression) in which P(yij |xij) is the
probability that xi and xj are synonyms. To estimate
Λ = {λk} from labeled training data, we perform
gradient ascent to maximize the log-likelihood of the
labeled data.

Given a data set in which property names are
manually clustered, the training data can be cre-
ated by simply enumerating over each pair of syn-
onym property names xij , where yij is true if xi

and xj are in the same cluster. More practically,
given the raw set of extracted properties, first we
manually cluster them. Positive examples are then
pairs of property names from the same cluster. Neg-
ative examples are pairs of names cross two dif-
ferent clusters randomly selected. For example,
let assume that the following four property name
clusters have been constructed: {color, shade},
{size, dimension}, {weight}, {features}. These
clusters implies that ”color” and ”shade” are syn-
onym; that ”size” and ”dimension” are synonym and
that ”weight” and ”features” don’t have any syn-
onym. The pair (color, shade) is a positive exam-
ples, while (size, shade) and (weight, features)
are negative examples.

Now, given an unseen category C′ and the set of
raw properties (property names and values) mined
from that category, we can construct an undirected-
weighted graph in which vertices correspond to the
property names NC′ and edge weights are propor-

tional to P(yij |xij). The problem is now reduced to
finding the maximum a posteriori (MAP) setting of
yijs in the new graph. The inference in such mod-
els is generally intractable, therefore we apply ap-
proximate graph partitioning methods where we par-
tition the graph into clusters with high intra-cluster
edge weights and low inter-cluster edge weights. In
this work we employ the standard greedy agglom-
erative clustering, in which each noun phrase would
be assigned to the most probable cluster according
to P(yij |xij).

4.2 Features
Given a pair of property names xij = {xi, xj} we
have designed a set of features as follows:

Property name string similarity/distance: This
measures string similarity between two names. We
have included various string edit distances such as
Jaccard distance over n-grams extracted from the
property names, and also Levenstein distance. We
have also included a feature that compares the two
property names after their commoner morphologi-
cal and inflectional endings have been removed us-
ing the Porter Stemmer algorithm.

Property value set coverage: We compute a
weighted Jaccard measure given the values and the
value frequencies associated with a property name.

J (Vxi ,Vxj ) =

∑
v∈(Vxi∩Vxj ) min(ci(v), cj(v))∑
v∈(Vxi∩Vxj ) max(ci(v), cj(v))

This feature essentially computes how many prop-
erty values are common between the two property
names, weighted by their popularity.

Property name co-occurrence: This is an inter-
esting feature which is based on the observation that
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two property names that are synonyms, rarely oc-
cur together within the same description. This is
based on the assumption that sellers are consistent
when using property names throughout a single de-
scription. For example when they are specifying the
size of an item, they either use size or dimensions
exclusively in a single description. However, it is
more likely that two property names that are not syn-
onyms appear together within a single description.
To conform this assumption, we ran a separate ex-
periment that measures the co-occurrence frequency
of the property names in a single category. Table 2
shows a measurement of pairwise co-occurrence of
a few example property names computed over the
Audio books eBay category. Given a property name
x let I(x) be the total number of descriptions that
contain the name x. Now, given two property names
xi and xj , we define a measure of co-occurrence of
these names as:

CO(xi, xj) =
I(xi) ∩ I(xj)

I(xi) ∪ I(xj)

In Table 2 it can be seen that synonym prop-
erty names such as ”author” and ”by” have a zero
co-occurrence measure, while semantically different
property names such as ”format” and ”read by” have
a non-zero co-occurrence measure.

5 Experimental results

This section presents experimental results on a real
dataset. We first describe the dataset used for these
experiments and then provide results for property
extraction and property name synonym discovery.

5.1 Data set and methodology

All the results we are reporting in this paper were ob-
tained from a dataset of several billion descriptions
corresponding to a year worth of eBay item (no sam-
pling was performed).

For listing an item on eBay, a seller must pro-
vide a short descriptive title (up to 80 characters) and
can optionally provide a few descriptive name value
pairs called item specifics, and a free-form html de-
scription. Contrary to item specifics, a vast majority
of sellers provide a rich description containing very
useful information about the property of their item.
Figure 1 shows 3 examples of eBay descriptions.

eBay organizes items into a six-level category
structure similar to a topic hierarchy comprising
20,000 leaf categories and covering most of the
goods in the world. An item is typically listed in
one category but some items may be suitable for and
listed in two categories.

Although this dataset is not publicly available,
very similar data can be obtained from the eBay web
site and through eBay Developers API 1.

In the following, we report precision and recall
results. Evaluation was performed by two annota-
tors (non expert of the domain). For property ex-
traction, they were asked to decide whether or not an
extracted property is relevant for the corresponding
items; for synonym discovery to decide whether or
not sellers refer to the same semantic entity. Anno-
tators were asked to reject the null hypothesis only
beyond reasonable doubt and we found the annotator
agreement to be extremely high.

5.2 Property Extraction Results

We have been running the property extraction
method described in Section 3 on our entire dataset.
The properties extracted have been aggregated at the
leaf category level and ranked by popularity (as de-
fined in Section 3). Because no gold standard data
is available for this task, evaluation has to be per-
formed manually. However, it is impractical to re-
view results for 20,000 categories and we uniformly
sampled 20 categories randomly.

Precision. Table 3 shows the weighted (by cat-
egory size) average precision of the extracted prop-
erty names up to rank 20. Precision at rank k for a
given category is defined as the number of relevant
properties in the top k properties of that categories,
divided by k. Table 4 shows the top 15 properties
extracted for five eBay categories.

Although we did not formally evaluate the preci-
sion of the discovered values, informal reviews have
shown that this method extracts good quality val-
ues. Examples are ”n/a”, ”well”, ”storage or well”,
”would be by well” and ”by well” for the prop-
erty name ”Water” in the Land category; ”metal”,
”plastic”, ”nylon”, ”acetate” and ”durable o matter”
for ”Frame material” in Sunglasses; or ”acrylic”,

1See https://www.x.com/developers/ebay/ for
details.
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author by read by format narrated by
author 0 0.06 0.06 0.006
by 0 0.17 0.005 0.013
read by 0.06 0.17 0.035 0
format 0.06 0.005 0.035 0.006
narrated by 0.006 0.013 0 0.006

Table 2: Co-occurrence measure computed over a subset of property names in the Audio books category. Some
synonym property names such as author and by have zero co-occurrence frequency, while semantically different
property names such as format and read by sometimes appear together in some of the item descriptions.

Rank 1 2 3 4 5 6 7 8 9 10
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.992 0.992 0.986
Rank 11 12 13 14 15 16 17 18 19 20
Precision 0.986 0.997 0.986 1 0.998 1 1 0.959 0.722 0.747

Table 3: Weighted average precision of the top 20 extracted property names.

”oil”, ”acrylic on canvas” and ”oil on canvas” for
”Medium” in Paintings.

Sets of values tend to contain more synonyms
than names. Also, we observed that some names
exhibit polysemy issues in that their values clearly
belong to several semantic clusters. An example
of polysemy is the name ”Postmark” in the ”Post-
cards” categories which contains values like ”none,
postally used, no, unused” and years (”1909, 1908,
1910...”). Cleaning and normalizing values is on-
going research effort.

Recall. Evaluating recall of our method requires
comparing for each category, the number of relevant
properties extracted to the number of relevant prop-
erties the descriptions in this category contain. It
is dauntingly expensive. As a proxy for name re-
call, we examined 20 categories and found that our
method discovered all the relevant popular property
names.

It is quite remarkable that an unsupervised
method like ours achieves results of that quality and
is able to cover most of the good of the world with
descriptive properties. To our knowledge, this has
never been accomplished before in the e-commerce
domain.

5.3 Synonym discovery results

To train our name synonym discovery algorithm, we
manually clustered properties from 27 randomly se-

lected categories as described in Section 4. This re-
sulted in 178 clusters, 113 of them containing a sin-
gle property (no synonym) and 65 containing 2 or
more properties and capturing actual synonym in-
formation. Note that although estimating the co-
occurrence table (see Table 2) can be computation-
ally expensive, it is very manageable for such a small
set of clusters. Scalability issues due to the large
number of eBay categories (nearly 20,000) made im-
practical to use the solutions proposed in the past to
solve that problem as baselines.

Results were produced by applying the trained
model to the top 20 discovered properties for each
and every eBay categories. The algorithm discov-
ered 10672 synonyms spanning 2957 categories.

Precision. To measure the precision of our algo-
rithm, we manually labeled 6618 synonyms as cor-
rect or incorrect. 6076 synonyms were found to be
correct and 542 incorrect, a precision of 91.8%. Ta-
ble 5 shows examples of synonyms and one of the
categories where they have been discovered. Some
of them are very category specific. For instance,
while ”hp” means ”horsepower” for air compres-
sors, it is an acronym of a well known brand in con-
sumer electronics.

Recall. Evaluating recall is a more labor inten-
sive task as it involves comparing, for each of the
2957 categories, the number of synonyms discov-
ered to the number of synonyms the category con-
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Land Aquariums iPod & MP3 Players Acoustic Guitars Postcards
State Dimensions Weight Top Condition
Zoning Height Width Scale length Publisher
County Size Depth Neck Size
Water Width Height Bridge Postmark
Location Includes Color Finish Postally used
Taxes Weight Battery type Rosette Type
Size Depth Dimensions Binding Age
Sewer Capacity Frequency response Fingerboard Stamp
Power Color Storage capacity Tuning machines Date
Roads Power Display Case Title
Lot size LCD size Capacity Pickguard Postmarked
Utilities Length Screen size Tuners Subject
Parcel number Material Battery Nut width Location

Cable length Length Corners
Condition Thickness Era

Table 4: Examples of discovered properties for 5 eBay categories.

Category Synonyms
Rechargeable Batteries {Battery type, Chemical composition}
Lodging {Check-in, Check-in time}
Flower seeds {Bloom time, Flowering season}
Doors & Door Hardware {Colour,Color, Main color}
Gemstone {Cut, Shape}
Air Compressors {Hp, Horsepower}
Decorative Collectibles {Item no, Item sku, Item number}
Router Memory {Memory (ram), Memory size}
Equestrian Clothing {Bust, Chest}
Traiding Cards {Rarity, Availability}
Paper Calendar {Time period, Calendars era}

Table 5: Examples of discovered property name synonyms.

tains. As a proxy we labeled 40 randomly selected
categories. For these categories, we found the recall
to be 51%. As explained in Section 4, the overlap
of values between two names is an important feature
for our algorithm. The fact that we are not cleaning
and normalizing the values discovered by our prop-
erty extraction algorithm clearly impacts recall. This
is definitively an important direction for further im-
provements.

6 Conclusion

We presented a method for structuring e-commerce
inventory into descriptive properties. This method

is based on unsupervised property discovery and ex-
traction from unstructured item descriptions, and on
property name synonym discovery achieved using
a supervised maximum entropy based clustering al-
gorithm. Experiments on a large real e-commerce
dataset showed that both techniques achieve very
good results. However, we did not address the issue
of property value cleaning and normalization. This
is an important direction for future work.
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Abstract

The named entity disambiguation task is to re-

solve the many-to-many correspondence be-

tween ambiguous names and the unique real-

world entity. This task can be modeled as a

classification problem, provided that positive

and negative examples are available for learn-

ing binary classifiers. High-quality sense-

annotated data, however, are hard to be ob-

tained in streaming environments, since the

training corpus would have to be constantly

updated in order to accomodate the fresh data

coming on the stream. On the other hand, few

positive examples plus large amounts of un-

labeled data may be easily acquired. Produc-

ing binary classifiers directly from this data,

however, leads to poor disambiguation per-

formance. Thus, we propose to enhance the

quality of the classifiers using finer-grained

variations of the well-known Expectation-

Maximization (EM) algorithm. We conducted

a systematic evaluation using Twitter stream-

ing data and the results show that our clas-

sifiers are extremely effective, providing im-

provements ranging from 1% to 20%, when

compared to the current state-of-the-art biased

SVMs, being more than 120 times faster.

1 Introduction

Human language is not exact. For instance, an en-

tity1 may be referred by multiple names (i.e., poly-

semy), and also the same name may refer to different

entities depending on the surrounding context (i.e.,

1The term entity refers to anything that has a distinct, sepa-

rate (materialized or not) existence.

homonymy). The task of named entity disambigua-

tion is to identify which names refer to the same en-

tity in a textual collection (Sarmento et al., 2009;

Yosef et al., 2011; Hoffart et al., 2011). The emer-

gence of new communication technologies, such as

micro-blog platforms, brought a humongous amount

of textual mentions with ambiguous entity names,

raising an urgent need for novel disambiguation ap-

proaches and algorithms.

In this paper we address the named entity disam-

biguation task under a particularly challenging sce-

nario. We are given a stream of messages from a

micro-blog channel such as Twitter2 and a list of

names n1, n2, . . . , nN used for mentioning a spe-

cific entity e. Our problem is to monitor the stream

and predict whether an incoming message contain-

ing ni indeed refers to e (positive example) or not

(negative example). This scenario brings challenges

that must be overcome. First, micro-blog messages

are composed of a small amount of words and they

are written in informal, sometimes cryptic style.

These characteristics make hard the identification of

entities and the semantics of their relationships (Liu

et al., 2011). Further, the scarcity of text in the mes-

sages makes it even harder to properly characterize a

common context for the entities. Second, as we need

to monitor messages that keep coming at a fast pace,

we cannot afford to gather information from external

sources on-the-fly. Finally, fresh data coming in the

stream introduces new patterns, quickly invalidating

static disambiguation models.

2Twitter is one of the fastest-growing micro-blog channels,

and an authoritative source for breaking news (Jansen et al.,

2009).
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We hypothesize that the lack of information in

each individual message and from external sources

can be compensated by using information obtained

from the large and diverse amount of text in a stream

of messages taken as a whole, that is, thousands of

messages per second coming from distinct sources.

The information embedded in such a stream of

messages may be exploited for entity disambigua-

tion through the application of supervised learning

methods, for instance, with the application of bi-

nary classifiers. Such methods, however, suffer from

a data acquisition bottleneck, since they are based

on training datasets that are built by skilled hu-

man annotators who manually inspect the messages.

This annotation process is usually lengthy and la-

borious, being clearly unfeasible to be adopted in

data streaming scenarios. As an alternative to such

manual process, a large amount of unlabeled data,

augmented with a small amount of (likely) posi-

tive examples, can be collected automatically from

the message stream (Liu et al., 2003; Denis, 1998;

Comité et al., 1999; Letouzey et al., 2000).

Binary classifiers may be learned from such data

by considering unlabeled data as negative examples.

This strategy, however, leads to classifiers with poor

disambiguation performance, due to a potentially

large number of false-negative examples. In this pa-

per we propose to refine binary classifiers iteratively,

by performing Expectation-Maximization (EM) ap-

proaches (Dempster et al., 1977). Basically, a partial

classifier is used to evaluate the likelihood of an un-

labeled example being a positive example or a nega-

tive example, thus automatically and (continuously)

creating a labeled training corpus. This process con-

tinues iteratively by changing the label of some ex-

amples (an operation we call label-transition), so

that, after some iterations, the combination of la-

bels is expected to converge to the one for which

the observed data is most likely. Based on such an

approach, we introduce novel disambiguation algo-

rithms that differ among themselves on the granu-

larity in which the classifier is updated, and on the

label-transition operations that are allowed.

An important feature of the proposed approach is

that, at each iteration of the EM-process, a new clas-

sifier (an improved one) is produced in order to ac-

count for the current set of labeled examples. We

introduce a novel strategy to maintain the classifiers

up-to-date incrementally after each iteration, or even

after each label-transition operation. Indeed, we the-

oretically show that our classifier needs to be up-

dated just partially and we are able to determine ex-

actly which parts must be updated, making our dis-

ambiguation methods extremely fast.

To evaluate the effectiveness of the proposed al-

gorithms, we performed a systematic set of ex-

periments using large-scale Twitter data containing

messages with ambiguous entity names. In order

to validate our claims, disambiguation performance

is investigated by varying the proportion of false-

negative examples in the unlabeled dataset. Our

algorithms are compared against a state-of-the-art

technique for named entity disambiguation based

on classifiers, providing performance gains ranging

from 1% to 20% and being roughly 120 times faster.

2 Related Work

In the context of databases, traditional entity dis-

ambiguation methods rely on similarity functions

over attributes associated to the entities (de Car-

valho et al., 2012). Obviously, such an approach

is unfeasible for the scenario we consider here.

Still on databases, Bhattacharya and Getoor (2007)

and Dong et. al (2005) propose graph-based dis-

ambiguation methods that generate clusters of co-

referent entities using known relationships between

entities of several types. Methods to disambiguate

person names in e-mail (Minkov et al., 2006) and

Web pages (Bekkerman and McCallum, 2005; Wan

et al., 2005) have employed similar ideas. In e-

mails, information taken from the header of the mes-

sages leads to establish relationships between users

and building a co-reference graph. In Web pages,

reference information come naturally from links.

Such graph-based approach could hardly be applied

to the context we consider, in which the implied re-

lationships between entities mentioned in a given

micro-blog message are not clearly defined.

In the case of textual corpora, traditional disam-

biguation methods represent entity names and their

context (Hasegawa et al., 2004) (i.e., words, phrases

and other names occurring near them) as weighted

vectors (Bagga and Baldwin, 1998; Pedersen et al.,

2005). To evaluate whether two names refer to

the same entity, these methods compute the similar-
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ity between these vectors. Clusters of co-referent

names are then built based on such similarity mea-

sure. Although effective for the tasks considered in

these papers, the simplistic BOW-based approaches

they adopt are not suitable for cases in which the

context is harder to capture due to the small num-

ber of terms available or to informal writing style.

To address these problems, some authors argue that

contextual information may be enriched with knowl-

edge from external sources, such as search results

and the Wikipedia (Cucerzan, 2007; Bunescu and

Pasca, 2006; Han and Zhao, 2009). While such a

strategy is feasible in an off-line setting, two prob-

lems arise when monitoring streams of micro-blog

messages. First, gathering information from exter-

nal sources through the Internet can be costly and,

second, informal mentions to named entities make it

hard to look for related information in such sources.

The disambiguation methods we propose fall into

a learning scenario known as PU (positive and un-

labeled) learning (Liu et al., 2003; Denis, 1998;

Comité et al., 1999; Letouzey et al., 2000), in which

a classifier is built from a set of positive examples

plus unlabeled data. Most of the approaches for PU

learning, such as the biased-SVM approach (Li and

Liu, 2003), are based on extracting negative exam-

ples from unlabeled data. We notice that existing ap-

proaches for PU learning are not likely to scale given

the restrictions imposed by streaming data. Thus,

we propose highly incremental approaches, which

are able to process large-scale streaming data.

3 Disambiguation in Streaming Data

Consider a stream of messages from a micro-blog

channel such as Twitter and let n1, n2, . . . , nN be

names used for mentioning a specific entity e in

these messages. Our problem is to continually moni-

tor the stream and predict whether an incoming mes-

sage containing ni indeed refers to e or not.

This task may be accomplished through the appli-

cation of classification techniques. In this case, we

are given an input data set called the training cor-

pus (denoted as D) which consists of examples of

the form <e,m, c>, where e is the entity, m is a

message containing the entity name (i.e., any ni),

and c ∈ {�,�} is a binary variable that specifies

whether or not the entity name in m refers to the

desired real-world entity e. The training corpus is

used to produce a classifier that relates textual pat-

terns (i.e., terms and sets of terms) in m to the value

of c. The test set (denoted as T ) consists of a set

of records of the form <e,m, ?>, and the classifier

is used to indicate which messages in T refer to (or

not) the desired entity.

Supervised classifiers, however, are subject to a

data acquisition bottleneck, since the creation of a

training corpus requires skilled human annotators to

manually inspect the messages. The cost associ-

ated with this annotation process may render vast

amounts of examples unfeasible. In many cases,

however, the acquisition of some positive examples

is relatively inexpensive. For instance, as we are

dealing with messages collected from micro-blog

channels, we may exploit profiles (or hashtags) that

are known to be strongly associated with the desired

entity. Let us consider, as an illustrative example,

the profile associated with a company (i.e., @bayer).

Although the entity name is ambiguous, the sense of

messages that are posted in this profile is biased to-

wards the entity as being a company. Clearly, other

tricks like this one can be used, but, unfortunately,

they do not guarantee the absence of false-positives,

and they are not complete since the majority of mes-

sages mentioning the entity name may appear out-

side its profile. Thus, the collected examples are

not totally reliable, and disambiguation performance

would be seriously compromised if classifiers were

built upon these uncertain examples directly.

3.1 Expectation-Maximization Approach

In this paper we hypothesize that it is worthwhile

to enhance the reliability of unlabeled examples,

provided that this type of data is inexpensive and

the enhancement effort will be then rewarded with

an improvement in disambiguation performance.

Thus, we propose a new approach based on the

Expectation-Maximization (EM) algorithm (Demp-

ster et al., 1977). We assume two scenarios:

• the training corpusD is composed of a small set

of truly positive examples plus a large amount

of unlabeled examples.

• the training corpus D is composed of a small

set of potentially positive examples plus a large

amount of unlabeled examples.
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In both scenarios, unlabeled examples are ini-

tially treated as negative ones, so that classifiers can

be built from D. Therefore, in both scenarios, D
may contain false-negatives. In the second scenario,

however, D may also contain false-positives.

Definition 3.1: The label-transition operation

x�→� turns a negative example x� ∈ D into a

positive one x�. The training corpus D becomes

{(D − x�) ∪ x�}. Similarly, the label-transition

operation x�→�, turns a positive example x� ∈ D
into a negative one x�. The training corpus D be-

comes {(D − x�) ∪ x�}.

Our Expectation Maximization (EM) methods

employ a classifier which assigns to each example

x ∈ D a probability α(x,�) of being negative.

Then, as illustrated in Algorithm 1, label-transition

operations are performed, so that, in the end of the

process, it is expected that the assigned labels con-

verge to the combination for which the data is most

likely. In the first scenario only operations x�→�

are allowed, while in the second scenario operations

x�→� are also allowed. In both cases, a crucial issue

that affects the effectiveness of our EM-based meth-

ods concerns the decision of whether or not perform-

ing the label-transition operation. Typically, a tran-

sition threshold αmin is employed, so that a label-

transition operation x�→� is always performed if x

is a negative example and α(x,�) ≤ αmin. Simi-

larly, operation x�→� is always performed if x is a

positive example and α(x,�) > αmin.

Algorithm 1 Expectation-Maximization Approach.

Given:

D: training corpus

R: a binary classifier learned from D
Expectation step:

perform transition operations on examples in D
Maximization step:

update R and α(x,�) ∀x ∈ D

The optimal value for αmin is not known in ad-

vance. Fortunately, data distribution may provide

hints about proper values for αmin. In our ap-

proach, instead of using a single value for αmin,

which would be applied to all examples indistinctly,

we use a specific αx
min threshold for each exam-

ple x ∈ D. Based on such an approach, we in-

troduce fine-grained EM-based methods for named

entity disambiguation under streaming data. A spe-

cific challenge is that the proposed methods perform

several transition operations during each EM itera-

tion, and each transition operation may invalidate

parts of the current classifier, which must be prop-

erly updated. We take into consideration two possi-

ble update granularities:

• the classifier is updated after each EM iteration.

• the classifier is updated after each label-

transition operation.

Incremental Classifier: As already discussed, the

classifier must be constantly updated during the EM

process. In this case, well-established classifiers,

such as SVMs (Joachims, 2006), have to be learned

entirely from scratch, replicating work by large.

Thus, we propose as an alternative the use of Lazy

Associative Classifiers (Veloso et al., 2006).

Definition 3.2: A classification rule is a specialized

association rule {X −→ c} (Agrawal et al., 1993),

where the antecedent X is a set of terms (i.e., a

termset), and the consequent c indicates if the pre-

diction is positive or negative (i.e., c ∈ {�,�}).

The domain for X is the vocabulary of D. The car-

dinality of rule {X → c} is given by the number of

terms in the antecedent, that is |X |. The support of

X is denoted as σ(X ), and is the number of exam-

ples in D having X as a subset. The confidence of

rule {X → c} is denoted as θ(X −→ c), and is the

conditional probability of c given the termsetX , that

is, θ(X −→ c) = σ(X∪c)
σ(X ) .

In this context, a classifier is denoted as R, and

it is composed of a set of rules {X −→ c} ex-

tracted from D. Specifically, R is represented as

a pool of entries with the form <key, properties>,

where key={X , c} and properties={σ(X ), σ(X ∪
c), θ(X → c)}. Each entry in the pool corresponds

to a rule, and the key is used to facilitate fast access

to rule properties.

Once the classifier R is extracted from D, rules

are collectively used to approximate the likelihood

of an arbitrary example being positive (�) or neg-

ative (�). Basically, R is interpreted as a poll, in

which each rule {X → c} ∈ R is a vote given by X
for � or �. Given an example x, a rule {X → c} is

only considered a valid vote if it is applicable to x.
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Definition 3.3: A rule {X → c} ∈ R is said to be

applicable to example x ifX ⊆ x, that is, if all terms

in X are present in example x.

We denote as Rx the set of rules in R that are ap-

plicable to example x. Thus, only and all the rules in

Rx are considered as valid votes when classifying x.

Further, we denote as Rc
x the subset of Rx contain-

ing only rules predicting c. Votes in Rc
x have differ-

ent weights, depending on the confidence of the cor-

responding rules. Weighted votes for c are averaged,

giving the score for c with regard to x (Equation 1).

Finally, the likelihood of x being a negative example

is given by the normalized score (Equation 2).

s(x, c) =
∑ θ(X → c)

|Rc
x|

,with c ∈ {�,�} (1)

α(x,�) =
s(x,�)

s(x,�) + s(x,�)
(2)

Training Projection and Demand-Driven Rule

Extraction: Demand-driven rule extraction (Veloso

et al., 2006) is a recent strategy used to avoid the

huge search space for rules, by projecting the train-

ing corpus according to the example being pro-

cessed. More specifically, rule extraction is delayed

until an example x is given for classification. Then,

terms in x are used as a filter that configures the

training corpus D so that just rules that are appli-

cable to x can be extracted. This filtering process

produces a projected training corpus, denoted asDx,

which contains only terms that are present in x. As

shown in (Silva et al., 2011), the number of rules ex-

tracted using this strategy grows polynomially with

the size of the vocabulary.

Extending the Classifier Dynamically: With

demand-driven rule extraction, the classifierR is ex-

tended dynamically as examples are given for clas-

sification. Initially R is empty; a subset Rxi
is ap-

pended to R every time an example xi is processed.

Thus, after processing a sequence of m examples

{x1, x2, . . . , xm}, R = {Rx1
∪Rx2

∪ . . . ∪Rxm
}.

Before extracting rule {X → c}, it is checked

whether this rule is already in R. In this case, while

processing an example x, if an entry is found with

a key matching {X , c}, then the rule in R is used

instead of extracting it from Dx. Otherwise, the rule

is extracted from Dx and then it is inserted into R.

Incremental Updates: Entries in R may become

invalid when D is modified due to a label-transition

operation. Given thatD has been modified, the clas-

sifier R must be updated properly. We propose to

maintain R up-to-date incrementally, so that the up-

dated classifier is exactly the same one that would

be obtained by re-constructing it from scratch.

Lemma 3.1: Operation x�→� (or x�→�) does not

change the value of σ(X ), for any termset X .

Proof: The operation x�→� changes only the label

associated with x, but not its terms. Thus, the num-

ber of examples in D having X as a subset is essen-

tially the same as in {(D − x�) ∪ x�. The same

holds for operation x�→�. �

Lemma 3.2: Operation x�→� (or x�→�) changes

the value of σ(X ∪ c) iff termset X ⊂ x.

Proof: For operation x�→�, if X ⊂ x, then {X ∪
�} appears once less in {(D − x�) ∪ x�} than in

D. Similarly, {X ∪�} appears once more in {(D−
x�)∪x�} than inD. Clearly, if X 6⊂ x, the number

of times {X ∪�} (and {X ∪�}) appears in {(D −
x�)∪x�} remains the same as inD. The same holds

for operation x�→�. �

Lemma 3.3: Operation x�→� (or x�→�) changes

the value of θ(X → c) iff termset X ⊂ x.

Proof: Comes directly from Lemmas 3.1 and 3.2. �

From Lemmas 3.1 to 3.3, the number of rules that

have to be updated due to a label-transition operation

is bounded by the number of possible termsets in x.

The following theorem states exactly the rules in R
that have to be updated due to a transition operation.

Theorem 3.4: All rules in R that must be updated

due to x�→� (or x�→�) are those in Rx.

Proof: From Lemma 3.3, all rules {X −→ c} ∈ R
that have to be updated due to operation x�→� (or

x�→�) are those for which X ⊆ x. By definition,

Rx contains only and all such rules. �

Updating θ(X → �) and θ(X → �) is straight-

forward. For operation x�→�, it suffices to iterate

on Rx, incrementing σ(X ∪ �) and decrementing

σ(X ∪ �). Similarly, for operation x�→�, it suf-

fices to iterate on Rx, incrementing σ(X ∪ �) and

decrementing σ(X ∪�). The corresponding values

for θ(X → �) and θ(X → �) are simply obtained

by computing
σ(X∪�)
σ(X ) and

σ(X∪�)
σ(X ) , respectively.
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3.2 Best Entropy Cut Method

In this section we propose a method for finding the

activation threshold, αx
min, which is a fundamental

step of our Expectation-Maximization approach.

Definition 3.4: Let cy ∈ {�,�} be the label asso-

ciated with an example y ∈ Dx. Consider N�(Dx)
the number of examples inDx for which cy=�. Sim-

ilarly, consider N�(Dx) the number of examples in

Dx for which cy=�.

Entropy Minimization: Our method searches for a

threshold αx
min that provides the best entropy cut in

the probability space induced by Dx. Specifically,

given examples {y1, y2, . . . , yk} in Dx, our method

first calculates α(yi,�) for all yi ∈ Dx. Then, the

values for α(yi,�) are sorted in ascending order. In

an ideal case, there is a cut αx
min such that:

cyi =

{

� if α(yi,�) ≤ αx
min

� otherwise

However, there are more difficult cases, for which

it is not possible to obtain a perfect separation in the

probability space. Thus, we propose a more general

method to find the best cut in the probability space.

The basic idea is that any value for αx
min induces two

partitions over the space of values for α(yi,�) (i.e.,

one partition with values that are lower than αx
min,

and another partition with values that are higher than

αx
min). Our method sets αx

min to the value that min-

imizes the average entropy of these two partitions.

Once αx
min is calculated, it can be used to activate a

label-transition operation. Next we present the basic

definitions in order to detail this method.

Definition 3.5: Consider a list of pairs O =
{. . . , <cyi , α(yi,�)>, <cyj , α(yj ,�)>, . . .}, such

that α(yi,�) ≤ α(yj ,�). Also, consider f a candi-

date value for αx
min. In this case,Of (≤) is a sub-list

of O, that is, Of (≤)={. . ., <cy, α(yi,�)>, . . .},

such that for all pairs in Of (≤), α(y,�) ≤ f . Sim-

ilarly, Of (>)={. . ., <cy, α(y,�)>, . . .}, such that

for all pairs inOf (>), α(y,�) > f . In other words,

Of (≤) andOf (>) are partitions ofO induced by f .

Our method works as follows. Firstly, it calculates

the entropy in O, as shown in Equation 3. Then,

it calculates the sum of the entropies in each par-

tition induced by f , according to Equation 4. Fi-

nally, it sets αx
min to the value of f that minimizes

E(O)−E(Of ), as illustrated in Figure 1.
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Figure 1: Looking for the minimum entropy cut point.

E(O) = −

(

N�(O)

|O|
× log

N�(O)

|O|

)

−

(

N�(O)

|O|
× log

N�(O)

|O|

)

(3)

E(Of ) =
|Of (≤)|

|O|
× E(Of (≤)) +

|Of (>)|

|O|
× E(Of (>)) (4)

3.3 Disambiguation Algorithms

In this section we discuss four algorithms based

on our incremental EM approach and following our

Best Entropy Cut method. They differ among them-

selves on the granularity in which the classifier is up-

dated and on the label-transition operations allowed:

• A1: the classifier is updated incrementally after

each EM iteration (which may comprise sev-

eral label-transition operations). Only opera-

tion x�→� is allowed.

• A2: the classifier is updated incrementally after

each EM iteration. Both operations x�→� and

x�→� are allowed.

• A3: the classifier is updated incrementally after

each label-transition operation. Only operation

x�→� is allowed.

• A4: the classifier is updated incrementally af-

ter each label-transition operation. Both opera-

tions x�→� and x�→� are allowed.
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4 Experimental Evaluation

In this section we analyze our algorithms using

standard measures such as AUC values. For each

positive+unlabeled (PU) corpus used in our evalu-

ation we randomly selected x% of the positive ex-

amples (P) to become unlabeled ones (U). This pro-

cedure enables us to control the uncertainty level

of the corpus. For each level we have a different

TPR-FPR combination, enabling us to draw ROC

curves.We repeated this procedure five times, so that

five executions were performed for each uncertainty

level. Tables 2–5 show the average for the five

runs. Wilcoxon significance tests were performed

(p<0.05) and best results, including statistical ties,

are shown in bold.

4.1 Baselines and Collections

Our baselines include namely SVMs (Joachims,

2006) and Biased SVMs (B-SVM (Liu et al., 2003)).

Although the simple SVM algorithm does not adapt

itself with unlabeled data, we decided to use it in

order to get a sense of the performance achieved

by simple baselines (in this case, unlabeled data is

simply used as negative examples). The B-SVM al-

gorithm uses a soft-margin SVM as the underlying

classifier, which is re-constructed from scratch after

each EM iteration. B-SVM employs a single tran-

sition threshold αmin for the entire corpus, instead

of a different threshold αx
min for each x ∈ D. It

is representative of the state-of-the-art for learning

classifiers from PU data.

We employed two different Twitter collections.

The first collection, ORGANIZATIONS, is com-

posed of 10 corpora3 (O1 to O10). Each corpus con-

tains messages in English mentioning the name of

an organization (Bayer, Renault, among others). All

messages were labeled by five annotators. Label �

means that the message is associated with the orga-

nization, whereas label � means the opposite.

The other collection, SOCCER TEAMS, contains

6 large-scale PU corpora (ST1 to ST6), taken from a

platform for real time event monitoring (the link to

this platform is omitted due to blind review). Each

corpus contains messages in Portuguese mentioning

the name/mascot of a Brazilian soccer team. Both

collections are summarized in Table 1.
3http://nlp.uned.es/weps/

Table 1: Characteristics of each collection.
P U P U

O1 404 10 ST1 216,991 251,198

O2 404 55 ST2 256,027 504,428

O3 349 116 ST3 160,706 509,670

O4 329 119 ST4 147,706 633,357

O5 335 133 ST5 35,021 168,669

O6 314 143 ST6 5,993 351,882

O7 292 148 − − −
O8 295 172 − − −
O9 273 165 − − −
O10 33 425 − − −

4.2 Results

All experiments were performed on a Linux PC with

an Intel Core 2 Duo 2.20GHz and 4GBytes RAM.

Next we discuss the disambiguation performance

and the computational efficiency of our algorithms.

ORGANIZATIONS Corpora: Table 2 shows av-

erage AUC values for each algorithm. Algorithm

A4 was the best performer in all cases, suggest-

ing the benefits of (i) enabling both types of label-

transition operations and (ii) keeping the classifier

up-to-date after each label-transition operation. Fur-

ther, algorithm A3 performed better than algorithm

A2 in most of the cases, indicating the importance of

keeping the classifier always up-to-date. On average

A1 provides gains of 4% when compared against B-

SVM, while A4 provides gains of more than 20%.

SOCCER TEAMS Corpora: Table 3 shows aver-

age AUC values for each algorithm. Again, algo-

rithm A4 was the best performer, providing gains

that are up to 13% when compared against the base-

line. Also, algorithm A3 performed better than al-

gorithm A2, and the effectiveness of Algorithm A1

is similar to the effectiveness of the baseline.

Since the SOCCER TEAMS collection is com-

posed of large-scale corpora, in addition to high

effectiveness, another important issue to be evalu-

ated is computational performance. Table 4 shows

the results obtained for the evaluation of our algo-

rithms. As it can be seen, algorithm A1 is the fastest

one, since it is the simplest one. Even though being

slower than algorithm A1, algorithm A4 runs, on av-

erage, 120 times faster than B-SVM.
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Table 2: Average AUC values for each algorithm.

A1 A2 A3 A4 SVM B-SVM

O1 0.74 ± 0.02 0.76 ± 0.02 0.74 ± 0.03 0.79 ± 0.01 0.71 ± 0.03 0.76 ± 0.01

O2 0.77 ± 0.02 0.78 ± 0.02 0.70 ± 0.03 0.82 ± 0.02 0.73 ± 0.03 0.75 ± 0.02

O3 0.68 ± 0.02 0.70 ± 0.01 0.69 ± 0.02 0.69 ± 0.02 0.64 ± 0.03 0.65 ± 0.02

O4 0.68 ± 0.02 0.68 ± 0.02 0.70 ± 0.01 0.72 ± 0.02 0.63 ± 0.02 0.66 ± 0.02

O5 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.69 ± 0.01 0.71 ± 0.01

O6 0.73 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.68 ± 0.02 0.70 ± 0.01

O7 0.69 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.66 ± 0.02 0.69 ± 0.02

O8 0.65 ± 0.02 0.68 ± 0.02 0.69 ± 0.02 0.72 ± 0.01 0.61 ± 0.03 0.63 ± 0.03

O9 0.70 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.65 ± 0.01 0.70 ± 0.01

O10 0.70 ± 0.01 0.74 ± 0.02 0.71 ± 0.02 0.75 ± 0.02 0.61 ± 0.03 0.66 ± 0.02

Table 3: Average AUC values for each algorithm.

A1 A2 A3 A4 SVM B-SVM

ST1 0.62 ± 0.02 0.63 ± 0.02 0.64 ± 0.01 0.67 ± 0.02 0.59 ± 0.03 0.61 ± 0.03

ST2 0.55 ± 0.01 0.58 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.54 ± 0.01 0.57 ± 0.01

ST3 0.65 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.69 ± 0.01 0.61 ± 0.03 0.64 ± 0.03

ST4 0.57 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.50 ± 0.04 0.55 ± 0.02

ST5 0.74 ± 0.01 0.74 ± 0.01 0.77 ± 0.02 0.77 ± 0.01 0.67 ± 0.02 0.72 ± 0.03

ST6 0.68 ± 0.02 0.70 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.63 ± 0.01 0.68 ± 0.02

Table 4: Average execution time (secs) for each algo-

rithm. The time spent by algorithm A1 is similar to the

time spent by algorithm A2. The time spent by algorithm

A3 is similar to the time spent by algorithm A4.

A1(≈A2) A3(≈ A4) SVM B-SVM

ST1 1,565 2,102 9,172 268,216

ST2 2,086 2,488 11,284 297,556

ST3 2,738 3,083 14,917 388,184

ST4 847 1,199 6,188 139,100

ST5 1,304 1,604 9,017 192,576

ST6 1,369 1,658 9,829 196,922

5 Conclusions

In this paper we have introduced a novel EM ap-

proach, which employs a highly incremental un-

derlying classifier based on association rules, com-

pletely avoiding work replication. Further, two

label-transition operations are allowed, enabling the

correction of false-negatives and false-positives. We

proposed four algorithms based on our EM ap-

proach. Our algorithms employ an entropy min-

imization method, which finds the best transition

threshold for each example in D. All these prop-

erties make our algorithms appropriate for named

entity disambiguation under streaming data scenar-

ios. Our experiments involve Twitter data mention-

ing ambiguous named entities. These datasets were

obtained from real application scenarios and from

platforms currently in operation. We have shown

that three of our algorithms achieve significantly

higher disambiguation performance when compared

against a strong baseline (B-SVM), providing gains

ranging from 1% to 20%. Also importantly, for

large-scale streaming data, our algorithms are more

than 120 times faster than the baseline.
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Abstract

Classically, training relation extractors relies
on high-quality, manually annotated training
data, which can be expensive to obtain. To
mitigate this cost, NLU researchers have con-
sidered two newly available sources of less
expensive (but potentially lower quality) la-
beled data from distant supervision and crowd
sourcing. There is, however, no study com-
paring the relative impact of these two sources
on the precision and recall of post-learning an-
swers. To fill this gap, we empirically study
how state-of-the-art techniques are affected by
scaling these two sources. We use corpus sizes
of up to 100 million documents and tens of
thousands of crowd-source labeled examples.
Our experiments show that increasing the cor-
pus size for distant supervision has a statis-
tically significant, positive impact on quality
(F1 score). In contrast, human feedback has a
positive and statistically significant, but lower,
impact on precision and recall.

1 Introduction

Relation extraction is the problem of populating a
target relation (representing an entity-level relation-
ship or attribute) with facts extracted from natural-
language text. Sample relations include people’s ti-
tles, birth places, and marriage relationships.

Traditional relation-extraction systems rely on
manual annotations or domain-specific rules pro-
vided by experts, both of which are scarce re-
sources that are not portable across domains. To
remedy these problems, recent years have seen in-
terest in the distant supervision approach for rela-

tion extraction (Wu and Weld, 2007; Mintz et al.,
2009). The input to distant supervision is a set of
seed facts for the target relation together with an
(unlabeled) text corpus, and the output is a set of
(noisy) annotations that can be used by any ma-
chine learning technique to train a statistical model
for the target relation. For example, given the tar-
get relation birthPlace(person, place) and a seed
fact birthPlace(John, Springfield), the sentence
“John and his wife were born in Springfield in 1946”
(S1) would qualify as a positive training example.

Distant supervision replaces the expensive pro-
cess of manually acquiring annotations that is re-
quired by direct supervision with resources that al-
ready exist in many scenarios (seed facts and a
text corpus). On the other hand, distantly labeled
data may not be as accurate as manual annotations.
For example, “John left Springfield when he was
16” (S2) would also be considered a positive ex-
ample about place of birth by distant supervision
as it contains both John and Springfield. The hy-
pothesis is that the broad coverage and high redun-
dancy in a large corpus would compensate for this
noise. For example, with a large enough corpus, a
distant supervision system may find that patterns in
the sentence S1 strongly correlate with seed facts of
birthPlacewhereas patterns in S2 do not qualify
as a strong indicator. Thus, intuitively the quality of
distant supervision should improve as we use larger
corpora. However, there has been no study on the
impact of corpus size on distant supervision for re-
lation extraction. Our goal is to fill this gap.

Besides “big data,” another resource that may
be valuable to distant supervision is crowdsourc-
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ing. For example, one could employ crowd work-
ers to provide feedback on whether distant super-
vision examples are correct or not (Gormley et al.,
2010). Intuitively the crowd workforce is a perfect
fit for such tasks since many erroneous distant la-
bels could be easily identified and corrected by hu-
mans. For example, distant supervision may mistak-
enly consider “Obama took a vacation in Hawaii” a
positive example for birthPlace simply because
a database says that Obama was born in Hawaii;
a crowd worker would correctly point out that this
sentence is not actually indicative of this relation.

It is unclear however which strategy one should
use: scaling the text corpus or the amount of human
feedback. Our primary contribution is to empirically
assess how scaling these inputs to distant supervi-
sion impacts its result quality. We study this ques-
tion with input data sets that are orders of magnitude
larger than those in prior work. While the largest
corpus (Wikipedia and New York Times) employed
by recent work on distant supervision (Mintz et al.,
2009; Yao et al., 2010; Hoffmann et al., 2011) con-
tain about 2M documents, we run experiments on
a 100M-document (50X more) corpus drawn from
ClueWeb.1 While prior work (Gormley et al., 2010)
on crowdsourcing for distant supervision used thou-
sands of human feedback units, we acquire tens of
thousands of human-provided labels. Despite the
large scale, we follow state-of-the-art distant super-
vision approaches and use deep linguistic features,
e.g., part-of-speech tags and dependency parsing.2

Our experiments shed insight on the following
two questions:

1. How does increasing the corpus size impact the
quality of distant supervision?

2. For a given corpus size, how does increasing
the amount of human feedback impact the qual-
ity of distant supervision?

We found that increasing corpus size consistently
and significantly improves recall and F1, despite re-
ducing precision on small corpora; in contrast, hu-
man feedback has relatively small impact on preci-
sion and recall. For example, on a TAC corpus with
1.8M documents, we found that increasing the cor-
pus size ten-fold consistently results in statistically

1http://lemurproject.org/clueweb09.php/
2We used 100K CPU hours to run such tools on ClueWeb.

significant improvement in F1 on two standardized
relation extraction metrics (t-test with p=0.05). On
the other hand, increasing human feedback amount
ten-fold results in statistically significant improve-
ment on F1 only when the corpus contains at least
1M documents; and the magnitude of such improve-
ment was only one fifth compared to the impact of
corpus-size increment.

We find that the quality of distant supervision
tends to be recall gated, that is, for any given rela-
tion, distant supervision fails to find all possible lin-
guistic signals that indicate a relation. By expanding
the corpus one can expand the number of patterns
that occur with a known set of entities. Thus, as a
rule of thumb for developing distant supervision sys-
tems, one should first attempt to expand the training
corpus and then worry about precision of labels only
after having obtained a broad-coverage corpus.

Throughout this paper, it is important to under-
stand the difference between mentions and entities.
Entities are conceptual objects that exist in the world
(e.g., Barack Obama), whereas authors use a variety
of wordings to refer to (which we call “mention”)
entities in text (Ji et al., 2010).

2 Related Work

The idea of using entity-level structured data (e.g.,
facts in a database) to generate mention-level train-
ing data (e.g., in English text) is a classic one: re-
searchers have used variants of this idea to extract
entities of a certain type from webpages (Hearst,
1992; Brin, 1999). More closely related to relation
extraction is the work of Lin and Patel (2001) that
uses dependency paths to find answers that express
the same relation as in a question.

Since Mintz et al. (2009) coined the name “dis-
tant supervision,” there has been growing interest in
this technique. For example, distant supervision has
been used for the TAC-KBP slot-filling tasks (Sur-
deanu et al., 2010) and other relation-extraction
tasks (Hoffmann et al., 2010; Carlson et al., 2010;
Nguyen and Moschitti, 2011a; Nguyen and Mos-
chitti, 2011b). In contrast, we study how increas-
ing input size (and incorporating human feedback)
improves the result quality of distant supervision.

We focus on logistic regression, but it is interest-
ing future work to study more sophisticated prob-
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Figure 1: The workflow of our distant supervision system. Step 1 is preprocessing; step 4 is final evaluation. The key
steps are distant supervision (step 2), where we train a logistic regression (LR) classifier for each relation using (noisy)
examples obtained from sentences that match Freebase facts, and human feedback (step 3) where a crowd workforce
refines the LR classifiers by providing feedback to the training data.

abilistic models; such models have recently been
used to relax various assumptions of distant supervi-
sion (Riedel et al., 2010; Yao et al., 2010; Hoffmann
et al., 2011). Specifically, they address the noisy as-
sumption that, if two entities participate in a rela-
tion in a knowledge base, then all co-occurrences of
these entities express this relation. In contrast, we
explore the effectiveness of increasing the training
data sizes to improve distant-supervision quality.

Sheng et al. (2008) and Gormley et al. (2010)
study the quality-control issue for collecting train-
ing labels via crowdsourcing. Their focus is the col-
lection process; in contrast, our goal is to quantify
the impact of this additional data source on distant-
supervision quality. Moreover, we experiment with
one order of magnitude more human labels. Hoff-
mann et al. (2009) study how to acquire end-user
feedback on relation-extraction results posted on an
augmented Wikipedia site; it is interesting future
work to integrate this source in our experiments.
One technique for obtaining human input is active
learning. We tried several active-learning techniques
as described by Settles (2010), but did not observe
any notable advantage over uniform sampling-based
example selection.3

3 Distant Supervision Methodology

Relation extraction is the task of identifying re-
lationships between mentions, in natural-language
text, of entities. An example relation is that two per-
sons are married, which for mentions of entities x
and y is denoted R(x, y). Given a corpus C con-

3More details in our technical report (Zhang et al., 2012).

taining mentions of named entities, our goal is to
learn a classifier for R(x, y) using linguistic features
of x and y, e.g., dependency-path information. The
problem is that we lack the large amount of labeled
examples that are typically required to apply super-
vised learning techniques. We describe an overview
of these techniques and the methodological choices
we made to implement our study. Figure 1 illus-
trates the overall workflow of a distant supervision
system. At each step of the distant supervision pro-
cess, we closely follow the recent literature (Mintz
et al., 2009; Yao et al., 2010).

3.1 Distant Supervision

Distant supervision compensates for a lack of train-
ing examples by generating what are known as
silver-standard examples (Wu and Weld, 2007). The
observation is that we are often able to obtain a
structured, but incomplete, database D that instanti-
ates relations of interest and a text corpus C that con-
tains mentions of the entities in our database. For-
mally, a database is a tuple D = (E, R̄) where E is
a set of entities and R̄ = (R1 . . . , RN ) is a tuple of
instantiated predicates. For example, Ri may con-
tain pairs of married people.4 We use the facts in Ri

combined with C to generate examples.
Following recent work (Mintz et al., 2009; Yao et

al., 2010; Hoffmann et al., 2011), we use Freebase5

as the knowledge base for seed facts. We use two
text corpora: (1) the TAC-KBP6 2010 corpus that

4We only consider binary predicates in this work.
5http://freebase.com
6KBP stands for “Knowledge-Base Population.”
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consists of 1.8M newswire and blog articles7, and
(2) the ClueWeb09 corpus that is a 2009 snapshot
of 500M webpages. We use the TAC-KBP slot fill-
ing task and select those TAC-KBP relations that are
present in the Freebase schema as targets (20 rela-
tions on people and organization).

One problem is that relations in D are defined at
the entity level. Thus, the pairs in such relations are
not embedded in text, and so these pairs lack the
linguistic context that we need to extract features,
i.e., the features used to describe examples. In turn,
this implies that these pairs cannot be used directly
as training examples for our classifier. To generate
training examples, we need to map the entities back
to mentions in the corpus. We denote the relation
that describes this mapping as the relation EL(e, m)
where e ∈ E is an entity in the database D and m is
a mention in the corpus C. For each relation Ri, we
generate a set of (noisy) positive examples denoted
R+

i defined as R+
i =

{(m1, m2) | R(e1, e2) ∧ EL(e1, m1) ∧ EL(e2, m2)}

As in previous work, we impose the constraint that
both mentions (m1, m2) ∈ R+

i are contained in the
same sentence (Mintz et al., 2009; Yao et al., 2010;
Hoffmann et al., 2011). To generate negative ex-
amples for each relation, we follow the assumption
in Mintz et al. (2009) that relations are disjoint and
sample from other relations, i.e., R−i = ∪j 6=iR

+
j .

3.2 Feature Extraction

Once we have constructed the set of possible men-
tion pairs, the state-of-the-art technique to generate
feature vectors uses linguistic tools such as part-
of-speech taggers, named-entity recognizers, de-
pendency parsers, and string features. Following
recent work on distant supervision (Mintz et al.,
2009; Yao et al., 2010; Hoffmann et al., 2011),
we use both lexical and syntactic features. After
this stage, we have a well-defined machine learn-
ing problem that is solvable using standard super-
vised techniques. We use sparse logistic regression
(`1 regularized) (Tibshirani, 1996), which is used in
previous studies. Our feature extraction process con-
sists of three steps:

7http://nlp.cs.qc.cuny.edu/kbp/2010/

1. Run Stanford CoreNLP with POS tagging and
named entity recognition (Finkel et al., 2005);

2. Run dependency parsing on TAC with the En-
semble parser (Surdeanu and Manning, 2010)
and on ClueWeb with MaltParser (Nivre et al.,
2007)8; and

3. Run a simple entity-linking system that utilizes
NER results and string matching to identify
mentions of Freebase entities (with types).9

The output of this processing is a repository of struc-
tured objects (with POS tags, dependency parse, and
entity types and mentions) for sentences from the
training corpus. Specifically, for each pair of entity
mentions (m1, m2) in a sentence, we extract the fol-
lowing features F (m1, m2): (1) the word sequence
(including POS tags) between these mentions after
normalizing entity mentions (e.g., replacing “John
Nolen” with a place holder PER); if the sequence
is longer than 6, we take the 3-word prefix and the
3-word suffix; (2) the dependency path between the
mention pair. To normalize, in both features we use
lemmas instead of surface forms. We discard fea-
tures that occur in fewer than three mention pairs.

3.3 Crowd-Sourced Data

Crowd sourcing provides a cheap source of human
labeling to improve the quality of our classifier. In
this work, we specifically examine feedback on the
result of distant supervision. Precisely, we construct
the union of R+

1 ∪ . . . R+
N from Section 3.1. We

then solicit human labeling from Mechanical Turk
(MTurk) while applying state-of-the-art quality con-
trol protocols following Gormley et al. (2010) and
those in the MTurk manual.10

These quality-control protocols are critical to en-
sure high quality: spamming is common on MTurk
and some turkers may not be as proficient or care-
ful as expected. To combat this, we replicate
each question three times and, following Gormley

8We did not run Ensemble on ClueWeb because we had very
few machines satisfying Ensemble’s memory requirement. In
contrast, MaltParser requires less memory and we could lever-
age Condor (Thain et al., 2005) to parse ClueWeb with Malt-
Parser within several days (using about 50K CPU hours).

9We experiment with a slightly more sophisticated entity-
linking system as well, which resulted in higher overall quality.
The results below are from the simple entity-linking system.

10http://mturkpublic.s3.amazonaws.com/docs/
MTURK_BP.pdf

828



et al. (2010), plant gold-standard questions: each
task consists of five yes/no questions, one of which
comes from our gold-standard pool.11 By retaining
only those answers that are consistent with this pro-
tocol, we are able to filter responses that were not
answered with care or competency. We only use an-
swers from workers who display overall high consis-
tency with the gold standard (i.e., correctly answer-
ing at least 80% of the gold-standard questions).

3.4 Statistical Modeling Issues
Following Mintz et al. (2009), we use logistic re-
gression classifiers to represent relation extractors.
However, while Mintz et al. use a single multi-class
classifier for all relations, Hoffman et al. (2011) and
use an independent binary classifier for each individ-
ual relation; the intuition is that a pair of mentions
(or entities) might participate in multiple target rela-
tions. We experimented with both protocols; since
relation overlapping is rare for TAC-KBP and there
was little difference in result quality, we focus on the
binary-classification approach using training exam-
ples constructed as described in Section 3.1.

We compensate for the different sizes of distant
and human labeled examples by training an objec-
tive function that allows to tune the weight of human
versus distant labeling. We separately tune this pa-
rameter for each training set (with cross validation),
but found that the result quality was robust with re-
spect to a broad range of parameter values.12

4 Experiments

We describe our experiments to test the hypothe-
ses that the following two factors improve distant-
supervision quality: increasing the
(1) corpus size, and
(2) the amount of crowd-sourced feedback.

We confirm hypothesis (1), but, surprisingly, are un-
able to confirm (2). Specifically, when using logis-
tic regression to train relation extractors, increasing
corpus size improves, consistently and significantly,
the precision and recall produced by distant supervi-
sion, regardless of human feedback levels. Using the

11We obtain the gold standard from a separate MTurk sub-
mission by taking examples that at least 10 out of 11 turkers
answered yes, and then negate half of these examples by alter-
ing the relation names (e.g., spouse to sibling).

12More details in our technical report (Zhang et al., 2012).

methodology described in Section 3, human feed-
back has limited impact on the precision and recall
produced from distant supervision by itself.

4.1 Evaluation Metrics

Just as direct training data are scarce, ground truth
for relation extraction is scarce as well. As a result,
prior work mainly considers two types of evaluation
methods: (1) randomly sample a small portion of
predictions (e.g., top-k) and manually evaluate pre-
cision/recall; and (2) use a held-out portion of seed
facts (usually Freebase) as a kind of “distant” ground
truth. We replace manual evaluation with a stan-
dardized relation-extraction benchmark: TAC-KBP
2010. TAC-KBP asks for extractions of 46 relations
on a given set of 100 entities. Interestingly, the Free-
base held-out metric (Mintz et al., 2009; Yao et al.,
2010; Hoffmann et al., 2011) turns out to be heavily
biased toward distantly labeled data (e.g., increasing
human feedback hurts precision; see Section 4.6).

4.2 Experimental Setup

Our first group of experiments use the 1.8M-doc
TAC-KBP corpus for training. We exclude from it
the 33K documents that contain query entities in
the TAC-KBP metrics. There are two key param-
eters: the corpus size (#docs) M and human feed-
back budget (#examples) N . We perform different
levels of down-sampling on the training corpus. On
TAC, we use subsets with M = 103, 104, 105, and
106 documents respectively. For each value of M ,
we perform 30 independent trials of uniform sam-
pling, with each trial resulting in a training corpus
DM

i , 1 ≤ i ≤ 30. For each training corpus DM
i , we

perform distant supervision to train a set of logistic
regression classifiers. From the full corpus, distant
supervision creates around 72K training examples.

To evaluate the impact of human feedback, we
randomly sample 20K examples from the input cor-
pus (we remove any portion of the corpus that is
used in an evaluation). Then, we ask three differ-
ent crowd workers to label each example as either
positive or negative using the procedure described in
Section 3.3. We retain only credible answers using
the gold-standard method (see Section 3.3), and use
them as the pool of human feedback that we run ex-
periments with. About 46% of our human labels are
negative. Denote by N the number of examples that
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Figure 2: Impact of input sizes under the TAC-KBP metric, which uses documents mentioning 100 predefined entities
as testing corpus with entity-level ground truth. We vary the sizes of the training corpus and human feedback while
measuring the scores (F1, recall, and precision) on the TAC-KBP benchmark.

we want to incorporate human feedback for; we vary
N in the range of 0, 10, 102, 103, 104, and 2 × 104.
For each selected corpus and value of N , we per-
form without-replacement sampling from examples
of this corpus to select feedback for up to N exam-
ples. In our experiments, we found that on aver-
age an M -doc corpus contains about 0.04M distant
labels, out of which 0.01M have human feedback.
After incorporating human feedback, we evaluate
the relation extractors on the TAC-KBP benchmark.
We then compute the average F1, recall, and preci-
sion scores among all trials for each metric and each
(M,N) pair. Besides the KBP metrics, we also eval-
uate each (M,N) pair using Freebase held-out data.
Furthermore, we experiment with a much larger cor-
pus: ClueWeb09. On ClueWeb09, we vary M over
103, . . . , 108. Using the same metrics, we show at
a larger scale that increasing corpus size can signifi-
cantly improve both precision and recall.

4.3 Overall Impact of Input Sizes

We first present our experiment results on the TAC
corpus. As shown in Figure 2, the F1 graph closely
tracks the recall graph, which supports our earlier
claim that quality is recall gated (Section 1). While
increasing the corpus size improves F1 at a roughly
log-linear rate, human feedback has little impact un-
til both corpus size and human feedback size ap-
proch maximum M, N values. Table 1 shows the
quality comparisons with minimum/maximum val-
ues of M and N .13 We observe that increasing the
corpus size significant improves per-relation recall

13When the corpus size is small, the total number of exam-
ples with feedback can be smaller than the budget size N – for
example, when M = 103 there are on average 10 examples
with feedback even if N = 104.

M = 103 M = 1.8× 106

N = 0 0.124 0.201
N = 2× 104 0.118 0.214

Table 1: TAC F1 scores with max/min values of M /N .

and F1 on 17 out of TAC-KBP’s 20 relations; in con-
trast, human feedback has little impact on recall, and
only significantly improves the precision and F1 of
9 relations – while hurting F1 of 2 relations (i.e.,
MemberOf and LivesInCountry).14

(a) Impact of corpus size changes.
M\N 0 10 102 103 104 2e4

103 → 104 + + + + + +
104 → 105 + + + + + +
105 → 106 + + + + + +

106 → 1.8e6 0 0 0 + + +

(b) Impact of feedback size changes.
N\M 103 104 105 106 1.8e6
0→ 10 0 0 0 0 0

10→ 102 0 0 0 + +
102 → 103 0 0 0 + +
103 → 104 0 0 0 0 +
104 → 2e4 0 0 0 0 -
0→ 2e4 0 0 0 + +

Table 2: Two-tail t-test with d.f.=29 and p=0.05 on the
impact of corpus size and feedback size changes respec-
tively. (We also tried p=0.01, which resulted in change
of only a single cell in the two tables.) In (a), each col-
umn corresponds to a fixed human-feedback budget size
N . Each row corresponds to a jump from one corpus size
(M ) to the immediate larger size. Each cell value indi-
cates whether the TAC F1 metric changed significantly:
+ (resp. -) indicates that the quality increased (resp. de-
creased) significantly; 0 indicates that the quality did not
change significantly. Table (b) is similar.

14We report more details on per-relation quality in our tech-
nical report (Zhang et al., 2012).
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(a) Impact of corpus size changes.

(b) Impact of human feedback size.

Figure 3: Projections of Figure 2 to show the impact of corpus size and human feedback amount on TAC-KBP F1,
recall, and precision.

4.4 Impact of Corpus Size

In Figure 3(a) we plot a projection of the graphs
in Figure 2 to show the impact of corpus size on
distant-supervision quality. The two curves corre-
spond to when there is no human feedback and when
we use all applicable human feedback. The fact
that the two curves almost overlap indicates that hu-
man feedback had little impact on precision or re-
call. On the other hand, the quality improvement
rate is roughly log-linear against the corpus size.
Recall that each data point in Figure 2 is the aver-
age from 30 trials. To measure the statistical signif-
icance of changes in F1, we calculate t-test results
to compare adjacent corpus size levels given each
fixed human feedback level. As shown in Table 2(a),
increasing the corpus size by a factor of 10 consis-
tently and significantly improves F1. Although pre-
cision decreases as we use larger corpora, the de-
creasing trend is sub-log-linear and stops at around
100K docs. On the other hand, recall and F1 keep
increasing at a log-linear rate.

4.5 Impact of Human Feedback

Figure 3(b) provides another perspective on the re-
sults under the TAC metric: We fix a corpus size
and plot the F1, recall, and precision as functions
of human-feedback amount. Confirming the trend
in Figure 2, we see that human feedback has little

Figure 4: TAC-KBP quality of relation extractors trained
using different amounts of human labels. The horizontal
lines are comparison points.

impact on precision or recall with both corpus sizes.

We calculate t-tests to compare adjacent human
feedback levels given each fixed corpus size level.
Table 2(b)’s last row reports the comparison, for var-
ious corpus sizes (and, hence, number of distant la-
bels), of (i) using no human feedback and (ii) using
all of the human feedback we collected. When the
corpus size is small (fewer than 105 docs), human
feedback has no statistically significant impact on
F1. The locations of +’s suggest that the influence
of human feedback becomes notable only when the
corpus is very large (say with 106 docs). However,
comparing the slopes of the curves in Figure 3(b)
against Figure 3(a), the impact of human feedback
is substantially smaller. The precision graph in Fig-
ure 3(b) suggests that human feedback does not no-
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Figure 5: Impact of input sizes under the Freebase held-
out metric. Note that the human feedback axis is in the
reverse order compared to Figure 2.

tably improve precision on either the full corpus or
on a small 1K-doc corpus. To assess the quality of
human labels, we train extraction models with hu-
man labels only (on examples obtained from distant
supervision). We vary the amount of human labels
and plot the F1 changes in Figure 4. Although the
F1 improves as we use more human labels, the best
model has roughly the same performance as those
trained from distant labels (with or without human
labels). This suggests that the accuracy of human
labels is not substantially better than distant labels.

4.6 Freebase Held-out Metric

In addition to the TAC-KBP benchmark, we also fol-
low prior work (Mintz et al., 2009; Yao et al., 2010;
Hoffmann et al., 2011) and measure the quality us-
ing held-out data from Freebase. We randomly par-
tition both Freebase and the corpus into two halves.
One database-corpus pair is used for training and the
other pair for testing. We evaluate the precision over
the 103 highest-probability predictions on the test
set. In Figure 5, we vary the size of the corpus in the
train pair and the number of human labels; the pre-
cision reaches a dramatic peak when we the corpus
size is above 105 and uses little human feedback.
This suggests that this Freebase held-out metric is
biased toward solely relying on distant labels alone.

4.7 Web-scale Corpora

To study how a Web corpus impacts distant-
supervision quality, we select the first 100M English
webpages from the ClueWeb09 dataset and measure
how distant-supervision quality changes as we vary
the number of webpages used. As shown in Fig-
ure 6, increasing the corpus size improves F1 up to

Figure 6: Impact of corpus size on the TAC-KBP quality
with the ClueWeb dataset.

107 docs (p = 0.05), while at 108 the two-tailed
significance test reports no significant impact on F1
(p = 0.05). The dip in precision in Figure 6 from
106 to either 107 or 108 is significant (p = 0.05),
and it is interesting future work to perform a de-
tailed error analysis. Recall from Section 3 that to
preprocess ClueWeb we use MaltParser instead of
Ensemble. Thus, the F1 scores in Figure 6 are not
comparable to those from the TAC training corpus.

5 Discussion and Conclusion

We study how the size of two types of cheaply avail-
able resources impact the precision and recall of dis-
tant supervision: (1) an unlabeled text corpus from
which distantly labeled training examples can be ex-
tracted, and (2) crowd-sourced labels on training
examples. We found that text corpus size has a
stronger impact on precision and recall than human
feedback. We observed that distant-supervision sys-
tems are often recall gated; thus, to improve distant-
supervision quality, one should first try to enlarge
the input training corpus and then increase precision.

It was initially counter-intuitive to us that human
labels did not have a large impact on precision. One
reason is that human labels acquired from crowd-
sourcing have comparable noise level as distant la-
bels – as shown by Figure 4. Thus, techniques that
improve the accuracy of crowd-sourced answers are
an interesting direction for future work. We used a
particular form of human input (yes/no votes on dis-
tant labels) and a particular statistical model to in-
corporate this information (logistic regression). It
is interesting future work to study other types of
human input (e.g., new examples or features) and
more sophisticated techniques for incorporating hu-
man input, as well as machine learning methods that
explicitly model feature interactions.
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Abstract

This paper presents a novel sequence label-
ing model based on the latent-variable semi-
Markov conditional random fields for jointly
extracting argument roles of events from texts.
The model takes in coarse mention and type
information and predicts argument roles for a
given event template.

This paper addresses the event extraction
problem in a primarily unsupervised setting,
where no labeled training instances are avail-
able. Our key contribution is a novel learning
framework called structured preference mod-
eling (PM), that allows arbitrary preference
to be assigned to certain structures during the
learning procedure. We establish and discuss
connections between this framework and other
existing works. We show empirically that the
structured preferences are crucial to the suc-
cess of our task. Our model, trained with-
out annotated data and with a small number
of structured preferences, yields performance
competitive to some baseline supervised ap-
proaches.

1 Introduction

Automatic template-filling-based event extraction is
an important and challenging task. Consider the fol-
lowing text span that describes an “Attack” event:

. . . North Korea’s military may have fired a laser
at a U.S. helicopter in March, a U.S. official
said Tuesday, as the communist state ditched its
last legal obligation to keep itself free of nuclear
weapons . . .

A partial event template for the “Attack” event is
shown on the left of Figure 1. Each row shows an

argument for the event, together with a set of its ac-
ceptable mention types, where the type specifies a
high-level semantic class a mention belongs to.

The task is to automatically fill the template en-
tries with texts extracted from the text span above.
The correct filling of the template for this particular
example is shown on the right of Figure 1.

Performing such a task without any knowledge
about the semantics of the texts is hard. One typi-
cal assumption is that certain coarse mention-level
information, such as mention boundaries and their
semantic class (a.k.a. types), are available. E.g.:

. . . [North Korea’s military]ORG may have fired
[a laser]WEA at [a U.S. helicopter]VEH in
[March]TME, a U.S. official said Tuesday, as the
communist state ditched its last legal obligation
to keep itself free of nuclear weapons . . .

Such mention type information as shown on the
left of Figure 1 can be obtained from various sources
such as dictionaries, gazetteers, rule-based systems
(Strötgen and Gertz, 2010), statistically trained clas-
sifiers (Ratinov and Roth, 2009), or some web re-
sources such as Wikipedia (Ratinov et al., 2011).

However, in practice, outputs from existing men-
tion identification and typing systems can be far
from ideal. Instead of obtaining the above ideal an-
notation, one might observe the following noisy and
ambiguous annotation for the given event span:

. . . [[North Korea’s]GPE|LOC military]ORG may have
fired a laser at [a [U.S.]GPE|LOC helicopter]VEH

in [March]TME, [a [U.S.]GPE|LOC official]PER said
[Tuesday]TME, as [the communist state]ORG|FAC|LOC

ditched its last legal obligation to keep [itself ]ORG

free of [nuclear weapons]WEA . . .

Our task is to design a model to effectively select
mentions in an event span and assign them with cor-
responding argument information, given such coarse
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Argument Possible Types Extracted Text
ATTACKER GPE, ORG, PER N. Korea’s military

INSTRUMENT VEH, WEA a laser
PLACE FAC, GPE, LOC -

TARGET
FAC, GPE, LOC a U.S. helicopterORG, PER, VEH

TIME-WITHIN TME March

Figure 1: The partial event template for the Attack event (left),
and the correct event template annotation for the example event
span given in Sec 1 (right). We primarily follow the ACE stan-
dard in defining arguments and types.

and often noisy mention type annotations.
This work addresses this problem by making the

following contributions:

• Naturally, we are interested in identifying the
active mentions (the mentions that serve as ar-
guments) and their correct boundaries from the
data. This motivates us to build a novel latent-
variable semi-Markov conditional random fields
model (Sarawagi and Cohen, 2004) for such an
event extraction task. The learned model takes
in coarse information as produced by existing
mention identification and typing modules, and
jointly outputs selected mentions and their cor-
responding argument roles.
• We address the problem in a more realistic sce-

nario where annotated training instances are not
available. We propose a novel general learning
framework called structured preference model-
ing (or preference modeling, PM), which en-
compasses both the fully supervised and the
latent-variable conditional models as special
cases. The framework allows arbitrary declar-
ative structured preference knowledge to be in-
troduced to guide the learning procedure in a pri-
marily unsupervised setting.

We present our semi-Markov model and discuss
our preference modeling framework in Section 2 and
3 respectively. We then discuss the model’s relation
with existing constraint-driven learning frameworks
in Section 4. Finally, we demonstrate through ex-
periments that structured preference information is
crucial to model and present empirical results on a
standard dataset in Section 5.

2 The Model

It is not hard to observe from the example presented
in the previous section that dependencies between

A1

T1

C1

B2

C2

A3

T3

C3

B4

C4

. . .

. . .

. . .

An

Tn

Cn

Figure 2: A simplified graphical illustration for the semi-
Markov CRF, under a specific segmentation S ≡ C1C2 . . . Cn.
In a supervised setting, only correct arguments are observed but
their associated correct mention types are hidden (shaded).

arguments can be important and need to be properly
modeled. This motivates us to build a joint model
for extracting the event structures from the text.

We show a simplified graphical representation of
our model in Figure 2. In the graph, C1, C2 . . . Cn
refer to a particular segmentation of the event
span, where C1, C3 . . . correspond to mentions
(e.g., “North Korea’s military”, “a laser”) and C2,
C4 . . . correspond to in-between mention word se-
quences (we call them gaps) (e.g., “may have
fired”). The symbols T1, T3 . . . refer to mention
types (e.g., GPE, ORG). The symbols A1, A3 . . . re-
fer to event arguments that carry specific roles (e.g.,
ATTACKER). We also introduce symbols B2, B4 . . .
to refer to inter-argument gaps. The event span is
split into segments, where each segment is either
linked to a mention type (Ti; these segments can
be referred to as “argument segments”), or directly
linked to an inter-argument gap (Bj ; they can be
referred to as “gap segments”). The two types of
segments appear in the sequence in a strictly alter-
nate manner, where the gaps can be of length zero.
In the figure, for example, the segments C1 and C3

are identified as two argument segments (which are
mentions of types T1 and T3 respectively) and are
mapped to two “nodes”, and the segment C2 is iden-
tified as a gap segment that connects the two argu-
ments A1 and A3. Note that no overlapping argu-
ments are allowed in this model 1.

We use s to denote an event span and t to denote
a specific realization (filling) of the event template.
Templates consist of a set of arguments. Denote by h
a particular mention boundary and type assignment
for an event span, which gives us a specific segmen-
tation of the given span. Following the conditional

1Extending the model to support certain argument overlap-
ping is possible – we leave it for future work.
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random fields model (Lafferty et al., 2001), we pa-
rameterize the conditional probability of the (t, h)
pair given an event span s as follows:

PΘ(t, h|s) =
ef(s,h,t)·Θ∑
t,h e

f(s,h,t)·Θ (1)

where f gives the feature functions defined on the
tuple (s, h, t), and Θ defines the parameter vector.

Our objective function is the logarithm of the joint
conditional probability of observing the template re-
alization for the observed event span s:

L(Θ) =
∑
i

logPΘ(ti|si)

=
∑
i

log

∑
h e

f(si,h,ti)·Θ∑
t,h e

f(si,h,t)·Θ
(2)

This function is not convex due to the summation
over the hidden variable h. To optimize it, we take
its partial derivative with respect to θj :

∂L(Θ)

∂θj
=

∑
i

EpΘ(h|si,ti)[fj(si, h, ti)]

−
∑
i

EpΘ(t,h|si)[fj(si, h, t)] (3)

which requires computation of expectations terms
under two different distributions. Such statistics
can be collected efficiently with a forward-backward
style algorithm in polynomial time (Okanohara et
al., 2006). We will discuss the time complexity for
our case in the next section.

Given its partial derivatives in Equation 3, one
could optimize the objective function of Equation 2
with stochastic gradient ascent (LeCun et al., 1998)
or L-BFGS (Liu and Nocedal, 1989). We choose to
use L-BFGS for all our experiments in this paper.

Inference involves computing the most probable
template realization t for a given event span:

arg max
t

PΘ(t|s) = arg max
t

∑
h

PΘ(t, h|s) (4)

where the possible hidden assignments h need to be
marginalized out. In this task, a particular realiza-
tion t already uniquely defines a particular segmen-
tation (mention boundaries) of the event span, thus
the h only contributes type information to t. As we
will discuss in Section 2.3, only a collection of local
features are defined. Thus, a Viterbi-style dynamic
programming algorithm is used to efficiently com-
pute the desired solution.

2.1 Possible Segmentations
According to Equation 3, summing over all possi-
ble h is required. Since one primary assumption is
that we have access to the output of existing mention
identification and typing systems, the set of all possi-
ble mentions defines a lattice representation contain-
ing the set of all possible segmentations that com-
ply with such mention-level information. Assuming
there are A possible arguments for the event and K
annotated mentions, the complexity of the forward-
backward style algorithm is in O(A3K2) under the
“second-order” setting that we will discuss in Sec-
tion 2.2. Typically, K is smaller than the number of
words in the span, and the factor A3 can be regarded
as a constant. Thus, the algorithm is very efficient.

As we have mentioned earlier, such coarse infor-
mation, as produced by existing resources, could be
highly ambiguous and noisy. Also, the output men-
tions can highly overlap with each other. For exam-
ple, the phrase “North Korea” as in “North Korea’s
military” can be assigned both type GPE and LOC,
while “North Korea’s military” can be assigned the
type ORG. Our model will need to disambiguate the
mention boundaries as well as their types.

2.2 The Gap Segments
We believe the gap segments2 are important to
model since they can potentially capture depen-
dencies between two or more adjacent arguments.
For example, the word sequence “may have fired”
clearly indicates an Attacker-Instrument relation be-
tween the two mentions “North Korea’s military”
and “a laser”. Since we are only interested in
modeling dependencies between adjacent argument
segments, we assign hard labels to each gap seg-
ment based on its contextual argument informa-
tion. Specifically, the label of each gap segment
is uniquely determined by its surrounding argu-
ment segments with a list representation. For ex-
ample, in a “first-order” setting, the gap segment
that appears between its previous argument seg-
ment “ATTACKER” and its next argument segment
“INSTRUMENT” is annotated as the list consisting
of two elements: [ATTACKER, INSTRUMENT]. To
capture longer-range dependencies, in this work we
use a “second-order” setting (as shown in Figure 2),

2The length of a gap segment is arbitrary (including zero),
unlike the seminal semi-Markov CRF model of Sarawagi and
Cohen (2004).
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which means each gap segment is annotated with a
list that consists of its previous two argument seg-
ments as well as its subsequent one.

2.3 Features
Feature functions are factorized as products of two
indicator functions: one defined on the input se-
quence (input features) and the other on the output
labels (output features). In other words, we could
re-write fj(s, h, t) as f ink (s)× foutl (h, t).

For gap segments, we consider the following in-
put feature templates:

N-GRAM: Indicator function for n-gram appeared
in the segment (n = 1, 2)

ANCHOR: Indicator function for its relative position
to the event anchor words (to the left, to
the right, overlaps, contains)

and the following output feature templates:
1STORDER: Indicator function for the combination of

its immediate left argument and its imme-
diate right argument.

2NDORDER: Indicator function for the combination of
its immediate two left arguments and its
immediate right argument.

For argument segments, we also define the same
input feature templates as above, with the following
additional ones to capture contextual information:

CWORDS: Indicator function for the previous and
next k (= 1, 2, 3) words.

CPOS: Indicator function for the previous and
next k (= 1, 2, 3) words’ POS tags.

and we define the following output feature template:
ARGTYPE: Indicator function for the combination of

the argument and its associated type.

Although the semi-Markov CRF model gives us
the flexibility in introducing features that can not be
exploited in a standard CRF, such as entity name
similarity scores and distance measures, in prac-
tice we found the above simple and general features
work well. This way, the unnormalized score as-
signed to each structure is essentially a linear sum
of the feature weights, each corresponding to an in-
dicator function.

3 Learning without Annotated Data

The supervised model presented in the previous sec-
tion requires substantial human efforts to annotate
the training instances. Human annotations can be
very expensive and sometimes impractical. Even if
annotators are available, getting annotators to agree

with each other is often a difficult task in itself.
Worse still, annotations often can not be reused: ex-
perimenting on a different domain or dataset typi-
cally require annotating new training instances for
that particular domain or dataset.

We investigate inexpensive methods to alleviate
this issue in this section. We introduce a novel gen-
eral learning framework called structured preference
modeling, which allows arbitrary prior knowledge
about structures to be introduced to the learning pro-
cess in a declarative manner.

3.1 Structured Preference Modeling
Denote by XΩ and YΩ the entire input and output
space, respectively. For a particular input x ∈ XΩ,
the set x × YΩ gives us all possible structures that
contain x. However, structures are not equally good.
Some structures are generally regarded as better
structures while some are worse.

Let’s asume there is a function κ :
{
x × YΩ →

[0, 1]
}

that measures the quality of the structures.
This function returns the quality of a certain struc-
ture (x, y), where the value 1 indicates a perfect
structure, and 0 an impossible structure.

Under such an assumption, it is easy to observe
that for a good structure (x, y), we have pΘ(x, y)×
κ(x, y) = pΘ(x, y), while for a bad structure (x, y),
we have pΘ(x, y)× κ(x, y) = 0.

This motivates us to optimize the following objec-
tive function:

Lu(Θ) =
∑
i

log

∑
y pΘ(xi, y)× κ(xi, y)∑

y pΘ(xi, y)
(5)

Intuitively, optimizing such an objective function
is equivalent to pushing the probability mass from
bad structures to good structures corresponding to
the same input.

When the preference function κ is defined as the
indicator function for the correct structure (xi, yi),
the numerator terms of the above formula are simply
of the forms pΘ(xi, yi), and the model corresponds
to the fully supervised CRF model.

The model also contains the latent-variable CRF
as a special case. In a latent-variable CRF, we have
input-output pairs (xi, yi), but the underlying spe-
cific structure h that contains both xi and yi is hid-
den. The objective function is:∑

i

log

∑
h pΘ(xi, h, yi)∑
h,y′ pΘ(xi, h, y′)

(6)
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where pΘ(xi, h, yi) = 0 unless h contains (xi, yi).
We define the following two functions:

qΘ(xi, h) =
∑
y′

pΘ(xi, h, y
′) (7)

κ(xi, h) =

{
1 h contains (xi, yi)
0 otherwise (8)

Note that this definition of κ models instance-
specific preferences since it relies on yi, which can
be thought of as certain external prior knowledge re-
lated to xi. It is easy to verify that pΘ(xi, h, yi) =
qΘ(xi, h)×κ(xi, h), with qΘ remains a distribution.
Thus, we could re-write the objective function as:∑

i=1

log

∑
h qΘ(xi, h)× κ(xi, h)∑

h qΘ(xi, h)
(9)

This shows that the latent-variable CRF is a spe-
cial case of our objective function, with the above-
defined κ function. Thus, this new objective func-
tion of Equation 5 is a generalization of both the su-
pervised CRF and the latent-variable CRF.

The preference function κ serves as a source from
which certain prior knowledge about the structure
can be injected into our model in a principled way.
Note that the function is defined at the complete
structure level. This allows us to incorporate both
local and arbitrary global structured information into
the preference function.

Under the log-linear parameterization, we have:

L′(Θ) =
∑
i

log

∑
y e

f(xi,y)·Θ × κ(xi, y)∑
y e

f(xi,y)·Θ (10)

This is again a non-convex optimization problem
in general, and to solve it we take its partial deriva-
tive with respect to θk:

∂L′(Θ)

∂θk
=

∑
i

EpΘ(y|xi;κ)[fk(xi, y)]

−
∑
i

EpΘ(y|xi)[fk(xi, y)] (11)

pΘ(y|xi;κ) ∝ ef(xi,y)·Θ × κ(xi, y)

pΘ(y|xi) ∝ ef(xi,y)·Θ

3.2 Approximate Learning
Computation of the denominator terms of Equation
10 (and the second term of Equation 11) can be done

efficiently and exactly with dynamic programming.
Our main concern is the computation of its numera-
tor terms (and the first term of Equation 11).

The preference function κ is defined at the com-
plete structure level. Unless the function is defined
in specific forms that allow tractable dynamic pro-
gramming (in the supervised case, which gives a
unique term, or in the hidden variable case, which
can define a packed representations of derivations),
the efficient dynamic programming algorithm used
by CRF is no longer generally applicable for arbi-
trary κ. In general, we resort to approximations.

In this work, we exploit a specific form of the
preference function κ. We assume that there exists
a projection from another decomposable function to
κ. Specifically, we assume a collection of auxiliary
functions, each of the form κp : (x, y) → R, that
scores a property p of the complete structure (x, y).
Each such function measures certain aspect of the
quality of the structure. These functions assign pos-
itive scores to good structural properties and nega-
tive scores to bad ones. We then define κ(x, y) = 1
for all structures that appear at the top-n positions
as ranked by

∑
p κp(x, y) for all possible y’s, and

κ(x, y) = 0 otherwise. We show some actual κp
functions used for a particular event in Section 5.

At each iteration of the training process, to gen-
erate such a n-best list, we first use our model to
produce top n × b candidate outputs as scored by
the current model parameters, and extract the top n
outputs as scored by

∑
p κp(x, y). In practice we set

n = 10 and b = 1000.

3.3 Event Extraction
Now we can obtain the objective function for our
event extraction task. We replace x by s and y by
(h, t) in Equation 10. This gives us the following
function:

Lu(Θ) =
∑
i

log

∑
t,h e

f(si,h,t)·Θ × κ(si, h, t)∑
t,h e

f(si,h,t)·Θ
(12)

The partial derivatives are as follows:

∂Lu(Θ)

∂θk
=

∑
i

EpΘ(t,h|si;κ)[fk(si, h, t)]

−
∑
i

EpΘ(t,h|si)[fk(si, h, t)] (13)

pΘ(t, h|si;κ) ∝ ef(si,h,t)·Θ × κ(si, h, t)

pΘ(t, h|si) ∝ ef(si,h,t)·Θ
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Recall that s is an event span, t is a specfic re-
alization of the event template, and h is the hidden
mention information for the event span.

4 Discussion: Preferences v.s. Constraints

Note that the objective function in Equation 5, if
written in the additive form, leads to a cost func-
tion reminiscent of the one used in constraint-driven
learning algorithm (CoDL) (Chang et al., 2007) (and
similarly, posterior regularization (Ganchev et al.,
2010), which we will discuss later at Section 6).
Specifically, in CoDL, the following cost function
is involved in its EM-like inference procedure:

arg max
y

Θ · f(x, y)− ρ
∑
c

d(y,Yc) (14)

where Yc defines the set of y’s that all satisfy a cer-
tain constraint c, and d defines a distance function
from y to that set. The parameter ρ controls the de-
gree of the penalty when constraints are violated.

There are some important distinctions between
structured preference modeling (PM) and CoDL.
CoDL primarily concerns constraints, which pe-
nalizes bad structures without explicitly rewarding
good ones. On the other hand, PM concerns prefer-
ences, which can explicitly reward good structures.

Constraints are typically useful when one works
on structured prediction problems for data with cer-
tain (often rigid) regularities, such as citations, ad-
vertisements, or POS tagging for complete sen-
tences. In such tasks, desired structures typically
present certain canonical forms. This allows declar-
ative constraints to be specified as either local struc-
ture prototypes (e.g., in citation extraction, the word
pp. always corresponds to the PAGES field, while
proceedings is always associated with BOOKTITLE
or JOURNAL), or as certain global regulations about
complete structures (e.g., at least one word should
be tagged as verb when performing a sentence-level
POS tagging).

Unfortunately, imposing such (hard or soft) con-
straints for certain tasks such as ours, where the data
tends to be of arbitrary forms without many rigid
regularities, can be difficult and often inappropri-
ate. For example, there is no guarantee that a cer-
tain argument will always be present in the event
span, nor should a particular mention, if appeared,
always be selected and assigned to a specific argu-
ment. For example, in the example event span given

in Section 1, both “March” and “Tuesday” are valid
candidate mentions for the TIME-WITHIN argument
given their annotated type TME. One important clue
is that March appears after the word in and is lo-
cated nearer to other mentions that can be poten-
tially useful arguments. However, encoding such
information as a general constraint can be inappro-
priate, as potentially better structures can be found
if one considers other alternatives. On the other
hand, if we believe the structural pattern “at TAR-
GET in TIME-WITHIN” is in general considered a
better sub-structure than “said TIME-WITHIN” for
the “Attack” event, we may want to assign structured
preference to a complete structure that contains the
former, unless there exist other structured evidence
showing the latter turns out to be better.

In this work, our preference function is related
to another function that can be decomposed into a
collection of property functions κp. Each of them
scores a certain aspect of the complete structure.
This formulation gives us a complete flexibility to
assign arbitrary structured preferences, where posi-
tive scores can be assigned to good properties, and
negative scores to bad ones. Thus, in this way, the
quality of a complete structure is jointly measured
with multiple different property functions.

To summarize, preferences are an effective way to
“define” the event structure to the learner, which is
essential in an unsupervised setting, which may not
be easy to do with other forms of constraints. Prefer-
ences are naturally decomposable, which allows us
to extend their impact without significantly effecting
the complexity of inference.

5 Experiments

In this section, we present our experimental results
on the standard ACE053 dataset (newswire portion).
We choose to perform our evaluations on 4 events
(namely, “Attack”, “Meet”, “Die” and “Transport”),
which are the only events in this dataset that have
more than 50 instances. For each event, we ran-
domly split the instances into two portions, where
70% are used for learning, and the remaining 30%
for evaluation. We list the corpus statistics in Table
2.

To present general results while making minimal
assumptions, our primary event extraction results

3http://www.itl.nist.gov/iad/mig/tests/ace/2005/doc/
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Event Without Annotated Training Data With Annotated Training Data
Random Unsup Rule PM MaxEnt-b MaxEnt-t MaxEnt-p semi-CRF

Attack 20.47 30.12 39.25 42.02 54.03 58.82 65.18 63.11
Meet 35.48 26.09 44.07 63.55 65.42 70.48 75.47 76.64
Die 30.03 13.04 40.58 55.38 51.61 59.65 63.18 67.65

Transport 20.40 6.11 44.34 57.29 53.76 57.63 61.02 64.19

Table 1: Performance for different events under different experimental settings, with gold mention boundaries and types. We report
F1-measure percentages.

Event #A Learning Set Evaluation Set #P#I #M #I #M
Attack 8 188 300/509 78 121/228 7
Meet 7 57 134/244 24 52/98 7
Die 9 41 89/174 19 33/61 6

Transport 13 85 243/426 38 104/159 6

Table 2: Corpus statistics (#A: number of possible arguments
for the event; #I: number of instances; #M: number of ac-
tive/total mentions; #P: number of preference patterns used
for performing our structured preference modeling.)

are independent of mention identification and typing
modules, which are based on the gold mention in-
formation as given by the dataset. Additionally, we
present results obtained by exploiting our in-house
automatic mention identification and typing mod-
ule, which is a hybrid system that combines statis-
tical and rule-based approaches. The module’s sta-
tistical component is trained on the ACE04 dataset
(newswire portion) and overall it achieves a micro-
averaged F1-measure of 71.25% at our dataset.

5.1 With Annotated Training Data

With hand-annotated training data, we are able to
train our model in a fully supervised manner. The
right part of Table 1 shows the performance for
the fully supervised models. For comparison, we
present results from several alternative approaches
based a collection of locally trained maximum en-
tropy (MaxEnt) classifiers. In these approaches, we
treat each argument of the template as one possi-
ble output class, plus a special “NONE” class for
not selecting it as an argument. We train and apply
the classifiers on argument segments (i.e., mentions)
only. All the models are trained with the same fea-
ture set used in the semi-CRF model.

In the simplest baseline approach MaxEnt-b, type
information for each mention is simply treated as
one special feature. In the approach MaxEnt-t, we
instead use the type information to constrain the

classifier’s predictions based on the acceptable types
associated with each argument. This approach gives
better performance than that of MaxEnt-b. This in-
dicates that such locally trained classifiers are not
robust enough to disambiguate arguments that take
different types. As such, type information serving as
additional constraints at the end does help.

To assess the importance of structured preference,
we also perform experiments where structured pref-
erence information is incorporated at the inference
time of the MaxEnt classifiers. Specifically, for each
event, we first generate n-best lists for output struc-
tures. Next, we re-rank this list based on scores
from our structured preference functions (we used
the same preferences as to be discussed in the next
section). The results for these approaches are given
in the column of MaxEnt-p of Table 1. This simple
approach gives us significant improvements, clos-
ing the gap between locally trained classifiers and
the joint model (in one case the former even out-
performs the latter). Note that no structured pref-
erence information is used when training and eval-
uating our semi-CRF model. This set of results is
not surprising. In fact, similar observations are also
reported in previous works when comparing joint
model against local models with constraints incor-
porated (Roth and Yih, 2005). This clearly indicates
that structured preference information is crucial to
model.

5.2 Without Annotated Training Data
Now we turn to experiments for the more realistic
scenario where human annotations are not available.

We first build our simplest baseline by randomly
assigning arguments to each mention with mention
type information serving as constraints. Averaged
results over 1000 runs are reported in the first col-
umn of Table 1.

Since our model formulation leaves us with com-
plete freedom in designing the preference function,
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Type Preference pattern (p)

General {at|in|on} followed by PLACE
{during|at|in|on} followed by TIME-WITHIN

Die

AGENT (immediately) followed by {killed}
{killed} (immediately) followed by VICTIM

VICTIM (immediately) followed by {be killed}
AGENT followed by {killed} (immediately) followed by VICTIM

Transport

X immediately followed by {,|and} immediately followed by X, where X ∈ {ORIGIN|DESTINATION}
{from|leave} (immediately) followed by ORIGIN

{at|in|to|into} immediately followed by DESTINATION
PERSON followed by {to|visit|arrived}

Figure 3: The complete list of preference patterns used for the “Die” and “Transport” event. We simply set κp = 1.0 for all p’s. In
other words, when a structure contains a pattern, its score is incremented by 1.0. We use {} to refer to a set of possible words or
arguments. For example, {from|leave} means a word which is either from or leave. The symbol () denotes optional. For example,
“{killed} (immediately) followed by VICTIM” is equivalent to the following two preferences: “{killed} immediately followed by
VICTIM”, and “{killed} followed by VICTIM”.

one could design arbitrarily good, domain-specific
or even instance-specific preferences. However, to
demonstrate its general effectiveness, in this work
we only choose a minimal amount of general prefer-
ence patterns for evaluations.

We make our preference patterns as general as
possible. As shown in the last column (#P) of Table
2, we use only 7 preference patterns each for the “At-
tack” and “Meet” events, and 6 patterns each for the
other two events. In Figure 3, we show the complete
list of the 6 preference patterns for the “Die” and
“Transport” event used for our experiments. Out of
those 6 patterns, 2 are more general patterns shared
across different events, and 4 are event-specific. In
contrast, for example, for the “Die” event, the super-
vised approach requires human to select from 174
candidate mentions and annotate 89 of them.

Despite its simplicity, it works very well in prac-
tice. Results are given in the column of “PM” of
Table 1. It generally gives competitive performance
as compared to the supervised MaxEnt baselines.

On the other hand, a completely unsupervised ap-
proach where structured preferences are not speci-
fied, performs substantially worse. To run such com-
pletely unsupervised models, we essentially follow
the same training procedure as that of the prefer-
ence modeling, except that structured preference in-
formation is not in place when generating the n-best
list. In the absence of proper guidances, such a pro-
cedure can easily converge to bad local minima. The
results are reported in the “Unsup” column of Ta-
ble 1. In practice, we found that very often, such
a model would prefer short structures where many
mentions are not selected as desired. As a result, the

unsupervised model without preference information
can even perform worse than the random baseline 4.

Finally, we also compare against an approach that
regards the preferences as rules. All such rules are
associated with a same weight and are used to jointly
score each structure. We then output the structure
that is assigned the highest total weight. Such an ap-
proach performs worse than our approach with pref-
erence modeling. The results are presented in the
column of “Rule” of Table 1. This indicates that
our model is able to learn to generalize with features
through the guidance of our informative preferences.
However, we also note that the performance of pref-
erence modeling depends on the actual quality and
amount of preferences used for learning. In the ex-
treme case, where only few preferences are used, the
performance of preference modeling will be close to
that of the unsupervised approach, while the rule-
based approach will yield performance close to that
of the random baseline.

The results with automatically predicted mention
boundaries and types are given in Table 3. Simi-
lar observations can be made when comparing the
performance of preference modeling with other ap-
proaches. This set of results further confirms the ef-
fectiveness of our approach using preference model-
ing for the event extraction task.

6 Related Work

Structured prediction with limited supervision is a
popular topic in natural language processing.

4For each event, we only performed 1 run with all the initial
feature weights set to zeros.
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Event Random Unsup PM semi-CRF
Attack 14.26 26.19 32.89 46.92
Meet 26.65 14.08 45.28 58.18
Die 19.17 9.09 44.44 48.57

Transport 15.78 10.14 49.73 52.34

Table 3: Event extraction performance with automatic mention
identifier and typer. We report F1 percentage scores for pref-
erence modeling (PM) as well as two baseline approaches. We
also report performance of the supervised approach trained with
the semi-CRF model for comparison.

Prototype driven learning (Haghighi and Klein,
2006) tackled the sequence labeling problem in a
primarily unsupervised setting. In their work, a
Markov random fields model was used, where some
local constraints are specified via their prototype list.

Constraint-driven learning (CoDL) (Chang et al.,
2007) and posterior regularization (PR) (Ganchev et
al., 2010) are both primarily semi-supervised mod-
els. They define a constrained EM framework that
regularizes posterior distribution at the E-step of
each EM iteration, by pushing posterior distributions
towards a constrained posterior set. We have already
discussed CoDL in Section 4 and gave a comparison
to our model. Unlike CoDL, in the PR framework
constraints are relaxed to expectation constraints, in
order to allow tractable dynamic programming. See
also Samdani et al. (2012) for more discussions.

Contrastive estimation (CE) (Smith and Eisner,
2005a) is another log-linear framework for primar-
ily unsupervised structured prediction. Their objec-
tive function is related to the pseudolikelihood es-
timator proposed by Besag (1975). One challenge
is that it requires one to design a priori an effective
neighborhood (which also needs to be designed in
certain forms to allow efficient computation of the
normalization terms) in order to obtain optimal per-
formance. The model has been shown to work in un-
supervised tasks such as POS induction (Smith and
Eisner, 2005a), grammar induction (Smith and Eis-
ner, 2005b), and morphological segmentation (Poon
et al., 2009), where good neighborhoods can be
identified. However, it is less intuitive what consti-
tutes a good neighborhood in this task.

The neighborhood assumption of CE is relaxed
in another latent structure approach (Chang et al.,
2010a; Chang et al., 2010b) that focuses on semi-
supervised learning with indirect supervisions, in-
spired by the CoDL model described above.

The locally normalized logistic regression (Berg-

Kirkpatrick et al., 2010) is another recently proposed
framework for unsupervised structured prediction.
Their model can be regarded as a generative model
whose component multinomial is replaced with a
miniature logistic regression where a rich set of local
features can be incorporated. Empirically the model
is effective in various unsupervised structured pre-
diction tasks, and outperforms the globally normal-
ized model. Although modeling the semi-Markov
properties of our segments (especially the gap seg-
ments) in our task is potentially challenging, we plan
to investigate in the future the feasibility for our task
with such a framework.

7 Conclusions

In this paper, we present a novel model based on
the semi-Markov conditional random fields for the
challenging event extraction task. The model takes
in coarse mention boundary and type information
and predicts complete structures indicating the cor-
responding argument role for each mention.

To learn the model in an unsupervised manner,
we further develop a novel learning approach called
structured preference modeling that allows struc-
tured knowledge to be incorporated effectively in a
declarative manner.

Empirically, we show that knowledge about struc-
tured preference is crucial to model and the prefer-
ence modeling is an effective way to guide learn-
ing in this setting. Trained in a primarily unsuper-
vised manner, our model incorporating structured
preference information exhibits performance that is
competitive to that of some supervised baseline ap-
proaches. Our event extraction system and code will
be available for download from our group web page.
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Abstract

This paper presents a joint model for tem-
plate filling, where the goal is to automati-
cally specify the fields of target relations such
as seminar announcements or corporate acqui-
sition events. The approach models mention
detection, unification and field extraction in
a flexible, feature-rich model that allows for
joint modeling of interdependencies at all lev-
els and across fields. Such an approach can,
for example, learn likely event durations and
the fact that start times should come before
end times. While the joint inference space is
large, we demonstrate effective learning with
a Perceptron-style approach that uses simple,
greedy beam decoding. Empirical results in
two benchmark domains demonstrate consis-
tently strong performance on both mention de-
tection and template filling tasks.

1 Introduction

Information extraction (IE) systems recover struc-
tured information from text. Template filling is an IE
task where the goal is to populate the fields of a tar-
get relation, for example to extract the attributes of a
job posting (Califf and Mooney, 2003) or to recover
the details of a corporate acquisition event from a
news story (Freitag and McCallum, 2000).

This task is challenging due to the wide range
of cues from the input documents, as well as non-
textual background knowledge, that must be consid-
ered to find the best joint assignment for the fields
of the extracted relation. For example, Figure 1
shows an extraction from CMU seminar announce-
ment corpus (Freitag and McCallum, 2000). Here,
the goal is to perform mention detection and extrac-
tion, by finding all of the text spans, ormentions,

Date 5/5/1995
Start Time 3:30PM
Location Wean Hall 5409
Speaker Raj Reddy
Title Some Necessary Conditions for a Good User Interface
End Time –

Figure 1: An example email and its template. Field men-
tions are highlighted in the text, grouped by color.

that describe field values, unify these mentions by
grouping them according to target field, and normal-
izing the results within each group to provide the
final extractions. Each of these steps requires sig-
nificant knowledge about the target relation. For ex-
ample, in Figure 1, the mention “3:30” appears three
times and provides the only reference to a time. We
must infer that this is the starting time, that the end
time is never explicitly mentioned, and also that the
event is in the afternoon. Such inferences may not
hold in more general settings, such as extraction for
medical emergencies or related events.

In this paper, we present a joint modeling and
learning approach for the combined tasks of men-
tion detection, unification, and template filling, as
described above. As we will see in Section 2, pre-
vious work has mostly focused on learning tagging
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models for mention detection, which can be diffi-
cult to aggregate into a full template extraction, or
directly learning template field value extractors, of-
ten in isolation and with no reasoning across differ-
ent fields in the same relation. We present a simple,
feature-rich, discriminative model that readily incor-
porates a broad range of possible constraints on the
mentions and joint field assignments.

Such an approach allows us to learn, for each tar-
get relation, an integrated model to weight the dif-
ferent extraction options, including for example the
likely lengths for events, or the fact that start times
should come before end times. However, there are
significant computation challenges that come with
this style of joint learning. We demonstrate empiri-
cally that these challenges can be solved with a com-
bination of greedy beam decoding, performed di-
rectly in the joint space of possible mention clusters
and field assignments, and structured Perceptron-
style learning algorithm (Collins, 2002).

We report experimental evaluations on two bench-
mark datasets in different genres, the CMU semi-
nar announcements and corporate acquisitions (Fre-
itag and McCallum, 2000). In each case, we evalu-
ated both template extraction and mention detection
performance. Our joint learning approach provides
consistently strong results across every setting, in-
cluding new state-of-the-art results. We also demon-
strate, through ablation studies on the feature set, the
need for joint modeling and the relative importance
of the different types of joint constraints.

2 Related Work

Research on the task of template filling has focused
on the extraction of field value mentions from the
underlying text. Typically, these values are extracted
based on local evidence, where the most likely entity
is assigned to each slot (Roth and Yih, 2001; Siefkes,
2008). There has been little effort towards a compre-
hensive approach that includes mention unification,
as well as considers the structure of the target rela-
tional schema to create semantically valid outputs.

Recently, Haghighi and Klein (2010) presented
a generative semi-supervised approach for template
filling. In their model, slot-filling entities are first
generated, and entity mentions are then realized in
text. Thus, their approach performs coreference at

slot level. In addition to proper nouns (named en-
tity mentions) that are considered in this work, they
also account for nominal and pronominal noun men-
tions. This work presents a discriminative approach
to this problem. An advantage of a discriminative
framework is that it allows the incorporation of rich
and possibly overlapping features. In addition, we
enforce label consistency and semantic coherence at
record level.

Other related works perform structured relation
discovery for different settings of information ex-
traction. Inopen IE, entities and relations may be in-
ferred jointly (Roth and Yih, 2002; Yao et al., 2011).
In this IE task, the target relation must agree with the
entity types assigned to it; e.g.,born-in relation re-
quires aplaceas its argument. In addition, extracted
relations may be required to be consistent with an
existing ontology (Carlson et al., 2010). Compared
with the extraction of tuples of entity mention pairs,
template filling is associated with a more complex
target relational schema.

Interestingly, several researchers have attempted
to model label consistency and high-level relational
constraints using state-of-the-art sequential models
of named entity recognition (NER). Mainly, pre-
determined word-level dependencies were repre-
sented as links in the underlying graphical model
(Sutton and McCallum, 2004; Finkel et al., 2005).
Finkel et al. (2005) further modelled high-level se-
mantic constraints; for example, using the CMU
seminar announcements dataset, spans labeled as
start timeor end timewere required to be seman-
tically consistent. In the proposed framework we
take a bottom-up approach to identifying entity men-
tions in text, where given a noisy set of candidate
named entities, described using rich semantic and
surface features, discriminative learning is applied
to label these mentions. We will show that this ap-
proach yields better performance on the CMU semi-
nar announcement dataset when evaluated in terms
of NER. Our approach is complimentary to NER
methods, as it can consolidate noisy overlapping
predictions from multiple systems into coherent sets.

3 Problem Setting

In the template filling task, a target relationr is pro-
vided, comprised of attributes (also referred to as
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Figure 2: The relational schema for the seminars domain.

Figure 3: A record partially populated from text.

fields, or slots)A(r). Given a documentd, which
is known to describe a tuple of the underlying re-
lation, the goal is to populate the fields with values
based on the text.

The relational schema.In this work, we describe
domain knowledge through an extended relational
database schemaR. In this schema, every field of
the target relation maps to a tuple of another rela-
tion, giving rise to a hierarchical view of template
filling. Figure 2 describes a relational schema for
the seminar announcement domain. As shown, each
field of the seminarrelation maps to another rela-
tion; e.g.,speaker’s values correspond topersontu-
ples. According to the outlined schema, most re-
lations (e.g.,person) consist of a single attribute,
whereas thedateandtimerelations are characterised
with multiple attributes; for example, thetime rela-
tion includes the fields ofhour, minutesandampm.

We will make use of limited domain knowledge,
expressed as relation-level constraints that are typi-
cally realized in a database. Namely, the following
tests are supported for each relation.

Tuple validity.This test reflects data integrity. The
attributes of a relation may be defined asmandatory
or optional. Mandatory attributes are denoted with a
solid boundary in Figure 2 (e.g.,seminar.date), and

optional attributes are denoted with a dashed bound-
ary (e.g.,seminar.title). Similar constraints can be
posed on a set of attributes; e.g., eitherday-of-month
or day-of-weekmust be populated in thedate rela-
tion. Finally, a combination of field values may be
required to be valid, e.g., the values ofday, month,
yearandday-of-weekmust be consistent.

Tuple contradiction. This function checks
whether twovalid tuples v1 and v2 are inconsis-
tent, implying a negation of possible unification of
these tuples. In this work, we considerdateandtime
tuples as contradictory if they contain semantically
different values for some field; tuples oflocation,
personand title are required to have minimal over-
lap in their string values to avoid contradiction.

Template filling. Given documentd, the hierar-
chical schemaR is populated in a bottom-up fash-
ion. Generally, parent-free relations in the hierar-
chy correspond to generic entities, realized as en-
tity mentions in the text. In Figure 2, these relations
are denoted by double-line boundary, includinglo-
cation, person, title, date and time; every tuple of
these relations maps to a named entity mention.1

Figure 3 demonstrates the correct mapping of
named entity mentions to tuples, as well as tuple uni-
fication, for the example shown in Figure 1. For ex-
ample, the mentions “Wean 5409” and “Wean Hall
5409” correspond to tuples of thelocation relation,
where the two tuples are resolved into a unified set.
To complete template filling, the remaining relations
of the schema are populated bottom-up, where each
field links to a unified set of populated tuples. For
example, in Figure 3, theseminar.locationfield is
linked to{“Wean Hall 5409”,“Wean 5409”}.

Value normalization of the unified tuples is an-
other component of template filling. We partially ad-
dress normalization: tuples of semantically detailed
(multi-attribute) relations, e.g.,dateandtime, are re-
solved into their semantic union, while textual tuples
(e.g., location) are normalized to the longest string
in the set. In this work, we assume that each tem-
plate slot contains at most one value. This restriction
can be removed, at the cost of increasing the size of
the decoding search space.

1In the multi-attribute relations ofdate and time, each at-
tribute maps to a text span, where the set of spans at tuple-level
is required to be sequential (up to a small distanced).
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4 Structured Learning

Next, we describe how valid candidate extrac-
tions are instantiated (Sec. 4.1) and how learning
is applied to assess the quality of the candidates
(Sec. 4.2), where beam search is used to find the top
scoring candidates efficiently (Sec. 4.3).

4.1 Candidate Generation

Named entity recognition.A set of candidate men-
tionsSd(a) is extracted from documentd per each
attributea of a relationr ∈ L, whereL is the set
of parent-free relations inT . We aim athigh-recall
extractions; i.e.,Sd(a) is expected to contain the cor-
rect mentions with high probability. Various IE tech-
niques, as well as an ensemble of methods, can be
employed for this purpose. For each relationr ∈ L,
valid candidate tuplesEd(r) are constructed from
the candidate mentions that map to its attributes.

Unification. For every relationr ∈ L, we con-
struct candidate sets of unified tuples,{Cd(r) ⊆
Ed(r)}. Naively, the number of candidate sets is
exponential in the size ofEd(t). Importantly, how-
ever, the tuples within a candidate unification set are
required to benon-contradictory. In addition, the
text spans that comprise the mentions within each
set must not overlap. Finally, we do not split tuples
with identical string values between different sets.

Candidate tuples.To construct the space of candi-
date tuples of the target relation, the remaining rela-
tionsr ∈ {T−L} are visited bottom-up, where each
field a ∈ A(r) is mapped in turn to a (possibly uni-
fied) populated tuple of its type. The valid (and non-
overlapping) combinations of field mappings consti-
tute a set of candidate tuples ofr.

The candidate tuples generated using this proce-
dure are structured entities, constructed using typed
named entity recognition, unification, and hierarchi-
cal assignment of field values (Figure 3). We will
derive features that describe local and global prop-
erties of the candidate tuples, encoding both surface
and semantic information.

4.2 Learning

We employ a discriminative learning algorithm, fol-
lowing Collins (2002). Our goal is to find the candi-

Algorithm 1: The beam search procedure
1. Populate every low-level relationr ∈ L from textd:

• Construct a set of candidate valid tuplesEd(r) given
high-recall typed candidate text spansSd(a), a ∈ A(r).

• Group Ed(r) into possibly overlapping unified sets,
{Cd(r) ⊆ Ed(r)}.

2. Iterate bottom-up through relationsr ∈ {T − L}:

• Initialize the set of candidate tuplesEd(r) to an empty
set.

• Iterate through attributesa ∈ A(r):

– Retrieve the set of candidate tuples (or unified tuple
sets)Ed(r

′), wherer′ is the relation that attributea
links to inT . Add an empty tuple to the set.

– For every pair of candidate tuplese ∈ Ed(r) and
e′ ∈ Ed(r

′), modify e by linking attributea(e) to
tuplee′.

– Add the modified tuples, if valid, toEd(r).
– Apply Equation 1 to rank the partially filled candi-

date tuplese ∈ Ed(r). Keep thek top scoring can-
didates inEd(r), and discard the rest.

3. Apply Equation 1 to output a ranked list of extracted records
Ed(r

∗), wherer∗ is the target relation.

date that maximizes:

F (y, ᾱ) =
m∑

j=1

αjfj(y, d, T ) (1)

wherefj(d, y, T ), j = 1, ..,m, are pre-defined fea-
ture functions describing a candidate recordy of the
target relation given documentd and the extended
schemaT . The parameter weightsαj are to be
learned from labeled instances. The training pro-
cedure involves initializing the weights̄α to zero.
Given ᾱ, an inference procedure is applied to find
the candidate that maximizes Equation 1. If the top-
scoring candidate is different from the correct map-
ping known, then: (i)̄α is incremented with the fea-
ture vector of the correct candidate, and (ii) the fea-
ture vector of the top-scoring candidate is subtracted
from ᾱ. This procedure is repeated for a fixed num-
ber of epochs. Following Collins, we employ the av-
eraged Perceptron online algorithm (Collins, 2002;
Freund and Schapire, 1999) for weight learning.

4.3 Beam Search

Unfortunately, optimal local decoding algorithms
(such as the Viterbi algorithm in tagging problems
(Collins, 2002)) can not be applied to our prob-
lem. We therefore propose using beam search to ef-
ficiently find the top scoring candidate. This means
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that rather than instantiate the full space of valid can-
didate records (Section 4.1), we are interested in in-
stantiating only those candidates that are likely to be
assigned a high score byF . Algorithm 1 outlines
the proposed beam search procedure. As detailed,
only a set of top scoring tuples of sizek (beam size)
is maintained per relationr ∈ T during candidate
generation. A given relation is populated incremen-
tally, having each of its attributesa ∈ A(r) map in
turn to populated tuples of its type, and using Equa-
tion 1 to find thek highest scoringpartially popu-
lated tuples; this limits the number of candidate tu-
ples evaluated tok2 per attribute, and tonk2 for a
relation withn attributes. While beam search is effi-
cient, performance may be compromised compared
with an unconstrained search. The beam sizek al-
lows controlling the trade-off between performance
and cost. An advantage of the proposed approach is
that rather than output a single prediction, a list of
coherent candidate tuples may be generated, ranked
according to Equation 1.

5 Seminar Extraction Task

Dataset The CMU seminar announcement dataset
(Freitag and McCallum, 2000) includes 485 emails
containing seminar announcements. The dataset has
been originally annotated with text spans referring to
four slots: speaker, location, stime, andetime. We
have annotated this dataset with two additional at-
tributes:dateandtitle.2 We consider this corpus as
an example of semi-structured text, where some of
the field values appear in the email header, in a tabu-
lar structure, or using special formatting (Califf and
Mooney, 1999; Minkov et al., 2005).3

We used a set of rules to extract candidate named
entities per the types specified in Figure 2.4 The
rules encode information typically used in NER, in-
cluding content and contextual patterns, as well as
lookups in available dictionaries (Finkel et al., 2005;
Minkov et al., 2005). The extracted candidates are
high-recall and overlapping. In order to increase
recall further, additional candidates were extracted
based on document structure (Siefkes, 2008). The

2A modified dataset is available on the author’s homepage.
3Such structure varies across messages. Otherwise, the

problem would reduce to wrapper learning (Zhu et al., 2006).
4The rule language used is based on cascaded finite state

machines (Minorthird, 2008).

recall for the named entities of typedateandtime is
near perfect, and is estimated at 96%, 91% and 90%
for location, speakerandtitle, respectively.

Features The categories of the features used are
described below. All features are binary and typed.5

Lexical. These features indicate the value and
pattern of words within the text spans correspond-
ing to each field. For example, lexical features per
Figure 1 includelocation.content.word.wean, loca-
tion.pattern.capitalized. Similar features are derived
for a window of three words to the right and to the
left of the included spans. In addition, we observe
whether the words that comprise the text spans ap-
pear in relevant dictionaries: e.g., whether the spans
assigned to the location field include words typi-
cal of location, such as “room” or “hall”. Lex-
ical features of this form are commonly used in
NER (Finkel et al., 2005; Minkov et al., 2005).

Structural. It has been previously shown that
the structure available in semi-structured documents
such as email messages is useful for information ex-
traction (Minkov et al., 2005; Siefkes, 2008). As
shown in Figure 1, an email message includes a
header, specifying textual fields such astopic, dates
andtime. In addition, space lines and line breaks are
used to emphasize blocks of important information.
We propose a set of features that model correspon-
dence between the text spans assigned to each field
and document structure. Specifically, these features
model whether at least one of the spans mapped to
each field appears in the email header; captures a
full line in the document; is indent; appears within
space lines; or in a tabular format. In Figure 1, struc-
tural active features includelocation.inHeader, lo-
cation.fullLine, title.withinSpaceLines, etc.

Semantic. These features refer to the semantic
interpretation of field values. According to the re-
lational schema (Figure 2),date and time include
detailed attributes, whereas other relations are rep-
resented as strings. The semantic features encoded
therefore refer todateand time only. Specifically,
these features indicate whether a unified set of tu-
ples defines a value for all attributes; for example,
in Figure 1, the union of entities that map to the
datefield specify all of the attribute values of this
relation, includingday-of-month, month, year, and

5Real-value features were discretized into segments.

849



Date Stime Etime Location Speaker Title
Full model 96.1 99.3 98.7 96.4 87.5 69.5
No structural features 94.9 99.1 98.0 96.1 83.8 65.1
No semantic features 96.1 98.7 95.4 96.4 87.5 69.5
No unification 87.2 97.0 95.1 94.5 76.0 62.7
Individual fields 96.5 97.2 - 96.4 86.8 64.5

Table 1: Seminar extraction results (5-fold CV): Field-level F1

Date Stime Etime Location Speaker Title
SNOW (Roth and Yih, 2001) - 99.6 96.3 75.2 73.8 -
BIEN (Peshkin and Pfeffer, 2003) - 96.0 98.8 87.1 76.9 -
Elie (Finn, 2006) - 98.5 96.4 86.5 88.5 -
TIE (Siefkes, 2008) - 99.3 97.1 81.7 85.4 -
Full model 96.3 99.1 98.0 96.9 85.8 67.7

Table 2: Seminar extraction results (5-fold CV, trained on 50% of corpus): Field-level F1

day-of-week. Another feature encodes the size of the
most semantically detailed named entity that maps
to a field; for example, the most detailed entity men-
tion of type stime in Figure 1 is “3:30”, compris-
ing of two attribute values, namelyhour and min-
utes. Similarly, the total number of semantic units
included in a unified set is represented as a feature.
These features were designed to favor semantically
detailed mentions and unified sets. Finally, domain-
specific semantic knowledge is encoded as features,
including thedurationof the seminar, and whether a
timevalue is round (minutes divide by 5).

In addition to the features described, one may
be interested in modeling cross-field information.
We have experimented with features that encode
the shortest distance between named entity mentions
mapping to different fields (measured in terms of
separating lines or sentences), based on the hypoth-
esis that field values typically co-appear in the same
segments of the document. These features were not
included in the final model since their contribution
was marginal. We leave further exploration of cross-
field features in this domain to future work.

Experiments We conducted 5-fold cross vali-
dation experiments using the seminar extraction
dataset. As discussed earlier, we assume that a sin-
gle record is described in each document, and that
each field corresponds to a single value. These
assumptions are violated in a minority of cases.
In evaluating the template filling task, only exact
matches are accepted as true positives, where partial
matches are counted as errors (Siefkes, 2008). No-
tably, the annotated labels as well as corpus itself are
not error-free; for example, in some announcements
the date and day-of-week specified are inconsistent.

Our evaluation is strict, where non-empty predicted
values are counted as errors in such cases.

Table 1 shows the results of our full model us-
ing beam sizek = 10, as well as model variants.
In order to evaluate the contribution of the proposed
features, we eliminated every feature group in turn.
As shown in the table, removing the structural fea-
tures hurt performance consistently across fields. In
particular, structure is informative for thetitle field,
which is otherwise characterised with low content
and contextual regularity. Removal of the semantic
features affected performance on thestimeandetime
fields, modeled by these features. In particular, the
optionaletimefield, which has fewer occurrences in
the dataset, benefits from modeling semantics.

An important question to be addressed in evalu-
ation is to what extent the joint modeling approach
contributes to performance. In another experiment
we therefore mimic the typical scenario of template
filling, in which the value of the highest scoring
named entity is assigned to each field. In our frame-
work, this corresponds to a setting in which a unified
set includes no more than a single entity. The results
are shown in Table 1 (‘no unification’). Due to re-
duced evidence given a single entity versus a a coref-
erent set of entities, this results in significantly de-
graded performance. Finally, we experimented with
populating every field of the target schema indepen-
dently of the other fields. While results are overall
comparable on most fields, this had negative impact
on thetitle field. This is largely due to erroneous as-
signments of named entities of other types (mainly,
person) as titles; such errors are avoided in the full
joint model, where tuple validity is enforced.

Table 2 provides a comparison of the full model
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Date Stime Etime Location Speaker Title
(Sutton and McCallum, 2004) - 96.7 97.2 88.1 80.4 -
(Finkel et al., 2005) - 97.1 97.9 90.0 84.2 -
Full model 95.4 97.1 97.9 97.0 86.5 75.5

Table 3: Seminar extraction results: Token-level F1

against previous state-of-the-art results. These re-
sults were all obtained using half of the corpus for
training, and its remaining half for evaluation; the
reported figures were averaged over five random
splits. For comparison, we used 5-fold cross vali-
dation, where only a subset of each train fold that
corresponds to 50% of the corpus was used for train-
ing. Due to the reduced training data, the results are
slightly lower than in Table 1. (Note that we used the
same test examples in both cases.) The best results
per field are marked in boldface. The proposed ap-
proach yields the best or second-best performance
on all target fields, and gives the best performance
overall. While a variety of methods have been ap-
plied in previous works, none has modeled template
filling in a joint fashion. As argued before, joint
modeling is especially important for irregular fields,
such astitle; we provide first results on this field.

Previously, Sutton and McCallum (2004) and
later Finkelet-al. (2005), applied sequential models
to perform NER on this dataset, identifying named
entities that pertain to the template slots. Both of
these works incorporated coreference and high-level
semantic information to a limited extent. We com-
pare our approach to their work, having obtained and
used the same 5-fold cross validation splits as both
works. Table 3 shows results in terms of token F1.
Our results evaluated on the named mention recogni-
tion task are superior overall, giving comparable or
best performance on all fields. We believe that these
results demonstrate the benefit of performing men-
tion recognition as part of a joint model that takes
into account detailed semantics of the underlying re-
lational schema, when available.

Finally, we evaluate theglobal quality of the ex-
tracted records. Rather than assess performance at
field-level, this stricter evaluation mode considers a
whole tuple, requiring the values assigned to all of
its fields to be correct. Overall, our full model (Table
1) extracts globally correct records for 52.6% of the
examples. To our knowledge, this is the first work
that provides this type of evaluation on this dataset.
Importantly, an advantage of the proposed approach

Figure 4: The relational schema for acquisitions.

is that it readily outputs a ranked list of coherent pre-
dictions. While the performance at the top of the
output lists was roughly comparable, increasingk

gives higher oracle recall: the correct record was
included in the outputk-top list 69.7%, 76.1% and
80.4% of the time, fork = 5, 10, 20 respectively.

6 Corporate Acquisitions

Dataset The corporate acquisitions corpus con-
tains 600 newswire articles, describing factual or po-
tential corporate acquisition events. The corpus has
been annotated with the official names of the parties
to an acquisition:acquired, purchaserandseller, as
well as their corresponding abbreviated names and
company codes.6 We describe the target schema us-
ing the relational structure depicted in Figure 4. The
schema includes two relations: thecorp relation de-
scribes a corporate entity, including its full name,
abbreviated name and code as attributes; the target
acquisitionrelation includes three role-designating
attributes, each linked to acorp tuple.

Candidate name mentions in this strictly gram-
matical genre correspond tonoun phrases. Docu-
ments were pre-processed to extract noun phrases,
similarly to Haghighi and Klein (2010).

Features We modelsyntacticfeatures, following
Haghighi and Klein (2010). In order to compen-
sate for parsing errors, shallow syntactic features
were added, representing the values of neighboring
verbs and prepositions (Cohen et al., 2005). While
newswire documents are mostly unstructured,struc-
tural features are used to indicate whether any of the
purchaser, acquiredandseller text spans appears in

6In this work, we ignore other fields annotated, as they are
inconsistently defined, have low number of occurrences in the
corpus, and are loosely inter-related semantically.
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purname purabr purcode acqname acqabr acqcode sellname sellabr sellcode
TIE (batch) 55.7 58.1 - 53.5 55.0 - 31.8 25.8 -
TIE (inc) 51.6 55.3 - 49.2 51.7 - 26.0 24.0 -
Full model 48.9 55.0 70.2 50.7 55.2 67.2 33.2 36.8 55.4
Model variants:
No inter-type and struct. ftrs 45.1 50.5 66.8 49.8 53.9 66.4 34.9 42.2 56.0
No semantic features 42.6 38.4 58.1 40.5 36.5 44.8 32.2 26.6 46.6
Individual roles 43.9 48.7 62.5 45.0 47.2 52.7 34.1 40.3 47.8

Table 4: Corp. acquisition extraction results: Field-level F1

purname purabr purcode acqname acqabr acqcode sellname sellabr sellcode
TIE (batch) 52.6 40.5 - 49.2 43.7 28.7 16.4 -
TIE (inc) 48.4 38.6 - 44.7 42.7 - 23.6 14.5 -
Full model 45.0 48.3 69.8 46.4 59.5 66.9 31.6 33.0 55.0

Table 5: Corp. acquisition extraction results: Entity-level F1

the article’s header.Semanticfeatures are applied
to corp tuples: we model whether the abbreviated
name is a subset of the full name; whether the cor-
porate code forms exact initials of the full or abbre-
viated names; or whether it has high string similarity
to any of these values. Finally,cross-type features
encode the shortest string between spans mapping
to different roles in theacquisitionrelation.

Experiments We applied beam search, where
corp tuples are extracted first, andacquisitiontuples
are constructed using the top scoringcorp entities.
We used a default beam sizek = 10. The dataset is
split into a 300/300 train/test subsets.

Table 4 shows results of our full model in terms of
field-level F1, compared against TIE, a state-of-the-
art discriminative system (Siefkes, 2008). Unfortu-
nately, we can not directly compare against a gener-
ative joint model evaluated on this dataset (Haghighi
and Klein, 2010).7 The best results per attribute are
shown in boldface. Our full model performs bet-
ter overall than TIE trained incrementally (similarly
to our system), and is competitive with TIE using
batch learning. Interestingly, the performance of our
model on thecode fields is high; these fields do
not involve boundary prediction, and thus reflect the
quality of role assignment.

Table 4 also shows the results of model vari-
ants. Removing theinter typeand structural fea-
tures mildly hurt performance, on average. In con-
trast, thesemanticfeatures, which account for the
semantic cohesiveness of the populatedcorp tuples,
are shown to be necessary. In particular, remov-

7They report average performance on a different set of
fields; in addition, their results include modeling of pronouns
and nominal mentions, which are not considered here.

ing them degrades the extraction of the abbreviated
names; these features allow prediction of abbrevi-
ated names jointly with the full corporate names,
which are more regular (e.g., include a distinctive
suffix). Finally, we show results of predicting each
role filler individually. Inferring the roles jointly
(‘full model’) significantly improves performance.

Table 5 further shows results on NER, the task of
recovering the sets of named entity mentions per-
taining to each target field. As shown, the proposed
joint approach performs overall significantly better
than previous results reported. These results are con-
sistent with the case study of seminar extraction.

7 Summary and Future Work

We presented a joint approach for template filling
that models mention detection, unification, and field
extraction in a flexible, feature-rich model. This ap-
proach allows for joint modeling of interdependen-
cies at all levels and across fields. Despite the com-
putational challenges of this joint inference space,
we obtained effective learning with a Perceptron-
style approach and simple beam decoding.

An interesting direction of future research is
to apply reranking to the output list of candidate
records using additional evidence, such as support-
ing evidence on the Web (Banko et al., 2008). Also,
modeling additional features or feature combina-
tions in this framework as well as effective feature
selection or improved parameter estimation (Cram-
mer et al., 2009) may boost performance. Finally,
it is worth exploring scaling the approach to unre-
stricted event extraction, and jointly model extract-
ing more than one relation per document.
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Abstract

We present a novel approach to the automatic
acquisition of a Verbnet like classification of
French verbs which involves the use (i) of
a neural clustering method which associates
clusters with features, (ii) of several super-
vised and unsupervised evaluation metrics and
(iii) of various existing syntactic and semantic
lexical resources. We evaluate our approach
on an established test set and show that it
outperforms previous related work with an F-
measure of 0.70.

1 Introduction

Verb classifications have been shown to be useful
both from a theoretical and from a practical perspec-
tive. From the theoretical viewpoint, they permit
capturing syntactic and/or semantic generalisations
about verbs (Levin, 1993; Kipper Schuler, 2006).
From a practical perspective, they support factorisa-
tion and have been shown to be effective in various
NLP (Natural language Processing) tasks such as se-
mantic role labelling (Swier and Stevenson, 2005) or
word sense disambiguation (Dang, 2004).

While there has been much work on automatically
acquiring verb classes for English (Sun et al., 2010)
and to a lesser extent for German (Brew and Schulte
im Walde, 2002; Schulte im Walde, 2003; Schulte
im Walde, 2006), Japanese (Oishi and Matsumoto,
1997) and Italian (Merlo et al., 2002), few studies
have been conducted on the automatic classification
of French verbs. Recently however, two proposals
have been put forward.

On the one hand, (Sun et al., 2010) applied
a clustering approach developed for English to
French. They exploit features extracted from a large
scale subcategorisation lexicon (LexSchem (Mes-
siant, 2008)) acquired fully automatically from Le
Monde newspaper corpus and show that, as for En-
glish, syntactic frames and verb selectional prefer-
ences perform better than lexical cooccurence fea-
tures. Their approach achieves a F-measure of
55.1 on 116 verbs occurring at least 150 times in
Lexschem. The best performance is achieved when
restricting the approach to verbs occurring at least
4000 times (43 verbs) with an F-measure of 65.4.

On the other hand, Falk and Gardent (2011)
present a classification approach for French verbs
based on the use of Formal Concept Analysis (FCA).
FCA (Barbut and Monjardet, 1970) is a sym-
bolic classification technique which permits creating
classes associating sets of objects (eg. French verbs)
with sets of features (eg. syntactic frames). Falk
and Gardent (2011) provide no evaluation for their
results however, only a qualitative analysis.

In this paper, we describe a novel approach to the
clustering of French verbs which (i) gives good re-
sults on the established benchmark used in (Sun et
al., 2010) and (ii) associates verbs with a feature
profile describing their syntactic and semantic prop-
erties. The approach exploits a clustering method
called IGNGF (Incremental Growing Neural Gas
with Feature Maximisation, (Lamirel et al., 2011b))
which uses the features characterising each cluster
both to guide the clustering process and to label the
output clusters. We apply this method to the data
contained in various verb lexicons and we evalu-
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ate the resulting classification on a slightly modified
version of the gold standard provided by (Sun et al.,
2010). We show that the approach yields promising
results (F-measure of 70%) and that the clustering
produced systematically associates verbs with syn-
tactic frames and thematic grids thereby providing
an interesting basis for the creation and evaluation
of a Verbnet-like classification.

Section 2 describes the lexical resources used for
feature extraction and Section 3 the experimental
setup. Sections 4 and 5 present the data used for
and the results obtained. Section 6 concludes.

2 Lexical Resources Used

Our aim is to accquire a classification which covers
the core verbs of French, could be used to support
semantic role labelling and is similar in spirit to the
English Verbnet. In this first experiment, we there-
fore favoured extracting the features used for clus-
tering, not from a large corpus parsed automatically,
but from manually validated resources1. These lexi-
cal resources are (i) a syntactic lexicon produced by
merging three existing lexicons for French and (ii)
the English Verbnet.

Among the many syntactic lexicons available for
French (Nicolas et al., 2008; Messiant, 2008; Kupść
and Abeillé, 2008; van den Eynde and Mertens,
2003; Gross, 1975), we selected and merged three
lexicons built or validated manually namely, Dico-
valence, TreeLex and the LADL tables. The result-
ing lexicon contains 5918 verbs, 20433 lexical en-
tries (i.e., verb/frame pairs) and 345 subcategorisa-
tion frames. It also contains more detailed syntac-
tic and semantic features such as lexical preferences
(e.g., locative argument, concrete object) or thematic
role information (e.g., symmetric arguments, asset
role) which we make use of for clustering.

We use the English Verbnet as a resource for asso-
ciating French verbs with thematic grids as follows.
We translate the verbs in the English Verbnet classes
to French using English-French dictionaries2. To

1Of course, the same approach could be applied to corpus
based data (as done e.g., in (Sun et al., 2010)) thus making the
approach fully unsupervised and directly applicable to any lan-
guage for which a parser is available.

2For the translation we use the following resources: Sci-
Fran-Euradic, a French-English bilingual dictionary, built and
improved by linguists (http://catalog.elra.info/

deal with polysemy, we train a supervised classifier
as follows. We first map French verbs with English
Verbnet classes: A French verb is associated with
an English Verbnet class if, according to our dictio-
naries, it is a translation of an English verb in this
class. The task of the classifier is then to produce
a probability estimate for the correctness of this as-
sociation, given the training data. The training set
is built by stating for 1740 〈French verb, English
Verbnet class〉 pairs whether the verb has the the-
matic grid given by the pair’s Verbnet class3. This
set is used to train an SVM (support vector machine)
classifier4. The features we use are similar to those
used in (Mouton, 2010): they are numeric and are
derived for example from the number of translations
an English or French verb had, the size of the Verb-
net classes, the number of classes a verb is a member
of etc. The resulting classifier gives for each 〈French
verb, English VN class〉 pair the estimated probabil-
ity of the pair’s verb being a member of the pair’s
class5. We select 6000 pairs with highest proba-
bility estimates and obtain the translated classes by
assigning each verb in a selected pair to the pair’s
class. This way French verbs are effectively asso-
ciated with one or more English Verbnet thematic
grids.

3 Clustering Methods, Evaluation Metrics
and Experimental Setup

3.1 Clustering Methods

The IGNGF clustering method is an incremental
neural “winner-take-most” clustering method be-
longing to the family of the free topology neu-
ral clustering methods. Like other neural free
topology methods such as Neural Gas (NG) (Mar-
tinetz and Schulten, 1991), Growing Neural Gas
(GNG) (Fritzke, 1995), or Incremental Growing
Neural Gas (IGNG) (Prudent and Ennaji, 2005),
the IGNGF method makes use of Hebbian learning

product_info.php?products_id=666), Google dic-
tionary (http://www.google.com/dictionary) and
Dicovalence (van den Eynde and Mertens, 2003).

3The training data consists of the verbs and Verbnet classes
used in the gold standard presented in (Sun et al., 2010).

4We used the libsvm (Chang and Lin, 2011) implementation
of the classifier for this step.

5The accuracy of the classifier on the held out random test
set of 100 pairs was of 90%.
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(Hebb, 1949) for dynamically structuring the learn-
ing space. However, contrary to these methods, the
use of a standard distance measure for determining a
winner is replaced in IGNGF by feature maximisa-
tion. Feature maximisation is a cluster quality metric
which associates each cluster with maximal features
i.e., features whose Feature F-measure is maximal.
Feature F-measure is the harmonic mean of Feature
Recall and Feature Precision which in turn are de-
fined as:

FRc(f) =

∑
v∈c

W f
v∑

c′∈C

∑
v∈c′

W f
v

, FPc(f) =

∑
v∈c

W f
v∑

f ′∈Fc,v∈c

W f ′
v

where W f
x represents the weight of the feature f for

element x and Fc designates the set of features as-
sociated with the verbs occuring in the cluster c. A
feature is then said to be maximal for a given clus-
ter iff its Feature F-measure is higher for that cluster
than for any other cluster.

The IGNGF method was shown to outperform
other usual neural and non neural methods for clus-
tering tasks on relatively clean data (Lamirel et al.,
2011b). Since we use features extracted from man-
ually validated sources, this clustering technique
seems a good fit for our application. In addition,
the feature maximisation and cluster labeling per-
formed by the IGNGF method has proved promising
both for visualising clustering results (Lamirel et al.,
2008) and for validating or optimising a clustering
method (Attik et al., 2006). We make use of these
processes in all our experiments and systematically
compute cluster labelling and feature maximisation
on the output clusterings. As we shall see, this per-
mits distinguishing between clusterings with simi-
lar F-measure but lower “linguistic plausibility” (cf.
Section 5). This facilitates clustering interpretation
in that cluster labeling clearly indicates the associa-
tion between clusters (verbs) and their prevalent fea-
tures. And this supports the creation of a Verbnet
style classification in that cluster labeling directly
provides classes grouping together verbs, thematic
grids and subcategorisation frames.

3.2 Evaluation metrics
We use several evaluation metrics which bear on dif-
ferent properties of the clustering.

Modified Purity and Accuracy. Following (Sun
et al., 2010), we use modified purity (mPUR);
weighted class accuracy (ACC) and F-measure to
evaluate the clusterings produced. These are com-
puted as follows. Each induced cluster is assigned
the gold class (its prevalent class, prev(C)) to which
most of its member verbs belong. A verb is then said
to be correct if the gold associates it with the preva-
lent class of the cluster it is in. Given this, purity is
the ratio between the number of correct gold verbs
in the clustering and the total number of gold verbs
in the clustering6:

mPUR =

∑
C∈Clustering,|prev(C)|>1 |prev(C) ∩ C|

VerbsGold∩Clustering
,

where VerbsGold∩Clustering is the total number of gold
verbs in the clustering.

Accuracy represents the proportion of gold verbs
in those clusters which are associated with a gold
class, compared to all the gold verbs in the clus-
tering. To compute accuracy we associate to each
gold class CGold a dominant cluster, ie. the cluster
dom(CGold) which has most verbs in common with
the gold class. Then accuracy is given by the follow-
ing formula:

ACC =

∑
C∈Gold |dom(C) ∩ C|
VerbsGold∩Clustering

Finally, F-measure is the harmonic mean of mPUR
and ACC.

Coverage. To assess the extent to which a cluster-
ing matches the gold classification, we additionally
compute the coverage of each clustering that is, the
proportion of gold classes that are prevalent classes
in the clustering.

Cumulative Micro Precision (CMP). As pointed
out in (Lamirel et al., 2008; Attik et al., 2006), un-
supervised evaluation metrics based on cluster la-
belling and feature maximisation can prove very
useful for identifying the best clustering strategy.
Following (Lamirel et al., 2011a), we use CMP to
identify the best clustering. Computed on the clus-
tering results, this metrics evaluates the quality of a
clustering w.r.t. the cluster features rather than w.r.t.

6Clusters for which the prevalent class has only one element
are ignored
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to a gold standard. It was shown in (Ghribi et al.,
2010) to be effective in detecting degenerated clus-
tering results including a small number of large het-
erogeneous, “garbage” clusters and a big number of
small size “chunk” clusters.

First, the local Recall (Rf
c ) and the local Preci-

sion (P f
c ) of a feature f in a cluster c are defined as

follows:

Rf
c =

|vf
c |

|V f |
P f

c =
|vf

c |
|Vc|

where vf
c is the set of verbs having feature f in c, Vc

the set of verbs in c and V f , the set of verbs with
feature f .

Cumulative Micro-Precision (CMP) is then de-
fined as follows:

CMP =

∑
i=|Cinf |,|Csup|

1
|Ci+|2

∑
c∈Ci+,f∈Fc

P f
c∑

i=|Cinf |,|Csup|
1

Ci+

where Ci+ represents the subset of clusters of C
for which the number of associated verbs is greater
than i, and: Cinf = argminci∈C |ci|, Csup =
argmaxci∈C |ci|

3.3 Cluster display, feature f-Measure and
confidence score

To facilitate interpretation, clusters are displayed as
illustrated in Table 1. Features are displayed in
decreasing order of Feature F-measure (cf. Sec-
tion 3.1) and features whose Feature F-measure is
under the average Feature F-measure of the over-
all clustering are clearly delineated from others. In
addition, for each verb in a cluster, a confidence
score is displayed which is the ratio between the sum
of the F-measures of its cluster maximised features
over the sum of the F-measures of the overall cluster
maximised features. Verbs whose confidence score
is 0 are considered as orphan data.

3.4 Experimental setup

We applied an IDF-Norm weighting scheme
(Robertson and Jones, 1976) to decrease the influ-
ence of the most frequent features (IDF component)
and to compensate for discrepancies in feature num-
ber (normalisation).

C6- 14(14) [197(197)]
———-
Prevalent Label — = AgExp-Cause

0.341100 G-AgExp-Cause
0.274864 C-SUJ:Ssub,OBJ:NP
0.061313 C-SUJ:Ssub
0.042544 C-SUJ:NP,DEOBJ:Ssub
**********
**********
0.017787 C-SUJ:NP,DEOBJ:VPinf
0.008108 C-SUJ:VPinf,AOBJ:PP
. . .
[**déprimer 0.934345 4(0)] [affliger 0.879122 3(0)]
[éblouir 0.879122 3(0)] [choquer 0.879122 3(0)]
[décevoir 0.879122 3(0)] [décontenancer 0.879122
3(0)] [décontracter 0.879122 3(0)] [désillusionner
0.879122 3(0)] [**ennuyer 0.879122 3(0)] [fasciner
0.879122 3(0)] [**heurter 0.879122 3(0)] . . .

Table 1: Sample output for a cluster produced with
the grid-scf-sem feature set and the IGNGF clustering
method.

We use K-Means as a baseline. For each cluster-
ing method (K-Means and IGNGF), we let the num-
ber of clusters vary between 1 and 30 to obtain a
partition that reaches an optimum F-measure and a
number of clusters that is in the same order of mag-
nitude as the initial number of Gold classes (i.e. 11
classes).

4 Features and Data

Features In the simplest case the features are
the subcategorisation frames (scf) associated to the
verbs by our lexicon. We also experiment with dif-
ferent combinations of additional, syntactic (synt)
and semantic features (sem) extracted from the lex-
icon and with the thematic grids (grid) extracted
from the English Verbnet.

The thematic grid information is derived from the
English Verbnet as explained in Section 2. The syn-
tactic features extracted from the lexicon are listed
in Table 1(a). They indicate whether a verb accepts
symmetric arguments (e.g., John met Mary/John and
Mary met); has four or more arguments; combines
with a predicative phrase (e.g., John named Mary
president); takes a sentential complement or an op-
tional object; or accepts the passive in se (similar to
the English middle voice Les habits se vendent bien /
The clothes sell well). As shown in Table 1(a), these
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(a) Additional syntactic features.

Feature related VN class
Symmetric arguments amalgamate-22.2, correspond-36.1
4 or more arguments get-13.5.1, send-11.1
Predicate characterize-29.2
Sentential argument correspond-36.1, characterize-29.2
Optional object implicit theme (Randall, 2010), p. 95
Passive built with se theme role (Randall, 2010), p. 120

(b) Additional semantic features.

Feature related VN class
Location role put-9.1, remove-10.1, . . .
Concrete object hit-18.1 (eg. INSTRUMENT)
(non human role) other cos-45.4 . . .
Asset role get-13.5.1
Plural role amalgamate-22.2, correspond-36.1

Table 2: Additional syntactic (a) and semantic (b) fea-
tures extracted from the LADL and Dicovalence re-
sources and the alternations/roles they are possibly re-
lated to.

features are meant to help identify specific Verbnet
classes and thematic roles. Finally, we extract four
semantic features from the lexicon. These indicate
whether a verb takes a locative or an asset argument
and whether it requires a concrete object (non hu-
man role) or a plural role. The potential correlation
between these features and Verbnet classes is given
in Table 1(b).

French Gold Standard To evaluate our approach,
we use the gold standard proposed by Sun et al.
(2010). This resource consists of 16 fine grained
Levin classes with 12 verbs each whose predomi-
nant sense in English belong to that class. Since
our goal is to build a Verbnet like classification
for French, we mapped the 16 Levin classes of the
Sun et al. (2010)’s Gold Standard to 11 Verbnet
classes thereby associating each class with a the-
matic grid. In addition we group Verbnet semantic
roles as shown in Table 4. Table 3 shows the refer-
ence we use for evaluation.

Verbs For our clustering experiments we use the
2183 French verbs occurring in the translations of
the 11 classes in the gold standard (cf. Section 4).
Since we ignore verbs with only one feature the
number of verbs and 〈verb, feature〉 pairs considered
may vary slightly across experiments.

AgExp Agent, Experiencer
AgentSym Actor, Actor1, Actor2
Theme Theme, Topic, Stimulus, Proposition
PredAtt Predicate, Attribute
ThemeSym Theme, Theme1, Theme2
Patient Patient
PatientSym Patient, Patient1, Patient2
Start Material (transformation), Source (motion,

transfer)
End Product (transformation), Destination (mo-

tion), Recipient (transfer)
Location
Instrument
Cause
Beneficiary

Table 4: Verbnet role groups.

5 Results

5.1 Quantitative Analysis
Table 4(a) includes the evaluation results for all the
feature sets when using IGNGF clustering.

In terms of F-measure, the results range from 0.61
to 0.70. This generally outperforms (Sun et al.,
2010) whose best F-measures vary between 0.55 for
verbs occurring at least 150 times in the training data
and 0.65 for verbs occurring at least 4000 times in
this training data. The results are not directly com-
parable however since the gold data is slightly dif-
ferent due to the grouping of Verbnet classes through
their thematic grids.

In terms of features, the best results are ob-
tained using the grid-scf-sem feature set with an F-
measure of 0.70. Moreover, for this data set, the un-
supervised evaluation metrics (cf. Section 3) high-
light strong cluster cohesion with a number of clus-
ters close to the number of gold classes (13 clusters
for 11 gold classes); a low number of orphan verbs
(i.e., verbs whose confidence score is zero); and a
high Cumulated Micro Precision (CMP = 0.3) indi-
cating homogeneous clusters in terms of maximis-
ing features. The coverage of 0.72 indicates that ap-
proximately 8 out of the 11 gold classes could be
matched to a prevalent label. That is, 8 clusters were
labelled with a prevalent label corresponding to 8
distinct gold classes.

In contrast, the classification obtained using the
scf-synt-sem feature set has a higher CMP for the
clustering with optimal mPUR (0.57); but a lower
F-measure (0.61), a larger number of classes (16)
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AgExp, PatientSym
amalgamate-22.2: incorporer, associer, réunir, mélanger, mêler, unir, assembler, combiner, lier, fusionner
Cause, AgExp
amuse-31.1: abattre, accabler, briser, déprimer, consterner, anéantir, épuiser, exténuer, écraser, ennuyer, éreinter, inonder
AgExp, PredAtt, Theme
characterize-29.2: appréhender, concevoir, considérer, décrire, définir, dépeindre, désigner, envisager, identifier, montrer, percevoir, représenter, ressen-
tir
AgentSym, Theme
correspond-36.1: coopérer, participer, collaborer, concourir, contribuer, associer
AgExp, Beneficiary, Extent, Start, Theme
get-13.5.1: acheter, prendre, saisir, réserver, conserver, garder, préserver, maintenir, retenir, louer, affréter
AgExp, Instrument, Patient
hit-18.1: cogner, heurter, battre, frapper, fouetter, taper, rosser, brutaliser, éreinter, maltraiter, corriger
other cos-45.4: mélanger, fusionner, consolider, renforcer, fortifier, adoucir, polir, atténuer, tempérer, pétrir, façonner, former
AgExp, Location, Theme
light emission-43.1 briller, étinceler, flamboyer, luire, resplendir, pétiller, rutiler, rayonner, scintiller
modes of being with motion-47.3: trembler, frémir, osciller, vaciller, vibrer, tressaillir, frissonner, palpiter, grésiller, trembloter, palpiter
run-51.3.2: voyager, aller, errer, circuler, courir, bouger, naviguer, passer, promener, déplacer
AgExp, End, Theme
manner speaking-37.3: râler, gronder, crier, ronchonner, grogner, bougonner, maugréer, rouspéter, grommeler, larmoyer, gémir, geindre, hurler,
gueuler, brailler, chuchoter
put-9.1: accrocher, déposer, mettre, placer, répartir, réintégrer, empiler, emporter, enfermer, insérer, installer
say-37.7: dire, révéler, déclarer, signaler, indiquer, montrer, annoncer, répondre, affirmer, certifier, répliquer
AgExp, Theme
peer-30.3: regarder, écouter, examiner, considérer, voir, scruter, dévisager
AgExp, Start, Theme
remove-10.1: ôter, enlever, retirer, supprimer, retrancher, débarasser, soustraire, décompter, éliminer
AgExp, End, Start, Theme
send-11.1: envoyer, lancer, transmettre, adresser, porter, expédier, transporter, jeter, renvoyer, livrer

Table 3: French gold classes and their member verbs presented in (Sun et al., 2010).

and a higher number of orphans (156). That is, this
clustering has many clusters with strong feature co-
hesion but a class structure that markedly differs
from the gold. Since there might be differences in
structure between the English Verbnet and the the-
matic classification for French we are building, this
is not necessarily incorrect however. Further inves-
tigation on a larger data set would be required to as-
sess which clustering is in fact better given the data
used and the classification searched for.

In general, data sets whose description includes
semantic features (sem or grid) tend to produce bet-
ter results than those that do not (scf or synt). This
is in line with results from (Sun et al., 2010) which
shows that semantic features help verb classifica-
tion. It differs from it however in that the seman-
tic features used by Sun et al. (2010) are selectional
preferences while ours are thematic grids and a re-
stricted set of manually encoded selectional prefer-
ences.

Noticeably, the synt feature degrades perfor-
mance throughout: grid,scf,synt has lower F-
measure than grid,scf; scf,synt,sem than scf,sem;

and scf,synt than scf. We have no clear explanation
for this.

The best results are obtained with IGNGF method
on most of the data sets. Table 4(b) illustrates
the differences between the results obtained with
IGNGF and those obtained with K-means on the
grid-scf-sem data set (best data set). Although K-
means and IGNGF optimal model reach similar F-
measure and display a similar number of clusters,
the very low CMP (0.10) of the K-means model
shows that, despite a good Gold class coverage
(0.81), K-means tend to produce more heteroge-
neous clusters in terms of features.

Table 4(b) also shows the impact of IDF feature
weighting and feature vector normalisation on clus-
tering. The benefit of preprocessing the data appears
clearly. When neither IDF weighting nor vector nor-
malisation are used, F-measure decreases from 0.70
to 0.68 and cumulative micro-precision from 0.30
to 0.21. When either normalisation or IDF weight-
ing is left out, the cumulative micro-precision drops
by up to 15 points (from 0.30 to 0.15 and 0.18) and
the number of orphans increases from 67 up to 180.
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(a) The impact of the feature set.

Feat. set Nbr. feat. Nbr. verbs mPUR ACC F (Gold) Nbr. classes Cov. Nbr. orphans CMP at opt (13cl.)
scf 220 2085 0.93 0.48 0.64 17 0.55 129 0.28 (0.27)
grid, scf 231 2085 0.94 0.54 0.68 14 0.64 183 0.12 (0.12)
grid, scf, sem 237 2183 0.86 0.59 0.70 13 0.72 67 0.30 (0.30)
grid, scf, synt 236 2150 0.87 0.50 0.63 14 0.72 66 0.13 (0.14)
grid, scf, synt, sem 242 2201 0.99 0.52 0.69 16 0.82 100 0.50 (0.22)
scf, sem 226 2183 0.83 0.55 0.66 23 0.64 146 0.40 (0.26)
scf, synt 225 2150 0.91 0.45 0.61 15 0.45 83 0.17 (0.22)
scf, synt, sem 231 2101 0.89 0.47 0.61 16 0.64 156 0.57 (0.11)

(b) Metrics for best performing clustering method (IGNGF) compared to K-means. Feature set is grid, scf, sem.

Method mPUR ACC F (Gold) Nbr. classes Cov. Nbr. orphans CMP at opt (13cl.)
IGNGF with IDF and norm. 0.86 0.59 0.70 13 0.72 67 0.30 (0.30)
K-means with IDF and norm. 0.88 0.57 0.70 13 0.81 67 0.10 (0.10)
IGNGF, no IDF 0.86 0.59 0.70 17 0.81 126 0.18 (0.14)
IGNGF, no norm. 0.78 0.62 0.70 18 0.72 180 0.15 (0.11)
IGNGF, no IDF, no norm. 0.87 0.55 0.68 14 0.81 103 0.21 (0.21)

Table 5: Results. Cumulative micro precision (CMP) is given for the clustering at the mPUR optimum and in paran-
theses for 13 classes clustering.

That is, clusters are less coherent in terms of fea-
tures.

5.2 Qualitative Analysis
We carried out a manual analysis of the clusters ex-
amining both the semantic coherence of each cluster
(do the verbs in that cluster share a semantic com-
ponent?) and the association between the thematic
grids, the verbs and the syntactic frames provided
by clustering.

Semantic homogeneity: To assess semantic ho-
mogeneity, we examined each cluster and sought
to identify one or more Verbnet labels character-
ising the verbs contained in that cluster. From
the 13 clusters produced by clustering, 11 clus-
ters could be labelled. Table 6 shows these eleven
clusters, the associated labels (abbreviated Verbnet
class names), some example verbs, a sample sub-
categorisation frame drawn from the cluster max-
imising features and an illustrating sentence. As
can be seen, some clusters group together several
subclasses and conversely, some Verbnet classes are
spread over several clusters. This is not necessar-
ily incorrect though. To start with, recall that we
are aiming for a classification which groups together
verbs with the same thematic grid. Given this, clus-
ter C2 correctly groups together two Verbnet classes
(other cos-45.4 and hit-18.1) which share the same
thematic grid (cf. Table 3). In addition, the features

associated with this cluster indicate that verbs in
these two classes are transitive, select a concrete ob-
ject, and can be pronominalised which again is cor-
rect for most verbs in that cluster. Similarly, cluster
C11 groups together verbs from two Verbnet classes
with identical theta grid (light emission-43.1 and
modes of being with motion-47.3) while its associ-
ated features correctly indicate that verbs from both
classes accept both the intransitive form without ob-
ject (la jeune fille rayonne / the young girl glows, un
cheval galope / a horse gallops) and with a prepo-
sitional object (la jeune fille rayonne de bonheur /
the young girl glows with happiness, un cheval ga-
lope vers l’infini / a horse gallops to infinity). The
third cluster grouping together verbs from two Verb-
net classes is C7 which contains mainly judgement
verbs (to applaud, bless, compliment, punish) but
also some verbs from the (very large) other cos-45.4
class. In this case, a prevalent shared feature is
that both types of verbs accept a de-object that is,
a prepositional object introduced by ”de” (Jean ap-
plaudit Marie d’avoir dansé / Jean applaudit Marie
for having danced; Jean dégage le sable de la route /
Jean clears the sand of the road). The semantic fea-
tures necessary to provide a finer grained analysis of
their differences are lacking.

Interestingly, clustering also highlights classes
which are semantically homogeneous but syntac-
tically distinct. While clusters C6 and C10 both
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contain mostly verbs from the amuse-31.1 class
(amuser,agacer,énerver,déprimer), their features in-
dicate that verbs in C10 accept the pronominal form
(e.g., Jean s’amuse) while verbs in C6 do not (e.g.,
*Jean se déprime). In this case, clustering highlights
a syntactic distinction which is present in French but
not in English. In contrast, the dispersion of verbs
from the other cos-45.4 class over clusters C2 and
C7 has no obvious explanation. One reason might
be that this class is rather large (361 verbs) and thus
might contain French verbs that do not necessarily
share properties with the original Verbnet class.

Syntax and Semantics. We examined whether the
prevalent syntactic features labelling each cluster
were compatible with the verbs and with the seman-
tic class(es) manually assigned to the clusters. Ta-
ble 6 sketches the relation between cluster, syntac-
tic frames and Verbnet like classes. It shows for in-
stance that the prevalent frame of the C0 class (man-
ner speaking-37.3) correctly indicates that verbs in
that cluster subcategorise for a sentential argument
and an AOBJ (prepositional object in “à”) (e.g., Jean
bafouille à Marie qu’il est amoureux / Jean stam-
mers to Mary that he is in love); and that verbs
in the C9 class (characterize-29.2) subcategorise for
an object NP and an attribute (Jean nomme Marie
présidente / Jean appoints Marie president). In gen-
eral, we found that the prevalent frames associated
with each cluster adequately characterise the syntax
of that verb class.

6 Conclusion

We presented an approach to the automatic classi-
fication of french verbs which showed good results
on an established testset and associates verb clusters
with syntactic and semantic features.

Whether the features associated by the IGNGF
clustering with the verb clusters appropriately car-
acterise these clusters remains an open question. We
carried out a first evaluation using these features
to label the syntactic arguments of verbs in a cor-
pus with thematic roles and found that precision is
high but recall low mainly because of polysemy: the
frames and grids made available by the classification
for a given verb are correct for that verb but not for
the verb sense occurring in the corpus. This sug-
gests that overlapping clustering techniques need to

C0 speaking: babiller, bafouiller, balbutier
SUJ:NP,OBJ:Ssub,AOBJ:PP
Jean bafouille à Marie qu’il l’aime / Jean stammers to Mary that he is
in love

C1 put: entasser, répandre, essaimer
SUJ:NP,POBJ:PP,DUMMY:REFL
Loc, Plural
Les déchets s’entassent dans la cour / Waste piles in the yard

C2 hit: broyer, démolir, fouetter
SUJ:NP,OBJ:NP
T-Nhum
Ces pierres broient les graines / These stones grind the seeds.
other cos: agrandir, alléger, amincir
SUJ:NP,DUMMY:REFL
les aéroports s’agrandissent sans arrêt / airports grow constantly

C4 dedicate: s’engager à, s’obliger à,
SUJ:NP,AOBJ:VPinf,DUMMY:REFL
Cette promesse t’engage à nous suivre / This promise commits you to
following us

C5 conjecture: penser, attester, agréer
SUJ:NP,OBJ:Ssub
Le médecin atteste que l’employé n’est pas en état de travailler / The
physician certifies that the employee is not able to work

C6 amuse: déprimer, décontenancer, décevoir
SUJ:Ssub,OBJ:NP
SUJ:NP,DEOBJ:Ssub
Travailler déprime Marie / Working depresses Marie
Marie déprime de ce que Jean parte / Marie depresses because of Jean’s
leaving

C7 other cos: dégager, vider, drainer, sevrer
judgement
SUJ:NP,OBJ:NP,DEOBJ:PP
vider le récipient de son contenu / empty the container of its contents
applaudir, bénir, blâmer,
SUJ:NP,OBJ:NP,DEOBJ:Ssub
Jean blame Marie d’avoir couru / Jean blames Mary for runnig

C9 characterise: promouvoir, adouber, nommer
SUJ:NP,OBJ:NP,ATB:XP
Jean nomme Marie présidente / Jean appoints Marie president

C10 amuse: agacer, amuser, enorgueillir
SUJ:NP,DEOBJ:XP,DUMMY:REFL
Jean s’enorgueillit d’être roi/ Jean is proud to be king

C11 light: rayonner,clignoter,cliqueter
SUJ:NP,POBJ:PP
Jean clignote des yeux / Jean twinkles his eyes
motion: aller, passer, fuir, glisser
SUJ:NP,POBJ:PP
glisser sur le trottoir verglacé / slip on the icy sidewalk

C12 transfer msg: enseigner, permettre, interdire
SUJ:NP,OBJ:NP,AOBJ:PP
Jean enseigne l’anglais à Marie / Jean teaches Marie English.

Table 6: Relations between clusters, syntactic frames and
Verbnet like classes.

be applied.

We are also investigating how the approach scales
up to the full set of verbs present in the lexicon. Both
Dicovalence and the LADL tables contain rich de-
tailed information about the syntactic and semantic
properties of French verbs. We intend to tap on that
potential and explore how well the various semantic
features that can be extracted from these resources
support automatic verb classification for the full set
of verbs present in our lexicon.
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C. Brew and S. Schulte im Walde. 2002. Spectral Clus-
tering for German Verbs. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 117–124, Philadelphia, PA.

C. Chang and C. Lin. 2011. LIBSVM: A library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, 2:27:1–27:27. Soft-
ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

H. T. Dang. 2004. Investigations into the role of lexical
semantics in word sense disambiguation. Ph.D. thesis,
U. Pennsylvannia, US.

I. Falk and C. Gardent. 2011. Combining Formal Con-
cept Analysis and Translation to Assign Frames and
Thematic Role Sets to French Verbs. In Amedeo
Napoli and Vilem Vychodil, editors, Concept Lattices
and Their Applications, Nancy, France, October.

B. Fritzke. 1995. A growing neural gas network learns
topologies. Advances in Neural Information Process-
ing Systems 7, 7:625–632.

M. Ghribi, P. Cuxac, J.-C. Lamirel, and A. Lelu. 2010.
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Abstract

Sentence Similarity is the process of comput-
ing a similarity score between two sentences.
Previous sentence similarity work finds that
latent semantics approaches to the problem do
not perform well due to insufficient informa-
tion in single sentences. In this paper, we
show that by carefully handling words that
are not in the sentences (missing words), we
can train a reliable latent variable model on
sentences. In the process, we propose a new
evaluation framework for sentence similarity:
Concept Definition Retrieval. The new frame-
work allows for large scale tuning and test-
ing of Sentence Similarity models. Experi-
ments on the new task and previous data sets
show significant improvement of our model
over baselines and other traditional latent vari-
able models. Our results indicate comparable
and even better performance than current state
of the art systems addressing the problem of
sentence similarity.

1 Introduction
Identifying the degree of semantic similarity [SS]
between two sentences is at the core of many NLP
applications that focus on sentence level semantics
such as Machine Translation (Kauchak and Barzi-
lay, 2006), Summarization (Zhou et al., 2006), Text
Coherence Detection (Lapata and Barzilay, 2005),
etc.To date, almost all Sentence Similarity [SS] ap-
proaches work in the high-dimensional word space
and rely mainly on word similarity. There are two
main (not unrelated) disadvantages to word similar-
ity based approaches: 1. lexical ambiguity as the
pairwise word similarity ignores the semantic inter-
action between the word and its sentential context;

2. word co-occurrence information is not sufficiently
exploited.

Latent variable models, such as Latent Semantic
Analysis [LSA] (Landauer et al., 1998), Probabilis-
tic Latent Semantic Analysis [PLSA] (Hofmann,
1999), Latent Dirichlet Allocation [LDA] (Blei et
al., 2003) can solve the two issues naturally by mod-
eling the semantics of words and sentences simulta-
neously in the low-dimensional latent space. How-
ever, attempts at addressing SS using LSA perform
significantly below high dimensional word similar-
ity based models (Mihalcea et al., 2006; O’Shea et
al., 2008).

We believe that the latent semantics approaches
applied to date to the SS problem have not yielded
positive results due to the deficient modeling of the
sparsity in the semantic space. SS operates in a very
limited contextual setting where the sentences are
typically very short to derive robust latent semantics.
Apart from the SS setting, robust modeling of the
latent semantics of short sentences/texts is becom-
ing a pressing need due to the pervasive presence of
more bursty data sets such as Twitter feeds and SMS
where short contexts are an inherent characteristic of
the data.

In this paper, we propose to model the missing
words (words that are not in the sentence), a fea-
ture that is typically overlooked in the text model-
ing literature, to address the sparseness issue for the
SS task. We define the missing words of a sentence
as the whole vocabulary in a corpus minus the ob-
served words in the sentence. Our intuition is since
observed words in a sentence are too few to tell us
what the sentence is about, missing words can be
used to tell us what the sentence is not about. We
assume that the semantic space of both the observed
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and missing words make up the complete semantics
profile of a sentence.

After analyzing the way traditional latent variable
models (LSA, PLSA/LDA) handle missing words,
we decide to model sentences using a weighted ma-
trix factorization approach (Srebro and Jaakkola,
2003), which allows us to treat observed words and
missing words differently. We handle missing words
using a weighting scheme that distinguishes missing
words from observed words yielding robust latent
vectors for sentences.

Since we use a feature that is already implied by
the text itself, our approach is very general (similar
to LSA/LDA) in that it can be applied to any format
of short texts. In contrast, existing work on model-
ing short texts focuses on exploiting additional data,
e.g., Ramage et al. (2010) model tweets using their
metadata (author, hashtag, etc.).

Moreover in this paper, we introduce a new eval-
uation framework for SS: Concept Definition Re-
trieval (CDR). Compared to existing data sets, the
CDR data set allows for large scale tuning and test-
ing of SS modules without further human annota-
tion.

2 Limitations of Topic Models and LSA
for Modeling Sentences

Usually latent variable models aim to find a latent
semantic profile for a sentence that is most relevant
to the observed words. By explicitly modeling miss-
ing words, we set another criterion to the latent se-
mantics profile: it should not be related to the miss-
ing words in the sentence. However, missing words
are not as informative as observed words, hence the
need for a model that does a good job of modeling
missing words at the right level of emphasis/impact
is central to completing the semantic picture for a
sentence.

LSA and PLSA/LDA work on a word-sentence
co-occurrence matrix. Given a corpus, the row en-
tries of the matrix are the unique M words in the
corpus, and theN columns are the sentence ids. The
yielded M ×N co-occurrence matrix X comprises
the TF-IDF values in each Xij cell, namely that TF-
IDF value of word wi in sentence sj . For ease of
exposition, we will illustrate the problem using a
special case of the SS framework where the sen-
tences are concept definitions in a dictionary such

as WordNet (Fellbaum, 1998) (WN). Therefore, the
sentence corresponding to the concept definition of
bank#n#1 is a sparse vector in X containing the
following observed words where Xij 6= 0:
the 0.1, financial 5.5, institution 4, that 0.2,
accept 2.1, deposit 3, and 0.1, channel 6, the 0.1,
money 5, into 0.3, lend 3.5, activity 3

All the other words (girl, car,..., check, loan, busi-
ness,...) in matrix X that do not occur in the concept
definition are considered missing words for the con-
cept entry bank#n#1, thereby their Xij = 0 .

Topic models (PLSA/LDA) do not explicitly
model missing words. PLSA assumes each docu-
ment has a distribution over K topics P (zk|dj), and
each topic has a distribution over all vocabularies
P (wi|zk). Therefore, PLSA finds a topic distribu-
tion for each concept definition that maximizes the
log likelihood of the corpus X (LDA has a similar
form):∑

i

∑
j

Xij log
∑
k

P (zk|dj)P (wi|zk) (1)

In this formulation, missing words do not contribute
to the estimation of sentence semantics, i.e., exclud-
ing missing words (Xij = 0) in equation 1 does not
make a difference.

However, empirical results show that given a
small number of observed words, usually topic mod-
els can only find one topic (most evident topic)
for a sentence, e.g., the concept definitions of
bank#n#1 and stock#n#1 are assigned the fi-
nancial topic only without any further discernabil-
ity. This results in many sentences are assigned ex-
actly the same semantics profile as long as they are
pertaining/mentioned within the same domain/topic.
The reason is topic models try to learn a 100-
dimension latent vector (assume dimension K =
100) from very few data points (10 observed words
on average). It would be desirable if topic models
can exploit missing words (a lot more data than ob-
served words) to render more nuanced latent seman-
tics, so that pairs of sentences in the same domain
can be differentiable.

On the other hand, LSA explicitly models missing
words but not at the right level of emphasis. LSA
finds another matrix X̂ (latent vectors) with rank K
to approximate X using Singular Vector Decompo-
sition (X ≈ X̂ = UKΣKV

>
K ), such that the Frobe-
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financial sport institution Ro Rm Ro −Rm Ro − 0.01Rm

v1 1 0 0 20 600 -580 14
v2 0.6 0 0.1 18 300 -282 15
v3 0.2 0.3 0.2 5 100 -95 4

Table 1: Three possible latent vectors hypotheses for the definition of bank#n#1

nius norm of difference between the two matrices is
minimized: √√√√∑

i

∑
j

(
X̂ij −Xij

)2

(2)

In effect, LSA allows missing and observed words
to equally impact the objective function. Given the
inherent short length of the sentences, LSA (equa-
tion 2) allows for much more potential influence
from missing words rather than observed words
(99.9% cells are 0 in X). Hence the contribution
of the observed words is significantly diminished.
Moreover, the true semantics of the concept defini-
tions is actually related to some missing words, but
such true semantics will not be favored by the objec-
tive function, since equation 2 allows for too strong
an impact by X̂ij = 0 for any missing word. There-
fore the LSA model, in the context of short texts,
is allowing missing words to have a significant “un-
controlled” impact on the model.
2.1 An Example

The three latent semantics profiles in table 1 il-
lustrate our analysis for topic models and LSA. As-
sume there are three dimensions: financial, sports,
institution. We use Rvo to denote the sum of related-
ness between latent vector v and all observed words;
similarly, Rvm is the sum of relatedness between the
vector v and all missing words. The first latent vec-
tor (generated by topic models) is chosen by maxi-
mizing Robs = 600. It suggests bank#n#1 is only
related to the financial dimension. The second la-
tent vector (found by LSA) has the maximum value
of Robs −Rmiss = 95, but obviously the latent vec-
tor is not related to bank#n#1 at all. This is be-
cause LSA treats observed words and missing words
equally the same, and due to the large number of
missing words, the information of observed words
is lost: Robs−Rmiss ≈ −Rmiss. The third vector is
the ideal semantics profile, since it is also related to
the institution dimension. It has a slightly smaller
Robs in comparison to the first vector, yet it has a
substantially smaller Rmiss.

In order to favor the ideal vector over other vec-
tors, we simply need to adjust the objective func-

tion by assigning a smaller weight to Rmiss such as:
Robs−0.01×Rmiss. Accordingly, we use weighted
matrix factorization (Srebro and Jaakkola, 2003) to
model missing words.

3 The Proposed Approach
3.1 Weighted Matrix Factorization

The weighted matrix factorization [WMF] ap-
proach is very similar to SVD, except that it allows
for direct control on each matrix cellXij . The model
factorizes the original matrix X into two matrices
such that X ≈ P>Q, where P is a K ×M matrix,
and Q is a K ×N matrix (figure 1).

The model parameters (vectors in P and Q) are
optimized by minimizing the objective function:∑

i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22 (3)

where λ is a free regularization factor, and the
weight matrix W defines a weight for each cell in
X .

Accordingly, P·,i is a K-dimension latent seman-
tics vector profile for word wi; similarly, Q·,j is the
K-dimension vector profile that represents the sen-
tence sj . Operations on these K-dimensional vec-
tors have very intuitive semantic meanings:
(1) the inner product of P·,i and Q·,j is used to ap-
proximate semantic relatedness of word wi and sen-
tence sj : P·,i · Q·,j ≈ Xij , as the shaded parts in
Figure 1;
(2) equation 3 explicitly requires a sentence should
not be related to its missing words by forcing P·,i ·
Q·,j = 0 for missing words Xij = 0.
(3) we can compute the similarity of two sentences
sj and sj′ using the cosine similarity between Q·,j ,
Q·,j′ .

The latent vectors in P and Q are first randomly
initialized, then can be computed iteratively by the
following equations (derivation is omitted due to
limited space, which can be found in (Srebro and
Jaakkola, 2003)):

P·,i =
(
QW̃ (i)Q> + λI

)−1
QW̃ (i)X>i,·

Q·,j =
(
PW̃ (j)P> + λI

)−1
PW̃ (i)X·,j

(4)
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Figure 1: Matrix Factorization

where W̃ (i) = diag(W·,i) is an M × M diagonal
matrix containing ith row of weight matrixW . Sim-
ilarly, W̃ (j) = diag(W·,j) is an N × N diagonal
matrix containing jth column of W .
3.2 Modeling Missing Words

It is straightforward to implement the idea in Sec-
tion 2.1 (choosing a latent vector that maximizes
Robs − 0.01 × Rmiss) in the WMF framework, by
assigning a small weight for all the missing words
and minimizing equation 3:

Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0 (5)

We refer to our model as Weighted Textual Matrix
Factorization [WTMF]. 1

This solution is quite elegant: 1. it explicitly tells
the model that in general all missing words should
not be related to the sentence; 2. meanwhile latent
semantics are mainly generalized based on observed
words, and the model is not penalized too much
(wm is very small) when it is very confident that
the sentence is highly related to a small subset of
missing words based on their latent semantics pro-
files (bank#n#1 definition sentence is related to its
missing words check loan).

We adopt the same approach (assigning a small
weight for some cells in WMF) proposed for rec-
ommender systems [RS] (Steck, 2010). In RS, an
incomplete rating matrix R is proposed, where rows
are users and columns are items. Typically, a user
rates only some of the items, hence, the RS system
needs to predict the missing ratings. Steck (2010)
guesses a value for all the missing cells, and sets a
small weight for those cells.

Compared to (Steck, 2010), we are facing a differ-
ent problem and targeting a different goal. We have
a full matrix X where missing words have a 0 value,
while the missing ratings in RS are unavailable – the
values are unknown, henceR is not complete. In the
RS setting, they are interested in predicting individ-
ual ratings, while we are interested in the sentence

1An efficient way to compute equation 4 is proposed in
(Steck, 2010).

semantics. More importantly, they do not have the
sparsity issue (each user has rated over 100 items in
the movie lens data2) and robust predictions can be
made based on the observed ratings alone.

4 Evaluation for SS

We need to show the impact of our proposed model
WTMF on the SS task. However we are faced with
a problem, the lack of a suitable large evaluation set
from which we can derive robust observations. The
two data sets we know of for SS are: 1. human-rated
sentence pair similarity data set (Li et al., 2006)
[LI06]; 2. the Microsoft Research Paraphrase Cor-
pus (Dolan et al., 2004) [MSR04]. The LI06 data
set consists of 65 pairs of noun definitions selected
from the Collin Cobuild Dictionary. A subset of 30
pairs is further selected by LI06 to render the sim-
ilarity scores evenly distributed. While this is the
ideal data set for SS, the small size makes it impos-
sible for tuning SS algorithms or deriving significant
performance conclusions.

On the other hand, the MSR04 data set comprises
a much larger set of sentence pairs: 4,076 training
and 1,725 test pairs. The ratings on the pairs are
binary labels: similar/not similar. This is not a prob-
lem per se, however the issue is that it is very strict
in its assignment of a positive label, for example
the following sentence pair as cited in (Islam and
Inkpen, 2008) is rated not semantically similar:
Ballmer has been vocal in the past warning that
Linux is a threat to Microsoft.
In the memo, Ballmer reiterated the open-source
threat to Microsoft.

We believe that the ratings on a data set for SS
should accommodate variable degrees of similarity
with various ratings, however such a large scale set
does not exist yet. Therefore for purposes of evaluat-
ing our proposed approach we devise a new frame-
work inspired by the LI06 data set in that it com-
prises concept definitions but on a large scale.

4.1 Concept Definition Retrieval
We define a new framework for evaluating SS and

project it as a Concept Definition Retrieval (CDR)
task where the data points are dictionary definitions.
The intuition is that two definitions in different dic-

2http://www.grouplens.org/node/73, with 1M data set being
the most widely used.

867



tionaries referring to the same concept should be as-
signed large similarity. In this setting, we design the
CDR task in a search engine style. The SS algorithm
has access to all the definitions in WordNet (WN).
Given an OntoNotes (ON) definition (Hovy et al.,
2006), the SS algorithm should rank the equivalent
WN definition as high as possible based on sentence
similarity.

The manual mapping already exists for ON to
WN. One ON definition can be mapped to sev-
eral WN definitions. After preprocessing we obtain
13669 ON definitions mapped to 19655 WN defini-
tions. The data set has the advantage of being very
large and it doesn’t require further human scrutiny.

After the SS model learns the co-occurrence of
words from WN definitions, in the testing phase,
given an ON definition d, the SS algorithm needs to
identify the equivalent WN definitions by comput-
ing the similarity values between all WN definitions
and the ON definition d, then sorting the values in
decreasing order. Clearly, it is very difficult to rank
the one correct definition as highest out of all WN
definitions (110,000 in total), hence we use ATOPd,
area under the TOPKd(k) recall curve for an ON
definition d, to measure the performance. Basically,
it is the ranking of the correct WN definition among
all WN definitions. The higher a model is able to
rank the correct WN definition, the better its perfor-
mance.

Let Nd be the number of aligned WN definitions
for the ON definition d, and Nk

d be the number of
aligned WN definitions in the top-k list. Then with
a normalized k ∈ [0,1], TOPKd(k) and ATOPd is
defined as:

TOPKd(k) = Nk
d /Nd

ATOPd =

∫ 1

0

TOPKd(k)dk
(6)

ATOPd computes the normalized rank (in the range
of [0, 1]) of aligned WN definitions among all WN
definitions, with value 0.5 being the random case,
and 1 being ranked as most similar.

5 Experiments and Results
We evaluate WTMF on three data sets: 1. CDR
data set using ATOP metric; 2. Human-rated Sen-
tence Similarity data set [LI06] using Pearson and
Spearman Correlation; 3. MSR Paraphrase corpus
[MSR04] using accuracy.

The performance of WTMF on CDR is com-
pared with (a) an Information Retrieval model (IR)
that is based on surface word matching, (b) an n-
gram model (N-gram) that captures phrase overlaps
by returning the number of overlapping ngrams as
the similarity score of two sentences, (c) LSA that
uses svds() function in Matlab, and (d) LDA that
uses Gibbs Sampling for inference (Griffiths and
Steyvers, 2004). WTMF is also compared with all
existing reported SS results on LI06 and MSR04
data sets, as well as LDA that is trained on the
same data as WTMF. The similarity of two sentences
is computed by cosine similarity (except N-gram).
More details on each task will be explained in the
subsections.

To eliminate randomness in statistical models
(WTMF and LDA), all the reported results are aver-
aged over 10 runs. We run 20 iterations for WTMF.
And we run 5000 iterations for LDA; each LDA
model is averaged over the last 10 Gibbs Sampling
iterations to get more robust predictions.

The latent vector of a sentence is computed by:
(1) using equation 4 in WTMF, or (2) summing
up the latent vectors of all the constituent words
weighted by Xij in LSA and LDA, similar to the
work reported in (Mihalcea et al., 2006). For LDA
the latent vector of a word is computed by P (z|w).
It is worth noting that we could directly use the es-
timated topic distribution θj to represent a sentence,
however, as discussed the topic distribution has only
non-zero values on one or two topics, leading to a
low ATOP value around 0.8.

5.1 Corpus

The corpus we use comprises three dictionaries
WN, ON, Wiktionary [Wik],3 Brown corpus. For
all dictionaries, we only keep the definitions without
examples, and discard the mapping between sense
ids and definitions. All definitions are simply treated
as individual documents. We crawl Wik and remove
the entries that are not tagged as noun, verb, adjec-
tive, or adverb, resulting in 220, 000 entries. For the
Brown corpus, each sentence is treated as a docu-
ment in order to create more coherent co-occurrence
values. All data is tokenized, pos-tagged4, and lem-

3http://en.wiktionary.org/wiki/Wiktionary:Main Page
4http://nlp.stanford.edu/software/tagger.shtml
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Models Parameters Dev Test
1. IR - 0.8578 0.8515
2. N-gram - 0.8238 0.8171
3. LSA - 0.8218 0.8143
4a. LDA α = 0.1, β = 0.01 0.9466± 0.0020 0.9427± 0.0006
4b. LDA α = 0.05, β = 0.05 0.9506± 0.0017 0.9470± 0.0005
5. WTMF wm = 1, λ = 0 0.8273± 0.0028 0.8273± 0.0014
6. WTMF wm = 0, λ = 20 0.8745± 0.0058 0.8645± 0.0031
7a. WTMF wm = 0.01, λ = 20 0.9555± 0.0015 0.9511± 0.0003
7b. WTMF wm = 0.0005, λ = 20 0.9610± 0.0011 0.9558± 0.0004

Table 2: ATOP Values of Models (K = 100 for LSA/LDA/WTMF)

matized5. The importance of words in a sentence is
estimated by the TF-IDF schema.

All the latent variable models (LSA, LDA,
WTMF) are built on the same set of cor-
pus: WN+Wik+Brown (393, 666 sentences and
4, 262, 026 words). Words that appear only once are
removed. The test data is never used during training
phrase.

5.2 Concept Definition Retrieval

Among the 13669 ON definitions, 1000 defini-
tions are randomly selected as a development set
(dev) for picking best parameters in the models, and
the rest is used as a test set (test). The performance
of each model is evaluated by the average ATOPd
value over the 12669 definitions (test). We use the
subscript set in ATOPset to denote the average of
ATOPd of a set of ON definitions, where d ∈ {set}.
If all the words in an ON definition are not covered
in the training data (WN+Wik+Br), then ATOPd for
this instance is set to 0.5.

To compute ATOPd for an ON definition effi-
ciently, we use the rank of the aligned WN definition
among a random sample (size=1000) of WN defini-
tions, to approximate its rank among all WN defini-
tions. In practice, the difference between using 1000
samples and all data is tiny for ATOPtest (±0.0001),
due to the large number of data points in CDR.

We mainly compare the performance of IR, N-
gram, LSA, LDA, and WTMF models. Generally
results are reported based on the last iteration. How-
ever, we observe that for model 6 in table 2, the best
performance occurs at the first few iterations. Hence
for that model we use the ATOPdev to indicate when
to stop.

5http://wn-similarity.sourceforge.net, WordNet::QueryData

5.2.1 Results
Table 2 summarizes the ATOP values on the dev

and test sets. All parameters are tuned based on the
dev set. In LDA, we choose an optimal combination
of α and β from {0.01, 0.05, 0.1, 0.5}.In WTMF, we
choose the best parameters of weight wm for miss-
ing words and λ for regularization. We fix the di-
mension K = 100. Later in section 5.2.2, we will
see that a larger value of K can further improve the
performance.

WTMF that models missing words using a small
weight (model 7b with wm = 0.0005) outperforms
the second best model LDA by a large margin. This
is because LDA only uses 10 observed words to infer
a 100 dimension vector for a sentence, while WTMF
takes advantage of much more missing words to
learn more robust latent semantics vectors.

The IR model that works in word space achieves
better ATOP scores than N-gram, although the idea
of N-gram is commonly used in detecting para-
phrases as well as machine translation. Applying
TF-IDF for N-gram is better, but still the ATOPtest is
not higher: 0.8467. The reason is words are enough
to capture semantics for SS, while n-grams/phrases
are used for a more fine-grained level of semantics.

We also present model 5 and 6 (both are WTMF),
to show the impact of: 1. modeling missing words
with equal weights as observed words (wm = 1)
(LSA manner), and 2. not modeling missing words
at all (wm = 0) (LDA manner) in the context of
WTMF model. As expected, both model 5 and
model 6 generate much worse results.

Both LDA and model 6 ignore missing words,
with better ATOPtest scores achieved by LDA. This
may be due to the different inference algorithms.
Model 5 and LSA are comparable, where missing
words are used with a large weight. Both of them
yield low results. This confirms our assumption
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Figure 3: dimension K in WTMF and LDA

that allowing for equal impact of both observed and
missing words is not the correct characterization of
the semantic space.

5.2.2 Analysis
In these latent variable models, there are several

essential parameters: weight of missing words wm,
and dimensionK. Figure 2 and 3 analyze the impact
of these parameters on ATOPtest.

Figure 2 shows the influence of wm on ATOPtest
values. The peak ATOPtest is around wm = 0.0005,
while other values of wm (except wm = 0.05) also
yield high ATOP values (better than LDA).

We also measure the influence of the dimension
K = {50, 75, 100, 125, 150} on LDA and WTMF
in Figure 3, where parameters for WTMF are wm =
0.0005, λ = 20, and for LDA are α = 0.05, β =
0.05. We can see WTMF consistently outperforms
LDA by an ATOP value of 0.01 in each dimension.
Although a larger K yields a better result, we still
use a 100 due to computational complexity.

5.3 LI06: Human-rated Sentence Similarity
We also assess WTMF and LDA model on LI06

data set. We still use K = 100. As we can see
in Figure 2, choosing the appropriate parameter wm
could boost the performance significantly. Since we
do not have any tuning data for this task, we present
Pearson’s correlation r for different values of wm in
Table 3. In addition, to demonstrate that wm does
not overfit the 30 data points, we also evaluate on

30 pairs 35 pairs
wm r ρ r ρ

0.0005 0.8247 0.8440 0.4200 0.6006
0.001 0.8470 0.8636 0.4308 0.5985
0.005 0.8876 0.8966 0.4638 0.5809
0.01 0.8984 0.9091 0.4564 0.5450
0.05 0.8804 0.8812 0.4087 0.4766

Table 3: Different wm of WTMF on LI06 (K = 100)

the other 35 pairs in LI06. Same as in (Tsatsaronis
et al., 2010), we also include Spearman’s rank order
correlation ρ, which is correlation of ranks of simi-
larity values . Note that r and ρ are much lower for
35 pairs set, since most of the sentence pairs have
a very low similarity (the average similarity value
is 0.065 in 35 pairs set and 0.367 in 30 pairs set)
and SS models need to identify the tiny difference
among them, thereby rendering this set much harder
to predict.

Using wm = 0.01 gives the best results on 30
pairs while on 35 pairs the peak values of r and ρ
happens when wm = 0.005. In general, the cor-
relations in 30 pairs and in 35 pairs are consistent,
which indicates wm = 0.01 or wm = 0.005 does
not overfit the 30 pairs set.

Compared to CDR, LI06 data set has a strong
preference for a larger wm. This could be caused by
different goals of the two tasks: CDR is evaluated
by the rank of the most similar ones among all can-
didates, while the LI06 data set treats similar pairs
and dissimilar pairs as equally important. Using a
smaller wm means the similarity score is computed
mainly from semantics of the observed words. This
benefits CDR, since it gives more accurate similarity
scores for those similar pairs, but not so accurate for
dissimilar pairs. In fact, from Figure 2 and Table 2
we see that wm = 0.01 also produces a very high
ATOPtest value in CDR.

Table 4 shows the results of all current SS models
with respect to the LI06 data set (30 pairs set). We
cite their best performance for all reported results.

Once the correct wm = 0.01 is chosen, WTMF
results in the best Pearson’s r and best Spearman’s
ρ (wm = 0.005 yields the second best r and ρ).
Same as in CDR task, WTMF outperforms LDA by
a large margin in both r and ρ. It indicates that the
latent vectors induced by WTMF are able to not only
identify same/similar sentences, but also identify the
“correct” degree of dissimilar sentences.
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Model r ρ

STASIS (Li et al., 2006) 0.8162 0.8126
(Liu et al., 2007) 0.841 0.8538

(Feng et al., 2008) 0.756 0.608
STS (Islam and Inkpen, 2008) 0.853 0.838

LSA (O’Shea et al., 2008) 0.8384 0.8714
Omiotis (Tsatsaronis et al., 2010) 0.856 0.8905

WSD-STS (Ho et al., 2010) 0.864 0.8341
SPD-STS (Ho et al., 2010) 0.895 0.9034
LDA (α = 0.05, β = 0.05) 0.8422 0.8663

WTMF (wm = 0.005, λ = 20) 0.8876 0.8966
WTMF (wm = 0.01, λ = 20) 0.8984 0.9091

Table 4: Pearson’s correlation r and Spearman’s corre-
lation ρ on LI06 30 pairs

Model Accuracy
Random 51.3

LSA (Mihalcea et al., 2006) 68.4
full model (Mihalcea et al., 2006) 70.3

STS (Islam and Inkpen, 2008) 72.6
Omiotis (Tsatsaronis et al., 2010) 69.97

LDA (α = 0.05, β = 0.05) 68.6
WTMF (wm = 0.01, λ = 20) 71.51

Table 5: Performance on MSR04 test set

5.4 MSR04: MSR Paraphrase Corpus
Finally, we briefly discuss results of applying

WTMF on MSR04 data. We use the same pa-
rameter setting used for the LI06 evaluation set-
ting since both sets are human-rated sentence pairs
(λ = 20, wm = 0.01,K = 100). We use the train-
ing set of MSR04 data to select a threshold of sen-
tence similarity for the binary label. Table 5 sum-
marizes the accuracy of other SS models noted in
the literature and evaluated on MSR04 test set.

Compared to previous SS work and LDA, WTMF
has the second best accuracy. It suggests that WTMF
is quite competitive in the paraphrase recognition
task.

It is worth noting that the best system on MSR04,
STS (Islam and Inkpen, 2008), has much lower cor-
relations on LI06 data set. The second best system
among previous work on LI06 uses Spearman cor-
relation, Omiotis (Tsatsaronis et al., 2010), and it
yields a much worse accuracy on MSR04. The other
works do not evaluate on both data sets.

6 Related Work
Almost all current SS methods work in the high-
dimensional word space, and rely heavily on
word/sense similarity measures, which is knowledge
based (Li et al., 2006; Feng et al., 2008; Ho et al.,
2010; Tsatsaronis et al., 2010), corpus-based (Islam

and Inkpen, 2008) or hybrid (Mihalcea et al., 2006).
Almost all of them are evaluated on LI06 data set. It
is interesting to see that most works find word sim-
ilarity measures, especially knowledge based ones,
to be the most effective component, while other fea-
tures do not work well (such as word order or syn-
tactic information). Mihalcea et al. (2006) use LSA
as a baseline, and O’Shea et al. (2008) train LSA
on regular length documents. Both results are con-
siderably lower than word similarity based methods.
Hence, our work is the first to successfully approach
SS in the latent space.

Although there has been work modeling latent se-
mantics for short texts (tweets) in LDA, the focus
has been on exploiting additional features in Twit-
ter, hence restricted to Twitter data. Ramage et al.
(2010) use tweet metadata (author, hashtag) as some
supervised information to model tweets. Jin et al.
(2011) use long similar documents (the article that
is referred by a url in tweets) to help understand the
tweet. In contrast, our approach relies solely on the
information in the texts by modeling local missing
words, and does not need any additional data, which
renders our approach much more widely applicable.

7 Conclusions
We explicitly model missing words to alleviate the
sparsity problem in modeling short texts. We also
propose a new evaluation framework for sentence
similarity that allows large scale tuning and test-
ing. Experiment results on three data sets show that
our model WTMF significantly outperforms existing
methods. For future work, we would like to compare
the text modeling performance of WTMF with LSA
and LDA on regular length documents.
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Abstract

Unsupervised word representations are very
useful in NLP tasks both as inputs to learning
algorithms and as extra word features in NLP
systems. However, most of these models are
built with only local context and one represen-
tation per word. This is problematic because
words are often polysemous and global con-
text can also provide useful information for
learning word meanings. We present a new
neural network architecture which 1) learns
word embeddings that better capture the se-
mantics of words by incorporating both local
and global document context, and 2) accounts
for homonymy and polysemy by learning mul-
tiple embeddings per word. We introduce a
new dataset with human judgments on pairs of
words in sentential context, and evaluate our
model on it, showing that our model outper-
forms competitive baselines and other neural
language models. 1

1 Introduction

Vector-space models (VSM) represent word mean-
ings with vectors that capture semantic and syntac-
tic information of words. These representations can
be used to induce similarity measures by computing
distances between the vectors, leading to many use-
ful applications, such as information retrieval (Man-
ning et al., 2008), document classification (Sebas-
tiani, 2002) and question answering (Tellex et al.,
2003).

1The dataset and word vectors can be downloaded at
http://ai.stanford.edu/∼ehhuang/.

Despite their usefulness, most VSMs share a
common problem that each word is only repre-
sented with one vector, which clearly fails to capture
homonymy and polysemy. Reisinger and Mooney
(2010b) introduced a multi-prototype VSM where
word sense discrimination is first applied by clus-
tering contexts, and then prototypes are built using
the contexts of the sense-labeled words. However, in
order to cluster accurately, it is important to capture
both the syntax and semantics of words. While many
approaches use local contexts to disambiguate word
meaning, global contexts can also provide useful
topical information (Ng and Zelle, 1997). Several
studies in psychology have also shown that global
context can help language comprehension (Hess et
al., 1995) and acquisition (Li et al., 2000).

We introduce a new neural-network-based lan-
guage model that distinguishes and uses both local
and global context via a joint training objective. The
model learns word representations that better cap-
ture the semantics of words, while still keeping syn-
tactic information. These improved representations
can be used to represent contexts for clustering word
instances, which is used in the multi-prototype ver-
sion of our model that accounts for words with mul-
tiple senses.

We evaluate our new model on the standard
WordSim-353 (Finkelstein et al., 2001) dataset that
includes human similarity judgments on pairs of
words, showing that combining both local and
global context outperforms using only local or
global context alone, and is competitive with state-
of-the-art methods. However, one limitation of this
evaluation is that the human judgments are on pairs
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Global ContextLocal Context
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he walks to the bank... ...

sum
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river

water

shore

global semantic vector
⋮

play

weighted average

Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute
a score that should be large for the actual next word (bank in the example), compared to the score for other words.
When word meaning is still ambiguous given local context, information in global context can help disambiguation.

of words presented in isolation, ignoring meaning
variations in context. Since word interpretation in
context is important especially for homonymous and
polysemous words, we introduce a new dataset with
human judgments on similarity between pairs of
words in sentential context. To capture interesting
word pairs, we sample different senses of words us-
ing WordNet (Miller, 1995). The dataset includes
verbs and adjectives, in addition to nouns. We show
that our multi-prototype model improves upon the
single-prototype version and outperforms other neu-
ral language models and baselines on this dataset.

2 Global Context-Aware Neural Language
Model

In this section, we describe the training objective of
our model, followed by a description of the neural
network architecture, ending with a brief description
of our model’s training method.

2.1 Training Objective

Our model jointly learns word representations while
learning to discriminate the next word given a short
word sequence (local context) and the document
(global context) in which the word sequence occurs.
Because our goal is to learn useful word representa-
tions and not the probability of the next word given
previous words (which prohibits looking ahead), our
model can utilize the entire document to provide

global context.
Given a word sequence s and document d in

which the sequence occurs, our goal is to discrim-
inate the correct last word in s from other random
words. We compute scores g(s, d) and g(sw, d)
where sw is swith the last word replaced by wordw,
and g(·, ·) is the scoring function that represents the
neural networks used. We want g(s, d) to be larger
than g(sw, d) by a margin of 1, for any other word
w in the vocabulary, which corresponds to the train-
ing objective of minimizing the ranking loss for each
(s, d) found in the corpus:

Cs,d =
∑
w∈V

max(0, 1− g(s, d) + g(sw, d)) (1)

Collobert and Weston (2008) showed that this rank-
ing approach can produce good word embeddings
that are useful in several NLP tasks, and allows
much faster training of the model compared to op-
timizing log-likelihood of the next word.

2.2 Neural Network Architecture
We define two scoring components that contribute
to the final score of a (word sequence, document)
pair. The scoring components are computed by two
neural networks, one capturing local context and the
other global context, as shown in Figure 1. We now
describe how each scoring component is computed.

The score of local context uses the local word se-
quence s. We first represent the word sequence s as

874



an ordered list of vectors x = (x1, x2, ..., xm) where
xi is the embedding of word i in the sequence, which
is a column in the embedding matrix L ∈ Rn×|V |

where |V | denotes the size of the vocabulary. The
columns of this embedding matrix L are the word
vectors and will be learned and updated during train-
ing. To compute the score of local context, scorel,
we use a neural network with one hidden layer:

a1 = f(W1[x1;x2; ...;xm] + b1) (2)

scorel = W2a1 + b2 (3)

where [x1;x2; ...;xm] is the concatenation of the
m word embeddings representing sequence s, f is
an element-wise activation function such as tanh,
a1 ∈ Rh×1 is the activation of the hidden layer with
h hidden nodes, W1 ∈ Rh×(mn) and W2 ∈ R1×h

are respectively the first and second layer weights of
the neural network, and b1, b2 are the biases of each
layer.

For the score of the global context, we represent
the document also as an ordered list of word em-
beddings, d = (d1, d2, ..., dk). We first compute the
weighted average of all word vectors in the docu-
ment:

c =

∑k
i=1w(ti)di∑k
i=1w(ti)

(4)

where w(·) can be any weighting function that cap-
tures the importance of word ti in the document. We
use idf-weighting as the weighting function.

We use a two-layer neural network to compute the
global context score, scoreg, similar to the above:

a1
(g) = f(W

(g)
1 [c;xm] + b

(g)
1 ) (5)

scoreg = W
(g)
2 a

(g)
1 + b

(g)
2 (6)

where [c;xm] is the concatenation of the weighted
average document vector and the vector of the last
word in s, a1

(g) ∈ Rh(g)×1 is the activation of
the hidden layer with h(g) hidden nodes, W (g)

1 ∈
Rh(g)×(2n) and W (g)

2 ∈ R1×h(g)
are respectively the

first and second layer weights of the neural network,
and b(g)

1 , b(g)
2 are the biases of each layer. Note that

instead of using the document where the sequence
occurs, we can also specify a fixed k > m that cap-
tures larger context.

The final score is the sum of the two scores:

score = scorel + scoreg (7)

The local score preserves word order and syntactic
information, while the global score uses a weighted
average which is similar to bag-of-words features,
capturing more of the semantics and topics of the
document. Note that Collobert and Weston (2008)’s
language model corresponds to the network using
only local context.

2.3 Learning
Following Collobert and Weston (2008), we sample
the gradient of the objective by randomly choosing
a word from the dictionary as a corrupt example for
each sequence-document pair, (s, d), and take the
derivative of the ranking loss with respect to the pa-
rameters: weights of the neural network and the em-
bedding matrix L. These weights are updated via
backpropagation. The embedding matrix L is the
word representations. We found that word embed-
dings move to good positions in the vector space
faster when using mini-batch L-BFGS (Liu and No-
cedal, 1989) with 1000 pairs of good and corrupt ex-
amples per batch for training, compared to stochas-
tic gradient descent.

3 Multi-Prototype Neural Language
Model

Despite distributional similarity models’ successful
applications in various NLP tasks, one major limi-
tation common to most of these models is that they
assume only one representation for each word. This
single-prototype representation is problematic be-
cause many words have multiple meanings, which
can be wildly different. Using one representa-
tion simply cannot capture the different meanings.
Moreover, using all contexts of a homonymous or
polysemous word to build a single prototype could
hurt the representation, which cannot represent any
one of the meanings well as it is influenced by all
meanings of the word.

Instead of using only one representation per word,
Reisinger and Mooney (2010b) proposed the multi-
prototype approach for vector-space models, which
uses multiple representations to capture different
senses and usages of a word. We show how our
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model can readily adopt the multi-prototype ap-
proach. We present a way to use our learned
single-prototype embeddings to represent each con-
text window, which can then be used by clustering to
perform word sense discrimination (Schütze, 1998).

In order to learn multiple prototypes, we first
gather the fixed-sized context windows of all occur-
rences of a word (we use 5 words before and after
the word occurrence). Each context is represented
by a weighted average of the context words’ vectors,
where again, we use idf-weighting as the weighting
function, similar to the document context represen-
tation described in Section 2.2. We then use spheri-
cal k-means to cluster these context representations,
which has been shown to model semantic relations
well (Dhillon and Modha, 2001). Finally, each word
occurrence in the corpus is re-labeled to its associ-
ated cluster and is used to train the word representa-
tion for that cluster.

Similarity between a pair of words (w,w′) us-
ing the multi-prototype approach can be computed
with or without context, as defined by Reisinger and
Mooney (2010b):

AvgSimC(w,w′) =

1

K2

k∑
i=1

k∑
j=1

p(c, w, i)p(c′, w′, j)d(µi(w), µj(w
′))

(8)

where p(c, w, i) is the likelihood that word w is in
its cluster i given context c, µi(w) is the vector rep-
resenting the i-th cluster centroid of w, and d(v, v′)
is a function computing similarity between two vec-
tors, which can be any of the distance functions pre-
sented by Curran (2004). The similarity measure can
be computed in absence of context by assuming uni-
form p(c, w, i) over i.

4 Experiments

In this section, we first present a qualitative analysis
comparing the nearest neighbors of our model’s em-
beddings with those of others, showing our embed-
dings better capture the semantics of words, with the
use of global context. Our model also improves the
correlation with human judgments on a word simi-
larity task. Because word interpretation in context is

important, we introduce a new dataset with human
judgments on similarity of pairs of words in senten-
tial context. Finally, we show that our model outper-
forms other methods on this dataset and also that the
multi-prototype approach improves over the single-
prototype approach.

We chose Wikipedia as the corpus to train all
models because of its wide range of topics and
word usages, and its clean organization of docu-
ment by topic. We used the April 2010 snapshot of
the Wikipedia corpus (Shaoul and Westbury, 2010),
with a total of about 2 million articles and 990 mil-
lion tokens. We use a dictionary of the 30,000 most
frequent words in Wikipedia, converted to lower
case. In preprocessing, we keep the frequent num-
bers intact and replace each digit of the uncommon
numbers to “DG” so as to preserve information such
as it being a year (e.g. “DGDGDGDG”). The con-
verted numbers that are rare are mapped to a NUM-
BER token. Other rare words not in the dictionary
are mapped to an UNKNOWN token.

For all experiments, our models use 50-
dimensional embeddings. We use 10-word windows
of text as the local context, 100 hidden units, and no
weight regularization for both neural networks. For
multi-prototype variants, we fix the number of pro-
totypes to be 10.

4.1 Qualitative Evaluations
In order to show that our model learns more seman-
tic word representations with global context, we give
the nearest neighbors of our single-prototype model
versus C&W’s, which only uses local context. The
nearest neighbors of a word are computed by com-
paring the cosine similarity between the center word
and all other words in the dictionary. Table 1 shows
the nearest neighbors of some words. The nearest
neighbors of “market” that C&W’s embeddings give
are more constrained by the syntactic constraint that
words in plural form are only close to other words
in plural form, whereas our model captures that the
singular and plural forms of a word are similar in
meaning. Other examples show that our model in-
duces nearest neighbors that better capture seman-
tics.

Table 2 shows the nearest neighbors of our model
using the multi-prototype approach. We see that
the clustering is able to group contexts of different
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Center
Word

C&W Our Model

markets firms, industries,
stores

market, firms,
businesses

American Australian,
Indian, Italian

U.S., Canadian,
African

illegal alleged, overseas,
banned

harmful, prohib-
ited, convicted

Table 1: Nearest neighbors of words based on cosine sim-
ilarity. Our model is less constrained by syntax and is
more semantic.

Center Word Nearest Neighbors
bank 1 corporation, insurance, company
bank 2 shore, coast, direction
star 1 movie, film, radio
star 2 galaxy, planet, moon
cell 1 telephone, smart, phone
cell 2 pathology, molecular, physiology
left 1 close, leave, live
left 2 top, round, right

Table 2: Nearest neighbors of word embeddings learned
by our model using the multi-prototype approach based
on cosine similarity. The clustering is able to find the dif-
ferent meanings, usages, and parts of speech of the words.

meanings of a word into separate groups, allowing
our model to learn multiple meaningful representa-
tions of a word.

4.2 WordSim-353

A standard dataset for evaluating vector-space mod-
els is the WordSim-353 dataset (Finkelstein et al.,
2001), which consists of 353 pairs of nouns. Each
pair is presented without context and associated with
13 to 16 human judgments on similarity and re-
latedness on a scale from 0 to 10. For example,
(cup,drink) received an average score of 7.25, while
(cup,substance) received an average score of 1.92.

Table 3 shows our results compared to previous
methods, including C&W’s language model and the
hierarchical log-bilinear (HLBL) model (Mnih and
Hinton, 2008), which is a probabilistic, linear neu-
ral model. We downloaded these embeddings from
Turian et al. (2010). These embeddings were trained
on the smaller corpus RCV1 that contains one year
of Reuters English newswire, and show similar cor-
relations on the dataset. We report the result of

Model Corpus ρ× 100

Our Model-g Wiki. 22.8
C&W RCV1 29.5
HLBL RCV1 33.2
C&W* Wiki. 49.8
C&W Wiki. 55.3
Our Model Wiki. 64.2
Our Model* Wiki. 71.3
Pruned tf-idf Wiki. 73.4
ESA Wiki. 75
Tiered Pruned tf-idf Wiki. 76.9

Table 3: Spearman’s ρ correlation on WordSim-353,
showing our model’s improvement over previous neural
models for learning word embeddings. C&W* is the
word embeddings trained and provided by C&W. Our
Model* is trained without stop words, while Our Model-
g uses only global context. Pruned tf-idf (Reisinger and
Mooney, 2010b) and ESA (Gabrilovich and Markovitch,
2007) are also included.

our re-implementation of C&W’s model trained on
Wikipedia, showing the large effect of using a dif-
ferent corpus.

Our model is able to learn more semantic word
embeddings and noticeably improves upon C&W’s
model. Note that our model achieves higher corre-
lation (64.2) than either using local context alone
(C&W: 55.3) or using global context alone (Our
Model-g: 22.8). We also found that correlation can
be further improved by removing stop words (71.3).
Thus, each window of text (training example) con-
tains more information but still preserves some syn-
tactic information as the words are still ordered in
the local context.

4.3 New Dataset: Word Similarity in Context

The many previous datasets that associate human
judgments on similarity between pairs of words,
such as WordSim-353, MC (Miller and Charles,
1991) and RG (Rubenstein and Goodenough, 1965),
have helped to advance the development of vector-
space models. However, common to all datasets is
that similarity scores are given to pairs of words in
isolation. This is problematic because the mean-
ings of homonymous and polysemous words depend
highly on the words’ contexts. For example, in the
two phrases, “he swings the baseball bat” and “the
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Word 1 Word 2
Located downtown along the east bank of the Des
Moines River ...

This is the basis of all money laundering , a track record
of depositing clean money before slipping through dirty
money ...

Inside the ruins , there are bats and a bowl with Pokeys
that fills with sand over the course of the race , and the
music changes somewhat while inside ...

An aggressive lower order batsman who usually bats at
No. 11 , Muralitharan is known for his tendency to back
away to leg and slog ...

An example of legacy left in the Mideast from these
nobles is the Krak des Chevaliers ’ enlargement by the
Counts of Tripoli and Toulouse ...

... one should not adhere to a particular explanation ,
only in such measure as to be ready to abandon it if it
be proved with certainty to be false ...

... and Andy ’s getting ready to pack his bags and head
up to Los Angeles tomorrow to get ready to fly back
home on Thursday

... she encounters Ben ( Duane Jones ) , who arrives
in a pickup truck and defends the house against another
pack of zombies ...

In practice , there is an unknown phase delay between
the transmitter and receiver that must be compensated
by ” synchronization ” of the receivers local oscillator

... but Gilbert did not believe that she was dedicated
enough , and when she missed a rehearsal , she was
dismissed ...

Table 4: Example pairs from our new dataset. Note that words in a pair can be the same word and have different parts
of speech.

bat flies”, bat has completely different meanings. It
is unclear how this variation in meaning is accounted
for in human judgments of words presented without
context.

One of the main contributions of this paper is the
creation of a new dataset that addresses this issue.
The dataset has three interesting characteristics: 1)
human judgments are on pairs of words presented in
sentential context, 2) word pairs and their contexts
are chosen to reflect interesting variations in mean-
ings of homonymous and polysemous words, and 3)
verbs and adjectives are present in addition to nouns.
We now describe our methodology in constructing
the dataset.

4.3.1 Dataset Construction
Our procedure of constructing the dataset consists

of three steps: 1) select a list a words, 2) for each
word, select another word to form a pair, 3) for each
word in a pair, find a sentential context. We now
describe each step in detail.

In step 1, in order to make sure we select a diverse
list of words, we consider three attributes of a word:
frequency in a corpus, number of parts of speech,
and number of synsets according to WordNet. For
frequency, we divide words into three groups, top
2,000 most frequent, between 2,000 and 5,000, and
between 5,000 to 10,000 based on occurrences in
Wikipedia. For number of parts of speech, we group
words based on their number of possible parts of

speech (noun, verb or adjective), from 1 to 3. We
also group words by their number of synsets: [0,5],
[6,10], [11, 20], and [20, max]. Finally, we sam-
ple at most 15 words from each combination in the
Cartesian product of the above groupings.

In step 2, for each of the words selected in step
1, we want to choose the other word so that the pair
captures an interesting relationship. Similar to Man-
andhar et al. (2010), we use WordNet to first ran-
domly select one synset of the first word, we then
construct a set of words in various relations to the
first word’s chosen synset, including hypernyms, hy-
ponyms, holonyms, meronyms and attributes. We
randomly select a word from this set of words as the
second word in the pair. We try to repeat the above
twice to generate two pairs for each word. In addi-
tion, for words with more than five synsets, we allow
the second word to be the same as the first, but with
different synsets. We end up with pairs of words as
well as the one chosen synset for each word in the
pairs.

In step 3, we aim to extract a sentence from
Wikipedia for each word, which contains the word
and corresponds to a usage of the chosen synset.
We first find all sentences in which the word oc-
curs. We then POS tag2 these sentences and filter out
those that do not match the chosen POS. To find the

2We used the MaxEnt Treebank POS tagger in the python
nltk library.

878



Model ρ× 100
C&W-S 57.0
Our Model-S 58.6
Our Model-M AvgSim 62.8
Our Model-M AvgSimC 65.7
tf-idf-S 26.3
Pruned tf-idf-S 62.5
Pruned tf-idf-M AvgSim 60.4
Pruned tf-idf-M AvgSimC 60.5

Table 5: Spearman’s ρ correlation on our new
dataset. Our Model-S uses the single-prototype approach,
while Our Model-M uses the multi-prototype approach.
AvgSim calculates similarity with each prototype con-
tributing equally, while AvgSimC weighs the prototypes
according to probability of the word belonging to that
prototype’s cluster.

word usages that correspond to the chosen synset,
we first construct a set of related words of the chosen
synset, including hypernyms, hyponyms, holonyms,
meronyms and attributes. Using this set of related
words, we filter out a sentence if the document in
which the sentence appears does not include one of
the related words. Finally, we randomly select one
sentence from those that are left.

Table 4 shows some examples from the dataset.
Note that the dataset also includes pairs of the same
word. Single-prototype models would give the max
similarity score for those pairs, which can be prob-
lematic depending on the words’ contexts. This
dataset requires models to examine context when de-
termining word meaning.

Using Amazon Mechanical Turk, we collected 10
human similarity ratings for each pair, as Snow et
al. (2008) found that 10 non-expert annotators can
achieve very close inter-annotator agreement with
expert raters. To ensure worker quality, we only
allowed workers with over 95% approval rate to
work on our task. Furthermore, we discarded all
ratings by a worker if he/she entered scores out of
the accepted range or missed a rating, signaling low-
quality work.

We obtained a total of 2,003 word pairs and their
sentential contexts. The word pairs consist of 1,712
unique words. Of the 2,003 word pairs, 1328 are
noun-noun pairs, 399 verb-verb, 140 verb-noun, 97
adjective-adjective, 30 noun-adjective, and 9 verb-
adjective. 241 pairs are same-word pairs.

4.3.2 Evaluations on Word Similarity in
Context

For evaluation, we also compute Spearman corre-
lation between a model’s computed similarity scores
and human judgments. Table 5 compares different
models’ results on this dataset. We compare against
the following baselines: tf-idf represents words in
a word-word matrix capturing co-occurrence counts
in all 10-word context windows. Reisinger and
Mooney (2010b) found pruning the low-value tf-idf
features helps performance. We report the result
of this pruning technique after tuning the thresh-
old value on this dataset, removing all but the top
200 features in each word vector. We tried the
same multi-prototype approach and used spherical
k-means3 to cluster the contexts using tf-idf repre-
sentations, but obtained lower numbers than single-
prototype (55.4 with AvgSimC). We then tried using
pruned tf-idf representations on contexts with our
clustering assignments (included in Table 5), but still
got results worse than the single-prototype version
of the pruned tf-idf model (60.5 with AvgSimC).
This suggests that the pruned tf-idf representations
might be more susceptible to noise or mistakes in
context clustering.

By utilizing global context, our model outper-
forms C&W’s vectors and the above baselines on
this dataset. With multiple representations per
word, we show that the multi-prototype approach
can improve over the single-prototype version with-
out using context (62.8 vs. 58.6). Moreover, using
AvgSimC4 which takes contexts into account, the
multi-prototype model obtains the best performance
(65.7).

5 Related Work

Neural language models (Bengio et al., 2003; Mnih
and Hinton, 2007; Collobert and Weston, 2008;
Schwenk and Gauvain, 2002; Emami et al., 2003)
have been shown to be very powerful at language
modeling, a task where models are asked to ac-
curately predict the next word given previously
seen words. By using distributed representations of

3We first tried movMF as in Reisinger and Mooney (2010b),
but were unable to get decent results (only 31.5).

4probability of being in a cluster is calculated as the inverse
of the distance to the cluster centroid.
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words which model words’ similarity, this type of
models addresses the data sparseness problem that
n-gram models encounter when large contexts are
used. Most of these models used relative local con-
texts of between 2 to 10 words. Schwenk and Gau-
vain (2002) tried to incorporate larger context by
combining partial parses of past word sequences and
a neural language model. They used up to 3 previ-
ous head words and showed increased performance
on language modeling. Our model uses a similar
neural network architecture as these models and uses
the ranking-loss training objective proposed by Col-
lobert and Weston (2008), but introduces a new way
to combine local and global context to train word
embeddings.

Besides language modeling, word embeddings in-
duced by neural language models have been use-
ful in chunking, NER (Turian et al., 2010), parsing
(Socher et al., 2011b), sentiment analysis (Socher et
al., 2011c) and paraphrase detection (Socher et al.,
2011a). However, they have not been directly eval-
uated on word similarity tasks, which are important
for tasks such as information retrieval and summa-
rization. Our experiments show that our word em-
beddings are competitive in word similarity tasks.

Most of the previous vector-space models use a
single vector to represent a word even though many
words have multiple meanings. The multi-prototype
approach has been widely studied in models of cat-
egorization in psychology (Rosseel, 2002; Griffiths
et al., 2009), while Schütze (1998) used clustering
of contexts to perform word sense discrimination.
Reisinger and Mooney (2010b) combined the two
approaches and applied them to vector-space mod-
els, which was further improved in Reisinger and
Mooney (2010a). Two other recent papers (Dhillon
et al., 2011; Reddy et al., 2011) present models
for constructing word representations that deal with
context. It would be interesting to evaluate those
models on our new dataset.

Many datasets with human similarity ratings on
pairs of words, such as WordSim-353 (Finkelstein
et al., 2001), MC (Miller and Charles, 1991) and
RG (Rubenstein and Goodenough, 1965), have been
widely used to evaluate vector-space models. Moti-
vated to evaluate composition models, Mitchell and
Lapata (2008) introduced a dataset where an intran-
sitive verb, presented with a subject noun, is com-

pared to another verb chosen to be either similar or
dissimilar to the intransitive verb in context. The
context is short, with only one word, and only verbs
are compared. Erk and Padó (2008), Thater et al.
(2011) and Dinu and Lapata (2010) evaluated word
similarity in context with a modified task where sys-
tems are to rerank gold-standard paraphrase candi-
dates given the SemEval 2007 Lexical Substitution
Task dataset. This task only indirectly evaluates sim-
ilarity as only reranking of already similar words are
evaluated.

6 Conclusion

We presented a new neural network architecture that
learns more semantic word representations by us-
ing both local and global context in learning. These
learned word embeddings can be used to represent
word contexts as low-dimensional weighted average
vectors, which are then clustered to form different
meaning groups and used to learn multi-prototype
vectors. We introduced a new dataset with human
judgments on similarity between pairs of words in
context, so as to evaluate model’s abilities to capture
homonymy and polysemy of words in context. Our
new multi-prototype neural language model outper-
forms previous neural models and competitive base-
lines on this new dataset.
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Abstract

This paper uses an unsupervised model of
grounded language acquisition to study the
role that social cues play in language acqui-
sition. The input to the model consists of (or-
thographically transcribed) child-directed ut-
terances accompanied by the set of objects
present in the non-linguistic context. Each
object is annotated by social cues, indicating
e.g., whether the caregiver is looking at or
touching the object. We show how to model
the task of inferring which objects are be-
ing talked about (and which words refer to
which objects) as standard grammatical in-
ference, and describe PCFG-based unigram
models and adaptor grammar-based colloca-
tion models for the task. Exploiting social
cues improves the performance of all mod-
els. Our models learn the relative importance
of each social cue jointly with word-object
mappings and collocation structure, consis-
tent with the idea that children could discover
the importance of particular social informa-
tion sources during word learning.

1 Introduction

From learning sounds to learning the meanings of
words, social interactions are extremely important
for children’s early language acquisition (Baldwin,
1993; Kuhl et al., 2003). For example, children who
engage in more joint attention (e.g. looking at par-
ticular objects together) with caregivers tend to learn
words faster (Carpenter et al., 1998). Yet compu-
tational or formal models of social interaction are
rare, and those that exist have rarely gone beyond
the stage of cue-weighting models. In order to study
the role that social cues play in language acquisition,
this paper presents a structured statistical model of

grounded learning that learns a mapping between
words and objects from a corpus of child-directed
utterances in a completely unsupervised fashion. It
exploits five different social cues, which indicate
which object (if any) the child is looking at, which
object the child is touching, etc. Our models learn
the salience of each social cue in establishing refer-
ence, relative to their co-occurrence with objects that
are not being referred to. Thus, this work is consis-
tent with a view of language acquisition in which
children learn to learn, discovering organizing prin-
ciples for how language is organized and used so-
cially (Baldwin, 1993; Hollich et al., 2000; Smith et
al., 2002).

We reduce the grounded learning task to a gram-
matical inference problem (Johnson et al., 2010;
Börschinger et al., 2011). The strings presented to
our grammatical learner contain a prefix which en-
codes the objects and their social cues for each ut-
terance, and the rules of the grammar encode rela-
tionships between these objects and specific words.
These rules permit every object to map to every
word (including function words; i.e., there is no
“stop word” list), and the learning process decides
which of these rules will have a non-trivial proba-
bility (these encode the object-word mappings the
system has learned).

This reduction of grounded learning to grammat-
ical inference allows us to use standard grammati-
cal inference procedures to learn our models. Here
we use the adaptor grammar package described in
Johnson et al. (2007) and Johnson and Goldwater
(2009) with “out of the box” default settings; no
parameter tuning whatsoever was done. Adaptor
grammars are a framework for specifying hierarchi-
cal non-parametric models that has been previously
used to model language acquisition (Johnson, 2008).

883



Social cue Value
child.eyes objects child is looking at
child.hands objects child is touching
mom.eyes objects care-giver is looking at
mom.hands objects care-giver is touching
mom.point objects care-giver is pointing to

Figure 1: The 5 social cues in the Frank et al. (to appear)
corpus. The value of a social cue for an utterance is a
subset of the available topics (i.e., the objects in the non-
linguistic context) of that utterance.

A semanticist might argue that our view of refer-
ential mapping is flawed: full noun phrases (e.g., the
dog), rather than nouns, refer to specific objects, and
nouns denote properties (e.g., dog denotes the prop-
erty of being a dog). Learning that a noun, e.g., dog,
is part of a phrase used to refer to a specific dog (say,
Fido) does not suffice to determine the noun’s mean-
ing: the noun could denote a specific breed of dog,
or animals in general. But learning word-object rela-
tionships is a plausible first step for any learner: it is
often only the contrast between learned relationships
and novel relationships that allows children to in-
duce super- or sub-ordinate mappings (Clark, 1987).
Nevertheless, in deference to such objections, we
call the object that a phrase containing a given noun
refers to the topic of that noun. (This is also appro-
priate, given that our models are specialisations of
topic models).

Our models are intended as an “ideal learner” ap-
proach to early social language learning, attempt-
ing to weight the importance of social and structural
factors in the acquisition of word-object correspon-
dences. From this perspective, the primary goal is
to investigate the relationships between acquisition
tasks (Johnson, 2008; Johnson et al., 2010), looking
for synergies (areas of acquisition where attempting
two learning tasks jointly can provide gains in both)
as well as areas where information overlaps.

1.1 A training corpus for social cues
Our work here uses a corpus of child-directed
speech annotated with social cues, described in
Frank et al. (to appear). The corpus consists
of 4,763 orthographically-transcribed utterances of
caregivers to their pre-linguistic children (ages 6, 12,
and 18 months) during home visits where children
played with a consistent set of toys. The sessions
were video-taped, and each utterance was annotated
with the five social cues described in Figure 1.

Each utterance in the corpus contains the follow-

ing information:

• the sequence of orthographic words uttered by
the care-giver,
• a set of available topics (i.e., objects in the non-

linguistic objects),
• the values of the social cues, and
• a set of intended topics, which the care-giver

refers to.

Figure 2 presents this information for an example ut-
terance. All of these but the intended topics are pro-
vided to our learning algorithms; the intended top-
ics are used to evaluate the output produced by our
learners.

Generally the intended topics consist of zero or
one elements from the available topics, but not al-
ways: it is possible for the caregiver to refer to two
objects in a single utterance, or to refer to an object
not in the current non-linguistic context (e.g., to a
toy that has been put away). There is a considerable
amount of anaphora in this corpus, which our mod-
els currently ignore.

Frank et al. (to appear) give extensive details on
the corpus, including inter-annotator reliability in-
formation for all annotations, and provide detailed
statistical analyses of the relationships between the
various social cues, the available topics and the in-
tended topics. That paper also gives instructions on
obtaining the corpus.

1.2 Previous work
There is a growing body of work on the role of social
cues in language acquisition. The language acqui-
sition research community has long recognized the
importance of social cues for child language acqui-
sition (Baldwin, 1991; Carpenter et al., 1998; Kuhl
et al., 2003).

Siskind (1996) describes one of the first exam-
ples of a model that learns the relationship between
words and topics, albeit in a non-statistical frame-
work. Yu and Ballard (2007) describe an associative
learner that associates words with topics and that
exploits prosodic as well as social cues. The rela-
tive importance of the various social cues are spec-
ified a priori in their model (rather than learned, as
they are here), and unfortunately their training cor-
pus is not available. Frank et al. (2008) describes a
Bayesian model that learns the relationship between
words and topics, but the version of their model that
included social cues presented a number of chal-
lenges for inference. The unigram model we de-
scribe below corresponds most closely to the Frank
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.dog # .pig child.eyes mom.eyes mom.hands # ## wheres the piggie

Figure 2: The photograph indicates non-linguistic context containing a (toy) pig and dog for the utterance Where’s the
piggie?. Below that, we show the representation of this utterance that serves as the input to our models. The prefix (the
portion of the string before the “##”) lists the available topics (i.e., the objects in the non-linguistic context) and their
associated social cues (the cues for the pig are child.eyes, mom.eyes and mom.hands, while the dog is not associated
with any social cues). The intended topic is the pig. The learner’s goals are to identify the utterance’s intended topic,
and which words in the utterance are associated with which topic.

Sentence

Topic.pig

T.None

.dog

NotTopical.child.eyes

NotTopical.child.hands

NotTopical.mom.eyes

NotTopical.mom.hands

NotTopical.mom.point

#

Topic.pig

T.pig

.pig

Topical.child.eyes

child.eyes

Topical.child.hands

Topical.mom.eyes

Topical.mom.hands

mom.hands

Topical.mom.point

#

Topic.None

##

Words.pig

Word.None

wheres

Words.pig

Word.None

the

Words.pig

Word.pig

piggie

Figure 3: Sample parse generated by the Unigram PCFG. Nodes coloured red show how the “pig” topic is propagated
from the prefix (before the “##” separator) into the utterance. The social cues associated with each object are generated
either from a “Topical” or a “NotTopical” nonterminal, depending on whether the corresponding object is topical or
not.
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et al. model. Johnson et al. (2010) reduces grounded
learning to grammatical inference for adaptor gram-
mars and shows how it can be used to perform word
segmentation as well as learning word-topic rela-
tionships, but their model does not take social cues
into account.

2 Reducing grounded learning with social
cues to grammatical inference

This section explains how we reduce ground learn-
ing problems with social cues to grammatical in-
ference problems, which lets us apply a wide vari-
ety of grammatical inference algorithms to grounded
learning problems. An advantage of reducing
grounded learning to grammatical inference is that
it suggests new ways to generalise grounded learn-
ing models; we explore three such generalisations
here. The main challenge in this reduction is finding
a way of expressing the non-linguistic information
as part of the strings that serve as the grammatical in-
ference procedure’s input. Here we encode the non-
linguistic information in a “prefix” to each utterance
as shown in Figure 2, and devise a grammar such
that inference for the grammar corresponds to learn-
ing the word-topic relationships and the salience of
the social cues for grounded learning.

All our models associate each utterance with zero
or one topics (this means we cannot correctly anal-
yse utterances with more than one intended topic).
We analyse an utterance associated with zero topics
as having the special topic None, so we can assume
that every utterance has exactly one topic. All our
grammars generate strings of the form shown in Fig-
ure 2, and they do so by parsing the prefix and the
words of the utterance separately; the top-level rules
of the grammar force the same topic to be associated
with both the prefix and the words of the utterance
(see Figure 3).

2.1 Topic models and the unigram PCFG
As Johnson et al. (2010) observe, this kind of
grounded learning can be viewed as a specialised
kind of topic inference in a topic model, where the
utterance topic is constrained by the available ob-
jects (possible topics). We exploit this observation
here using a reduction based on the reduction of
LDA topic models to PCFGs proposed by Johnson
(2010). This leads to our first model, the unigram
grammar, which is a PCFG.1

1In fact, the unigram grammar is equivalent to a HMM,
but the PCFG parameterisation makes clear the relationship

Sentence→ Topict Wordst ∀t ∈ T ′

TopicNone → ##
Topict → Tt TopicNone ∀t ∈ T ′

Topict → TNone Topict ∀t ∈ T
Tt → t Topicalc1 ∀t ∈ T
Topicalci

→ (ci) Topicalci+1
i = 1, . . . , `− 1

Topicalc`
→ (c`) #

TNone → t NotTopicalc1 ∀t ∈ T
NotTopicalci

→ (ci) NotTopicalci+1
i = 1, . . . , `− 1

NotTopicalc`
→ (c`) #

Wordst →WordNone (Wordst) ∀t ∈ T ′

Wordst →Wordt (Wordst) ∀t ∈ T
Wordt → w ∀t ∈ T ′, w ∈W

Figure 4: The rule schema that generate the unigram
PCFG. Here (c1, . . . , c`) is an ordered list of the so-
cial cues, T is the set of all non-None available topics,
T ′ = T ∪ {None}, and W is the set of words appearing
in the utterances. Parentheses indicate optionality.

Figure 4 presents the rules of the unigram gram-
mar. This grammar has two major parts. The rules
expanding the Topict nonterminals ensure that the
social cues for the available topic t are parsed un-
der the Topical nonterminals. All other available
topics are parsed under TNone nonterminals, so their
social cues are parsed under NotTopical nontermi-
nals. The rules expanding these non-terminals are
specifically designed so that the generation of the so-
cial cues corresponds to a series of binary decisions
about each social cue. For example, the probability
of the rule

Topicalchild.eyes → .child.eyes Topicalchild.hands

is the probability of an object that is an utterance
topic occuring with the child.eyes social cue. By es-
timating the probabilities of these rules, the model
effectively learns the probability of each social cue
being associated with a Topical or a NotTopical
available topic, respectively.

The nonterminals Wordst expand to a sequence
of Wordt and WordNone nonterminals, each of
which can expand to any word whatsoever. In prac-
tice Wordt will expand to those words most strongly
associated with topic t, while WordNone will expand
to those words not associated with any topic.

between grounded learning and estimation of grammar rule
weights.
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Sentence→ Topict Collocst ∀t ∈ T ′

Collocst → Colloct (Collocst) ∀t ∈ T ′

Collocst → CollocNone (Collocst) ∀t ∈ T
Colloct →Wordst ∀t ∈ T ′

Wordst →Wordt (Wordst) ∀t ∈ T ′

Wordst →WordNone (Wordst) ∀t ∈ T
Wordt →Word ∀t ∈ T ′

Word→ w ∀w ∈W

Figure 5: The rule schema that generate the collocation
adaptor grammar. Adapted nonterminals are indicated via
underlining. Here T is the set of all non-None available
topics, T ′ = T ∪ {None}, and W is the set of words ap-
pearing in the utterances. The rules expanding the Topict
nonterminals are exactly as in unigram PCFG.

2.2 Adaptor grammars
Our other grounded learning models are based on
reductions of grounded learning to adaptor gram-
mar inference problems. Adaptor grammars are a
framework for stating a variety of Bayesian non-
parametric models defined in terms of a hierarchy of
Pitman-Yor Processes: see Johnson et al. (2007) for
a formal description. Informally, an adaptor gram-
mar is specified by a set of rules just as in a PCFG,
plus a set of adapted nonterminals. The set of
trees generated by an adaptor grammar is the same
as the set of trees generated by a PCFG with the
same rules, but the generative process differs. Non-
adapted nonterminals in an adaptor grammar expand
just as they do in a PCFG: the probability of choos-
ing a rule is specified by its probability. However,
the expansion of an adapted nonterminal depends on
how it expanded in previous derivations. An adapted
nonterminal can directly expand to a subtree with
probability proportional to the number of times that
subtree has been previously generated; it can also
“back off” to expand using a grammar rule, just as
in a PCFG, with probability proportional to a con-
stant.2

Thus an adaptor grammar can be viewed as
caching each tree generated by each adapted non-
terminal, and regenerating it with probability pro-
portional to the number of times it was previously
generated (with some probability mass reserved to
generate “new” trees). This enables adaptor gram-

2This is a description of Chinese Restaurant Processes,
which are the predictive distributions for Dirichlet Processes.
Our adaptor grammars are actually based on the more general
Pitman-Yor Processes, as described in Johnson and Goldwater
(2009).

Sentence

Topic.pig

...

Collocs.pig

Colloc.None

Words.None

Word.None

Word

wheres

Collocs.pig

Colloc.pig

Words.pig

Word.None

Word

the

Words.pig

Word.pig

Word

piggie

Figure 6: Sample parse generated by the collocation
adaptor grammar. The adapted nonterminals Colloct and
Wordt are shown underlined; the subtrees they dominate
are “cached” by the adaptor grammar. The prefix (not
shown here) is parsed exactly as in the Unigram PCFG.

mars to generalise over subtrees of arbitrary size.
Generic software is available for adaptor grammar
inference, based either on Variational Bayes (Cohen
et al., 2010) or Markov Chain Monte Carlo (Johnson
and Goldwater, 2009). We used the latter software
because it is capable of performing hyper-parameter
inference for the PCFG rule probabilities and the
Pitman-Yor Process parameters. We used the “out-
of-the-box” settings for this software, i.e., uniform
priors on all PCFG rule parameters, a Beta(2, 1)
prior on the Pitman-Yor a parameters and a “vague”
Gamma(100, 0.01) prior on the Pitman-Yor b pa-
rameters. (Presumably performance could be im-
proved if the priors were tuned, but we did not ex-
plore this here).

Here we explore a simple “collocation” extension
to the unigram PCFG which associates multiword
collocations, rather than individual words, with top-
ics. Hardisty et al. (2010) showed that this signifi-
cantly improved performance in a sentiment analy-
sis task.

The collocation adaptor grammar in Figure 5 gen-
erates the words of the utterance as a sequence of
collocations, each of which is a sequence of words.
Each collocation is either associated with the sen-
tence topic or with the None topic, just like words in
the unigram model. Figure 6 shows a sample parse
generated by the collocation adaptor grammar.

We also experimented with a variant of the uni-
gram and collocation grammars in which the topic-
specific word distributions Wordt for each t ∈ T
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Model Social Utterance topic Word topic Lexicon
cues acc. f-score prec. rec. f-score prec. rec. f-score prec. rec.

unigram none 0.3395 0.4044 0.3249 0.5353 0.2007 0.1207 0.5956 0.1037 0.05682 0.5952
unigram all 0.4907 0.6064 0.4867 0.8043 0.295 0.1763 0.9031 0.1483 0.08096 0.881
colloc none 0.4331 0.3513 0.3272 0.3792 0.2431 0.1603 0.5028 0.08808 0.04942 0.4048
colloc all 0.5837 0.598 0.5623 0.6384 0.4098 0.2702 0.8475 0.1671 0.09422 0.7381
unigram′ none 0.3261 0.3767 0.3054 0.4914 0.1893 0.1131 0.5811 0.1167 0.06583 0.5122
unigram′ all 0.5117 0.6106 0.4986 0.7875 0.2846 0.1693 0.891 0.1684 0.09402 0.8049
colloc′ none 0.5238 0.3419 0.3844 0.3078 0.2551 0.1732 0.4843 0.2162 0.1495 0.3902
colloc′ all 0.6492 0.6034 0.6664 0.5514 0.3981 0.2613 0.8354 0.3375 0.2269 0.6585

Figure 7: Utterance topic, word topic and lexicon results for all models, on data with and without social cues. The
results for the variant models, in which Wordt nonterminals expand via WordNone, are shown under unigram′ and
colloc′. Utterance topic shows how well the model discovered the intended topics at the utterance level, word topic
shows how well the model associates word tokens with topics, and lexicon shows how well the topic most frequently
associated with a word type matches an external word-topic dictionary. In this figure and below, “colloc” abbreviates
“collocation”, “acc.” abbreviates “accuracy”, “prec.” abbreviates “precision” and “rec.” abbreviates “recall”.

(the set of non-None available topics) expand via
WordNone non-terminals. That is, in the variant
grammars topical words are generated with the fol-
lowing rule schema:

Wordt →WordNone ∀t ∈ T
WordNone →Word
Word→ w ∀w ∈W

In these variant grammars, the WordNone nontermi-
nal generates all the words of the language, so it de-
fines a generic “background” distribution over all the
words, rather than just the nontopical words. An ef-
fect of this is that the variant grammars tend to iden-
tify fewer words as topical.

3 Experimental evaluation

We performed grammatical inference using the
adaptor grammar software described in Johnson and
Goldwater (2009).3 All experiments involved 4 runs
of 5,000 samples each, of which the first 2,500 were
discarded for “burn-in”.4 From these samples we
extracted the modal (i.e., most frequent) analysis,

3Because adaptor grammars are a generalisation of PCFGs,
we could use the adaptor grammar software to estimate the un-
igram model.

4We made no effort to optimise the computation, but it
seems the samplers actually stabilised after around a hundred
iterations, so it was probably not necessary to sample so exten-
sively. We estimated the error in our results by running our most
complex model (the colloc′ model with all social cues) 20 times
(i.e., 20×8 chains for 5,000 iterations) so we could compute the
variance of each of the evaluation scores (it is reasonable to as-
sume that the simpler models will have smaller variance). The
standard deviation of all utterance topic and word topic mea-
sures is between 0.005 and 0.01; the standard deviation for lex-
icon f-score is 0.02, lexicon precision is 0.01 and lexicon recall
is 0.03. The adaptor grammar software uses a sentence-wise

which we evaluated as described below. The results
of evaluating each model on the corpus with social
cues, and on another corpus identical except that the
social cues have been removed, are presented in Fig-
ure 7.

Each model was evaluated on each corpus as fol-
lows. First, we extracted the utterance’s topic from
the modal parse (this can be read off the Topict
nodes), and compared this to the intended topics an-
notated in the corpus. The frequency with which
the models’ predicted topics exactly matches the
intended topics is given under “utterance topic ac-
curacy”; the f-score, precision and recall of each
model’s topic predictions are also given in the table.

Because our models all associate word tokens
with topics, we can also evaluate the accuracy with
which word tokens are associated with topics. We
constructed a small dictionary which identifies the
words that can be used as the head of a phrase to
refer to the topical objects (e.g., the dictionary in-
dicates that dog, doggie and puppy name the topi-
cal object DOG). Our dictionary is relatively conser-
vative; between one and eight words are associated
with each topic. We scored the topic label on each
word token in our corpus as follows. A topic label is
scored as correct if it is given in our dictionary and
the topic is one of the intended topics for the utter-
ance. The “word topic” entries in Figure 7 give the
results of this evaluation.

blocked sampler, so it requires fewer iterations than a point-
wise sampler. We used 5,000 iterations because this is the soft-
ware’s default setting; evaluating the trace output suggests it
only takes several hundred iterations to “burn in”. However, we
ran 8 chains for 25,000 iterations of the colloc′ model; as ex-
pected the results of this run are within two standard deviations
of the results reported above.
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Model Social Utterance topic Word topic Lexicon
cues acc. f-score prec. rec. f-score prec. rec. f-score prec. rec.

unigram none 0.3395 0.4044 0.3249 0.5353 0.2007 0.1207 0.5956 0.1037 0.05682 0.5952
unigram +child.eyes 0.4573 0.5725 0.4559 0.7694 0.2891 0.1724 0.8951 0.1362 0.07415 0.8333
unigram +child.hands 0.3399 0.4011 0.3246 0.5247 0.2008 0.121 0.5892 0.09705 0.05324 0.5476
unigram +mom.eyes 0.338 0.4023 0.3234 0.5322 0.1992 0.1198 0.5908 0.09664 0.053 0.5476
unigram +mom.hands 0.3563 0.4279 0.3437 0.5667 0.1984 0.1191 0.5948 0.09959 0.05455 0.5714
unigram +mom.point 0.3063 0.3548 0.285 0.4698 0.1806 0.1086 0.5359 0.09224 0.05057 0.5238
colloc none 0.4331 0.3513 0.3272 0.3792 0.2431 0.1603 0.5028 0.08808 0.04942 0.4048
colloc +child.eyes 0.5159 0.5006 0.4652 0.542 0.351 0.2309 0.7312 0.1432 0.07989 0.6905
colloc +child.hands 0.4827 0.4275 0.3999 0.4592 0.2897 0.1913 0.5964 0.1192 0.06686 0.5476
colloc +mom.eyes 0.4697 0.4171 0.3869 0.4525 0.2708 0.1781 0.5642 0.1013 0.05666 0.4762
colloc +mom.hands 0.4747 0.4251 0.3942 0.4612 0.274 0.1806 0.5666 0.09548 0.05337 0.4524
colloc +mom.point 0.4228 0.3378 0.3151 0.3639 0.2575 0.1716 0.5157 0.09278 0.05202 0.4286

Figure 8: Effect of using just one social cue on the experimental results for the unigram and collocation models. The
“importance” of a social cue can be quantified by the degree to which the model’s evaluation score improves when
using a corpus containing that social cue relative to its evaluation score when using a corpus without any social cues.
The most important social cue is the one which causes performance to improve the most.

Finally, we extracted a lexicon from the parsed
corpus produced by each model. We counted how
often each word type was associated with each topic
in our sampler’s output (including the None topic),
and assigned the word to its most frequent topic.
The “lexicon” entries in Figure 7 show how well
the entries in these lexicons match the entries in the
manually-constructed dictionary discussed above.

There are 10 different evaluation scores, and no
model dominates in all of them. However, the top-
scoring result in every evaluation is always for a
model trained using social cues, demonstrating the
importance of these social cues. The variant colloca-
tion model (trained on data with social cues) was the
top-scoring model on four evaluation scores, which
is more than any other model.

One striking thing about this evaluation is that the
recall scores are all much higher than the precision
scores, for each evaluation. This indicates that all
of the models, especially the unigram model, are la-
belling too many words as topical. This is perhaps
not too surprising: because our models completely
lack any notion of syntactic structure and simply
model the association between words and topics,
they label many non-nouns with topics (e.g., woof
is typically labelled with the topic DOG).

3.1 Evaluating the importance of social cues
It is scientifically interesting to be able to evalu-
ate the importance of each of the social cues to
grounded learning. One way to do this is to study
the effect of adding or removing social cues from
the corpus on the ability of our models to perform
grounded learning. An important social cue should

have a large impact on our models’ performance; an
unimportant cue should have little or no impact.

Figure 8 compares the performance of the uni-
gram and collocation models on corpora containing
a single social cue to their performance on the cor-
pus without any social cues, while Figure 9 com-
pares the performance of these models on corpora
containing all but one social cue to the corpus con-
taining all of the social cues. In both of these evalua-
tions, with respect to all 10 evaluation measures, the
child.eyes social cue had the most impact on model
performance.

Why would the child’s own gaze be more impor-
tant than the caregiver’s? Perhaps caregivers are fol-
lowing in, i.e., talking about objects that their chil-
dren are interested in (Baldwin, 1991). However, an-
other possible explanation is that this result is due to
the general continuity of conversational topics over
time. Frank et al. (to appear) show that for the cur-
rent corpus, the topic of the preceding utterance is
very likely to be the topic of the current one also.
Thus, the child’s eyes might be a good predictor be-
cause they reflect the fact that the child’s attention
has been drawn to an object by previous utterances.

Notice that these two possible explanations of the
importance of the child.eyes cue are diametrically
opposed; the first explanation claims that the cue is
important because the child is driving the discourse,
while the second explanation claims that the cue is
important because the child’s gaze follows the topic
of the caregiver’s previous utterance. This sort of
question about causal relationships in conversations
may be very difficult to answer using standard de-
scriptive techniques, but it may be an interesting av-
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Model Social Utterance topic Word topic Lexicon
cues acc. f-score prec. rec. f-score prec. rec. f-score prec. rec.

unigram all 0.4907 0.6064 0.4867 0.8043 0.295 0.1763 0.9031 0.1483 0.08096 0.881
unigram −child.eyes 0.3836 0.4659 0.3738 0.6184 0.2149 0.1286 0.6546 0.1111 0.06089 0.6341
unigram −child.hands 0.4907 0.6063 0.4863 0.8051 0.296 0.1769 0.9056 0.1525 0.08353 0.878
unigram −mom.eyes 0.4799 0.5974 0.4768 0.7996 0.2898 0.1727 0.9007 0.1551 0.08486 0.9024
unigram −mom.hands 0.4871 0.5996 0.4815 0.7945 0.2925 0.1746 0.8991 0.1561 0.08545 0.9024
unigram −mom.point 0.4875 0.6033 0.4841 0.8004 0.2934 0.1752 0.9007 0.1558 0.08525 0.9024
colloc all 0.5837 0.598 0.5623 0.6384 0.4098 0.2702 0.8475 0.1671 0.09422 0.738
colloc −child.eyes 0.5604 0.5746 0.529 0.6286 0.39 0.2561 0.8176 0.1534 0.08642 0.6829
colloc −child.hands 0.5849 0.6 0.5609 0.6451 0.4145 0.273 0.8612 0.1662 0.09375 0.7317
colloc −mom.eyes 0.5709 0.5829 0.5457 0.6255 0.4036 0.2655 0.8418 0.1662 0.09375 0.7317
colloc −mom.hands 0.5795 0.5935 0.5571 0.6349 0.4038 0.2653 0.8442 0.1788 0.1009 0.7805
colloc −mom.point 0.5851 0.6006 0.5607 0.6467 0.4097 0.2685 0.8644 0.1742 0.09841 0.7561

Figure 9: Effect of using all but one social cue on the experimental results for the unigram and collocation models.
The “importance” of a social cue can be quantified by the degree to which the model’s evaluation score degrades when
that just social cue is removed from the corpus, relative to its evaluation score when using a corpus without all social
cues. The most important social cue is the one which causes performance to degrade the most.

enue for future investigation using more structured
models such as those proposed here.5

4 Conclusion and future work

This paper presented four different grounded learn-
ing models that exploit social cues. These models
are all expressed via reductions to grammatical in-
ference problems, so standard “off the shelf” gram-
matical inference tools can be used to learn them.
Here we used the same adaptor grammar software
tools to learn all these models, so we can be rel-
atively certain that any differences we observe are
due to differences in the models, rather than quirks
in the software.

Because the adaptor grammar software performs
full Bayesian inference, including for model param-
eters, an unusual feature of our models is that we
did not need to perform any parameter tuning what-
soever. This feature is particularly interesting with
respect to the parameters on social cues. Psycholog-
ical proposals have suggested that children may dis-
cover that particular social cues help in establishing
reference (Baldwin, 1993; Hollich et al., 2000), but
prior modeling work has often assumed that cues,
cue weights, or both are prespecified. In contrast, the
models described here could in principle discover a
wide range of different social conventions.

5A reviewer suggested that we can test whether child.eyes
effectively provides the same information as the previous topic
by adding the previous topic as a (pseudo-) social cue. We tried
this, and child.eyes and previous.topic do in fact seem to convey
very similar information: e.g., the model with previous.topic
and without child.eyes scores essentially the same as the model
with all social cues.

Our work instantiates the strategy of investigating
the structure of children’s learning environment us-
ing “ideal learner” models. We used our models to
investigate scientific questions about the role of so-
cial cues in grounded language learning. Because
the performance of all four models studied in this
paper improve dramatically when provided with so-
cial cues in all ten evaluation metrics, this paper pro-
vides strong support for the view that social cues are
a crucial information source for grounded language
learning.

We also showed that the importance of the differ-
ent social cues in grounded language learning can
be evaluated using “add one cue” and “subtract one
cue” methodologies. According to both of these, the
child.eyes cue is the most important of the five so-
cial cues studied here. There are at least two pos-
sible reasons for this: the caregiver’s topic could
be determined by the child’s gaze, or the child.eyes
cue could be providing our models with information
about the topic of the previous utterance.

Incorporating topic continuity and anaphoric de-
pendencies into our models would be likely to im-
prove performance. This improvement might also
help us distinguish the two hypotheses about the
child.eyes cue. If the child.eyes cue is just provid-
ing indirect information about topic continuity, then
the importance of the child.eyes cue should decrease
when we incorporate topic continuity into our mod-
els. But if the child’s gaze is in fact determining the
care-giver’s topic, then child.eyes should remain a
strong cue even when anaphoric dependencies and
topic continuity are incorporated into our models.
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Abstract

Understanding the ways in which information
achieves widespread public awareness is a re-
search question of significant interest. We
consider whether, and how, the way in which
the information is phrased — the choice of
words and sentence structure — can affect this
process. To this end, we develop an analy-
sis framework and build a corpus of movie
quotes, annotated with memorability informa-
tion, in which we are able to control for both
the speaker and the setting of the quotes. We
find that there are significant differences be-
tween memorable and non-memorable quotes
in several key dimensions, even after control-
ling for situational and contextual factors. One
is lexical distinctiveness: in aggregate, memo-
rable quotes use less common word choices,
but at the same time are built upon a scaf-
folding of common syntactic patterns. An-
other is that memorable quotes tend to be more
general in ways that make them easy to ap-
ply in new contexts — that is, more portable.
We also show how the concept of “memorable
language” can be extended across domains.

1 Hello. My name is Inigo Montoya.

Understanding what items will be retained in the
public consciousness, and why, is a question of fun-
damental interest in many domains, including mar-
keting, politics, entertainment, and social media; as
we all know, many items barely register, whereas
others catch on and take hold in many people’s
minds.

An active line of recent computational work has
employed a variety of perspectives on this question.

Building on a foundation in the sociology of diffu-
sion [27, 31], researchers have explored the ways in
which network structure affects the way information
spreads, with domains of interest including blogs
[1, 11], email [37], on-line commerce [22], and so-
cial media [2, 28, 33, 38]. There has also been recent
research addressing temporal aspects of how differ-
ent media sources convey information [23, 30, 39]
and ways in which people react differently to infor-
mation on different topics [28, 36].

Beyond all these factors, however, one’s everyday
experience with these domains suggests that the way
in which a piece of information is expressed — the
choice of words, the way it is phrased — might also
have a fundamental effect on the extent to which it
takes hold in people’s minds. Concepts that attain
wide reach are often carried in messages such as
political slogans, marketing phrases, or aphorisms
whose language seems intuitively to be memorable,
“catchy,” or otherwise compelling.

Our first challenge in exploring this hypothesis is
to develop a notion of “successful” language that is
precise enough to allow for quantitative evaluation.
We also face the challenge of devising an evaluation
setting that separates the phrasing of a message from
the conditions in which it was delivered — highly-
cited quotes tend to have been delivered under com-
pelling circumstances or fit an existing cultural, po-
litical, or social narrative, and potentially what ap-
peals to us about the quote is really just its invoca-
tion of these extra-linguistic contexts. Is the form
of the language adding an effect beyond or indepen-
dent of these (obviously very crucial) factors? To
investigate the question, one needs a way of control-
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ling — as much as possible — for the role that the
surrounding context of the language plays.

The present work (i): Evaluating language-based
memorability Defining what makes an utterance
memorable is subtle, and scholars in several do-
mains have written about this question. There is
a rough consensus that an appropriate definition
involves elements of both recognition — people
should be able to retain the quote and recognize it
when they hear it invoked — and production — peo-
ple should be motivated to refer to it in relevant sit-
uations [15]. One suggested reason for why some
memes succeed is their ability to provoke emotions
[16]. Alternatively, memorable quotes can be good
for expressing the feelings, mood, or situation of an
individual, a group, or a culture (the zeitgeist): “Cer-
tain quotes exquisitely capture the mood or feeling
we wish to communicate to someone. We hear them
... and store them away for future use” [10].

None of these observations, however, serve as
definitions, and indeed, we believe it desirable to
not pre-commit to an abstract definition, but rather
to adopt an operational formulation based on exter-
nal human judgments. In designing our study, we
focus on a domain in which (i) there is rich use of
language, some of which has achieved deep cultural
penetration; (ii) there already exist a large number of
external human judgments — perhaps implicit, but
in a form we can extract; and (iii) we can control for
the setting in which the text was used.

Specifically, we use the complete scripts of
roughly 1000 movies, representing diverse genres,
eras, and levels of popularity, and consider which
lines are the most “memorable”. To acquire memo-
rability labels, for each sentence in each script, we
determine whether it has been listed as a “memo-
rable quote” by users of the widely-known IMDb
(the Internet Movie Database), and also estimate the
number of times it appears on the Web. Both of these
serve as memorability metrics for our purposes.

When we evaluate properties of memorable
quotes, we compare them with quotes that are not as-
sessed as memorable, but were spoken by the same
character, at approximately the same point in the
same movie. This enables us to control in a fairly
fine-grained way for the confounding effects of con-
text discussed above: we can observe differences

that persist even after taking into account both the
speaker and the setting.

In a pilot validation study, we find that human
subjects are effective at recognizing the more IMDb-
memorable of two quotes, even for movies they have
not seen. This motivates a search for features in-
trinsic to the text of quotes that signal memorabil-
ity. In fact, comments provided by the human sub-
jects as part of the task suggested two basic forms
that such textual signals could take: subjects felt that
(i) memorable quotes often involve a distinctive turn
of phrase; and (ii) memorable quotes tend to invoke
general themes that aren’t tied to the specific setting
they came from, and hence can be more easily in-
voked for future (out of context) uses. We test both
of these principles in our analysis of the data.

The present work (ii): What distinguishes mem-
orable quotes Under the controlled-comparison
setting sketched above, we find that memorable
quotes exhibit significant differences from non-
memorable quotes in several fundamental respects,
and these differences in the data reinforce the two
main principles from the human pilot study. First,
we show a concrete sense in which memorable
quotes are indeed distinctive: with respect to lexi-
cal language models trained on the newswire por-
tions of the Brown corpus [21], memorable quotes
have significantly lower likelihood than their non-
memorable counterparts. Interestingly, this distinc-
tiveness takes place at the level of words, but not
at the level of other syntactic features: the part-of-
speech composition of memorable quotes is in fact
more likely with respect to newswire. Thus, we can
think of memorable quotes as consisting, in an ag-
gregate sense, of unusual word choices built on a
scaffolding of common part-of-speech patterns.

We also identify a number of ways in which mem-
orable quotes convey greater generality. In their pat-
terns of verb tenses, personal pronouns, and deter-
miners, memorable quotes are structured so as to be
more “free-standing,” containing fewer markers that
indicate references to nearby text.

Memorable quotes differ in other interesting as-
pects as well, such as sound distributions.

Our analysis of memorable movie quotes suggests
a framework by which the memorability of text in
a range of different domains could be investigated.
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We provide evidence that such cross-domain prop-
erties may hold, guided by one of our motivating
applications in marketing. In particular, we analyze
a corpus of advertising slogans, and we show that
these slogans have significantly greater likelihood
at both the word level and the part-of-speech level
with respect to a language model trained on mem-
orable movie quotes, compared to a corresponding
language model trained on non-memorable movie
quotes. This suggests that some of the principles un-
derlying memorable text have the potential to apply
across different areas.

Roadmap §2 lays the empirical foundations of our
work: the design and creation of our movie-quotes
dataset, which we make publicly available (§2.1), a
pilot study with human subjects validating IMDb-
based memorability labels (§2.2), and further study
of incorporating search-engine counts (§2.3). §3 de-
tails our analysis and prediction experiments, using
both movie-quotes data and, as an exploration of
cross-domain applicability, slogans data. §4 surveys
related work across a variety of fields. §5 briefly
summarizes and indicates some future directions.

2 I’m ready for my close-up.

2.1 Data

To study the properties of memorable movie quotes,
we need a source of movie lines and a designation
of memorability. Following [8], we constructed a
corpus consisting of all lines from roughly 1000
movies, varying in genre, era, and popularity; for
each movie, we then extracted the list of quotes from
IMDb’s Memorable Quotes page corresponding to
the movie.1

A memorable quote in IMDb can appear either as
an individual sentence spoken by one character, or
as a multi-sentence line, or as a block of dialogue in-
volving multiple characters. In the latter two cases,
it can be hard to determine which particular portion
is viewed as memorable (some involve a build-up to
a punch line; others involve the follow-through after
a well-phrased opening sentence), and so we focus
in our comparisons on those memorable quotes that

1This extraction involved some edit-distance-based align-
ment, since the exact form of the line in the script can exhibit
minor differences from the version typed into IMDb.
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Figure 1: Location of memorable quotes in each decile
of movie scripts (the first 10th, the second 10th, etc.),
summed over all movies. The same qualitative results
hold if we discard each movie’s very first and last line,
which might have privileged status.

appear as a single sentence rather than a multi-line
block.2

We now formulate a task that we can use to eval-
uate the features of memorable quotes. Recall that
our goal is to identify effects based in the language
of the quotes themselves, beyond any factors arising
from the speaker or context. Thus, for each (single-
sentence) memorable quote M , we identify a non-
memorable quote that is as similar as possible to M
in all characteristics but the choice of words. This
means we want it to be spoken by the same charac-
ter in the same movie. It also means that we want
it to have the same length: controlling for length is
important because we expect that on average, shorter
quotes will be easier to remember than long quotes,
and that wouldn’t be an interesting textual effect to
report. Moreover, we also want to control for the
fact that a quote’s position in a movie can affect
memorability: certain scenes produce more mem-
orable dialogue, and as Figure 1 demonstrates, in
aggregate memorable quotes also occur dispropor-
tionately near the beginnings and especially the ends
of movies. In summary, then, for each M , we pick a
contrasting (single-sentence) quote N from the same
movie that is as close in the script as possible to M
(either before or after it), subject to the conditions
that (i) M and N are uttered by the same speaker,
(ii) M and N have the same number of words, and
(iii) N does not occur in the IMDb list of memorable

2We also ran experiments relaxing the single-sentence as-
sumption, which allows for stricter scene control and a larger
dataset but complicates comparisons involving syntax. The
non-syntax results were in line with those reported here.
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Movie First Quote Second Quote
Jackie Brown Half a million dollars will always be missed. I know the type, trust me on this.
Star Trek: Nemesis I think it’s time to try some unsafe velocities. No cold feet, or any other parts of our

anatomy.
Ordinary People A little advice about feelings kiddo; don’t ex-

pect it always to tickle.
I mean there’s someone besides your
mother you’ve got to forgive.

Table 1: Three example pairs of movie quotes. Each pair satisfies our criteria: the two component quotes are spoken
close together in the movie by the same character, have the same length, and one is labeled memorable by the IMDb
while the other is not. (Contractions such as “it’s” count as two words.)

quotes for the movie (either as a single line or as part
of a larger block).

Given such pairs, we formulate a pairwise com-
parison task: given M and N , determine which is
the memorable quote. Psychological research on
subjective evaluation [35], as well as initial experi-
ments using ourselves as subjects, indicated that this
pairwise set-up easier to work with than simply pre-
senting a single sentence and asking whether it is
memorable or not; the latter requires agreement on
an “absolute” criterion for memorability that is very
hard to impose consistently, whereas the former sim-
ply requires a judgment that one quote is more mem-
orable than another.

Our main dataset, available at http://www.cs.
cornell.edu/∼cristian/memorability.html,3 thus con-
sists of approximately 2200 such (M,N) pairs, sep-
arated by a median of 5 same-character lines in the
script. The reader can get a sense for the nature of
the data from the three examples in Table 1.

We now discuss two further aspects to the formu-
lation of the experiment: a preliminary pilot study
involving human subjects, and the incorporation of
search engine counts into the data.

2.2 Pilot study: Human performance

As a preliminary consideration, we did a small pilot
study to see if humans can distinguish memorable
from non-memorable quotes, assuming our IMDB-
induced labels as gold standard. Six subjects, all na-
tive speakers of English and none an author of this
paper, were presented with 11 or 12 pairs of mem-
orable vs. non-memorable quotes; again, we con-
trolled for extra-textual effects by ensuring that in
each pair the two quotes come from the same movie,
are by the same character, have the same length, and

3Also available there: other examples and factoids.

subject number of matches with
IMDb-induced annotation

A 11/11 = 100%
B 11/12 = 92%
C 9/11 = 82%
D 8/11 = 73%
E 7/11 = 64%
F 7/12 = 58%

macro avg — 78%

Table 2: Human pilot study: number of matches to
IMDb-induced annotation, ordered by decreasing match
percentage. For the null hypothesis of random guessing,
these results are statistically significant, p < 2−6 ≈ .016.

appear as nearly as possible in the same scene.4 The
order of quotes within pairs was randomized. Im-
portantly, because we wanted to understand whether
the language of the quotes by itself contains signals
about memorability, we chose quotes from movies
that the subjects said they had not seen. (This means
that each subject saw a different set of quotes.)
Moreover, the subjects were requested not to consult
any external sources of information.5 The reader is
welcome to try a demo version of the task at http:
//www.cs.cornell.edu/∼cristian/memorability.html.

Table 2 shows that all the subjects performed
(sometimes much) better than chance, and against
the null hypothesis that all subjects are guessing ran-
domly, the results are statistically significant, p <
2−6 ≈ .016. These preliminary findings provide ev-
idence for the validity of our task: despite the appar-
ent difficulty of the job, even humans who haven’t
seen the movie in question can recover our IMDb-

4In this pilot study, we allowed multi-sentence quotes.
5We did not use crowd-sourcing because we saw no way to

ensure that this condition would be obeyed by arbitrary subjects.
We do note, though, that after our research was completed and
as of Apr. 26, 2012,≈ 11,300 people completed the online test:
average accuracy: 72%, mode number correct: 9/12.
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induced labels with some reliability.6

2.3 Incorporating search engine counts

Thus far we have discussed a dataset in which mem-
orability is determined through an explicit label-
ing drawn from the IMDb. Given the “produc-
tion” aspect of memorability discussed in §1, we
should also expect that memorable quotes will tend
to appear more extensively on Web pages than non-
memorable quotes; note that incorporating this in-
sight makes it possible to use the (implicit) judg-
ments of a much larger number of people than are
represented by the IMDb database. It therefore
makes sense to try using search-engine result counts
as a second indication of memorability.

We experimented with several ways of construct-
ing memorability information from search-engine
counts, but this proved challenging. Searching for
a quote as a stand-alone phrase runs into the prob-
lem that a number of quotes are also sentences that
people use without the movie in mind, and so high
counts for such quotes do not testify to the phrase’s
status as a memorable quote from the movie. On
the other hand, searching for the quote in a Boolean
conjunction with the movie’s title discards most of
these uses, but also eliminates a large fraction of
the appearances on the Web that we want to find:
precisely because memorable quotes tend to have
widespread cultural usage, people generally don’t
feel the need to include the movie’s title when in-
voking them. Finally, since we are dealing with
roughly 1000 movies, the result counts vary over an
enormous range, from recent blockbusters to movies
with relatively small fan bases.

In the end, we found that it was more effective to
use the result counts in conjunction with the IMDb
labels, so that the counts played the role of an ad-
ditional filter rather than a free-standing numerical
value. Thus, for each pair (M,N) produced using
the IMDb methodology above, we searched for each
of M and N as quoted expressions in a Boolean con-
junction with the title of the movie. We then kept
only those pairs for which M (i) produced more than
five results in our (quoted, conjoined) search, and (ii)
produced at least twice as many results as the cor-

6The average accuracy being below 100% reinforces that
context is very important, too.

responding search for N . We created a version of
this filtered dataset using each of Google and Bing,
and all the main findings were consistent with the
results on the IMDb-only dataset. Thus, in what fol-
lows, we will focus on the main IMDb-only dataset,
discussing the relationship to the dataset filtered by
search engine counts where relevant (in which case
we will refer to the +Google dataset).

3 Never send a human to do a machine’s job.

We now discuss experiments that investigate the hy-
potheses discussed in §1. In particular, we devise
methods that can assess the distinctiveness and gen-
erality hypotheses and test whether there exists a no-
tion of “memorable language” that operates across
domains. In addition, we evaluate and compare the
predictive power of these hypotheses.

3.1 Distinctiveness

One of the hypotheses we examine is whether the
use of language in memorable quotes is to some ex-
tent unusual. In order to quantify the level of dis-
tinctiveness of a quote, we take a language-model
approach: we model “common language” using
the newswire sections of the Brown corpus [21]7,
and evaluate how distinctive a quote is by evaluat-
ing its likelihood with respect to this model — the
lower the likelihood, the more distinctive. In or-
der to assess different levels of lexical and syntactic
distinctiveness, we employ a total of six Laplace-
smoothed8 language models: 1-gram, 2-gram, and
3-gram word LMs and 1-gram, 2-gram and 3-gram
part-of-speech9 LMs.

We find strong evidence that from a lexical per-
spective, memorable quotes are more distinctive
than their non-memorable counterparts. As indi-
cated in Table 3, for each of our lexical “common
language” models, in about 60% of the quote pairs,
the memorable quote is more distinctive.

Interestingly, the reverse is true when it comes to

7Results were qualitatively similar if we used the fiction por-
tions. The age of the Brown corpus makes it less likely to con-
tain modern movie quotes.

8We employ Laplace (additive) smoothing with a smoothing
parameter of 0.2. The language models’ vocabulary was that of
the entire training corpus.

9Throughout we obtain part-of-speech tags by using the
NLTK maximum entropy tagger with default parameters.
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“common language”
model IMDb-only +Google

lexical
1-gram 61.13%∗∗∗ 59.21%∗∗∗

2-gram 59.22%∗∗∗ 57.03%∗∗∗

3-gram 59.81%∗∗∗ 58.32%∗∗∗

syntactic
1-gram 43.60%∗∗∗ 44.77%∗∗∗

2-gram 48.31% 47.84%
3-gram 50.91% 50.92%

Table 3: Distinctiveness: percentage of quote pairs
in which the the memorable quote is more distinctive
than the non-memorable one according to the respec-
tive “common language” model. Significance accord-
ing to a two-tailed sign test is indicated using *-notation
(∗∗∗=“p<.001”).

syntax: memorable quotes appear to follow the syn-
tactic patterns of “common language” as closely as
or more closely than non-memorable quotes. To-
gether, these results suggest that memorable quotes
consist of unusual word sequences built on common
syntactic scaffolding.

3.2 Generality
Another of our hypotheses is that memorable quotes
are easier to use outside the specific context in which
they were uttered — that is, more “portable” — and
therefore exhibit fewer terms that refer to those set-
tings. We use the following syntactic properties as
proxies for the generality of a quote:

• Fewer 3rd-person pronouns, since these com-
monly refer to a person or object that was intro-
duced earlier in the discourse. Utterances that
employ fewer such pronouns are easier to adapt
to new contexts, and so will be considered more
general.

• More indefinite articles like a and an, since
they are more likely to refer to general concepts
than definite articles. Quotes with more indefi-
nite articles will be considered more general.

• Fewer past tense verbs and more present
tense verbs, since the former are more likely
to refer to specific previous events. Therefore
utterances that employ fewer past tense verbs
(and more present tense verbs) will be consid-
ered more general.

Table 4 gives the results for each of these four
metrics — in each case, we show the percentage of

Generality metric IMDb-only +Google
fewer 3rd pers. pronouns 64.37%∗∗∗ 62.93%∗∗∗

more indef. article 57.21%∗∗∗ 58.23%∗∗∗

less past tense 57.91%∗∗∗ 59.74%∗∗∗

more present tense 54.60%∗∗∗ 55.86%∗∗∗

Table 4: Generality: percentage of quote pairs in which
the memorable quote is more general than the non-
memorable ones according to the respective metric. Pairs
where the metric does not distinguish between the quotes
are not considered.

quote pairs for which the memorable quote scores
better on the generality metric.

Note that because the issue of generality is a com-
plex one for which there is no straightforward single
metric, our approach here is based on several prox-
ies for generality, considered independently; yet, as
the results show, all of these point in a consistent
direction. It is an interesting open question to de-
velop richer ways of assessing whether a quote has
greater generality, in the sense that people intuitively
attribute to memorable quotes.

3.3 “Memorable” language beyond movies

One of the motivating questions in our analysis
is whether there are general principles underlying
“memorable language.” The results thus far suggest
potential families of such principles. A further ques-
tion in this direction is whether the notion of mem-
orability can be extended across different domains,
and for this we collected (and distribute on our web-
site) 431 phrases that were explicitly designed to
be memorable: advertising slogans (e.g., “Quality
never goes out of style.”). The focus on slogans is
also in keeping with one of the initial motivations
in studying memorability, namely, marketing appli-
cations — in other words, assessing whether a pro-
posed slogan has features that are consistent with
memorable text.

The fact that it’s not clear how to construct a col-
lection of “non-memorable” counterparts to slogans
appears to pose a technical challenge. However, we
can still use a language-modeling approach to as-
sess whether the textual properties of the slogans are
closer to the memorable movie quotes (as one would
conjecture) or to the non-memorable movie quotes.
Specifically, we train one language model on memo-
rable quotes and another on non-memorable quotes
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(Non)memorable
language models Slogans Newswire

lexical
1-gram 56.15%∗∗ 33.77%∗∗∗

2-gram 51.51% 25.15%∗∗∗

3-gram 52.44% 28.89%∗∗∗

syntactic
1-gram 73.09%∗∗∗ 68.27%∗∗∗

2-gram 64.04%∗∗∗ 50.21%
3-gram 62.88%∗∗∗ 55.09%∗∗∗

Table 5: Cross-domain concept of “memorable” lan-
guage: percentage of slogans that have higher likelihood
under the memorable language model than under the non-
memorable one (for each of the six language models con-
sidered). Rightmost column: for reference, the percent-
age of newswire sentences that have higher likelihood un-
der the memorable language model than under the non-
memorable one.

Generality metric slogans mem. n-mem.
% 3rd pers. pronouns 2.14% 2.16% 3.41%
% indefinite articles 2.68% 2.63% 2.06%
% past tense 14.60% 21.13% 26.69%

Table 6: Slogans are most general when compared to
memorable and non-memorable quotes. (%s of 3rd pers.
pronouns and indefinite articles are relative to all tokens,
%s of past tense are relative to all past and present verbs.)

and compare how likely each slogan is to be pro-
duced according to these two models. As shown in
the middle column of Table 5, we find that slogans
are better predicted both lexically and syntactically
by the former model. This result thus offers evi-
dence for a concept of “memorable language” that
can be applied beyond a single domain.

We also note that the higher likelihood of slogans
under a “memorable language” model is not simply
occurring for the trivial reason that this model pre-
dicts all other large bodies of text better. In partic-
ular, the newswire section of the Brown corpus is
predicted better at the lexical level by the language
model trained on non-memorable quotes.

Finally, Table 6 shows that slogans employ gen-
eral language, in the sense that for each of our
generality metrics, we see a slogans/memorable-
quotes/non-memorable quotes spectrum.

3.4 Prediction task

We now show how the principles discussed above
can provide features for a basic prediction task, cor-
responding to the task in our human pilot study:

given a pair of quotes, identify the memorable one.
Our first formulation of the prediction task uses

a standard bag-of-words model10. If there were
no information in the textual content of a quote
to determine whether it were memorable, then an
SVM employing bag-of-words features should per-
form no better than chance. Instead, though, it ob-
tains 59.67% (10-fold cross-validation) accuracy, as
shown in Table 7. We then develop models using
features based on the measures formulated earlier
in this section: generality measures (the four listed
in Table 4); distinctiveness measures (likelihood ac-
cording to 1, 2, and 3-gram “common language”
models at the lexical and part-of-speech level for
each quote in the pair, their differences, and pair-
wise comparisons between them); and similarity-
to-slogans measures (likelihood according to 1, 2,
and 3-gram slogan-language models at the lexical
and part-of-speech level for each quote in the pair,
their differences, and pairwise comparisons between
them).

Even a relatively small number of distinctive-
ness features, on their own, improve significantly
over the much larger bag-of-words model. When
we include additional features based on generality
and language-model features measuring similarity to
slogans, the performance improves further (last line
of Table 7).

Thus, the main conclusion from these prediction
tasks is that abstracting notions such as distinctive-
ness and generality can produce relatively stream-
lined models that outperform much heavier-weight
bag-of-words models, and can suggest steps toward
approaching the performance of human judges who
— very much unlike our system — have the full cul-
tural context in which movies occur at their disposal.

3.5 Other characteristics
We also made some auxiliary observations that may
be of interest. Specifically, we find differences in let-
ter and sound distribution (e.g., memorable quotes
— after curse-word removal — use significantly
more “front sounds” (labials or front vowels such
as represented by the letter i) and significantly fewer
“back sounds” such as the one represented by u),11

10We discarded terms appearing fewer than 10 times.
11These findings may relate to marketing research on sound

symbolism [7, 19, 40].
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Feature set # feats Accuracy
bag of words 962 59.67%
distinctiveness 24 62.05%∗

generality 4 56.70%
slogan sim. 24 58.30%
all three types together 52 64.27%∗∗

Table 7: Prediction: SVM 10-fold cross validation results
using the respective feature sets. Random baseline accu-
racy is 50%. Accuracies statistically significantly greater
than bag-of-words according to a two-tailed t-test are in-
dicated with *(p<.05) and **(p<.01).

word complexity (e.g., memorable quotes use words
with significantly more syllables) and phrase com-
plexity (e.g., memorable quotes use fewer coordi-
nating conjunctions). The latter two are in line with
our distinctiveness hypothesis.

4 A long time ago, in a galaxy far, far away

How an item’s linguistic form affects the reaction it
generates has been studied in several contexts, in-
cluding evaluations of product reviews [9], political
speeches [12], on-line posts [13], scientific papers
[14], and retweeting of Twitter posts [36]. We use
a different set of features, abstracting the notions of
distinctiveness and generality, in order to focus on
these higher-level aspects of phrasing rather than on
particular lower-level features.

Related to our interest in distinctiveness, work in
advertising research has studied the effect of syntac-
tic complexity on recognition and recall of slogans
[5, 6, 24]. There may also be connections to Von
Restorff’s isolation effect Hunt [17], which asserts
that when all but one item in a list are similar in some
way, memory for the different item is enhanced.

Related to our interest in generality, Knapp et al.
[20] surveyed subjects regarding memorable mes-
sages or pieces of advice they had received, finding
that the ability to be applied to multiple concrete sit-
uations was an important factor.

Memorability, although distinct from “memoriz-
ability”, relates to short- and long-term recall. Thorn
and Page [34] survey sub-lexical, lexical, and se-
mantic attributes affecting short-term memorability
of lexical items. Studies of verbatim recall have also
considered the task of distinguishing an exact quote
from close paraphrases [3]. Investigations of long-
term recall have included studies of culturally signif-

icant passages of text [29] and findings regarding the
effect of rhetorical devices of alliterative [4], “rhyth-
mic, poetic, and thematic constraints” [18, 26].

Finally, there are complex connections between
humor and memory [32], which may lead to interac-
tions with computational humor recognition [25].

5 I think this is the beginning of a
beautiful friendship.

Motivated by the broad question of what kinds of in-
formation achieve widespread public awareness, we
studied the the effect of phrasing on a quote’s mem-
orability. A challenge is that quotes differ not only
in how they are worded, but also in who said them
and under what circumstances; to deal with this dif-
ficulty, we constructed a controlled corpus of movie
quotes in which lines deemed memorable are paired
with non-memorable lines spoken by the same char-
acter at approximately the same point in the same
movie. After controlling for context and situation,
memorable quotes were still found to exhibit, on av-
erage (there will always be individual exceptions),
significant differences from non-memorable quotes
in several important respects, including measures
capturing distinctiveness and generality. Our ex-
periments with slogans show how the principles we
identify can extend to a different domain.

Future work may lead to applications in market-
ing, advertising and education [4]. Moreover, the
subtle nature of memorability, and its connection to
research in psychology, suggests a range of further
research directions. We believe that the framework
developed here can serve as the basis for further
computational studies of the process by which infor-
mation takes hold in the public consciousness, and
the role that language effects play in this process.

My mother thanks you. My father thanks you.
My sister thanks you. And I thank you: Re-
becca Hwa, Evie Kleinberg, Diana Minculescu, Alex
Niculescu-Mizil, Jennifer Smith, Benjamin Zimmer, and
the anonymous reviewers for helpful discussions and
comments; our annotators Steven An, Lars Backstrom,
Eric Baumer, Jeff Chadwick, Evie Kleinberg, and Myle
Ott; and the makers of Cepacol, Robitussin, and Sudafed,
whose products got us through the submission deadline.
This paper is based upon work supported in part by NSF
grants IIS-0910664, IIS-1016099, Google, and Yahoo!

899



References

[1] Eytan Adar, Li Zhang, Lada A. Adamic, and
Rajan M. Lukose. Implicit structure and the
dynamics of blogspace. In Workshop on the
Weblogging Ecosystem, 2004.

[2] Lars Backstrom, Dan Huttenlocher, Jon Klein-
berg, and Xiangyang Lan. Group formation
in large social networks: Membership, growth,
and evolution. In Proceedings of KDD, 2006.

[3] Elizabeth Bates, Walter Kintsch, Charles R.
Fletcher, and Vittoria Giuliani. The role of
pronominalization and ellipsis in texts: Some
memory experiments. Journal of Experimental
Psychology: Human Learning and Memory, 6
(6):676–691, 1980.

[4] Frank Boers and Seth Lindstromberg. Find-
ing ways to make phrase-learning feasible: The
mnemonic effect of alliteration. System, 33(2):
225–238, 2005.

[5] Samuel D. Bradley and Robert Meeds.
Surface-structure transformations and advertis-
ing slogans: The case for moderate syntactic
complexity. Psychology and Marketing, 19:
595–619, 2002.

[6] Robert Chamblee, Robert Gilmore, Gloria
Thomas, and Gary Soldow. When copy com-
plexity can help ad readership. Journal of Ad-
vertising Research, 33(3):23–23, 1993.

[7] John Colapinto. Famous names. The New
Yorker, pages 38–43, 2011.

[8] Cristian Danescu-Niculescu-Mizil and Lillian
Lee. Chameleons in imagined conversations:
A new approach to understanding coordination
of linguistic style in dialogs. In Proceedings
of the Workshop on Cognitive Modeling and
Computational Linguistics, 2011.

[9] Cristian Danescu-Niculescu-Mizil, Gueorgi
Kossinets, Jon Kleinberg, and Lillian Lee.
How opinions are received by online commu-
nities: A case study on Amazon.com helpful-
ness votes. In Proceedings of WWW, pages
141–150, 2009.

[10] Stuart Fischoff, Esmeralda Cardenas, Angela
Hernandez, Korey Wyatt, Jared Young, and

Rachel Gordon. Popular movie quotes: Re-
flections of a people and a culture. In Annual
Convention of the American Psychological As-
sociation, 2000.

[11] Daniel Gruhl, R. Guha, David Liben-Nowell,
and Andrew Tomkins. Information diffusion
through blogspace. Proceedings of WWW,
pages 491–501, 2004.

[12] Marco Guerini, Carlo Strapparava, and
Oliviero Stock. Trusting politicians’ words
(for persuasive NLP). In Proceedings of
CICLing, pages 263–274, 2008.

[13] Marco Guerini, Carlo Strapparava, and Gözde
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Abstract

Predicate-argument structure contains rich se-
mantic information of which statistical ma-
chine translation hasn’t taken full advantage.
In this paper, we propose two discriminative,
feature-based models to exploit predicate-
argument structures for statistical machine
translation: 1) a predicate translation model
and 2) an argument reordering model. The
predicate translation model explores lexical
and semantic contexts surrounding a verbal
predicate to select desirable translations for
the predicate. The argument reordering model
automatically predicts the moving direction
of an argument relative to its predicate af-
ter translation using semantic features. The
two models are integrated into a state-of-the-
art phrase-based machine translation system
and evaluated on Chinese-to-English transla-
tion tasks with large-scale training data. Ex-
perimental results demonstrate that the two
models significantly improve translation accu-
racy.

1 Introduction

Recent years have witnessed increasing efforts to-
wards integrating predicate-argument structures into
statistical machine translation (SMT) (Wu and Fung,
2009b; Liu and Gildea, 2010). In this paper, we take
a step forward by introducing a novel approach to in-
corporate such semantic structures into SMT. Given
a source side predicate-argument structure, we at-
tempt to translate each semantic frame (predicate
and its associated arguments) into an appropriate tar-
get string. We believe that the translation of predi-
cates and reordering of arguments are the two central
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issues concerning the transfer of predicate-argument
structure across languages.

Predicates1 are essential elements in sentences.
Unfortunately they are usually neither correctly
translated nor translated at all in many SMT sys-
tems according to the error study by Wu and Fung
(2009a). This suggests that conventional lexical and
phrasal translation models adopted in those SMT
systems are not sufficient to correctly translate pred-
icates in source sentences. Thus we propose a
discriminative, feature-basedpredicate translation
model that captures not only lexical information
(i.e., surrounding words) but also high-level seman-
tic contexts to correctly translate predicates.

Arguments contain information for questions of
who, what, when, where, why, andhow in sentences
(Xue, 2008). One common error in translating ar-
guments is about their reorderings: arguments are
placed at incorrect positions after translation. In or-
der to reduce such errors, we introduce a discrim-
inative argument reordering model that uses the
position of a predicate as the reference axis to es-
timate positions of its associated arguments on the
target side. In this way, the model predicts moving
directions of arguments relative to their predicates
with semantic features.

We integrate these two discriminative models into
a state-of-the-art phrase-based system. Experimen-
tal results on large-scale Chinese-to-English transla-
tion show that both models are able to obtain signif-
icant improvements over the baseline. Our analysis
on system outputs further reveals that they can in-
deed help reduce errors in predicate translations and
argument reorderings.

1We only consider verbal predicates in this paper.
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The paper is organized as follows. In Section 2,
we will introduce related work and show the signif-
icant differences between our models and previous
work. In Section 3 and 4, we will elaborate the pro-
posed predicate translation model and argument re-
ordering model respectively, including details about
modeling, features and training procedure. Section
5 will introduce how to integrate these two models
into SMT. Section 6 will describe our experiments
and results. Section 7 will empirically discuss how
the proposed models improve translation accuracy.
Finally we will conclude with future research direc-
tions in Section 8.

2 Related Work

Predicate-argument structures (PAS) are explored
for SMT on both the source and target side in some
previous work. As PAS analysis widely employs
global and sentence-wide features, it is computa-
tionally expensive to integrate target side predicate-
argument structures into the dynamic programming
style of SMT decoding (Wu and Fung, 2009b).
Therefore they either postpone the integration of tar-
get side PASs until the whole decoding procedure is
completed (Wu and Fung, 2009b), or directly project
semantic roles from the source side to the target side
through word alignments during decoding (Liu and
Gildea, 2010).

There are other previous studies that explore only
source side predicate-argument structures. Komachi
and Matsumoto (2006) reorder arguments in source
language (Japanese) sentences using heuristic rules
defined on source side predicate-argument structures
in a pre-processing step. Wu et al. (2011) automate
this procedure by automatically extracting reorder-
ing rules from predicate-argument structures and ap-
plying these rules to reorder source language sen-
tences. Aziz et al. (2011) incorporate source lan-
guage semantic role labels into a tree-to-string SMT
system.

Although we also focus on source side predicate-
argument structures, our models differ from the pre-
vious work in two main aspects: 1) we propose two
separate discriminative models to exploit predicate-
argument structures for predicate translation and ar-
gument reordering respectively; 2) we consider ar-
gument reordering as an argument movement (rel-

ative to its predicate) prediction problem and use
a discriminatively trained classifier for such predic-
tions.

Our predicate translation model is also related to
previous discriminative lexicon translation models
(Berger et al., 1996; Venkatapathy and Bangalore,
2007; Mauser et al., 2009). While previous models
predict translations for all words in vocabulary, we
only focus on verbal predicates. This will tremen-
dously reduce the amount of training data required,
which usually is a problem in discriminative lexi-
con translation models (Mauser et al., 2009). Fur-
thermore, the proposed translation model also dif-
fers from previous lexicon translation models in that
we use both lexical and semantic features. Our ex-
perimental results show that semantic features are
able to further improve translation accuracy.

3 Predicate Translation Model

In this section, we present the features and the train-
ing process of the predicate translation model.

3.1 Model

Following the context-dependent word models in
(Berger et al., 1996), we propose a discriminative
predicate translation model. The essential compo-
nent of our model is a maximum entropy classifier
pt(e|C(v)) that predicts the target translatione for
a verbal predicatev given its surrounding context
C(v). The classifier can be formulated as follows.

pt(e|C(v)) =
exp(

∑

i θifi(e, C(v)))
∑

e′ exp(
∑

i θifi(e
′, C(v)))

(1)

wherefi are binary features,θi are weights of these
features. Given a source sentence which contains
N verbal predicates{vi}N1 , our predicate translation
modelMt can be denoted as

Mt =

N
∏

i=1

pt(evi |C(vi)) (2)

Note that we do not restrict the target translation
e to be a single word. We allowe to be a phrase
of length up to 4 words so as to capture multi-word
translations for a verbal predicate. For example, a
Chinese verb “u1(issue)” can be translated as “to
be issued” or “have issued” with modality words.
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This will increase the number of classes to be pre-
dicted by the maximum entropy classifier. But ac-
cording to our observation, it is still computation-
ally tractable (see Section 3.3). If a verbal predicate
is not translated, we sete = NULL so that we can
also capture null translations for verbal predicates.

3.2 Features

The apparent advantage of discriminative lexicon
translation models over generative translation mod-
els (e.g., conventional lexical translation model as
described in (Koehn et al., 2003)) is that discrim-
inative models allow us to integrate richer contexts
(lexical, syntactic or semantic) into target translation
prediction. We use two kinds of features to predict
translations for verbal predicates: 1) lexical features
and 2) semantic features. All features are in the fol-
lowing binary form.

f(e, C(v)) =

{

1, if e = ♣ andC(v).♥ = ♠
0, else

(3)
where the symbol♣ is a placeholder for a possible
target translation (up to 4 words), the symbol♥ indi-
cates a contextual (lexical or semantic) element for
the verbal predicatev, and the symbol♠ represents
the value of♥.

Lexical Features: The lexical element♥ is
extracted from the surrounding words of verbal
predicatev. We use the preceding 3 words and
the succeeding 3 words to define the lexical con-
text for the verbal predicatev. Therefore♥ ∈
{w−3, w−2, w−1, v, w1, w2, w3}.

Semantic Features: The semantic element♥ is
extracted from the surrounding arguments of ver-
bal predicatev. In particular, we define a seman-
tic window centered at the verbal predicate with
6 arguments{A−3, A−2, A−1, A1, A2, A3} where
A−3 − A−1 are arguments on the left side ofv
while A1 − A3 are those on the right side. Differ-
ent verbal predicates have different number of argu-
ments in different linguistic scenarios. We observe
on our training data that the number of arguments for
96.5% verbal predicates on each side (left/right) is
not larger than 3. Therefore the defined 6-argument
semantic window is sufficient to describe argument
contexts for predicates.

For each argumentAi in the defined seman-

f(e, C(v)) = 1 if and only if
e = adjourn andC(v).Ah

−3
=Sn¬

e = adjourn andC(v).Ar
−1

= ARGM-TMP
e = adjourn andC(v).Ah

1
=U

e = adjourn andC(v).Ar
2

= null
e = adjourn andC(v).Ah

3
= null

Table 1: Semantic feature examples.

tic window, we use its semantic role (i.e., ARG0,
ARGM-TMP and so on)Ar

i and head wordAh
i to

define semantic context elements♥. If an argument
Ai does not exist for the verbal predicatev 2, we set
the value of bothAr

i andAh
i to null.

Figure 1 shows a Chinese sentence with its
predicate-argument structure and English transla-
tion. The verbal predicate “>¬/adjourn” (in bold)
has 4 arguments: one in an ARG0 agent role, one
in an ARGM-ADV adverbial modifier role, one in
an ARGM-TMP temporal modifier role and the last
one in an ARG1 patient role. Table 1 shows several
semantic feature examples of this verbal predicate.

3.3 Training

In order to train the discriminative predicate transla-
tion model, we first parse source sentences and la-
beled semantic roles for all verbal predicates (see
details in Section 6.1) in our word-aligned bilingual
training data. Then we extract all training events for
verbal predicates which occur at least 10 times in
the training data. A training event for a verbal predi-
catev consists of all contextual elementsC(v) (e.g.,
w1, Ah

1
) defined in the last section and the target

translatione. Using these events, we train one max-
imum entropy classifier per verbal predicate (16,121
verbs in total) via the off-the-shelf MaxEnt toolkit3.
We perform 100 iterations of the L-BFGS algorithm
implemented in the training toolkit for each verbal
predicate with both Gaussian prior and event cutoff
set to 1 to avoid overfitting. After event cutoff, we
have an average of 140 classes (target translations)
per verbal predicate with the maximum number of
classes being 9,226. The training takes an average of
52.6 seconds per verb. In order to expedite the train-

2For example, the verbv has only two arguments on its left
side. Thus argumentA−3 doest not exist.

3Available at: http://homepages.inf.ed.ac.uk/lzhang10/
maxenttoolkit.html
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The [Security Council] will adjourn for [4 days] [starting Thursday]

Sn¬1 ò2 [g3 ±o4 m©5] >>>¬¬¬6 [o7 U8]

ARG0
ARGM-ADV

ARGM-TMP

ARG1

Figure 1: An example of predicate-argument structure in Chinese and its aligned English translation. The bold word in
Chinese is the verbal predicate. The subscripts on the Chinese sentence show the indexes of words from left to right.

ing, we run the training toolkit in a parallel manner.

4 Argument Reordering Model

In this section we introduce the discriminative ar-
gument reordering model, features and the training
procedure.

4.1 Model

Since the predicate determines what arguments are
involved in its semantic frame and semantic frames
tend to be cohesive across languages (Fung et al.,
2006), the movements of predicate and its arguments
across translations are like the motions of a planet
and its satellites. Therefore we consider the reorder-
ing of an argument as the motion of the argument
relative to its predicate. In particular, we use the po-
sition of the predicate as the reference axis. The mo-
tion of associated arguments relative to the reference
axis can be roughly divided into 3 categories4: 1) no
change across languages (NC); 2) moving from the
left side of its predicate to the right side of the predi-
cate after translation (L2R); and 3) moving from the
right side of its predicate to the left side of the pred-
icate after translation (R2L).

Let’s revisit Figure 1. The ARG0, ARGM-ADV
and ARG1 are located at the same side of their predi-
cate after being translated into English, therefore the
reordering category of these three arguments is as-
signed as “NC”. The ARGM-TMP is moved from
the left side of “>¬/adjourn” to the right side of
“adjourn” after translation, thus its reordering cate-
gory is L2R.

In order to predict the reordering category for
an argument, we propose a discriminative argu-
ment reordering model that uses a maximum en-

4Here we assume that the translations of arguments are not
interrupted by their predicates, other arguments or any words
outside the arguments in question. We leave for future research
the task of determining whether arguments should be translated
as a unit or not.

tropy classifier to calculate the reordering category
m ∈ {NC, L2R, R2L} for an argumentA as fol-
lows.

pr(m|C(A)) =
exp(

∑

i θifi(m, C(A)))
∑

m′ exp(
∑

i θifi(m
′, C(A)))

(4)

whereC(A) indicates the surrounding context ofA.
The featuresfi will be introduced in the next sec-
tion. We assume that motions of arguments are in-
dependent on each other. Given a source sentence
with labeled arguments{Ai}

N
1

, our discriminative
argument reordering modelMr is formulated as

Mr =

N
∏

i=1

pr(mAi
|C(Ai)) (5)

4.2 Features

The featuresfi used in the argument reordering
model still takes the binary form as in Eq. (3). Table
2 shows the features that are used in the argument
reordering model. We extract features from both the
source and target side. On the source side, the fea-
tures include the verbal predicate, the semantic role
of the argument, the head word and the boundary
words of the argument. On the target side, the trans-
lation of the verbal predicate, the translation of the
head word of the argument, as well as the boundary
words of the translation of the argument are used as
features.

4.3 Training

To train the argument reordering model, we first ex-
tract features defined in the last section from our
bilingual training data where source sentences are
annotated with predicate-argument structures. We
also study the distribution of argument reordering
categories (i.e.,NC, L2R and R2L) in the training
data, which is shown in Table 3. Most arguments,
accounting for 82.43%, are on the same side of their
verbal predicates after translation. The remaining
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Features of an argumentA for reordering

src

its verbal predicateAp

its semantic roleAr

its head wordAh

the leftmost word ofA
the rightmost word ofA

tgt

the translation ofAp

the translation ofAh

the leftmost word of the translation ofA
the rightmost word of the translation ofA

Table 2: Features adopted in the argument reordering
model.

Reordering Category Percent
NC 82.43%
L2R 11.19%
R2L 6.38%

Table 3: Distribution of argument reordering categories
in the training data.

arguments (17.57%) are moved either from the left
side of their predicates to the right side after transla-
tion (accounting for 11.19%) or from the right side
to the left side of their translated predicates (ac-
counting for 6.38%).

After all features are extracted, we use the maxi-
mum entropy toolkit in Section 3.3 to train the maxi-
mum entropy classifier as formulated in Eq. (4). We
perform 100 iterations of L-BFGS.

5 Integrating the Two Models into SMT

In this section, we elaborate how to integrate the two
models into phrase-based SMT. In particular, we in-
tegrate the models into a phrase-based system which
uses bracketing transduction grammars (BTG) (Wu,
1997) for phrasal translation (Xiong et al., 2006).
Since the system is based on a CKY-style decoder,
the integration algorithms introduced here can be
easily adapted to other CKY-based decoding sys-
tems such as the hierarchical phrasal system (Chi-
ang, 2007).

5.1 Integrating the Predicate Translation
Model

It is straightforward to integrate the predicate trans-
lation model into phrase-based SMT (Koehn et al.,

2003; Xiong et al., 2006). We maintain word
alignments for each phrase pair in the phrase ta-
ble. Given a source sentence with its predicate-
argument structure, we detect all verbal predicates
and load trained predicate translation classifiers for
these verbs. Whenever a hypothesis covers a new
verbal predicatev, we find the target translatione
for v through word alignments and then calculate its
translation probabilitypt(e|C(v)) according to Eq.
(1).

The predicate translation model (as formulated in
Eq. (2)) is integrated into the whole log-linear model
just like the conventional lexical translation model
in phrase-based SMT (Koehn et al., 2003). The
two models are independently estimated but comple-
mentary to each other. While the lexical translation
model calculates the probability of a verbal predi-
cate being translated given its local lexical context,
the discriminative predicate translation model is able
to employ both lexical and semantic contexts to pre-
dict translations for verbs.

5.2 Integrating the Argument Reordering
Model

Before we introduce the integration algorithm for
the argument reordering model, we define two
functionsA andN on a source sentence and its
predicate-argument structureτ as follows.

• A(i, j, τ): from the predicate-argument struc-
tureτ , the function finds all predicate-argument
pairs which are completely located within the
span from source wordi to j. For example, in
Figure 1,A(3, 6, τ) = {(>¬, ARGM-TMP)}
while A(2, 3, τ) = {}, A(1, 5, τ) = {} because
the verbal predicate “>¬” is located outside
the span (2,3) and (1,5).

• N (i, k, j, τ): the function finds all predicate-
argument pairs that cross the two neighboring
spans(i, k) and(k+1, j). It can be formulated
asA(i, j, τ)− (A(i, k, τ)

⋃

A(k + 1, j, τ)).

We then define another functionPr to calculate
the argument reordering model probability on all ar-
guments which are found by the previous two func-
tionsA andN as follows.

Pr(B) =
∏

A∈B

pr(mA|C(A)) (6)
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whereB denotes eitherA orN .
Following (Chiang, 2007), we describe the algo-

rithm in a deductive system. It is shown in Figure
2. The algorithm integrates the argument reordering
model into a CKY-style decoder (Xiong et al., 2006).
The item[X, i, j] denotes a BTG nodeX spanning
from i to j on the source side. For notational con-
venience, we only show the argument reordering
model probability for each item, ignoring all other
sub-model probabilities such as the language model
probability. The Eq. (7) shows how we calculate the
argument reordering model probability when a lex-
ical rule is applied to translate a source phrasec to
a target phrasee. The Eq. (8) shows how we com-
pute the argument reordering model probability for a
span(i, j) in a dynamic programming manner when
a merging rule is applied to combine its two sub-
spans in a straight (X → [X1, X2]) or inverted or-
der (X → 〈X1, X2〉). We directly use the probabili-
tiesPr(A(i, k, τ)) andPr(A(k + 1, j, τ)) that have
been already obtained for the two sub-spans(i, k)
and(k + 1, j). In this way, we only need to calcu-
late the probabilityPr(N (i, k, j, τ)) for predicate-
argument pairs that cross the two sub-spans.

6 Experiments

In this section, we present our experiments on
Chinese-to-English translation tasks, which are
trained with large-scale data. The experiments are
aimed at measuring the effectiveness of the proposed
discriminative predicate translation model and argu-
ment reordering model.

6.1 Setup

The baseline system is the BTG-based phrasal sys-
tem (Xiong et al., 2006). Our training corpora5

consist of 3.8M sentence pairs with 96.9M Chinese
words and 109.5M English words. We ran GIZA++
on these corpora in both directions and then applied
the “grow-diag-final” refinement rule to obtain word
alignments. We then used all these word-aligned
corpora to generate our phrase table. Our 5-gram
language model was trained on the Xinhua section
of the English Gigaword corpus (306 million words)

5The corpora include LDC2004E12, LDC2004T08,
LDC2005T10, LDC2003E14, LDC2002E18, LDC2005T06,
LDC2003E07 and LDC2004T07.

using the SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing.

To train the proposed predicate translation model
and argument reordering model, we first parsed all
source sentences using the Berkeley Chinese parser
(Petrov et al., 2006) and then ran the Chinese se-
mantic role labeler6 (Li et al., 2010) on all source
parse trees to annotate semantic roles for all verbal
predicates. After we obtained semantic roles on the
source side, we extracted features as described in
Section 3.2 and 4.2 and used these features to train
our two models as described in Section 3.3 and 4.3.

We used the NIST MT03 evaluation test data as
our development set, and the NIST MT04, MT05
as the test sets. We adopted the case-insensitive
BLEU-4 (Papineni et al., 2002) as the evaluation
metric. Statistical significance in BLEU differences
was tested by paired bootstrap re-sampling (Koehn,
2004).

6.2 Results

Our first group of experiments is to investigate
whether the predicate translation model is able to
improve translation accuracy in terms of BLEU and
whether semantic features are useful. The experi-
mental results are shown in Table 4. From the table,
we have the following two observations.

• The proposed predicate translation models
achieve an average improvement of 0.57 BLEU
points across the two NIST test sets when all
features (lex+sem) are used. Such an improve-
ment is statistically significant (p < 0.01). Ac-
cording to our statistics, there are 5.07 verbal
predicates per sentence in NIST04 and 4.76
verbs per sentence in NIST05, which account
for 18.02% and 16.88% of all words in NIST04
and 05 respectively. This shows that not only
verbal predicates are semantically important,
they also form a major part of the sentences.
Therefore, whether verbal predicates are trans-
lated correctly or not has a great impact on the
translation accuracy of the whole sentence7.

6Available at: http://nlp.suda.edu.cn/∼jhli/.
7The example in Table 6 shows that the translations of

verbs even influences reorderings and translations of neighbor-
ing words.
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X → c/e

[X, i, j] : Pr(A(i, j, τ))
(7)

X → [X1, X2] or 〈X1, X2〉 [X1, i, k] : Pr(A(i, k, τ)) [X2, k + 1, j] : Pr(A(k + 1, j, τ))

[X, i, j] : Pr(A(i, k, τ)) · Pr(A(k + 1, j, τ)) · Pr(N (i, k, j, τ))
(8)

Figure 2: Integrating the argument reordering model into a BTG-style decoder.

Model NIST04 NIST05
Base 35.52 33.80
Base+PTM (lex) 35.71+ 34.09+
Base+PTM (lex+sem) 36.10++** 34.35++*

Table 4: Effects of the proposed predicate translation
model (PTM). PTM (lex): predicate translation model
with lexical features; PTM (lex+sem): predicate transla-
tion model with both lexical and semantic features; +/++:
better than the baseline (p < 0.05/0.01). */**: better
than Base+PTM (lex) (p < 0.05/0.01).

Model NIST04 NIST05
Base 35.52 33.80
Base+ARM 35.82++ 34.29++
Base+ARM+PTM 36.19++ 34.72++

Table 5: Effects of the proposed argument reordering
model (ARM) and the combination of ARM and PTM.
++: better than the baseline (p < 0.01).

• When we integrate both lexical and semantic
features (lex+sem) described in Section 3.2, we
obtain an improvement of about 0.33 BLEU
points over the system where only lexical fea-
tures (lex) are used. Such a gain, which is sta-
tistically significant, confirms the effectiveness
of semantic features.

Our second group of experiments is to validate
whether the argument reordering model is capable
of improving translation quality. Table 5 shows the
results. We obtain an average improvement of 0.4
BLEU points on the two test sets over the base-
line when we incorporate the proposed argument re-
ordering model into our system. The improvements
on the two test sets are both statistically significant
(p < 0.01).

Finally, we integrate both the predicate translation
model and argument reordering model into the final
system. The two models collectively achieve an im-

provement of up to 0.92 BLEU points over the base-
line, which is shown in Table 5.

7 Analysis

In this section, we conduct some case studies to
show how the proposed models improve translation
accuracy by looking into the differences that they
make on translation hypotheses.

Table 6 displays a translation example which
shows the difference between the baseline and
the system enhanced with the predicate translation
model. There are two verbal predicates “` /head
to” and “ë\/attend” in the source sentence. In
order to get the most appropriate translations for
these two verbal predicates, we should adopt differ-
ent ways to translate them. The former should be
translated as a corresponding verb word or phrase
while the latter into a preposition word “for”. Unfor-
tunately, the baseline incorrectly translates the two
verbs. Furthermore, such translation errors even re-
sult in undesirable reorderings of neighboring words
“Ë|ð/Bethlehem and “�g/mass”. This indi-
cates that verbal predicate translation errors may
lead to more errors, such as inappropriate reorder-
ings or lexical choices for neighboring words. On
the contrary, we can see that our predicate transla-
tion model is able to help select appropriate words
for both verbs. The correct translations of these two
verbs also avoid incorrect reorderings of neighbor-
ing words.

Table 7 shows another example to demonstrate
how the argument reordering model improve re-
orderings. The verbal predicate “?1/carry out”
has three arguments, ARG0, ARG-ADV and ARG1.
The ARG1 argument should be moved from the
right side of the predicate to its left side after trans-
lation. The ARG0 argument can either stay on the
left side or move to right side of the predicate. Ac-
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Base

[êZ] &ä `̀̀   Ë|ð ëëë\\\ [²S�] �g

[thousands of] followers to Mass in Bethlehem [Christmas Eve]

Base+PTM

[êZ] &ä `̀̀   Ë|ð ëëë\\\ [²S�] �g

[thousands of] devotees [rushed to] Bethlehem for [Christmas Eve] mass

Ref thousands of worshippers head to Bethlehem for Christmas Midnight mass

Table 6: A translation example showing the difference between the baseline and the system with the predicate transla-
tion model (PTM). Phrase alignments in the two system outputs are shown with dashed lines. Chinese words in bold
are verbal predicates.

PAS [k'ù@/J´wXÚ] �� ???111 [�õ­���û]

ARG0

ARGM-ADV
ARG1

Base

[k'ù] @ /J [´wXÚ] �� [?1�õ] [­���û]

the more [important consultations] also set disaster [warning system]

Base+ARM

k' [ù@] /J [´wXÚ] [��?1] [�õ] [­���û]

more [important consultations] on [such a] disaster [warningsystem] [should be carried out]

Ref more important discussions will be held on the disaster warning system

Table 7: A translation example showing the difference between the baseline and the system with the argument re-
ordering model (ARM). The predicate-argument structure (PAS) of the source sentence is also displayed in the first
row.

cording to the phrase alignments of the baseline,
we clearly observe three serious translation errors:
1) the ARG0 argument is translated into separate
groups which are not adjacent on the target side;
2) the predicate is not translated at all; and 3) the
ARG1 argument is not moved to the left side of the
predicate after translation. All of these 3 errors are
avoided in the Base+ARM system output as a re-
sult of the argument reordering model that correctly
identifies arguments and moves them in the right di-
rections.

8 Conclusions and Future Work

We have presented two discriminative models to
incorporate source side predicate-argument struc-
tures into SMT. The two models have been inte-
grated into a phrase-based SMT system and evalu-
ated on Chinese-to-English translation tasks using
large-scale training data. The first model is the pred-
icate translation model which employs both lexical
and semantic contexts to translate verbal predicates.

The second model is the argument reordering model
which estimates the direction of argument move-
ment relative to its predicate after translation. Ex-
perimental results show that both models are able to
significantly improve translation accuracy in terms
of BLEU score.

In the future work, we will extend our predicate
translation model to translate both verbal and nom-
inal predicates. Nominal predicates also frequently
occur in Chinese sentences and thus accurate trans-
lations of them are desirable for SMT. We also want
to address another translation issue of arguments as
shown in Table 7: arguments are wrongly translated
into separate groups instead of a cohesive unit (Wu
and Fung, 2009a). We will build an argument seg-
mentation model that follows (Xiong et al., 2011) to
determine whether arguments should be translated
as a unit or not.
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Abstract

Long distance word reordering is a major
challenge in statistical machine translation re-
search. Previous work has shown using source
syntactic trees is an effective way to tackle
this problem between two languages with sub-
stantial word order difference. In this work,
we further extend this line of exploration and
propose a novel but simple approach, which
utilizes a ranking model based on word or-
der precedence in the target language to repo-
sition nodes in the syntactic parse tree of a
source sentence. The ranking model is auto-
matically derived from word aligned parallel
data with a syntactic parser for source lan-
guage based on both lexical and syntactical
features. We evaluated our approach on large-
scale Japanese-English and English-Japanese
machine translation tasks, and show that it can
significantly outperform the baseline phrase-
based SMT system.

1 Introduction

Modeling word reordering between source and tar-
get sentences has been a research focus since the
emerging of statistical machine translation. In
phrase-based models (Och, 2002; Koehn et al.,
2003), phrase is introduced to serve as the funda-
mental translation element and deal with local re-
ordering, while a distance based distortion model is
used to coarsely depict the exponentially decayed
word movement probabilities in language transla-
tion. Further work in this direction employed lexi-

∗This work has been done while the first author was visiting
Microsoft Research Asia.

calized distortion models, including both generative
(Koehn et al., 2005) and discriminative (Zens and
Ney, 2006; Xiong et al., 2006) variants, to achieve
finer-grained estimations, while other work took into
account the hierarchical language structures in trans-
lation (Chiang, 2005; Galley and Manning, 2008).

Long-distance word reordering between language
pairs with substantial word order difference, such as
Japanese with Subject-Object-Verb (SOV) structure
and English with Subject-Verb-Object (SVO) struc-
ture, is generally viewed beyond the scope of the
phrase-based systems discussed above, because of
either distortion limits or lack of discriminative fea-
tures for modeling. The most notable solution to this
problem is adopting syntax-based SMT models, es-
pecially methods making use of source side syntac-
tic parse trees. There are two major categories in this
line of research. One is tree-to-string model (Quirk
et al., 2005; Liu et al., 2006) which directly uses
source parse trees to derive a large set of translation
rules and associated model parameters. The other
is called syntax pre-reordering – an approach that
re-positions source words to approximate target lan-
guage word order as much as possible based on the
features from source syntactic parse trees. This is
usually done in a preprocessing step, and then fol-
lowed by a standard phrase-based SMT system that
takes the re-ordered source sentence as input to fin-
ish the translation.

In this paper, we continue this line of work and
address the problem of word reordering based on
source syntactic parse trees for SMT. Similar to most
previous work, our approach tries to rearrange the
source tree nodes sharing a common parent to mimic
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the word order in target language. To this end, we
propose a simple but effective ranking-based ap-
proach to word reordering. The ranking model is
automatically derived from the word aligned parallel
data, viewing the source tree nodes to be reordered
as list items to be ranked. The ranks of tree nodes are
determined by their relative positions in the target
language – the node in the most front gets the high-
est rank, while the ending word in the target sentence
gets the lowest rank. The ranking model is trained
to directly minimize the mis-ordering of tree nodes,
which differs from the prior work based on maxi-
mum likelihood estimations of reordering patterns
(Li et al., 2007; Genzel, 2010), and does not require
any special tweaking in model training. The ranking
model can not only be used in a pre-reordering based
SMT system, but also be integrated into a phrase-
based decoder serving as additional distortion fea-
tures.

We evaluated our approach on large-scale
Japanese-English and English-Japanese machine
translation tasks, and experimental results show that
our approach can bring significant improvements to
the baseline phrase-based SMT system in both pre-
ordering and integrated decoding settings.

In the rest of the paper, we will first formally
present our ranking-based word reordering model,
then followed by detailed steps of modeling train-
ing and integration into a phrase-based SMT system.
Experimental results are shown in Section 5. Section
6 consists of more discussions on related work, and
Section 7 concludes the paper.

2 Word Reordering as Syntax Tree Node
Ranking

Given a source side parse tree Te, the task of word
reordering is to transform Te to T ′e, so that e′ can
match the word order in target language as much as
possible. In this work, we only focus on reordering
that can be obtained by permuting children of every
tree nodes in Te. We use children to denote direct de-
scendants of tree nodes for constituent trees; while
for dependency trees, children of a node include not
only all direct dependents, but also the head word
itself. Figure 1 gives a simple example showing the
word reordering between English and Japanese. By
rearranging the position of tree nodes in the English

I am trying to play music

私は 音楽を 再生 しようと している

PRP VBP VBG TO VB NN

NP

VP
VP

NP

S

VP

VP

S

I amtryingtoplaymusic

PRP VBPVBGTOVBNN

NP

VP

VP

NP

S

VP

VP

私は 音楽を 再生 しようと している

Original 

Tree

Reordered Tree

S

j0 j1 j2 j3 j4

e0 e1 e2 e3 e4 e5

j0 j1 j2 j3 j4

e0 e1 e2 e3 e4 e5

Figure 1: An English-to-Japanese sentence pair. By
permuting tree nodes in the parse tree, the source
sentence is reordered into the target language or-
der. Constituent tree is shown above the source
sentence; arrows below the source sentences show
head-dependent arcs for dependency tree; word
alignment links are lines without arrow between the
source and target sentences.

parse tree, we can obtain the same word order of
Japanese translation. It is true that tree-based re-
ordering cannot cover all word movement operations
in language translation, previous work showed that
this method is still very effective in practice (Xu et
al., 2009, Visweswariah et al., 2010).

Following this principle, the word reordering task
can be broken into sub-tasks, in which we only
need to determine the order of children nodes for
all non-leaf nodes in the source parse tree. For a
tree node t with children {c1, c2, . . . , cn}, we re-
arrange the children to target-language-like order
{cπ(i1), cπ(i2), . . . , cπ(in)}. If we treat the reordered
position π(i) of child ci as its “rank”, the reorder-
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ing problem is naturally translated into a ranking
problem: to reorder, we determine a “rank” for each
child, then the children are sorted according to their
“ranks”. As it is often impractical to directly assign
a score for each permutation due to huge number of
possible permutations, a widely used method is to
use a real valued function f to assign a value to each
node, which is called a ranking function (Herbrich
et al., 2000). If we can guarantee (f(i)− f(j)) and
(π(i) − π(j)) always has the same sign, we can get
the same permutation as π because values of f are
only used to sort the children. For example, con-
sider the node rooted at trying in the dependency
tree in Figure 1. Four children form a list {I, am, try-
ing, play} to be ranked. Assuming ranking function
f can assign values {0.94, −1.83, −1.50, −1.20}
for {I, am, trying, play} respectively, we can get a
sorted list {I, play, trying, am}, which is the desired
permutation according to the target.

More formally, for a tree node t with children
{c1, c2, . . . , cn}, our ranking model assigns a rank
f(ci, t) for each child ci, then the children are sorted
according to the rank in a descending order. The
ranking function f has the following form:

f(ci, t) =
∑
j

θj(ci, t) · wj (1)

where the θj is a feature representing the tree node t
and its child ci, and wj is the corresponding feature
weight.

3 Ranking Model Training

To learn ranking function in Equation (1), we need to
determine the feature set θ and learn weight vector
w from reorder examples. In this section, we first
describe how to extract reordering examples from
parallel corpus; then we show our features for rank-
ing function; finally, we discuss how to train the
model from the extracted examples.

3.1 Reorder Example Acquisition

For a sentence pair (e, f, a) with syntax tree Te on
the source side, we need to determine which re-
ordered tree T ′e′ best represents the word order in
target sentence f . For a tree node t in Te, if its chil-
dren align to disjoint target spans, we can simply ar-
range them in the order of their corresponding target

Problem with latter procedure

後者

lies

の 手順 問題で は …

in …

に ある

Problem with latter procedure

後者

lies

の 手順 問題で は …

in …

に ある

(a) gold alignment

(b) auto alignment

Figure 2: Fragment of a sentence pair. (a) shows
gold alignment; (b) shows automatically generated
alignment which contains errors.

spans. Figure 2 shows a fragment of one sentence
pair in our training data. Consider the subtree rooted
at word “Problem”. With the gold alignment, “Prob-
lem” is aligned to the 5th target word, and “with
latter procedure” are aligned to target span [1, 3],
thus we can simply put “Problem” after “with latter
procedure”. Recursively applying this process down
the subtree, we get “latter procedure with Problem”
which perfectly matches the target language.

As pointed out by (Li et al., 2007), in practice,
nodes often have overlapping target spans due to er-
roneous word alignment or different syntactic struc-
tures between source and target sentences. (b) in
Figure 2 shows the automatically generated align-
ment for the sentence pair fragment. The word
“with” is incorrectly aligned to the 6th Japanese
word “ha”; as a result, “with latter procedure” now
has target span [1, 6], while “Problem” aligns to
[5, 5]. Due to this overlapping, it becomes unclear
which permutation of “Problem” and “with latter
procedure” is a better match of the target phrase; we
need a better metric to measure word order similar-
ity between reordered source and target sentences.
We choose to find the tree T ′e′ with minimal align-
ment crossing-link number (CLN) (Genzel, 2010)
to f as our golden reordered tree.1 Each crossing-

1A simple solution is to exclude all trees with overlapping
target spans from training. But in our experiment, this method
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link (i1j1, i2j2) is a pair of alignment links crossing
each other. CLN reaches zero if f is monotonically
aligned to e′, and increases as there are more word
reordering between e′ and f . For example, in Fig-
ure 1, there are 6 crossing-links in the original tree:
(e1j4, e2j3), (e1j4, e4j2), (e1j4, e5j1), (e2j3, e4j2),
(e2j3, e5j1) and (e4j2, e5j1); thus CLN for the origi-
nal tree is 6. CLN for the reordered tree is 0 as there
are no crossing-links. This metric is easy to com-
pute, and is not affected by unaligned words (Gen-
zel, 2010).

We need to find the reordered tree with minimal
CLN among all reorder candidates. As the number
of candidates is in the magnitude exponential with
respect to the degree of tree Te 2, it is not always
computationally feasible to enumerate through all
candidates. Our solution is as follows.

First, we give two definitions.

• CLN(t): the number of crossing-links
(i1j1, i2j2) whose source words e′i1 and e′i2
both fall under sub span of the tree node t.

• CCLN(t): the number of crossing-links
(i1j1, i2j2) whose source words e′i1 and e′i2 fall
under sub span of t’s two different children
nodes c1 and c2 respectively.

Apparently CLN of a tree T ′ equals to
CLN(root of T ′), and CLN(t) can be recur-
sively expressed as:

CLN(t) = CCLN(t) +
∑

child c of t

CLN(c)

Take the original tree in Figure 1 for example. At the
root node trying, CLN(trying) is 6 because there are
six crossing-links under its sub-span: (e1j4, e2j3),
(e1j4, e4j2), (e1j4, e5j1), (e2j3, e4j2), (e2j3, e5j1)
and (e4j2, e5j1). On the other hand, CCLN(trying)
is 5 because (e4j2, e5j1) falls under its child node
play, thus does not count towards CCLN of trying.

From the definition, we can easily see that
CCLN(t) can be determined solely by the order of
t’s direct children, and CLN(t) is only affected by

discarded too many training instances and led to degraded re-
ordering performance.

2In our experiments, there are nodes with more than 10 chil-
dren for English dependency trees.

the reorder in the subtree of t. This observation en-
ables us to divide the task of finding the reordered
tree T ′e′ with minimal CLN into independently find-
ing the children permutation of each node with min-
imal CCLN. Unfortunately, the time cost for the sub-
task is stillO(n!) for a node with n children. Instead
of enumerating through all permutations, we only
search the Inversion Transduction Grammar neigh-
borhood of the initial sequence (Tromble, 2009). As
pointed out by (Tromble, 2009), the ITG neighbor-
hood is large enough for reordering task, and can be
searched through efficiently using a CKY decoder.

After finding the best reordered tree T ′e′ , we can
extract one reorder example from every node with
more than one child.

3.2 Features

Features for the ranking model are extracted from
source syntax trees. For English-to-Japanese task,
we extract features from Stanford English Depen-
dency Tree (Marneffe et al., 2006), including lexi-
cons, Part-of-Speech tags, dependency labels, punc-
tuations and tree distance between head and depen-
dent. For Japanese-to-English task, we use a chunk-
based Japanese dependency tree (Kudo and Mat-
sumoto, 2002). Different from features for English,
we do not use dependency labels because they are
not available from the Japanese parser. Additionally,
Japanese function words are also included as fea-
tures because they are important grammatical clues.
The detailed feature templates are shown in Table 1.

3.3 Learning Method

There are many well studied methods available to
learn the ranking function from extracted examples.,
ListNet (?) etc. We choose to use RankingSVM
(Herbrich et al., 2000), a pair-wised ranking method,
for its simplicity and good performance.

For every reorder example t with children
{c1, c2, . . . , cn} and their desired permutation
{cπ(i1), cπ(i2), . . . , cπ(in)}, we decompose it into a
set of pair-wised training instances. For any two
children nodes ci and cj with i < j , we extract a
positive instance if π(i) < π(j), otherwise we ex-
tract a negative instance. The feature vector for both
positive instance and negative instance is (θci−θcj ),
where θci

and θcj
are feature vectors for ci and cj
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E-J
cl cl · dst cl · pct
cl · dst · pct cl · lcl cl · rcl
cl · lcl · dst cl · rcl · dst cl · clex
cl · clex cl · clex · dst cl · clex · dst
cl · hlex cl · hlex cl · hlex · dst
cl · hlex · dst cl · clex · pct cl · clex · pct
cl · hlex · pct cl · hlex · pct
J-E
ctf ctf · dst ctf · lct
ctf · rct ctf · lct · dst cl · rct · dst
ctf · clex ctf · clex ctf · clex · dst
ctf · clex · dst ctf · hf ctf · hf
ctf · hf · dst ctf · hf · dst ctf · hlex
ctf · hlex ctf · hlex · dst ctf · hlex · dst

Table 1: Feature templates for ranking function. All
templates are implicitly conjuncted with the pos tag
of head node.
c: child to be ranked; h: head node
lc: left sibling of c; rc: right sibling of c
l: dependency label; t: pos tag
lex: top frequency lexicons
f : Japanese function word
dst: tree distance between c and h
pct: punctuation node between c and h

respectively. In this way, ranking function learning
is turned into a simple binary classification problem,
which can be easily solved by a two-class linear sup-
port vector machine.

4 Integration into SMT system

There are two ways to integrate the ranking reorder-
ing model into a phrase-based SMT system: the pre-
reorder method, and the decoding time constraint
method.

For pre-reorder method, ranking reorder model
is applied to reorder source sentences during both
training and decoding. Reordered sentences can go
through the normal pipeline of a phrase-based de-
coder.

The ranking reorder model can also be integrated
into a phrase based decoder. Integrated method takes
the original source sentence e as input, and ranking
model generates a reordered e′ as a word order ref-

erence for the decoder. A simple penalty scheme
is utilized to penalize decoder reordering violating
ranking reorder model’s prediction e′. In this paper,
our underlying decoder is a CKY decoder follow-
ing Bracketing Transduction Grammar (Wu, 1997;
Xiong et al., 2006), thus we show how the penalty
is implemented in the BTG decoder as an example.
Similar penalty can be designed for other decoders
without much effort.

Under BTG, three rules are used to derive transla-
tions: one unary terminal rule, one straight rule and
one inverse rule:

A → e/f

A → [A1, A2]

A → 〈A1, A2〉

We have three penalty triggers when any rules are
applied during decoding:

• Discontinuous penalty fdc: it fires for all rules
when source span of either A, A1 or A2 is
mapped to discontinuous span in e′.

• Wrong straight rule penalty fst: it fires for
straight rule when source spans of A1 and A2

are not mapped to two adjacent spans in e′ in
straight order.

• Wrong inverse rule penalty fiv: it fires for in-
verse rule when source spans of A1 and A2 are
not mapped to two adjacent spans in e′ in in-
verse order.

The above three penalties are added as additional
features into the log-linear model of the phrase-
based system. Essentially they are soft constraints
to encourage the decoder to choose translations with
word order similar to the prediction of ranking re-
order model.

5 Experiments

To test our ranking reorder model, we carry out ex-
periments on large scale English-To-Japanese, and
Japanese-To-English translation tasks.

5.1 Data
5.1.1 Evaluation Data

We collect 3,500 Japanese sentences and 3,500
English sentences from the web. They come from
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a wide range of domains, such as technical docu-
ments, web forum data, travel logs etc. They are
manually translated into the other language to pro-
duce 7,000 sentence pairs, which are split into two
parts: 2,000 pairs as development set (dev) and the
other 5,000 pairs as test set (web test).

Beside that, we collect another 999 English sen-
tences from newswire domain which are translated
into Japanese to form an out-of-domain test data set
(news test).

5.1.2 Parallel Corpus
Our parallel corpus is crawled from the web,

containing news articles, technical documents, blog
entries etc. After removing duplicates, we have
about 18 million sentence pairs, which contain about
270 millions of English tokens and 320 millions of
Japanese tokens. We use Giza++ (Och and Ney,
2003) to generate the word alignment for the parallel
corpus.

5.1.3 Monolingual Corpus
Our monolingual Corpus is also crawled from the

web. After removing duplicate sentences, we have a
corpus of over 10 billion tokens for both English and
Japanese. This monolingual corpus is used to train
a 4-gram language model for English and Japanese
respectively.

5.2 Parsers

For English, we train a dependency parser as (Nivre
and Scholz, 2004) on WSJ portion of Penn Tree-
bank, which are converted to dependency trees us-
ing Stanford Parser (Marneffe et al., 2006). We con-
vert the tokens in training data to lower case, and
re-tokenize the sentences using the same tokenizer
from our MT system.

For Japanese parser, we use CABOCHA, a
chunk-based dependency parser (Kudo and Mat-
sumoto, 2002). Some heuristics are used to adapt
CABOCHA generated trees to our word segmenta-
tion.

5.3 Settings

5.3.1 Baseline System
We use a BTG phrase-based system with a Max-

Ent based lexicalized reordering model (Wu, 1997;
Xiong et al., 2006) as our baseline system for

both English-to-Japanese and Japanese-to-English
Experiment. The distortion model is trained on the
same parallel corpus as the phrase table using a
home implemented maximum entropy trainer.

In addition, a pre-reorder system using manual
rules as (Xu et al., 2009) is included for the English-
to-Japanese experiment (ManR-PR). Manual rules
are tuned by a bilingual speaker on the development
set.

5.3.2 Ranking Reordering System
Ranking reordering model is learned from the

same parallel corpus as phrase table. For efficiency
reason, we only use 25% of the corpus to train our
reordering model. LIBLINEAR (Fan et al., 2008) is
used to do the SVM optimization for RankingSVM.

We test it on both pre-reorder setting (Rank-PR)
and integrated setting (Rank-IT).

5.4 End-to-End Result

system dev web test news test

E-J

Baseline 21.45 21.12 14.18
ManR-PR 23.00 22.42 15.61
Rank-PR 22.92 22.51 15.90
Rank-IT 23.14 22.85 15.72

J-E
Baseline 25.39 24.20 14.26
Rank-PR 26.57 25.56 15.42
Rank-IT 26.72 25.87 15.27

Table 2: BLEU(%) score on dev and test data for
both E-J and J-E experiment. All settings signifi-
cantly improve over the baseline at 95% confidence
level. Baseline is the BTG phrase system system;
ManR-PR is pre-reorder with manual rule; Rank-PR
is pre-reorder with ranking reorder model; Rank-IT
is system with integrated ranking reorder model.

From Table 2, we can see our ranking reordering
model significantly improves the performance for
both English-to-Japanese and Japanese-to-English
experiments over the BTG baseline system. It also
out-performs the manual rule set on English-to-
Japanese result, but the difference is not significant.

5.5 Reordering Performance
In order to show whether the improved performance
is really due to improved reordering, we would like
to measure the reorder performance directly.
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As we do not have access to a golden re-
ordered sentence set, we decide to use the align-
ment crossing-link numbers between aligned sen-
tence pairs as the measure for reorder performance.

We train the ranking model on 25% of our par-
allel corpus, and use the rest 75% as test data
(auto). We sample a small corpus (575 sentence
pairs) and do manual alignment (man-small). We
denote the automatic alignment for these 575 sen-
tences as (auto-small). From Table 3, we can see

setting auto auto-small man-small
None 36.3 35.9 40.1

E-J
Oracle 4.3 4.1 7.4
ManR 13.4 13.6 16.7
Rank 12.1 12.8 17.2

J-E
Oracle 6.9 7.0 9.4
Rank 15.7 15.3 20.5

Table 3: Reorder performance measured by
crossing-link number per sentence. None means the
original sentences without reordering; Oracle means
the best permutation allowed by the source parse
tree; ManR refers to manual reorder rules; Rank
means ranking reordering model.

our ranking reordering model indeed significantly
reduces the crossing-link numbers over the original
sentence pairs. On the other hand, the performance
of the ranking reorder model still fall far short of or-
acle, which is the lowest crossing-link number of all
possible permutations allowed by the parse tree. By
manual analysis, we find that the gap is due to both
errors of the ranking reorder model and errors from
word alignment and parser.

Another thing to note is that the crossing-link
number of manual alignment is higher than auto-
matic alignment. The reason is that our annotators
tend to align function words which might be left un-
aligned by automatic word aligner.

5.6 Effect of Ranking Features
Here we examine the effect of features for ranking
reorder model. We compare their influence on Rank-
ingSVM accuracy, alignment crossing-link number,
end-to-end BLEU score, and the model size. As
Table 4 shows, a major part of reduction of CLN
comes from features such as Part-of-Speech tags,

Features Acc. CLN BLEU Feat.#

E-J

tag+label 88.6 16.4 22.24 26k
+dst 91.5 13.5 22.66 55k
+pct 92.2 13.1 22.73 79k
+lex100 92.9 12.1 22.85 347k
+lex1000 94.0 11.5 22.79 2,410k
+lex2000 95.2 10.7 22.81 3,794k

J-E

tag+fw 85.0 18.6 25.43 31k
+dst 90.3 16.9 25.62 65k
+lex100 91.6 15.7 25.87 293k
+lex1000 92.4 14.8 25.91 2,156k
+lex2000 93.0 14.3 25.84 3,297k

Table 4: Effect of ranking features. Acc. is Rank-
ingSVM accuracy in percentage on the training data;
CLN is the crossing-link number per sentence on
parallel corpus with automatically generated word
alignment; BLEU is the BLEU score in percentage
on web test set on Rank-IT setting (system with in-
tegrated rank reordering model); lexn means n most
frequent lexicons in the training corpus.

dependency labels (for English), function words (for
Japanese), and the distance and punctuations be-
tween child and head. These features also corre-
spond to BLEU score improvement for End-to-End
evaluations. Lexicon features generally continue to
improve the RankingSVM accuracy and reduce CLN
on training data, but they do not bring further im-
provement for SMT systems beyond the top 100
most frequent words. Our explanation is that less
frequent lexicons tend to help local reordering only,
which is already handled by the underlying phrase-
based system.

5.7 Performance on different domains

From Table 2 we can see that pre-reorder method has
higher BLEU score on news test, while integrated
model performs better on web test set which con-
tains informal texts. By error analysis, we find that
the parser commits more errors on informal texts,
and informal texts usually have more flexible trans-
lations. Pre-reorder method makes “hard” decision
before decoding, thus is more sensitive to parser er-
rors; on the other hand, integrated model is forced
to use a longer distortion limit which leads to more
search errors during decoding time. It is possible to
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use system combination method to get the best of
both systems, but we leave this to future work.

6 Discussion on Related Work

There have been several studies focusing on compil-
ing hand-crafted syntactic reorder rules. Collins et
al. (2005), Wang et al. (2007), Ramanathan et al.
(2008), Lee et al. (2010) have developed rules for
German-English, Chinese-English, English-Hindi
and English-Japanese respectively. Xu et al. (2009)
designed a clever precedence reordering rule set for
translation from English to several SOV languages.
The drawback for hand-crafted rules is that they de-
pend upon expert knowledge to produce and are lim-
ited to their targeted language pairs.

Automatically learning syntactic reordering rules
have also been explored in several work. Li et
al. (2007) and Visweswariah et al. (2010) learned
probability of reordering patterns from constituent
trees using either Maximum Entropy or maximum
likelihood estimation. Since reordering patterns
are matched against a tree node together with all
its direct children, data sparseness problem will
arise when tree nodes have many children (Li et
al., 2007); Visweswariah et al. (2010) also men-
tioned their method yielded no improvement when
applied to dependency trees in their initial experi-
ments. Genzel (2010) dealt with the data sparseness
problem by using window heuristic, and learned re-
ordering pattern sequence from dependency trees.
Even with the window heuristic, they were unable
to evaluate all candidates due to the huge num-
ber of possible patterns. Different from the pre-
vious approaches, we treat syntax-based reordering
as a ranking problem between different source tree
nodes. Our method does not require the source
nodes to match some specific patterns, but encodes
reordering knowledge in the form of a ranking func-
tion, which naturally handles reordering between
any number of tree nodes; the ranking function is
trained by well-established rank learning method to
minimize the number of mis-ordered tree nodes in
the training data.

Tree-to-string systems (Quirk et al., 2005; Liu et
al., 2006) model syntactic reordering using minimal
or composed translation rules, which may contain
reordering involving tree nodes from multiple tree

levels. Our method can be naturally extended to deal
with such multiple level reordering. For a tree-to-
string rule with multiple tree levels, instead of rank-
ing the direct children of the root node, we rank all
leaf nodes (Most are frontier nodes (Galley et al.,
2006)) in the translation rule. We need to redesign
our ranking feature templates to encode the reorder-
ing information in the source part of the translation
rules. We need to remember the source side con-
text of the rules, the model size would still be much
smaller than a full-fledged tree-to-string system be-
cause we do not need to explicitly store the target
variants for each rule.

7 Conclusion and Future Work

In this paper we present a ranking based reorder-
ing method to reorder source language to match the
word order of target language given the source side
parse tree. Reordering is formulated as a task to rank
different nodes in the source side syntax tree accord-
ing to their relative position in the target language.
The ranking model is automatically trained to min-
imize the mis-ordering of tree nodes in the training
data. Large scale experiment shows improvement on
both reordering metric and SMT performance, with
up to 1.73 point BLEU gain in our evaluation test.

In future work, we plan to extend the ranking
model to handle reordering between multiple lev-
els of source trees. We also expect to explore bet-
ter way to integrate ranking reorder model into SMT
system instead of a simple penalty scheme. Along
the research direction of preprocessing the source
language to facilitate translation, we consider to not
only change the order of the source language, but
also inject syntactic structure of the target language
into source language by adding pseudo words into
source sentences.
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Abstract

In this work, we introduce the TESLA-
CELAB metric (Translation Evaluation of
Sentences with Linear-programming-based
Analysis – Character-level Evaluation for
Languages with Ambiguous word Bound-
aries) for automatic machine translation eval-
uation. For languages such as Chinese where
words usually have meaningful internal struc-
ture and word boundaries are often fuzzy,
TESLA-CELAB acknowledges the advantage
of character-level evaluation over word-level
evaluation. By reformulating the problem in
the linear programming framework, TESLA-
CELAB addresses several drawbacks of the
character-level metrics, in particular the mod-
eling of synonyms spanning multiple char-
acters. We show empirically that TESLA-
CELAB significantly outperforms character-
level BLEU in the English-Chinese translation
evaluation tasks.

1 Introduction

Since the introduction of BLEU (Papineni et al.,
2002), automatic machine translation (MT) eval-
uation has received a lot of research interest.
The Workshop on Statistical Machine Transla-
tion (WMT) hosts regular campaigns comparing
different machine translation evaluation metrics
(Callison-Burch et al., 2009; Callison-Burch et al.,
2010; Callison-Burch et al., 2011). In the WMT
shared tasks, many new generation metrics, such as
METEOR (Banerjee and Lavie, 2005), TER (Snover
et al., 2006), and TESLA (Liu et al., 2010) have con-
sistently outperformed BLEU as judged by the cor-
relations with human judgments.

The research on automatic machine translation
evaluation is important for a number of reasons. Au-
tomatic translation evaluation gives machine trans-
lation researchers a cheap and reproducible way to
guide their research and makes it possible to com-
pare machine translation methods across different
studies. In addition, machine translation system
parameters are tuned by maximizing the automatic
scores. Some recent research (Liu et al., 2011) has
shown evidence that replacing BLEU by a newer
metric, TESLA, can improve the human judged
translation quality.

Despite the importance and the research inter-
est on automatic MT evaluation, almost all existing
work has focused on European languages, in partic-
ular on English. Although many methods aim to
be language neutral, languages with very different
characteristics such as Chinese do present additional
challenges. The most obvious challenge for Chinese
is that of word segmentation.

Unlike European languages, written Chinese is
not split into words. Segmenting Chinese sentences
into words is a natural language processing task
in its own right (Zhao and Liu, 2010; Low et al.,
2005). However, many different segmentation stan-
dards exist for different purposes, such as Microsoft
Research Asia (MSRA) for Named Entity Recog-
nition (NER), Chinese Treebank (CTB) for parsing
and part-of-speech (POS) tagging, and City Univer-
sity of Hong Kong (CITYU) and Academia Sinica
(AS) for general word segmentation and POS tag-
ging. It is not clear which standard is the best in a
given scenario.

The only prior work attempting to address the
problem of word segmentation in automatic MT
evaluation for Chinese that we are aware of is Li et
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买 伞
buy umbrella

买 雨伞
buy umbrella

买 雨 伞
buy rain umbrella

Figure 1: Three forms of the same expression buy um-
brella in Chinese

al. (2011). The work compared various MT eval-
uation metrics (BLEU, NIST, METEOR, GTM, 1
− TER) with different segmentation schemes, and
found that treating every single character as a token
(character-level MT evaluation) gives the best corre-
lation with human judgments.

2 Motivation

Li et al. (2011) identify two reasons that character-
based metrics outperform word-based metrics. For
illustrative purposes, we use Figure 1 as a running
example in this paper. All three expressions are se-
mantically identical (buy umbrella). The first two
forms are identical because 雨伞1 and 伞 are syn-
onyms. The last form is simply an (arguably wrong)
alternative segmented form of the second expres-
sion.

1. Word-based metrics do not award partial
matches, e.g., 买_雨伞 and 买_伞 would be
penalized for the mismatch between 雨伞 and
伞. Character-based metrics award the match
between characters伞 and伞.

2. Character-based metrics do not suffer from er-
rors and differences in word segmentation, so
买_雨伞 and 买_雨_伞 would be judged ex-
actly equal.

Li et al. (2011) conduct empirical experiments to
show that character-based metrics consistently out-
perform their word-based counterparts. Despite
that, we observe two important problems for the
character-based metrics:

1. Although partial matches are partially awarded,
the mechanism breaks down for n-grams where

1Literally, rain umbrella.

n > 1. For example, between 买_雨_伞 and
买_伞, higher-order n-grams such as买_雨 and
雨_伞 still have no match, and will be penal-
ized accordingly, even though 买_雨_伞 and
买_伞 should match exactly. N-grams such
as买_雨 which cross natural word boundaries
and are meaningless by themselves can be par-
ticularly tricky.

2. Character-level metrics can utilize only a small
part of the Chinese synonym dictionary, such as
你 and您 (you). The majority of Chinese syn-
onyms involve more than one character, such
as雨伞 and伞 (umbrella), and儿童 and小孩
(child).

In this work, we attempt to address both of these
issues by introducing TESLA-CELAB, a character-
level metric that also models word-level linguistic
phenomenon. We formulate the n-gram matching
process as a real-valued linear programming prob-
lem, which can be solved efficiently. The metric
is based on the TESLA automatic MT evaluation
framework (Liu et al., 2010; Dahlmeier et al., 2011).

3 The Algorithm

3.1 Basic Matching

We illustrate our matching algorithm using the ex-
amples in Figure 1. Let 买雨伞 be the reference,
and买伞 be the candidate translation.

We use Cilin (同义词词林)2 as our synonym
dictionary. The basic n-gram matching problem is
shown in Figure 2. Two n-grams are connected if
they are identical, or if they are identified as syn-
onyms by Cilin. Notice that all n-grams are put in
the same matching problem regardless of n, unlike
in translation evaluation metrics designed for Eu-
ropean languages. This enables us to designate n-
grams with different values of n as synonyms, such
as雨伞 (n = 2) and伞 (n = 1).

In this example, we are able to make a total of two
successful matches. The recall is therefore 2/6 and
the precision is 2/3.

2http://ir.hit.edu.cn/phpwebsite/index.php?module=pagemaster
&PAGE_user_op=view_page&PAGE_id=162
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买 雨 伞 买雨 雨伞 买雨伞

买 伞 买伞

买

Figure 2: The basic n-gram matching problem

买 雨 伞 买雨 雨伞 买雨伞

买 伞 买伞

买

Figure 3: The n-gram matching problem after phrase
matching

3.2 Phrase Matching
We note in Figure 2 that the trigram买雨伞 and the
bigram 买伞 are still unmatched, even though the
match between雨伞 and伞 should imply the match
between买雨伞 and买伞.

We infer the matching of such phrases using a
dynamic programming algorithm. Two n-grams are
considered synonyms if they can be segmented into
synonyms that are aligned. With this extension,
we are able to match 买雨伞 and 买伞 (since 买
matches 买 and 雨伞 matches 伞). The matching
problem is now depicted by Figure 3.

The linear programming problem is mathemati-
cally described as follows. The variables w(·, ·) are
the weights assigned to the edges,

w(买,买) ∈ [0, 1]
w(伞,伞) ∈ [0, 1]

w(雨伞,伞) ∈ [0, 1]
w(买雨伞,买伞) ∈ [0, 1]

We require that for any node N , the sum of
weights assigned to edges linking N must not ex-
ceed one.

wref(买) = w(买,买)
wref(伞) = w(伞,伞)

wref(雨伞) = w(雨伞,伞)
wref(买雨伞) = w(买雨伞,买伞)

伞

雨 伞 雨伞

Figure 4: A covered n-gram matching problem

wcand(买) = w(买,买)
wcand(伞) = w(伞,伞) + w(雨伞,伞)

wcand(买伞) = w(买雨伞,买伞)

where

wref(X) ∈ [0, 1] ∀X
wcand(X) ∈ [0, 1] ∀X

Now we maximize the total match,

w(买,买)+w(伞,伞)+w(雨伞,伞)+w(买雨伞,买伞)

In this example, the best match is 3, resulting in a
recall of 3/6 and a precision of 3/3.

3.3 Covered Matching

In Figure 3, n-grams雨 and买雨 in the reference re-
main impossible to match, which implies misguided
penalty for the candidate translation. We observe
that since 买雨伞 has been matched, all its sub-n-
grams should be considered matched as well, includ-
ing 雨 and 买雨. We call this the covered n-gram
matching rule. This relationship is implicit in the
matching problem for English translation evaluation
metrics where words are well delimited. But with
phrase matching in Chinese, it must be modeled ex-
plicitly.

However, we cannot simply perform covered n-
gram matching as a post processing step. As an ex-
ample, suppose we are matching phrases 雨伞 and
伞, as shown in Figure 4. The linear programming
solver may come up with any of the solutions where
w(伞,伞) + w(雨伞,伞) = 1, w(伞,伞) ∈ [0, 1],
and w(雨伞,伞) ∈ [0, 1].

To give the maximum coverage for the node 雨,
only the solution w(伞,伞) = 0, w(雨伞,伞) = 1 is
accepted. This indicates the need to model covered
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n-gram matching in the linear programming prob-
lem itself.

We return to the matching of the reference 买雨
伞 and the candidate买伞 in Figure 3. On top of the
w(·) variables already introduced, we add the vari-
ables maximum covering weights c(·). Each c(X)
represents the maximum w(Y ) variable where n-
gram Y completely covers n-gram X .

cref(买) ≤ max(wref(买), wref(买雨),
wref(买雨伞))

cref(雨) ≤ max(wref(雨), wref(买雨),
wref(雨伞), wref(买雨伞))

cref(伞) ≤ max(wref(伞), wref(雨伞),
wref(买雨伞))

cref(买雨) ≤ max(wref(买雨), wref(买雨伞))
cref(雨伞) ≤ max(wref(雨伞), wref(买雨伞))

cref(买雨伞) ≤ wref(买雨伞)
ccand(买) ≤ max(wcand(买), wcand(买伞))
ccand(伞) ≤ max(wcand(伞), wcand(买伞))

ccand(买伞) ≤ wcand(买伞)

where

cref(X) ∈ [0, 1] ∀X
ccand(X) ∈ [0, 1] ∀X

However, the max(·) operator is not allowed in
the linear programming formulation. We get around
this by approximating max(·) with the sum instead.
Hence,

cref(买) ≤ wref(买) + wref(买雨)+
wref(买雨伞)

cref(雨) ≤ wref(雨) + wref(买雨)+
wref(雨伞) + wref(买雨伞)

. . .

We justify this approximation by the following
observation. Consider the sub-problem consisting
of just the w(·, ·), wref(·), wcand(·) variables and
their associated constraints. This sub-problem can
be seen as a maximum flow problem where all con-
stants are integers, hence there exists an optimal so-
lution where each of the w variables is assigned a
value of either 0 or 1. For such a solution, the

max and the sum forms are equivalent, since the
cref(·) and ccand(·) variables are also constrained to
the range [0, 1].

The maximum flow equivalence breaks down
when the c(·) variables are introduced, so in the gen-
eral case, replacing max with sum is only an approx-
imation.

Returning to our sample problem, the linear pro-
gramming solver simply needs to assign:

w(买雨伞,买伞) = 1
wref(买雨伞) = 1
wcand(买伞) = 1

Consequently, due to the maximum covering
weights constraint, we can give the following value
assignment, implying that all n-grams have been
matched.

cref(X) = 1 ∀X
ccand(X) = 1 ∀X

3.4 The Objective Function

We now define our objective function in terms of
the c(·) variables. The recall is a function of∑

X cref(X), and the precision is a function of∑
Y ccand(Y ), where X is the set of all n-grams of

the reference, and Y is the set of all n-grams of the
candidate translation.

Many prior translation evaluation metrics such as
MAXSIM (Chan and Ng, 2008) and TESLA (Liu
et al., 2010; Dahlmeier et al., 2011) use the F-0.8
measure as the final score:

F0.8 =
Precision× Recall

0.8× Precision + 0.2× Recall

Under some simplifying assumptions — specifi-
cally, that precision = recall — basic calculus shows
that F0.8 is four times as sensitive to recall than to
precision. Following the same reasoning, we want
to place more emphasis on recall than on precision.
We are also constrained by the linear programming
framework, hence we set the objective function as

1
Z

(∑
X

cref(X) + f
∑
Y

ccand(Y )

)
0 < f < 1
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We set f = 0.25 so that our objective function
is also four times as sensitive to recall than to pre-
cision.3 The value of this objective function is our
TESLA-CELAB score. Similar to the other TESLA
metrics, when there are N multiple references, we
match the candidate translation against each of them
and use the average of the N objective function val-
ues as the segment level score. System level score is
the average of all the segment level scores.

Z is a normalizing constant to scale the metric to
the range [0, 1], chosen so that when all the c(·) vari-
ables have the value of one, our metric score attains
the value of one.

4 Experiments

In this section, we test the effectiveness of TESLA-
CELAB on some real-world English-Chinese trans-
lation tasks.

4.1 IWSLT 2008 English-Chinese CT
The test set of the IWSLT 2008 (Paul, 2008)
English-Chinese ASR challenge task (CT) consists
of 300 sentences of spoken language text. The av-
erage English source sentence is 5.8 words long and
the average Chinese reference translation is 9.2 char-
acters long. The domain is travel expressions.

The test set was translated by seven MT systems,
and each translation has been manually judged for
adequacy and fluency. Adequacy measures whether
the translation conveys the correct meaning, even if
the translation is not fully fluent, whereas fluency
measures whether a translation is fluent, regardless
of whether the meaning is correct. Due to high
evaluation costs, adequacy and fluency assessments
were limited to the translation outputs of four sys-
tems. In addition, the translation outputs of the MT
systems are also manually ranked according to their
translation quality.

Inter-judge agreement is measured by the Kappa
coefficient, defined as:

Kappa =
P (A)− P (E)

1− P (E)

where P (A) is the percentage of agreement, and
P (E) is the percentage of agreement by pure

3Our empirical experiments suggest that the correlations do
plateau near this value. For simplicity, we choose not to tune f
on the training data.

Judgment Set 2 3
1 0.4406 0.4355
2 - 0.4134

Table 1: Inter-judge Kappa for the NIST 2008 English-
Chinese task

chance. The inter-judge Kappa is 0.41 for fluency,
0.40 for adequacy, and 0.57 for ranking. Kappa val-
ues between 0.4 and 0.6 are considered moderate,
and the numbers are in line with other comparable
experiments.

4.2 NIST 2008 English-Chinese MT Task

The NIST 2008 English-Chinese MT task consists
of 127 documents with 1,830 segments, each with
four reference translations and eleven automatic
MT system translations. The data is available as
LDC2010T01 from the Linguistic Data Consortiuim
(LDC). The domain is newswire texts. The average
English source sentence is 21.5 words long and the
average Chinese reference translation is 43.2 char-
acters long.

Since no manual evaluation is given for the data
set, we recruited twelve bilingual judges to evalu-
ate the first thirty documents for adequacy and flu-
ency (355 segments for a total of 355× 11 = 3, 905
translated segments). The final score of a sentence
is the average of its adequacy and fluency scores.
Each judge works on one quarter of the sentences so
that each translation is judged by three judges. The
judgments are concatenated to form three full sets of
judgments.

We ignore judgments where two sentences are
equal in quality, so that there are only two possible
outcomes (X is better than Y; or Y is better than X),
and P (E) = 1/2. The Kappa values are shown in
Table 1. The values indicate moderate agreement,
and are in line with other comparable experiments.

4.3 Baseline Metrics

4.3.1 BLEU
Although word-level BLEU has often been found

inferior to the new-generation metrics when the
target language is English or other European lan-
guages, prior research has shown that character-level
BLEU is highly competitive when the target lan-
guage is Chinese (Li et al., 2011). Therefore, we
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Segment Pearson Spearman rank
Metric Type consistency correlation correlation
BLEU character-level 0.7004 0.9130 0.9643

TESLA-M word-level 0.6771 0.9167 0.8929
TESLA-CELAB− character-level 0.7018 0.9229 0.9643

TESLA-CELAB hybrid 0.7281∗ 0.9490∗∗ 0.9643

Table 2: Correlation with human judgment on the IWSLT 2008 English-Chinese challenge task. * denotes better than
the BLEU baseline at 5% significance level. ** denotes better than the BLEU baseline at 1% significance level.

Segment Pearson Spearman rank
Metric Type consistency correlation correlation
BLEU character-level 0.7091 0.8429 0.7818

TESLA-M word-level 0.6969 0.8301 0.8091
TESLA-CELAB− character-level 0.7158 0.8514 0.8227

TESLA-CELAB hybrid 0.7162 0.8923∗∗ 0.8909∗∗

Table 3: Correlation with human judgment on the NIST 2008 English-Chinese MT task. ** denotes better than the
BLEU baseline at 1% significance level.

use character-level BLEU as our main baseline.
The correlations of character-level BLEU and the

average human judgments are shown in the first row
of Tables 2 and 3 for the IWSLT and the NIST
data set, respectively. Segment-level consistency is
defined as the number of correctly predicted pair-
wise rankings divided by the total number of pair-
wise rankings. Ties are excluded from the calcu-
lation. We also report the Pearson correlation and
the Spearman rank correlation of the system-level
scores. Note that in the IWSLT data set, the Spear-
man rank correlation is highly unstable due to the
small number of participating systems.

4.3.2 TESLA-M
In addition to character-level BLEU, we also

present the correlations for the word-level metric
TESLA. Compared to BLEU, TESLA allows more
sophisticated weighting of n-grams and measures of
word similarity including synonym relations. It has
been shown to give better correlations than BLEU
for many European languages including English
(Callison-Burch et al., 2011). However, its use of
POS tags and synonym dictionaries prevents its use
at the character-level. We use TESLA as a represen-
tative of a competitive word-level metric.

We use the Stanford Chinese word segmenter
(Tseng et al., 2005) and POS tagger (Toutanova et
al., 2003) for preprocessing and Cilin for synonym

definition during matching. TESLA has several vari-
ants, and the simplest and often the most robust,
TESLA-M, is used in this work. The various cor-
relations are reported in the second row of Tables 2
and 3.

The scores show that word-level TESLA-M has
no clear advantage over character-level BLEU, de-
spite its use of linguistic features. We consider this
conclusion to be in line with that of Li et al. (2011).

4.4 TESLA-CELAB

In all our experiments here we use TESLA-CELAB
with n-grams for n up to four, since the vast majority
of Chinese words, and therefore synonyms, are at
most four characters long.

The correlations between the TESLA-CELAB
scores and human judgments are shown in the last
row of Tables 2 and 3. We conducted significance
testing using the resampling method of (Koehn,
2004). Entries that outperform the BLEU base-
line at 5% significance level are marked with ‘*’,
and those that outperform at the 1% significance
level are marked with ‘**’. The results indicate that
TESLA-CELAB significantly outperforms BLEU.

For comparison, we also run TESLA-CELAB
without the use of the Cilin dictionary, reported
in the third row of Tables 2 and 3 and de-
noted as TESLA-CELAB−. This disables TESLA-
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CELAB’s ability to detect word-level synonyms and
turns TESLA-CELAB into a linear programming
based character-level metric. The performance of
TESLA-CELAB− is comparable to the character-
level BLEU baseline.

Note that

• TESLA-M can process word-level synonyms,
but does not award character-level matches.

• TESLA-CELAB− and character-level BLEU
award character-level matches, but do not con-
sider word-level synonyms.

• TESLA-CELAB can process word-level syn-
onyms and can award character-level matches.

Therefore, the difference between TESLA-M
and TESLA-CELAB highlights the contribution
of character-level matching, and the difference
between TESLA-CELAB− and TESLA-CELAB
highlights the contribution of word-level synonyms.

4.5 Sample Sentences
Some sample sentences taken from the IWSLT test
set are shown in Table 4 (some are simplified from
the original). The Cilin dictionary correctly identi-
fied the following as synonyms:

周 = 星期 week
女儿 = 闺女 daughter
你 = 您 you
工作 = 上班 work

The dictionary fails to recognize the following
synonyms:

一个 = 个 a
这儿 = 这里 here

However, partial awards are still given for the
matching characters这 and个.

Based on these synonyms, TESLA-CELAB is
able to award less trivial n-gram matches, such as下
周=下星期,个女儿=个闺女, and工作吗=上班吗,
as these pairs can all be segmented into aligned syn-
onyms. The covered n-gram matching rule is then
able to award tricky n-grams such as下星,个女,个
闺, 作吗 and 班吗, which are covered by 下星期,
个女儿,个闺女,工作吗 and上班吗 respectively.

Note also that the word segmentations shown in
these examples are for clarity only. The TESLA-
CELAB algorithm does not need pre-segmented

Reference: 下 周 。
next week .

Candidate: 下 星期 。
next week .

Reference: 我 有 一个 女儿 。
I have a daughter .

Candidate: 我 有 个 闺女 。
I have a daughter .

Reference: 你 在 这儿 工作 吗 ？
you at here work qn ?

Candidate: 您 在 这里 上班 吗 ？
you at here work qn ?

Table 4: Sample sentences from the IWSLT 2008 test set

Schirm kaufen
umbrella buy

Regenschirm kaufen
umbrella buy

Regen schirm kaufen
rain umbrella buy

Figure 5: Three forms of buy umbrella in German

sentences, and essentially finds multi-character syn-
onyms opportunistically.

5 Discussion and Future Work

5.1 Other Languages with Ambiguous Word
Boundaries

Although our experiments here are limited to Chi-
nese, many other languages have similarly ambigu-
ous word boundaries. For example, in German, the
exact counterpart to our example exists, as depicted
in Figure 5.

Regenschirm, literally rain-umbrella, is a syn-
onym of Schirm. The first two forms in Figure 5
appear in natural text, and in standard BLEU, they
would be penalized for the non-matching words
Schirm and Regenschirm. Since compound nouns
such as Regenschirm are very common in German
and generate many out-of-vocabulary words, a com-
mon preprocessing step in German translation (and
translation evaluation to a lesser extent) is to split
compound words, and we end up with the last form
Regen schirm kaufen. This process is analogous to
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Chinese word segmentation.
We plan to conduct experiments on German and

other Asian languages with the same linguistic phe-
nomenon in future work.

5.2 Fractional Similarity Measures
In the current formulation of TESLA-CELAB, two
n-grams X and Y are either synonyms which com-
pletely match each other, or are completely unre-
lated. In contrast, the linear-programming based
TESLA metric allows fractional similarity measures
between 0 (completely unrelated) and 1 (exact syn-
onyms). We can then award partial scores for related
words, such as those identified as such by WordNet
or those with the same POS tags.

Supporting fractional similarity measures is non-
trivial in the TESLA-CELAB framework. We plan
to address this in future work.

5.3 Fractional Weights for N-grams
The TESLA-M metric allows each n-gram to have
a weight, which is primarily used to discount func-
tion words. TESLA-CELAB can support fractional
weights for n-grams as well by the following exten-
sion. We introduce a function m(X) that assigns a
weight in [0, 1] for each n-gram X. Accordingly, our
objective function is replaced by:

1
Z

(∑
X

m(X)cref(X) + f
∑
Y

m(Y )ccand(Y )

)

where Z is a normalizing constant so that the metric
has a range of [0, 1].

Z =
∑
X

m(X) + f
∑
Y

m(Y )

However, experiments with different weight func-
tions m(·) on the test data set failed to find a better
weight function than the currently implied m(·) =
1. This is probably due to the linguistic character-
istics of Chinese, where human judges apparently
give equal importance to function words and con-
tent words. In contrast, TESLA-M found discount-
ing function words very effective for English and
other European languages such as German. We plan
to investigate this in the context of non-Chinese lan-
guages.

6 Conclusion

In this work, we devise a new MT evaluation met-
ric in the family of TESLA (Translation Evaluation
of Sentences with Linear-programming-based Anal-
ysis), called TESLA-CELAB (Character-level Eval-
uation for Languages with Ambiguous word Bound-
aries), to address the problem of fuzzy word bound-
aries in the Chinese language, although neither the
phenomenon nor the method is unique to Chinese.
Our metric combines the advantages of character-
level and word-level metrics:

1. TESLA-CELAB is able to award scores for
partial word-level matches.

2. TESLA-CELAB does not have a segmentation
step, hence it will not introduce word segmen-
tation errors.

3. TESLA-CELAB is able to take full advantage
of the synonym dictionary, even when the syn-
onyms differ in the number of characters.

We show empirically that TESLA-CELAB
significantly outperforms the strong baseline
of character-level BLEU in two well known
English-Chinese MT evaluation data sets. The
source code of TESLA-CELAB is available from
http://nlp.comp.nus.edu.sg/software/.
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Abstract 

Many machine translation (MT) evaluation 

metrics have been shown to correlate better 

with human judgment than BLEU. In 

principle, tuning on these metrics should 

yield better systems than tuning on BLEU. 

However, due to issues such as speed, 

requirements for linguistic resources, and 

optimization difficulty, they have not been 

widely adopted for tuning. This paper 

presents PORT
1
, a new MT  evaluation 

metric which combines precision, recall 

and an ordering metric and which is 

primarily designed for tuning MT systems. 

PORT does not require external resources 

and is quick to compute. It has a better 

correlation with human judgment than 

BLEU. We compare PORT-tuned MT 

systems to BLEU-tuned baselines in five 

experimental conditions involving four 

language pairs. PORT tuning achieves 

consistently better performance than BLEU 

tuning, according to four automated 

metrics (including BLEU) and to human 

evaluation: in comparisons of outputs from 

300 source sentences, human judges 

preferred the PORT-tuned output 45.3% of 

the time (vs. 32.7% BLEU tuning  

preferences and 22.0% ties).  

1 Introduction 

Automatic evaluation metrics for machine 

translation (MT) quality are a key part of building 

statistical MT (SMT) systems. They play two 

                                                           
1 PORT: Precision-Order-Recall Tunable metric. 

roles: to allow rapid (though sometimes inaccurate) 

comparisons between different systems or between 

different versions of the same system, and to 

perform tuning of parameter values during system 

training. The latter has become important since the 

invention of minimum error rate training (MERT) 

(Och, 2003) and related tuning methods. These 

methods perform repeated decoding runs with 

different system parameter values, which are tuned 

to optimize the value of the evaluation metric over 

a development set with reference translations. 

MT evaluation metrics fall into three groups:  

• BLEU (Papineni et al., 2002), NIST 

(Doddington, 2002), WER, PER, TER 

(Snover et al., 2006), and LRscore (Birch and 

Osborne, 2011) do not use external linguistic 

information; they are fast to compute (except 

TER).  

• METEOR (Banerjee and Lavie, 2005), 

METEOR-NEXT (Denkowski and Lavie 

2010), TER-Plus (Snover et al., 2009), 

MaxSim (Chan and Ng, 2008), TESLA (Liu 

et al., 2010), AMBER (Chen and Kuhn, 2011) 

and MTeRater (Parton et al., 2011) exploit 

some limited linguistic resources, such as 

synonym dictionaries, part-of-speech tagging, 

paraphrasing tables or word root lists.  

• More sophisticated metrics such as RTE 

(Pado et al., 2009), DCU-LFG (He et al., 

2010) and MEANT (Lo and Wu, 2011) use 

higher level syntactic or semantic analysis to 

score translations. 

Among these metrics, BLEU is the most widely 

used for both evaluation and tuning. Many of the 

metrics correlate better with human judgments of 

translation quality than BLEU, as shown in recent 

WMT Evaluation Task reports (Callison-Burch et 
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al., 2010; Callison-Burch et al., 2011). However, 

BLEU remains the de facto standard tuning metric, 

for two reasons. First, there is no evidence that any 

other tuning metric yields better MT systems. Cer 

et al. (2010) showed that BLEU tuning is more 

robust than tuning with other metrics (METEOR, 

TER, etc.), as gauged by both automatic and 

human evaluation. Second, though a tuning metric 

should correlate strongly with human judgment, 

MERT (and similar algorithms) invoke the chosen 

metric so often that it must be computed quickly.  

Liu et al. (2011) claimed that TESLA tuning 

performed better than BLEU tuning according to 

human judgment. However, in the WMT 2011 

“tunable metrics” shared pilot task, this did not 

hold (Callison-Burch et al., 2011). In (Birch and 

Osborne, 2011), humans preferred the output from 

LRscore-tuned systems 52.5% of the time, versus 

BLEU-tuned system outputs 43.9% of the time. 

In this work, our goal is to devise a metric that, 

like BLEU, is computationally cheap and 

language-independent, but that yields better MT 

systems than BLEU when used for tuning. We 

tried out different combinations of statistics before 

settling on the final definition of our metric.  The 

final version, PORT, combines precision, recall, 

strict brevity penalty (Chiang et al., 2008) and 

strict redundancy penalty (Chen and Kuhn, 2011) 

in a quadratic mean expression. This expression is 

then further combined with a new measure of word 

ordering, v, designed to reflect long-distance as 

well as short-distance word reordering (BLEU only 

reflects short-distance reordering). In a later 

section, 3.3, we describe experiments that vary 

parts of the definition of PORT.  

Results given below show that PORT correlates 

better with human judgments of translation quality 

than BLEU does, and sometimes outperforms 

METEOR in this respect, based on data from 

WMT (2008-2010). However, since PORT is 

designed for tuning, the most important results are 

those showing that PORT tuning yields systems 

with better translations than those produced by 

BLEU tuning – both as determined by automatic 

metrics (including BLEU), and according to 

human judgment, as applied to five data conditions 

involving four language pairs. 

2 BLEU and PORT 

First, define n-gram precision p(n) and recall r(n): 

)(grams-n#

)(grams-n#
)(

T

RT
np

∩
=                 (1) 

)(grams-n#

)(grams-n#
)(

R

RT
nr

∩
=              (2) 

where T = translation, R = reference. Both BLEU 

and PORT are defined on the document-level, i.e. 

T and R are whole texts. If there are multiple 

references, we use closest reference length for each 

translation hypothesis to compute the numbers of 

the reference n-grams. 

2.1 BLEU 

BLEU is composed of precision Pg(N) and brevity 

penalty BP: 

BPNPBLEU g ×= )(                 (3)  

where Pg(N) is the geometric average of n-gram 

precisions 

NN

n

g npNP

1

1

)()( 







= ∏

=

               (4) 

The BLEU brevity penalty punishes the score if 

the translation length len(T) is shorter than the 

reference length len(R); it is: 

( ))(/)(1,0.1min TlenRleneBP −=         (5) 

2.2 PORT 

PORT has five components: precision, recall, strict 

brevity penalty (Chiang et al., 2008), strict 

redundancy penalty (Chen and Kuhn, 2011) and an 

ordering measure v. The design of PORT is based 

on exhaustive experiments on a development data 

set. We do not have room here to give a rationale 

for all the choices we made when we designed 

PORT. However, a later section (3.3) reconsiders 

some of these design decisions.  

2.2.1 Precision and Recall 

The average precision and average recall used in 

PORT (unlike those used in BLEU) are the 

arithmetic average of n-gram precisions Pa(N) and 

recalls Ra(N): 

∑
=

=
N

n

a np
N

NP
1

)(
1

)(                 (6) 

∑
=

=
N

n

a nr
N

NR
1

)(
1

)(                   (7) 
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We use two penalties to avoid too long or too 

short MT outputs. The first, the strict brevity 

penalty (SBP), is proposed in (Chiang et al., 2008). 

Let ti be the translation of input sentence i, and let 

ri be its reference. Set 














−=
∑

∑
i ii

i i

rt

r
SBP

|}||,min{|

||
1exp         (8) 

The second is the strict redundancy penalty (SRP), 

proposed in (Chen and Kuhn, 2011): 














−=

∑
∑

i i

i ii

r

rt
SRP

||

|}||,max{|
1exp         (9) 

To combine precision and recall, we tried four 

averaging methods: arithmetic (A), geometric (G), 

harmonic (H), and quadratic (Q) mean. If all of the 

values to be averaged are positive, the order is 

maxQAGHmin ≤≤≤≤≤ , with equality 

holding if and only if all the values being averaged 

are equal. We chose the quadratic mean to 

combine precision and recall, as follows: 

2

))(())((
)(

22
SRPNRSBPNP

NQmean aa ×+×
=   (10)  

2.2.2 Ordering Measure 

Word ordering measures for MT compare two 

permutations of the original source-language word 

sequence: the permutation represented by the 

sequence of corresponding words in the MT 

output, and the permutation in the reference. 

Several ordering measures have been integrated 

into MT evaluation metrics recently. Birch and 

Osborne (2011) use either Hamming Distance or 

Kendall’s τ Distance (Kendall, 1938) in their 

metric LRscore, thus obtaining two versions of 

LRscore. Similarly, Isozaki et al. (2011) adopt 

either Kendall’s τ Distance or Spearman’s ρ 

(Spearman, 1904) distance in their metrics.  

Our measure, v, is different from all of these. 

We use word alignment to compute the two 

permutations (LRscore also uses word alignment). 

The word alignment between the source input and 

reference is computed using GIZA++ (Och and 

Ney, 2003) beforehand with the default settings, 

then is refined with the heuristic grow-diag-final-

and; the word alignment between the source input 

and the translation is generated by the decoder with 

the help of word alignment inside each phrase pair. 

PORT uses permutations. These encode one-to-

one relations but not one-to-many, many-to-one, 

many-to-many or null relations, all of which can 

occur in word alignments. We constrain the 

forbidden types of relation to become one-to-one, 

as in (Birch and Osborne, 2011). Thus, in a one-to-

many alignment, the single source word is forced 

to align with the first target word; in a many-to-one 

alignment, monotone order is assumed for the 

target words; and source words originally aligned 

to null are aligned to the target word position just 

after the previous source word’s target position.  

After the normalization above, suppose we have 

two permutations for the same source n-word 

input. E.g., let P1 = reference, P2 = hypothesis: 

P1: 
1

1p  
2

1p  
3

1p  
4

1p  … 
i

p1  … 
n

p1  

 P2: 
1

2p  
2

2p  
3

2p  
4

2p  … 
i

p2  … 
n

p2  

Here, each
j

ip is an integer denoting position in the 

original source (e.g., 1

1p = 7 means that the first 

word in P1 is the 7
th
 source word). 

The ordering metric v is computed from two 

distance measures. The first is absolute 

permutation distance:
 

∑
=

−=
n

i

ii
ppPPDIST

1

21211 ||),(               (11) 

Let       
2/)1(

),(
1 211

1
+

−=
nn

PPDIST
ν                     (12)                  

v1 ranges from 0 to 1; a larger value means more 

similarity between the two permutations. This 

metric is similar to Spearman’s ρ (Spearman, 

1904). However, we have found that ρ punishes 

long-distance reorderings too heavily. For instance, 

1ν is more tolerant than ρ of the movement of 

“recently” in this example:  

Ref: Recently, I visited Paris 

Hyp: I visited Paris recently  

Inspired by HMM word alignment (Vogel et al., 

1996), our second distance measure is based on 

jump width. This punishes a sequence of words 

that moves a long distance with its internal order 

conserved, only once rather than on every word. In 

the following, only two groups of words have 

moved, so the jump width punishment is light: 

Ref: In the winter of 2010, I visited Paris 

Hyp: I visited Paris in the winter of 2010  

So the second distance measure is 
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where we set 00

1 =p  and 00

2 =p . Let 

1

),(
1

2
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2

−
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n

PPDIST
v                     (14) 

As with v1, v2 is also from 0 to 1, and larger values 

indicate more similar permutations. The ordering 

measure vs is the harmonic mean of v1 and v2:  

)/1/1/(2 21 vvvs +=

 

.                     (15) 

 vs in (15) is computed at segment level. For 

multiple references, we compute vs for each, and 

then choose the biggest one as the segment level 

ordering similarity. We compute document level 

ordering with a weighted arithmetic mean:  

∑
∑

=

=
×

=
l

s s

l

s ss

Rlen

Rlenv
v

1

1

)(

)(
                    (16) 

where l is the number of segments of the 

document, and len(R) is the length of the reference. 

2.2.3 Combined Metric 

Finally, Qmean(N) (Eq. (10) and the word ordering 

measure v are combined in a harmonic mean: 

α
vNQmean

PORT
/1)(/1

2

+
=           (17) 

Here α  is a free parameter that is tuned on held-

out data. As it increases, the importance of the 

ordering measure v goes up. For our experiments, 

we tuned α  on Chinese-English data, setting it to 

0.25 and keeping this value for the other language 

pairs. The use of v means that unlike BLEU, PORT 

requires word alignment information. 

 
3 Experiments 

3.1 PORT as an Evaluation Metric 

We studied PORT as an evaluation metric on 

WMT data; test sets include WMT 2008, WMT 

2009, and WMT 2010 all-to-English, plus 2009, 

2010 English-to-all submissions. The languages 

“all” (“xx” in Table 1) include French, Spanish, 

German and Czech. Table 1 summarizes the test 

set statistics. In order to compute the v part of 

PORT, we require source-target word alignments 

for the references and MT outputs. These aren’t 

included in WMT data, so we compute them with 

GIZA++. 

We used Spearman’s rank correlation coefficient 

ρ to measure correlation of the metric with system-

level human judgments of translation. The human 

judgment score is based on the “Rank” only, i.e., 

how often the translations of the system were rated 

as better than those from other systems (Callison-

Burch et al., 2008). Thus, BLEU, METEOR, and 

PORT were evaluated on how well their rankings 

correlated with the human ones. For the segment 

level, we follow (Callison-Burch et al., 2010) in 

using Kendall’s rank correlation coefficient τ.  

As shown in Table 2, we compared PORT with 

smoothed BLEU (mteval-v13a), and METEOR 

v1.0. Both BLEU and PORT perform matching of 

n-grams up to n = 4. 

 
Set Year Lang. #system #sent-pair 

Test1 2008 xx-en 43 7,804 

Test2 2009 xx-en 45 15,087 

Test3 2009 en-xx 40 14,563 

Test4 2010 xx-en 53 15,964 

Test5 2010 en-xx 32 18,508 

Table 1: Statistics of the WMT dev and test sets. 

 

 
 

Metric 

Into-En Out-of-En 

sys.  seg. sys.  seg. 

BLEU 0.792 0.215 0.777 0.240 

METEOR 0.834 0.231 0.835 0.225 

PORT 0.801 0.236 0.804 0.242 

Table 2: Correlations with human judgment on WMT 

 

PORT achieved the best segment level 

correlation with human judgment on both the “into 

English” and “out of English” tasks. At the system 

level, PORT is better than BLEU, but not as good 

as METEOR.  This is because we designed PORT 

to carry out tuning; we did not optimize its 

performance as an evaluation metric, but rather, to 

optimize system tuning performance. There are 

some other possible reasons why PORT did not 

outperform METEOR v1.0 at system level. Most 

WMT submissions involve language pairs with 

similar word order, so the ordering factor v in 

PORT won’t play a big role. Also, v depends on 

source-target word alignments for reference and 

test sets. These alignments were performed by 

GIZA++ models trained on the test data only.  
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3.2 PORT as a Metric for Tuning 

3.2.1 Experimental details 

The first set of experiments to study PORT as a 

tuning metric involved Chinese-to-English (zh-en); 

there were two data conditions. The first is the 

small data condition where FBIS
2
 is used to train 

the translation and reordering models. It contains 

10.5M target word tokens. We trained two 

language models (LMs), which were combined 

loglinearly. The first is a 4-gram LM which is 

estimated on the target side of the texts used in the 

large data condition (below). The second is a 5-

gram LM estimated on English Gigaword.  

The large data condition uses training data from 

NIST
3
 2009 (Chinese-English track). All allowed 

bilingual corpora except UN, Hong Kong Laws and 

Hong Kong Hansard were used to train the 

translation model and reordering models. There are 

about 62.6M target word tokens. The same two 

LMs are used for large data as for small data, and 

the same development (“dev”) and test sets are also 

used. The dev set comprised mainly data from the 

NIST 2005 test set, and also some balanced-genre 

web-text from NIST. Evaluation was performed on 

NIST 2006 and 2008. Four references were 

provided for all dev and test sets. 

The third data condition is a French-to-English 

(fr-en). The parallel training data is from Canadian 

Hansard data, containing 59.3M word tokens. We 

used two LMs in loglinear combination: a 4-gram 

LM trained on the target side of the parallel 

training data, and the English Gigaword 5-gram 

LM. The dev set has 1992 sentences; the two test 

sets have 2140 and 2164 sentences respectively. 

There is one reference for all dev and test sets.  

The fourth and fifth conditions involve German-

-English Europarl data. This parallel corpus 

contains 48.5M German tokens and 50.8M English 

tokens. We translate both German-to-English (de-

en) and English-to-German (en-de). The two 

conditions both use an LM trained on the target 

side of the parallel training data, and de-en also 

uses the English Gigaword 5-gram LM. News test 

2008 set is used as dev set; News test 2009, 2010, 

2011 are used as test sets. One reference is 

provided for all dev and test sets. 

                                                           
2 LDC2003E14 
3 http://www.nist.gov/speech/tests/mt 

All experiments were carried out with α  in Eq. 

(17) set to 0.25, and involved only lowercase 

European-language text. They were performed 

with MOSES (Koehn et al., 2007), whose decoder 

includes lexicalized reordering, translation models, 

language models, and word and phrase penalties.  

Tuning was done with n-best MERT, which is 

available in MOSES. In all tuning experiments, 

both BLEU and PORT performed lower case 

matching of n-grams up to n = 4. We also 

conducted experiments with tuning on a version of 

BLEU that incorporates SBP (Chiang et al., 2008) 

as a baseline. The results of original IBM BLEU 

and BLEU with SBP were tied; to save space, we 

only report results for original IBM BLEU here. 

3.2.2 Comparisons with automatic metrics 

First, let us see if BLEU-tuning and PORT-tuning 

yield systems with different translations for the 

same input. The first row of Table 3 shows the 

percentage of identical sentence outputs for the 

two tuning types on test data. The second row 

shows the similarity of the two outputs at word-

level (as measured by 1-TER): e.g., for the two zh-

en tasks, the two tuning types give systems whose 

outputs are about 25-30% different at the word 

level. By contrast, only about 10% of output words 

for fr-en differ for BLEU vs. PORT tuning.  
 

 zh-en 

small 

zh-en 

large 

fr-en 

Hans 

de-en 

WMT 

en-de 

WMT 

Same sent.  17.7% 13.5% 56.6% 23.7% 26.1% 

1-TER 74.2 70.9 91.6 87.1 86.6 

Table 3: Similarity of BLEU-tuned and PORT-tuned 

system outputs on test data. 

 

 

Task 

 

Tune 

Evaluation metrics (%) 

BLEU MTR 1-TER PORT 

zh-en 

small 

BLEU 

PORT 

26.8  

27.2* 

55.2 

55.7 

38.0 

38.0 

49.7 

50.0 

zh-en 

large 

BLEU 

PORT 

29.9  

30.3*  

58.4 

59.0 

41.2 

42.0 

53.0 

53.2 

fr-en 

Hans 

BLEU 

PORT 

38.8  

38.8  

69.8 

69.6 

54.2 

54.6 

57.1 

57.1 

de-en 

WMT 

BLEU 

PORT 

20.1  

20.3 

55.6 

56.0 

38.4 

38.4 

39.6 

39.7 

en-de 

WMT 

BLEU 

PORT 

13.6 

13.6 

43.3 

43.3 

30.1 

30.7 

31.7 

31.7 

Table 4: Automatic evaluation scores on test data. 

 * indicates the results are significantly better than the 

baseline (p<0.05). 
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Table 4 shows translation quality for BLEU- and 

PORT-tuned systems, as assessed by automatic 

metrics. We employed BLEU4, METEOR (v1.0), 

TER (v0.7.25), and the new metric PORT. In the 

table, TER scores are presented as 1-TER to ensure 

that for all metrics, higher scores mean higher 

quality. All scores are averages over the relevant 

test sets. There are twenty comparisons in the 

table. Among these, there is one case (French-

English assessed with METEOR) where BLEU 

outperforms PORT, there are seven ties, and there 

are twelve cases where PORT is better. Table 3 

shows that fr-en outputs are very similar for both 

tuning types, so the fr-en results are perhaps less 

informative than the others. Overall, PORT tuning 

has a striking advantage over BLEU tuning.  

Both (Liu et al., 2011) and (Cer et al., 2011) 

showed that with MERT, if you want the best 

possible score for a system’s translations according 

to metric M, then you should tune with M. This 

doesn’t appear to be true when PORT and BLEU 

tuning are compared in Table 4. For the two 

Chinese-to-English tasks in the table, PORT tuning 

yields a better BLEU score than BLEU tuning, 

with significance at p < 0.05. We are currently 

investigating why PORT tuning gives higher 

BLEU scores than BLEU tuning for Chinese-

English and German-English. In internal tests we 

have found no systematic difference in dev-set 

BLEUs, so we speculate that PORT’s emphasis on 

reordering yields models that generalize better for 

these two language pairs. 

3.2.3 Human Evaluation 

We conducted a human evaluation on outputs from 

BLEU- and PORT-tuned systems. The examples 

are randomly picked from all “to-English” 

conditions shown in Tables 3 & 4 (i.e., all 

conditions except English-to-German).  

We performed pairwise comparison of the 

translations produced by the system types as in 

(Callison-Burch et al., 2010; Callison-Burch et al., 

2011). First, we eliminated examples where the 

reference had fewer than 10 words or more than 50 

words, or where outputs of the BLEU-tuned and 

PORT-tuned systems were identical. The 

evaluators (colleagues not involved with this 

paper) objected to comparing two bad translations, 

so we then selected for human evaluation only 

translations that had high sentence-level (1-TER) 

scores. To be fair to both metrics, for each 

condition, we took the union of examples whose 

BLEU-tuned output was in the top n% of BLEU 

outputs and those whose PORT-tuned output was 

in the top n% of PORT outputs (based on (1-

TER)). The value of n varied by condition: we 

chose the top 20% of zh-en small, top 20% of en-

de, top 50% of fr-en and top 40% of zh-en large. 

We then randomly picked 450 of these examples to 

form the manual evaluation set. This set was split 

into 15 subsets, each containing 30 sentences. The 

first subset was used as a common set; each of the 

other 14 subsets was put in a separate file, to which 

the common set is added.  Each of the 14 

evaluators received one of these files, containing 

60 examples (30 unique examples and 30 examples 

shared with the other evaluators). Within each 

example, BLEU-tuned and PORT-tuned outputs 

were presented in random order. 

After receiving the 14 annotated files, we 

computed Fleiss’s Kappa (Fleiss, 1971) on the 

common set to measure inter-annotator agreement, 

allκ . Then, we excluded annotators one at a time 

to compute iκ (Kappa score without i-th annotator, 

i.e., from the other 13). Finally, we filtered out the 

files from the 4 annotators whose answers were 

most different from everybody else’s: i.e., 

annotators with the biggest 
i

all κκ −  values. 

This left 10 files from 10 evaluators. We threw 

away the common set in each file, leaving 300 

pairwise comparisons. Table 5 shows that the 

evaluators preferred the output from the PORT-

tuned system 136 times, the output from the 

BLEU-tuned one 98 times, and had no preference 

the other 66 times. This indicates that there is a 

human preference for outputs from the PORT-

tuned system over those from the BLEU-tuned 

system at the p<0.01 significance level (in cases 

where people prefer one of them). 

PORT tuning seems to have a bigger advantage 

over BLEU tuning when the translation task is 

hard. Of the Table 5 language pairs, the one where 

PORT tuning helps most has the lowest BLEU in 

Table 4 (German-English); the one where it helps 

least in Table 5 has the highest BLEU in Table 4 

(French-English). (Table 5 does not prove BLEU is 

superior to PORT for French-English tuning: 

statistically, the difference between 14 and 17 here 

is a tie). Maybe by picking examples for each 

condition that were the easiest for the system to 

translate (to make human evaluation easier), we 
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mildly biased the results in Table 5 against PORT 

tuning. Another possible factor is reordering. 

PORT differs from BLEU partly in modeling long-

distance reordering more accurately; English and 

French have similar word order, but the other two 

language pairs don’t. The results in section 3.3 

(below) for Qmean, a version of PORT without 

word ordering factor v, suggest v may be defined 

suboptimally for French-English.  

 
 PORT win BLEU win equal total 

zh-en 

small 

19 

38.8% 

18 

36.7% 

12 

24.5% 

49 

zh-en 

large 

69 

45.7% 

46 

30.5% 

36 

23.8% 

151 

fr-en 

Hans 

14 

32.6% 
17 

39.5% 

12 

27.9% 

43 

de-en 

WMT 

34 

59.7% 

17 

29.8% 

6 

10.5% 

57 

All 136 

45.3% 

98 

32.7% 

66 

22.0% 

300 

Table 5: Human preference for outputs from PORT-

tuned vs. BLEU-tuned system. 

3.2.4 Computation time  

A good tuning metric should run very fast; this is 

one of the advantages of BLEU. Table 6 shows the 

time required to score the 100-best hypotheses for 

the dev set for each data condition during MERT 

for BLEU and PORT in similar implementations. 

The average time of each iteration, including 

model loading, decoding, scoring and running 

MERT
4
, is in brackets. PORT takes roughly 1.5 – 

2.5 as long to compute as BLEU, which is 

reasonable for a tuning metric.  
 

 zh-en 

small 

zh-en 

large 

fr-en 

Hans 

de-en 

WMT 

en-de 

WMT 

BLEU 3 (13)  3 (17) 2 (19) 2 (20) 2 (11) 

PORT 5 (21) 5 (24) 4 (28) 5 (28) 4 (15) 

Table 6: Time to score 100-best hypotheses (average 

time per iteration) in minutes.  

3.2.5 Robustness to word alignment errors 

PORT, unlike BLEU, depends on word 

alignments. How does quality of word alignment 

between source and reference affect PORT tuning? 

We created a dev set from Chinese Tree Bank 

                                                           
4 Our experiments are run on a cluster. The average time for 

an iteration includes queuing, and the speed of each node is 

slightly different, so bracketed times are only for reference. 

(CTB) hand-aligned data. It contains 588 sentences 

(13K target words), with one reference. We also 

ran GIZA++ to obtain its automatic word 

alignment, computed on CTB and FBIS.  The AER 

of the GIZA++ word alignment on CTB is 0.32.  

In Table 7, CTB is the dev set. The table shows 

tuning with BLEU, PORT with human word 

alignment (PORT + HWA), and PORT with 

GIZA++ word alignment (PORT + GWA); the 

condition is zh-en small. Despite the AER of 0.32 

for automatic word alignment, PORT tuning works 

about as well with this alignment as for the gold 

standard CTB one. (The BLEU baseline in Table 7 

differs from the Table 4 BLEU baseline because 

the dev sets differ).  

 
Tune BLEU MTR 1-TER PORT 

BLEU 25.1 53.7 36.4 47.8 

PORT + HWA 25.3 54.4 37.0 48.2 

PORT + GWA 25.3 54.6 36.4 48.1 

Table 7: PORT tuning - human & GIZA++ alignment 

 

Task Tune BLEU MTR 1-TER PORT 

zh-en 

small 

BLEU 

PORT 

Qmean 

26.8 

27.2 

26.8 

55.2 

55.7 

55.3 

38.0 

38.0 

38.2 

49.7 

50.0 

49.8 

zh-en 

large 

BLEU 

PORT 

Qmean 

29.9 

30.3 

30.2 

58.4 

59.0 

58.5 

41.2 

42.0 

41.8 

53.0 

53.2 

53.1 

fr-en 

Hans 

BLEU 

PORT 

Qmean 

38.8 

38.8 

38.8 

69.8 

69.6 

69.8 

54.2 

54.6 

54.6 

57.1 

57.1 

57.1 

de-en 

WMT 

BLEU 

PORT 

Qmean 

20.1 

20.3 

20.3 

55.6 

56.0 

56.3 

38.4 

38.4 
38.1 

39.6 

39.7 

39.7 

en-de 

WMT 

BLEU 

PORT 

Qmean 

13.6 

13.6 

13.6 

43.3 

43.3 

43.4 

30.1 

30.7 

30.3 

31.7 

31.7 

31.7 

Table 8: Impact of ordering measure v on PORT 

3.3 Analysis 

Now, we look at the details of PORT to see which 

of them are the most important. We do not have 

space here to describe all the details we studied, 

but we can describe some of them. E.g., does the 

ordering measure v help tuning performance? To 

answer this, we introduce an intermediate metric. 

This is Qmean as in Eq. (10): PORT without the 

ordering measure. Table 8 compares tuning with 

BLEU, PORT, and Qmean.  PORT outperforms 

Qmean on seven of the eight automatic scores 

shown for small and large Chinese-English. 
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However, for the European language pairs, PORT 

and Qmean seem to be tied. This may be because 

we optimized α  in Eq. (18) for Chinese-English, 

making the influence of word ordering measure v 

in PORT too strong for the European pairs, which 

have similar word order.  

Measure v seems to help Chinese-English 

tuning. What would results be on that language 

pair if we were to replace v in PORT with another 

ordering measure? Table 9 gives a partial answer, 

with Spearman’s ρ and Kendall’s τ replacing v 

with ρ or τ in PORT for the zh-en small condition 

(CTB with human word alignment is the dev set). 

The original definition of PORT seems preferable. 

 
Tune BLEU METEOR 1-TER 

BLEU 25.1 53.7 36.4 

PORT(v) 25.3 54.4 37.0 

PORT(ρ) 25.1 54.2 36.3 

PORT(τ) 25.1 54.0 36.0 

Table 9: Comparison of the ordering measure: replacing 

ν with ρ or τ in PORT. 

 

 

Task 

 

Tune 

ordering measures 

ρ τ v 

NIST06 BLEU 

PORT 

0.979 

0.979 

0.926 

0.928 

0.915 

0.917 

NIST08 BLEU 

PORT 

0.980 

0.981 

0.926 

0.929 

0.916 

0.918 

CTB BLEU 

PORT 

0.973 

0.975 

0.860 

0.866 

0.847 

0.853 

Table 10: Ordering scores (ρ, τ and v) for test sets NIST 

2006, 2008 and CTB. 

 

A related question is how much word ordering 

improvement we obtained from tuning with PORT. 

We evaluate Chinese-English word ordering with 

three measures: Spearman’s ρ, Kendall’s τ distance  

as applied to two permutations (see section 2.2.2) 

and our own measure v. Table 10 shows the effects 

of BLEU and PORT tuning on these three 

measures, for three test sets in the zh-en large 

condition. Reference alignments for CTB were 

created by humans, while the NIST06 and NIST08 

reference alignments were produced with GIZA++. 

A large value of ρ, τ, or v implies outputs have 

ordering similar to that in the reference. From the 

table, we see that the PORT-tuned system yielded 

better word order than the BLEU-tuned system in 

all nine combinations of test sets and ordering 

measures. The advantage of PORT tuning is 

particularly noticeable on the most reliable test set: 

the hand-aligned CTB data.  

What is the impact of the strict redundancy 

penalty on PORT? Note that in Table 8, even 

though Qmean has no ordering measure, it 

outperforms BLEU. Table 11 shows the BLEU 

brevity penalty (BP) and (number of matching 1- 

& 4- grams)/(number of total 1- & 4- grams) for 

the translations. The BLEU-tuned and Qmean-

tuned systems generate similar numbers of 

matching n-grams, but Qmean-tuned systems 

produce fewer n-grams (thus, shorter translations). 

E.g., for zh-en small, the BLEU-tuned system 

produced 44,677 1-grams (words), while the 

Qmean-trained system one produced 43,555 1-

grams; both have about 32,000 1-grams matching 

the references. Thus, the Qmean translations have 

higher precision. We believe this is because of the 

strict redundancy penalty in Qmean. As usual, 

French-English is the outlier: the two outputs here 

are typically so similar that BLEU and Qmean 

tuning yield very similar n-gram statistics. 

 
Task Tune 1-gram 4-gram BP 

zh-en 

small 

BLEU 

Qmean 

32055/44677 

31996/43555 

4603/39716 

4617/38595 

0.967 

0.962 

zh-en 

large 

BLEU 

Qmean 

34583/45370 

34369/44229 

5954/40410 

5987/39271 

0.972 

0.959 

fr-en 

Hans 

BLEU 

Qmean 

28141/40525 

28167/40798 

8654/34224 

8695/34495 

0.983 

0.990 

de-en 

WMT 

BLEU 

Qmean 

42380/75428 

42173/72403 

5151/66425 

5203/63401 

1.000 

0.968 

en-de 

WMT 

BLEU 

Qmean 

30326/62367 

30343/62092 

2261/54812 

2298/54537 

1.000 

0.997 

Table 11: #matching-ngram/#total-ngram and BP score  

4 Conclusions 

In this paper, we have proposed a new tuning 

metric for SMT systems.  PORT incorporates 

precision, recall, strict brevity penalty and strict 

redundancy penalty, plus a new word ordering 

measure v.  As an evaluation metric, PORT 

performed better than BLEU at the system level 

and the segment level, and it was competitive with 

or slightly superior to METEOR at the segment 

level. Most important, our results show that PORT-

tuned MT systems yield better translations  than  

BLEU-tuned systems on several language pairs, 

according both to automatic metrics and human 

evaluations. In future work, we plan to tune the 

free parameter α for each language pair. 
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Abstract

Statistical machine translation is often faced
with the problem of combining training data
from many diverse sources into a single trans-
lation model which then has to translate sen-
tences in a new domain. We propose a novel
approach, ensemble decoding, which com-
bines a number of translation systems dynam-
ically at the decoding step. In this paper,
we evaluate performance on a domain adap-
tation setting where we translate sentences
from the medical domain. Our experimental
results show that ensemble decoding outper-
forms various strong baselines including mix-
ture models, the current state-of-the-art for do-
main adaptation in machine translation.

1 Introduction
Statistical machine translation (SMT) systems re-
quire large parallel corpora in order to be able to
obtain a reasonable translation quality. In statisti-
cal learning theory, it is assumed that the training
and test datasets are drawn from the same distribu-
tion, or in other words, they are from the same do-
main. However, bilingual corpora are only available
in very limited domains and building bilingual re-
sources in a new domain is usually very expensive.
It is an interesting question whether a model that is
trained on an existing large bilingual corpus in a spe-
cific domain can be adapted to another domain for
which little parallel data is present. Domain adap-
tation techniques aim at finding ways to adjust an
out-of-domain (OUT) model to represent a target do-
main (in-domain or IN).

Common techniques for model adaptation adapt
two main components of contemporary state-of-the-
art SMT systems: the language model and the trans-
lation model. However, language model adapta-
tion is a more straight-forward problem compared to

translation model adaptation, because various mea-
sures such as perplexity of adapted language models
can be easily computed on data in the target domain.
As a result, language model adaptation has been well
studied in various work (Clarkson and Robinson,
1997; Seymore and Rosenfeld, 1997; Bacchiani and
Roark, 2003; Eck et al., 2004) both for speech recog-
nition and for machine translation. It is also easier to
obtain monolingual data in the target domain, com-
pared to bilingual data which is required for transla-
tion model adaptation. In this paper, we focused on
adapting only the translation model by fixing a lan-
guage model for all the experiments. We expect do-
main adaptation for machine translation can be im-
proved further by combining orthogonal techniques
for translation model adaptation combined with lan-
guage model adaptation.

In this paper, a new approach for adapting the
translation model is proposed. We use a novel sys-
tem combination approach called ensemble decod-
ing in order to combine two or more translation
models with the goal of constructing a system that
outperforms all the component models. The strength
of this system combination method is that the sys-
tems are combined in the decoder. This enables
the decoder to pick the best hypotheses for each
span of the input. The main applications of en-
semble models are domain adaptation, domain mix-
ing and system combination. We have modified
Kriya (Sankaran et al., 2012), an in-house imple-
mentation of hierarchical phrase-based translation
system (Chiang, 2005), to implement ensemble de-
coding using multiple translation models.

We compare the results of ensemble decoding
with a number of baselines for domain adaptation.
In addition to the basic approach of concatenation of
in-domain and out-of-domain data, we also trained
a log-linear mixture model (Foster and Kuhn, 2007)
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as well as the linear mixture model of (Foster et al.,
2010) for conditional phrase-pair probabilities over
IN and OUT. Furthermore, within the framework of
ensemble decoding, we study and evaluate various
methods for combining translation tables.

2 Baselines

The natural baseline for model adaption is to con-
catenate the IN and OUT data into a single paral-
lel corpus and train a model on it. In addition to
this baseline, we have experimented with two more
sophisticated baselines which are based on mixture
techniques.

2.1 Log-Linear Mixture

Log-linear translation model (TM) mixtures are of
the form:

p(ē|f̄) ∝ exp

( M∑
m

λm log pm(ē|f̄)

)

where m ranges over IN and OUT, pm(ē|f̄) is an
estimate from a component phrase table, and each
λm is a weight in the top-level log-linear model, set
so as to maximize dev-set BLEU using minimum
error rate training (Och, 2003). We learn separate
weights for relative-frequency and lexical estimates
for both pm(ē|f̄) and pm(f̄ |ē). Thus, for 2 compo-
nent models (from IN and OUT training corpora),
there are 4 ∗ 2 = 8 TM weights to tune. Whenever
a phrase pair does not appear in a component phrase
table, we set the corresponding pm(ē|f̄) to a small
epsilon value.

2.2 Linear Mixture

Linear TM mixtures are of the form:

p(ē|f̄) =
M∑
m

λmpm(ē|f̄)

Our technique for setting λm is similar to that
outlined in Foster et al. (2010). We first extract a
joint phrase-pair distribution p̃(ē, f̄) from the de-
velopment set using standard techniques (HMM
word alignment with grow-diag-and symmeteriza-
tion (Koehn et al., 2003)). We then find the set
of weights λ̂ that minimize the cross-entropy of the
mixture p(ē|f̄) with respect to p̃(ē, f̄):

λ̂ = argmax
λ

∑
ē,f̄

p̃(ē, f̄) log
M∑
m

λmpm(ē|f̄)

For efficiency and stability, we use the EM algo-
rithm to find λ̂, rather than L-BFGS as in (Foster et
al., 2010). Whenever a phrase pair does not appear
in a component phrase table, we set the correspond-
ing pm(ē|f̄) to 0; pairs in p̃(ē, f̄) that do not appear
in at least one component table are discarded. We
learn separate linear mixtures for relative-frequency
and lexical estimates for both p(ē|f̄) and p(f̄ |ē).
These four features then appear in the top-level
model as usual – there is no runtime cost for the lin-
ear mixture.

3 Ensemble Decoding
Ensemble decoding is a way to combine the exper-
tise of different models in one single model. The
current implementation is able to combine hierar-
chical phrase-based systems (Chiang, 2005) as well
as phrase-based translation systems (Koehn et al.,
2003). However, the method can be easily extended
to support combining a number of heterogeneous
translation systems e.g. phrase-based, hierarchical
phrase-based, and/or syntax-based systems. This
section explains how such models can be combined
during the decoding.

Given a number of translation models which are
already trained and tuned, the ensemble decoder
uses hypotheses constructed from all of the models
in order to translate a sentence. We use the bottom-
up CKY parsing algorithm for decoding. For each
sentence, a CKY chart is constructed. The cells of
the CKY chart are populated with appropriate rules
from all the phrase tables of different components.
As in the Hiero SMT system (Chiang, 2005), the
cells which span up to a certain length (i.e. the max-
imum span length) are populated from the phrase-
tables and the rest of the chart uses glue rules as de-
fined in (Chiang, 2005).

The rules suggested from the component models
are combined in a single set. Some of the rules may
be unique and others may be common with other
component model rule sets, though with different
scores. Therefore, we need to combine the scores
of such common rules and assign a single score to
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them. Depending on the mixture operation used for
combining the scores, we would get different mix-
ture scores. The choice of mixture operation will be
discussed in Section 3.1.

Figure 1 illustrates how the CKY chart is filled
with the rules. Each cell, covering a span, is popu-
lated with rules from all component models as well
as from cells covering a sub-span of it.

In the typical log-linear model SMT, the posterior
probability for each phrase pair (ē, f̄) is given by:

p(ē | f̄) ∝ exp

(∑
i

wiφi(ē, f̄)︸ ︷︷ ︸
w·φ

)

Ensemble decoding uses the same framework for
each individual system. Therefore, the score of a
phrase-pair (ē, f̄) in the ensemble model is:

p(ē | f̄) ∝ exp

(
w1 · φ1︸ ︷︷ ︸

1st model

⊕ w2 · φ2︸ ︷︷ ︸
2nd model

⊕ · · ·
)

where⊕ denotes the mixture operation between two
or more model scores.

3.1 Mixture Operations

Mixture operations receive two or more scores
(probabilities) and return the mixture score (prob-
ability). In this section, we explore different options
for mixture operation and discuss some of the char-
acteristics of these mixture operations.

• Weighted Sum (wsum): in wsum the ensemble
probability is proportional to the weighted sum
of all individual model probabilities (i.e. linear
mixture).

p(ē | f̄) ∝
M∑
m

λm exp
(
wm · φm

)
where m denotes the index of component mod-
els, M is the total number of them and λi is the
weight for component i.

• Weighted Max (wmax): where the ensemble
score is the weighted max of all model scores.

p(ē | f̄) ∝ max
m

(
λm exp

(
wm · φm

))

• Model Switching (Switch): in model switch-
ing, each cell in the CKY chart gets populated
only by rules from one of the models and the
other models’ rules are discarded. This is based
on the hypothesis that each component model
is an expert on certain parts of sentence. In this
method, we need to define a binary indicator
function δ(f̄ ,m) for each span and component
model to specify rules of which model to retain
for each span.

δ(f̄ ,m) =


1, m = argmax

n∈M
ψ(f̄ , n)

0, otherwise

The criteria for choosing a model for each cell,
ψ(f̄ , n), could be based on:

– Max: for each cell, the model that has the
highest weighted best-rule score wins:

ψ(f̄ , n) = λn max
e

(wn · φn(ē, f̄))

– Sum: Instead of comparing only the
scores of the best rules, the model with
the highest weighted sum of the probabil-
ities of the rules wins. This sum has to
take into account the translation table limit
(ttl), on the number of rules suggested by
each model for each cell:

ψ(f̄ , n) = λn
∑
ē

exp
(
wn · φn(ē, f̄)

)
The probability of each phrase-pair (ē, f̄) is
computed as:

p(ē | f̄) =
M∑
m

δ(f̄ ,m) pm(ē | f̄)

• Product (prod): in Product models or Prod-
uct of Experts (Hinton, 1999), the probability
of the ensemble model or a rule is computed as
the product of the probabilities of all compo-
nents (or equally the sum of log-probabilities,
i.e. log-linear mixture). Product models can
also make use of weights to control the contri-
bution of each component. These models are
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Figure 1: The cells in the CKY chart are populated using rules from all component models and sub-span cells.

generally known as Logarithmic Opinion Pools
(LOPs) where:

p(ē | f̄) ∝ exp
( M∑
m

λm (wm · φm)
)

Product models have been used in combining
LMs and TMs in SMT as well as some other
NLP tasks such as ensemble parsing (Petrov,
2010).

Each of these mixture operations has a specific
property that makes it work in specific domain adap-
tation or system combination scenarios. For in-
stance, LOPs may not be optimal for domain adapta-
tion in the setting where there are two or more mod-
els trained on heterogeneous corpora. As discussed
in (Smith et al., 2005), LOPs work best when all the
models accuracies are high and close to each other
with some degree of diversity. LOPs give veto power
to any of the component models and this perfectly
works for settings such as the one in (Petrov, 2010)
where a number of parsers are trained by changing
the randomization seeds but having the same base
parser and using the same training set. They no-
ticed that parsers trained using different randomiza-
tion seeds have high accuracies but there are some
diversities among them and they used product mod-
els for their advantage to get an even better parser.
We assume that each of the models is expert in some
parts and so they do not necessarily agree on cor-
rect hypotheses. In other words, product models (or
LOPs) tend to have intersection-style effects while
we are more interested in union-style effects.

In Section 4.2, we compare the BLEU scores of
different mixture operations on a French-English ex-
perimental setup.

3.2 Normalization

Since in log-linear models, the model scores are
not normalized to form probability distributions, the
scores that different models assign to each phrase-
pair may not be in the same scale. Therefore, mixing
their scores might wash out the information in one
(or some) of the models. We experimented with two
different ways to deal with this normalization issue.
A practical but inexact heuristic is to normalize the
scores over a shorter list. So the list of rules coming
from each model for a cell in CKY chart is normal-
ized before getting mixed with other phrase-table
rules. However, experiments showed changing the
scores with the normalized scores hurts the BLEU
score radically. So we use the normalized scores
only for pruning and the actual scores are intact.
We could also globally normalize the scores to ob-
tain posterior probabilities using the inside-outside
algorithm. However, we did not try it as the BLEU
scores we got using the normalization heuristic was
not promissing and it would impose a cost in de-
coding as well. More investigation on this issue has
been left for future work.

A more principled way is to systematically find
the most appropriate model weights that can avoid
this problem by scaling the scores properly. We
used a publicly available toolkit, CONDOR (Van-
den Berghen and Bersini, 2005), a direct optimizer
based on Powell’s algorithm, that does not require
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explicit gradient information for the objective func-
tion. Component weights for each mixture operation
are optimized on the dev-set using CONDOR.

4 Experiments & Results

4.1 Experimental Setup

We carried out translation experiments using the Eu-
ropean Medicines Agency (EMEA) corpus (Tiede-
mann, 2009) as IN, and the Europarl (EP) corpus1 as
OUT, for French to English translation. The dev and
test sets were randomly chosen from the EMEA cor-
pus.2 The details of datasets used are summarized in
Table 1.

Dataset Sents Words
French English

EMEA 11770 168K 144K
Europarl 1.3M 40M 37M
Dev 1533 29K 25K
Test 1522 29K 25K

Table 1: Training, dev and test sets for EMEA.

For the mixture baselines, we used a standard
one-pass phrase-based system (Koehn et al., 2003),
Portage (Sadat et al., 2005), with the following 7
features: relative-frequency and lexical translation
model (TM) probabilities in both directions; word-
displacement distortion model; language model
(LM) and word count. The corpus was word-aligned
using both HMM and IBM2 models, and the phrase
table was the union of phrases extracted from these
separate alignments, with a length limit of 7. It
was filtered to retain the top 20 translations for each
source phrase using the TM part of the current log-
linear model.

For ensemble decoding, we modified an in-house
implementation of hierarchical phrase-based sys-
tem, Kriya (Sankaran et al., 2012) which uses the
same features mentioned in (Chiang, 2005): for-
ward and backward relative-frequency and lexical
TM probabilities; LM; word, phrase and glue-rules
penalty. GIZA++(Och and Ney, 2000) has been used
for word alignment with phrase length limit of 7.

In both systems, feature weights were optimized
using MERT (Och, 2003) and with a 5-gram lan-

1www.statmt.org/europarl
2Please contact the authors to access the data-sets.

guage model and Kneser-Ney smoothing was used
in all the experiments. We used SRILM (Stolcke,
2002) as the langugage model toolkit. Fixing the
language model allows us to compare various trans-
lation model combination techniques.

4.2 Results

Table 2 shows the results of the baselines. The first
group are the baseline results on the phrase-based
system discussed in Section 2 and the second group
are those of our hierarchical MT system. Since the
Hiero baselines results were substantially better than
those of the phrase-based model, we also imple-
mented the best-performing baseline, linear mixture,
in our Hiero-style MT system and in fact it achieves
the hights BLEU score among all the baselines as
shown in Table 2. This baseline is run three times
the score is averaged over the BLEU scores with
standard deviation of 0.34.

Baseline PBS Hiero
IN 31.84 33.69
OUT 24.08 25.32
IN + OUT 31.75 33.76
LOGLIN 32.21 –
LINMIX 33.81 35.57

Table 2: The results of various baselines implemented in
a phrase-based (PBS) and a Hiero SMT on EMEA.

Table 3 shows the results of ensemble decoding
with different mixture operations and model weight
settings. Each mixture operation has been evalu-
ated on the test-set by setting the component weights
uniformly (denoted by uniform) and by tuning the
weights using CONDOR (denoted by tuned) on a
held-out set. The tuned scores (3rd column in Ta-
ble 3) are averages of three runs with different initial
points as in Clark et al. (2011). We also reported the
BLEU scores when we applied the span-wise nor-
malization heuristic. All of these mixture operations
were able to significantly improve over the concate-
nation baseline. In particular, Switching:Max could
gain up to 2.2 BLEU points over the concatenation
baseline and 0.39 BLEU points over the best per-
forming baseline (i.e. linear mixture model imple-
mented in Hiero) which is statistically significant
based on Clark et al. (2011) (p = 0.02).

Prod when using with uniform weights gets the
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Mixture Operation Uniform Tuned Norm.
WMAX 35.39 35.47 (s=0.03) 35.47
WSUM 35.35 35.53 (s=0.04) 35.45
SWITCHING:MAX 35.93 35.96 (s=0.01) 32.62
SWITCHING:SUM 34.90 34.72 (s=0.23) 34.90
PROD 33.93 35.24 (s=0.05) 35.02

Table 3: The results of ensemble decoding on EMEA for Fr2En when using uniform weights, tuned weights and
normalization heuristic. The tuned BLEU scores are averaged over three runs with multiple initial points, as in (Clark
et al., 2011), with the standard deviations in brackets .

lowest score among the mixture operations, how-
ever after tuning, it learns to bias the weights to-
wards one of the models and hence improves by
1.31 BLEU points. Although Switching:Sum outper-
forms the concatenation baseline, it is substantially
worse than other mixture operations. One explana-
tion that Switching:Max is the best performing op-
eration and Switching:Sum is the worst one, despite
their similarities, is that Switching:Max prefers more
peaked distributions while Switching:Sum favours a
model that has fewer hypotheses for each span.

An interesting observation based on the results in
Table 3 is that uniform weights are doing reasonably
well given that the component weights are not opti-
mized and therefore model scores may not be in the
same scope (refer to discussion in §3.2). We suspect
this is because a single LM is shared between both
models. This shared component controls the vari-
ance of the weights in the two models when com-
bined with the standard L-1 normalization of each
model’s weights and hence prohibits models to have
too varied scores for the same input. Though, it may
not be the case when multiple LMs are used which
are not shared.

Two sample sentences from the EMEA test-set
along with their translations by the IN, OUT and En-
semble models are shown in Figure 2. The boxes
show how the Ensemble model is able to use n-
grams from the IN and OUT models to construct
a better translation than both of them. In the first
example, there are two OOVs one for each of the
IN and OUT models. Our approach is able to re-
solve the OOV issues by taking advantage of the
other model’s presence. Similarly, the second exam-
ple shows how ensemble decoding improves lexical
choices as well as word re-orderings.

5 Related Work

5.1 Domain Adaptation

Early approaches to domain adaptation involved in-
formation retrieval techniques where sentence pairs
related to the target domain were retrieved from the
training corpus using IR methods (Eck et al., 2004;
Hildebrand et al., 2005). Foster et al. (2010), how-
ever, uses a different approach to select related sen-
tences from OUT. They use language model per-
plexities from IN to select relavant sentences from
OUT. These sentences are used to enrich the IN
training set.

Other domain adaptation methods involve tech-
niques that distinguish between general and domain-
specific examples (Daumé and Marcu, 2006). Jiang
and Zhai (2007) introduce a general instance weight-
ing framework for model adaptation. This approach
tries to penalize misleading training instances from
OUT and assign more weight to IN-like instances
than OUT instances. Foster et al. (2010) propose a
similar method for machine translation that uses fea-
tures to capture degrees of generality. Particularly,
they include the output from an SVM classifier that
uses the intersection between IN and OUT as pos-
itive examples. Unlike previous work on instance
weighting in machine translation, they use phrase-
level instances instead of sentences.

A large body of work uses interpolation tech-
niques to create a single TM/LM from interpolating
a number of LMs/TMs. Two famous examples of
such methods are linear mixtures and log-linear mix-
tures (Koehn and Schroeder, 2007; Civera and Juan,
2007; Foster and Kuhn, 2007) which were used as
baselines and discussed in Section 2. Other meth-
ods include using self-training techniques to exploit
monolingual in-domain data (Ueffing et al., 2007;
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SOURCE aménorrhée , menstruations irrégulières
REF amenorrhoea , irregular menstruation

IN amenorrhoea , menstruations irrégulières

OUT aménorrhée , irregular menstruation

ENSEMBLE amenorrhoea , irregular menstruation

SOURCE le traitement par naglazyme doit être supervisé par un médecin ayant l’ expérience de
la prise en charge des patients atteints de mps vi ou d’ une autre maladie métabolique
héréditaire .

REF naglazyme treatment should be supervised by a physician experienced in the manage-
ment of patients with mps vi or other inherited metabolic diseases .

IN naglazyme treatment should be supervisé by a doctor the with
in the management of patients with mps vi or other hereditary metabolic disease .

OUT naglazyme ’s treatment must be supervised by a doctor with the experience of the care
of patients with mps vi. or another disease hereditary metabolic .

ENSEMBLE naglazyme treatment should be supervised by a physician experienced

in the management of patients with mps vi or other hereditary metabolic disease .

Figure 2: Examples illustrating how this method is able to use expertise of both out-of-domain and in-domain systems.

Bertoldi and Federico, 2009). In this approach, a
system is trained on the parallel OUT and IN data
and it is used to translate the monolingual IN data
set. Iteratively, most confident sentence pairs are se-
lected and added to the training corpus on which a
new system is trained.

5.2 System Combination

Tackling the model adaptation problem using sys-
tem combination approaches has been experimented
in various work (Koehn and Schroeder, 2007; Hilde-
brand and Vogel, 2009). Among these approaches
are sentence-based, phrase-based and word-based
output combination methods. In a similar approach,
Koehn and Schroeder (2007) use a feature of the fac-
tored translation model framework in Moses SMT
system (Koehn and Schroeder, 2007) to use multiple
alternative decoding paths. Two decoding paths, one
for each translation table (IN and OUT), were used
during decoding. The weights are set with minimum
error rate training (Och, 2003).

Our work is closely related to Koehn and
Schroeder (2007) but uses a different approach to
deal with multiple translation tables. The Moses
SMT system implements (Koehn and Schroeder,

2007) and can treat multiple translation tables in
two different ways: intersection and union. In in-
tersection, for each span only the hypotheses would
be used that are present in all phrase tables. For
each set of hypothesis with the same source and
target phrases, a new hypothesis is created whose
feature-set is the union of feature sets of all corre-
sponding hypotheses. Union, on the other hand, uses
hypotheses from all the phrase tables. The feature
set of these hypotheses are expanded to include one
feature set for each table. However, for the corre-
sponding feature values of those phrase-tables that
did not have a particular phrase-pair, a default log
probability value of 0 is assumed (Bertoldi and Fed-
erico, 2009) which is counter-intuitive as it boosts
the score of hypotheses with phrase-pairs that do not
belong to all of the translation tables.

Our approach is different from Koehn and
Schroeder (2007) in a number of ways. Firstly, un-
like the multi-table support of Moses which only
supports phrase-based translation table combination,
our approach supports ensembles of both hierarchi-
cal and phrase-based systems. With little modifica-
tion, it can also support ensemble of syntax-based
systems with the other two state-of-the-art SMT sys-
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tems. Secondly, our combining method uses the
union option, but instead of preserving the features
of all phrase-tables, it only combines their scores
using various mixture operations. This enables us
to experiment with a number of different opera-
tions as opposed to sticking to only one combination
method. Finally, by avoiding increasing the number
of features we can add as many translation models
as we need without serious performance drop. In
addition, MERT would not be an appropriate opti-
mizer when the number of features increases a cer-
tain amount (Chiang et al., 2008).

Our approach differs from the model combina-
tion approach of DeNero et al. (2010), a generaliza-
tion of consensus or minimum Bayes risk decoding
where the search space consists of those of multi-
ple systems, in that model combination uses forest
of derivations of all component models to do the
combination. In other words, it requires all compo-
nent models to fully decode each sentence, compute
n-gram expectations from each component model
and calculate posterior probabilities over transla-
tion derivations. While, in our approach we only
use partial hypotheses from component models and
the derivation forest is constructed by the ensemble
model. A major difference is that in the model com-
bination approach the component search spaces are
conjoined and they are not intermingled as opposed
to our approach where these search spaces are inter-
mixed on spans. This enables us to generate new
sentences that cannot be generated by component
models. Furthermore, various combination methods
can be explored in our approach. Finally, main tech-
niques used in this work are orthogonal to our ap-
proach such as Minimum Bayes Risk decoding, us-
ing n-gram features and tuning using MERT.

Finally, our work is most similar to that of
Liu et al. (2009) where max-derivation and max-
translation decoding have been used. Max-
derivation finds a derivation with highest score and
max-translation finds the highest scoring translation
by summing the score of all derivations with the
same yield. The combination can be done in two
levels: translation-level and derivation-level. Their
derivation-level max-translation decoding is similar
to our ensemble decoding with wsum as the mixture
operation. We did not restrict ourself to this par-
ticular mixture operation and experimented with a

number of different mixing techniques and as Ta-
ble 3 shows we could improve over wsum in our
experimental setup. Liu et al. (2009) used a mod-
ified version of MERT to tune max-translation de-
coding weights, while we use a two-step approach
using MERT for tuning each component model sep-
arately and then using CONDOR to tune component
weights on top of them.

6 Conclusion & Future Work

In this paper, we presented a new approach for do-
main adaptation using ensemble decoding. In this
approach a number of MT systems are combined at
decoding time in order to form an ensemble model.
The model combination can be done using various
mixture operations. We showed that this approach
can gain up to 2.2 BLEU points over its concatena-
tion baseline and 0.39 BLEU points over a powerful
mixture model.

Future work includes extending this approach to
use multiple translation models with multiple lan-
guage models in ensemble decoding. Different
mixture operations can be investigated and the be-
haviour of each operation can be studied in more
details. We will also add capability of support-
ing syntax-based ensemble decoding and experi-
ment how a phrase-based system can benefit from
syntax information present in a syntax-aware MT
system. Furthermore, ensemble decoding can be ap-
plied on domain mixing settings in which develop-
ment sets and test sets include sentences from dif-
ferent domains and genres, and this is a very suit-
able setting for an ensemble model which can adapt
to new domains at test time. In addition, we can
extend our approach by applying some of the tech-
niques used in other system combination approaches
such as consensus decoding, using n-gram features,
tuning using forest-based MERT, among other pos-
sible extensions.
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Abstract

We present a hierarchical chunk-to-string
translation model, which can be seen as a
compromise between the hierarchical phrase-
based model and the tree-to-string model,
to combine the merits of the two models.
With the help of shallow parsing, our model
learns rules consisting of words andchunks
and meanwhile introduce syntax cohesion.
Under the weighed synchronous context-free
grammar defined by these rules, our model
searches for the best translation derivation
and yields target translation simultaneously.
Our experiments show that our model signif-
icantly outperforms the hierarchical phrase-
based model and the tree-to-string model on
English-Chinese Translation tasks.

1 Introduction

The hierarchical phrase-based model (Chiang, 2007)
makes an advance of statistical machine translation
by employing hierarchical phrases, which not only
uses phrases to learn local translations but also uses
hierarchical phrases to capture reorderings of words
and subphrases which can cover a large scope. Be-
sides, this model is formal syntax-based and does
not need to specify the syntactic constituents of
subphrases, so it can directly learn synchronous
context-free grammars (SCFG) from a parallel text
without relying on any linguistic annotations or as-
sumptions, which makes it used conveniently and
widely.

∗This work was done when the first author visited Microsoft
Research Asia as an intern.

However, it is often desirable to consider syntac-
tic constituents of subphrases, e.g. the hierarchical
phrase

X → 〈X 1 for X 2 , X 2 de X1 〉

can be applied to both of the following strings in
Figure 1

“A request for a purchase of shares”
“filed for bankruptcy”,

and get the following translation, respectively

“goumai gufen de shenqing”
“pochan de shenqing”.

In the former, “A request” is a NP and this rule acts
correctly while in the latter “filed” is a VP and this
rule gives a wrong reordering. If we specify the first
X on the right-hand side to NP, this kind of errors
can be avoided.

The tree-to-string model (Liu et al., 2006; Huang
et al., 2006) introduces linguistic syntax via source
parse to direct word reordering, especially long-
distance reordering. Furthermore, this model is for-
malised as Tree Substitution Grammars, so it ob-
serves syntactic cohesion. Syntactic cohesion means
that the translation of a string covered by a subtree
in a source parse tends to be continuous. Fox (2002)
shows that translation between English and French
satisfies cohesion in the majority cases. Many pre-
vious works show promising results with an as-
sumption that syntactic cohesion explains almost
all translation movement for some language pairs
(Wu, 1997; Yamada and Knight, 2001; Eisner, 2003;
Graehl and Knight, 2004; Quirk et al., 2005; Cherry,
2008; Feng et al., 2010).
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But unfortunately, the tree-to-string model re-
quires each node must be strictly matched during
rule matching, which makes it strongly dependent
on the relationship of tree nodes and their roles in
the whole sentence. This will lead to data sparse-
ness and being vulnerable to parse errors.

In this paper, we present a hierarchical chunk-to-
string translation model to combine the merits of the
two models. Instead of parse trees, our model intro-
duces linguistic information in the form ofchunks,
so it does not need to care the internal structures and
the roles in the main sentence of chunks. Based on
shallow parsing results, it learns rules consisting of
either words (terminals) or chunks (nonterminals),
where adjacent chunks are packed into one nonter-
minal. It searches for the best derivation through the
SCFG-motivated space defined by these rules and
get target translation simultaneously. In some sense,
our model can be seen as a compromise between
the hierarchical phrase-based model and the tree-to-
string model, specifically

• Compared with the hierarchical phrase-based
model, it integrates linguistic syntax and sat-
isfies syntactic cohesion.

• Compared with the tree-to-string model, it only
needs to perform shallow parsing which intro-
duces less parsing errors. Besides, our model
allows a nonterminal in a rule to cover several
chunks, which can alleviate data sparseness and
the influence of parsing errors.

• we refine our hierarchical chunk-to-string
model into two models: a loose model (Section
2.1) which is more similar to the hierarchical
phrase-based model and a tight model (Section
2.2) which is more similar to the tree-to-string
model.

The experiments show that on the 2008 NIST
English-Chinese MT translation test set, both the
loose model and the tight model outperform the hi-
erarchical phrase-based model and the tree-to-string
model, where the loose model has a better perfor-
mance. While in terms of speed, the tight model
runs faster and its speed ranking is between the tree-
to-string model and the hierarchical phrase-based
model.

NP IN NP IN NP VBD VP
A request for a purchase of shares was made

goumai gufen de shenqing bei dijiao
购买 股份 的 申请 被 递交

(a)

NP VBZ VBN IN NP
The bank has filed for bankruptcy

gai yinhang yijing shenqing pochan
该 银行 已经 申请 破产

(b)

Figure 1: A running example of two sentences. For each
sentence, the first row gives the chunk sequence.

S

NP

DT

The

NN

bank

VP

VBZ

has

VP

VBN

filed

PP

IN

for

NP

NN

bankruptcy

(a) A parse tree

B-NP I-NP B-VBZ B-VBN B-IN B-NP
The bank has filed for bankruptcy

(b) A chunk sequence got from the parse tree

Figure 2: An example of shallow parsing.

2 Modeling

Shallow parsing (alsochunking) is an analysis of
a sentence which identifies the constituents (noun
groups, verbs, verb groups, etc), but neither spec-
ifies their internal structures, nor their roles in the
main sentence. In Figure 1, we give the chunk se-
quence in the first row for each sentence. We treat
shallow parsing as a sequence label task, and a sen-
tencef can have many possible different chunk la-
bel sequences. Therefore, in theory, the conditional
probability of a target translatione conditioned on
the source sentencef is given by taking the chunk
label sequences as a latent variablec:

p(e|f) =
∑

c

p(c|f)p(e|f , c) (1)
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In practice, we only take the best chunk label se-
quencêc got by

ĉ = argmax
c

p(c|f) (2)

Then we can ignore the conditional probability
p(ĉ|f) as it holds the same value for each transla-
tion, and get:

p(e|f) = p(ĉ|f)p(e|f , ĉ)

= p(e|f , ĉ) (3)

We formalize our model as a weighted SCFG.
In a SCFG, each rule (usually called production in
SCFGs) has an aligned pair of right-hand sides —
the source side and the target side, just as follows:

X → 〈α, β,∼〉

where X is a nonterminal,α andβ are both strings of
terminals and nonterminals, and∼ denotes one-to-
one links between nonterminal occurrences inα and
nonterminal occurrences inβ. A SCFG produces a
derivation by starting with a pair of start symbols
and recursively rewrites every two coindexed non-
terminals with the corresponding components of a
matched rule. A derivation yields a pair of strings
on the right-hand side which are translation of each
other.

In a weighted SCFG, each rule has a weight and
the total weight of a derivation is the production
of the weights of the rules used by the derivation.
A translation may be produced by many different
derivations and we only use the best derivation to
evaluate its probability. Withd denoting a deriva-
tion andr denoting a rule, we have

p(e|f) = max
d

p(d,e|f , ĉ)

= max
d

∏

r∈d

p(r,e|f , ĉ) (4)

Following Och and Ney (2002), we frame our model
as a log-linear model:

p(e|f) =
exp

∑
k λkHk(d,e, ĉ,f)

exp
∑

d′,e′,k λkHk(d′,e′, ĉ,f)
(5)

where Hk(d,e, ĉ,f) =
∑

r

hk(f , ĉ, r)

So the best translation is given by

ê = argmax
e

∑

k

λkHk(d,e, ĉ,f) (6)

We employ the same set of features for the log-
linear model as the hierarchical phrase-based model
does(Chiang, 2005).

We further refine our hierarchical chunk-to-string
model into two models: a loose model which is more
similar to the hierarchical phrase-based model and
a tight model which is more similar to the tree-to-
string model. The two models differ in the form of
rules and the way of estimating rule probabilities.
While for decoding, we employ the same decoding
algorithm for the two models: given a test sentence,
the decoders first perform shallow parsing to get the
best chunk sequence, then apply a CYK parsing al-
gorithm with beam search.

2.1 A Loose Model

In our model, we employ rules containing non-
terminals to handle long-distance reordering where
boundary words play an important role. So for the
subphrases which cover more than one chunk, we
just maintain boundary chunks: we bundle adjacent
chunks into one nonterminal and denote it as the first
chunk tag immediately followed by “-” and next fol-
lowed by the last chunk tag. Then, for the string pair
<filed for bankruptcy, shenqing pochan>, we can
get the rule

r1 : X → 〈VBN 1 for NP2 , VBN 1 NP2 〉

while for the string pair<A request for a purchase
of shares, goumai gufen de shenqing>, we can get

r2 : X → 〈NP1 for NP-NP2 , NP-NP2 de NP1 〉.

The rule matching “A request for a purchase of
shares was” will be

r3 : X → 〈NP-NP1 VBD 2 , NP-NP1 VBD 2 〉.

We can see that in contrast to the method of rep-
resenting each chunk separately, this representation
form can alleviate data sparseness and the influence
of parsing errors.
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〈S1 , S1 〉 ⇒ 〈S2 X 3 , S2 X 3 〉

⇒ 〈X 4 X 3 , X 4 X 3 〉

⇒ 〈NP-NP5 VBD 6 X 3 , NP-NP5 VBD 6 X 3 〉

⇒ 〈NP7 for NP-NP8 VBD 6 X 3 , NP-NP8 de NP7 VBD 6 X 3 〉

⇒ 〈A request for NP-NP8 VBD 6 X 3 , NP-NP8 de shenqing VBD6 X 3 〉

⇒ 〈A request for a purchase of shares VBD6 X 3 , goumai gufen de shenqing VBD6 X 3 〉

⇒ 〈A request for a purchase of shares was X3 ,goumai gufen de shenqing bei X3 〉

⇒ 〈A request for a purchase of shares was made, goumai gufen de shenqing bei dijiao〉

(a) The loose model

〈NP-VP1 , NP-VP1 〉 ⇒ 〈NP-VBD 2 VP 3 , NP-VBD 2 VP 3 〉

⇒ 〈NP-NP4 VBD 5 VP 3 , NP-NP4 VBD 5 VP 3 〉

⇒ 〈NP6 for NP-NP7 VBD 5 VP 3 , NP-NP7 de NP6 VBD 5 VP 3 〉

⇒ 〈A request for NP-NP7 VBD 5 VP 3 , NP-NP7 de shenqing VBD5 VP 3 〉

⇒ 〈A request for a purchase of shares VBD5 VP 3 , goumai gufen de shenqing VBD5 VP 3 〉

⇒ 〈A request for a purchase of shares was VP3 ,goumai gufen de shenqing bei VP3 〉

⇒ 〈A request for a purchase of shares was made, goumai gufen de shenqing bei dijiao〉

(b) The tight model

Figure 3: The derivations of the sentence in Figure 1(a).

In these rules, the left-hand nonterminal symbol X
can not match any nonterminal symbol on the right-
hand side. So we need a set of rules such as

NP→ 〈X 1 , X 1 〉

NP-NP→ 〈X 1 , X 1 〉

and so on, and set the probabilities of these rules to
1. To simplify the derivation, we discard this kind of
rules and assume that X can match any nonterminal
on the right-hand side.

Only with r2 and r3, we cannot produce any
derivation of the whole sentence in Figure 1 (a). In
this case we need two specialglue rules:

r4 : S→ 〈S1 X 2 , S1 X 2 〉

r5 : S→ 〈X 1 , X 1 〉

Together with the following four lexical rules,

r6 : X → 〈a request, shenqing〉

r7 : X → 〈a purchase of shares, goumai gufen〉

r8 : X → 〈was, bei〉

r9 : X → 〈made, dijiao〉

Figure 3(a) shows the derivation of the sentence in
Figure 1(a).

2.2 A Tight Model

In the tight model, the right-hand side of each rule
remains the same as the loose model, but the left-
hand side nonterminal is not X but the correspond-
ing chunk labels. If a rule covers more than one
chunk, we just use the first and the last chunk la-
bels to denote the left-hand side nonterminal. The
rule set used in the tight model for the example in
Figure 1(a) corresponding to that in the loose model
becomes:

r2 : NP-NP→ 〈NP1 for NP-NP2 , NP-NP2 de NP1 〉

r3 : NP-VBD → 〈NP-NP1 VBD 2 , NP-NP1 VBD 2 〉.

r6 : NP→ 〈a request, shenqing〉

r7 : NP-NP→ 〈a purchase of shares, goumai gufen〉

r8 : VBD → 〈was, bei〉

r9 : VP → 〈made, dijiao〉

During decoding, we first collect rules for each
span. For a span which does not have any matching
rule, if we do not construct default rules for it, there
will be no derivation for the whole sentence, then we
need to construct default rules for this kind of span
by enumerating all possible binary segmentation of
the chunks in this span. For the example in Figure
1(a), there is no rule matching the whole sentence,
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so we need to construct default rules for it, which
should be

NP-VP→ 〈NP-VBD 1 VP 2 , NP-VBD 1 VP 2 〉.

NP-VP→ 〈NP-NP1 VBD-VP 2 , NP-NP1 VBD-VP 2 〉.

and so on.
Figure 3(b) shows the derivation of the sentence

in Figure 1(a).

3 Shallow Parsing

In a parse tree, a chunk is defined by a leaf node or
an inner node whose children are all leaf nodes (See
Figure 2 (a)). In our model, we identify chunks by
traversing a parse tree in a breadth-first order. Once
a node is recognized as a chunk, we skip its children.
In this way, we can get a sole chunk sequence given
a parse tree. Then we label each word with a label
indicating whether the word starts a chunk (B-) or
continues a chunk (I-). Figure 2(a) gives an example.
In this method, we get the training data for shallow
parsing from Penn Tree Bank.

We take shallow Parsing (chunking) as a sequence
label task and employ Conditional Random Field
(CRF)1 to train a chunker. CRF is a good choice for
label tasks as it can avoid label bias and use more
statistical correlated features. We employ the fea-
tures described in Sha and Pereira (2003) for CRF.
We do not introduce CRF-based chunkier in this pa-
per and more details can be got from Hammersley
and Clifford (1971), Lafferty et al. (2001), Taskar et
al. (2002), Sha and Pereira (2003).

4 Rule Extraction

In what follows, we introduce how to get the rule
set. We learn rules from a corpus that first is bi-
directionally word-aligned by the GIZA++ toolkit
(Och and Ney, 2000) and then is refined using a
“final-and” strategy. We generate the rule set in two
steps: first, we extract two sets of phrases,basic
phrasesandchunk-based phrases. Basic phrases are
defined using the same heuristic as previous systems
(Koehn et al., 2003; Och and Ney, 2004; Chiang,
2005). A chunk-based phrase is such a basic phrase
that covers one or more chunks on the source side.

1We use the open source toolkit CRF++ got in
http://code.google.com/p/crfpp/ .

We identity chunk-based phrases〈cj2
j1
,f

j2
j1
,ei2

i1
〉 as

follows:

1. A chunk-based phrase is a basic phrase;

2. cj1 begins with “B-”;

3. fj2 is the end word on the source side orcj2+1

does not begins with “I-”.

Given a sentence pair〈f ,e,∼〉, we extract rules for
the loose model as follows

1. If 〈f j2
j1
,ei2

i1
〉 is a basic phrase, then we can have

a rule
X → 〈f j2

j1
,ei2

i1
〉

2. Assume X → 〈α, β〉 is a rule with α =
α1f

j2
j1
α2 andβ = β1e

i2
i1
β2, and 〈f j2

j1
,ei2

i1
〉 is

a chunk-based phrase with a chunk sequence
Yu · · ·Yv, then we have the following rule

X → 〈α1Yu-Yv k α2, β1Yu-Yv k β2〉.

We evaluate the distribution of these rules in the
same way as Chiang (2007).

We extract rules for the tight model as follows

1. If 〈f j2
j1
,ei2

i1
〉 is a chunk-based phrase with a

chunk sequence Ys · · ·Yt, then we can have a
rule

Ys-Yt → 〈f j2
j1
,ei2

i1
〉

2. Assume Ys-Yt → 〈α, β〉 is a rule withα =
α1f

j2
j1
α2 andβ = β1e

i2
i1
β2, and 〈f j2

j1
,ei2

i1
〉 is

a chunk-based phrase with a chunk sequence
Yu · · ·Yv, then we have the following rule

Ys-Yt → 〈α1Yu-Yv k α2, β1Yu-Yv k β2〉.

We evaluate the distribution of rules in the same way
as Liu et al. (2006).

For the loose model, the nonterminals must be co-
hesive, while the whole rule can be noncohesive: if
both ends of a rule are nonterminals, the whole rule
is cohesive, otherwise, it may be noncohesive. In
contrast, for the tight model, both the whole rule and
the nonterminal are cohesive.

Even with the cohesion constraints, our model
still generates a large number of rules, but not all
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of the rules are useful for translation. So we follow
the method described in Chiang (2007) to filter the
rule set except that we allow two nonterminals to be
adjacent.

5 Related Works

Watanabe et al. (2003) presented a chunk-to-string
translation model where the decoder generates a
translation by first translating the words in each
chunk, then reordering the translation of chunks.
Our model distinguishes from their model mainly
in reordering model. Their model reorders chunks
resorting to a distortion model while our model re-
orders chunks according to SCFG rules which retain
the relative positions of chunks.

Nguyen et al. (2008) presented a tree-to-string
phrase-based method which is based on SCFGs.
This method generates SCFGs through syntac-
tic transformation including a word-to-phrase tree
transformation model and a phrase reordering model
while our model learns SCFG-based rules from
word-aligned bilingual corpus directly

There are also some works aiming to introduce
linguistic knowledge into the hierarchical phrase-
based model. Marton and Resnik (2008) took the
source parse tree into account and added soft con-
straints to hierarchical phrase-based model. Cherry
(2008) used dependency tree to add syntactic cohe-
sion. These methods work with the original SCFG
defined by hierarchical phrase-based model and use
linguistic knowledge to assist translation. Instead,
our model works under the new defined SCFG with
chunks.

Besides, some other researchers make efforts on
the tree-to-string model by employing exponentially
alternative parses to alleviate the drawback of 1-best
parse. Mi et al. (2008) presented forest-based trans-
lation where the decoder translates a packed forest
of exponentially many parses instead of i-best parse.
Liu and Liu (2010) proposed to parse and to trans-
late jointly by taking tree-based translation as pars-
ing. Given a source sentence, this decoder produces
a parse tree on the source side and a translation on
the target side simultaneously. Both the models per-
form in the unit of tree nodes rather than chunks.

6 Experiments

6.1 Data Preparation

Data for shallow parsing We got training data and
test data for shallow parsing from the standard Penn
Tree Bank (PTB) English parsing task by splitting
the sections 02-21 on the Wall Street Journal Portion
(Marcus et al., 1993) into two sets: the last 1000
sentences as the test set and the rest as the training
set. We filtered the features whose frequency was
lower than 3 and substituted‘‘ and’’ with ˝ to
keep consistent with translation data. We usedL2
algorithm to train CRF.

Data for Translation We used the NIST training
set for Chinese-English translation tasks excluding
the Hong Kong Law and Hong Kong Hansard2 as the
training data, which contains 470K sentence pairs.
For the training data set, we first performed word
alignment in both directions using GIZA++ toolkit
(Och and Ney, 2000) then refined the alignments
using “final-and”. We trained a 5-gram language
model with modified Kneser-Ney smoothing on the
Xinhua portion of LDC Chinese Gigaword corpus.
For the tree-to-string model, we parsed English sen-
tences using Stanford parser and extracted rules us-
ing the GHKM algorithm (Galley et al., 2004).

We used our in-house English-Chinese data set
as the development set and used the 2008 NIST
English-Chinese MT test set (1859 sentences) as the
test set. Our evaluation metric was BLEU-4 (Pap-
ineni et al., 2002) based on characters (as the tar-
get language is Chinese), which performed case-
insensitive matching of n-grams up ton = 4 and
used the shortest reference for the brevity penalty.
We used the standard minimum error-rate training
(Och, 2003) to tune the feature weights to maximize
the BLEU score on the development set.

6.2 Shallow Parsing

The standard evaluation metrics for shallow parsing
are precision P, recall R, and their harmonic mean
F1 score, given by:

P =
number of exactly recognized chunks

number of output chunks

R =
number of exactly recognized chunks

number of reference chunks
2The source side and target side are reversed.
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Word number Chunk number Accuracy %
23861 12258 94.48

Chunk type P % R % F1 % Found
All 91.14 91.35 91.25 12286
One 90.32 90.99 90.65 5236
NP 93.97 94.47 94.22 5523

ADVP 82.53 84.30 83.40 475
VP 93.66 92.04 92.84 284

ADJP 65.68 69.20 67.39 236
WHNP 96.30 95.79 96.04 189

QP 83.06 80.00 81.50 183

Table 1: Shallow parsing result. The collumFoundgives
the number of chunks recognized by CRF, the rowAll
represents all types of chunks, and the rowOnerepresents
the chunks that consist of one word.

F1 =
2 · P · R

P +R

Besides, we need another metric, accuracy A, to
evaluate the accurate rate of individual labeling de-
cisions of every word as

A =
number of exactly labeled words

number of words

For example, given a reference sequence
B-NP I-NP I-NP B-VP I-VP B-VP, CRF out-
puts a sequence O-NP I-NP I-NP B-VP I-VP I-NP,
thenP = 33.33%, A = 66.67%.

Table 1 summaries the results of shallow parsing.
For‘‘ and’’ were substituted with ˝ , the perfor-
mance was slightly influenced.

The F1 score of all chunks is 91.25% and the F1
score ofOneand NP, which in number account for
about 90% of chunks, is 90.65% and 94.22% respec-
tively. F score of NP chunking approaches 94.38%
given in Sha and Pereira (2003).

6.3 Performance Comparison

We compared our loose decoder and tight decoder
with our in-house hierarchical phrase-based decoder
(Chiang, 2007) and the tree-to-string decoder (Liu et
al., 2006). We set the same configuration for all the
decoders as follows: stack size = 30, nbest size = 30.
For the hierarchical chunk-based and phrase-based
decoders, we set max rule length to 5. For the tree-
to-string decoder, we set the configuration of rule

System Dev NIST08 Speed
phrase 0.2843 0.3921 1.163

tree 0.2786 0.3817 1.107
tight 0.2914 0.3987 1.208
loose 0.2936 0.4023 1.429

Table 2: Performance comparison.Phraserepresents
the hierarchical phrase-based decoder,treerepresents the
tree-to-string decoder,tight represents our tight decoder
andlooserepresents our loose decoder. The speed is re-
ported by seconds per sentence. The speed for the tree-to-
string decoder includes the parsing time (0.23s) and the
speed for the tight and loose models includes the shallow
parsing time, too.

extraction as: the height up to 3 and the number of
leaf nodes up to 5.

We give the results in Table 2. From the results,
we can see that both the loose and tight decoders
outperform the baseline decoders and the improve-
ment is significant using thesign-testof Collins et
al. (2005) (p < 0.01). Specifically, the loose model
has a better performance while the tight model has a
faster speed.

Compared with the hierarchical phrase-based
model, the loose model only imposes syntactic cohe-
sion cohesion to nonterminals while the tight model
imposes syntax cohesion to both rules and nonter-
minals which reduces search space, so it decoders
faster. We can conclude that linguistic syntax can
indeed improve the translation performance; syntac-
tic cohesion for nonterminals can explain linguis-
tic phenomena well; noncohesive rules are useful,
too. The extra time consumption against hierarchi-
cal phrase-based system comes from shallow pars-
ing.

By investigating the translation result, we find that
our decoder does well in rule selection. For exam-
ple, in the hierarchical phrase-based model, this kind
of rules, such as

X → 〈X of X , ∗〉, X → 〈X for X , ∗〉

and so on, where∗ stands for the target component,
are used with a loose restriction as long as the ter-
minals are matched, while our models employ more
stringent constraints on these rules by specifying the
syntactic constituent of “X”. With chunk labels, our
models can make different treatment for different
situations.
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System Dev NIST08 Speed
cohesive 0.2936 0.4023 1.429

noncohesive 0.2937 0.3964 1.734

Table 3: Influence of cohesion. The rowcohesiverep-
resents the loose system where nonterminals satisfy co-
hesion, and the rownoncohesiverepresents the modified
version of the loose system where nonterminals can be
noncohesive.

Compared with the tree-to-string model, the re-
sult indicates that the change of the source-side lin-
guistic syntax from parses to chunks can improve
translation performance. The reasons should be our
model can reduce parse errors and it is enough to use
chunks as the basic unit for machine translation. Al-
though our decoders and tree-to-string decoder all
run in linear-time with beam search, tree-to-string
model runs faster for it searches through a smaller
SCFG-motivated space.

6.4 Influence of Cohesion

We verify the influence of syntax cohesion via the
loose model. The cohesive model imposes syntax
cohesion on nonterminals to ensure the chunk is re-
ordered as a whole. In this experiment, we introduce
a noncohesive model by allowing a nonterminal to
match part of a chunk. For example, in the nonco-
hesive model, it is legal for a rule with the source
side

“NP for NP-NP”

to match

“request for a purchase of shares”

in Figure 1 (a), where “request” is part of NP. As
well, the rule with the source side

“NP for a NP-NP”

can match

“request for a purchase of shares”.

In this way, we can ensure all the rules used in the
cohesive system can be used in the noncohesive sys-
tem. Besides cohesive rules, the noncohesive system
can use noncohesive rules, too.

We give the results in Table 3. From the results,
we can see that cohesion helps to reduce search
space, so the cohesive system decodes faster. The
noncohesive system decoder slower, as it employs

System Number Dev NIST08 Speed
loose two 0.2936 0.4023 1.429
loose three 0.2978 0.4037 2.056
tight two 0.2914 0.3987 1.208
tight three 0.2954 0.4026 1.780

Table 4: The influence of the number of nonterminals.
The columnnumber lists the number of nonterminals
used at most in a rule.

more rules, but this does not bring any improvement
of translation performance. As other researches said
in their papers, syntax cohesion can explain linguis-
tic phenomena well.

6.5 Influence of the number of nonterminals

We also tried to allow a rule to hold three nonter-
minals at most. We give the result in Table 4. The
result shows that using three nonterminals does not
bring a significant improvement of translation per-
formance but quite more time consumption. So we
only retain two nonterminals at most in a rule.

7 Conclusion

In this paper, we present a hierarchical chunk-
to-string model for statistical machine translation
which can be seen as a compromise of the hierarchi-
cal phrase-based model and the tree-to-string model.
With the help of shallow parsing, our model learns
rules consisting of either words or chunks and com-
presses adjacent chunks in a rule to a nonterminal,
then it searches for the best derivation under the
SCFG defined by these rules. Our model can com-
bine the merits of both the models: employing lin-
guistic syntax to direct decoding, being syntax co-
hesive and robust to parsing errors. We refine the hi-
erarchical chunk-to-string model into two models: a
loose model (more similar to the hierarchical phrase-
based model) and a tight model (more similar to the
tree-to-string model).

Our experiments show that our decoder can im-
prove translation performance significantly over the
hierarchical phrase-based decoder and the tree-to-
string decoder. Besides, the loose model gives a bet-
ter performance while the tight model gives a faster
speed.
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Abstract

We propose a simple generative, syntactic
language model that conditions on overlap-
ping windows of tree context (or treelets) in
the same way that n-gram language models
condition on overlapping windows of linear
context. We estimate the parameters of our
model by collecting counts from automati-
cally parsed text using standard n-gram lan-
guage model estimation techniques, allowing
us to train a model on over one billion tokens
of data using a single machine in a matter of
hours. We evaluate on perplexity and a range
of grammaticality tasks, and find that we per-
form as well or better than n-gram models and
other generative baselines. Our model even
competes with state-of-the-art discriminative
models hand-designed for the grammaticality
tasks, despite training on positive data alone.
We also show fluency improvements in a pre-
liminary machine translation experiment.

1 Introduction

N -gram language models are a central component
of all speech recognition and machine translation
systems, and a great deal of research centers around
refining models (Chen and Goodman, 1998), ef-
ficient storage (Pauls and Klein, 2011; Heafield,
2011), and integration into decoders (Koehn, 2004;
Chiang, 2005). At the same time, because n-gram
language models only condition on a local window
of linear word-level context, they are poor models of
long-range syntactic dependencies. Although sev-
eral lines of work have proposed generative syntac-
tic language models that improve on n-gram mod-
els for moderate amounts of data (Chelba, 1997; Xu
et al., 2002; Charniak, 2001; Hall, 2004; Roark,

2004), these models have only recently been scaled
to the impressive amounts of data routinely used by
n-gram language models (Tan et al., 2011).

In this paper, we describe a generative, syntac-
tic language model that conditions on local con-
text treelets1 in a parse tree, backing off to smaller
treelets as necessary. Our model can be trained sim-
ply by collecting counts and using the same smooth-
ing techniques normally applied to n-gram mod-
els (Kneser and Ney, 1995), enabling us to apply
techniques developed for scaling n-gram models out
of the box (Brants et al., 2007; Pauls and Klein,
2011). The simplicity of our training procedure al-
lows us to train a model on a billion tokens of data in
a matter of hours on a single machine, which com-
pares favorably to the more involved training algo-
rithm of Tan et al. (2011), who use a two-pass EM
training algorithm that takes several days on several
hundred CPUs using similar amounts of data.

The simplicity of our approach also contrasts with
recent work on language modeling with tree sub-
stitution grammars (Post and Gildea, 2009), where
larger treelet contexts are incorporated by using so-
phisticated priors to learn a segmentation of parse
trees. Such an approach implicitly assumes that a
“correct” segmentation exists, but it is not clear that
this is true in practice. Instead, we build upon the
success of n-gram language models, which do not
assume a segmentation and instead score all over-
lapping contexts.

We evaluate our model in terms of perplexity, and
show that we achieve the same performance as a
state-of-the-art n-gram model. We also evaluate our
model on several grammaticality tasks proposed in

1We borrow the term treelet from Quirk et al. (2005), who
use it to refer to an arbitrary connected subgraph of a tree.
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(a) The index fell 109.85 Monday . (b) ROOT

S-VBDˆROOT

NP-NN

DT-the

The

NN

index

VP-VBDˆS

VBD

fell

CD-DC

109.85

NNTP

Monday

.

.

(c) ROOT

S-VBDˆROOT

NP-NN

DT-the

The

NN

index

VP-VBDˆS

VBD

fell

CD-DC

109.85

NNTP

Monday

.

.

5-GRAM

The board ’s will soon be feasible , from everyday which Coke ’s cabinet hotels .
They are all priced became regulatory action by difficulty caused nor Aug. 31 of Helmsley-Spear :
Lakeland , it may take them if the 46-year-old said the loss of the Japanese executives at him :
But 8.32 % stake in and Rep. any money for you got from several months , ” he says .

TREELET

Why a $ 1.2 million investment in various types of the bulk of TVS E. August ?
“ One operating price position has a system that has Quartet for the first time , ” he said .
He may enable drops to take , but will hardly revive the rush to develop two-stroke calculations . ”
The centers are losses of meals , and the runs are willing to like them .

Table 1: The first four samples of length between 15 and 20 generated from the 5-GRAM and TREELET models.

rule context would need its own state in the gram-
mar), and extensive pruning would be in order.

In practice, however, language models are nor-
mally integrated into a decoder, a non-trivial task
that is highly problem-dependent and beyond the
scope of this paper. However, we note that for
machine translation, a model that builds target-side
constituency parses, such as that of Galley et al.
(2006), combined with an efficient pruning strategy
like cube pruning (Chiang, 2005), should be able to
integrate our model without much difficulty.

That said, for evaluation purposes, whenever we
need to query our model, we use the simple strategy
of parsing a sentence using a black box parser, and
summing over our model’s probabilities of the 1000-
best parses.4 Note that the bottleneck in this case
is the parser, so our model can essentially score a
sentence at the speed of a parser.

5 Experiments

We evaluate our model along several dimensions.
We first show some sample sentences generated by
our model in Section 5.1. We report perplexity re-

4We found that using the 1-best worked just as well as the
1000-best on our grammaticality tasks, but significantly overes-
timated our model’s perplexities.

sults in Section 5.2. In Section 5.3, we measure
its ability to distinguish between grammatical En-
glish and various types of automatically generated,
or pseudo-negative,5 English. We report machine
translation reranking results in Section 5.4.

5.1 Generating Samples
Because our model is generative, we can qualita-
tively assess it by generating samples and verifying
that they are more syntactically coherent than other
approaches. In Table 1, we show the first four sam-
ples of length between 15 and 20 generated from
both model and a 5-gram model trained on the Penn
Treebank.

5.2 Perplexity
Perplexity is the standard intrinsic evaluation metric
for language models. It measures the inverse of the
per-word probability a model assigns to some held-
out set of grammatical English (so lower is better).
For training data, we constructed a large treebank by
concatenating the Penn Treebank, the Brown Cor-
pus, the 50K BLLIP training sentences from Post
(2011), and the AFP and APW portions of English

5We follow Okanohara and Tsujii (2007) in using the term
pseudo-negative to highlight the fact that automatically gener-
ated negative examples might not actually be ungrammatical.

Figure 1: Conditioning contexts and back-off strategies for Markov models. The bolded symbol indicates the part of the
tree/sentence being generated, and the dotted lines represent the conditioning contexts; back-off proceeds from the largest to the
smallest context. (a) A trigram model. (b) The context used for non-terminal productions in our treelet model. For this context,
P=VP-VBDˆS, P ′=S-VBDˆROOT, and r′=S-VBDˆROOT→NP-NN VP-VBDˆS . (c) The context used for terminal productions
in our treelet model. Here, P=VBD, R=CD-DC, r′=VP-VBDˆS→VBD CD-DC NNTP, w−1=index, and w−2=The. Note that the
tree is a modified version of a standard Penn Treebank parse – see Section 3 for details.

the literature (Okanohara and Tsujii, 2007; Foster et
al., 2008; Cherry and Quirk, 2008) and show that
it consistently outperforms an n-gram model as well
as other head-driven and tree-driven generative base-
lines. Our model even competes with state-of-the-art
discriminative classifiers specifically designed for
each task, despite being estimated on positive data
alone. We also show fluency improvements in a pre-
liminary machine translation reranking experiment.

2 Treelet Language Modeling

The common denominator of most n-gram language
models is that they assign probabilities roughly ac-
cording to empirical frequencies for observed n-
grams, but fall back to distributions conditioned on
smaller contexts for unobserved n-grams, as shown
in Figure 1(a). This type of smoothing is both highly
robust and easy to implement, requiring only the col-
lection of counts from data.

We would like to apply the same smoothing tech-
niques to distributions over rule yields in a con-
stituency tree, conditioned on contexts consisting
of previously generated treelets (rules, nodes, etc.).
Formally, let T be a constituency tree consisting of
context-free rules of the form r = P → C1 · · ·Cd,
where P is the parent symbol of rule r and Cd

1 =
C1 . . . Cd are its children. We wish to assign proba-
bilities to trees2

2A distribution over trees also induces a distribution over
sentences w`

1 given by p(w`
1) =

P
T :s(T )=w`

1
p(T ), where

p(T ) =
∏
r∈T

p(Cd
1 |h)

where the conditioning context h is some portion of
the already-generated parts of the tree. In this paper,
we assume that the children of a rule are expanded
from left to right, so that when generating the yield
Cd

1 , all treelets above and left of the parent P are
available. Note that a raw PCFG would condition
only on P , i.e. h = P .

As in the n-gram case, we would like to pick h
to be large enough to capture relevant dependencies,
but small enough that we can obtain meaningful es-
timates from data. We start with a straightforward
choice of context: we condition on P , as well as the
rule r′ that generated P , as shown in in Figure 1(b).

Conditioning on the parent rule r′ allows us to
capture several important dependencies. First, it
captures both P and its parent P ′, which predicts
the distribution over child symbols far better than
just P (Johnson, 1998). Second, it captures posi-
tional effects. For example, subject and object noun
phrases (NPs) have different distributions (Klein and
Manning, 2003), and the position of an NP relative
to a verb is a good indicator of this distinction. Fi-
nally, the generation of words at preterminals can
condition on siblings, allowing the model to capture,
for example, verb subcategorization frames.

We should be clear that we are not the first

s(T ) is the terminal yield of T .
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to use back-off-based smoothing for syntactic lan-
guage modeling – such techniques have been ap-
plied to models that condition on head-word con-
texts (Charniak, 2001; Roark, 2004; Zhang, 2009).
Parent rule context has also been employed in trans-
lation (Vaswani et al., 2011). However, to our
knowledge, we are the first to apply these techniques
for language modeling on large amounts of data.

2.1 Lexical context

Although it is tempting to think that we can replace
the left-to-right generation of n-gram models with
the purely top-down generation of typical PCFGs,
in practice, words are often highly predictive of the
words that follow them – indeed, n-gram models
would be terrible language models if this were not
the case. To capture linear effects, we extend the
context for terminal (lexical) productions to include
the previous two wordsw−2 andw−1 in the sentence
in addition to r′; see Figure 1(c) for a depiction. This
allows us to capture collocations and other lexical
correlations.

2.2 Backing off

As with n-gram models, counts for rule yields con-
ditioned on r′ are sparse, and we must choose an ap-
propriate back-off strategy. We handle terminal and
non-terminal productions slightly differently.

For non-terminal productions, we back off from
r′ to P and its parent P ′, and then to just P .
That is, we back off from a rule-annotated gram-
mar p(Cd

1 |P, P ′, r′) to a parent-annotated gram-
mar (Johnson, 1998) p(Cd

1 |P, P ′), then to a raw
PCFG p(Cd

1 |P ). In order to generalize to unseen
rule yields Cd

1 , we further back off from the ba-
sic PCFG probability p(Cd

1 |P ) to p(Ci|Ci−1
i−3 , P ), a

4-gram model over symbols C conditioned on P ,
interpolated with an unconditional 4-gram model
p(Ci|Ci−1

i−3 ). In other words, we back off from a raw
PCFG to

λ

d∏
i=1

p(Ci|Ci−1
i−3 , P ) + (1− λ)

d∏
i=1

p(Ci|Ci−1
i−3 )

where λ = 0.9 is an interpolation constant.
For terminal (i.e lexical) productions, we

first remove lexical context, backing off from

p(w|P,R, r′, w−1, w−2) to p(w|P,R, r′, w−1) and
then p(w|P,R, r′). From there, we back off to
p(w|P,R) whereR is the sibling immediately to the
right of P , then to a raw PCFG p(w|P ), and finally
to a unigram distribution. We chose this scheme be-
cause p(w|P,R) allows, for example, a verb to be
generated conditioned on the non-terminal category
of the argument it takes (since arguments usually im-
mediately follow verbs). We depict these two back-
off schemes pictorially in Figure 1(b) and (c).

2.3 Estimation

Estimating the probabilities in our model can be
done very simply using the same techniques (in fact,
the same code) used to estimate n-gram language
models. Our model requires estimates of four distri-
butions: p(Cd

1 |P, P ′, r′), p(w|P,R, r′, w−1, w−2),
p(Ci|Ci−1

i−n+1, P ), and p(Ci|Ci−1
i−n+1). In each case,

we require empirical counts of treelet tuples in the
same way that we require counts of word tuples for
estimating n-gram language models.

There is one additional hurdle in the estimation of
our model: while there exist corpora with human-
annotated constituency parses like the Penn Tree-
bank (Marcus et al., 1993), these corpora are quite
small – on the order of millions of tokens – and we
cannot gather nearly as many counts as we can for n-
grams, for which billions or even trillions (Brants et
al., 2007) of tokens are available on the Web. How-
ever, we can use one of several high-quality con-
stituency parsers (Collins, 1997; Charniak, 2000;
Petrov et al., 2006) to automatically generate parses.
These parses may contain errors, but not all parsing
errors are problematic for our model, since we only
care about the sentences generated by our model and
not the parses themselves. We show in our experi-
ments that the addition of data with automatic parses
does improve the performance of our language mod-
els across a range of tasks.

3 Tree Transformations

In the previous section, we described how to condi-
tion on rich parse context to better capture the dis-
tribution of English trees. While such context al-
lows our model to capture many interesting depen-
dencies, several important dependencies require ad-
ditional attention. In this section, we describe a
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ROOT

S-VBˆROOT

PRP-he

He

VP-VBˆS

VB

reset

NP-NNS

JJ

opening

NNS

arguments

PP-for

IN-for

for

NNT

today

.

.

Figure 2: A sample parse from the Penn Treebank after
the tree transformations described in Section 3. Note that
we have not shown head tag annotations on preterminals
because in that case, the head tag is the preterminal itself.

number of transformations of Treebank constituency
parses that allow us to capture such dependencies.
We list the annotations and deletions in the order in
which they are performed. A sample transformed
tree is shown in Figure 2.

Temporal NPs Following Klein and Manning (2003),
we attempt to annotate temporal noun phrases. Although
the Penn Treebank annotates temporal NPs, most off-the-
shelf parsers do not retain these tags, and we do not as-
sume their presence. Instead, we mark any noun that is
the head of a NP-TMP constituent at least once in the
Treebank as a temporal noun, so for example today would
be tagged as NNT and months would be tagged as NNTS.

Head Annotations We annotate every non-terminal or
preterminal with its head word if the head is a closed-
class word3 and with its head tag otherwise. Klein and
Manning (2003) used head tag annotation extensively,
though they applied their splits much more selectively.

NP Flattening We delete NPs dominated by
other NPs, unless the child NPs are in coordi-
nation or apposition. These NPs typically oc-
cur when nouns are modified by PPs, as in
(NP (NP (NN stock) (NNS sales)) (PP (IN by) (NNS traders))). By
removing the dominated NP, we allow the production
NNS→sales to condition on the presence of a modifying
PP (here a PP head-annotated with by).

Number Annotations Numbers are divided into five
classes: CD-YR for numbers that consist of four digits
(which are usually years); CD-NM for entirely numeric
numbers; CD-DC for numbers that have a decimal; CD-

3We define the following to be closed class words: any punc-
tuation; all inflections of the verbs do, be, and have; and any
word tagged with IN, WDT, PDT, WP, WP$, TO, WRB, RP,
DT, SYM, EX, POS, PRP, AUX, or CC.

MX for numbers that mix letters and digits; and CD-AL
for numbers that are entirely alphabetic.

SBAR Flattening We remove any sentential (S) nodes
immediately dominated by an SBAR. S nodes under
SBAR have very distinct distributions from other senten-
tial nodes, mostly due to empty subjects and/or objects.

VP Flattening We remove any VPs immediately domi-
nating a VP, unless it is conjoined with another VP. In the
Treebank, chains of verbs (e.g. will be going) have a sep-
arate VP for each verb. By flattening such structures, we
allow the main verb and its arguments to condition on the
whole chain of verbs. This effect is particularly important
for passive constructions.

Gapped Sentence Annotation Collins (1999) and
Klein and Manning (2003) annotate nodes which have
empty subjects. Because we only assume the presence
of automatically derived parses, which do not produce
the empty elements in the original Treebank, we must
identify such elements on our own. We use a very simple
procedure: we annotate all S or SBAR nodes that have a
VP before any NPs.

Parent Annotation We annotate all VPs with their par-
ent symbol. Because our treelet model already conditions
on the parent, this has the effect of allowing verbs to con-
dition on their grandparents. This was important for VPs
under SBAR nodes, which often have empty objects. We
also parent-annotated any child of the ROOT.

Unary Deletion We remove all unary productions ex-
cept the root and preterminal productions, keeping only
the bottom-most symbol. Because we are not interested
in the internal labels of the trees, unaries are largely a
nuisance, and their removal brings many symbols into the
context of others.

4 Scoring a Sentence

Computing the probability of a sentence w`
1 under

our model requires summing over all possible parses
of w`

1. Although our model can be formulated as a
straightforward PCFG, allowing O(`3) computation
of this sum, the grammar constant for this PCFG
would be unmanageably large (since every parent
rule context would need its own state in the gram-
mar), and extensive pruning would be in order.

In practice, however, language models are nor-
mally integrated into a decoder, a non-trivial task
that is highly problem-dependent and beyond the
scope of this paper. For machine translation, a model
that builds target-side constituency parses, such as
that of Galley et al. (2006), combined with an ef-
ficient pruning strategy like cube pruning (Chiang,
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5-GRAM

The board ’s will soon be feasible , from everyday which Coke ’s cabinet hotels .
They are all priced became regulatory action by difficulty caused nor Aug. 31 of Helmsley-Spear :
Lakeland , it may take them if the 46-year-old said the loss of the Japanese executives at him :
But 8.32 % stake in and Rep. any money for you got from several months , ” he says .

TREELET

Why a $ 1.2 million investment in various types of the bulk of TVS E. August ?
“ One operating price position has a system that has Quartet for the first time , ” he said .
He may enable drops to take , but will hardly revive the rush to develop two-stroke calculations . ”
The centers are losses of meals , and the runs are willing to like them .

Table 1: The first four samples of length between 15 and 20 generated from the 5-GRAM and TREELET models.

2005), should be able to integrate our model without
much difficulty.

That said, for evaluation purposes, whenever we
need to query our model, we use the simple strategy
of parsing a sentence using a black box parser, and
summing over our model’s probabilities of the 1000-
best parses.4 Note that the bottleneck in this case
is the parser, so our model can essentially score a
sentence at the speed of a parser.

5 Experiments

We evaluate our model along several dimensions.
We first show some sample generated sentences in
Section 5.1. We report perplexity results in Sec-
tion 5.2. In Section 5.3, we measure its ability to
distinguish between grammatical English and var-
ious types of automatically generated, or pseudo-
negative,5 English. We report machine translation
reranking results in Section 5.4.

5.1 Generating Samples

Because our model is generative, we can qualita-
tively assess it by generating samples and verifying
that they are more syntactically coherent than other
approaches. In Table 1, we show the first four sam-
ples of length between 15 and 20 generated from our
model and a 5-gram model trained on the Penn Tree-
bank.

4We found that using the 1-best worked just as well as the
1000-best on our grammaticality tasks, but significantly overes-
timated our model’s perplexities.

5We follow Okanohara and Tsujii (2007) in using the term
pseudo-negative to highlight the fact that automatically gener-
ated negative examples might not actually be ungrammatical.

5.2 Perplexity
Perplexity is the standard intrinsic evaluation metric
for language models. It measures the inverse of the
per-word probability a model assigns to some held-
out set of grammatical English (so lower is better).
For training data, we constructed a large treebank by
concatenating the WSJ and Brown portions of the
Penn Treebank, the 50K BLLIP training sentences
from Post (2011), and the AFP and APW portions
of English Gigaword version 3 (Graff, 2003), total-
ing about 1.3 billion tokens. We used the human-
annotated parses for the sentences in the Penn Tree-
bank, but parsed the Gigaword and BLLIP sentences
with the Berkeley Parser. Hereafter, we refer to this
training data as our 1B corpus. We used Section 0
of the WSJ as our test corpus. Results are shown in
Table 2. In addition to our TREELET model, we also
show results for the following baselines:

5-GRAM A 5-gram interpolated Kneser-Ney model.
PCFG-LA The Berkeley Parser in language model mode.
HEADLEX A head-lexicalized model similar to, but
more powerful6 than, Collins Model 1 (Collins, 1999).
PCFG A raw PCFG.
TREELET-TRANS A PCFG estimated on the trees after
the transformations of Section 3.
TREELET-RULE The TREELET-TRANS model with the
parent rule context described in Section 2. This is equiv-
alent to the full TREELET model without the lexical con-
text described in Section 2.1.

6Specifically, like Collins Model 1, we generate a rule yield
conditioned on parent symbol P and head word h by first gen-
erating its head symbol Ch, then generating the head words and
symbols for left and right modifiers outwards from Ch. Unlike
Model 1, which generates each modifier head and symbol con-
ditioned only on Ch, h, and P , we additionally condition on the
previously generated modifier’s head and symbol and back off
to Model 1.
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Model Perplexity
PCFG 1772
TREELET-TRANS 722
TREELET-RULE 329
TREELET 198†
PCFG-LA 330**
HEADLEX 299
5-GRAM 207†

Table 2: Perplexity of several generative models on Sec-
tion 0 of the WSJ. The differences between scores marked
with † are not statistically significant. PCFG-LA (marked
with **) was only trained on the WSJ and Brown corpora
because it does not scale to large amounts of data.

We used the Berkeley LM toolkit (Pauls
and Klein, 2011), which implements Kneser-Ney
smoothing, to estimate all back-off models for both
n-gram and treelet models. To deal with unknown
words, we use the following strategy: after the first
10000 sentences, whenever we see a new word in
our training data, we replace it with a signature7

10% of the time.
Our model outperforms all other generative mod-

els, though the improvement over the n-gram model
is not statistically significant. Note that because we
use a k-best approximation for the sum over trees,
all perplexities (except for PCFG-LA and 5-GRAM)
are pessimistic bounds.

5.3 Classification of Pseudo-Negative Sentences

We make use of three kinds of automatically gener-
ated pseudo-negative sentences previously proposed
in the literature: Okanohara and Tsujii (2007) pro-
posed generating pseudo-negative examples from a
trigram language model; Foster et al. (2008) create
“noisy” sentences by automatically inserting a sin-
gle error into grammatical sentences with a script
that randomly deletes, inserts, or misspells a word;
and Och et al. (2004) and Cherry and Quirk (2008)
both use the 1-best output of a machine translation
system. Examples of these three types of pseudo-
negative data are shown in Table 3. We evaluate our
model’s ability to distinguish positive from pseudo-
negative data, and compare against generative base-
lines and state-of-the-art discriminative methods.

7We use signatures generated by the Berkeley Parser.
These signatures capture surface features such as capitalization,
presents of digits, and common suffixes. For example, the word
vexing would be replaced with the signature UNK-ing.

Noisy There was were many contributors.
Trigram For years in dealer immediately .
MT we must further steps .

Table 3: Sample pseudo-negative sentences.

We would like to use our model to make grammat-
icality judgements, but as a generative model it can
only provide us with probabilities. Simply thresh-
olding generative probabilities, even with a separate
threshold for each length, has been shown to be very
ineffective for grammaticality judgements, both for
n-gram and syntactic language models (Cherry and
Quirk, 2008; Post, 2011). We used a simple measure
for isolating the syntactic likelihood of a sentence:
we take the log-probability under our model and
subtract the log-probability under a unigram model,
then normalize by the length of the sentence.8 This
measure, which we call the syntactic log-odds ratio
(SLR), is a crude way of “subtracting out” the se-
mantic component of the generative probability, so
that sentences that use rare words are not penalized
for doing so.

5.3.1 Trigram Classification
To facilitate comparison with previous work, we

used the same negative corpora as Post (2011) for
trigram classification. They randomly selected 50K
train, 3K development, and 3K positive test sen-
tences from the BLLIP corpus, then trained a tri-
gram model on 450K BLLIP sentences and gener-
ated 50K train, 3K development, and 3K negative
sentences. We parsed the 50K positive training ex-
amples of Post (2011) with the Berkeley Parser and
used the resulting treebank to train a treelet language
model. We set an SLR threshold for each model on
the 6K positive and negative development sentences.

Results are shown in Table 4. In addition to our
generative baselines, we show results for the dis-
criminative models reported in Cherry and Quirk
(2008) and Post (2011). The former train a latent
PCFG support vector machine for binary classifica-
tion (LSVM). The latter report results for two bi-
nary classifiers: RERANK uses the reranking fea-
tures of Charniak and Johnson (2005), and TSG uses

8Och et al. (2004) also report using a parser probability nor-
malized by the unigram probability (but not length), and did not
find it effective. We assume this is either because the length-
normalization is important, or because their choice of syntactic
language model was poor.
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Generative
BLLIP 1B

PCFG 81.5 81.8
TREELET-TRANS 87.7 90.1
TREELET-RULE 89.8 94.1
TREELET 88.9 93.3
PCFG-LA 87.1* –
HEADLEX 87.6 92.0
5-GRAM 67.9 87.5

Discriminative
BLLIP 1B

LSVM 81.42** –
TSG 89.9 –
RERANK 93.0 –

Table 4: Classification accuracy for trigram pseudo-negative
sentences on the BLLIP corpus. The number reported for
PCFG-LA is marked with a * to indicate that this model was
trained on the training section of the WSJ, not the BLLIP cor-
pus. The number reported for LSVM (marked with **) was eval-
uated on a different random split of the BLLIP corpus, and so is
not directly comparable.

indicator features extracted from a tree substitution
grammar derivation of each sentence.

Our TREELET model performs nearly as well as
the TSG method, and substantially outperforms the
LSVM method, though the latter was not tested on
the same random split. Interestingly, the TREELET-
RULE baseline, which removes lexical context from
our model, outperforms the full model. This is likely
because the negative data is largely coherent at the
trigram level (because it was generated from a tri-
gram model), and the full model is much more sen-
sitive to trigram coherence than the TREELET-RULE

model. This also explains the poor performance of
the 5-GRAM model.

We emphasize that the discriminative baselines
are specifically trained to separate trigram text from
natural English, while our model is trained on pos-
itive examples alone. Indeed, the methods in Post
(2011) are simple binary classifiers, and it is not
clear that these models would be properly calibrated
for any other task, such as integration in a decoder.

One of the design goals of our system was that
it be scalable. Unlike some of the discriminative
baselines, which require expensive operations9 on

9It is true that in order train our system, one must parse large
amounts of training data, which can be costly, though it only
needs to be done once. In contrast, even with observed train-
ing trees, the discriminative algorithms must still iteratively per-
form expensive operations (like parsing) for each sentence, and
a new model must be trained for new types of negative data.

Model Pairwise Independent
WSJ 1B WSJ 1B

PCFG 79.1 77.0 58.9 58.6
TREELET-RULE 90.3 94.4 63.8 66.2
TREELET 90.7 94.5 63.4 65.5
5-GRAM 86.3 93.5 55.7 60.1
HEADLEX 90.7 94.0 59.5 62.0
PCFG-LA 91.3 – 59.7 –
Foster et al. (2008) – – 65.9 –

Table 5: Classification accuracies on the noisy WSJ for mod-
els trained on WSJ Sections 2-21 and our 1B token corpus.
“Pairwise” accuracy is the fraction of correct sentences whose
SLR score was higher than its noisy version, and “independent”
refers to standard binary classification accuracy.

each training sentence, we can very easily scale
our model to much larger amounts of data. In Ta-
ble 4, we also show the performance of the gener-
ative models trained on our 1B corpus. All gener-
ative models improve, but TREELET-RULE remains
the best, now outperforming the RERANK system,
though of course it is likely that RERANK would im-
prove if it could be scaled up to more training data.

5.3.2 “Noisy” Classification

We also evaluate the performance of our model
on the task of distinguishing the noisy WSJ sen-
tences of Foster et al. (2008) from their original
versions. We use the noisy versions of Section 0
and 23 produced by their error-generating proce-
dure. Because they only report classification re-
sults on Section 0, we used Section 23 to tune an
SLR threshold, and tested our model on Section 0.
We show the results of both independent and pair-
wise classification for the WSJ and 1B training sets
in Table 5. Note that independent classification is
much more difficult than for the trigram data, be-
cause sentences contain at most one change, which
may not even result in an ungrammaticality. Again,
our model outperforms the n-gram model for both
types of classification, and achieves the same per-
formance as the discriminative system of Foster et
al. (2008), which is state-of-the-art for this data set.
The TREELET-RULE system again slightly outper-
forms the full TREELET model at independent clas-
sification, though not at pairwise classification. This
probably reflects the fact that semantic coherence
can still influence the SLR score, despite our efforts
to subtract it out. Because the TREELET model in-
cludes lexical context, it is more sensitive to seman-
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French German Chinese
5-GRAM 44.8 37.8 60.0
TREELET 57.9 66.0 83.8

Table 6: Pairwise comparison accuracy of MT output
against a reference translation for French, German, and
Chinese. The BLEU scores for these outputs are 32.7,
27.8, and 20.8. This task becomes easier, at least for our
TREELET model, as translation quality drops. Cherry and
Quirk (2008) report an accuracy of 71.9% on a similar
experiment with German a source language, though the
translation system and training data were different so the
numbers are not comparable. In particular, their transla-
tions had a lower BLEU score, making their task easier.

tic coherence and thus more likely to misclassify
semantically coherent but ungrammatical sentences.
For pairwise comparisons, where semantic coher-
ence is effectively held constant, such sentences are
not problematic.

5.3.3 Machine Translation Classification
We follow Och et al. (2004) and Cherry and Quirk

(2008) in evaluating our language models on their
ability to distinguish the 1-best output of a machine
translation system from a reference translation in a
pairwise fashion. Unfortunately, we do not have
access to the data used in those papers, so a di-
rect comparison is not possible. Instead, we col-
lected the English output of Moses (Hoang et al.,
2007), using both French and German as source lan-
guage, trained on the Europarl corpus used by WMT
2009.10 We also collected the output of Joshua (Li
et al., 2009) trained on 500K sentences of GALE
Chinese-English parallel newswire. We trained both
our TREELET model and a 5-GRAM model on the
union of our 1B corpus and the English sides of our
parallel corpora.

In Table 6, we show the pairwise comparison ac-
curacy (using SLR) on these three corpora. We see
that our system prefers the reference much more of-
ten than the 5-GRAM language model.11 However,
we also note that the easiness of the task is corre-
lated with the quality of translations (as measured in
BLEU score). This is not surprising – high-quality
translations are often grammatical and even a per-

10http://www.statmt.org/wmt09
11We note that the n-gram language model used by the MT

system was much smaller than the 5-GRAM model, as they were
only trained on the English sides of their parallel data.

fect language model might not be able to differenti-
ate such translations from their references.

5.4 Machine Translation Fluency
We also carried out reranking experiments on 1000-
best lists from Moses using our syntactic language
model as a feature. We did not find that the use
of our syntactic language model made any statis-
tically significant increases in BLEU score. How-
ever, we noticed in general that the translations fa-
vored by our model were more fluent, a useful im-
provement to which BLEU is often insensitive. To
confirm this, we carried out an Amazon Mechan-
ical Turk experiment where users from the United
States were asked to compare translations using our
TREELET language model as the language model
feature to those using the 5-GRAM model.12 We had
1000 such translation pairs rated by 4 separate Turk-
ers each. Although these two hypothesis sets had
the same BLEU score (up to statistical significance),
the Turkers preferred the output obtained using our
syntactic language model 59% of the time, indicat-
ing that our model had managed to pick out more
fluent hypotheses that nonetheless were of the same
BLEU score. This result was statistically significant
with p < 0.001 using bootstrap resampling.

6 Conclusion

We have presented a simple syntactic language
model that can be estimated using standard n-gram
smoothing techniques on large amounts of data. Our
model outperforms generative baselines on several
evaluation metrics and achieves the same perfor-
mance as state-of-the-art discriminative classifiers
specifically trained on several types of negative data.
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Abstract
The problem addressed in this paper is to seg-
ment a given multilingual document into seg-
ments for each language and then identify the
language of each segment. The problem was
motivated by an attempt to collect a large
amount of linguistic data for non-major lan-
guages from the web. The problem is formu-
lated in terms of obtaining the minimum de-
scription length of a text, and the proposed so-
lution finds the segments and their languages
through dynamic programming. Empirical re-
sults demonstrating the potential of this ap-
proach are presented for experiments using
texts taken from the Universal Declaration of
Human Rights and Wikipedia, covering more
than 200 languages.

1 Introduction

For the purposes of this paper, a multilingual text
means one containing text segments, limited to those
longer than a clause, written in different languages.
We can often find such texts in linguistic resources
collected from the World Wide Web for many non-
major languages, which tend to also contain portions
of text in a major language. In automatic process-
ing of such multilingual texts, they must first be seg-
mented by language, and the language of each seg-
ment must be identified, since many state-of-the-art
NLP applications are built by learning a gold stan-
dard for one specific language. Moreover, segmen-
tation is useful for other objectives such as collecting
linguistic resources for non-major languages and au-
tomatically removing portions written in major lan-
guages, as noted above. The study reported here was
motivated by this objective. The problem addressed
in this article is thus to segment a multilingual text
by language and identify the language of each seg-
ment. In addition, for our objective, the set of target
languages consists of not only major languages but
also many non-major languages: more than 200 lan-
guages in total.

Previous work that directly concerns the problem

addressed in this paper is rare. The most similar
previous work that we know of comes from two
sources and can be summarized as follows. First,
(Teahan, 2000) attempted to segment multilingual
texts by using text segmentation methods used for
non-segmented languages. For this purpose, he used
a gold standard of multilingual texts annotated by
borders and languages. This segmentation approach
is similar to that of word segmentation for non-
segmented texts, and he tested it on six different
European languages. Although the problem set-
ting is similar to ours, the formulation and solution
are different, particularly in that our method uses
only a monolingual gold standard, not a multilin-
gual one as in Teahan’s study. Second, (Alex, 2005)
(Alex et al., 2007) solved the problem of detecting
words and phrases in languages other than the prin-
cipal language of a given text. They used statisti-
cal language modeling and heuristics to detect for-
eign words and tested the case of English embed-
ded in German texts. They also reported that such
processing would raise the performance of German
parsers. Here again, the problem setting is similar to
ours but not exactly the same, since the embedded
text portions were assumed to be words. Moreover,
the authors only tested for the specific language pair
of English embedded in German texts. In contrast,
our work considers more than 200 languages, and
the portions of embedded text are larger: up to the
paragraph level to accommodate the reality of mul-
tilingual texts. The extension of our work to address
the foreign word detection problem would be an in-
teresting future work.

From a broader view, the problem addressed in
this paper is further related to two genres of previ-
ous work. The first genre is text segmentation. Our
problem can be situated as a sub-problem from the
viewpoint of language change. A more common set-
ting in the NLP context is segmentation into seman-
tically coherent text portions, of which a represen-
tative method is text tiling as reported by (Hearst,
1997). There could be other possible bases for text
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segmentation, and our study, in a way, could lead
to generalizing the problem. The second genre is
classification, and the specific problem of text clas-
sification by language has drawn substantial atten-
tion (Grefenstette, 1995) (Kruengkrai et al., 2005)
(Kikui, 1996). Current state-of-the-art solutions use
machine learning methods for languages with abun-
dant supervision, and the performance is usually
high enough for practical use. This article con-
cerns that problem together with segmentation but
has another particularity in aiming at classification
into a substantial number of categories, i.e., more
than 200 languages. This means that the amount of
training data has to remain small, so the methods
to be adopted must take this point into considera-
tion. Among works on text classification into lan-
guages, our proposal is based on previous studies us-
ing cross-entropy such as (Teahan, 2000) and (Juola,
1997). We explain these works in further detail in
§3.

This article presents one way to formulate the seg-
mentation and identification problem as a combina-
torial optimization problem; specifically, to find the
set of segments and their languages that minimizes
the description length of a given multilingual text. In
the following, we describe the problem formulation
and a solution to the problem, and then discuss the
performance of our method.

2 Problem Formulation

In our setting, we assume that a small amount (up
to kilobytes) of monolingual plain text sample data
is available for every language, e.g., the Universal
Declaration of Human Rights, which serves to gen-
erate the language model used for language identifi-
cation. This entails two sub-assumptions.

First, we assume that for all multilingual text,
every text portion is written in one of the given
languages; there is no input text of an unknown
language without learning data. In other words,
we use supervised learning. In line with recent
trends in unsupervised segmentation, the problem
of finding segments without supervision could be
solved through approaches such as Bayesian meth-
ods; however, we report our result for the supervised
setting since we believe that every segment must be
labeled by language to undergo further processing.

Second, we cannot assume a large amount of

learning data, since our objective requires us to con-
sider segmentation by both major and non-major
languages. For most non-major languages, only a
limited amount of corpus data is available.1

This constraint suggests the difficulty of applying
certain state-of the art machine learning methods re-
quiring a large learning corpus. Hence, our formu-
lation is based on the minimum description length
(MDL), which works with relatively small amounts
of learning data.

In this article, we use the following terms and
notations. A multilingual text to be segmented is
denoted as X = x1, . . . , x|X|, where xi denotes
the i-th character of X and |X| denotes the text’s
length. Text segmentation by language refers here
to the process of segmenting X by a set of borders
B = [B1, . . . , B|B|], where |B| denotes the num-
ber of borders, and each Bi indicates the location
of a language border as an offset number of charac-
ters from the beginning. Note that a pair of square
brackets indicates a list. Segmentation in this paper
is character-based, i.e., a Bi may refer to a position
inside a word. The list of segments obtained from
B is denoted as X = [X0, . . . , X|B|], where the con-
catenation of the segments equals X . The language
of each segment Xi is denoted as Li, where Li ∈ L,
the set of languages. Finally, L = [L0, . . . , L|B|]
denotes the sequence of languages corresponding to
each segment Xi. The elements in each adjacent pair
in L must be different.

We formulate the problem of segmenting a multi-
lingual text by language as follows. Given a multi-
lingual text X , the segments X for a list of borders
B are obtained with the corresponding languages L.
Then, the total description length is obtained by cal-
culating each description length of a segment Xi for
the language Li:

(X̂, L̂) = arg min
X,L

|B|∑
i=0

dlLi(Xi). (1)

The function dlLi(Xi) calculates the description
length of a text segment Xi through the use of a
language model for Li. Note that the actual total
description length must also include an additional
term, log2 |X|, giving information on the number
of segments (with the maximum to be segmented

1In fact, our first motivation was to collect a certain amount
of corpus data for non-major languages from Wikipedia.
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by each character). Since this term is a common
constant for all possible segmentations and the min-
imization of formula (1) is not affected by this term,
we will ignore it.

The model defined by (1) is additive for Xi, so
the following formula can be applied to search for
language Li given a segment Xi :

L̂i = arg min
Li∈L

dlLi(Xi), (2)

under the constraint that Li 6= Li−1 for i ∈
{1, . . . |B|}. The function dl can be further decom-
posed as follows to give the description length in an
information-theoretic manner:

dlLi(Xi) =− log2 PLi(Xi)

+ log2 |X|+ log2 |L|+ γ.
(3)

Here, the first term corresponds to the code length
of the text chunk Xi given a language model for
Li, which in fact corresponds to the cross-entropy
of Xi for Li multiplied by |Xi|. The remaining
terms give the code lengths of the parameters used
to describe the length of the first term: the second
term corresponds to the segment location; the third
term, to the identified language; and the fourth term,
to the language model of language Li. This fourth
term will differ according to the language model
type; moreover, its value can be further minimized
through formula (2). Nevertheless, since we use a
uniform amount of training data for every language,
and since varying γ would prevent us from improv-
ing the efficiency of dynamic programming, as ex-
plained in §4, in this article we set γ to a constant
obtained empirically.

Under this formulation, therefore, when detect-
ing the language of a segment as in formula (2), the
terms of formula (3) other than the first term will be
constant: what counts is only the first term, simi-
larly to much of the previous work explained in the
following section. We thus perform language de-
tection itself by minimizing the cross-entropy rather
than the MDL. For segmentation, however, the con-
stant terms function as overhead and also serve to
prohibit excessive decomposition.

Next, after briefly introducing methods to calcu-
late the first term of formula (3), we explain the so-
lution to optimize the combinatorial problem of for-
mula (1).

3 Calculation of Cross-Entropy

The first term of (3), − log2 PLi(Xi), is the cross-
entropy of Xi for Li multiplied by |Xi|. Vari-
ous methods for computing cross-entropy have been
proposed, and these can be roughly classified into
two types based on different methods of univer-
sal coding and the language model. For example,
(Benedetto et al., 2002) and (Cilibrasi and Vitányi,
2005) used the universal coding approach, whereas
(Teahan and Harper, 2001) and (Sibun and Reynar,
1996) were based on language modeling using PPM
and Kullback-Leibler divergence, respectively.

In this section, we briefly introduce two meth-
ods previously studied by (Juola, 1997) and (Teahan,
2000) as representative of the two types, and we fur-
ther explain a modification that we integrate into the
final optimization problem. We tested several other
coding methods, but they did not perform as well as
these two methods.

3.1 Mean of Matching Statistics

(Farach et al., 1994) proposed a method to esti-
mate the entropy, through a simplified version of the
LZ algorithm (Ziv and Lempel, 1977), as follows.
Given a text X = x1x2 . . . xixi+1 . . ., Leni is de-
fined as the longest match length for two substrings
x1x2 . . . xi and xi+1xi+2 . . .. In this article, we de-
fine the longest match for two strings A and B as the
shortest prefix of string B that is not a substring of
A. Letting the average of Leni be E [Len], Farach
proved that |E [Len]− log2 i

H(X) | probabilistically con-
verges to zero as i →∞, where H(X) indicates the
entropy of X . Then, H(X) is estimated as

Ĥ(X) =
log2 i

E [Len]
.

(Juola, 1997) applied this method to estimate the
cross-entropy of two given texts. For two strings
Y = y1y2 . . . y|Y | and X = x1x2 . . . x|X|, let
Leni(Y ) be the match length starting from xi of X
for Y 2. Based on this formulation, the cross-entropy
is approximately estimated as

ĴY (X) =
log2 |Y |

E [Leni(Y )]
.

2This is called a matching statistics value, which explains
the subsection title.
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Since formula (1) of §2 is based on adding the
description length, it is important that the whole
value be additive to enable efficient optimization (as
will be explained in §4). We thus modified Juola’s
method as follows to make the length additive:

Ĵ ′
Y (X) = E

[
log2 |Y |
Leni(Y )

]
.

Although there is no mathematical guarantee that
ĴY (X) or Ĵ ′

Y (X) actually converges to the cross-
entropy, our empirical tests showed a good estimate
for both cases3. In this article, we use Ĵ ′

Y (X) as
a function to obtain the cross-entropy and for multi-
plication by |X| in formula (3).

3.2 PPM
As a representative method for calculating the
cross-entropy through statistical language model-
ing, we adopt prediction by partial matching (PPM),
a language-based encoding method devised by
(Cleary and Witten, 1984). It has the particular char-
acteristic of using a variable n-gram length, unlike
ordinary n-gram models4. It models the probability
of a text X with a learning corpus Y as follows:

PY (X) = PY (x1 . . . x|X|)

=

|X|∏
t=1

PY (xt|xt−1 . . . xmax(1,t−n)),

where n is a parameter of PPM, denoting the max-
imum length of the n-grams considered in the
model5. The probability PY (X) is estimated by es-
cape probabilities favoring the longer sequences ap-
pearing in the learning corpus (Bell et al., 1990).
The total code length of X is then estimated as
− log PY (X). Since this value is additive and gives
the total code length of X for language Y , we adopt
this value in our approach.

4 Segmentation by Dynamic Programming

By applying the above methods, we propose a solu-
tion to formula (1) through dynamic programming.

3This modification means that the original ĴY (X) is ob-
tained through the harmonic mean, with Len obtained
through the arithmetic mean, whereas Ĵ ′

Y (X) is obtained
through the arithmetic mean with Len as the harmonic
mean.

4In the context of NLP, this is known as Witten-Bell smooth-
ing.

5In the experiments reported here, n is set to 5 throughout.

Considering the additive characteristic of the de-
scription length formulated previously as formula
(1), we denote the minimized description length for
a given text X simply as DP(X), which can be de-
composed recursively as follows6:

DP(X) = min
t∈{0,...,|X|},L∈L

{DP(x0 . . . xt−1)

+ dlL(xt . . . x|X|)},
(4)

In other words, the computation of DP(X) is de-
composed into obtaining the addition of two terms
by searching through t ∈ {0, . . . , |X|} and L ∈ L.
The first term gives the MDL for the first t characters
of text X , while the second term, dlL(xt+1 . . . x|X|),
gives the description length of the remaining charac-
ters under the language model for L.

We can straightforwardly implement this recur-
sive computation through dynamic programming, by
managing a table of size |X| × |L|. To fill a cell of
this table, formula (4) suggests referring to t × |L|
cells and calculating the description length of the
rest of the text for O(|X|−t) cells for each language.
Since t ranges up to |X|, the brute-force computa-
tional complexity is O(|X|3 × |L|2).

The complexity can be greatly reduced, however,
when the function dl is additive. First, the de-
scription length can be calculated from the previ-
ous result, decreasing O(|X| − t) to O(1) (to ob-
tain the code length of an additional character). Sec-
ond, the referred number of cells t × |L| is in fact
U × |L|, with U � |X|: for MMS, U can be
proven to be O(log |Y |), where |Y | is the maximum
length among the learning corpora; and for PPM, U
corresponds to the maximum length of an n-gram.
Third, this factor U × |L| can be further decreased
to U × 2, since it suffices to possess the results for
the two7 best languages in computing the first term
of (4). Consequently, the complexity decreases to
O(U × |X| × |L|).

6This formula can be used directly to generate a set L in
which all adjacent elements differ. The formula can also be
used to generate segments for which some adjacent lan-
guages coincide and then further to generate L through
post-processing by concatenating segments of the same
language.

7This number means the two best scores for different lan-
guages, which is required to obtain L directly: in addition
to the best score, if the language of the best coincides with
L in formula (4), then the second best is also needed. If
segments are subjected to post-processing, this value can
be one.
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Table 1: Number of languages for each writing system
character kinds UDHR Wiki
Latin 260 158
Cyrillic 12 20
Devanagari 0 8
Arabic 1 6
Other 4 30

5 Experimental Setting

5.1 Monolingual Texts (Training / Test Data)

In this work, monolingual texts were used both for
training the cross-entropy computation and as test
data for cross-validation: the training data does not
contain any test data at all. Monolingual texts were
also used to build multilingual texts, as explained in
the following subsection.

Texts were collected from the World Wide Web
and consisted of two sets. The first data set con-
sisted of texts from the Universal Declaration of
Human Rights (UDHR)8. We consider UDHR the
most suitable text source for our purpose, since the
content of every monolingual text in the declaration
is unique. Moreover, each text has the tendency
to maximally use its own language and avoid vo-
cabulary from other languages. Therefore, UDHR-
derived results can be considered to provide an em-
pirical upper bound on our formulation. The set L
consists of 277 languages , and the texts consist of
around 10,000 characters on average.

The second data set was Wikipedia data from
Wikipedia Downloads9, denoted as “Wiki” in the
following discussion. We automatically assembled
the data through the following steps. First, tags in
the Wikipedia texts were removed. Second, short
lines were removed since they typically are not sen-
tences. Third, the amount of data was set to 10,000
characters for every language, in correspondence
with the size of the UDHR texts. Note that there
is a limit to the complete cleansing of data. After
these steps, the set L contained 222 languages with
sufficient data for the experiments.

Many languages adopt writing systems other than
the Latin alphabet. The numbers of languages for
various representative writing systems are listed in
Table 1 for both UDHR and Wiki, while the Ap-

8
http://www.ohchr.org/EN/UDHR/Pages/Introduction.aspx

9
http://download.wikimedia.org/

pendix at the end of the article lists the actual lan-
guages. Note that in this article, a character means
a Unicode character throughout, which differs from
a character rendered in block form for some writing
systems.

To evaluate language identification for monolin-
gual texts, as will be reported in §6.1, we conducted
five-times cross-validation separately for both data
sets. We present the results in terms of the average
accuracy AL, the ratio of the number of texts with a
correctly identified language to |L|.

5.2 Multilingual Texts (Test Data)

Multilingual texts were needed only to test the per-
formance of the proposed method. In other words,
we trained the model only through monolingual
data, as mentioned above. This differs from the
most similar previous study (Teahan, 2000), which
required multilingual learning data.

The multilingual texts were generated artificially,
since multilingual texts taken directly from the web
have other issues besides segmentation. First, proper
nouns in multilingual texts complicate the final judg-
ment of language and segment borders. In prac-
tical application, therefore, texts for segmentation
must be preprocessed by named entity recognition,
which is beyond the scope of this work. Second, the
sizes of text portions in multilingual web texts dif-
fer greatly, which would make it difficult to evaluate
the overall performance of the proposed method in a
uniform manner.

Consequently, we artificially generated two kinds
of test sets from a monolingual corpus. The first is
a set of multilingual texts, denoted as Test1, such
that each text is the conjunction of two portions in
different languages. Here, the experiment is focused
on segment border detection, which must segment
the text into two parts, provided that there are two
languages. Test1 includes test data for all language
pairs, obtained by five-times cross-validation, giving
25×|L|× (|L|−1) multilingual texts. Each portion
of text for a single language consists of 100 char-
acters taken from a random location within the test
data.

The second kind of test set is a set of multilingual
texts, denoted as Test2, each consisting of k seg-
ments in different languages. For the experiment, k
is not given to the procedure, and the task is to ob-
tain k as well as B and L through recursion. Test2
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was generated through the following steps:
1. Choose k from among 1,. . . ,5.
2. Choose k languages randomly from L, where

some of the k languages can overlap.
3. Perform five-times cross-validation on the texts

of all languages. Choose a text length ran-
domly from {40,80,120,160}, and randomly
select this many characters from the test data.

4. Shuffle the k languages and concatenate the
text portions in the resultant order.

For this Test2 data set, every plot in the graphs
shown in §6.2 was obtained by randomly averaging
1,000 tests.

By default, the possibility of segmentation is con-
sidered at every character offset in a text, which
provides a lower bound for the proposed method.
Although language change within the middle of a
word does occur in real multilingual documents,
it might seem more realistic to consider language
change at word borders. Therefore, in addition to
choosing B from {1, . . . , |X|}, we also tested our
approach under the constraint of choosing borders
from bordering locations, which are the locations of
spaces. In this case, B is chosen from this subset of
{1, . . . , |X|}, and, in step 3 above, text portions are
generated so as to end at these bordering locations.

Given a multilingual text, we evaluate the outputs
B and L through the following scores:
PB/RB: Precision/recall of the borders detected

(i.e., the correct borders detected, divided by
the detected/correct border).

PL/RL: Precision/recall of the languages detected
(i.e., the correct languages detected, divided by
the detected/correct language).

P s and Rs are obtained by changing the param-
eter γ given in formula (3), which ranges over
1,2,4,. . . ,256 bits. In addition, we verify the speed,
i.e., the average time required for processing a text.

Although there are web pages consisting of texts
in more than 2 languages, we rarely see a web page
containing 5 languages at the same time. There-
fore, Test1 reflects the most important case of 2 lan-
guages only, whereas Test2 reflects the case of mul-
tiple languages to demonstrate the general potential
of the proposed approach.

The experiment reported here might seem like a
case of over-specification, since all languages are
considered equally likely to appear. Since our mo-
tivation has been to eliminate a portion in a major

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

ac
cu

ra
cy

input length (characters)

PPM (UDHR)
MMS (UDHR)

PPM (Wiki)
MMS (Wiki)

Figure 1: Accuracy of language identification for mono-
lingual texts

language from the text, there could be a formula-
tion specific to the problem. We consider it trivial,
however, to specify such a narrow problem within
our formulation, and it will lead to higher perfor-
mance than that of the reported results, in any case.
Therefore, we believe that our general formulation
and experiment show the broadest potential of our
approach to solving this problem.

6 Experimental Results

6.1 Language Identification Performance

We first show the performance of language identifi-
cation using formula (2), which is used as the com-
ponent of the text segmentation by language. Fig-
ure 1 shows the results for language identification
of monolingual texts with the UDHR and Wiki test
data. The horizontal axis indicates the size of the in-
put text in characters, the vertical axis indicates the
accuracy AL, and the graph contains four plots10 for
MMS and PPM for each set of data.

Overall, all plots rise quickly despite the se-
vere conditions of a large number of languages
(over 200), a small amount of input data, and a
small amount of learning data. The results show
that language identification through cross-entropy is
promising.

Two further global tendencies can be seen. First,
the performance was higher for UDHR than for
Wiki. This is natural, since the content of Wikipedia
is far broader than that of UDHR. In the case of
UDHR, when the test data had a length of 40 char-
acters, the accuracy was over 95% for both the PPM
and the MMS methods. Second, PPM achieved

10The results for PPM and MMS for UDHR are almost the
same, so the graph appears to contain only three plots.

974



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

cu
m

m
ul

at
iv

e 
pr

op
or

tio
n

relative position (characters)

PPM (UDHR)
MMS (UDHR)

PPM (Wiki)
MMS (Wiki)

Figure 2: Cumulative distribution of segment borders

slightly better performance than did MMS. When
the test data amounted to 100 characters, PPM
achieved language identification with accuracy of
about 91.4%. For MMS, the identification accu-
racy was a little less significant and was about 90.9%
even with 100 characters of test data.

The amount of learning data seemed sufficient for
both cases, with around 8,000 characters. In fact,
we conducted tests with larger amounts of learning
data and found a faster rise with respect to the input
length, but the maximum possible accuracy did not
show any significant increase.

Errors resulted from either noise or mistakes due
to the language family. The Wikipedia test data was
noisy, as mentioned in §5.1. As for language fam-
ily errors, the test data includes many similar lan-
guages that are difficult even for humans to correctly
judge. For example, Indonesian and Malay, Picard
and Walloon, and Norwegian Bokmål and Nynorsk
are all pairs representative of such confusion.

Overall, the language identification performance
seems sufficient to justify its application to our main
problem of text segmentation by language.

6.2 Text Segmentation by Language

First, we report the results obtained using the Test1

data set. Figure 2 shows the cumulative distribution
obtained for segment border detection. The horizon-
tal axis indicates the relative location by character
with respect to the correct border at zero, and the
vertical axis indicates the cumulative proportion of
texts whose border is detected at that relative point.
The figure shows four plots for all combinations of
the two data sets and the two methods. Note that
segment borders are judged by characters and not
by bordering locations, as explained in §5.2.
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Figure 3: PL/RL (language, upper graph) and PB/RB
(border, lower graph) results, where borders were taken
from any character offset

Since the plots rise sharply at the middle of the
horizontal axis, the borders were detected at or very
near the correct place in many cases.

Next, we examine the results for Test2. Fig-
ure 3 shows the two precision/recall graphs for lan-
guage identification (upper graph) and segment bor-
der detection (lower graph), where borders were
taken from any character offset. In each graph,
the horizontal axis indicates precision and the ver-
tical axis indicates recall. The numbers appearing
in each figure are the maximum F-score values for
each method and data set combination. As can be
seen from these numbers, the language identifica-
tion performance was high. Since the text portion
size was chosen from among the values 40, 80, 120,
or 160, the performance is comprehensible from the
results shown in §6.1. Note also that PPM performed
slightly better than did MMS.

For segment border performance (lower graph),
however, the results were limited. The main reason
for this is that both MMS and PPM tend to detect
a border one character earlier than the correct loca-
tion, as was seen in Figure 2. At the same time,
much of the test data contains unrealistic borders
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within a word, since the data was generated by con-
catenating two text portions with random borders.
Therefore, we repeated the experiment with Test2

under the constraint that a segment border could oc-
cur only at a bordering location, as explained in §5.2.
The results with this constraint were significantly
better, as shown in Figure 4. The best result was for
UDHR with PPM at 0.9411. We could also observe
how PPM performed better at detecting borders in
this case. In actual application, it would be possible
to improve performance by relaxing the procedural
conditions, such as by decreasing the number of lan-
guage possibilities.

In this experiment for Test2, k ranged from 1 to
5, but the performance was not affected by the size
of k. When the F-score was examined with respect
to k, it remained almost equal to k in all cases. This
shows how each recursion of formula (4) works al-
most independently, having segmentation and lan-
guage identification functions that are both robust.

Lastly, we examine the speed of our method.
Since |L| is constant throughout the comparison,

11The language identification accuracy slightly increased as
well, by 0.002.

the time should increase linearly with respect to the
input length |X|, with increasing k having no ef-
fect. Figure 5 shows the speed for Test2 processing,
with the horizontal axis indicating the input length
and the vertical axis indicating the processing time.
Here, all character offsets were taken into consid-
eration, and the processing was done on a machine
with a Xeon5650 2.66-GHz CPU. The results con-
firm that the complexity increased linearly with re-
spect to the input length. When the text size became
as large as several thousand characters, the process-
ing time became as long as a second. This time
could be significantly decreased by introducing con-
straints on the bordering locations and languages.

7 Conclusion

This article has presented a method for segmenting
a multilingual text into segments, each in a differ-
ent language. This task could serve for preprocess-
ing of multilingual texts before applying language-
specific analysis to each text. Moreover, the pro-
posed method could be used to generate corpora in a
variety of languages, since many texts in minor lan-
guages tend to contain chunks in a major language.

The segmentation task was modeled as an opti-
mization problem of finding the best segment and
language sequences to minimize the description
length of a given text. An actual procedure for ob-
taining an optimal result through dynamic program-
ming was proposed. Furthermore, we showed a way
to decrease the computational complexity substan-
tially, with each of our two methods having linear
complexity in the input length.

Various empirical results were shown for lan-
guage identification and segmentation. Overall,
when segmenting a text with up to five random por-
tions of different languages, where each portion con-
sisted of 40 to 120 characters, the best F-scores for
language identification and segmentation were 0.98
and 0.94, respectively.

For our future work, details of the methods must
be worked out. In general, the proposed approach
could be further applied to the actual needs of pre-
processing and to generating corpora of minor lan-
guages.
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Appendix
This Appendix lists all the languages contained in our data sets,
as summarized in Table 1.

For UDHR
Latin

Achinese, Achuar-Shiwiar, Adangme, Afrikaans, Aguaruna,
Aja, Akuapem Akan, Akurio, Amahuaca, Amarakaeri, Ambo-
Pasco Quechua, Arabela, Arequipa-La Unión Quechua, Arpi-
tan, Asante Akan, Asháninka, Ashéninka Pajonal, Asturian,
Auvergnat Occitan, Ayacucho Quechua, Aymara, Baatonum,
Balinese, Bambara, Baoulé, Basque, Bemba, Beti, Bikol, Bini,
Bislama, Bokmål Norwegian, Bora, Bosnian, Breton, Buginese,
Cajamarca Quechua, Calderón Highland Quichua, Candoshi-
Shapra, Caquinte, Cashibo-Cacataibo, Cashinahua, Catalan,
Cebuano, Central Kanuri, Central Mazahua, Central Nahuatl,
Chamorro, Chamula Tzotzil, Chayahuita, Chickasaw, Chiga,
Chokwe, Chuanqiandian Cluster Miao, Chuukese, Corsican,
Cusco Quechua, Czech, Dagbani, Danish, Dendi, Ditammari,
Dutch, Eastern Maninkakan, Emiliano-Romagnolo, English,
Esperanto, Estonian, Ewe, Falam Chin, Fanti, Faroese, Fi-
jian, Filipino, Finnish, Fon, French, Friulian, Ga, Gagauz,
Galician, Ganda, Garifuna, Gen, German, Gheg Albanian,
Gonja, Guarani, Güilá Zapotec, Haitian Creole, Haitian Cre-
ole (popular), Haka Chin, Hani, Hausa, Hawaiian, Hiligaynon,
Huamalı́es-Dos de Mayo Huánuco Quechua, Huautla Maza-
tec, Huaylas Ancash Quechua, Hungarian, Ibibio, Icelandic,
Ido, Igbo, Iloko, Indonesian, Interlingua, Irish, Italian, Ja-
vanese, Jola-Fonyi, K’iche’, Kabiyè, Kabuverdianu, Kalaal-
lisut, Kaonde, Kaqchikel, Kasem, Kekchı́, Kimbundu, Kin-
yarwanda, Kituba, Konzo, Kpelle, Krio, Kurdish, Lamnso’,
Languedocien Occitan, Latin, Latvian, Lingala, Lithuanian,
Lozi, Luba-Lulua, Lunda, Luvale, Luxembourgish, Madurese,
Makhuwa, Makonde, Malagasy, Maltese, Mam, Maori,
Mapudungun, Margos-Yarowilca-Lauricocha Quechua, Mar-
shallese, Mba, Mende, Metlatónoc Mixtec, Mezquital Otomi,
Mi’kmaq, Miahuatlán Zapotec, Minangkabau, Mossi, Mozara-
bic, Murui Huitoto, Mı́skito, Ndonga, Nigerian Pidgin, Nomat-
siguenga, North Junı́n Quechua, Northeastern Dinka, Northern
Conchucos Ancash Quechua, Northern Qiandong Miao, North-
ern Sami, Northern Kurdish, Nyamwezi, Nyanja, Nyemba,
Nynorsk Norwegian, Nzima, Ojitláan Chinantec, Oromo,
Palauan, Pampanga, Papantla Totonac, Pedi, Picard, Pichis
Ashéninka, Pijin, Pipil, Pohnpeian, Polish, Portuguese, Pu-
laar, Purepecha, Páez, Quechua, Rarotongan, Romanian, Ro-
mansh, Romany, Rundi, Salinan, Samoan, San Luı́s Potosı́
Huastec, Sango, Sardinian, Scots, Scottish Gaelic, Serbian,
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Serer, Seselwa Creole French, Sharanahua, Shipibo-Conibo,
Shona, Slovak, Somali, Soninke, South Ndebele, Southern
Dagaare, Southern Qiandong Miao, Southern Sotho, Spanish,
Standard Malay, Sukuma, Sundanese, Susu, Swahili, Swati,
Swedish, Sãotomense, Tahitian, Tedim Chin, Tetum, Tidikelt
Tamazight, Timne, Tiv, Toba, Tojolabal, Tok Pisin, Tonga
(Tonga Islands), Tonga (Zambia), Tsonga, Tswana, Turkish,
Tzeltal, Umbundu, Upper Sorbian, Urarina, Uzbek, Veracruz
Huastec, Vili, Vlax Romani, Walloon, Waray, Wayuu, Welsh,
Western Frisian, Wolof, Xhosa, Yagua, Yanesha’, Yao, Yapese,
Yoruba, Yucateco, Zhuang, Zulu

Cyrillic
Abkhazian, Belarusian, Bosnian, Bulgarian, Kazakh, Mace-

donian, Ossetian, Russian, Serbian, Tuvinian, Ukrainian, Yakut

Arabic
Standard Arabic

Other
Japanese, Korean, Mandarin Chinese, Modern Greek

For Wiki

Latin
Afrikaans, Albanian, Aragonese, Aromanian, Arpitan, As-

turian, Aymara, Azerbaijani, Bambara, Banyumasan, Basque,
Bavarian, Bislama, Bosnian, Breton, Català, Cebuano, Central
Bikol, Chavacano, Cornish, Corsican, Crimean Tatar, Croatian,
Czech, Danish, Dimli, Dutch, Dutch Low Saxon, Emiliano-
Romagnolo, English, Esperanto, Estonian, Ewe, Extremaduran,
Faroese, Fiji Hindi, Finnish, French, Friulian, Galician, Ger-
man, Gilaki, Gothic, Guarani, Hai//om, Haitian, Hakka Chi-
nese, Hawaiian, Hungarian, Icelandic, Ido, Igbo, Iloko, Indone-
sian, Interlingua, Interlingue, Irish, Italian, Javanese, Kabyle,
Kalaallisut, Kara-Kalpak, Kashmiri, Kashubian, Kongo, Ko-
rean, Kurdish, Ladino, Latin, Latvian, Ligurian, Limburgan,
Lingala, Lithuanian, Lojban, Lombard, Low German, Lower
Sorbian, Luxembourgish, Malagasy, Malay, Maltese, Manx,
Maori, Mazanderani, Min Dong Chinese, Min Nan Chinese,
Nahuatl, Narom, Navajo, Neapolitan, Northern Sami, Norwe-
gian, Norwegian Nynorsk, Novial, Occitan, Old English, Pam-
panga, Pangasinan, Panjabi, Papiamento, Pennsylvania Ger-
man, Piemontese, Pitcairn-Norfolk, Polish, Portuguese, Pushto,
Quechua, Romanian, Romansh, Samoan, Samogitian Lithua-
nian, Sardinian, Saterfriesisch, Scots, Scottish Gaelic, Serbo-
Croatian, Sicilian, Silesian, Slovak, Slovenian, Somali, Span-
ish, Sranan Tongo, Sundanese, Swahili, Swati, Swedish, Taga-
log, Tahitian, Tarantino Sicilian, Tatar, Tetum, Tok Pisin, Tonga
(Tonga Islands), Tosk Albanian, Tsonga, Tswana, Turkish,
Turkmen, Uighur, Upper Sorbian, Uzbek, Venda, Venetian,
Vietnamese, Vlaams, Vlax Romani, Volapük, Võro, Walloon,
Waray, Welsh, Western Frisian, Wolof, Yoruba, Zeeuws, Zulu

Cyrillic
Abkhazian, Bashkir, Belarusian, Bulgarian, Chuvash, Erzya,

Kazakh, Kirghiz, Macedonian, Moksha, Moldovan, Mongo-
lian, Old Belarusian, Ossetian, Russian, Serbian, Tajik, Udmurt,
Ukrainian, Yakut

Arabic
Arabic, Egyptian Arabic, Gilaki, Mazanderani, Persian,

Pushto, Uighur, Urdu

Devanagari
Bihari, Hindi, Marathi, Nepali, Newari, Sanskrit

Other
Amharic, Armenian, Assamese, Bengali, Bishnupriya,

Burmese, Central Khmer, Chinese, Classical Chinese, Dhivehi,
Gan Chinese, Georgian, Gothic, Gujarati, Hebrew, Japanese,
Kannada, Lao, Malayalam, Modern Greek, Official Aramaic,
Panjabi, Sinhala, Tamil, Telugu, Thai, Tibetan, Wu Chinese,
Yiddish, Yue Chinese
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Abstract1 

We propose a novel approach to improve 
SMT via paraphrase rules which are 
automatically extracted from the bilingual 
training data. Without using extra 
paraphrase resources, we acquire the rules 
by comparing the source side of the parallel 
corpus with the target-to-source 
translations of the target side. Besides the 
word and phrase paraphrases, the acquired 
paraphrase rules mainly cover the 
structured paraphrases on the sentence 
level. These rules are employed to enrich 
the SMT inputs for translation quality 
improvement. The experimental results 
show that our proposed approach achieves 
significant improvements of 1.6~3.6 points 
of BLEU in the oral domain and 0.5~1 
points in the news domain. 

1 Introduction 

The translation quality of the SMT system is 
highly related to the coverage of translation models. 
However, no matter how much data is used for 
training, it is still impossible to completely cover 
the unlimited input sentences. This problem is 
more serious for online SMT systems in real-world 
applications. Naturally, a solution to the coverage 
problem is to bridge the gaps between the input 
sentences and the translation models, either from 
the input side, which targets on rewriting the input 
sentences to the MT-favored expressions, or from 
                                                           
This work was done when the first author was visiting Baidu. 
*Correspondence author: tliu@ir.hit.edu.cn 

the side of translation models, which tries to enrich 
the translation models to cover more expressions.  

In recent years, paraphrasing has been proven 
useful for improving SMT quality. The proposed 
methods can be classified into two categories 
according to the paraphrase targets: (1) enrich 
translation models to cover more bilingual 
expressions; (2) paraphrase the input sentences to 
reduce OOVs or generate multiple inputs. In the 
first category, He et al. (2011), Bond et al. (2008) 
and Nakov (2008) enriched the SMT models via 
paraphrasing the training corpora. Kuhn et al. 
(2010) and Max (2010) used paraphrases to 
smooth translation models. For the second 
category, previous studies mainly focus on finding 
translations for unknown terms using phrasal 
paraphrases. Callison-Burch et al. (2006) and 
Marton et al. (2009) paraphrase unknown terms in 
the input sentences using phrasal paraphrases 
extracted from bilingual and monolingual corpora. 
Mirkin et al. (2009) rewrite OOVs with 
entailments and paraphrases acquired from 
WordNet. Onishi et al. (2010) and Du et al. (2010) 
use phrasal paraphrases to build a word lattice to 
get multiple input candidates. In the above 
methods, only word or phrasal paraphrases are 
used for input sentence rewriting. No structured 
paraphrases on the sentence level have been 
investigated. However, the information in the 
sentence level is very important for disambiguation.  
For example, we can only substitute play with 
drama in a context related to stage or theatre. 
Phrasal paraphrase substitutions can hardly solve 
such kind of problems.  

In this paper, we propose a method that rewrites 

979



the input sentences of the SMT system using 
automatically extracted paraphrase rules which can 
capture structures on sentence level in addition to 
paraphrases on the word or phrase level. Without 
extra paraphrase resources, a novel approach is 
proposed to acquire paraphrase rules from the 
bilingual training corpus based on the results of 
Forward-Translation and Back-Translation. The 
rules target on rewriting the input sentences to an 
MT-favored expression to ensure a better 
translation. The paraphrase rules cover all kinds of 
paraphrases on the word, phrase and sentence 
levels, enabling structure reordering, word or 
phrase insertion, deletion and substitution. The 
experimental results show that our proposed 
approach achieves significant improvements of 
1.6~3.6 points of BLEU in the oral domain and 
0.5~1 points in the news domain. 

The remainder of the paper is organized as 
follows: Section 2 makes a comparison between 
the Forward-Translation and Back-Translation. 
Section 3 introduces our methods that extract 
paraphrase rules from the bilingual corpus of SMT. 
Section 4 describes the strategies for constructing 
word lattice with paraphrase rules. The 
experimental results and some discussions are 
presented in Section 5 and Section 6. Section 7 
compares our work to the previous researches. 
Finally, Section 8 concludes the paper and suggests 
directions for future work. 

2 Forward-Translation vs. Back-
Translation 

The Back-Translation method is mainly used for 
automatic MT evaluation (Rapp 2009). This 

approach is very helpful when no target language 
reference is available. The only requirement is that 
the MT system needs to be bidirectional. The 
procedure includes translating a text into certain 
foreign language with the MT system (Forward-
Translation), and translating it back into the 
original language with the same system (Back-
Translation). Finally the translation quality of 
Back-Translation is evaluated by using the original 
source texts as references. 

Sun et al. (2010) reported an interesting 
phenomenon: given a bilingual text, the Back-
Translation results of the target sentences is better 
than the Forward-Translation results of the source 
sentences. Clearly, let (S0, T0) be the initial pair of 
bilingual text. A source-to-target translation system 
SYS_ST and a target-to-source translation system 
SYS_TS are trained using the bilingual corpus. 
ሺ·ሻܶܨ  is a Forward-Translation function, and 
 ሺ·ሻ is a function of Back-Translation which canܶܤ
be deduced with two rounds of translations: 
ሻݏሺܶܤ ൌ ܻܵܵ_ܶܵሺܻܵܵ_ܵܶሺܵሻሻ. In the first round 
of translation, S0 and T0 are fed into SYS_ST and 
SYS_TS, and we get T1 and S1 as translation results. 
In the second round, we translate S1 back into the 
target side with SYS_ST, and get the translation T2. 
The procedure is illustrated in Figure 1, which can 
also formally be described as: 

1. T1 = FT(S0) = SYS_ST(S0). 
2. T2 = BT(T0), which can be decomposed into 

two steps: S1 = SYS_TS(T0), T2 = SYS_ST(S1). 
Using T0 as reference, an interesting result is 

reported in Sun et al. (2010) that T2 achieves a 
higher score than T1 in automatic MT evaluation. 
This outcome is important because T2 is translated 

Figure 1: Procedure of Forward-Translation and Back-Translation. 

S0 T0 

S1 T1 

T2 

Source Language Target Language 

Initial Parallel Text 

1st Round Translation 

2nd Round Translation 

Forward- 
Translation

Back- 
Translation 
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from a machine-generated text S1, but T1 is 
translated from a human-write text S0. Why the 
machine-generated text results in a better 
translation than the human-write text? Two 
possible reasons may explain this phenomenon: (1) 
in the first round of translation T0  S1, some 
target word orders are reserved due to the 
reordering failure, and these reserved orders lead to 
a better result in the second round of translation; (2) 
the text generated by an MT system is more likely 
to be matched by the reversed but homologous MT 
system.  

Note that all the texts of S0, S1, S2, T0 and T1 are 
sentence aligned because the initial parallel corpus 
(S0, T0) is aligned in the sentence level. The aligned 
sentence pairs in (S0, S1) can be considered as 
paraphrases. Since S1 has some MT-favored 
structures which may result in a better translation, 
an intuitive idea is whether we can learn these 
structures by comparing S1 with S0. This is the 
main assumption of this paper. Taking (S0, S1) as 
paraphrase resource, we propose a method that 
automatically extracts paraphrase rules to capture 
the MT-favored structures. 

3 Extraction of Paraphrase Rules 

3.1 Definition of Paraphrase Rules 

We define a paraphrase rule as follows: 
1. A paraphrase rule consists of two parts, left-

hand-side (LHS) and right-hand-side (RHS). 
Both of LHS and RHS consist of non-
terminals (slot) and terminals (words). 

2. LHS must start/end with a terminal. 
3. There must be at least one terminal between 

two non-terminals in LHS. 
A paraphrase rule in the format of:  

LHS  RHS 
which means the words matched by LHS can be 
paraphrased to RHS. Taking Chinese as a case 

study, some examples of paraphrase rules are 
shown in Table 1. 

3.2  Selecting Paraphrase Sentence Pairs 

Following the methods in Section 2, the initial 
bilingual corpus is (S0, T0). We train a source-to-
target PBMT system (SYS_ST) and a target-to-
source PBMT system (SYS_TS) on the parallel 
corpus. Then a Forward-Translation is performed 
on S0 using SYS_ST, and a Back-Translation is 
performed on T0 using SYS_TS and SYS_ST. As 
mentioned above, the detailed procedure is: T1 = 
SYS_ST(S0), S1 = SYS_TS(T0), T2 = SYS_ST(S1). 
Finally we compute BLEU (Papineni et al. 2002) 
score for every sentence in T2 and T1, using the 
corresponding sentence in T0 as reference. If the 
sentence in T2 has a higher BLEU score than the 
aligned sentence in T1, the corresponding sentences 
in S0 and S1 are selected as candidate paraphrase 
sentence pairs, which are used in the following 
steps of paraphrase extractions. 

3.3 Word Alignments Filtering 

We can construct word alignment between S0 and 
S1 through T0. On the initial corpus of (S0, T0), we 
conduct word alignment with Giza++ (Och and 
Ney, 2000) in both directions and then apply the 
grow-diag-final heuristic (Koehn et al., 2005) for 
symmetrization. Because S1 is generated by 
feeding T0 into the PBMT system SYS_TS, the 
word alignment between T0 and S1 can be acquired 
from the verbose information of the decoder. 

The word alignments of S0 and S1 contain noises 
which are produced by either wrong alignment of 
GIZA++ or translation errors of SYS_TS. To ensure 
the alignment quality, we use some heuristics to 
filter the alignment between S0 and S1: 

1. If two identical words are aligned in S0 and 
S1, then remove all the other links to the two 
words. 

No. LHS RHS 

1 乘坐/ride   X1   公共汽车/bus 乘坐/ride    X1   巴士/bus 

2    在/at   X1  处/location   向左拐/turn left  向左拐/turn left   在/at   X1  处/location 

3 把/NULL   X1    给/give    我/me 给/give    我/me    X1 

4 
从/from  X1  到/to  X2  要/need 多长/how long

时间/time 
要/need   花/spend  多长/how long  时间/time 

从/from X1到/to X2 

Table 1: Examples of Chinese Paraphrase rules, together with English translations for every word 
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2. Stop words (including some function words 
and punctuations) can only be aligned to 
either stop words or null. 

Figure 2 illustrates an example of using the 
heuristics to filter alignment. 

3.4 Extracting Paraphrase Rules 

From the word-aligned sentence pairs, we then 
extract a set of rules that are consistent with the 
word alignments. We use the rule extracting 
methods of Chiang (2005). Take the sentence pair 
in Figure 2 as an example, two initial phrase pairs 
PP1 = “那 只 蓝色 手提包 ||| 那 个 蓝色 手提包”  
and  PP2 = “对 那 只 蓝色 手提包 有 兴趣 ||| 很 
感 兴趣 那 个 蓝色 手提包” are identified, and 
PP1 is contained by PP2, then we could form the 
rule: 

对 X1 有 兴趣  很 感 兴趣 X1

to  have interest  very feel interest  

4 Paraphrasing the Input Sentences 

The extracted paraphrase rules aim to rewrite the 
input sentences to an MT-favored form which may 
lead to a better translation. However, it is risky to 
directly replace the input sentence with a 
paraphrased sentence, since the errors in automatic 
paraphrase substitution may jeopardize the 
translation result seriously. To avoid such damage, 
for a given input sentence, we first transform all 
paraphrase rules that match the input sentences to 
phrasal paraphrases, and then build a word lattice 

for SMT decoder using the phrasal paraphrases. In 
this case, the decoder can search for the best result 
among all the possible paths. 

The input sentences are first segmented into sub-
sentences by punctuations. Then for each sub-
sentence, the matched paraphrase rules are ranked 
according to: (1) the number of matched words; (2) 
the frequency of the paraphrase rule in the training 
data. Actually, the ranking strategy tends to select 
paraphrase rules that have more matched words 
(therefore less ambiguity) and higher frequency 
(therefore more reliable). 

4.1 Applying Paraphrase Rules 

Given an input sentence S and a paraphrase rule R 
<RLHS, RRHS>, if S matches RLHS, then the matched 
part can be replaced by RRHS. An example for 
applying the paraphrase rules is illustrated in 
Figure 3.  

From Figure 3, we can see that the words of 
position 1~3 are replaced to “乘坐 10 路 巴士”. 
Actually, only the words at position 3 and 4 are 
paraphrased to the word “巴士”, other words are 
left unchanged. Therefore, we can use a triple, 
<MIN_RP_TEXT, COVER_START, COVER_LEN> 
(<巴士 , 3, 1> in this example) to denote the 
paraphrase rule, which means the minimal text to 
replace is “巴士”, and the paraphrasing starts at 
position 3 and covers 1 words. 

In this manner, all the paraphrase rules matched 
for a certain sentence can be converted to the 
format of <MIN_RP_TEXT, COVER_START, 
COVER_LEN>, which can also be considered as 
phrasal paraphrases. Then the methods of building 
phrasal paraphrases into word lattice for SMT 
inputs can be used in our approaches. 

欢迎    乘坐     [10 路]   公共汽车

乘坐     [10 路]      巴士 

Rule 
LHS:乘坐/ride  X1 公共汽车/bus 
RHS:乘坐/ride  X1  巴士/bus 

Figure 3: Example for Applying Paraphrase Rules 

0         1            2                3
welcome  ride     No.10         bus

ride       No.10        bus 

I  very feel interest that N/A  blue   handbag  

I     to   that   N/A  blue  handbag have interest    

我   很   感    兴趣   那    个  蓝色   手提包     。 

我   对    那     只    蓝色   手提包  有  兴趣     。 

Figure 2: Example for Word Alignment 
Filtration 

I     to   that   N/A  blue  handbag have interest    
我   对    那     只    蓝色   手提包  有  兴趣     。 

I  very feel interest that N/A  blue   handbag  
我   很   感    兴趣   那    个  蓝色   手提包      。 
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4.2 Construction of Paraphrase Lattice 

Given an input sentence, all the matched 
paraphrase rules are converted to phrasal 
paraphrases first. Then we build the phrasal 
paraphrases into word lattices using the methods 
proposed by Du et al. (2010). The construction 
process takes advantage of the correspondence 
between detected phrasal paraphrases and positions 
of the original words in the input sentence, and 
then creates extra edges in the lattices to allow the 
decoder to consider paths involving the paraphrase 
words. An example is illustrated in Figure 4: given 
a sequence of words {w1,…,wN} as the input, two 
phrases α ={α1,…αp} and β = {β1,…, βq} are 
detected as paraphrases for P1 = {wx,…, wy} (1 ≤ x 
≤ y ≤ N) and P2 = {wm,…,wn} (1 ≤ m ≤ n ≤ N) 
respectively. The following steps are taken to 
transform them into word lattices: 

1. Transform the original source sentence into 
word lattice. N + 1 nodes (θk, 0 ≤ k ≤ N) are 
created, and N edges labeled with wi (1 ≤ i ≤ 
N) are generated to connect them 
sequentially. 

2. Generate extra nodes and edges for each of 
the paraphrases. Taking α as an example, 
firstly, p – 1 nodes are created, and then p 
edges labeled with αj (1 ≤ j ≤ p) are 
generated to connect node θx-1, p-1 nodes 
and θy-1. 

Via step 2, word lattices are generated by adding 
new nodes and edges coming from paraphrases. 

4.3  Weight Estimation 

The weights of new edges in the lattices are 
estimated by an empirical method base on ranking 
positions. Following Du et al. (2010), supposing 
that E = {e1,…,ek} are a set of new edges 
constructed from k paraphrase rules, which are 
sorted in a descending order. Then the weight for 
an edge ei is calculated as: 

ሺe௜ሻݓ ൌ
1

݇ ൅ ݅
  ሺ1 ൑ ݅ ൑ ݇ሻ 

where k is a predefined tradeoff parameter between 
decoding speed and the number of potential 
paraphrases being considered. 

5  Experiments 

5.1  Experimental Data 

In our experiments, we used Moses (Koehn et al., 
2007) as the baseline system which can support 
lattice decoding. The alignment was obtained using 
GIZA++ (Och and Ney, 2003) and then we 
symmetrized the word alignment using the grow-
diag-final heuristic. Parameters were tuned using 
Minimum Error Rate Training (Och, 2003). To 
comprehensively evaluate the proposed methods in 
different domains, two groups of experiments were 
carried out, namely, the oral group (Goral) and the 
news group (Gnews). The experiments were 
conducted in both Chinese-English and English-
Chinese directions for the oral group, and Chinese-
English direction for the news group. The English 
sentences were all tokenized and lowercased, and 
the Chinese sentences were segmented into words 
by Language Technology Platform (LTP) 1 . We 
used SRILM2 for the training of language models 
(5-gram in all the experiments). The metrics for 
automatic evaluation were BLEU 3  and TER 4 
(Snover et al., 2005). 

The detailed statistics of the training data in Goral 
are showed in Table 2. For the bilingual corpus, we 
used the BTEC and PIVOT data of IWSLT 2008, 
HIT corpus 5  and other Chinese LDC (CLDC) 

                                                           
1 http://ir.hit.edu.cn/ltp/ 
2 http://www.speech.sri.com/projects/srilm/ 
3 ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl 
4 http://www.umiacs.umd.edu/~snover/terp/ 
5 The HIT corpus contains the CLDC Olympic corpus (2004-
863-008) and the other HIT corpora available at 
http://mitlab.hit.edu.cn/index.php/resources/29-the-
resource/111-share-bilingual-corpus.html. 

Figure 4: An example of lattice-based 
paraphrases for an input sentence. 
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corpora, including the Chinese-English Sentence 
Aligned Bilingual Corpus (CLDC-LAC-2003-004) 
and the Chinese-English Parallel Corpora (CLDC-
LAC-2003-006). We trained a Chinese language 
model for the E-C translation on the Chinese part 
of the bi-text. For the English language model of 
C-E translation, an extra corpus named Tanaka was 
used besides the English part of the bilingual 
corpora. For testing and developing, we used six 
Chinese-English development corpora of IWSLT 
2008. The statistics are shown in Table 3.  

In detail, we chose CSTAR03-test and 
IWSLT06-dev as the development set; and used 
IWSLT04-test, IWSLT05-test, IWSLT06-dev and 
IWSLT07-test for testing. For English-Chinese 
evaluation, we used IWSLT English-Chinese MT 
evaluation 2005 as the test set. Due to the lacking 
of development set, we did not tune parameters on 
English-Chinese side, instead, we just used the 
default parameters of Moses. 

In the experiments of the news group, we used 
the Sinorama and FBIS corpora (LDC2005T10 and 
LDC2003E14) for bilingual corpus. After 
tokenization and filtering, this bilingual corpus 
contained 319,694 sentence pairs (7.9M tokens on 

Chinese side and 9.2M tokens on English side). 
We trained a 5-gram language model on the 
English side of the bi-text. The system was tested 
using the Chinese-English MT evaluation sets of 
NIST 2004, NIST 2006 and NIST 2008. For 
development, we used the Chinese-English MT 
evaluation sets of NIST 2002 and NIST 2005. 
Table 4 shows the statistics of test/development 
sets used in the news group. 

5.2 Results 

We extract both Chinese and English rules in Goral, 
and Chinese paraphrase rules in Gnews by 
comparing the results of Forward-Translation and 
Back-Translation as described in Section 3. During 
the extraction, some heuristics are used to ensure 
the quality of paraphrase rules. Take the extraction 
of Chinese paraphrase rules in Goral as a case study. 
Suppose (C0, E0) are the initial bilingual corpus of 
Goral. A Chinese-English and an English-Chinese 
MT system are trained on (C0, E0). We perform 

Back-Translation on E0 (ܧ଴
ா ௧௢ ஼
ሱۛ ሮۛ ଵܥ

஼ ௧௢ ா
ሱۛ ሮۛ  ଶ), andܧ

Forward-Translation on C0 (ܥ଴
஼ ௧௢ ா
ሱۛ ሮۛ  ଵ). Supposeܧ

e1i and e2i are two aligned sentences in E1 and E2, 
c0i and c1i are the corresponding sentences in C0 
and C1. (c0i, c1i) are selected for the extraction of 
paraphrase rules if two conditions are satisfied: (1) 
BLEU(e2i) – BLEU(e1i) > θ1, and (2) BLEU(e2i) > 
θ2, where BLEUሺ·ሻ  is a function for computing 
BLEU score; θ1 and θ2 are thresholds for balancing 
the rules number and the quality of paraphrase 
rules. In our experiment, θ1 and θ2 are empirically 
set to 0.1 and 0.3. 

As a result, we extract 912,625 Chinese and 
1,116,375 English paraphrase rules for Goral, and 
for Gnews the number of Chinese paraphrase rules is 
2,877,960. Then we use the extracted paraphrase 
rules to improve SMT by building word lattices for 
the input sentences. 

The Chinese-English experimental results of 
Goral and Gnews are shown in Table 5 and Table 6, 
respectively. It can be seen that our method 
outperforms the baselines in both oral and news 
domains. Our system gains significant 
improvements of 1.6~3.6 points of BLEU in the 
oral domain, and 0.5~1 points of BLEU in the 
news domain. Figure 5 shows the effect of 
considered paraphrases (k) in the step of building  

Corpus #Sen. pairs #Ch. words #En words
BETC 19,972 174k 190k 
PIVOT 20,000 162k 196k 

HIT 80,868 788k 850k 
CLDC 190,447 1,167k 1,898k 
Tanaka 149,207 - 1,375k 

Table 2: Statistics of training data in Goral 

 Corpus #Sen.  #Ref.  

develop 
CSTAR03 test set 506 16 
IWSLT06 dev set 489 7 

test 

IWSLT04 test set 500 16 
IWSLT05 test set 506 16 
IWSLT06 test set 500 7 
IWSLT07 test set 489 6 

Table 3: Statistics of test/develop sets in Goral 

 Corpus #Sen.  #Ref.  

develop 
NIST 2002 878 10 
NIST 2005 1,082 4 

test 
NIST 2004 1,788 5 
NIST 2006 1,664 4 
NIST 2008 1,357 4 

Table 4: Statistics of test/develop sets in Gnews 
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word lattices. The result of English-Chinese 
experiments in Goral is shown in Table 7.  

6 Discussion 

We make a detailed analysis on the Chinese-
English translation results that are affected by our 
paraphrase rules. The aim is to investigate what 
kinds of paraphrases have been captured in the 
rules. Firstly the input path is recovered from the 
translation results according to the tracing 
information of the decoder, and therefore we can 
examine which path is selected by the SMT 
decoder from the paraphrase lattice. A human 
annotator is asked to judge whether the recovered 
paraphrase sentence keeps the same meaning as the 
original input. Then the annotator compares the 
baseline translation with the translations proposed 
by our approach. The analysis is carried out on the 
IWSLT 2007 Chinese-English test set, 84 out of 
489 input sentences have been affected by 
paraphrases, and the statistic of human evaluation 
is shown in Table 8.  

It can be seen in Table 8 that the paraphrases 
achieve a relatively high accuracy, 60 (71.4%) 

paraphrased sentences retain the same meaning, 
and the other 24 (28.6%) are incorrect. Among the 
60 correct paraphrases, 36 sentences finally result 
in an improved translation. We further analyze 
these paraphrases and the translation results to 
investigate what kinds of transformation finally 
lead to the translation quality improvement. The 
paraphrase variations can be classified into four 
categories: 

(1) Reordering: The original source sentences 
are reordered to be similar to the order of 
the target language. 

(2) Word substitution: A phrase with multi-
word translations is replaced by a phrase 
with a single-word translation.  

(3) Recovering omitted words: Ellipsis occurs 
frequently in spoken language. Recovering 
the omitted words often leads to a better 
translation. 

(4) Removing redundant words: Mostly, 
translating redundant words may confuse 
the SMT system and would be unnecessary. 
Removing redundant words can mitigate 
this problem. 

44.2 
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45.0 

45.2 

45.4 
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U
 s
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 (
%
)

Considered paraprhases (k)

Figure 5: Effect of considered paraphrases (k) 
on BLEU score

Model 
BLEU TER 

iwslt 04 iwslt 05 iwslt 06 iwslt 07 iwslt 04 iwslt 05 iwslt 06 iwslt 07
baseline 0.5353 0.5887 0.2765 0.3977 0.3279 0.2874 0.5559 0.4390 

para. improved 0.5712 0.6107 0.2924 0.4193 0.3055 0.2722 0.5374 0.4217 

Model 
BLEU TER 

nist 04 nist 06 nist 08 nist 04 nist 06 nist 08 
baseline 0.2795 0.2389 0.1933 0.6554 0.6515 0.6652 

para. improved 0.2891 0.2485 0.1978 0.6451 0.6407 0.6582 

 
model 

IWSLT 2005 
 BLEU TER 
 baseline 0.4644 0.4164 
 para. improved  0.4853 0.3883 

trans. 
para. 

improve comparable worsen total

correct 36 20 4 60 
incorrect 1 9 14 24 

Table 8: Human analysis of the paraphrasing 
results in IWSLT 2007 CE translation 

Table 5: Experimental results of Goral in Chinese-English direction 

Table 6: Experimental results of Gnews in Chinese-English direction 

Table 7: Experimental results of Goral in 
English-Chinese direction 
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Four examples for category (1), (2), (3) and (4) 
are shown in Table 9, respectively. The numbers in 
the second column indicates the number of the 
sentences affected by the rules, among the 36 
sentences with improved paraphrasing and 
translation. A sentence can be classified into 
multiple categories. Except category (2), the other 
three categories cannot be detected by the previous 
approaches, which verify our statement that our 
rules can capture structured paraphrases on the 
sentence level in addition to the paraphrases on the 
word or phrase level. 

Not all the paraphrased results are correct. 
Sometimes an ill paraphrased sentence can produce 
better translations. Take the first line of Table 9 as 
an example, the paraphrased sentence “多少/How 
many 香烟/cigarettes 可以/can 免税/duty-free 带
/take 支/NULL” is not a fluent Chinese sentence, 
however, the rearranged word order is closer to 
English, which finally results in a much better 
translation. 

7 Related Work 

Previous studies on improving SMT using 
paraphrase rules focus on hand-crafted rules. 
Nakov (2008) employs six rules for paraphrasing 
the training corpus. Bond et al. (2008) use 
grammars to paraphrase the source side of training 
data, covering aspects like word order and minor 
lexical variations (tenses etc.) but not content 
words. The paraphrases are added to the source 
side of the corpus and the corresponding target 
sentences are duplicated. 

A disadvantage for hand-crafted paraphrase 
rules is that it is language dependent. In contrast, 
our method that automatically extracted paraphrase 

rules from bilingual corpus is flexible and suitable 
for any language pairs. 

Our work is similar to Sun et al. (2010). Both 
tried to capture the MT-favored structures from 
bilingual corpus. However, a clear difference is 
that Sun et al. (2010) captures the structures 
implicitly by training an MT system on (S0, S1) and 
“translates” the SMT input to an MT-favored 
expression. Actually, the rewriting process is 
considered as a black box in Sun et al. (2010). In 
this paper, the MT-favored expressions are 
captured explicitly by automatically extracted 
paraphrase rules. The advantages of the paraphrase 
rules are: (1) Our method can explicitly capture the 
structure information in the sentence level, 
enabling global reordering, which is impossible in 
Sun et al. (2010). (2) For each rule, we can control 
its quality automatically or manually. 

8 Conclusion 

In this paper, we propose a novel method for 
extracting paraphrase rules by comparing the 
source side of bilingual corpus to the target-to-
source translation of the target side. The acquired 
paraphrase rules are employed to enrich the SMT 
inputs, which target on rewriting the input 
sentences to an MT-favored form. The paraphrase 
rules cover all kinds of paraphrases on the word, 
phrase and sentence levels, enabling structure 
reordering, word or phrase insertion, deletion and 
substitution. Experimental results show that the 
paraphrase rules can improve SMT quality in both 
the oral and news domains. The manual 
investigation on oral translation results indicate 
that the paraphrase rules capture four kinds of MT-
favored transformation to ensure translation quality 
improvement. 

Cate. Num Original Sentence/Translation Paraphrased Sentence/Translation 

(1) 11 
香烟/cigarette 可以/can 免税/duty-free 带
/take 多少/how much 支/N/A ?  

多少/how much 香烟/cigarettes 可以/can 免税

/duty-free 带/take 支/N/A ? 
what a cigarette can i take duty-free ? how many cigarettes can i take duty-free  one ? 

(2) 18 
你/you  有/have  多久/how long  的/N/A  
教学/teaching 经验/experience ？ 

你/you  有/have  多少/how much  教学/teaching  
经验/experience ？ 

you have how long teaching experience ? how much teaching experience you have ? 

(3) 10 
需要/need  押金/deposit  吗/N/A ? 你/you  需要/need  押金/deposit  吗/N/A ? 
you need a deposit ? do you need a deposit ? 

(4) 4 
戒指/ring 掉/fall 进/into 洗脸池/washbasin 
里/in 了/N/A 。  
ring off into the washbasin is in . 

戒指/ring  掉/fall  进/into  洗脸池/washbasin 了
/N/A 。 
ring off into the washbasin . 

Table 9: Examples for classification of paraphrase rules 
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Abstract

In recent years there has been a growing in-
terest in crowdsourcing methodologies to be
used in experimental research for NLP tasks.
In particular, evaluation of systems and theo-
ries about persuasion is difficult to accommo-
date within existing frameworks. In this paper
we present a new cheap and fast methodology
that allows fast experiment building and eval-
uation with fully-automated analysis at a low
cost. The central idea is exploiting existing
commercial tools for advertising on the web,
such as Google AdWords, to measure message
impact in an ecological setting. The paper in-
cludes a description of the approach, tips for
how to use AdWords for scientific research,
and results of pilot experiments on the impact
of affective text variations which confirm the
effectiveness of the approach.

1 Introduction

In recent years there has been a growing interest in
finding new cheap and fast methodologies to be used
in experimental research, for, but not limited to, NLP
tasks. In particular, approaches to NLP that rely on
the use of web tools - for crowdsourcing long and
tedious tasks - have emerged. Amazon Mechani-
cal Turk, for example, has been used for collecting
annotated data (Snow et al., 2008). However ap-
proaches a la Mechanical Turk might not be suitable
for all tasks.

In this paper we focus on evaluating systems and
theories about persuasion, see for example (Fogg,
2009) or the survey on persuasive NL generation
studies in (Guerini et al., 2011a). Measuring the

impact of a message is of paramount importance in
this context, for example how affective text varia-
tions can alter the persuasive impact of a message.

The problem is that evaluation experiments repre-
sent a bottleneck: they are expensive and time con-
suming, and recruiting a high number of human par-
ticipants is usually very difficult.

To overcome this bottleneck, we present a specific
cheap and fast methodology to automatize large-
scale evaluation campaigns. This methodology al-
lows us to crowdsource experiments with thousands
of subjects for a few euros in a few hours, by tweak-
ing and using existing commercial tools for adver-
tising on the web. In particular we make reference
to the AdWords Campaign Experiment (ACE) tool
provided within the Google AdWords suite. One
important aspect of this tool is that it allows for real-
time fully-automated data analysis to discover sta-
tistically significant phenomena. It is worth noting
that this work originated in the need to evaluate the
impact of short persuasive messages, so as to assess
the effectiveness of different linguistic choices. Still,
we believe that there is further potential for opening
an interesting avenue for experimentally exploring
other aspects of the wide field of pragmatics.

The paper is structured as follows: Section 2 dis-
cusses the main advantages of ecological approaches
using Google ACE over traditional lab settings and
state-of-the-art crowdsourcing methodologies. Sec-
tion 3 presents the main AdWords features. Section
4 describes how AdWords features can be used for
defining message persuasiveness metrics and what
kind of stimulus characteristics can be evaluated. Fi-
nally Sections 5 and 6 describe how to build up an
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experimental scenario and some pilot studies to test
the feasibility of our approach.

2 Advantages of Ecological Approaches

Evaluation of the effectiveness of persuasive sys-
tems is very expensive and time consuming, as the
STOP experience showed (Reiter et al., 2003): de-
signing the experiment, recruiting subjects, making
them take part in the experiment, dispensing ques-
tionnaires, gathering and analyzing data.

Existing methodologies for evaluating persuasion
are usually split in two main sets, depending on the
setup and domain: (i) long-term, in the field eval-
uation of behavioral change (as the STOP example
mentioned before), and (ii) lab settings for evaluat-
ing short-term effects, as in (Andrews et al., 2008).
While in the first approach it is difficult to take into
account the role of external events that can occur
over long time spans, in the second there are still
problems of recruiting subjects and of time consum-
ing activities such as questionnaire gathering and
processing.

In addition, sometimes carefully designed exper-
iments can fail because: (i) effects are too subtle to
be measured with a limited number of subjects or
(ii) participants are not engaged enough by the task
to provoke usable reactions, see for example what
reported in (Van Der Sluis and Mellish, 2010). Es-
pecially the second point is awkward: in fact, sub-
jects can actually be convinced by the message to
which they are exposed, but if they feel they do not
care, they may not “react” at all, which is the case in
many artificial settings. To sum up, the main prob-
lems are:

1. Time consuming activities
2. Subject recruitment
3. Subject motivation
4. Subtle effects measurements

2.1 Partial Solution - Mechanical Turk
A recent trend for behavioral studies that is emerg-
ing is the use of Mechanical Turk (Mason and Suri,
2010) or similar tools to overcome part of these limi-
tations - such as subject recruitment. Still we believe
that this poses other problems in assessing behav-
ioral changes, and, more generally, persuasion ef-
fects. In fact:

1. Studies must be as ecological as possible, i.e.
conducted in real, even if controlled, scenarios.

2. Subjects should be neither aware of being ob-
served, nor biased by external rewards.

In the case of Mechanical Turk for example, sub-
jects are willingly undergoing a process of being
tested on their skills (e.g. by performing annota-
tion tasks). Cover stories can be used to soften this
awareness effect, nonetheless the fact that subjects
are being paid for performing the task renders the
approach unfeasible for behavioral change studies.
It is necessary that the only reason for behavior in-
duction taking place during the experiment (filling
a form, responding to a questionnaire, clicking on
an item, etc.) is the exposition to the experimental
stimuli, not the external reward. Moreover, Mechan-
ical Turk is based on the notion of a “gold standard”
to assess contributors reliability, but for studies con-
cerned with persuasion it is almost impossible to de-
fine such a reference: there is no “right” action the
contributor can perform, so there is no way to assess
whether the subject is performing the action because
induced to do so by the persuasive strategy, or just
in order to receive money. On the aspect of how to
handle subject reliability in coding tasks, see for ex-
ample the method proposed in (Negri et al., 2010).

2.2 Proposed Solution - Targeted Ads on the
Web

Ecological studies (e.g. using Google AdWords) of-
fer a possible solution to the following problems:

1. Time consuming activities: apart from experi-
mental design and setup, all the rest is automat-
ically performed by the system. Experiments
can yield results in a few hours as compared to
several days/weeks.

2. Subject recruitment: the potential pool of sub-
jects is the entire population of the web.

3. Subject motivation: ads can be targeted exactly
to those persons that are, in that precise mo-
ment throughout the world, most interested in
the topic of the experiment, and so potentially
more prone to react.

4. Subject unaware, unbiased: subjects are totally
unaware of being tested, testing is performed
during their “natural” activity on the web.
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5. Subtle effects measurements: if the are not
enough subjects, just wait for more ads to be
displayed, or focus on a subset of even more
interested people.

Note that similar ecological approaches are begin-
ning to be investigated: for example in (Aral and
Walker, 2010) an approach to assessing the social ef-
fects of content features on an on-line community is
presented. A previous approach that uses AdWords
was presented in (Guerini et al., 2010), but it crowd-
sourced only the running of the experiment, not data
manipulation and analysis, and was not totally con-
trolled for subject randomness.

3 AdWords Features

Google AdWords is Google’s advertising program.
The central idea is to let advertisers display their
messages only to relevant audiences. This is done
by means of keyword-based contextualization on the
Google network, divided into:

• Search network: includes Google search pages,
search sites and properties that display search
results pages (SERPs), such as Froogle and
Earthlink.

• Display network: includes news pages, topic-
specific websites, blogs and other properties -
such as Google Mail and The New York Times.

When a user enters a query like “cruise” in the
Google search network, Google displays a variety of
relevant pages, along with ads that link to cruise trip
businesses. To be displayed, these ads must be asso-
ciated with relevant keywords selected by the adver-
tiser.

Every advertiser has an AdWords account that is
structured like a pyramid: (i) account, (ii) campaign
and (iii) ad group. In this paper we focus on ad
groups. Each grouping gathers similar keywords to-
gether - for instance by a common theme - around
an ad group. For each ad group, the advertiser sets a
cost-per-click (CPC) bid. The CPC bid refers to the
amount the advertiser is willing to pay for a click on
his ad; the cost of the actual click instead is based
on its quality score (a complex measure out of the
scope of the present paper).

For every ad group there could be multiple ads
to be served, and there are many AdWords measure-

ments for identifying the performance of each single
ad (its persuasiveness, from our point of view):

• CTR, Click Through Rate: measures the num-
ber of clicks divided by the number of impres-
sions (i.e. the number of times an ad has been
displayed in the Google Network).

• Conversion Rate: if someone clicks on an ad,
and buys something on your site, that click is
a conversion from a site visit to a sale. Con-
version rate equals the number of conversions
divided by the number of ad clicks.

• ROI: Other conversions can be page views or
signups. By assigning a value to a conversion
the resulting conversions represents a return on
investment, or ROI.

• Google Analytics Tool: Google Analytics is a
web analytics tool that gives insights into web-
site traffic, like number of visited pages, time
spent on the site, location of visitors, etc.

So far, we have been talking about text ads, -
Google’s most traditional and popular ad format -
because they are the most useful for NLP analysis.
In addition there is also the possibility of creating
the following types of ads:

• Image (and animated) ads
• Video ads
• Local business ads
• Mobile ads

The above formats allow for a greater potential
to investigate persuasive impact of messages (other
than text-based) but their use is beyond the scope of
the present paper1.

4 The ACE Tool

AdWords can be used to design and develop vari-
ous metrics for fast and fully-automated evaluation
experiments, in particular using the ACE tool.

This tool - released in late 2010 - allows testing,
from a marketing perspective, if any change made to
a promotion campaign (e.g. a keyword bid) had a
statistically measurable impact on the campaign it-
self. Our primary aim is slightly different: we are

1For a thorough description of the AdWords tool see:
https://support.google.com/adwords/
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interested in testing how different messages impact
(possibly different) audiences. Still the ACE tool
goes exactly in the direction we aim at, since it in-
corporates statistically significant testing and allows
avoiding many of the tweaking and tuning actions
which were necessary before its release.

The ACE tool also introduces an option that was
not possible before, that of real-time testing of sta-
tistical significance. This means that it is no longer
necessary to define a-priori the sample size for the
experiment: as soon as a meaningful statistically
significant difference emerges, the experiment can
be stopped.

Another advantage is that the statistical knowl-
edge to evaluate the experiment is no longer nec-
essary: the researcher can focus only on setting up
proper experimental designs2.

The limit of the ACE tool is that it only allows
A/B testing (single split with one control and one ex-
perimental condition) so for experiments with more
than two conditions or for particular experimental
settings that do not fit with ACE testing bound-
aries (e.g. cross campaign comparisons) we suggest
taking (Guerini et al., 2010) as a reference model,
even if the experimental setting is less controlled
(e.g. subject randomness is not equally guaranteed
as with ACE).

Finally it should be noted that even if ACE allows
only A/B testing, it permits the decomposition of al-
most any variable affecting a campaign experiment
in its basic dimensions, and then to segment such
dimensions according to control and experimental
conditions. As an example of this powerful option,
consider Tables 3 and 6 where control and experi-
mental conditions are compared against every single
keyword and every search network/ad position used
for the experiments.

5 Evaluation and Targeting with ACE

Let us consider the design of an experiment with 2
conditions. First we create an ad Group with 2 com-
peting messages (one message for each condition).
Then we choose the serving method (in our opin-
ion the rotate option is better than optimize, since it

2Additional details about ACE features and statistics can be
found at http://www.google.com/ads/innovations/ace.html

guarantees subject randomness and is more transpar-
ent) and the context (language, network, etc.). Then
we activate the ads and wait. As soon as data begins
to be collected we can monitor the two conditions
according to:

• Basic Metrics: the highest CTR measure in-
dicates which message is best performing. It
indicates which message has the highest initial
impact.

• Google Analytics Metrics: measures how much
the messages kept subjects on the site and how
many pages have been viewed. Indicates inter-
est/attitude generated in the subjects.

• Conversion Metrics: measures how much the
messages converted subjects to the final goal.
Indicates complete success of the persuasive
message.

• ROI Metrics: by creating specific ROI values
for every action the user performs on the land-
ing page. The more relevant (from a persuasive
point of view) the action the user performs, the
higher the value we must assign to that action.
In our view combined measurements are better:
for example, there could be cases of messages
with a lower CTR but a higher conversion rate.

Furthermore, AdWords allows very complex tar-
geting options that can help in many different evalu-
ation scenarios:

• Language (see how message impact can vary in
different languages).

• Location (see how message impact can vary in
different cultures sharing the same language).

• Keyword matching (see how message impact
can vary with users having different interests).

• Placements (see how message impact can vary
among people having different values - e.g. the
same message displayed on Democrat or Re-
publican web sites).

• Demographics (see how message impact can
vary according to user gender and age).

5.1 Setting up an Experiment

To test the extent to which AdWords can be ex-
ploited, we focused on how to evaluate lexical varia-
tions of a message. In particular we were interested
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in gaining insights about a system for affective varia-
tions of existing commentaries on medieval frescoes
for a mobile museum guide that attracts the attention
of visitors towards specific paintings (Guerini et al.,
2008; Guerini et al., 2011b). The various steps for
setting up an experiment (or a series of experiments)
are as follows:

Choose a Partner. If you have the opportunity
to have a commercial partner that already has the in-
frastructure for experiments (website, products, etc.)
many of the following steps can be skipped. We as-
sume that this is not the case.

Choose a scenario. Since you may not be
equipped with a VAT code (or with the commercial
partner that furnishes the AdWords account and in-
frastructure), you may need to “invent something to
promote” without any commercial aim. If a “social
marketing” scenario is chosen you can select “per-
sonal” as a “tax status”, that do not require a VAT
code. In our case we selected cultural heritage pro-
motion, in particular the frescoes of Torre Aquila
(“Eagle Tower”) in Trento. The tower contains a
group of 11 frescoes named “Ciclo dei Mesi” (cy-
cle of the months) that represent a unique example
of non-religious medieval frescoes in Europe.

Choose an appropriate keyword on which to
advertise, “medieval art” in our case. It is better
to choose keywords with enough web traffic in or-
der to speed up the experimental process. In our
case the search volume for “medieval art” (in phrase
match) was around 22.000 hits per month. Another
suggestion is to restrict the matching modality on
Keywords in order to have more control over the
situations in which ads are displayed and to avoid
possible extraneous effects (the order of control
for matching modality is: [exact match], “phrase
match” and broad match).

Note that such a technical decision - which key-
word to use - is better taken at an early stage of de-
velopment because it affects the following steps.

Write messages optimized for that keyword (e.g.
including it in the title or the body of the ad). Such
optimization must be the same for control and exper-
imental condition. The rest of the ad can be designed
in such a way to meet control and experimental con-
dition design (in our case a message with slightly
affective terms and a similar message with more af-
fectively loaded variations)

Build an appropriate landing page, according
to the keyword and populate the website pages with
relevant material. This is necessary to create a “cred-
ible environment” for users to interact with.

Incorporate meaningful actions in the website.
Users can perform various actions on a site, and they
can be monitored. The design should include ac-
tions that are meaningful indicators of persuasive ef-
fect/success of the message. In our case we decided
to include some outbound links, representing:

• general interest: “Buonconsiglio Castle site”
• specific interest: “Eagle Tower history”
• activated action: “Timetable and venue”
• complete success: “Book a visit”

Furthermore, through new Google Analytics fea-
tures, we set up a series of time spent on site and
number of visited pages thresholds to be monitored
in the ACE tool.

5.2 Tips for Planning an Experiment
There are variables, inherent in the Google AdWords
mechanism, that from a research point of view we
shall consider “extraneous”. We now propose tips
for controlling such extraneous variables.

Add negative matching Keywords: To add more
control, if in doubt, put the words/expressions of the
control and experimental conditions as negative key-
words. This will prevent different highlighting be-
tween the two conditions that can bias the results. It
is not strictly necessary since one can always control
which queries triggered a click through the report
menu. An example: if the only difference between
control and experimental condition is the use of the
adjectives “gentle knights” vs. “valorous knights”,
one can use two negative keyword matches: -gentle
and -valorous. Obviously if you are using a key-
word in exact matching to trigger your ads, such as
[knight], this is not necessary.

Frequency capping for the display network: if
you are running ads on the display network, you can
use the “frequency capping” option set to 1 to add
more control to the experiment. In this way it is as-
sured that ads are displayed only one time per user
on the display network.

Placement bids for the search network: unfor-
tunately this option is no longer available. Basically
the option allowed to bid only for certain positions
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on the SERPs to avoid possible “extraneous vari-
ables effect” given by the position. This is best ex-
plained via an example: if, for whatever reason, one
of the two ads gets repeatedly promoted to the pre-
mium position on the SERPs, then the CTR differ-
ence between ads would be strongly biased. From
a research point of view “premium position” would
then be an extraneous variable to be controlled (i.e.
either both ads get an equal amount of premium po-
sition impressions, or both ads get no premium po-
sition at all). Otherwise the difference in CTR is de-
termined by the “premium position” rather than by
the independent variable under investigation (pres-
ence/absence of particular affective terms in the text
ad). However even if it is not possible to rule out this
“position effect” it is possible to monitor it by using
the report (Segment > Top vs. other + Experiment)
and checking how many times each ad appeared in
a given position on the SERPs, and see if the ACE
tool reports any statistical difference in the frequen-
cies of ads positions.

Extra experimental time: While planning an ex-
periment, you should also take into account the ads
reviewing time that can take up to several days, in
worst case scenarios. Note that when ads are in eli-
gible status, they begin to show on the Google Net-
work, but they are not approved yet. This means that
the ads can only run on Google search pages and can
only show for users who have turned off SafeSearch
filtering, until they are approved. Eligible ads cannot
run on the Display Network. This status will provide
much less impressions than the final “approved” sta-
tus.

Avoid seasonal periods: for the above reason,
and to avoid extra costs due to high competition,
avoid seasonal periods (e.g. Christmas time).

Delivery method: if you are planning to use the
Accelerated Delivery method in order to get the re-
sults as quick as possible (in the case of “quick and
dirty” experiments or “fast prototyping-evaluation
cycles”) you should consider monitoring your ex-
periment more often (even several times per day) to
avoid running out of budget during the day.

6 Experiments

We ran two pilot experiments to test how affective
variations of existing texts alter their persuasive im-

pact. In particular we were interested in gaining
initial insights about an intelligent system for affec-
tive variations of existing commentaries on medieval
frescoes.

We focused on adjective variations, using a
slightly biased adjective for the control conditions
and a strongly biased variation for the experimen-
tal condition. In these experiments we took it for
granted that affective variations of a message work
better than a neutral version (Van Der Sluis and Mel-
lish, 2010), and we wanted to explore more finely
grained tactics that involve the grade of the vari-
ation (i.e. a moderately positive variation vs. an
extremely positive variation). Note that this is a
more difficult task than the one proposed in (Van
Der Sluis and Mellish, 2010), where they were test-
ing long messages with lots of variations and with
polarized conditions, neutral vs. biased. In addition
we wanted to test how quickly experiments could be
performed (two days versus the two week sugges-
tion of Google).

Adjectives were chosen according to MAX bi-
gram frequencies with the modified noun, using the
Web 1T 5-gram corpus (Brants and Franz, 2006).
Deciding whether this is the best metric for choosing
adjectives to modify a noun or not (e.g. also point-
wise mutual-information score can be used with a
different rationale) is out of the scope of the present
paper, but previous work has already used this ap-
proach (Whitehead and Cavedon, 2010). Top ranked
adjectives were then manually ordered - according to
affective weight - to choose the best one (we used a
standard procedure using 3 annotators and a recon-
ciliation phase for the final decision).

6.1 First Experiment

The first experiment lasted 48 hour with a total of 38
thousand subjects and a cost of 30 euros (see Table
1 for the complete description of the experimental
setup). It was meant to test broadly how affective
variations in the body of the ads performed. The two
variations contained a fragment of a commentary of
the museum guide; the control condition contained
“gentle knight” and “African lion”, while in the ex-
perimental condition the affective loaded variations
were “valorous knight” and “indomitable lion” (see
Figure 1, for the complete ads). As can be seen from
Table 2, the experiment did not yield any significant
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result, if one looks at the overall analysis. But seg-
menting the results according to the keyword that
triggered the ads (see Table 3) we discovered that
on the “medieval art” keyword, the control condition
performed better than the experimental one.

Starting Date: 1/2/2012
Ending Date: 1/4/2012
Total Time: 48 hours
Total Cost: 30 euros
Subjects: 38,082
Network: Search and Display
Language: English
Locations: Australia; Canada; UK; US
KeyWords: “medieval art”, pictures middle ages

Table 1: First Experiment Setup

ACE split Clicks Impr. CTR
Control 31 18,463 0.17%
Experiment 20 19,619 0.10%
Network Clicks Impr. CTR
Search 39 4,348 0.90%
Display 12 34,027 0.04%
TOTAL 51 38,082 0.13%

Table 2: First Experiment Results

Keyword ACE split Impr. CTR
”medieval art” Control 657 0.76%
”medieval art” Experiment 701 0.14%*
medieval times history Control 239 1.67%
medieval times history Experiment 233 0.86%
pictures middle ages Control 1114 1.35%
pictures middle ages Experiment 1215 0.99%

Table 3: First Experiment Results Detail. * indicates a
statistically significant difference with α < 0.01

Discussion. As already discussed, user moti-
vation is a key element for success in such fine-
grained experiments: while less focused keywords
did not yield any statistically significant differences,
the most specialized keyword “medieval art” was the
one that yielded results (i.e. if we display messages
like those in Figure 1, that are concerned with me-
dieval art frescoes, only those users really interested
in the topic show different reaction patterns to the af-
fective variations, while those generically interested
in medieval times behave similarly in the two con-
ditions). In the following experiment we tried to see

whether such variations have different effects when
modifying a different element in the text.

Figure 1: Ads used in the first experiment

6.2 Second Experiment

The second experiment lasted 48 hours with a to-
tal of one thousand subjects and a cost of 17 euros
(see Table 4 for the description of the experimen-
tal setup). It was meant to test broadly how affec-
tive variations introduced in the title of the text Ads
performed. The two variations were the same as in
the first experiment for the control condition “gentle
knight”, and for the experimental condition “valor-
ous knight” (see Figure 2 for the complete ads). As
can be seen from Table 5, also in this case the experi-
ment did not yield any significant result, if one looks
at the overall analysis. But segmenting the results
according to the search network that triggered the
ads (see Table 6) we discovered that on the search
partners at the “other” position, the control condition
performed better than the experimental one. Unlike
the first experiment, in this case we segmented ac-
cording to the ad position and search network typol-
ogy since we were running our experiment only on
one keyword in exact match.

Starting Date: 1/7/2012
Ending Date: 1/9/2012
Total Time: 48 hours
Total Cost: 17.5 euros
Subjects: 986
Network: Search
Language: English
Locations: Australia; Canada; UK; US
KeyWords: [medieval knights]

Table 4: Second Experiment Setup
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Figure 2: Ads used in the second experiment

ACE split Clicks Impr. CTR
Control 10 462 2.16%
Experiment 8 524† 1.52%
TOTAL 18 986 1.82%

Table 5: Second Experiment Results. † indicates a statis-
tically significant difference with α < 0.05

Top vs. Other ACE split Impr. CTR
Google search: Top Control 77 6.49%
Google search: Top Experiment 68 2.94%
Google search: Other Control 219 0.00%
Google search: Other Experiment 277* 0.36%
Search partners: Top Control 55 3.64%
Search partners: Top Experiment 65 6.15%
Search partners: Other Control 96 3.12%
Search partners: Other Experiment 105 0.95%†

Total - Search – 986 1.82%

Table 6: Second Experiment Results Detail. † indicates a
statistical significance with α < 0.05, * indicates a sta-
tistical significance with α < 0.01

Discussion. From this experiment we can confirm
that at least under some circumstances a mild af-
fective variation performs better than a strong varia-
tion. This mild variations seems to work better when
user attention is high (the difference emerged when
ads are displayed in a non-prominent position). Fur-
thermore it seems that modifying the title of the ad
rather than the content yields better results: 0.9% vs.
1.83% CTR (χ2 = 6.24; 1 degree of freedom; α <
0,01) even if these results require further assessment
with dedicated experiments.

As a side note, in this experiment we can see
the problem of extraneous variables: according to
AdWords’ internal mechanisms, the experimental
condition was displayed more often in the Google

search Network on the “other” position (277 vs. 219
impressions - and overall 524 vs. 462), still from a
research perspective this is not a interesting statisti-
cal difference, and ideally should not be present (i.e.
ads should get an equal amount of impressions for
each position).

Conclusions and future work

AdWords gives us an appropriate context for evalu-
ating persuasive messages. The advantages are fast
experiment building and evaluation, fully-automated
analysis, and low cost. By using keywords with a
low CPC it is possible to run large-scale experiments
for just a few euros. AdWords proved to be very ac-
curate, flexible and fast, far beyond our expectations.
We believe careful design of experiments will yield
important results, which was unthinkable before this
opportunity for studies on persuasion appeared.

The motivation for this work was exploration of
the impact of short persuasive messages, so to assess
the effectiveness of different linguistic choices. The
experiments reported in this paper are illustrative ex-
amples of the method proposed and are concerned
with the evaluation of the role of minimal affective
variations of short expressions. But there is enor-
mous further potential in the proposed approach to
ecological crowdsourcing for NLP: for instance, dif-
ferent rhetorical techniques can be checked in prac-
tice with large audiences and fast feedback. The as-
sessment of the effectiveness of a change in the title
as opposed to the initial portion of the text body pro-
vides a useful indication: one can investigate if vari-
ations inside the given or the new part of an expres-
sion or in the topic vs. comment (Levinson, 1983)
have different effects. We believe there is potential
for a concrete extensive exploration of different lin-
guistic theories in a way that was simply not realistic
before.
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Abstract

Polarity classification of words is important
for applications such as Opinion Mining and
Sentiment Analysis. A number of sentiment
word/sense dictionaries have been manually
or (semi)automatically constructed. The dic-
tionaries have substantial inaccuracies. Be-
sides obvious instances, where the same word
appears with different polarities in different
dictionaries, the dictionaries exhibit complex
cases, which cannot be detected by mere man-
ual inspection. We introduce the concept of
polarity consistency of words/senses in senti-
ment dictionaries in this paper. We show that
the consistency problem is NP-complete. We
reduce the polarity consistency problem to the
satisfiability problem and utilize a fast SAT
solver to detect inconsistencies in a sentiment
dictionary. We perform experiments on four
sentiment dictionaries and WordNet.

1 Introduction

The opinions expressed in various Web and media
outlets (e.g., blogs, newspapers) are an important
yardstick for the success of a product or a govern-
ment policy. For instance, a product with consis-
tently good reviews is likely to sell well. The gen-
eral approach is to summarize the semantic polarity
(i.e., positive or negative) of sentences/documents
by analysis of the orientations of the individual
words (Pang and Lee, 2004; Danescu-N.-M. et al.,
2009; Kim and Hovy, 2004; Takamura et al., 2005).
Sentiment dictionaries are utilized to facilitate the
summarization. There are numerous works that,
given a sentiment lexicon, analyze the structure of

a sentence/document to infer its orientation, the
holder of an opinion, the sentiment of the opin-
ion, etc. (Breck et al., 2007; Ding and Liu, 2010;
Kim and Hovy, 2004). Several domain indepen-
dent sentiment dictionaries have been manually or
(semi)-automatically created, e.g., General Inquirer
(GI) (Stone et al., 1996), Opinion Finder (OF) (Wil-
son et al., 2005), Appraisal Lexicon (AL) (Taboada
and Grieve, 2004), SentiWordNet (Baccianella et al.,
2010) and Q-WordNet (Agerri and Garcı́a-Serrano,
2010). Q-WordNet and SentiWordNet are lexical re-
sources which classify the synsets(senses) in Word-
Net according to their polarities. We call them sen-
timent sense dictionaries (SSD). OF, GI and AL
are called sentiment word dictionaries (SWD). They
consist of words manually annotated with their cor-
responding polarities. The sentiment dictionaries
have the following problems:
• They exhibit substantial (intra-dictionary) inac-

curacies. For example, the synset
{Indo-European, Indo-Aryan, Aryan} (of or re-
lating to the former Indo-European people),
has a negative polarity in Q-WordNet, while
most people would agree that this synset has a
neutral polarity instead.

• They have (inter-dictionary) inconsistencies.
For example, the adjective cheap is positive in
AL and negative in OF.

• These dictionaries do not address the concept of
polarity (in)consistency of words/synsets.

We concentrate on the concept of (in)consistency
in this paper. We define consistency among the po-
larities of words/synsets in a dictionary and give
methods to check it. A couple of examples help il-
lustrate the problem we attempt to address.
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The first example is the verbs confute and
disprove, which have positive and negative po-
larities, respectively, in OF. According to WordNet,
both words have a unique sense, which they share:
disprove, confute (prove to be false) ”The physicist
disproved his colleagues’ theories”
Assuming that WordNet has complete information
about the two words, it is rather strange that the
words have distinct polarities. By manually check-
ing two other authoritative English dictionaries, Ox-
ford1 and Cambridge2, we note that the information
about confute and disprove in WordNet is the
same as that in these dictionaries. So, the problem
seems to originate in OF.

The second example is the verbs tantalize
and taunt, which have positive and negative po-
larities, respectively, in OF. They also have a unique
sense in WordNet, which they share. Again, there
is a contradiction. In this case Oxford dictionary
mentions a sense of tantalize that is missing
from WordNet: “excite the senses or desires of
(someone)”. This sense conveys a positive polarity.
Hence, tantalize conveys a positive sentiment
when used with this sense.

In summary, these dictionaries have conflicting
information. Manual checking of sentiment dictio-
naries for inconsistency is a difficult endeavor. We
deem words such as confute and disprove in-
consistent. We aim to unearth these inconsistencies
in sentiment dictionaries. The presence of inconsis-
tencies found via polarity analysis is not exclusively
attributed to one party, i.e., either the sentiment dic-
tionary or WordNet. Instead, as emphasized by the
above examples, some of them lie in the sentiment
dictionaries, while others lie in WordNet. Therefore,
a by-product of our polarity consistency analysis is
that it can also locate some of the likely places where
WordNet needs linguists’ attention.

We show that the problem of checking whether
the polarities of a set of words is consistent is NP-
complete. Fortunately, the consistency problem can
be reduced to the satisfiability problem (SAT). A
fast SAT solver is utilized to detect inconsistencies
and it is known such solvers can in practice deter-
mine consistency or detect inconsistencies. Experi-
mental results show that substantial inconsistencies

1http://oxforddictionaries.com/
2http://dictionary.cambridge.org/

are discovered among words with polarities within
and across sentiment dictionaries. This suggests that
some remedial work needs to be performed on these
sentiment dictionaries as well as on WordNet. The
contributions of this paper are:
• address the consistency of polarities of

words/senses. The problem has not been
addressed before;

• show that the consistency problem is NP-
complete;

• reduce the polarity consistency problem to the
satisfiability problem and utilize a fast SAT
solver to detect inconsistencies;

• give experimental results to demonstrate that our
technique identifies considerable inconsistencies
in various sentiment lexicons as well as discrep-
ancies between these lexicons and WordNet.

2 Problem Definition
The polarities of the words in a sentiment dictionary
may not necessarily be consistent (or correct). In
this paper, we focus on the detection of polarity as-
signment inconsistencies for the words and synsets
within and across dictionaries (e.g., OF vs. GI). We
attempt to pinpoint the words with polarity inconsis-
tencies and classify them (Section 3).
2.1 WordNet
We give a formal characterization of WordNet. This
consists of words, synsets and frequency counts. A
word-synset network N is quadruple (W,S, E , f)
where W is a finite set of words, S is a finite set of
synsets, E is a set of undirected edges between el-
ements in W and S, i.e., E ⊆ W × S and f is a
function assigning a positive integer to each element
in E . For an edge (w, s), f(w, s) is called the fre-
quency of use of w in the sense given by s. For any
word w and synset s, we say that s is a synset of w
if (w, s) ∈ E . Also, for any word w, we let freq(w)
denote the sum of all f(w, s) such that (w, s) ∈ E .
If a synset has a 0 frequency of use we replace it
with 0.1, which is a standard smoothing technique
(Han, 2005). For instance, the word cheap has four
senses. The frequencies of occurrence of the word in
the four senses are f1 = 9, f2 = 1, f3 = 1 and f4 =
0, respectively. By smoothing, f4 = 0.1. Hence,
freq(cheap) = f1 + f2 + f3 + f4 = 11.1. The
relative frequency of the synset in the first sense of
cheap, which denotes the probability that the word
is used in the first sense, is f1

freq(cheap) = 9
11.1 = 0.81.
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2.2 Consistent Polarity Assignment

We assume that each synset has a unique polarity.
We define the polarity of a word to be a discrete
probability distribution: P+, P−, P0 with P++P−+
P0 = 1, where they represent the “likelihoods” that
the word is positive, negative or neutral, respec-
tively. We call this distribution a polarity distribu-
tion. For instance, the word cheap has the polarity
distribution P+ = 0.81, P− = 0.19 and P0 = 0.
The polarity distribution of a word is estimated using
the polarities of its underlying synsets. For instance
cheap has four senses, with the first sense being
positive and the last three senses being negative. The
probability that the word expresses a negative senti-
ment is P− = f2+f3+f4

freq(cheap) = 0.19, while the proba-
bility that the word expresses a positive sentiment is
P+ = f1

freq(cheap) = 0.81. P0 = 1− P+ − P− = 0.

Our view of characterizing the polarity of a word
using a polarity distribution is shared with other pre-
vious works (Kim and Hovy, 2006; Andreevskaia
and Bergler, 2006). Nonetheless, we depart from
these works in the following key aspect. We say
that a word has a (mostly) positive (negative) po-
larity if the majority sense of the word is positive
(negative). That is, a word has a mostly positive po-
larity if P+ > P− + P0 and it has a mostly nega-
tive polarity if P− > P+ + P0. Or, equivalently, if
P+ > 1

2 or P− > 1
2 , respectively. For example,

on majority, cheap conveys positive polarity since
P+ = .081 > 1

2 , i.e., the majority sense of the word
cheap has positive connotation.

Based on this study, we contend that GI, OF and
AL tacitly assume this property. For example, the
verb steal is assigned only negative polarity in
GI. This word has two other less frequently occur-
ring senses, which have positive polarities. The po-
larity of steal according to these two senses is not
mentioned in GI. This is the case for the overwhelm-
ing majority of the entries in the three dictionaries:
only 112 out of a total of 14,105 entries in the three
dictionaries regard words with multiple polarities.
For example, the verb arrest is mentioned with
both negative and positive polarities in GI. We re-
gard an entry in an SWD as the majority sense of the
word has the specified polarity, although the word
may carry other polarities. For instance, the adjec-
tive cheap has positive polarity in GI. The only as-
sumption we make about the word is that it has a po-

larity distribution such that P+ > P− + P0. This in-
terpretation is consistent with the senses of the word.
In this work we show that this property allows the
polarities of words in input sentiment dictionaries to
be checked. We formally state this property.

Definition 1. Let w be a word and Sw its set of
synsets. Each synset in Sw has an associated po-
larity and a relative frequency with respect to w. w
has polarity p, p ∈ {positive, negative} if there is
a subset of synsets S′ ⊆ Sw such that each synset
s ∈ S′ has polarity p and

∑
s∈S′

f(w,s)
freq(w) > 0.5. S′

is called a polarity dominant subset. If there is no
such subset then w has a neutral polarity.

S′ ⊆ Sw is a minimally dominant subset of
synsets (MDSs) if the sum of the relative frequen-
cies of the synsets in S′ is larger than 0.5 and the
removal of any synset s from S′ will make the sum
of the relative frequencies of the synsets in S′ − {s}
smaller than or equal to 0.5.

The definition does not preclude a word from hav-
ing a polarity with a majority sense and a different
polarity with a minority sense. For example, the def-
inition does not prevent a word from having both
positive and negative senses, but it prevents a word
from concomitantly having a majority sense of being
positive and a majority sense of being negative.

Despite using a “hard-coded” constant in the def-
inition, our approach is generic and does not depen-
dent on the constant 0.5. This constant is just a lower
bound for deciding whether a word has a majority
sense with a certain polarity. It also is intuitively
appealing. The constant can be replaced with an ar-
bitrary threshold τ between 0.5 and 1.

We need a formal description of polarity assign-
ments to the words and synsets in WordNet. We as-
sign polarities from the set P = {positive, negative,
neutral} to elements in W ∪ S. Formally, a polar-
ity assignment γ for a network N is a function from
W ∪ S to the set P . Let γ be a polarity assignment
for N . We say that γ is consistent if it satisfies the
following condition for each w ∈ W:

For p ∈ {positive, negative}, γ(w) = p iff the
sum of all f(w, s) such that (w, s) ∈ E and γ(s) =

p, is greater than
freq(w)

2
. Note that, for any w ∈

W , γ(w) = neutral iff the above inequality is not
satisfied for both values of p in {positive, negative}.

We contend that our approach is applicable to do-
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Table 1: Disagreement between dictionaries.
Pairs of Word Polarity Disagreement

Dictionaries Inconsistency Overlap
OF & GI 90 2,924
OF & AL 73 1,150
GI & AL 18 712

main dependent sentiment dictionaries, too. We can
employ WordNet Domains (Bentivogli et al., 2004).
WordNet Domains augments WordNet with domain
labels. Hence, we can project the words/synsets in
WordNet according to a domain label and then apply
our methodology to the projection.

3 Inconsistency Classification
Polarity inconsistencies are of two types: input and
complex. We discuss them in this section.

3.1 Input Dictionaries Polarity Inconsistency
Input polarity inconsistencies are of two types:
intra-dictionary and inter-dictionary inconsistencies.
The latter are obtained by comparing (1) two SWDs,
(2) an SWD with an SSD and (3) two SSDs.

3.1.1 Intra-dictionary inconsistency
An SWD may have triplets of the form (w, pos, p)

and (w, pos, p′), where p ̸= p′. For instance, the
verb brag has both positive and negative polarities
in OF. For these cases, we look up WordNet and ap-
ply Definition 1 to determine the polarity of word w
with part of speech pos. The verb brag has negative
polarity according to Definition 1. Such cases sim-
ply say that the team who constructs the dictionary
believes the word has multiple polarities as they do
not adopt our dominant sense principle. There are
58 occurrences of this type of inconsistency in GI,
OF and AL. Q-WordNet, a sentiment sense dictio-
nary, does not have intra-inconsistencies as it does
do not have a synset with multiple polarities.

3.1.2 Inter-dictionary inconsistency
A word belongs to this category if it appears with

different polarities in different SWDs. For instance,
the adjective joyless has positive polarity in OF
and negative polarity in GI. Table 1 depicts the over-
lapping relationships between the three SWDs: e.g.,
OF has 2,933 words in common with GI. The three
dictionaries largely agree on the polarities of the
words they pairwise share. For instance, out of 2,924
words shared by OF and GI, 2,834 have the same po-
larities. However, there are also a significant number

of words which have different polarities across dic-
tionaries. Case in point, OF and GI disagree on the
polarities of 90 words. Among the three dictionar-
ies there are 181 polarity inconsistent words. These
words are manually corrected using Definition 1 be-
fore the polarity consistency checking is applied to
the union of the three dictionaries. This union is
called disagreement-free union.

3.2 Complex Polarity Inconsistency
This kind of inconsistency is more subtle and cannot
be detected by direct comparison of words/synsets.
They consist of sets of words and/or synsets whose
polarities cannot concomitantly be satisfied. Recall
the example of the verbs confute and disprove
in OF given in Section 1. Recall our argument that
by assuming that WordNet is correct, it is not pos-
sible for the two words to have different polarities:
the sole synset, which they share, would have two
different polarities, which is a contradiction.

The occurrence of an inconsistency points out the
presence of incorrect input data:
• the information given in WordNet is incorrect, or
• the information in the given sentiment dictionary

is incorrect, or both.
Regarding WordNet, the errors may be due to (1)

a word has senses that are missing from WordNet or
(2) the frequency count of a synset is inaccurate. A
comprehensive analysis of every synset/word with
inconsistency is a tantalizing endeavor requiring not
only a careful study of multiple sources (e.g., dictio-
naries such as Oxford and Cambridge) but also lin-
guistic expertise. It is beyond the scope of this paper
to enlist all potentially inconsistent words/synsets
and the possible remedies. Instead, we limit our-
selves to drawing attention to the occurrence of these
issues through examples, welcoming experts in the
area to join the corrective efforts. We give more ex-
amples of inconsistencies in order to illustrate addi-
tional discrepancies between input dictionaries.

3.2.1 WordNet vs. Sentiment Dictionaries
The adjective bully is an example of a discrep-

ancy between WordNet and a sentiment dictionary.
The word has negative polarity in OF and has a sin-
gle sense in WordNet. The sense is shared with the
word nifty, which has positive polarity in OF. By
applying Definition 1 to nifty we obtain that the
sense is positive, which in turn, by Definition 1, im-
plies that bully is positive. This contradicts the
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input polarity of bully. According to the Webster
dictionary, the word has a sense (i.e., resembling or
characteristic of a bully) which has a negative po-
larity, but it is not present in WordNet. The example
shows the presence of a discrepancy between Word-
Net and OF, namely, OF seems to assign polarity to
a word according to a sense that is not in WordNet.

3.2.2 Across Sentiment Dictionaries
We provide examples of inconsistencies across

sentiment dictionaries here. Our first example
is obtained by comparing SWDs. The adjective
comic has negative polarity in AL and the adjective
laughable has positive polarity in OF. Through
deduction (i.e., by successive applications of Defini-
tion 1), the word risible, which is not present in
either of the dictionaries, is assigned negative polar-
ity because of comic and is assigned positive po-
larity because of laughable.

The second example illustrates that an SWD and
an SSD may have contradicting information. The
verb intoxicate has three synsets in WordNet,
each with the same frequency. Hence, their rela-
tive frequencies with respect to intoxicate are
1
3 . On one hand, intoxicate has a negative po-
larity in GI. This means that P− > 1

2 . On the other
hand, two of its three synsets have positive polarity
in Q-WordNet. So, P+ = 2

3 > 1
2 , which means that

P− < 1
2 . This is a contradiction. This example can

also be used to illustrate the presence of a discrep-
ancy between WordNet and sentiment dictionaries.
Note that all the frequencies of use of the senses of
intoxicate in WordNet are 0. The problem is
that when all the senses of a word have a 0 frequency
of use, wrong polarity inference may be produced.

3.3 Consistent Polarity Assignment
Given the discussion above, it clearly is important to
find all occurrences of inconsistent words. This in
turn boils down to finding those words with the prop-
erty that there does not exist any polarity assignment
to the synsets, which is consistent with their polar-
ities. It turns out that the complexity of the prob-
lem of assigning polarities to the synsets such that
the assignment is consistent with the polarities of
the input words, called Consistent Polarity
Assignment problem, is a “hard” problem, as de-
scribed below. The problem is stated as follows:

Consider two sets of nodes of type synsets and
type words, in which each synset of a word has a

relative frequency with respect to the word. Each
synset can be assigned a positive, negative or neu-
tral polarity. A word has polarity p if it satisfies the
hypothesis of Definition 1. The question to be an-
swered is: Given an assignment of polarities to the
words, does there exist an assignment of polarities
to the synsets that agrees with that of the words?

In other words, given the polarities of a subset of
words (e.g., that given by one of the three SWDs)
the problem of finding the polarities of the synsets
that agree with this assignment is a “hard” problem.

Theorem 1. The Consistent Polarity Assignment
problem is NP-complete.

4 Polarity Consistency Checking
To “exhaustively” solve the problem of finding the
polarity inconsistencies in an SWD, we propose a
solution that reduces an instance of the problem to
an instance of CNF-SAT. We can then employ a
fast SAT solver (e.g., (Xu et al., 2008; Babic et al.,
2006)) to solve our problem. CNF-SAT is a deci-
sion problem of determining if there is an assign-
ment of True and False to the variables of a Boolean
formula Φ in conjunctive normal form (CNF) such
that Φ evaluates to True. A formula is in CNF if
it is a conjunction of one or more clauses, each of
which is a disjunction of literals. CNF-SAT is a clas-
sic NP-complete problem, but, modern SAT solvers
are capable of solving many practical instances of
the problem. Since, in general, there is no easy way
to tell the difficulty of a problem without trying it,
SAT solvers include time-outs, so they will termi-
nate even if they cannot find a solution.

We developed a method of converting an instance
of the polarity consistency checking problem into an
instance of CNF-SAT, which we will describe next.

4.1 Conversion to CNF-SAT
The input consists of an SWD D and the word-
synset network N . We partition N into connected
components. For each synset s we define three
Boolean variables s−, s+ and s0, corresponding to
the negative, positive and neutral polarities, respec-
tively. In this section we use −, +, 0 to denote neg-
ative, positive and neutral polarities, respectively.

Let Φ be the Boolean formula for a connected
component M of the word-synset network N . We
introduce its clauses. First, for each synset s we need
a clause C(s) that expresses that the synset can have

1001



only one of the three polarities: C(s) = (s+∧¬s−∧
¬s0) ∨ (s− ∧ ¬s+ ∧ ¬s0) ∨ (s0 ∧ ¬s− ∧ ¬s+).

Since a word has a neutral polarity if it has nei-
ther positive nor negative polarities, we have that
s0 = ¬s+ ∧ ¬s−. Replacing this expression in the
equation above and applying standard Boolean logic
formulas, we can reduce it to

C(s) = ¬s+ ∨ ¬s− (1)

For each word w with polarity p ∈ {−, +, 0} in
D we need a clause C(w, p) that states that w has
polarity p. So, the Boolean formula for a connected
component M of the word-synset network N is:

Φ =
∧

s∈M

C(s) ∧
∧

(w,p)∈D

C(w, p). (2)

From Definition 1, w is neutral if it is neither pos-
itive nor negative. Hence, C(w, 0) = ¬C(w,−) ∧
¬C(w,+). So, we need to define only the clauses
C(w,−) and C(w, +), which correspond to w hav-
ing polarity negative and positive, respectively. So,
herein p ∈ {−, +}, unless otherwise specified.

Our method is based on the following statement
in Definition 1: w has polarity p if there exists a
polarity dominant subset among its synsets. Thus,
C(w, p) is defined by enumerating all the MDSs of
w. If at least one of them is a polarity dominant
subset then C(w, p) evaluates to True.

Exhaustive Enumeration of MDSs Method
(EEM) We now elaborate the construction of
C(w, p). We enumerate all the MDSs of w and for
each of them we introduce a clause. The clauses are
then concatenated by OR in the Boolean formula.
Let C(w, p, T ) denote the clause for an MDS T of
w, when w has polarity p ∈ {−, +}. Hence,

C(w, p) =
∨

T∈MDS(w)

C(w, p, T ), (3)

where MDS(w) is the set of all MDSs of w.
For each MDS T of w, the clause C(w, p, T ) is

the AND of the variables corresponding to polarity
p of the synsets in T . That is,

C(w, p, T ) =
∧
s∈T

sp, p ∈ {−, +}. (4)

The formula Φ is not in CNF after this construc-
tion and it needs to be converted. The conversion to
CNF is a standard procedure and we omit it in this
paper. Φ in CNF is input to a SAT solver.

Example 1. Consider a connected component
consisting of the words w = cheap, v =
inexpensive and u = sleazy. cheap has
a positive polarity, whereas inexpensive and
sleazy have negative polarities. The synsets
of these words are: {s1, s2, s3, s4}, {s1} and
{s3, s4, s5}, respectively (refer to WordNet). The
relative frequencies of s3, s4 and s5 w.r.t. sleazy
are all equal to 1/3. We have 15 binary variables,
3 per synset, si

−, si
+, si

0, 1 ≤ i ≤ 5. The only
MDS of cheap is {s1}, which coincides with that
of inexpensive. Those of sleazy are {s3, s4},
{s3, s5} and {s4, s5}. For each si we need a clause
C(si). Hence, C(w, +) = s1

+, C(v,−) = s1
− and

C(u,−) = (s3
− ∧ s4

−) ∨ (s3
− ∧ s5

−) ∨ (s4
− ∧ s5

−).
Thus, Φ =

∧
i

C(si) ∧ [s1
+ ∧ s1

− ∧ ((s3
− ∧ s4

−) ∨

(s3
− ∧ s5

−) ∨ (s4
− ∧ s5

−))]. Φ is not in CNF and
needs to be converted. For Φ to be True, the clauses
C(w, +) = s1

+ and C(v,−) = s1
− must be True.

But, this makes C(s1) False. Hence, Φ is not satisfi-
able. The clauses C(w, +) = s1

+ and C(v,−) = s1
−

are unsatisfiable and thus the polarities of cheap
and inexpensive are inconsistent.

4.2 Implementation Issues
The above reduction is exponential in the number
of clauses (see, Equation 3) in the worst case. A
polynomial reduction is possible, but it is signifi-
cantly more complicated to implement. We choose
to present the exponential reduction in this paper be-
cause it can handle over 97% of the words in Word-
Net and it is better suited to explain one of the main
contributions of paper: the translation from the po-
larity consistency problem to SAT.

WordNet possesses nice properties, which allows
the exponential reduction to run efficiently in prac-
tice. First, 97.2% of its (word, part-of-speech) pairs
have 4 or fewer synsets. Thus, these words add very
few clauses to a CNF formula (Equation 3). Second,
WordNet can be partitioned into 33,015 non-trivial
connected components, each of which corresponds
to a Boolean formula and they all are independently
handled. A non-trivial connected component has at
least two words. Finally, in practice, not all con-
nected components need to be considered for an in-
put sentiment dictionary D, but only those having at
least two words in D. In our experiments the largest
number of components that need to be processed is
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Table 2: Distribution of words and synsets
POS WordsSynsets OF GI AL QWN
Noun117,798 82,115 1,907 1,444 2 7,403
Verb 11,529 13,767 1,501 1,041 0 4006
Adj. 21,479 18,156 2,608 1,188 1,440 4050
Adv. 4,481 3,621 775 51 317 40
Total155,287 117,659 6,791 3,961 1,759 15,499

1,581, for the disagreement-free union dictionary.

5 Detecting Inconsistencies

In this section we describe how we detect the words
with polarity inconsistencies using the output of a
SAT solver. For an unsatisfiable formula, a mod-
ern SAT solver returns a minimal unsatisfiable core
(MUC) from the original formula. An unsatisfiable
core is minimal if it becomes satisfiable whenever
any one of its clauses is removed. There are no
known practical algorithms for computing the min-
imum core (Dershowitz et al., 2006). In our prob-
lem a MUC corresponds to a set of polarity incon-
sistent words. The argument is as follows. Con-
sider W the set of words in a connected component
and Φ the CNF formula generated with the above
method. During the transformation we keep track of
the clauses introduced in Φ by each word. Suppose
Φ is inconsistent. Then, the SAT solver returns a
MUC. Each clause in a MUC is mapped back to its
corresponding word(s). We obtain the correspond-
ing subset of words W ′,W ′ ⊆ W . Suppose that Φ′

is the Boolean CNF formula for the words in W ′.
The set of clauses in Φ′ is a subset of those in Φ.
Also, the clauses in the MUC appear in Φ′. Thus, Φ′

is unsatisfiable and the words in W ′ are inconsistent.
To find all inconsistent words we ought to gener-

ate all MUCs. Unfortunately, this is a “hard” prob-
lem (Dershowitz et al., 2006) and no open source
SAT solver possesses this functionality. We how-
ever observe that the two SAT solvers we use for our
experiments (SAT4j and PicoSAT (Biere, 2008)) re-
turn different MUCs for the same formula and we
use them to find as many inconsistencies as possi-
ble.

6 Experiments

The goal of the experimental study is to show that
our techniques can identify considerable inconsis-
tencies in various sentiment dictionaries.

Table 3: Intra- and inter-dictionaries inconsistency
POS OF QW GI QW AL QW UF QW
Noun 23 119 4 61 0 42 90 140
Verb 66 113 2 67 0 0 63 137
Adj. 90 170 8 48 0 0 27 177
Adv. 61 1 0 0 2 0 69 1
Total 240 403 14 176 2 42 249 455

Data sets In our experiments, we use WordNet
3.0, GI, OF, AL and Q-WordNet. Their statistics are
given in Table 2. The table shows the distribution of
the words and synsets per part of speech. Columns
2 and 3 pertain to WordNet. There are 3,961 entries
in GI, 1,759 entries in AL and 6,791 entries in OF
which appear in WordNet. Q-WordNet has 15,499
entries, i.e., synsets with polarities.

Inconsistency Detection We applied our method
to (1) each of AL, GI and OF; (2) the disagreement-
free union (UF); (3) each of AL, GI and OF together
with Q-WordNet and (4) UF and Q-WordNet. Ta-
ble 3 summarizes the outcome of the experimental
study. EEM finds 240, 14 and 2 polarity inconsis-
tent words in OF, GI and AL, respectively. The ratio
between the number of inconsistent words and the
number of input words is the highest for OF and the
lowest for AL. The union dictionary has 7,794 words
and 249 out of them are found to be polarity incon-
sistent words. Recall that we manually corrected
the polarities of 181 words, to the best of our un-
derstanding. So, in effect the three dictionaries have
249 + 181 = 430 polarity inconsistent words. As dis-
cussed in the previous section, these may not be all
the polarity inconsistencies in UF. In general, to find
all inconsistencies we need to generate all MUCs.
Generating all MUCs is an “overkill” and the SAT
solvers we use do not implement such a functional-
ity. In addition, the intention of SAT solver design-
ers is to use MUCs in a interactive manner. That
is, the errors pointed out by a MUC are corrected
and then the new improved formula is re-evaluated
by the SAT solver. If an error is still present a new
MUC is reported, and the process repeats until the
formula has no errors. Or, in our problem, until a
dictionary is consistent.

We also paired Q-WordNet with each of the
SWDs. Table 3 presents the results. Observe that po-
larities assigned to the words in AL and GI largely
agree with the polarities assigned to the synsets in
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Q-WordNet. This is expected for AL because it
has only two nouns and no verb, while Q-WordNet
has only 40 adverbs. Consequently, these two dic-
tionaries have limited “overlay”. The union dictio-
nary and Q-WordNet have substantial inconsisten-
cies: the polarity of 455 words in the union dictio-
nary disagrees with the polarities assigned to their
underlying synsets in Q-WordNet.

Sentence Level Evaluation We took 10 pairs of
inconsistent words per part of speech; in total, we
collected a set IW of 80 inconsistent words. Let
⟨w, pos, p⟩ ∈ IW , p is the polarity of w. We col-
lected 5 sentences for ⟨w, pos⟩ from the set of snip-
pets returned by Google for query w. We parsed
the snippets and identified the first 5 occurrences of
w with the part of speech pos. Then two graduate
students with English background analyzed the po-
larities of ⟨w, pos⟩ in the 5 sentences. We counted
the number of times ⟨w, pos⟩ appears with polarity p
and polarities different from p. We defined an agree-
ment scale: total agreement (5/5), most agreement
(4/5), majority agreement (3/5), majority disagree-
ment (2/5), most disagreement (1/5), total disagree-
ment (0/5). We computed the percentage of words
per agreement category. We repeated the experiment
for 40 randomly drawn words (10 per part of speech)
from the set of consistent words. In total 600 sen-
tences were manually analyzed. Figure 1 shows the
distribution of the (in)consistent words. For exam-
ple, the annotators totally agree with the polarities
of 55% of the consistent words, whereas they only
totally agree with 16% of the polarities of the incon-
sistent words. The graph suggests that the annota-
tors disagree to some extent (total disagreement +
most disagreement + major disagreement) with 40%
of the polarities of the inconsistent words, whereas
they disagree to some extent with only 5% of the
consistent words. We also manually investigated the
senses of these words in WordNet. We noted that
36 of the 80 inconsistent words (45%) have missing
senses according to one of these English dictionar-
ies: Oxford and Cambridge.

Computational Issues We used a 4-core CPU
computer with 12GB of memory. EEM requires
10GB of memory and cannot handle words with
more than 200,000 MDSs: for UF we left the SAT
solver running for a week without ever terminating.
In contrast, it takes about 4 hours if we limit the set

Figure 1: Human classification of (in)consistent words.

of words to those that have up to 200,000 MDSs.
EEM could not handle words such as make, give
and break. Recall however that we did not gener-
ate all MUCs. We do not know how long would that
might have taken. (The polynomial method handles
all the words in WordNet and it takes 5GB of mem-
ory and about 2 hours to finish.)

7 Related Work
Several researchers have studied the problem of
finding opinion words (Liu, 2010). There are two
lines of work on sentiment polarity lexicon induc-
tion: corpora-based (Hatzivassiloglou and McKe-
own, 1997; Kanayama and Nasukawa, 2006; Qiu et
al., 2009; Wiebe, 2000) and dictionary-based (An-
dreevskaia and Bergler, 2006; Agerri and Garcı́a-
Serrano, 2010; Dragut et al., 2010; Esuli and Se-
bastiani, 2005; Baccianella et al., 2010; Hu and
Liu, 2004; Kamps et al., 2004; Kim and Hovy,
2006; Rao and Ravichandran, 2009; Takamura et al.,
2005). Our work falls into the latter. Most of these
works use the lexical relations defined in WordNet
(e.g., synonym, antonym) to derive sentiment lexi-
cons. To our knowledge, none of the earlier works
studied the problem of polarity consistency check-
ing for a sentiment dictionary. Our techniques can
pinpoint the inconsistencies within individual dictio-
naries and across dictionaries.

8 Conclusion
We studied the problem of checking polarity consis-
tency for sentiment word dictionaries. We proved
that this problem is NP-complete. We showed that
in practice polarity inconsistencies of words both
within a dictionary and across dictionaries can be
obtained using an SAT solver. The inconsistencies
are pinpointed and this allows the dictionaries to be
improved. We reported experiments on four senti-
ment dictionaries and their union dictionary.
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Abstract

An ideal summarization system should pro-
duce summaries that have high content cov-
erage and linguistic quality. Many state-of-
the-art summarization systems focus on con-
tent coverage by extracting content-dense sen-
tences from source articles. A current research
focus is to process these sentences so that they
read fluently as a whole. The current AE-
SOP task encourages research on evaluating
summaries on content, readability, and over-
all responsiveness. In this work, we adapt
a machine translation metric to measure con-
tent coverage, apply an enhanced discourse
coherence model to evaluate summary read-
ability, and combine both in a trained regres-
sion model to evaluate overall responsiveness.
The results show significantly improved per-
formance over AESOP 2011 submitted met-
rics.

1 Introduction

Research and development on automatic and man-
ual evaluation of summarization systems have been
mainly focused on content coverage (Lin and Hovy,
2003; Nenkova and Passonneau, 2004; Hovy et al.,
2006; Zhou et al., 2006). However, users may still
find it difficult to read such high-content coverage
summaries as they lack fluency. To promote research
on automatic evaluation of summary readability, the
Text Analysis Conference (TAC) (Owczarzak and
Dang, 2011) introduced a new subtask on readability
to its Automatically Evaluating Summaries of Peers
(AESOP) task.

Most of the state-of-the-art summarization sys-
tems (Ng et al., 2011; Zhang et al., 2011; Conroy
et al., 2011) are extraction-based. They extract the
most content-dense sentences from source articles.
If no post-processing is performed to the generated
summaries, the presentation of the extracted sen-
tences may confuse readers. Knott (1996) argued
that when the sentences of a text are randomly or-
dered, the text becomes difficult to understand, as its
discourse structure is disturbed. Lin et al. (2011)
validated this argument by using a trained model
to differentiate an original text from a randomly-
ordered permutation of its sentences by looking at
their discourse structures. This prior work leads us
to believe that we can apply such discourse mod-
els to evaluate the readability of extract-based sum-
maries. We will discuss the application of Lin et
al.’s discourse coherence model to evaluate read-
ability of machine generated summaries. We also
introduce two new feature sources to enhance the
model with hierarchical and Explicit/Non-Explicit
information, and demonstrate that they improve the
original model.

There are parallels between evaluations of ma-
chine translation (MT) and summarization with re-
spect to textual content. For instance, the widely
used ROUGE (Lin and Hovy, 2003) metrics are in-
fluenced by BLEU (Papineni et al., 2002): both
look at surface n-gram overlap for content cover-
age. Motivated by this, we will adapt a state-of-the-
art, linear programming-based MT evaluation met-
ric, TESLA (Liu et al., 2010), to evaluate the content
coverage of summaries.

TAC’s overall responsiveness metric evaluates the
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quality of a summary with regard to both its con-
tent and readability. Given this, we combine our
two component coherence and content models into
an SVM-trained regression model as our surrogate
to overall responsiveness. Our experiments show
that the coherence model significantly outperforms
all AESOP 2011 submissions on both initial and up-
date tasks, while the adapted MT evaluation metric
and the combined model significantly outperform all
submissions on the initial task. To the best of our
knowledge, this is the first work that applies a dis-
course coherence model to measure the readability
of summaries in the AESOP task.

2 Related Work

Nenkova and Passonneau (2004) proposed a manual
evaluation method that was based on the idea that
there is no single best model summary for a collec-
tion of documents. Human annotators construct a
pyramid to capture important Summarization Con-
tent Units (SCUs) and their weights, which is used
to evaluate machine generated summaries.

Lin and Hovy (2003) introduced an automatic
summarization evaluation metric, called ROUGE,
which was motivated by the MT evaluation met-
ric, BLEU (Papineni et al., 2002). It automati-
cally determines the content quality of a summary
by comparing it to the model summaries and count-
ing the overlapping n-gram units. Two configura-
tions – ROUGE-2, which counts bigram overlaps,
and ROUGE-SU4, which counts unigram and bi-
gram overlaps in a word window of four – have been
found to correlate well with human evaluations.

Hovy et al. (2006) pointed out that automated
methods such as ROUGE, which match fixed length
n-grams, face two problems of tuning the appropri-
ate fragment lengths and matching them properly.
They introduced an evaluation method that makes
use of small units of content, called Basic Elements
(BEs). Their method automatically segments a text
into BEs, matches similar BEs, and finally scores
them.

Both ROUGE and BE have been implemented
and included in the ROUGE/BE evaluation toolkit1,
which has been used as the default evaluation tool
in the summarization track in the Document Un-

1http://berouge.com/default.aspx

derstanding Conference (DUC) and Text Analysis
Conference (TAC). DUC and TAC also manually
evaluated machine generated summaries by adopt-
ing the Pyramid method. Besides evaluating with
ROUGE/BE and Pyramid, DUC and TAC also asked
human judges to score every candidate summary
with regard to its content, readability, and overall re-
sponsiveness.

DUC and TAC defined linguistic quality to cover
several aspects: grammaticality, non-redundancy,
referential clarity, focus, and structure/coherence.
Recently, Pitler et al. (2010) conducted experiments
on various metrics designed to capture these as-
pects. Their experimental results on DUC 2006 and
2007 show that grammaticality can be measured by
a set of syntactic features, while the last three as-
pects are best evaluated by local coherence. Con-
roy and Dang (2008) combined two manual linguis-
tic scores – grammaticality and focus – with various
ROUGE/BE metrics, and showed this helps better
predict the responsiveness of the summarizers.

Since 2009, TAC introduced the task of Auto-
matically Evaluating Summaries of Peers (AESOP).
AESOP 2009 and 2010 focused on two summary
qualities: content and overall responsiveness. Sum-
mary content is measured by comparing the output
of an automatic metric with the manual Pyramid
score. Overall responsiveness measures a combi-
nation of content and linguistic quality. In AESOP
2011 (Owczarzak and Dang, 2011), automatic met-
rics are also evaluated for their ability to assess sum-
mary readability, i.e., to measure how linguistically
readable a machine generated summary is. Sub-
mitted metrics that perform consistently well on the
three aspects include Giannakopoulos and Karkalet-
sis (2011), Conroy et al. (2011), and de Oliveira
(2011). Giannakopoulos and Karkaletsis (2011) cre-
ated two character-based n-gram graph representa-
tions for both the model and candidate summaries,
and applied graph matching algorithm to assess their
similarity. Conroy et al. (2011) extended the model
in (Conroy and Dang, 2008) to include shallow lin-
guistic features such as term overlap, redundancy,
and term and sentence entropy. de Oliveira (2011)
modeled the similarity between the model and can-
didate summaries as a maximum bipartite matching
problem, where the two summaries are represented
as two sets of nodes and precision and recall are cal-
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(b) The matching solution

Figure 1: A BNG matching problem. Top and
bottom rows of each figure represent BNG from
the model and candidate summaries, respectively.
Links are similarities. Both n-grams and links are
weighted.

culated from the matched edges. However, none of
the AESOP metrics currently apply deep linguistic
analysis, which includes discourse analysis.

Motivated by the parallels between summariza-
tion and MT evaluation, we will adapt a state-of-
the-art MT evaluation metric to measure summary
content quality. To apply deep linguistic analysis,
we also enhance an existing discourse coherence
model to evaluate summary readability. We focus
on metrics that measure the average quality of ma-
chine summarizers, i.e., metrics that can rank a set
of machine summarizers correctly (human summa-
rizers are not included in the list).

3 TESLA-S: Evaluating Summary
Content

TESLA (Liu et al., 2010) is an MT evaluation
metric which extends BLEU by introducing a lin-
ear programming-based framework for improved
matching. It also makes use of linguistic resources
and considers both precision and recall.

3.1 The Linear Programming Matching
Framework

Figure 1 shows the matching of bags of n-grams
(BNGs) that forms the core of the TESLA metric.
The top row in Figure 1a represents the bag of n-
grams (BNG) from the model summary, and the

bottom row represents the BNG from the candidate
summary. Each n-gram has a weight. The links
between the n-grams represent the similarity score,
which are constrained to be between 0 and 1. Math-
ematically, TESLA takes as input the following:

1. The BNG of the model summary, X , and the
BNG of the candidate summary, Y . The ith en-
try in X is xi and has weight xW

i (analogously
for yi and yW

i ).
2. A similarity score s(xi, yj) between all n-

grams xi and yj .

The goal of the matching process is to align the
two BNGs so as to maximize the overall similar-
ity. The variables of the problem are the allocated
weights for the edges,

w(xi, yj) ∀i, j

TESLA maximizes∑
i,j

s(xi, yj)w(xi, yj)

subject to

w(xi, yj) ≥ 0 ∀i, j∑
j

w(xi, yj) ≤ xW
i ∀i

∑
i

w(xi, yj) ≤ yW
j ∀j

This real-valued linear programming problem can
be solved efficiently. The overall similarity S is the
value of the objective function. Thus,

Precision =
S∑
j y

W
j

Recall =
S∑
i x

W
i

The final TESLA score is given by the F-measure:

F =
Precision× Recall

α× Precision + (1− α)× Recall

In this work, we set α = 0.8, following (Liu et al.,
2010). The score places more importance on recall
than precision. When multiple model summaries are
provided, TESLA matches the candidate BNG with
each of the model BNGs. The maximum score is
taken as the combined score.

1008



3.2 TESLA-S: TESLA for Summarization
We adapted TESLA for the nuances of summariza-
tion. Mimicking ROUGE-SU4, we construct one
matching problem between the unigrams and one
between skip bigrams with a window size of four.
The two F scores are averaged to give the final score.

The similarity score s(xi, yj) is 1 if the word sur-
face forms of xi and yj are identical, and 0 other-
wise. TESLA has a more sophisticated similarity
measure that focuses on awarding partial scores for
synonyms and parts of speech (POS) matches. How-
ever, the majority of current state-of-the-art sum-
marization systems are extraction-based systems,
which do not generate new words. Although our
simplistic similarity score may be problematic when
evaluating abstract-based systems, the experimen-
tal results support our choice of the similarity func-
tion. This reflects a major difference between MT
and summarization evaluation: while MT systems
always generate new sentences, most summarization
systems focus on locating existing salient sentences.

Like in TESLA, function words (words in closed
POS categories, such as prepositions and articles)
have their weights reduced by a factor of 0.1, thus
placing more emphasis on the content words. We
found this useful empirically.

3.3 Significance Test
Koehn (2004) introduced a bootstrap resampling
method to compute statistical significance of the dif-
ference between two machine translation systems
with regard to the BLEU score. We adapt this
method to compute the difference between two eval-
uation metrics in summarization:

1. Randomly choose n topics from the n given
topics with replacement.

2. Summarize the topics with the list of machine
summarizers.

3. Evaluate the list of summaries from Step 2 with
the two evaluation metrics under comparison.

4. Determine which metric gives a higher correla-
tion score.

5. Repeat Step 1 – 4 for 1,000 times.

As we have 44 topics in TAC 2011 summarization
track, n = 44. The percentage of times metric a
gives higher correlation than metric b is said to be
the significance level at which a outperforms b.

Initial Update
P S K P S K

R-2 0.9606 0.8943 0.7450 0.9029 0.8024 0.6323
R-SU4 0.9806 0.8935 0.7371 0.8847 0.8382 0.6654
BE 0.9388 0.9030 0.7456 0.9057 0.8385 0.6843
4 0.9672 0.9017 0.7351 0.8249 0.8035 0.6070
6 0.9678 0.8816 0.7229 0.9107 0.8370 0.6606
8 0.9555 0.8686 0.7024 0.8981 0.8251 0.6606
10 0.9501 0.8973 0.7550 0.7680 0.7149 0.5504
11 0.9617 0.8937 0.7450 0.9037 0.8018 0.6291
12 0.9739 0.8972 0.7466 0.8559 0.8249 0.6402
13 0.9648 0.9033 0.7582 0.8842 0.7961 0.6276
24 0.9509 0.8997 0.7535 0.8115 0.8199 0.6386
TESLA-S 0.9807 0.9173 0.7734 0.9072 0.8457 0.6811

Table 1: Content correlation with human judgment
on summarizer level. Top three scores among AE-
SOP metrics are underlined. The TESLA-S score is
bolded when it outperforms all others. ROUGE-2 is
shortened to R-2 and ROUGE-SU4 to R-SU4.

3.4 Experiments
We test TESLA-S on the AESOP 2011 content eval-
uation task, judging the metric fitness by compar-
ing its correlations with human judgments for con-
tent. The results for the initial and update tasks are
reported in Table 1. We show the three baselines
(ROUGE-2, ROUGE-SU4, and BE) and submitted
metrics with correlations among the top three scores,
which are underlined. This setting remains the same
for the rest of the experiments. We use three cor-
relation measures: Pearson’s r, Spearman’s ρ, and
Kendall’s τ , represented by P, S, and K, respectively.
The ROUGE scores are the recall scores, as per con-
vention. On the initial task, TESLA-S outperforms
all metrics on all three correlation measures. On the
update task, TESLA-S ranks second, first, and sec-
ond on Pearson’s r, Spearman’s ρ, and Kendall’s τ ,
respectively.

To test how significant the differences are, we per-
form significance testing using Koehn’s resampling
method between TESLA-S and ROUGE-2/ROUGE-
SU4, on which TESLA-S is based. The findings are:

• Initial task: TESLA-S is better than ROUGE-2
at 99% significance level as measured by Pear-
son’s r.
• Update task: TESLA-S is better than ROUGE-

SU4 at 95% significance level as measured by
Pearson’s r.
• All other differences are statistically insignifi-

cant, including all correlations on Spearman’s
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ρ and Kendall’s τ .

The last point can be explained by the fact that
Spearman’s ρ and Kendall’s τ are sensitive to only
the system rankings, whereas Pearson’s r is sensitive
to the magnitude of the differences as well, hence
Pearson’s r is in general a more sensitive measure.

4 DICOMER: Evaluating Summary
Readability

Intuitively, a readable text should also be coherent,
and an incoherent text will result in low readabil-
ity. Both readability and coherence indicate how
fluent a text is. We thus hypothesize that a model
that measures how coherent a text is can also mea-
sure its readability. Lin et al. (2011) introduced dis-
course role matrix to represent discourse coherence
of a text. W first illustrate their model with an exam-
ple, and then introduce two new feature sources. We
then apply the models and evaluate summary read-
ability.

4.1 Lin et al.’s Discourse Coherence Model

First, a free text in Figure 2 is parsed by a dis-
course parser to derive its discourse relations, which
are shown in Figure 3. Lin et al. observed that
coherent texts preferentially follow certain relation
patterns. However, simply using such patterns to
measure the coherence of a text can result in fea-
ture sparseness. To solve this problem, they expand
the relation sequence into a discourse role matrix,
as shown in Table 2. The matrix essentially cap-
tures term occurrences in the sentence-to-sentence
relation sequences. This model is motivated by
the entity-based model (Barzilay and Lapata, 2008)
which captures sentence-to-sentence entity transi-
tions. Next, the discourse role transition probabili-
ties of lengths 2 and 3 (e.g., Temp.Arg1→Exp.Arg2
and Comp.Arg1→nil→Temp.Arg1) are calculated
with respect to the matrix. For example, the prob-
ability of Comp.Arg2→Exp.Arg2 is 2/25 = 0.08 in
Table 2.

Lin et al. applied their model on the task of dis-
cerning an original text from a permuted ordering of
its sentences. They modeled it as a pairwise rank-
ing model (i.e., original vs. permuted), and trained a
SVM preference ranking model with discourse role

S1 Japan normally depends heavily on the High-
land Valley and Cananea mines as well as the
Bougainville mine in Papua New Guinea.

S2 Recently, Japan has been buying copper elsewhere.
S3.1 But as Highland Valley and Cananea begin operat-

ing,
S3.2 they are expected to resume their roles as Japan’s

suppliers.
S4.1 According to Fred Demler, metals economist for

Drexel Burnham Lambert, New York,
S4.2 “Highland Valley has already started operating
S4.3 and Cananea is expected to do so soon.”

Figure 2: A text with four sentences. Si.j means the
jth clause in the ith sentence.

S1           S2          S3.1          S3.2          S4.1          S4.2          S4.3 

Implicit 

Comparison 

Explicit 

Comparison 

Explicit 

Temporal 

Implicit 

Expansion 

Explicit 

Expansion 

Figure 3: The discourse relations for Figure 2. Ar-
rows are pointing from Arg2 to Arg1.

S# Terms
copper cananea operat depend . . .

S1 nil Comp.Arg1 nil Comp.Arg1

S2
Comp.Arg2 nil nil nilComp.Arg1

S3 nil
Comp.Arg2 Comp.Arg2

nilTemp.Arg1 Temp.Arg1
Exp.Arg1 Exp.Arg1

S4 nil Exp.Arg2 Exp.Arg1 nilExp.Arg2

Table 2: Discourse role matrix fragment extracted
from Figure 2 and 3. Rows correspond to sen-
tences, columns to stemmed terms, and cells contain
extracted discourse roles. Temporal, Contingency,
Comparison, and Expansion are shortened to Temp,
Cont, Comp, and Exp, respectively.

transitions as features and their probabilities as val-
ues.

4.2 Two New Feature Sources

We observe that there are two kinds of informa-
tion in Figure 3 that are not captured by Lin et al.’s
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model. The first one is whether a relation is Ex-
plicit or Non-Explicit (Lin et al. (2010) termed Non-
Explicit to include Implicit, AltLex, EntRel, and
NoRel). Explicit relation and Non-Explicit relation
have different distributions on each discourse rela-
tion (PDTB-Group, 2007). Thus, adding this in-
formation may further improve the model. In ad-
dition to the set of the discourse roles of “Rela-
tion type . Argument tag”, we introduce another
set of “Explicit/Non-Explicit . Relation type . Ar-
gument tag”. The cell Ccananea,S3 now contains
Comp.Arg2, Temp.Arg1, Exp.Arg1, E.Comp.Arg2,
E.Temp.Arg1, and N.Exp.Arg1 (E for Explicit and
N for Non-Explicit).

The other information that is not in the discourse
role matrix is the discourse hierarchy structure,
i.e., whether one relation is embedded within
another relation. In Figure 3, S3.1 is Arg1 of
Explicit Temporal, which is Arg2 of the higher
relation Explicit Comparison as well as Arg1 of
another higher relation Implicit Expansion. These
dependencies are important for us to know how
well-structured a summary is. It is represented
by the multiple discourse roles in each cell of the
matrix. For example, the multiple discourse roles in
the cell Ccananea,S3 capture the three dependencies
just mentioned. We introduce intra-cell bigrams
as a new set of features to the original model: for
a cell with multiple discourse roles, we sort them
by their surface strings and multiply to obtain
the bigrams. For instance, Ccananea,S3 will pro-
duce bigrams such as Comp.Arg2↔Exp.Arg1
and Comp.Arg2↔Temp.Arg1. When both
the Explicit/Non-Explicit feature source and
the intra-cell feature source are joined to-
gether, it also produces bigram features such
as E.Comp.Arg2↔Temp.Arg1.

4.3 Predicting Readability Scores

Lin et al. (2011) used the SVMlight (Joachims,
1999) package with the preference ranking config-
uration. To train the model, each source text and
one of its permutations form a training pair, where
the source text is given a rank of 1 and the permuta-
tion is given 0. In testing, the trained model predicts
a real number score for each instance, and the in-
stance with the higher score in a pair is said to be
the source text.

In the TAC summarization track, human judges
scored each model and candidate summary with a
readability score from 1 to 5 (5 means most read-
able). Thus in our setting, instead of a pair of texts,
the training input consists of a list of model and can-
didate summaries from each topic, with their anno-
tated scores as the rankings. Given an unseen test
summary, the trained model predicts a real number
score. This score essentially is the readability rank-
ing of the test summary. Such ranking can be eval-
uated by the ranking-based correlations of Spear-
man’s ρ and Kendall’s τ . As Pearson’s r measures
linear correlation and we do not know whether the
real number score follows a linear function, we take
the logarithm of this score as the readability score
for this instance.

We use the data from AESOP 2009 and 2010 as
the training data, and test our metrics on AESOP
2011 data. To obtain the discourse relations of a
summary, we use the discourse parser2 developed in
Lin et al. (2010).

4.4 Experiments

Table 3 shows the resulting readability correlations.
The last four rows show the correlation scores for
our coherence model: LIN is the default model
by (Lin et al., 2011), LIN+C is LIN with the
intra-cell feature class, LIN+E is enhanced with
the Explicit/Non-Explicit feature class. We name
the LIN model with both new feature sources (i.e.,
LIN+C+E) DICOMER – a DIscourse COherence
Model for Evaluating Readability.

LIN outperforms all metrics on all correlations on
both tasks. On the initial task, it outperforms the
best scores by 3.62%, 16.20%, and 12.95% on Pear-
son, Spearman, and Kendall, respectively. Similar
gaps (4.27%, 18.52%, and 13.96%) are observed
on the update task. The results are much better
on Spearman and Kendall. This is because LIN is
trained with a ranking model, and both Spearman
and Kendall are ranking-based correlations.

Adding either intra-cell or Explicit/Non-Explicit
features improves all correlation scores, with
Explicit/Non-Explicit giving more pronounced im-
provements. When both new feature sources are in-

2http://wing.comp.nus.edu.sg/˜linzihen/
parser/
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Initial Update
P S K P S K

R-2 0.7524 0.3975 0.2925 0.6580 0.3732 0.2635
R-SU4 0.7840 0.3953 0.2925 0.6716 0.3627 0.2540
BE 0.7171 0.4091 0.2911 0.5455 0.2445 0.1622
4 0.8194 0.4937 0.3658 0.7423 0.4819 0.3612
6 0.7840 0.4070 0.3036 0.6830 0.4263 0.3141
12 0.7944 0.4973 0.3589 0.6443 0.3991 0.3062
18 0.7914 0.4746 0.3510 0.6698 0.3941 0.2856
23 0.7677 0.4341 0.3162 0.7054 0.4223 0.3014
LIN 0.8556 0.6593 0.4953 0.7850 0.6671 0.5008
LIN+C 0.8612 0.6703 0.4984 0.7879 0.6828 0.5135
LIN+E 0.8619 0.6855 0.5079 0.7928 0.6990 0.5309
DICOMER 0.8666 0.7122 0.5348 0.8100 0.7145 0.5435

Table 3: Readability correlation with human judg-
ment on summarizer level. Top three scores among
AESOP metrics are underlined. Our score is bolded
when it outperforms all AESOP metrics.

Initial Update
vs. P S K P S K

LIN

4

∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
LIN+C ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
LIN+E ∗∗ ∗∗ ∗∗ ∗ ∗∗ ∗∗
DICOMER ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
DICOMER LIN – ∗ ∗ ∗ – –

Table 4: Koehn’s significance test for readability.
∗∗, ∗, and – indicate significance level >=99%,
>=95%, and <95%, respectively.

corporated into the metric, we obtain the best results
for all correlation scores: DICOMER outperforms
LIN by 1.10%, 5.29%, and 3.95% on the initial task,
and 2.50%, 4.74%, and 4.27% on the update task.

Table 3 shows that summarization evaluation
Metric 4 tops all other AESOP metrics, except in
the case of Spearman’s ρ on the initial task. We
compare our four models to this metric. The results
of Koehn’s significance test are reported in Table 4,
which demonstrates that all four models outperform
Metric 4 significantly. In the last row, we see that
when comparing DICOMER to LIN, DICOMER is
significantly better on three correlation measures.

5 CREMER: Evaluating Overall
Responsiveness

With TESLA-S measuring content coverage and DI-
COMER measuring readability, it is feasible to com-
bine them to predict the overall responsiveness of a
summary. There exist many ways to combine two
variables mathematically: we can combine them in
a linear function or polynomial function, or in a way

Initial Update
P S K P S K

R-2 0.9416 0.7897 0.6096 0.9169 0.8401 0.6778
R-SU4 0.9545 0.7902 0.6017 0.9123 0.8758 0.7065
BE 0.9155 0.7683 0.5673 0.8755 0.7964 0.6254
4 0.9498 0.8372 0.6662 0.8706 0.8674 0.7033
6 0.9512 0.7955 0.6112 0.9271 0.8769 0.7160
11 0.9427 0.7873 0.6064 0.9194 0.8432 0.6794
12 0.9469 0.8450 0.6746 0.8728 0.8611 0.6858
18 0.9480 0.8447 0.6715 0.8912 0.8377 0.6683
23 0.9317 0.7952 0.6080 0.9192 0.8664 0.6953
25 0.9512 0.7899 0.6033 0.9033 0.8139 0.6349
CREMERLF 0.9381 0.8346 0.6635 0.8280 0.6860 0.5173
CREMERPF 0.9621 0.8567 0.6921 0.8852 0.7863 0.6159
CREMERRBF 0.9716 0.8836 0.7206 0.9018 0.8285 0.6588

Table 5: Responsiveness correlation with human
judgment on summarizer level. Top three scores
among AESOP metrics are underlined. CREMER
score is bolded when it outperforms all AESOP met-
rics.

similar to how precision and recall are combined
in F measure. We applied a machine learning ap-
proach to train a regression model for measuring
responsiveness. The scores predicted by TESLA-
S and DICOMER are used as two features. We
use SVMlight with the regression configuration, test-
ing three kernels: linear function, polynomial func-
tion, and radial basis function. We called this model
CREMER – a Combined REgression Model for
Evaluating Responsiveness.

We train the regression model on AESOP 2009
and 2010 data sets, and test it on AESOP 2011. The
DICOMER model that is trained in Section 4 is used
to predict the readability scores on all AESOP 2009,
2010, and 2011 summaries. We apply TESLA-S to
predict content scores on all AESOP 2009, 2010,
and 2011 summaries.

5.1 Experiments

The last three rows in Table 5 show the correlation
scores of our regression model trained with SVM
linear function (LF), polynomial function (PF), and
radial basis function (RBF). PF performs better than
LF, suggesting that content and readability scores
should not be linearly combined. RBF gives bet-
ter performances than both LF and PF, suggesting
that RBF better models the way humans combine
content and readability. On the initial task, the
model trained with RBF outperforms all submitted
metrics. It outperforms the best correlation scores
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by 1.71%, 3.86%, and 4.60% on Pearson, Spear-
man, and Kendall, respectively. All three regression
models do not perform as well on the update task.
Koehn’s significance test shows that when trained
with RBF, CREMER outperforms ROUGE-2 and
ROUGE-SU4 on the initial task at a significance
level of 99% for all three correlation measures.

6 Discussion

The intuition behind the combined regression model
is that combining the readability and content scores
will give an overall good responsiveness score. The
function to combine them and their weights can be
obtained by training. While the results showed that
SVM radial basis kernel gave the best performances,
this function may not truly mimic how human evalu-
ates responsiveness. Human judges were told to rate
summaries by their overall qualities. They may take
into account other aspects besides content and read-
ability. Given CREMER did not perform well on the
update task, we hypothesize that human judgment
of update summaries may involve more complicated
rankings or factor in additional input that CREMER
currently does not model. We plan to devise a bet-
ter responsiveness metric in our future work, beyond
using a simple combination.

Figure 4 shows a complete picture of Pearson’s r
for all AESOP 2011 metrics and our three met-
rics on both initial and update tasks. We highlight
our metrics with a circle on these curves. On the
initial task, correlation scores for content are con-
sistently higher than those for responsiveness with
small gaps, whereas on the update task, they are al-
most overlapping. On the other hand, correlation
scores for readability are much lower than those for
content and responsiveness, with a gap of about 0.2.
Comparing Figure 4a and 4b, evaluation metrics al-
ways correlate better on the initial task than on the
update task. This suggests that there is much room
for improvement for readability metrics, and metrics
need to consider update information when evaluat-
ing update summarizers.

7 Conclusion

We proposed TESLA-S by adapting an MT eval-
uation metric to measure summary content cover-
age, and introduced DICOMER by applying a dis-
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(a) Evaluation metric values on the initial task.
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(b) Evaluation metric values on the update
task.

Figure 4: Pearson’s r for all AESOP 2011 submitted
metrics and our proposed metrics. Our metrics are
circled. Higher r value is better.

course coherence model with newly introduced fea-
tures to evaluate summary readability. We com-
bined these two metrics in the CREMER metric
– an SVM-trained regression model – for auto-
matic summarization overall responsiveness evalu-
ation. Experimental results on AESOP 2011 show
that DICOMER significantly outperforms all sub-
mitted metrics on both initial and update tasks with
large gaps, while TESLA-S and CREMER signifi-
cantly outperform all metrics on the initial task. 3
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Abstract

In this paper we describe a method for simpli-
fying sentences using Phrase Based Machine
Translation, augmented with a re-ranking
heuristic based on dissimilarity, and trained on
a monolingual parallel corpus. We compare
our system to a word-substitution baseline and
two state-of-the-art systems, all trained and
tested on paired sentences from the English
part of Wikipedia and Simple Wikipedia. Hu-
man test subjects judge the output of the dif-
ferent systems. Analysing the judgements
shows that by relatively careful phrase-based
paraphrasing our model achieves similar sim-
plification results to state-of-the-art systems,
while generating better formed output. We
also argue that text readability metrics such
as the Flesch-Kincaid grade level should be
used with caution when evaluating the output
of simplification systems.

1 Introduction

Sentence simplification can be defined as the process
of producing a simplified version of a sentence by
changing some of the lexical material and grammat-
ical structure of that sentence, while still preserving
the semantic content of the original sentence, in or-
der to ease its understanding. Particularly language
learners (Siddharthan, 2002), people with reading
disabilities (Inui et al., 2003) such as aphasia (Car-
roll et al., 1999), and low-literacy readers (Watanabe
et al., 2009) can benefit from this application. It can
serve to generate output in a specific limited format,
such as subtitles (Daelemans et al., 2004). Sentence
simplification can also serve to preprocess the input

of other tasks, such as summarization (Knight and
Marcu, 2000), parsing, machine translation (Chan-
drasekar et al., 1996), semantic role labeling (Vick-
rey and Koller, 2008) or sentence fusion (Filippova
and Strube, 2008).

The goal of simplification is to achieve an im-
provement in readability, defined as the ease with
which a text can be understood. Some of the factors
that are known to help increase the readability of text
are the vocabulary used, the length of the sentences,
the syntactic structures present in the text, and the
usage of discourse markers. One effort to create a
simple version of English at the vocabulary level has
been the creation of Basic English by Charles Kay
Ogden. Basic English is a controlled language with
a basic vocabulary consisting of 850 words. Accord-
ing to Ogden, 90 percent of all dictionary entries can
be paraphrased using these 850 words. An exam-
ple of a resource that is written using mainly Basic
English is the English Simple Wikipedia. Articles
on English Simple Wikipedia are similar to articles
found in the traditional English Wikipedia, but writ-
ten using a limited vocabulary (using Basic English
where possible). Generally the structure of the sen-
tences in English Simple Wikipedia is less compli-
cated and the sentences are somewhat shorter than
those found in English Wikipedia; we offer more de-
tailed statistics below.

1.1 Related work

Most earlier work on sentence simplification
adopted rule-based approaches. A frequently ap-
plied type of rule, aimed to reduce overall sentence
length, splits long sentences on the basis of syntactic
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information (Chandrasekar and Srinivas, 1997; Car-
roll et al., 1998; Canning et al., 2000; Vickrey and
Koller, 2008). There has also been work on lexi-
cal substitution for simplification, where the aim is
to substitute difficult words with simpler synonyms,
derived from WordNet or dictionaries (Inui et al.,
2003).

Zhu et al. (2010) examine the use of paired doc-
uments in English Wikipedia and Simple Wikipedia
for a data-driven approach to the sentence simplifi-
cation task. They propose a probabilistic, syntax-
based machine translation approach to the problem
and compare against a baseline of no simplification
and a phrase-based machine translation approach.
In a similar vein, Coster and Kauchak (2011) use
a parallel corpus of paired documents from Sim-
ple Wikipedia and Wikipedia to train a phrase-based
machine translation model coupled with a deletion
model. Another useful resource is the edit his-
tory of Simple Wikipedia, from which simplifica-
tions can be learned (Yatskar et al., 2010). Woods-
end and Lapata (2011) investigate the use of Simple
Wikipedia edit histories and an aligned Wikipedia–
Simple Wikipedia corpus to induce a model based
on quasi-synchronous grammar. They select the
most appropriate simplification by using integer lin-
ear programming.

We follow Zhu et al. (2010) and Coster and
Kauchak (2011) in proposing that sentence simpli-
fication can be approached as a monolingual ma-
chine translation task, where the source and target
languages are the same and where the output should
be simpler in form from the input but similar in
meaning. We differ from the approach of Zhu et
al. (2010) in the sense that we do not take syntac-
tic information into account; we rely on PBMT to
do its work and implicitly learn simplifying para-
phrasings of phrases. Our approach differs from
Coster and Kauchak (2011) in the sense that instead
of focusing on deletion in the PBMT decoding stage,
we focus on dissimilarity, as simplification does not
necessarily imply shortening (Woodsend and Lap-
ata, 2011), or as the Simple Wikipedia guidelines
state, “simpler does not mean short”1. Table 1.1
shows the average sentence length and the average

1http://simple.wikipedia.org/wiki/Main_
Page/Introduction

word length for Wikipedia and Simple Wikipedia
sentences in the PWKP dataset used in this study
(Zhu et al., 2010). These numbers suggest that, al-
though the selection criteria for sentences to be in-
cluded in this dataset are biased (see Section 2.2),
Simple Wikipedia sentences are about 17% shorter,
while the average word length is virtually equal.

Sent. length Token length
Simple Wikipedia 20.87 4.89
Wikipedia 25.01 5.06

Table 1: Sentence and token length statistics for the
PWKP dataset (Zhu et al., 2010).

Statistical machine translation (SMT) has already
been successfully applied to the related task of para-
phrasing (Quirk et al., 2004; Bannard and Callison-
Burch, 2005; Madnani et al., 2007; Callison-Burch,
2008; Zhao et al., 2009; Wubben et al., 2010). SMT
typically makes use of large parallel corpora to train
a model on. These corpora need to be aligned at
the sentence level. Large parallel corpora, such as
the multilingual proceedings of the European Parlia-
ment (Europarl), are readily available for many lan-
guages. Phrase-Based Machine Translation (PBMT)
is a form of SMT where the translation model aims
to translate longer sequences of words (“phrases”)
in one go, solving part of the word ordering problem
along the way that would be left to the target lan-
guage model in a word-based SMT system. PMBT
operates purely on statistics and no linguistic knowl-
edge is involved in the process: the phrases that are
aligned are motivated statistically, rather than lin-
guistically. This makes PBMT adaptable to any lan-
guage pair for which there is a parallel corpus avail-
able. The PBMT model makes use of a translation
model, derived from the parallel corpus, and a lan-
guage model, derived from a monolingual corpus in
the target language. The language model is typically
an n-gram model with smoothing. For any given in-
put sentence, a search is carried out producing an
n-best list of candidate translations, ranked by the
decoder score, a complex scoring function includ-
ing likelihood scores from the translation model,
and the target language model. In principle, all of
this should be transportable to a data-driven machine
translation account of sentence simplification, pro-
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vided that a parallel corpus is available that pairs text
to simplified versions of that text.

1.2 This study

In this work we aim to investigate the use of phrase-
based machine translation modified with a dissim-
ilarity component for the task of sentence simplifi-
cation. While Zhu et al. (2010) have demonstrated
that their approach outperforms a PBMT approach
in terms of Flesch Reading Ease test scores, we are
not aware of any studies that evaluate PBMT for sen-
tence simplification with human judgements. In this
study we evaluate the output of Zhu et al. (2010)
(henceforth referred to as ‘Zhu’), Woodsend and La-
pata (2011) (henceforth referred to as ‘RevILP’),
our PBMT based system with dissimilarity-based
re-ranking (henceforth referred to as ‘PBMT-R’), a
word-substitution baseline, and, as a gold standard,
the original Simple Wikipedia sentences. We will
first discuss the baseline, followed by the Zhu sys-
tem, the RevILP system, and our PBMT-R system
in Section 2. We then describe the experiment with
human judges in Section 3, and its results in Sec-
tion 4. We close this paper by critically discussing
our results in Section 5.

2 Sentence Simplification Models

2.1 Word-Substitution Baseline

The word substitution baseline replaces words in
the source sentence with (near-)synonyms that are
more likely according to a language model. For
each noun, adjective and verb in the sentence this
model takes that word and its part-of-speech tag
and retrieves from WordNet all synonyms from all
synsets the word occurs in. The word is then re-
placed by all of its synset words, and each replace-
ment is scored by a SRILM language model (Stol-
cke, 2002) with probabilities that are obtained from
training on the Simple Wikipedia data. The alter-
native that has the highest probability according to
the language model is kept. If no relevant alterna-
tive is found, the word is left unchanged. We use
the Memory-Based Tagger (Daelemans et al., 1996)
trained on the Brown corpus to compute the part-of-
speech tags. The WordNet::QueryData2 Perl mod-

2http://search.cpan.org/dist/
WordNet-QueryData/QueryData.pm

ule is used to query WordNet (Fellbaum, 1998).

2.2 Zhu et al.
Zhu et al. (2010) learn a sentence simplification
model which is able to perform four rewrite op-
erations on the parse trees of the input sentences,
namely substitution, reordering, splitting, and dele-
tion. Their model is inspired by syntax-based
SMT (Yamada and Knight, 2001) and consists of
a language model, a translation model and a de-
coder. The four mentioned simplification opera-
tions together form the translation model. Their
model is trained on a corpus containing aligned sen-
tences from English Wikipedia and English Simple
Wikipedia called PWKP. The PWKP dataset con-
sists of 108,016 pairs of aligned lines from 65,133
Wikipedia and Simple Wikipedia articles. These ar-
ticles were paired by following the “interlanguage
link”3. TF*IDF at the sentence level was used to
align the sentences in the different articles (Nelken
and Shieber, 2006).

Zhu et al. (2010) evaluate their system using
BLEU and NIST scores, as well as various read-
ability scores that only take into account the output
sentence, such as the Flesch Reading Ease test and
n-gram language model perplexity. Although their
system outperforms several baselines at the level of
these readability metrics, they do not achieve better
when evaluated with BLEU or NIST.

2.3 RevILP
Woodsend and Lapata’s (2011) model is based
on quasi-synchronous grammar (Smith and Eisner,
2006). Quasi-synchronous grammar generates a
loose alignment between parse trees. It operates on
individual sentences annotated with syntactic infor-
mation in the form of phrase structure trees. Quasi-
synchronous grammar is used to generate all pos-
sible rewrite operations, after which integer linear
programming is employed to select the most ap-
propriate simplification. Their model is trained on
two different datasets: one containing alignments
between Wikipedia and English Simple Wikipedia
(AlignILP), and one containing alignments between
edits in the revision history of Simple Wikipedia
(RevILP). RevILP performs best according to the

3http://en.wikipedia.org/wiki/Help:
Interlanguage_links

1017



human judgements conducted in their study. They
show that it achieves better scores than Zhu et al.
(2010)’s system and is not scored significantly dif-
ferently from English Simple Wikipedia. In this
study we compare against their best performing sys-
tem, the RevILP system.
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Figure 1: Levenshtein distance and Flesch-Kincaid score
of output when varying the n of the n-best output of
Moses.

2.4 PBMT-R

We use the Moses software to train a PBMT
model (Koehn et al., 2007). The data we use is the
PWKP dataset created by Zhu et al. (2010). In gen-
eral, a statistical machine translation model finds a
best translation ẽ of a text in language f to a text
in language e by combining a translation model that

finds the most likely translation p(f |e) with a lan-
guage model that outputs the most likely sentence
p(e):

ẽ = argmax
e∈e∗

p(f |e)p(e)

The GIZA++ statistical alignment package is
used to perform the word alignments, which are
later combined into phrase alignments in the Moses
pipeline (Och and Ney, 2003) to build the sentence
simplification model. GIZA++ utilizes IBM Models
1 to 5 and an HMM word alignment model to find
statistically motivated alignments between words.
We first tokenize and lowercase all data and use all
unique sentences from the Simple Wikipedia part
of the PWKP training set to train an n-gram lan-
guage model with the SRILM toolkit to learn the
probabilities of different n-grams. Then we invoke
the GIZA++ aligner using the training simplifica-
tion pairs. We run GIZA++ with standard settings
and we perform no optimization. This results in a
phrase table containing phrase pairs from Wikipedia
and Simple Wikipedia and their conditional proba-
bilities as assigned by Moses. Finally, we use the
Moses decoder to generate simplifications for the
sentences in the test set. For each sentence we let
the system generate the ten best distinct solutions
(or less, if fewer than ten solutions are generated) as
ranked by Moses.

Arguably, dissimilarity is a key factor in simpli-
fication (and in paraphrasing in general). As output
we would like to be able to select fluent sentences
that adequately convey the meaning of the original
input, yet that contain differences that operational-
ize the intended simplification. When training our
PBMT system on the PWKP data we may assume
that the system learns to simplify automatically, yet
there is no aspect of the decoder function in Moses
that is sensitive to the fact that it should try to be
different from the input – Moses may well trans-
late input to unchanged output, as much of our train-
ing data consists of partially equal input and output
strings.

To expand the functionality of Moses in the in-
tended direction we perform post-hoc re-ranking on
the output based on dissimilarity to the input. We
do this to select output that is as different as possi-
ble from the source sentence, so that it ideally con-
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tains multiple simplifications; at the same time, we
base our re-ranking on a top-n of output candidates
according to Moses, with a small n, to ensure that
the quality of the output in terms of fluency and ade-
quacy is also controlled for. Setting n = 10, for each
source sentence we re-rank the ten best sentences
as scored by the decoder according to the Leven-
shtein Distance (or edit distance) measure (Leven-
shtein, 1966) at the word level between the input
and output sentence, counting the minimum num-
ber of edits needed to transform the source string
into the target string, where the allowable edit op-
erations are insertion, deletion, and substitution of a
single word. In case of a tie in Levenshtein Distance,
we select the sequence with the better decoder score.
When Moses is unable to generate ten different sen-
tences, we select from the lower number of outputs.
Figure 1 displays Levenshtein Distance and Flesch-
Kincaid grade level scores for different values of n.
We use the Lingua::EN::Fathom module4 to calcu-
late Flesch-Kincaid grade level scores. The read-
ability score stays more or less the same, indicating
no relation between n and readability. The average
edit distance starts out at just above 2 when selecting
the 1-best output string, and increases roughly until
n = 10.

2.5 Descriptive statistics
Table 2 displays the average edit distance and the
percentage of cases in which no edits were per-
formed for each of the systems and for Simple
Wikipedia. We see that the Levenshtein distance be-
tween Wikipedia and Simple Wikipedia is the most
substantial with an average of 12.3 edits. Given
that the average number of tokens is about 25 for
Wikipedia and 21 for Simple Wikipedia (cf. Ta-
ble 1.1), these numbers indicate that the changes in
Simple Wikipedia go substantially beyond the aver-
age four-word length difference. On average, eight
more words are interchanged for other words. About
half of the original tokens in the source sentence do
not return in the output. Of the three simplifica-
tion systems, the Zhu system (7.95) and the RevILP
(7.18) attain similar edit distances, less substantial
than the edits in Simple Wikipedia, but still consid-

4http://http://search.cpan.org/˜kimryan/
Lingua-EN-Fathom-1.15/lib/Lingua/EN/
Fathom.pm

erable compared to the baseline word-substitution
system (4.26) and PBMT-R (3.08). Our system is
clearly conservative in its edits.

System LD Perc. no edits
Simple Wikipedia 12.30 3
Word Sub 4.26 0
Zhu 7.95 2
RevILP 7.18 22
PBMT-R 3.08 5

Table 2: Levenshtein Distance and percentage of unal-
tered output sentences.

On the other hand, we observe some differences
in the percentage of cases in which the systems de-
cide to produce a sentence identical to the input.
In 22 percent of the cases the RevILP system does
not alter the sentence. The other systems make this
decision about as often as the gold standard, Sim-
ple Wikipedia, where only 3% of sentences remain
unchanged. The word-substitution baseline always
manages to make at least one change.

3 Evaluation

3.1 Participants

Participants were 46 students of Tilburg University,
who participated for partial course credits. All were
native speakers of Dutch, and all were proficient in
English, having taken a course on Academic English
at University level.

3.2 Materials

We use the test set used by Zhu et al. (2010) and
Woodsend and Lapata (2011). This test set consists
of 100 sentences from articles on English Wikipedia,
paired with sentences from corresponding articles in
English Simple Wikipedia. We selected only those
sentences where every system would perform min-
imally one edit, because we only want to compare
the different systems when they actually generate al-
tered, assumedly simplified output. From this sub-
set we randomly pick 20 source sentences, result-
ing in 20 clusters of one source sentence and 5 sim-
plified sentences, as generated by humans (Simple
Wikipedia) and the four systems.
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3.3 Procedure

The participants were told that they participated in
the evaluation of a system that could simplify sen-
tences, and that they would see one source sentence
and five automatically simplified versions of that
sentence. They were not informed of the fact that we
evaluated in fact four different systems and the orig-
inal Simple Wikipedia sentence. Following earlier
evaluation studies (Doddington, 2002; Woodsend
and Lapata, 2011), we asked participants to evalu-
ate Simplicity, Fluency and Adequacy of the target
headlines on a five point Likert scale. Fluency was
defined in the instructions as the extent to which a
sentence is proper, grammatical English. Adequacy
was defined as the extent to which the sentence has
the same meaning as the source sentence. Simplic-
ity was defined as the extent to which the sentence
was simpler than the original and thus easier to un-
derstand. The order in which the clusters had to be
judged was randomized and the order of the output
of the various systems was randomized as well.

4 Results

4.1 Automatic measures

The results of the automatic measures are displayed
in Table 3. In terms of the Flesch-Kincaid grade
level score, where lower scores are better, the Zhu
system scores best, with 7.86 even lower than Sim-
ple Wikipedia (8.57). Increasingly worse Flesch-
Kincaid scores are produced by RevILP (8.61) and
PBMT-R (13.38), while the word substitution base-
line scores worst (14.64). With regard to the BLEU
score, where Simple Wikipedia is the reference, the
PBMT-R system scores highest with 0.43, followed
by the RevILP system (0.42) and the Zhu system
(0.38). The word substitution baseline scores low-
est with a BLEU score of 0.34.

System Flesch-Kincaid BLEU
Simple Wikipedia 8.57 1
Word Sub 14.64 0.34
Zhu 7.86 0.38
RevILP 8.61 0.42
PBMT-R 13.38 0.43

Table 3: Flesch-Kincaid grade level and BLEU scores

4.2 Human judgements

To test for significance we ran repeated mea-
sures analyses of variance with system (Sim-
ple Wikipedia, PBMT-R, Zhu, RevILP, word-
substitution baseline) as the independent variable,
and the three individual metrics as well as their com-
bined mean as the dependent variables. Mauchlys
test for sphericity was used to test for homogeneity
of variance, and when this test was significant we
applied a Greenhouse-Geisser correction on the de-
grees of freedom (for the purpose of readability we
report the normal degrees of freedom in these cases).
Planned pairwise comparisons were made with the
Bonferroni method. Table 4 displays these results.

First, we consider the 3 metrics in isolation, be-
ginning with Fluency. We find that participants
rated the Fluency of the simplified sentences from
the four systems and Simple Wikipedia differently,
F (4, 180) = 178.436, p < .001, η2

p = .799. The
word-substitution baseline, Simple Wikipedia and
PBMT-R receive the highest scores (3.86, 3.84 and
3.83 respectively) and don’t achieve significantly
different scores on this dimension. All other pair-
wise comparisons are significant at p < .001. Rev-
ILP attains a score of 3.18, while the Zhu system
achieves the lowest mean judgement score of 2.59.

Participants also rated the systems significantly
differently on the Adequacy scale, F (4, 180) =
116.509, p < .001, η2

p = .721. PBMT-R scores
highest (3.71), followed by the word-substitution
baseline (3.58), RevILP (3.28), and then by Simple
Wikipedia (2.91) and the Zhu system (2.82). Sim-
ple Wikipedia and the Zhu system do not differ sig-
nificantly, and all other pairwise comparisons are
significant at p < .001. The low score of Simple
Wikipedia indicates indirectly that the human edi-
tors of Simple Wikipedia texts often choose to devi-
ate quite markedly from the meaning of the original
text.

Key to the task of simplification are the hu-
man judgements of Simplicity. Participants rated
the Simplicity of the output from the four sys-
tems and Simple Wikipedia differently, F (4, 180) =
74.959, p < .001, η2

p = .625. Simple Wikipedia
scores highest (3.68) and the word substitution base-
line scores lowest (2.42). Between them are the
RevILP (2.96), Zhu (2.93) and PBMT-R (2.88) sys-
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System Overall Fluency Adequacy Simplicity
Simple Wikipedia 3.46 (0.39) 3.84 (0.46) 2.91 (0.32) 3.68 (0.39)
Word Sub 3.39 (0.43) 3.86 (0.49) 3.58 (0.35) 2.42 (0.48)
Zhu 2.78 (0.45) 2.59 (0.48) 2.82 (0.37) 2.93 (0.50)
RevILP 3.13 (0.36) 3.18 (0.45) 3.28 (0.32) 2.96 (0.39)
PBMT-R 3.47 (0.46) 3.83 (0.49) 3.71 (0.44) 2.88 (0.46)

Table 4: Mean scores assigned by human subjects, with the standard deviation between brackets

Adequacy Simplicity Flesch-Kincaid BLEU
Fluency 0.45** 0.24* 0.42** 0.26**
Adequacy -0.19 0.40** -0.14
Simplicity -0.45** 0.42**
Flesch-Kincaid -0.11

Table 5: Pearson correlation between the different dimensions as assigned by humans and the automatic metrics.
Scores marked * are significant at p < .05 and scores marked ** are significant at p < .01

tems, which do not score significantly differently
from each other. All other pairwise comparisons are
significant at p < .001.

Finally we report on a combined score created by
averaging over the Fluency, Adequacy and Simplic-
ity scores. Inspection of this score, displayed in the
leftmost column of Table 4, reveals that the PBMT-
R system and Simple Wikipedia score best (3.47
and 3.46 respectively), followed by the word substi-
tution baseline (3.39), which in turn scores higher
than RevILP (3.13) and the Zhu system (2.78).
We find that participants rated the systems signifi-
cantly differently overall, F (4, 180) = 98.880, p <
.001, η2

p = .687. All pairwise comparisons were sta-
tistically significant (p < .01), except the one be-
tween the PBMT-R system and Simple Wikipedia.

4.3 Correlations
Table 5 displays the correlations between the scores
assigned by humans (Fluency, Adequacy and Sim-
plicity) and the automatic metrics (Flesch-Kincaid
and BLEU). We see a significant correlation be-
tween Fluency and Adequacy (0.45), as well as be-
tween Fluency and Simplicity (0.24). There is a neg-
ative significant correlation between Flesch-Kincaid
scores and Simplicity (-0.45) while there is a posi-
tive significant correlation between Flesch-Kincaid
and Adequacy and Fluency. The significant correla-
tions between BLEU and Simplicity (0.42) and Flu-
ency (0.26) are both in the positive direction. There
is no significant correlation between BLEU and Ad-

equacy, indicating BLEU’s relative weakness in as-
sessing the semantic overlap between input and out-
put. BLEU and Flesch-Kincaid do not show a sig-
nificant correlation.

5 Discussion

We conclude that a phrase-based machine trans-
lation system with added dissimilarity-based re-
ranking of the best ten output sentences can suc-
cessfully be used to perform sentence simplifica-
tion. Even though the system merely performs
phrase-based machine translation and is not specif-
ically geared towards simplification were it not for
the dissimilarity-based re-ranking of the output, it
performs not significantly differently from state-of-
the-art sentence simplification systems in terms of
human-judged Simplification. In terms of Fluency
and Adequacy our system is judged to perform sig-
nificantly better. From the relatively low average
numbers of edits made by our system we can con-
clude that our system performs relatively small num-
bers of changes to the input, that still constitute as
sensible simplifications. It does not split sentences
(which the Zhu and RevILP systems regularly do);
it only rephrases phrases. Yet, it does this better
than a word-substitution baseline, which can also be
considered a conservative approach; this is reflected
in the baseline’s high Fluency score (roughly equal
to PBMT-R and Simple Wikipedia) and Adequacy
score (only slightly worse than PBMT-R).
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Wikipedia the judge ordered that chapman should receive psychiatric treatment in prison and sentenced
him to twenty years to life , slightly less than the maximum possible of twenty-five years to
life .

Simple
Wikipedia

he was sentenced to twenty-five years to life in prison in 1981 .

Word-
substitution
baseline

the judge ordered that chapman should have psychiatric treatment in prison and sentenced
him to twenty years to life , slightly less than the maximum possible of twenty-five years to
life .

Zhu the judge ordered that chapman should get psychiatric treatment . in prison and sentenced
him to twenty years to life , less maximum possible of twenty-five years to life .

RevILP the judge ordered that chapman should will get psychiatric treatment in prison . he sentenced
him to twenty years to life to life .

PBMT-R the judge ordered that chapman should get psychiatric treatment in prison and sentenced him
to twenty years to life , a little bit less than the highest possible to twenty-five years to life .

Table 6: Example output

The output of all systems, the original and the
simplified version of an example sentence from the
PWKP dataset is displayed in Table 6. The Simple
Wikipedia sentences illustrate that significant por-
tions of the original sentences may be dropped, and
parts of the semantics of the original sentence dis-
carded. We also see the Zhu and RevILP systems
resorting to splitting the original sentence in two,
leading to better Flesch-Kincaid scores. The word-
substitution baseline changes ‘receive’ in ‘have’,
while the PBMT-R system changes the same ‘re-
ceive’ in ’get’, ‘slightly’ to ‘a little bit’, and ‘maxi-
mum’ to ‘highest’.

In terms of automatic measures we see that the
Zhu system scores particularly well on the Flesch-
Kincaid metric, while the RevILP system and our
PBMT-R system achieve the highest BLEU scores.
We believe that for the evaluation of sentence sim-
plification, BLEU is a more appropriate metric than
Flesch-Kincaid or a similar readability metric, al-
though it should be noted that BLEU was found only
to correlate significantly with Fluency, not with Ad-
equacy. While BLEU and NIST may be used with
this in mind, readability metrics should be avoided
altogether in our view. Where machine translation
evaluation metrics such as BLEU take into account
gold references, readability metrics only take into
account characteristics of the sentence such as word
length and sentence length, and ignore grammatical-
ity or the semantic adequacy of the content of the
output sentence, which BLEU is aimed to implic-
itly approximate by measuring overlap in n-grams.

Arguably, readability metrics are best suited to be
applied to texts that can be considered grammati-
cal and meaningful, which is not necessarily true for
the output of simplification algorithms. A disrup-
tive example that would illustrate this point would
be a system that would randomly split original sen-
tences in two or more sequences, achieving consid-
erably lower Flesch-Kincaid scores, yet damaging
the grammaticality and semantic coherence of the
original text, as is evidenced by the negative cor-
relation for Simplicity and positive correlations for
Fluency and Adequacy in Table 5.

In the future we would like to investigate how we
can boost the number of edits the system performs,
while still producing grammatical and meaning-
preserving output. Although the comparison against
the Zhu system, which uses syntax-driven machine
translation, shows no clear benefit for syntax-based
machine translation, it may still be the case that ap-
proaches such as Hiero (Chiang et al., 2005) and
Joshua (Li et al., 2009), enhanced by dissimilarity-
based re-ranking, would improve over our current
system. Furthermore, typical simplification oper-
ations such as sentence splitting and more radical
syntax alterations or even document-level operations
such as manipulations of the co-reference structure
would be interesting to implement and test
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Abstract

All types of part-of-speech (POS) tagging er-
rors have been equally treated by existing tag-
gers. However, the errors are not equally im-
portant, since some errors affect the perfor-
mance of subsequent natural language pro-
cessing (NLP) tasks seriously while others do
not. This paper aims to minimize these serious
errors while retaining the overall performance
of POS tagging. Two gradient loss functions
are proposed to reflect the different types of er-
rors. They are designed to assign a larger cost
to serious errors and a smaller one to minor
errors. Through a set of POS tagging exper-
iments, it is shown that the classifier trained
with the proposed loss functions reduces se-
rious errors compared to state-of-the-art POS
taggers. In addition, the experimental result
on text chunking shows that fewer serious er-
rors help to improve the performance of sub-
sequent NLP tasks.

1 Introduction

Part-of-speech (POS) tagging is needed as a pre-
processor for various natural language processing
(NLP) tasks such as parsing, named entity recogni-
tion (NER), and text chunking. Since POS tagging is
normally performed in the early step of NLP tasks,
the errors in POS tagging are critical in that they
affect subsequent steps and often lower the overall
performance of NLP tasks.

Previous studies on POS tagging have shown
high performance with machine learning techniques
(Ratnaparkhi, 1996; Brants, 2000; Lafferty et al.,

2001). Among the types of machine learning ap-
proaches, supervised machine learning techniques
were commonly used in early studies on POS tag-
ging. With the characteristics of a language (Rat-
naparkhi, 1996; Kudo et al., 2004) and informa-
tive features for POS tagging (Toutanova and Man-
ning, 2000), the state-of-the-art supervised POS tag-
ging achieves over 97% of accuracy (Shen et al.,
2007; Manning, 2011). This performance is gen-
erally regarded as the maximum performance that
can be achieved by supervised machine learning
techniques. There have also been many studies on
POS tagging with semi-supervised (Subramanya et
al., 2010; Søgaard, 2011) or unsupervised machine
learning methods (Berg-Kirkpatrick et al., 2010;
Das and Petrov, 2011) recently. However, there still
exists room to improve supervised POS tagging in
terms of error differentiation.

It should be noted that not all errors are equally
important in POS tagging. Let us consider the parse
trees in Figure 1 as an example. In Figure 1(a),
the word “plans” is mistagged as a noun where it
should be a verb. This error results in a wrong parse
tree that is severely different from the correct tree
shown in Figure 1(b). The verb phrase of the verb
“plans” in Figure 1(b) is discarded in Figure 1(a)
and the whole sentence is analyzed as a single noun
phrase. Figure 1(c) and (d) show another tagging er-
ror and its effect. In Figure 1(c), a noun is tagged as
a NNS (plural noun) where its correct tag is NN (sin-
gular or mass noun). However, the error in Figure
1(c) affects only locally the noun phrase to which
“physics” belongs. As a result, the general structure
of the parse tree in Figure 1(c) is nearly the same as

1025



S

VP

VP

NP
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(a) A parse tree with a serious error.

S

VPNP

The   treasury 

DT NNP

S

VP

VPto

raise 150 billion in cash.

TO

VB CD CD IN NN

plans

VBZ

(b) The correct parse tree of the sentence“The treasury
plans. . .” .

S

NP VP

We
PRP

altered
VBN

NP

NP PP

the chemistry and physics
DT

of the atmosphere
NN CC NNS INDT NN

(c) A parse tree with a minor error.

S

NP VP

We
PRP

altered
VBN

NP

NP PP

the chemistry and physics
DT

of the atmosphere
NN CC NN INDT NN

(d) The correct parse tree of the sentence“We altered
. . .” .

Figure 1: An example of POS tagging errors

the correct one in Figure 1(d). That is, a sentence
analyzed with this type of error would yield a cor-
rect or near-correct result in many NLP tasks such
as machine translation and text chunking.

The goal of this paper is to differentiate the seri-
ous POS tagging errors from the minor errors. POS
tagging is generally regarded as a classification task,
and zero-one loss is commonly used in learning clas-
sifiers (Altun et al., 2003). Since zero-one loss con-
siders all errors equally, it can not distinguish error
types. Therefore, a new loss is required to incorpo-
rate different error types into the learning machines.

This paper proposes two gradient loss functions to
reflect differences among POS tagging errors. The
functions assign relatively small cost to minor er-
rors, while larger cost is given to serious errors.
They are applied to learning multiclass support vec-
tor machines (Tsochantaridis et al., 2004) which is
trained to minimize the serious errors. Overall accu-
racy of this SVM is not improved against the state-

of-the-art POS tagger, but the serious errors are sig-
nificantly reduced with the proposed method. The
effect of the fewer serious errors is shown by apply-
ing it to the well-known NLP task of text chunking.
Experimental results show that the proposed method
achieves a higher F1-score compared to other POS
taggers.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related studies on POS tagging. In
Section 3, serious and minor errors are defined, and
it is shown that both errors are observable in a gen-
eral corpus. Section 4 proposes two new loss func-
tions for discriminating the error types in POS tag-
ging. Experimental results are presented in Section
5. Finally, Section 6 draws some conclusions.

2 Related Work

The POS tagging problem has generally been solved
by machine learning methods for sequential label-
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Tag category POS tags
Substantive NN, NNS, NNP, NNPS, CD, PRP, PRP$
Predicate VB, VBD, VBG, VBN, VBP, VBZ, MD, JJ, JJR, JJS
Adverbial RB, RBR, RBS, RP, UH, EX, WP, WP$, WRB, CC, IN, TO

Determiner DT, PDT, WDT
Etc FW, SYM, POS, LS

Table 1: Tag categories and POS tags in Penn Tree Bank tag set

ing. In early studies, rich linguistic features and su-
pervised machine learning techniques are applied by
using annotated corpora like the Wall Street Journal
corpus (Marcus et al., 1994). For instance, Ratna-
parkhi (1996) used a maximum entropy model for
POS tagging. In this study, the features for rarely
appearing words in a corpus are expanded to im-
prove the overall performance. Following this direc-
tion, various studies have been proposed to extend
informative features for POS tagging (Toutanova
and Manning, 2000; Toutanova et al., 2003; Man-
ning, 2011). In addition, various supervised meth-
ods such as HMMs and CRFs are widely applied to
POS tagging. Lafferty et al. (2001) adopted CRFs
to predict POS tags. The methods based on CRFs
not only have all the advantages of the maximum
entropy markov models but also resolve the well-
known problem of label bias. Kudo et al. (2004)
modified CRFs for non-segmented languages like
Japanese which have the problem of word boundary
ambiguity.

As a result of these efforts, the performance of
state-of-the-art supervised POS tagging shows over
97% of accuracy (Toutanova et al., 2003; Giménez
and Màrquez, 2004; Tsuruoka and Tsujii, 2005;
Shen et al., 2007; Manning, 2011). Due to the high
accuracy of supervised approaches for POS tagging,
it has been deemed that there is no room to im-
prove the performance on POS tagging in supervised
manner. Thus, recent studies on POS tagging focus
on semi-supervised (Spoustová et al., 2009; Sub-
ramanya et al., 2010; Søgaard, 2011) or unsuper-
vised approaches (Haghighi and Klein, 2006; Gold-
water and Griffiths, 2007; Johnson, 2007; Graca et
al., 2009; Berg-Kirkpatrick et al., 2010; Das and
Petrov, 2011). Most previous studies on POS tag-
ging have focused on how to extract more linguistic
features or how to adopt supervised or unsupervised

approaches based on a single evaluation measure,
accuracy. However, with a different viewpoint for
errors on POS tagging, there is still some room to
improve the performance of POS tagging for subse-
quent NLP tasks, even though the overall accuracy
can not be much improved.

In ordinary studies on POS tagging, costs of er-
rors are equally assigned. However, with respect
to the performance of NLP tasks relying on the re-
sult of POS tagging, errors should be treated differ-
ently. In the machine learning community, cost sen-
sitive learning has been studied to differentiate costs
among errors. By adopting different misclassifica-
tion costs for each type of errors, a classifier is op-
timized to achieve the lowest expected cost (Elkan,
2001; Cai and Hofmann, 2004; Zhou and Liu, 2006).

3 Error Analysis of Existing POS Tagger

The effects of POS tagging errors to subsequent
NLP tasks vary according to their type. Some errors
are serious, while others are not. In this paper, the
seriousness of tagging errors is determined by cat-
egorical structures of POS tags. Table 1 shows the
Penn tree bank POS tags and their categories. There
are five categories in this table:substantive, pred-
icate, adverbial, determiner, andetc. Serious tag-
ging errors are defined as misclassifications among
the categories, while minor errors are defined as mis-
classifications within a category. This definition fol-
lows the fact that POS tags in the same category
form similar syntax structures in a sentence (Zhao
and Marcus, 2009). That is, inter-category errors are
treated as serious errors, while intra-category errors
are treated as minor errors.

Table 2 shows the distribution of inter-category
and intra-category errors observed in section 22–
24 of the WSJ corpus (Marcus et al., 1994) that is
tagged by the Stanford Log-linear Part-Of-Speech
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Predicted category
Substantive Predicate Adverbial Determiner Etc

Substantive 614 479 32 10 15
Predicate 585 743 107 2 14

True category Adverbial 41 156 500 42 2
Determiner 13 7 47 24 0

Etc 23 11 3 1 0

Table 2: The distribution of tagging errors on WSJ corpus by Stanford Part-Of-Speech Tagger.

Tagger (Manning, 2011) (trained with WSJ sections
00–18). In this table, bold numbers denote inter-
category errors while all other numbers show intra-
category errors. The number of total errors is 3,471
out of 129,654 words. Among them, 1,881 errors
(54.19%) are intra-category, while 1,590 of the er-
rors (45.81%) are inter-category. If we can reduce
these inter-category errors under the cost of mini-
mally increasing intra-category errors, the tagging
results would improve in quality.

Generally in POS tagging, all tagging errors are
regarded equally in importance. However, inter-
category and intra-category errors should be distin-
guished. Since a machine learning method is opti-
mized by a loss function, inter-category errors can
be efficiently reduced if a loss function is designed
to handle both types of errors with different cost. We
propose two loss functions for POS tagging and they
are applied to multiclass Support Vector Machines.

4 Learning SVMs with Class Similarity

POS tagging has been solved as a sequential labeling
problem which assumes dependency among words.
However, by adopting sequential features such as
POS tags of previous words, the dependency can be
partially resolved. If it is assumed that words are
independent of one another, POS tagging can be re-
garded as a multiclass classification problem. One
of the best solutions for this problem is by using an
SVM.

4.1 Training SVMs with Loss Function

Assume that a training data setD =
{(x1, y1), (x2, y2), . . . , (xl, yl)} is given where
xi ∈ R

d is an instance vector andyi ∈ {+1,−1}
is its class label. SVM finds an optimal hyperplane

satisfying

xi · w + b ≥ +1 for yi = +1,

xi · w + b ≤ −1 for yi = −1,

wherew andb are parameters to be estimated from
training dataD. To estimate the parameters, SVMs
minimizes a hinge loss defined as

ξi = Lhinge(yi, w · xi + b)

= max{0, 1 − yi · (w · xi + b)}.

With regularizer||w||2 to control model complexity,
the optimization problem of SVMs is defined as

min
w,ξ

1

2
||w||2 + C

l
∑

i=1

ξi,

subject to

yi(xi · w + b) ≥ 1− ξi, andξi ≥ 0 ∀i,

whereC is a user parameter to penalize errors.
Crammer et al. (2002) expanded the binary-class

SVM for multiclass classifications. In multiclass
SVMs, by considering all classes the optimization
of SVM is generalized as

min
w,ξ

1

2

∑

k∈K

||wk||
2 + C

l
∑

i=1

ξi,

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1− ξi,

ξi ≥ 0 ∀i, ∀k ∈ K \ yi,

whereφ(xi, yi) is a combined feature representation
of xi andyi, andK is the set of classes.
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Figure 2: A tree structure of POS tags.

Since both binary and multiclass SVMs adopt a
hinge loss, the errors between classes have the same
cost. To assign different cost to different errors,
Tsochantaridis et al. (2004) proposed an efficient
way to adopt arbitrary loss function,L(yi, yj) which
returns zero ifyi = yj, otherwiseL(yi, yj) > 0.
Then, the hinge lossξi is re-scaled with the inverse
of the additional loss between two classes. By scal-
ing slack variables with the inverse loss, margin vi-
olation with high lossL(yi, yj) is more severely re-
stricted than that with low loss. Thus, the optimiza-
tion problem withL(yi, yj) is given as

min
w,ξ

1

2

∑

k∈K

||wk||
2 + C

l
∑

i=1

ξi, (1)

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1−
ξi

L(yi, k)
,

ξi ≥ 0 ∀i, ∀k ∈ K \ yi,

With the Lagrange multiplierα, the optimization
problem in Equation (1) is easily converted to the
following dual quadratic problem.

min
α

1

2

l
∑

i,j

∑

ki∈K\yi

∑

kj∈K\yj

αi,kiαj,kj ×

J(xi, yi, ki)J(xj , yj, kj)−

l
∑

i

∑

ki∈K\yi

αi,ki ,

with constraints

α ≥ 0 and
∑

ki∈K\yi

αi,ki

L(yi, ki)
≤ C, ∀i = 1, · · · , l,

whereJ(xi, yi, ki) is defined as

J(xi, yi, ki) = φ(xi, yi)− φ(xi, ki).

4.2 Loss Functions for POS tagging

To design a loss function for POS tagging, this paper
adopts categorical structures of POS tags. The sim-
plest way to reflect the structure of POS tags shown
in Table 1 is to assign larger cost to inter-category
errors than to intra-category errors. Thus, the loss
function with the categorical structure in Table 1 is
defined as

Lc(yi, yj) =















0 if yi = yj,
δ if yi 6= yj but they belong

to the same POS category,
1 otherwise,

(2)

where0 < δ < 1 is a constant to reduce the value of
Lc(yi, yj) whenyi andyj are similar. As shown in
this equation, inter-category errors have larger cost
than intra-category errors. This lossLc(yi, yj) is
named ascategory loss.

The loss functionLc(yi, yj) is designed to reflect
the categories in Table 1. However, the structure
of POS tags can be represented as a more complex
structure. Let us consider the category,predicate.
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(a) Multiclass SVMs with hinge loss
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ξ

L(NN, VB)

ξ

L(NN, NNS)

(b) Multiclass SVMs with the proposed loss
function

Figure 3: Effect of the proposed loss function in multiclassSVMs

This category has ten POS tags, and can be further
categorized into two sub-categories:verb and ad-
ject. Figure 2 represents a categorical structure of
POS tags as a tree with five categories of POS tags
and their seven sub-categories.

To express the tree structure of Figure 2 as a loss,
another loss functionLt(yi, yj) is defined as

Lt(yi, yj) =

1

2
[Dist(Pi,j , yi) +Dist(Pi,j, yj)]× γ, (3)

wherePi,j denotes the nearest common parent of
both yi andyj, and the functionDist(Pi,j, yi) re-
turns the number of steps fromPi,j to yi. The user
parameterγ is a scaling factor of a unit loss for a
single step. This lossLt(yi, yj) returns large value
if the distance betweenyi andyj is far in the tree
structure, and it is named astree loss.

As shown in Equation (1), two proposed loss
functions adjust margin violation between classes.
They basically assign less value for intra-category
errors than inter-category errors. Thus, a classi-
fier is optimized to strictly keep inter-category er-
rors within a smaller boundary. Figure 3 shows a
simple example. In this figure, there are three POS
tags and two categories. NN (singular or mass noun)
and NNS (plural noun) belong to the same cate-
gory, while VB (verb, base form) is in another cat-
egory. Figure 3(a) shows the decision boundary of
NN based on hinge loss. As shown in this figure, a

single ξ is applied for the margin violation among
all classes. Figure 3(b) also presents the decision
boundary of NN, but it is determined with the pro-
posed loss function. In this figure, the margin vio-
lation is applied differently to inter-category (NN to
VB) and intra-category (NN to NNS) errors. It re-
sults in reducing errors between NN and VB even if
the errors between NN and NNS could be slightly
increased.

5 Experiments

5.1 Experimental Setting

Experiments are performed with a well-known stan-
dard data set, the Wall Street Journal (WSJ) corpus.
The data is divided into training, development and
test sets as in (Toutanova et al., 2003; Tsuruoka and
Tsujii, 2005; Shen et al., 2007). Table 3 shows some
simple statistics of these data sets. As shown in
this table, training data contains 38,219 sentences
with 912,344 words. In the development data set,
there are 5,527 sentences with about 131,768 words,
those in the test set are 5,462 sentences and 129,654
words. The development data set is used only to se-
lect δ in Equation (2) andγ in Equation (3).

Table 4 shows the feature set for our experiments.
In this table,wi andti denote the lexicon and POS
tag for thei-th word in a sentence respectively. We
use almost the same feature set as used in (Tsuruoka
and Tsujii, 2005) including word features, tag fea-
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Training Develop Test
Section 0–18 19–21 22–24

# of sentences 38,219 5,527 5,462
# of terms 912,344 131,768 129,654

Table 3: Simple statistics of experimental data

Feature Name Description

Word features
wi−2, wi−1, wi, wi+1, wi+2

wi−1 · wi, wi · wi+1

Tag features

ti−2, ti−1, ti+1, ti+2

ti−2 · ti−1, ti+1 · ti+2

ti−2 · ti−1 · ti+1, ti−1 · ti+1 · ti+2

ti−2 · ti−1 · ti+1 · ti+2

Tag/Word
combination

ti−2·wi, ti−1 ·wi, ti+1·wi, ti+2·wi

ti−1 · ti+1 · wi

Prefix features prefixes ofwi (up to length 9)
Suffix features suffixes ofwi (up to length 9)

Lexical features

whetherwi contains capitals
whetherwi has a number
whetherwi has a hyphen
whetherwi is all capital
whetherwi starts with capital and
locates at the middle of sentence

Table 4: Feature template for experiments

tures, word/tag combination features, prefix and suf-
fix features as well as lexical features. The POS tags
for words are obtained from a two-pass approach
proposed by Nakagawa et al. (2001).

In the experiments, two multiclass SVMs with the
proposed loss functions are used. One is CL-MSVM
with category loss and the other is TL-MSVM with
tree loss. A linear kernel is used for both SVMs.

5.2 Experimental Results

CL-MSVM with δ = 0.4 shows the best overall per-
formance on the development data where its error
rate is as low as 2.71%.δ = 0.4 implies that the
cost of intra-category errors is set to 40% of that of
inter-category errors. The error rate of TL-MSVM
is 2.69% whenγ is 0.6. δ = 0.4 andγ = 0.6 are set
in the all experiments below.

Table 5 gives the comparison with the previous
work and proposed methods on the test data. As can
be seen from this table, the best performing algo-
rithms achieve near 2.67% error rate (Shen et al.,
2007; Manning, 2011). CL-MSVM and TL-MSVM

Error
(%)

# of Intra
error

# of Inter
error

(Giménez and Màrquez,
2004)

2.84
1,995
(54.11%)

1,692
(45.89%)

(Tsuruoka and Tsujii,
2005)

2.85 - -

(Shen et al., 2007) 2.67
1,856
(53.52%)

1,612
(46.48%)

(Manning, 2011) 2.68
1,881
(54.19%)

1,590
(45.81%)

CL-MSVM (δ = 0.4) 2.69
1,916
(55.01%)

1,567
(44.99%)

TL-MSVM (γ = 0.6) 2.68
1,904
(54.74%)

1,574
(45.26%)

Table 5: Comparison with the previous works

achieve an error rate of 2.69% and 2.68% respec-
tively. Although overall error rates of CL-MSVM
and TL-MSVM are not improved compared to the
previous state-of-the-art methods, they show reason-
able performance.

For inter-category error, CL-MSVM achieves the
best performance. The number of inter-category er-
ror is 1,567, which shows 23 errors reduction com-
pared to previous best inter-category result by (Man-
ning, 2011). TL-MSVM also makes 16 less inter-
category errors than Manning’s tagger. When com-
pared with Shen’s tagger, both CL-MSVM and TL-
MSVM make far less inter-category errors even if
their overall performance is slightly lower than that
of Shen’s tagger. However, the intra-category er-
ror rate of the proposed methods has some slight
increases. The purpose of proposed methods is to
minimize inter-category errors but preserving over-
all performance. From these results, it can be found
that the proposed methods which are trained with the
proposed loss functions do differentiate serious and
minor POS tagging errors.

5.3 Chunking Experiments

The task of chunking is to identify the non-recursive
cores for various types of phrases. In chunking, the
POS information is one of the most crucial aspects in
identifying chunks. Especially inter-category POS
errors seriously affect the performance of chunking
because they are more likely to mislead the chunk
compared to intra-category errors.

Here, chunking experiments are performed with
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POS tagger Accuracy (%) Precision Recall F1-score

(Shen et al., 2007) 96.08 94.03 93.75 93.89
(Manning, 2011) 96.08 94 93.8 93.9
CL-MSVM (δ = 0.4) 96.13 94.1 93.9 94.00
TL-MSVM (γ = 0.6) 96.12 94.1 93.9 94.00

Table 6: The experimental results for chunking

a data set provided for the CoNLL-2000 shared
task. The training data contains 8,936 sentences
with 211,727 words obtained from sections 15–18
of the WSJ. The test data consists of 2,012 sentences
and 47,377 words in section 20 of the WSJ. In order
to represent chunks, an IOB model is used, where
every word is tagged with a chunk label extended
with B (the beginning of a chunk), I (inside a chunk),
and O (outside a chunk). First, the POS informa-
tion in test data are replaced to the result of our POS
tagger. Then it is evaluated using trained chunking
model. Since CRFs (Conditional Random Fields)
has been shown near state-of-the-art performance in
text chunking (Fei Sha and Fernando Pereira, 2003;
Sun et al., 2008), we use CRF++, an open source
CRF implementation by Kudo (2005), with default
feature template and parameter settings of the pack-
age. For simplicity in the experiments, the values
of δ in Equation (2) andγ in Equation (3) are set
to be 0.4 and 0.6 respectively which are same as the
previous section.

Table 6 gives the experimental results of text
chunking according to the kinds of POS taggers in-
cluding two previous works, CL-MSVM, and TL-
MSVM. Shen’s tagger and Manning’s tagger show
nearly the same performance. They achieve an ac-
curacy of 96.08% and around 93.9 F1-score. On the
other hand, CL-MSVM achieves 96.13% accuracy
and 94.00 F1-score. The accuracy and F1-score of
TL-MSVM are 96.12% and 94.00. Both CL-MSVM
and TL-MSVM show slightly better performances
than other POS taggers. As shown in Table 5, both
CL-MSVM and TL-MSVM achieve lower accura-
cies than other methods, while their inter-category
errors are less than that of other experimental meth-
ods. Thus, the improvement of CL-MSVM and TL-
MSVM implies that, for the subsequent natural lan-
guage processing, a POS tagger should considers
different cost of tagging errors.

6 Conclusion

In this paper, we have shown that supervised POS
tagging can be improved by discriminating inter-
category errors from intra-category ones. An inter-
category error occurs by mislabeling a word with
a totally different tag, while an intra-category error
is caused by a similar POS tag. Therefore, inter-
category errors affect the performances of subse-
quent NLP tasks far more than intra-category errors.
This implies that different costs should be consid-
ered in training POS tagger according to error types.

As a solution to this problem, we have proposed
two gradient loss functions which reflect different
costs for two error types. The cost of an error type is
set according to (i) categorical difference or (ii) dis-
tance in the tree structure of POS tags. Our POS
experiment has shown that if these loss functions
are applied to multiclass SVMs, they could signif-
icantly reduce inter-category errors. Through the
text chunking experiment, it is shown that the multi-
class SVMs trained with the proposed loss functions
which generate fewer inter-category errors achieve
higher performance than existing POS taggers.

We have shown that cost sensitive learning can be
applied to POS tagging only with multiclass SVMs.
However, the proposed loss functions are general
enough to be applied to other existing POS taggers.
Most supervised machine learning techniques are
optimized on their loss functions. Therefore, the
performance of POS taggers based on supervised
machine learning techniques can be improved by ap-
plying the proposed loss functions to learn their clas-
sifiers.
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Abstract

Social media language contains huge amount
and wide variety of nonstandard tokens, cre-
ated both intentionally and unintentionally by
the users. It is of crucial importance to nor-
malize the noisy nonstandard tokens before
applying other NLP techniques. A major
challenge facing this task is the system cov-
erage, i.e., for any user-created nonstandard
term, the system should be able to restore the
correct word within its top n output candi-
dates. In this paper, we propose a cognitively-
driven normalization system that integrates
different human perspectives in normalizing
the nonstandard tokens, including the en-
hanced letter transformation, visual priming,
and string/phonetic similarity. The system
was evaluated on both word- and message-
level using four SMS and Twitter data sets.
Results show that our system achieves over
90% word-coverage across all data sets (a
10% absolute increase compared to state-of-
the-art); the broad word-coverage can also
successfully translate into message-level per-
formance gain, yielding 6% absolute increase
compared to the best prior approach.

1 Introduction

The amount of user generated content has increased
drastically in the past few years, driven by the pros-
perous development of the social media websites
such as Twitter, Facebook, and Google+. As of June
2011, Twitter has attracted over 300 million users
and produces more than 2 billion tweets per week
(Twitter, 2011). In a broader sense, Twitter mes-
sages, SMS messages, Facebook updates, chat logs,
Emails, etc. can all be considered as “social text”,

which is significantly different from the traditional
news text due to the informal writing style and the
conversational nature. The social text serves as a
very valuable information source for many NLP ap-
plications, such as the information extraction (Ritter
et al., 2011), retrieval (Subramaniam et al., 2009),
summarization (Liu et al., 2011a), sentiment analy-
sis (Celikyilmaz et al., 2010), etc. Yet existing sys-
tems often perform poorly in this domain due the
to extensive use of the nonstandard tokens, emoti-
cons, incomplete and ungrammatical sentences, etc.
It is reported that the Stanford named entity recog-
nizer (NER) experienced a performance drop from
90.8% to 45.8% on tweets (Liu et al., 2011c); the
part-of-speech (POS) tagger and dependency parser
degraded 12.2% and 20.65% respectively on tweets
(Foster et al., 2011). It is therefore of great impor-
tance to normalize the social text before applying the
standard NLP techniques. Text normalization is also
crucial for building robust text-to-speech (TTS) sys-
tems, which need to determine the pronunciations
for nonstandard words in the social text.

The goal of this work is to automatically con-
vert the noisy nonstandard tokens observed in the
social text into standard English words. We aim
for a robust text normalization system with “broad
coverage”, i.e., for any user-created nonstandard to-
ken, the system should be able to restore the correct
word within its top n candidates (n = 1, 3, 10...).
This is a very challenging task due to two facts:
first, there exists huge amount and a wide variety
of nonstandard tokens. (Liu et al., 2011b) found
more than 4 million distinct out-of-vocabulary to-
kens in the Edinburgh Twitter corpus (Petrovic et
al., 2010); second, the nonstandard tokens consist
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2gether (6326) togetha (919) tgthr (250) togeda (20)
2getha (1266) togather (207) t0gether (57) toqethaa (10)
2gthr (178) togehter (94) togeter (49) 2getter (10)

u (3240535) ya (460963) yo (252274) yaa (17015)
yaaa (7740) yew (7591) yuo (467) youz (426)
yoooooou (186) youy (105) yoiu (128) yoooouuuu (82)

Table 1: Nonstandard tokens and their frequencies in the
Edinburgh Twitter corpus. The corresponding standard
words are “together” and “you”, respectively.

of a mixture of both unintentional misspellings and
intentionally-created tokens for various reasons1, in-
cluding the needs for speed, ease of typing (Crystal,
2009), sentiment expressing (e.g., “coooool” (Brody
and Diakopoulos, 2011)), intimacy and social pur-
pose (Thurlow, 2003), etc., making it even harder to
decipher the social messages. Table 1 shows some
example nonstandard tokens.

Existing spell checkers and normalization sys-
tems rely heavily on lexical/phonetic similarity to
select the correct candidate words. This may not
work well since a good portion of the correct words
lie outside the specified similarity threshold (e.g.,
(tomorrow, “tmrw”)2), yet the number of candidates
increases dramatically as the system strives to in-
crease the coverage by enlarging the threshold. (Han
and Baldwin, 2011) reported an average of 127 can-
didates per nonstandard token with the correct-word
coverage of 84%. The low coverage score also en-
forces an undesirable performance ceiling for the
candidate reranking approaches. Different from pre-
vious work, we tackle the text normalization prob-
lem from a cognitive-sensitive perspective and in-
vestigate the human rationales for normalizing the
nonstandard tokens. We argue that there exists a set
of letter transformation patterns that humans use to
decipher the nonstandard tokens. Moreover, the “vi-
sual priming” effect may play an important role in
human comprehension of the noisy tokens. “Prim-
ing” represents an implicit memory effect. For ex-
ample, if a person reads a list of words including the
word table, and is later asked to complete a word
starting with tab-, it is very likely that he answers
table since the person is primed.

In this paper, we propose a broad-coverage nor-
malization system by integrating three human per-

1For this reason, we will use the term “nonstandard tokens”
instead of “ill-formed tokens” throughout the paper.

2We use the form (standard word, “nonstandard token”) to
denote an example nonstandard token and its corresponding
standard word.

spectives, including the enhanced letter transforma-
tion, visual priming, and the string and phonetic
similarity. For an arbitrary nonstandard token, the
three subnormalizers each suggest their most con-
fident candidates from a different perspective. The
candidates can then be heuristically combined or
reranked using a message-level decoding process.
We evaluate the system on both word- and message-
level using four SMS and Twitter data sets. Results
show that our system can achieve over 90% word-
coverage with limited number of candidates and the
broad word-coverage can be successfully translated
into message-level performance gain. In addition,
our system requires no human annotations, therefore
can be easily adapted to different domains.

2 Related work

Text normalization, in its traditional sense, is the
first step of a speech synthesis system, where the
numbers, dates, acronyms, etc. found in the real-
world text were converted into standard dictionary
words, so that the system can pronounce them cor-
rectly. Spell checking plays an important role in this
process. (Church and Gale, 1991; Mays et al., 1991;
Brill and Moore, 2000) proposed to use the noisy
channel framework to generate a list of corrections
for any misspelled word, ranked by the correspond-
ing posterior probabilities. (Sproat et al., 2001) en-
hanced this framework by calculating the likelihood
probability as the chance of a noisy token and its as-
sociated tag being generated by a specific word.

With the rapid growth of SMS and social me-
dia content, text normalization system has drawn in-
creasing attention in the recent decade, where the
focus is on converting the noisy nonstandard tokens
in the informal text into standard dictionary words.
(Choudhury et al., 2007) modeled each standard En-
glish word as a hidden Markov model (HMM) and
calculated the probability of observing the noisy-
token under each of the HMM models; (Cook and
Stevenson, 2009) calculated the sum of the probabil-
ities of a noisy token being generated by a specific
word and a word formation process; (Beaufort et al.,
2010) employed the weighted finite-state machines
(FSMs) and rewriting rules for normalizing French
SMS; (Pennell and Liu, 2010) focused on tweets cre-
ated by handsets and developed a CRF tagger for
deletion-based abbreviation. The text normalization
problem was also tackled under the machine transla-
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tion (MT) or speech recognition (ASR) framework.
(Aw et al., 2006) adapted a phrase-based MT model
for normalizing SMS and achieved satisfying per-
formance. (Kobus et al., 2008) showed that using a
statistical MT system in combination with an anal-
ogy of the ASR system improved performance in
French SMS normalization. (Pennell and Liu, 2011)
proposed a two-phase character-level MT system for
expanding the abbreviations into standard text.

Recent work also focuses on normalizing the
Twitter messages, which is generally considered a
more challenging task. (Han and Baldwin, 2011) de-
veloped classifiers for detecting the ill-formed words
and generated corrections based on the morpho-
phonemic similarity. (Liu et al., 2011b) proposed
to normalize the nonstandard tokens without explic-
itly categorizing them. (Xue et al., 2011) adopted
the noisy-channel framework and incorporated or-
thographic, phonetic, contextual, and acronym ex-
pansion factors in calculating the likelihood proba-
bilities. (Gouws et al., 2011) revealed that different
populations exhibit different shortening styles.

Most of the above systems limit their processing
scope to certain categories (e.g., deletion-based ab-
breviations, misspellings) or require large-scale hu-
man annotated corpus for training, which greatly
hinders the scalability of the system. In this paper,
we propose a novel cognitively-driven text normal-
ization system that robustly tackle both the unin-
tentional misspellings and the intentionally-created
noisy tokens. We propose a global context-based
approach to purify the automatically collected train-
ing data and learn the letter transformation pat-
terns without human supervision. We also propose
a cognitively-grounded “visual priming” approach
that leverages the “priming” effect to suggest the
candidate words. By integrating different perspec-
tives, our system can successfully mimic the hu-
man rationales and yield broad word-coverage on
both SMS and Twitter messages. To the best of our
knowledge, we are the first to integrate these human
perspectives in the text normalization system.

3 Broad-Coverage Normalization System

In this section, we describe our broad-coverage nor-
malization system, which consists of four key com-
ponents. For a standard/nonstandard token, three
subnormalizers each suggest their most confident

b - - - - d a y f - o t o z

h u b b i e

(1) birthday --> bday (2) photos --> fotoz

(4) hubby --> hubbie

b i r t h d a y p h o t o s

h u b b y

s o m e 1 - -

(6) someone --> some1
s o m e o n e

n u t h i n -

(3) nothing --> nuthin
n o t h i n g

4 - - e v a -

(5) forever --> 4eva
f o r e v e rFigure 1: Examples of nonstandard tokens generated by

performing letter transformation on the dictionary words.

candidates from a different perspective3: “Enhanced
Letter Transformation” automatically learns a set
of letter transformation patterns and is most effec-
tive in normalizing the intentionally created non-
standard tokens through letter insertion, repetition,
deletion, and substitution (Section 3.1); “Visual
Priming” proposes candidates based on the visual
cues and a primed perspective (Section 3.2); “Spell
Checker” corrects the misspellings (Section 3.3).
The fourth component, “Candidate Combination”
introduces various strategies to combine the candi-
dates with or without the local context (Section 3.4).
Note that it is crucial to integrate different human
perspectives so that the system is flexible in pro-
cessing both unintentional misspellings and various
intentionally-created noisy tokens.

3.1 Enhanced Letter Transformation
Given a noisy token ti seen in the text, the letter
transformation subnormalizer produces a list of cor-
rection candidates si under the noisy channel model:

ŝ = arg maxsip(si|ti) = arg maxsip(ti|si)p(si)

where we assume each nonstandard token ti is de-
pendent on only one English word si, that is, we
are not considering acronyms (e.g., “bbl” for “be
back later”) in this study. p(si) can be calculated
as the unigram count from a background corpus. We
formulate the process of generating a nonstandard
token ti from the dictionary word si using a letter
transformation model, and use the model confidence
as the probability p(ti|si). Figure 1 shows several
example (word, token) pairs.

To form a nonstandard token, each letter in the
dictionary word can be labeled with: (a) one of the
0-9 digits; (b) one of the 26 characters including it-
self; (c) the null character “-”; (d) a letter combi-
nation4. This transformation process from dictio-

3For the dictionary word, we allow the subnormalizers to
either return the word itself or candidates that are the possibly
intended words in the given context (e.g., (with, “wit”)).

4The set of letter combinations used in this work are {ah, ai,
aw, ay, ck, ea, ey, ie, ou, te, wh}
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nary words to nonstandard tokens will be learned
by a character-level sequence labeling system us-
ing the automatically collected (word, token) pairs.
Next, we create a large lookup table by applying the
character-level labeling system to the standard dic-
tionary words and generate multiple variations for
each word using the n-best labeling output, the la-
beling confidence is used as p(ti|si). During testing,
we search this lookup table to find the best candidate
words for the nonstandard tokens. For tokens with
letter repetition, we first generate a set of variants
by varying the repetitive letters (e.g. Ci = {“pleas”,
“pleeas”, “pleaas”, “pleeaas”, ‘pleeeaas”} for ti =
{“pleeeaas”}), then select the maximum posterior
probability among all the variants:

p(ti|si) = max
t̃i∈Ci

p(t̃i|si)

Different from the work in (Liu et al., 2011b), we
enhanced the letter transformation process with two
novel aspects: first, we devise a set of phoneme-,
syllable-, morpheme- and word-boundary based fea-
tures that effectively characterize the formation pro-
cess of the nonstandard tokens; second, we propose
a global context-aware approach to purify the auto-
matically collected training (word, token) pairs, re-
sulting system yielded similar performance but with
only one ninth of the original data. We name this
subnormalizer “Enhanced Letter Transformation”.

3.1.1 Context-Aware Training Pair Selection
Manual annotation of the noisy nonstandard to-

kens takes a lot of time and effort. (Liu et al., 2011b)
proposed to use Google search engine to automati-
cally collect large amount of training pairs. Yet the
resulting (work, token) pairs are often noisy, con-
taining pairs such as (events, “ents”), (downtown,
“downto”), etc. The ideal training data should con-
sist of the most frequent nonstandard tokens paired
with the corresponding corrections, so that the sys-
tem can learn from the most representative letter
transformation patterns.

Motivated by research on word sense disambigua-
tion (WSD) (Mihalcea, 2007), we hypothesize the
nonstandard token and the standard word share a lot
of common terms in their global context. For exam-
ple, “luv” and “love” share “i”, “you”, “u”, “it”, etc.
among their top context words. Based on this find-
ing, we propose to filter out the low-quality train-

ing pairs by evaluating the global contextual simi-
larity between the word and token. To the best of
our knowledge, we are the first to explore this global
contextual similarity for the text normalization task.

Given a noisy (word, token) pair, we construct
two context vectors vi and vj by collecting the
most frequent terms appearing before or after the
work/token. We consider two terms on each side
of the word/token as context and restrict the vector
length to the top 100 terms. The frequency informa-
tion were calculated using a large background cor-
pus; stopwords were not excluded from the context
vector. The contextual similarity of the (word, to-
ken) pair is defined as the cosine similarity between
the context vectors vi and vj :

ContextSim(vi, vj) =

Pn
k=1 wi,k × wj,kqPn

k=1 w2
i,k ×

qPn
k=1 w2

j,k

where wi,k is the weight of term tk within the con-
text of term ti. The term weights are defined using a
normalized TF-IDF method:

wi,k =
TFi,k

TFi
× log(

N

DFk
)

where TFi,k is the count of term tk appearing within
the context of term ti; TFi is the total count of ti in
the corpus. TFi,k

TFi
is therefore the relative frequency

of tk appearing in the context of ti; log( N
DFk

) de-
notes the inverse document frequency of tk, calcu-
lated as the logarithm of total tweets (N ) divided by
the number of tweets containing tk.

To select the most representative (word, token)
pairs for training, we rank the automatically col-
lected 46,288 pairs by the token frequency, filter
out pairs whose contextual similarity lower than a
threshold θ (set empirically at 0.0003), and retain
only the top portion (5,000 pairs) for experiments.

3.1.2 Character-level Sequence Labeling
For a dictionary word si, we use the conditional

random fields (CRF) model to perform character-
level labeling to generate its variant ti. In the train-
ing stage, we align the collected (word, token) pairs
at the character level (Liu et al., 2011b), then con-
struct a feature vector for each letter of the dictio-
nary word, using its mapped character as the ref-
erence label. This aligned data set is used to train
a CRF model (Lafferty et al., 2001; Kudo, 2005)
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Character a d v e r t i s e m e n t s
Phoneme AE D V ER ER T AY Z M AH N T S
Phoneme boundary O O O B1 L1 O O O O O O O O O
Syllable boundary B L B I L B I I L B I I I L
Morpheme boundary B I I I I I I I L B I I L U
Word boundary B I I I I I I I I I I I I L

Table 2: Example boundary tags for word “advertise-
ments” on the phoneme-, syllable-, morpheme-, and
word-level, labeled with the “BILOU” encoding scheme.

with L-BFGS optimization. We use the charac-
ter/phoneme n-gram and binary vowel features as in
(Liu et al., 2011b), but develop a set of boundary
features to effectively characterize the letter trans-
formation process.

We notice that in creating the nonstandard tokens,
humans tend to drop certain letter units from the
word or replace them with other letters. For exam-
ple, in abbreviating “advertisements” to “ads”, hu-
mans may first break the word into smaller units
“ad-ver-tise-ment-s”, then drop the middle parts.
This also conforms with the word construction the-
ory where a word is composed of smaller units and
construction rules. Based on this assumption, we
decompose the dictionary words on the phoneme-,
syllable-, morpheme-, and word-level5 and use the
“BILOU” tagging scheme (Ratinov and Roth, 2009)
to represent the unit boundary, where “BILOU”
stands for B(egin), I(nside), L(ast), O(utside), and
U(nit-length) of the corresponding unit6. Example
“BILOU” boundary tags were shown in Table 2.

On top of the boundary tags, we develop a set of
conjunction features to accurately pinpoint the cur-
rent character position. We consider conjunction
features formed by concatenating character position
in syllable and current syllable position in the word
(e.g., conjunction feature “L B” for the letter “d” in
Table 2). A similar set of features are also devel-
oped on morpheme level. We consider conjunction
of character/vowel feature and their boundary tags
on the syllable/morpheme/word level; conjunction
of phoneme and phoneme boundary tags, and ab-
solute position of current character within the corre-

5Phoneme decomposition is generated using the (Jiampo-
jamarn et al., 2007) algorithm to map up to two letters to
phonemes (2-to-2 alignment); syllable boundary acquired by
the hyphenation algorithm (Liang, 1983); morpheme boundary
determined by toolkit Morfessor 1.0 (Creutz and Lagus, 2005).

6For phoneme boundary, we use “B1” and “L1” to represent
two different characters aligned to one phoneme and “B2”, “L2”
represent same characters aligned to one phoneme.

sponding syllable/morpheme/word.
We use the aforementioned features to train the

CRF model, then apply the model on dictionary
words si to generate multiple variations ti for each
word. When a nonstandard token is seen during test-
ing, we apply the noisy channel to generate a list of
best candidate words: ŝ = arg maxsip(ti|si)p(si).

3.2 Visual Priming Approach
A second key component of the broad-coverage nor-
malization system is a novel “Visual Priming” sub-
normalizer. It is built on a cognitively-driven “prim-
ing” effect, which has not been explored by other
studies yet was shown to be effective across all our
data sets.

“Priming”7 is an implicit memory effect caused
by spreading neural networks (Tulving and Stark,
1982). As an example, in the word-stem comple-
tion task, participants are given a list of study words,
and then asked to complete word “stems” consisting
of first 3 letters. A priming effect is observed when
participants complete stems with words on the study
list more often than with the novel words. The study
list activates parts of the human brain right before
the stem completion task, later when a word stem is
seen, less additional activation is needed for one to
choose a word from the study list.

We argue that the “priming” effect may play an
important role in human comprehension of the noisy
tokens. A person familiarized with the “social talk”
is highly primed with the most commonly used
words; later when a nonstandard token shows only
minor visual cues or visual stimulus, it can still be
quickly recognized by the person. In this process,
the first letter or first few letters of the word serve
as a very important visual stimulus. Based on this
assumption, we introduce the “priming” subnormal-
izer based only on the word frequency and the minor
visual stimulus. Concretely, this approach proposes
candidate words based on the following equation:

V isualPrim(si|ti) =
len(LCS(ti, si))

len(ti)
× log(TF (si))

Where TF (si) is the term frequency of si as in the
background social text corpus; log(TF (si)) primes
the system with the most common words in the so-
cial text; LCS(·) means the longest common char-
acter subsequence; len(·) denotes the length of the

7http://en.wikipedia.org/wiki/Priming (psychology)
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character sequence. Together len(LCS(ti,si))
len(ti)

pro-
vides the minor visual stimulus from ti. Note that
the first character has been shown to be a crucial vi-
sual cue for the brain to understand jumbled words
(Davis, ), we therefore consider as candidates only
those words si that start with the same character as
ti. In the case that the nonstandard token ti starts
with a digit (e.g., “2moro”), we use the mostly likely
corresponding letter to search the candidates (those
starting with letter “t”). This setting also effectively
reduces the candidate search space.

The “visual priming” subnormalizer promotes the
candidate words that are frequently used in the so-
cial talk and also bear visual similarity with the
given noisy token. It slightly deviates from the tradi-
tional “priming” notion in that the frequency infor-
mation were acquired from the global corpus rather
than from the prior context. This approach also in-
herently follows the noisy channel framework, with
p(ti|si) represents the visual stimulus and p(si) be-
ing the logarithm of frequency. The candidate words
are ranked by ŝ = arg maxsiV isualPrim(si|ti).
We show that the “priming” subnormalizer is robust
across data sets abide its simplistic representation.

3.3 Spell Checker

The third subnormalizer is the spell checker, which
combines the string and phonetic similarity algo-
rithms and is most effective in normalizing the mis-
spellings. We use the Jazzy spell checker (Idzelis,
2005) that integrates the DoubleMetaphone phonetic
matching algorithm and the Levenshtein distance us-
ing the near-miss strategy, which enables the in-
terchange of two adjacent letters, and the replac-
ing/deleting/adding of letters.

3.4 Candidate Combination

Each of the three subnormalizers is a stand-alone
system and can suggest corrections for the nonstan-
dard tokens. Yet we show that each subnormal-
izer mimics a different perspective that humans use
to decode the nonstandard tokens, as a result, our
broad-coverage normalization system is built by in-
tegrating candidates from the three subnormalizers
using various strategies.

For a noisy token seen in the informal text, the
most convenient way of system combination is to
harvest up to n candidates from each of the sub-
normalizers, and use the pool of candidates (up to

3n) as the system output. This sets an upper bound
for other candidate combination strategies, and we
name this approach “Oracle”.

A second combination strategy is to give higher
priority to candidates from high-precision subsys-
tems. Both “Letter Transformation” and “Spell
Checker” have been shown to have high precision in
suggesting corrections (Liu et al., 2011b), while “Vi-
sual Priming” may not yield high precision due to
its definition. We therefore take the top-3 candidates
from each of the “Letter Tran.” and “Spell Checker”
subsystems, but put candidates from “Letter Tran.”
ahead of “Spell Checker” if the confidence of the
best candidate is greater than a threshold λ and vice
versa. The list of candidates is then compensated us-
ing the “Visual Priming” output until the total num-
ber reaches n. We name this approach “Word-level”
combination since no message-level context infor-
mation is involved.

Based on the “Word-level” combination output,
we can further rerank all the candidates using a
message-level Viterbi decoding process (Pennell and
Liu, 2011) where the local context information is
used to select the best candidate. This approach is
named “Message-level” combination.

4 Experiments

4.1 Experimental Setup

We use four SMS and Twitter data sets to evaluate
the system effectiveness. Statistics of these data sets
are summarized in Table 3. Data set (1) to (3) are
used for word-level evaluation; data set (4) for both
word- and message-level evaluation. In Table 3, we
also present the number of distinct nonstandard to-
kens found in each data set, and notice that only a
small portion of the nonstandard tokens correspond
to multiple standard words. We calculate the dic-
tionary coverage of the manually annotated words
since this sets an upper bound for any normaliza-
tion system. We use the Edinburgh Twitter corpus
(Petrovic et al., 2010) as the background corpus for
frequency calculation, and a dictionary containing
82,324 words.8 The nonstandard tokens may consist
of both numbers/characters and apostrophe.

8The dictionary is created by combining the CMU (CMU,
2007) and Aspell (Atkinson, 2006) dictionaries and dropping
words with frequency < 20 in the background corpus. “rt” and
all single characters except “a” and “i” are excluded.
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Index Domain Time Period #Msgs
#Uniq Nonstan. %Nonstan. Tkns %Dict cov.

Reference
Tokens w/ Multi-cands of cands

(1) SMS Around 2007 n/a 303 1.32% 100% (Choudhury et al., 2007)
(2) Twitter Nov 2009 – Feb 2010 6150 3802 3.87% 99.34% (Liu et al., 2011)
(3) SMS/Twitter Aug 2009 4660 2040 2.41% 96.84% (Pennell and Liu, 2011)
(4) Twitter Aug 2010 – Oct 2010 549 558 2.87% 99.10% (Han and Baldwin, 2011)

Table 3: Statistics of different SMS and Twitter data sets.

The goal of word-level normalization is to convert
the list of distinct nonstandard tokens into standard
words. For each nonstandard token, the system is
considered correct if any of the corresponding stan-
dard words is among the n-best output from the sys-
tem. We adopt this word-level n-best accuracy to
make our results comparable to other state-of-the-art
systems. On message-level, we evaluate the 1-best
system output using precision, recall, and f-score,
calculated respective to the nonstandard tokens.

4.2 Word-level Results

The word-level results are presented in Table 4, 5,
and 6, evaluated on data set (1), (2), (3) respectively.
We present the n-best accuracy (n = 1, 3, 10, 20) of
the system as well as the “Oracle” results generated
by pooling the top-20 candidates from each of the
three subnormalizers. The best prior results on the
data sets are also included in the tables.

We notice that the broad-coverage system outper-
forms all other systems on the reported data sets.
It achieves about 90% word-level accuracy on data
set (1) and (2) with the top-10 candidates (an aver-
age 10% performance gain compared to (Liu et al.,
2011b)). This is of crucial importance to a normal-
ization system, since the high accuracy and limited
number of candidates will enable more sophisticated
reranking or supervised learning techniques to se-
lect the best candidate. We also observe the “Ora-
cle” system has averagely only 5% gap to the dic-
tionary coverage. A detailed analysis shows that the
human annotators perform many semantic/grammar
corrections as well as inconsistent annotations, e.g.,
(sleepy, “zzz”), (disliked, “unliked”). These are out
of the capabilities of the current text normalization
system and partly explains the remaining 5% gap.

Regarding the subnormalizer performance, the
spell checker yields only 50% to 60% accuracy on
all data sets, indicating that the vast amount of the
intentionally created nonstandard tokens can hardly
be tackled by a system relies solely on the lexi-
cal/phonetic similarity. The “Visual Priming” sub-

SMS Dataset Word Level Accuracy (%)
(303 pairs) 1-best 3-best 10-best 20-best Oracle
Jazzy Spell Checker 43.89 55.45 56.77 56.77 n/a
Visual Priming 54.13 74.92 84.82 87.13 n/a
Enhanced Letter Tran. 61.06 74.92 80.86 82.51 n/a
Broad-Cov. System 64.36 80.20 89.77 91.75 94.06
(Pennell et al., 2011)? 60.39 74.58 75.57 75.57 n/a
(Liu et al., 2011) 62.05 75.91 81.19 81.19 n/a
(Cook et al., 2009) 59.4 n/a 83.8 87.8 n/a
(Choudhury et al., 2007)? 59.9 n/a 84.3 88.7 n/a

Table 4: Word-level results on data set (1). ? denotes
system requires human annotations for training.

Twitter Dataset Word Level Accuracy (%)
(3802 pairs) 1-best 3-best 10-best 20-best Oracle
Jazzy Spell Checker 47.19 56.92 59.13 59.18 n/a
Visual Priming 54.34 70.59 80.83 84.74 n/a
Enhanced Letter Tran. 61.05 70.07 74.04 74.75 n/a
Broad-Cov. System 69.81 82.51 92.24 93.79 95.71
(Liu et al., 2011) 68.88 78.27 80.93 81.17 n/a

Table 5: Word-level results on data set (2).

normalizer performs surprisingly well and shows ro-
bust performance across all data sets. A minor side-
effect is that the candidates were restricted to have
the same first letter with the noisy token, this sets
the upper bound of the approach to 89.77%, 92.45%,
and 93.51%, respectively on data set (1), (2), and (3).
Compared to other subnormalizers, the “Enhanced
Letter Tran.” is effective at normalizing intention-
ally created tokens and has better precision regard-
ing its top candidate (n = 1). We demonstrate the
context-aware training pair selection results in Fig-
ure 2, by plotting the learning curve using different
amounts of training data, ranging from 1,000 (word,
token) pairs to the total 46,288 pairs. We notice that
the system can effectively learn the letter transfor-
mation patterns from a small number of high quality
training pairs. The final system was trained using the
top 5,000 pairs and the lookup table was created by
generating 50 variations for each dictionary word.

4.3 Message-level Results
The goal of message-level normalization is to re-
place each occurrence of the nonstandard token with
the candidate word that best fits the local context.
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SMS/Twitter Dataset Word Level Accuracy (%)
(2404 pairs) 1-best 3-best 10-best 20-best Oracle
Jazzy Spell Checker 39.89 46.51 48.54 48.67 n/a
Visual Priming 54.12 68.59 78.83 83.11 n/a
Enhanced Letter Tran. 57.65 67.18 71.01 71.88 n/a
Broad-Cov. System 64.39 78.29 86.56 88.69 91.60
(Pennell et al., 2011)? 37.40 n/a n/a 72.38 n/a

Table 6: Word-level results on data set (3). ? denotes
system requires human annotations for training.
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Figure 2: Learning curve of the enhanced letter transfor-
mation system using random training pair selection or the
context-aware approach. Evaluated on data set (2).

We use the word-level “Broad-Cov. System” for
candidate suggestion and the Viterbi algorithm for
message-level decoding. The system is evaluated on
data set (4) and results shown in Table 7. Following
research in (Han and Baldwin, 2011), we focus on
the the normalization task and assume perfect non-
standard token detection.

The “Word-level w/o Context” results are gen-
erated by replacing each nonstandard token using
the 1-best word-level candidate. Although the re-
placement process is static, it results in 70.97% f-
score due to the high performance of the word-level
system. We explore two language models (LM)
for the Viterbi decoding process. First, a bigram
LM is trained using the Edinburgh Twitter corpus
(53,794,549 English tweets) with the SRILM toolkit
(Stolcke, 2002) and Kneser-Ney smoothing; second,
we retrieve the bigram probabilities from the Mi-
crosoft Web N-gram API (Wang et al., 2010) since
this represents a more comprehensive web-based
corpus. During decoding, we use the “VisualPrim”
score as the emission probability, since this score
best fits the log scale and applies to all candidates.
For the Twitter LM, we apply a scaling factor of
0.5 to the “VisualPrim” score to make it compara-
ble in scale to the LM probabilities. We use the 3-
best word-level candidates for Viterbi decoding. In
addition, we add the commonly used corrections for

Twitter Dataset Message-level P/R/F
(549 Tweets) Precision (%) Recall (%) F-score (%)

Word-level w/o Context 75.69 66.81 70.97

w/ Context
Web LM 79.12 77.11 78.10
Twitter LM 84.13 78.38 81.15

(Han and Baldwin, 2011)? 75.30 75.30 75.30

Table 7: Message-level results on data set (4). ? denotes
system requires human annotations for training.

16 single-characters, e.g., for “r”, “c”, we add “are”,
“see” to the candidate list if they are not already pre-
sented. A default “VisualPrim” score (η = 25) is
used for these candidates. As seen from Table 7,
both Web LM and Twitter LM achieve better perfor-
mance than the best prior results, with Twitter LM
outperforms the Web LM, yielding a f-score of 81%.
This shows that a vanilla Viterbi decoding process is
able to outperform the fine-tuned supervised system
given competitive word-level candidates. In future,
we will investigate other comprehensive message-
level candidate reranking process.

5 Conclusion

In this paper, we propose a broad-coverage normal-
ization system for the social media language with-
out using the human annotations. It integrates three
key components: the enhanced letter transformation,
visual priming, and string/phonetic similarity. The
system was evaluated on both word- and message-
level using four SMS and Twitter data sets. We show
that our system achieves over 90% word-coverage
across all data sets and the broad word-coverage can
be successfully translated into message-level perfor-
mance gain. We observe that the social media is an
emotion-rich language, therefore future normaliza-
tion system will need to address various sentiment-
related expressions, such as emoticons (“:d”, “X-
8”), interjections (“bwahaha”, “brrrr”), acronyms
(“lol”, “lmao”), etc., whether and how these expres-
sions should be normalized is an unaddressed issue
and worths future investigation.
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Abstract

We propose the first joint model for word segmen-
tation, POS tagging, and dependency parsing for
Chinese. Based on an extension of the incremental
joint model for POS tagging and dependency pars-
ing (Hatori et al., 2011), we propose an efficient
character-based decoding method that can combine
features from state-of-the-art segmentation, POS
tagging, and dependency parsing models. We also
describe our method to align comparable states in
the beam, and how we can combine features of dif-
ferent characteristics in our incremental framework.
In experiments using the Chinese Treebank (CTB),
we show that the accuracies of the three tasks can
be improved significantly over the baseline models,
particularly by 0.6% for POS tagging and 2.4% for
dependency parsing. We also perform comparison
experiments with the partially joint models.

1 Introduction

In processing natural languages that do not include
delimiters (e.g. spaces) between words, word seg-
mentation is the crucial first step that is necessary
to perform virtually all NLP tasks. Furthermore, the
word-level information is often augmented with the
POS tags, which, along with segmentation, form the
basic foundation of statistical NLP.

Because the tasks of word segmentation and POS
tagging have strong interactions, many studies have
been devoted to the task of joint word segmenta-
tion and POS tagging for languages such as Chi-
nese (e.g. Kruengkrai et al. (2009)). This is because
some of the segmentation ambiguities cannot be re-
solved without considering the surrounding gram-
matical constructions encoded in a sequence of POS
tags. The joint approach to word segmentation and
POS tagging has been reported to improve word seg-
mentation and POS tagging accuracies by more than

1% in Chinese (Zhang and Clark, 2008). In addition,
some researchers recently proposed a joint approach
to Chinese POS tagging and dependency parsing (Li
et al., 2011; Hatori et al., 2011); particularly, Ha-
tori et al. (2011) proposed an incremental approach
to this joint task, and showed that the joint approach
improves the accuracies of these two tasks.

In this context, it is natural to consider further
a question regarding the joint framework: how
strongly do the tasks of word segmentation and de-
pendency parsing interact? In the following Chinese
sentences:
SÊ �sV � �s �� øs

current peace-prize and peace operation related
The current peace prize and peace operations are related.
SÊ �s V� �s �� øs âS

current peace award peace operation related group
The current peace is awarded to peace-operation-related groups.

the only difference is the existence of the last word
âS; however, whether or not this word exists
changes the whole syntactic structure and segmen-
tation of the sentence. This is an example in which
word segmentation cannot be handled properly with-
out considering long-range syntactic information.

Syntactic information is also considered ben-
eficial to improve the segmentation of out-of-
vocabulary (OOV) words. Unlike languages such
as Japanese that use a distinct character set (i.e.
katakana) for foreign words, the transliterated words
in Chinese, many of which are OOV words, fre-
quently include characters that are also used as com-
mon or function words. In the current systems, the
existence of these characters causes numerous over-
segmentation errors for OOV words.

Based on these observations, we aim at build-
ing a joint model that simultaneously processes
word segmentation, POS tagging, and dependency
parsing, trying to capture global interaction among
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these three tasks. To handle the increased computa-
tional complexity, we adopt the incremental parsing
framework with dynamic programming (Huang and
Sagae, 2010), and propose an efficient method of
character-based decoding over candidate structures.

Two major challenges exist in formalizing the
joint segmentation and dependency parsing task in
the character-based incremental framework. First,
we must address the problem of how to align com-
parable states effectively in the beam. Because the
number of dependency arcs varies depending on
how words are segmented, we devise a step align-
ment scheme using the number of character-based
arcs, which enables effective joint decoding for the
three tasks.

Second, although the feature set is fundamen-
tally a combination of those used in previous works
(Zhang and Clark, 2010; Huang and Sagae, 2010), to
integrate them in a single incremental framework is
not straightforward. Because we must perform de-
cisions of three kinds (segmentation, tagging, and
parsing) in an incremental framework, we must ad-
just which features are to be activated when, and
how they are combined with which action labels. We
have also found that we must balance the learning
rate between features for segmentation and tagging
decisions, and those for dependency parsing.

We perform experiments using the Chinese Tree-
bank (CTB) corpora, demonstrating that the accura-
cies of the three tasks can be improved significantly
over the pipeline combination of the state-of-the-art
joint segmentation and POS tagging model, and the
dependency parser. We also perform comparison ex-
periments with partially joint models, and investi-
gate the tradeoff between the running speed and the
model performance.

2 Related Works

In Chinese, Luo (2003) proposed a joint con-
stituency parser that performs segmentation, POS
tagging, and parsing within a single character-based
framework. They reported that the POS tags con-
tribute to segmentation accuracies by more than 1%,
but the syntactic information has no substantial ef-
fect on the segmentation accuracies. In contrast,
we built a joint model based on a dependency-based
framework, with a rich set of structural features. Us-
ing it, we show the first positive result in Chinese
that the segmentation accuracies can be improved
using the syntactic information.

Another line of work exists on lattice-based pars-
ing for Semitic languages (Cohen and Smith, 2007;
Goldberg and Tsarfaty, 2008). These methods first
convert an input sentence into a lattice encoding
the morphological ambiguities, and then conduct
joint morphological segmentation and PCFG pars-
ing. However, the segmentation possibilities consid-
ered in those studies are limited to those output by
an existing morphological analyzer. In addition, the
lattice does not include word segmentation ambigu-
ities crossing boundaries of space-delimited tokens.
In contrast, because the Chinese language does not
have spaces between words, we fundamentally need
to consider the lattice structure of the whole sen-
tence. Therefore, we place no restriction on the seg-
mentation possibilities to consider, and we assess the
full potential of the joint segmentation and depen-
dency parsing model.

Among the many recent works on joint segmen-
tation and POS tagging for Chinese, the linear-time
incremental models by Zhang and Clark (2008) and
Zhang and Clark (2010) largely inspired our model.
Zhang and Clark (2008) proposed an incremental
joint segmentation and POS tagging model, with an
effective feature set for Chinese. However, it re-
quires to computationally expensive multiple beams
to compare words of different lengths using beam
search. More recently, Zhang and Clark (2010) pro-
posed an efficient character-based decoder for their
word-based model. In their new model, a single
beam suffices for decoding; hence, they reported that
their model is practically ten times as fast as their
original model. To incorporate the word-level fea-
tures into the character-based decoder, the features
are decomposed into substring-level features, which
are effective for incomplete words to have compara-
ble scores to complete words in the beam. Because
we found that even an incremental approach with
beam search is intractable if we perform the word-
based decoding, we take a character-based approach
to produce our joint model.

The incremental framework of our model is based
on the joint POS tagging and dependency parsing
model for Chinese (Hatori et al., 2011), which is an
extension of the shift-reduce dependency parser with
dynamic programming (Huang and Sagae, 2010).
They specifically modified the shift action so that it
assigns the POS tag when a word is shifted onto the
stack. However, because they regarded word seg-
mentation as given, their model did not consider the
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interaction between segmentation and POS tagging.

3 Model

3.1 Incremental Joint Segmentation, POS
Tagging, and Dependency Parsing

Based on the joint POS tagging and dependency
parsing model by Hatori et al. (2011), we build our
joint model to solve word segmentation, POS tag-
ging, and dependency parsing within a single frame-
work. Particularly, we change the role of the shift ac-
tion and additionally use the append action, inspired
by the character-based actions used in the joint seg-
mentation and POS tagging model by Zhang and
Clark (2010).

The list of actions used is the following:

• A: append the first character in the queue to the
word on top of the stack.
• SH(t): shift the first character in the input queue

as a new word onto the stack, with POS tag t.
• RL/RR: reduce the top two trees on the stack,

(s0, s1), into a subtree sy
0 s1 / sx

0 s1, respectively.

Although SH(t) is similar to the one used in Hatori
et al. (2011), now it shifts the first character in the
queue as a new word, instead of shifting a word. Fol-
lowing Zhang and Clark (2010), the POS tag is as-
signed to the word when its first character is shifted,
and the word–tag pairs observed in the training data
and the closed-set tags (Xia, 2000) are used to prune
unlikely derivations. Because 33 tags are defined in
the CTB tag set (Xia, 2000), our model exploits a
total of 36 actions.

To train the model, we use the averaged percep-
tron with the early update (Collins and Roark, 2004).
In our joint model, the early update is invoked by
mistakes in any of word segmentation, POS tagging,
or dependency parsing.

3.2 Alignment of States
When dependency parsing is integrated into the task
of joint word segmentation and POS tagging, it is
not straightforward to define a scheme to align (syn-
chronize) the states in the beam. In beam search, we
use the step index that is associated with each state:
the parser states in process are aligned according to
the index, and the beam search pruning is applied
to those states with the same index. Consequently,
for the beam search to function effectively, all states
with the same index must be comparable, and all
terminal states should have the same step index.

We can first think of using the number of shifted
characters as the step index, as Zhang and Clark
(2010) does. However, because RL/RR actions can
be performed without incrementing the step index,
the decoder tends to prefer states with more de-
pendency arcs, resulting more likely in premature
choice of ‘reduce’ actions or oversegmentation of
words. Alternatively, we can consider using the
number of actions that have been applied as the step
index, as Hatori et al. (2011) does. However, this
results in inconsistent numbers of actions to reach
the terminal states: some states that segment words
into larger chunks reach a terminal state earlier than
other states with smaller chunks. For these reasons,
we have found that both approaches yield poor mod-
els that are not at all competitive with the baseline
(pipeline) models1.

To address this issue, we propose an indexing
scheme using the number of character-based arcs.
We presume that in addition to the word-to-word de-
pendency arcs, each word (of length M ) implicitly
has M − 1 inter-character arcs, as in: AxBxC ,
AxB x C , and A x B x C (each rectangle de-
notes a word). Then we can define the step index as
the sum of the number of shifted characters and the
total number of (inter-word and intra-word) depen-
dency arcs, which thereby meets all the following
conditions:

(1) All subtrees spanning M consecutive characters
have the same index 2M − 1.

(2) All terminal states have the same step index 2N
(including the root arc), where N is the number
of characters in the sentence.

(3) Every action increases the index.

Note that the number of shifted characters is also
necessary to meet condition (3). Otherwise, it allows
an unlimited number of SH(t) actions without incre-
menting the step index. Figure 1 portrays how the
states are aligned using the proposed scheme, where
a subtree is denoted as a rectangle with its partial
index shown inside it.

In our framework, because an action increases the
step index by 1 (for SH(t) or RL/RR) or 2 (for A), we
need to use two beams to store new states at each
step. The computational complexity of the entire
process is O(B(T + 3) · 2N), where B is the beam

1For example, in our preliminary experiment on CTB-5, the
step indexing according to the number of actions underperforms
the baseline model by 0.2–0.3% in segmentation accuracy.
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Figure 1: Illustration of the alignment of steps.

size, T is the number of POS tags (= 33), and N
is the number of characters in the sentence. Theo-
retically, the computational time is greater than that
with the character-based joint segmentation and tag-
ging model by Zhang and Clark (2010) by a factor
of T+3

T+1 ·
2N
N ' 2.1, when the same beam size is used.

3.3 Features

The feature set of our model is fundamentally a com-
bination of the features used in the state-of-the-art
joint segmentation and POS tagging model (Zhang
and Clark, 2010) and dependency parser (Huang and
Sagae, 2010), both of which are used as baseline
models in our experiment. However, we must care-
fully adjust which features are to be activated and
when, and how they are combined with which ac-
tion labels, depending on the type of the features be-
cause we intend to perform three tasks in a single
incremental framework.

The list of the features used in our joint model
is presented in Table 1, where S01–S05, W01–
W21, and T01–05 are taken from Zhang and Clark
(2010), and P01–P28 are taken from Huang and
Sagae (2010). Note that not all features are always
considered: each feature is only considered if the
action to be performed is included in the list of ac-
tions in the “When to apply” column. Because S01–
S05 are used to represent the likelihood score of
substring sequences, they are only used for A and
SH(t) without being combined with any action la-
bel. Because T01–T05 are used to determine the
POS tag of the word being shifted, they are only ap-
plied for SH(t). Because W01–W21 are used to de-
termine whether to segment at the current position
or not, they are only used for those actions involved
in boundary determination decisions (A, SH(t), RL0,
and RR0). The action labels RL0/RR0 are used to

denote the ‘reduce’ actions that determine the word
boundary2, whereas RL1/RR1 denote those ‘reduce’
actions that are applied when the word boundary has
already been fixed. In addition, to capture the shared
nature of boundary determination actions (SH(t),
RL0/RR0), we use a generalized action label SH’ to
represent any of them when combined with W01–
W21. We also propose to use the features U01–U03,
which we found are effective to adjust the character-
level and substring-level scores.

Regarding the parsing features P01–P28, because
we found that P01–P17 are also useful for segmen-
tation decisions, these features are applied to all ac-
tions including A, with an explicit distinction of ac-
tion labels RL0/RR0 from RL1/RR1. On the other
hand, P18–P28 are only used when one of the parser
actions (SH(t), RL, or RR) is applied. Note that P07–
P09 and P18–P21 (look-ahead features) require the
look-ahead information of the next word form and
POS tags, which cannot be incorporated straightfor-
wardly in an incremental framework. Although we
have found that these features can be incorporated
using the delayed features proposed by Hatori et al.
(2011), we did not use them in our current model
because it results in the significant increase of com-
putational time.

3.3.1 Dictionary features
Because segmentation using a dictionary alone

can serve as a strong baseline in Chinese word seg-
mentation (Sproat et al., 1996), the use of dictio-
naries is expected to make our joint model more ro-
bust and enables us to investigate the contribution of
the syntactic dependency in a more realistic setting.
Therefore, we optionally use four features D01–D04
associated with external dictionaries. These features
distinguish each dictionary source, reflecting the fact
that different dictionaries have different characteris-
tics. These features will also be used in our reimple-
mentation of the model by Zhang and Clark (2010).

3.4 Adjusting the Learning Rate of Features
In formulating the three tasks in the incremental
framework, we found that adjusting the update rate
depending on the type of the features (segmenta-
tion/tagging vs. parsing) crucially impacts the final
performance of the model. To investigate this point,
we define the feature vector ~φ and score Φ of the

2A reduce action has an additional effect of fixing the bound-
ary of the top word on the stack if the last action was A or SH(t).
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Id Feature template Label When to apply
U01 q−1.e ◦ q−1.t φ A, SH(t)
U02,03 q−1.e q−1.e ◦ q−1.t as-is any
S01 q−1.e ◦ c0 φ A
S02 q−1.t ◦ c0 φ A, SH(t)
S03 q−1.t ◦ q−1.b ◦ c0 φ A
S04 q−1.t ◦ c0 ◦ C(q−1.b) φ A
S05 q−1.t ◦ c0 ◦ c1 φ A
D01 len(q−1.w) ◦ i A,SH’ A, SH(t), RR/RL0

D02 len(q−1.w) ◦ q−1.t ◦ i A,SH’ A, SH(t), RR/RL0

D03 len(q−1.w) ◦ i A,SH’ A, SH(t), RR/RL0

D04 len(q−1.w) ◦ q−1.t ◦ i A,SH’ A, SH(t), RR/RL0

(D01,02: if q−1.w ∈ Di; D03,04: if q−1.w /∈ Di)
W01,02 q−1.w q−2.w ◦ q−1.w A,SH’ A, SH(t), RR/RL0

W03 q−1.w (for single-char word) A,SH’ A, SH(t), RR/RL0

W04 q−1.b ◦ len(q−1.w) A,SH’ A, SH(t), RR/RL0

W05 q−1.e ◦ len(q−1.w) A,SH’ A, SH(t), RR/RL0

W06,07 q−1.e ◦ c0 q−1.b ◦ q−1.e A,SH’ A, SH(t), RR/RL0

W08,09 q−1.w ◦ c0 q−2.e ◦ q−1.w A,SH’ A, SH(t), RR/RL0

W10,11 q−1.b ◦ c0 q−2.e ◦ q−1.e A,SH’ A, SH(t), RR/RL0

W12 q−2.w ◦ len(q−1.w) A,SH’ A, SH(t), RR/RL0

W13 len(q−2.w) ◦ q−1.w A,SH’ A, SH(t), RR/RL0

W14 q−1.w ◦ q−1.t A,SH’ A, SH(t), RR/RL0

W15 q−2.t ◦ q−1.w A,SH’ A, SH(t), RR/RL0

W16 q−1.t ◦ q−1.w ◦ q−2.e A,SH’ A, SH(t), RR/RL0

W17 q−1.t ◦ q−1.w ◦ c0 A,SH’ A, SH(t), RR/RL0

W18 q−2.e ◦ q−1.w ◦ c0 ◦ q1.t A,SH’ A, SH(t), RR/RL0

W19 q−1.t ◦ q−1.e A,SH’ A, SH(t), RR/RL0

W20 q−1.t ◦ q−1.e ◦ c A,SH’ A, SH(t), RR/RL0

W21 q−1.t ◦ c ◦ cat(q−1.e) A,SH’ A, SH(t), RR/RL0

(W20, W21: c ∈ q−1.w\e)
T01,02 q−1.t q−2.t ◦ q−1.t SH(t) SH(t)
T03,04 q−1.w c0 SH(t) SH(t)
T05 c0 ◦ q−1.t ◦ q−1.e SH(t) SH(t)
P01,02 s0.w s0.t A, SH(t), RR/RL0/1 any
P03,04 s0.w ◦ s0.t s1.w A, SH(t), RR/RL0/1 any
P05,06 s1.t s1.w ◦ s1.t A, SH(t), RR/RL0/1 any
P07,08 q0.w q0.t A, SH(t), RR/RL0/1 any
P09,10 q0.w ◦ q0.t s0.w ◦ s1.w A, SH(t), RR/RL0/1 any
P11,12 s0.t ◦ s1.t s0.t ◦ q0.t A, SH(t), RR/RL0/1 any
P13 s0.w ◦ s0.t ◦ s1.t A, SH(t), RR/RL0/1 any
P14 s0.t ◦ s1.w ◦ s1.t A, SH(t), RR/RL0/1 any
P15 s0.w ◦ s1.w ◦ s1.t A, SH(t), RR/RL0/1 any
P16 s0.w ◦ s0.t ◦ s1.w A, SH(t), RR/RL0/1 any
P17 s0.w ◦ s0.t ◦ s1.w ◦ s1.t A, SH(t), RR/RL0/1 any
P18 s0.t ◦ q0.t ◦ q1.t as-is SH(t), RR, RL
P19 s1.t ◦ s0.t ◦ q0.t as-is SH(t), RR, RL
P20 s0.w ◦ q0.t ◦ q1.t as-is SH(t), RR, RL
P21 s1.t ◦ s0.w ◦ q0.t as-is SH(t), RR, RL
P22 s1.t ◦ s1.rc.t ◦ s0.t as-is SH(t), RR, RL
P23 s1.t ◦ s1.lc.t ◦ s0.t as-is SH(t), RR, RL
P24 s1.t ◦ s1.rc.t ◦ s0.w as-is SH(t), RR, RL
P25 s1.t ◦ s1.lc.t ◦ s0.w as-is SH(t), RR, RL
P26 s1.t ◦ s0.t ◦ s0.rc.t as-is SH(t), RR, RL
P27 s1.t ◦ s0.w ◦ s0.lc.t as-is SH(t), RR, RL
P28 s2.t ◦ s1.t ◦ s0.t as-is SH(t), RR, RL

* q−1 and q−2 respectively denote the last-shifted word and the
word shifted before q−1. q.w and q.t respectively denote the
(root) word form and POS tag of a subtree (word) q, and q.b and
q.e the beginning and ending characters of q.w. c0 and c1 are
the first and second characters in the queue. q.w\e denotes the
set of characters excluding the ending character of q.w. len(·)
denotes the length of the word, capped at 16 if longer. cat(·) de-
notes the category of the character, which is the set of POS tags
observed in the training data. Di is a dictionary, a set of words.
The action label φ means that the feature is not combined with
any label; “as-is” denotes the use of the default action set “A,
SH(t), and RR/RL” as is.

Table 1: Feature templates for the full joint model.

Training Development Test
#snt #wrd #snt #wrd #oov #snt #wrd #oov

CTB-5d 16k 438k 804 21k 1.2k 1.9k 50k 3.1k
CTB-5j 18k 494k 352 6.8k 553 348 8.0k 278
CTB-5c 15k 423k - - - - - -
CTB-6 23k 641k 2.1k 60k 3.3k 2.8k 82k 4.6k
CTB-7 31k 718k 10k 237k 13k 10k 245k 13k

Table 2: Statistics of datasets.

action a being applied to the state ψ as

Φ(ψ, a) = ~λ · ~φ(ψ, a) = ~λ ·
{
~φst(ψ, a) + σp

~φp(ψ, a)
}
,

where ~φst corresponds to the segmentation and tag-
ging features (those starting with ‘U’, ‘S’, ‘T’, or
‘D’), and ~φp is the set of the parsing features (start-
ing with ‘P’). Then, if we set σp to a number smaller
than 1, perceptron updates for the parsing features
will be kept small at the early stage of training be-
cause the update is proportional to the values of the
feature vector. However, even if σp is initially small,
the global weights for the parsing features will in-
crease as needed and compensate for the small σp

as the training proceeds. In this way, we can con-
trol the contribution of syntactic dependencies at the
early stage of training. Section 4.3 shows that the
best setting we found is σp = 0.5: this result sug-
gests that we probably should resolve remaining er-
rors by preferentially using the local n-gram based
features at the early stage of training. Otherwise,
the premature incorporation of the non-local syntac-
tic dependencies might engender overfitting to the
training data.

4 Experiment

4.1 Experimental Settings

We use the Chinese Penn Treebank ver. 5.1, 6.0,
and 7.0 (hereinafter CTB-5, CTB-6, and CTB-7)
for evaluation. These corpora are split into train-
ing, development, and test sets, according to previ-
ous works. For CTB-5, we refer to the split by Duan
et al. (2007) as CTB-5d, and to the split by Jiang
et al. (2008) as CTB-5j. We also prepare a dataset
for cross validation: the dataset CTB-5c consists of
sentences from CTB-5 excluding the development
and test sets of CTB-5d and CTB-5j. We split CTB-
5c into five sets (CTB-5c-n), and alternatively use
four of these as the training set and the rest as the
test set. CTB-6 is split according to the official split
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described in the documentation, and CTB-7 is split
according to Wang et al. (2011). The statistics of
these splits are shown in Table 2. As external dic-
tionaries, we use the HowNet Word List3, consist-
ing of 91,015 words, and page names from the Chi-
nese Wikipedia4 as of Oct 26, 2011, consisting of
709,352 words. These dictionaries only consist of
word forms with no frequency or POS information.

We use standard measures of word-level preci-
sion, recall, and F1 score, for evaluating each task.
The output of dependencies cannot be correct unless
the syntactic head and dependent of the dependency
relation are both segmented correctly. Following the
standard setting in dependency parsing works, we
evaluate the task of dependency parsing with the un-
labeled attachment scores excluding punctuations.
Statistical significance is tested by McNemar’s test
(† : p < 0.05, ‡ : p < 0.01).

4.2 Baseline and Proposed Models
We use the following baseline and proposed models
for evaluation.

• SegTag: our reimplementation of the joint seg-
mentation and POS tagging model by Zhang and
Clark (2010). Table 5 shows that this reimple-
mentation almost reproduces the accuracy of their
implementation. We used the beam of 16, which
they reported to achieve the best accuracies.
• Dep’: the state-of-the-art dependency parser by

Huang and Sagae (2010). We used our reimple-
mentation, which is used in Hatori et al. (2011).
• Dep: Dep’ without look-ahead features.
• TagDep: the joint POS tagging and dependency

parsing model (Hatori et al., 2011), where the
look-ahead features are omitted.5

• SegTag+Dep/SegTag+Dep’: a pipeline combina-
tion of SegTag and Dep or Dep’.
• SegTag+TagDep: a pipeline combination of Seg-

Tag and TagDep, where only the segmentation
output of SegTag is used as input to TagDep; the
output tags of TagDep are used for evaluation.
• SegTagDep: the proposed full joint model.

All of the models described above except Dep’ are
based on the same feature sets for segmentation and

3http://www.keenage.com/html/e index.html
4http://zh.wikipedia.org/wiki
5We used the original implementation used in Hatori et al.

(2011). In Hatori et al. (2011), we confirmed that omission of
the look-ahead features results in a 0.26% decrease in the pars-
ing accuracy on CTB-5d (dev).
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Figure 2: F1 scores (in %) of SegTagDep on CTB-
5c-1 w.r.t. the training epoch (x-axis) and parsing
feature weights (in legend).

tagging (Zhang and Clark, 2008; Zhang and Clark,
2010) and dependency parsing (Huang and Sagae,
2010). Therefore, we can investigate the contribu-
tion of the joint approach through comparison with
the pipeline and joint models.

4.3 Development Results

We have some parameters to tune: parsing feature
weight σp, beam size, and training epoch. All these
parameters are set based on experiments on CTB-5c.
For experiments on CTB-5j, CTB-6, and CTB-7, the
training epoch is set using the development set.

Figure 2 shows the F1 scores of the proposed
model (SegTagDep) on CTB-5c-1 with respect to the
training epoch and different parsing feature weights,
where “Seg”, “Tag”, and “Dep” respectively denote
the F1 scores of word segmentation, POS tagging,
and dependency parsing. In this experiment, the ex-
ternal dictionaries are not used, and the beam size
of 32 is used. Interestingly, if we simply set σp to
1, the accuracies seem to converge at lower levels.
The σp = 0.2 setting seems to reach almost identi-
cal segmentation and tagging accuracies as the best
setting σp = 0.5, but the convergence occurs more
slowly. Based on this experiment, we set σp to 0.5
throughout the experiments in this paper.

Table 3 shows the performance and speed of the
full joint model (with no dictionaries) on CTB-5c-1
with respect to the beam size. Although even the
beam size of 32 results in competitive accuracies
for word segmentation and POS tagging, the depen-
dency accuracy is affected most by the increase of
the beam size. Based on this experiment, we set the
beam size of SegTagDep to 64 throughout the exper-

1050



Beam Seg Tag Dep Speed

4 94.96 90.19 70.29 5.7
8 95.78 91.53 72.81 3.2

16 96.09 92.09 74.20 1.8
32 96.18 92.24 74.57 0.95
64 96.28 92.37 74.96 0.48

Table 3: F1 scores and speed (in sentences per sec.)
of SegTagDep on CTB-5c-1 w.r.t. the beam size.

iments in this paper, unless otherwise noted.

4.4 Main Results
In this section, we present experimentally obtained
results using the proposed and baseline models. Ta-
ble 4 shows the segmentation, POS tagging, and
dependency parsing F1 scores of these models on
CTB-5c. Irrespective of the existence of the dic-
tionary features, the joint model SegTagDep largely
increases the POS tagging and dependency pars-
ing accuracies (by 0.56–0.63% and 2.34–2.44%);
the improvements in parsing accuracies are still
significant even compared with SegTag+Dep’ (the
pipeline model with the look-ahead features). How-
ever, when the external dictionaries are not used
(“wo/dict”), no substantial improvements for seg-
mentation accuracies were observed. In contrast,
when the dictionaries are used (“w/dict”), the seg-
mentation accuracies are now improved over the
baseline model SegTag consistently (on every trial).
Although the overall improvement in segmentation
is only around 0.1%, more than 1% improvement is
observed if we specifically examine OOV6 words.
The difference between “wo/dict” and “w/dict” re-
sults suggests that the syntactic dependencies might
work as a noise when the segmentation model is in-
sufficiently stable, but the model does improve when
it is stable, not receiving negative effects from the
syntactic dependencies.

The partially joint model SegTag+TagDep is
shown to perform reasonably well in dependency
parsing: with dictionaries, it achieved the 2.02% im-
provement over SegTag+Dep, which is only 0.32%
lower than SegTagDep. However, whereas Seg-
Tag+TagDep showed no substantial improvement in
tagging accuracies over SegTag (when the dictionar-
ies are used), SegTagDep achieved consistent im-
provements of 0.46% and 0.58% (without/with dic-

6We define the OOV words as the words that have not seen in
the training data, even when the external dictionaries are used.

System Seg Tag
Kruengkrai ’09 97.87 93.67

Zhang ’10 97.78 93.67
Sun ’11 98.17 94.02

Wang ’11 98.11 94.18
SegTag 97.66 93.61

SegTagDep 97.73 94.46
SegTag(d) 98.18 94.08

SegTagDep(d) 98.26 94.64

Table 5: Final results on CTB-5j
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Figure 3: Performance of baseline and joint models
w.r.t. the average processing time (in sec.) per sen-
tence. Each point corresponds to the beam size of
4, 8, 16, 32, (64). The beam size of 16 is used for
SegTag in SegTag+Dep and SegTag+TagDep.

tionaries); these differences can be attributed to the
combination of the relieved error propagation and
the incorporation of the syntactic dependencies. In
addition, SegTag+TagDep has OOV tagging accura-
cies consistently lower than SegTag, suggesting that
the syntactic dependency has a negative effect on the
POS tagging accuracy of OOV words7. In contrast,
this negative effect is not observed for SegTagDep:
both the overall tagging accuracy and the OOV accu-
racy are improved, demonstrating the effectiveness
of the proposed model.

Figure 3 shows the performance and processing
time comparison of various models and their com-
binations. Although SegTagDep takes a few times
longer to achieve accuracies comparable to those of
SegTag+Dep/TagDep, it seems to present potential

7This is consistent with Hatori et al. (2011)’s observation
that although the joint POS tagging and dependency parsing im-
proves the accuracy of syntactically influential POS tags, it has
a slight side effect of increasing the confusion between general
and proper nouns (NN vs. NR).
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Model Segmentation POS Tagging DependencyALL OOV ALL OOV

wo/dict
SegTag+Dep

96.22 72.24 91.74 59.82 72.58
SegTag+Dep’ 72.94 (+0.36‡)
SegTag+TagDep 91.86 (+0.12‡) 58.89 (-0.93‡) 74.60 (+2.02‡)
SegTagDep 96.19 (-0.03) 72.24 (+0.00) 92.30 (+0.56‡) 61.03 (+1.21‡) 74.92 (+2.34‡)

w/dict
SegTag+Dep

96.82 78.32 92.34 65.44 73.53
SegTag+Dep’ 73.90 (+0.37‡)
SegTag+TagDep 92.35 (+0.01) 63.20 (-2.24‡) 75.45 (+1.92‡)
SegTagDep 96.90 (+0.08‡) 79.38 (+1.06‡) 92.97 (+0.63‡) 67.40 (+1.96‡) 75.97 (+2.44‡)

Table 4: Segmentation, POS tagging, and (unlabeled attachment) dependency F1 scores averaged over five
trials on CTB-5c. Figures in parentheses show the differences over SegTag+Dep (‡ : p < 0.01).

for greater improvement, especially for tagging and
parsing accuracies, when a larger beam can be used.

4.5 Comparison with Other Systems
Table 5 and Table 6 show a comparison of the seg-
mentation and POS tagging accuracies with other
state-of-the-art models. “Kruengkrai+ ’09” is a
lattice-based model by Kruengkrai et al. (2009).
“Zhang ’10” is the incremental model by Zhang and
Clark (2010). These two systems use no external re-
sources other than the CTB corpora. “Sun+ ’11” is a
CRF-based model (Sun, 2011) that uses a combina-
tion of several models, with a dictionary of idioms.
“Wang+ ’11” is a semi-supervised model by Wang
et al. (2011), which additionally uses the Chinese
Gigaword Corpus.

Our models with dictionaries (those marked with
‘(d)’) have competitive accuracies to other state-of-
the-art systems, and SegTagDep(d) achieved the best
reported segmentation and POS tagging accuracies,
using no additional corpora other than the dictio-
naries. Particularly, the POS tagging accuracy is
more than 0.4% higher than the previous best sys-
tem thanks to the contribution of syntactic depen-
dencies. These results also suggest that the use of
readily available dictionaries can be more effective
than semi-supervised approaches.

5 Conclusion

In this paper, we proposed the first joint model
for word segmentation, POS tagging, and depen-
dency parsing in Chinese. The model demonstrated
substantial improvements on the three tasks over
the pipeline combination of the state-of-the-art joint
segmentation and POS tagging model, and depen-
dency parser. Particularly, results showed that the

Model CTB-6 Test CTB-7 Test
Seg Tag Dep Seg Tag Dep

Kruengkrai ’09 95.50 90.50 - 95.40 89.86 -
Wang ’11 95.79 91.12 - 95.65 90.46 -

SegTag+Dep 95.46 90.64 72.57 95.49 90.11 71.25
SegTagDep 95.45 91.27 74.88 95.42 90.62 73.58

(diff.) -0.01 +0.63‡ +2.31‡ -0.07 +0.51‡ +2.33‡

SegTag+Dep(d) 96.13 91.38 73.62 95.98 90.68 72.06
SegTagDep(d) 96.18 91.95 75.76 96.07 91.28 74.58

(diff.) +0.05 +0.57‡ +2.14‡ +0.09‡ +0.60‡ +2.52‡

Table 6: Final results on CTB-6 and CTB-7

accuracies of POS tagging and dependency pars-
ing were remarkably improved by 0.6% and 2.4%,
respectively corresponding to 8.3% and 10.2% er-
ror reduction. For word segmentation, although
the overall improvement was only around 0.1%,
greater than 1% improvements was observed for
OOV words. We conducted some comparison ex-
periments of the partially joint and full joint mod-
els. Compared to SegTagDep, SegTag+TagDep per-
forms reasonably well in terms of dependency pars-
ing accuracy, whereas the POS tagging accuracies
are more than 0.5% lower.

In future work, probabilistic pruning techniques
such as the one based on a maximum entropy model
are expected to improve the efficiency of the joint
model further because the accuracies are apparently
still improved if a larger beam can be used. More
efficient decoding would also allow the use of the
look-ahead features (Hatori et al., 2011) and richer
parsing features (Zhang and Nivre, 2011).
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Abstract

We show for both English POS tagging and
Chinese word segmentation that with proper
representation, large number of deterministic
constraints can be learned from training exam-
ples, and these are useful in constraining prob-
abilistic inference. For tagging, learned con-
straints are directly used to constrain Viterbi
decoding. For segmentation, character-based
tagging constraints can be learned with the
same templates. However, they are better ap-
plied to a word-based model, thus an integer
linear programming (ILP) formulation is pro-
posed. For both problems, the corresponding
constrained solutions have advantages in both
efficiency and accuracy.

1 introduction

In recent work, interesting results are reported for
applications of integer linear programming (ILP)
such as semantic role labeling (SRL) (Roth and Yih,
2005), dependency parsing (Martins et al., 2009)
and so on. In an ILP formulation, ’non-local’ de-
terministic constraints on output structures can be
naturally incorporated, such as ”a verb cannot take
two subject arguments” for SRL, and the projectiv-
ity constraint for dependency parsing. In contrast
to probabilistic constraints that are estimated from
training examples, this type of constraint is usually
hand-written reflecting one’s linguistic knowledge.

Dynamic programming techniques based on
Markov assumptions, such as Viterbi decoding, can-
not handle those ’non-local’ constraints as discussed
above. However, it is possible to constrain Viterbi

decoding by ’local’ constraints, e.g. ”assign label t
to word w” for POS tagging. This type of constraint
may come from human input solicited in interactive
inference procedure (Kristjansson et al., 2004).

In this work, we explore deterministic constraints
for two fundamental NLP problems, English POS
tagging and Chinese word segmentation. We show
by experiments that, with proper representation,
large number of deterministic constraints can be
learned automatically from training data, which can
then be used to constrain probabilistic inference.

For POS tagging, the learned constraints are di-
rectly used to constrain Viterbi decoding. The cor-
responding constrained tagger is 10 times faster than
searching in a raw space pruned with beam-width 5.
Tagging accuracy is moderately improved as well.

For Chinese word segmentation (CWS), which
can be formulated as character tagging, analogous
constraints can be learned with the same templates
as English POS tagging. High-quality constraints
can be learned with respect to a special tagset, how-
ever, with this tagset, the best segmentation accuracy
is hard to achieve. Therefore, these character-based
constraints are not directly used for determining pre-
dictions as in English POS tagging. We propose an
ILP formulation of the CWS problem. By adopt-
ing this ILP formulation, segmentation F-measure
is increased from 0.968 to 0.974, as compared to
Viterbi decoding with the same feature set. More-
over, the learned constraints can be applied to reduce
the number of possible words over a character se-
quence, i.e. to reduce the number of variables to set.
This reduction of problem size immediately speeds
up an ILP solver by more than 100 times.
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2 English POS tagging

2.1 Explore deterministic constraints

Suppose that, following (Chomsky, 1970), we dis-
tinguish major lexical categories (Noun, Verb, Ad-
jective and Preposition) by two binary features:
+|− N and +|− V. Let (+N, −V)=Noun, (−N,
+V)=Verb, (+N, +V)=Adjective, and (−N,
−V)=preposition. A word occurring in between a
preceding word the and a following word of always
bears the feature +N. On the other hand, consider
the annotation guideline of English Treebank (Mar-
cus et al., 1993) instead. Part-of-speech (POS) tags
are used to categorize words, for example, the POS
tag VBG tags verbal gerunds, NNS tags nominal plu-
rals, DT tags determiners and so on. Following this
POS representation, there are as many as 10 possi-
ble POS tags that may occur in between the–of, as
estimated from the WSJ corpus of Penn Treebank.

2.1.1 Templates of deterministic constraints
To explore determinacy in the distribution of POS

tags in Penn Treebank, we need to consider that
a POS tag marks the basic syntactic category of a
word as well as its morphological inflection. A con-
straint that may determine the POS category should
reflect both the context and the morphological fea-
ture of the corresponding word.

The practical difficulty in representing such de-
terministic constraints is that we do not have a per-
fect mechanism to analyze morphological features
of a word. Endings or prefixes of English words do
not deterministically mark their morphological in-
flections. We propose to compute the morph feature
of a word as the set of all of its possible tags, i.e.
all tag types that are assigned to the word in training
data. Furthermore, we approximate unknown words
in testing data by rare words in training data. For
a word that occurs less than 5 times in the training
corpus, we compute its morph feature as its last two
characters, which is also conjoined with binary fea-
tures indicating whether the rare word contains dig-
its, hyphens or upper-case characters respectively.
See examples of morph features in Table 1.

We consider bigram and trigram templates for
generating potentially deterministic constraints. Let
wi denote the ith word relative to the current word
w0; and mi denote the morph feature of wi. A

(frequent) (set of possible tags of the word)
w0=trades m0={NNS, VBZ}

(rare) (the last two characters...)
w0=time-shares m0={-es, HYPHEN}

Table 1: Morph features of frequent words and rare words
as computed from the WSJ Corpus of Penn Treebank.

bi- w−1w0, w0w1, m−1w0, w0m1

-gram w−1m0, m0w1, m−1m0, m0m1

tri- w−1w0w1, m−1w0w1, w−1m0w1, m−1m0w1

-gram w−1w0m1, m−1w0m1, w−1m0m1, m−1m0m1

Table 2: The templates for generating potentially deter-
ministic constraints of English POS tagging.

bigram constraint includes one contextual word
(w−1|w1) or the corresponding morph feature; and
a trigram constraint includes both contextual words
or their morph features. Each constraint is also con-
joined with w0 or m0, as described in Table 2.

2.1.2 Learning of deterministic constraints
In the above section, we explore templates for

potentially deterministic constraints that may deter-
mine POS category. With respect to a training cor-
pus, if a constraint C relative to w0 ’always’ assigns
a certain POS category t∗ to w0 in its context, i.e.
count(C∧t0=t∗)

count(C) > thr, and this constraint occurs
more than a cutoff number, we consider it as a de-
terministic constraint. The threshold thr is a real
number just under 1.0 and the cutoff number is em-
pirically set to 5 in our experiments.

2.1.3 Decoding of deterministic constraints
By the above definition, the constraint of w−1 =

the,m0 = {NNS, VBZ} andw1 = of is determinis-
tic. It determines the POS category of w0 to be NNS.
There are at least two ways of decoding these con-
straints during POS tagging. Take the word trades
for example, whose morph feature is {NNS, VBZ}.
One alternative is that as long as trades occurs be-
tween the-of, it is tagged with NNS. The second al-
ternative is that the tag decision is made only if all
deterministic constraints relative to this occurrence
of trades agree on the same tag. Both ways of de-
coding are purely rule-based and involve no proba-
bilistic inference. In favor of a higher precision, we
adopt the latter one in our experiments.
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raw input O(nT 2) n = 23

The complex financing plan in the S&L bailout law includes...

constrained input O(m1T + m2T 2) m1 = 2, m2 = 1

The/DT complex/– financing/– plan/NN in/IN
the/DT S&L/– bailout/NN law/NN includes/VBZ ...

Table 3: Comparison of raw input and constrained input.

2.2 Search in a constrained space

Following most previous work, we consider POS
tagging as a sequence classification problem and de-
compose the overall sequence score over the linear

structure, i.e. t̂ = arg max
t∈tagGEN(w)

n∑
i=1

score(ti) where

function tagGEN maps input sentence w = w1...wn

to the set of all tag sequences that are of length n.
If a POS tagger takes raw input only, i.e. for every

word, the number of possible tags is a constant T ,
the space of tagGEN is as large as Tn. On the other
hand, if we decode deterministic constraints first be-
fore a probabilistic search, i.e. for some words, the
number of possible tags is reduced to 1, the search
space is reduced to Tm, where m is the number of
(unconstrained) words that are not subject to any de-
terministic constraints.

Viterbi algorithm is widely used for tagging, and
runs in O(nT 2) when searching in an unconstrained
space. On the other hand, consider searching in a
constrained space. Suppose that among the m un-
constrained words, m1 of them follow a word that
has been tagged by deterministic constraints and
m2 (=m-m1) of them follow another unconstrained
word. Viterbi decoder runs in O(m1T + m2T

2)
while searching in such a constrained space. The
example in Table 3 shows raw and constrained input
with respect to a typical input sentence.

Lookahead features
The score of tag predictions are usually computed

in a high-dimensional feature space. We adopt the
basic feature set used in (Ratnaparkhi, 1996) and
(Collins, 2002). Moreover, when deterministic con-
straints have applied to contextual words of w0, it
is also possible to include some lookahead feature
templates, such as:
t0&t1, t0&t1&t2, and t−1&t0&t1

where ti represents the tag of the ith word relative

to the current word w0. As discussed in (Shen et
al., 2007), categorical information of neighbouring
words on both sides of w0 help resolve POS ambi-
guity of w0. In (Shen et al., 2007), lookahead fea-
tures may be available for use during decoding since
searching is bidirectional instead of left-to-right as
in Viterbi decoding. In this work, deterministic con-
straints are decoded before the application of prob-
abilistic models, therefore lookahead features are
made available during Viterbi decoding.

3 Chinese Word Segmentation (CWS)

3.1 Word segmentation as character tagging
Considering the ambiguity problem that a Chinese
character may appear in any relative position in a
word and the out-of-vocabulary (OOV) problem that
it is impossible to observe all words in training data,
CWS is widely formulated as a character tagging
problem (Xue, 2003). A character-based CWS de-
coder is to find the highest scoring tag sequence t̂
over the input character sequence c, i.e.

t̂ = arg max
t∈tagGEN(c)

n∑
i=1

score(ti) .

This is the same formulation as POS tagging. The
Viterbi algorithm is also widely used for decoding.

The tag of each character represents its relative
position in a word. Two popular tagsets include 1)
IB: where B tags the beginning of a word and I

all other positions; and 2) BMES: where B, M and E

represent the beginning, middle and end of a multi-
character word respectively, and S tags a single-
character word. For example, after decoding with
BMES, 4 consecutive characters associated with the
tag sequence BMME compose a word. However, after
decoding with IB, characters associated with BIII

may compose a word if the following tag is B or only
form part of a word if the following tag is I. Even
though character tagging accuracy is higher with
tagset IB, tagset BMES is more popular in use since
better performance of the original problem CWS can
be achieved by this tagset.

Character-based feature templates
We adopt the ’non-lexical-target’ feature tem-

plates in (Jiang et al., 2008a). Let ci denote the ith
character relative to the current character c0 and t0
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denote the tag assigned to c0. The following tem-
plates are used:
ci&t0 (i=-2...2), cici+1&t0 (i=-2...1) and c−1c1&t0.

Character-based deterministic constraints
We can use the same templates as described in

Table 2 to generate potentially deterministic con-
straints for CWS character tagging, except that there
are no morph features computed for Chinese char-
acters. As we will show with experimental results
in Section 5.2, useful deterministic constraints for
CWS can be learned with tagset IB but not with
tagset BMES. It is interesting but not surprising to no-
tice, again, that the determinacy of a problem is sen-
sitive to its representation. Since it is hard to achieve
the best segmentations with tagset IB, we propose
an indirect way to use these constraints in the fol-
lowing section, instead of applying these constraints
as straightforwardly as in English POS tagging.

3.2 Word-based word segmentation
A word-based CWS decoder finds the highest scor-
ing segmentation sequence ŵ that is composed by
the input character sequence c, i.e.

ŵ = arg max
w∈segGEN(c)

|w|∑
i=1

score(wi) .

where function segGEN maps character sequence c
to the set of all possible segmentations of c. For
example, w = (c1..cl1)...(cn−lk+1...cn) represents a
segmentation of k words and the lengths of the first
and last word are l1 and lk respectively.

In early work, rule-based models find words one
by one based on heuristics such as forward maxi-
mum match (Sproat et al., 1996). Exact search is
possible with a Viterbi-style algorithm, but beam-
search decoding is more popular as used in (Zhang
and Clark, 2007) and (Jiang et al., 2008a).

We propose an Integer Linear Programming (ILP)
formulation of word segmentation, which is nat-
urally viewed as a word-based model for CWS.
Character-based deterministic constraints, as dis-
cussed in Section 3.1, can be easily applied.

3.3 ILP formulation of CWS
Given a character sequence c=c1...cn, there are s(=
n(n+1)/2) possible words that are contiguous sub-
sets of c, i.e. w1, ..., ws ⊆ c. Our goal is to find

Table 4: Comparison of raw input and constrained input.

an optimal solution x = x1...xs that maximizes
s∑

i=1

score(wi) · xi, subject to

(1)
∑

i:c∈wi

xi = 1, ∀c ∈ c;

(2) xi ∈ {0, 1}, 1 ≤ i ≤ s

The boolean value of xi, as guaranteed by constraint
(2), indicates whether wi is selected in the segmen-
tation solution or not. Constraint (1) requires ev-
ery character to be included in exactly one selected
word, thus guarantees a proper segmentation of the
whole sequence. This resembles the ILP formula-
tion of the set cover problem, though the first con-
straint is different. Take n = 2 for example, i.e.
c = c1c2, the set of possible words is {c1, c2, c1c2},
i.e. s = |x| = 3. There are only two possible so-
lutions subject to constraints (1) and (2), x = 110
giving an output set {c1, c2}, or x = 001 giving an
output set {c1c2}.

The efficiency of solving this problem depends on
the number of possible words (contiguous subsets)
over a character sequence, i.e. the number of vari-
ables in x. So as to reduce |x|, we apply determin-
istic constraints predicting IB tags first, which are
learned as described in Section 3.1. Possible words
are generated with respect to the partially tagged
character sequence. A character tagged with B al-
ways occurs at the beginning of a possible word. Ta-
ble 4 illustrates the constrained and raw input with
respect to a typical character sequence.

3.4 Character- and word-based features
As studied in previous work, word-based feature
templates usually include the word itself, sub-words
contained in the word, contextual characters/words
and so on. It has been shown that combining the
use of character- and word-based features helps im-
prove performance. However, in the character tag-
ging formulation, word-based features are non-local.
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To incorporate these non-local features and make the
search tractable, various efforts have been made. For
example, Jiang et al. (2008a) combine different lev-
els of knowledge in an outside linear model of a two-
layer cascaded model; Jiang et al. (2008b) uses the
forest re-ranking technique (Huang, 2008); and in
(Kruengkrai et al., 2009), only known words in vo-
cabulary are included in the hybrid lattice consisting
of both character- and word-level nodes.

We propose to incorporate character-based fea-
tures in word-based models. Consider a character-
based feature function φ(c, t, c) that maps a
character-tag pair to a high-dimensional feature
space, with respect to an input character sequence
c. For a possible word over c of length l , wi =
ci0 ...ci0+l−1, tag each character cij in this word with
a character-based tag tij . Character-based features
of wi can be computed as {φ(cij , tij , c)|0 ≤ j < l}.
The first row of Table 5 illustrates character-based
features of a word of length 3, which is tagged with
tagset BMES. From this view, the character-based
feature templates defined in Section 3.1 are naturally
used in a word-based model.

When character-based features are incorporated
into word-based CWS models, some word-based
features are no longer of interest, such as the start-
ing character of a word, sub-words contained in
the word, contextual characters and so on. We
consider word counting features as a complemen-
tary to character-based features, following the idea
of using web-scale features in previous work, e.g.
(Bansal and Klein, 2011). For a possible word w, let
count(w) return the count of times that w occurs as
a legal word in training data. The word count num-
ber is further processed following (Bansal and Klein,
2011), wc(w) = floor(log(count(w)) ∗ 5)/5. In
addition to wc(wi), we also use corresponding word
count features of possible words that are composed
of the boundary and contextual characters ofwi. The
specific word-based feature templates are illustrated
in the second row of Table 5.

4 Training

We use the following linear model for scoring pre-
dictions: score(y)=θTφ(x, y), where φ(y) is a high-
dimensional binary feature representation of y over
input x and θ contains weights of these features. For

character-
φ(ci0 , B, c), φ(ci1 , M, c), φ(ci2 , E, c)-based

word-
wc(ci0ci1ci2), wc(clci0), wc(ci2cr)-based

Table 5: Character- and word-based features of a possi-
ble wordwi over the input character sequence c. Suppose
thatwi = ci0ci1ci2 , and its preceding and following char-
acters are cl and cr respectively.

parameter estimation of θ, we use the averaged per-
ceptron as described in (Collins, 2002). This train-
ing algorithm relies on the choice of decoding algo-
rithm. When we experiment with different decoders,
by default, the parameter weights in use are trained
with the corresponding decoding algorithm.

Especially, for experiments with lookahead fea-
tures of English POS tagging, we prepare training
data with the stacked learning technique, in order to
alleviate overfitting. More specifically, we divide the
training data into k folds, and tag each fold with the
deterministic model learned over the other k-1 folds.
The predicted tags of all folds are then merged into
the gold training data and used (only) as lookahead
features. Sun (2011) uses this technique to merge
different levels of predictors for word segmentation.

5 Experiments

5.1 Data set

We run experiments on English POS tagging on the
WSJ corpus in the Penn Treebank. Following most
previous work, e.g. (Collins, 2002) and (Shen et al.,
2007), we divide this corpus into training set (sec-
tions 0-18), development set (sections 19-21) and
the final test set (sections 22-24).

We run experiments on Chinese word segmenta-
tion on the Penn Chinese Treebank 5.0. Following
(Jiang et al., 2008a), we divide this corpus into train-
ing set (chapters 1-260), development set (chapters
271-300) and the final test set (chapters 301-325).

5.2 Deterministic constraints

Experiments in this section are carried out on the de-
velopment set. The cutoff number and threshold as
defined in 2.1.2, are fixed as 5 and 0.99 respectively.
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precision recall F1

bigram 0.993 0.841 0.911
trigram 0.996 0.608 0.755

bi+trigram 0.992 0.857 0.920

Table 6: POS tagging with deterministic constraints.
The maximum in each column is bold.

m0={VBN, VBZ} & m1={JJ, VBD, VBN} → VBN

w0=also & m1={VBD, VBN} → RB

m0=−es & m−1={IN, RB, RP} → NNS

w0=last & w−1= the→ JJ

Table 7: Deterministic constraints for POS tagging.

Deterministic constraints for POS tagging
For English POS tagging, we evaluate the deter-

ministic constraints generated by the templates de-
scribed in Section 2.1.1. Since these deterministic
constraints are only applied to words that occur in
a constrained context, we report F-measure as the
accuracy measure. Precision p is defined as the per-
centage of correct predictions out of all predictions,
and recall r is defined as the percentage of gold pre-
dictions that are correctly predicted. F-measure F1

is computed by 2pr/(p+ r).
As shown in Table 6, deterministic constraints

learned with both bigram and trigram templates are
all very accurate in predicting POS tags of words
in their context. Constraints generated by bigram
template alone can already cover 84.1% of the input
words with a high precision of 0.993. By adding the
constraints generated by trigram template, recall is
increased to 0.857 with little loss in precision. Since
these deterministic constraints are applied before the
decoding of probabilistic models, reliably high pre-
cision of their predictions is crucial.

There are 114589 bigram deterministic con-
straints and 130647 trigram constraints learned from
the training data. We show a couple of examples of
bigram deterministic constraints in Table 7. As de-
fined in Section 2.2, we use the set of all possible
POS tags for a word, e.g. {VBN, VBZ}, as its morph
feature if the word is frequent (occurring more than
5 times in training data). For a rare word, the last two
characters are used as its morph feature, e.g. −es. A
constraint is composed of w−1, w0 and w1, as well
as the morph features m−1, m0 and m1. For ex-

tagset precision recall F1

BMES 0.989 0.566 0.720
IB 0.996 0.686 0.812

Table 8: Character tagging with deterministic constraints.

ample, the first constraint in Table 7 determines the
tag VBN of w0. A deterministic constraint is aware
of neither the likelihood of each possible tag or the
relative rank of their likelihoods.

Deterministic constraints for character tagging
For the character tagging formulation of Chinese

word segmentation, we discussed two tagsets IB and
BMES in Section 3.1. With respect to either tagset,
we use both bigram and trigram templates to gen-
erate deterministic constraints for the corresponding
tagging problem. These constraints are also evalu-
ated by F-measure as defined above. As shown in
Table 8, when tagset IB is used for character tag-
ging, high precision predictions can be made by the
deterministic constraints that are learned with re-
spect to this tagset. However, when tagset BMES is
used, the learned constraints don’t always make reli-
able predictions, and the overall precision is not high
enough to constrain a probabilistic model. There-
fore, we will only use the deterministic constraints
that predict IB tags in following CWS experiments.

5.3 English POS tagging

For English POS tagging, as well as the CWS prob-
lem that will be discussed in the next section, we use
the development set to choose training iterations (=
5), set beam width etc. The following experiments
are done on the final test set.

As introduced in Section 2.2, we adopt a very
compact feature set used in (Ratnaparkhi, 1996)1.
While searching in a constrained space, we can also
extend this feature set with some basic lookahead
features as defined in Section 2.2. This replicates
the feature set B used in (Shen et al., 2007).

In this work, our main interest in the POS tag-
ging problem is on its efficiency. A well-known
technique to speed up Viterbi decoding is to con-
duct beam search. Based on experiments carried out

1Our implementation of this feature set is basically the same
as the version used in (Collins, 2002).
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Ratnaparkhi (1996)’s feature
Beam=1 Beam=5

raw 96.46%/3× 97.16/1×
constrained 96.80%/14× 97.20/10×

Feature B in (Shen et al., 2007)
(Shen et al., 2007) 97.15% (Beam=3)

constrained 97.03%/11× 97.20/8×

Table 9: POS tagging accuracy and speed. The maximum
in each column is bold. The baseline for speed in all cases
is the unconstrained tagger using (Ratnaparkhi, 1996)’s
feature and conducting a beam (=5) search.

on the development set, we set beam-width of our
baseline model as 5. Our baseline model, which
uses Ratnaparkhi (1996)’s feature set and conducts
a beam (=5) search in the unconstrained space,
achieves a tagging accuracy of 97.16%. Tagging
accuracy is measured by the percentage of correct
predictions out of all gold predictions. We consider
the speed of our baseline model as 1×, and compare
other taggers with this one. The speed of a POS tag-
ger is measured by the number of input words pro-
cessed per second.

As shown in Table 9, when the beam-width is re-
duced from 5 to 1, the tagger (beam=1) is 3 times
faster but tagging accuracy is badly hurt. In contrast,
when searching in a constrained space rather than
the raw space, the constrained tagger (beam=5) is 10
times fast as the baseline and the tagging accuracy
is even moderately improved, increasing to 97.20%.
When we evaluate the speed of a constrained tag-
ger, the time of decoding deterministic constraints
is included. These constraints make more accurate
predictions than probabilistic models, thus besides
improving the overall tagging speed as we expect,
tagging accuracy also improves by a little.

In Viterbi decoding, all possible transitions be-
tween two neighbour states are evaluated, so the ad-
dition of locally lookahead features may have NO
impact on performance. When beam-width is set to
5, tagging accuracy is not improved by the use of
Feature B in (Shen et al., 2007); and because the
size of the feature model grows, efficiency is hurt.
On the other hand, when lookahead features are
used, Viterbi-style decoding is less affected by the
reduction of beam-width. As compared to the con-

strained greedy tagger using Ratnaparkhi (1996)’s
feature set, with the additional use of three locally
lookahead feature templates, tagging accuracy is in-
creased from 96.80% to 97.02%.

When no further data is used other than training
data, the bidirectional tagger described in (Shen et
al., 2007) achives an accuracy of 97.33%, using a
much richer feature set (E) than feature set B, the
one we compare with here. As noted above, the
addition of three feature templates already has a
notable negative impact on efficiency, thus the use
of feature set E will hurt tagging efficiency much
worse. Rich feature sets are also widely used in
other work that pursue state-of-art tagging accuracy,
e.g. (Toutanova et al., 2003). In this work, we fo-
cus on the most compact feature sets, since tagging
efficiency is our main consideration in our work on
POS taging. The proposed constrained taggers as
described above can achieve near state-of-art POS
tagging accuracy in a much more efficient manner.

5.4 Chinese word segmentation
Like other tagging problems, Viterbi-style decoding
is widely used for character tagging for CWS. We
transform tagged character sequences to word seg-
mentations first, and then evaluate word segmenta-
tions by F-measure, as defined in Section 5.2.

We proposed an ILP formulation of the CWS
problem in Section 3.3, where we present a word-
based model. In Section 3.4, we describe a way of
mapping words to a character-based feature space.
From this view, the highest scoring tagging sequence
is computed subject to structural constraints, giving
us an inference alternative to Viterbi decoding. For
example, recall the example of input character se-
quence c = c1c2 discussed in Section 3.3. The two
possible ILP solutions give two possible segmenta-
tions {c1, c2} and {c1c2}, thus there are 2 tag se-
quences evaluated by ILP, BB and BI. On the other
hand, there are 4 tag sequences evaluated by Viterbi
decoding: BI, BB, IB and II.

With the same feature templates as described in
Section 3.1, we now compare these two decoding
methods. Tagset BMES is used for character tagging
as well as for mapping words to character-based fea-
ture space. We use the same Viterbi decoder as im-
plemented for English POS tagging and use a non-
commercial ILP solver included in GNU Linear Pro-

1060



precision recall F-measure
Viterbi 0.971 0.966 0.968
ILP 0.970 0.977 0.974
(Jiang et al., 2008a), POS- 0.971
(Jiang et al., 2008a), POS+ 0.973

Table 10: F-measure on Chinese word segmentation.
Only character-based features are used. POS-/+: percep-
tron trained without/with POS.

gramming Kit (GLPK), version 4.3. 2 As shown
in Table 10, optimal solutions returned by an ILP
solver are more accurate than optimal solutions re-
turned by a Viterbi decoder. The F-measure is im-
proved by a relative error reduction of 18.8%, from
0.968 to 0.974. These results are compared to the
core perceptron trained without POS in (Jiang et al.,
2008a). They only report results with ’lexical-target’
features, a richer feature set than the one we use
here. As shown in Table 10, we achieve higher per-
formance even with more compact features.

Joint inference of CWS and Chinese POS tagging
is popularly studied in recent work, e.g. (Ng and
Low, 2004), (Jiang et al., 2008a), and (Kruengkrai et
al., 2009). It has been shown that better performance
can be achieved with joint inference, e.g. F-measure
0.978 by the cascaded model in (Jiang et al., 2008a).
We focus on the task of word segmentation only in
this work and show that a comparable F-measure is
achievable in a much more efficient manner. Sun
(2011) uses the stacked learning technique to merge
different levels of predictors, obtaining a combined
system that beats individual ones.

Word-based features can be easily incorporated,
since the ILP formulation is more naturally viewed
as a word-based model. We extend character-based
features with the word count features as described
in Section 3.4. Currently, we only use word counts
computed from training data, i.e. still a closed test.
The addition of these features makes a moderate im-
provement on the F-measure, from 0.974 to 0.975.

As discussed in Section 3.3, if we are able to
determine that some characters always start new
words, the number of possible words is reduced,
i.e. the number of variables in an ILP solution is
reduced. As shown in Table 11, when character se-

2http://www.gnu.org/software/glpk

F-measure avg. |x| #char per sec.
raw 0.974 1290.4 113 (1×)

constrained 0.974 83.75 12190 (107×)

Table 11: ILP problem size and segmentation speed.

quences are partially tagged by deterministic con-
straints, the number of possible words per sentence,
i.e. avg. |x|, is reduced from 1290.4 to 83.7. This re-
duction of ILP problem size has a very important im-
pact on the efficiency. As shown in Table 11, when
taking constrained input, the segmentation speed is
increased by 107 times over taking raw input, from
113 characters per second to 12,190 characters per
second on a dual-core 3.0HZ CPU.

Deterministic constraints predicting IB tags are
only used here for constraining possible words.
They are very accurate as shown in Section 5.2. Few
gold predictions are missed from the constrained set
of possible words. As shown in Table 11, F-measure
is not affected by applying these constraints, while
the efficiency is significantly improved.

6 Conclusion and future work

We have shown by experiments that large number of
deterministic constraints can be learned from train-
ing examples, as long as the proper representation is
used. These deterministic constraints are very use-
ful in constraining probabilistic search, for example,
they may be directly used for determining predic-
tions as in English POS tagging, or used for reduc-
ing the number of variables in an ILP solution as in
Chinese word segmentation. The most notable ad-
vantage in using these constraints is the increased ef-
ficiency. The two applications are both well-studied;
there isn’t much space for improving accuracy. Even
so, we have shown that as tested with the same fea-
ture set for CWS, the proposed ILP formulation sig-
nificantly improves the F-measure as compared to
Viterbi decoding.

These two simple applications suggest that it is
of interest to explore data-driven deterministic con-
straints learnt from training examples. There are
more interesting ways in applying these constraints,
which we are going to study in future work.
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