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Preface: General Chair

Welcome to Jeju Island — where ACL makes a return to Asia!

As General Chair, I am indeed honored to pen the first words of ACL 2012 proceedings. In the
past year, research in computational linguistics has continued to thrive across Asia and all over the
world. On this occasion, I share with you the excitement of our community as we gather again at our
annual meeting. On behalf of the organizing team, it is my great pleasure to welcome you to Jeju
Island and ACL 2012.

In 2012, ACL turns 50. I feel privileged to chair the conference that marks such an important
milestone for our community. We have prepared special programs to commemorate the 50th
anniversary, including ‘Rediscovering 50 Years of Discovery’, a main conference workshop chaired
by Rafael Banchs with a program on ‘the People, the Contents, and the Anthology’, which recollects
some of the great moments in ACL history, and ‘ACL 50th Anniversary Lectures’ by Mark Johnson,
Aravind K. Joshi and a Lifetime Achievement Award Recipient.

A large number of people have worked hard to bring this annual meeting to fruition. It has
been an unforgettable experience for everyone involved. My deepest thanks go to the authors,
reviewers, volunteers, participants, and all members and chairs of the organizing committees. It is your
participation that makes a difference.

Program Chairs, Chin-Yew Lin and Miles Osborne, deserve our gratitude for putting an immense
amount of work to ensure that each of the 940 submissions was taken care of. They put together
a superb technical program like nobody else. Publication Chairs, Maggie Li and Michael White,
extended the publishing tools to take care of every detail and compiled all the books within an
impossible schedule. Tutorial Chair, Michael Strube, put together six tutorials that you can never
miss. Workshop Chairs, Massimo Poesio and Satoshi Sekine, working with their EACL and NAACL
counterparts, selected 11 quality workshops, many of which are new editions in their popular workshop
series. Demo Chair, Min Zhang, started a novel review process and selected 29 quality system
demos. Faculty Advisors, Kentaro Inui, Greg Kondrak, and Yang Liu, and Student Chairs, Jackie
Cheung, Jun Hatori, Carlos Henriquez and Ann Irvine, assembled an excellent program for the
Student Research Workshop with 12 accepted papers. Mentoring Chair, Joyce Chai, coordinated
the mentorship of 13 papers. Publicity Chairs, Jung-jae Kim and Youngjoong Ko, developed the
website, newsletters, and conference handbook that kept us updated all the time. Exhibition Chair,
Byeongchang Kim, coordinated more than 10 exhibitors with a strong industry presence. All the
events are now brought to us on Jeju Island by the Local Arrangements Chairs, Gary Lee and Jong
Park, and their team. I can never thank them enough for all the preparations they have made to host us
in such a spectacular place!

I would like to express my gratitude and appreciation to Kevin Knight, Chair of the ACL Conference
Coordination Committee, Dragomir Radev, ACL Secretary, and Priscilla Rasmussen, ACL Business

Manager, for their advice and guidance throughout the process.

The financial sponsors generously supported ACL 2012 in a meaningful way despite a challenging
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economic outlook. We are honored to have Baidu as the Platinum Sponsor, Elsevier and Google as
Gold Sponsors, Microsoft, KAIST and SK as Sliver Sponsors, 7 Bronze Sponsors, and 3 Supporters.
The Donald and Betty Walker Student Scholarship Fund and Asian Federation of Natural Language
Processing have supported our student travel grants. The sponsorship program was made possible by
the ACL sponsorship committee: Eiichiro Sumita, Haifeng Wang, Michael Gamon, Patrick Pantel,
Massimiliano Ciaramita, and Idan Szpektor.

Finally, I do hope that you have an enjoyable and productive time on Jeju Island, and that you
will leave with fond memories of ACL’s 50th Anniversary. With my best wishes for a successful
conference!

Haizhou Li
ACL 2012 General Chair
July 2012



Preface: Programme Committee Co-Chairs

This year we received 571 valid long paper submissions and 369 short paper submissions. 19% of the
long papers and 20% of the short papers were accepted. As usual, some are presented orally and some
as posters. Taking unigram counts from accepted long paper titles, and ignoring function words, the
most popular word were:

entity 5
evaluation 5
hierarchical 5
information 5
joint 5
syntactic 5
topic 5
discriminative 6
lexical 6
statistical 6
chinese 7
dependency 7
machine 8
modeling 8
models 8
language 10
word 10
parsing 11
model 12
learning 14
translation 15

Some areas have grown over time and some have diminished. The most popular area for submissions
(as expected) was Machine Translation. We promoted Social Media as a new area.

Twenty nine Area Chairs worked with 665 reviewers, producing 1830 long paper reviews and
1187 short paper reviews. Everything ran to a tight schedule and there were no slippages. This would
not have been possible without our wonderful and diligent Area Chairs and Reviewers. Thanks!

We are delighted to have two keynote speakers, both of whom are very well known to the
language community: Aravind Joshi and Mark Johnson. They will give coordinated talks addressing
the 50th ACL anniversary: ‘“Remembrance of ACLs past” and “Computational linguistics: Where do
we go from here?” The ACL Lifetime Achievement Award will be announced on the last day of the
conference.

Of the many papers, we selected two as being outstanding:
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Bayesian Symbol-Refined Tree Substitution Grammars for Syntactic Parsing
Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, Masaaki Nagata

String Re-writing Kernel
Fan Bu, Hang Li, Xiaoyan Zhu

They will be presented as best papers in a dedicated session.

We thank the General Conference Chair Haizhou Li, the Local Arrangements Committee headed by
Gary Geunbae Lee, Michael White and Maggie Li, the Publication Co-Chairs for coordinating and
putting the proceedings together and all other committee chairs for their work. MO is especially
thankful to Steve Clark for helpful tips on how to manage and run the whole process.

We hope you enjoy the conference!

Chin-Yew Lin, Microsoft Research Asia
Miles Osborne, University of Edinburgh
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Invited Talk

Remembrance of ACLs past
Aravind K. Joshi
Henry Salvatori Professor of Computer and Cognitive Science
University of Pennsylvania

Abstract

Besides briefly covering some highlights of the past 50 years of ACL from my perspective, I will try to
comment on (1) why some directions of research were pursued for a while and then dropped, sometimes
for a good reason and sometimes apparently for no reason, (2) why the relationship to Linguistics,
Psycholinguistics, and Al goes up and down, and (3) are there any leftovers that have the possibility of
being turned into delicious contributions!

Short Bio

After completing his undergraduate work in Electrical and Communication Engineering in India, Ar-
avind Joshi came to the University of Pennsylvania and obtained his Ph.D. in Electrical Engineering
in 1960. At present, he is the Henry Salvatori Professor of Computer and Cognitive Science at the
University of Pennsylvania.

Joshi has worked on several problems that overlap computer science and linguistics. More specifically,
he has worked on topics in mathematical linguistics as they relate to formal and linguistic adequacy
of different formalisms and their processing implications. He has also worked on several aspects of
theories of representation and inference in natural language, especially as they relate to discourse.

Joshi was the President of ACL in 1975 and was appointed as a Founding Fellow of ACL in 2011.
He was awarded the Lifetime Achievement Award of ACL in 2002, the David Rumelhart Prize of
the Cognitive Science Society in 2003 and the Franklin Medal for Computer and Cognitive Science,
Franklin Institute, Philadelphia, in 2005.
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Invited Talk

Computational linguistics: Where do we go from here?
Mark Johnson
Professor of Language Sciences (CORE)
Director, Centre for Language Sciences (CLaS)
Department of Computing Faculty of Science
Macquarie University
Sydney, Australia

“Prediction is very difficult, especially about the future” —Niels Bohr

Abstract

The very fact that we’re having a 50th annual meeting means that our field hasn’t been a complete
failure, but will there still be computational linguistics meetings in 50 years time? How do we fit into
the larger intellectual picture, and what would it take to make computational linguistics into a real
engineering discipline, or, for that matter, a scientific one? Prognosticating fearlessly (or perhaps just
foolishly) I’ll draw some lessons from the last 50 years about what the next few might hold.

Short Bio

Mark Johnson is a Professor of Language Science (CORE) in the Department of Computing at Mac-
quarie University. He was awarded a BSc (Hons) in 1979 from the University of Sydney, an MA in 1984
from the University of California, San Diego and a PhD in 1987 from Stanford University. He held a
postdoctoral fellowship at MIT from 1987 until 1988, and has been a visiting researcher at the Uni-
versity of Stuttgart, the Xerox Research Centre in Grenoble, CSAIL at MIT and the Natural Language
group at Microsoft Research. He has worked on a wide range of topics in computational linguistics, but
his main research area is parsing and its applications to text and speech processing. He was President
of the Association for Computational Linguistics in 2003, and was a professor from 1989 until 2009 in
the Departments of Cognitive and Linguistic Sciences and Computer Science at Brown University.
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Abstract

We introduce an approach to optimize a ma-
chine translation (MT) system on multiple
metrics simultaneously.  Different metrics
(e.g. BLEU, TER) focus on different aspects
of translation quality; our multi-objective ap-
proach leverages these diverse aspects to im-
prove overall quality.

Our approach is based on the theory of Pareto
Optimality. It is simple to implement on top of
existing single-objective optimization meth-
ods (e.g. MERT, PRO) and outperforms ad
hoc alternatives based on linear-combination
of metrics. We also discuss the issue of metric
tunability and show that our Pareto approach
is more effective in incorporating new metrics
from MT evaluation for MT optimization.

1 Introduction

Weight optimization is an important step in build-
ing machine translation (MT) systems. Discrimi-
native optimization methods such as MERT (Och,
2003), MIRA (Crammer et al., 2006), PRO (Hop-
kins and May, 2011), and Downhill-Simplex (Nelder
and Mead, 1965) have been influential in improving
MT systems in recent years. These methods are ef-
fective because they tune the system to maximize an
automatic evaluation metric such as BLEU, which
serve as surrogate objective for translation quality.
However, we know that a single metric such as
BLEU is not enough. Ideally, we want to tune to-
wards an automatic metric that has perfect corre-
lation with human judgments of translation quality.

*Now at Nara Institute of Science & Technology (NAIST)

While many alternatives have been proposed, such a
perfect evaluation metric remains elusive.

As a result, many MT evaluation campaigns now
report multiple evaluation metrics (Callison-Burch
et al., 2011; Paul, 2010). Different evaluation met-
rics focus on different aspects of translation quality.
For example, while BLEU (Papineni et al., 2002)
focuses on word-based n-gram precision, METEOR
(Lavie and Agarwal, 2007) allows for stem/synonym
matching and incorporates recall. TER (Snover
et al., 2006) allows arbitrary chunk movements,
while permutation metrics like RIBES (Isozaki et
al., 2010; Birch et al., 2010) measure deviation in
word order. Syntax (Owczarzak et al., 2007) and se-
mantics (Pado et al., 2009) also help. Arguably, all
these metrics correspond to our intuitions on what is
a good translation.

The current approach of optimizing MT towards
a single metric runs the risk of sacrificing other met-
rics. Can we really claim that a system is good if
it has high BLEU, but very low METEOR? Simi-
larly, is a high-METEOR low-BLEU system desir-
able? Our goal is to propose a multi-objective op-
timization method that avoids “overfitting to a sin-
gle metric”. We want to build a MT system that
does well with respect to many aspects of transla-
tion quality.

In general, we cannot expect to improve multi-
ple metrics jointly if there are some inherent trade-
offs. We therefore need to define the notion of Pareto
Optimality (Pareto, 1906), which characterizes this
tradeoff in a rigorous way and distinguishes the set
of equally good solutions. We will describe Pareto
Optimality in detail later, but roughly speaking, a
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hypothesis is pareto-optimal if there exist no other
hypothesis better in all metrics. The contribution of
this paper is two-fold:

e We introduce PMO (Pareto-based Multi-
objective Optimization), a general approach for
learning with multiple metrics. Existing single-
objective methods can be easily extended to
multi-objective using PMO.

e We show that PMO outperforms the alterna-
tive (single-objective optimization of linearly-
combined metrics) in multi-objective space,
and especially obtains stronger results for met-
rics that may be difficult to tune individually.

In the following, we first explain the theory of
Pareto Optimality (Section 2), and then use it to
build up our proposed PMO approach (Section 3).
Experiments on NIST Chinese-English and PubMed
English-Japanese translation using BLEU, TER, and
RIBES are presented in Section 4. We conclude by
discussing related work (Section 5) and opportuni-
ties/limitations (Section 6).

2 Theory of Pareto Optimality

2.1 Definitions and Concepts

The idea of Pareto optimality comes originally from
economics (Pareto, 1906), where the goal is to char-
acterize situations when a change in allocation of
goods does not make anybody worse off. Here, we
will explain it in terms of MT:

Let h € L be a hypothesis from an N-best list L.
We have a total of K different metrics My (h) for
evaluating the quality of h. Without loss of gen-
erality, we assume metric scores are bounded be-
tween O and 1, with 1 being perfect. Each hypoth-
esis h can be mapped to a K-dimensional vector
M(h) = [Mi(h); Ma(h);...; Mk (h)]. For exam-
ple, suppose K = 2, M;(h) computes the BLEU
score, and Mo (h) gives the METEOR score of h.
Figure 1 illustrates the set of vectors {M (h)} in a
10-best list.

For two hypotheses hi, ho, we write M (hy) >
M (hg) if hy is better than hy in all metrics, and
M(hy) > M(ho) if hy is better than or equal
to ho in all metrics. When M (hy) > M (hy) and
M (h1) > My(he) for at least one metric k, we say
that hy dominates hy and write M (hy) > M (hg).
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Figure 1: Illustration of Pareto Frontier. Ten hypotheses
are plotted by their scores in two metrics. Hypotheses
indicated by a circle (o) are pareto-optimal, while those
indicated by a plus (+) are not. The line shows the convex
hull, which attains only a subset of pareto-optimal points.
The triangle (A\) is a point that is weakly pareto-optimal
but not pareto-optimal.

Definition 1. Pareto Optimal: A hypothesis h* €

L is pareto-optimal iff there does not exist another
hypothesis h € L such that M (h) > M (h*).

In Figure 1, the hypotheses indicated by circle
(0) are pareto-optimal, while those with plus (+) are
not. To visualize this, take for instance the pareto-
optimal point (0.4,0.7). There is no other point with
either (metricl > 0.4 and metric2 > 0.7), or (met-
ricl > 0.4 and metric2 > 0.7). On the other hand,
the non-pareto point (0.6,0.4) is “dominated” by an-
other point (0.7,0.6), because for metricl: 0.7 > 0.6
and for metric2: 0.6 > 0.4.

There is another definition of optimality, which
disregards ties and may be easier to visualize:

Definition 2. Weakly Pareto Optimal: A hypothesis
h* € L is weakly pareto-optimal iff there is no other
hypothesis h € L such that M (h) > M (h*).

Weakly pareto-optimal points are a superset of
pareto-optimal points. A hypothesis is weakly
pareto-optimal if there is no other hypothesis that
improves all the metrics; a hypothesis is pareto-
optimal if there is no other hypothesis that improves
at least one metric without detriment to other met-
rics. In Figure 1, point (0.1,0.8) is weakly pareto-
optimal but not pareto-optimal, because of the com-
peting point (0.3,0.8). Here we focus on pareto-
optimality, but note our algorithms can be easily



modified for weakly pareto-optimality. Finally, we
can introduce the key concept used in our proposed
PMO approach:

Definition 3. Pareto Frontier: Given an N-best list
L, the set of all pareto-optimal hypotheses h € L is
called the Pareto Frontier.

The Pareto Frontier has two desirable properties
from the multi-objective optimization perspective:

1. Hypotheses on the Frontier are equivalently
good in the Pareto sense.

2. For each hypothesis not on the Frontier, there
is always a better (pareto-optimal) hypothesis.

This provides a principled approach to optimiza-
tion: i.e. optimizing towards points on the Frontier
and away from those that are not, and giving no pref-
erence to different pareto-optimal hypotheses.

2.2 Reduction to Linear Combination

Multi-objective problems can be formulated as:

argmax [Mi(h); Ma(h);. ..

w

s Mi(h)] )]

where h = Decode(w, f)

Here, the MT system’s Decode function, parame-
terized by weight vector w, takes in a foreign sen-
tence f and returns a translated hypothesis 4. The
argmax operates in vector space and our goal is to
find w leading to hypotheses on the Pareto Frontier.

In the study of Pareto Optimality, one central
question is: To what extent can multi-objective prob-
lems be solved by single-objective methods? Equa-
tion 1 can be reduced to a single-objective problem

by scalarizing the vector [M1(h);...; My(h)] with
a linear combination:
K
arg max > prMy(h) )
k=1

where h = Decode(w, f)

Here, py; are positive real numbers indicating the rel-
ative importance of each metric (without loss of gen-
erality, assume » , pr = 1). Are the solutions to
Eq. 2 also solutions to Eq. 1 (i.e. pareto-optimal)
and vice-versa? The theory says:

Theorem 1. Sufficient Condition: If w* is solution
to Eq. 2, then it is weakly pareto-optimal. Further,
if w* is unique, then it is pareto-optimal.

Theorem 2. No Necessary Condition: There may
exist solutions to Eq. 1 that cannot be achieved by
Eq. 2, irregardless of any setting of {p. }-

Theorem 1 is a positive result asserting that lin-
ear combination can give pareto-optimal solutions.
However, Theorem 2 states the limits: in partic-
ular, Eq. 2 attains only pareto-optimal points that
are on the convex hull. This is illustrated in Fig-
ure 1: imagine sweeping all values of p; = [0, 1]
and pa = 1 — p; and recording the set of hypotheses
that maximizes ), pr My (h). For 0.6 < p1 <1 we
get h = (0.9,0.1), for p; = 0.6 we get (0.7,0.6),
and for 0 < p; < 0.6 we get (0.4,0.8). At no
setting of p; do we attain h = (0.4,0.7) which
is also pareto-optimal but not on the convex hull.!
This may have ramifications for issues like metric
tunability and local optima. To summarize, linear-
combination is reasonable but has limitations. Our
proposed approach will instead directly solve Eq. 1.

Pareto Optimality and multi-objective optimiza-
tion is a deep field with active inquiry in engineer-
ing, operations research, economics, etc. For the in-
terested reader, we recommend the survey by Mar-
ler and Arora (2004) and books by (Sawaragi et al.,
1985; Miettinen, 1998).

3 Multi-objective Algorithms

3.1 Computing the Pareto Frontier

Our PMO approach will need to compute the Pareto
Frontier for potentially large sets of points, so we
first describe how this can be done efficiently. Given
a set of N vectors {M (h)} from an N-best list L,
our goal is extract the subset that are pareto-optimal.

Here we present an algorithm based on iterative
filtering, in our opinion the simplest algorithm to
understand and implement. The strategy is to loop
through the list L, keeping track of any dominant
points. Given a dominant point, it is easy to filter
out many points that are dominated by it. After suc-
cessive rounds, any remaining points that are not fil-

"We note that scalarization by exponentiated-combination
> PeMi(h)4, for a suitable ¢ > 0, does satisfy necessary
conditions for pareto optimality. However the proper tuning of ¢
is not known a priori. See (Miettinen, 1998) for theorem proofs.



Algorithm 1 FindParetoFrontier
Input: {M(h)},h €L
Output: All pareto-optimal points of {M (h)}

F=0

2: while L is not empty do

3: h* =shift(L)

4:  foreach hin L do

5: if (M (h*) > M (h)): remove h from L

6: else if (M (h) > M (h*)): remove h from Lj; set
h*=h

7:  end for

8:  Add h* to Frontier Set F
9: foreach hin L do
10: if (M (h*) > M(h)): remove h from L
11: end for
12: end while
13: Return F

tered are necessarily pareto-optimal. Algorithm 1
shows the pseudocode. In line 3, we take a point h*
and check if it is dominating or dominated in the for-
loop (lines 4-8). At least one pareto-optimal point
will be found by line 8. The second loop (lines 9-11)
further filters the list for points that are dominated by
h* but iterated before h* in the first for-loop.

The outer while-loop stops exactly after P iter-
ations, where P is the actual number of pareto-
optimal points in L. Each inner loop costs O(K N)
so the total complexity is O(PKN). Since P < N
with the actual value depending on the probability
distribution of {M (h)}, the worst-case run-time is
O(K N?). For a survey of various Pareto algorithms,
refer to (Godfrey et al., 2007). The algorithm we de-
scribed here is borrowed from the database literature
in what is known as skyline operators.”

3.2 PMO-PRO Algorithm

We are now ready to present an algorithm for multi-
objective optimization. As we will see, it can be seen
as a generalization of the pairwise ranking optimiza-
tion (PRO) of (Hopkins and May, 2011), so we call
it PMO-PRO. PMO-PRO approach works by itera-
tively decoding-and-optimizing on the devset, sim-

The inquisitive reader may wonder how is Pareto related
to databases. The motivation is to incorporate preferences into
relational queries(Borzsonyi et al., 2001). For K = 2 metrics,
they also present an alternative faster O(N logN) algorithm by
first topologically sorting along the 2 dimensions. All domi-
nated points can be filtered by one-pass by comparing with the
most-recent dominating point.

ilar to many MT optimization methods. The main
difference is that rather than trying to maximize a
single metric, we maximize the number of pareto
points, in order to expand the Pareto Frontier

We will explain PMO-PRO in terms of the
pseudo-code shown in Algorithm 2. For each sen-
tence pair (f,e) in the devset, we first generate an
N-best list L = {h} using the current weight vector
w (line 5). In line 6, we evaluate each hypothesis
h with respect to the K metrics, giving a set of K-
dimensional vectors { M (h)}.

Lines 7-8 is the critical part: it gives a “la-
bel” to each hypothesis, based on whether it is
in the Pareto Frontier. In particular, first we call
FindParetoFrontier (Algorithm 1), which re-
turns a set of pareto hypotheses; pareto-optimal hy-
potheses will get label 1 while non-optimal hypothe-
ses will get label 0. This information is added to
the training set 7 (line 8), which is then optimized
by any conventional subroutine in line 10. We will
follow PRO in using a pairwise classifier in line 10,
which finds w* that separates hypotheses with labels
1 vs. 0. In essence, this is the trick we employ to
directly optimize on the Pareto Frontier. If we had
used BLEU scores rather than the {0,1} labels in
line 8, the entire PMO-PRO algorithm would revert
to single-objective PRO.

By definition, there is no single “best” result
for multi-objective optimization, so we collect all
weights and return the Pareto-optimal set. In line 13
we evaluate each weight w on K metrics across the
entire corpus and call FindParetoFrontier
in line 14.> This choice highlights an interesting
change of philosophy: While setting {py} in linear-
combination forces the designer to make an a priori
preference among metrics prior to optimization, the
PMO strategy is to optimize first agnostically and
a posteriori let the designer choose among a set of
weights. Arguably it is easier to choose among so-
lutions based on their evaluation scores rather than
devising exact values for {py}.

3.3 Discussion

Variants: In practice we find that a slight modifi-
cation of line 8 in Algorithm 2 leads to more sta-

3Note this is the same FindParetoFrontier algorithm as used
in line 7. Both operate on sets of points in K-dimensional
space, induced from either weights {w} or hypotheses {h}.



Algorithm 2 Proposed PMO-PRO algorithm

Input: Devset, max number of iterations /
Output: A set of (pareto-optimal) weight vectors
. Initialize w. Let W = 0.
:fori=1toldo
Let 7 = 0.
for each (f,e) in devset do
{h} =DecodeNbest(w,f)
{M (h)}=EvalMetricsOnSentence({h }, €)
{f} =FindParetoFrontier({ M (h)})
foreach h € {h}:
if h € {f}, seti=1, else [=0; Add (I, h) to T
9:  end for
10:  w*=OptimizationSubroutine(7 , w)
11: Add w* to W, Set w = w™.
12: end for
13: M (w) =EvalMetricsOnCorpus(w,devset) Yw € W
14: Return FindParetoFrontier({ M (w)})

A T

ble results for PMO-PRO: for non-pareto hypothe-
ses h ¢ {f}, wesetlabel [ = ), My(h)/K in-
stead of [= 0, so the method not only learns to dis-
criminate pareto vs. non-pareto but also also learns
to discriminate among competing non-pareto points.
Also, like other MT works, in line 5 the N-best list is
concatenated to N-best lists from previous iterations,
so {h} is a set with i - N elements.

General PMO Approach: The strategy we out-
lined in Section 3.2 can be easily applied to other
MT optimization techniques. For example, by re-
placing the optimization subroutine (line 10, Algo-
rithm 2) with a Powell search (Och, 2003), one can
get PMO-MERT*. Alternatively, by using the large-
margin optimizer in (Chiang et al., 2009) and mov-
ing it into the for-each loop (lines 4-9), one can
get an online algorithm such PMO-MIRA. Virtually
all MT optimization algorithms have a place where
metric scores feedback into the optimization proce-
dure; the idea of PMO is to replace these raw scores
with labels derived from Pareto optimality.

4 Experiments

4.1 Evaluation Methodology

We experiment with two datasets: (1) The PubMed
task is English-to-Japanese translation of scientific

“A difference with traditional MERT is the necessity of
sentence-BLEU (Liang et al., 2006) in line 6. We use sentence-
BLEU for optimization but corpus-BLEU for evaluation here.

abstracts. As metrics we use BLEU and RIBES
(which demonstrated good human correlation in
this language pair (Goto et al., 2011)). (2) The
NIST task is Chinese-to-English translation with
OpenMTOS training data and MTO06 as devset. As
metrics we use BLEU and NTER.

e BLEU = BP x (Ilprec,)'/*. BP is brevity
penality. prec, is precision of n-gram matches.

e RIBES = (7 + 1)/2 x prec’*, with Kendall’s
T computed by measuring permutation between
matching words in reference and hypothesis’.

e NTER=max(1—TER,0), which normalizes
Translation Edit Rate® so that NTER=1 is best.

We compare two multi-objective approaches:

1. Linear-Combination of metrics (Eq. 2),
optimized with PRO. We search a range
of combination settings: (p1,p2) =
{(0,1),(0.3,0.7), (0.5,0.5), (0.7,0.3), (1,0) }.
Note (1,0) reduces to standard single-metric
optimization of e.g. BLEU.

2. Proposed Pareto approach (PMO-PRO).

Evaluation of multi-objective problems can be
tricky because there is no single figure-of-merit.
We thus adopted the following methodology: We
run both methods 5 times (i.e. using the 5 differ-
ent (p1,p2) setting each time) and I = 20 iterations
each. For each method, this generates 5x20=100 re-
sults, and we plot the Pareto Frontier of these points
in a 2-dimensional metric space (e.g. see Figure 2).
A method is deemed better if its final Pareto Fron-
tier curve is strictly dominating the other. We report
devset results here; testset trends are similar but not
included due to space constraints.”

>from www.kecl.ntt.co.jp/icl/lirg/ribes

bfrom www . umd . edu/ ~snover/tercom

7 An aside: For comparing optimization methods, we believe
devset comparison is preferable to testset since data mismatch
may confound results. If one worries about generalization, we
advocate to re-decode the devset with final weights and evaluate
its 1-best output (which is done here). This is preferable to sim-
ply reporting the achieved scores on devset N-best (as done in
some open-source scripts) since the learned weight may pick
out good hypotheses in the N-best but perform poorly when
re-decoding the same devset. The re-decode devset approach
avoids being overly optimistic while accurately measuring op-
timization performance.



Train | Devset | #Feat | Metrics
PubMed || 0.2M | 2k 14 BLEU, RIBES
NIST ™ 1.6k 8 BLEU, NTER

Table 1: Task characteristics: #sentences in Train/Dev, #
of features, and metrics used. Our MT models are trained
with standard phrase-based Moses software (Koehn and
others, 2007), with IBM M4 alignments, 4gram SRILM,
lexical ordering for PubMed and distance ordering for the
NIST system. The decoder generates 50-best lists each
iteration. We use SVMRank (Joachims, 2006) as opti-
mization subroutine for PRO, which efficiently handle all
pairwise samples without the need for sampling.

4.2 Results

Figures 2 and 3 show the results for PubMed and
NIST, respectively. A method is better if its Pareto
Frontier lies more towards the upper-right hand cor-
ner of the graph. Our observations are:

1. PMO-PRO generally outperforms Linear-
Combination with any setting of (p1,p2).
The Pareto Frontier of PMO-PRO dominates
that of Linear-Combination.  This implies
PMO is effective in optimizing towards Pareto
hypotheses.

2. For both methods, trading-off between met-
rics is necessary. For example in PubMed,
the designer would need to make a choice be-
tween picking the best weight according to
BLEU (BLEU=.265,RIBES=.665) vs. another
weight with higher RIBES but poorer BLEU,
e.g. (.255,.675). Nevertheless, both the PMO
and Linear-Combination with various (p1, p2)
samples this joint-objective space broadly.

3. Interestingly, a multi-objective approach can
sometimes outperform a single-objective opti-
mizer in its own metric. In Figure 2, single-
objective PRO focusing on optimizing RIBES
only achieves 0.68, but PMO-PRO using both
BLEU and RIBES outperforms with 0.685.

The third observation relates to the issue of metric
tunability (Liu et al., 2011). We found that RIBES
can be difficult to tune directly. It is an extremely
non-smooth objective with many local optima—slight
changes in word ordering causes large changes in
RIBES. So the best way to improve RIBES is to
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not to optimize it directly, but jointly with a more
tunable metric BLEU. The learning curve in Fig-
ure 4 show that single-objective optimization of
RIBES quickly falls into local optimum (at iteration
3) whereas PMO can zigzag and sacrifice RIBES in
intermediate iterations (e.g. iteration 2, 15) leading
to a stronger result ultimately. The reason is the
diversity of solutions provided by the Pareto Fron-
tier. This finding suggests that multi-objective ap-
proaches may be preferred, especially when dealing
with new metrics that may be difficult to tune.

4.3 Additional Analysis and Discussions

What is the training time? The Pareto approach
does not add much overhead to PMO-PRO. While
FindParetoFrontier scales quadratically by size of
N-best list, Figure 5 shows that the runtime is triv-
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ial (0.3 seconds for 1000-best). Table 2 shows
the time usage breakdown in different iterations for
PubMed. We see it is mostly dominated by decod-
ing time (constant per iteration at 40 minutes on
single 3.33GHz processor). At later iterations, Opt
takes more time due to larger file I/O in SVMRank.
Note Decode and Pareto can be “embarrasingly par-
allelized.”

Tter || Time | Decode | Pareto | Opt Misc.
(line 5) | (line 7) | (line 10) | (line 6,8)

1 47m | 85% 1% 1% 13%

10 || 62m | 67% 6% 8% 19%

20 ||91m | 47% 15% 22% 16%

Table 2: Training time usage in PMO-PRO (Algo 2).
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hypotheses gives a rough indication of the diversity
of hypotheses that can be exploited by PMO. Fig-
ure 6 shows that this number increases gradually per
iteration. This perhaps gives PMO-PRO more direc-
tions for optimizing around potential local optimal.
Nevertheless, we note that tens of Pareto points is far
few compared to the large size of N-best lists used
at later iterations of PMO-PRO. This may explain
why the differences between methods in Figure 3
are not more substantial. Theoretically, the num-
ber will eventually level off as it gets increasingly
harder to generate new Pareto points in a crowded
space (Bentley et al., 1978).

Practical recommendation: We present the
Pareto approach as a way to agnostically optimize
multiple metrics jointly. However, in practice, one
may have intuitions about metric tradeoffs even if
one cannot specify {px}. For example, we might
believe that approximately 1-point BLEU degra-
dation is acceptable only if RIBES improves by
at least 3-points. In this case, we recommend
the following trick: Set up a multi-objective prob-
lem where one metric is BLEU and the other is
3/4BLEU+1/4RIBES. This encourages PMO to ex-
plore the joint metric space but avoid solutions that
sacrifice too much BLEU, and should also outper-
form Linear Combination that searches only on the
(3/4,1/4) direction.

5 Related Work

Multi-objective optimization for MT is a relatively
new area. Linear-combination of BLEU/TER is



the most common technique (Zaidan, 2009), some-
times achieving good results in evaluation cam-
paigns (Dyer et al., 2009). As far as we known, the
only work that directly proposes a multi-objective
technique is (He and Way, 2009), which modifies
MERT to optimize a single metric subject to the
constraint that it does not degrade others. These
approaches all require some setting of constraint
strength or combination weights {py }. Recent work
in MT evaluation has examined combining metrics
using machine learning for better correlation with
human judgments (Liu and Gildea, 2007; Albrecht
and Hwa, 2007; Gimnez and Marquez, 2008) and
may give insights for setting {py}. We view our
Pareto-based approach as orthogonal to these efforts.
The tunability of metrics is a problem that is gain-
ing recognition (Liu et al., 2011). If a good evalu-
ation metric could not be used for tuning, it would
be a pity. The Tunable Metrics task at WMT2011
concluded that BLEU is still the easiest to tune
(Callison-Burch et al., 2011). (Mauser et al., 2008;
Cer et al., 2010) report similar observations, in ad-
dition citing WER being difficult and BLEU-TER
being amenable. One unsolved question is whether
metric tunability is a problem inherent to the metric
only, or depends also on the underlying optimization
algorithm. Our positive results with PMO suggest
that the choice of optimization algorithm can help.
Multi-objective ideas are being explored in other
NLP areas. (Spitkovsky et al., 2011) describe a tech-
nique that alternates between hard and soft EM ob-
jectives in order to achieve better local optimum in
grammar induction. (Hall et al., 2011) investigates
joint optimization of a supervised parsing objective
and some extrinsic objectives based on downstream
applications. (Agarwal et al., 2011) considers us-
ing multiple signals (of varying quality) from online
users to train recommendation models. (Eisner and
Daumé 111, 2011) trades off speed and accuracy of
a parser with reinforcement learning. None of the
techniques in NLP use Pareto concepts, however.

6 Opportunities and Limitations

We introduce a new approach (PMO) for training
MT systems on multiple metrics. Leveraging the
diverse perspectives of different evaluation metrics
has the potential to improve overall quality. Based

on Pareto Optimality, PMO is easy to implement
and achieves better solutions compared to linear-
combination baselines, for any setting of combi-
nation weights. Further we observe that multi-
objective approaches can be helpful for optimiz-
ing difficult-to-tune metrics; this is beneficial for
quickly introducing new metrics developed in MT
evaluation into MT optimization, especially when
good {py } are not yet known. We conclude by draw-
ing attention to some limitations and opportunities
raised by this work:

Limitations: (1) The performance of PMO is
limited by the size of the Pareto set. Small N-best
lists lead to sparsely-sampled Pareto Frontiers, and
a much better approach would be to enlarge the hy-
pothesis space using lattices (Macherey et al., 2008).
How to compute Pareto points directly from lattices
is an interesting open research question. (2) The
binary distinction between pareto vs. non-pareto
points ignores the fact that 2nd-place non-pareto
points may also lead to good practical solutions. A
better approach may be to adopt a graded definition
of Pareto optimality as done in some multi-objective
works (Deb et al., 2002). (3) A robust evaluation
methodology that enables significance testing for
multi-objective problems is sorely needed. This will
make it possible to compare multi-objective meth-
ods on more than 2 metrics. We also need to follow
up with human evaluation.

Opportunities: (1) There is still much we do
not understand about metric tunability; we can learn
much by looking at joint metric-spaces and exam-
ining how new metrics correlate with established
ones. (2) Pareto is just one approach among many
in multi-objective optimization. A wealth of meth-
ods are available (Marler and Arora, 2004) and more
experimentation in this space will definitely lead to
new insights. (3) Finally, it would be interesting to
explore other creative uses of multiple-objectives in
MT beyond multiple metrics. For example: Can we
learn to translate faster while sacrificing little on ac-
curacy? Can we learn to jointly optimize cascaded
systems, such as as speech translation or pivot trans-
lation? Life is full of multiple competing objectives.
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Abstract

With a few exceptions, discriminative train-
ing in statistical machine translation (SMT)
has been content with tuning weights for large
feature sets on small development data. Ev-
idence from machine learning indicates that
increasing the training sample size results in
better prediction. The goal of this paper is to
show that this common wisdom can also be
brought to bear upon SMT. We deploy local
features for SCFG-based SMT that can be read
off from rules at runtime, and present a learn-
ing algorithm that applies ¢ /{5 regulariza-
tion for joint feature selection over distributed
stochastic learning processes. We present ex-
periments on learning on 1.5 million training
sentences, and show significant improvements
over tuning discriminative models on small
development sets.

1 Introduction

The standard SMT training pipeline combines
scores from large count-based translation models
and language models with a few other features and
tunes these using the well-understood line-search
technique for error minimization of Och (2003). If
only a handful of dense features need to be tuned,
minimum error rate training can be done on small
tuning sets and is hard to beat in terms of accuracy
and efficiency. In contrast, the promise of large-
scale discriminative training for SMT is to scale to
arbitrary types and numbers of features and to pro-
vide sufficient statistical support by parameter esti-
mation on large sample sizes. Features may be lex-
icalized and sparse, non-local and overlapping, or
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be designed to generalize beyond surface statistics
by incorporating part-of-speech or syntactic labels.
The modeler’s goals might be to identify complex
properties of translations, or to counter errors of pre-
trained translation models and language models by
explicitly down-weighting translations that exhibit
certain undesired properties. Various approaches to
feature engineering for discriminative models have
been presented (see Section 2), however, with a few
exceptions, discriminative learning in SMT has been
confined to training on small tuning sets of a few
thousand examples. This contradicts theoretical and
practical evidence from machine learning that sug-
gests that larger training samples should be benefi-
cial to improve prediction also in SMT. Why is this?

One possible reason why discriminative SMT has
mostly been content with small tuning sets lies in
the particular design of the features themselves. For
example, the features introduced by Chiang et al.
(2008) and Chiang et al. (2009) for an SCFG model
for Chinese/English translation are of two types:
The first type explicitly counters overestimates of
rule counts, or rules with bad overlap points, bad
rewrites, or with undesired insertions of target-side
terminals. These features are specified in hand-
crafted lists based on a thorough analysis of a tuning
set. Such finely hand-crafted features will find suf-
ficient statistical support on a few thousand exam-
ples and thus do not benefit from larger training sets.
The second type of features deploys external infor-
mation such as syntactic parses or word alignments
to penalize bad reorderings or undesired translations
of phrases that cross syntactic constraints. At large
scale, extraction of such features quickly becomes

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 11-21,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics



(1) X — X hat X5 versprochen, X; promised Xo
(2) X — X; hat mir X, versprochen,

X, promised me X,
(3) X — X versprach Xo, X; promised X5

Figure 1: SCFG rules for translation.

infeasible because of costly generation and storage
of linguistic annotations. Another possible reason
why large training data did not yet show the ex-
pected improvements in discriminative SMT is a
special overfitting problem of current popular online
learning techniques. This is due to stochastic learn-
ing on a per-example basis where a weight update on
a misclassified example may apply only to a small
fraction of data that have been seen before. Thus
many features will not generalize well beyond the
training examples on which they were introduced.

The goal of this paper is to investigate if and
how it is possible to benefit from scaling discrimi-
native training for SMT to large training sets. We
deploy generic features for SCFG-based SMT that
can efficiently be read off from rules at runtime.
Such features include rule ids, rule-local n-grams,
or types of rule shapes. Another crucial ingredi-
ent of our approach is a combination of parallelized
stochastic learning with feature selection inspired
by multi-task learning. The simple but effective
idea is to randomly divide training data into evenly
sized shards, use stochastic learning on each shard
in parallel, while performing ¢; /¢ regularization
for joint feature selection on the shards after each
epoch, before starting a new epoch with a reduced
feature vector averaged across shards. Iterative fea-
ture selection procedure is the key to both efficiency
and improved prediction: Without interleaving par-
allelized stochastic learning with feature selection
our largest experiments would not be feasible. Se-
lecting features jointly across shards and averaging
does counter the overfitting effect that is inherent
to stochastic updating. Our resulting models are
learned on large data sets, but they are small and
outperform models that tune feature sets of various
sizes on small development sets. Our software is
freely available as a part of the cdec! framework.

"https://github.com/redpony/cdec
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2 Related Work

The great promise of discriminative training for
SMT is the possibility to design arbitrarily expres-
sive, complex, or overlapping features in great num-
bers. The focus of many approaches thus has been
on feature engineering and on adaptations of ma-
chine learning algorithms to the special case of SMT
(where gold standard rankings have to be created
automatically). Examples for adapted algorithms
include Maximum-Entropy Models (Och and Ney,
2002; Blunsom et al., 2008), Pairwise Ranking Per-
ceptrons (Shen et al., 2004; Watanabe et al., 2006;
Hopkins and May, 2011), Structured Perceptrons
(Liang et al., 2006a), Boosting (Duh and Kirchhoff,
2008; Wellington et al., 2009), Structured SVMs
(Tillmann and Zhang, 2006; Hayashi et al., 2009),
MIRA (Watanabe et al., 2007; Chiang et al., 2008;
Chiang et al., 2009), and others. Adaptations of the
loss functions underlying such algorithms to SMT
have recently been described as particular forms
of ramp loss optimization (McAllester and Keshet,
2011; Gimpel and Smith, 2012).

All approaches have been shown to scale to large
feature sets and all include some kind of regulariza-
tion method. However, most approaches have been
confined to training on small tuning sets. Exceptions
where discriminative SMT has been used on large
training data are Liang et al. (2006a) who trained 1.5
million features on 67,000 sentences, Blunsom et
al. (2008) who trained 7.8 million rules on 100,000
sentences, or Tillmann and Zhang (2006) who used
230,000 sentences for training.

Our approach is inspired by Duh et al. (2010)
who applied multi-task learning for improved gen-
eralization in n-best reranking. In contrast to our
work, Duh et al. (2010) did not incorporate multi-
task learning into distributed learning, but defined
tasks as n-best lists, nor did they develop new algo-
rithms, but used off-the-shelf multi-task tools.

3 Local Features for Synchronous CFGs

The work described in this paper is based on the
SMT framework of hierarchical phrase-based trans-
lation (Chiang, 2005; Chiang, 2007). Transla-
tion rules are extracted from word-aligned paral-
lel sentences and can be seen as productions of a
synchronous CFG. Examples are rules like (1)-(3)



shown in Figure 1. Local features are designed to be
readable directly off the rule at decoding time. We
use three rule templates in our work:

Rule identifiers: These features identify each rule
by a unique identifier. Such features corre-
spond to the relative frequencies of rewrites
rules used in standard models.

Rule n-grams: These features identify n-grams of
consecutive items in a rule. We use bigrams
on source-sides of rules. Such features identify
possible source side phrases and thus can give
preference to rules including them.?

Rule shape: These features are indicators that ab-
stract away from lexical items to templates that
identify the location of sequences of terminal
symbols in relation to non-terminal symbols,
on both the source- and target-sides of each
rule used. For example, both rules (1) and (2)
map to the same indicator, namely that a rule
is being used that consists of a (NT, term*, NT,
term*) pattern on its source side, and an (NT,
term*, NT) pattern on its target side. Rule (3)
maps to a different template, that of (NT, term*,
NT) on source and target sides.

4 Joint Feature Selection in Distributed
Stochastic Learning

The following discussion of learning methods is
based on pairwise ranking in a Stochastic Gradi-
ent Descent (SGD) framework. The resulting al-
gorithms can be seen as variants of the perceptron
algorithm. Let each translation candidate be repre-
sented by a feature vector x € IR” where preference
pairs for training are prepared by sorting translations
according to smoothed sentence-wise BLEU score
(Liang et al., 2006a) against the reference. For a
preference pair x; = (x(l),x@)) where x§1)

Jo
(2)

_ 1 2 .
ferred over x5, and X; = x§- ) _ xg- ), we consider

the following hinge loss-type objective function:

is pre-

Li(w) = (= (W, % )+
where (@) = max(0,a), w € IR” is a weight vec-
tor, and (-, -) denotes the standard vector dot prod-
uct. Instantiating SGD to the following stochastic

2Similar “monolingual parse features” have been used in
Dyer et al. (2011).
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subgradient leads to the perceptron algorithm for
pairwise ranking® (Shen and Joshi, 2005):
—X; if <Wa)_(j> <0,

Vlj(w): 0 else

Our baseline algorithm 1 (SDG) scales pairwise
ranking to large scale scenarios. The algorithm takes
an average over the final weight updates of each
epoch instead of keeping a record of all weight up-
dates for final averaging (Collins, 2002) or for voting
(Freund and Schapire, 1999).

Algorithm 1 SGD: int I, T, float 7

Initialize wo,0,0 < 0.
for epochs t + 0...7T —1: do
for alli € {0...I —1}: do
Decode it* input with wy ;0.
for all pairs z;,j € {0...P —1}: do
Weij+1 6 Wi — NV (Wi j)
end for
Wi i+1,0 < Wi P
end for
Wi+41,0,0 < W¢,1,0
end for

T
1
return £ Y w00
i=1

While stochastic learning exhibits a runtime be-
havior that is linear in sample size (Bottou, 2004),
very large datasets can make sequential process-
ing infeasible. Algorithm 2 (MixSGD) addresses
this problem by parallelization in the framework of
MapReduce (Dean and Ghemawat, 2004).

Algorithm 2 MixSGD: int I, T, Z, float n

Partition data into Z shards, each of size S «+ I/Z;
distribute to machines.
for all shards z € {1...Z}: parallel do
Initialize w 0,0,0 <= 0.
for epochs t < 0...7 —1: do
for alli € {0...5 —1}: do
Decode i*® input with w ¢ ;0.
for all pairs z;,j € {0...P —1}: do
Wb+l < Wa g — NV (We4,5)
end for
Wy tit+1,0 < Wz ti P
end for
W2 t+1,0,0 < Wz.t.5,0
end for
end for
Collect final weights from each machine,

z T
return % Z (} Z Wz,t,0,0>~

z=1 t=1

30ther loss functions lead to stochastic versions of SVMs
(Collobert and Bengio, 2004; Shalev-Shwartz et al., 2007;
Chapelle and Keerthi, 2010).



Algorithm 2 is a variant of the SimuParallelSGD
algorithm of Zinkevich et al. (2010) or equivalently
of the parameter mixing algorithm of McDonald et
al. (2010). The key idea of algorithm 2 is to parti-
tion the data into disjoint shards, then train SGD on
each shard in parallel, and after training mix the final
parameters from each shard by averaging. The algo-
rithm requires no communication between machines
until the end.

McDonald et al. (2010) also present an iterative
mixing algorithm where weights are mixed from
each shard after training a single epoch of the per-
ceptron in parallel on each shard. The mixed weight
vector is re-sent to each shard to start another epoch
of training in parallel on each shard. This algorithm
corresponds to our algorithm 3 (IterMixSGD).

Algorithm 3 IterMixSGD: int I, T, Z, float n

Partition data into Z shards, each of size S + I/Z;
distribute to machines.
Initialize v + 0.
for epochs t < 0...7 —1: do
for all shards z € {1...Z}: parallel do
Wz, t,0,0 <V
for allie€ {0...5 —1}: do
Decode i input with w ¢ ;0.
for all pairs z;,5 € {0...P —1}: do
Wb+l < Watig — NV (Wa i)
end for
Wz t,i+1,0 < Wz ti P
end for
end for

z
Collect weights v <+ % Z W:.t,5,0-
z=1
end for
return v

Parameter mixing by averaging will help to ease
the feature sparsity problem, however, keeping fea-
ture vectors on the scale of several million features
in memory can be prohibitive. If network latency
is a bottleneck, the increased amount of information
sent across the network after each epoch may be a
further problem.

Our algorithm 4 (IterSelSGD) introduces feature
selection into distributed learning for increased effi-
ciency and as a more radical measure against over-
fitting. The key idea is to view shards as tasks, and
to apply methods for joint feature selection from
multi-task learning to achieve small sets of features
that are useful across all tasks or shards. Our algo-
rithm represents weights in a Z-by-D matrix W =
[W,|...|w,,]T of stacked D-dimensional weight
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vectors across Z shards. We compute the /5 norm of
the weights in each feature column, sort features by
this value, and keep K features in the model. This
feature selection procedure is done after each epoch.
Reduced weight vectors are mixed and the result is
re-sent to each shard to start another epoch of paral-
lel training on each shard.

Algorithm 4 IterSelSGD: int I, 7T, Z, K, float n

Partition data into Z shards, each of size S = I/Z;
distribute to machines.
Initialize v + 0.
for epochs t <+ 0...7T —1: do
for all shards z € {1...Z}: parallel do
W2.t,0,0 <V
for alli € {0...5 —1}: do
Decode i input with w ¢ ;0.
for all pairs z;,j € {0...P —1}: do
Wb+l < Watig — NV (Wa45)
end for
Wz t,i+1,0 < Wz ti P
end for
end for
Collect /stack weights W < [w1¢,5,0] .- |wz,t,s,o]T
Select top K feature columns of W by ¢2 norm and
fork(—l...IZ{ do

VI = § 3 WEI[K

end for
end for
return v

This algorithm can be seen as an instance of ¢ /¢,
regularization as follows: Let wy be the dth column
vector of W, representing the weights for the dth
feature across tasks/shards. ¢; /¢ regularization pe-
nalizes weights W by the weighted ¢; /¢ norm

D

MWz =AY Jwala.
d=1

Each {5 norm of a weight column represents
the relevance of the corresponding feature across
tasks/shards. The ¢; sum of the ¢ norms en-
forces a selection among features based on these
norms. Consider for example the two 5-feature, 3-
task weight matrices in Figure 2. Assuming the
same loss for both matrices, the right-hand side ma-
trix is preferred because of a smaller ¢1 /¢ norm
(12 instead of 18). This matrix shares features
across tasks which leads to larger /5 norms for some
columns (here |wi|2 and |ws|2) and forces other
columns to zero. This results in shrinking the ma-
trix to those features that are useful across all tasks.



wy Wy w3 Wy
w, [ 6 4 0 0
w, [ 0 0 3 0
wy, [0 0 0 2
column /5 norm: 6 4 3 2
f1 sum:

ws Wy wy w3 W4 Ws
0 ] [ 6 4 0 0 0 ]
0 ] [ 3 0 0 0 0 ]
3] [ 2 3 0 0 0 ]
3 7 5 0 0 0

= 18 = 12

Figure 2: ¢4 /¢5 regularization enforcing feature selection.

Our algorithm is related to Obozinski et al.
(2010)’s approach to 1 /¢ regularization where fea-
ture columns are incrementally selected based on the
¢5 norms of the gradient vectors corresponding to
feature columns. Their algorithm is itself an exten-
sion of gradient-based feature selection based on the
{1 norm, e.g., Perkins et al. (2003).* In contrast to
these approaches we approximate the gradient by us-
ing the weights given by the ranking algorithm itself.
This relates our work to weight-based recursive fea-
ture elimination (RFE) (Lal et al., 2006). Further-
more, algorithm 4 performs feature selection based
on a choice of meta-parameter of K features instead
of by thresholding a regularization meta-parameter
A, however, these techniques are equivalent and can
be transformed into each other.

S Experiments

5.1 Data, Systems, Experiment Settings

The datasets used in our experiments are versions
of the News Commentary (n¢c), News Crawl (crawl)
and Europarl (ep) corpora described in Table 1. The
translation direction is German-to-English.

The SMT framework used in our experiments
is hierarchical phrase-based translation (Chiang,
2007). We use the cdec decoder’ (Dyer et al.,
2010) and induce SCFG grammars from two sets of
symmetrized alignments using the method described
by Chiang (2007). All data was tokenized and
lowercased; German compounds were split (Dyer,
2009). For word alignment of the news-commentary
data, we used GIZA++ (Och and Ney, 2000); for
aligning the Europarl data, we used the Berke-
ley aligner (Liang et al., 2006b). Before train-
ing, we collect all the grammar rules necessary to

“Note that by definition of |[W |12, standard ¢; regulariza-
tion is a special case of ¢ /¢ regularization for a single task.

3 cdec metaparameters were set to a non-terminal span limit
of 15 and standard cube pruning with a pop limit of 200.
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translate each individual sentence into separate files
(so-called per-sentence grammars) (Lopez, 2007).
When decoding, cdec loads the appropriate file im-
mediately prior to translation of the sentence. The
computational overhead is minimal compared to the
expense of decoding. Also, deploying disk space
instead of memory fits perfectly into the MapRe-
duce framework we are working in. Furthermore,
the extraction of grammars for training is done in
a leave-one-out fashion (Zollmann and Sima’an,
2005) where rules are extracted for a parallel sen-
tence pair only if the same rules are found in other
sentences of the corpus as well.

3-gram (news-commentary) and 5-gram (Eu-
roparl) language models are trained on the data de-
scribed in Table 1, using the SRILM toolkit (Stol-
cke, 2002) and binarized for efficient querying using
kenlm (Heafield, 2011). For the 5-gram language
models, we replaced every word in the Im training
data with <unk> that did not appear in the English
part of the parallel training data to build an open vo-
cabulary language model.

HI

MID,

LOW
Figure 3: Multipartite pairwise ranking.

Training data for discriminative learning are pre-
pared by comparing a 100-best list of transla-
tions against a single reference using smoothed per-
sentence BLEU (Liang et al., 2006a). From the
BLEU-reordered n-best list, translations were put
into sets for the top 10% level (HI), the middle
80% level (MID), and the bottom 10% level (LOW).
These level sets are used for multipartite ranking



News Commentary(nc)

train-nc Im-train-nc dev-nc devtest-nc test-nc
Sentences 132,753 180,657 1057 1064 2007
Tokens de 3,530,907 - 27,782 28,415 53,989
Tokens en 3,293,363 4,394,428 26,098 26,219 50,443
Rule Count 14,350,552 (1G) - 2,322,912 2,320,264 3,274,771
Europarl(ep)
train-ep Im-train-ep dev-ep devtest-ep test-ep
Sentences 1,655,238 2,015,440 2000 2000 2000
Tokens de 45,293,925 57,723 56,783 59,297
Tokens en 45,374,649 54,728,786 58,825 58,100 60,240
Rule Count | 203,552,525 (31.5G) - 17,738,763 17,682,176 18,273,078
News Crawl(crawl)
dev-crawl | test-crawl10 | test-crawlll
Sentences 2051 2489 3003
Tokens de 49,848 64,301 76,193
Tokens en 49,767 61,925 74,753
Rule Count 9,404,339 11,307,304 12,561,636

Table 1: Overview of data used for train/dev/test. News Commentary (nc) and Europarl (ep) training data and
also News Crawl (crawl) dev/test data were taken from the WMTI11 translation task (http://statmt.org/
wntll/translation—-task.html). The dev/test data of nc are the sets provided with the WMT(07 shared

task (http://statmt.org/wmt07/shared-task.html).

Ep dev/test data is from WMTO8 shared task

(http://statmt.org/wmt08/shared-task.html). The numbers in brackets for the rule counts of ep/nc
training data are total counts of rules in the per-sentence grammars.

where translation pairs are built between the ele-
ments in HI-MID, HI-LOW, and MID-LOW, but not
between translations inside sets on the same level.
This idea is depicted graphically in Figure 3. The
intuition is to ensure that good translations are pre-
ferred over bad translations without teasing apart
small differences.

For evaluation, we used the mteval-vllb.pl
script to compute lowercased BLEU-4 scores (Pa-
pineni et al., 2001). Statistical significance was
measured using an Approximate Randomization test
(Noreen, 1989; Riezler and Maxwell, 2005).

All experiments for training on dev sets were car-
ried out on a single computer. For grammar extrac-
tion and training of the full data set we used a 30
node hadoop Map/Reduce cluster that can handle
300 jobs at once. We split the data into 2290 shards
for the ep runs and 141 shards for the nc runs, each
shard holding about 1,000 sentences, which corre-
sponds to the dev set size of the nc data set.

5.2 Experimental Results

The baseline learner in our experiments is a pairwise
ranking perceptron that is used on various features
and training data and plugged into various meta-

16

M

T
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BLEU[%]

23.0 25.0 27.0 29.0

Figure 4: Boxplot of BLEU-4 results for 100 runs of
MIRA on news commentary data, depicting median (M),
mean (Z), interquartile range (box), standard deviation
(whiskers), outliers (end points).

algorithms for distributed processing. The percep-
tron algorithm itself compares favorably to related
learning techniques such as the MIRA adaptation of
Chiang et al. (2008). Figure 4 gives a boxplot depict-
ing BLEU-4 results for 100 runs of the MIRA imple-
mentation of the cdec package, tuned on dev-nc,
and evaluated on the respective test set test-nc.® We
see a high variance (whiskers denote standard devi-
ations) around a median of 27.2 BLEU and a mean
of 27.1 BLEU. The fluctuation of results is due to
sampling training examples from the translation hy-

SMIRA was used with default meta parameters: 250 hypoth-
esis list to search for oracles, regularization strength C' = 0.01
and using 15 passes over the input. It optimized IBM BLEU-4.
The initial weight vector was 0.



’ Algorithm \ Tuning set \ Features \ #Features \ devtest-nc \ test-nc ‘
’ MIRA \ dev-nc \ default \ 12 \ - \ 27.10 ‘

dev-nc default 12 25.88 28.0
dev-nc +id 137k | 25.53 27613

! dev-nc +ng 29k 25.82 27.421234
dev-nc +shape 51 2591 28.1
dev-nc +id,ng,shape 180k 25.71 28.15%4
train-nc default 12 25.73 27.86
train-nc +id 4.1M 25.13 27.191134

2 train-nc +ng 354k 26.09 28.03134
train-nc +shape 51 26.07 27.913
train-nc | +id,ng,shape 4.7M 26.08 27.8634
train-nc default 12 26.09 @2 | 27.941
train-nc +id 3.4M 26.1 @4 27.97112

3 train-nc +ng 330k 26.33 @4 | 28.34%2
train-nc +shape 51 26.39 @9 | 28.312
train-nc +id,ng,shape 4.7M 2642 @9 | 28.55!124
train-nc +id 100k 2591 @7 | 27.8212

4 train-nc +ng 100k | 26.42 @4 | 28.3712
train-nc +id,ng,shape 100k 26.8 @8 28.811%

Table 2: BLEU-4 results for algorithms 1 (SGD), 2 (MixSGD), 3 (IterMixSDG), and 4 (IterSelSGD) on news-
commentary (nc) data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and
rule shape (shape). Statistical significance at p-level < 0.05 of a result difference on the test set to a different algo-
rithm applied to the same feature group is indicated by raised algorithm number. | indicates statistically significant
differences to best result across features groups for same algorithm, indicated in bold face. @ indicates the optimal

number of epochs chosen on the devtest set.

pergraph as is done in the cdec implementation of
MIRA. We found similar fluctuations for the cdec
implementations of PRO (Hopkins and May, 2011)
or hypergraph-MERT (Kumar et al., 2009) both of
which depend on hypergraph sampling. In contrast,
the perceptron is deterministic when started from a
zero-vector of weights and achieves favorable 28.0
BLEU on the news-commentary test set. Since we
are interested in relative improvements over a stable
baseline, we restrict our attention in all following ex-
periments to the perceptron.’

Table 2 shows the results of the experimental
comparison of the 4 algorithms of Section 4. The

7 Absolute improvements would be possible, e.g., by using
larger language models or by adding news data to the ep train-
ing set when evaluating on crawl test sets (see, e.g., Dyer et al.
(2011)), however, this is not the focus of this paper.
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default features include 12 dense models defined on
SCFG rules;® The sparse features are the 3 templates
described in Section 3. All feature weights were
tuned together using algorithms 1-4. If not indicated
otherwise, the perceptron was run for 10 epochs with
learning rate 7 = 0.0001, started at zero weight vec-
tor, using deduplicated 100-best lists.

The results on the news-commentary (nc) data
show that training on the development set does not
benefit from adding large feature sets — BLEU re-
sult differences between tuning 12 default features

8negative log relative frequency p(e|f); log count(f); log
count(e, f); lexical translation probability p(f|e) and p(e|f)
(Koehn et al., 2003); indicator variable on singleton phrase e;
indicator variable on singleton phrase pair f, e; word penalty;
language model weight; OOV count of language model; num-
ber of untranslated words; Hiero glue rules (Chiang, 2007).



’ Alg. \ Tuning set \ Features \ #Feats \ devtest-ep \ test-ep H Tuning set \ test-crawl10 \ test-crawll1 ‘
| dev-ep default 12 | 25.62 26.42" || dev-crawl | 15.391 14.431
dev-ep +id,ng,shape | 300k | 27.84 28.37 dev-crawl | 17.8* 16.83*
4 train-ep +id,ng,shape | 100k | 28.0 @9 28.62 train-ep 19.12! 17.331

Table 3: BLEU-4 results for algorithms 1 (SGD) and 4 (IterSelSGD) on Europarl (ep) and news crawl (crawl) test
data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and rule shape (shape).
Statistical significance at p-level < 0.05 of a result difference on the test set to a different algorithm applied to the
same feature group is indicated by raised algorithm number. } indicates statistically significant differences to best
result across features groups for same algorithm, indicated in bold face. @ indicates the optimal number of epochs

chosen on the devtest set.

and tuning the full set of 180,000 features are not
significant. However, scaling all features to the full
training set shows significant improvements for al-
gorithm 3, and especially for algorithm 4, which
gains 0.8 BLEU points over tuning 12 features on
the development set. The number of features rises
to 4.7 million without feature selection, which iter-
atively selects 100,000 features with best ¢ norm
values across shards. Feature templates such as rule
n-grams and rule shapes only work if iterative mix-
ing (algorithm 3) or feature selection (algorithm 4)
are used. Adding rule id features works in combina-
tion with other sparse features.

Table 3 shows results for algorithms 1 and 4 on
the Europarl data (ep) for different devtest and test
sets. Europarl data were used in all runs for train-
ing and for setting the meta-parameter of number
of epochs. Testing was done on the Europarl test
set and news crawl test data from the years 2010
and 2011. Here tuning large feature sets on the
respective dev sets yields significant improvements
of around 2 BLEU points over tuning the 12 de-
fault features on the dev sets. Another 0.5 BLEU
points (test-crawl11) or even 1.3 BLEU points (test-
crawl10) are gained when scaling to the full training
set using iterative features selection. Result differ-
ences on the Europarl test set were not significant
for moving from dev to full train set. Algorithms 2
and 3 were infeasible to run on Europarl data beyond
one epoch because features vectors grew too large to
be kept in memory.

6 Discussion

We presented an approach to scaling discrimina-
tive learning for SMT not only to large feature
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sets but also to large sets of parallel training data.
Since inference for SMT (unlike many other learn-
ing problems) is very expensive, especially on large
training sets, good parallelization is key. Our ap-
proach is made feasible and effective by applying
joint feature selection across distributed stochastic
learning processes. Furthermore, our local features
are efficiently computable at runtime. Our algo-
rithms and features are generic and can easily be re-
implemented and make our results relevant across
datasets and language pairs.

In future work, we would like to investigate more
sophisticated features, better learners, and in gen-
eral improve the components of our system that have
been neglected in the current investigation of rela-
tive improvements by scaling the size of data and
feature sets. Ultimately, since our algorithms are in-
spired by multi-task learning, we would like to apply
them to scenarios where a natural definition of tasks
is given. For example, patent data can be charac-
terized along the dimensions of patent classes and
patent text fields (Wischle and Riezler, 2012) and
thus are well suited for multi-task translation.
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Abstract

Parallel data in the domain of interest is the
key resource when training a statistical ma-
chine translation (SMT) system for a specific
purpose. Since ad-hoc manual translation can
represent a significant investment in time and
money, a prior assesment of the amount of
training data required to achieve a satisfac-
tory accuracy level can be very useful. In this
work, we show how to predict what the learn-
ing curve would look like if we were to manu-
ally translate increasing amounts of data.

We consider two scenarios, /) Monolingual
samples in the source and target languages are
available and 2) An additional small amount
of parallel corpus is also available. We pro-
pose methods for predicting learning curves in
both these scenarios.

1 Introduction

Parallel data in the domain of interest is the key re-
source when training a statistical machine transla-
tion (SMT) system for a specific business purpose.
In many cases it is possible to allocate some budget
for manually translating a limited sample of relevant
documents, be it via professional translation services
or through increasingly fashionable crowdsourcing.
However, it is often difficult to predict how much
training data will be required to achieve satisfactory
translation accuracy, preventing sound provisional
budgetting. This prediction, or more generally the
prediction of the learning curve of an SMT system
as a function of available in-domain parallel data, is
the objective of this paper.

We consider two scenarios, representative of real-
istic situations.

1. In the first scenario (S1), the SMT developer is
given only monolingual source and target sam-
ples from the relevant domain, and a small test
parallel corpus.

*This research was carried out during an internship at Xerox
Research Centre Europe.
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2. In the second scenario (S2), an additional small
seed parallel corpus is given that can be used
to train small in-domain models and measure
(with some variance) the evaluation score at a
few points on the initial portion of the learning
curve.

In both cases, the task consists in predicting an eval-
uation score (BLEU, throughout this work) on the
test corpus as a function of the size of a subset of
the source sample, assuming that we could have it
manually translated and use the resulting bilingual
corpus for training.

In this paper we provide the following contribu-
tions:

1. An extensive study across six parametric func-
tion families, empirically establishing that a
certain three-parameter power-law family is
well suited for modeling learning curves for the
Moses SMT system when the evaluation score
is BLEU. Our methodology can be easily gen-
eralized to other systems and evaluation scores
(Section 3);

2. A method for inferring learning curves based
on features computed from the resources avail-
able in scenario S1, suitable for both the sce-
narios described above (S1) and (S2) (Section
4);

3. A method for extrapolating the learning curve
from a few measurements, suitable for scenario
S2 (Section 5);

4. A method for combining the two approaches
above, achieving on S2 better prediction accu-
racy than either of the two in isolation (Section
6).

In this study we limit tuning to the mixing param-
eters of the Moses log-linear model through MERT,
keeping all meta-parameters (e.g. maximum phrase
length, maximum allowed distortion, etc.) at their
default values. One can expect further tweaking to
lead to performance improvements, but this was a

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 22-30,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics



necessary simplification in order to execute the tests
on a sufficiently large scale.

Our experiments involve 30 distinct language pair
and domain combinations and 96 different learning
curves. They show that without any parallel data
we can predict the expected translation accuracy at
75K segments within an error of 6 BLEU points (Ta-
ble 4), while using a seed training corpus of 10K
segments narrows this error to within 1.5 points (Ta-
ble 6).

2 Related Work

Learning curves are routinely used to illustrate how
the performance of experimental methods depend
on the amount of training data used. In the SMT
area, Koehn et al. (2003) used learning curves to
compare performance for various meta-parameter
settings such as maximum phrase length, while
Turchi et al. (2008) extensively studied the be-
haviour of learning curves under a number of test
conditions on Spanish-English. In Birch et al.
(2008), the authors examined corpus features that
contribute most to the machine translation perfor-
mance. Their results showed that the most predic-
tive features were the morphological complexity of
the languages, their linguistic relatedness and their
word-order divergence; in our work, we make use of
these features, among others, for predicting transla-
tion accuracy (Section 4).

In a Machine Learning context, Perlich et al.
(2003) used learning curves for predicting maximum
performance bounds of learning algorithms and to
compare them. In Gu et al. (2001), the learning
curves of two classification algorithms were mod-
elled for eight different large data sets. This work
uses similar a priori knowledge for restricting the
form of learning curves as ours (see Section 3), and
also similar empirical evaluation criteria for compar-
ing curve families with one another. While both ap-
plication and performance metric in our work are
different, we arrive at a similar conclusion that a
power law family of the formy = ¢ —ax ™ “ is a
good model of the learning curves.

Learning curves are also frequently used for de-
termining empirically the number of iterations for
an incremental learning procedure.

The crucial difference in our work is that in the
previous cases, learning curves are plotted a poste-
riori i.e. once the labelled data has become avail-
able and the training has been performed, whereas
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in our work the learning curve itself is the object of
the prediction. Our goal is to learn to predict what
the learning curve will be a priori without having to
label the data at all (S1), or through labelling only a
very small amount of it (S2).

In this respect, the academic field of Computa-
tional Learning Theory has a similar goal, since it
strives to identify bounds to performance measures!,
typically including a dependency on the training
sample size. We take a purely empirical approach
in this work, and obtain useful estimations for a case
like SMT, where the complexity of the mapping be-
tween the input and the output prevents tight theo-
retical analysis.

3 Selecting a parametric family of curves

The first step in our approach consists in selecting
a suitable family of shapes for the learning curves
that we want to produce in the two scenarios being
considered.

We formulate the problem as follows. For a cer-
tain bilingual test dataset d, we consider a set of
observations Oy = {(x1,91), (z2,92)...(Tn,Yn)},
where y; is the performance on d (measured using
BLEU (Papineni et al., 2002)) of a translation model
trained on a parallel corpus of size x;. The corpus
size x; is measured in terms of the number of seg-
ments (sentences) present in the parallel corpus.

We consider such observations to be generated by
a regression model of the form:

yi:F(mi;G)—i—ei 1<i:<n (D

where F' is a function depending on a vector param-
eter & which depends on d, and ¢; is Gaussian noise
of constant variance.

Based on our prior knowledge of the problem,
we limit the search for a suitable F' to families that
satisfies the following conditions- monotonically in-
creasing, concave and bounded. The first condition
just says that more training data is better. The sec-
ond condition expresses a notion of “diminishing
returns”, namely that a given amount of additional
training data is more advantageous when added to
a small rather than to a big amount of initial data.
The last condition is related to our use of BLEU —
which is bounded by 1 — as a performance mea-
sure; It should be noted that some growth patterns
which are sometimes proposed, such as a logarith-
mic regime of the form y ~ a + blogx, are not

"More often to a loss, which is equivalent.



compatible with this constraint.

We consider six possible families of functions sat-
isfying these conditions, which are listed in Table 1.
Preliminary experiments indicated that curves from

Model Formula

Exps y=c—e TP
Expy y=c—e ox" b
ExpP3 y=c—el®0"
Pow; y=c—ar “
Powy | y=c— (—ax+b)"®
ILogs y=c— (a/logx)

Table 1: Curve families.

the “Power” and “Exp” family with only two param-
eters underfitted, while those with five or more pa-
rameters led to overfitting and solution instability.
We decided to only select families with three or four
parameters.

Curve fitting technique Given a set of observa-
tions {(x1,y1), (x2,¥2)...(Tn, yn)} and a curve fam-
ily F(2;6) from Table 1, we compute a best fit 6
where:

6 — i i — F(xi;0)]? 2
arg min ;[y (@:0)7, (@)
through use of the Levenberg-Marquardt

method (Moré, 1978) for non-linear regression.

For selecting a learning curve family, and for all
other experiments in this paper, we trained a large
number of systems on multiple configurations of
training sets and sample sizes, and tested each on
multiple fest sets; these are listed in Table 2. All
experiments use Moses (Koehn et al., 2007). 2

Domain

Source
L

Target
1

# Test
sets

Europarl (Koehn, 2005)

Fr, De, Es
En

En
Fr, De, Es

4

KFTT (Neubig, 2011)
EMEA (Tiedemann, 2009)
News (Callison-Burch et al., 2011)

Jp, En En, Jp 2
Da, De En 4
Cz,En,Fr,De,Es Cz,En,Fr,De,Es 3

Table 2: The translation systems used for the curve fit-
ting experiments, comprising 30 language-pair and do-
main combinations for a total of 96 learning curves.
Language codes: Cz=Czech, Da=Danish, En=English,
De=German, Fr=French, Jp=Japanese, Es=Spanish

The goodness of fit for each of the families is eval-

>The settings used in training the systems are those
described in http://www.statmt.org/wmt11l/
baseline.html
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uated based on their ability to i) fit over the entire set
of observations, ii) extrapolate to points beyond the
observed portion of the curve and iii) generalize well
over different datasets .

We use a recursive fitting procedure where the
curve obtained from fitting the first ¢ points is used
to predict the observations at two points: x;41, i.e.
the point to the immediate right of the currently ob-
served z; and x,,, i.e. the largest point that has been
observed.

The following error measures quantify the good-
ness of fit of the curve families:

1. Average root mean-squared error (RMSE):

n 1/2
YT {3 rr]

ceS teT, i=1 ot

where S is the set of training datasets, 7T is the
set of test datasets for training configuration c,
g is as defined in Eq. 2, N is the total number
of combinations of training configurations and
test datasets, and ¢ ranges on a grid of training
subset sizes.The expressions n, x;, yi,é are all
local to the combination ct.

2. Average root mean squared residual at next
point X = z;11 (NPR):

%Z Z {n_]l{;_l i[%ﬂ - F(x,,;ﬂ;éi)]z}

ceSteT, i=k

where 6 is obtained using only observations
up to z; in Eq. 2 and where k is the number of
parameters of the family.?

3. Average root mean squared residual at the last
point X = x,, (LPR):

n—1 1/2
1 1 5
NE > {n—k—lg [yn—F(%;e)]z}

ceS teT, i=k ct

Curve fitting evaluation The evaluation of the
goodness of fit for the curve families is presented
in Table 3. The average values of the root mean-
squared error and the average residuals across all the
learning curves used in our experiments are shown
in this table. The values are on the same scale as the
BLEU scores. Figure 1 shows the curve fits obtained

3We start the summation from ¢ = k, because at least k
points are required for computing 6°.



Curve Fit using Recursive least squares
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Figure 1: Curve fits using different curve families on a
test dataset

for all the six families on a test dataset for English-
German language pair.

Curve Family | RMSE | NPR LPR
Exps 0.0063 | 0.0094 | 0.0694
Expy 0.0030 | 0.0036 | 0.0072

ExpP3 0.0040 | 0.0049 | 0.0145
Pow; 0.0029 | 0.0037 | 0.0091
Pow, 0.0026 | 0.0042 | 0.0102
ILogs 0.0050 | 0.0067 | 0.0146

Table 3: Evaluation of the goodness of fit for the six fam-
ilies.

Loooking at the values in Table 3, we decided to
use the Pow3 family as the best overall compromise.
While it is not systematically better than Exp, and
Pow,, it is good overall and has the advantage of
requiring only 3 parameters.

4 Inferring a learning curve from mostly
monolingual data

In this section we address scenario S1: we have
access to a source-language monolingual collec-
tion (from which portions to be manually translated
could be sampled) and a target-language in-domain
monolingual corpus, to supplement the target side of
a parallel corpus while training a language model.
The only available parallel resource is a very small
test corpus. Our objective is to predict the evolution
of the BLEU score on the given test set as a function
of the size of a random subset of the training data
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that we manually translate*. The intuition behind
this is that the source-side and target-side mono-
lingual data already convey significant information
about the difficulty of the translation task.

We proceed in the following way. We first train
models to predict the BLEU score at m anchor sizes
81, --.,Sm, based on a set of features globally char-
acterizing the configuration of interest. We restrict
our attention to linear models:

pj=w; ¢,j€{l...m}

where w; is a vector of feature weights specific to
predicting at anchor size j, and ¢ is a vector of size-
independent configuration features, detailed below.
We then perform inference using these models to
predict the BLEU score at each anchor, for the test
case of interest. We finally estimate the parameters
of the learning curve by weighted least squares re-
gression using the anchor predictions.

Anchor sizes can be chosen rather arbitrarily, but
must satisfy the following two constraints:

1. They must be three or more in number in order
to allow fitting the tri-parameter curve.

2. They should be spread as much as possible
along the range of sample size.

For our experiments, we take m = 3, with anchors
at 10K, 75K and 500K segments.

The feature vector ¢ consists of the following fea-
tures:

1. General properties: number and average length
of sentences in the (source) test set.

2. Average length of tokens in the (source) test set
and in the monolingual source language corpus.

3. Lexical diversity features:

(a) type-token ratios for n-grams of order 1 to
5 in the monolingual corpus of both source
and target languages

(b) perplexity of language models of order 2
to 5 derived from the monolingual source
corpus computed on the source side of the
test corpus.

*We specify that it is a random sample as opposed to a subset
deliberately chosen to maximize learning effectiveness. While
there are clear ties between our present work and active learn-
ing, we prefer to keep these two aspects distinct at this stage,
and intend to explore this connection in future work.



4. Features capturing divergence between lan-
guages in the pair:

(a) average ratio of source/target sentence
lengths in the test set.

(b) ratio of type-token ratios of orders 1 to 5
in the monolingual corpus of both source
and target languages.

5. Word-order divergence: The divergence in the
word-order between the source and the target
languages can be captured using the part-of-
speech (pos) tag sequences across languages.
We use cross-entropy measure to capture sim-
ilarity between the n-gram distributions of the
pos tags in the monolingual corpora of the two
languages. The order of the n-grams ranges be-
tween n = 2,4...12 in order to account for
long distance reordering between languages.
The pos tags for the languages are mapped to
a reduced set of twelve pos tags (Petrov et al.,
2012) in order to account for differences in
tagsets used across languages.

These features capture our intuition that translation
is going to be harder if the language in the domain
is highly variable and if the source and target lan-
guages diverge more in terms of morphology and
word-order.

The weights w; are estimated from data. The
training data for fitting these linear models is ob-
tained in the following way. For each configuration
(combination of language pair and domain) ¢ and
test set ¢ in Table 2, a gold curve is fitted using the
selected tri-parameter power-law family using a fine
grid of corpus sizes. This is available as a byproduct
of the experiments for comparing different paramet-
ric families described in Section 3. We then compute
the value of the gold curves at the m anchor sizes:
we thus have m “gold” vectors i1, ..., tbm With ac-
curate estimates of BLEU at the anchor sizes®. We
construct the design matrix ® with one column for
each feature vector ¢.; corresponding to each com-
bination of training configuration c and test set ¢.

We then estimate weights w; using Ridge regres-
sion (L? regularization):

3)

wj = argmin [|@Tw — | + o]

>Computing these values from the gold curve rather than di-
rectly from the observations has the advantage of smoothing the
observed values and also does not assume that observations at
the anchor sizes are always directly available.
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where the regularization parameter C' is chosen by
cross-validation. We also run experiments using
Lasso (L) regularization (Tibshirani, 1994) instead
of Ridge. As baseline, we take a constant mean
model predicting, for each anchor size s;, the av-
erage of all the f1j¢.

We do not assume the difficulty of predicting
BLEU at all anchor points to be the same. To allow
for this, we use (non-regularized) weighted least-
squares to fit a curve from our parametric family
through the m anchor points®. Following (Croarkin
and Tobias, 2006, Section 4.4.5.2), the anchor con-
fidence is set to be the inverse of the cross-validated

mean square residuals:
-1

wj = Z S (hw)” — pjer)? )
CES teTe
where w\° are the feature weights obtained by the

regression above on all training configurations ex-
cept ¢, jijet is the gold value at anchor j for train-
ing/test combination c, ¢, and NN is the total number
of such combinations’. In other words, we assign to
each anchor point a confidence inverse to the cross-
validated mean squared error of the model used to
predict it.

For a new unseen configuration with feature vec-
tor ¢,,, we determine the parameters 6,, of the corre-
sponding learning curve as:

= argmm E wJ

S]7 d)uwj)z (5)

5 Extrapolating a learning curve fitted on
a small parallel corpus

Given a small “seed” parallel corpus, the translation
system can be used to train small in-domain models
and the evaluation score can be measured at a few
initial sample sizes {(x1,y1), (z2,%2)..-(Tp, Yp)}-
The performance of the system for these initial
points provides evidence for predicting its perfor-
mance for larger sample sizes.

In order to do so, a learning curve from the fam-
ily Pows is first fit through these initial points. We

SWhen the number of anchor points is the same as the num-
ber of parameters in the parametric family, the curve can be fit
exactly through all anchor points. However the general discus-
sion is relevant in case there are more anchor points than pa-
rameters, and also in view of the combination of inference and
extrapolation in Section 6.

Curves on different test data for the same training configu-
ration are highly correlated and are therefore left out.



assume that p > 3 for this operation to be well-
defined. The best fit 7} is computed using the same
curve fitting as in Eq. 2.

At each individual anchor size s, the accuracy of
prediction is measured using the root mean-squared

error between the prediction of extrapolated curves
and the gold values:

vz

1/2
S]’nct thj]z) (6)
ceSteT,
where 7).; are the parameters of the curve fit using

the initial points for the combination ct.

In general, we observed that the extrapolated
curve tends to over-estimate BLEU for large sam-
ples.

6 Combining inference and extrapolation

In scenario S2, the models trained from the seed par-
allel corpus and the features used for inference (Sec-
tion 4) provide complementary information. In this
section we combine the two to see if this yields more
accurate learning curves.

For the inference method of Section 4, predictions
of models at anchor points are weighted by the in-
verse of the model empirical squared error (w;). We
extend this approach to the extrapolated curves. Let
u be a new configuration with seed parallel corpus of
size x,,, and let x; be the largest point in our grid for
which z; < x,,. We first train translation models and
evaluate scores on samples of size x1, ..., z, fit pa-
rameters 7),, through the scores, and then extrapolate
BLEU at the anchors s;: F'(sj;7,),7 € {1,...,m}.
Using the models trained for the experiments in Sec-
tion 3, we estimate the squared extrapolation error at
the anchors s; when using models trained on size up
to x;, and set the confidence in the extrapolations®
for u to its inverse:

t
J

where N, S, T;. and ji;; have the same meaning as
in Eq. 4, and nc<tl are parameters fitted for config-
uration ¢ and test ¢ using only scores measured at
x1,...,x;. We finally estimate the parameters 6, of

2 D .(F

ceS teT,

—1
Sj 5 nct Mctj)2> (7)

81n some cases these can actually be interpolations.
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the combined curve as:

= argmmej (sj;0) — ¢, 'wJ)Q

+ &7 (F(s530) = Fs5374))?

where ¢, is the feature vector for u, and w; are the
weights we obtained from the regression in Eq. 3.

7 Experiments

In this section, we report the results of our experi-
ments on predicting the learning curves.

7.1 Inferred Learning Curves

Regression model | 10K | 75K | 500K
Ridge 0.063 | 0.060 | 0.053
Lasso 0.054 | 0.060 | 0.062

Baseline 0.112 | 0.121 | 0.121

Table 4: Root mean squared error of the linear regression
models for each anchor size

In the case of inference from mostly monolingual
data, the accuracy of the predictions at each of the
anchor sizes is evaluated using root mean-squared
error over the predictions obtained in a leave-one-
out manner over the set of configurations from Ta-
ble 2. Table 4 shows these results for Ridge and
Lasso regression models at the three anchor sizes.
As an example, the model estimated using Lasso for
the 75K anchor size exhibits a root mean squared
error of 6 BLEU points. The errors we obtain are
lower than the error of the baseline consisting in tak-
ing, for each anchor size s;, the average of all the
tetj- The Lasso regression model selected four fea-
tures from the entire feature set: i) Size of the test
set (sentences & tokens) ii) Perplexity of language
model (order 5) on the test set iii) Type-token ratio
of the target monolingual corpus . Feature correla-
tion measures such as Pearsons R showed that the
features corresponding to type-token ratios of both
source and target languages and size of test set have
a high correlation with the BLEU scores at the three
anchor sizes.

Figure 2 shows an instance of the inferred learn-
ing curves obtained using a weighted least squares
method on the predictions at the anchor sizes. Ta-
ble 7 presents the cumulative error of the inferred
learning curves with respect to the gold curves, mea-
sured as the average distance between the curves in
the range = € [0.1K, 100K].
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Figure 2: Inferred learning curve for English-Japanese
test set. The error-bars show the anchor confidence for
the predictions.

7.2 Extrapolated Learning Curves

As explained in Section 5, we evaluate the accuracy
of predictions from the extrapolated curve using the
root mean squared error (see Eq. 6) between the pre-
dictions of this curve and the gold values at the an-
chor points.

We conducted experiments for three sets of initial
points, /) 1K-5K-10K, 2) 5K-10K-20K, and 3) 1K-
5K-10K-20K. For each of these sets, we show the
prediction accuracy at the anchor sizes, 10K°, 75K,
and 500K in Table 5.

Initial Points 10K 75K | 500K
1K-5K-10K 0.005 | 0.017 | 0.042
5K-10K-20K 0.002 | 0.015 | 0.034
1K-5K-10K-20K | 0.002 | 0.008 | 0.019

Table 5: Root mean squared error of the extrapolated
curves at the three anchor sizes

The root mean squared errors obtained by extrap-
olating the learning curve are much lower than those
obtained by prediction of translation accuracy using
the monolingual corpus only (see Table 4), which
is expected given that more direct evidence is avail-
able in the former case . In Table 5, one can also
see that the root mean squared error for the sets 1K-
5K-10K and 5K-10K-20K are quite close for anchor

The 10K point is not an extrapolation point but lies within
the range of the set of initial points. However, it does give a
measure of the closeness of the curve fit using only the initial
points with the gold fit using all the points; the value of this gold
fit at 10K is not necessarily equal to the observation at 10K.
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sizes 75K and 500K. However, when a configuration
of four initial points is used for the same amount of
“seed” parallel data, it outperforms both the config-
urations with three initial points.

7.3 Combined Learning Curves and Overall
Comparison

In Section 6, we presented a method for combin-
ing the predicted learning curves from inference and
extrapolation by using a weighted least squares ap-
proach. Table 6 reports the root mean squared error
at the three anchor sizes from the combined curves.

Initial Points Model | 10K 75K | 500K
KSKI0K | 18 | 0008 | 0014 | 008
SKIOK20K | 135 | 00t | 0006 | 0018
IKSKA0K20K | (58 | 0 | 6o0s | o.o1s

Table 6: Root mean squared error of the combined curves
at the three anchor sizes

We also present an overall evaluation of all the
predicted learning curves. The evaluation metric is
the average distance between the predicted curves
and the gold curves, within the range of sample sizes
Tmin=0.1K t0 ,,4,=500K segments; this metric is
defined as:

Tmax

1 Zx:xmm |F(.ZL';’f]C ) - F(':U; éc )|
NZ Z t t

ces teT Tmaz — Tmin
where 7). is the curve of interest, éct is the gold
curve, and z is in the range [Zin, Tmaz], With a step
size of 1. Table 7 presents the final evaluation.

Initial Points IR IL EC CR CL

1K-5K-10K 0.034| 0.050| 0.018| 0.015| 0.014
5K-10K-20K 0.036| 0.048| 0.011| 0.010| 0.009
1K-5K-10K-20K | 0.032| 0.049| 0.008| 0.007| 0.007

Table 7: Average distance of different predicted
learning curves relative to the gold curve. Columns:
IR="Inference using Ridge model”, IL="Inference
using Lasso model”, EC="“Extrapolated curve”,
CR="Combined curve using Ridge”, CL="“Combined
curve using Lasso”

We see that the combined curves (CR and CL)
perform slightly better than the inferred curves (IR



and IL) and the extrapolated curves (EC). The aver-
age distance is on the same scale as the BLEU score,
which suggests that our best curves can predict the
gold curve within 1.5 BLEU points on average (the
best result being 0.7 BLEU points when the initial
points are 1K-5K-10K-20K) which is a telling re-
sult. The distances between the predicted and the
gold curves for all the learning curves in our experi-
ments are shown in Figure 3.

Distance between Gold and Predicted curves

400000 500000

] 100000 200000 300000

Difference in BLEU

o 100000 200000 300000 400000 500000

200000 300000
Sample sizes

0 100000

Figure 3: Distances between the predicted and the gold
learning curves in our experiments across the range of
sample sizes. The dotted lines indicate the distance from
gold curve for each instance, while the bold line indi-
cates the 95" quantile of the distance between the curves.
IR="Inference using Ridge model”, EC="Extrapolated
curve”, CR="“Combined curve using Ridge”.

We also provide a comparison of the different pre-

dicted curves with respect to the gold curve as shown
in Figure 4.

Curve Fit using Weighted Recursive least squares

BLEU scores

= Gold Curve Fit
0.05 # x Initial values
- - Extrapolated Curve
Inferred Curve
- Combined Curve Fit

1] 100000 200000 300000

Training sample size

400000 500000

Figure 4: Predicted curves in the three scenarios for
Czech-English test set using the Lasso model
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8 Conclusion

The ability to predict the amount of parallel data
required to achieve a given level of quality is very
valuable in planning business deployments of statis-
tical machine translation; yet, we are not aware of
any rigorous proposal for addressing this need.

Here, we proposed methods that can be directly
applied to predicting learning curves in realistic sce-
narios. We identified a suitable parametric fam-
ily for modeling learning curves via an extensive
empirical comparison. We described an inference
method that requires a minimal initial investment in
the form of only a small parallel fest dataset. For the
cases where a slightly larger in-domain “seed” par-
allel corpus is available, we introduced an extrapola-
tion method and a combined method yielding high-
precision predictions: using models trained on up to
20K sentence pairs we can predict performance on a
given test set with a root mean squared error in the
order of 1 BLEU point at 75K sentence pairs, and
in the order of 2-4 BLEU points at S00K. Consider-
ing that variations in the order of 1 BLEU point on
a same test dataset can be observed simply due to
the instability of the standard MERT parameter tun-
ing algorithm (Foster and Kuhn, 2009; Clark et al.,
2011), we believe our results to be close to what can
be achieved in principle. Note that by using gold
curves as labels instead of actual measures we im-
plicitly average across many rounds of MERT (14
for each curve), greatly attenuating the impact of the
instability in the optimization procedure due to ran-
domness.

For enabling this work we trained a multitude
of instances of the same phrase-based SMT sys-
tem on 30 distinct combinations of language-pair
and domain, each with fourteen distinct training
sets of increasing size and tested these instances on
multiple in-domain datasets, generating 96 learning
curves. BLEU measurements for all 96 learning
curves along with the gold curves and feature values
used for inferring the learning curves are available
as additional material to this submission.

We believe that it should be possible to use in-
sights from this paper in an active learning setting,
to select, from an available monolingual source, a
subset of a given size for manual translation, in such
a way at to yield the highest performance, and we
plan to extend our work in this direction.
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Abstract

This paper presents a probabilistic framework
that combines multiple knowledge sources for
Haptic Voice Recognition (HVR), a multi-
modal input method designed to provide ef-
ficient text entry on modern mobile devices.
HVR extends the conventional voice input by
allowing users to provide complementary par-
tial lexical information via touch input to im-
prove the efficiency and accuracy of voice
recognition. This paper investigates the use of
the initial letter of the words in the utterance
as the partial lexical information. In addition
to the acoustic and language models used in
automatic speech recognition systems, HVR
uses the haptic and partial lexical models as
additional knowledge sources to reduce the
recognition search space and suppress confu-
sions. Experimental results show that both the
word error rate and runtime factor can be re-
duced by a factor of two using HVR.

1 Introduction

Nowadays, modern portable devices, such as the
smartphones and tablets, are equipped with micro-
phone and touchscreen display. With these devices
becoming increasingly popular, there is an urgent
need for an efficient and reliable text entry method
on these small devices. Currently, text entry us-
ing an onscreen virtual keyboard is the most widely
adopted input method on these modern mobile de-
vices. Unfortunately, typing with a small virtual
keyboard can sometimes be cumbersome and frus-
tratingly slow for many people. Instead of using

31

a virtual keyboard, it is also possible to use hand-
writing gestures to input text. Handwriting input
offers a more convenient input method for writing
systems with complex orthography, including many
Asian languages such as Chinese, Japanese and Ko-
rean. However, handwriting input is not necessarily
more efficient compared to keyboard input for En-
glish. Moreover, handwriting recognition is suscep-
tible to recognition errors, too.

Voice input offers a hands-free solution for text
entry. This is an attractive alternative for text entry
because it completely eliminates the need for typ-
ing. Voice input is also more natural and faster for
human to convey messages. Normally, the average
human speaking rate is approximately 100 words
per minute (WPM). Clarkson et al. (2005) showed
that the typing speed for regular users reaches only
86.79 — 98.31 using a full-size keyboard and 58.61
— 61.44 WPM using a mini-QWERTY keyboard.
Evidently, speech input is the preferred text entry
method, provided that speech signals can be reli-
ably and efficiently converted into texts. Unfortu-
nately, voice input relies on automatic speech recog-
nition (ASR) (Rabiner, 1989) technology, which re-
quires high computational resources and is suscep-
tible to performance degradation due to acoustic in-
terference, such as the presence of noise.

In order to improve the reliability and efficiency
of ASR, Haptic Voice Recognition (HVR) was pro-
posed by Sim (2010) as a novel multimodal input
method combining both speech and touch inputs.
Touch inputs are used to generate haptic events,
which correspond to the initial letters of the words in
the spoken utterance. In addition to the regular beam
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pruning used in traditional ASR (Ortmanns et al.,
1997), search paths which are inconsistent with the
haptic events are also pruned away to achieve further
reduction in the recognition search space. As a re-
sult, the runtime of HVR is generally more efficient
than ASR. Furthermore, haptic events are not sus-
ceptible to acoustic distortion, making HVR more
robust to noise.

This paper proposes a probabilistic framework
that encompasses multiple knowledge sources for
combining the speech and touch inputs. This frame-
work allows coherent probabilistic models of dif-
ferent knowledge sources to be tightly integrated.
In addition to the acoustic model and language
model used in ASR, haptic model and partial lexi-
cal model are also introduced to facilitate the inte-
gration of more sophisticated haptic events, such as
the keystrokes, into HVR.

The remaining of this paper is organised as fol-
lows. Section 2 gives an overview of existing tech-
niques in the literature that aim at improving noise
robustness for automatic speech recognition. Sec-
tion 3 gives a brief introduction to HVR. Section 4
proposes a probabilistic framework for HVR that
unifies multiple knowledge sources as an integrated
probabilistic generative model. Next, Section 5
describes how multiple knowledge sources can be
integrated using Weighted Finite State Transducer
(WEST) operations. Experimental results are pre-
sented in Section 6. Finally, conclusions are given
in Section 7.

2 Noise Robust ASR

As previously mentioned, the process of converting
speech into text using ASR is error-prone, where
significant performance degradation is often due to
the presence of noise or other acoustic interference.
Therefore, it is crucial to improve the robustness
of voice input in noisy environment. There are
many techniques reported in the literature which
aim at improving the robustness of ASR in noisy
environment. These techniques can be largely di-
vided into two groups: 1) using speech enhance-
ment techniques to increase the signal-to-noise ratio
of the noisy speech (Ortega-Garcia and Gonzalez-
Rodriguez, 1996); and 2) using model-based com-
pensation schemes to adapt the acoustic models to
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noisy environment (Gales and Young, 1996; Acero
et al., 2000).

From the information-theoretic point of view, in
order to achieve reliable information transmission,
redundancies are introduced so that information lost
due to channel distortion or noise corruption can be
recovered. Similar concept can also be applied to
improve the robustness of voice input in noisy en-
vironment. Additional complementary information
can be provided using other input modalities to pro-
vide cues (redundancies) to boost the recognition
performance. The next section will introduce a mul-
timodal interface that combines speech and touch in-
puts to improve the efficiency and noise robustness
for text entry using a technique known as Haptic
Voice Recognition (Sim, 2010).

3 Haptic Voice Recognition (HVR)

For many voice-enabled applications, users often
find voice input to be a black box that captures the
users’ voice and automatically converts it into texts
using ASR. It does not provide much flexibility for
human intervention through other modalities in case
of errors. Certain applications may return multiple
hypotheses, from which users can choose the most
appropriate output. Any remaining errors are typi-
cally corrected manually. However, it may be more
useful to give users more control during the input
stage, instead of having a post-processing step for
error correction. This motivates the investigation of
multimodal interface that tightly integrates speech
input with other modalities.

Haptic Voice Recognition (HVR) is a multimodal
interface designed to offer users the opportunity to
add his or her ‘magic touch’ in order to improve
the accuracy, efficiency and robustness of voice in-
put. HVR is designed for modern mobile devices
equipped with an embedded microphone to capture
speech signals and a touchscreen display to receive
touch events. The HVR interface aims to combine
both speech and touch modalities to enhance speech
recognition. When using an HVR interface, users
will input text verbally, at the same time provide ad-
ditional cues in the form of Partial Lexical Infor-
mation (PLI) to guide the recognition search. PLIs
are simplified lexical representation of words that
should be easy to enter whilst speaking (e.g. the



prefix and/or suffix letters). Preliminary simulated
experiments conducted by Sim (2010) show that
potential performance improvements both in terms
of recognition speed and noise robustness can be
achieved using the initial letters as PLIs. For ex-
ample, to enter the text “Henry will be in Boston
next Friday”, the user will speak the sentence and
enter the following letter sequence: ‘H’, ‘W’, ‘B’,
‘T, ‘B’, ‘N’ and ‘F’. These additional letter sequence
is simple enough to be entered whilst speaking; and
yet they provide crucial information that can sig-
nificantly improve the efficiency and robustness of
speech recognition. For instance, the number of let-
ters entered can be used to constrain the number of
words in the recognition output, thereby suppress-
ing spurious insertion and deletion errors, which are
commonly observed in noisy environment. Further-
more, the identity of the letters themselves can be
used to guide the search process so that partial word
sequences in the search graph that do not conform to
the PLIs provided by the users can be pruned away.

PLI provides additional complementary informa-
tion that can be used to eliminate confusions caused
by poor speech signal. In conventional ASR, acous-
tically similar word sequences are typically resolved
implicitly using a language model where contexts
of neighboring words are used for disambiguation.
On the other hand, PLI can also be very effective
in disambiguating homophones' and similar sound-
ing words and phrases that have distinct initial let-
ters. For example, ‘hour’ versus ‘our’, ‘vary’ versus
‘marry’ and ‘great wine’ versus ‘grey twine’.

This paper considers two methods of generating
the initial letter sequence using a touchscreen. The
first method requires the user to tap on the appropri-
ate keys on an onscreen virtual keyboard to generate
the desired letter sequence. This method is similar
to that proposed in Sim (2010). However, typing on
small devices like smartphones may require a great
deal of concentration and precision from the users.
Alternatively, the initial letters can be entered using
handwriting gestures. A gesture recognizer can be
used to determine the letters entered by the users. In
order to achieve high recognition accuracy, each let-
ter is represented by a single-stroke gesture, so that
isolated letter recognition can be performed. Fig-

"Words with the same pronunciation
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ure 1 shows the single-stroke gestures that are used
in this work.

4 A Probabilistic Formulation for HVR

Let O = {01,09,...,0r} denote a sequence of
T observed acoustic features such as MFCC (Davis
and Mermelstein, 1980) or PLP (Hermansky, 1990)
and H = {hqy,ho,...,hy} denote a sequence of
N haptic features. For the case of keyboard input,
each h; is a discrete symbol representing one of the
26 letters. On the other hand, for handwriting input,
each h; represents a sequence of 2-dimensional vec-
tors that corresponds to the coordinates of the points
of the keystroke. Therefore, the haptic voice recog-
nition problem can be defined as finding the joint
optimal solution for both the word sequence, W and
the PLI sequence, £, given O and H. This can be
expressed using the following formulation:

OV, L) = argmax POV, LIO,H) (1)
W, L

where according to the Bayes’ theorem:

p(O, HIW, LYP(W, L)
p(O,H)
p(OW)p(H|L)P(W, L)

_ 2
p(O,H) @)

The joint prior probability of the observed inputs,
p(O,H), can be discarded during the maximisation
of Eq. 1 since it is independent of W and L. p(O|W)
is the acoustic likelihood of the word sequence, W,
generating the acoustic feature sequence, 0. Simi-
larly, P(H|L) is the haptic likelihood of the lexical
sequence, L, generating the observed haptic inputs,
H. The joint prior probability, P(W, L), can be de-
composed into:

PW, L) = P(LIW)P(W) 3)

where P()V) can be modelled by the word-based n-
gram language model (Chen and Goodman, 1996)
commonly used in automatic speech recognition.
Combining Eq. 2 and Eq. 3 yields:
POW, L|O,H) x
p(OIW) x p(H|L) x P(LIW) x P(W)(4)

POW,L|O,H) =

It is evident from the above equation that the prob-
abilistic formulation of HVR combines four knowl-
edge sources:
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Figure 1: Examples of single-stroke handwriting gestures for the 26 English letters

e Acoustic model score: p(O|W)
e Haptic model score: p(H|L)

e PLI model score: P(L|W)

e Language model score: P(W)

Note that the acoustic model and language model
scores are already used in the conventional ASR.
The probabilistic formulation of HVR incorporated
two additional probabilities: haptic model score,
p(H|L) and PLI model score, P(L|W). The role
of the haptic model and PLI model will be described
in the following sub-sections.

4.1 Haptic Model

Similar to having an acoustic model as a statisti-
cal representation of the phoneme sequence generat-
ing the observed acoustic features, a haptic model is
used to model the PLI sequence generating the ob-
served haptic inputs, H. The haptic likelihood can
be factorised as

N
p(H|L) = Hp(hi\li) (5)

where £ = {l; : 1 < ¢ < N}. I; is the ith PLI
in £ and h; is the ith haptic input feature. In this
work, each PLI represent the initial letter of a word.
Therefore, l; represents one of the 26 letters. As pre-
viously mentioned, for keyboard input, h; are dis-
crete features whose values are also one of the 26
letters. Therefore, p(h;|l;) forms a 26 x 26 matrix. A
simple model can be derived by making p(h;|l;) an
identity matrix. Therefore, p(h;|l;) = 1if h; = 1;;
otherwise, p(h;|l;) = 0. However, it is also possi-
ble to have a non-diagonal matrix for p(h;|l;) in or-
der to accommodate typing errors, so that non-zero
probabilities are assigned to cases where h; # ;.
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For handwriting input, h; denote a sequence of 2-
dimensional feature vectors, which can be modelled
using Hidden Markov Models (HMMs) (Rabiner,
1989). Therefore, (h;|l;) is simply given by the
HMM likelihood. In this work, each of the 26 let-
ters is represented by a left-to-right HMM with 3
emitting states.

4.2 Partial Lexical Information (PLI) Model

Finally, a PLI model is used to impose the com-
patibility constraint between the PLI sequence, L,
and the word sequence, W. Let W = {w; : 1 <
i < M} denote a word sequence of length M. If
M = N, the PLI model likelihood, P(L|W), can
be expressed in the following form:

N

P(LW) =[] Plijw;) (6)
i=1

where P(l;|w;) is the likelihood of the ith word, w;,
generating the ¢th PLI, I;. Since each word is rep-
resented by a unique PLI (the initial letter) in this
work, the PLI model score is given by

1 if l; = initial letter of w;
P 7 1) — Usub — ! . ‘
(liwi) = Caw { 0 otherwise
On the other hand, if N # M, insertions and dele-
tions have to be taken into consideration:

P(ll = e|wl) = Cdel and P(ll]wz = E) = Cins

where € represents an empty token. Cye1 and Cipg
denote the deletion and insertion penalties respec-
tively. This work assumes Cge1 = Cips = 0.
This means that the word count of the HVR out-
put matches the length of the initial letter sequence
entered by the user. Assigning a non-zero value to
Cge1 gives the users option to skip entering letters
for certain words (e.g. short words).
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Figure 2: WSFT representation of PLI model, P

S Integration of Knowledge Sources

As previously mentioned, the HVR recognition pro-
cess involves maximising the posterior probability
in Eq. 4, which can be expressed in terms of four
knowledge sources. It turns out that these knowl-
edge sources can be represented as Weighted Finite
State Transducers (WFSTs) (Mohri et al., 2002) and
the composition operation (o) can be used to inte-
grate these knowledge sources into a single WEST:

ﬁintegrated = A oLo 75 o 7'_{ @)

where A, £, P and ‘H denote the WFST repre-
sentation of the acoustic model, language model,
PLI model and haptic model respectively. Mohri
et al. (2002) has shown that Hidden Markov Mod-
els (HMMs) and n-gram language models can be
viewed as WFSTs. Furthermore, HMM-based hap-
tic models are also used in this work to represent
the single-stroke letters shown in Fig. 1. Therefore,
A, L, and H can be obtained from the respective
probabilistic models. Finally, the PLI model de-
scribed in Section 4.2 can also be represented using
the WEST as shown in Fig. 2. The transition weights
of these WFSTs are given by the negative log prob-
ability of the respective models. P can be viewed
as a merger that defines the possible alignments be-
tween the speech and haptic inputs. Each complete
path in F represents a valid pair of W and £ such
that the weight of the path is given by the negative
log P(L,W|O,H). Therefore, finding the shortest
path in F is equivalent to solving Eq. 1.

Direct decoding from the overall composed
WEST, ]:'integrated, is referred to as integrated de-
coding. Alternatively, HVR can also operate in a lat-
tice rescoring manner. Speech input and haptic in-
put are processed separately by the ASR system and
the haptic model respectively. The ASR system may
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Figure 3: Screenshot depicting the HVR prototype oper-
ating with keyboard input

Figure 4: Screenshot depicting the HVR prototype oper-
ating with keystroke input

generate multiple hypotheses of word sequences in
the form of a lattice. Similarly, the haptic model may
also generate a lattice containing the most probably
letter sequences. Let L and H represent the word
and letter lattices respectively. Then, the final HVR
output can be obtained by searching for the shortest
path of the following merged WFST:

frescore = »CA oPo 7:[ (8)

Note that the above composition may yield an empty
WEST. This may happen if the lattices generated by
the ASR system or the haptic model are not large
enough to produce any valid pair of W and L.

6 Experimental Results

In this section, experimental results are reported
based on the data collected using a prototype HVR
interface implemented on an iPad. This prototype
HVR interface allows both speech and haptic input
data to be captured either synchronously or asyn-
chronously and the partial lexical information can
be entered using either a soft keyboard or handwrit-
ing gestures. Figures 3 and 4 shows the screen-
shot of the HVR prototype iPad app using the key-



Donna was in Cincinnati last Thursday.
Adam will be visiting Charlotte tomorrow
Janice will be in Chattanooga next month.
Christine will be visiting Corpus Christi
next Tuesday.

Table 1: Example sentences used for data collection.

board and keystroke inputs respectively. Therefore,
there are altogether four input configurations. For
each configuration, 250 sentences were collected
from a non-native fluent English speaker. 200 sen-
tences were used as test data while the remaining 50
sentences were used for acoustic model adaptation.
These sentences contain a variety of given names,
surnames and city names so that confusions can-
not be easily resolved using a language model. Ex-
ample sentences used for data collection are shown
in Table 1. In order to investigate the robustness
of HVR in noisy environment, the collected speech
data were also artificially corrupted with additive
babble noise from the NOISEX database (Varga and
Steeneken, 1993) to synthesise noisy speech signal-
to-noise (SNR) levels of 20 and 10 decibels?.

The ASR system used in all the experiments re-
ported in this paper consists of a set of HMM-based
triphone acoustic models and an n-gram language
model. The HMM models were trained using 39-
dimensional MFCC features. Each HMM has a
left-to-right topology and three emitting states. The
emission probability for each state is represented by
a single Gaussian component 3. A bigram language
model with a vocabulary size of 200 words was used
for testing. The acoustic models were also noise-
compensated using VTS (Acero et al., 2000) in order
achieve a better baseline performance.

6.1 Comparison of Input Speed

Table 2 shows the speech, letter and total input
speed using different input configurations. For syn-
chronous HVR, the total input speed is the same
as the speech and letter input speed since both the
speech and haptic inputs are provided concurrently.
According to this study, synchronous keyboard in-
put speed is 86 words per minutes (WPM). This is

*Higher SNR indicates a better speech quality
%A single Gaussian component system was used as a com-
promise between speed and accuracy for mobile apps.
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Haptic | HVR Input Speed (WPM)

Input Mode || Speech | Letter | Total

Sync 86 86 86

Keyboard =g 100 | 105 51
Sync 78 78 78

Keystroke = gvnc 97 83 45

Table 2: Comparison of the speech and letter input
speed, measured in Words-Per-Minute (WPM), for dif-
ferent HVR input configurations

slightly faster than keystroke input using handwrit-
ing gestures, where the input speed is 78 WPM. This
is not surprising since key taps are much quicker
to generate compared to handwriting gestures. On
the other hand, the individual speech and letter in-
put speed are faster for asynchronous mode be-
cause users do not need to multi-task. However,
since the speech and haptic inputs are provided con-
currently, the resulting total input speed for asyn-
chronous HVR is much slower compared to syn-
chronous HVR. Therefore, synchronous HVR is po-
tentially more efficient than asynchronous HVR.

6.2 Performance of ASR

HVR Mode | SNR || WER (%) | LER (%) |
Clean 22.2 17.0
ASync 20 dB 30.2 24.2
10 dB 33.3 28.5
e | e |28 2
(Keyboard) | 5775 355 29.9
Sync Clean 29.0 22.5
(Keystroke) 20 dB 40.1 32.0
10 dB 37.9 31.3

Table 3: WER and LER performance of ASR in different
noise conditions

First of all, the Word Error Rate (WER) and
Letter Error Rate (LER) performances for standard
ASR systems in different noise conditions are sum-
marized in Table 3. These are results using pure
ASR, without adding the haptic inputs. Speech
recorded using asynchronous HVR is considered
normal speech. The ASR system achieved 22.2%,
30.2% and 33.3% WER in clean, 20dB and 10dB



conditions respectively. Note that the acoustic mod-
els have been compensated using VTS (Acero et al.,
2000) for noisy conditions. Table 3 also shows the
system performance considering on the initial let-
ter sequence of the recognition output. This indi-
cates the potential improvements that can be ob-
tained with the additional first letter information.
Note that the pure ASR system output contains sub-
stantial initial letter errors.

For synchronous HVR, the recorded speech is ex-
pected to exhibit different characteristics since it
may be influenced by concurrent haptic input. Ta-
ble 3 shows that there are performance degradations,
both in terms of WER and LER, when performing
ASR on these speech utterances. Also, the degra-
dations caused by simultaneous keystroke input are
greater. The degradation may be caused by phenom-
ena such as the presence of filled pauses and the
lengthening of phoneme duration. Other forms of
disfluencies may have also been introduced to the
realized speech utterances. Nevertheless, the addi-
tional information provided by the PLIs will out-
weigh these degradations.

6.3 Performance of Synchronous HVR

Haptic 1 o\R | WER (%) | LER (%)
Input
Clean 11.8 1.1
Keyboard | 20 dB 12.7 1.0
10 dB 15.0 1.0
Clean 11.4 0.3
Keystroke | 20 dB 13.1 0.9
10dB 14.0 1.0

Table 4: WER and LER performance of synchronous
HVR in different noise conditions

The performance of synchronous HVR is shown
in Table 4. Compared to the results shown in Ta-
ble 3, the WER performance of synchronous HVR
improved by approximately a factor of two. Fur-
thermore, the LER performance improved signifi-
cantly. For keyboard input, the LER reduced to
about 1.0% for all noise conditions. Note that the
tradeoffs between the WER and LER performance
can be adjusted by applying appropriately weights to
different knowledge sources during integration. For
keystroke input, top five letter candidates returned
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by the handwriting recognizer were used. Therefore,
in clean condition, the acoustic models are able to
recover some of the errors introduced by the hand-
writing recognizer, bringing the LER down to as low
as 0.3%. However, in noisy conditions, the LER
performance is similar to those using keyboard in-
put. Overall, synchronous and asynchronous HVR
achieved WER comparable performance.

6.4 Performance of Asynchronous HVR

Haptic 1 o\ | WER (%) | LER (%)
Input
Clean 10.2 0.6
Keyboard | 20 dB 11.2 0.6
10 dB 13.0 0.6
Clean 10.7 04
Keystroke | 20 dB 114 1.0
10 dB 134 1.1

Table 5: WER and LER performance of asynchronous
HVR in different noise conditions

Similar to synchronous HVR, asynchronous HVR
also achieved significant performance improve-
ments over the pure ASR systems. Table 5 shows the
WER and LER performance of asynchronous HVR
in different noise conditions. The WER perfor-
mance of asynchronous HVR is consistently better
than that of synchronous HVR (comparing Tables 4
and 5). This is expected since the speech quality for
asynchronous HVR is higher. However, consider-
ing the much slower input speed (c.f. Table 2) and
the marginal WER improvements for asynchronous
HVR, synchronous HVR appears to be a better con-
figuration.

6.5 Integrated Decoding vs. Lattice Rescoring

WER (%)
SNR Clean | 20dB | 10dB
Integrated 11.8 | 12.7 | 15.0
Lat-rescore 11.2 18.6 | 18.1

Table 6: WER performance of keyboard synchronous
HVR using integrated decoding and lattice rescoring

As previously mentioned in Section 5, HVR can
also be performed in two stages using lattice rescor-
ing technique. Table 6 shows the performance



comparison between integrated decoding and lat-
tice rescoring for HVR. Both methods gave similar
performance in clean condition. However, lattice
rescoring yielded significantly worse performance
in noisy environment. Therefore, it is important to
tightly integrate the PLI into the decoding process to
avoid premature pruning away optimal paths.

6.6 Runtime Performance

ASR system searches for the best word sequence
using a dynamic programming paradigm (Ney and
Ortmanns, 1999). The complexity of the search in-
creases with the vocabulary size as well as the length
of the input speech. A well-known concept of To-
ken Passing (Young et al., 1989) can be used to de-
scribe the recognition search process. A set of ac-
tive tokens are being propagated upon observing an
acoustic feature frame. The best token that survived
to the end of the utterance represents the best out-
put. Typically, beam pruning technique (Ortmanns
et al., 1997) is applied to improve the recognition ef-
ficiency. Tokens which are unlikely to yield the op-
timal solution will be pruned away. HVR performs a
more stringent pruning, where paths that do not con-
form to the PLI sequence are also be pruned away.

Active Tokens
System SNR RT Per Frame

Clean 1.9 6260

ASR 20 dB 2.0 6450
10 dB 2.4 7168

Clean 0.9 3490

Keyboard | 20 dB 0.9 3764
10 dB 1.0 4442

Clean 1.1 4059

Keystroke | 20 dB 1.2 4190
10 dB 1.5 4969

Table 7: WER and LER performance of integrated and
rescoring synchronous HVR in different noise conditions

Table 7 shows the comparison of the runtime fac-
tors and the average number of active tokens per
frame for ASR and HVR systems. The standard
ASR system runs at 1.9, 2.0 and 2.4 times real-
time (xRT)*. The runtime factor increases with de-

“Runtime factor is computed as the ratio between the recog-
nition duration and the input speech duration
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creasing SNR because the presence of noise intro-
duces more confusions, which renders beam prun-
ing (Ortmanns et al., 1997) less effective. The num-
ber of active tokens per frame also increases from
6260 to 7168 as the SNR drops from the clean con-
dition to 10dB. On the other hand, there are sig-
nificant speedup in the runtime of HVR systems.
In particular, synchronous HVR achieved the best
runtime performance, which is roughly consistent
across different noise conditions (approximately 1.0
xRT). The average number of active tokens also re-
duces to the range of 3490 — 4442. Therefore, the
synchronous HVR using keyboard input is robust to
noisy environment, both in terms of WER and run-
time performance. The runtime performance using
keystroke input is also comparable to that using key-
board input (only slightly worse). Therefore, both
keyboard and keystroke inputs are effective ways for
entering the initial letters for HVR. However, it is
worth noting that the iPad was used for the studies
conducted in this work. The size of the iPad screen
is sufficiently large to allow efficient keyboard entry.
However, for devices with smaller screen, keystroke
inputs may be easier to use and less error-prone.

7 Conclusions

This paper has presented a unifying probabilistic
framework for the multimodal Haptic Voice Recog-
nition (HVR) interface. HVR offers users the option
to interact with the system using touchscreen during
voice input so that additional cues can be provided
to improve the efficiency and robustness of voice
recognition. Partial Lexical Information (PLI), such
as the initial letter of the words, are used as cues
to guide the recognition search process. Therefore,
apart from the acoustic and language models used
in conventional ASR, HVR also combines the hap-
tic model as well as the PLI model to yield an inte-
grated probabilistic model. This probabilistic frame-
work integrates multiple knowledge sources using
the weighted finite state transducer operation. Such
integration is achieved using the composition oper-
ation which can be applied on-the-fly to yield ef-
ficient implementation. Experimental results show
that this framework can be used to achieve a more
efficient and robust multimodal interface for text en-
try on modern portable devices.
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Abstract

We investigate the problem of acoustic mod-
eling in which prior language-specific knowl-
edge and transcribed data are unavailable. We
present an unsupervised model that simultane-
ously segments the speech, discovers a proper
set of sub-word units (e.g., phones) and learns
a Hidden Markov Model (HMM) for each in-
duced acoustic unit. Our approach is formu-
lated as a Dirichlet process mixture model in
which each mixture is an HMM that repre-
sents a sub-word unit. We apply our model
to the TIMIT corpus, and the results demon-
strate that our model discovers sub-word units
that are highly correlated with English phones
and also produces better segmentation than the
state-of-the-art unsupervised baseline. We test
the quality of the learned acoustic models on a
spoken term detection task. Compared to the
baselines, our model improves the relative pre-
cision of top hits by at least 22.1% and outper-
forms a language-mismatched acoustic model.

1 Introduction

Acoustic models are an indispensable component
of speech recognizers. However, the standard pro-
cess of training acoustic models is expensive, and
requires not only language-specific knowledge, e.g.,
the phone set of the language, a pronunciation dic-
tionary, but also a large amount of transcribed data.
Unfortunately, these necessary data are only avail-
able for a very small number of languages in the
world. Therefore, a procedure for training acous-
tic models without annotated data would not only
be a breakthrough from the traditional approach, but
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would also allow us to build speech recognizers for
any language efficiently.

In this paper, we investigate the problem of unsu-
pervised acoustic modeling with only spoken utter-
ances as training data. As suggested in Garcia and
Gish (2006), unsupervised acoustic modeling can
be broken down to three sub-tasks: segmentation,
clustering segments, and modeling the sound pattern
of each cluster. In previous work, the three sub-
problems were often approached sequentially and
independently in which initial steps are not related to
later ones (Lee et al., 1988; Garcia and Gish, 2006;
Chan and Lee, 2011). For example, the speech data
was usually segmented regardless of the clustering
results and the learned acoustic models.

In contrast to the previous methods, we approach
the problem by modeling the three sub-problems as
well as the unknown set of sub-word units as la-
tent variables in one nonparametric Bayesian model.
More specifically, we formulate a Dirichlet pro-
cess mixture model where each mixture is a Hid-
den Markov Model (HMM) used to model a sub-
word unit and to generate observed segments of that
unit. Our model seeks the set of sub-word units,
segmentation, clustering and HMMs that best repre-
sent the observed data through an iterative inference
process. We implement the inference process using
Gibbs sampling.

We test the effectiveness of our model on the
TIMIT database (Garofolo et al., 1993). Our model
shows its ability to discover sub-word units that are
highly correlated with standard English phones and
to capture acoustic context information. For the seg-
mentation task, our model outperforms the state-of-
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the-art unsupervised method and improves the rel-
ative F-score by 18.8 points (Dusan and Rabiner,
2006). Finally, we test the quality of the learned
acoustic models through a keyword spotting task.
Compared to the state-of-the-art unsupervised meth-
ods (Zhang and Glass, 2009; Zhang et al., 2012),
our model yields a relative improvement in precision
of top hits by at least 22.1% with only some degra-
dation in equal error rate (EER), and outperforms
a language-mismatched acoustic model trained with
supervised data.

2 Related Work

Unsupervised Sub-word Modeling We follow
the general guideline used in (Lee et al., 1988; Gar-
cia and Gish, 2006; Chan and Lee, 2011) and ap-
proach the problem of unsupervised acoustic mod-
eling by solving three sub-problems of the task:
segmentation, clustering and modeling each cluster.
The key difference, however, is that our model does
not assume independence among the three aspects of
the problem, which allows our model to refine its so-
lution to one sub-problem by exploiting what it has
learned about other parts of the problem. Second,
unlike (Lee et al., 1988; Garcia and Gish, 2006) in
which the number of sub-word units to be learned is
assumed to be known, our model learns the proper
size from the training data directly.

Instead of segmenting utterances, the authors
of (Varadarajan et al., 2008) trained a single state
HMM using all data at first, and then iteratively
split the HMM states based on objective functions.
This method achieved high performance in a phone
recognition task using a label-to-phone transducer
trained from some transcriptions. However, the per-
formance seemed to rely on the quality of the trans-
ducer. For our work, we assume no transcriptions
are available and measure the quality of the learned
acoustic units via a spoken query detection task as
in Jansen and Church (2011).

Jansen and Church (2011) approached the task of
unsupervised acoustic modeling by first discovering
repetitive patterns in the data, and then learned a
whole-word HMM for each found pattern, where the
state number of each HMM depends on the average
length of the pattern. The states of the whole-word
HMMs were then collapsed and used to represent
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acoustic units. Instead of discovering repetitive pat-
terns first, our model is able to learn from any given
data.

Unsupervised Speech Segmentation One goal
of our model is to segment speech data into
small sub-word (e.g., phone) segments. Most un-
supervised speech segmentation methods rely on
acoustic change for hypothesizing phone bound-
aries (Scharenborg et al., 2010; Qiao et al., 2008;
Dusan and Rabiner, 2006; Estevan et al., 2007).
Even though the overall approaches differ, these al-
gorithms are all one-stage and bottom-up segmenta-
tion methods (Scharenborg et al., 2010). Our model
does not make a single one-stage decision; instead, it
infers the segmentation through an iterative process
and exploits the learned sub-word models to guide
its hypotheses on phone boundaries.

Bayesian Model for Segmentation Our model is
inspired by previous applications of nonparametric
Bayesian models to segmentation problems in NLP
and speaker diarization (Goldwater, 2009; Fox et al.,
2011); particularly, we adapt the inference method
used in (Goldwater, 2009) to our segmentation task.
Our problem is, in principle, similar to the word seg-
mentation problem discussed in (Goldwater, 2009).
The main difference, however, is that our model
is under the continuous real value domain, and the
problem of (Goldwater, 2009) is under the discrete
symbolic domain. For the domain our problem is ap-
plied to, our model has to include more latent vari-
ables and is more complex.

3 Problem Formulation

The goal of our model, given a set of spoken utter-
ances, is to jointly learn the following:

e Segmentation: To find the phonetic boundaries
within each utterance.

e Nonparametric clustering: To find a proper set
of clusters and group acoustically similar seg-
ments into the same cluster.

e Sub-word modeling: To learn a HMM to model
each sub-word acoustic unit.

We model the three sub-tasks as latent variables
in our approach. In this section, we describe the ob-
served data, latent variables, and auxiliary variables
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Figure 1: An example of the observed data and hidden
variables of the problem for the word banana. See Sec-
tion 3 for a detailed explanation.

of the problem and show an example in Fig. 1. In
the next section, we show the generative process our
model uses to generate the observed data.

Speech Feature (zi) The only observed data for
our problem are a set of spoken utterances, which are
converted to a series of 25 ms 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCCs) (Davis
and Mermelstein, 1980) and their first- and second-
order time derivatives at a 10 ms analysis rate. We
use 75 € R3? to denote the " feature frame of the
ith utterance. Fig. 1 illustrates how the speech signal
of a single word utterance banana is converted to a
sequence of feature vectors x4 to z¢.

Boundary (b!) We use a binary variable b! to in-
dicate whether a phone boundary exists between z!
and z}_ ;. If our model hypothesizes z} to be the last
frame of a sub-word unit, which is called a boundary
frame in this paper, b is assigned with value 1; or 0
otherwise. Fig. 1 shows an example of the boundary
variables where the values correspond to the true an-
swers. We use an auxiliary variable gé to denote the
index of the ¢*" boundary frame in utterance i. To
make the derivation of posterior distributions easier
in Section 5, we define g to be the beginning of
an utterance, and L; to be the number of boundary
frames in an utterance. For the example shown in
Fig. 1, L; is equal to 6.
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Segment (p;'- i) We define a segment to be com-
posed of feature vectors between two boundary
frames. We use p; i to denote a segment that con-
sists' of :v;'., :c; 1t -zt and d; i to denote the length
of pj .. See Fig. 1 for more examples.

Cluster Label (c; ©)  We use c; . to specify the
cluster label of p; - We assume segment p; & 18 gen-
erated by the sub-word HMM with label ¢ ;..

HMM (0.) In our model, each HMM has three
emission states, which correspond to the beginning,
middle and end of a sub-word unit (Jelinek, 1976).
A traversal of each HMM must start from the first
state, and only left-to-right transitions are allowed
even though we allow skipping of the middle and
the last state for segments shorter than three frames.
The emission probability of each state is modeled by
a diagonal Gaussian Mixture Model (GMM) with 8
mixtures. We use 6. to represent the set of param-
eters that define the cth' HMM, which includes state
transition probability a?*, and the GMM parameters
of each state emission probability. We use w(’s € R,
Pes € R3Y and Ats € R3Y to denote the weight,
mean vector and the diagonal of the inverse covari-
ance matrix of the m!* mixture in the GMM for the
sth state in the ¢ HMM.

Hidden State (sé) Since we assume the observed
data are generated by HMMs, each feature vector,
:L'f;, has an associated hidden state index. We denote
the hidden state of x! as s.

Mixture ID (mi) Similarly, each feature vector is
assumed to be emitted by the state GMM it belongs
to. We use m} to identify the Gaussian mixture that
generates ..

4 Model

We aim to discover and model a set of sub-word
units that represent the spoken data. If we think of
utterances as sequences of repeated sub-word units,
then in order to find the sub-words, we need a model
that concentrates probability on highly frequent pat-
terns while still preserving probability for previously
unseen ones. Dirichlet processes are particulary
suitable for our goal. Therefore, we construct our
model as a Dirichlet Process (DP) mixture model,
of which the components are HMMs that are used
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b, — boundary variable

¥y — concentration parameter of DP
6, — base distribution of DP
a, — parameter of Bernoulli distribution

m — prior distribution for cluster labels

T “« ©
° d;;— duration of a segment
@ ¢;x— cluster label

T — total number of
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L — total number of segments
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8, — the index of the ¢" boundary
variable with value 1

6. — HMM parameters

e S, — hidden state
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Figure 2: The graphical model for our approach. The shaded circle denotes the observed feature vectors, and the
squares denote the hyperparameters of the priors used in our model. The dotted arrows indicate deterministic relations.
Note that the Markov chain structure over the s; variables is not shown here due to limited space.

to model sub-word units. We assume each spoken
segment is generated by one of the clusters in this
DP mixture model. Here, we describe the genera-
tive process our model uses to generate the observed
utterances and present the corresponding graphical
model. For clarity, we assume that the values of
the boundary variables b} are given in the genera-
tive process. In the next section, we explain how to
infer their values.

Let p* ;
pgé‘*‘lvgfﬁ—l
ments of the it utterance. Our model assumes each

segment is generated as follows:

for 0 < ¢ < L; — 1 be the seg-

1. Ch luster label ¢!, . . forp’, . . .
Choose a cluster labe cgéH’g;+1 0 pgéH’g;+1
This cluster label can be either an existing la-
bel or a new one. Note that the cluster label
determines which HMM is used to generate the

segment.

2. Given the cluster label, choose a hidden state
for each feature vector x; in the segment.

3. For each z, based on its hidden state, choose a
mixture from the GMM of the chosen state.

4. Use the chosen Gaussian mixture to generate
the observed feature vector zj.

The generative process indicates that our model
ignores utterance boundaries and views the entire
data as concatenated spoken segments. Given this
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viewpoint, we discard the utterance index, ¢, of all
variables in the rest of the paper.

The graphical model representing this generative
process is shown in Fig. 2, where the shaded circle
denotes the observed feature vectors, and the squares
denote the hyperparameters of the priors used in our
model. Specifically, we use a Bernoulli distribution
as the prior of the boundary variables and impose
a Dirichlet process prior on the cluster labels and
the HMM parameters. The dotted arrows represent
deterministic relations. For example, the boundary
variables deterministically construct the duration of
each segment, d, which in turn sets the number of
feature vectors that should be generated for a seg-
ment. In the next section, we show how to infer the
value of each of the latent variables in Fig. 2.

5 Inference

We employ Gibbs sampling (Gelman et al., 2004)
to approximate the posterior distribution of the hid-
den variables in our model. To apply Gibbs sam-
pling to our problem, we need to derive the condi-
tional posterior distributions of each hidden variable
of the model. In the following sections, we first de-
rive the sampling equations for each hidden variable
and then describe how we incorporate acoustic cues
to reduce the sampling load at the end.

'Note that the value of 7 is irrelevant to our problem; there-
fore, it is integrated out in the inference process



5.1 Sampling Equations

Here we present the sampling equations for each
hidden variable defined in Section 3. We use
P(-]--+) to denote a conditional posterior probabil-
ity given observed data, all the other variables, and
hyperparameters for the model.

Cluster Label (c; ;) Let C be the set of distinctive
label values in c_; ., which represents all the cluster
labels except c¢; ;. The conditional posterior proba-
bility of ¢; s, for c € C'is:

P(cjr=c|--+) o< Pcjk = cle—jk;7)P(pjklfe)
(c)
= Nfimp(pj,kygc) (1)
where + is a parameter of the DP prior. The first line
of Eq. 1 follows Bayes’ rule. The first term is the
conditional prior, which is a result of the DP prior
imposed on the cluster labels 2. The second term is
the conditional likelihood, which reflects how likely
the segment p; 1. is generated by HMM... We use n(©
to represent the number of cluster labels in c_ ;. tak-
ing the value c and N to represent the total number
of segments in current segmentation.

In addition to existing cluster labels, ¢; 5 can also
take a new cluster label, which corresponds to a new
sub-word unit. The corresponding conditional pos-
terior probability is:

P(Cj,k#cacec\“')fxm

)
To deal with the integral in Eq. 2, we follow the
suggestions in (Rasmussen, 2000; Neal, 2000). We
sample an HMM from the prior and compute the
likelihood of the segment given the new HMM to
approximate the integral.
Finally, by normalizing Eq. 1 and Eq. 2, the Gibbs
sampler can draw a new value for c;; by sampling
from the normalized distribution.

Hidden State (s;) To enforce the assumption that
a traversal of an HMM must start from the first state
and end at the last state’, we do not sample hidden
state indices for the first and the last frame of a seg-
ment. For each of the remaining feature vectors in

2See (Neal, 2000) for an overview on Dirichlet process mix-
ture models and the inference methods.
3If a segment has only 1 frame, we assign the first state to it.
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7 /9 P(p; 110) d8

a segment p; x, we sample a hidden state index ac-
cording to the conditional posterior probability:

P(sg =8| ) x
P(st = s|st—1)P(xt|0c; ., st = 8)P(St+1]5t = )
s)az et (3)

— 45t—1,8 —
= acj,k ’ P(xt|06j’k78t = ik

where the first term and the third term are the condi-
tional prior — the transition probability of the HMM
that p; ;. belongs to. The second term is the like-
lihood of z; being emitted by state s of HMM,, , .
Note for initialization, s; is sampled from the first
prior term in Eq. 3.

Mixture ID (m;) For each feature vector in a seg-
ment, given the cluster label c¢; ;, and the hidden state
index sy, the derivation of the conditional posterior
probability of its mixture ID is straightforward:

x P(my = m|90j’k, st)P(:pthj,k, St,my = m)

)\Zz,k ,St ) (4)

where 1 < m < 8. The conditional posterior con-
sists of two terms: 1) the mixing weight of the m‘*
Gaussian in the state GMM indexed by c; and s;
and 2) the likelihood of z; given the Gaussian mix-
ture. The sampler draws a value for m; from the
normalized distribution of Eq. 4.

J— m m
- ij’k,StP(‘(I;t ‘lu’Cj’k,St )

HMM Parameters (0.) Each 0. consists of two
sets of variables that define an HMM: the state emis-
sion probabilities we', fi¢'s, Ar's and the state transi-

tion probabilities a>*. In the following, we derive
the conditional posteriors of these variables.

Mixture Weight w(’;: We use w,, = {w{}|1 <
m < 8} to denote the mixing weights of the Gaus-
sian mixtures of state s of HMM c. We choose a
symmetric Dirichlet distribution with a positive hy-
perparameter ( as its prior. The conditional poste-
rior probability of w,  is:

P(wc,s| o ) X P(Mc,s; B)P(mas‘!c,s)
X Dir(wc,s; /B)MU’Z (m075; wc,s)

oc Dir(w, g; ARG

where m_ ; is the set of mixture IDs of feature vec-

tors that belong to state s of HMM ¢. The m*" entry
of 3'is B+ ., em, . 0(me, m), where we use 0(-)
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Figure 3: The full derivation of the relative conditional posterior probabilities of a boundary variable.

to denote the discrete Kronecker delta. The last line
of Eq. 5 comes from the fact that Dirichlet distribu-
tions are a conjugate prior for multinomial distribu-
tions. This property allows us to derive the update
rule analytically.

Gaussian Mixture ;07, A\%;: We assume the di-
mensions in the feature space are independent. This
assumption allows us to derive the conditional pos-
terior probability for a single-dimensional Gaussian
and generalize the results to other dimensions.

Let the d* entry of 4, and A, be s and
)\ngd. The conjugate prior we use for the two vari-
ables is a normal-Gamma distribution with hyperpa-
rameters [, Ko, g and Gy (Murphy, 2007).

P(/‘L’Zféda AZE%MO? Ko, @0, 60)
= N (ug o, (koAZ5") ™) Ga(AZ: oo, Bo)

By tracking the d* dimension of feature vectors
x € {xylmy = m, sy = S,¢j ) = ¢, x4 € Pk}, We
can derive the conditional posterior distribution of
(5" and A7 analytically following the procedures
shown in (Murphy, 2007). Due to limited space,
we encourage interested readers to find more details
in (Murphy, 2007).

Transition Probabilities ac"k: We represent the
transition probabilities at state j in HMM c using az.
If we view a’. as mixing weights for states reachable
from state j, we can simply apply the update rule
derived for the mixing weights of Gaussian mixtures
shown in Eq. 5 to a’. Assume we use a symmetric
Dirichlet distribution with a positive hyperparameter

7 as the prior, the conditional posterior for a. is:

P(dl|-+)  Dir(al;n')
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where the k" entry of 7/ is n + n?*, the number
of occurrences of the state transition pair (j, k) in
segments that belong to HMM c.

Boundary Variable (b;) To derive the conditional
posterior probability for b;, we introduce two vari-
ables:

| = (argmaxg, <t)+1
9q
r=argmint < g,
9q

where [ is the index of the closest turned-on bound-
ary variable that precedes b; plus 1, while r is the in-
dex of the closest turned-on boundary variable that
follows b;. Note that because gg and g, are defined,
[ and 7 always exist for any b;.

Note that the value of b; only affects segmentation
between z; and x,.. If b; is turned on, the sampler hy-
pothesizes two segments p;; and p; 1, between z;
and z,.. Otherwise, only one segment p; , is hypoth-
esized. Since the segmentation on the rest of the data
remains the same no matter what value b; takes, the
conditional posterior probability of b; is:

P(by =1|---) < P(p1t, Pig1,]c,0)  (6)
P(by =0|---) < P(p,|c”,0) (7

where we assume that the prior probabilities for
by = 1 and b; = 0 are equal; ¢~ is the set of cluster
labels of all segments except those between x; and
z, ; and O indicates the set of HMMs that have as-
sociated segments. Our Gibbs sampler hypothesizes
b;’s value by sampling from the normalized distribu-
tion of Eq. 6 and Eq. 7. The full derivations of Eq. 6
and Eq. 7 are shown in Fig. 3.

Note that in Fig. 3, N~ is the total number of seg-
ments in the data except those between z; and x,.




For b; = 1, to account the fact that when the model
generates p;y1.,, pi¢ is already generated and owns
a cluster label, we sample a cluster label for p; ; that
is reflected in the Kronecker delta function. To han-
dle the integral in Fig. 3, we sample one HMM from
the prior and compute the likelihood using the new
HMM to approximate the integral as suggested in
(Rasmussen, 2000; Neal, 2000).

5.2 Heuristic Boundary Elimination

To reduce the inference load on the boundary vari-
ables b, we exploit acoustic cues in the feature space
to eliminate b;’s that are unlikely to be phonetic
boundaries. We follow the pre-segmentation method
described in Glass (2003) to achieve the goal. For
the rest of the boundary variables that are proposed
by the heuristic algorithm, we randomly initialize
their values and proceed with the sampling process
described above.

6 Experimental Setup

To the best of our knowledge, there are no stan-
dard corpora for evaluating unsupervised methods
for acoustic modeling. However, numerous related
studies have reported performance on the TIMIT
corpus (Dusan and Rabiner, 2006; Estevan et al.,
2007; Qiao et al., 2008; Zhang and Glass, 2009;
Zhang et al., 2012), which creates a set of strong
baselines for us to compare against. Therefore, the
TIMIT corpus is chosen as the evaluation set for
our model. In this section, we describe the methods
used to measure the performance of our model on
the following three tasks: sub-word acoustic model-
ing, segmentation and nonparametric clustering.

Unsupervised Segmentation We compare the
phonetic boundaries proposed by our model to the
manual labels provided in the TIMIT dataset. We
follow the suggestion of (Scharenborg et al., 2010)
and use a 20-ms tolerance window to compute re-
call, precision rates and F-score of the segmentation
our model proposed for TIMIT’s training set. We
compare our model against the state-of-the-art un-
supervised and semi-supervised segmentation meth-
ods that were also evaluated on the TIMIT training
set (Dusan and Rabiner, 2006; Qiao et al., 2008).

Nonparametric Clustering Our model automat-
ically groups speech segments into different clus-
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ters. One question we are interested in answering
is whether these learned clusters correlate to En-
glish phones. To answer the question, we develop
a method to map cluster labels to the phone set in
a dataset. We align each cluster label in an utter-
ance to the phone(s) it overlaps with in time by
using the boundaries proposed by our model and
the manually-labeled ones. When a cluster label
overlaps with more than one phone, we align it
to the phone with the largest overlap.* We com-
pile the alignment results for 3696 training utter-
ances> and present a confusion matrix between the
learned cluster labels and the 48 phonetic units used
in TIMIT (Lee and Hon, 1989).

Sub-word Acoustic Modeling Finally, and most
importantly, we need to gauge the quality of the
learned sub-word acoustic models. In previous
work, Varadarajan et al. (2008) and Garcia and
Gish (2006) tested their models on a phone recog-
nition task and a term detection task respectively.
These two tasks are fair measuring methods, but per-
formance on these tasks depends not only on the
learned acoustic models, but also other components
such as the label-to-phone transducer in (Varadara-
jan et al., 2008) and the graphone model in (Garcia
and Gish, 2006). To reduce performance dependen-
cies on components other than the acoustic model,
we turn to the task of spoken term detection, which
is also the measuring method used in (Jansen and
Church, 2011).

We compare our unsupervised acoustic model
with three supervised ones: 1) an English triphone
model, 2) an English monophone model and 3) a
Thai monophone model. The first two were trained
on TIMIT, while the Thai monophone model was
trained with 32 hour clean read Thai speech from
the LOTUS corpus (Kasuriya et al., 2003). All
of the three models, as well as ours, used three-
state HMMs to model phonetic units. To conduct
spoken term detection experiments on the TIMIT
dataset, we computed a posteriorgram representa-
tion for both training and test feature frames over the

“Except when a cluster label is mapped to /vel/ /b/, /vl /g/
and /vcl/ /d/, where the duration of the release /b/, /g/, /d/ is
almost always shorter than the closure /vcl/. In this case, we
align the cluster label to both the closure and the release.

5The TIMIT training set excluding the sa-type subset.
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Table 1: The values of the hyperparameters of our model,
where p? and A¢ are the d'" entry of the mean and the
diagonal of the inverse covariance matrix of training data.

HMM states for each of the four models. Ten key-
words were randomly selected for the task. For ev-
ery keyword, spoken examples were extracted from
the training set and were searched for in the test set
using segmental dynamic time warping (Zhang and
Glass, 2009).

In addition to the supervised acoustic models,
we also compare our model against the state-of-
the-art unsupervised methods for this task (Zhang
and Glass, 2009; Zhang et al., 2012). Zhang and
Glass (2009) trained a GMM with 50 components
to decode posteriorgrams for the feature frames, and
Zhang et al. (2012) used a deep Boltzmann machine
(DBM) trained with pseudo phone labels generated
from an unsupervised GMM to produce a posteri-
orgram representation. The evaluation metrics they
used were: 1) P@N, the average precision of the top
N hits, where N is the number of occurrences of each
keyword in the test set; 2) EER: the average equal er-
ror rate at which the false acceptance rate is equal to
the false rejection rate. We also report experimental
results using the P@N and EER metrics.

Hyperparameters and Training Iterations The
values of the hyperparameters of our model are
shown in Table 1, where ¢ and A¢ are the d'" en-
try of the mean and the diagonal of the inverse co-
variance matrix computed from training data. We
pick these values to impose weak priors on our
model.® We run our sampler for 20,000 iterations,
after which the evaluation metrics for our model all
converged. In Section 7, we report the performance
of our model using the sample from the last iteration.

7 Results

Fig. 4 shows a confusion matrix of the 48 phones
used in TIMIT and the sub-word units learned from
3696 TIMIT utterances. Each circle represents a
mapping pair for a cluster label and an English
phone. The confusion matrix demonstrates a strong

%In the future, we plan to extend the model and infer the
values of these hyperparameters from data directly.
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Figure 4: A confusion matrix of the learned cluster labels
from the TIMIT training set excluding the sa type utter-
ances and the 48 phones used in TIMIT. Note that for
clarity, we show only pairs that occurred more than 200
times in the alignment results. The average co-occurrence
frequency of the mapping pairs in this figure is 431.

correlation between the cluster labels and individ-
ual English phones. For example, clusters 19, 20
and 21 are mapped exclusively to the vowel /ae/. A
more careful examination on the alignment results
shows that the three clusters are mapped to the same
vowel in a different acoustic context. For example,
cluster 19 is mapped to /ae/ followed by stop conso-
nants, while cluster 20 corresponds to /ae/ followed
by nasal consonants. This context-dependent rela-
tionship is also observed in other English phones
and their corresponding sets of clusters. Fig. 4 also
shows that a cluster may be mapped to multiple En-
glish phones. For instance, clusters 85 and 89 are
mapped to more than one phone; nevertheless, a
closer look reveals that these clusters are mapped to
/n/, /d/ and /b/, which are sounds with a similar place
of articulation (i.e. labial and dental). These corre-
lations indicate that our model is able to discover the
phonetic composition of a set of speech data without
any language-specific knowledge.

The performance of the four acoustic models on
the spoken term detection task is presented in Ta-
ble 2. The English triphone model achieves the best
P@N and EER results and performs slightly bet-
ter than the English monophone model, which indi-
cates a correlation between the quality of an acous-
tic model and its performance on the spoken term
detection task. Although our unsupervised model
does not perform as well as the supervised English



unit(%) P@N | EER
English triphone 759 | 11.7
English monophone | 74.0 | 11.8
Thai monophone 56.6 | 14.9
Our model 63.0 | 16.9

Table 2: The performance of our model and three super-
vised acoustic models on the spoken term detection task.

acoustic models, it generates a comparable EER and
a more accurate detection performance for top hits
than the Thai monophone model. This indicates that
even without supervision, our model captures and
learns the acoustic characteristics of a language au-
tomatically and is able to produce an acoustic model
that outperforms a language-mismatched acoustic
model trained with high supervision.

Table 3 shows that our model improves P@N by
a large margin and generates only a slightly worse
EER than the GMM baseline on the spoken term
detection task. At the end of the training process,
our model induced 169 HMMs, which were used to
compute posteriorgrams. This seems unfair at first
glance because Zhang and Glass (2009) only used
50 Gaussians for decoding, and the better result of
our model could be a natural outcome of the higher
complexity of our model. However, Zhang and
Glass (2009) pointed out that using more Gaussian
mixtures for their model did not improve their model
performance. This indicates that the key reason for
the improvement is our joint modeling method in-
stead of simply the higher complexity of our model.

Compared to the DBM baseline, our model pro-
duces a higher EER; however, it improves the rel-
ative detection precision of top hits by 24.3%. As
indicated in (Zhang et al., 2012), the hierarchical
structure of DBM allows the model to provide a
descent posterior representation of phonetic units.
Even though our model only contains simple HMMs
and Gaussians, it still achieves a comparable, if not
better, performance as the DBM baseline. This
demonstrates that even with just a simple model
structure, the proposed learning algorithm is able
to acquire rich phonetic knowledge from data and
generate a fine posterior representation for phonetic
units.

Table 4 summarizes the segmentation perfor-
mance of the baselines, our model and the heuristic
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unit(%) P@N | EER
GMM (Zhang and Glass, 2009) | 52.5 | 16.4
DBM (Zhang et al., 2012) 51.1 | 147
Our model 63.0 | 16.9

Table 3: The performance of our model and the GMM
and DBM baselines on the spoken term detection task.

unit(%) Recall | Precision | F-score
Dusan (2006) 75.2 66.8 70.8
Qiao et al. (2008)* | 77.5 76.3 76.9
Our model 76.2 76.4 76.3
Pre-seg 87.0 50.6 64.0

Table 4: The segmentation performance of the baselines,
our model and the heuristic pre-segmentation on TIMIT
training set. *The number of phone boundaries in each
utterance was assumed to be known in this model.

pre-segmentation (pre-seg) method. The language-
independent pre-seg method is suitable for seeding
our model. It eliminates most unlikely boundaries
while retaining about 87% true boundaries. Even
though this indicates that at best our model only
recalls 87% of the true boundaries, the pre-seg re-
duces the search space significantly. In addition,
it also allows the model to capture proper phone
durations, which compensates the fact that we do
not include any explicit duration modeling mecha-
nisms in our approach. In the best semi-supervised
baseline model (Qiao et al., 2008), the number of
phone boundaries in an utterance was assumed to
be known. Although our model does not incorpo-
rate this information, it still achieves a very close
F-score. When compared to the baseline in which
the number of phone boundaries in each utterance
was also unknown (Dusan and Rabiner, 2006), our
model outperforms in both recall and precision, im-
proving the relative F-score by 18.8%. The key dif-
ference between the two baselines and our method
is that our model does not treat segmentation as a
stand-alone problem; instead, it jointly learns seg-
mentation, clustering and acoustic units from data.
The improvement on the segmentation task shown
by our model further supports the strength of the
joint learning scheme proposed in this paper.

8 Conclusion

We present a Bayesian unsupervised approach to the
problem of acoustic modeling. Without any prior



knowledge, this method is able to discover phonetic
units that are closely related to English phones, im-
prove upon state-of-the-art unsupervised segmenta-
tion method and generate more precise spoken term
detection performance on the TIMIT dataset. In the
future, we plan to explore phonological context and
use more flexible topological structures to model
acoustic units within our framework.
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Abstract

Conventional Automated Essay Scoring
(AES) measures may cause severe problems
when directly applied in scoring Automatic
Speech Recognition (ASR) transcription
as they are error sensitive and unsuitable
for the characteristic of ASR transcription.
Therefore, we introduce a framework of
Finite State Transducer (FST) to avoid the
shortcomings. Compared with the Latent
Semantic Analysis with Support Vector
Regression (LSA-SVR) method (stands for
the conventional measures), our FST method
shows better performance especially towards
the ASR transcription. In addition, we apply
the synonyms similarity to expand the FST
model. The final scoring performance reaches
an acceptable level of 0.80 which is only 0.07
lower than the correlation (0.87) between
human raters.

1 Introduction

The assessment of learners’ language abilities is a
significant part in language learning. In conven-
tional assessment, the problem of limited teach-
er availability has become increasingly serious
with the population increase of language learn-
ers. Fortunately, with the development of com-
puter techniques and machine learning techniques
(natural language processing and automatic speech
recognition), Computer-Assisted Language Learn-
ing (CALL) systems help people to learn language
by themselves.

One form of CALL is evaluating the speech of
the learner. Efforts in speech assessment usually fo-
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cus on the integrality, fluency, pronunciation, and
prosody (Cucchiarini et al., 2000; Neumeyer et al.,
2000; Maier et al., 2009; Huang et al., 2010) of the
speech, which are highly predictable like the exam
form of the read-aloud text passage. Another form
of CALL is textual assessment. This work is also
named AES. Efforts in this area usually focus on the
content, arrangement and language usage (Landauer
et al., 2003; Ishioka and Kameda, 2004; Kakkonen
et al., 2005; Attali and Burstein, 2006; Burstein et
al., 2010; Persing et al., 2010; Peng et al., 2010; At-
tali, 2011; Yannakoudakis et al., 2011) of the text
written by the learner under a certain form of exam-
ination.

In this paper, our evaluation objects are the oral
English picture compositions in English as a Sec-
ond Language (ESL) examination. This examina-
tion requires students to talk about four successive
pictures with at least five sentences in one minute,
and the beginning sentence is given. This examina-
tion form combines both of the two forms described
above. Therefore, we need two steps in the scoring
task. The first step is Automatic Speech Recognition
(ASR), in which we get the speech scoring features
as well as the textual transcriptions of the speech-
es. Then, the second step could grade the text-free
transcription in an (conventional) AES system. The
present work is mainly about the AES system un-
der the certain situation as the examination grading
criterion is more concerned about the integrated con-
tent of the speech (the reason will be given in sub-
section 3.1).

There are many features and techniques which
are very powerful in conventional AES systems, but
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applying them in this task will cause two differen-
t problems as the scoring objects are the ASR out-
put results. The first problem is that the inevitable
recognition errors of the ASR will affect the perfor-
mance of the feature extractions and scoring system.
The second problem is caused by the special charac-
teristic of the ASR result. As all these methods are
designed under the normal AES situation that they
are not suitable for the characteristic.

The impact of the first problem can be reduced
by either perfecting the results of the ASR system or
building the AES system which is not sensitive to the
ASR errors. Improving the performance of the ASR
is not what we concern about, so building an error
insensitive AES system is what we care about in this
paper. This makes many conventional features no
longer useful in the AES system, such as spelling
errors, punctuation errors and even grammar errors.

The second problem is caused by applying the
bag-of-words (BOW) techniques to score the ASR
transcription. The BOW are very useful in measur-
ing the content features and are usually robust even
if there are some errors in the scoring transcription.
However, the robustness would not exist anymore
because of the characteristic of the ASR result. It is
known that better performance of ASR (reduce the
word error rate in ASR) usually requires a strong
constrain Language Model (LM). It means that more
meaningless parts of the oral speeches would be rec-
ognized as the words quite related to the topic con-
tent. These words will usually be the key words in
the BOW methods, which will lead to a great distur-
brance for the methods. Therefore, the conventional
BOW methods are no longer appropriate because of
the characteristic of the ASR result.

To tackle the two problems described above, we
apply the FST (Mohri, 2004). As the evaluating ob-
jects are from an oral English picture composition
examination, it has two important features that make
the FST algorithm quite suitable.

e Picture composition examinations require stu-
dents to speak according to the sequence of the
pictures, so there is strong sequentiality in the
speech.

e The sentences for describing the same picture
are very identical in expression, so there is a
hierarchy between the word sequences in the
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sentences (the expression) and the sense for the
same picture.

FST is designed to describe a structure mapping
two different types of information sequences. It is
very useful in expressing the sequences and the hi-
erarchy in picture composition. Therefore, we build
a FST-based model to extract features related to the
transcription assessment in this paper. As the FST-
based model is similar to the BOW metrics, it is also
an error insensitive model. In this way, the impact of
the first problem could be reduced. The FST model
is very powerful in delivering the sequence informa-
tion that a meaningless sequence of words related to
the topic content will get low score under the mod-
el. Therefore, it works well concerning the second
problem. In a word, the FST model can not only be
insensitive to the recognition error in the ASR sys-
tem, but also remedy the weakness of BOW methods
in ASR result scoring.

In the remainder of the paper, the related work of
conventional AES methods is addressed in section 2.
The details of the speech corpus and the examination
grading criterion are introduced in section 3. The
FST model and its improved method are proposed
in section 4. The experiments and the results are
presented in section 5. The final section presents the
conclusion and future work.

2 Related Work

Conventional AES systems usually exploit textual
features to assess the quality of writing mainly in
three different facets: the content facet, the arrange-
ment facet and the language usage facet. In the con-
tent facet, many existing BOW techniques have been
applied, such as the content vector analysis (Attal-
1 and Burstein, 2006; Attali, 2011) and the LSA to
reduce the dimension of content vector (Landauer et
al., 2003; Ishioka and Kameda, 2004; Kakkonen et
al., 2005; Peng et al., 2010). In arrangement facet,
Burstein et al. (2010) modeled the coherence in s-
tudent essays, while Persing et al. (2010) modeled
the organization. In language usage facet, grammar,
spelling and punctuation are common features in as-
sessment of the writing competence (Landauer et al.,
2003; Attali and Burstein, 2006), and so does the di-
versity of words and clauses (Lonsdale and Strong-
Krause, 2003; Ishioka and Kameda, 2004). Besides



Grading levels Content Integrity Acoustic
(18-20) Describe the information in the four pictures with proper elaboration Perfect
(15-17)  passed Describe all the information in all of the four pictures Good
(12-14) Describe most of the information in all of the four pictures Allow errors

(9-11) Describe most of the information in the pictures, but lose about 1 or 2 pictures

(6-8) . Describe some of the information in the pictures, but lose about 2 or 3 pictures _
failed et o .

(3-5) Describe little information in the four pictures

(0-2) Describe some words related to the four pictures

Table 1: Criterion of Grading

the textual features, many methods are also proposed
to evaluate the quality. The cosine similarity is one
of the most common used similarity measures (Lan-
dauer et al., 2003; Ishioka and Kameda, 2004; Attali
and Burstein, 2006; Attali, 2011). Also, the regres-
sion or the classification method is a good choice for
scoring (Rudner and Liang, 2002; Peng et al., 2010).
The rank preference techniques show excellent per-
formance in grading essays (Yannakoudakis et al.,
2011). Chen et al. (2010) proposed an unsupervised
approach to AES.

As our work concerns more about the content in-
tegrity, we applied the LSA-SVR approach (Peng et
al., 2010) as the contrast experiment, which is very
effective and robust. In the LSA-SVR method, each
essay transcription is represented by a latent seman-
tic space vector, which is regarded as the features in
the SVR model. The LSA (Deerwester et al., 1990)
considers the relations between the dimensions in
conventional vector space model (VSM) (Salton et
al., 1975), and it can order the importance of each di-
mension in the Latent Semantic Space (LSS). There-
fore, it is useful in reducing the dimensions of the
vector by truncate the high dimensions. The sup-
port vector machine can be performed for the func-
tion estimation (Smola and Schoélkopf, 2004). The
LSA-SVR method takes the LSS vector as the fea-
ture vector, and applies the SVR for the training da-
ta to obtain the SVR model. Each test transcription
represented by the LSS vector can be scored by the
model.

3 Data

As characteristics of the data determine the effec-
tiveness of our methods, the details of it will be in-
troduced first. Our experimental data is acquired in
an oral English examination for ESL students. Three
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score >0 >12 >15 >18
WER(%) 58.86 50.58 4556 36.36
MR(%) 72.88 74.03 7570 78.45

Table 2: WER and MR of ASR result

classes of students participated in the exam and 417
valid speeches are obtained in the examination. As
the paper mainly focuses on scoring the text tran-
scriptions, we have two ways to obtain them. One
is manually typing the text transcriptions which we
regarded as the Correct Recognition Result (CRR)
transcription, and another is the ASR result which
we named ASR transcription. We use the HTK (Y-
oung et al., 2006), which stands for the state of art
in speech recognition, to build the ASR system.

To better reveal the differences of the methods’
performance, all the experiments will be done in
both transcriptions. A better understanding of the
difference in the CRR transcription and the ASR
transcription from the low score to the high score
is shown in Table 2, where WER is the word error
rate and MR is the match rate which is the words’
correct rate.

3.1 Criterion of Grading

According to the Grading Criterion of the exami-
nation, the score of the examination ranges from 0
to 20, and the grading score is divided into 7 levels
with 3 points’ interval for each level. The criterion
mainly concerns about two facets of the speech: the
acoustic level and the content integrity. The details
of the criterion are shown in Table 1. The criterion
indicates that the integrity is the most important part
in rating the speech. The acoustic level only work-
s well in excellent speeches (Huang et al., 2010).
Therefore, this paper mainly focuses on the integrity



Correlation R1 R2 R3 ES oC
R1 - 0.8966 0.8557 0.9620 0.9116
R2 - - 0.8461 0.9569 0.9048
R3 - - - 0.9441 0.8739
Average 0.8661 0.9543  0.8968

Table 3: Correlations of Human Scores
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Figure 1: Distribution of Final Expert Scores

of content. The acoustic level as well as other levels
such as grammar errors is ignored. Because the cri-
terion is almost based on the content, our methods
obtain good performance although we ignore some
features.

3.2 Human Score Correlation and Distribution

Each speech in our experiments was scored by three
raters. Therefore, we have three scores for each
speech. The final expert score is the average of these
three scores. The correlations between human s-
cores are shown in Table 3.

R1, R2, and R3 stand for the three raters, and ES
is the final expert score. The Open Correlation (OC)
is the correlation between human rater scores and
the final scores, which are not related to the human
scores themselves (average of the other two scores).

As most students are supposed to pass the ex-
amination, the expert scores are mostly distributed
above 12 points, as shown in Figure 1. In the range
of the pass score, the distribution is close to normal
distribution, while in the range of failed score except
0, the distribution is close to uniform distribution.

4 Approach

The approach used in this paper is to build a standard
FST for the current examination topic. However,
the annotation of the corpus is necessary before the
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Figure 2: Distribution of Sentence Labels

building. After the annotation and the building, the
features are extracted based on the FST. The auto-
mated machine score is computed from the features
at last. Therefore, subsection 4.1 will show the cor-
pus annotation, subsection 4.2 will introduce how to
build the standard FST of the current topic, and sub-
sections 4.3 and 4.4 will discuss how to extract the
features, at last, an improved method is proposed in
subsection 4.5.

4.1 Corpus Annotation

The definitions of the sequences and hierarchy in
the corpus will be given before we apply the FST
algorithm. According to the characteristics of the
picture composition examination, each composition
can be held as an orderly combination of the senses
of pictures. The senses of pictures are called sense-
groups here. We define a sense-group as one sen-
tence either describing the same one or two pictures
or elaborating on the same pictures. The descrip-
tion sentence is labeled with a tag ‘m’(main sense of
the picture) and the elaboration one is labeled with
‘s’(subordinate sense of the picture). The first giv-
en sentence in the examination is labeled with Om
and the other describing sentences for the 1 to 4 pic-
tures are labeled with 1m to 4m, while the elabo-
ration ones for the 4 pictures are labeled with 1s to
4s. Therefore, each sentence in the composition is
labeled as a sense-group. For the entire 417 CRR
transcriptions, we manually labeled 274 transcrip-
tions whose scores are higher than 15 points. We
gained 8 types of labels from the manually labeled
results. They are Om, 1m, 2m, 3m, 34m (one sen-
tence describes both of the third and the fourth pic-
tures), 4m, 2s and 4s. Other labels were discarded
for the number of their appearance is very low. The
distribution of sentences with each label is shown in
Figure 2. There are 1679 sentences in the 274 CRR



L first type
N
sense-group unite R——
sequences
{
\/\\
—

sentences with
same

S
words to
lcompose | sense-groups FST

third type

sense-group

sentences with
same
sense-group
lab;

second type

Figure 3: FST Building

transcriptions and 1667 are labeled in the eight sym-
bols.

4.2 FST Building

In this paper, we build three types of FST to extract
scoring features with the help of openFST tool (Al-
lauzen et al., 2007). The first is the sense-group F-
ST, the second is the words to each sense-group FST
and the last is the words to all the sense-groups FST.
They are shown in Figure 3.

The definition of the sense-group has been giv-
en in subsection 4.1. The sense-group FST can de-
scribe all the possible proper sense-group sequences
of the current picture composition topic. It is also
an acceptor trained from the labeled corpus. We use
manually labeled corpus, which are the sequences
of sense-groups of the CRR transcriptions with ex-
pert scores higher than 15 points, to build the sense-
group FST. In the process, each CRR transcription
sense-group sequence is a simple sense-group FST.
Later, we unite these sense-group FSTs to get the
final FST which considers every situation of sense-
group sequences in the train corpus. Also, we use
the operation of “determinize” and “minimize” in
openFST to optimize the final sense-group FST that
its states have no same input label and is a smallest
FST.

The second type is the words to sense-group F-
ST. It determines what word sequence input will re-
sult in what sense-group output. With the help of
these FSTs, we can find out how students use lan-
guage to describe a certain sense-group, or in other
words, a certain sense-group is usually constructed
with what kind of word sequence. All the differ-
ent sentences with their sense-group labels are tak-
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en from the train corpus. We regard each sentence
as a simple words to sense-group FST, and then u-
nite these FSTs which have the same sense-group la-
bel. The final union FSTs can transform proper word
sequence into the right sense-group. Like building
the sense-group FST, the optimization operations of
”determinize” and “minimize” are also done for the
FSTs.

The last type of FST is a words to sense-groups
FST. We can also treat it as a words FSA, because
any word sequence accepted by the words to sense-
groups FST is considered to be an integrated com-
position. Meanwhile, it can transform the word se-
quence into the sense-group label sequence which
is very useful in extracting the scoring features (de-
tails will be presented in subsection 4.4). The F-
ST is built from the other two types of FST that we
made before. We compute the composition of all the
words to each sense-group FSTs (the second type)
and the sense-group FST (the first type) with the op-
erations of “compose” in openFST. Then, the com-
position result is the words to sense-groups FST, the
third type of FST in this paper.

4.3 Search for the Best Path in FST

Now we have successfully built the words to sense-
groups FST, the third type described above. Just like
the similarity methods mentioned in section 2 can
score essays from a have-been-scored similar essay,
we need to find the best path, which is closest to
the to-be-scored transcription, in the FST. Here, we
apply the edit distance to measure how best the path
is. This means the best path is the word sequence
path in the FST which has the smallest edit distance
compared with the to-be-scored transcription’s word
sequences .

Here, we modify the Wagner-Fischer algorithm
(Wagner and Fischer, 1974), which is a Dynamic
Programming (DP) algorithm, to quest the best path
in the FST. A simple example is illustrated in Figure
4. The best path can be described as

path = arg minE Dcost(path, transcription) (1)
pathée
allpath

EDcost = ins + del + sub 2)

EDcost is the edit distance from the transcription to
the paths which start at state O and end at the end



compared sentence: after eating a banana

phrase one phrase two H
phrase three
phrase four
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Figure 4: Search the Best Path in the FST by DP

state. The DP process can be described by equation

(3):

min EDcost(i) = argmin (min EDcost(j) + cost(j,1))
J

3
The minEDcost(j) is the accumulated minimum ed-
it distance from state O to state j, and the cost(i,]) is
the cost of insertion, deletion or substitution from s-
tate j to state i. The equation means the minED of
state i can be computed by the accumulated minED-
cost of state j in the phase p. The state j belongs to
the have-been-calculated state set { Xo,...,X,_1}in
phase p. In phrase p, we compute the best path and
its edit distance from the transcription for all the to-
be-calculated states which is the X}, shown in Fig-
ure 4. After computing all the phrases, the best path
and its edit distances of the end states are obtained.
Then the final best path is the one with the smallest
edit distance.

4.4 Feature Extraction

After building the FST and finding the best path
for the to-be-scored transcription, we can extrac-
t some effective features from the path information
and the transcription. Inspired by the similarity s-
coring measures, our proposed features represent the
similarity between the best path’s word sequence
and the to-be-scored transcription.

The features used for the scoring model are as fol-
lows:

e The Edit Distance (ED):

The edit distance is the linear combination of
the weights of insertion, deletion and substi-
tution. The relation is shown in equation (2),
where ins, del and sub are the appearance times
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of insertions, deletions and substitutions, re-
spectively. Normally, we set the cost of each
to be 1.

The Normalized Edit Distance(NED):

The NED is the ED normalized with the tran-
scription’s length.

NEDcost = EDcost/length )
The Match Number(MN):

The match number is the number of words
matched between the best path and the tran-
scription.

The Match Rate(MR):

The match rate is the match number normalized
with the transcription’s length.

MR = MN/length 5)
The Continuous Match Value(CMYV):

Continuous match should be better than the
fragmentary match, so a higher value is given
for the continuous situation.

CMV =Y OM+2Y SM+3) LM (6)

where OM (One Match) is the fragmentary
match number, SM (Short Match) is the con-
tinuous match number which is no more than 4,
and LM (Long Match) is the continuous match
number which is more than 4.

The Length(L):

The length of transcription. Length is always
a very effective feature in essay scoring (Attali
and Burstein, 2006).

The Sense-group Scoring Feature(SSF):

For each best path, we can transform the tran-
scription’s word sequence into the sense-group
label sequence with the FST. Then, the words
match rate of each sense-group can be comput-
ed. The match rate of each sense-group can be
regarded as one feature so that all the sense-
group match rate in the transcription will be
combined to a feature vector (called the Sense-
group Match Rate vector (SMRv)), which is
an 8-dimensional vector in the present experi-
ments. After that, we applied the SVR algorith-
m to train a sense-group scoring model with the
vectors and scores, and the transcription gets its
SSF from the model.



4.5 Extend the FST model with the similarity
of synonym

Because the FST is trained from the limited corpus,
it does not contain all the possible situations prop-
er for the current composition topic. To complete
the current FST model, we add the similarity of syn-
onym to extend the FST model so that it can handle
more situations.

The extension of the FST model is mainly reflect-
ed in calculation of the edit distance of the best path.
The previous edit distance, in equation (2), refers
to the Levenshtein distance in which the insertion-
s, deletions and substitutions have equal cost, but in
the edit distance in this section, the cost of substi-
tutions is less than that of insertions and deletion-
s. Here, we assume that the cost of substitutions is
based on the similarity of the two words. Then with
the help of different cost of substitutions, each word
edge is extended to some of its synonym word edges
under the cost of similarity. The new edit distance is
calculated by equation (7) as follows:

EDcost = ins + del + sub x (1 —sim)  (7)

where, sim is the similarity of two words.

We used the Wordnet::Similarity software pack-
age (Pedersen et al., 2004) to calculate the similarity
between every two words at first. However, the per-
formance’s reduction of the AES system indicates
that the similarity is not good enough to extend the
FST model. Therefore, we seek for human help
to accurate the similarity calculation. We manual-
ly checked the similarity, and deleted some improp-
er similarity. Thus the final similarity applied in our
experiment is the Wordnet::Similarity software com-
puting result after the manual check.

S5 Experiments

In this section, the proposed features and our FST
methods will be evaluated on the corpus we men-
tioned above. The contrasting approach, the LSA-
SVR approach, will also be presented.

5.1 Data Setup

The experiment corpus consists of 417 speeches.
With the help of manual typing and the ASR system,
417 CRR transcriptions and 417 ASR transcriptions
are obtained from the speeches after preprocessing
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FST SVR SVR CRR ASR
build train test transcription transcription
Set2 Set3 Setl 0.7999 0.7505
Set3 Set2 0.8185 0.7401
Setl Set3 Set2 0.8557 0.7372
Set3 Setl 0.8111 0.7257
Setl Set2 Set3 0.9085 0.8086
Set2 Setl 0.8860 0.8086

Table 4: Correlation Between the SSF and the Expert S-
cores

which includes the capitalization processing and the
stemming processing. We divide them into 3 sets
by the same distribution of their scores. Therefore,
there are totally 6 sets, and each of them has 139 of
the transcriptions. The FST building only uses the
CRR transcriptions whose expert scores are higher
than 15 points. While treating one set (one CRR set)
as the FST building train set, we get the ED, NED,
MN, MR, CMV features and the SMR vectors for
the other two sets(could be either CRR sets or ASR
sets). Then, the SSF is obtained by another set as
the SVR train set and the last set as the test set. The
parameters of the SVR are trained through the grid
search from the whole data sets (ASR or CRR set-
s) by cross-validation. Therefore, except the length
feature, the other six features of each set can be ex-
tracted from the FST model.

Also, we presented the result of using LSA-SVR
approach as a contrast experiment to show the im-
provement of our FST model in scoring oral English
picture composition.

To quantitatively assess the effectiveness of the
methods, the Pearson correlation between the expert
scores and the automated results is adopted as the
performance measure.

5.2 Correlation of Features

The correlations between the seven features and the
final expert scores are shown in Tables 4 and 5 on
the three sets.

The MN and CMV are very good features, while
the NED is not. This is mainly due to the nature of
the examination. When scoring the speech, human
raters concern more about how much valid informa-
tion it contains and irrelevant contents are not taken
for penalty. Therefore, the match features are more
reasonable than the edit distance features. This im-



Script Train Test L ED NED MN MR CMV
Set2 0.2410 -0.6690 0.8136 0.1544 0.7417

Set3 Setl 0.7404 0.3900 -0.4379 0.8316 0.1386 0.7792

Setl Set2 07819 0.4029 -0.7667 0.8205 0.4904 0.7333

CRR Set3 ’ 0.4299 -0.5672 0.8370 0.5090 0.7872
Setl 0.4983 -0.7634 0.8867 0.2718 0.8162

Set2 Set3  0.8645 0.3639 -0.6616 0.8857 0.3305 0.8035

Average 0.7956 0.3877 -0.6443 0.8459 0.3158 0.7769

Set2 Setl 01341 -0.2281 -0.6375 0.7306 0.6497 0.7012

Set3 ’ -0.1633  -0.5110 0.7240 0.6071 0.6856

Setl -0.0075 -0.4640 0.6717 0.5929 0.6255

ASR Set3 Setz 0.2624 0.0294 -0.4389 0.6860 0.6259 0.6255
Setl -0.1871 -0.5391 0.7419 0.6213 0.7001

Set2 Set3  0.1643 -0.1742  -04721 0.7714 0.6199 0.7329

Average 0.1869 -0.1218 -0.5104 0.7209 0.6195 0.6785

Table 5: Correlations Between the Six Features and the Expert Scores

Script Method Setl Set2 Set3 Average
Length 0.7404 0.7819 0.8645  0.7956

CRR LSA-SVR 0.7476 0.8024 0.8663  0.8054
FST 0.8702 0.8852 0.9386  0.8980

Length 0.1341 0.2624 0.1643  0.1869

ASR LSA-SVR  0.5975 0.5643 0.5907 0.5842
FST 0.7992 0.7678 0.8452  0.8041

Table 6: Performance of the FST Method, the LSA-SVR
Approach and the Length Feature

pact is similar to the result displayed by the ASR
output performance in Table 2 in section 3, where
the WER has significant difference from the low s-
core speeches to the high score ones while the MR
does not, and the MR is much better than the WER.

As the length feature is a strong correlation fea-
ture in CRR transcription, the MR feature, which is
normalized by the length, is strongly affected. How-
ever, with the impact declining in the ASR transcrip-
tion, the MR feature performs very well. This also
explains the reason of different correlations of ED
and NED in CRR transcription.

The SSF is entirely based on the FST model, so
the impact of the length feature is very low. The
decline of it in different transcriptions is mainly be-
cause of the ASR error.

5.3 Performance of the FST Model

For each test transcription, it has 12 dimensions of F-
ST features. The ED, NED, MN, MR and CMV fea-
tures have two dimensions of each as trained from
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two different FST building sets. The SSF needs t-
wo train sets as there are two train models: one is
for the FST building model and another is for the
SVR model. As different sets for different models,
it also has two dimension features. We use the linear
regression to combine these 12 features to the final
automated score. The linear regression parameter-
s were trained from all the data by cross-validation.
After the weight of each feature and the linear bias
are gained, we calculate the automated score of each
transcription by the FST features. The performance
of our FST model is shown in Table 6. Compared
with it, the performance of the LSA-SVR algorithm,
the baseline in our paper, is also shown. As a usual
best feature for AES, the length shows its outstand-
ing performance in CRR transcription. However, it
fails in the ASR transcription.

As we have predicted above, the BOW algorith-
m (the LSA-SVR) performance declines drastically
in the ASR transcription, which also happens to the
length feature. By contrast, the decline of the per-
formance of our FST method is acceptable consid-
ering the impact of recognition errors in the ASR
system. This means the FST model is an error in-
sensitive model that is very appropriate for the task.

5.4 Improvement of FST by Adding the
Similarity
The improved FST extends the original FST model

by considering the word similarity in substitution-
s. In the extension, the similarities of the synonyms



Script Method Setl Set2 Set3 Average
CRR FST 0.8702 0.8852 0.9386  0.8980
IFST 0.8788 0.8983 0.9418  0.9063
ASR FST 0.7992 0.7678 0.8452  0.8041
IFST 0.8351 0.7617 0.8168  0.8045

Table 7: Performance of the FST Method and the Im-
proved FST Method

describe the invisible (extended) part of the FST, so
it should be very accurate for the substitutions cost.
Therefore, we added manual intervention to the sim-
ilarity result calculated by the wordnet::similarity
software packet.

After we added the similarity of synonym to ex-
tend the FST model, the performance of the new
model increased stably in the CRR transcription.
However, the increase is not significant in the AS-
R transcription (shown in Table 7). We believe it is
because the superiority of the improved model is dis-
guised by the ASR error. In other words, the impact
of ASR error under the FST model is more signifi-
cant than the improvement of the FST model. The
performance correlation of our FST model in the
CRR transcription is about 0.9 which is very close to
the human raters’ (shown in Table 3). Even though
the performance correlation in the ASR transcription
declines compared with that in the CRR transcrip-
tion, the FST methods still perform very well under
the current recognition errors of the ARS system.

6 Conclusion and Future work

The aforementioned experiments indicate three
points. First, the BOW algorithm has its own weak-
ness. In regular text essay scoring, the BOW algo-
rithm can have excellent performance. However, in
certain situations, such as towards ASR transcription
of oral English speech, its weakness of sequence ne-
glect will be magnified, leading to drastic decline of
performance. Second, the introduced FST model is
suitable in our task. It is an error insensitive mod-
el under the task of automated oral English picture
composition scoring. Also, it considers the sequence
and the hierarchy information. As we expected, the
performance of the FST model is more outstanding
than that of the BOW metrics in CRR transcription,
and the decline of performance is acceptable in AS-
R transcription scoring. Third, adding the similarity
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of synonyms to extend the FST model improves the
system performance. The extension can complete
the FST model, and achieve better performance in
the CRR transcription.

The future work may focus on three facets. First,
as the extension of the FST model is a preliminary
study, there is much work that can be done, such
as calculating the similarity more accurately without
manual intervention, or finding a balance between
the original FST model and the extended one to im-
prove the performance in ASR transcription. Sec-
ond, as the task is speech evaluation, considering the
acoustic features may give more information to the
automated scoring system. Therefore, the features
at the acoustic level could be introduced to com-
plete the scoring model. Third, the decline of the
performance in ASR transcription is derived from
the recognition error of ASR system. Therefore, im-
proving the performance of the ASR system or mak-
ing full use of the N-best lists may give more accu-
rate transcription for the AES system.
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Abstract

In this paper, we develop an RST-style text-
level discourse parser, based on the HILDA
discourse parser (Hernault et al., 2010b). We
significantly improve its tree-building step by
incorporating our own rich linguistic features.
We also analyze the difficulty of extending
traditional sentence-level discourse parsing to
text-level parsing by comparing discourse-
parsing performance under different discourse
conditions.

1 Introduction

In a well-written text, no unit of the text is com-
pletely isolated; interpretation requires understand-
ing the unit’s relation with the context. Research in
discourse parsing aims to unmask such relations in
text, which is helpful for many downstream applica-
tions such as summarization, information retrieval,
and question answering.

However, most existing discourse parsers oper-
ate on individual sentences alone, whereas discourse
parsing is more powerful for text-level analysis.
Therefore, in this work, we aim to develop a text-
level discourse parser. We follow the framework of
Rhetorical Structure Theory (Mann and Thompson,
1988) and we take the HILDA discourse parser (Her-
nault et al., 2010b) as the basis of our work, because
it is the first fully implemented text-level discourse
parser with state-of-the-art performance. We signif-
icantly improve the performance of HILDA’s tree-
building step (introduced in Section 5.1 below) by
incorporating rich linguistic features (Section 5.3).
In our experiments (Section 6), we also analyze the
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difficulty with extending traditional sentence-level
discourse parsing to text-level parsing, by compar-
ing discourse parsing performance under different
discourse conditions.

2 Discourse-annotated corpora

2.1 The RST Discourse Treebank

Rhetorical Structure Theory (Mann and Thompson,
1988) is one of the most widely accepted frame-
works for discourse analysis. In the framework of
RST, a coherent text can be represented as a dis-
course tree whose leaves are non-overlapping text
spans called elementary discourse units (EDUs);
these are the minimal text units of discourse trees.
Adjacent nodes can be related through particular dis-
course relations to form a discourse subtree, which
can then be related to other adjacent nodes in the tree
structure. According to RST, there are two types of
discourse relations, hypotactic (“mononuclear”) and
paratactic (“multi-nuclear”). In mononuclear rela-
tions, one of the text spans, the nucleus, is more
salient than the other, the satellite, while in multi-
nuclear relations, all text spans are equally important
for interpretation.

The example text fragment shown in Figure 1
consists of four EDUs (e;-e4), segmented by square
brackets. Its discourse tree representation is shown
below in the figure, following the notational conven-
tion of RST. The two EDUs e; and e; are related by a
mononuclear relation ATTRIBUTION, where e is the
more salient span; the span (e;-e2) and the EDU e;3
are related by a multi-nuclear relation SAME-UNIT,
where they are equally salient.

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 60-68,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics



[Catching up with commercial competitors in retail banking
and financial services,]e; [they argue,]e; [will be difficult,]es

[particularly if market conditions turn sour.]e4

(e1-€4)

condition

(e1-€3)

. e
Same-unit @)
er-e (e3)
(ere2) attribution

" (e1) (e2)

Figure 1: An example text fragment (wsj_0616) com-
posed of four EDUs, and its RST discourse tree repre-
sentation.

The RST Discourse Treebank (RST-DT) (Carlson
et al., 2001), is a corpus annotated in the framework
of RST. It consists of 385 documents (347 for train-
ing and 38 for testing) from the Wall Street Jour-
nal. In RST-DT, the original 24 discourse relations
defined by Mann and Thompson (1988) are further
divided into a set of 18 relation classes with 78 finer-
grained rhetorical relations in total, which provides
a high level of expressivity.

2.2 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) is another annotated discourse corpus. Its
text is a superset of that of RST-DT (2159 Wall
Street Journal articles). Unlike RST-DT, PDTB does
not follow the framework of RST; rather, it follows
a lexically grounded, predicate-argument approach
with a different set of predefined discourse relations,
as proposed by Webber (2004). In this framework, a
discourse connective (e.g., because) is considered to
be a predicate that takes two text spans as its argu-
ments. The argument that the discourse connective
structurally attaches to is called Arg2, and the other
argument is called Argl — unlike in RST, the two
arguments are not distinguished by their saliency
for interpretation. Another important difference be-
tween PDTB and RST-DT is that in PDTB, there
does not necessarily exist a tree structure covering
the full text, i.e., PDTB-styled discourse relations
exist only in a very local contextual window. In
PDTB, relation types are organized hierarchically:
there are 4 classes, which can be further divided into
16 types and 23 subtypes.
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3 Related work

Discourse parsing was first brought to prominence
by Marcu (1997). Since then, many different algo-
rithms and systems (Soricut and Marcu, 2003; Reit-
ter, 2003; LeThanh et al., 2004; Baldridge and Las-
carides, 2005; Subba and Di Eugenio, 2009; Sagae,
2009; Hernault et al., 2010b) have been proposed,
which extracted different textual information and
adopted various approaches for discourse tree build-
ing. Here we briefly review two fully implemented
text-level discourse parsers with the state-of-the-art
performance.

The HILDA discourse parser of Hernault and his
colleagues (duVerle and Prendinger, 2009; Hernault
et al., 2010b) is the first fully-implemented feature-
based discourse parser that works at the full text
level. Hernault et al. extracted a variety of lexi-
cal and syntactic features from the input text, and
trained their system on RST-DT. While some of their
features were inspired by the previous work of oth-
ers, e.g., lexico-syntactic features borrowed from
Soricut and Marcu (2003), Hernault et al. also pro-
posed the novel idea of discourse tree building by
using two classifiers in cascade — a binary struc-
ture classifier to determine whether two adjacent text
units should be merged to form a new subtree, and
a multi-class classifier to determine which discourse
relation label should be assigned to the new subtree
— instead of the more-usual single multi-class clas-
sifier with the additional label NO-REL. Hernault
et al. obtained 93.8% F-score for EDU segmenta-
tion, 85.0% accuracy for structure classification, and
66.8% accuracy for 18-class relation classification.

Lin et al. (2009) attempted to recognize implicit
discourse relations (discourse relations which are
not signaled by explicit connectives) in PDTB by us-
ing four classes of features — contextual features,
constituent parse features, dependency parse fea-
tures, and lexical features — and explored their indi-
vidual influence on performance. They showed that
the production rules extracted from constituent parse
trees are the most effective features, while contex-
tual features are the weakest. Subsequently, they
fully implemented an end-to-end PDTB-style dis-
course parser (Lin et al., 2010).

Recently, Hernault et al. (2010a) argued that more
effort should be focused on improving performance



on certain infrequent relations presented in the dis-
course corpora, since due to the imbalanced distribu-
tion of different discourse relations in both RST-DT
and PDTB, the overall accuracy score can be over-
whelmed by good performance on the small sub-
set of frequent relations, even though the algorithms
perform poorly on all other relations. However, be-
cause of infrequent relations for which we do not
have sufficient instances for training, many unseen
features occur in the test data, resulting in poor test
performance. Therefore, Hernault et al. proposed
a semi-supervised method that exploits abundant,
freely-available unlabeled data as a basis for feature
vector extension to alleviate such issues.

4 Text-level discourse parsing

Not until recently has discourse parsing for full texts
been a research focus — previously, discourse pars-
ing was only performed on the sentence level'. In
this section, we explain why we believe text-level
discourse parsing is crucial.

Unlike syntactic parsing, where we are almost
never interested in parsing above sentence level,
sentence-level parsing is not sufficient for discourse
parsing. While a sequence of local (sentence-level)
grammaticality can be considered to be global gram-
maticality, a sequence of local discourse coherence
does not necessarily form a globally coherent text.
For example, the text shown in Figure 2 contains
two sentences, each of which is coherent and sen-
sible itself. However, there is no reasonable content
transition between these two sentences, so the com-
bination of the two sentences does not make much
sense. If we attempt to represent the text as an RST
discourse tree like the one shown in Figure 1, we
find that no discourse relation can be assigned to re-
late the spans (ej-e2) and (e3-e4) and the text cannot
be represented by a valid discourse tree structure.

In order to rule out such unreasonable transitions
between sentences, we have to expand the text units
upon which discourse parsing is performed: from
sentences to paragraphs, and finally paragraphs to

IStrictly speaking, for PDTB-style discourse parsing (e.g.,
Lin et al. (2009; 2010)), there is no absolute distinction between
sentence-level and text-level parsing, since in PDTB, discourse
relations are annotated at a level no higher than that of adjacent
sentences. Here we are concerned with RST-style discourse
parsing.
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[No wonder he got an A for his English class,]e; [he was
studying so hard.]e, [He avoids eating chocolates,]es [since he

is really worried about gaining weight.Je4
SN

(e1-e2) (es-e4)

cause\\

(e1) (e2)

cause\\

(93) (€4)

Figure 2: An example of incoherent text fragment com-
posed of two sentences. The two EDUs associated with
each sentence are coherent themselves, whereas the com-
bination of the two sentences is not coherent at the sen-
tence boundary. No discourse relation can be associated
with the spans (e-e;) and (e3-e4).

the full text.

Text-level discourse parsing imposes more con-
straints on the global coherence than sentence-level
discourse parsing. However, if, technically speak-
ing, text-level discourse parsing were no more diffi-
cult than sentence-level parsing, any sentence-level
discourse parser could be easily upgraded to a text-
level discourse parser just by applying it to full
texts. In our experiments (Section 6), we show
that when applied above the sentence level, the per-
formance of discourse parsing is consistently infe-
rior to that within individual sentences, and we will
briefly discuss what the key difficulties with extend-
ing sentence-level to text-level discourse parsing are.

5 Method

We use the HILDA discourse parser of Hernault et
al. (2010b) as the basis of our work. We refine Her-
nault et al.’s original feature set by incorporating our
own features as well as some adapted from Lin et al.
(2009). We choose HILDA because it is a fully im-
plemented text-level discourse parser with the best
reported performance up to now. On the other hand,
we also follow the work of Lin et al. (2009), because
their features can be good supplements to those used
by HILDA, even though Lin et al.’s work was based
on PDTB. More importantly, Lin et al.’s strategy of
performing feature selection prior to classification
proves to be effective in reducing the total feature
dimensions, which is favorable since we wish to in-
corporate rich linguistic features into our discourse
parser.



5.1 Bottom-up approach and two-stage
labeling step

Following the methodology of HILDA, an input text
is first segmented into EDUs. Then, from the EDUs,
a bottom-up approach is applied to build a discourse
tree for the full text. Initially, a binary Structure clas-
sifier evaluates whether a discourse relation is likely
to hold between consecutive EDUs. The two EDUs
which are most probably connected by a discourse
relation are merged into a discourse subtree of two
EDUs. A multi-class Relation classifier evaluates
which discourse relation label should be assigned to
this new subtree. Next, the Structure classifier and
the Relation classifier are employed in cascade to re-
evaluate which relations are the most likely to hold
between adjacent spans (discourse subtrees of any
size, including atomic EDUs). This procedure is re-
peated until all spans are merged, and a discourse
tree covering the full text is therefore produced.

Since EDU boundaries are highly correlated with
the syntactic structures embedded in the sentences,
EDU segmentation is a relatively trivial step — us-
ing machine-generated syntactic parse trees, HILDA
achieves an F-score of 93.8% for EDU segmenta-
tion. Therefore, our work is focused on the tree-
building step, i.e., the Structure and the Relation
classifiers. In our experiments, we improve the over-
all performance of these two classifiers by incorpo-
rating rich linguistic features, together with appro-
priate feature selection. We also explore how these
two classifiers perform differently under different
discourse conditions.

5.2 Instance extraction

Because HILDA adopts a bottom-up approach for
discourse tree building, errors produced on lower
levels will certainly propagate to upper levels, usu-
ally causing the final discourse tree to be very dis-
similar to the gold standard. While appropriate post-
processing may be employed to fix these errors and
help global discourse tree recovery, we feel that it
might be more effective to directly improve the raw
instance performance of the Structure and Relation
classifiers. Therefore, in our experiments, all classi-
fications are conducted and evaluated on the basis of
individual instances.

Each instance is of the form (Sz,Sg), which is a
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pair of adjacent text spans Sy, (left span) and Sg (right
span), extracted from the discourse tree representa-
tion in RST-DT. From each discourse tree, we ex-
tract positive instances as those pairs of text spans
that are siblings of the same parent node, and neg-
ative examples as those pairs of adjacent text spans
that are not siblings in the tree structure. In all in-
stances, both S; and Sz must correspond to a con-
stituent in the discourse tree, which can be either an
atomic EDU or a concatenation of multiple consec-
utive EDUs.

5.3 Feature extraction

Given a pair of text spans (Sz,Sg), we extract the
following seven types of features.

HILDA’s features: We incorporate the origi-
nal features used in the HILDA discourse parser
with slight modification, which include the follow-
ing four types of features occurring in Sy, Sg, or
both: (1) N-gram prefixes and suffixes; (2) syntac-
tic tag prefixes and suffixes; (3) lexical heads in the
constituent parse tree; and (4) POS tag of the domi-
nating nodes.

Lin et al.’s features: Following Lin et al. (2009),
we extract the following three types of features: (1)
pairs of words, one from S; and one from Sg, as
originally proposed by Marcu and Echihabi (2002);
(2) dependency parse features in Sz, Sg, or both; and
(3) syntactic production rules in Sz, Sg, or both.

Contextual features: For a globally coherent
text, there exist particular sequential patterns in the
local usage of different discourse relations. Given
(S, Sg), the pair of text spans of interest, contextual
features attempt to encode the discourse relations as-
signed to the preceding and the following text span
pairs. Lin et al. (2009) also incorporated contextual
features in their feature set. However, their work
was based on PDTB, which has a very different an-
notation framework from RST-DT (see Section 2):
in PDTB, annotated discourse relations can form a
chain-like structure such that contextual features can
be more readily extracted. However, in RST-DT, a
full text is represented as a discourse tree structure,
so the previous and the next discourse relations are
not well-defined.

We resolve this problem as follows. Suppose S; =
(ei—ej) and Sg = (ejH—ek), where | < Jj< k. To find
the previous discourse relation REL,,, that immedi-



ately precedes (Sy,Sg), we look for the largest span
Sprev = (en-ei—1),h <, such that it ends right before
S, and all its leaves belong to a single subtree which
neither Sy nor Sk is a part of. If Sy and Sg belong
to the same sentence, S,., must also be a within-
sentence span, and it must be a cross-sentence span
if §; and Sg are a cross-sentence span pair. REL.,
is then the discourse relation which covers S,,.,. The
next discourse relation REL,,,; that immediately fol-
lows (Sz,Sg) is found in the analogous way.

However, when building a discourse tree using
a greedy bottom-up approach, as adopted by the
HILDA discourse parser, RELp., and RELy., are
not always available; therefore these contextual fea-
tures represent an idealized situation. In our ex-
periments we wish to explore whether incorporating
perfect contextual features can help better recognize
discourse relations, and if so, set an upper bound of
performance in more realistic situations.

Discourse production rules: Inspired by Lin et
al. (2009)’s syntactic production rules as features,
we develop another set of production rules, namely
discourse production rules, derived directly from the
tree structure representation in RST-DT.

For example, with respect to the RST discourse
tree shown in Figure 1, we extract the following
discourse production rules: ATTRIBUTION — NO-
REL NO-REL, SAME-UNIT — ATTRIBUTION NO-
REL, CONDITION — SAME-UNIT NO-REL, where
NO-REL denotes a leaf node in the discourse subtree.

The intuition behind using discourse production
rules is that the discourse tree structure is able to re-
flect the relatedness of different discourse relations
— discourse relations on the lower level of the tree
can determine the relation of their direct parent to
some degree. Hernault et al. (2010b) attempt to
capture such relatedness by traversing a discourse
subtree and encoding its traversal path as features,
but since they used a depth-first traversal order, the
information encoded in a node’s direct children is
too distant; whereas most useful information can be
gained from the relations covering these direct chil-
dren.

Semantic similarities: Semantic similarities are
useful for recognizing relations such as COMPARI-
SON, when there are no explicit syntactic structures
or lexical features signaling such relations.

We use two subsets of similarity features for verbs
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and nouns separately. For each verb in either Sy or
Sk, we look up its most frequent verb class ID in
VerbNet?, and specify whether that verb class ID ap-
pears in Sz, Sg, or both. For nouns, we extract all
pairs of nouns from (Sz,Sg), and compute the aver-
age similarity among these pairs. In particular, we
use path_similarity, Ich_similarity, wup_similarity,
res_similarity, jen_similarity, and lin_similarity pro-
vided in the nitk.wordnet.similarity package (Bird et
al., 2009) for computing WordNet-based similarity,
and always choose the most frequent sense for each
noun.

Cue phrases: We compile a list of cue phrases,
the majority of which are connectives collected by
Knott and Dale (1994). For each cue phrase in this
list, we determine whether it appears in Sy or Sg. If
a cue phrase appears in a span, we also determine
whether its appearance is in the beginning, the end,
or the middle of that span.

5.4 Feature selection

If we consider all possible combinations of the fea-
tures listed in Section 5.3, the resulting data space
can be horribly high dimensional and extremely
sparse. Therefore, prior to training, we first conduct
feature selection to effectively reduce the dimension
of the data space.

We employ the same feature selection method as
Lin et al. (2009). Feature selection is done for each
feature type separately. Among all features belong-
ing to the feature type to be selected, we first ex-
tract all possible features that have been seen in the
training data, e.g., when applying feature selection
for word pairs, we find all word pairs that appear
in some text span pair that have a discourse relation
between them. Then for each extracted feature, we
compute its mutual information with all 18 discourse
relation classes defined in RST-DT, and use the high-
est mutual information to evaluate the effectiveness
of that feature. All extracted features are sorted to
form a ranked list by effectiveness. After that, we
use a threshold to select the top features from that
ranked list. The total number of selected features
used in our experiments is 21,410.

Zhttp://verbs.colorado.edu/~mpalmer/
projects/verbnet



6 Experiments

As discussed in Section 5.1, our research focus in
this paper is the tree-building step of the HILDA
discourse parser, which consists of two classifica-
tions: Structure and Relation classification. The bi-
nary Structure classifier decides whether a discourse
relation is likely to hold between consecutive text
spans, and the multi-class Relation classifier decides
which discourse relation label holds between these
two text spans if the Structure classifier predicts the
existence of such a relation.

Although HILDA’s bottom-up approach is aimed
at building a discourse tree for the full text, it does
not explicitly employ different strategies for within-
sentence text spans and cross-sentence text spans.
However, we believe that discourse parsing is signif-
icantly more difficult for text spans at higher levels
of the discourse tree structure. Therefore, we con-
duct the following three sub-experiments to explore
whether the two classifiers behave differently under
different discourse conditions.

Within-sentence: Trained and tested on text span
pairs belonging to the same sentence.

Cross-sentence: Trained and tested on text span
pairs belonging to different sentences.

Hybrid: Trained and tested on all text span pairs.

In particular, we split the training set and the test-
ing set following the convention of RST-DT, and
conduct Structure and Relation classification by in-
corporating our rich linguistic features, as listed in
Section 5.3 above. To rule out all confounding fac-
tors, all classifiers are trained and tested on the basis
of individual text span pairs, by assuming the dis-
course subtree structure (if any) covering each indi-
vidual text span has been already correctly identified
(no error propagation).

6.1 Structure classification

The number of training and testing instances used in
this experiment for different discourse conditions is
listed in Table 1. Instances are extracted in the man-
ner described in Section 5.2. We observe that the
distribution of positive and negative instances is ex-
tremely skewed for cross-sentence instances, while
for all conditions, the distribution is similar in the
training and the testing set.

In this experiment, classifiers are trained using

65

Dataset Pos# Neg# Total#

o Training 11,087 10,188 21,275
Within— rocing 1340 LISI 2,521
Cr Training 6,646 49467 56,113
O Testing 882 6,357 7,239

. Training 17,733 59,655 77,388
Hybrid - rocing 2220 7539 9761

Table 1: Number of training and testing instances used in
Structure classification.

the SVMP¢'/ classifier (Joachims, 2005) with a lin-
ear kernel.

Structure classification performance for all three
discourse conditions is shown in Table 2. The
columns Full and NC (No Context) denote the per-
formance of using all features listed in Section 5.3
and all features except for contextual features re-
spectively. As discussed in Section 5.3, contex-
tual features represent an ideal situation which is
not always available in real applications; therefore,
we wish to see how they affect the overall per-
formance by comparing the performance obtained
with them and without them as features. The col-
umn HILDA lists the performance of using Hernault
et al. (2010b)’s original features, and Baseline de-
notes the performance obtained by always picking
the more frequent class. Performance is measured
by four metrics: accuracy, precision, recall, and F;
score on the test set, shown in the first section in
each sub-table.

Under the within-sentence condition, we observe
that, surprisingly, incorporating contextual features
boosts the overall performance by a large margin,
even though it requires only 38 additional features.
Under the cross-sentence condition, our features re-
sult in lower accuracy and precision than HILDA’s
features. However, under this discourse condition,
the distribution of positive and negative instances
in both training and test sets is extremely skewed,
which makes it more sensible to compare the recall
and F; scores for evaluation. In fact, our features
achieve much higher recall and F; score despite a
much lower precision and a slightly lower accuracy.

In the second section of each sub-table, we also
list the F] score on the training data. This allows



us to compare the model-fitting capacity of differ-
ent feature sets from another perspective, especially
when the training data is not sufficiently well fitted
by the model. For example, looking at the training
F score under the cross-sentence condition, we can
see that classification using full features and clas-
sification without contextual features both perform
significantly better on the training data than HILDA
does. At the same time, such superior performance
is not due to possible over-fitting on the training
data, because we are using significantly fewer fea-
tures (21,410 for Full and 21,372 for NC) than Her-
nault et al. (2010b)’s 136,987; rather, it suggests
that using carefully selected rich linguistic features
is able to better model the problem itself.

Comparing the results obtained under the first
two conditions, we see that the binary classification
problem of whether a discourse relation is likely to
hold between two adjacent text spans is much more
difficult under the cross-sentence condition. One
major reason is that many features that are predictive
for within-sentence instances are no longer applica-
ble (e.g., Dependency parse features). In addition,
given the extremely imbalanced nature of the dataset
under this discourse condition, we might need to
employ special approaches to deal with this needle-
in-a-haystack problem. This difficulty can also be
perceived from the training performance. Compared
to the within-sentence condition, all features fit the
training data much more poorly under the cross-
sentence condition. This suggests that sophisticated
features or models in addition to our rich linguis-
tic features must be incorporated in order to fit the
problem sufficiently well. Unfortunately, this under-
fitting issue cannot be resolved by exploiting any
abundant linguistic resources for feature vector ex-
tension (e.g., Hernault et al. (2010a)), because the
poor training performance is no longer caused by the
unknown features found in test vectors.

Turning to the hybrid condition, the performance
of Full features is surprisingly good, probably be-
cause we have more available training data than the
other two conditions. However, with contextual fea-
tures removed, our features perform quite similarly
to those of Hernault et al. (2010b), but still with
a marginal, but nonetheless statistically significant,
improvement on recall and F; score.
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Full NC HILDA Baseline
Within-sentence
Accuracy 91.04* 85.17*% 83.74 53.15
Precision 92.71*% 85.36* 84.81 53.15
Recall 90.22* 87.01* 84.55 100.00
F 91.45* 86.18* 84.68 69.41
Train F; 97.87*% 96.23* 95.42 68.52
Cross-sentence
Accuracy 87.69  86.68 89.13 87.82
Precision 49.60 44.73 61.90 —
Recall 63.95*% 39.46* 28.00 0.00
F 55.87% 41.93* 38.56 —
Train F} 87.25% 71.93* 49.03 —
Hybrid
Accuracy 95.64*% 87.03 87.04 77.24
Precision 94.77* 74.19 79.41 —
Recall 85.92* 65.98* 58.15 0.00
F 89.51* 69.84* 67.13 -
Train F; 93.15* 80.79* 72.09 —

Table 2: Structure classification performance (in percent-
age) on text spans of within-sentence, cross-sentence, and
all level. Performance that is significantly superior to that
of HILDA (p < .01, using the Wilcoxon sign-rank test for
significance) is denoted by *.

6.2 Relation classification

The Relation classifier has 18 possible output la-
bels, which are the coarse-grained relation classes
defined in RST-DT. We do not consider nuclearity
when classifying different discourse relations, i.e.,
ATTRIBUTION[N][S] and ATTRIBUTION[S][N] are
treated as the same label. The training and test in-
stances in this experiment are from the positive sub-
set used in Structure classification.

In this experiment, classifiers are trained using
LibSVM classifier (Chang and Lin, 2011) with a lin-
ear kernel and probability estimation.

Relation classification performance under three
discourse conditions is shown in Table 3. We list
the performance achieved by Full, NC, and HILDA
features, as well as the majority baseline, which is
obtained by always picking the most frequent class
label (ELABORATION in all cases).



Full NC HILDA Baseline

Within-sentence

MAFS 0.490 0.485 0.446 —
WAFS 0.763 0.762 0.740 —
Acc (%) 78.06 78.13 76.42 31.42
TAcc (%) 99.90 99.93 99.26 33.38
Cross-sentence
MAFS 0.194 0.184 0.127 —
WAFS 0.334 0.329 0.316 —
Acc (%) 46.83 46.71 45.69 42.52
TAcc (%) 78.30 67.30 57.70 47.79
Hybrid
MAFS 0.440 0.428 0.379 —
WAFS 0.607 0.604 0.588 —
Acc (%) 65.30 65.12 64.18 35.82
TAcc (%) 99.96 99.95 90.11 38.78

Table 3: Relation classification performance on text
spans of within-sentence, cross-sentence, and all levels.

Following Hernault et al. (2010a), we use Macro-
averaged F-scores (MAFS) to evaluate the perfor-
mance of each classifier. Macro-averaged F-score
is not influenced by the number of instances that
exist in each relation class, by equally weighting
the performance of each relation class3. Therefore,
the evaluation is not biased by the performance on
those prevalent classes such as ATTRIBUTION and
ELABORATION. For reasons of space, we do not
show the class-wise F-scores, but in our results,
we find that using our features consistently provides
superior performance for most class relations over
HILDA’s features, and therefore results in higher
overall MAFS under all conditions. We also list two
other metrics for performance on the test data —
Weight-averaged F-score (WAFS), which weights
the performance of each relation class by the num-
ber of its existing instances, and the testing accuracy
(Acc) — but these metrics are relatively more bi-

3No significance test is reported for relation classification,
because we are comparing MAFS, which equally weights the
performance of each relation. Therefore, traditional signifi-
cance tests which operate on individual instances rather than
individual relation classes are not applicable.
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ased evaluation metrics in this task. Similar to Struc-
ture classification, the accuracy on the training data
(TAcc)* is listed in the second section of each sub-
table. It demonstrates that our carefully selected rich
linguistic features are able to better fit the classifi-
cation problem, especially under the cross-sentence
condition.

Similar to our observation in Structure classifica-
tion, the performance of Relation classification for
cross-sentence instances is also much poorer than
that on within-sentence instances, which again re-
veals the difficulty of text-level discourse parsing.

7 Conclusions

In this paper, we aimed to develop an RST-style
text-level discourse parser. We chose the HILDA
discourse parser (Hernault et al., 2010b) as the ba-
sis of our work, and significantly improved its tree-
building step by incorporating our own rich linguis-
tic features, together with features suggested by Lin
et al. (2009). We analyzed the difficulty of extending
traditional sentence-level discourse parsing to text-
level parsing by showing that using exactly the same
set of features, the performance of Structure and Re-
lation classification on cross-sentence instances is
consistently inferior to that on within-sentence in-
stances. We also explored the effect of contextual
features on the overall performance. We showed
that contextual features are highly effective for both
Structure and Relation classification under all dis-
course conditions. Although perfect contextual fea-
tures are available only in idealized situations, when
they are correct, together with other features, they
can almost correctly predict the tree structure and
better predict the relation labels. Therefore, an it-
erative updating approach, which progressively up-
dates the tree structure and the labeling based on the
current estimation, may push the final results toward
this idealized end.

Our future work will be to fully implement an
end-to-end discourse parser using our rich linguis-
tic features, and focus on improving performance on
cross-sentence instances.

4We use accuracy instead of MAFS as the evaluation metric
on the training data because it is the metric that the training
procedure is optimized toward.
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Abstract

We describe a discourse annotation scheme
for Chinese and report on the preliminary re-
sults. Our scheme, inspired by the Penn Dis-
course TreeBank (PDTB), adopts the lexically
grounded approach; at the same time, it makes
adaptations based on the linguistic and statisti-
cal characteristics of Chinese text. Annotation
results show that these adaptations work well
in practice. Our scheme, taken together with
other PDTB-style schemes (e.g. for English,
Turkish, Hindi, and Czech), affords a broader
perspective on how the generalized lexically
grounded approach can flesh itself out in the
context of cross-linguistic annotation of dis-
course relations.

1 Introduction

In the realm of discourse annotation, the Penn Dis-
course TreeBank (PDTB) (Prasad et al., 2008) sep-
arates itself by adopting a lexically grounded ap-
proach: Discourse relations are lexically anchored
by discourse connectives (e.g., because, but, there-
fore), which are viewed as predicates that take ab-
stract objects such as propositions, events and states
as their arguments. In the absence of explicit dis-
course connectives, the PDTB asks the annotator to
fill in a discourse connective that best describes the
discourse relation between these two sentences, in-
stead of selecting from an inventory of predefined
discourse relations. By keeping the discourse an-
notation lexically grounded even in the case of im-
plicit discourse relations, the PDTB appeals to the
annotator’s judgment at an intuitive level. This is in
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contrast with an approach in which the set of dis-
course relations are pre-determined by linguistic ex-
perts and the role of the annotator is just to select
from those choices (Mann and Thompson, 1988;
Carlson et al., 2003). This lexically grounded ap-
proach led to consistent and reliable discourse anno-
tation, a feat that is generally hard to achieve for dis-
course annotation. The PDTB team reported inter-
annotator agreement in the lower 90% for explicit
discourse relations (Miltsakaki et al., 2004).

In this paper we describe a discourse annota-
tion scheme for Chinese that adopts this lexically
grounded approach while making adaptations when
warranted by the linguistic and statistical properties
of Chinese text. This scheme is shown to be practi-
cal and effective in the annotation experiment.

The rest of the paper is organized as follows: In
Section 2, we review the key aspects of the PDTB
annotation scheme under discussion in this paper. In
Section 3, we first show that some key features of
Chinese make adaptations necessary in Section 3.1,
and then in Section 3.2, we present our systematic
adaptations that follow from the differences outlined
in Section 3.1. In Section 4, we present the prelim-
inary annotation results we have so far. And finally
in Section 5, we conclude the paper.

2 The PDTB annotation scheme

As mentioned in the introduction, discourse relation
is viewed as a predication with two arguments in the
framework of the PDTB. To characterize the pred-
ication, the PDTB annotates its argument structure
and sense. Two types of discourse relation are dis-
tinguished in the annotation: explicit and implicit.
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Although their annotation is carried out separately, it
conforms to the same paradigm of a discourse con-
nective with two arguments. In what follows, we
highlight the key points that will be under discussion
in the following sections. To get a more compre-
hensive and detailed picture of the PDTB scheme,
see the PDTB 2.0 annotation manual (Prasad et al.,
2007).

2.1 Annotation of explicit discourse relations

Explicit discourse relations are those anchored by
explicit discourse connectives in text. Explicit con-
nectives are drawn from three grammatical classes:

e Subordinating conjunctions: e.g., because,
when, since, although;

e Coordinating conjunctions: e.g., and, or, nor;

o Discourse adverbials: e.g., however, other-
wise, then, as a result, for example.

Not all uses of these lexical items are considered to
function as a discourse connective. For example,
coordinating conjunctions appearing in VP coordi-
nations, such as “and” in (1), are not annotated as
discourse connectives.

(1) More common chrysotile fibers are curly and
are more easily rejected by the body, Dr. Moss-
man explained.

The text spans of the two arguments of a discourse
connective are marked up. The two arguments, Arg/
and Arg2, are defined based on the physical location
of the connective: Arg2 is the argument expressed
by the clause syntactically bound to the connective,
and Argl is the other argument. There are no restric-
tions on how many clauses can be included in the
text span for an argument other than the Minimality
Principle: Only as many clauses and/or sentences
should be included in an argument selection as are
minimally required and sufficient for the interpreta-
tion of the relation.

2.2 Annotation of implicit discourse relations

In the case of implicit discourse relations, annotators
are asked to insert a discourse connective that best
conveys the implicit relation; when no such connec-
tive expression is appropriate, the implicit relation
is further distinguished as the following three sub-

types:
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e AltLex: when insertion of a connective leads
to redundancy due to the presence of an alter-
natively lexicalized expression, as in (2).

e EntRel: when the only relation between the
two arguments is that they describe different as-
pects of the same entity, as in (3).

o NoRel: when neither a lexicalized discourse re-
lation nor entity-based coherence is present. It
is to be noted that at least some of the “NoRel”
cases are due to the adjacency constraint (see
below for more detail).

(2) And she further stunned her listeners by re-
vealing her secret garden design method: [ 4,41
Commissioning a friend to spend five or six

thousand dollars . . . on books that I ultimately
cut up.] [arg2 AltLex After that, the layout had
been easy.

(3) [arg1 Hale Milgrim, 41 years old, senior vice
president, marketing at Elecktra Entertainment
Inc., was named president of Capitol Records
Inc., a unit of this entertainment concern].
[arg2 EntRel Mr. Milgrim succeeds David
Berman, who resigned last month].

There are restrictions on what kinds of implicit
relations are subjected to annotation, presented be-
low. These restrictions do not have counterparts in
explicit relation annotation.

o Implicit relations between adjacent clauses in
the same sentence not separated by a semi-
colon are not annotated, even though the rela-
tion may very well be definable. A case in point
is presented in (4) below, involving an intra-
sentential comma-separated relation between a
main clause and a free adjunct.

e Implicit relations between adjacent sentences
across a paragraph boundary are not annotated.

e The adjacency constraint: At least some part
of the spans selected for Argl and Arg2 must
belong to the pair of adjacent sentences initially
identified for annotation.

(4) [arc The market for export financing was liber-
alized in the mid-1980s], [F 4 forcing the bank
to face competition].



2.3 Annotation of senses

Discourse connectives, whether originally present in
the data in the case of explicit relations, or filled in
by annotators in the case of implicit relations, along
with text spans marked as “AltLex”, are annotated
with respect to their senses. There are three levels in
the sense hierarchy:

e Class: There are four major semantic classes:
TEMPORAL, CONTINGENCY, COMPARISON,
and EXPANSION;

e Type: A second level of fypes is further de-
fined for each semantic class. For example,
under the class CONTINGENCY, there are two
types: “Cause” (relating two situations in a di-
rect cause-effect relation) and “Condition” (re-
lating a hypothetical situation with its (possi-
ble) consequences);1

e Subtype: A third level of subtypes is defined
for some, but not all, types. For instance, under
the type “CONTINGENCY:Cause”, there are two
subtypes: “reason” (for cases like because and
since) and “result” (for cases like so and as a
result).

It is worth noting that a type of implicit relation,
namely those labeled as “EntRel”, is not part of the
sense hierarchy since it has no explicit counterpart.

3 Adapted scheme for Chinese

3.1 Key characteristics of Chinese text

Despite similarities in discourse features between
Chinese and English (Xue, 2005), there are differ-
ences that have a significant impact on how dis-
course relations could be best annotated. These dif-
ferences can be illustrated with (5):

(5) % . laor FR5E UGS S
according to reports , Dongguan Customs
* B il AR #%
in total accept company contract record
NTFHEEZ ], lao2 I R
8400 plus  CLASS, compare pilot
i OB B LEJF] L [aos 4L

before slight EXIST increase , company

!There is another dimension to this level, i.e. literal or prag-
matic use. If this dimension is taken into account, there could be
said to be four types: “Cause”, “Pragmatic Cause”, “Condition”,

and “Pragmatic Condition”. For details, see Prasad et al. (2007).
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SRR RIF1 . [a04 BiR
respond/response well/good , generally
TR A :

acknowledge accept/acceptance .

“According to reports, [401 Dongguan District
Customs accepted more than 8400 records of com-
pany contracts], [ 402 a slight increase from before
the pilot]. [403 Companies responded well], [ 404
generally acknowledging acceptance].”

This sentence reports on how a pilot program
worked in Dongguan City. Because all that is said
is about the pilot program, it is perfectly natural to
include it all in a single sentence in Chinese. Intu-
itively though, there are two different aspects of how
the pilot program worked: the number of records
and the response from the affected companies. To
report the same facts in English, it is more natural
to break them down into two sentences or two semi-
colon-separated clauses, but in Chinese, not only are
they merely separated by comma, but also there is no
connective relating them.

This difference in writing style necessitates re-
thinking of the annotation scheme. If we apply the
PDTB scheme to the English translation, regardless
of whether the two pieces of facts are expressed in
two sentences or two semi-colon-separated clauses,
at least one discourse relation will be annotated, re-
lating these two text units. In contrast, if we apply
the same scheme to the Chinese sentence, no dis-
course relation will be picked out because this is
just one comma-separated sentence with no explicit
discourse connectives in it. In other words, the dis-
course relation within the Chinese sentence, which
would be captured in its English counterpart follow-
ing the PDTB procedure, would be lost when anno-
tating Chinese. Such loss is not a sporadic occur-
rence but rather a very prevalent one since it is asso-
ciated with the customary writing style of Chinese.
To ensure a reasonable level of coverage, we need to
consider comma-delimited intra-sentential implicit
relations when annotating Chinese text.

There are some complications associated with this
move. One of them is that it introduces into dis-
course annotation considerable ambiguity associ-
ated with the comma. For example, the first in-
stance of comma in (5), immediately following “#f&
& (“according to reports”), clearly does not indi-
cate a discourse relation, so it needs to be spelt out in



the guidelines how to exclude such cases of comma
as discourse relation indicators. We think, however,
that disambiguating the commas in Chinese text is
valuable in its own right and is a necessary step in
annotating discourse relations.

Another complication is that some comma-
separated chunks are ambiguous as to whether they
should be considered potential arguments in a dis-
course relation. The chunks marked A02 and A04
in (5) are examples of such cases. They, judging
from their English translation, may seem clear cases
of free adjuncts in PDTB terms (Prasad et al., 2007),
but there is no justification for treating them as such
in Chinese. The lack of justification comes from at
least three features of Chinese:

e Certain words, for instance, “/X N (“re-
spond/response”), “R #” (“well/good”) and
“}% % (“accept/acceptance”), are ambiguous
with respect to their POS, and when they com-
bine, the resulting sentence may have more
than one syntactic analysis. For example, AO3
may be literally translated as “Companies re-
sponded well” or “Companies’ response was
good”.

e There are no inflectional clues to differenti-
ate free adjuncts and main clauses. For ex-
ample, one can be reasonably certain that “7
7~ (“acknowledge”) functions as a verb in (5),
however, there is no indication whether it is
in the form corresponding to “acknowledging”
or “acknowledged” in English. Or putting it
differently, whether one wants to express in
Chinese the meaning corresponding to the -ing
form or the tensed form in English, the same
form “387~” could apply.

e Both subject and object can be dropped in Chi-
nese, and they often are when they are infer-
able from the context. For example, in the two-
sentence sequence below, the subject of (7) is
dropped since it is clearly the same as the sub-
ject of the previous sentence in (6) .

6) [s1 £ I F ok,
recent five years since,  Shanghai through
SN Y S N H oW
actively from other province city procure
Wy e BRYR 2 PE

export supply , organize China East

L
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R HH i Xohe %
Export Commodity Fair etc. event,
W, R HE R £
strengthen port to  whole country DE
iy A 8]

connection capability .

“[s1 In the past five years, Shanghai strength-
ened the connection of its port to other areas
of the country through actively procuring ex-
port supplies from other provinces and cities,
and through organizing events such as the East
China Export Commodities Fair.]”

(7) Ls2 FIRF . K&
At the same time , develop
P [E zE KN VAR
transnational operation , vigorously open up
Zitk W ]

diversified market
“[s2 At the same time, (it) developed transna-
tional operations (and) vigorously opened up
diversified markets.]”
Since the subject can be omitted from the en-
tire sentence, absence or presence of subject in
a clause is not an indication whether the clause
is a main clause or a free adjunct, or whether it
is part of a VP coordination without a connec-
tive. So if we take into account both the lack of
differentiating inflectional clues and the possi-
bility of omitting the subject, A04 in (5) may
be literally translated as “generally acknowl-
edging acceptance”, or “(and) generally ac-
knowledged acceptance”, or “(companies) gen-
erally acknowledged acceptance”, or “(compa-
nies) generally acknowledged (they) accepted
(it)”.
Since in Chinese, there is no reliable indicator dis-
tinguishing between main clauses and free adjuncts,
or distinguishing between coordination on the clause
level without the subject and coordination on the VP
level, we will not rely on these distinctions in anno-
tation, as the PDTB team does in their annotation.
These basic decisions directly based on linguistic
characteristics of Chinese lead to more systematic
adaptations to the annotation scheme, to which we
will turn in the next subsection.

3.2 Systematic adaptations

The main consequence of the basic decisions de-
scribed in Section 3.1 is that we have a whole lot



more tokens of implicit relation than explicit rela-
tion to deal with. According to a rough count on
20 randomly selected files from Chinese Treebank
(Xue et al., 2005), 82% are tokens of implicit rela-
tion, compared to 54.5% in the PDTB 2.0. Given
the overwhelming number of implicit relations, we
re-examine where it could make an impact in the an-
notation scheme. There are three such areas.

3.2.1 Procedural division between explicit and
implicit discourse relation

In the PDTB, explicit and implicit relations are
annotated separately. This is probably partly be-
cause explicit connectives are quite abundant in En-
glish, and partly because the project evolved in
stages, expanding from the more canonical case of
explicit relation to implicit relation for greater cov-
erage. When annotating Chinese text, maintaining
this procedural division makes much less sense: the
landscape of discourse relation (or at least the key
elements of it) has already been mapped out by the
PDTB work and to set up a separate task to cover
18% of the data does not seem like a worthwhile
bother without additional benefits for doing so.

So the question now is how to annotate explicit
and implicit relations in one fell swoop? In Chi-
nese text, the use of a discourse connective is al-
most always accompanied by a punctuation or two
(usually period and/or comma), preceding or flank-
ing it. So a sensible solution is to rely on punctu-
ations as the denominator between explicit and im-
plicit relations;and in the case of explicit relation,
the connective will be marked up as an attribute of
the discourse relation. This unified approach simpli-
fies the annotation procedure while preserving the
explicit/implicit distinction in the process.

One might question, at this point, whether such
an approach can still call itself “lexically grounded”.
Certainly not if one interprets the term literally ; but
in a broader sense, our approach can be seen as an
instantiation of a generalized version of it, much the
same way that the PDTB is an, albeit different, in-
stantiation of it for English. The thrust of the lexi-
cally grounded approach is that discourse annotation
should be a data-driven, bottom-up process, rather
than a top-down one, trying to fit data into a pre-
scriptive system. Once the insight that a discourse
connective functions like a predicate with two ar-
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guments is generalized to cover all discourse rela-
tions, there is no fundamental difference between
explicit and implicit discourse relations: both work
like a predicate whether or not there is a lexicaliza-
tion of it. As to what role this distinction plays in
the annotation procedure, it is an engineering issue,
depending on a slew of factors, among which are
cross-linguistic variations. In the case of Chinese,
we think it is more economical to treat explicit and
implicit relations alike in the annotation process.

To treat explicit and implicit relations alike actu-
ally goes beyond annotating them in one pass; it also
involves how they are annotated, which we discuss
next.

3.2.2 Annotation of implicit discourse relations

In the PDTB, treatment of implicit discourse rela-
tions is modeled after that of explicit relations, and at
the same time, some restrictions are put on implicit,
but not explicit, relations. This is quite understand-
able: implicit discourse relations tend to be vague
and elusive, so making use of explicit relations as a
prototype helps pin them down, and restrictions are
put in place to strike a balance between high relia-
bility and good coverage. When implicit relations
constitute a vast majority of the data as is the case
with Chinese, both aspects need to be re-examined
to strike a new balance.

In the PDTB, annotators are asked to insert a
discourse connective that best conveys the implicit
discourse relation between two adjacent discourse
units; when no such connective expression is ap-
propriate, the implicit discourse relation is further
distinguished as “AltLex”, “EntRel”, and “NoRel”.
The inserted connectives and those marked as “Al-
tLex”, along with explicit discourse connectives, are
further annotated with respect to their senses.

When a connective needs to be inserted in a ma-
jority of cases, the difficulty of the task really stands
out. In many cases, it seems, there is a good rea-
son for not having a connective present and because
of it, the wording rejects insertion of a connective
even if it expresses the underlying discourse relation
exactly (or sometimes, maybe the wording itself is
the reason for not having a connective). So to try
to insert a connective expression may very well be
too hard a task for annotators, with little to show for
their effort in the end.



Furthermore, the inter-annotator agreement for
providing an explicit connective in place of an im-
plicit one is computed based on the fype of explicit
connectives (e.g. cause-effect relations, temporal re-
lations, contrastive relations, etc.), rather than based
on their identity (Miltsakaki et al., 2004). This sug-
gests that a reasonable degree of agreement for such
a task may only be reached with a coarse classifica-
tion scheme.

Given the above two considerations, our solution
is to annotate implicit discourse relations with their
senses directly, bypassing the step of inserting a con-
nective expression. It has been pointed out that to
train annotators to reason about pre-defined abstract
relations with high reliability might be too hard a
task (Prasad et al., 2007). This difficulty can be
overcome by associating each semantic type with
one or two prototypical explicit connectives and ask-
ing annotators to consider each to see if it expresses
the implicit discourse relation. This way, annotators
have a concrete aid to reason about abstract relations
without having to choose one connective from a set
expressing roughly the same relation or having to
worry about whether insertion of the connective is
somehow awkward.

It should be noted that annotating implicit rela-
tions directly with their senses means that sense an-
notation is no longer restricted to those that can be
lexically expressed, but also includes those that can-
not, notably those labeled “EntRel/NoRel” in the
PDTB.2 In other words, we annotate senses of dis-
course relations, not just connectives and their lex-
ical alternatives (in the case of AltLex). This ex-
pansion is consistent with the generalized view of
the lexically grounded approach discussed in Sec-
tion 3.2.1.

With respect to restrictions on implicit relation,
we will adopt them as they prove to be necessary
in the annotation process, with one exception. The
exception is the restriction that implicit relations be-
tween adjacent clauses in the same sentence not sep-
arated by a semi-colon are not annotated. This re-
striction seems to apply mainly to a main clause and
any free adjunct attached to it in English; in Chinese,
however, the distinction between a main clause and a

>Thus “EntRel” and “NoRel” are treated as relation senses,
rather than relation types, in our scheme.
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free adjunct is not as clear-cut for reasons explained
in Section 3.1. So this restriction is not applicable
for Chinese annotation.

3.2.3 Definition of Argl and Arg2

The third area that an overwhelming number of
implicit relation in the data affects is how Arg/ and
Arg2 are defined. As mentioned in the introduc-
tion, discourse relations are viewed as a predication
with two arguments. These two arguments are de-
fined based on the physical location of the connec-
tive in the PDTB: Arg2 is the argument expressed by
the clause syntactically bound to the connective and
Argl is the other argument. In the case of implicit
relations, the label is assigned according to the text
order.

In an annotation task where implicit relations con-
stitute an overwhelming majority, the distinction of
Argl and Arg2 is meaningless in most cases. In addi-
tion, the phenomenon of parallel connectives is pre-
dominant in Chinese. Parallel connectives are pairs
of connectives that take the same arguments, exam-
ples of which in English are “if..then”, “either..or”,
and “on the one hand..on the other hand”. In Chi-
nese, most connectives are part of a pair; though
some can be dropped from their pair, it is considered
“proper” or formal to use both. (8) below presents
two such examples, for which parallel connectives
are not possible in English.

®) a fEE M EiE

London stock market because coincide
RATT ., B wHE e

Bank Holiday , therefore NEG open market

“London Stock Market did not open because it
was Bank Holiday.”

b 2% M1 A B £ A B

Although they NEG leave land, NEG leave
E4 CE R B
home village , but strict PART speak already
AE RS B B OB RE.

no longer be tradition sense PREP DE peasant

“Although they do not leave land or their home
village, strictly speaking, they are no longer
peasants in the traditional sense.”

In the PDTB, parallel connectives are annotated dis-
continuously; but given the prevalence of such phe-
nomenon in Chinese, such practice would generate



a considerably high percentage of essentially repeti-
tive annotation among explicit relations.

So the situation with Chinese is that distinguish-
ing Argl and Arg2 the PDTB way is meaningless
in most cases, and in the remaining cases, it of-
ten results in duplication. Rather than abandoning
the distinction altogether, we think it makes more
sense to define Arg/ and Arg2 semantically. It will
not create too much additional work beyond distinc-
tion of different senses of discourse relation in the
PDTB. For example, in the semantic type CONTIN-
GENCY:Cause, we can define “reason” as Arg/ and
“result” as Arg2. In this scheme, no matter which
one of (Al (“because”) and #{ (“therefore”) appears
without the other, or if they appear as a pair in a
sentence, or if the relation is implicit, the Arg/ and
Arg2 labels will be consistently assigned to the same
clauses.

This approach is consistent with the move from
annotating senses of connectives to annotating
senses of discourse relations, pointed out in Section
3.2.2. For example, in the PDTB’s sense hierarchy,
“reason” and “result” are subtypes under type CON-
TINGENCY:Cause: “reason” applies to connectives
like “because” and “‘since” while “result” applies
to connectives like “so” and “as a result”. When
we move to annotating senses of discourse relations,
since both types of connectives express the same un-
derlying discourse relation, there will not be further
division under CONTINGENCY:Cause, and the “rea-
son”/“result” distinction is an intrinsic property of
the semantic type. We think this level of generality
makes sense semantically.

4 Annotation experiment

To test our adapted annotation scheme, we have con-
ducted annotation experiments on a modest, yet sig-
nificant, amount of data and computed agreement
statistics.

4.1 Set-up

The agreement statistics come from annotation con-
ducted by two annotators in training so far. The data
set consists of 98 files taken from the Chinese Tree-
bank (Xue et al., 2005). The source of these files is
Xinhua newswire. The annotation is carried out on
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the PDTB annotation tool?.

4.2 Inter-annotator agreement

To evaluate our proposed scheme, we measure
agreement on each adaption proposed in Section
3, as well as agreement on argument span deter-
mination. Whenever applicable, we also present
(roughly) comparable statistics of the PDTB (Milt-
sakaki et al., 2004). The results are summarized in
Table 1.

Chinese PDTB
tkn no. | F(p/r) (%) (%)
L « 95.4
rel-ident 3951 (96.0/94.7) N/A
rel-type 3951 95.1 N/A
imp-sns-type | 2967 87.4 72
arg-order 3059 99.8 N/A
’ argument span

exp-span-xm 1580 84.2 90.2
exp-span-pm | 1580 99.6 94.5
imp-span-xm | 5934 76.9 85.1
overall-bnd- | 14039%* ( 87?57/‘877. 9) N/A

Table 1: Inter-annotator agreement in various aspects
of Chinese discourse annotation: rel-ident, discourse
relation identification; rel-type, relation type classifica-
tion; imp-sns-type, classification of sense type of im-
plicit relations; arg-order, order determination of Argl
and Arg2. For agreement on argument spans, the
naming convention is <type-of-relation>-<element-as-
independent-token>-<matching-method>. exp: explicit
relations; imp: implicit relations; span: argument span;
xm: exact match; pm: partial match; bnd: boundary. *:
number of tokens agreed on by both annotators.

The first adaption we proposed is to annotate ex-
plicit and implicit discourse relations in one pass.
This introduces two steps, at which agreement can
each be measured: First, the annotator needs to
make the judgment, at each instance of the punctu-
ations, whether there is a discourse relation (a step
we call “relation identification”); second, once a dis-
course relation is identified, the annotator needs to
classify the type as one of “Explicit”, “Implicit”, or
“AltLex” (a step we call “relation type classifica-
tion”). The agreement at these two steps is 95.4%

3http://www.seas.upenn.edu/~pdtb/tools.shtml#annotator



and 95.1% respectively.

The second adaption is to bypass the step of in-
serting a connective when annotating an implicit dis-
course relation and classify the sense directly. The
third adaptation is to define Argl and Arg2 semanti-
cally for each sense. To help annotators think about
relation sense abstractly and determine the order of
the arguments, we put a helper item alongside each
sense label, like “Causation: Hargl1 ft Llarg2”
(“Causation: because argl therefore arg2”). This
approach works well, as evidenced by 87.4%* and
99.8% agreement for the two processes respectively.

To evaluate agreement on determining argument
span, we adopt four measures. In the first three,
explicit and implicit relations are calculated sepa-
rately (although they are actually annotated in the
same process) to make our results comparable to
the published PDTB results. Each argument span is
treated as an independent token and either exact or
partial match (i.e. if two spans share one boundary)
counts as 1. The fourth measure is less stringent than
exact match and more stringent than partial match:
It groups explicit and implicit relation together and
treats each boundary as an independent token. Typ-
ically, an argument span has two boundaries, but it
can have four (or more) boundaries when an argu-
ment span is interrupted by a connective and/or an
AltLex item.

Evidently, determining argument span is the most
challenging aspect of discourse annotation. How-
ever, it should be pointed out that agreement was on
an overall upward trend, which became especially
prominent after we instituted a restriction on im-
plicit relations across a paragraph boundary towards
the end of the training period. It restricts full anno-

“Two more points should be made about this number. First,
it may be partially attributed to our differently structured sense
hierarchy. It is a flat structure containing the following 12 val-
ues: ALTERNATIVE, CAUSATION, CONDITIONAL, CONJUNC-
TION, CONTRAST, EXPANSION, PROGRESSION, PURPOSE,
RESTATEMENT, TEMPORAL, EntRel, and NoRel. Aside from in-
cluding EntRel and NoRel (the reason and significance of which
have been discussed in Section 3.2.2), the revision was by and
large not motivated by Chinese-specific features, so we do not
address it in detail in this paper. Second, in making the compar-
ison with the PDTB result, the 12-value structure is collapsed
into 5 values: TEMPORAL, CONTINGENCY, COMPARISON, EX-
PANSION, and EntRel/NoRel, which must be different from the
5 values in Miltsakaki et al. (2004), judging from the descrip-
tions.
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tation to only three specific situations so that most
loose and/or hard-to-delimit relations across para-
graph boundaries are excluded. This restriction ap-
pears to be quite effective, as shown in Table 2.

num Overall Arg Span
of boundary span-em
rel’s F(p/r) (%) (%)
last 5 wks | 1103 | 90.0 (90.0/89.9) 80.8
last 3 wks | 677 | 91.0 (91.0/91.0) 82.5
last 2 wks | 499 | 91.8 (91.8/91.8) 84.2

Table 2: Inter-annotator agreement on argument span
during the last 5 weeks of training.

5 Conclusions

We have presented a discourse annotation scheme
for Chinese that adopts the lexically ground ap-
proach of the PDTB while making systematic adap-
tations motivated by characteristics of Chinese text.
These adaptations not only work well in practice, as
evidenced by the results from our annotation exper-
iment, but also embody a more generalized view of
the lexically ground approach to discourse annota-
tion: Discourse relations are predication involving
two arguments; the predicate can be either covert
(i.e. Implicit) or overt, lexicalized as discourse con-
nectives (i.e. Explicit) or their more polymorphous
counterparts (i.e. AltLex). Consistent with this
generalized view is a more semantically motivated
sense annotation scheme: Senses of discourse rela-
tions (as opposed to just connectives) are annotated;
and the two arguments of the discourse relation are
semantically defined, allowing the sense structure
to be more general and less connective-dependent.
These framework-level generalizations can be ap-
plied to discourse annotation of other languages.
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Abstract

One of the key tasks for analyzing conversa-
tional data is segmenting it into coherent topic
segments. However, most models of topic
segmentation ignore the social aspect of con-
versations, focusing only on the words used.
We introduce a hierarchical Bayesian nonpara-
metric model, Speaker Identity for Topic Seg-
mentation (SITS), that discovers (1) the top-
ics used in a conversation, (2) how these top-
ics are shared across conversations, (3) when
these topics shift, and (4) a person-specific
tendency to introduce new topics. We eval-
uate against current unsupervised segmenta-
tion models to show that including person-
specific information improves segmentation
performance on meeting corpora and on po-
litical debates. Moreover, we provide evidence
that SITS captures an individual’s tendency to
introduce new topics in political contexts, via
analysis of the 2008 US presidential debates
and the television program Crossfire.

1 Topic Segmentation as a Social Process

Conversation, interactive discussion between two or
more people, is one of the most essential and com-
mon forms of communication. Whether in an in-
formal situation or in more formal settings such as
a political debate or business meeting, a conversa-
tion is often not about just one thing: topics evolve
and are replaced as the conversation unfolds. Dis-
covering this hidden structure in conversations is a
key problem for conversational assistants (Tur et al.,
2010) and tools that summarize (Murray et al., 2005)
and display (Ehlen et al., 2007) conversational data.
Topic segmentation also can illuminate individuals’
agendas (Boydstun et al., 2011), patterns of agree-
ment and disagreement (Hawes et al., 2009; Abbott
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et al., 2011), and relationships among conversational
participants (Ireland et al., 2011).

One of the most natural ways to capture conversa-
tional structure is topic segmentation (Reynar, 1998;
Purver, 2011). Topic segmentation approaches range
from simple heuristic methods based on lexical simi-
larity (Morris and Hirst, 1991; Hearst, 1997) to more
intricate generative models and supervised meth-
ods (Georgescul et al., 2006; Purver et al., 2006;
Gruber et al., 2007; Eisenstein and Barzilay, 2008),
which have been shown to outperform the established
heuristics.

However, previous computational work on con-
versational structure, particularly in topic discovery
and topic segmentation, focuses primarily on con-
tent, ignoring the speakers. We argue that, because
conversation is a social process, we can understand
conversational phenomena better by explicitly model-
ing behaviors of conversational participants. In Sec-
tion 2, we incorporate participant identity in a new
model we call Speaker Identity for Topic Segmen-
tation (SITS), which discovers topical structure in
conversation while jointly incorporating a participant-
level social component. Specifically, we explicitly
model an individual’s tendency to introduce a topic.
After outlining inference in Section 3 and introducing
data in Section 4, we use SITS to improve state-of-
the-art-topic segmentation and topic identification
models in Section 5. In addition, in Section 6, we
also show that the per-speaker model is able to dis-
cover individuals who shape and influence the course
of a conversation. Finally, we discuss related work
and conclude the paper in Section 7.

2 Modeling Multiparty Discussions

Data Properties We are interested in turn-taking,
multiparty discussion. This is a broad category, in-
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cluding political debates, business meetings, and on-
line chats. More formally, such datasets contain C'
conversations. A conversation ¢ has 7 turns, each of
which is a maximal uninterrupted utterance by one
speaker.! Ineach turnt € [1, 7., a speaker Qc,t ULters
N words {wcp}. Each word is from a vocabulary
of size V, and there are M distinct speakers.

Modeling Approaches The key insight of topic
segmentation is that segments evince lexical cohe-
sion (Galley et al., 2003; Olney and Cai, 2005).
Words within a segment will look more like their
neighbors than other words. This insight has been
used to tune supervised methods (Hsueh et al., 2006)
and inspire unsupervised models of lexical cohesion
using bags of words (Purver et al., 2006) and lan-
guage models (Eisenstein and Barzilay, 2008).

We too take the unsupervised statistical approach.
It requires few resources and is applicable in many
domains without extensive training. Like previ-
ous approaches, we consider each turn to be a bag
of words generated from an admixture of topics.
Topics—after the topic modeling literature (Blei and
Lafferty, 2009)—are multinomial distributions over
terms. These topics are part of a generative model
posited to have produced a corpus.

However, topic models alone cannot model the dy-
namics of a conversation. Topic models typically do
not model the temporal dynamics of individual docu-
ments, and those that do (Wang et al., 2008; Gerrish
and Blei, 2010) are designed for larger documents
and are not applicable here because they assume that
most topics appear in every time slice.

Instead, we endow each turn with a binary latent
variable [..;, called the topic shift. This latent variable
signifies whether the speaker changed the topic of the
conversation. To capture the topic-controlling behav-
ior of the speakers across different conversations, we
further associate each speaker m with a latent topic
shift tendency, my,. Informally, this variable is in-
tended to capture the propensity of a speaker to effect
a topic shift. Formally, it represents the probability
that the speaker m will change the topic (distribution)
of a conversation.

We take a Bayesian nonparametric
proach (Miiller and Quintana, 2004).

ap-
Unlike

"Note the distinction with phonetic utterances, which by
definition are bounded by silence.
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parametric models, which a priori fix the number of
topics, nonparametric models use a flexible number
of topics to better represent data. Nonparametric
distributions such as the Dirichlet process (Ferguson,
1973) share statistical strength among conversations
using a hierarchical model, such as the hierarchical
Dirichlet process (HDP) (Teh et al., 2006).

2.1 Generative Process

In this section, we develop SITS, a generative model
of multiparty discourse that jointly discovers topics
and speaker-specific topic shifts from an unannotated
corpus (Figure 1a). As in the hierarchical Dirichlet
process (Teh et al., 2006), we allow an unbounded
number of topics to be shared among the turns of the
corpus. Topics are drawn from a base distribution
H over multinomial distributions over the vocabu-
lary, a finite Dirichlet with symmetric prior A. Unlike
the HDP, where every document (here, every turn)
draws a new multinomial distribution from a Dirich-
let process, the social and temporal dynamics of a
conversation, as specified by the binary topic shift
indicator /. ;, determine when new draws happen.
The full generative process is as follows:

1. For speaker m € [1, M], draw speaker shift probability
mm ~ Beta(7)
2. Draw global probability measure Go ~ DP(«, H)
3. For each conversation ¢ € [1,C]
(a) Draw conversation distribution G ~ DP(ag, Go)
(b) Foreach turn ¢ € [1,T,] with speaker ac,¢
i. Ift = 1, set the topic shift [.; = 1. Otherwise,
draw l.,; ~ Bernoulli(7,, , ).
ii. Iflcs = 1, draw Gc+ ~ DP(a, Ge). Other-
wise, set Get = Ge,t—1.
iii. For each word index n € [1, Nc.¢]
o Draw ¢ ¢ n ~ Get
e Draw we,¢,n ~ Multinomial(c ¢, )

The hierarchy of Dirichlet processes allows sta-
tistical strength to be shared across contexts; within
a conversation and across conversations. The per-
speaker topic shift tendency 7, allows speaker iden-
tity to influence the evolution of topics.

To make notation concrete and aligned with the
topic segmentation, we introduce notation for seg-
ments in a conversation. A segment s of conver-
sation ¢ is a sequence of turns [7,7’] such that
leqg = leq1 = land Iy = 0,Vt € (7,7']. When
leg =0, Gy is the same as G ;1 and all topics (i.e.
multinomial distributions over words) {tn} that
generate words in turn ¢ and the topics {¢ct—1,n}
that generate words in turn ¢ — 1 come from the same



(a)

Figure 1: Graphical model representations of our proposed models: (a) the nonparametric version; (b) the
parametric version. Nodes represent random variables (shaded ones are observed), lines are probabilistic
dependencies. Plates represent repetition. The innermost plates are turns, grouped in conversations.

distribution. Thus all topics used in a segment s are
drawn from a single distribution, G s,

Gc,s | lc,17 lc,23 e 1lC,TC7 O, Gc ~ DP(am Gc) (1)

For notational convenience, S. denotes the num-
ber of segments in conversation ¢, and s; denotes
the segment index of turn t. We emphasize that all
segment-related notations are derived from the poste-
rior over the topic shifts [ and not part of the model
itself.

Parametric Version SITS is a generalization of a
parametric model (Figure 1b) where each turn has
a multinomial distribution over K topics. In the
parametric case, the number of topics K is fixed.
Each topic, as before, is a multinomial distribution
@1 ... oK. In the parametric case, each turn ¢ in con-
versation ¢ has an explicit multinomial distribution
over K topics 0., identical for turns within a seg-
ment. A new topic distribution 6 is drawn from a
Dirichlet distribution parameterized by o when the
topic shift indicator [ is 1.

The parametric version does not share strength
within or across conversations, unlike SITS. When
applied on a single conversation without speaker iden-
tity (all speakers are identical) it is equivalent to
(Purver et al., 2006). In our experiments (Section 5),
we compare against both.
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3 Inference

To find the latent variables that best explain observed
data, we use Gibbs sampling, a widely used Markov
chain Monte Carlo inference technique (Neal, 2000;
Resnik and Hardisty, 2010). The state space is latent
variables for topic indices assigned to all tokens z =
{%c,t,n} and topic shifts assigned to turns 1 = {l.+}.
We marginalize over all other latent variables. Here,
we only present the conditional sampling equations;
for more details, see our supplement.”

3.1 Sampling Topic Assignments

To sample 2.4, the index of the shared topic as-
signed to token n of turn ¢ in conversation ¢, we need
to sample the path assigning each word token to a
segment-specific topic, each segment-specific topic
to a conversational topic and each conversational
topic to a shared topic. For efficiency, we make use
of the minimal path assumption (Wallach, 2008) to
generate these assignments.> Under the minimal path
assumption, an observation is assumed to have been
generated by using a new distribution if and only if
there is no existing distribution with the same value.

2 http://www.cs.umd.edu/~vietan/topicshift/appendix.pdf

3We also investigated using the maximal assumption and
fully sampling assignments. We found the minimal path assump-
tion worked as well as explicitly sampling seating assignments
and that the maximal path assumption worked less well.



We use N, ;. to denote the number of tokens in
segment s in conversation c assigned topic k; N j
denotes the total number of segment-specific top-
ics in conversation c¢ assigned topic k£ and N de-
notes the number of conversational topics assigned
topic k. T'W},,, denotes the number of times the
shared topic k is assigned to word w in the vocab-
ulary. Marginal counts are represented with - and
* represents all hyperparameters. The conditional
distribution for 2.t 1S P(2etn = k | Wern =
w,z" 0" w1 %) o

—c,t,n o
N Tk

Noctn Ny U+ R B
—c,t,n c,k +ao N__C'f"n+a TWk Z,t,n + A
N, + ac — A Wew A
c,st,k NP fag i ,
—c,t,n - X TW,“ VA
NC;St’T" + ac 1
- k new.
14
@

Here V is the size of the vocabulary, K is the current
number of shared topics and the superscript ~¢%"
denotes counts without considering w. ¢ . In Equa-
tion 2, the first factor is proportional to the probability
of sampling a path according to the minimal path as-
sumption; the second factor is proportional to the
likelihood of observing w given the sampled topic.
Since an uninformed prior is used, when a new topic
is sampled, all tokens are equiprobable.

3.2 Sampling Topic Shifts

Sampling the topic shift variable [.; requires us to
consider merging or splitting segments. We use k. ;
to denote the shared topic indices of all tokens in
turn ¢ of conversation c; S, , , to denote the num-
ber of times speaker a. is assigned the topic shift
with value = € {0, 1}; JZ to denote the number of
topics in segment s of conversation c if [.; = x and
N, ; to denote the number of tokens assigned to the
segment-specific topic j when [.; = x.* Again, the
superscript ~¢! is used to denote exclusion of turn ¢

of conversation c in the corresponding counts.
Recall that the topic shift is a binary variable. We
use 0 to represent the case that the topic distribution
is identical to the previous turn. We sample this
assignment P(l.; = 0] 175", w, k, a, ) o

—c,t Jg.st Jgst 0 |

Sac,t«,o + v e’ szl (Nc,.st,j — 1). 3)
—c,t 0 :

Sacir 20 T (- 1+ aw)

“Deterministically knowing the path assignments is the pri-
mary efficiency motivation for using the minimal path assump-
tion. The alternative is to explicitly sample the path assignments,
which is more complicated (for both notation and computation).
This option is spelled in full detail in the supplementary material.
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In Equation 3, the first factor is proportional to the
probability of assigning a topic shift of value O to
speaker a.; and the second factor is proportional to
the joint probability of all topics in segment s; of

conversation ¢ when [.; = 0.

The other alternative is for the topic shift to be
1, which represents the introduction of a new distri-
bution over topics inside an existing segment. We
sample this as P(l.; = 1| 17", w, k, a, ) o

Jt gt
—c,t e (sg—1) c,(sg—1) 1
Sa‘c,tvl + (aﬂ ¢ H_j:l ¢ (Nc,(stfl),j - 1)'

—c ><
Sacy’:’. + 2y HNE,l(stfm,. (:K 14 Oéc)

7, Ik
0 L (N =Y
Nl ’
[LE7 (=14 o)

As above, the first factor in Equation 4 is propor-
tional to the probability of assigning a topic shift of
value 1 to speaker a.; the second factor in the big
bracket is proportional to the joint distribution of the
topics in segments s; — 1 and s;. In this case [.; = 1
means splitting the current segment, which results in
two joint probabilities for two segments.

4 Datasets

This section introduces the three corpora we use. We
preprocess the data to remove stopwords and remove
turns containing fewer than five tokens.

The ICSI Meeting Corpus:  The ICSI Meeting
Corpus (Janin et al., 2003) is 75 transcribed meetings.
For evaluation, we used a standard set of reference
segmentations (Galley et al., 2003) of 25 meetings.
Segmentations are binary, i.e., each point of the doc-
ument is either a segment boundary or not, and on
average each meeting has 8 segment boundaries. Af-
ter preprocessing, there are 60 unique speakers and
the vocabulary contains 3346 non-stopword tokens.

The 2008 Presidential Election Debates Our sec-
ond dataset contains three annotated presidential de-
bates (Boydstun et al., 2011) between Barack Obama
and John McCain and a vice presidential debate be-
tween Joe Biden and Sarah Palin. Each turn is one
of two types: questions () from the moderator or
responses (R) from a candidate. Each clause in a
turn is coded with a Question Topic (15)) and a Re-
sponse Topic (T'r). Thus, a turn has a list of T()’s and
T’r’s both of length equal to the number of clauses in
the turn. Topics are from the Policy Agendas Topics



l Speaker [ Type [ Turn clauses [ Tq [ Tr ‘

Brokaw Q Sen. Obama, [...] Are you saying [...] that the American economy is going to get much worse 1 N/A
before it gets better and they ought to be prepared for that?

Obama R No, I am confident about the American economy. 1 1
[...] But most importantly, we’re going to have to help ordinary families be able to stay in their 1 14
homes, make sure that they can pay their bills [... ]

Brokaw [ Q [ Sen. McCain, in all candor, do you think the economy is going to get worse before it gets better? [ 1 [ N/A ‘
[...] I think if we act effectively, if we stabilize the housing market—which I believe we can, 1 14

McCain R if we go out and buy up these bad loans, so that people can have a new mortgage at the new value 1 14
of their home
I think if we get rid of the cronyism and special interest influence in Washington so we can act 1 20
more effectively. [...]

Table 1: Example turns from the annotated 2008 election debates. The topics (Tg and T'r) are from the Policy
Agendas Topics Codebook which contains the following codes of topic: Macroeconomics (1), Housing &
Community Development (14), Government Operations (20).

Codebook, a manual inventory of 19 major topics
and 225 subtopics.®> Table 1 shows an example anno-
tation.

To get reference segmentations, we assign each
turn a real value from O to 1 indicating how much a
turn changes the topic. For a question-typed turn, the
score is the fraction of clause topics not appearing in
the previous turn; for response-typed turns, the score
is the fraction of clause topics that do not appear in
the corresponding question. This results in a set of
non-binary reference segmentations. For evaluation
metrics that require binary segmentations, we create
a binary segmentation by setting a turn as a segment
boundary if the computed score is 1. This threshold
is chosen to include only true segment boundaries.

CNN’s Crossfire Crossfire was a weekly U.S. tele-
vision “talking heads” program engineered to incite
heated arguments (hence the name). Each episode
features two recurring hosts, two guests, and clips
from the week’s news. Our Crossfire dataset con-
tains 1134 transcribed episodes aired between 2000
and 2004.° There are 2567 unique speakers. Unlike
the previous two datasets, Crossfire does not have
explicit topic segmentations, so we use it to explore
speaker-specific characteristics (Section 6).

5 Topic Segmentation Experiments

In this section, we examine how well SITS can repli-
cate annotations of when new topics are introduced.

3 http://www.policyagendas.org/page/topic-codebook
® http://www.cs.umd.edu/~vietan/topicshift/crossfire.zip
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We discuss metrics for evaluating an algorithm’s seg-
mentation against a gold annotation, describe our
experimental setup, and report those results.

Evaluation Metrics To evaluate segmentations,
we use P, (Beeferman et al., 1999) and WindowDiff
(WD) (Pevzner and Hearst, 2002). Both metrics mea-
sure the probability that two points in a document
will be incorrectly separated by a segment boundary.
Both techniques consider all spans of length k in the
document and count whether the two endpoints of
the window are (im)properly segmented against the
gold segmentation.

However, these metrics have drawbacks. First,
they require both hypothesized and reference seg-
mentations to be binary. Many algorithms (e.g., prob-
abilistic approaches) give non-binary segmentations
where candidate boundaries have real-valued scores
(e.g., probability or confidence). Thus, evaluation
requires arbitrary thresholding to binarize soft scores.
To be fair, thresholds are set so the number of seg-
ments are equal to a predefined value (Purver et al.,
2006; Galley et al., 2003).

To overcome these limitations, we also use Earth
Mover’s Distance (EMD) (Rubner et al., 2000), a
metric that measures the distance between two distri-
butions. The EMD is the minimal cost to transform
one distribution into the other. Each segmentation
can be considered a multi-dimensional distribution
where each candidate boundary is a dimension. In
EMD, a distance function across features allows par-
tial credit for “near miss” segment boundaries. In



addition, because EMD operates on distributions, we
can compute the distance between non-binary hy-
pothesized segmentations with binary or real-valued
reference segmentations. We use the FastEMD im-
plementation (Pele and Werman, 2009).

Experimental Methods We applied the following
methods to discover topic segmentations in a docu-
ment:

o TextTiling (Hearst, 1997) is one of the earliest general-
purpose topic segmentation algorithms, sliding a fixed-
width window to detect major changes in lexical similarity.

o P-NoSpeaker-S: parametric version without speaker iden-
tity run on each conversation (Purver et al., 2006)

o P-NoSpeaker-M: parametric version without speaker
identity run on all conversations

e P-SITS: the parametric version of SITS with speaker iden-
tity run on all conversations

o NP-HMM: the HMM-based nonparametric model which
a single topic per turn. This model can be considered a
Sticky HDP-HMM (Fox et al., 2008) with speaker identity.

o NP-SITS: the nonparametric version of SITS with speaker
identity run on all conversations.

Parameter Settings and Implementations In our
experiment, all parameters of TextTiling are the
same as in (Hearst, 1997). For statistical models,
Gibbs sampling with 10 randomly initialized chains
is used. Initial hyperparameter values are sampled
from U (0, 1) to favor sparsity; statistics are collected
after 500 burn-in iterations with a lag of 25 itera-
tions over a total of 5000 iterations; and slice sam-
pling (Neal, 2003) optimizes hyperparameters.

Results and Analysis Table 2 shows the perfor-
mance of various models on the topic segmentation
problem, using the ICSI corpus and the 2008 debates.
Consistent with previous results, probabilistic
models outperform TextTiling. In addition, among
the probabilistic models, the models that had access
to speaker information consistently segment better
than those lacking such information, supporting our
assertion that there is benefit to modeling conversa-
tion as a social process. Furthermore, NP-SITS out-
performs NP-HMM in both experiments, suggesting
that using a distribution over topics to turns is bet-
ter than using a single topic. This is consistent with
parametric results reported in (Purver et al., 2006).
The contribution of speaker identity seems more
valuable in the debate setting. Debates are character-
ized by strong rewards for setting the agenda; dodg-
ing a question or moving the debate toward an oppo-
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nent’s weakness can be useful strategies (Boydstun
et al., 2011). In contrast, meetings (particularly low-
stakes ICSI meetings) are characterized by pragmatic
rather than strategic topic shifts. Second, agenda-
setting roles are clearer in formal debates; a modera-
tor is tasked with setting the agenda and ensuring the
conversation does not wander too much.

The nonparametric model does best on the smaller
debate dataset. We suspect that an evaluation that
directly accessed the topic quality, either via predic-
tion (Teh et al., 2006) or interpretability (Chang et al.,
2009) would favor the nonparametric model more.

6 Evaluating Topic Shift Tendency

In this section, we focus on the ability of SITS to
capture speaker-level attributes. Recall that SITS
associates with each speaker a topic shift tendency
7 that represents the probability of asserting a new
topic in the conversation. While topic segmentation
is a well studied problem, there are no established
quantitative measurements of an individual’s ability
to control a conversation. To evaluate whether the
tendency is capturing meaningful characteristics of
speakers, we compare our inferred tendencies against
insights from political science.

2008 Elections To obtain a posterior estimate of 7
(Figure 3) we create 10 chains with hyperparameters
sampled from the uniform distribution U (0, 1) and
averaged 7 over 10 chains (as described in Section 5).
In these debates, Ifill is the moderator of the debate
between Biden and Palin; Brokaw, Lehrer and Schief-
fer are the three moderators of three debates between
Obama and McCain. Here “Question” denotes ques-
tions from audiences in “town hall” debate. The role
of this “speaker” can be considered equivalent to the
debate moderator.

The topic shift tendencies of moderators are
much higher than for candidates. In the three de-
bates between Obama and McCain, the moderators—
Brokaw, Lehrer and Schieffer—have significantly
higher scores than both candidates. This is a useful
reality check, since in a debate the moderators are
the ones asking questions and literally controlling the
topical focus. Interestingly, in the vice-presidential
debate, the score of moderator Ifill is only slightly
higher than those of Palin and Biden; this is consis-
tent with media commentary characterizing her as a



Table 2: Results on the topic segmentation task.
Lower is better. The parameter k is the window
size of the metrics P, and WindowDiff chosen to
replicate previous results.

weak moderator.’ Similarly, the “Question” speaker
had a relatively high variance, consistent with an
amalgamation of many distinct speakers.

These topic shift tendencies suggest that all can-
didates manage to succeed at some points in setting
and controlling the debate topics. Our model gives
Obama a slightly higher score than McCain, consis-
tent with social science claims (Boydstun et al., 2011)
that Obama had the lead in setting the agenda over
McCain. Table 4 shows of SITS-detected topic shifts.

Crossfire Crossfire, unlike the debates, has many
speakers. This allows us to examine more closely
what we can learn about speakers’ topic shift ten-
dency. We verified that SITS can segment topics,
and assuming that changing the topic is useful for a
speaker, how can we characterize who does so effec-
tively? We examine the relationship between topic
shift tendency, social roles, and political ideology.

To focus on frequent speakers, we filter out speak-
ers with fewer than 30 turns. Most speakers have
relatively small 7, with the mode around 0.3. There
are, however, speakers with very high topic shift
tendencies. Table 5 shows the speakers having the
highest values according to SITS.

We find that there are three general patterns for
who influences the course of a conversation in Cross-
fire. First, there are structural “speakers” the show
uses to frame and propose new topics. These are

7 http://harpers.org/archive/2008/10/hbc-90003659
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o o o o
Py WindowDiff < = n @ &
Model EMD =51 10 T 15 [ k=5 10 | 15 %
_ [ TextTiling 2.507 | 289 | .388 | .451 || .318 | .477 | .561 N I
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E [ PNoSpeakerM | 1.985 | .207 | 279 | 335 || 258 | 371 | 468 e
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z

Table 3: Topic shift tendency 7 of speakers in the
2008 Presidential Election Debates (larger means
greater tendency)

audience questions, news clips (e.g. many of Gore’s
and Bush’s turns from 2000), and voice overs. That
SITS is able to recover these is reassuring. Second,
the stable of regular hosts receives high topic shift
tendencies, which is reasonable given their experi-
ence with the format and ostensible moderation roles

(in practice they also stoke lively discussion).

The remaining class is more interesting. The re-
maining non-hosts with high topic shift tendency are
relative moderates on the political spectrum:

e John Kasich, one of few Republicans to support the assault
weapons ban and now governor of Ohio, a swing state

e Christine Todd Whitman, former Republican governor of
New Jersey, a very Democratic state

o John McCain, who before 2008 was known as a “maverick”
for working with Democrats (e.g. Russ Feingold)

This suggests that, despite Crossfire’s tendency to
create highly partisan debates, those who are able to
work across the political spectrum may best be able
to influence the topic under discussion in highly po-
larized contexts. Table 4 shows detected topic shifts
from these speakers; two of these examples (McCain
and Whitman) show disagreement of Republicans
with President Bush. In the other, Kasich is defend-
ing a Republican plan (school vouchers) popular with
traditional Democratic constituencies.

7 Related and Future Work

In the realm of statistical models, a number of tech-
niques incorporate social connections and identity to
explain content in social networks (Chang and Blei,



| Previous turn

[ Turn detected as shifting topic

l

PALIN: Your question to him was whether he sup- | IFILL: Wonderful. You agree. On that note, let’s move to foreign policy. You
9 | ported gay marriage and my answer is the same as | both have sons who are in Iraq or on their way to Irag. You, Governor Palin,
£ | his and it is that I do not. have said that you would like to see a real clear plan for an exit strategy. [...]
A | MCCAIN: I think that Joe Biden is qualified in | SCHIEFFER: [...] Let’s talk about energy and climate control. Every president
§ many respects. ... since Nixon has said what both of you [...]
S | IFILL: So, Governor, as vice president, there’s | BIDEN: Again, let me-let’s talk about those tax breaks. [Obama] voted for an
A | nothing that you have promised [...] that you | energy bill because, for the first time, it had real support for alternative energy.
wouldn’t take off the table because of this finan- | [...] on eliminating the tax breaks for the oil companies, Barack Obama voted
cial crisis we’re in? to eliminate them. [...]
PRESS: But what do you say, governor, to Gov- | WHITMAN: Well I disagree with them on this particular issues [...] that’s
ernor Bush and [...] your party who would let | important to me that George Bush stands for education of our children [...] I
politicians and not medical scientists decide what | care about tax policy, I care about the environment. I care about all the issues
- drugs are distributed [...] where he has a proven record in Texas [... ]
Z | WEXLER: [...] They need a Medicare prescrip- | KASICH: [...] I want to talk about choice. [...] George Bush believes that, if
g tion drug plan [...] Talk about schools, [...] Al | schools fail, parents ought to have a right to get their kids out of those schools
o | Gore has got a real plan. George Bush offers us | and give them a chance and an opportunity for success. Gore says “no way” [.... ]
g vouchers. Talk about the environment. [...] Al | Social Security. George Bush says [...] direct it the way federal employees do
S | Gore is right on in terms of the majority of Ameri- | [...] Al Gore says “No way” [...] That’s real choice. That’s real bottom-up,
© cans, but George Bush [...] not a bureaucratic approach, the way we run this country.
PRESS: Senator, Senator Breaux mentioned that | MCCAIN: After one of closest elections in our nation’s history, there is one
it’s President Bush’s aim to start on education [...] | thing the American people are unanimous about They want their government
[McCain] [...] said he was going to do introduce | back. We can do that by ridding politics of large, unregulated contributions that
the legislation the first day of the first week of the | give special interests a seat at the table while average Americans are stuck in the
new administration. [...] back of the room.

Table 4: Example of turns designated as a topic shift by SITS. Turns were chosen with speakers to give

examples of those with high topic shift tendency .

l Rank [ Speaker [ T “ Rank [ Speaker [ T ‘
1 Announcer .884 10 Kasich .570
2 Male .876 11 Carville .550
3 Question 755 12 Carlson’ .550
4 | G.W.Bush* | 751 13 | Begala® 545
5 Press' .651 14 Whitman .533
6 Female .650 15 McAuliffe | .529
7 | Gore? 650 || 16 | Matalin™ | .527
8 Narrator .642 17 McCain 524
9 | Novak' 587 18 | Fleischer | .522

Table 5: Top speakers by topic shift tendencies. We
mark hosts (1) and “speakers” who often (but not al-
ways) appeared in clips (). Apart from those groups,
speakers with the highest tendency were political
moderates.

2009) and scientific corpora (Rosen-Zvi et al., 2004).
However, these models ignore the temporal evolution
of content, treating documents as static.

Models that do investigate the evolution of topics
over time typically ignore the identify of the speaker.
For example: models having sticky topics over n-
grams (Johnson, 2010), sticky HDP-HMM (Fox et al.,
2008); models that are an amalgam of sequential
models and topic models (Griffiths et al., 2005; Wal-
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lach, 2006; Gruber et al., 2007; Ahmed and Xing,
2008; Boyd-Graber and Blei, 2008; Du et al., 2010);
or explicit models of time or other relevant features

as a distinct latent variable (Wang and McCallum,
2006; Eisenstein et al., 2010).

In contrast, SITS jointly models topic and individ-
uals’ tendency to control a conversation. Not only
does SITS outperform other models using standard
computational linguistics baselines, but it also pro-
poses intriguing hypotheses for social scientists.

Associating each speaker with a scalar that mod-
els their tendency to change the topic does improve
performance on standard tasks, but it’s inadequate to
fully describe an individual. Modeling individuals’
perspective (Paul and Girju, 2010), “side” (Thomas
et al., 2006), or personal preferences for topics (Grim-
mer, 2009) would enrich the model and better illumi-
nate the interaction of influence and topic.

Statistical analysis of political discourse can help
discover patterns that political scientists, who often
work via a “close reading,” might otherwise miss.
We plan to work with social scientists to validate
our implicit hypothesis that our topic shift tendency
correlates well with intuitive measures of “influence.”
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Abstract

We propose a new approach to characterizing
the timeline of a text: temporal dependency
structures, where all the events of a narrative
are linked via partial ordering relations like BE-
FORE, AFTER, OVERLAP and IDENTITY. We
annotate a corpus of children’s stories with tem-
poral dependency trees, achieving agreement
(Krippendorff’s Alpha) of 0.856 on the event
words, 0.822 on the links between events, and
of 0.700 on the ordering relation labels. We
compare two parsing models for temporal de-
pendency structures, and show that a determin-
istic non-projective dependency parser outper-
forms a graph-based maximum spanning tree
parser, achieving labeled attachment accuracy
of 0.647 and labeled tree edit distance of 0.596.
Our analysis of the dependency parser errors
gives some insights into future research direc-
tions.

1 Introduction

There has been much recent interest in identifying
events, times and their relations along the timeline,
from event and time ordering problems in the Temp-
Eval shared tasks (Verhagen et al., 2007; Verhagen
et al., 2010), to identifying time arguments of event
structures in the Automated Content Extraction pro-
gram (Linguistic Data Consortium, 2005; Gupta and
Ji, 2009), to timestamping event intervals in the
Knowledge Base Population shared task (Artiles et
al., 2011; Amigo6 et al., 2011).

However, to date, this research has produced frag-
mented document timelines, because only specific
types of temporal relations in specific contexts have
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been targeted. For example, the TempEval tasks only
looked at relations between events in the same or ad-
jacent sentences (Verhagen et al., 2007; Verhagen et
al., 2010), and the Automated Content Extraction pro-
gram only looked at time arguments for specific types
of events, like being born or transferring money.

In this article, we propose an approach to temporal
information extraction that identifies a single con-
nected timeline for a text. The temporal language
in a text often fails to specify a total ordering over
all the events, so we annotate the timelines as tem-
poral dependency structures, where each event is a
node in the dependency tree, and each edge between
nodes represents a temporal ordering relation such
as BEFORE, AFTER, OVERLAP or IDENTITY. We
construct an evaluation corpus by annotating such
temporal dependency trees over a set of children’s
stories. We then demonstrate how to train a time-
line extraction system based on dependency parsing
techniques instead of the pair-wise classification ap-
proaches typical of prior work.

The main contributions of this article are:

e We propose a new approach to characterizing
temporal structure via dependency trees.

e We produce an annotated corpus of temporal
dependency trees in children’s stories.

e We design a non-projective dependency parser
for inferring timelines from text.

The following sections first review some relevant
prior work, then describe the corpus annotation and
the dependency parsing algorithm, and finally present
our evaluation results.

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 88-97,
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2 Related Work

Much prior work on the annotation of temporal in-
formation has constructed corpora with incomplete
timelines. The TimeBank (Pustejovsky et al., 2003b;
Pustejovsky et al., 2003a) provided a corpus anno-
tated for all events and times, but temporal relations
were only annotated when the relation was judged to
be salient by the annotator. In the TempEval compe-
titions (Verhagen et al., 2007; Verhagen et al., 2010),
annotated texts were provided for a few different
event and time configurations, for example, an event
and a time in the same sentence, or two main-clause
events from adjacent sentences. Bethard et al. (2007)
proposed to annotate temporal relations one syntactic
construction at a time, producing an initial corpus of
only verbal events linked to events in subordinated
clauses. One notable exception to this pattern of
incomplete timelines is the work of Bramsen et al.
(2006) where temporal structures were annotated as
directed acyclic graphs. However they worked on a
much coarser granularity, annotating not the order-
ing between individual events, but between multi-
sentence segments of text.

In part because of the structure of the available
training corpora, most existing temporal informa-
tion extraction models formulate temporal linking
as a pair-wise classification task, where each pair
of events and/or times is examined and classified as
having a temporal relation or not. Early work on the
TimeBank took this approach (Boguraev and Ando,
2005), classifying relations between all events and
times within 64 tokens of each other. Most of the top-
performing systems in the TempEval competitions
also took this pair-wise classification approach for
both event-time and event-event temporal relations
(Bethard and Martin, 2007; Cheng et al., 2007; UzZa-
man and Allen, 2010; Llorens et al., 2010). Systems
have also tried to take advantage of more global in-
formation to ensure that the pair-wise classifications
satisfy temporal logic transitivity constraints, using
frameworks such as integer linear programming and
Markov logic networks (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Yoshikawa et al., 2009; Uz-
Zaman and Allen, 2010). Yet the basic approach is
still centered around pair-wise classifications, not the
complete temporal structure of a document.

Our work builds upon this prior research, both

&9

improving the annotation approach to generate the
fully connected timeline of a story, and improving
the models for timeline extraction using dependency
parsing techniques. We use the annotation scheme
introduced in more detail in Bethard et. al. (2012),
which proposes to annotate temporal relations as de-
pendency links between head events and dependent
events. This annotation scheme addresses the issues
of incoherent and incomplete annotations by guaran-
teeing that all events in a plot are connected along
a single timeline. These connected timelines allow
us to design new models for timeline extraction in
which we jointly infer the temporal structure of the
text and the labeled temporal relations. We employ
methods from syntactic dependency parsing, adapt-
ing them to our task by including features typical of
temporal relation labeling models.

3 Corpus Annotation

The corpus of stories for children was drawn from the
fables collection of (McIntyre and Lapata, 2009)" and
annotated as described in (Bethard et al., 2012). In
this section we illustrate the main annotation princi-
ples for coherent temporal annotation. As an example
story, consider:

Two Travellers were on the road together,
when a Bear suddenly appeared on the
scene. Before he observed them, one made
for a tree at the side of the road, and
climbed up into the branches and hid there.
The other was not so nimble as his compan-
ion; and, as he could not escape, he threw
himself on the ground and pretended to be
dead... [37.txt]

Figure 1 shows the temporal dependency structure
that we expect our annotators to identify in this story.

The annotators were provided with guidelines both
for which kinds of words should be identified as
events, and for which kinds of events should be
linked by temporal relations. For identifying event
words, the standard TimeML guidelines for anno-
tating events (Pustejovsky et al., 2003a) were aug-
mented with two additional guidelines:

'Data available at http://homepages.inf.ed.ac.
uk/s0233364/McIntyreLapatal09/



before

before
includes before before before before
[ on ] [appeared] [ observed] [ made ] [ climbed ] [ hid ] [ threw ] [pretended]

Two the road on the them, for a tree up into The himself to be
travellers together, scene. one at the side the other... on the dead.

were when a Before of the branches ground

Bear he road, and and and
suddenly

Figure 1: Event timeline for the story of the Travellers and the Bear. Nodes are events and edges are temporal relations.
Edges denote temporal relations signaled by linguistic cues in the text. Temporal relations that can be inferred via

transitivity are not shown.

o Skip negated, modal or hypothetical events (e.g.
could not escape, dead in pretended to be dead).

o For phrasal events, select the single word that
best paraphrases the meaning (e.g. in used to
snap the event should be snap, in kept perfectly
still the event should be still).

For identifying the temporal dependencies (i.e. the
ordering relations between event words), the anno-
tators were instructed to link each event in the story
to a single nearby event, similar to what has been
observed in reading comprehension studies (Johnson-
Laird, 1980; Brewer and Lichtenstein, 1982). When
there were several reasonable nearby events to choose
from, the annotators were instructed to choose the
temporal relation that was easiest to infer from the
text (e.g. preferring relations with explicit cue words
like before). A set of six temporal relations was used:
BEFORE, AFTER, INCLUDES, IS-INCLUDED, IDEN-
TITY or OVERLAP.

Two annotators annotated temporal dependency
structures in the first 100 fables of the Mclntyre-
Lapata collection and measured inter-annotator agree-
ment by Krippendorff’s Alpha for nominal data (Krip-
pendorff, 2004; Hayes and Krippendorff, 2007). For
the resulting annotated corpus annotators achieved
Alpha of 0.856 on the event words, 0.822 on the links
between events, and of 0.700 on the ordering rela-
tion labels. Thus, we concluded that the temporal
dependency annotation paradigm was reliable, and
the resulting corpus of 100 fables? could be used to

2 Available from http://www.bethard.info/data/
fables-100-temporal-dependency.xml
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train a temporal dependency parsing model.

4 Parsing Models

We consider two different approaches to learning a
temporal dependency parser: a shift-reduce model
(Nivre, 2008) and a graph-based model (McDonald
et al., 2005). Both models take as input a sequence
of event words and produce as output a tree structure
where the events are linked via temporal relations.
Formally, a parsing model is a function (W — II)
where W = wjws...w, is a sequence of event
words, and 7 € II is a dependency tree 7 = (V, E)
where:

o V =W U{Root}, that is, the vertex set of the
graph is the set of words in W plus an artificial
root node.

o F={(wp,r,wg) :wp € Vwg € V,r € R=
{BEFORE, AFTER, INCLUDES, IS_INCLUDED,
IDENTITY, OVERLAP}}, that is, in the edge set
of the graph, each edge is a link between a de-
pendent word and its head word, labeled with a
temporal relation.

o (wp,r,wg) € E = wy # Root, that is, the
artificial root node has no head.

o (wp,r,wg) € E = ((w),r",wg) € E =
wy, = wy, Ar = 1'), that is, for every node there
1s at most one head and one relation label.

e F contains no (non-empty) subset of arcs
(Wh,y iy wi), (Wi, g, w5), - . .y (W, 71, wh), that
is, there are no cycles in the graph.



([a1 . ..aibl ce bjwk], [], [wk_H . LE)

([(11 e ai], [az’+1b1 e bj], Q, E)

([a1 e ai], [a¢+1b1 e bj], [wk .. .], E U (wk, r, (l7;+1)

SHIFT Move all of Lo and the head of () onto L4
([a1 cee ai], [bl cee bj], [wkwk_,_l .. ],E)
NO-ARC Move the head of L to the head of Lo
([a1 N aiaﬂ_l], [bl N bj], Q, E)
LEFT-ARC Create a relation where the head of L; depends on the head of @
Not applicable if a;4 1 is the root or already has a head, or if there is a path connecting wy, and a;41
([a1 N aiaﬂ_l], [bl N bj], [’U)k .. .], E)
RIGHT-ARC Create a relation where the head of ) depends on the head of

Not applicable if wy, is the root or already has a head, or if there is a path connecting wy, and a;1

([a1 .. .aiaﬂ_l], [bl .. .bj], [’U)k .. ],E)

([a1 .. .ai], [ai+1bl . .bj], [wk .. ],EU (aH_hr, wk)

Table 1: Transition system for Covington-style shift-reduce dependency parsers.

4.1 Shift-Reduce Parsing Model

Shift-reduce dependency parsers start with an input
queue of unlinked words, and link them into a tree
by repeatedly choosing and performing actions like
shifting a node to a stack, or popping two nodes from
the stack and linking them. Shift-reduce parsers are
typically defined in terms of configurations and a tran-
sition system, where the configurations describe the
current internal state of the parser, and the transition
system describes how to get from one state to another.
Formally, a deterministic shift-reduce dependency
parser is defined as (C, T, C'r, INIT, TREE) where:

e (' is the set of possible parser configurations c;

e T'C (C — () is the set of transitions ¢; from
one configuration c; to another c; 1 allowed by
the parser

e INIT € (W — () is a function from the input
words to an initial parser configuration

e Cr C ( are the set of final parser configura-
tions cr where the parser is allowed to terminate

e TREE € (Cp — 1I) is a function that extracts a
dependency tree 7 from a final parser state cp

Given this formalism and an oracle 0o € (C' — T),
which can choose a transition given the current con-
figuration of the parser, dependency parsing can be
accomplished by Algorithm 1. For temporal depen-
dency parsing, we adopt the Covington set of transi-
tions (Covington, 2001) as it allows for parsing the
non-projective trees, which may also contain “cross-
ing” edges, that occasionally occur in our annotated
corpus. Our parser is therefore defined as:
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Algorithm 1 Deterministic parsing with an oracle.
¢ — INIT(W)
while ¢ ¢ Cr do
t — o(c)
¢ —t(c)
end while
return TREE(c)

e ¢ = (L1,L2,Q, F) is a parser configuration,
where L and L are lists for temporary storage,
@ is the queue of input words, and F is the set

of identified edges of the dependency tree.

e T = {SHIFT,NO-ARC,LEFT-ARC,RIGHT-ARC}
is the set of transitions described in Table 1.

o INIT(W) = ([Root],]], w1, w2, ... ,wy],0)
puts all input words on the queue and the ar-
tificial root on L.

o O = {(Ll,LQ,Q,E) e C:L1 = {W U
{Root}}, Ly = Q = 0} accepts final states
where the input words have been moved off of
the queue and lists and into the edges in F.

e TREE((L1,L2,Q, E)) = (WU{Root}, E) ex-
tracts the final dependency tree.

The oracle o is typically defined as a machine learn-
ing classifier, which characterizes a parser configu-
ration c in terms of a set of features. For temporal
dependency parsing, we learn a Support Vector Ma-
chine classifier (Yamada and Matsumoto, 2003) using
the features described in Section 5.

4.2 Graph-Based Parsing Model

One shortcoming of the shift-reduce dependency
parsing approach is that each transition decision
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Figure 2: A setting for the graph-based parsing model: an initial dense graph G (left) with edge scores SCORE(e). The
resulting dependency tree as a spanning tree with the highest score over the edges (right).

made by the model is final, and cannot be revisited to
search for more globally optimal trees. Graph-based
models are an alternative dependency parsing model,
which assembles a graph with weighted edges be-
tween all pairs of words, and selects the tree-shaped
subset of this graph that gives the highest total score
(Fig. 2). Formally, a graph-based parser follows
Algorithm 2, where:

o W' =W U{Root}

e SCORE € ((W'x RxW) — R) is a function
for scoring edges

e SPANNINGTREE is a function for selecting a
subset of edges that is a tree that spans over all
the nodes of the graph.

Algorithm 2 Graph-based dependency parsing
E «— {(e,SCORE(e)) : e € (W' xRxW))}
G— (W E)
return SPANNINGTREE(G)

The SPANNINGTREE function is usually defined
using one of the efficient search techniques for find-
ing a maximum spanning tree. For temporal depen-
dency parsing, we use the Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) which
solves this problem by iteratively selecting the edge
with the highest weight and removing edges that
would create cycles. The result is the globally op-
timal maximum spanning tree for the graph (Geor-
giadis, 2003).

92

The SCORE function is typically defined as a ma-
chine learning model that scores an edge based on a
set of features. For temporal dependency parsing, we
learn a model to predict edge scores via the Margin
Infused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003; Crammer et al., 2006) using the set of
features defined in Section 5.

S Feature Design

The proposed parsing algorithms both rely on ma-
chine learning methods. The shift-reduce parser
(SRP) trains a machine learning classifier as the or-
acle o € (C — T) to predict a transition ¢ from a
parser configuration ¢ = (L1, Lo, @, F), using node
features such as the heads of L, Lo and (), and
edge features from the already predicted temporal
relations in E. The graph-based maximum spanning
tree (MST) parser trains a machine learning model
to predict SCORE(e) for an edge e = (wj, 75, wy),
using features of the nodes w; and wy. The full set
of features proposed for both parsing models, de-
rived from the state-of-the-art systems for temporal
relation labeling, is presented in Table 2. Note that
both models share features that look at the nodes,
while only the shift-reduce parser has features for
previously classified edges.

6 Evaluations

Evaluations were performed using 10-fold cross-
validation on the fables annotated in Section 3. The
corpus contains 100 fables, a total of 14,279 tokens
and a total of 1136 annotated temporal relations. As



Feature SRP | MST
Word

Lemma

Part of speech (POS) tag

Suffixes

Syntactically governing verb
Governing verb lemma

Governing verb POS tag
Governing verb POS suffixes
Prepositional phrase occurrence
Dominated by auxiliary verb?
Dominated by modal verb?
Temporal signal word is nearby?
Head word lemma

Temporal relation labels of a; and its
leftmost and rightmost dependents
Temporal relation labels of a;_1’s
leftmost and rightmost dependents
Temporal relation labels of b; and its
leftmost and rightmost dependents
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Table 2: Features for the shift-reduce parser (SRP) and the
graph-based maximum spanning tree (MST) parser. The
vV * features are extracted from the heads of L1, Ly and Q
for SRP and from each node of the edge for MST.

only 40 instances of OVERLAP relations were an-
notated when neither INCLUDES nor IS_INCLUDED
label matched, for evaluation purposes all instances
of these relations were merged into the temporally
coarse OVERLAP relation. Thus, the total number of
OVERLAP relations in the corpus grew from 40 to
258 annotations in total.

To evaluate the parsing models (SRP and MST)
we proposed two baselines. Both are based on the
assumption of linear temporal structures of narratives
as the temporal ordering process that was evidenced
by studies in human text rewriting (Hickmann, 2003).
The proposed baselines are:

e LinearSeq: A model that assumes all events
occur in the order they are written, adding links
between each pair of adjacent events, and label-
ing all links with the relation BEFORE.

e ClassifySeq: A model that links each pair of
adjacent events, but trains a pair-wise classifier
to predict the relation label for each pair. The

93

classifier is a support vector machine trained us-
ing the same features as the MST parser. This is
an approximation of prior work, where the pairs
of events to classify with a temporal relation
were given as an input to the system. (Note that
Section 6.2 will show that for our corpus, apply-
ing the model only to adjacent pairs of events
is quite competitive for just getting the basic
unlabeled link structure right.)

The Shift-Reduce parser (SRP; Section 4.1) and the
graph-based, maximum spanning tree parser (MST;
Section 4.2) are compared to these baselines.

6.1 Evaluation Criteria and Metrics

Model performance was evaluated using standard
evaluation criteria for parser evaluations:

Unlabeled Attachment Score (UAS) The fraction
of events whose head events were correctly predicted.
This measures whether the correct pairs of events
were linked, but not if they were linked by the correct
relations.

Labeled Attachment Score (LAS) The fraction
of events whose head events were correctly pre-
dicted with the correct relations. This measures both
whether the correct pairs of events were linked and
whether their temporal ordering is correct.

Tree Edit Distance In addition to the UAS and
LAS the tree edit distance score has been recently in-
troduced for evaluating dependency structures (Tsar-
faty et al., 2011). The tree edit distance score
for a tree 7w is based on the following operations
A€ A: A = {DELETE, INSERT, RELABEL}:

e )\ =DELETE delete a non-root node v in 7 with
parent u, making the children of v the children
of u, inserted in the place of v as a subsequence
in the left-to-right order of the children of w.

e )\ =INSERT insert a node v as a child of u in
m making it the parent of a consecutive subse-
quence of the children of u.

e )\ =RELABEL change the label of node v in 7

Any two trees 7m; and 72 can be turned one into an-
other by a sequence of edit operations { Ay, ..., A, }.



UAS | LAS UTEDS | LTEDS
LinearSeq |0.830|0.581 |0.689 |0.549
ClassifySeq | 0.830 | 0.581 | 0.689 | 0.549
MST 0.837|0.614* | 0.710 |0.571
SRP 0.830 [ 0.647*T [ 0.712 | 0.596*

Table 3: Performance levels of temporal structure pars-
ing methods. A * indicates that the model outperforms
LinearSeq and ClassifiedSeq at p < 0.01 and a T indicates
that the model outperforms MST at p < 0.05.

Taking the shortest such sequence, the tree edit dis-
tance is calculated as the sum of the edit operation
costs divided by the size of the tree (i.e. the number
of words in the sentence). For temporal dependency
trees, we assume each operation costs 1.0. The fi-
nal score subtracts the edit distance from 1 so that
a perfect tree has score 1.0. The labeled tree edit
distance score (LTEDS) calculates sequences over
the tree with all its labeled temporal relations, while
the unlabeled tree edit distance score (UTEDS) treats
all edges as if they had the same label.

6.2 Results

Table 3 shows the results of the evaluation. The
unlabeled attachment score for the LinearSeq base-
line was 0.830, suggesting that annotators were most
often linking adjacent events. At the same time,
the labeled attachment score was 0.581, indicating
that even in fables, the stories are not simply linear,
that is, there are many relations other than BEFORE.
The ClassifySeq baseline performs identically to the
LinearSeq baseline, which shows that the simple pair-
wise classifier was unable to learn anything beyond
predicting all relations as BEFORE.

In terms of labeled attachment score, both de-
pendency parsing models outperformed the base-
line models — the maximum spanning tree parser
achieved 0.614 LAS, and the shift-reduce parser
achieved 0.647 LAS. The shift-reduce parser also
outperformed the baseline models in terms of labeled
tree edit distance, achieving 0.596 LTEDS vs. the
baseline 0.549 LTEDS. These results indicate that de-
pendency parsing models are a good fit to our whole-
story timeline extraction task.

Finally, in comparing the two different depen-
dency parsing models, we observe that the shift-
reduce parser outperforms the maximum spanning

94

Error Type Num. | %
OVERLAP — BEFORE 24 | 43.7
Attach to further head 18 32.7
Attach to nearer head 6 11.0
Other types of errors 7 12.6

Total 55 100

Table 4: Error distribution from the analysis of 55 errors
of the Shift-Reduce parsing model.

tree parser in terms of labeled attachment score
(0.647 vs. 0.614). It has been argued that graph-
based models like the maximum spanning tree parser
should be able to produce more globally consistent
and correct dependency trees, yet we do not observe
that here. A likely explanation for this phenomenon
is that the shift-reduce parsing model allows for fea-
tures describing previous parse decisions (similar to
the incremental nature of human parse decisions),
while the joint nature of the maximum spanning tree
parser does not.

6.3 Error Analysis

To better understand the errors our model is still mak-
ing, we examined two folds (55 errors in total in
20% of the evaluation data) and identified the major
categories of errors:

e OVERLAP — BEFORE: The model predicts the
correct head, but predicts its label as BEFORE,
while the correct label is OVERLAP.

e Attach to further head: The model predicts
the wrong head, and predicts as the head an
event that is further away than the true head.

e Attach to nearer head: The model predicts the
wrong head, and predicts as the head an event
that is closer than the true head.

Table 4 shows the distribution of the errors over these
categories. The two most common types of errors,
OVERLAP — BEFORE and Attach to further head,
account for 76.4% of all the errors.

The most common type of error is predicting
a BEFORE relation when the correct answer is an
OVERLAP relation. Figure 3 shows an example of
such an error, where the model predicts that the
Spendthrift stood before he saw, while the anno-
tator indicates that the seeing happened during the



before

before includes

[ wasted ] [ nothing ] [ stood ] [ saw ]
A Spendthrift, his fortune, left but the N _/1 a Swallow one
who had and had clothes in > fine day in
which he before early spring.

Figure 3: An OVERLAP — BEFORE parser error. True
links are solid lines; the parser error is the dotted line.

includes before includes
[ gathering] [ stung ] gSmarting] L ran ]
\~\‘i.ncludes \\),:: includes _-~
A Boy berries from bya with the to tell his
was a hedge when Nettle. pain, he mother ...

his hand was

Figure 4: Parser errors attaching to further away heads.
True links are solid lines; parser errors are dotted lines.

time in which he was standing. An analysis of these
OVERLAP — BEFORE errors suggests that they occur
in scenarios like this one, where the duration of one
event is significantly longer than the duration of an-
other, but there are no direct cues for these duration
differences. We also observe these types of errors
when one event has many sub-events, and therefore
the duration of the main event typically includes the
durations of all the sub-events. It might be possible
to address these kinds of errors by incorporating auto-
matically extracted event duration information (Pan
et al., 2006; Gusev et al., 2011).

The second most common error type of the model
is the prediction of a head event that is further away
than the head identified by the annotators. Figure 4
gives an example of such an error, where the model
predicts that the gathering includes the smarting, in-
stead of that the gathering includes the stung. The
second error in the figure is also of the same type.
In 65% of the cases where this type of error occurs,
it occurs after the parser had already made a label
classification error such as BEFORE — OVERLAP.
So these errors may be in part due to the sequen-
tial nature of shift-reduce parsing, where early errors
propagate and cause later errors.

7 Discussion and Conclusions

In this article, we have presented an approach to tem-
poral information extraction that represents the time-
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line of a story as a temporal dependency tree. We
have constructed an evaluation corpus where such
temporal dependencies have been annotated over a
set of 100 children’s stories. We have introduced two
dependency parsing techniques for extracting story
timelines and have shown that both outperform a rule-
based baseline and a prior-work-inspired pair-wise
classification baseline. Comparing the two depen-
dency parsing models, we have found that a shift-
reduce parser, which more closely mirrors the incre-
mental processing of our human annotators, outper-
forms a graph-based maximum spanning tree parser.
Our error analysis of the shift-reduce parser revealed
that being able to estimate differences in event dura-
tions may play a key role in improving parse quality.

We have focused on children’s stories in this study,
in part because they typically have simpler temporal
structures (though not so simple that our rule-based
baseline could parse them accurately). In most of our
fables, there were only one or two characters with at
most one or two simultaneous sequences of actions.
In other domains, the timeline of a text is likely to
be more complex. For example, in clinical records,
descriptions of patients may jump back and forth
between the patient history, the current examination,
and procedures that have not yet happened.

In future work, we plan to investigate how to best
apply the dependency structure approach to such
domains. One approach might be to first group
events into their narrative containers (Pustejovsky
and Stubbs, 2011), for example, grouping together all
events linked to the time of a patient’s examination.
Then within each narrative container, our dependency
parsing approach could be applied. Another approach
might be to join the individual timeline trees into a
document-wide tree via discourse relations or rela-
tions to the document creation time. Work on how
humans incrementally process such timelines in text
may help to decide which of these approaches holds
the most promise.
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Abstract

Temporal reasoners for document understand-
ing typically assume that a document’s cre-
ation date is known. Algorithms to ground
relative time expressions and order events of-
ten rely on this timestamp to assist the learner.
Unfortunately, the timestamp is not always
known, particularly on the Web. This pa-
per addresses the task of automatic document
timestamping, presenting two new models that
incorporate rich linguistic features about time.
The first is a discriminative classifier with
new features extracted from the text’s time
expressions (e.g., ‘since 1999’). This model
alone improves on previous generative mod-
els by 77%. The second model learns prob-
abilistic constraints between time expressions
and the unknown document time. Imposing
these learned constraints on the discriminative
model further improves its accuracy. Finally,
we present a new experiment design that facil-
itates easier comparison by future work.

1 Introduction

This paper addresses a relatively new task in
the NLP community: automatic document dating.
Given a document with unknown origins, what char-
acteristics of its text indicate the year in which the
document was written? This paper proposes a learn-
ing approach that builds constraints from a docu-
ment’s use of time expressions, and combines them
with a new discriminative classifier that greatly im-
proves previous work.

The temporal reasoning community has long de-
pended on document timestamps to ground rela-
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tive time expressions and events (Mani and Wilson,
2000; Llid6 et al., 2001). For instance, consider
the following passage from the TimeBank corpus
(Pustejovsky et al., 2003):

And while there was no profit this year from
discontinued operations, last year they con-
tributed 34 million, before tax.

Reconstructing the timeline of events from this doc-
ument requires extensive temporal knowledge, most
notably, the document’s creation date to ground its
relative expressions (e.g., this year = 2012). Not
only did the latest TempEval competitions (Verha-
gen et al., 2007; Verhagen et al., 2009) include
tasks to link events to the (known) document cre-
ation time, but state-of-the-art event-event ordering
algorithms also rely on these timestamps (Chambers
and Jurafsky, 2008; Yoshikawa et al., 2009). This
knowledge is assumed to be available, but unfortu-
nately this is not often the case, particularly on the
Web.

Document timestamps are growing in importance
to the information retrieval (IR) and management
communities as well. Several IR applications de-
pend on knowledge of when documents were posted,
such as computing document relevance (Li and
Croft, 2003; Dakka et al., 2008) and labeling search
queries with temporal profiles (Diaz and Jones,
2004; Zhang et al., 2009). Dating documents is sim-
ilarly important to processing historical and heritage
collections of text. Some of the early work that moti-
vates this paper arose from the goal of automatically
grounding documents in their historical contexts (de
Jong et al., 2005; Kanhabua and Norvag, 2008; Ku-
mar et al., 2011). This paper builds on their work
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by incorporating more linguistic knowledge and ex-
plicit reasoning into the learner.

The first part of this paper describes a novel learn-
ing approach to document dating, presenting a dis-
criminative model and rich linguistic features that
have not been applied to document dating. Further,
we introduce new features specific to absolute time
expressions. Our model outperforms the generative
models of previous work by 77%.

The second half of this paper describes a novel
learning algorithm that orders time expressions
against the unknown timestamp. For instance, the
phrase the second quarter of 1999 might be labeled
as being before the timestamp. These labels impose
constraints on the possible timestamp and narrow
down its range of valid dates. We combine these
constraints with our discriminative learner and see
another relative improvement in accuracy by 9%.

2 Previous Work

Most work on dating documents has come from the
IR and knowledge management communities inter-
ested in dating documents with unknown origins.
de Jong et al. (2005) was among the first to auto-
matically label documents with dates. They learned
unigram language models (LMs) for specific time
periods and scored articles with log-likelihood ra-
tio scores. Kanhabua and Norvag (2008; 2009) ex-
tended this approach with the same model, but ex-
panded its unigrams with POS tags, collocations,
and tf-idf scores. They also integrated search engine
results as features, but did not see an improvement.
Both works evaluated on the news genre.

Recent work by Kumar et al. (2011) focused on
dating Gutenberg short stories. As above, they
learned unigram LMs, but instead measured the KL-
divergence between a document and a time period’s
LM. Our proposed models differ from this work
by applying rich linguistic features, discriminative
models, and by focusing on how time expressions
improve accuracy. We also study the news genre.

The only work we are aware of within the NLP
community is that of Dalli and Wilks (2006). They
computed probability distributions over different
time periods (e.g., months and years) for each ob-
served token. The work is similar to the above IR
work in its bag of words approach to classification.
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They focused on finding words that show periodic
spikes (defined by the word’s standard deviation in
its distribution over time), weighted with inverse
document frequency scores. They evaluated on a
subset of the Gigaword Corpus (Graft, 2002).

The experimental setup in the above work (except
Kumar et al. who focus on fiction) all train on news
articles from a particular time period, and test on ar-
ticles in the same time period. This leads to possi-
ble overlap of training and testing data, particularly
since news is often reprinted across agencies the
same day. In fact, one of the systems in Kanhabua
and Norvag (2008) simply searches for one training
document that best matches a test document, and as-
signs its timestamp. We intentionally deviate from
this experimental design and instead create tempo-
rally disjoint train/test sets (see Section 5).

Finally, we extend this previous work by focusing
on aspects of language not yet addressed for docu-
ment dating: linguistic structure and absolute time
expressions. The majority of articles in our dataset
contain time expressions (e.g., the year 1998), yet
these have not been incorporated into the models de-
spite their obvious connection to the article’s times-
tamp. This paper first describes how to include
time expressions as traditional features, and then
describes a more sophisticated temporal reasoning
component that naturally fits into our classifier.

3 Timestamp Classifiers

Labeling documents with timestamps is similar to
topic classification, but instead of choosing from
topics, we choose the most likely year (or other
granularity) in which it was written. We thus begin
with a bag-of-words approach, reproducing the gen-
erative model used by both de Jong (2005) and Kan-
habua and Norvag (2008; 2009). The subsequent
sections then introduce our novel classifiers and
temporal reasoners to compare against this model.

3.1 Language Models

The model of de Jong et al. (2005) uses the nor-
malized log-likelihood ratio (NLLR) to score doc-
uments. It weights tokens by the ratio of their prob-
ability in a specific year to their probability over the
entire corpus. The model thus requires an LM for
each year and an LM for the entire corpus:



P(w]Y)
P(w|C)

NLLR(D,Y) =Y P(w|D) * log( ) (D)

weD

where D is the target document, Y is the time span
(e.g., a year), and C is the distribution of words in
the corpus across all years. A document is labeled
with the year that satisfies argmazry NLLR(D,Y).
They adapted this model from earlier work in the
IR community (Kraaij, 2004). We apply Dirichlet-
smoothing to the language models (as in de Jong et
al.), although the exact choice of « did not signifi-
cantly alter the results, most likely due to the large
size of our training corpus. Kanhabua and Norvag
added an entropy factor to the summation, but we
did not see an improvement in our experiments.

The unigrams w are lowercased tokens. We will
refer to this de Jong et al. model as the Unigram
NLLR. Follow-up work by Kanhabua and Norvag
(2008) applied two filtering techniques to the uni-
grams in the model:

1. Word Classes: include only nouns, verbs, and
adjectives as labeled by a POS tagger

2. IDF Filter: include only the top-ranked terms
by tf-idf score

We also tested with these filters, choosing a cut-
off for the top-ranked terms that optimized perfor-
mance on our development data. We also stemmed
the words as Kanhabua and Norvag suggest. This
model is the Filtered NLLR.

Kanhabua and Norvag also explored what they
termed collocation features, but lacking details on
how collocations were included (or learned), we
could not reproduce this for comparison. How-
ever, we instead propose using NER labels to ex-
tract what may have counted as collocations in their
data. Named entities are important to document dat-
ing due to the nature of people and places coming in
and out of the news at precise moments in time. We
compare the NER features against the Unigram and
Filtered NLLR models in our final experiments.

3.2 Discriminative Models

In addition to reproducing the models from previous
work, we also trained a new discriminative version
with the same features. We used a MaxEnt model
and evaluated with the same filtering methods based
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on POS tags and tf-idf scores. The model performed
best on the development data without any filtering
or stemming. The final results (Section 6) only use
the lowercased unigrams. Ultimately, this MaxEnt
model vastly outperforms these NLLR models.

3.3 Models with Time Expressions

The above language modeling and MaxEnt ap-
proaches are token-based classifiers that one could
apply to any topic classification domain. Barring
other knowledge, the learners solely rely on the ob-
served frequencies of unigrams in order to decide
which class is most likely. However, document dat-
ing is not just a simple topic classification applica-
tion, but rather relates to temporal phenomena that
is often explicitly described in the text itself. Lan-
guage contains words and phrases that discuss the
very time periods we aim to recover. These expres-
sions should be better incorporated into the learner.

3.3.1 Motivation

Let the following snippet serve as a text example
with an ambiguous creation time:

Then there’s the fund-raiser at the American
Museum of Natural History, which plans to
welcome about 1,500 guests paying $1,000 to
$5,000. Their tickets will entitle them to a pre-
view of...the new Hayden Planetarium.

Without extremely detailed knowledge about the
American Museum of Natural History, the events
discussed here are difficult to place in time, let alone
when the author reported it. However, time expres-
sions are sometimes included, and the last sentence
in the original text contains a helpful relative clause:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

This one clause is more valuable than the rest of
the document, allowing us to infer that the docu-
ment’s timestamp is before February, 2000. An ed-
ucated guess might surmise the article appeared in
the year prior, 1999, which is the correct year. At
the very least, this clause should eliminate all years
after 2000 from consideration. Previous work on
document dating does not integrate this information
except to include the unigram ‘2000’ in the model.



This paper discusses two complementary ways to
learn and reason about this information. The first
is to simply add richer time-based features into the
model. The second is to build separate learners that
can assign probabilities to entire ranges of dates,
such as all years following 2000 in the example
above. We begin with the feature-based model.

3.3.2 Time Features

To our knowledge, the following time features
have not been used in a document dating setting.
We use the freely available Stanford Parser and NER
system! to generate the syntactic interpretation for
these features. We then train a MaxEnt classifier and
compare against previous work.

Typed Dependency: The most basic time feature is
including governors of year mentions and the rela-
tion between them. This covers important contexts
that determine the semantics of the time frame, like
prepositions. For example, consider the following
context for the mention /997:

Torre, who watched the Kansas City Royals
beat the Yankees, 13-6, on Friday for the first
time since 1997.

The resulting feature is ‘since pobj 1997’.

Typed Dependency POS: Similar to Typed Depen-
dency, this feature uses POS tags of the dependency
relation’s governor. The feature from the previous
example is now ‘PP pobj 1997°. This generalizes
the features to capture time expressions with prepo-
sitions, as noun modifiers, or other constructs.

Verb Tense: An important syntactic feature for tem-
poral positioning is the tense of the verb that domi-
nates the time expression. A past tense verb situates
the phrase in 2003 differently than one in the future.
We traverse the sentence’s parse tree until a gover-
nor with a VB* tag is found, and determine its tense
through hand constructed rules based on the struc-
ture of the parent VP. The verb tense feature takes a
value of past, present, future, or undetermined.

Verb Path: The verb path feature is the dependency
path from the nearest verb to the year expression.
The following snippet will include the feature, ‘ex-
pected prep in pobj 2002°.

"http://nlp.stanford.edu/software
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Finance Article from Jan. 2002

Text Snippet Relation to 2002
...started a hedge fund before the before
market peaked in 2000.
The peak in economic activity was before
the 4th quarter of 1999.
...might have difficulty in the latter simultaneous
part of 2002.

Figure 1: Three year mentions and their relation to the
document creation year. Relations can be correctly iden-
tified for training using known document timestamps.

Supervising them is Vice President Hu Jintao,
who appears to be Jiang’s favored successor if
he retires from leadership as expected in 2002.

Named Entities: Although not directly related to
time expressions, we also include n-grams of tokens
that are labeled by an NER system using Person, Or-
ganization, or Location. People and places are often
discussed during specific time periods, particularly
in the news genre. Collecting named entity mentions
will differentiate between an article discussing a bill
and one discussing the US President, Bill Clinton.
We extract NER features as sequences of uninter-
rupted tokens labeled with the same NER tag, ignor-
ing unigrams (since unigrams are already included
in the base model). Using the Verb Path example
above, the bigram feature Hu Jintao is included.

4 Learning Time Constraints

This section departs from the above document clas-
sifiers and instead classifies individual emphyear
mentions. The goal is to automatically learn tem-
poral constraints on the document’s timestamp.
Instead of predicting a single year for a document,
a temporal constraint predicts a range of years. Each
time mention, such as ‘not since 2009’, is a con-
straint representing its relation to the document’s
timestamp. For example, the mentioned year ‘2009’
must occur before the year of document creation.
This section builds a classifier to label time mentions
with their relations (e.g., before, after, or simultane-
ous with the document’s timestamp), enabling these
mentions to constrain the document classifiers de-
scribed above. Figure 1 gives an example of time
mentions and the desired labels we wish to learn.
To better motivate the need for constraints, let



0.2

Probability
° 2
2 &
T T

o

o

&
T

1995 1996 1997 1998 1999 2000 2001 2004 2005
Year Class

Figure 2: Distribution over years for a single document
as output by a MaxEnt classifier.

Figure 2 illustrate a typical distribution output by a
document classifier for a training document. Two
of the years appear likely (1999 and 2001), how-
ever, the document contains a time expression that
seems to impose a strict constraint that should elim-
inate 2001 from consideration:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

The clause until February 2000 in a present tense
context may not definitively identify the document’s
timestamp (1999 is a good guess), but as discussed
earlier, it should remove all future years beyond
2000 from consideration. We thus want to impose
a constraint based on this phrase that says, loosely,
‘this document was likely written before 2000°.

The document classifiers described in previous
sections cannot capture such ordering information.
Our new time features in Section 3.3.2 add richer
time information (such as until pobj 2000 and open
prep until pobj 2000), but they compete with many
other features that can mislead the final classifica-
tion. An independent constraint learner may push
the document classifier in the right direction.

4.1 Constraint Types

We learn several types of constraints between each
year mention and the document’s timestamp. Year
mentions are defined as tokens with exactly four
digits, numerically between 1900 and 2100. Let T'
be the document timestamp’s year, and M the year
mention. We define three core relations:

1. Before Timestamp: M < T
2. After Timestamp: M > T

3. Same as Timestamp: M ==
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We also experiment with 7 fine-grained relations:

One year Before Timestamp: M ==7T — 1
Two years Before Timestamp: M ==T — 2
Three+ years Before Timestamp: M < T — 2
One year After Timestamp: M ==T+1
Two years After Timestamp: M ==T + 2
Three+ years After Timestamp: M > T + 2

AR

7. Same Year and Timestamp: M ==T

Obviously the more fine-grained a relation, the bet-
ter it can inform a classifier. We experiment with
these two granularities to compare performance.

The learning process is a typical training envi-
ronment where year mentions are treated as labeled
training examples. Labels for year mentions are
automatically computed by comparing the actual
timestamp of the training document (all documents
in Gigaword have dates) with the integer value of
the year token. For example, a document written in
1997 might contain the phrase, “in the year 2000.
The year token (2000) is thus three+ years after the
timestamp (1997). We use this relation for the year
mention as a labeled training example.

Ultimately, we want to use similar syntactic con-
structs in training so that “in the year 2000 and “in
the year 2003” mutually inform each other. We thus
compute the label for each time expression, and re-
place the integer year with the generic YEAR token
to generalize mentions. The text for this example be-
comes “in the year YEAR” (labeled as three+ years
after). We train a MaxEnt model on each year men-
tion, to be described next. Table 2 gives the overall
counts for the core relations in our training data. The
vast majority of year mentions are references to the
future (e.g. after the timestamp).

4.2 Constraint Learner

The features we use to classify year mentions are
given in Table 1. The same time features in the docu-
ment classifier of Section 3.3.2 are included, as well
as several others specific to this constraint task.

We use a MaxEnt classifier trained on the individ-
ual year mentions. Documents often contain multi-
ple (and different) year mentions; all are included in
training and testing. This classifier labels mentions
with relations, but in order to influence the document
classifier, we need to map the relations to individual



Time Constraint Features

Typed Dep. Same as Section 3.3.2

Verb Tense Same as Section 3.3.2

Verb Path Same as Section 3.3.2

Decade The decade of the year mention

Bag of Words  Unigrams in the year’s sentence

n-gram The 4-gram and 3-gram that end
with the year

n-gram POS The 4-gram and 3-gram of POS tags
that end with the year

Table 1: Features used to classify year expressions.

| Constraint | Count |
After Timestamp 1,203,010
Before Timestamp 168,185
Same as Timestamp | 141,201

Table 2: Training size of year mentions (and their relation
to the document timestamp) in Gigaword’s NYT section.

year predictions. Let 7 be the set of mentions in
document d. We represent a MaxEnt classifier by
Py (RJt) for a time mention ¢t € Ty and possible re-
lations R. We map this distribution over relations to
a distribution over years by defining Pyeq, (Y'|d):

1
Pear(yld) = —— P l(val(t) —y)|lt) 2
varlold) = 5 3 Prlrel(eal(t) =)lt) @
d
before ifx <0
rel(x) = after ifzx>0 3)
simultaneous otherwise

where val(t) is the integer year of the year mention
and Z(T,) is the partition function. The rel(val(t)—
y) function simply determines if the year mention ¢
(e.g., 2003) is before, after, or overlaps the year we
are predicting for the document’s unknown times-
tamp y. We use a similar function for the seven fine-
grained relations. Figure 3 visually illustrates how
Pyear(y|d) is constructed from three year mentions.

4.3 Joint Classifier

Finally, given the document classifiers of Section 3
and the constraint classifier just defined in Section 4,
we create a joint model combining the two with the
following linear interpolation:

P(yld) = APaoc(yld) + (1 = M) Pyear (yld) ~ (4)

where y is a year, and d is the document. A was set
to 0.35 by maximizing accuracy on the dev set. See
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Figure 4. This optimal A = .35 weights the con-
straint classifier higher than the document classifier.

5 Datasets

This paper uses the New York Times section of the
Gigaword Corpus (Graff, 2002) for evaluation. Most
previous work on document dating evaluates on the
news genre, so we maintain the pattern for consis-
tency. Unfortunately, we cannot compare to these
previous experiments because of differing evalua-
tion setups. Dalli and Wilks (2006) is most similar in
their use of Gigaword, but they chose a random set
of documents that cannot be reproduced. We instead
define specific segments of the corpus for evaluation.

The main goal for this experiment setup was to es-
tablish specific training, development, and test sets.
One of the potential difficulties in testing with news
articles is that the same story is often reprinted with
very minimal (or no) changes. Over 10% of the doc-
uments in the New York Times section of the Giga-
word Corpus are exact or approximate duplicates of
another document in the corpus®. A training set for
document dating must not include duplicates from
the test set.

We adopt the intuition behind the experimen-
tal setup used in other NLP domains, like parsing,
where the entire test set is from a contiguous sec-
tion of the corpus (as opposed to randomly selected
examples across the corpus). As the parsing com-
munity trains on sections 2-21 of the Penn Treebank
(Marcus et al., 1993) and tests on section 23, we cre-
ate Gigaword sections by isolating specific months.

2Approximate duplicate is defined as an article whose first
two sentences exactly match the first two of another article.
Only the second matched document is counted as a duplicate.
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Figure 3: Three year mentions in a document and the distributions output by the learner. The document is from 2002.
The dots indicate the before, same, and after relation probabilities. The combination of three constraints results in a
final distribution that gives the years 2001 and 2002 the highest probability. This distribution can help a document

classifier make a more informed final decision.

Training Jan-May and Sep-Dec
Development July
Testing June and August

In other words, the development set includes docu-
ments from July 1995, July 1996, July 1997, etc. We
chose the dev/test sets to be in the middle of the year
so that the training set includes documents on both
temporal sides of the test articles. We include years
1995-2001 and 2004-2006, but skip 2002 and 2003
due to their abnormally small size compared to the
other years.

Finally, we experiment in a balanced data set-
ting, training and testing on the same number
of documents from each year. The test set in-
cludes 11,300 documents in each year (months
June and August) for a total of 113,000 test doc-
uments.  The development set includes 7,300
from July of each year. Training includes ap-
proximately 75,000 documents in each year with
some years slightly less than 75,000 due to their
smaller size in the corpus. The total number of
training documents for the 10 evaluated years is
725,468. The full list of documents is online at
www.usna.edu/Users/cs/nchamber/data/timestamp.

6 Experiments and Results

We experiment on the Gigaword corpus as described
in Section 5. Documents are tokenized and parsed
with the Stanford Parser. The year in the times-
tamp is retrieved from the document’s Gigaword ID
which contains the year and day the article was re-
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trieved. Year mentions are extracted from docu-
ments by matching all tokens with exactly four digits
whose integer is in the range of 1900 and 2100.

The MaxEnt classifiers are also from the Stanford
toolkit, and both the document and year mention
classifiers use its default settings (quadratic prior).
The X factor in the joint classifier is optimized on
the development set as described in Section 4.3. We
also found that dev results improved when training
ignores the border months of Jan, Feb, and Dec. The
features described in this paper were selected solely
by studying performance on the development set.
The final reported results come from running on the
test set once at the end of this study.

Table 3 shows the results on the Test set for all
document classifiers. We measure accuracy to com-
pare overall performance since the test set is a bal-
anced set (each year has the same number of test
documents). Unigram NLLR and Filtered NLLR
are the language model implementations of previ-
ous work as described in Section 3.1. MaxEnt Un-
igram is our new discriminative model for this task.
MaxEnt Time is the discriminative model with rich
time features (but not NER) as described in Section
3.3.2 (Time+NER includes NER). Finally, the Joint
model is the combined document and year mention
classifiers as described in Section 4.3. Table 4 shows
the F1 scores of the Joint model by year.

Our new MaxEnt model outperforms previous
work by 55% relative accuracy. Incorporating time
features further improves the relative accuracy by



Model Overall Accuracy
Random Guess 10.0%
Unigram NLLR 24.1%
Filtered NLLR 29.1%
MaxEnt Unigram 45.1%
MaxEnt Time 48.3%
MaxEnt Time+NER 51.4%
Joint 53.4%

Table 3: Performance as measured by accuracy. The pre-
dicted year must exactly match the actual year.

95 96 97 98 99 00 O1 02
P 57 49 52 48 47 51 51 .59
R 54 56 .62 44 48 48 46 57
F1 55 52 57 46 48 49 48 58

Table 4: Yearly results for the Joint model. 2005/06 are
omitted due to space, with F1 .56 and .63, respectively.

7%, and adding NER by another 6%. Total relative
improvement in accuracy is thus almost 77% from
the Time+NER model over Filtered NLLR. Further,
the temporal constraint model increases this best
classifier by another 3.9%. All improvements are
statistically significant (p < 0.000001, McNemar’s
test, 2-tailed). Table 6 shows that performance in-
creased most on the documents that contain at least
one year mention (60% of the corpus).

Finally, Table 5 shows the results of the tempo-
ral constraint classifiers on year mentions. Not sur-
prisingly, the fine-grained performance is quite a bit
lower than the core relations. The full Joint results
in Table 3 use the three core relations, but the seven
fine-grained relations give approximately the same
results. Its lower accuracy is mitigated by the finer
granularity (i.e., the majority class basline is lower).

7 Discussion

The main contribution of this paper is the discrimi-
native model (54% improvement) and a new set of

P R F1
Before Timestamp 95 98 .96
Same as Timestamp .73 .57 .64
After Timestamp 84 81 .82
92.2%
70.1%

Overall Accuracy
Fine-Grained Accuracy

Table 5: Precision, recall, and F1 for the core relations.
Accuracy for both core and fine-grained.
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All With Year Mentions
MaxEnt Unigram 45.1% 46.1%
MaxEnt Time+NER 51.4% 54.3%
Joint 53.4% 57.7%

Table 6: Accuracy on all documents and documents with
at least one year mention (about 60% of the corpus).

features for document dating (14% improvement).
Such a large performance boost makes clear that the
log likelihood and entropy approaches from previ-
ous work are not as effective as discriminative mod-
els on a large training corpus. Further, token-based
features do not capture the implicit references to
time in language. Our richer syntax-based features
only apply to year mentions, but this small textual
phenomena leads to a surprising 13% relative im-
provement in accuracy. Table 6 shows that a signif-
icant chunk of this improvement comes from docu-
ments containing year mentions, as expected.

The year constraint learner also improved perfor-
mance. Although most of its features are in the doc-
ument classifier, by learning constraints it captures a
different picture of time that a traditional document
classifier does not address. Combining this picture
with the document classifier leads to another 3.9%
relative improvement. Although we focused on year
mentions here, there are several avenues for future
study, including explorations of how other types of
time expressions might inform the task. These con-
straints might also have applications to the ordering
tasks of recent TempEval competitions.

Finally, we presented a new evaluation setup for
this task. Previous work depended on having train-
ing documents in the same week and day of the test
documents. We argued that this may not be an ap-
propriate assumption in some domains, and particu-
larly problematic for the news genre. Our proposed
evaluation setup instead separates training and test-
ing data across months. The results show that log-
likelihood ratio scores do not work as well in this
environment. We hope our explicit train/test envi-
ronment encourages future comparison and progress
on document dating.
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Abstract

Although much work on relation extraction
has aimed at obtaining static facts, many of
the target relations are actually fluents, as their
validity is naturally anchored to a certain time
period. This paper proposes a methodologi-
cal approach to temporally anchored relation
extraction. Our proposal performs distant su-
pervised learning to extract a set of relations
from a natural language corpus, and anchors
each of them to an interval of temporal va-
lidity, aggregating evidence from documents
supporting the relation. We use a rich graph-
based document-level representation to gener-
ate novel features for this task. Results show
that our implementation for temporal anchor-
ing is able to achieve a 69% of the upper
bound performance imposed by the relation
extraction step. Compared to the state of the
art, the overall system achieves the highest
precision reported.

1 Introduction

A question that arises when extracting a relation is
how to capture its temporal validity: Can we assign a
period of time when the obtained relation held? As
pointed out in (Ling and Weld, 2010), while much
research in automatic relation extraction has focused
on distilling static facts from text, many of the tar-
get relations are in fact fluents, dynamic relations
whose truth value is dependent on time (Russell and
Norvig, 2010).

The Temporally anchored relation extraction
problem consists in, given a natural language text
document corpus, C, a target entity, e, and a target
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relation, r, extracting from the corpus the value of
that relation for the entity, and a temporal interval
for which the relation was valid.

In this paper, we introduce a methodological ap-
proach to temporal anchoring of relations automat-
ically extracted from unrestricted text. Our system
(see Figure 1) extracts relational facts from text us-
ing distant supervision (Mintz et al., 2009) and then
anchors the relation to an interval of temporal va-
lidity. The intuition is that a distant supervised sys-
tem can effectively extract relations from the source
text collection, and a straightforward date aggrega-
tion can then be applied to anchor them. We pro-
pose a four step process for temporal anchoring:
(1) represent temporal evidence; (2) select tempo-
ral information relevant to the relation; (3) decide
how a relational fact and its relevant temporal in-
formation are themselves related; and (4) aggregate
imprecise temporal intervals across multiple docu-
ments. In contrast with previous approaches that
aim at intra-document temporal information extrac-
tion (Ling and Weld, 2010), we focus on mining
a corpus aggregating temporal evidences across the
supporting documents.

We address the following research questions:
(1) Validate whether distant supervised learning is
suitable for the task, and evaluate its shortcomings.
(2) Explore whether the use of features extracted
from a document-level rich representation could im-
prove distant supervised learning. (3) Compare the
use of document metadata against temporal expres-
sions within the document for relation temporal an-
choring. (4) Analyze how, in a pipeline architecture,
the propagation of errors limits the overall system’s

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 107-116,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics
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Figure 1: System overview diagram.

performance.

The representation we use for temporal informa-
tion is detailed in section 2; the rich document-level
representation we exploit is described in section 3.
For a query entity and target relation, the system first
performs relation extraction (section 4); then, we
find and aggregate time constraint evidence for the
same relation across different documents, to estab-
lish a temporal validity anchor interval (section 5).
Empirical comparative evaluation of our approach is
introduced in section 6; while some related work is
shown in section 7 and conclusions in section 8.

2 Temporal Anchors

We will denominate relation instance a triple
(entity, relation name, value). We aim at anchor-
ing relation instances to their temporal validity. We
need a representation flexible enough to capture the
imprecise temporal information available in text,
but expressed in a structured style. Allen’s (1983)
interval-based algebra for temporal representation
and reasoning, underlies much research, such as the
Tempeval challenges (Verhagen et al., 2007; Puste-
jovsky and Verhagen, 2009). Our task is different,
as we focus on obtaining the temporal interval as-
sociated to a fact, rather than reasoning about the
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temporal relations among the events appearing in a
single text.

Let us assume that each relation instance is valid
during a certain temporal interval, I = [to, t]. This
sharp temporal interval fails to capture the impreci-
sion of temporal boundaries conveyed in natural lan-
guage text. The Temporal Slot Filling task at TAC-
KBP 2011 (Ji et al., 2011) proposed a 4-tuple rep-
resentation that we will refer to as imprecise anchor
intervals. An imprecise temporal interval is defined
as an ordered 4-tuple of time points: (¢, to, t3,%4),
with the following semantics: the relation is true for
a period which starts at some point between ¢; and
to and ends between ¢3 and t4. It should hold that:
t1 < to, t3 < t4, and t; < t4. Any of the four
endpoints can be left unconstrained (¢; or t3 would
be —o0, and 5 or t4 would be +00). This represen-
tation is flexible and expressive, although it cannot
capture certain types of information (Ji et al., 2011).

3 Document Representation

We use a rich document representation that employs
a graph structure obtained by augmenting the syn-
tactic dependency analysis of the document with se-
mantic information.

A document D is represented as a document
graph G p; with node set Vp and edge set, Ep. Each
node v € Vp represents a chunk of text, which is a
sequence of words'. Each node is labeled with a
dictionary of attributes, some of which are common
for every node: the words it contains, their part-of-
speech annotations (POS) and lemmas. Also, a rep-
resentative descriptor, which is a normalized string
value, is generated from the chunks in the node. Cer-
tain nodes are also annotated with one or more types.
There are three families of types: Events (verbs
that describe an action, annotated with tense, polar-
ity and aspect); standardized Time Expressions; and
Named Entities, with additional annotations such as
gender or age.

Edges in the document graph, e € Ep, represent
four kinds of relations between the nodes:

e Syntactic: a dependency relation.
e Coreference: indicates that two chunks refer to

"Most chunks consist in one word; we join words into a
chunk (and a node) in two cases: a multi-word named entity
and a verb and its auxiliaries.
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Figure 2: Collapsed document graph representation, G,
for the sample text document “David’s wife, Julia, is cel-
ebrating her birthday. She was born in September 1979”.

the same discourse referent.

e Semantic relations between two nodes, such as
hasClass, hasProperty and hasAge.

e Temporal relations between events and time ex-
pressions.

The processing includes dependency parsing,
named entity recognition and coreference reso-
lution, done with the Stanford CoreNLP soft-
ware (Klein and Manning, 2003); and events and
temporal information extraction, via the TARSQI
Toolkit (Verhagen et al., 2005).

The document graph Gp is then further trans-
formed into a collapsed document graph, G¢. Each
node of G¢ clusters together coreferent nodes, rep-
resenting a discourse referent. Thus, anode u in G¢
is a cluster of nodes w1, ..., u; of Gp. There is an
edge (u,v) in G¢ if there was an edge between any
of the nodes clustered into v and any of the nodes
v1,..., V. The coreference edges do not appear in
this representation. Additional semantic information
is also blended into this representation: normaliza-
tion of genitives, semantic class indicators inferred
from appositions and genitives, and gender annota-
tion inferred from pronouns. A final graph example
can be seen in Figure 2.

4 Distant Supervised Relation Extraction

To perform relation extraction, our proposal fol-
lows a distant supervision approach (Mintz et al.,
2009), which has also inspired other slot filling sys-
tems (Agirre et al., 2009; Surdeanu et al., 2010).
We capture long distance relations by introducing
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a document-level representation and deriving novel
features from deep syntactic and semantic analysis.

Seed harvesting. From a reference Knowledge
Base (KB), we extract a set of relation triples
or seeds: (entity,relation,value), where the
relation is one of the target relations. Our
document-level distant supervision assumption is
that if entity and value are found in a document
graph (see section 3), and there is a path connect-
ing them, then the document expresses the relation.

Relation candidates gathering. From a seed triple,
we retrieve candidate documents that contain both
the entity and value, within a span of 20 tokens,
using a standard IR approach. Then, entity and
value are matched to the document graph represen-
tation. We first use approximate string comparison
to find nodes matching the seed entity. After an en-
tity node has been found we use local breadth-first-
search (BFS) to find a matching value and the short-
est connecting path between them. We enforce the
Named Entity type of entity and value to match a
expected type, predefined for the relation.

Our procedure traverses the document graph look-
ing for entity and value nodes meeting those condi-
tions; when found, we generate features for a pos-
itive example for the relation?>. If we encounter a
node that matches the expected NE type of the rela-
tion, but does not match the seed value, we generate
a negative example for that relation.

Training. From positive and negative examples, we
generate binary features; some of them are inspired
by previous work (Surdeanu and Ciaramita, 2007;
Mintz et al., 2009; Riedel et al., 2010; Surdeanu et
al., 2010), and others are novel, taking advantage of
our graph representation. Table 1 summarizes our
choice of features. Features appearing in less than 5
training examples were discarded.

Relation instance extraction. Given an input entity
and a target relation, we aim at finding a filler value
for a relation instance. This task is known as Slot
Filling. From the set of retrieved documents relevant
to the query entity, represented as document graphs,

2From the collapsed document graph representation we ob-
tained an average of 9213 positive training examples per slot;
from the uncollapsed document graph, a slightly lower average
of 8178.5 positive examples per slot.



Feature name

Description

path

X -annotation
X-pos

X-gov

X-mod
X-has_age
X-has_class-C'
X-property-P
X-has-Y

X-is-Y
X-gender-G
V-tense
V-aspect

V -polarity

dependency path between ENTITY and
VALUE in the sentence

NE annotations for X

Part-of-speech annotations for X

Governor of X in the dependency path
Modifiers of X in the dependency path

X is a NE, with an age attribute

X is a NE, with a class C'

X is a NE, and it has a property P

X is a NE, with a possessive relation with
another NE, Y

X is a NE, in a copula with another NE, Y’
X is a NE, and it has gender G

Tense of the verb V' in the path

Aspect of the verb V' in the path

Polarity (positive or negative) of the verb V'

Table 1: Features included in the model. X stands for
ENTITY and VALUE. Verb features are generated from
the verbs, V/, identified in the path between ENTITY and
VALUE.

we locate matching entities and start a local BES of
candidate values, generating for them an unlabelled
example. For each of the relations to extract, a bi-
nary classifier (extractor) decides whether the exam-
ple is a valid relation instance. For each particular
relation classifier, only candidates with the expected
entity and value types for the relation were used in
the application phase. Each extractor was a SVM
classifier with linear kernel (Joachims, 2002). All
learning parameters were set to their default values.

The classification process yields a predicted class
label, plus a real number indicating the margin. We
performed an aggregation phase to sum the mar-
gins over distinct occurrences of the same extracted
value. The rationale is that when the same value is
extracted from more than one document, we should
accumulate that evidence.

The output of this phase is the set of extracted re-
lations (positive for each of the classifiers), plus the
documents where the same fact was detected (sup-
porting documents).

S Temporal Anchoring of Relations

In this section, we propose and discuss a unified
methodological approach for temporal anchoring of
relations. We assume the input is a relation instance
and a set of supporting documents. The task is es-
tablishing a imprecise temporal anchor interval for
the relation.
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We present a four-step methodological approach:
(1) representation of intra-document temporal infor-
mation; (2) selection of relevant temporal informa-
tion for the relation; (3) mapping of the link between
relational fact and temporal information into an in-
terval; and (4) aggregation of imprecise intervals.

Temporal representation. The first methodologi-

cal step is to obtain and represent the available intra-

document temporal information; the input is a doc-

ument, and the task is to identify temporal signals

and possible links among them. We use the term link

for a relation between a temporal expression (a date)

and an event; we want to avoid confusion with the

term relation (a relational fact extracted from text).
In our particular implementation:

e We use TARSQI to extract temporal expressions
and link them to events. In particular, TARSQI
uses the following temporal links: included, si-
multaneous, after, before, begun_by or ended.

e We focus also on the syntactic pattern [Event-
preposition-Time] within the lexical context of the
candidate entity and value.

e Both are normalized into one from a set of prede-
fined temporal links: within, throughout, begin-
ning, ending, after and before.

Selection of temporal evidence. For each docu-
ment and relational instance, we have to select those
temporal expressions that are relevant.

a. Document-level metadata. The default value
we use is the document creation time (DCT),
if available. The underlying assumption is that
there is a within link from each fact expressed in
the text and the document creation time.

b. Temporal expressions. Temporal evidence
comes also from the temporal expressions
present in the context of a relation. In our par-
ticular implementation, we followed a straight-
forward approach, looking for the time expres-
sion closest in the document graph to the short-
est path between the entity and value nodes. This
search is performed via a limited depth BFS,
starting from the nodes in the path, in order from
value to entity.

Mapping of temporal links into intervals. The
third step is deciding how a relational fact and its rel-
evant temporal information are themselves related.
We have to map this information, expressed in text,



Temporal link Constraints mapping

Before ty = first
After t1 = last
Within and Throughout to = first and t3 = last
Beginning t1 = first and to = last
Ending ts = first and t4 = last

Table 2: Mapping from time expression and temporal re-
lation to temporal constraints.

to a temporal representation. We will use the impre-
cise anchor intervals described is section 2.

Let T be a temporal expression identified in the
document or its metadata. Now, the mapping of tem-
poral constraints depends on the temporal link to the
time expression identified; also, the semantics of the
event have to be considered in order to decide the
time period associated to a relation instance. This
step is important because the event could refer just to
the beginning of the relation, its ending, or both. For
instance, it is obvious that having the event marry
is different to having the event divorce, when decid-
ing the temporal constraints associated to the spouse
relation.

Table 2 shows our particular mapping between
temporal links and constraints. In particular, for the
default document creation time, we suppose that a
relation which appears in a document with creation
time d held true at least in that date; that is, we are
assuming a within link, and we map to = d, t3 = d.

Inter-document temporal evidence aggregation.
The last step is aggregating all the time constraints
found for the same relation and value across differ-
ent documents. If we found that a relation started af-
ter two dates d and d’, where d’ > d, the closest con-
straint to the real start of the relation is d’. Mapped to
temporal constraints, it means that we would choose
the biggest t; possible. Following the same reason-
ing, we would want to maximize t3. On the other
side, when a relation started before two dates do and
dh, where df, > da, the closest constraint is dy and
we would choose the smallest ¢5. In summary, we
will maximize ¢ and t3 and minimize ¢> and t4, so
we will narrow the margins.

6 Evaluation

We have used for our evaluation the dataset com-
piled within the TAC-KBP 2011 Temporal Slot Fill-
ing Task (Ji et al., 2011). We employed as initial
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KB the one distributed to participants in the task,
which has been compiled from Wikipedia infoboxes.
It contains 898 triples (entity, slot_type, value) for
100 different entities and up to 8 different slots (re-
lations) per entity?. This gold standard contains the
correct responses pooled from the participant sys-
tems plus a set of responses manually found by
annotators. Each triple has associated a temporal
anchor. The relations had to be extracted from a
domain-general collection of 1.7 million documents.
Our system was one of the five that took part in
the task.We have evaluated the overall system and
the two main components of the architecture: Rela-
tion Extraction, and Temporal Anchoring of the re-
lations. Due to space limitations, the description of
our implementation is very concise; refer to (Garrido
et al., 2011) for further details.

6.1 Evaluation of Relation Extraction

System response in the relation extraction step con-
sists in a set of triples (entity, slot_type,value).
Performance is measured using precision, recall and
F-measure (harmonic mean) with respect to the 898
triples in the key. Target relations (slots) are poten-
tially list-valued, that is, more than one value can
be valid for a relation (possibly at different points
in time). Only correct values yield any score, and
redundant triples are ignored.

Experiments. We run two different system settings
for the relation extraction step. They differ in the
document representation used (detailed in section3),
in order to empirically assess whether clustering of
discourse referents into single nodes benefits the ex-
traction. In SETTING 1, each document is repre-
sented as a document graph, G p, while in SETTING
2 collapsed document graph representation, G¢, is
employed.

Results. Results are shown in Table 3 in the col-
umn Relation Extraction. Both settings have a sim-
ilar performance with a slight increase in the case
of graphs with clustered referents. Although preci-
sion is close to 0.5, recall is lower than 0.1. We have
studied the limits of the assumptions our approach

3There are 7 person relations: cities_of residence, state-
orprovinces_of _residence, countries_of_residence, employee_of,
member_of, title, spouse, and an organization relation:
top-members/employees.



is based on. First, our standard retrieval component
performance limits the overall system’s. As a matter
of example, if we retrieve the first 100 documents
per entity, we find relevant documents only for 62%
of the triples in the key. This number means that no
matter how good relation extraction method is, 38%
of relations will not be found.

Second, the distant supervision assumption un-
derlying our approach is that for a seed relation in-
stance (entity, relation,value), any textual men-
tion of entity and value expresses the relation. It
has been shown that this assumption is more often
violated when training knowledge base and docu-
ment collection are of different type, e.g. Wikipedia
and news-wire (Riedel et al., 2010). We have real-
ized that a more determinant factor is the relation
itself and the type of arguments it takes. We ran-
domly sampled 100 training examples per relation,
and manually inspected them to assess if they were
indeed mentions of the relation. While for the re-
lation cities_of_residence only 30% of the training
examples are expressing the relation, for spouse the
number goes up to 59%. For title, up to 90% of the
examples are correct. This fact explains, at least par-
tially, the zeros we obtain for some relations.

6.2 Evaluation of Temporal Anchoring

Under the evaluation metrics proposed by TAC-KBP
2011, if the value of the relation instance is judged
as correct, the score for temporal anchoring depends
on how well the returned interval matches the one
provided in the key. More precisely, let the correct
imprecise anchor interval in the gold standard key
be Sk = (k1, ko, ks, k4) and the system response be
S = (rq1,r2,7r3,74). The absence of a constraint in
t1 or tg is treated as a value of —oo; the absence of
a constraint in to or t4 is treated as a value of +oo.
Then, let d; = |k; — ry|, for i € 1,...,4, be the
difference, a real number measured in years. The
score for the system response is:

1 1
QS) = 4; 1+d;

The score for a target relation Q(r) is computed
by summing Q(S) over all unique instances of the
relation whose value is correct. If the gold standard
contains N responses, and the system output M re-
sponses, then precision is: P = Q(r)/M, and recall:
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R = Q(r)/N; F} is the harmonic mean of P and R.

Experiments. We evaluated two different set-
tings for the temporal anchoring step; both use
the collapsed document graph representation, G¢
(SETTING 2). The goal of the experiment is two-
fold. First, test the strength of the document creation
time as evidence for temporal anchoring. Second,
test how hard this metadata-level baseline is to beat
using contextual temporal expressions.

The SETTING 2-I assumes a within temporal link
between the document creation time and any relation
expressed inside the document, and aggregates this
information across the documents that we have iden-
tified as supporting the relation. The SETTING 2-11
considers documents content in order to extract tem-
poral links from the context of the text that expresses
the relation. If no temporal expression is found, the
date of the document is used as default. Temporal
links from all supporting documents are mapped into
intervals and aggregated as detailed in section 5.

The performance on relation extraction is an up-
per bound for temporal anchoring, attainable if tem-
poral anchoring is perfect. Thus, we also evaluate
the temporal anchoring performance as the percent-
age the final system achieves with respect to the re-
lation extraction upper bound.

Results. Results are shown in Table 3 under column
Temporal Anchoring. They are low, due to the upper
bound that error propagation in candidate retrieval
and relation extraction imposes upon this step: tem-
porally anchoring alone achives 69% of its upper
bound. This value corresponds to the baseline SET-
TING 2-I, showing its strength. The difference with
SETTING 2-II shows that this baseline is difficult
to beat by considering temporal evidence inside the
document content. There is a reason for this. The
temporal link mapping into time intervals does not
depend only on the type of link, but also on the se-
mantics of the text that expresses the relation as we
pointed out above. We have to decide how to trans-
form the link between relation and temporal expres-
sion into a temporal interval. Learning a model for
this is a hard open research problem that has a strong
adversary in the baseline proposed.



Relation Extraction Temporal Anchoring
SETTING 1 SETTING 2 SETTING 2-1 SETTING 2-11

P R F P R F P R F % P R F %
1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3) | 033 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0
4 | 022 009 013|029 0.1 0.6 || 023 0.09 0.13 79 | 021 0.08 0.11 72
(5) | 053 0.13 020 | 054 0.12 0.19 034 007 012 63 | 030 006 0.11 56
6) | 070 0.12 020 | 075 0.13 022 || 0.57 0.10 0.16 76 | 050 0.08 0.14 67
(7) | 050 0.06 0.10 | 050 0.07 0.12 || 029 0.04 007 58 | 025 0.04 0.06 50
@ | 025 0.04 007 | 020 0.04 0.07 0.15 003 005 75| 0.06 0.01 002 30
9 | 042 0.08 0.14 | 045 0.08 0.14 || 0.31 0.06 0.10 69 | 027 0.05 0.09 60

Table 3: Results of experiments for each relation: (1) per:stateorprovinces_of residence; (2) per:employee_of; (3)
per:countries_of_residence; (4) per:member_of; (5) per:title; (6) org:top_members/employees; (7) per:spouse; (8)
per:cities_of_residence; (9) overall results (calculated as a micro-average).

System # Filled Precision Recall F1
BLENDER?2 1206 0.1789 0.3030 0.2250
BLENDERI 1116 0.1796  0.2942  0.2231
BLENDER3 1215 0.1744 02976  0.2199
IIRG1 346 0.2457 0.1194 0.1607
Setting 2-1 167 0.2996 0.0703 0.1139
Setting 2-2 167 0.2596  0.0609 0.0986
Stanford 12 5140 0.0233  0.1680  0.0409
Stanford 11 4353 0.0238  0.1453  0.0408
USFD20112 328 0.0152  0.0070  0.0096
USFD20113 127 0.0079 0.0014  0.0024

Table 4: System ID, number of filled responses of the
system, precision, recall and F measure.

6.3 Comparative Evaluation

Our approach was compared with the other four
participants at the KBP Temporal Slot Filling Task
2011. Table 4 shows results sorted by F-measure in
comparison to our two settings (described above).
These official results correspond to a previous
dataset containing 712 triples*.

As shown in column Filled our approach returns
less triples than other systems, explaining low recall.
However, our system achieves the highest precision
for the complete task of temporally anchored rela-
tion extraction. Despite low recall, our system ob-
tains the third best F} value. This is a very promis-
ing result, since several directions can be explored
to consider more candidates and increase recall.

7 Related Work

Compiling a Knowledge Base of temporally an-
chored facts is an open research challenge (Weikum
etal., 2011). Despite the vast amount of research fo-
cusing on understanding temporal expressions and

4Slot-fillers from human assessors were not considered
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their relation to events in natural language, the com-
plete problem of temporally anchored relation ex-
traction remains relatively unexplored. Also, while
much research has focused on single-document ex-
traction, it seems clear that extracting temporally an-
chored relations needs the aggregation of evidences
across multiple documents.

There have been attempts to extend an existing
knowledge base. Wang et al. (2010) use regular
expressions to mine Wikipedia infoboxes and cat-
egories and it is not suited for unrestricted text. An
earlier attempt (Zhang et al., 2008), is specific for
business and difficult to generalize to other relations.
Two recent promising works are more related to our
research. Wang et al. (2011) uses manually defined
patterns to collect candidate facts and explicit dates,
and re-rank them using a graph label propagation al-
gorithm; their approach is complementary to ours,
as our aim is not to harvest temporal facts but to
extract the relations in which a query entity takes
part; unlike us, they require entity, value, and a ex-
plicit date to appear in the same sentence. Talukdar
et al. (2012) focus on the partial task of temporally
anchoring already known facts, showing the useful-
ness of the document creation time as temporal sig-
nal, aggregated across documents.

Earlier work has dealt mainly with partial aspects
of the problem. The TempEval community focused
on the classification of the temporal links between
pairs of events, or an event and a temporal expres-
sion; using shallow features (Mani et al., 2003; La-
pata and Lascarides, 2004; Chambers et al., 2007),
or syntactic-based structured features (Bethard and
Martin, 2007; Puscasu, 2007; Cheng et al., 2007).

Aggregating evidence across different documents



to temporally anchor facts has been explored in set-
tings different to Information Extraction, such as
answering of definition questions (Pagca, 2008) or
extracting possible dates of well-known historical
events (Schockaert et al., 2010).

Temporal inference or reasoning to solve con-
flicting temporal expressions and induce temporal
order of events has been used in TempEval (Tatu
and Srikanth, 2008; Yoshikawa et al., 2009) and
ACE (Gupta and Ji, 2009) tasks, but focused on
single-document extraction. Ling et al. (2010), use
cross-event joint inference to extract temporal facts,
but only inside a single document.

Evaluation campaigns, such as ACE and TAC-
KBP 2011 have had an important role in promoting
this research. While ACE required only to identify
time expressions and classify their relation to events,
KBP requires to infer explicitly the start/end time of
relations, which is a realistic approach in the context
of building time-aware knowledge bases. KBP rep-
resents an important step for the evaluation of tem-
poral information extraction systems. In general, the
participant systems adapted existing slot filling sys-
tems, adding a temporal classification component:
distant supervised (Chen et al., 2010; Surdeanu et
al., 2010) on manually-defined patterns (Byrne and
Dunnion, 2010).

8 Conclusions

This paper introduces the problem of extracting,
from unrestricted natural language text, relational
knowledge anchored to a temporal span, aggregat-
ing temporal evidence from a collection of docu-
ments. Although compiling time-aware knowledge
bases is an important open challenge (Weikum et
al., 2011), it has remained unexplored until very re-
cently (Wang et al., 2011; Talukdar et al., 2012).

We have elucidated the two challenges of the task,
namely relation extraction and temporal anchoring
of the extracted relations.

We have studied how, in a pipeline architecture,
the propagation of errors limits the overall system’s
performance. The performance attainable in the full
task is limited by the quality of the output of the
three main phases: retrieval of candidate passages/
documents, extraction of relations and temporal an-
choring of those.
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We have also studied the limits of the distant su-
pervision approach to relation extraction, showing
empirically that its performance depends not only
on the nature of reference knowledge base and doc-
ument corpus (Riedel et al., 2010), but also on the
relation to be extracted. Given a relation between
two arguments, if it is not dominant among textual
expressions of those arguments, the distant supervi-
sion assumption will be more often violated.

We have introduced a novel graph-based docu-
ment level representation, that has allowed us to gen-
erate new features for the task of relation extraction,
capturing long distance structured contexts. Our re-
sults show how, in a document level syntactic repre-
sentation, it yields better results to collapse corefer-
ent nodes.

We have presented a methodological approach
to temporal anchoring composed of: (1) intra-
document temporal information representation; (2)
selection of relation-dependent relevant temporal in-
formation; (3) mapping of temporal links to an inter-
val representation; and (4) aggregation of imprecise
intervals.

Our proposal has been evaluated within a frame-
work that allows for comparability. It has been able
to extract temporally anchored relational informa-
tion with the highest precision among the partici-
pant systems taking part in the competitive evalu-
ation TAC-KBP 2011.

For the temporal anchoring sub-problem, we have
demonstrated the strength of the document creation
time as a temporal signal. It is possible to achieve
a performance of 69% of the upper-bound imposed
by relation extraction by assuming that any relation
mentioned in a document held at the document cre-
ation time (there is a within link between the rela-
tional fact and the document creation time). This
baseline has proved stronger than extracting and an-
alyzing the temporal expressions present in the doc-
ument content.
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Abstract

Learning entailment rules is fundamental in
many semantic-inference applications and has
been an active field of research in recent years.
In this paper we address the problem of learn-
ing transitive graphs that describe entailment
rules between predicates (termed entailment
graphs). We first identify that entailment
graphs exhibit a “tree-like” property and are
very similar to a novel type of graph termed
forest-reducible graph. We utilize this prop-
erty to develop an iterative efficient approxi-
mation algorithm for learning the graph edges,
where each iteration takes linear time. We
compare our approximation algorithm to a
recently-proposed state-of-the-art exact algo-
rithm and show that it is more efficient and
scalable both theoretically and empirically,
while its output quality is close to that given
by the optimal solution of the exact algorithm.

1 Introduction

Performing textual inference is in the heart of many
semantic inference applications such as Question
Answering (QA) and Information Extraction (IE). A
prominent generic paradigm for textual inference is
Textual Entailment (TUE) (Dagan et al., 2009). In
TUE, the goal is to recognize, given two text frag-
ments termed fext and hypothesis, whether the hy-
pothesis can be inferred from the text. For example,
the text “Cyprus was invaded by the Ottoman Em-
pire in 1571 implies the hypothesis “The Ottomans
attacked Cyprus”.

Semantic inference applications such as QA and
IE crucially rely on entailment rules (Ravichandran
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and Hovy, 2002; Shinyama and Sekine, 2006) or
equivalently inference rules, that is, rules that de-
scribe a directional inference relation between two
fragments of text. An important type of entailment
rule specifies the entailment relation between natu-
ral language predicates, e.g., the entailment rule ‘X
invade Y — X attack Y’ can be helpful in inferring
the aforementioned hypothesis. Consequently, sub-
stantial effort has been made to learn such rules (Lin
and Pantel, 2001; Sekine, 2005; Szpektor and Da-
gan, 2008; Schoenmackers et al., 2010).

Textual entailment is inherently a transitive rela-
tion , that is, the rules x — y’ and ‘y — z’ imply
the rule x — z’. Accordingly, Berant et al. (2010)
formulated the problem of learning entailment rules
as a graph optimization problem, where nodes are
predicates and edges represent entailment rules that
respect transitivity. Since finding the optimal set of
edges respecting transitivity is NP-hard, they em-
ployed Integer Linear Programming (ILP) to find the
exact solution. Indeed, they showed that applying
global transitivity constraints improves rule learning
comparing to methods that ignore graph structure.
More recently, Berant et al. (Berant et al., 2011) in-
troduced a more efficient exact algorithm, which de-
composes the graph into connected components and
then applies an ILP solver over each component.

Despite this progress, finding the exact solution
remains NP-hard — the authors themselves report
they were unable to solve some graphs of rather
moderate size and that the coverage of their method
is limited. Thus, scaling their algorithm to data sets
with tens of thousands of predicates (e.g., the extrac-
tions of Fader et al. (2011)) is unlikely.
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In this paper we present a novel method for learn-
ing the edges of entailment graphs. Our method
computes much more efficiently an approximate so-
lution that is empirically almost as good as the exact
solution. To that end, we first (Section 3) conjecture
and empirically show that entailment graphs exhibit
a “tree-like” property, i.e., that they can be reduced
into a structure similar to a directed forest.

Then, we present in Section 4 our iterative ap-
proximation algorithm, where in each iteration a
node is removed and re-attached back to the graph in
a locally-optimal way. Combining this scheme with
our conjecture about the graph structure enables a
linear algorithm for node re-attachment. Section 5
shows empirically that this algorithm is by orders of
magnitude faster than the state-of-the-art exact al-
gorithm, and that though an optimal solution is not
guaranteed, the area under the precision-recall curve
drops by merely a point.

To conclude, the contribution of this paper is two-
fold: First, we define a novel modeling assumption
about the tree-like structure of entailment graphs and
demonstrate its validity. Second, we exploit this as-
sumption to develop a polynomial approximation al-
gorithm for learning entailment graphs that can scale
to much larger graphs than in the past. Finally, we
note that learning entailment graphs bears strong
similarities to related tasks such as Taxonomy In-
duction (Snow et al., 2006) and Ontology induction
(Poon and Domingos, 2010), and thus our approach
may improve scalability in these fields as well.

2 Background

Until recently, work on learning entailment rules be-
tween predicates considered each rule independently
of others and did not exploit global dependencies.
Most methods utilized the distributional similarity
hypothesis that states that semantically similar pred-
icates occur with similar arguments (Lin and Pan-
tel, 2001; Szpektor et al., 2004; Yates and Etzioni,
2009; Schoenmackers et al., 2010). Some meth-
ods extracted rules from lexicographic resources
such as WordNet (Szpektor and Dagan, 2009) or
FrameNet (Bob and Rambow, 2009; Ben Aharon et
al., 2010), and others assumed that semantic rela-
tions between predicates can be deduced from their
co-occurrence in a corpus via manually-constructed
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patterns (Chklovski and Pantel, 2004).

Recently, Berant et al. (2010; 2011) formulated
the problem as the problem of learning global entail-
ment graphs. In entailment graphs, nodes are predi-
cates (e.g., ‘X attack Y’) and edges represent entail-
ment rules between them (‘X invade Y — X attack
Y’). For every pair of predicates ¢, j, an entailment
score w;; was learned by training a classifier over
distributional similarity features. A positive w;; in-
dicated that the classifier believes ¢ — j and a nega-
tive w;; indicated that the classifier believes i -+ j.
Given the graph nodes V' (corresponding to the pred-
icates) and the weighting functionw : V x V — R,
they aim to find the edges of a graph G = (V, F)
that maximize the objective }_; ;¢ p wi; under the
constraint that the graph is transitive (i.e., for every
node triplet (i, 7, k), if (i,7) € E and (j,k) € E,
then (i, k) € E).

Berant et al. proved that this optimization prob-
lem, which we term Max-Trans-Graph, is NP-hard,
and so described it as an Integer Linear Program
(ILP). Let ;; be a binary variable indicating the ex-
istence of an edge ¢ — j in E. Then, X = {x;; :
i # j} are the variables of the following ILP for
Max-Trans-Graph:

arg max Z U)Z'j . inj
Y i
S.t. Vi,j,kEV Tij + Tjk — Tik <1
Vijev zij € {0,1}

The objective function is the sum of weights over the
edges of G and the constraint x;; + T — T < 1
on the binary variables enforces that whenever x;; =
xj, =1, then also x;;, = 1 (transitivity).

Since ILP is NP-hard, applying an ILP solver di-
rectly does not scale well because the number of
variables is O(|V|?) and the number of constraints is
O(|V|3). Thus, even a graph with ~80 nodes (predi-
cates) has more than half a million constraints. Con-
sequently, in (Berant et al., 2011), they proposed a
method that efficiently decomposes the graph into
smaller components and applies an ILP solver on
each component separately using a cutting-plane
procedure (Riedel and Clarke, 2006). Although this
method is exact and improves scalability, it does
not guarantee an efficient solution. When the graph
does not decompose into sufficiently small compo-
nents, and the weights generate many violations of

)]



transitivity, solving Max-Trans-Graph becomes in-
tractable. To address this problem, we present in
this paper a method for approximating the optimal
set of edges within each component and show that
it is much more efficient and scalable both theoreti-
cally and empirically.

Do and Roth (2010) suggested a method for a re-
lated task of learning taxonomic relations between
terms. Given a pair of terms, a small graph is con-
structed and constraints are imposed on the graph
structure. Their work, however, is geared towards
scenarios where relations are determined on-the-fly
for a given pair of terms and no global knowledge
base is explicitly constructed. Thus, their method
easily produces solutions where global constraints,
such as transitivity, are violated.

Another approximation method that violates tran-
sitivity constraints is LP relaxation (Martins et al.,
2009). In LP relaxation, the constraint z;; € {0,1}
is replaced by 0 < x;; < 1, transforming the prob-
lem from an ILP to a Linear Program (LP), which
is polynomial. An LP solver is then applied on the
problem, and variables z;; that are assigned a frac-
tional value are rounded to their nearest integer and
so many violations of transitivity easily occur. The
solution when applying LP relaxation is not a transi-
tive graph, but nevertheless we show for comparison
in Section 5 that our method is much faster.

Last, we note that transitive relations have been
explored in adjacent fields such as Temporal Infor-
mation Extraction (Ling and Weld, 2010), Ontol-
ogy Induction (Poon and Domingos, 2010), and Co-
reference Resolution (Finkel and Manning, 2008).

3 Forest-reducible Graphs

The entailment relation, described by entailment
graphs, is typically from a “semantically-specific”
predicate to a more “general” one. Thus, intuitively,
the topology of an entailment graph is expected to be
“tree-like”. In this section we first formalize this in-
tuition and then empirically analyze its validity. This
property of entailment graphs is an interesting topo-
logical observation on its own, but also enables the
efficient approximation algorithm of Section 4.

For a directed edge ¢ — j in a directed acyclic
graphs (DAG), we term the node ¢ a child of node
j, and 7 a parent of i. A directed forest is a DAG
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Figure 1: A fragment of an entailment graph (a), its SCC
graph (b) and its reduced graph (c). Nodes are predicates
with typed variables (see Section 5), which are omitted in
(b) and (c) for compactness.

where all nodes have no more than one parent.

The entailment graph in Figure 1a (subgraph from
the data set described in Section 5) is clearly not a
directed forest — it contains a cycle of size two com-
prising the nodes ‘X common in Y’ and ‘X frequent in
Y’, and in addition the node ‘X be epidemic in Y’ has
3 parents. However, we can convert it to a directed
forest by applying the following operations. Any
directed graph G can be converted into a Strongly-
Connected-Component (SCC) graph in the follow-
ing way: every strongly connected component (a set
of semantically-equivalent predicates, in our graphs)
is contracted into a single node, and an edge is added
from SCC S to SCC 55 if there is an edge in G from
some node in S; to some node in S3. The SCC graph
is always a DAG (Cormen et al., 2002), and if G is
transitive then the SCC graph is also transitive. The
graph in Figure 1b is the SCC graph of the one in
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Figure 2: A fragment of an entailment graph that is not
an FRG.

Figure 1a, but is still not a directed forest since the
node ‘X be epidemic in Y’ has two parents.

The transitive closure of a directed graph G is
obtained by adding an edge from node 7 to node j
if there is a path in G from ¢ to j. The transitive
reduction of G is obtained by removing all edges
whose absence does not affect its transitive closure.
In DAGs, the result of transitive reduction is unique
(Aho et al., 1972). We thus define the reduced graph
Gred = (Vied, Ereq) of a directed graph G as the
transitive reduction of its SCC graph. The graph in
Figure 1c is the reduced graph of the one in Fig-
ure la and is a directed forest. We say a graph is a
forest-reducible graph (FRG) if all nodes in its re-
duced form have no more than one parent.

We now hypothesize that entailment graphs are
FRGs. The intuition behind this assumption is
that the predicate on the left-hand-side of a uni-
directional entailment rule has a more specific mean-
ing than the one on the right-hand-side. For instance,
in Figure 1a ‘X be epidemic in Y’ (where ‘X’ is a type
of disease and ‘Y’ is a country) is more specific than
‘X common in Y’ and ‘X frequent in Y’, which are
equivalent, while ‘X occur in Y’ is even more gen-
eral. Accordingly, the reduced graph in Figure 1c
is an FRG. We note that this is not always the case:
for example, the entailment graph in Figure 2 is not
an FRG, because ‘X annex Y’ entails both ‘Y be part
of X’ and ‘X invade Y’, while the latter two do not
entail one another. However, we hypothesize that
this scenario is rather uncommon. Consequently, a
natural variant of the Max-Trans-Graph problem is
to restrict the required output graph of the optimiza-
tion problem (1) to an FRG. We term this problem
Max-Trans-Forest.

To test whether our hypothesis holds empirically
we performed the following analysis. We sampled
7 gold standard entailment graphs from the data set
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described in Section 5, manually transformed them
into FRGs by deleting a minimal number of edges,
and measured recall over the set of edges in each
graph (precision is naturally 1.0, as we only delete
gold standard edges). The lowest recall value ob-
tained was 0.95, illustrating that deleting a very
small proportion of edges converts an entailment
graph into an FRG. Further support for the prac-
tical validity of this hypothesis is obtained from
our experiments in Section 5. In these experiments
we show that exactly solving Max-Trans-Graph and
Max-Trans-Forest (with an ILP solver) results in
nearly identical performance.

An ILP formulation for Max-Trans-Forest is sim-
ple — a transitive graph is an FRG if all nodes in
its reduced graph have no more than one parent. It
can be verified that this is equivalent to the following
statement: for every triplet of nodes i, j, k, if i — j
and ¢ — k, then either j — k or k — j (or both).
Therefore, the ILP is formulated by adding this lin-
ear constraint to ILP (1):

Vijkev Tij+ o+ (1 —25)+(1 —215) <3 (2)

We note that despite the restriction to FRGs, Max-
Trans-Forest is an NP-hard problem by a reduction
from the X3C problem (Garey and Johnson, 1979).
We omit the reduction details for brevity.

4 Sequential Approximation Algorithms

In this section we present Tree-Node-Fix, an efficient
approximation algorithm for Max-Trans-Forest, as
well as Graph-Node-Fix, an approximation for Max-
Trans-Graph.

4.1 Tree-Node-Fix

The scheme of Tree-Node-Fix (TNF) is the follow-
ing. First, an initial FRG is constructed, using some
initialization procedure. Then, at each iteration a
single node v is re-attached (see below) to the FRG
in a way that improves the objective function. This
is repeated until the value of the objective function
cannot be improved anymore by re-attaching a node.

Re-attaching a node v is performed by removing
v from the graph and connecting it back with a better
set of edges, while maintaining the constraint that it
is an FRG. This is done by considering all possible
edges from/to the other graph nodes and choosing



Figure 3: (a) Inserting v into a component ¢ € V,..4. (b)
Inserting v as a child of ¢ and a parent of a subset of ¢’s
children in G,..4. (b’) A node d that is a descendant but
not a child of ¢ can not choose v as a parent, as v becomes
its second parent. (c) Inserting v as a new root.

the optimal subset, while the rest of the graph re-
mains fixed. Formally, let S, _;, = Z#U Wiy * Tip
be the sum of scores over v’s incoming edges and
Sv—out = Y, v Wk * Tk, be the sum of scores over
v’s outgoing edges. Re-attachment amounts to opti-
mizing a linear objective:

arg max(Sy-in + Sy-out) 3)

v

where the variables X,, C X are indicators for all
pairs of nodes involving v. We approximate a solu-
tion for (1) by iteratively optimizing the simpler ob-
jective (3). Clearly, at each re-attachment the value
of the objective function cannot decrease, since the
optimization algorithm considers the previous graph
as one of its candidate solutions.

We now show that re-attaching a node v is lin-
ear. To analyze v’s re-attachment, we consider the
structure of the directed forest G,.q just before v is
re-inserted, and examine the possibilities for v’s in-
sertion relative to that structure. We start by defin-
ing some helpful notations. Every node ¢ € V¢4
is a connected component in G. Let v. € c be an
arbitrary representative node in c. We denote by
Sy-in(c) the sum of weights from all nodes in ¢ and
their descendants to v, and by Sy-out(c) the sum of
weights from v to all nodes in ¢ and their ancestors:

Sv—in(c) = Z Wiy + Z Wy T ko,

i€c k ¢c
Sv-out(c) = Z Wy + Z Wyk Ty k
i€c k ¢c

Note that {z, i, Tk, } are edge indicators in G
and not G,.y. There are two possibilities for re-
attaching v — either it is inserted into an existing
component ¢ € V¢4 (Figure 3a), or it forms a new
component. In the latter, there are also two cases:
either v is inserted as a child of a component ¢ (Fig-
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ure 3b), or not and then it becomes a root in G,..4
(Figure 3c). We describe the details of these 3 cases:
Case 1: Inserting v into a component ¢ € V,..4.
In this case we add in G edges from all nodes in ¢
and their descendants to v and from v to all nodes in
c and their ancestors. The score (3) in this case is
Sl(C) = Sfu—in(c) + S’U—out(c) (4)
Case 2: Inserting v as a child of some ¢ € V4.
Once c is chosen as the parent of v, choosing v’s
children in G,.4 is substantially constrained. A node
that is not a descendant of ¢ can not become a child
of v, since this would create a new path from that
node to ¢ and would require by transitivity to add a
corresponding directed edge to c (but all graph edges
not connecting v are fixed). Moreover, only a direct
child of ¢ can choose v as a parent instead of ¢ (Fig-
ure 3b), since for any other descendant of ¢, v would
become a second parent, and G,..q will no longer be
a directed forest (Figure 3b’). Thus, this case re-
quires adding in G edges from v to all nodes in ¢ and
their ancestors, and also for each new child of v, de-
noted by d € V.4, we add edges from all nodes in
d and their descendants to v. Crucially, although the
number of possible subsets of ¢’s children in G,..q is
exponential, the fact that they are independent trees
in G,.q allows us to go over them one by one, and
decide for each one whether it will be a child of v
or not, depending on whether S,-;,(d) is positive.
Therefore, the score (3) in this case is:

$2(¢) £ Sy-out(c)+Y _ max(0, Sy-in(d))
dechild(c)

®)

where child(c) are the children of c.

Case 3: Inserting v as a new root in G,..q. Similar
to case 2, only roots of G,..q can become children of
v. In this case for each chosen root » we add in G
edges from the nodes in r and their descendants to
v. Again, each root can be examined independently.
Therefore, the score (3) of re-attaching v is:

53 & Z max (0, Sy-in (7)) 6)

where the summation is over the roots of G,..q4.
It can be easily verified that S,-i,(c) and
Sy-out (€) satisfy the recursive definitions:



Algorithm 1 Computing optimal re-attachment

Input: FRG G = (V, E), function w, node v € V
Output: optimal re-attachment of v
1: remove v and compute Greq = (Vred, Ered)-
2: forall ¢ € V.4 in post-order compute S,-;,(c) (Eq.
7)
3: forall ¢ € V,.¢q in pre-order compute S0yt (c) (Eq.
8)
case 1: s; = maxcev,,, s1(¢) (Eq. 4)
case 2: So = maXcey,,, S2(c) (Eq. 5)
case 3: compute s3 (Eq. 6)
re-attach v according to max(sy, sa, $3).

A

UZTL szv+zsvzn 7CE‘/7‘€d (7N
i€c dechild(c)
Sv-out(c) = Z Wy + Sv-out(p)a c€ Viea (8)
i€c

where p is the parent of ¢ in G,.4. These recursive
definitions allow to compute in linear time S, (¢)
and Sy-out(c) for all ¢ (given G,.q) using dynamic
programming, before going over the cases for re-
attaching v. Sy-;,(c) is computed going over V.4
leaves-to-root (post-order), and S,-ou¢(c) is com-
puted going over V,..4 root-to-leaves (pre-order).
Re-attachment is summarized in Algorithm 1.
Computing an SCC graph is linear (Cormen et al.,
2002) and it is easy to verify that transitive reduction
in FRGs is also linear (Line 1). Computing S, ()
and Sy-ou¢(¢) (Lines 2-3) is also linear, as explained.
Cases 1 and 3 are trivially linear and in case 2 we go
over the children of all nodes in V... As the reduced
graph is a forest, this simply means going over all
nodes of V,..4, and so the entire algorithm is linear.
Since re-attachment is linear, re-attaching all
nodes is quadratic. Thus if we bound the number
of iterations over all nodes, the overall complexity is
quadratic. This is dramatically more efficient and
scalable than applying an ILP solver. In Section
5 we ran TNF until convergence and the maximal
number of iterations over graph nodes was 8.

4.2 Graph-node-fix

Next, we show Graph-Node-Fix (GNF), a similar
approximation that employs the same re-attachment
strategy but does not assume the graph is an FRG.
Thus, re-attachment of a node v is done with an
ILP solver. Nevertheless, the ILP in GNF is sim-
pler than (1), since we consider only candidate edges
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Figure 4: Three types of transitivity constraint violations.

involving v. Figure 4 illustrates the three types of
possible transitivity constraint violations when re-
attaching v. The left side depicts a violation when
(i, k) ¢ E, expressed by the constraint in (9) below,
and the middle and right depict two violations when
the edge (i,k) € F, expressed by the constraints
in (10). Thus, the ILP is formulated by adding the
following constraints to the objective function (3):

Vikev\{o} i (1,K) € B, 2 + 206 <1 (9)
if (ia k) EE, zpi < Tyk, The < Tiy (10)
Ty, Tok € {0,1} (1)

Complexity is exponential due to the ILP solver;
however, the ILP size is reduced by an order of mag-
nitude to O(|V'|) variables and O(|V|?) constraints.

4.3 Adding local constraints

For some pairs of predicates ¢, j we sometimes have
prior knowledge whether ¢ entails j or not. We term
such pairs local constraints, and incorporate them
into the aforementioned algorithms in the following
way. In all algorithms that apply an ILP solver, we
add a constraint x;; = 1 if ¢ entails j or x;; = 0 if ¢
does not entail j. Similarly, in TNF we incorporate
local constraints by setting w;; = 00 or w;; = —00.

5 Experiments and Results

In this section we empirically demonstrate that TNF
is more efficient than other baselines and its output
quality is close to that given by the optimal solution.

5.1 Experimental setting

In our experiments we utilize the data set released
by Berant et al. (2011). The data set contains 10 en-
tailment graphs, where graph nodes are typed pred-
icates. A typed predicate (e.g., ‘Xgisease OCCUT in
Ycountry’) includes a predicate and two typed vari-
ables that specify the semantic type of the argu-
ments. For instance, the typed variable Xj;scqse can
be instantiated by arguments such as ‘flu’ or ‘dia-
betes’. The data set contains 39,012 potential edges,



of which 3,427 are annotated as edges (valid entail-
ment rules) and 35,585 are annotated as non-edges.

The data set also contains, for every pair of pred-
icates 4, j in every graph, a local score s;;, which is
the output of a classifier trained over distributional
similarity features. A positive s;; indicates that the
classifier believes i — j. The weighting function for
the graph edges w is defined as w;; = s;; — A, where
A is a single parameter controlling graph sparseness:
as \ increases, w;; decreases and becomes nega-
tive for more pairs of predicates, rendering the graph
more sparse. In addition, the data set contains a set
of local constraints (see Section 4.3).

We implemented the following algorithms for
learning graph edges, where in all of them the graph
is first decomposed into components according to
Berant et al’s method, as explained in Section 2.

No-trans Local scores are used without transitiv-
ity constraints — an edge (¢, j) is inserted iff w;; > 0.

Exact-graph Berant et al.’s exact method (2011)
for Max-Trans-Graph, which utilizes an ILP solver'.

Exact-forest Solving Max-Trans-Forest exactly
by applying an ILP solver (see Eq. 2).

LP-relax Solving Max-Trans-Graph approxi-
mately by applying LP-relaxation (see Section 2)
on each graph component. We apply the LP solver
within the same cutting-plane procedure as Exact-
graph to allow for a direct comparison. This also
keeps memory consumption manageable, as other-
wise all |V |2 constraints must be explicitly encoded
into the LP. As mentioned, our goal is to present
a method for learning transitive graphs, while LP-
relax produces solutions that violate transitivity.
However, we run it on our data set to obtain empiri-
cal results, and to compare run-times against TNF.

Graph-Node-Fix (GNF) Initialization of each
component is performed in the following way: if the
graph is very sparse, i.e. A > C' for some constant C
(set to 1 in our experiments), then solving the graph
exactly is not an issue and we use Exact-graph. Oth-
erwise, we initialize by applying Exact-graph in a
sparse configuration, i.e., A = C.

Tree-Node-Fix (TNF) Initialization is done as in
GNF, except that if it generates a graph that is not an
FRQG, it is corrected by a simple heuristic: for every
node in the reduced graph G,.4 that has more than

"We use the Gurobi optimization package in all experiments.
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Figure 5: Run-time in seconds for various —\ values.

one parent, we choose from its current parents the
single one whose SCC is composed of the largest
number of nodes in G.

We evaluate algorithms by comparing the set of
gold standard edges with the set of edges learned by
each algorithm. We measure recall, precision and
F, for various values of the sparseness parameter
A, and compute the area under the precision-recall
Curve (AUC) generated. Efficiency is evaluated by
comparing run-times.

5.2 Results

We first focus on run-times and show that TNF is
efficient and has potential to scale to large data sets.

Figure 5 compares run-times> of Exact-graph,
GNF, TNF, and LP-relax as —A\ increases and the
graph becomes denser. Note that the y-axis is in
logarithmic scale. Clearly, Exact-graph is extremely
slow and run-time increases quickly. For A = 0.3
run-time was already 12 hours and we were unable
to obtain results for A < 0.3, while in TNF we easily
got a solution for any A. When A = 0.6, where both
Exact-graph and TNF achieve best F;, TNF is 10
times faster than Exact-graph. When A = 0.5, TNF
is 50 times faster than Exact-graph and so on. Most
importantly, run-time for GNF and TNF increases
much more slowly than for Exact-graph.

2Run on a multi-core 2.5GHz server with 32GB of RAM.
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Figure 6: Precision (y-axis) vs. recall (x-axis) curve.
Maximal F; on the curve is .43 for Exact-graph, .41 for
TNF, and .34 for No-trans. AUC in the recall range 0-0.5
is .32 for Exact-graph, .31 for TNF, and .26 for No-trans.

Run-time of LP-relax is also bad compared to
TNF and GNF. Run-time increases more slowly than
Exact-graph, but still very fast comparing to TNF.
When A = 0.6, LP-relax is almost 10 times slower
than TNF, and when A = —0.1, LP-relax is 200
times slower than TNF. This points to the difficulty
of scaling LP-relax to large graphs.

As for the quality of learned graphs, Figure 6 pro-
vides a precision-recall curve for Exact-graph, TNF
and No-trans (GNF and LP-relax are omitted from
the figure and described below to improve readabil-
ity). We observe that both Exact-graph and TNF
substantially outperform No-trans and that TNF’s
graph quality is only slightly lower than Exact-graph
(which is extremely slow). Following Berant et al.,
we report in the caption the maximal F; on the curve
and AUC in the recall range 0-0.5 (the widest range
for which we have results for all algorithms). Note
that compared to Exact-graph, TNF reduces AUC by
a point and the maximal F; score by 2 points only.

GNF results are almost identical to those of TNF
(maximal F1=0.41, AUC: 0.31), and in fact for all
A configurations TNF outperforms GNF by no more
than one F; point. As for LP-relax, results are just
slightly lower than Exact-graph (maximal F;: 0.43,
AUC: 0.32), but its output is not a transitive graph,
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and as shown above run-time is quite slow. Last, we
note that the results of Exact-forest are almost iden-
tical to Exact-graph (maximal F;: 0.43), illustrating
that assuming that entailment graphs are FRGs (Sec-
tion 3) is reasonable in this data set.

To conclude, TNF learns transitive entailment
graphs of good quality much faster than Exact-
graph. Our experiment utilized an available data
set of moderate size; However, we expect TNF to
scale to large data sets (that are currently unavail-
able), where other baselines would be impractical.

6 Conclusion

Learning large and accurate resources of entailment
rules is essential in many semantic inference appli-
cations. Employing transitivity has been shown to
improve rule learning, but raises issues of efficiency
and scalability.

The first contribution of this paper is a novel mod-
eling assumption that entailment graphs are very
similar to FRGs, which is analyzed and validated
empirically. The main contribution of the paper is
an efficient polynomial approximation algorithm for
learning entailment rules, which is based on this
assumption. We demonstrate empirically that our
method is by orders of magnitude faster than the
state-of-the-art exact algorithm, but still produces an
output that is almost as good as the optimal solution.

We suggest our method as an important step to-
wards scalable acquisition of precise entailment re-
sources. In future work, we aim to evaluate TNF on
large graphs that are automatically generated from
huge corpora. This of course requires substantial ef-
forts of pre-processing and test-set annotation. We
also plan to examine the benefit of TNF in learning
similar structures, e.g., taxonomies or ontologies.
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Abstract

Comprehending action preconditions and ef-
fects is an essential step in modeling the dy-
namics of the world. In this paper, we ex-
press the semantics of precondition relations
extracted from text in terms of planning oper-
ations. The challenge of modeling this con-
nection is to ground language at the level of
relations. This type of grounding enables us to
create high-level plans based on language ab-
stractions. Our model jointly learns to predict
precondition relations from text and to per-
form high-level planning guided by those rela-
tions. We implement this idea in the reinforce-
ment learning framework using feedback au-
tomatically obtained from plan execution at-
tempts. When applied to a complex virtual
world and text describing that world, our rela-
tion extraction technique performs on par with
a supervised baseline, yielding an F-measure
of 66% compared to the baseline’s 65%. Ad-
ditionally, we show that a high-level planner
utilizing these extracted relations significantly
outperforms a strong, text unaware baseline
— successfully completing 80% of planning
tasks as compared to 69% for the baseline.!

1 Introduction

Understanding action preconditions and effects is a
basic step in modeling the dynamics of the world.
For example, having seeds is a precondition for
growing wheat. Not surprisingly, preconditions have
been extensively explored in various sub-fields of
Al However, existing work on action models has
largely focused on tasks and techniques specific to
individual sub-fields with little or no interconnection
between them. In NLP, precondition relations have
been studied in terms of the linguistic mechanisms

'The code, data and experimental setup for this work are
available at http://groups.csail.mit.edu/rbg/code/planning
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A pickaxe, which is used to harvest stone, can be
made from wood.
(a)
Low Level Actions for: wood — pickaxe — stone
step 1: move from (0,0) to (2,0)
step 2: chop tree at: (2,0)
step 3: get wood at: (2,0)
step 4: craft plank from wood
step 5: craft stick from plank
step 6: craft pickaxe from plank and stick
step N-1:  pickup tool: pickaxe
step N: harvest stone with pickaxe at: (5,5)

(b)
Figure 1: Text description of preconditions and effects
(a), and the low-level actions connecting them (b).

that realize them, while in classical planning, these
relations are viewed as a part of world dynamics.
In this paper, we bring these two parallel views to-
gether, grounding the linguistic realization of these
relations in the semantics of planning operations.
The challenge and opportunity of this fusion
comes from the mismatch between the abstractions
of human language and the granularity of planning
primitives. Consider, for example, text describing a
virtual world such as Minecraft’> and a formal de-
scription of that world using planning primitives.
Due to the mismatch in granularity, even the simple
relations between wood, pickaxe and stone described
in the sentence in Figure 1a results in dozens of low-
level planning actions in the world, as can be seen
in Figure 1b. While the text provides a high-level
description of world dynamics, it does not provide
sufficient details for successful plan execution. On
the other hand, planning with low-level actions does
not suffer from this limitation, but is computation-
ally intractable for even moderately complex tasks.
As a consequence, in many practical domains, plan-
ning algorithms rely on manually-crafted high-level

*http://www.minecraft.net/
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abstractions to make search tractable (Ghallab et al.,
2004; Lekavy and Névrat, 2007).

The central idea of our work is to express the se-
mantics of precondition relations extracted from text
in terms of planning operations. For instance, the
precondition relation between pickaxe and stone de-
scribed in the sentence in Figure la indicates that
plans which involve obtaining stone will likely need
to first obtain a pickaxe. The novel challenge of this
view is to model grounding at the level of relations,
in contrast to prior work which focused on object-
level grounding. We build on the intuition that the
validity of precondition relations extracted from text
can be informed by the execution of a low-level
planner.? This feedback can enable us to learn these
relations without annotations. Moreover, we can use
the learned relations to guide a high level planner
and ultimately improve planning performance.

We implement these ideas in the reinforcement
learning framework, wherein our model jointly
learns to predict precondition relations from text and
to perform high-level planning guided by those rela-
tions. For a given planning task and a set of can-
didate relations, our model repeatedly predicts a se-
quence of subgoals where each subgoal specifies an
attribute of the world that must be made true. It
then asks the low-level planner to find a plan be-
tween each consecutive pair of subgoals in the se-
quence. The observed feedback — whether the low-
level planner succeeded or failed at each step — is
utilized to update the policy for both text analysis
and high-level planning.

We evaluate our algorithm in the Minecraft virtual
world, using a large collection of user-generated on-
line documents as our source of textual information.
Our results demonstrate the strength of our relation
extraction technique — while using planning feed-
back as its only source of supervision, it achieves
a precondition relation extraction accuracy on par
with that of a supervised SVM baseline. Specifi-
cally, it yields an F-score of 66% compared to the
65% of the baseline. In addition, we show that
these extracted relations can be used to improve the
performance of a high-level planner. As baselines

3If a planner can find a plan to successfully obtain stone
after obtaining a pickaxe, then a pickaxe is likely a precondition
for stone. Conversely, if a planner obtains stone without first
obtaining a pickaxe, then it is likely not a precondition.
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for this evaluation, we employ the Metric-FF plan-
ner (Hoffmann and Nebel, 2001),* as well as a text-
unaware variant of our model. Our results show that
our text-driven high-level planner significantly out-
performs all baselines in terms of completed plan-
ning tasks — it successfully solves 80% as compared
to 41% for the Metric-FF planner and 69% for the
text unaware variant of our model. In fact, the per-
formance of our method approaches that of an ora-
cle planner which uses manually-annotated precon-
ditions.

2 Related Work

Extracting Event Semantics from Text The task
of extracting preconditions and effects has previ-
ously been addressed in the context of lexical se-
mantics (Sil et al., 2010; Sil and Yates, 2011).
These approaches combine large-scale distributional
techniques with supervised learning to identify de-
sired semantic relations in text. Such combined ap-
proaches have also been shown to be effective for
identifying other relationships between events, such
as causality (Girju and Moldovan, 2002; Chang and
Choi, 2006; Blanco et al., 2008; Beamer and Girju,
2009; Do et al., 2011).

Similar to these methods, our algorithm capital-
izes on surface linguistic cues to learn preconditions
from text. However, our only source of supervision
is the feedback provided by the planning task which
utilizes the predictions. Additionally, we not only
identify these relations in text, but also show they
are valuable in performing an external task.

Learning Semantics via Language Grounding
Our work fits into the broad area of grounded lan-
guage acquisition, where the goal is to learn linguis-
tic analysis from a situated context (Oates, 2001;
Siskind, 2001; Yu and Ballard, 2004; Fleischman
and Roy, 2005; Mooney, 2008a; Mooney, 2008b;
Branavan et al., 2009; Liang et al., 2009; Vogel
and Jurafsky, 2010). Within this line of work, we
are most closely related to the reinforcement learn-
ing approaches that learn language by interacting
with an external environment (Branavan et al., 2009;
Branavan et al., 2010; Vogel and Jurafsky, 2010;
Branavan et al., 2011).

“The state-of-the-art baseline used in the 2008 International
Planning Competition. http://ipc.informatik.uni-freiburg.de/



Text (input):

A pickaxe, which is used to harvest stone,

can be made from wood.

Precondition Relations:

wood ——> pickaxe pickaxe ——> stone

Plan Subgoal Sequence: .

stone
(goal)

N

v
N > N

v x

Iy

pickaxe
X (subgoal 2)
wood
N (subgoal 1)

b
initial N
state . «

Figure 2: A high-level plan showing two subgoals in
a precondition relation. The corresponding sentence is
shown above.

The key distinction of our work is the use of
grounding to learn abstract pragmatic relations, i.e.
to learn linguistic patterns that describe relationships
between objects in the world. This supplements pre-
vious work which grounds words to objects in the
world (Branavan et al., 2009; Vogel and Jurafsky,
2010). Another important difference of our setup
is the way the textual information is utilized in the
situated context. Instead of getting step-by-step in-
structions from the text, our model uses text that de-
scribes general knowledge about the domain struc-
ture. From this text, it extracts relations between
objects in the world which hold independently of
any given task. Task-specific solutions are then con-
structed by a planner that relies on these relations to
perform effective high-level planning.

Hierarchical Planning It is widely accepted that
high-level plans that factorize a planning prob-
lem can greatly reduce the corresponding search
space (Newell et al., 1959; Bacchus and Yang,
1994).  Previous work in planning has studied
the theoretical properties of valid abstractions and
proposed a number of techniques for generating
them (Jonsson and Barto, 2005; Wolfe and Barto,
2005; Mehta et al., 2008; Barry et al., 2011). In gen-
eral, these techniques use static analysis of the low-
level domain to induce effective high-level abstrac-
tions. In contrast, our focus is on learning the ab-
straction from natural language. Thus our technique
is complementary to past work, and can benefit from
human knowledge about the domain structure.
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3 Problem Formulation

Our task is two-fold. First, given a text document
describing an environment, we wish to extract a set
of precondition/effect relations implied by the text.
Second, we wish to use these induced relations to
determine an action sequence for completing a given
task in the environment.

We formalize our task as illustrated in Figure 2.
As input, we are given a world defined by the tuple
(S, A, T), where S is the set of possible world states,
A is the set of possible actions and 7" is a determin-
istic state transition function. Executing action a in
state s causes a transition to a new state s’ according
to T'(s'| s,a). States are represented using proposi-
tional logic predicates z; € X, where each state is
simply a set of such predicates, i.e. s C X.

The objective of the text analysis part of our task
is to automatically extract a set of valid precondi-
tion/effect relationships from a given document d.
Given our definition of the world state, precondi-
tions and effects are merely single term predicates,
x;, in this world state. We assume that we are given
a seed mapping between a predicate z;, and the
word types in the document that reference it (see
Table 3 for examples). Thus, for each predicate
pair (zy,z;), we want to utilize the text to predict
whether x, is a precondition for x;; i.e., xp — ;.
For example, from the text in Figure 2, we want to
predict that possessing a pickaxe is a precondition
for possessing stone. Note that this relation implies
the reverse as well, i.e. x; can be interpreted as the
effect of an action sequence performed on state xj.

Each planning goal g € G is defined by a starting
state s, and a final goal state 3“;’0. This goal state is
represented by a set of predicates which need to be
made true. In the planning part of our task our objec-
tive is to find a sequence of actions & that connect s
to s?. Finally, we assume document d does not con-
tain step-by-step instructions for any individual task,
but instead describes general facts about the given
world that are useful for a wide variety of tasks.

4 Model

The key idea behind our model is to leverage textual
descriptions of preconditions and effects to guide the
construction of high level plans. We define a high-
level plan as a sequence of subgoals, where each



subgoal is represented by a single-term predicate,
x;, that needs to be set in the corresponding world
state — e.g. have (wheat) =true. Thus the set of
possible subgoals is defined by the set of all possi-
ble single-term predicates in the domain. In contrast
to low-level plans, the transition between these sub-
goals can involve multiple low-level actions. Our al-
gorithm for textually informed high-level planning
operates in four steps:

1. Use text to predict the preconditions of each
subgoal. These predictions are for the entire
domain and are not goal specific.

2. Given a planning goal and the induced pre-
conditions, predict a subgoal sequence that
achieves the given goal.

3. Execute the predicted sequence by giving each
pair of consecutive subgoals to a low-level
planner. This planner, treated as a black-box,
computes the low-level plan actions necessary
to transition from one subgoal to the next.

4. Update the model parameters, using the low-
level planner’s success or failure as the source
of supervision.

We formally define these steps below.

Modeling Precondition Relations Given a docu-
ment d, and a set of subgoal pairs (z;, z;), we want
to predict whether subgoal x; is a precondition for
x;. We assume that precondition relations are gener-
ally described within single sentences. We first use
our seed grounding in a preprocessing step where
we extract all predicate pairs where both predicates
are mentioned in the same sentence. We call this set
the Candidate Relations. Note that this set will con-
tain many invalid relations since co-occurrence in a
sentence does not necessarily imply a valid precon-
dition relation.> Thus for each sentence, W}, asso-
ciated with a given Candidate Relation, x; — x;,
our task is to predict whether the sentence indicates
the relation. We model this decision via a log linear
distribution as follows:

p(wi — x5 | By, gi; ) oc e PelFors@oa) (1)

where 0. is the vector of model parameters. We
compute the feature function ¢. using the seed

5In our dataset only 11% of Candidate Relations are valid.
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Input: A document d, Set of planning tasks G,
Set of candidate precondition relations Cl;;,
Reward function (), Number of iterations T’

Initialization:Model parameters 6, = 0 and 6. = 0.

fori=1---Tdo
Sample valid preconditions:
C—0
foreach (z;,z;) € Cy do
foreach Sentence Wy, containing x; and x; do
v~ p(z; — x| Wey qr; Oc)
ifv=1then C = CU (z;,x;)
end
end
Predict subgoal sequences for each task g.
foreach g € G do
Sample subgoal sequence T as follows:
fort=1---ndo
Sample next subgoal:
xy ~ px | xt,l,sg,S?,C’;Qm)
Construct low-level subtask from x;_1 to x;
Execute low-level planner on subtask
end
Update subgoal prediction model using Eqn. 2
end
Update text precondition model using Eqn. 3
end
Algorithm 1: A policy gradient algorithm for pa-
rameter estimation in our model.

grounding, the sentence W, and a given dependency
parse g of the sentence. Given these per-sentence
decisions, we predict the set of all valid precondi-
tion relations, C, in a deterministic fashion. We do
this by considering a precondition z; — x; as valid
if it is predicted to be valid by at least one sentence.

Modeling Subgoal Sequences Given a planning
goal g, defined by initial and final goal states s and
5%, our task is to predict a sequence of subgoals ¥
which will achieve the goal. We condition this de-
cision on our predicted set of valid preconditions C,
by modeling the distribution over sequences & as:

p(f‘ 3875?70; 9%) = Hp(xt ’ xt—thaS?aC; 9$)7
t=1

. 9 9
(x| xt—175875?‘70§9a8) o elrda(@emi-1,50,57,C)
Here we assume that subgoal sequences are Marko-
vian in nature and model individual subgoal predic-
tions using a log-linear model. Note that in con-



trast to Equation 1 where the predictions are goal-
agnostic, these predictions are goal-specific. As be-
fore, 0, is the vector of model parameters, and ¢, is
the feature function. Additionally, we assume a spe-
cial stop symbol, =y, which indicates the end of the
subgoal sequence.

Parameter Update Parameter updates in our model
are done via reinforcement learning. Specifically,
once the model has predicted a subgoal sequence for
a given goal, the sequence is given to the low-level
planner for execution. The success or failure of this
execution is used to compute the reward signal r for
parameter estimation. This predict-execute-update
cycle is repeated until convergence. We assume that
our reward signal r strongly correlates with the cor-
rectness of model predictions. Therefore, during
learning, we need to find the model parameters that
maximize expected future reward (Sutton and Barto,
1998). We perform this maximization via stochastic
gradient ascent, using the standard policy gradient
algorithm (Williams, 1992; Sutton et al., 2000).

We perform two separate policy gradient updates,
one for each model component. The objective of the
text component of our model is purely to predict the
validity of preconditions. Therefore, subgoal pairs
(x,x), where x; is reachable from xy, are given
positive reward. The corresponding parameter up-
date, with learning rate c., takes the following form:

A90 — QT ¢c($i733j,wka%) -

Ep(y—ayl) [Pe(@in 2, T ar)] |- ()

The objective of the planning component of our
model is to predict subgoal sequences that success-
fully achieve the given planning goals. Thus we di-
rectly use plan-success as a binary reward signal,
which is applied to each subgoal decision in a se-
quence. This results in the following update:

A9x<—azrz

t

]Ep(:vﬂ) |:¢x($;7 Tt—1, 587 3?7 O)] :| , 3

|:¢x(xt7 Tt—1, 587 8?7 C) -

where ¢ indexes into the subgoal sequence and « is
the learning rate.
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Figure 3: Example of the precondition dependencies
present in the Minecraft domain.

| Domain | #Objects | #Pred Types | #Actions
Parking 49 5 4
Floortile 61 10 7
Barman 40 15 12
Minecraft 108 16 68

Table 1: A comparison of complexity between Minecraft
and some domains used in the IPC-2011 sequential satis-
ficing track. In the Minecraft domain, the number of ob-
jects, predicate types, and actions is significantly larger.

5 Applying the Model

We apply our method to Minecraft, a grid-based vir-
tual world. Each grid location represents a tile of ei-
ther land or water and may also contain resources.
Users can freely move around the world, harvest
resources and craft various tools and objects from
these resources. The dynamics of the world require
certain resources or tools as prerequisites for per-
forming a given action, as can be seen in Figure 3.
For example, a user must first craft a bucket before
they can collect milk.

Defining the Domain In order to execute a tradi-
tional planner on the Minecraft domain, we define
the domain using the Planning Domain Definition
Language (PDDL) (Fox and Long, 2003). This is the
standard task definition language used in the Inter-
national Planning Competitions (IPC).® We define
as predicates all aspects of the game state — for ex-
ample, the location of resources in the world, the re-
sources and objects possessed by the player, and the
player’s location. Our subgoals z; and our task goals
sfc map directly to these predicates. This results in
a domain with significantly greater complexity than
those solvable by traditional low-level planners. Ta-
ble 1 compares the complexity of our domain with
some typical planning domains used in the IPC.

Shttp://ipc.icaps-conference.org/



Low-level Planner As our low-level planner we
employ Metric-FF (Hoffmann and Nebel, 2001),
the state-of-the-art baseline used in the 2008 In-
ternational Planning Competition. Metric-FF is a
forward-chaining heuristic state space planner. Its
main heuristic is to simplify the task by ignoring op-
erator delete lists. The number of actions in the so-
lution for this simplified task is then used as the goal
distance estimate for various search strategies.

Features The two components of our model lever-
age different types of information, and as a result,
they each use distinct sets of features. The text com-
ponent features ¢. are computed over sentences and
their dependency parses. The Stanford parser (de
Marneffe et al., 2006) was used to generate the de-
pendency parse information for each sentence. Ex-
amples of these features appear in Table 2. The se-
quence prediction component takes as input both the
preconditions induced by the text component as well
as the planning state and the previous subgoal. Thus
¢, contains features which check whether two sub-
goals are connected via an induced precondition re-
lation, in addition to features which are simply the
Cartesian product of domain predicates.

6 Experimental Setup

Datasets As the text description of our virtual world,
we use documents from the Minecraft Wiki,” the
most popular information source about the game.
Our manually constructed seed grounding of pred-
icates contains 74 entries, examples of which can be
seen in Table 3. We use this seed grounding to iden-
tify a set of 242 sentences that reference predicates
in the Minecraft domain. This results in a set of
694 Candidate Relations. We also manually anno-
tated the relations expressed in the text, identifying
94 of the Candidate Relations as valid. Our corpus
contains 979 unique word types and is composed of
sentences with an average length of 20 words.

We test our system on a set of 98 problems that
involve collecting resources and constructing ob-
jects in the Minecraft domain — for example, fish-
ing, cooking and making furniture. To assess the
complexity of these tasks, we manually constructed
high-level plans for these goals and solved them us-
ing the Metric-FF planner. On average, the execu-

"http://www.minecraftwiki.net/wiki/Minecraft_Wiki/
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Words

Dependency Types

Dependency Type x Direction

Word x Dependency Type

Word x Dependency Type x Direction

Table 2: Example text features. A subgoal pair (z;, x;)
is first mapped to word tokens using a small grounding
table. Words and dependencies are extracted along paths
between mapped target words. These are combined with
path directions to generate the text features.

] Domain Predicate \ Noun Phrases

have (plank) wooden plank, wood plank
stone, cobblestone

iron ingot

have (stone)

have (iron)

Table 3: Examples in our seed grounding table. Each
predicate is mapped to one or more noun phrases that de-
scribe it in the text.

tion of the sequence of low-level plans takes 35 ac-
tions, with 3 actions for the shortest plan and 123
actions for the longest. The average branching fac-
tor is 9.7, leading to an average search space of more
than 1034 possible action sequences. For evaluation
purposes we manually identify a set of Gold Rela-
tions consisting of all precondition relations that are
valid in this domain, including those not discussed
in the text.

Evaluation Metrics We use our manual annotations
to evaluate the type-level accuracy of relation extrac-
tion. To evaluate our high-level planner, we use the
standard measure adopted by the IPC. This evalu-
ation measure simply assesses whether the planner
completes a task within a predefined time.

Baselines To evaluate the performance of our rela-
tion extraction, we compare against an SVM classi-
fier® trained on the Gold Relations. We test the SVM
baseline in a leave-one-out fashion.

To evaluate the performance of our text-aware
high-level planner, we compare against five base-
lines. The first two baselines — FF and No Text —
do not use any textual information. The FF base-
line directly runs the Metric-FF planner on the given
task, while the No Text baseline is a variant of our
model that learns to plan in the reinforcement learn-
ing framework. It uses the same state-level features

8SVM'e™ (Joachims, 1999) with default parameters.



v o

Sticks are the only building material required to craft a fence or ladder.

v

Seeds for growing wheat can be obtained by breaking tall grass

Figure 4: Examples of precondition relations predicted by our model from text. Check marks (v) indicate correct
predictions, while a cross (¥) marks the incorrect one — in this case, a valid relation that was predicted as invalid by
our model. Note that each pair of highlighted noun phrases in a sentence is a Candidate Relation, and pairs that are
not connected by an arrow were correctly predicted to be invalid by our model.

0.7
0.6

0.5 4

Model F-score
—————— SVM F-score
All-text F-score

0.4

Precondition prediction F-score

Learning Iteration

Figure 5: The performance of our model and a supervised
SVM baseline on the precondition prediction task. Also
shown is the F-Score of the full set of Candidate Rela-
tions which is used unmodified by All Text, and is given as
input to our model. Our model’s F-score, averaged over
200 trials, is shown with respect to learning iterations.

as our model, but does not have access to text.

The All Text baseline has access to the full set of
694 Candidate Relations. During learning, our full
model refines this set of relations, while in contrast
the All Text baseline always uses the full set.

The two remaining baselines constitute the upper
bound on the performance of our model. The first,
Manual Text, is a variant of our model which directly
uses the links derived from manual annotations of
preconditions in text. The second, Gold, has access
to the Gold Relations. Note that the connections
available to Manual Text are a subset of the Gold
links, because the text does not specify all relations.

Experimental Details All experimental results are
averaged over 200 independent runs for both our
model as well as the baselines. Each of these tri-
als is run for 200 learning iterations with a max-
imum subgoal sequence length of 10. To find a
low-level plan between each consecutive pair of sub-
goals, our high-level planner internally uses Metric-
FF. We give Metric-FF a one-minute timeout to find
such a low-level plan. To ensure that the comparison
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] Method \ % Plans \
FF 40.8
No text 69.4
All text 75.5
Full model 80.2
Manual text 84.7
Gold connection 87.1

Table 4: Percentage of tasks solved successfully by our
model and the baselines. All performance differences be-
tween methods are statistically significant at p < .01.

between the high-level planners and the FF baseline
is fair, the FF baseline is allowed a runtime of 2,000
minutes. This is an upper bound on the time that our
high-level planner can take over the 200 learning it-
erations, with subgoal sequences of length at most
10 and a one minute timeout. Lastly, during learning
we initialize all parameters to zero, use a fixed learn-
ing rate of 0.0001, and encourage our model to ex-
plore the state space by using the standard e-greedy
exploration strategy (Sutton and Barto, 1998).

7 Results

Relation Extraction Figure 5 shows the perfor-
mance of our method on identifying preconditions
in text. We also show the performance of the super-
vised SVM baseline. As can be seen, after 200 learn-
ing iterations, our model achieves an F-Measure of
66%, equal to the supervised baseline. These results
support our hypothesis that planning feedback is a
powerful source of supervision for analyzing a given
text corpus. Figure 4 shows some examples of sen-
tences and the corresponding extracted relations.

Planning Performance As shown in Table 4 our
text-enriched planning model outperforms the text-
free baselines by more than 10%. Moreover, the
performance improvement of our model over the All
Text baseline demonstrates that the accuracy of the
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Figure 6: Percentage of problems solved by various mod-
els on Easy and Hard problem sets.

extracted text relations does indeed impact planning
performance. A similar conclusion can be reached
by comparing the performance of our model and the
Manual Text baseline.

The difference in performance of 2.35% between
Manual Text and Gold shows the importance of the
precondition information that is missing from the
text. Note that Gold itself does not complete all
tasks — this is largely because the Markov assump-
tion made by our model does not hold for all tasks.”

Figure 6 breaks down the results based on the dif-
ficulty of the corresponding planning task. We mea-
sure problem complexity in terms of the low-level
steps needed to implement a manually constructed
high-level plan. Based on this measure, we divide
the problems into two sets. As can be seen, all of
the high-level planners solve almost all of the easy
problems. However, performance varies greatly on
the more challenging tasks, directly correlating with
planner sophistication. On these tasks our model
outperforms the No Text baseline by 28% and the
All Text baseline by 11%.

Feature Analysis Figure 7 shows the top five pos-
itive features for our model and the SVM baseline.
Both models picked up on the words that indicate
precondition relations in this domain. For instance,
the word use often occurs in sentences that describe
the resources required to make an object, such as
“bricks are items used to craft brick blocks”. In ad-
dition to lexical features, dependency information is
also given high weight by both learners. An example

"When a given task has two non-trivial preconditions, our
model will choose to satisfy one of the two first, and the Markov
assumption blinds it to the remaining precondition, preventing
it from determining that it must still satisfy the other.
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path has word "use"

path has word "fill"

path has dependency type "dobj"
path has dependency type "xsubj"
path has word "craft"

path has word "craft"

path has dependency type "partmod"
path has word "equals"

path has word "use"

path has dependency type "xsubj"

Figure 7: The top five positive features on words and
dependency types learned by our model (above) and by
SVM (below) for precondition prediction.

of this is a feature that checks for the direct object
dependency type. This analysis is consistent with
prior work on event semantics which shows lexico-
syntactic features are effective cues for learning text
relations (Blanco et al., 2008; Beamer and Girju,
2009; Do et al., 2011).

8 Conclusions

In this paper, we presented a novel technique for in-
ducing precondition relations from text by ground-
ing them in the semantics of planning operations.
While using planning feedback as its only source
of supervision, our method for relation extraction
achieves a performance on par with that of a su-
pervised baseline. Furthermore, relation grounding
provides a new view on classical planning problems
which enables us to create high-level plans based on
language abstractions. We show that building high-
level plans in this manner significantly outperforms
traditional techniques in terms of task completion.
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Distributional Semantics in Technicolor
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Abstract

Our research aims at building computational
models of word meaning that are perceptually
grounded. Using computer vision techniques,
we build visual and multimodal distributional
models and compare them to standard textual
models. Our results show that, while visual
models with state-of-the-art computer vision
techniques perform worse than textual models
in general tasks (accounting for semantic re-
latedness), they are as good or better models
of the meaning of words with visual correlates
such as color terms, even in a nontrivial task
that involves nonliteral uses of such words.
Moreover, we show that visual and textual in-
formation are tapping on different aspects of
meaning, and indeed combining them in mul-
timodal models often improves performance.

1 Introduction

Traditional semantic space models represent mean-
ing on the basis of word co-occurrence statistics in
large text corpora (Turney and Pantel, 2010). These
models (as well as virtually all work in computa-
tional lexical semantics) rely on verbal information
only, while human semantic knowledge also relies
on non-verbal experience and representation (Louw-
erse, 2011), crucially on the information gathered
through perception. Recent developments in com-
puter vision make it possible to computationally
model one vital human perceptual channel: vision
(Mooney, 2008). A few studies have begun to use
visual information extracted from images as part of
distributional semantic models (Bergsma and Van
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Durme, 2011; Bergsma and Goebel, 2011; Bruni et
al., 2011; Feng and Lapata, 2010; Leong and Mihal-
cea, 2011). These preliminary studies all focus on
how vision may help text-based models in general
terms, by evaluating performance on, for instance,
word similarity datasets such as WordSim353.

This paper contributes to connecting language and
perception, focusing on how to exploit visual infor-
mation to build better models of word meaning, in
three ways: (1) We carry out a systematic compari-
son of models using textual, visual, and both types of
information. (2) We evaluate the models on general
semantic relatedness tasks and on two specific tasks
where visual information is highly relevant, as they
focus on color terms. (3) Unlike previous work, we
study the impact of using different kinds of visual
information for these semantic tasks.

Our results show that, while visual models with
state-of-the-art computer vision techniques perform
worse than textual models in general semantic tasks,
they are as good or better models of the mean-
ing of words with visual correlates such as color
terms, even in a nontrivial task that involves nonlit-
eral uses of such words. Moreover, we show that vi-
sual and textual information are tapping on different
aspects of meaning, such that they are complemen-
tary sources of information, and indeed combining
them in multimodal models often improves perfor-
mance. We also show that “hybrid” models exploit-
ing the patterns of co-occurrence of words as tags
of the same images can be a powerful surrogate of
visual information under certain circumstances.

The rest of the paper is structured as follows. Sec-
tion 2 introduces the textual, visual, multimodal,
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and hybrid models we use for our experiments. We
present our experiments in sections 3 to 5. Section
6 reviews related work, and section 7 finishes with
conclusions and future work.

2 Distributional semantic models

2.1 Textual models

For the current project, we constructed a set of
textual distributional models that implement vari-
ous standard ways to extract them from a corpus,
chosen to be representative of the state of the art.
In all cases, occurrence and co-occurrence statis-
tics are extracted from the freely available ukWaC
and Wackypedia corpora combined (size: 1.9B and
820M tokens, respectively).! Moreover, in all mod-
els the raw co-occurrence counts are transformed
into nonnegative Local Mutual Information (LMI)
scores.? Finally, in all models we harvest vector rep-
resentations for the same words (lemmas), namely
the top 20K most frequent nouns, SK most frequent
adjectives and 5K most frequent verbs in the com-
bined corpora (for coherence with the vision-based
models, that cannot exploit contextual information
to distinguish nouns and adjectives, we merge nom-
inal and adjectival usages of the color adjectives in
the text-based models as well). The same 30K tar-
get nouns, verbs and adjectives are also employed as
contextual elements.

The Window2 and Window20 models are based
on counting co-occurrences with collocates within
a window of fixed width, in the tradition of HAL
(Lund and Burgess, 1996). Window2 records
sentence-internal co-occurrence with the nearest 2
content words to the left and right of each target con-
cept, a narrow context definition expected to capture
taxonomic relations. Window20 considers a larger
window of 20 words to the left and right of the target,
and should capture broader topical relations. The
Document model corresponds to a “topic-based”
approach in which words are represented as distri-
butions over documents. It is based on a word-by-
document matrix, recording the distribution of the

"http://wacky.sslmit.unibo.it/

2LMI is obtained by multiplying raw counts by Pointwise
Mutual Information, and it is a close approximation to the Log-
Likelihood Ratio (Evert, 2005). It counteracts the tendency of
PMI to favour extremely rare events.
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30K target words across the 30K documents in the
concatenated corpus that have the largest cumulative
LMI mass. This model is thus akin to traditional
Latent Semantic Analysis (Landauer and Dumais,
1997), without dimensionality reduction.

We add to the models we constructed the freely
available Distributional Memory (DM) model,’ that
has been shown to reach state-of-the-art perfor-
mance in many semantic tasks (Baroni and Lenci,
2010). DM is an example of a more complex text-
based model that exploits lexico-syntactic and de-
pendency relations between words (see Baroni and
Lenci’s article for details), and we use it as an in-
stance of a grammar-based model. DM is based
on the same corpora we used plus the 100M-word
British National Corpus,* and it also uses LMI
scores.

2.2 Visual models

The visual models use information extracted from
images instead of textual corpora. We use image
data where each image is associated with one or
more words or tags (we use “tag” for each word as-
sociated to the image, and “label” for the set of tags
of an image). We use the ESP-Game dataset,’ con-
taining 100K images labeled through a game with a
purpose in which two people partnered online must
independently and rapidly agree on an appropriate
word to label randomly selected images. Once a
word is entered by both partners in a certain num-
ber of game matches, that word is added to the label
for that image, and it becomes a taboo word for the
following rounds of the game (von Ahn and Dab-
bish, 2004). There are 20,515 distinct tags in the
dataset, with an average of 4 tags per image. We
build one vector with visual features for each tag in
the dataset.

The visual features are extracted with the use of
a standard bag-of-visual-words (BoVW) represen-
tation of images, inspired by NLP (Sivic and Zisser-
man, 2003; Csurka et al., 2004; Nister and Stewe-
nius, 2006; Bosch et al., 2007; Yang et al., 2007).
This approach relies on the notion of a common vo-
cabulary of “visual words” that can serve as discrete
representations for all images. Contrary to what hap-

*http://clic.cimec.unitn.it/dm
*http://www.natcorp.ox.ac.uk/
Shttp://www.espgame.org



pens in NLP, where words are (mostly) discrete and
easy to identify, in vision the visual words need to
be first defined. The process is completely induc-
tive. In a nutshell, BoVW works as follows. From
every image in a dataset, relevant areas are identified
and a low-level feature vector (called a “descriptor™)
is built to represent each area. These vectors, living
in what is sometimes called a descriptor space, are
then grouped into a number of clusters. Each cluster
is treated as a discrete visual word, and the clusters
will be the vocabulary of visual words used to rep-
resent all the images in the collection. Now, given
a new image, the nearest visual word is identified
for each descriptor extracted from it, such that the
image can be represented as a BoVW feature vec-
tor, by counting the instances of each visual word
in the image (note that an occurrence of a low-level
descriptor vector in an image, after mapping to the
nearest cluster, will increment the count of a single
dimension of the higher-level BoVW vector). In our
work, the representation of each word (tag) is a also
a BoVW vector. The values of each dimension are
obtained by summing the occurrences of the relevant
visual word in all the images tagged with the word.
Again, raw counts are transformed into Local Mu-
tual Information scores. The process to extract vi-
sual words and use them to create image-based vec-
tors to represent (real) words is illustrated in Figure
1, for a hypothetical example in which there is only
one image in the collection labeled with the word
horse.

Descriptor space

A

O|% | A| @

horse| 0 4 3 4

Vector representation

horse

Figure 1: Procedure to build a visual representation for a
word, exemplified with SIFT features.
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We extract descriptor features of two types.®
First, the standard Scale-Invariant Feature Trans-
form (SIFT) feature vectors (Lowe, 1999; Lowe,
2004), good at characterizing parts of objects. Sec-
ond, LAB features (Fairchild, 2005), which encode
only color information. We also experimented with
other visual features, such as those focusing on
edges (Canny, 1986), texture (Zhu et al., 2002), and
shapes (Oliva and Torralba, 2001), but they were
not useful for the color tasks. Moreover, we ex-
perimented also with different color scales, such as
LUV, HSV and RGB, obtaining significantly worse
performance compared to LAB. Further details on
feature extraction follow.

SIFT features are designed to be invariant to im-
age scale and rotation, and have been shown to pro-
vide a robust matching across affine distortion, noise
and change in illumination. The version of SIFT fea-
tures that we use is sensitive to color (RGB scale;
LUV, LAB and OPPONENT gave worse results).
We automatically identified keypoints for each im-
age and extracted SIFT features on a regular grid de-
fined around the keypoint with five pixels spacing,
at four multiple scales (10, 15, 20, 25 pixel radii),
zeroing the low contrast ones. To obtain the visual
word vocabulary, we cluster the SIFT feature vec-
tors with the standardly used k-means clustering al-
gorithm. We varied the number £ of visual words
between 500 and 2,500 in steps of 500.

For the SIFT-based representation of images, we
used spatial histograms to introduce weak geometry
(Grauman and Darrell, 2005; Lazebnik et al., 2006),
dividing the image into several (spatial) regions, rep-
resenting each region in terms of BoVW, and then
concatenating the vectors. In our experiments, the
spatial regions were obtained by dividing the image
in 4 x 4, for a total of 16 regions (other values and a
global representation did not perform as well). Note
that, following standard practice, descriptor cluster-
ing was performed ignoring the region partition, but
the resulting visual words correspond to different di-
mensions in the concatenated BoVW vectors, de-
pending on the region in which they occur. Con-
sequently, a vocabulary of k visual words results in
BoVW vectors with k£ x 16 dimensions.

®We use VLFeat (http://www.v1feat.org/) for fea-
ture extraction (Vedaldi and Fulkerson, 2008).



The LAB color space plots image data in 3 di-
mensions along 3 independent (orthogonal) axes,
one for brightness (luminance) and two for color
(chrominance). Luminance corresponds closely to
brightness as recorded by the brain-eye system;
the chrominance (red-green and yellow-blue) axes
mimic the oppositional color sensations the retina
reports to the brain (Szeliski, 2010). LAB features
are densely sampled for each pixel. Also here we use
the k-means algorithm to build the descriptor space.
We varied the number of & visual words between
128 and 1,024 in steps of 128.
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To assemble the textual and visual representations in
multimodal semantic spaces, we concatenate the two
vectors after normalizing them. We use the linear
weighted combination function proposed by Bruni
et al. (2011): Given a word that is present both in
the textual model and in the visual model, we sepa-
rately normalize the two vectors F} and F,, and we
combine them as follows:

Multimodal models

F=axF,o(l—a)xF,

where & is the vector concatenate operator. The
weighting parameter a (0 < o < 1) is tuned on the
MEN development data (2,000 word pairs; details
on the MEN dataset in the next section). We find the
optimal value to be close to o = 0.5 for most model
combinations, suggesting that textual and visual in-
formation should have similar weight. Our imple-
mentation of the proposed method is open source
and publicly available.’

2.4 Hybrid models

We further introduce hybrid models that exploit the
patterns of co-occurrence of words as tags of the
same images. Like textual models, these mod-
els are based on word co-occurrence; like visual
models, they consider co-occurrence in images (im-
age labels). In one model (ESP-Win, analogous
to window-based models), words tagging an im-
age were represented in terms of co-occurrence with
the other tags in the image label (Baroni and Lenci
(2008) are a precedent for the use of ESP-Win).
The other (ESP-Doc, analogous to document-based

"https://github.com/s2m/FUSE
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models) represented words in terms of their co-
occurrence with images, using each image as a dif-
ferent dimension. This information is very easy to
extract, as it does not require the sophisticated tech-
niques used in computer vision. We expected these
models to perform very bad; however, as we will
show, they perform relatively well in all but one of
the tasks tested.

3 Textual and visual models as general
semantic models

We test the models just presented in two different
ways: First, as general models of word meaning,
testing their correlation to human judgements on
word similarity and relatedness (this section). Sec-
ond, as models of the meaning of color terms (sec-
tions 4 and 5).

We use one standard dataset (WordSim353) and
one new dataset (MEN). WordSim353 (Finkelstein
et al., 2002) is a widely used benchmark constructed
by asking 16 subjects to rate a set of 353 word pairs
on a 10-point similarity scale and averaging the rat-
ings (dollar/buck receives a high 9.22 average rat-
ing, professor/cucumber a low 0.31). MEN is a
new evaluation benchmark with a better coverage of
our multimodal semantic models.® It contains 3,000
pairs of randomly selected words that occur as ESP
tags (pairs sampled to ensure a balanced range of re-
latedness levels according to a text-based semantic
score). Each pair is scored on a [0, 1]-normalized
semantic relatedness scale via ratings obtained by
crowdsourcing on the Amazon Mechanical Turk (re-
fer to the online MEN documentation for more de-
tails). For example, cold/frost has a high 0.9 MEN
score, eat/hair a low 0.1. We evaluate the models
in terms of their Spearman correlation to the human
ratings. Our models have a perfect MEN coverage
and a coverage of 252 WordSim pairs.

We used the development set of MEN to test
the effect of varying the number k of visual words
in SIFT and LAB. We restrict the discussion to
SIFT with the optimal & (2.5K words) and to LAB
with the optimal (256), lowest (128), and highest
k (1024). We report the results of the multimodal

8 An updated version of MEN is available from http://
clic.cimec.unitn.it/~elia.bruni/MEN.html.
The version used here contained 10 judgements per word pair.



models built with these visual models and the best
textual models (Window?2 and Window?20).

Columns WS and MEN in Table 1 report corre-
lations with the WordSim and MEN ratings, respec-
tively. As expected, because they are more mature
and capture a broader range of semantic informa-
tion, textual models perform much better than purely
visual models. Also as expected, SIFT features out-
perform the simpler LAB features for this task.

A first indication that visual information helps is
the fact that, for MEN, multimodal models perform
best. Note that all models that are sensitive to vi-
sual information perform better for MEN than for
WordSim, and the reverse is true for textual models.
Because of its design, word pairs in MEN can be
expected to be more imageable than those in Word-
Sim, so the visual information is more relevant for
this dataset. Also recall that we did some parameter
tuning on held-out MEN data.

Surprisingly, hybrid models perform quite well:
They are around 10 points worse than textual and
multimodal models for WordSim, and only slightly
worse than multimodal models for MEN.

4 Experiment 1: Discovering the color of
concrete objects

In Experiment 1, we test the hypothesis that the re-
lation between words denoting concrete things and
words denoting their typical color is reflected by the
distance of the corresponding vectors better when
the models are sensitive to visual information.

4.1 Method

Two authors labeled by consensus a list of concrete
nouns (extracted from the BLESS dataset’ and the
nouns in the BNC occurring with color terms more
than 100 times) with one of the 11 colors from
the basic set proposed by Berlin and Kay (1969):
black, blue, brown, green, grey, orange, pink, pur-
ple, red, white, yellow. Objects that do not have
an obvious characteristic color (computer) and those
with more than one characteristic color (zebra, bear)
were eliminated. Moreover, only nouns covered by
all the models were preserved. The final list con-

‘http://sites.google.com/site/
geometricalmodels/shared-evaluation
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Model WS MEN El | E2
DM 44 42 309 | .14
Document .63 .62 37 | .06
Window?2 .70 .66 5(13) | 49%**
Window?20 .70 .62 3(11) | 53%**
LAB 98 21 41 127 | .25%
LABosg 21 41 2(24) | .24*
LAB 924 .19 41 2 (24) | 28%*
SIFTs 5 33 44 3(15) | ST7***
W2-LAB 55 40 .59 127 | 40%**
W2-LABos56 41 .60 2(23) | .40%**
W2-LAB1924 .39 .61 2 (24) | 44%**®
W20-LAB19g 40 .60 127) | 36%**
W20-LABosg 41 .60 2(23) | .36%**
W20-LAB1g24 | .39 .62 2 (24) | 40%**
W2-SIFTs 5 .64 .69 | 2.5(19) | .68%**
W20-SIFTy 5 | .64 .68 2(17) | J73%**
ESP-Doc 52 .66 1(37) | .29*
ESP-Win .55 .68 4(15) | .16

Table 1: Results of the textual, visual, multimodal, and
hybrid models on the general semantic tasks (first two
columns, section 3; Pearson p) and Experiments 1 (E1,
section 4) and 2 (E2, section 5). El reports the median
rank of the correct color and the number of top matches
(in parentheses), and E2 the average difference in nor-
malized cosines between literal and nonliteral adjective-
noun phrases, with the significance of a t-test (*** for
p< 0.001, ** < 0.01, * < 0.05).

tains 52 nouns.'® Some random examples are fog—
grey, crow-black, wood—brown, parsley—green, and
grass—green.

For evaluation, we measured the cosine of each
noun with the 11 basic color words in the space pro-
duced by each model, and recorded the rank of the
correct color in the resulting ordered list.

4.2 Results

Column E1 in Table 1 reports the median rank for
each model (the smaller the rank, the better the
model), as well as the number of exact matches (that
1s, number of nouns for which the model ranks the
correct color first).

Discovering knowledge such that grass is green
is arguably a simple task but Experiment 1 shows

¥Dataset available from the second author’s webpage, under
resources.



that textual models fail this simple task, with median
ranks around 3.!' This is consistent with the findings
in Baroni and Lenci (2008) that standard distribu-
tional models do not capture the association between
concrete concepts and their typical attributes. Visual
models, as expected, are better at capturing the as-
sociation between concepts and visual attributes. In
fact, all models that are sensitive to visual informa-
tion achieve median rank 1.

Multimodal models do not increase performance
with respect to visual models: For instance, both
W2-LAB2g and W20-LAB{9g have the same me-
dian rank and number of exact matches as LABsg
alone. Textual information in this case is not com-
plementary to visual information, but simply poorer.

Also note that LAB features do better than SIFT
features. This is probably due to the fact that Exper-
iment 1 is basically about identifying a large patch
of color. The SIFT features we are using are also
sensitive to color, but they seem to be misguided by
the other cues that they extract from images. For
example, pigs are pink in LAB space but brown in
SIFT space, perhaps because SIFT focused on the
color of the typical environment of a pig. We can
thus confirm that, by limiting multimodal spaces to
SIFT features, as has been done until now in the lit-
erature, we are missing important semantic informa-
tion, such as the color information that we can mine
with LAB.

Again we find that hybrid models do very well,
in fact in this case they have the top performance,
as they perform better than LABjog (the differ-
ence, which can be noticed in the number of exact
matches, is highly significant according to a paired
Mann-Whitney test, with p<0.001).

5 Experiment 2

Experiment 2 requires more sophisticated informa-
tion than Experiment 1, as it involves distinguishing
between literal and nonliteral uses of color terms.

"'We also experimented with a model based on direct co-
occurrence of adjectives and nouns, obtaining promising results
in a preliminary version of Exp. 1. We abandoned this approach
because such a model inherently lacks scalability, as it will not
generalize behind cases where the training data contain direct
examples of co-occurrences of the target pairs.
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5.1 Method

We test the performance of the different models
with a dataset consisting of color adjective-noun
phrases, randomly drawn from the most frequent 8K
nouns and 4K adjectives in the concatenated ukWaC,
Wackypedia, and BNC corpora (four color terms are
not among these, so the dataset includes phrases for
black, blue, brown, green, red, white, and yellow
only). These were tagged by consensus by two hu-
man judges as literal (white towel, black feather)
or nonliteral (white wine, white musician, green fu-
ture). Some phrases had both literal and nonliteral
uses, such as blue book in “book that is blue” vs.
“automobile price guide”. In these cases, only the
most common sense (according to the judges) was
taken into account for the present experiment. The
dataset consists of 370 phrases, of which our models
cover 342, 227 literal and 115 nonliteral.!2

The prediction is that, in good semantic models,
literal uses will in general result in a higher simi-
larity between the noun and color term vectors: A
white towel is white, while wine or musicians are
not white in the same manner. We test this prediction
by comparing the average cosine between the color
term and the nouns across the literal and nonliteral
pairs (similar results were obtained in an evaluation
in terms of prediction accuracy of a simple classi-
fier).

5.2 Results

Column E2 in Table 1 summarizes the results of
the experiment, reporting the mean difference be-
tween the normalized cosines (that is, how large
the difference is between the literal and nonliteral
uses of color terms), as well as the significance of
the differences according to a t-test. Window-based
models perform best among textual models, partic-
ularly Window20, while the rest can’t discriminate
between the two uses. This is particularly striking
for the Document model, which performs quite well
in general semantic tasks but bad in visual tasks.
Visual models are all able to discriminate between
the two uses, suggesting that indeed visual infor-
mation can capture nonliteral aspects of meaning.
However, in this case SIFT features perform much
better than LAB features, as Experiment 2 involves

2Dataset available upon request to the second author.



tackling much more sophisticated information than
Experiment 1. This is consistent with the fact that,
for LAB, a lower k£ (lower granularity of the in-
formation) performs better for Experiment 1 and a
higher k (higher granularity) for Experiment 2.

One crucial question to ask, given the goals of
our research, is whether textual and visual models
are doing essentially the same job, only using dif-
ferent types of information. Note that, in this case,
multimodal models increase performance over the
individual modalities, and are the best models for
this task. This suggests that the information used in
the individual models is complementary, and indeed
there is no correlation between the cosines obtained
with the best textual and visual models (Pearson’s
p=.09,p=.11).

Figure 2 depicts the results broken down by
color.!3>  Both modalities can capture the differ-
ences for black and green, probably because nonlit-
eral uses of these color terms have also clear textual
correlates (more concretely, topical correlates, as
they are related to race and ecology, respectively).'
Significantly, however, vision can capture nonliteral
uses of blue and red, while text can’t. Note that
these uses (blue note, shark, shield, red meat, dis-
trict, face) do not have a clear topical correlate, and
thus it makes sense that vision does a better job.

Finally, note that for this more sophisticated task,
hybrid models perform quite bad, which shows their
limitations as models of word meaning.!> Overall,

3 Yellow and brown are excluded because the dataset contains
only one and two instances of nonliteral cases for these terms,
respectively. The significance of the differences as explained in
the text has been tested via t-tests.

YIt’s not entirely clear why neither modality can capture
the differences for white; for text, it may be because the non-
literal cases are not so tied to race as is the cases for black,
but they also contain many other types of nonliteral uses, such
as type-referring (white wine/rice/cell) or metonymical ones
(white smile).

'5The hybrid model that performs best in the color tasks is
ESP-Doc. This model can only detect a relation between an ad-
jective and a noun if they directly co-occur in the label of at least
one image (a “document” in this setting). The more direct co-
occurrences there are, the more related the words will be for the
model. This works for Exp. 1: Since the ESP labels are lists of
what subjects saw in a picture, and the adjectives of Exp. 1 are
typical colors of objects, there is a high co-occurrence, as all but
one adjective-noun pairs co-occur in at least one ESP label. For
the model to perform well in Exp. 2 too, literal phrases should
occur in the same labels and non-literal pairs should not. We
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our results suggest that co-occurrence in an image
label can be used as a surrogate of true visual infor-
mation to some extent, but the behavior of hybrid
models depends on ad-hoc aspects of the labeled
dataset, and, from an empirical perspective, they are
more limited than truly multimodal models, because
they require large amounts of rich verbal picture de-
scriptions to reach good coverage.

6 Related work

There is an increasing amount of work in com-
puter vision that exploits text-derived information
for image retrieval and annotation tasks (Farhadi
et al., 2010; Kulkarni et al., 2011). One particu-
lar techinque inspired by NLP that has acted as a
very effective proxy from CV to NLP is precisely
the BoVW. Recently, NLPers have begun exploit-
ing BoVW to enrich distributional models that rep-
resent word meaning with visual features automati-
cally extracted from images (Feng and Lapata, 2010;
Bruni et al., 2011; Leong and Mihalcea, 2011). Pre-
vious work in this area relied on SIFT features only,
whereas we have enriched the visual representation
of words with other kinds of features from computer
vision, namely, color-related features (LAB). More-
over, earlier evaluation of multimodal models has
focused only on standard word similarity tasks (us-
ing mainly WordSim353), whereas we have tested
them on both general semantic tasks and specific
tasks that tap directly into aspects of semantics (such
as color) where we expect visual information to be
crucial.

The most closely related work to ours is that re-
cently presented by Ozbal et al. (2011). Like us,
Ozbal and colleagues use both a textual model and a
visual model (as well as Google adjective-noun co-
occurrence counts) to find the typical color of an ob-
ject. However, their visual model works by analyz-
ing pictures associated with an object, and determin-
ing the color of the object directly by image analysis.
We attempt the more ambitious goal of separately
associating a vector to nouns and adjectives, and de-

find no such difference (89% of adjective-noun pairs co-occur
in at least one image in the literal set, 86% in the nonliteral set),
because many of the relevant pairs describe concrete concepts
that, while not necessarily of the “right” literal colour, are per-
fectly fit to be depicted in images (“blue shark™, “black boy”,
“white wine”).
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Figure 2: Discrimination of literal (L) vs. nonliteral (N) uses by the best visual and textual models.

termining the color of an object by the nearness of
the noun denoting the object to the color term. In
other words, we are trying to model the meaning of
color ferms and how they relate to other words, and
not to directly extract the color of an object from pic-
tures depicting them. Our second experiment is con-
nected to the literature on the automated detection of
figurative language (Shutova, 2010). There is in par-
ticular some similarity with the tasks studied by Tur-
ney et al. (2011). Turney and colleagues try, among
other things, to distinguish literal and metaphorical
usages of adjectives when combined with nouns, in-
cluding the highly visual adjective dark (dark hair
vs. dark humour). Their method, based on automat-
ically quantifying the degree of abstractness of the
noun, is complementary to ours. Future work could
combine our approach and theirs.

7 Conclusion

We have presented evidence that distributional se-
mantic models based on text, while providing a
good general semantic representation of word mean-
ing, can be outperformed by models using visual
information for semantic aspects of words where
vision is relevant. More generally, this suggests
that computer vision is mature enough to signifi-
cantly contribute to perceptually grounded compu-
tational models of language. We have also shown
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that different types of visual features (LAB, SIFT)
are appropriate for different tasks. Future research
should investigate automated methods to discover
which (if any) kind of visual information should be
highlighted in which task, more sophisticated mul-
timodal models, visual properties other than color,
and larger color datasets, such as the one recently
introduced by Mohammad (2011).
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Abstract

When automatically translating from a weakly
inflected source language like English to a tar-
get language with richer grammatical features
such as gender and dual number, the output
commonly contains morpho-syntactic agree-
ment errors. To address this issue, we present
a target-side, class-based agreement model.
Agreement is promoted by scoring a sequence
of fine-grained morpho-syntactic classes that
are predicted during decoding for each transla-
tion hypothesis. For English-to-Arabic transla-
tion, our model yields a +1.04 BLEU average
improvement over a state-of-the-art baseline.
The model does not require bitext or phrase ta-
ble annotations and can be easily implemented
as a feature in many phrase-based decoders.

1 Introduction

Languages vary in the degree to which surface forms
reflect grammatical relations. English is a weakly in-
flected language: it has a narrow verbal paradigm, re-
stricted nominal inflection (plurals), and only the ves-
tiges of a case system. Consequently, translation info
English—which accounts for much of the machine
translation (MT) literature (Lopez, 2008)—often in-
volves some amount of morpho-syntactic dimension-
ality reduction. Less attention has been paid to what
happens during translation from English: richer gram-
matical features such as gender, dual number, and
overt case are effectively latent variables that must
be inferred during decoding. Consider the output of
Google Translate for the simple English sentence in
Fig. 1. The correct translation is a monotone mapping
of the input. However, in Arabic, SVO word order
requires both gender and number agreement between
the subject &l ‘the car’ and verb ., ‘go’. The
MT system selects the correct verb stem, but with
masculine inflection. Although the translation has

146

John DeNero
Google
denero@google.com

(1 5,k el &

the_carSG.DEF.FEM gOSG.MASC With_speedSG.FEM
The car goes quickly

Figure 1: Ungrammatical Arabic output of Google Trans-
late for the English input The car goes quickly. The subject
should agree with the verb in both gender and number, but
the verb has masculine inflection. For clarity, the Arabic
tokens are arranged left-to-right.

the correct semantics, it is ultimately ungrammatical.
This paper addresses the problem of generating text
that conforms to morpho-syntactic agreement rules.

Agreement relations that cross statistical phrase
boundaries are not explicitly modeled in most phrase-
based MT systems (Avramidis and Koehn, 2008).
We address this shortcoming with an agreement
model that scores sequences of fine-grained morpho-
syntactic classes. First, bound morphemes in transla-
tion hypotheses are segmented. Next, the segments
are labeled with classes that encode both syntactic
category information (i.e., parts of speech) and gram-
matical features such as number and gender. Finally,
agreement is promoted by scoring the predicted class
sequences with a generative Markov model.

Our model scores hypotheses during decoding. Un-
like previous models for scoring syntactic relations,
our model does not require bitext annotations, phrase
table features, or decoder modifications. The model
can be implemented using the feature APIs of popular
phrase-based decoders such as Moses (Koehn et al.,
2007) and Phrasal (Cer et al., 2010).

Intuition might suggest that the standard n-gram
language model (LM) is sufficient to handle agree-
ment phenomena. However, LM statistics are sparse,
and they are made sparser by morphological varia-
tion. For English-to-Arabic translation, we achieve
a +1.04 BLEU average improvement by tiling our
model on top of a large LM.

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 146-155,
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It has also been suggested that this setting requires
morphological generation because the bitext may not
contain all inflected variants (Minkov et al., 2007,
Toutanova et al., 2008; Fraser et al., 2012). However,
using lexical coverage experiments, we show that
there is ample room for translation quality improve-
ments through better selection of forms that already
exist in the translation model.

2 A Class-based Model of Agreement

2.1 Morpho-syntactic Agreement

Morpho-syntactic agreement refers to a relationship
between two sentence elements ¢ and b that must
have at least one matching grammatical feature.
Agreement relations tend to be defined for partic-
ular syntactic configurations such as verb-subject,
noun-adjective, and pronoun-antecedent. In some
languages, agreement affects the surface forms of the
words. For example, from the perspective of gener-
ative grammatical theory, the lexicon entry for the
Arabic nominal 3 J\,,...J‘ ‘the car’ contains a feminine
gender feature. When this nominal appears in the sub-
ject argument position, the verb-subject agreement
relationship triggers feminine inflection of the verb.

Our model treats agreement as a sequence of
scored, pairwise relations between adjacent words.
Of course, this assumption excludes some agreement
phenomena, but it is sufficient for many common
cases. We focus on English-Arabic translation as
an example of a translation direction that expresses
substantially more morphological information in the
target. These relations are best captured in a target-
side model because they are mostly unobserved (from
lexical clues) in the English source.

The agreement model scores sequences of morpho-
syntactic word classes, which express grammatical
features relevant to agreement. The model has three
components: a segmenter, a tagger, and a scorer.

2.2 Morphological Segmentation

Segmentation is a procedure for converting raw sur-
face forms to component morphemes. In some lan-
guages, agreement relations exist between bound
morphemes, which are syntactically independent yet
phonologically dependent morphemes. For example,

"We use morpho-syntactic and grammatical agreement inter-
changeably, as is common in the literature.
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Pron+Fem+Sg Verb+Masc+3+PI Prt

a L)jn:i}, B 9

it they write will and

L 55en
Figure 2: Segmentation and tagging of the Arabic token
(% }.:ﬁwj ‘and they will write it’. This token has four seg-
ments with conflicting grammatical features. For example,
the number feature is singular for the pronominal object
and plural for the verb. Our model segments the raw to-

ken, tags each segment with a morpho-syntactic class (e.g.,
“Pron+Fem+Sg”), and then scores the class sequences.

Conj

the single raw token in Fig. 2 contains at least four
grammatically independent morphemes. Because the
morphemes bear conflicting grammatical features and
basic parts of speech (POS), we need to segment the
token before we can evaluate agreement relations.”

Segmentation is typically applied as a bitext pre-
processing step, and there is a rich literature on the
effect of different segmentation schemata on transla-
tion quality (Koehn and Knight, 2003; Habash and
Sadat, 2006; El Kholy and Habash, 2012). Unlike pre-
vious work, we segment each translation hypothesis
as it is generated (i.e., during decoding). This permits
greater modeling flexibility. For example, it may be
useful to count tokens with bound morphemes as a
unit during phrase extraction, but to score segmented
morphemes separately for agreement.

We treat segmentation as a character-level se-
quence modeling problem and train a linear-chain
conditional random field (CRF) model (Lafferty et
al., 2001). As a pre-processing step, we group con-
tiguous non-native characters (e.g., Latin characters
in Arabic text). The model assigns four labels:

e I: Continuation of a morpheme

e O: Outside morpheme (whitespace)
e B: Beginning of a morpheme

e F: Non-native character(s)

ZSegmentation also improves translation of compounding
languages such as German (Dyer, 2009) and Finnish (Macherey
etal., 2011).



Translation Model
e Target sequence of I words
f Source sequence of J words
a Sequence of K phrase alignments for (e, f)
II Permutation of the alignments for target word order e
h Sequence of M feature functions
A Sequence of learned weights for the M features
H A priority queue of hypotheses

Class-based Agreement Model

t €T  Setof morpho-syntactic classes

s €S  Setof all word segments

Oseg Learned weights for the CRF-based segmenter
Otag Learned weights for the CRF-based tagger

¢o, ¢+  CREF potential functions (emission and transition)
T Sequence of I target-side predicted classes

T T dimensional (log) prior distribution over classes
§ Sequence of [ word segments

o Model state: a tagged segment (s, t)

I

i

Figure 3: Notation used in this paper. The convention e
indicates a subsequence of a length I sequence.

The features are indicators for (character, position,
label) triples for a five character window and bigram
label transition indicators.

This formulation is inspired by the classic “IOB”
text chunking model (Ramshaw and Marcus, 1995),
which has been previously applied to Chinese seg-
mentation (Peng et al., 2004). It can be learned from
gold-segmented data, generally applies to languages
with bound morphemes, and does not require a hand-
compiled lexicon.> Moreover, it has only four labels,
so Viterbi decoding is very fast. We learn the param-
eters 054 using a quasi-Newton (QN) procedure with
[ (1asso) regularization (Andrew and Gao, 2007).

2.3 Morpho-syntactic Tagging

After segmentation, we tag each segment with a fine-
grained morpho-syntactic class. For this task we also
train a standard CRF model on full sentences with
gold classes and segmentation. We use the same QN
procedure as before to obtain ;.

A translation derivation is a tuple (e, f, a) where
e is the target, f is the source, and a is an alignment
between the two. The CRF tagging model predicts a
target-side class sequence 7*

I
7" = arg mf,xz Otag - {Do(Tis i, €) + (T, Tim1)}
i=1

where further notation is defined in Fig. 3.

*Mada, the standard tool for Arabic segmentation (Habash
and Rambow, 2005), relies on a manually compiled lexicon.
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Set of Classes The tagger assigns morpho-syntactic
classes, which are coarse POS categories refined with
grammatical features such as gender and definiteness.
The coarse categories are the universal POS tag set
described by Petrov et al. (2012). More than 25 tree-
banks (in 22 languages) can be automatically mapped
to this tag set, which includes “Noun” (nominals),
“Verb” (verbs), “Adj” (adjectives), and “ADP” (pre-
and post-positions). Many of these treebanks also
contain per-token morphological annotations. It is
easy to combine the coarse categories with selected
grammatical annotations.

For Arabic, we used the coarse POS tags plus
definiteness and the so-called phi features (gender,
number, and person).* For example, J\n..,J‘ ‘the
car’ would be tagged ‘“Noun+Def+Sg+Fem”. We
restricted the set of classes to observed combinations
in the training data, so the model implicitly disallows
incoherent classes like “Verb+Def™.

Features The tagging CRF includes emission fea-
tures ¢, that indicate a class 7; appearing with various
orthographic characteristics of the word sequence
being tagged. In typical CRF inference, the entire
observation sequence is available throughout infer-
ence, so these features can be scored on observed
words in an arbitrary neighborhood around the cur-
rent position i. However, we conduct CRF inference
in tandem with the translation decoding procedure
(§3), creating an environment in which subsequent
words of the observation are not available; the MT
system has yet to generate the rest of the translation
when the tagging features for a position are scored.
Therefore, we only define emission features on the
observed words at the current and previous positions
of a class: ¢, (7, €, €i—1).

The emission features are word types, prefixes and
suffixes of up to three characters, and indicators for
digits and punctuation. None of these features are
language specific.

Bigram transition features ¢, encode local agree-
ment relations. For example, the model learns that the
Arabic class “Noun+Fem” is followed by “Adj+Fem”
and not “Adj+Masc” (noun-adjective gender agree-
ment).

4Case is also relevant to agreement in Arabic, but it is mostly
indicated by diacritics, which are absent in unvocalized text.



2.4 Word Class Sequence Scoring

The CRF tagger model defines a conditional distribu-
tion p(7le; O;44) for a class sequence 7 given a sen-
tence e and model parameters 0y,4. That is, the sam-
ple space is over class—not word—sequences. How-
ever, in MT, we seek a measure of sentence quality
q(e) that is comparable across different hypotheses
on the beam (much like the n-gram language model
score). Discriminative model scores have been used
as MT features (Galley and Manning, 2009), but we
obtained better results by scoring the 1-best class se-
quences with a generative model. We trained a simple
add-1 smoothed bigram language model over gold
class sequences in the same treebank training data:

I
q(e) = p(7) = Hp(7i|ﬂ>1)
i=1

We chose a bigram model due to the aggressive
recombination strategy in our phrase-based decoder.
For contexts in which the LM is guaranteed to back
off (for instance, after an unseen bigram), our decoder
maintains only the minimal state needed (perhaps only
a single word). In less restrictive decoders, higher
order scoring models could be used to score longer-
distance agreement relations.

We integrate the segmentation, tagging, and scor-
ing models into a self-contained component in the
translation decoder.

3 Inference during Translation Decoding

Scoring the agreement model as part of translation
decoding requires a novel inference procedure. Cru-
cially, the inference procedure does not measurably
affect total MT decoding time.
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We consider the standard phrase-based approach to
MT (Och and Ney, 2004). The distribution p(e| f) is
modeled directly using a log-linear model, yielding
the following decision rule:

Phrase-based Translation Decoding

M
¢" = argmax > Amhm(e, fra,T0) ¢ (1)

m=1

This decoding problem is NP-hard, thus a beam search
is often used (Fig. 4). The beam search relies on three
operations, two of which affect the agreement model:
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Input: implicitly defined search space
generate initial hypotheses and add to H
set Hyinar to )
while H is not empty:

set Hegt to ()
for each hypothesis 7 in H:
if n is a goal hypothesis:
add 7 to Hfinal
else Extend n and add to Hey+
Recombine and Prune He.:
set H to Hezt
Output: argmax of Hinai

» Score agreement

Figure 4: Breadth-first beam search algorithm of Och and
Ney (2004). Typically, a hypothesis stack H is maintained
for each unique source coverage set.

Input: (e, n, is_goal)
run segmenter on attachment e’ ; to get 57
get model state ¢ = (s, t) for translation prefix e
initialize 7 to —oco
setw(t) =0
compute 7* from parameters (s, 8, 7, is_goal)
compute g(el 1) = p(7*) under the generative LM
set model state ey = (81, 77,) for prefix el
Output: g(e/ 1)

Figure 5: Procedure for scoring agreement for each hy-
pothesis generated during the search algorithm of Fig. 4.
In the extended hypothesis e!, the index n + 1 indicates
the start of the new attachment.

e Extend a hypothesis with a new phrase pair
e Recombine hypotheses with identical states

We assume familiarity with these operations, which
are described in detail in (Och and Ney, 2004).

3.2 Agreement Model Inference

The class-based agreement model is implemented as
a feature function h,, in Eq. (1). Specifically, when
Extend generates a new hypothesis, we run the algo-
rithm shown in Fig. 5. The inputs are a translation
hypothesis e, an index n distinguishing the prefix
from the attachment, and a flag indicating if their
concatenation is a goal hypothesis.

The beam search maintains state for each deriva-
tion, the score of which is a linear combination of
the feature values. States in this program depend on
some amount of lexical history. With a trigram lan-
guage model, the state might be the last two words
of the translation prefix. Recombine can be applied
to any two hypotheses with equivalent states. As a



result, two hypotheses with different full prefixes—
and thus potentially different sequences of agreement
relations—can be recombined.

Incremental Greedy Decoding Decoding with
the CRF-based tagger model in this setting requires
some slight modifications to the Viterbi algorithm.
We make a greedy approximation that permits recom-
bination and works well in practice. The agreement
model state is the last tagged segment (s, t) of the
concatenated hypothesis. We tag a new attachment by
assuming a prior distribution 7 over the starting posi-
tion such that 7(¢) = 0 and —oo for all other classes,
a deterministic distribution in the tropical semiring.
This forces the Viterbi path to go through ¢. We only
tag the final boundary symbol for goal hypotheses.
To accelerate tagger decoding in our experiments,
we also used tagging dictionaries for frequently ob-
served word types. For each word type observed more
than 100 times in the training data, we restricted the
set of possible classes to the set of observed classes.

3.3 Translation Model Features

The agreement model score is one decoder feature
function. The output of the procedure in Fig. 5 is the
log probability of the class sequence of each attach-
ment. Summed over all attachments, this gives the
log probability of the whole class sequence.

We also add a new length penalty feature. To dis-
criminate between hypotheses that might have the
same number of raw tokens, but different underlying
segmentations, we add a penalty equal to the length
difference between the segmented and unsegmented
attachments |3}| — |el, ,|.

4 Related Work

We compare our class-based model to previous ap-
proaches to scoring syntactic relations in MT.

Unification-based Formalisms Agreement rules
impose syntactic and semantic constraints on the
structure of sentences. A principled way to model
these constraints is with a unification-based gram-
mar (UBG). Johnson (2003) presented algorithms for
learning and parsing with stochastic UBGs. However,
training data for these formalisms remains extremely
limited, and it is unclear how to learn such knowledge-
rich representations from unlabeled data. One partial
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solution is to manually extract unification rules from
phrase-structure trees. Williams and Koehn (2011)
annotated German trees, and extracted translation
rules from them. They then specified manual unifi-
cation rules, and applied a penalty according to the
number of unification failures in a hypothesis. In
contrast, our class-based model does not require any
manual rules and scores similar agreement phenom-
ena as probabilistic sequences.

Factored Translation Models Factored tra