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Preface from the General Chair

This year the annual conference organized by the North American chapter of the Association for
Computational Linguistics (NAACL) has undergone a name change to NAACL HLT. This change
reflects the integral part that all of Human Language Technology plays in the NAACL. It is symbolic
of the focus of the conference, which is represented by the collection of submitted and accepted
papers. They span our community’s emphasis on speech processing, information retrieval and language
processing techniques and applications.

The yearly NAACL conference is always the result of the volunteer contributions of a great many people
from the NAACL community who put in many hours to make the conference possible. Most of the sub-
committees of the organizing committee include researchers from the areas of language processing,
speech processing and information retrieval, again reflecting the diversity of expertise and interests in
the NAACL world.

Each year the general chair calls on a new group of members to serve as the organizing committee. They
learn, from scratch, with advice from the previous organizing committee, the tasks needed to make the
conference happen. I want to thank each of them for their hard work and good-natured spirit through
this process. I thank the program chairs, Tanja Schultz, Matthew Stone, and ChengXiang Zhai; the local
arrangement chairs, James Allen, Dan Gildea, and Lenhart Schubert; the tutorial and workshop chairs,
James Allan, Marti Hearst, and Gina Levow; the publications chairs, Yang Liu, Ronnie Smith, and Ellen
Voorhees; the sponsorship chair David Day, and exhibits chair, Tim Paek; the publicity chairs, Dilek
Hakkani-Tiir, Miles Osbourne, and Tomek Strzalkowski; the demos chairs, Bob Carpenter, Amanda
Stent, and Jason Williams; and the doctoral consortium chairs, Jackson Liscombe, Phil Michalak, and
the consortium faculty advisor, Julia Hirschberg.

In additional to the organizing committee, thanks are due to the senior program committee, all the
paper reviewers, and the students who volunteered during the conference. A special thank you to our
conference sponsors, whose contributions made this conference possible: the Eastman Kodak company,
Microsoft Research, Powerset, Thomson, the Association For Machine Translation in the Americas,
IBM, and Language Weaver.

Finally, I would also like to thank the NAACL executive committee and the Advisory Board for their
advice in preparation for the conference. I especially want to thank Priscilla Rasmussen, who served as
Treasurer for this year’s meeting, as well as in her normal role as Business Manager for the ACL office.
Her knowledge, willingness to make all the ahead-details for the conference go smoothly, and her skills
as NAACL corporate memory were invaluable to this conference and its organizers.

Candace L. Sidner
BAE Systems AIT
General Chair, NAACL HLT 2007
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Preface from the Program Co-Chairs

We welcome you to NAACL HLT 2007, Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for Computational Linguistics. NAACL HLT
2007 continues to attract high quality submissions across three broad topic areas — natural language
processing, information retrieval, and speech recognition. This year, 298 full papers were submitted and
72 accepted (24% acceptance rate); 150 late-breaking (short) papers were submitted and 55 accepted
(37% acceptance rate). The numbers of submissions for both full and short papers continue to grow
compared to those of last year.

Reviewing of the submissions was double blind and was handled using a two tiered reviewing system.
The PC Chairs selected 30 internationally recognized experts as senior program committee (SPC)
members. Each SPC member then selected a group of experts in specific areas to review both the
full and short submitted papers. The complete PC numbered around 340. Three (or two in the case of
short papers) reviewers and one SPC member were assigned per paper. The SPC oversaw the reviewing
process, helped resolve any disputes, and at the end produced, for each paper, an overview of the
reviewers’ comments along with a preliminary acceptance decision. The final decisions were made by
the program chairs based on online discussions among the SPC members.

Three award papers were chosen by the program chairs based on reviews, recommendations, the papers
themselves, and our sense that the research efforts epitomize the interactions and opportunities across
HLT that the conference aims to foster. The award for the best paper goes to: “Combining Outputs
from Multiple Machine Translation Systems” by Antti-Veikko Rosti, Bing Xiang, Spyros Matsoukas,
Richard Schwartz, Necip Fazil Ayan and Bonnie Dorr. The award for the best student paper goes to:
“Global, Joint Determination of Anaphoricity and Coreference Resolution using Integer Programming”,
by Pascal Denis and Jason Baldridge. The award for the best late-breaking news paper goes to
“Exploring Affect-Context Dependencies for Adaptive System Development” by Kate Forbes-Riley,
Mihai Rotaru, Diane Litman and Joel Tetreault. Congratulations to all the authors!

Reflecting its multi-disciplinary nature, the NAACL HLT 2007 Program consists of oral/poster
presentations of full and short papers and software demonstrations that cover a broad spectrum of topics
in natural language processing, information retrieval, and speech recognition. We are honored to have
two prominent keynote speakers, Franz Josef Och (Google Inc.) and Luis von Ahn (Carnegie Mellon
University) for what will undoubtedly be thought-provoking and enjoyable keynote talks. In addition,
the program also features a special panel on high impact future research directions for HLT (thanks to
Donna Harman).

We are indebted to all the authors who submitted papers to the conference and all those who helped us
put together the conference program, especially all the reviewers and SPC members who volunteered
their time and worked many long hours reviewing and, later, discussing the submissions. We are also
grateful to our General Conference Chair Candy Sidner and Chair of the NAACL Board Owen Rambow
for their advice and support, and to Rich Gerber for his help with using the START reviewing system.
The NAACL HLT conference has a PC chair for each of its three disciplines. Although work tasks were
shared between the three chairs equally, as natural language processing received by far the greatest
number of submissions, Matthew Stone ended up having to oversee many more papers and recruit
many more SPC members than the other two chairs. He has also taken the primary responsibility of
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managing the review process and coordinating our effort. Therefore, the two other chairs of NAACL
HLT 2007 (Tanja Schultz & ChengXiang Zhai), wish to thank Matthew for all of his additional work in
pulling this conference together.

Once again, we welcome you to NAACL HLT 2007 and hope that you enjoy the conference!

Tanja Schultz, Carnegie Mellon University
Matthew Stone, Rutgers University
ChengXiang Zhai, University of Illinois at Urbana-Champaign
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4:10-4:35 A Case For Shorter Queries, and Helping Users Create Them
Giridhar Kumaran and James Allan

4:35-4:50 Situated Models of Meaning for Sports Video Retrieval
Michael Fleischman and Deb Roy

4:50-5:05 Speech Summarization Without Lexical Features for Mandarin Broadcast News
Jian Zhang and Pascale Fung

5:30-8:00 Posters and Demos

Tuesday, April 24, 2007

9:00-10:40 Plenary Session

9:00-9:05 Award Presentations

9:05-9:30 Combining Outputs from Multiple Machine Translation Systems
Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang, Spyros Matsoukas, Richard Schwartz
and Bonnie Dorr

9:30-9:55 Joint Determination of Anaphoricity and Coreference Resolution using Integer Program-
ming
Pascal Denis and Jason Baldridge

9:55-10:10 Exploring Affect-Context Dependencies for Adaptive System Development
Kate Forbes-Riley, Mihai Rotaru, Diane Litman and Joel Tetreault

10:10-10:25  Demonstration of PLOW: A Dialogue System for One-Shot Task Learning
James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung,
Mary Swift and William Taysom

10:25-10:40  Spoken Dialogue Systems for Language Learning
Stephanie Seneff, Chao Wang and Chih-yu Chao

10:40-11:10  Break
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11:10-12:25  Paper sessions
Text Classification

11:10-11:35  Automating Creation of Hierarchical Faceted Metadata Structures
Emilia Stoica, Marti Hearst and Megan Richardson

11:35-12:00  Cross-Instance Tuning of Unsupervised Document Clustering Algorithms
Damianos Karakos, Jason Eisner, Sanjeev Khudanpur and Carey Priebe

12:00-12:25  Using “Annotator Rationales” to Improve Machine Learning for Text Categorization
Omar Zaidan, Jason Eisner and Christine Piatko

Conversational Systems

11:10-11:35  Combining Reinformation Learning with Information-State Update Rules
Peter Heeman

11:35-12:00  Estimating the Reliability of MDP Policies: a Confidence Interval Approach
Joel Tetreault, Dan Bohus and Diane Litman

12:00-12:25  An Exploration of Eye Gaze in Spoken Language Processing for Multimodal Conversa-
tional Interfaces
Shaolin Qu and Joyce Chai

Extracting Sentiment

11:10-11:35  Extracting Semantic Orientations of Phrases from Dictionary
Hiroya Takamura, Takashi Inui and Manabu Okumura

11:35-12:00  Multiple Aspect Ranking Using the Good Grief Algorithm
Benjamin Snyder and Regina Barzilay

12:00-12:25  Extracting Appraisal Expressions
Kenneth Bloom, Navendu Garg and Shlomo Argamon

12:25-2:00 Lunch
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2:00-4:00

2:00-2:15

2:15-2:30

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

3:30-3:45

3:45-4:00

2:00-2:15

2:15-2:30

2:30-2:45

2:45-3:00

Short Paper Sessions

Translation and Tagging

Arabic Diacritization through Full Morphological Tagging
Nizar Habash and Owen Rambow

Tagging Icelandic Text Using a Linguistic and a Statistical Tagger
Hrafn Loftsson

Language Modeling for Determiner Selection
Jenine Turner and Eugene Charniak

Joint Morphological-Lexical Language Modeling for Machine Translation
Ruhi Sarikaya and Yonggang Deng

Discriminative Alignment Training without Annotated Data for Machine Translation
Patrik Lambert, Rafael E. Banchs and Josep M. Crego

Generalized Graphical Abstractions for Statistical Machine Translation
Karim Filali and Jeff Bilmes

Kernel Regression Based Machine Translation
Zhuoran Wang, John Shawe-Taylor and Sandor Szedmak

Are Very Large N-Best Lists Useful for SMT?
Sasa Hasan, Richard Zens and Hermann Ney

Language Understanding

A Three-Step Deterministic Parser for Chinese Dependency Parsing
Kun Yu, Sadao Kurohashi and Hao Liu

RH: A Retro-Hybrid Parser
Paula Newman

Semi-Supervised Learning for Semantic Parsing Using Support Vector Machines
Rohit Kate and Raymond Mooney

Subtree Mining for Relation Extraction from Wikipedia
Dat P.T. Nguyen, Yutaka Matsuo and Mitsuru Ishizuka
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3:15-3:30

3:30-3:45
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2:00-2:15
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2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

3:30-3:45

3:45-4:00

4:00-4:30

Simultaneous Identification of Biomedical Named-Entity and Functional Relation Using
Statistical Parsing Techniques
Zhongmin Shi, Anoop Sarkar and Fred Popowich

Chinese Named Entity Recognition with Cascaded Hybrid Model
Xiaofeng Yu

Entity Extraction is a Boring Solved Problem—Or is it?
Marc Vilain, Jennifer Su and Suzi Lubar

A Semi-Automatic Evaluation Scheme: Automated Nuggetization for Manual Annotation
Liang Zhou, Namhee Kwon and Eduard Hovy

Speech and IR

Joint versus Independent Phonological Feature Models Within CRF Phone Recognition
Ilana Bromberg, Jeremy Morris and Eric Fosler-Lussier

On Using Articulatory Features for Discriminative Speaker Adaptation
Florian Metze

Reversible Sound-to-Letter/Letter-to-Sound Modeling Based on Syllable Structure
Stephanie Seneff

iROVER: Improving System Combination with Classification
Dustin Hillard, Bjoern Hoffmeister, Mari Ostendorf, Ralf Schlueter and Hermann Ney

Advances in the CMU/Interact Arabic GALE Transcription System
Mohamed Noamany, Thomas Schaaf and Tanja Schultz

Are Some Speech Recognition Errors Easier to Detect than Others?
Yongmei Shi and Lina Zhou

Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue System
Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye and Steve Young

Document Similarity Measures to Distinguish Native vs. Non-Native Essay Writers
Olga Gurevich and Paul Deane

Break

XX Vil



Tuesday, April 24, 2007 (continued)

4:30-5:45

4:30-4:55

4:55-5:20

5:20-5:45

4:30-4:55

4:55-5:20

5:20-5:45

4:30-4:55

4:55-5:20

5:20-5:45

7:00

Paper Sessions
Information Extraction 2

Whose Idea Was This, and Why Does it Matter? Attributing Scientific Work to Citations
Advaith Siddharthan and Simone Teufel

Combining Probability-Based Rankers for Action-Item Detection
Paul N. Bennett and Jaime G. Carbonell

Multi-Document Relationship Fusion via Constraints on Probabilistic Databases
Gideon Mann

Words and Similarity
An Integrated Approach to Measuring Semantic Similarity between Words Using Informa-
tion Available on the Web

Danushka Bollegala, Yutaka Matsuo and Mitsuru Ishizuka

An Information Retrieval Approach to Sense Ranking
Mirella Lapata and Frank Keller

Near-Synonym Choice in an Intelligent Thesaurus
Diana Inkpen

Letters and Sounds

A Log-Linear Block Transliteration Model based on Bi-Stream HMMs
Bing Zhao, Nguyen Bach, lan Lane and Stephan Vogel

Applying Many-to-Many Alignments and Hidden Markov Models to Letter-to-Phoneme
Conversion
Sittichai Jiampojamarn, Grzegorz Kondrak and Tarek Sherif

Analysis of Morph-Based Speech Recognition and the Modeling of Out-of-Vocabulary
Words Across Languages

Mathias Creutz, Teemu Hirsimki, Mikko Kurimo, Antti Puurula, Janne Pylkknen, Vesa
Siivola, Matti Varjokallio, Ebru Arisoy, Murat Saraclar and Andreas Stolcke

Banquet
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9:00-10:00

10:00-10:30

10:30-11:15

11:15-12:00

12:00-1:45

1:45-3:25

1:45-2:10

2:10-2:35

2:35-3:00

3:00-3:25

1:45-2:10

2:10-2:35

2:35-3:00

3:00-3:25

Invited talk by Luis von Ahn, Carnegie Mellon University

Break

Panel: MINDS: High Impact Future Research Directions for HLT
NAACL Business Meeting

Lunch

Paper sessions

Parsing

Tree Revision Learning for Dependency Parsing
Giuseppe Attardi and Massimiliano Ciaramita

Incremental Non-Projective Dependency Parsing
Joakim Nivre

Improved Inference for Unlexicalized Parsing
Slav Petrov and Dan Klein

Approximate Factoring for A* Search
Aria Haghighi, John DeNero and Dan Klein

Semantics and Discourse

A Cascaded Machine Learning Approach to Interpreting Temporal Expressions
David Ahn, Joris van Rantwijk and Maarten de Rijke

Building and Refining Rhetorical-Semantic Relation Models
Sasha Blair-Goldensohn, Kathleen McKeown and Owen Rambow

A Unified Local and Global Model for Discourse Coherence
Micha Elsner, Joseph Austerweil and Eugene Charniak

Randomized Decoding for Selection-and-Ordering Problems
Pawan Deshpande, Regina Barzilay and David Karger
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4:45-5:10
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Applications

Multilingual Structural Projection across Interlinear Text
Fei Xia and William Lewis

Combining Lexical and Grammatical Features to Improve Readability Measures for First
and Second Language Texts

Michael Heilman, Kevyn Collins-Thompson, Jamie Callan and Maxine Eskenazi

Automatic Assessment of Student Translations for Foreign Language Tutoring
Chao Wang and Stephanie Seneff

Automatic and Human Scoring of Word Definition Responses
Kevyn Collins-Thompson and Jamie Callan

Break
Paper sessions
Machnine Translation 2

A Comparison of Pivot Methods for Phrase-Based Statistical Machine Translation
Masao Utiyama and Hitoshi Isahara

Efficient Phrase-Table Representation for Machine Translation with Applications to On-
line MT and Speech Translation

Richard Zens and Hermann Ney

An Efficient Two-Pass Approach to Synchronous-CFG Driven Statistical MT
Ashish Venugopal, Andreas Zollmann and Vogel Stephan

Statistical Phrase-Based Post-Editing
Michel Simard, Cyril Goutte and Pierre Isabelle
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Exploiting acoustic and syntactic features for prosody labeling in
a maximum entropy framework

Vivek Rangarajan, Shrikanth Narayanan
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Abstract

In this paper we describe an automatic
prosody labeling framework that exploits
both language and speech information.
We model the syntactic-prosodic informa-
tion with a maximum entropy model that
achieves an accuracy of 85.2% and 91.5%
for pitch accent and boundary tone la-
beling on the Boston University Radio
News corpus. We model the acoustic-
prosodic stream with two different mod-
els, one a maximum entropy model and
the other a traditional HMM. We finally
couple the syntactic-prosodic and acoustic-
prosodic components to achieve signifi-
cantly improved pitch accent and bound-
ary tone classification accuracies of 86.0%
and 93.1% respectively. Similar experimen-
tal results are also reported on Boston Di-
rections corpus.

1 Introduction

Prosody refers to intonation, rhythm and lexical
stress patterns of spoken language that convey lin-
guistic and paralinguistic information such as em-
phasis, intent, attitude and emotion of a speaker.
Prosodic information associated with a unit of
speech, say, syllable, word, phrase or clause, influ-
ence all the segments of the unit in an utterance. In
this sense they are also referred to as suprasegmen-
tals (Lehiste, 1970). Prosody in general is highly
dependent on individual speaker style, gender, di-
alect and other phonological factors. The difficulty in
reliably characterizing suprasegmental information
present in speech has resulted in symbolic and para-
meteric prosody labeling standards like ToBI (Tones
and Break Indices) (Silverman et al., 1992) and Tilt
model (Taylor, 1998) respectively.

Prosody in spoken language can be characterized
through acoustic features or lexical features or both.
Acoustic correlates of duration, intensity and pitch,
like syllable nuclei duration, short time energy and
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fundamental frequency (f0) are some acoustic fea-
tures that are perceived to confer prosodic promi-
nence or stress in English. Lexical features like parts-
of-speech, syllable nuclei identity, syllable stress of
neighboring words have also demonstrated high de-
gree of discriminatory evidence in prosody detection
tasks.

The interplay between acoustic and lexical fea-
tures in characterizing prosodic events has been suc-
cessfully exploited in text-to-speech synthesis (Bu-
lyko and Ostendorf, 2001; Ma et al., 2003), speech
recognition (Hasegawa-Johnson et al., 2005) and
speech understanding (Wightman and Ostendorf,
1994). Text-to-speech synthesis relies on lexical fea-
tures derived predominantly from the input text to
synthesize natural sounding speech with appropri-
ate prosody. In contrast, output of a typical auto-
matic speech recognition (ASR) system is noisy and
hence, the acoustic features are more useful in pre-
dicting prosody than the hypothesized lexical tran-
script which may be erroneous. Speech understand-
ing systems model both the lexical and acoustic fea-
tures at the output of an ASR to improve natural
language understanding. Another source of renewed
interest has come from spoken language translation
(NGth et al., 2000; Agiiero et al., 2006). A pre-
requisite for all these applications is accurate prosody
detection, the topic of the present work.

In this paper, we describe our framework for build-
ing an automatic prosody labeler for English. We
report results on the Boston University (BU) Ra-
dio Speech Corpus (Ostendorf et al., 1995) and
Boston Directions Corpus (BDC) (Hirschberg and
Nakatani, 1996), two publicly available speech cor-
pora with manual ToBI annotations intended for ex-
periments in automatic prosody labeling. We con-
dition prosody not only on word strings and their
parts-of-speech but also on richer syntactic informa-
tion encapsulated in the form of Supertags (Banga-
lore and Joshi, 1999). We propose a maximum en-
tropy modeling framework for the syntactic features.
We model the acoustic-prosodic stream with two dif-
ferent models, a maximum entropy model and a more
traditional hidden markov model (HMM). In an au-
tomatic prosody labeling task, one is essentially try-
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ing to predict the correct prosody label sequence for
a given utterance and a maximum entropy model of-
fers an elegant solution to this learning problem. The
framework is also robust in the selection of discrim-
inative features for the classification problem. So,
given a word sequence W = {wy, -+ ,w,} and a set
of acoustic-prosodic features A = {o01,--- ,or}, the

best prosodic label sequence L* = {ly,la, -+ ,1,} is
obtained as follows,
L* = argmax P(L|A,W) (1)
L
= argmax P(L|W).P(A|L,W) (2)
L

R~ arginax P(L|®(W)).P(A|IL,IWV) (3)

where ®(W) is the syntactic feature encoding of the
word sequence W. The first term in Equation (3)
corresponds to the probability obtained through our
maximum entropy syntactic model. The second term
in Equation (3), computed by an HMM corresponds
to the probability of the acoustic data stream which
is assumed to be dependent only on the prosodic la-
bel sequence.

The paper is organized as follows. In section 2
we describe related work in automatic prosody la-
beling followed by a description of the data used in
our experiments in section 3. We present prosody
prediction results from off-the-shelf synthesizers in
section 4. Section 5 details our proposed maximum
entropy syntactic-prosodic model for prosody label-
ing. In section 6, we describe our acoustic-prosodic
model and discuss our results in section 7. We finally
conclude in section 8 with directions for future work.

2 Related work

Automatic prosody labeling has been an active re-
search topic for over a decade. Wightman and Os-
tendorf (Wightman and Ostendorf, 1994) developed
a decision-tree algorithm for labeling prosodic pat-
terns. The algorithm detected phrasal prominence
and boundary tones at the syllable level. Bulyko
and Ostendorf (Bulyko and Ostendorf, 2001) used
a prosody prediction module to synthesize natural
speech with appropriate prosody. Verbmobil (N6th
et al., 2000) incorporated prosodic labeling into a
translation framework for improved linguistic analy-
sis and speech understanding.

Prosody has typically been represented either sym-
bolically, e.g., ToBI (Silverman et al., 1992) or
parametrically, e.g., Tilt Intonation Model (Tay-
lor, 1998). Parametric approaches either restrict
the variants of prosody by definition or automati-
cally learn prosodic patterns from data (Agiiero et
al., 2006). The BU corpus is a widely used cor-
pus with symbolic representation of prosody. The
hand-labeled ToBI annotations make this an attrac-
tive corpus to perform prosody labeling experiments.
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The main drawback of this corpus is that it com-
prises only read speech. Prosody labeling on sponta-
neous speech corpora like Boston Directions corpus
(BDC), Switchboard (SWBD) has garnered atten-
tion in (Hirschberg and Nakatani, 1996; Gregory and
Altun, 2004).

Automatic prosody labeling has been achieved
through various machine learning techniques, such
as decision trees (Hirschberg, 1993; Wightman and
Ostendorf, 1994; Ma et al., 2003), rule-based sys-
tems (Shimei and McKeown, 1999), bagging and
boosting on CART (Sun, 2002), hidden markov
models  (Conkie et al., 1999), neural networks
(Hasegawa-Johnson et al., 2005),maximum-entropy
models (Brenier et al., 2005) and conditional ran-
dom fields (Gregory and Altun, 2004).

Prosody labeling of the BU corpus has been re-
ported in many studies (Hirschberg, 1993; Hasegawa-
Johnson et al.,, 2005; Ananthakrishnan and
Narayanan, 2005). Hirschberg (Hirschberg, 1993)
used a decision-tree based system that achieved
82.4% speaker dependent accent labeling accuracy
at the word level on the BU corpus using lexical fea-
tures. (Ross and Ostendorf, 1996) also used an ap-
proach similar to (Wightman and Ostendorf, 1994)
to predict prosody for a TTS system from lexical fea-
tures. Pitch accent accuracy at the word-level was
reported to be 82.5% and syllable-level accent accu-
racy was 80.2%. (Hasegawa-Johnson et al., 2005)
proposed a neural network based syntactic-prosodic
model and a gaussian mixture model based acoustic-
prosodic model to predict accent and boundary tones
on the BU corpus that achieved 84.2% accuracy in
accent prediction and 93.0% accuracy in intonational
boundary prediction. With syntactic information
alone they achieved 82.7% and 90.1% for accent and
boundary prediction, respectively. (Ananthakrish-
nan and Narayanan, 2005) modeled the acoustic-
prosodic information using a coupled hidden markov
model that modeled the asynchrony between the
acoustic streams. The pitch accent and boundary
tone detection accuracy at the syllable level were
75% and 88% respectively. Our proposed maximum
entropy syntactic model outperforms previous work.
On the BU corpus, with syntactic information alone
we achieve pitch accent and boundary tone accuracy
of 85.2% and 91.5% on the same training and test
sets used in (Chen et al., 2004; Hasegawa-Johnson
et al., 2005). Further, the coupled model with both
acoustic and syntactic information results in accura-
cies of 86.0% and 93.1% respectively. On the BDC
corpus, we achieve pitch accent and boundary tone
accuracies of 79.8% and 90.3%.

3 Data

The BU corpus consists of broadcast news stories in-
cluding original radio broadcasts and laboratory sim-



BU BDC
Corpus statistics f2b fla mlb m2b | hl h2 h3 h4
# Utterances 165 69 72 51 10 9 9 9
# words (w/o punc) 12608 3681 5058 3608 | 2234 4127 1456 3008
# pitch accents 6874 2099 2706 2016 | 1006 1573 678 1333
# boundary tones (w IP) 3916 1059 1282 1023 | 498 727 361 333
# boundary tones (w/o IP) | 2793 684 771 652 | 308 428 245 216

Table 1: BU and BDC dataset used in experiments

ulations recorded from seven FM radio announcers.
The corpus is annotated with orthographic transcrip-
tion, automatically generated and hand-corrected
part-of-speech tags and automatic phone alignments.
A subset of the corpus is also hand annotated with
ToBI labels. In particular, the experiments in this
paper are carried out on 4 speakers similar to (Chen
et al., 2004), 2 male and 2 female referred to here-
after as m1b, m2b, fla and f2b. The BDC corpus is
made up of elicited monologues produced by subjects
who were instructed to perform a series of direction-
giving tasks. Both spontaneous and read versions of
the speech are available for four speakers h1l, h2, h3
and h4 with hand-annotated ToBI labels and auto-
matic phone alignments, similar to the BU corpus.
Table 1 shows some of the statistics of the speakers
in the BU and BDC corpora.

In Table 1, the pitch accent and boundary tone
statistics are obtained by decomposing the ToBI la-
bels into binary classes using the mapping shown in
Table 2.

BU Labels Intermediate Mapping Coarse Mapping
H*,IH*
L* Single Accent
* R X*? accent
H+!H* L+H* L+'H* Bitonal Accent
L*4+1H,L*+H
L-L%,'H-L% H-L%
H-H% Final Boundary tone
L-H%
%7 X%?,%H btone
L-,H-,'H- Intermediate Phrase (IP) boundary
-X7,-?7
<,>.no label none none

Table 2: ToBI label mapping used in experiments

In all our prosody labeling experiments we adopt
a leave-one-out speaker validation similar to the
method in (Hasegawa-Johnson et al., 2005) for the
four speakers with data from one speaker for testing
and from the other three for training. For the BU
corpus, f2b speaker was always used in the training
set since it contains the most data. In addition to
performing experiments on all the utterances in BU
corpus, we also perform identical experiments on the
train and test sets reported in (Chen et al., 2004)

which is referred to as Hasegawa-Johnson et al. set.

4 Baseline Experiments

We present three baseline experiments. One is sim-
ply based on chance where the majority class label is
predicted. The second is a baseline only for pitch ac-
cents derived from the lexical stress obtained through
look-up from a pronunciation lexicon labeled with
stress. Finally, the third and more concrete base-
line is obtained through prosody detection in current
speech synthesis systems.

4.1 Prosody labels derived from lexical
stress

Pitch accents are usually carried by the stressed syl-
lable in a particular word. Lexicons with phonetic
transcription and lexical stress are available in many
languages. Hence, one can use these lexical stress
markers within the syllables and evaluate the corre-
lation with pitch accents. Eventhough the lexicon
has a closed vocabulary, letter-to-sound rules can be
derived from it for unseen words. For each word car-
rying a pitch accent, we find the particular syllable
where the pitch accent occurs from the manual anno-
tation. For the same syllable, we predict pitch accent
based on the presence or absence of a lexical stress
marker in the phonetic transcription. The results are
presented in Table 3.

4.2 Prosody labeling with Festival and
AT&T Natural Voices® Speech
Synthesizer

Festival (Black et al., 1998) and AT&T Natural
Voices'™ (NV) speech synthesizer (att, ) are two
publicly available speech synthesizers that have a
prosody prediction module available. We performed
automatic prosody labeling using the two synthesiz-
ers to get a baseline.

4.2.1 AT&T Natural Voices® Speech
Synthesizer
The AT&T NV® speech synthesizer is a half
phone speech synthesizer.  The toolkit accepts
an input text utterance and predicts appropriate
ToBI pitch accent and boundary tones for each of



Pitch accent Boundary tone
Corpus Speaker Set Prediction Module Chance Accuracy | Chance Accuracy
Lexical stress 54.33 72.64 - -
Entire Set AT&T Natural Voices | 54.33 81.51 81.14 89.10
Festival 54.33 69.55 81.14 89.54
Lexical stress 56.53 74.10 - -
BU Hasegawa-Johnson et al. set | AT&T Natural Voices | 56.53 81.73 82.88 89.67
Festival 56.53 68.65 82.88 90.21
Lexical stress 57.60 67.42 - -
BDC Entire Set AT&T Natural Voices | 57.60 68.49 88.90 84.90
Festival 57.60 64.94 88.90 85.17

Table 3: Classification results of pitch accents and boundary tones (in %) using Festival and AT&T N v® synthesizer

the selected units (in this case, a pair of phones)
from the database. We reverse mapped the se-
lected half phone units to words, thus obtaining
the ToBI labels for each word in the input utter-
ance. The toolkit uses a rule-based procedure to
predict the ToBI labels from lexical information.
The pitch accent labels predicted by the toolkit are
Laccent € {H*,Lx,none} and the boundary tones
are Lptone € {L-L%, H-H%, L-H%, none}.

4.2.2 Festival Speech Synthesizer

Festival (Black et al., 1998) is an open-source unit
selection speech synthesizer. The toolkit includes
a CART-based prediction system that can predict
ToBI pitch accents and boundary tones for the input
text utterance. The pitch accent labels predicted by
the toolkit are Laccent € {H#,L + Hx, !Hx, none}
and the boundary tones are
Lyvtone € {L-L%, H-H%,L-H%, none}. The
prosody labeling results obtained through both the
speech synthesis engines are presented in Table
3. The chance column in Table 3 is obtained by
predicting the most frequent label in the data set.

In the next sections, we describe our proposed
maximum entropy based syntactic model and HMM
based acoustic-prosodic model for automatic prosody
labeling.

5 Syntactic-prosodic Model

We propose a maximum entropy approach to model
the words, syntactic information and the prosodic
labels as a sequence. We model the prediction prob-
lem as a classification task as follows: given a se-
quence of words w; in a sentence W = {wy,--- ,w,}
and a prosodic label vocabulary (I; € £), we need
to predict the best prosodic label sequence L* =
{l1,13,--- ,l,}. We approximate the conditional
probability to be within a bounded n-gram context.
Thus,

L* = argmax P(L|W,T,S) (4)
L

n
~ arginaXHp(lilwffﬁthf'ZaSﬁflzi) (5)
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where W = {wy,--- ,w,} is the word sequence and
T = {t1,--+ ,tn}, S = {s1,--+,s,} are the corre-
sponding part-of-speech and additional syntactic in-
formation sequences. The variable k controls the
context.

The BU corpus is automatically labeled (and
hand-corrected) with part-of-speech (POS) tags.
The POS inventory is the same as the Penn treebank
which includes 47 POS tags: 22 open class categories,
14 closed class categories and 11 punctuation labels.
We also automatically tagged the utterances using
the AT&T POS tagger. The POS tags were mapped
to function and content word categories ! which was
added as a discrete feature. In addition to the POS
tags, we also annotate the utterance with Supertags
(Bangalore and Joshi, 1999). Supertags encapsulate
predicate-argument information in a local structure.
They are composed with each other using substi-
tution and adjunction operations of Tree-Adjoining
Grammars (TAGs) to derive a dependency analysis
of an utterance and its predicate-argument structure.
Even though there is a potential to exploit the de-
pendency structure between supertags and prosody
labels as demonstrated in (Hirschberg and Rambow,
2001), for this paper we use only the supertag labels.

Finally, we generate one feature vector (®) for
each word in the data set (with local contextual fea-
tures). The best prosodic label sequence is then,

L* = argmax | | P(l;|® 6
gn 1:[ (L] @) (6)

To estimate the conditional distribution P(l;|®) we
use the general technique of choosing the maximum
entropy (maxent) distribution that estimates the av-
erage of each feature over the training data (Berger
et al., 1996). This can be written in terms of Gibbs
distribution parameterized with weights A, where V

is the size of the prosodic label set. Hence,
PYIR.
e i
= o 7)
Vi, @ (
=1 €7

P(li\‘I’) =

Munction and content word features were obtained
through a look-up table based on POS



k=3
Corpus Speaker Set Syntactic features accent btone
correct POS tags 84.75 91.39
Entire Set AT&T POS + supertags 84.59 91.34
BU Joint Model (w AT&T POS + supertags) | 84.60 91.36
correct POS tags 85.22 91.33
Hasegawa-Johnson et al. set AT&T POS + supertags 84.95 91.21
Joint Model (w AT&T POS + supertags) | 84.78  91.54
BDC Entire Set AT&T POS + supertags 79.81 90.28
Joint Model (w AT&T POS + supertags) | 79.57 89.76

Table 4: Classification results (%) of pitch accents and boundary tones for different syntactic representation (k = 3)

We use the machine learning toolkit LLAMA
(Haffner, 2006) to estimate the conditional distribu-
tion using maxent. LLAMA encodes multiclass max-
ent as binary maxent to increase the training speed
and to scale the method to large data sets. Each of
the V classes in the label set £ is encoded as a bit
vector such that, in the vector for class 4, the i*" bit
is one and all other bits are zero. Finally, V one-
versus-other binary classifiers are used as follows.

PRV
Pyle)=1-PHI®)= x5 5= ©
where )y is the parameter vector for the anti-label 3.
To compute P(l;|®), we use the class independence
assumption and require that y; = 1 and for all j #
i, Y; = 0.

P(l;|®) = P(y:|®) [ | P(v;|®) (9)
i

5.1 Joint Modeling of Accents and
Boundary Tones

Prosodic prominence and phrasing can also be
viewed as joint events occurring simultaneously. Pre-
vious work by (Wightman and Ostendorf, 1994) sug-
gests that a joint labeling approach may be more
beneficial in prosody labeling. In this scenario,
we treat each word to have one of the four labels
l; ¢ L = {accent-btone, accent-none, none-
btone, none-none}. We trained the classifier on
the joint labels and then computed the error rates for
individual classes. The results of prosody prediction
using the set of syntactic-prosodic features for k = 3
is shown in Table 4. The joint modeling approach
provides a marginal improvement in the boundary
tone prediction but is slightly worse for pitch accent
prediction.

5.2 Supertagger performance on
Intermediate Phrase boundaries

Perceptual experiments have indicated that inter-
annotator agreement for ToBI intermediate phrase
boundaries is very low compared to full-intonational

boundaries (Syrdal and McGory, 2000). Interme-
diate phrasing is important in TTS applications to
synthesize appropriate short pauses to make the ut-
terance sound natural. The significance of syntactic
features in the boundary tone prediction prompted
us to examine the effect of predicting intermediate
phrase boundaries in isolation. It is intuitive to ex-
pect supertags to perform well in this task as they
essentially form a local dependency analysis on an
utterance and provide an encoding of the syntactic
phrasal information. We performed this task as a
three way classification where I; ¢ £L = {btone, ip,
none}. The results of the classifier on IPs is shown
in Table 5.

Model Syntactic features | IP accuracy
correct POS tags 83.25
k=2 (bigram context) | AT&T POS tags 83.32
supertags 83.37
correct POS tags 83.30
k=3 (trigram context) | AT&T POS tags 83.46
supertags 83.74

Table 5: Accuracy (in %) obtained by leave-one out
speaker validation using IPs as a separate class on
entire speaker set

6 Acoustic-prosodic model

We propose two approaches to modeling the
acoustic-prosodic features for prosody prediction.
First, we propose a maximum entropy framework
similar to the syntactic model where we quantize
the acoustic features and model them as discrete
sequences. Second, we use a more traditional ap-
proach where we train continuous observation den-
sity HMMSs to represent pitch accents and bound-
ary tones. We first describe the features used in the
acoustic modeling followed by a more detailed de-
scription of the acoustic-prosodic model.

6.1 Acoustic-prosodic features

The BU corpus contains the corresponding acoustic-
prosodic feature file for each utterance. The f0, RMS
energy (e) of the utterance along with features for



Pitch accent Boundary tone

Corpus Speaker Set Model Acoustics  Acoustics+syntax | Acoustics Acoustics+syntax
Entire Set Maxent acoustic model 80.09 84.53 84.10 91.56
HMM acoustic model 70.58 85.13 71.28 92.91
BU Hasegawa-Johnson et al. set | Maxent acoustic model 80.12 84.84 82.70 91.76
HMM acoustic model 71.42 86.01 73.43 93.09
BDC Entire Set Maxent acoustic model 74.51 78.64 83.53 90.49

Table 6: Classification results of pitch accents and boundary tones (in %) with acoustics only and acoustics+syntax

using both our models

distinction between voiced /unvoiced segment, cross-
correlation values at estimated fO value and ratio of
first two cross correlation values are computed over
10 msec frame intervals. In our experiments, we use
these values rather than computing them explicitly
which is straightforward with most audio toolkits.
Both the energy and the fO levels were normalized
with speaker specific means and variances. Delta
and acceleration coefficients were also computed for
each frame. The final feature vector is 6-dimensional
comprising of f0, Af0, A%f0, e, Ae, A2e per frame.

6.2 Maximum Entropy acoustic-prosodic
model

We propose a maximum entropy modeling frame-
work to model the continuous acoustic-prosodic ob-
servation sequence as a discrete sequence through
the means of quantization. The quantized acoustic
stream is then used as a feature vector and the condi-
tional probabilities are approximated by an n-gram
model. This is equivalent to reducing the vocabu-
lary of the acoustic-prosodic features and hence of-
fers better estimates of the conditional probabilities.
Such an n-gram model of quantized continuous fea-
tures is similar to representing the set of features
with a linear fit as done in the tilt intonational model
(Taylor, 1998).

The quantized acoustic-prosodic feature stream is
modeled with a maxent acoustic-prosodic model sim-
ilar to the one described in section 5. Finally, we ap-
pend the syntactic and acoustic features to model the
combined stream with the maxent acoustic-syntactic
model, where the objective criterion for maximiza-
tion is Equation (1). The pitch accent and bound-
ary tone prediction accuracies for quantization per-
formed by considering only the first decimal place
is reported in Table 6. As expected, we found the
classification accuracy to drop with increasing num-
ber of bins used in the quantization due to the small
amount of training data.

6.3 HMM acoustic-prosodic model

We also investigated the traditional HMM approach
to model the high wvariability exhibited by the
acoustic-prosodic features. First, we trained sepa-

rate context independent single state Gaussian mix-
ture density HMMs for pitch accents and boundary
tones in a generative framework. The label sequence
was decoded using the viterbi algorithm. Next, we
trained HMMs with 3 state left-to-right topology
with uniform segmentation. The segmentations need
to be uniform due to lack of an acoustic-prosodic
model trained on the features pertinent to our task
to obtain forced segmentation.

The final label sequence using the maximum en-
tropy syntactic-prosodic model and the HMM based
acoustic-prosodic model was obtained by combin-
ing the syntactic and acoustic probabilities shown in
Equation (3). The syntactic-prosodic maxent model
outputs a posterior probability for each class per
word. We formed a lattice out of this structure and
composed it with the lattice generated by the HMM
acoustic-prosodic model. The best path was chosen
from the composed lattice through a Viterbi search.
The acoustic-prosodic probability P(A|L, W) was
raised by a power of v to adjust the weighting be-
tween the acoustic and syntactic model. The value of
~ was chosen as 0.008 and 0.015 for pitch accent and
boundary tone respectively, by tuning on the train-
ing set. The results of the acoustic-prosodic model
and the coupled model are shown in Table 6.

7 Discussion

The baseline experiment with lexical stress obtained
from a pronunciation lexicon for prediction of pitch
accent yields substantially higher accuracy than
chance. This could be particularly useful in resource-
limited languages where prosody labels are usually
not available but one has access to a reasonable lex-
icon with lexical stress markers. Off-the-shelf speech
synthesizers like Festival and AT&T speech synthe-
sizer perform reasonably well in pitch accent and
boundary tone prediction. AT&T speech synthesizer
performs better than Festival in pitch accent predic-
tion and the latter performs better in boundary tone
prediction. This can be attributed to better rules
in the AT&T synthesizer for pitch accent prediction.
Boundary tones are usually highly correlated with
punctuation and Festival seems to capture this well.
However, both these synthesizers generate a high de-



gree of false alarms.

Our syntactic-prosodic maximum entropy model
proposed in section 5 outperforms previously re-
ported results on pitch accent and boundary tone
classification. Much of the gain comes from the ro-
bustness of the maximum entropy modeling in cap-
turing the uncertainty in the classification task. Con-
sidering the inter-annotator agreement for ToBI la-
bels is only about 81% for pitch accents and 93% for
boundary tones, the maximum entropy framework is
able to capture the uncertainty present in manual an-
notation. The supertag feature offers additional dis-
criminative information over the part-of-speech tags
(also as shown by (Hirschberg and Rambow, 2001).

The maximum entropy acoustic-prosodic model
discussed in section 6.2 performs reasonably well in
isolation. This is a simple method and the quantiza-
tion resolution can be adjusted based on the amount
of data available for training. However, the model
does not perform as well when combined with the
syntactic features. We conjecture that the gener-
alization provided by the acoustic HMM model is
complementary to that provided by the maximum
entropy model, resulting in better accuracy when
combined together as compared to that of a maxent-
based acoustic and syntactic model.

The weighted maximum entropy syntactic-
prosodic model and HMM acoustic-prosodic model
performs the best in pitch accent and boundary tone
classification. The classification accuracies are as
good as the inter-annotator agreement for the ToBI
labels. Our HMM acoustic-prosodic model is a gen-
erative model and does not assume the knowledge
of word boundaries in predicting the prosodic labels
as in most approaches (Hirschberg, 1993; Wightman
and Ostendorf, 1994; Hasegawa-Johnson et al.,
2005). This makes it possible to have true parallel
prosody prediction during speech recognition. The
weighted approach also offers flexibility in prosody
labeling for either speech synthesis or speech recog-
nition. While the syntactic-prosodic model would
be more discriminative for speech synthesis, the
acoustic-prosodic model is more appropriate for
speech recognition.

8 Conclusions and Future Work

In this paper, we described a maximum entropy
modeling framework for automatic prosody label-
ing. We presented two schemes for prosody label-
ing that utilize the acoustic and syntactic informa-
tion from the input utterance, a maximum entropy
model that models the acoustic-syntactic informa-
tion as a sequence and the other that combines the
maximum entropy syntactic-prosodic model and a
HMM based acoustic-prosodic model. We also used
enriched syntactic information in the form of su-
pertags in addition to POS tags. The supertags

provide an improvement in both the pitch accent
and boundary tone classification. Especially, in the
case where the input utterance is automatically POS
tagged (and not hand-corrected), supertags provide
a marginal but definite improvement in prosody la-
beling. The maximum entropy syntactic-prosodic
model alone resulted in pitch accent and bound-
ary tone accuracies of 85.2% and 91.5% on training
and test sets identical to (Chen et al., 2004). As
far as we know, these are the best results on the
BU corpus using syntactic information alone and a
train-test split that does not contain the same speak-
ers. The acoustic-syntactic maximum entropy model
performs better than its syntactic-prosodic counter-
part for the boundary tone case but is slightly worse
for pitch accent scenario partly due to the approx-
imation involved in quantization. But these results
are still better than the baseline results from out-
of-the-box speech synthesizers. Finally, our com-
bined maximum entropy syntactic-prosodic model
and HMM acoustic-prosodic model performs the best
with pitch accent and boundary tone labeling accu-
racies of 86.0% and 93.1% respectively.

As a continuation of our work, we are incorpo-
rating our automatic prosody labeler in a speech-
to-speech translation framework. Typically, state-
of-the-art speech translation systems have a source
language recognizer followed by a machine transla-
tion system. The translated text is then synthesized
in the target language with prosody predicted from
text. In this process, some of the critical prosodic
information present in the source data is lost during
translation. With reliable prosody labeling in the
source language, one can transfer the prosody to the
target language (this is feasible for languages with
phrase level correspondence). The prosody labels by
themselves may or may not improve the translation
accuracy but they provide a framework where one
can obtain prosody labels in the target language from
the speech signal rather than depending on a lexical
prosody prediction module in the target language.
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Abstract

The immense prosodic variation of natural con-
versational speech makes it challenging to pre-
dict which words are prosodically prominent in
this genre. In this paper, we examine a new fea-
ture, accent ratio, which captures how likely it is
that a word will be realized as prominent or not.
We compare this feature with traditional accent-
prediction features (based on part of speech and
N-grams) as well as with several linguistically mo-
tivated and manually labeled information structure
features, such as whether a word is given, new, or
contrastive. Our results show that the linguistic fea-
tures do not lead to significant improvements, while
accent ratio alone can yield prediction performance
almost as good as the combination of any other sub-
set of features. Moreover, this feature is useful even
across genres; an accent-ratio classifier trained only
on conversational speech predicts prominence with
high accuracy in broadcast news. Our results sug-
gest that carefully chosen lexicalized features can
outperform less fine-grained features.

1 Introduction

Being able to predict the prominence or pitch accent
status of a word in conversational speech is impor-
tant for implementing text-to-speech in dialog sys-
tems, as well as in detection of prosody in conversa-
tional speech recognition.

Previous investigations of prominence prediction
from text have primarily relied on robust surface fea-
tures with some deeper information structure fea-
tures. Surface features like a word’s part-of-speech
(POS) (Hirschberg, 1993) and its unigram and bi-
gram probability (Pan and McKeown, 1999; Pan and

9Thanks to the Edinburgh-Stanford Link and ONR (MURI
award N000140510388) for generous support.
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Hirschberg, 2000) are quite useful; content words
are much more likely to be accented than function
words, and words with higher probability are less
likely to be prominent. More sophisticated linguis-
tic features have also been used, generally based on
information-structural notions of contrast, focus, or
given-new. (Hirschberg, 1993).

For example, in the Switchboard utterance be-
low, there is an intrinsic contrast between the words
“women” and “men”, making both terms more
salient (words in all capital letters represent promi-
nent tokens):

you SEE WOMEN, GOING off to WARS as WELL as
MEN,.

Similarly the givenness of a word may help deter-
mine its prominence. The speaker needs to focus the
hearer’s attention on new entities in the discourse, so
these are likely to be realized as prominent. Old en-
tities, on the other had, need not be prominent; these
tendencies can be seen in the following example.

they,:;s have all the WATER ¢, they,i.a WANT. they,q
can ACTUALLY PUMP water,q4.

While previous models have attempted to cap-
ture global properties of words (via POS or unigram
probability), they have not in general used word
identity as a predictive feature, assuming either that
current supervised training sets would be too small
or that word identity would not be robust across gen-
res (Pan et al., 2002). In this paper, we show a way
to capture word identity in a feature, accent ratio,
that works well with current small supervised train-
ing sets, and is robust to genre differences.

We also use a corpus which has been hand-
labeled for information structure features (including
given/new and contrast information) to investigate
the relative usefulness of both linguistic and shallow
features, as well as how well different features com-
bine with each other.

Proceedings of NAACL HLT 2007, pages 9-16,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



2 Dataand features

For our experiments we use 12 Switchboard (God-
frey et al., 1992) conversations, 14,555 tokens in to-
tal. Each word was manually labeled for presence
or absence of pitch accent® , as well as additional
features including information status (or givenness),
contrast and animacy distinctions, (Nissim et al.,
2004; Calhoun et al., 2005; Zaenen et al., 2004), fea-
tures that linguistic literature suggests are predictive
of prominence (Bolinger, 1961; Chafe, 1976).

All of the features described in detail below have
been shown to have statistically significant correla-
tion with prominence (Brenier et al., 2006).

Information status The information status (IS),
or givenness, of discourse entities is important for
choosing appropriate reference form (Prince, 1992;
Gundel et al., 1993) and possibly plays a role in
prominence decisions as well (Brown, 1983). No
previous studies have examined the usefulness of
information status in naturally occurring conversa-
tional speech. The annotation in our corpus is based
on the givenness hierarchy of Prince: first mentions
of entities were marked as new and subsequent men-
tions as old. Entities that are not previously men-
tioned, but that are generally known or semantically
related to other entities in the preceding context are
marked as mediated. Obviously, the givenness an-
notation applies only to referring expressions, i.e.
noun phrases the semantic interpretation of which is
a discourse entity. This restriction inherently limits
the power of the feature for prominence prediction,
which has to be performed for all classes of words.
Complete details of the IS annotation can be found
in (Nissim et al., 2004).

Kontrast One reason speakers make entities in
an utterance prominence is because of information
structure considerations (Rooth, 1992; Vallduvi and
Vilkuna, 1998). That is, parts of an utterance which
distinguish the information the speaker actually says
from the information they could have said, are made
salient, e.g. because that information answers a
question, or contrasts with a similar entity in the
context. Several possible triggers of this sort of
salience were marked in the corpus, with words that
were not kontrastive (in this sense) being marked as
background:

10f all tokens, 8,429 (or 58%) were not accented.

10

e contrastive if the word is directly differentiated
from a previous topical or semantically-related
word;

e subset if it refers to a member of a more general
set mentioned in the surrounding context;

e adverbial if a focus-sensitive adverb such as
“only” or “even” is associated with the word
being annotated;

e correction if the speaker intended to correct or
clarify a previous word or phrase;

e answer if the word completes a question by the
other speaker;

o nonapplic for filler phrases such as “in fact”, “I
mean”, etc.

Note that only content words in full sentences
were marked for kontrast, and filler phrases such
as “in fact” and “I mean” were excluded. A com-
plete description of the annotation guidelines can be
found in (Calhoun et al., 2005).

Animacy Each noun and pronoun is labeled for the
animacy of its referent (Zaenen et al., 2004). The
categories include concrete, non-concrete, human,
organizations, place, and time.

Dialog act Specifies the function of the utterance
such as statement, opinion, agree, reject, abandon;
or type of question (yes/no, who, rhetoric)

In addition to the above theoretically motivated
features, we used several automatically derivable
word measures.

Part-of-speech Two such features were used, the
full Penn Treebank tagset (called POS) , and a col-
lapsed tagset (called BroadPOS) with six broad cat-
egories (nouns, verbs, function words, pronouns, ad-
jectives and adverbs).

Unigram and bigram probability These features
are defined as log(py) and log(pw, |pw,_,) respec-
tively and their values were calculated from the
Fisher corpus (Cieri et al., 2004). High probability
words are less likely to be prominent.

TF.IDF This measure captures how central a word is
for a particular conversation. It is a function of the
frequency of occurrence of the word in the conver-
sation (n,,), the number of conversations that con-
tain the word in a background corpus (k) and the
number of all conversations in the background cor-
pus (N). Formally, TEIDF1 = n,, x log({). We



also used a variant, TF.IDF2, computed by normal-
izing TFIDF1 by the number of occurrences of the
most frequent word in the conversation. TFIDF2 =
TF.IDF1/maz(nwecony). Words with high TE.IDF
values are important in the conversation and are
more likely to be prominent.

Stopword This is a binary feature indicating if the
word appears in a high-frequency stopword list from
the Bow toolkit (McCallum, 1996). The list spans
both function and content word classes, though nu-
merals and some nouns and verbs were removed.
Utterance length The number of words.

L ength The number of characters in the words. This
feature is correlated with phonetic features that have
been shown to be useful for the task, such as the
number of vowels or phones in the word.

Position from end/beginning The position of the
word in the utterance divided by the number of
words that precede the current word.

Accent ratio This final (new) feature takes the
“memorization” of previous productions of a given
word to the extreme, measuring how likely it is that
a word belongs to a prominence class or not. Our
feature extends an earlier feature proposed by (Yuan
et al., 2005), which was a direct estimate of how
likely it is for the word to be accented as observed
in some corpus. (Yuan et al., 2005) showed that the
original accent ratio feature was not included in the
best set of features for accent prediction. We believe
the reason for this is the fact that the original ac-
cent ratio feature was computed for all words, even
words in which the value was indistinguishable from
chance (.50). Our new feature incorporates the sig-
nificance of the prominence probability, assuming a
default value of 0.5 for those words for which there
is insufficient evidence in the training data. More
specifically,

k .
AccentRatio(w) = {E if B(k,n,0.5)<0.05
0.5 ot herw se

where k is the number of times word w appeared
accented in the corpus, n is the total number of
times the word w appeared, and B(k,n,0.5) is
the probability (under a binomial distribution) that
there are k successes in n trials if the probabil-
ity of success and failure is equal. Simply put,
the accent ratio of a word is equal to the esti-
mated probability of the word being accented if this

11

probability is significantly different from 0.5, and
equal to 0.5 otherwise. For example, AccentRa-
tio(you)=0.3407, AccentRatio(education)=0.8666,
and AccentRatio(probably)=0.5.

Many of our features for accent prediction are
based only on the 12 training conversations. Other
features, such as the unigram, bigram, and TF*IDF
features, are computed from larger data sources. Ac-
cent ratio is also computed over a larger corpus,
since the binomial test requires a minimum of six
occurrences of a word in the corpus in order to get
significance and assign an accent ratio value differ-
ent from 0.5. We thus used 60 Switchboard conver-
sations (Ostendorf et al., 2001), annotated for pitch
accent, to compute & and n for each word.

3 Reaults

For our experiments we used the J48 decision trees
in WEKA (Witten and Frank, 2005). All the results
that we report are from 10-fold cross-validation on
the 12 Switchboard conversations.

Some previous studies have reported results on
prominence prediction in conversational speech with
the Switchboard corpus. Unfortunately these studies
used different parts of the corpus or different label-
ings (Gregory and Altun, 2004; Yuan et al., 2005),
so our results are not directly comparable. Bear-
ing this difference in mind, the best reported results
to our knowledge are those in (Gregory and Altun,
2004), where conditional random fields were used
with both textual, acoustic, and oracle boundary fea-
tures to yield 76.36% accuracy.

Table 1 shows the performance of decision tree
classifiers using a single feature. The majority class
baseline (not accented) has accuracy of 58%. Accent
ratio is the most predictive feature: the accent ratio
classifier has accuracy of 75.59%, which is two per-
cent net improvement above the previously known
best feature (unigram). The accent ratio classifier
assigns a “no accent” class to all words with accent
ratio lower than 0.38 and “accent” to all other words.
In Section 4 we discuss in detail the accent ratio dic-
tionary, but it is worth noting that it does correctly
classify even some high-frequency function words
like “she”, “he”, “do” or “up” as accented.



3.1 Combining features

We would expect that a combination of features
would lead to better prediction when compared to
a classifier based on a single feature. Several past
studies have examined classes of features. In order
to quantify the utility of different specific features,
we ran exhaustive experiments producing classifiers
with all possible combinations of two, three, four
and five features.

As we can see from figure 1 and table 2, the clas-
sifiers using accent ratio as a feature perform best,
for all sizes of feature sets. Moreover, the increase
of performance compared to a single-feature classi-
fier is very slight when accent ratio is used as fea-
ture. Kontrast seems to combine well with accent
ratio and all of the best classifiers with more than
one feature use kontrast in addition to accent ratio.
This indicates that automatic detection of kontrast
can potentially help in prominence prediction. But
the gains are small, the best classifiers without kon-
trast but still including accent ratio perform within
0.2 percent of the classifiers that use both.

On the other hand, classifiers that do not use ac-
cent ratio perform poorly compared to those that do,
and even a classifier using five features (unigram,
broad POS, token length, position from beginning
and bigram) performs about as well as a classifier
using solely accent ratio as a feature. Also, when
accent ratio is not used, the overall improvement of
the classifier grows faster with the addition of new
features. This suggest that accent ratio provides rich
information about words beyond that of POS class
and general informativeness.?

Table 2 gives the specific features in (n + 1)-
feature classifiers that lead to better results than the
best n-classifier. The figures are for the classifiers
performing best overall. Interestingly, none of these
best classifiers for all feature set sizes uses POS or
unigram as a feature. We assume that accent ratio
captures all the relevant information that is present
in the unigram and POS features. The best classifier
with five features uses, in addition to accent ratio,
kontrast, tf.idf, information status and distance from
the beginning of the utterance. All of these features
convey somewhat orthogonal information: seman-

2To verify this we will examine the accent ratio dictionary
in closer detail in the next section.
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Accent Ratio (AR) 75.59%
AR + Kontrast 76.15%
AR + END/BEG 75.91%
AR + tf.idf2 75.82%
AR + Info Status 75.82%
AR + Length 75.77%
AR + tf.idf1 75.74%
AR + unigram 75.71%
AR + stopword 75.70%
AR + Kkontrast + length 76.45%
AR + kontrast + BEG 76.24%
AR + Kkontrast + unigram 76.24%
AR + kontrast + tf.idfl 76.24%
AR + kontrast + length + tfidfl 76.56%
AR + kontrast + length + stopword 76.54%
AR + kontrast + length +tf.idf2 76.52%
AR + kontrast + Status + BEG 76.47%
AR + kontrast + tf.idf1 + Status + BEG ~ 76.65%
AR + kontrast + tf.idf2 + Status + BEG  76.58%

Table 2: Performance increase augmenting the ac-
cent ratio classifier.

tic, topicality, discourse and phrasing information
respectively. Still, all of them in combination im-
prove the performance over accent ratio as a single
feature only by one percent.

Figure 1 shows the overall improvement of clas-
sifiers with the addition of new features in three sce-
narios; overall best, best when kontrast is not used
as a feature and best with neither kontrast nor ac-
cent ratio. The best classifier with five features that
do not include kontrast has accent ratio, broad POS,
word length, stopword and bigram as features and
has accuracy of 76.28%, or just 0.27% worse than
the overall best classifier that uses kontrast and in-
formation status. This indicates that while there is
some benefit to using the two features, they do not
lead to any substantial boost in performance. Strik-
ingly, the best classifier that uses neither accent ra-
tio nor kontrast performs very similarly to a classi-
fier using accent ratio as the only feature: 75.82%
for the classifier using unigram, POS, tf.idf1, word
length and position from end of the utterance.

3.2 Thepower of linguistic features

One of the objectives of our study was to assess how
useful gold-standard annotations for complex lin-
guistic features are for the task of prominence pre-
diction. The results in this section indicate that an-
imacy distinctions (concrete/non-concrete, person,
time, etc) and dialog act did not have much power



POS
70.28

tf.idf2
70.14

AccentRatio
75.59

unigram  stopword
73.77 70.77

tf.idf1
69.50

Info Stat
64.13

Kontrast
67.57

BroadPos
68.64

Length
67.64

bigram
65.87

Table 1: Single feature classifier performance. Features not in the table (position from end, animacy, utter-
ance length and dialog act) all achieve lower accuracy of around 60%

Classifier performance

/i:;
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76 77 78
|

Prediction accuracy
75
l

—8- Without kontrast
Without accent
a + ratio or kontrast|

I I I I I
1 2 3 4 5

73

Number of features

Figure 1: Performance increase with the addition of
new features.

as individual features (table 1) and were never in-
cluded in a model that was best for a given feature
set size (table 2).

Information status is somewhat useful and ap-
pears in the overall best classifier with five features
(table 2). But when compared with other classifiers
with the same number of features, the benefits from
adding information status to the model are small.
For example, the accent ratio + information status
classifier performs 0.23% better than accent ratio
alone, but so does the classifier using accent ratio
and tf.idf. There are two reasons that can explain
why the givenness of the referent is not as helpful
as we might have hoped. First of all, the informa-
tion status distinction applies only to referring ex-
pressions and has undefined values for words such
as verbs, adjectives or function words. Second, in-
formation status of an entity influences the form of
referring expression that is used, with old items be-
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ing more likely to be pronominalized. In the numer-
ous cases where pronominalization of old informa-
tion does occur, features such as POS, unigram or
accent ratio will be sensitive to the change of infor-
mation status simply based on the lexical item.

Kontrast is by far the most useful linguistic fea-
ture. It is used in all of the best classifiers for any
feature set size (table 2). It applies to more words
than givenness does, since salience distinctions can
be made for any part-of-speech class. Still, not all
words were annotated for kontrast either, and more-
over kontrast only captures one kind of semantic
salience. This is particularly true of discourse mark-
ers like “especially” or “definitely”: these would ei-
ther be in sentence fragments that weren’t marked
for kontrast, or would probably be marked as "back-
ground’ since they are not salience triggers in a se-
mantic sense. As we can see from figure 1, clas-
sifiers that use kontrast perform only slightly better
than others that use only “cheaper” features.

4 The accent ratio dictionary

Contrary to our initial expectations, both classes in
the accent ratio dictionary (for both low and high
probability of being prominent) cover the full set of
possible POS categories. Tables 3 and 4 list words in
both classes (with words sorted by increasing accent
ratio in each column). The “no accent” class is dom-
inated by function words, but also includes nouns
and verbs. One of the drawbacks of POS as a fea-
ture for prominence prediction is that normally aux-
iliary verbs will be tagged as “VB”, the same class
as other more contentful verbs. The informativeness
(unigram probability) of a word would distinguish
between these types of verbs, but so does the accent
ratio measure as well.

Furthermore, some relatively frequent words such
as “too”, “now”, “both”, “no”, “yes”, “else”, “wow”
have high accent ratio, that is, a high probability for
accenting. Such distinctions within the class of func-
tion words would not be possible on the basis of in-



.00-.08 .09-16  .17-24 .25-32  .33-42
a could you’d being me
uh in because take i've
um minutes oh said we’re
uh-huh and since wanna went
the by says been over
an who us those you
of grew where into thing
to cause they’ve little what
were gonna am until some
as about sort they’re out
than their you’re | had
with but didn’t that make
at on her don’t way
for be going this did
from through i’ll should  anything
or which will type i'm
you’ve are our we kind
was we’ll just SO go
would during though have stuff
it huh like got then
when is your new she
them bit needs mean he
it’s there’s my much do
if any many id up
can has they know
him stayed get doesn’t
these  supposed there even

Table 3: Accent ratio entries with low prominence
probability.

formativeness, POS, or even information structure
features. Another class like that is words like “yes”,
“okay”, “sure” that are mostly accented by virtue of
being the only word in the phrase.

Some rather common words, “not” for example,
are not included in the accent ratio dictionary be-
cause they do not exhibit a statistically strong pref-
erence for a prominence class. The accent ratio clas-
sifier would thus assign class “accented” to the word
“not”, which is indeed the class this word occurs in
more often.

Another fact that becomes apparent with the in-
spection of the accent ratio dictionary is that while
certain words have a statistically significant prefer-
ence for deaccenting, there is also a lot of variation
in their observed realization. For example, personal
pronouns such as “I” and “you” have accent ratios
near 0.33. This means that every third such pronoun
was actually realized as prominent by the speaker.
In a conversational setting there is an implicit con-
trast between the two speakers, which could partly
explain the phenomenon, but the situations which
prompt the speaker to realize the distinction in their
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.58-.74 .75-.79 .80-.86 .87-1.0
lot both sometimes half
time no change topic
now seems child else
kids life young obviously
old tell Texas themselves
too ready town wow
really easy room gosh
three heard pay anyway
work isn’t interesting Dallas
nice again true outside
yeah first mother mostly
two right problems yes
person children agree great
day married war exactly
working may needed especially
job happen told definitely
talking business finally lately
usually still neat thirty
rather daughter sure higher
places gone house forty
government guess okay hey
ten news seven lowa
parents major best poor
paper fact also glad
actually five older basic

Table 4: Accent ratio values for words with high
probability for being accented.

speech will be the focus of a future linguistic inves-
tigation.

Kontrast is helpful in predicting “accented” class
for some generally low ratio words. However, even
with its help, production variation in the conversa-
tions cannot be fully explained. The following ex-
amples from our corpus show low accent ratio words
(that, did, and, have, had) that were produced as
prominent.

so i did THAT. and then i, you know, i DID that for SIX
years. AND then i stayed HOME with my SON.

i HAVE NOT, to be honest, HAD much EXPERIENCE
with CHILDREN in that SITUATION.

they’re going to HAVE to WORK it OUT to WORKING
part TIME.

The examples attest to the presence of variation
in production: in the first utterance, for example, we
see the words “did”, “and” and “that” produced both
as prominent and not prominent. Intonational phras-
ing most probably accounts for some of this varia-
tion since it is likely that even words that are typ-
ically not prominent will be accented if they occur
just before or after a longer pause. We come back to
this point in the closing section.



5 Robustness of accent ratio

While accent ratio works well for our data (Table
2), a feature based so strongly on memorizing the
status of each word in the training data might lead
to problems. One potential problem, suggested by
Pan et al. (2002) for lexicalized features in general,
is whether a lexical feature like accent ratio might
be less robust across genres. Another question is
whether our definition of accent ratio is better than
one that does not use the binomial test: we need to
investigate whether these statistical tests indeed im-
prove performance. We focus on these two issues in
the next two subsections.

Binomial test cut-off

As discussed above, the original accent ratio feature
(YYuan et al., 2005) was based directly on the frac-
tion of accented occurrences in the training set. We
might expect such a use of raw frequencies to be
problematic. Given what we know about word dis-
tributions in text (Baayen, 2001), we would expect
about half of the words in a big corpus to appear only
once. In an accent ratio dictionary without binomial
test cut-off, all such words will have accent ratio of
either exactly 1 or 0, but one or even few occurrences
of a word would not be enough to determine statis-
tical significance. By contrast, our modified accent
ratio feature uses binomial test cut-off to make the
accent ratio more robust to small training sets.

To test if the binomial test cut-off really improved
the accent ratio feature, we compared the perfor-
mance on Switchboard of classifiers using accent
ratio with and without cut-off. The binominal test
improved the performance of the accent ratio fea-
ture from 73.49% (Yuan et al. original version) to
75.59% (our version).

Moreover, Yuan et al. report that their version of
the feature did not combine well with other features,
while in our experiments best performance was al-
ways achieved by the classifiers that made use of the
accent ratio feature in addition to others.

A cross-genre experiment: broadcast news

In a systematic analysis of the usefulness of differ-
ent informativeness, syntactic and semantic features
for prominence prediction, Pan et al. (2002) showed
that word identity is a powerful feature. But they hy-
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pothesized that this would not be a useful feature in
a domain independent pitch accent prediction task.
Their hypothesis that word identity cannot be a ro-
bust across genres would obviously carry over to ac-
cent ratio. In order to test the hypothesis, we used
the accent ratio dictionary derived from the Switch-
board corpus to predict prominence in the Boston
University Radio corpus of broadcast news. Using
an accent ratio dictionary from Switchboard and as-
signing class “not accented” to words with accent ra-
tio less than 0.38 and “accented” otherwise leads to
82% accuracy of prediction for this broadcast news
corpus. If the accent ratio dictionary is built from
the BU corpus itself, the performance is 83.67%.3
These results indicate that accent ratio is a robust
enough feature and is applicable across genres.

6 Conclusions and futurework

In this paper we introduced a new feature for promi-
nence prediction, accent ratio. The accent ratio of
a word is the (maximum likelihood estimate) prob-
ability that a word is accented if there is a signifi-
cant preference for a class, and 0.5 otherwise. Our
experiments demonstrate that the feature is power-
ful both by itself and in combination with other fea-
tures. Moreover, the feature is robust to genre, and
accent ratio dictionaries can be used for prediction
of prominence in read news with very good results.

Of the linguistic features we examined, kontrast
is the only one that is helpful beyond what can be
gained using shallow features such as n-gram prob-
ability, POS or tf.idf. While the improvements from
kontrast are relatively small, the consistency of these
small improvements suggest that developing auto-
matic methods for approximating the gold-standard
annotation we used here, similar to what has been
done for information status in (Nissim, 2006), may
be worthwhile. An automatic predictor for kontrast
may also be helpful in other applications such as
question answering or textual entailment.

All of the features in our study were text-based.
There is a wide variety of research investigating
phonological or acoustic features as well. For exam-
ple Gregory and Altun (2004) used acoustic features

3This result is comparable with the result of (Yuan et al.,
2005) who in their experiment with the same corpus report the
best result as 83.9% using three features: unigram, bigram and
backwards bigram probability.



such as duration and energy, and phonological fea-
tures such as oracle (hand-labeled) intonation phrase
boundaries, and the number of phones and sylla-
bles in a word. Although acoustic features are not
available in a text-to-speech scenario, we hypothe-
size that in a task where such features are available
(such as in speech recognition applications), acous-
tic or phonological features could improve the per-
formance of our text-only features. To test this hy-
pothesis, we augmented our best 5-feature classifier
which did not include kontrast with hand-labeled in-
tonation phrase boundary information. The resulting
classifier reached an accuracy of 77.45%, more than
one percent net improvement over 76.28% accuracy
of the model based solely on text features and not in-
cluding kontrast. Thus in future work we plan to in-
corporate more acoustic and phonological features.
Finally, prominence prediction classifiers need to
be incorporated in a speech synthesis system and
their performance should be gauged via listening
experiments that test whether the incorporation of
prominence leads to improvement in synthesis.

References

R. H. Baayen. 2001. Word Frequency Distributions.
Kluwer Academic Publishers.

D.L. Bolinger. 1961. Contrastive Accent and Contrastive
Stress. Language, 37(1):83—96.

J. Brenier, A. Nenkova, A. Kothari, L. Whitton,
D. Beaver, and D. Jurafsky. 2006. The (non)utility of
linguistic features for predicting prominence in spon-
taneous speech. In IEEE/ACL 2006 Workshop on Spo-
ken Language Technology.

G. Brown. 1983. Prosodic structure and the given/new
distinction.  Prosody: Models and Measurements,
pages 67—77.

S. Calhoun, M. Nissim, M. Steedman, and J.M. Brenier.
2005. A framework for annotating information struc-
ture in discourse. Pie in the Sky: Proceedings of the
workshop, ACL, pages 45-52.

W. Chafe. 1976. Givenness, contrastiveness, definite-
ness, subjects, topics, and point of view. Subject and
Topic, pages 25-55.

C. Cieri, D. Graff, O. Kimball, D. Miller, and Kevin
Walker. 2004. Fisher English training speech part 1
transcripts. LDC.

J. Godfrey, E. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: Telephone speech corpus for re-
search and development. In IEEE ICASSP-92.

16

M. Gregory and Y. Altun. 2004. Using conditional ran-
dom fields to predict pitch accents in conversational
speech. Proceedings of ACL, 2004.

J. Gundel, N. Hedberg, and R. Zacharski. 1993. Cog-
nitive status and the form of referring expressions in
discourse. Language, 69:274—307.

J. Hirschberg. 1993. Pitch Accent in Context: Predicting
Intonational Prominence from Text. Artificial Intelli-
gence, 63(1-2):305—340.

A. McCallum. 1996. Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clus-
tering. http://www.cs.cmu.edu/ mccallum/bow.

M. Nissim, S. Dingare, J. Carletta, and M. Steedman.
2004. An annotation scheme for information status in
dialogue. In LREC 2004.

M. Nissim. 2006. Learning information status of dis-
course entities. In Proceedings of EMNLP 2006.

M. Ostendorf, 1. Shafran, S. Shattuck-Hufnagel,
L. Carmichael, and W. Byrne. 2001. A prosodically
labeled database of spontaneous speech. Proc. of the
ISCA Workshop on Prosody in Speech Recognition and
Understanding, pages 119-121.

S. Pan and J. Hirschberg. 2000. Modeling local context
for pitch accent prediction. In Proceedings of ACL-00.

S. Pan and K. McKeown. 1999. Word informativeness
and automatic pitch accent modeling. In Proceedings
of EMNLP/VLC-99.

S. Pan, K. McKeown, and J. Hirschberg. 2002. Ex-
ploring features from natural language generation in
prosody modeling. Computer speech and language,
16:457-490.

E. Prince. 1992. The ZPG letter: subject, definiteness,
and information status. In S. Thompson and W. Mann,
editors, Discourse description: diverse analyses of a
fund raising text, pages 295—325. John Benjamins.

Mats Rooth. 1992. A theory of focus interpretation. Nat-
ural Language Semantics, 1(1):75-116.

E. Vallduvi and M. Vilkuna. 1998. On rheme and kon-
trast. Syntax and Semantics, 29:79-108.

I. H. Witten and E. Frank. 2005. Data Mining: Practical
machine learning tools and techniques. 2nd Edition,
Morgan Kaufmann, San Francisco.

J. Yuan, J. Brenier, and D. Jurafsky. 2005. Pitch Accent
Prediction: Effects of Genre and Speaker. Proceed-
ings of Interspeech.

A. Zaenen, J. Carletta, G. Garretson, J. Bresnan,
A. Koontz-Garboden, T. Nikitina, M.C. O’Connor, and
T. Wasow. 2004. Animacy Encoding in English: why
and how. ACL Workshop on Discourse Annotation.



Avoiding and Resolving Initiative Conflicts in Dialogue*

Fan Yang and Peter A. Heeman
Center for Spoken Language Understanding
OGI School of Science & Engineering
Oregon Health & Science University
{fly, heeman}@cslu.ogi.edu

Abstract

In this paper, we report on an empirical study
on initiative conflicts in human-human conver-
sation. We examined these conflicts in two
corpora of task-oriented dialogues. The re-
sults show that conversants try to avoid initia-
tive conflicts, but when these conflicts occur,
they are efficiently resolved by linguistic de-
vices, such as volume.

1 Introduction

Current computer dialogue systems tend to be system-
initiative. Although there are some mixed-initiative sys-
tems that allow the user to make a request or state a goal,
such systems are limited in how they follow natural ini-
tiative behavior. An example is where the system always
releases the turn whenever the user barges in. However,
in a complex domain where the computer system and hu-
man user are collaborating on a task, the computer sys-
tem might need to interrupt the human user, or might
even need to fight with the human user over the turn.
Thus the next generation of computer dialogue systems
need a better model of initiative (Horvitz, 1999). In what
situations can the system try to take initiative from the
user? What devices can the system use to fight for ini-
tiative? We propose examining human-human conversa-
tion to answer these questions. Once we understand the
conventions people adopt in negotiating initiative, we can
implement them in a computer dialogue system to create
natural interactivity.

In this research work, we examined two corpora of
human-human conversation: the Trains corpus (Heeman
and Allen, 1995) and the MTD corpus (Heeman et al.,
2005). The research purpose is to understand conver-
sants’ behavior with initiative conflicts, which we define
a situation where both conversants try to direct the con-
versation at the same time, but one of them fails. We

This work was funded by the National Science Foundation
under 11S-0326496.
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found that (1) conversants try to avoid initiative con-
flicts; and (2) initiative conflicts, when they occur, are
efficiently resolved by linguistic devices, such as volume.

In Section 2, we review related research work on mod-
eling initiative and turn-taking. Dialogue initiative and
turn-taking are two intertwined research topics. When
conversants fight to show initiative, they are also fighting
for the turn to speak. In Section 3, we describe the two
corpora and their annotations. In Section 4, we define
initiative conflict and give an example. In Section 5, we
present the evidence that conversants try to avoid initia-
tive conflicts. In Section 6, we present evidence that ini-
tiative conflicts are efficiently resolved by linguistic de-
vices. We discuss our findings in Section 7 and future
work in Section 8.

2 Related Research

2.1 Initiative Models

Researchers have been investigating how people man-
age dialogue initiative in their conversation. Whittaker
and Stenton (1988) proposed rules for tracking initiative
based on utterance types; for example, statements, pro-
posals, and questions show initiative, while answers and
acknowledgements do not. Smith (1993) proposed four
different initiative strategies with differing amounts of
control by the system. Chu-Carrol and Brown (1998)
distinguished dialogue initiative from task initiative, and
proposed an evidential model of tracking both of them.
Cohen et al. (1998) proposed presenting initiative in dif-
ferent strengths. Some researchers related initiative to
discourse structure. Walker and Whittaker (1990) found
a correlation between initiative switches and discourse
segments. Strayer et al. (2003) proposed the restricted
initiative model in which the initiator of a discourse seg-
ment, who introduces the discourse segment purpose, is
in control of the segment and shows most of the initia-
tive. These models allowed the possibility that multiple
conversants will want to show initiative at the same time;
however, none of them addressed initiative conflicts.
Guinn (1998) studied another type of initiative, task
initiative, which is about directing the problem-solving
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of a domain goal. Guinn proposed that the person who
is more capable of coordinating the current goal is the
person who should be leading the dialogue. Initiative
switches between conversants as goals get pushed and
popped from the problem-solving stack. However, be-
cause conversants only have incomplete information, ini-
tiative conflicts might occur when conversants overesti-
mate their own capability or underestimate the other’s.
Guinn proposed a negotiation model to resolve these con-
flicts of task initiative. Conversants negotiate by inform-
ing each other of positive and negative information of
their plans to achieve the goal. By comparing each other’s
plan, the conversant whose plan has the higher probabil-
ity of success takes initiative. Guinn’s research on con-
flicts of task initiative, however, has little bearing on con-
flicts of dialogue initiative. For dialogue initiative, very
often, one of the conversants just gives up the attempt
very quickly, without giving a justification. As stated by
Haller and Fossum (1999):“... conflicts are often simple
clashes that result from both participants trying to take
the initiative at the same time. Such conflicts do not nec-
essarily require complex negotiation to resolve. Often,
unwritten rules based on factors like social roles, personal
assertiveness, and the current locus of control play a part
in determining who will give away.” However, Haller and
Fossum did not further investigate how conversants effi-
ciently resolve conflicts of dialogue initiative.

2.2 Turn-Taking and Initiative

Turn-taking in conversation is highly related to initiative.
Conversants have to possess the turn in order to show ini-
tiative. When conversants are fighting for initiative, they
are also fighting for the turn to speak. Thus the mech-
anisms of turn-taking might share some similarity with
initiative. On the other hand, turn-taking is different from
initiative; for example, an answer takes a turn, but an-
swering does not show initiative.

Turn-taking in conversation has been discussed in lin-
guistics literature. Duncan (1974) examined cues (ges-
ture, acoustic, and linguistic) that conversants use to sig-
nal turn-taking or turn-releasing. A model based on these
signals was created to account for conversants’ turn-
taking behavior. In this model, miscues are the cause of
overlapping speech: for example, the hearer misrecog-
nizes the speaker’s cue to keep the turn, or the speaker
fails to properly signal.

Sacks et al. (1974) proposed a set of rules for turn-
taking: the current speaker can select somebody else to
speak; otherwise, hearers can self-select to speak; oth-
erwise, the speaker can self-select to speak. This model
suggested that overlapping speech results from either the
hearer waiting too long to speak, or the speaker not wait-
ing long enough.
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Schegloff (2000) examined overlapping speech in de-
tail in human conversation. He concluded that (1) fights
for turn are often accompanied with sudden acoustic al-
teration, such as louder volume, higher pitch, and faster
or slower speaking rate; (2) the vast majority of fights for
turn are resolved very quickly; (3) fights for turn are re-
solved through an interactive procedure, e.g. syllable by
syllable negotiation, using devices such as volume, pitch,
and speaking rate. However, his analysis only consisted
of a few examples; no statistical evidence was given. It
is thus unclear whether his conclusions represent human
conventions of initiative conflict, or are occasional behav-
ior that would only occur under special circumstances.

3 Corpora and Annotations

To understand human behavior in initiative conflicts, we
examined two corpora, the Trains corpus and the MTD
corpus. These two corpora have very different domain se-
tups. The distinct behavior seen in each corpus will help
inform us how domain settings affect initiative, while the
common behavior will help inform us the cross-domain
human conventions.

3.1 The Trains Corpus

The Trains corpus is a collection of human-human task-
oriented dialogues, in which two participants work to-
gether to formulate a plan involving the manufacture and
transportation of goods. One participant, the user, has a
goal to solve; and the other participant, the system, knows
the detailed domain information including how long it
takes to ship and manufacture goods.

We annotated eight Trains dialogues totaling about
45 minutes using the tool DialogueView (Yang et al.,
2007). We tagged each utterance with a simplified
DAMSL scheme (Core and Allen, 1997). Utterances
were tagged as forward or backward functions, stalls, or
non-contributions. Forward functions include statements,
questions, checks and suggestions. Backward functions
include agreements, answers, acknowledgments, repeti-
tions and completions. Examples of stalls are “um” and
“let’s see”, used by a conversant to signal uncertainty of
what to say next or how to say it. Non-contributions in-
clude abandoned and ignored utterances. The flow of
the dialog would not change if non-contributions were
removed.

Hierarchical discourse structure was annotated follow-
ing Strayer et al. (2003). To determine whether a group
of utterances form a discourse segment, we took into ac-
count whether there exists a shared goal introduced by
one of the conversants (cf. Grosz and Sidner, 1986).

3.2 The MTD Corpus

The MTD corpus contains dialogues in which a pair of
participants play two games via conversation: an ongoing



game that takes a relatively long time to finish and an
interruption game that can be done in a couple turns but
has a time constraint. Both games are done on computers.
Players are separated so that they cannot see each other.

In the ongoing game, the two players work together to
assemble a poker hand of a full house, flush, straight, or
four of a kind. Each player has three cards in hand, which
the other cannot see. Players take turns drawing an extra
card and then discarding one until they find a poker hand,
for which they earn 50 points. To discourage players from
simply rifling through the cards to look for a specific card
without talking, one point is deducted for each picked-up
card, and ten points for a missed or incorrect poker hand.
To complete this game, players converse to share card
information, and explore and establish strategies based
on the combined cards in their hands.

From time to time, the computer generates a prompt
for one player to start an interruption game to find out
whether the other player has a certain picture on the
screen. The interruption game has a time constraint of
10, 25, or 40 seconds, which is (pseudo) randomly deter-
mined. Players get five points for the interruption game
if the correct answer is given in time. Players are told to
earn as many points as possible.

We annotated six MTD dialogues totaling about 90
minutes. Utterances were segmented based on player’s
intention so that each utterance has only one dialogue
act that is to share information, explore strategies, sug-
gest strategies, or maintain an established strategy (Toh
et al., 2006). We applied the same simplified DAMSL
scheme on utterance tag annotations. Figure 1 shows an
annotated excerpt of an MTD dialogue. We grouped ut-
terances into blocks. Block b21 is a game block in which
conversants completed a poker hand. Blocks 22 and 523
are two card blocks in which conversants picked up a
new card, discussed what they had in hand, and chose
a card to discard. Block 524 is an interruption segment
in which conversants switched their conversation to the
interruption game. No claim is made that the game and
card blocks are discourse segments according to Grosz
and Sidner’s definition (1986).

4 Defining Initiative Conflicts

An initiative conflict occurs when a conversant’s attempt
to show initiative fails because someone else is show-
ing initiative at the same time. Following Whittaker
and Stenton (1988), we use utterance tags to determine
whether an utterance shows initiative: forward functions
show initiative while others do not. Non-contributions
are viewed as failed attempt to show initiative. Thus we
identify initiative conflicts as overlapping utterances that
involve either a forward function and a non-contribution
or two non-contributions.

Figure 2 gives an example of an initiative conflict from
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b1

bz2
B [u129]: alright 2o | hawe bwo fives a ziv and a jack
Forward. Statement
A u130]: I've got & bwa & seven and a king
Forward. Staterment
B [u131]: b are your suits looking'?
Forward.InfoR equest
A u132]: random
Backward Answer
B [u133] ok.ay um
B ackward. Understanding.Ack,
B [u134]: I'll get rid of the six
Forward. Staterment
b3
A [ul 38 ak.ay um
Stall. Stuck
A U137 I've got bwo bwos a seven and a king
Forward. Staterment
B [u133] bwo bwoz 3 zeven and a king
b24 Backward. Understanding. RepeatPhraze
B [u139): do vou have a black triangle?
Faomward Infol equest
A uldd); =
Backward Answer
AuTld1]: akay um I'm gonna drop my seven
Forward. Staterment
B [u142] ok.ay that zounds good
Backward.Agreement
bz5
B [u143]: alright | got bwa fives a six and a jack

Figure 1: An excerpt of an MTD dialogue

the MTD corpus. The top conversant says “that’s pair of
threes and pair of fours”, which ends at time point A. Af-
ter a short pause, at time B, the bottom conversant asks
“how many threes do you have”, which is overlapped by
the top conversant’s second utterance “I’ll drop” at time
C. The top conversant then abandons the attempt of show-
ing initiative at time D. Hence the bottom speaker is the
winner of this initiative conflict.

We use the term preceding-pause to refer to the time
interval between the end of the previous utterance and
the first utterance that is involved in the overlap (from A
to B in Figure 2). Offset refers to the interval between
the start times of the two overlapped utterances (from B
to C). Duration refers to the time interval from the begin-
ning of overlap till the end of overlap (from C to D).

In the Trains corpus, there are 142 cases of overlap-
ping speech, 28 of which are initiative conflicts. Of the
remaining, 96 cases involve a backward function (e.g. an
acknowledgment overlapping the end of an inform), and
10 cases involve a stall. The remaining 8 cases are other
types of overlap, such as a collaborative completion, or
conversants talking about the same thing: for example,
one saying “we are a bit early” and the other saying “we
are a little better”.

In the MTD corpus, there are 383 cases of overlapping
speech, 103 of which are initiative conflicts. Of the re-
maining, 182 cases involve a backward function, 21 cases
involve a stall, and 77 cases are others. Initiative conflicts
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Figure 2: An illustration of an initiative conflict

are more frequent in the MTD corpus (103 cases in 90
min) than in the Trains corpus (28 cases in 45 min).

There are three cases in the Trains and thirteen cases in
the MTD corpus where the preceding-pause is negative,
i.e. the first overlapped utterance is started before the
other conversant finishes the previous utterance. Some-
times the hearer starts a little bit early to take the turn. If
the original speaker does not intend to release the turn,
a conflict arises. Because these cases involve three ut-
terances, we exclude them from our current analysis and
save them for future research.! This leaves 25 cases in
the Trains corpus and 90 cases in the MTD corpus for
analyzing initiative conflicts.

5 Avoiding Initiative Conflicts

In this section, we show that conversants try to avoid ini-
tiative conflicts by examining both the offset of initiative
conflicts and the urgency levels.

5.1 Offset of Initiative Conflicts

The offset of an initiative conflict indicates where the
conflict happens. A short offset indicates that the conflict
happens at the beginning of an utterance, while a long
offset indicates an interruption in the middle.

Figure 3 shows the cumulative distribution function
(CDF) for offsets for both corpora individually. The mean
offset is 138ms for the Trains corpus, and 236ms for
the MTD corpus. In comparison to the average length
of forward utterances (2596ms in the Trains corpus and
1614ms in the MTD corpus), the offset is short. More-
over, in the Trains corpus, 88% of offsets are less than
300ms (and 80% less than 200ms); in the MTD corpus,
75% of offsets are less than 300ms. Thus most initiative
conflicts happen at the beginning of utterances.

!These cases of negative value preceding-pause are in fact
very interesting. They seem to contradict with Sacks et
al. (1974)’s model that the hearer has priority to self select to
speak. If Sacks et al. is correct, the speaker should wait a cer-
tain amount of time in order not to overlap with the hearer, but
in these cases we see that the speaker self-selects to speak with-
out taking into account whether the hearer self-selects to speak
or not.
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Figure 3: CDF plot for offsets of initiative conflicts

Few initiative conflicts have offsets longer than 500ms.
There is one instance in the Trains corpus and eleven in
the MTD corpus. Four cases are because the second con-
versant has something urgent to say. For example, when
an interruption game is timing out, conversants would in-
terrupt, sometimes in the middle of an utterance, which
results in a long offset. Another six cases are due to mis-
cues. Figure 4 shows an example. Conversant B said “I
have two aces” with end-of-utterance intonation, paused
for about half a second, and then added “and a seven”.
The ending intonation and the pause probably misled
conversant A to believe that B had finished, and thus A
started a new forward utterance, which overlapped with
B’s extension. A’s utterance was then quickly abandoned.
In these cases, it is ambiguous whether B’s utterance “I
have two aces ... and a seven” should be further chopped
into two utterances. The final two cases are intrusions,
with an example shown in Figure 5. Conversant A cut in
probably because he was confident with his decision and
wanted to move on to the next card. In such cases, the
intruder might be perceived as being rude.



B: Ihave two aces and a seven
A: I have
Figure 4: Long offset: miscue
B:  well let’s just
A: it’s no help I think it goes away

Figure 5: Long offset: intrusion

The preponderance of short offsets provides evidence
that conversants try to avoid initiative conflicts. When A
detects that B is talking, A should not attempt to show
initiative until the end of B’s utterance in order to avoid
conflicts, unless there is an urgent reason. If conversants
did not take into account whether someone else is speak-
ing before attempting initiative, we would see a lot of in-
trusions in the middle of utterances, which in fact rarely
happen in the two corpora. As we have shown, initiative
conflicts tend to happen at the beginning of utterances.
Thus initiative conflicts occur mainly due to unintentional
collision, i.e. both conversants happen to start speaking
almost at the same time. The fact that the offset of most
initiative conflicts is within 300ms confirms this.?

5.2 Urgency Level and Initiative Conflicts

To further support the hypothesis that conversants avoid
initiative conflicts except for urgent reasons, we exam-
ined the MTD corpus for the correlation between the ur-
gency levels of the interruption game and initiative con-
flicts. For the urgency level of 10 seconds, conversants
started 33 interruption games, 8 of which were intro-
duced via initiative conflicts. For 25 seconds, conversants
started 36 interruption games, 5 introduced via initiative
conflicts. For 40 seconds, conversants started 33 interrup-
tion games, 3 introduced via initiative conflicts. Thus the
percentages of initiative conflicts for the three urgency
levels are 24% for 10 seconds, 14% for 25 seconds, and
9% for 40 seconds. The urgency level of 10 seconds
requires conversants to start the interruption game very
quickly in order to complete it in time. On the other hand,
the urgency level of 40 seconds allows conversants ample
time to wait for the best time to start the game (Heeman
et al., 2005). Thus we see the percentage of initiative
conflicts decreases as it becomes less urgent to the inter-
ruption game. These results suggest that conversants try
to avoid initiative conflicts if they can, unless there is an
urgent reason.

6 Resolving Initiative Conflicts

In this section, we present evidence that initiative con-
flicts, if they occur, are resolved very quickly using sim-
ple devices.

>This 300ms might be related to human reaction time.
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Figure 6: CDF plot for durations of initiative conflicts
together with lengths of forward utterances

6.1 Duration of Initiative Conflicts

The duration of an initiative conflict, as defined in Sec-
tion 4, indicates how quickly the conflict is resolved. Fig-
ure 6 shows the cumulative distribution function of dura-
tions of initiative conflicts and the lengths of forward ut-
terances in the two corpora. The mean duration is 328ms
in the Trains corpus and 427ms in the MTD corpus. From
Figure 6 we see that the duration is much shorter than the
length of forward utterances, which have the mean length
of 2596ms in the Trains corpus and 1614ms in the MTD
corpus. The difference between duration of initiative con-
flicts and length of forward utterances is statistically sig-
nificant (p < 107°, ttest). On average, the duration of
initiative conflicts is about 1/8 the length of forward ut-
terances in the Trains corpus and about 1/4 in the MTD
corpus. The short durations suggest that initiative con-
flicts are resolved very quickly.

According to Crystal and House (1990), the average
length of CVC syllable is about 250ms. Thus on aver-
age, the length of initiative conflicts is about one to two
syllables.® In fact, 96% of conflicts in the Trains corpus
and 73% in the MTD corpus are resolved within 500m:s.
These observations are consistent with one of Schelogff’s
(2000) claims about turn-taking conflicts, that they usu-
ally last less than two syllables to resolve.

6.2 Resolution of Initiative Conflicts

From our definition of initiative conflict, at least one of
the speakers has to back off. For expository ease, we re-

31t would be interesting to examine the length of initiative
conflicts based on syllable. However currently we do not have
syllable-level alignment for the two corpora. We leave this for
future research.



fer to the person who gets the turn to contribute as the
winner, and the other who fails as the yielder. There are
two cases in the Trains corpus and three cases in the MTD
corpus in which both speakers abandoned their incom-
plete utterances, paused for a while, and then one of them
resumed talking. These five cases are treated as ties: no
winners or yielders, and are excluded from our analysis
here.

Given how quickly initiative conflicts are resolved, we
examined whether the resolution process might be depen-
dent on factors presented before the conflict even begins,
namely who was speaker in the previous utterance, and
who was interrupted. If we predict that the conversant
who spoke prior to the conflict (speaker of u262 in Fig-
ure 2) loses, we get 55% accuracy in the Trains corpus
and 61% accuracy in the MTD corpus. If we predict
the conversant who spoke first in the overlap (speaker of
1263 in Figure 2) wins, we get 60% accuracy in the Trains
corpus and 53% accuracy in the MTD corpus. These low
percentages suggest that they are not robust predictors.

We next examined how conversants resolve the con-
flicts using devices such as volume, pitch, and others.

6.2.1 Volume

For a stretch of speech, volume is calculated as the mean
energy of the spoken words. For each initiative conflict,
we calculated each conversant’s volume during the over-
lap, and then normalized it with respect to the conver-
sant’s volume throughout the whole conversation.* We
refer to this as relative volume. In the Trains corpus, the
average relative volume of the winner is 1.06; the average
relative volume of the yielder is 0.93. The difference is
statistically significant (P < 0.01, anova). In the MTD
corpus, the average relative volume of the winner is 1.12;
the average relative volume of the yielder is 0.98. The dif-
ference is also statistically significant (p < 1075, anova).
These results show that the winner is the one speaking at
a higher relative volume.

To strengthen our argument, we also calculated volume
ratio as the relative volume of the winner divided by the
yielder. The average volume ratio in the Trains corpus is
1.16 and in the MTD corpus is 1.18. If a classifier always
chooses the speaker with higher relative volume to be the
winner, we achieve about 79% accuracy in both corpora,
which is a 29% absolute improvement over random pre-
diction. These results further confirm that the conversant
who speaks at a higher relative volume wins the initiative
conflicts.

Given the importance of volume in the resolution pro-
cess, we examined whether it has an impact on the du-
ration of initiative conflicts. Figure 7 plots the relation

“Normalization is necessary particularly as conversants

heard each other via headsets, and the microphones were not
calibrated to have exactly the same gains.
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Figure 7: Volume ratio and duration of conflicts

between volume ratio and duration of conflicts for all
the cases in the two corpora. For reference, the dot-
ted line divides the data points into two groups: under
the line are what volume ratio fails to predict the win-
ner, and above the line are success. If we look at the
points where volume ratio succeeds, we see that when
duration of initiative conflicts is long, volume ratio tends
to be small: in fact, the average volume ratio for initiative
conflicts shorter than 600ms is 1.27; for long than 600ms
is 1.13; and the difference is statistically significant (ttest,
p < 0.01).

To further understand how volume is used in the reso-
lution procedure, we examined how volume changes dur-
ing the overlap. For initiative conflicts whose duration is
longer than 600ms, we cut the overlapped speech evenly
in half, and calculated the relative volume for each half
individually. For the first half, the average relative vol-
ume of the winner is 1.03, and the yielder is 1.02. The
difference is not statistically significant (p = 0.93, paired
ttest). For the second half, the average relative volume of
the winner is 1.20, and the yielder is 1.02. The difference
is statistically significant (p < 0.001, paired ttest). The
fact that these long initiative conflicts are not resolved in
the first half is probably partially due to the close relative
volume.

We then calculated volume increment as subtracting the
relative volume of the first half from the second half. The
average volume increment of the winner is 0.17; the aver-
age volume increment of the yielder is 0. The difference
is statistically significant (p < 0.001, paired ttest). These
results show that the range of volume increment during
the overlap by the winner is larger than the yielder. The
behavior of increasing volume during overlap to win the
fight suggests that conversants use volume as a device to
resolve initiative conflicts.



6.2.2 Pitch

We used the tool WaveSurfer (Sjolander and Beskow,
2000) to extract the fO from the audio files. We calcu-
lated relative pitch similarly as we did for volume.

In the Trains corpus, the average relative pitch of the
winner is 1.02; the average relative pitch of the yielder
is 0.96. The difference is not statistically significant
(P = 0.54, anova). In the MTD corpus, the average
relative pitch of the winner is 1.09; the average relative
pitch of the yielder is 0.98. The difference is statistically
significant (p < 0.001, anova). If we choose the speaker
with higher pitch to be the winner, we achieve about 65%
accuracy in the Trains corpus and 62% in the MTD cor-
pus. These results suggest that pitch alone is not robust
for predicting the winner of initiative conflicts, at least
not as predictive as volume, although we do see the ten-
dency of higher pitch by the winner.

We also examined pitch range in the window of 100ms
and 300ms respectively. We calculated the pitch range
of the overlapping speech and then normalized it with
respect to the conversant’s pitch range throughout the
whole conversation. We did not see a significant corre-
lation between pitch range and the winner of initiative
conflicts. Thus pitch does not seem to be a device for
resolving initiative conflicts.

6.2.3 Role of Conversants

Human-computer dialogues often have a user interact-
ing with a system, in which the two have very different
roles. Hence, we investigated whether the conversant’s
role has an effect in how initiative conflicts are resolved.
We focused on the Trains corpus due to both its rich dis-
course structure and the difference in the roles that the
system and the use have.

In the Trains corpus, if we predict that the initiator of
a discourse segment wins the conflicts, we get 65% ac-
curacy. In system-initiated segments, the system wins all
eight conflicts; however, in user-initiated segments, the
user only wins seven and system wins eight. The user
does not have an advantage during initiative conflicts in
its segments. Moreover, if the initiator had an advantage,
we would expect the system to have fought more strongly
in the user-initiated segments in order to win. However,
we do not see that the relative volume of the system win-
ning in user-initiated segments is statistically higher than
in system-initiated segments in this small sample size
(p = 0.9, ttest). The initiator does not seem to have a
privileged role in the resolution process.

From the above analysis, we see that the system wins
the conflicts 16 out of 23 times. Thus if we predict that
the system always wins the conflicts, we achieve 70%
accuracy. This is not surprising because the system has
all the domain information, and is more experienced in
solving goals. If the system and user want to speak at
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the same time, both would know that the system proba-
bly has a more significant contribution. That the system
wins most of the initiative conflicts agrees with Guinn
(1998) that capability plays an important role in deter-
mining who to show initiative next.

7 Discussion

In this paper, we present our empirical study of human
behavior in initiative conflicts. Our first finding is that
conversants try to avoid initiative conflicts. The conse-
quence of initiative conflicts is that at least one of the
conversants would have to back off, which makes their
effort of contributing in vain. Moreover, the effort of
resolving initiative conflicts is overhead to the dialogue.
According to the theory of least collaborative effort by
Clark and Wilkes-Gibbs (1986), it only makes sense for
conversants to interrupt when the loss of not interrupting
is higher than the cost of an initiative conflict. Thus the
theory of least collaborative effort is consistent with our
conclusion that most initiative conflicts are unintentional
collisions, except where conversants interrupt in the mid-
dle of an utterance for urgency reasons.

The second finding of our research is that initiative
conflicts, when they occur, are efficiently resolved. We
found that volume plays an important role: the louder
speaker wins. We also show how conversants change
their volume to resolve initiative conflicts. Conversants
probably identify their eagerness of speaking, confidence
in what they want to say, and capability of achieving the
current goal by means of volume, which resolves the ini-
tiative conflicts very quickly.

Domain settings obviously have an impact on conver-
sants’ initiative behavior. There are more frequent initia-
tive conflicts in the MTD corpus than in the Trains cor-
pus. Moreover, the roles of the conversants also affect
their initiative behavior as we found that the system wins
more initiative conflicts in the Trains corpus. In a teacher-
student conversation, one would expect to see that the
teacher interrupts the student more often than vice versa,
but also that the teacher wins more initiative conflicts.
Capability, culture, and social relationship probably are
some underlying elements that influence when and under
what conditions conversants would seek initiative, while
volume is a device for resolving initiative conflicts.

8 Future Work

In this paper we focused on initiative conflicts in dialogue
where two conversants cannot see each other. In face-to-
face conversation, there might be other cues, such as eye-
contact, head-nodding, and hand gesture, that conversants
use in initiative conflicts. Moreover, in a multi-party con-
versation, a conversant might talk to different people on
different topics, and get interrupted from time to time,



which leads to an initiative conflict involving multiple
speakers. In our future work, we plan to examine ini-
tiative conflicts in face-to-face multi-party conversation,
such as the ICSI corpus (Shriberg et al., 2004).

Inspired by the findings on human behavior of initia-
tive conflicts, we speculate that conversants might also
have a mechanism to even minimize unintentional ini-
tiative conflicts, which probably includes devices such
as volume, pause, and other prosodic features. The
speaker uses these devices, as opposed to explicitly in-
forming each other of their knowledge to evaluate capa-
bility (Guinn, 1998), to implicitly signal his or her ea-
gerness, confidence and capability. The hearer then com-
pares his or her own eagerness with the speaker’s, and
decides whether to just make an acknowledgement (al-
lowing the speaker to continue the lead) or to take over
the initiative when taking the turn to speak. In our future
work, we plan to build an initiative model to capture this
negotiation process.
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Abstract

This study addresses the problem of au-
tomatically detecting decisions in conver-

sational speech. We formulate the prob-
lem as classifying decision-making units

at two levels of granularity: dialogue acts

and topic segments. We conduct an em-
pirical analysis to determine the charac-
teristic features of decision-making dia-

logue acts, and train MaxEnt models using
these features for the classification tasks.
We find that models that combine lexi-

cal, prosodic, contextual and topical fea-
tures yield the best results on both tasks,
achieving 72% and 86% precision, respec-
tively. The study also provides a quantita-
tive analysis of the relative importance of

the feature types.
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is difficult to locate the decision points by the brows-
ing and playback utilities alone.

Banerjee and Rudnicky (2005) have shown that
it is easier for users to retrieve the information
they seek if the meeting record includes information
about topic segmentation, speaker role, and meet-
ing state (e.g., discussion, presentation, briefing). To
assist users in identifying or revisiting decisions in
meeting archives, our goal is to automatically iden-
tify the dialogue acts and segments where decisions
are made. Because reviewing decisions is indis-
pensable in collaborative work, automatic decision
detection is expected to lend support to computer-
assisted meeting tracking and understanding (e.qg.,
assisting in the fulfilment of the decisions made in
the meetings) and the development of group infor-
mation management applications (e.g., constructing
group memory).

2 Reéated Work

Spontaneous face-to-face dialogues in meetings vi-
olate many assumptions made by techniques pre-

Making decisions is an important aspect of converviously developed for broadcast news (e.g., TDT
sations in collaborative work. In the context of meetand TRECVID), telephone conversations (e.g.,
ings, the proposed argumentative models, e.g., Bwitchboard), and human-computer dialogues (e.qg.,
Pallotta et al. (2005) and Rienks et al. (2005), havBARPA Communicator). In order to develop
specified decisions as an essential outcome of meg&tchniques for understanding multiparty dialogues,
ings. Whittaker et al. (2005) have also describedmart meeting rooms have been built at several insti-
how reviewing decisions is critical to the re-use oftutes to record large corpora of meetings in natural
meeting recordings. For example, a new engine@ontexts, including CMU (Waibel et al., 2001), LDC
who just get assigned to a project will need to knowCieri et al., 2002), NIST (Garofolo et al., 2004),
what major decisions have been made in previod€SI (Janin et al., 2003), and in the context of the
meetings. Unless all decisions are recorded in medtM2/M4 project (Marchand-Mailet, 2003). More
ing minutes or annotated in the speech recordings,riécently, scenario-based meetings, in which partic-
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ipants are assigned to different roles and given sp8 Research Goal
cific tasks, have been recorded in the context o(f)
the CALO project (the Y2 Scenario Data) (CALO
2003) and the AMI project (Carletta et al., 2005).

ur aim is to develop models for automatically de-
‘tecting segments of conversation that contain deci-
sions directly from the audio recordings and tran-

I , cripts of the meetings, and to identify the feature
The availability of meeting corpora has enablec?ombinations that are most effective for this task.

researchers to begin to develop descriptive mode?s ) . .
g P P Meetings can be viewed at different levels of

of meeting discussions. Some researchers are mod- . . . .
. . . o ._granularity. In this study, we first consider how to
elling the dynamics of the meeting, exploiting dia- . : -
logue models previously proposed for dialogue mano_letect the dialogue acts that contain decision-related
information (DM DAs). Since it is often difficult

agement. For example, Niekrasz et al. (2005) usg interpret a decision without knowing the current

the Issue-Based Information System (IBIS) model” . . . . .
Y ( ) topic of discussion, we are also interested in detect-

(Kunz and Ritte, 1970) to incorporate the hiStoryin decision-making segments at a coarser level of
of dialogue moves into the Multi-Modal Discourse g g Seg

. __granularity: topi ments. The task of automati
(MMD) ontology. Other researchers are modellm% anuiarty: fopic segments € task of automatic
. . ecision detection can therefore be divided into two

the content of the meeting using the type of struc-

subtasks: detecting DM DAs and detecting decision-

tures proposed in work on argumentation. For exfnaking topic segments (DM Segments).

ample, Rienks et al. (2005) have developed an ar- In this study we propose to first empirically

gument dlagra_mmlng sch_eme to wsgahze the relaiélentify the features that are most characteristic of
tions (e.g., positive, negative, uncertain) between u

. degision-making dialogue acts and then computa-
terances (e.g., statement, open issue), and March nd- g 9 P

et al. (2003) propose a schema to model different Stl_onally mteg_rate the_ charact_erlstlc features to locate
. . rae DM DAs in meeting archives. For the latter task,
gumentation acts (e.g., accept, request, reject) an

: o o o grevious research on automatic meeting understand-
their organization and synchronization. Decision

ing and tracking has commonly utilized a classifica-
are often seen as a by-product of these models. . . . : :
tion framework, in which variants of generative and

. . conditional models are computed directly from data.
Automatically extracting these argument mod- P y

. . In this st Wi Maximum Entr MaxEnt
els is a challenging task. However, researche S study, we use a Maximu opy (Ma )

. rs1assifier to combine the decision characteristic fea-
have begun to make progress towards this goagl.

For example, Gatica et al. (2005) and Wrede anéJres to predict DM DAs and DM Segments.
Shriberg (2003) automatically identify the level of4 Data

emotion in meeting spurts (e.g., group level of in- o _

terest, hot spots). Other researchers have developgd D€ciSon Annotation

models for detecting agreement and disagreemelm this study, we use a set of 50 scenario-driven
in meetings, using models that combine lexical feameetings (approximately 37,400 dialogue acts) that
tures with prosodic features (e.g., pause, duratiolmave been segmented into dialogue acts and anno-
FO, speech rate) (Hillard et al., 2003) and structated with decision information in the AMI meet-
tural information (e.g., the previous and followinging corpus. These meetings are driven by a sce-
speaker) (Galley et al., 2004). More recently, Purvenario, wherein four participants play the role of
et al. (2006) have tackled the problem of detectingroject Manager, Marketing Expert, Industrial De-
one type of decision, namely action items, whiclsigner, and User Interface Designer in a design team
embody the transfer of group responsibility. How-4n a series of four meetings. Each series of meet-
ever, no prior work has addressed the problem of ainrg recordings uses four distinctive speakers differ-
tomatically identifying decision-making units moreent from other series. The corpus includes manual
generally in multiparty meetings. Moreover, no pretranscripts for all meetings. It also comes with in-
vious research has provided a quantitative accoudividual sound files recorded by close-talking head-
of the effects of different feature types on the task ofnounted microphones and cross-talking sound files
automatic decision detection. recorded by desktop microphones.
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4.1.1 Decison-Making Dialogue Acts that most topics recur. Therefore, they are given a
In fact, it is difficult to determine whether a di- Standard set of topic descriptions that can be used

alogue act contains information relevant to any deas labels for each identified topic segment. Annota-
cision point without knowing what decisions havetors will only add a new label if they cannot find a
been made in the meeting. Therefore, in this Studgnatch in the standard set. The AMI scenario meet-
DM DAs are annotated in a two-phase procesdfnds contain around 14 topic segments per meeting.
First, annotators are asked to browse through tHeach segment lasts on average 44 dialogue acts long
meeting record and write an abstractive summar§nd contains two DM DAs.
directed to the project manager about the decisions DM Segments are operationalized as topic seg-
that have been made in the meeting. Next, anothgtents that contain one or more DM DAs. Over-
group of three annotators are asked to produce efll, 198 out of 623 (31.78%) topic segments in the
tractive summaries by selecting a subset (arourfP-meeting dataset are DM Segments. As the meet-
10%) of dialogue acts which form a summary of thigngs we use are driven by a predetermined agenda,
meeting for the absent manager to understand whée expect to find that interlocutors are more likely
has transpired in the meeting. to reach decisions when certain topics are brought
Finally, this group of annotators are asked to gélp Analysis shows that some tOpiCS are indeed more
through the extractive dialogue acts one by one arltkely to contain decisions than others. For example,
judge whether they support any of the sentences f#0% of the segments labelled as Costing and 58%
the decision section of the abstractive summary; if &f those labelled Budget are DM Segments, whereas
dialogue act is related to any sentence in the decisiétilly 7% of the Existing Product segments and none
section, a “decision link” from the dialogue act toOf the Trend-Watching segments are DM Segments.
the decision sentence is added. For those extractEgnctional segments, such as Chitchat, Opening and
dialogue acts that do not have any closely relate@losing, almost never include decisions.
sentence, the annotators are not obligated to speci
a link. We then label the dialogue acts that have on 2 Features Used
or more decision links as DM DAs. To provide a qualitative account of the effect of dif-
In the 50 meetings we used for the experimentderent feature types on the task of automatic decision
the annotators have on average found four decisiomtection, we have conducted empirical analysis on
per meeting and specified around two decision linkipur major types of features: lexical, prosodic, con-
to each sentence in the decision summary sectioigxtual and topical features.
Overall, 554 out of 37,400 dialogue acts have been .
annotated as DM DAs, accounting for 1.4% of all di—4'2'l L exical Features
alogue acts in the data set and 12.7% of the orginal Previous research has studied lexical differences
extractive summary (which is consisted of the ex{l-e., occurrence counts of N-grams) between var-
tracted dialogue acts). An earlier analysis has etQus aspects of speech, such as topics (Hsueh and
tablished the intercoder reliability of the two-phasévioore, 2006), speaker gender (Boulis and Osten-
process at the level of kappa ranging from 0.5 télorf, 2005), and story-telling conversation (Gordon
0.8. In this round of experiment, for each meetingnd Ganesan, 2005). As we expect that lexical dif-
in the 50-meeting dataset we randomly choose tHgrences also exist in DM conversations, we gener-
DM DA annotation of one annotator as the sourec cited language models from the DM Dialogue Acts in

its ground truth data. the corpus. The comparison of the language models
o _ _ generated from the DM dialogue Acts and the rest of
4.1.2 Decision-Making Topic Segments the conversations shows that some differences exist

Topic segmentation has also been annotated fobetween the two models: (1) decision making con-
the AMI meeting corpus. Annotators had the freeversations are more likely to contaime thanl and
dom to mark a topic as subordinated (down to tw&’ou (2) in decision-making conversations there are
levels) wherever appropriate. As the AMI meetingsnore explicit mentions of topical words, suchas
are scenario-driven, annotators are expected to finnced chipsndfunctional design(3) in decision-
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Type Feature

Duration Number of words spoken in current, previous and next subgdis
Duration (in seconds) of current, previous and next subdizé
Pause Amount of silence (in seconds) preceding a subdialogue

Amount of silence (in seconds) following a subdialogue
Speechratg  Number of words spoken per second in current, previous ardsubdialogue
Number of syllables per second in current, previous and selxtlialogue

Energy Overall energy level
Average energy level in the first, second, third, and fourthrtgr of a subdialogue
Pitch Maximum and minimum FO, overall slope and variance

Slope and variance at the first 100 and 200 ms and last 100 &ch20
at the first and second half, and at each quarter of the suigdial

Table 1:Prosodic features used in this study.

making conversations, there are fewer negative eimmediate prosodic contexts, and thus we also in-
pressions, such dsdon't think and| don't know clude prosodic features of the immediately preced-
In an exploratory study using unigrams, as well agig and following dialogue acts. Table 1 contains
bigrams and trigrams, we found that using bigrama list of automatically generated prosodic features
and trigrams does not improve the accuracy of clasised in this study.

sifying DM DAs, and therefore we include only uni-

grams in the set of lexical features in the experimentg2-3  Contextual Features

reported in Section 6. From our qualitative analysis, we expect that con-
. textual features specific to the AMI corpus, such as
42.2 Prosodic Festures the speaker role (i.e., PM, ME, ID, UID) and meet-

Functionally, prosodic features, i.e., energy, anthg type (i.e., kick-off, conceptual design, functional
fundamental frequency (FO), are indicative of segdesign, detailed design) to be characteristic of the
mentation and saliency. In this study, we followbMm DAs. Analysis shows that (1) participants as-
Shriberg and Stolcke’s (2001) direct modelling apsigned to the role of PM produce 42.5% of the DM
proach to manifest prosodic features as duratiombAs, and (2) participants make relatively fewer de-
pause, speech rate, pitch contour, and energy levelsions in the kick-off meetings. Analysis has also
We utilize the individual sound files provided in thedemonstrated a difference in the type, the reflexiv-
AMI corpus. To extract prosodic features from thejty! and the number of addressees, between the DM
sound files, we use the Snack Sound Toolkit to cOMPAs and the non-DM DAs. For example, dialogue
pute a list of pitch and energy values delimited bycts of typeinform, suggest, elicit assessment and
frames of 10 ms, using the normalized cross correladicit inform are more likely to be DM DAs.
tion function. Then we apply a piecewise linearisa- e have also found that immediately preceding
tion procedure to remove the outliers and average thg,q following dialogue acts are important for iden-
linearised values of the units within the time framqifying DM DAs. For example,stalls and frag-
of a word. Pitch contour of a dialogue act is apments preceding andragments following a DM

proximated by measuring the pitch slope at multipa are more likely than for non-DM DAS. In
ple points within the dialogue act, e.g., the firstand_____
last 100 and 200 ms. The rate of speech is calcu- According to the annotation guideline, the reflexivity re-

flects on how the group is carrying on the task. In this case, th
lated as both the number of words spoken per S€ftiterlocutors pause to evaluate the group performanceoftes

ond and the number of syllables per second. Wehen it comes to decision making.

use Festival's speech synthesis front-end to return ’STALL is where people start talking before they are ready,
h d svilabificati inf ti A or keep speaking when they haven't figured out what to say;

phonémes and Syllabification in Orm_a 'On'_ n (?X'FRAGMENT is the segment which is not really speech or is

ploratory study has shown the benefits of includingnclear enough to be transcribed, or where the speaker did no
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contrast, there is a lower chance of seemug- (D) using all available features (ALL).
gest and elicit-type DAs (i.e.dlicit-inform, elicit-
suggestion, elicit-assessment) in the preceding and 6 Results

following DM DASs. 6.1 Classifying DM Segments

4.24 Topical Features Detecting DM segments is necessary for interpret-
As reported in Section 4.1.2, we find that intering decisions, as it provides information about the
locutors are more likely to reach decisions when cerurrent topic of discussion. Here we combine the
tain topics are brought up. Also, we expect decisionpredictions of the DM DAs to classify each unseen
making conversations to take place towards the eridpic segment in the test set as either DM Segment
of a topic segment. Therefore, in this study we in{POS) or non-DM Segment (NEG). Recall that we
clude the following features: the label of the currentlefined a DM Segment as a segment that contains
topic segment, the position of the DA in a topic segene or more hypothesized DM DAs. The task of de-
ment (measured in words, in seconds, and in %), thecting DM Segments can thus be viewed as that of
distance to the previous topic shift (both at the topeetecting DM Dialogue Acts in a wider window.
level and sub-topic level)(measured in seconds), the
duration of the current topic segment (both at th®-2 EXPL: Classifying DM DAs
top-level and sub-topic level)(measured in secondsfable 2 reports the performance on the test set. The
) results show that models trained with all features
S Experiment (ALL), including lexical, prosodic, contextual and
51 Classifying DM DAs topical features, yield substantially better perfor-
) ) ] ) mance than the baseline on the task of detecting DM
D_e_tectlng DM DAs is th_e first step of auto_matlc de'DAs. We carried out a one-way ANOVA to exam-
cision detection. FOI"thIS purpose, we trained Maxl'ne the effect of different feature combinations on
Ent models to classify each unseen sample as Qeral accuracy (F1). The ANOVA suggests a reli-
ther DM DA (POS) or non-DM DA (NEG). We per- able effect of feature typ&F (9, 286) = 3.44:p <

formed a 5-fold cross validation on the set of 54) 41y Rows 2-4 in Table 2 report the performance

meetings. In each fold, we trz?uned'MaxEnt r_n_Od'of models in Group B that are trained with a sin-
els from the feature combinations in the trainin

i X ggle type of feature. Lexical features are the most
set, wherein each of the extracted dialogue acts "ggyjjctive features when used alone. We performed
been labelled as either POS or NEG. Then, thg, tagts to determine whether there are statistical
models were used to classify unseen instances lferences among these models and the baseline.

the test set as either POS or NEG. In Section 4.2ye finq that when used alone, only lexical features
we described the four major types of features useﬁi_Xl) can train a better model than the baseline

in this study: unigrams (LX1), prosodic (PROS),, ' 001). However, none of these models yields
contextual (CONT), and topical (TOPIC) featuresa comparable performance to the ALL model.

qu comparispn » We report the naive baseline ob- To study the relative effect of the different fea-

tained by tralr_ung the models_ on the prosodic feat'ure types, Rows 5-8 in the table report the perfor-
tures alone, since th.e prosodic fe'atures can bg 98Nance of models in Group C, which are trained with
grated fully automatically. The d|ff¢rent comblna—a” available features except LX1, PROS, CONT and
ttljon; 0; fgqtureshw;:- h’se‘?‘ fo][ training m.odels CaRoPIC features respectively. The amount of degra-
ve divide _|nto the following four groups: (A) us- dation in the overall accuracy (F1) of each of the
N9 pl’O'SOdIC features alone (BASELINE)’ (B) YS"models in relation to that of the ALL model indi-

ing lexical, contextua_l and t9p|cal feat'ures alon%ates the contribution of the feature type that has
(LX1, CONT, TOPIC); (C) using all available fea- been left out of the model. We performed sign tests

tures except one of the four types of features (ALLEO examine the differences among these models and
LX1, ALL-PROS, ALL-CONT, ALL-TOPIC); and o Al | model. We find that the ALL model out-

get far enough to express the intention. performs all of these modelg < 0.001) except
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Exact Match Lenient Match

Accuracy Precision| Recall| F1 | Precision| Recall| F1
BASELINE(PROS) 0.32 0.06 | 0.1 0.32 01 | o015
LX1 0.53 03 | 0.38 0.6 043 | 05

CONT 0 0 0 0 0 0
TOPIC 0.49 011 | 0.17 0.57 011 | 0.17
ALL-PROS 0.63 047 | 0.54 0.71 0.57 | 0.63
ALL-LX1 0.61 0.34 | 0.44 0.65 043 | 0.52
ALL-CONT 0.66 0.62 | 0.64 0.69 0.68 | 0.69
ALL-TOPIC 0.72 0.54 | 0.62 0.7 0.52 | 0.59
ALL 0.72 0.54 | 0.62 0.76 0.64 | 0.7

Table 2:Effects of different combinations of features on detediiyDAs.

the model trained by leaving out contextual featuretor that of detecting DM Segments stems from the
(ALL-CONT). A closer investigation of the preci- fact that decisions are more likely to occur in certain
sion and recall of the ALL-CONT model shows thattypes of topic segments. In turn, training models
the contextual features are detrimental to recall bwvith topical features helps eliminate incorrect pre-
beneficial for precision. The mixed result is due talictions of DM DAs in these types of topic seg-

the fact that models trained with contextual featurements. However, the accuracy gain of the TOPIC
are tailored to recognize particular types of DM di-model on detecting certain types of DM Segments
alogue acts. Therefore, using these contextual fedees not extend to all types of DM Segments. This is
tures improves the precision for these types of DMhown by the significantly lower recall of the TOPIC

DAs but reduces the overall recognition accuracy. model over the baseling < 0.001).

The last three columns of Table 2 are the results Finally, Rows 5-8 report the performance of the
obtained using a lenient match measure, allowing models in Group (C) on the task of detecting DM
window of 10 seconds preceding and following a hySegments. Sign tests again show that the model that
pothesized DM DA for recognition. The better re-is trained with all available features (ALL) outper-
sults show that there is room for ambiguity in theforms the models that leave out lexical, prosodic,

assessment of the exact timing of DM DAs. or topical featuregp < 0.05). However, the ALL
model does not outperform the model that leaves out
6.3 EXP2: Classifying DM Segments contextual features. In addition, the contextual fea-

. tures degrade the recall but improve the precision
As expected, the results in Table 3 are better tha§ly the task of detecting DM Segments. Calculat-
those reported in Table 2, achieving at best 83%,y how much the overall accuracy of the models in
overall accuracy.The model that combines all feagroup C degrades from the ALL model shows that

tures (ALL) yields significantly better results thanihe most predictive features are the lexical features,
the baseline. The ANOVA shows a reliable effect og|owed by the topical and prosodic features.

different feature types on the task of detecting DM

Segmentg F'(11,284) = 2.33;p <= 0.01). Rows 7 Discussion

2-4 suggest that lexical features are the most pre-

dictive in terms of overall accuracy. Sign tests conAs suggested by the mixed results obtained by the
firm the advantage of using lexical features (LX1)model that is trained without the contextual features,

over the baseline (PROS) < 0.05). Interest- the two-phase decision annotation procedure (as de-
ingly, the model that is trained with topical featuresscribed in Section 4.1) may have caused annota-
alone (TOPIC) yields substantially better precisiortors to select dialogue acts that serve different func-
(p < 0.001). The increase from 49% precision fortional roles in a decision-making process in the set
the task of detecting DM DAs (in Table 2) to 91%of DM DAs. For example, in the dialogue shown
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Exact Match (1) A: but um the feature that we considered for it
— not getting lost.
Accuracy Precision| Recall | F1 (2) B: Right. Well
BASELINE(PROS) 0.67 0.39 0.49 ES; B: Wﬁre talking aﬁout thatla little bit
4) B: when we got that emai
LX1 0.69 0.69 0.69 (5) B: and we think that each of these are so
CONT 0 0 0 distinctive, that it it's not just like another piece of
TOPIC 0.91 0.17 0.29 technology around your house.
(6) B: It's gonna be somewhere that it can be seen.
ALL-PROS 0.82 0.76 | 0.79 (7) A: Mm-hmm.
ALL-LX1 0.79 0.64 0.7 (8) B: So we're we're not thinking that it's gonna
be as critical to have the loss
ALL-CONT 0.79 0.86 0.83 (9) D: But ifit's like under covers or like in a couch
ALL-TOPIC 0.75 0.73 0.74 you still can’t see it.
ALL 0.86 0.8 0.82

(10) A: Okay , that's a fair evaluation.
(11) A: Um we so we do we've decided not to

Table 3:Effects of different combinations of features
worry about that for now.

on detecting DM Segments.

in Figure 1, the annotators have marked dialogue Figure 1: Example decision-making discussion
act (1), (5), (8), and (11) as the DM DAs related

to this decision:“There will be no feature to help .
find the remote when it is misplaced’Among the in the words (e.g.we), the contextual features (e.g.,

four DM DAs, (1) describes the topic of what thismeeting typespeaker roledialogue act typk and

decision is about; (5) and (8) describe the argumen@e topical features. The experimental results have

that support the decision-making process: (11) irsuggested that (1) the model combining all the avail-

dicates the level of agreement or disagreement f&ble features performs substantially better, achiev-
this decision. Yet these DM DAs which play dif- ing 62% and 82% overall accuracy on the task of

ferent functional roles in the DM process may eacﬁietecting DM DAIS and 'I[ha_t Olf fdetecting DMhSeg—
have their own characteristic features. Training on.@e.nts, respectively, (2) lexica eatyres are the best
model to recognize DM DAs of all functional roles indicators for both the task of detecting DM DAs and

may have degraded the performance on the classimaF of detecting' D,M Segments,'and (?f) combining
cation tasks. Developing models for detecting DM(_)p_'CaI features is |mportant for improving the pre-
DAs that play different functional roles requires acision for the task of detecting DM Segments.

larger scale study to discover the anatomy of gen- Many of the features used in this study require hu-
eral decision-making discussions. man intervention, such as manual transcriptions, an-

notated dialogue act segmentations and labels, anno-
8 Conclusions and Future Work tated topic segmentations and labels, and other types

of meeting-specific features. Our ultimate goal is to
This is the first study that aimed to detect segmenidentify decisions using automatically induced fea-
of the conversation that contain decisions. We haveires. Therefore, studying the performance degra-
(1) empirically analyzed the characteristic featureglation when using the automatically generated ver-
of DM dialogue acts, and (2) computational develsions of these features (e.g., ASR words) is essen-
oped models to detect DM dialogue acts and DMal for developing a fully automated component on
topic segments, given the set of characteristic fealetecting decisions immediately after a meeting or
tures. Empirical analysis has provided a qualitativeven for when a meeting is still in progress. An-
account of the DM-characteristic features, whereasther problem that has been pointed out in Section 6
training the computational models on different feaand in Section 7 is the different functional roles of
ture combinations has provided a quantitative ad®M dialogue acts in current annotations. Purver et
count of the effect of different feature types onal. (2006) have suggested a hierarchical annotation
the task of automatic decision detection. Empirischeme to accommodate the different aspects of ac-
cal analysis has exhibited demonstrable difference®n items. The same technique may be applicable
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in a more general decision detection task. D. Hillard, M. Ostendorf, and E. Shriberg. 2003. Detec-
tion of agreementvs. disagreementin meetings: Train-
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Abstract

The quality of a sentence translated by a
machine translation (MT) system is dif-
ficult to evaluate. We propose a method
for automatically evaluating the quality
of each trandation. In general, when
translating a given sentence, one or more
conditions should be satisfied to maintain
a high trandation quality. In English-
Japanese tranglation, for example, prepo-
sitions and infinitives must be appropri-
ately translated. We show severa proce-
dures that enable evaluating the quality of
a translated sentence more appropriately
than using conventional methods. The
first procedure is constructing a test set
where the conditions are assigned to each
test-set sentence in the form of yesno
guestions. The second procedure is devel-
oping a system that determines an answer
to each question. The third procedure is
combining a measure based on the ques-
tions and conventional measures. We also
present a method for automatically gener-
ating sub-goalsin the form of yes/no ques-
tions and estimating the rate of accom-
plishment of the sub-goals. Promising re-
sults are shown.

1 Introduction

In machine translation (MT) research, appropriately
evaluating the quality of MT results is an important
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issue. In recent years, many researchers have tried
to automatically evaluate the quality of MT and im-
prove the performance of automatic MT evaluations
(Niessen et al., 2000; Akibaet al., 2001; Papineni et
al., 2002; NIST, 2002; Leusch et al., 2003; Turian et
al., 2003; Babych and Hartley, 2004; Lin and Och,
2004; Banerjee and Lavie, 2005; Gimehez et a.,
2005) because improving the performance of auto-
matic MT evaluation is expected to enable usto use
and improve MT systems efficiently. For example,
Och reported that the quality of M T results was im-
proved by using automatic M T evaluation measures
for the parameter tuning of an MT system (Och,
2003). This report shows that the quality of MT re-
sults improves as the performance of automatic MT
evaluation improves.

MT systems can be ranked if a set of MT re-
sults for each system and their reference translations
are given. Usualy, about 300 or more sentences
are used to automatically rank MT systems (Koehn,
2004). However, the quality of a sentence trand ated
by an MT system is difficult to evaluate. For exam-
ple, the results of five MTs into Japanese of the sen-
tence “ The percentage of stomach cancer among the
workers appears to be the highest for any asbestos
workers” are shown in Table 1. A conventional au-
tomatic evaluation method ranks the fifth MT result
first although its human subjective evaluation is the
lowest. This is because conventional methods are
based on the similarity between atranslated sentence
and its reference translation, and they give the trans-
lated sentence a high score when the two sentences
are globally similar to each other in terms of lexical
overlap. However, in the case of the above example,
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Table 1: Examples of conventional automatic evaluations.

Origina sentence The percentage of stomach cancer among the workers appears to be the highest for any asbestos work-
ers.
Reference trandlation | roudousha no igan no wariai wa , asubesuto roudousha no tame ni saikou to naru youda .
(in Japanese)
System | MT results BLEU | NIST | FHuency | Adequacy
1 roudousha no aida no igan no paasentegji wa , donoyouna ishiwata | 0.2111 | 2.1328 2 3
roudousha no tame ni demo mottomo ookii youdearu .
2 roudousha no aida no igan no paasentegji wa, arayuru asubesuto | 0.2572 | 2.1234 2 3
roudousha no tame ni mottomo takai youni omowa re masu .
3 roudousha no aida no igan no paasentegji wa donna asubesuto no tame 0 1.8094 1 2
ni mo mottomo takai youni mie masu
4 roudousha no aida no igan no paasentegji wa nin’ino ishiwata ni wa 0 1.5902 1 2
mottomo takaku mie masu .
5 roudousha no naka no igan no wariai wa donna asubesuto ni mo mot- | 0.2692 | 2.2640 1 2
tomo takai youni mieru .

the most important thing to maintain a high trans-
lation quality is to correctly translate “for” into the
target language, and it would be difficult to detect
the importance just by comparing an MT result and
its reference translations even if the number of ref-
erence translationsis increased.

In general, when trandlating a given sentence, one
or more conditions should be satisfied to maintain a
high translation quality. In this paper, we show that
constructing a test set where the conditions that are
mainly established from a linguistic point of view
are assigned to each test-set sentence in the form
of yes/no questions, developing a system that de-
termines an answer to each question, and combin-
ing a measure based on the questions and conven-
tional measures enable the evaluation of the quality
of atrandated sentence more appropriately than us-
ing conventional methods. We also present amethod
for automatically generating sub-goalsin theform of
yes/no questions and estimating the rate of accom-
plishment of the sub-goals.

2 Test Set for Evaluating Machine
Trandation Quality

2.1 Test Set

Two main types of data are used for evaluating MT
quality. One type of data is constructed by arbi-
trarily collecting sentence pairs in the source- and
target-languages, and the other is constructed by in-
tensively collecting sentence pairs that include lin-
guistic phenomena that are difficult to automatically
translate. Recently, MT evaluation campaigns such
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as the International Workshop on Spoken Language
Tranglation*, NIST Machine Translation Evaluation
2 and HTRDP Evaluation 3 were organized to sup-
port the improvement of MT techniques. The data
used in the evaluation campaigns were arbitrarily
collected from newspaper articles or travel conver-
sation data for fair evaluation. They are classified
as the former type of data mentioned above. On the
other hand, the dataprovided by NTT (Ikeharaet al.,
1994) and that constructed by JEIDA (Isahara, 1995)
are classified as the latter type. Almost al the data
mentioned above consist of only parallel translations
in two languages. Datawith information for eval uat-
ing MT results, such as JEIDA's are rarely found. In
this paper, we call data that consist of parallel trans-
lations collected for MT evaluation and that the in-
formation for MT evaluation is assigned to, a test
Set.

The most characteristic information assigned to
the JEIDA test set is the yes/no question for assess-
ing the trandation results. For example, a yesno
guestion such as “Is ‘for’ trandated into an expres-
sion representing a cause/reason such as ‘de’?” (in
Japanese) is assigned to a test-set sentence. We can
evaluate MT results objectively by answering the
guestion. An example of a test-set sample consist-
ing of an ID, a source-language sample sentence, its
reference translation, and a question is as follows.

http:/www.dlt.atr.j p/l WSLT2006/
Zhttp://www.nist.gov/speech/tests/mt/index.htm
3hitp://www.863data.org.cn/



ID 117131

Sample sen- The percentage of stomach can-

tence cer among the workers appears
to be the highest for any asbestos
workers.

Reference roudousha no igan no wariai wa

translation , asubesuto roudousha no tame

(in Japanese) ni saikou to naru youda .

Question Is “appear to” trandated into an

auxiliary verb such as “youda”?

The questions are classified mainly in terms of
grammar, and the numbers to the left of the hyphen-
ation of each ID such as 1.1.7.1.3 represent the cat-
egories of the questions. For example, the above
question is related to catenative verbs.

The JEIDA test set consists of two parts, one for
the evaluation of English-Japanese M T and the other
for that of Japanese-English MT. We focused on the
part for English-Japanese MT. This part consists of
769 sample sentences, each of which has a yes/no
guestion.

The 769 sentences were translated by using five
commercial MT systems to investigate the relation-
ship between subjective evaluation based on yes/no
guestions and conventional subjective evaluation
based on fluency and adequacy. The instruction for
the subjective evaluation based on fluency and ad-
equacy followed that given in the TIDES specifi-
cation (TIDES, 2002). The subjective evaluation
based on yes/no questions was done by manually
answering each question for each translation. The
subjective evaluation based on the yes/no questions
was stable; namely, it was almost independent of
the human subjects in our preliminary investigation.
There were only two questions for which the an-
swers generated inconsistency in the subjective eval-
uation when 1,500 question-answer pairs were ran-
domly sampled and evaluated by two human sub-
jects.

Then, weinvestigated the correl ation between the
two types of subjective evaluation. The correlation
coefficients mentioned in this paper are statistically
significant at the 1% or less significance level. The
Spearman rank-order correlation coefficient is used
in this paper. In the subjective evaluation based on
yes/no questions, yes and ho were numericaly trans-
formed into 1 and —1. For 3,845 trandations ob-
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tained by using five M T systems, the correlation co-
efficients between the subjective evaluations based
on yes/no questions and based on fluency and ade-
quacy were 0.48 for fluency and 0.63 for adequacy.
These results indicate that the two subjective evalu-
ations have relatively strong correlations. The cor-
relation is especialy strong between the subjective
evaluation based on yes/no questions and adequacy.

2.2 Expansion of JEIDA Test Set

Each sample sentence in the JEIDA test set has only
one question. Therefore, in the subjective evalua-
tion using the JEIDA test set, trandation errors that
do not involve the pre-assigned question are ignored
even if they are serious. Therefore, tranglations that
have serious errors that are not related to the ques-
tion tend to be evaluated as being of high quality.
To solve this problem, we expanded the test set by
adding new questions about translations with the se-
rious errors.

Sentences whose average grades were three or
less for fluency and adequacy for the trandation re-
sults of the five MT systems were selected for the
expansion. Besides them, sentences whose average
grades were more than three for fluency and ade-
quacy for the trandlation results of the five MT sys-
tems were selected when a majority of evaluation
results based on yes/no questions about the tranda-
tions of the five MT systems were no. The number
of selected sentences was 150. The expansion was
manually performed using the following steps.

1. Serioustrandation errors are extracted from the
MT results.

2. For each extracted error, questions strongly re-
lated to the error are searched for in the test set.
If related questions are found, the same types
of questions are generated for the selected sen-
tence, and the same ID as that of the related
guestion is assigned to each generated question.
Otherwise, questions are newly generated, and
anew ID is assigned to each generated ques-
tion.

3. Each MT result is evaluated according to each
added question.

Eventually, one or more guestions were assigned to
each selected sentencein thetest set. Among the 150



Table 2: Expanded test-set samples.

ID 117131
Origina Sample sentence The percentage of stomach cancer among the workers appears to be the highest for any
asbestos workers.
Reference trandation  roudousha no igan no wariai wa , asubesuto roudousha no tame ni saikou to naru youda
(in Japanese) .
Question (Q-0) Is“appear to” trandated into an auxiliary verb such as “youda”?
ID 11.6.1.35
Expanded | Trandation error “For” is not translated appropriately.
Question-1 (Q-1) Is“for” translated into an expression representing a cause/reason such as*“. . .de’?
ID Additional-1
Expanded | Trandation error Some expressions are not translated.
Question-2 (Q-2) Areal English words trandated into Japanese?
Table 3: Examples of subjective evaluations based on yes/no questions.
Answer
System | MT results Q0 Q1 Q-2| Fluency | Adequacy
1 roudousha no aida no igan no paasentegji wa , donoyounaishiwata | Yes No Yes 2 3
roudousha no tame ni demo mottomo ookii youdearu .
2 roudousha no aida no igan no paasenteegji wa, arayuru asubesuto | Yes Yes Yes 2 3
roudousha no tame ni mottomo takai youni omowa re masu .
3 roudousha no aida no igan no paasentegji wa donna asubesutono | Yes No No 1 2
tarme ni mo mottomo takai youni mie masu
4 roudousha no aida no igan no paasentegji wa nin'ino ishiwatani | Yes No No 1 2
wa mottomo takaku mie masu .
5 roudousha no naka no igan no wariai wa donna asubesutoni mo | Yes No No 1 2
mottomo takai youni mieru .

selected sentences, questions were newly assigned
to 103 sentences. The number of added questions
was 148. The maximum number of questions added
to a sentence was five. After expanding the test set,
the correlation coefficients between the subjective
evaluations based on yes/no questions and based on
fluency and adequacy increased from 0.48 to 0.51
for fluency and from 0.63 to 0.66 for adequacy. The
differences between the correlation coefficients ob-
tained before and after the expansion are statistically
significant at the 5% or less significance level for
adequacy. These results indicate that the expansion
of the test set significantly improves the correlation
between the subjective evaluations based on yes/no
questions and based on adequacy. When two or
more questions were assigned to a test-set sentence,
the subj ective evaluation based on the questions was
decided by the majority answer. The mgority an-
swers, yes and no, were numerically transformed
into 1 and —1. Ties between yes and no were trans-
formed into 0. Examples of added questions and
the subj ective evaluations based on the questions are
shownin Tables2 and 3.
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3 Automatic Evaluation of Machine
Trangation Based on Rate of
Accomplishment of Sub-goals

3.1 A New Measure for Evaluating Machine
Trandation Quality

The JEIDA test set was not designed for auto-
matic evaluation but for human subjective evalua-
tion. However, a measure for automatic MT evalu-
ation that strongly correlates fluency and adequacy
is likely to be established because the subjective
evaluation based on yes/no questions has a rela-
tively strong correlation with the subjective evalua-
tion based on fluency and adequacy, as mentioned in
Section 2. In this section, we describe a method for
automatically evaluating MT quality by predicting
an answer to each yes/no question and using those
answers.

Hereafter, we assume that each yes/no question is
defined as a sub-goal that a given translation should
satisfy and that the sub-goal is accomplished if the
answer to the corresponding yes/no question to the
sub-goal is yes. We also assume that the sub-goa
is unaccomplished if the answer isno. A new eval-
uation score, A, is defined based on a multiple lin-



Table 4: Examples of Patterns.

Sample sentence
Question
Pattern

She lived there by herself.
Is“by herself” translated as “ hitori de’?

translation. Otherwise, the answer is no.

The answer is yes if the pattern [hitori dake delhitori kiri de |tandoku de|tanshin de] is included in a

Sample sentence
Question
Pattern

They speak English in New Zealand.

answer is no.

The personal pronoun “they” is omitted in atranglation like “nyuujiilando de wa eigo wo hanasu”?
The answer is yes if the pattern [karera wa|sore ra wa] is not included in a translation. Otherwise, the

ear regression model as follows using the rate of ac-
complishment of the sub-goals and the similarities
between a given trandation and its reference trans-
lation. The best-fitted line for the observed data is
calculated by the method of least-squares (Draper
and Smith, 1981).

A = zm:)\gi X S; 1)
i=1
+ il()\Qj X Qi+ Ag x Q)+ e
=
Q = { é i(ftili)i(i);l is accomplished @
Q;- _ { (1) i)ftlslli)v%?:el is unaccomplished 3

Here, the term @); corresponds to the rate of accom-
plishment of the sub-goal having the i-th ID, and
A@, iIsaweight for the rate of accomplishment. The
term Q;- corresponds to the rate of unaccomplish-
ment of the sub-goal having thei-th ID, and A, isa

weight for the rate of unaccomplishment. The value
n indicates the number of types of sub-goals. The
term )\, is constant.

Theterm S; indicatesasimilarity between atrans-
lated sentence and its reference translation, and g,
isaweight for the similarity. Many methods for cal-
culating the similarity have been proposed (Niessen
et a., 2000; Akibaet al., 2001; Papineni et al., 2002;
NIST, 2002; Leusch et a., 2003; Turian et a ., 2003;
Babych and Hartley, 2004; Lin and Och, 2004;
Banerjee and Lavie, 2005; Gimehez et al., 2005).
In our research, 23 scores, namely BLEU (Papineni
et a., 2002) with maximum n-gram lengths of 1, 2,
3, and 4, NIST (NIST, 2002) with maximum n-gram
lengthsof 1, 2, 3,4, and 5, GTM (Turian et a., 2003)
with exponents of 1.0, 2.0, and 3.0, METEOR (ex-
act) (Banerjee and Lavie, 2005), WER (Niessen et
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al., 2000), PER (Leusch et al., 2003), and ROUGE
(Lin, 2004) with n-gram lengths of 1, 2, 3, and 4 and
4 variants (LCS, Sk, SUx, W-1.2), were used to cal-
culate each similarity .S;. Therefore, the value of m
in Eq. (1) was 23. Japanese word segmentation was
performed by using JUMAN 4 in our experiments.

Asyou can see, the definition of our new measure
is based on a combination of an evaluation measure
focusing on local information and that focusing on
global information.

3.2 Automatic Estimation of Rate of
Accomplishment of Sub-goals

The rate of accomplishment of sub-goals is esti-
mated by determining the answer to each question
asyes or no. This section describes a method based
on simple patterns for determining the answers.

An answer to each question is automatically de-
termined by checking whether patterns are included
in atranslation or not. The patterns are constructed
for each question. All of the patterns are expressed
in hiragana characters. Before applying the pat-
terns to a given trandation, the trandlation is trans-
formed into hiragana characters, and al punctuation
is eliminated. The transformation to hiragana char-
acters was performed by using JUMAN in our ex-
periments.

Test-set sentences, the questions assigned to
them, and the patterns constructed for the questions
are shown in Table 4. In the patterns, the symbol “|”
represents “OR”.

3.3 Automatic Sub-goal Generation and
Automatic Estimation of Rate of
Accomplishment of Sub-goals

We found that expressions important for maintain-
ing a high trandation quality were often commonly

“http://www.kc.t.u-tokyo.ac.jp/nl-resource/juman.html



included in the reference trandations for each test-
set sentence. We aso found that the expression was
also related to the yes/no question assigned to the
test-set sentence. Therefore, we automatically gen-
erate yes/no questions in the following steps.

1. For each test-set sentence, a set of words com-
monly appearing in the reference translations
are extracted.

2. For each combination of n words in the set
of words extracted in the first step, skip word
n-grams commonly appearing in the reference
translationsin the same word order are selected
as a set of common skip word n-grams.

3. For each test-set sentence, the sub-goal is de-
fined asthe yes/no question “Areall of the com-
mon skip word n-gramsincluded in the tranda
tion?”

If no common skip word n-grams are found, the
yes/no question is not generated. The answer to the
yes/no question is determined to be yes if al of the
common skip word n-grams are included in a trans-
lation. Otherwise, the answer is determined to be
no.

This scheme assigns greater weight to important
phrases that should be included in the translation to
maintain a high trand ation quality. Our observation
is that those important phrases are often common
between human translations. A similar scheme was
proposed by Babych and Hartley (Babych and Hart-
ley, 2004) for BLEU. Intheir scheme, greater weight
is assigned to components that are salient through-
out the document. Therefore, their scheme focuses
on global context while our scheme focuses on local
context. We believe that the two schemes are com-
plementary to each other.

4 Experimentsand Discussion

In our experiments, the translation results of three
MT systems and their subjective evaluation results
were used as a development set for constructing the
patterns described in Section 3.2 and for tuning the
parameters As,, Ag;, Ay, and Ac in Eq. (1). The
translations and evaluation results of the remaini ng
two MT systems were used as an evaluation set for
testing.
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In the development set, each test-set sentence has
at least one question, at least one reference transla
tion, three MT results, and subjective evaluation re-
sults of the three MT results. The patterns for deter-
mining yes/no answers were manually constructed
for the questions assigned to the 769 test-set sen-
tences. There were 917 questions assigned to them.
Among them, the patterns could be constructed for
898 questions assigned to 767 test-set sentences.
The remaining 19 questions were skipped because
making simple patterns as described in Section 3.2
was difficult; for example, one of the questions
was “Is the whole sentence translated into one sen-
tence?’. The yes/no answer determination accura-
cies obtained by using the patterns are shown in Ta
ble 5.

Table 5: Results of yes/no answer determination.

Test set Accuracy
Development | 97.6% (2,629/2,694)
Evauation 82.8% (1,487/1,796)

We investigated the correlation between the eval-
uation score, A in Eq. (1) and the subjective eval-
uations, fluency and adequacy, for the 769 test-set
sentences. First, to maximize the correlation coeffi-
cients between the evaluation score, A, and the hu-
man subjective evauations, fluency and adequacy,
the optimal values of \g;, Ag,, )\Q/‘, and A, in
Eg. (1) were investigated using thejdevelopment
set within aframework of multiple linear regression
modeling (Draper and Smith, 1981). Then, the cor-
relation coefficients were investigated by using the
optimal value set. The results are shown in Table 6,
7, and 8. In these tables, “ Conventional method” in-
dicates the correlation coefficients obtained when A
was calculated by using only similarities .S;. “Con-
ventional method (combination)” is a combination
of existing automatic evaluation methods from the
literature. “Our method (automatic)” indicates the
correlation coefficients obtained when the results of
the automatic determination of yes/no answers were
used to calculate Q; and Q; in Eq. (1). For the 19
guestions for which the patterns could not be con-
structed, @; was set at 0. “Our method (full au-
tomatic)” indicates the correlation coefficients ob-
tained when the results of the automatic sub-goal
generation and determination of rate of accomplish-



Table 6: Coefficients of correlation between evaluation score A and fluency/adequacy. (A reference tranda-
tion is used to calculate S;.)

Method fluency adequacy
Development set | Evaluation set | Development set | Evaluation set
Conventional method (WER) 043 0.48 0.42 0.48
Conventional method (combination) 0.52 0.51 0.49 0.47
Our method (automatic) 0.90x 0.59x 0.89x% 0.62x
Our method (upper bound) 0.90x% 0.62x 0.90x% 0.68:

Table 7. Coefficients of correlation between evaluation score A and fluency/adequacy. (Three reference
translations are used to calculate S;.)

Method fluency adequacy
Development set | Evaluation set | Development set | Evaluation set
Conventiona method (WER) 0.47 0.51 0.45 0.51
Conventional method (combination) 0.54 0.54 0.51 0.52
Our method (automatic) 0.90x% 0.60x 0.90x% 0.64x
Our method (full automatic) 0.85x% 0.58 0.84x% 0.60x
Our method (upper bound) 0.90x% 0.62x 0.90x% 0.69:x

Table 8. Coefficients of correlation between evaluation score A and fluency/adequacy. (Five reference
translations are used to calculate S;.)

Method fluency adequacy
Development set | Evaluation set | Development set | Evaluation set
Conventiona method (WER) 0.49 0.53 0.46 0.53
Conventional method (combination) 0.56 0.56 0.52 0.54
Our method (automatic) 0.90x% 0.60 0.90x% 0.63x
Our method (full automatic) 0.86x 0.59 0.85x% 0.60x
Our method (upper bound) 0.91x 0.63x 0.90x 0.69:x

In these tables, * indicates significance at the 5% or less significance level.

ment of sub-goals were used to calculate @; and Q;»
in Eg. (1). Skip word trigrams, skip word bigrams,
and skip word unigrams were used for generating
the sub-goals according to our preliminary experi-
ments. “Our method (upper bound)” indicates the
correlation coefficients obtained when human judg-
ments on the questions were used to calculate Q;
and Q.

Asshownin Table6, 7, and 8, our methods signif-
icantly outperform the conventional methods from
literature. Note that WER outperformed other indi-
vidua measures like BLEU and NIST in our exper-
iments, and the combination of existing automatic
evaluation methods from the literature outperformed
individual lexical similarity measures by themselves
in amost all cases. The differences between the
correlation coefficients obtained using our method
and the conventional methods are statistically sig-
nificant at the 5% or less significance level for flu-
ency and adequacy, even if the number of reference
translations increases, except in three cases shown
in Table 7 and 8. This indicates that considering
the rate of accomplishment of sub-goals to automat-
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ically evaluate the quality of each trandlation is use-
ful, especialy when the number of reference trans-
lationsis small.

The differences between the correlation coeffi-
cients obtai ned using two automatic methods are not
significant. Theseresultsindicate that we can reduce
the development cost for constructing sub-goals.
However, there are still significant gaps between the
correlation coefficients obtained using a fully auto-
matic method and upper bounds. These gaps indi-
cate that we need further improvement in automatic
sub-goal generation and automatic estimation of rate
of accomplishment of sub-goals, which isour future
work.

Human judgments of adequacy and fluency are
known to be noisy, with varying levels of intercoder
agreement. Recent work has tended to apply cross-
judge normalization to address this issue (Blatz et
al., 2003). We would like to evaluate against the
normalized datain the future.



5 Conclusion and Future Work

We demonstrated that the quality of atranslated sen-
tence can be evaluated more appropriately than by
using conventional methods. That was demonstrated
by constructing a test set where the conditions that
should be satisfied to maintain a high translation
quality are assigned to each test-set sentence in the
form of a question, by developing a system that de-
termines an answer to each question, and by com-
bining a measure based on the questions and con-
ventional measures. We also presented a method for
automatically generating sub-goals in the form of
yes/no questions and estimating the rate of accom-
plishment of the sub-goals. Promising results were
obtained.

In the near future, we would like to expand the
test set to improve the upper bound obtained by
our method. We are also planning to expand the
method and improve the accuracy of the automatic
sub-goal generation and determination of the rate of
accomplishment of sub-goals. The sub-goals of a
given sentence should be generated by considering
the complexity of the sentence and the alignment in-
formati on between the original source-language sen-
tence and its trandation. Further advanced genera-
tion and estimation would give us information about
the erroneous parts of M T results and their quality.
We believe that future research would alow us to
develop high-quality MT systems by tuning the sys-
tem parameters based on the automatic MT evalua-
tion measures.
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Sour ce-L anguage Features and Maximum Correlation Training
for Machine Trandation Evaluation
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Abstract

We propose three new features for MT
evaluation: source-sentence constrained
n-gram precision, source-sentence re-
ordering metrics, and discriminative un-
igram precision, as well as a method of
learning linear feature weights to directly
maximize correlation with human judg-
ments. By aligning both the hypothe-
sis and the reference with the source-
language sentence, we achieve better cor-
relation with human judgments than pre-
viously proposed metrics. We further
improve performance by combining indi-
vidual evaluation metrics using maximum
correlation training, which is shown to be
better than the classification-based frame-
work.

1 Introduction

Evaluation has long been a stumbling block in the
development of machine translation systems, due to
the simple fact that there are many correct trans-
lations for a given sentence. The most commonly
used metric, BLEU, correlates well over large test
sets with human judgments (Papineni et al., 2002),
but does not perform as well on sentence-level eval-
uation (Blatz et al., 2003). Later approaches to im-
prove sentence-level evaluation performance can be
summarized as falling into four types:

shown to have better fluency evaluation per-
formance than metrics based on n-grams such
BLEU and NIST (Doddington, 2002).

Metrics based on syntactic similarities such as
the head-word chain metric (HWCM) (Liu and
Gildea, 2005). Such metrics try to improve flu-
ency evaluation performance for MT, but they
heavily depend on automatic parsers, which are
designed for well-formed sentences and cannot
generate robust parse trees for MT outputs.

Metrics based on word alignment between MT
outputs and the references (Banerjee and Lavie,
2005). Such metrics do well in adequacy evalu-
ation, but are not as good in fluency evaluation,
because of their unigram basis (Liu and Gildea,
2006).

Combination of metrics based on machine
learning. Kulesza and Shieber (2004) used
SVMs to combine several metrics. Their
method is based on the assumption that
higher classification accuracy in discriminat-
ing human- from machine-generated transla-
tions will yield closer correlation with human
judgment. This assumption may not always
hold, particularly when classification is diffi-
cult. Lita et al. (2005) proposed a log-linear
model to combine features, but they only did
preliminary experiments based on 2 features.

Following the track of previous work, to improve

evaluation performance, one could either propose

e Metrics based on common loose sequences aew metrics, or find more effective ways to combine
MT outputs and references (Lin and Och, 2004the metrics. We explore both approaches. Much
Liu and Gildea, 2006). Such metrics werework has been done on computing MT scores based
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on the pair of MT output/reference, and we aim tdRate Training (Och, 2003) in the MT community,
investigate whether some other information coulénd is an essential component in building the state-
be used in the MT evaluation, such as source senf-art MT systems. It would seem logical to apply
tences. We propose two types of source-sentensamilar methods to MT evaluation. What is more,
related features as well as a feature based on partiBximum Correlation Training (MCT) enables us
speech. The three new types of feature can be sute-train the weights based on human fluency judg-
marized as follows: ments and adequacy judgments respectively, and
] . thus makes it possible to make a fluency-oriented or
e Source-sentence constrained n-gram pPrecisiofyeqyacy-oriented metric. It surpasses previous MT
Overlapping n-grams between an MT hypothe,etrics approach, where a a single metric evaluates
sisand its refer(_ences do not nec_essanly indicatg, i, fluency and adequacy. The rest of the paper is
correct translation segments, since they coulfganized as follows: Section 2 gives a brief recap of
correspond to different parts of the source Sers_gram precision-based metrics and introduces our
tence. Thus our constrained n-gram precisiog, ae extensions to them; Section 3 introduces MCT
counts only overlapping n-grams in MT hy-¢. \T evaluation; Section 4 describes the experi-

pothesis and reference which are aligned t0 thg,e o) results, and Section 5 gives our conclusion.
same words in the source sentences.

: 2 ThreeNew Featuresfor MT Evaluation
e Source-sentence reordering agreement. Wit

the alignment information, we can compare théince our source-sentence constrained n-gram preci-
reorderings of the source sentence in the MBion and discriminative unigram precision are both
hypothesis and in its references. Such compaderived from the normal n-gram precision, it is
ison only considers the aligned positions of thevorth describing the original n-gram precision met-
source words in MT hypothesis and referencesic, BLEU (Papineni et al., 2002). For every MT
and thus is oriented towards evaluating the serypothesis, BLEU computes the fraction of n-grams
tence structure. which also appear in the reference sentences, as well

S ) o ~as a brevity penalty. The formula for computing
e Discriminative unigram precision. We divide g| £ is shown below:

the normal n-gram precision into many sub-

precisions according to their part of speech N

(POS). The division gives us flexibility to train gy = B2 3 2.0 Lingramec COUntetip(ngram)

the weights of each sub-precision in frame- N 7= 20 Xngramec Countlngram’)

works such as SVM and Maximum Correla-

tion Training, which will be introduced later. where C' denotes the set of MT hypotheses.

The motivation behind such differentiation isCount.;,(ngram) denotes the clipped number of

that different sub-precisions should have difn-grams in the candidates which also appear in the

ferent importance in MT evaluation, e.g., sub+eferences. BP in the above formula denotes the

precision of nouns, verbs, and adjectives shoulldrevity penalty, which is set to 1 if the accumulated

be important for evaluating adequacy, andength of the MT outputs is longer than the arith-

sub-precision in determiners and conjunctionghetic mean of the accumulated length of the refer-

should mean more in evaluating fluency. ences, and otherwise is set to the ratio of the two.

o o ~ For sentence-level evaluation with BLEU, we com-

Alo'ng the Q|rect|orl _of fea_ture combination, sinceéyyte the score based on each pair of MT hypothe-
indirect weight training using SVMs, based on rexis/reference. Later approaches, as described in Sec-
ducing classification error, can_not alway_s yield 909%on 1, use different ways to manipulate the morpho-
performance, we train the weights by directly optiqogical similarity between the MT hypothesis and its
mizing the evaluation performance, i.e., maximizingeferences. Most of them, except NIST, consider the
the correlation with the human judgment. This typgyords in MT hypothesis as the same, i.e., as long as
of direct optimization is known as Minimum ErTor e words in MT hypothesis appear in the references,
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they make no difference to the metrie®lIST com-  for @l n-gramsw;, ..., w11 in MT hypothesis
putes the n-grams weights as the logarithm of the ra- do

tio of the n-gram frequency and its one word lower maz_val = 0;

n-gram frequency. From our experiments, NIST is  for all reference sentencels

not generally better than BLEU, and the reason, we for all n-gramsr, ..., rj1n—1 in current ref-
conjecture, is that it differentiates the n-grams too erence sentenao
much and the frequency estimated upon the evalua- val=0;
tion corpus is not always reliable. In this section we for k=0; k< n-1; k ++do
will describe two other strategies for differentiating if w1y, equalsr;,p AND MTalign;
the n-grams, one of which uses the alignments with equalskREFalign; then
the source sentence as a further constraint, while the val += %?
other differentiates the n-gram precisions according if val > mazx_val then
to POS. mazx_val = val;
hit_count +=max _val;
2.1 Source-sentence Constrained N-gram return MThy}giﬁZZ%eng — X length_penalty;

Precision
The quality of an MT sentence should be indeperf-i9ureé 1 Algorithm for Computing Source-
dent of the source sentence given the reference trarf&nténce Constrained n-gram Precision
lation, but considering that current metrics are all
based on shallow morphological similarity of themetric: only select the words which are aligned to
MT outputs and the reference, without really underthe same source words. Now the question comes
standing the meaning in both sides, the source sefyhow to find the alignment of source sentence and
tences could have some useful information in difMT hypothesis/references, since the evaluation data
ferentiating the MT outputs. Consider the Chineseset usually does not contain alignment information.

English translation example below: Our approach uses GIZA+#+o construct the many-
Source: wo bu neng zhe me zuo to-one alignments between source sentences and the
Hypothesis: | must hardly not do this MT hypothesis/references respectivlyGIZA++
Reference: | must not do this could generate many-to-one alignments either from

Itis clear that the wordot in the MT output can-  gorce sentence to the MT hypothesis, in which case
_not co-exist Wlth the wordhardly while maintain- every word in MT hypothesis is aligned to a set
ing the meaning of the source sentence. None @k (or none) words in the source sentence, or from
the metrics mentioned above can preveat from  {he reverse direction, in which case every word in
being counted in the evaluation, due to the S|mpl_ﬁ/|-|- hypothesis is aligned to exactly one word (or
reason that they only compute shallow morphologingne) word in the source sentence. In either case,
cal similarity. Then how could the source SentencﬁsingMTaligni and RE Falign; to denote the po-
help in the example? If we reveal the alignmentitions of the words in the source sentences which
of the source sentence with both the reference ange aligned to a word in the MT hypothesis and a
the MT output, the Chinese worbli neng would  \yo(q in the reference respectively, the algorithm for
be aligned tomust not in the reference andwust  computing source-sentence constrained n-gram pre-
hardly in the MT output respgctlvely, leaving thecision of lengthn is described in Figure 1.

wordnot in the MT output not aligned to any word in  gjnce source-sentence constrained n-gram preci-

the source sentence. Therefore, if we can someh(g%n (SSCN) is a precision-based metric, the vari-
find the alignments between the source sentenceand

) 2 s avai
the reference/MT output, we could be smarter in sq{ttplﬁm%g ﬁ"gﬁ%’;gﬁ .~

lecting the overlapping words to be counted in the “sy;ore refined alignments could be got for source-hypothesis
T from the MT system, and for source-references by using manual
roof-reading after the automatic alignment. Doing so, how-
ver, requires the MT system’s cooperation and some costly hu-
man labor.

YIn metrics such as METEOR, ROUGE, SIA (Liu and
Gildea, 2006), the positions of words do make difference, b
it has nothing to do with the word itself.
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able length_penalty is used to avoid assigning a for all word pairw;, w; in the source sentence
short MT hypothesis a high score, and is computed Such that < j do

in the same way as BLEU. Note that in the algo-  for all reference sentences do

rithm for computing the precision of n-grams longer it (SreMT; == SreMTj  AND
than one word, not all words in the n-grams should SrcRefr; == SrcRefr;) OR
satisfy the source-sentence constraint. The reason is ((SreMT; — SrcMTj) x (SrcRefri —
that the high order n-grams are already very sparse SrcRef;) > 0) then

in the sentence-level evaluation. To differentiate the Czoxfigfnj + break;

SSCNs based on the source-to-MT/Ref (many-to- "&UM 5Ky

one) alignments and the MT/Ref-to-source (many-_. o _ o
to-one) alignments, we use SSCN1 and SSCN2 tgigure 2: Compute Pairwise Reordering Similarity

denote them respectively. Naturally, we could com- for all word pairw;,w; in the source sentence,
bine the constraint in SSCN1 and SSCN2 by either gych that < j do

taking their union (the combined constrained is sat- o _ ,

isfied if either one is satisfied) or intersecting them ¥ igg%ﬁ +;STCMTJ < Othen

(the combined constrained is satisfied if both con- gt yrp_2xcount .

straints are satisfied). We use SS@QNind SSCN N> (N=1)

to denote the SSCN based on unioned constraintsgure 3: Compute Source Sentence Monotonic Re-
and intersected constraints respectively. We coulgrdering Ratio

also apply the stochastic word mapping proposed in

SIA (Liu and Gildea, 2006) to replace the hard word i
matching in Figure 1, and the corresponding metOurce sentence. We know that most of the time,
rics are denoted as pSSCN1, pSSCN2, pSSCN the alignment of the source sentence and the MT hy-

PSSCNi, with the suffixed number denoting differ- pothesis is monotonic. This idea leads to the metric
ent cons’traints of monotonic pairwise ratio (MPR), which computes

the fraction of the source word pairs whose aligned
2.2 MetricsBased on Source Word Reordering  positions in the MT hypothesis are of the same order.

Most previous MT metrics concentrate on the colt IS described in Figure 3.

occurrence of the MT hypothesis words in the ref, 5 Discriminative Unigram Precision Based
erences. Our metrics based on source sentence re- on POS

orderings, on the contrary, do not take words identi-

ties into account, but rather compute how similarlyThe Discriminative Unigram Precision Based on

the source words are reordered in the MT output anPOS (DUPP) decomposes the normal unigram pre-

the references. For simplicity, we only consider thé;ggn_l'_ﬂto rlna”}’hsu'?'%fec's!gnz _aclgprdlng4t0 their
pairwise reordering similarity. That s, for the source - The algorithm Is described In Figure 4.
word pairw; andw;, if their aligned positions in the

These sub-precisions by themselves carry the
MT hypothesis and a reference are in the same ordgfMme info_rmation as standard gnigram precision, but
we call it a consistent word pair. Our pairwise re'€Y Provide us the opportunity to make a better
ordering similarity (PRS) metric computes the frac—cc_)mbmed me_trlc than the normal unigram precision
tion of the consistent word pairs in the source senith MCT, which will be introduced in next section.
tence. Figure 2 gives the formal description of PRS.

SreMT; andSrcRefy ; denote the aligned position  for @l unigramsin the MT hypothesisio

of source wordy; in the MT hypothesis and theth I sis found in any of the referenceben

reference respectively, andl denotes the length of countpos(s) +=1

the source sentence. Precision, = p g e
Another criterion for evaluating the reordering of Vo € POS

the source sentence in the MT hypothesis is how, . _
well it maintains the original word order in the Figure 4: Compute DUPP for N-gram with length n
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Such division could in theory be generalized to worlcan be formulated as:
with higher order n-grams, but doing so would make
the n-grams in each POS set much more sparse. The ~ w = argmax Pearson(X (w), H) 2
preprocessing step for the metric is tagging both Y
the MT hypothesis and the references with POS. he function Pearson(X (w), H) is differentiable
might elicit some worries about the robustness of thevith respect to the vectow, and we compute this
POS tagger on the noise-containing MT hypothesiglerivative analytically and perform gradient ascent.
This should not be a problem for two reasons. FirsQur objective function not always convex (one can
compared with other preprocessing steps like pargasily create a non-convex function by setting the
ing, POS tagging is easier and has higher accuradyuman judgments and individual metrics to some
Second, because the counts for each POS are acpatticular value). Thus there is no guarantee that,
mulated, the correctness of a single word’s POS wilitarting from a randomv, we will get the glob-
not affect the result very much. ally optimal w using optimization techniques such
] ) o as gradient ascent. The easiest way to avoid ending
3 Maximum Correlation Training for up with a bad local optimum to run gradient ascent
Machine Translation Evaluation by starting from different random points. In our ex-
Maximum Correlation Training (MCT) is an in- !oeriments, t_he differer_mce in each run _is_\_/ery small,
stance of the general approach of directly optimiz.-€- by starting fro_m different random initial ve_tlu_es
ing the objective function by which a model will ©f w, we end up with, not the same, but very similar
ultimately be evaluated. In our case, the model i¥alues for Pearson’s correlation.
the linear combination of the component metrics, thﬁ
parameters are the weights for each component met-
ric, and the objective function is the Pearson’s corre=xperiments were conducted to evaluate the perfor-
lation of the combined metric and the human judgmance of the new metrics proposed in this paper,
ments. The reason to use the linear combination @& well as the MCT combination framework. The
the metrics is that the component metrics are uswhata for the experiments are from the MT evalua-
ally of the same or similar order of magnitude, and ition workshop at ACLO5. There are seven sets of
makes the optimization problem easy to solve. UWT outputs (E09 E11 E12 E14 E15 E17 E22), each
ing w to denote the weights, and to denote the of which contains 919 English sentences translated
component metrics, the combined metritcs com- from the same set of Chinese sentences. There are
puted as: four references (EO1, E02, EO3, EO4) and two sets
of human scores for each MT hypothesis. Each hu-
z(w) = ijmj (1) man score set contains a fluency and an adequacy
J score, both of which range from 1 to 5. We create a

Using h; andz(w); denote the human judgmentset of overall human scores by averaging the human

and combined metric for a sentence respectively, arjtf€ncy and adequacy scores. For evaluating the au-

N denote the number of sentences in the evaluatigAMmatic metrics, we compute the Pearson’s correla-
set, the objective function is then computed as: tion of the automatic scores and the averaged human

scores (over the two sets of available human scores),
Pearson(X (w), H) = for overall score, fluency, and adequacy. The align-
ment between the source sentences and the MT hy-
pothesis/references is computed by GIZA++, which
\/(Zﬁvzlfc(w)? — BRI (N g2 5 M%) g trained on the combined corpus of the evalua-
tion data and a parallel corpus of Chinese-English
Now our task is to find the weights for each componewswire text. The parallel newswire corpus con-
nent metric so that the correlation of the combinethins around 75,000 sentence pairs, 2,600,000 En-
metric with the human judgment is maximized. ltglish words and 2,200,000 Chinese words. The

Experiments

N z(w); =N i
Zf\f:l x(w)lhl _ Zi:l' ( ]371 21,,1 hi
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stochastic word mapping is_trained on a French- Fluency Adequacy Overall

English parallel corpus containing 700,000 sentence ROUGEW | 24.8 27.8 29.0
pairs, and, following Liu and Gildea (2005), we only ROUGES | 19.7 30.9 28.5
keep the top 100 most similar words for each En METEOR | 24.4 318 Bl
€p P imifar w - SIA | 268 321 326
glish word. NIST.1 | 09.6 22.6 18.5
WER | 22.5 27.5 27.7

4.1 Performance of the Individual Metrics PRS| 14.2 19.4 18.7
_ MPR | 11.0 18.2 16.5

To evaluate our source-sentence based metrics, they BLEU(1) | 18.4 29.6 27.0
are used to evaluate the 7 MT outputs, with the 4 sets BLEU(2) | 20.4 311 28.9
f human references. The sentence-level Pearson’s BLEU(3) | 20.7 304 28.0
0 AN TETE - : HWCM(2) | 221 30.3 29.2
correlation with human judgment is computed for SSCN1(1)| 24.2 29.6 29.8
each MT output, and the averaged results are shown SSCN2(1)| 22.9 33.0 313
in Table 1. As a comparison, we also show the re- SSChu() | 23.8 34.2 325
Inla : P , SSCNi(1) | 23.4 28.0 285
sults of BLEU, NIST, METEOR, ROUGE, WER, PSSCN1(1)| 24.9 30.2 30.6
and HWCM. For METEOR and ROUGE, WORD- %Ssscch'l\'f(%) gjg 33;‘60 3%21-4
NET and PORTER-STEMMER are enabled, and for I?osscr\li(l) 241 28.8 293
SIA, the decay factor is set to 0.6. The number SSCN1(2)| 24.0 29.6 29.7
: ) : SSCN2(2)| 23.3 31.5 31.8
in brackets, for BLEU, shows the n-gram length it SSCNU) | 241 e 28
counts up to, and for SSCN, shows the length of the SSCNi(2) | 23.1 278 28.2
n-gram it uses. In the table, the top 3 results in each pgggNégg 34-93 330-2 3320é6

. p N 4. 4.4 .

columr\ are marked bold and the best result is also pSSCNU(2) | 25.2 354 339
underlined. The results show that the SSCN2 met- pSSCNiI(2) | 23.9 28.7 29.1

rics are better than the SSCN1 metrics in adequacy _ _
and overall score. This is understandable since what 1apble 1: Performance of Component Metrics
SSCN metrics need is which words in the source

sentence are aligned to an n-gram in the MT hyof the individual performance. It should not be sur-
pothesis/references. This is directly modeled in thgrising since they are totally different kind of met-

alignment used in SSCN2. Though we could alsgics, which do not count the overlapping n-grams,
get such information from the reverse alignment, agut the consistent/monotonic word pair reorderings.
in SSCNL1, itis rather an indirect way and could conAs |ong as they capture some property of the MT
tain more noise. It is interesting that SSCN1 gethypothesis, they might be able to boost the per-

better fluency evaluation results than SSCN2. Th®rmance of the combined metric under the MCT

SSCN metrics with the unioned constraint, SSGN framework.

by combining the strength of SSCN1 and SSCN2,

get even better results in all three aspects. We cé2 Performance of the Combined Metrics

see that SSCN metrics, even without stochastic worTb test how well MCT works, the following scheme

mapping, get significantly better results than theiis used: each set of MT outputs is evaluated by MCT,

relatives, BLEU, which indicates the source senwhich is trained on the other 6 sets of MT outputs

tence constraints do make a difference. SSCN2 arnghd their corresponding human judgment; the aver-

SSCNu are also competitive to the state-of-art MTaged correlation of the 7 sets of MT outputs with the

metrics such as METEOR and SIA. The best SSCNuman judgment is taken as the final result.

metric, pSSCNu(2), achieves the best performance o ) ..

among all the testing metrics in overall and ade?21  Discriminative Unigram Precision based

qguacy, and the second best performance in fluency, on POS

which is just a little bit worse than the best fluency We first use MCT to combine the discriminative

metric SIA. unigram precisions. To reduce the sparseness of the
The two reordering based metrics, PRS and MPRinigrams of each POS, we do not use the original

are not as good as the other testing metrics, in terfiXOS set, but use a generalized one by combining
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all POS tags with the same first letter (e.g., the dif- Fluency Adequacy Overall
ferent verb forms such agBN, VBD, andVBZ are DUPPT | 23.6 30.1 30.1
transformed tdv). The unified POS set contains 23 Bﬁsg—a %g% 3522-98 gg-g
POS tags. To give a fair cpmparison of IZ_)UPI_D with MCTﬁf(j)) 03 36.7 375
BLEU, the length penalty is also added into it as a MCT.a(4) | 28.0 389 37.4
component. Results are shown in Table 2. DUPP . MCT60(4)d gg-g ?é-i 32-202
- pper boun . . .
DUPPa and DUPRo denote DUPP' trained on hu- MCTR(3) | 292 307 353
man fluency, adequacy and overall judgment respec- MCT.a(3) | 27.4 38.4 36.8
tively. This shows that DUPP achieves obvious im- MCTo(3) | 28.8 38.0 37.2
CSVM(3) | 27.3 36.9 355

provement over BLEU, with only the unigrams and
length penalty, and DUPP _a/o gets the best re-  Table 2: Combination of the Testing Metrics
sult in fluency/adequacy/overall evaluation, showing

that MCT is able to make a fluency- or adequacyt- i h is th MCT t that
oriented metric. esting scheme is the same as , except that we

only use 3 references for each MT hypothesis, and

4.2.2  Putting It All Together the positive samples for training CSVM are com-

The most interesting question in this paper is, witfputed as the scores of one of the 4 references based
all these metrics, how well we can do in the MTon the other 3 references. The slack parameter of
evaluation. To answer the question, we put all th€SVM is chosen so as to maximize the classifica-
metrics described into the MCT framework and us&on accuracy of a heldout set of 800 negative and
the combined metric to evaluate the 7 MT outputs300 positive samples, which are randomly selected
Note that to speed up the training process, we dgom the training set. The results are shown in Ta-
not directly use 24 DUPP components, instead, wele 2. We can see that MCT, with the same number
use the 3 combined DUPP metrics. With the metof reference sentences, is better than CSVM. Note
rics shown in Table 1, we then have in total 31 metthat the resources required by MCT and CSVM are
rics. Table 2 shows the results of the final combinedifferent. MCT uses human judgments to adjust the
metric. We can see that MCT trained on fluencyyweights, while CSVM needs extra human references
adequacy and overall human judgment get the beist produce positive training samples.
results among all the testing metrics in fluency, ade- To have a rough idea of how the component met-
quacy and overall evaluation respectively. We did &cs contribute to the final performance of MCT, we
t-test with Fisher’s z transform for the combined reincrementally add metrics into the MCT in descend-
sults and the individual results to see how significaring order of their overall evaluation performance,
the difference is. The combined results in adequadyith the results shown in Figure 5. We can see that
and overall are significantly better at 99.5% confithe performance improves as the number of metrics
dence than the best results of the individual metrid§icreases, in a rough sense. The major improvement
(pPSSCNu(2)), and the combined result in fluencyhappens in the 3rd, 4th, 9th, 14th, and 30th metrics,
is significantly better at 96.9% confidence than th#hich are METEOR, SIA, DUPR, pSSCN1(1),
best individual metric (SIA). We also give the upperand PRS. It is interesting to note that these are not
bound for each evaluation aspect by training MCThe metrics with the highest individual performance.
on the testing MT outputs, e.g., we train MCT onAnother interesting observation is that there are no
E09 and then use it to evaluate E09. The uppetwo metrics belonging to the same series in the most
bound is the best we can do with the MCT basebeneficial metrics, indicating that to get better com-
on linear combination. Another linear framework,bined metrics, individual metrics showing different
Classification SVM (CSVMY, is also used to com- sentence properties are preferred.
bine the testing metrics except DUPP. Since DUPP i
is based on MCT, to make a neat comparison, wR Conclusion

rule out DUPP in the eXperimentS with CSVM. TheTh|S paper first describes two types of new ap-
“http://svmlight.joachims.org/ proaches to MT evaluation, which includes making
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Abstract

We study the use of rich syntax-based
statistical models for generating gram-
matical case for the purpose of machine
translation from a language which does
not indicate case explicitly (English) to a
language with a rich system of surface

case markers (Japanese). We propose an

extension of n-best re-ranking as a

method of integrating such models into a
statistical MT system and show that this
method substantially outperforms stan-
dardn-best re-ranking. Our best perform-
ing model achieves a statistically signifi-
cant improvement over the baseline MT
system according to the BLEU metric.
Human evaluation also confirms the re-
sults.

into passive voice, which is more appropriate in
Japanesé.However, there is a problem in the
case marker assignment: the accusative marker
wo, which was output by the SMT system, is
completely inappropriate when the main verb is
passive. This type of mistake in case marker as-
signment is by no means isolated in our SMT
system: a manual analysis showed that 16 out of
100 translations had mistakes solely in the as-
signment of case markers. A better model of case
assignment could therefore improve the quality
of an SMT system significantly.

S: The patch replaces the .dll file.

O fE7urIszxdl 77 A AVPEEXHBELONET,
shuusei puroguramu-wo .dll fairu-ga okikaeearasu
correction program-AC@ll file-NOM replace-PASS

CEE7u /I LTdl 77 A VRBEXHRZ ONET,
shuusei puroguramu-de .dll fairu-ga okikaeerrasu
correction program-wittll file-NOM replace-PASS

Figure 1: Example of SMT (S: source; O: output of
MT; C: correct translation)

Generation of grammatical elements such as in- In this paper, we explore the use of a statisti-
flectional endings and case markers is an impogal model for case marker generation in English-
tant component technology for machine translato-Japanese SMT. Though we focus on the gen-
tion (MT). Statistical machine translation (SMT) eration of case markers in this paper, there are
systems, however, have not yet successfully ifnany other surface grammatical phenomena that
corporated components that generate grammagan be modeled in a similar way, so any SMT
cal elements in the target language. Most stat@ystem dealing with morpho-syntactically diver-
of-the-art SMT systems treat grammatical elegent language pairs may benefit from a similar
ments in exactly the same way as content wordgpproach to modeling grammatical elements. Our
and rely on general-purpose phrasal trans|ati0ﬁ§0de| uses a rich set of syntactic features of both
and target language models to generate these elBe source (English) and the target (Japanese)
ments (e.g., Och and Ney, 2002; Koehn et alsentences, using context which is broader than
2003; Quirk et al., 2005; Chiang, 2005; Galley ethat utilized by existing SMT systems. We show
al.,, 2006). However, since these grammaticd]hat the use of such features results in very high
elements in the target language often corresporf@se assignment quality and also leads to a nota-
to long-range dependencies and/or do not havde improvement in MT quality.

any words corresponding in the source, they may Previous work has discussed the building of
be difficult to model, and the output of an SMTSpecial-purpose classifiers which generate gram-
system is often ungrammatical. matical elements such as prepositions Hajial.

For example, Figure 1 shows an output fron2002), determiners (Knight and Chander, 1994)
our baseline English-to-Japanese SMT system oild case markers (Suzuki and Toutanova, 2006)
a sentence from a computer domain. The SMWith an eye toward improving MT output. How-
system, trained on this domain, produces a natu-
ral lexical translation for the English wopaitch
as correction program and translateseplace

1 Introduction

There is a strong tendency to avoid transitiveteseres
with an inanimate subject in Japanese.
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ever, these components have not actually beetase markers grammatical functions wa
integrated in an MT system. To our knowledge ga subject; object
this is the first work to integrate a grammaticalz wo object; path

element production model in an SMT system ané” no genitive; subject

to evaluate its impact in the context of end-to < ni dative object, location 4

end MT. M kara  source v
A common approach of integrating new mod-". :joe %‘i‘;t;‘;':]’?h:r‘jﬁ:gﬁ?iiuse ;

els with a statistical MT system is to add them as_ e goal direction ' g

new fe_ature functlons which are use_d in deco 1 made goal (up to, unti) v

ing or in models which re-rank-best lists from yori source, comparison target v

the MT system (Och et al., 2004). In this papefs wa Topic
we propose an extension of thdvest re-ranking _
approach, where we expanest candidate lists Table 1. Case markers to be predicted

with multiple case assignment variations, and The case markers we used for the prediction
define new feature functions on this expandegask are the same as those defined in Suzuki and
candidate set. We show that expandingéest  Toytatnova (2006), and are summarized in Table
lists significantly outperforms standanebest re-  1: jn addition to the case markers in a strict sens
ranking. We also show that integrating our casgne topic markemwa is also included as well as
prediction model improves the quality of translathe combination of a case marker plus the topic
tion according to BLEU (Papineni et al., 2002)marker for the case markers with the column
and human evaluation. +wa checked in the table. In total, there are 18
case markers to predict: ten simple case markers,
2 Background the topic markerva, and seven cases combi-
In this section, we provide necessary backgroung@tions. The case prediction task is therefore a
of the current work. 19-fold classification task: for each phrase, we
assign one of the 18 case markers@xE.

2.1 Task of case marker prediction

Our definition of the case marker prediction taske-2 ~ Treelet trandation system

follows Suzuki and Toutanova (2006). That iswe constructed and evaluated our case predic-
we assume that we are given a source Engligibn model in the context of a treelet-based trans-
sentence, and its translation in Japanese whi¢htion system, described in Quirk et al. (2005).
does not include case markers. Our task is to prén this approach, translation is guided by treelet
dict all case markers in the Japanese sentence. translation pairs, where a treelet is a connected
We determine the location of case marker insybgraph of a dependency tree.
sertion using the notion dfunsetsuA bunsetsu A sentence is translated in the treelet system
consists of one content (head) word followed bys follows. The input sentence is first parsed into
any number of function words. We can thereforgy dependency structure, which is then partitioned
segment any sentence into a sequence of buito treelets, assuming a uniform probability dis-
setsu by using a part-of-speech (POS) tagger.  tribution over all partitions. Each source treddet
Once a sentence is segmented into bunsetsutifen matched to a treelet translation pair, the col
is trivial to determine the location of case markiection of which will form the target translation.
ers in a sentence: each bunsetsu can have at Mpgk target language treelets are then joined to
one case marker, and the position of the casgrm a single tree, and the ordering of all the
maker within a phrase is predictable, i.e., thg\odes is determined, using the method described
rightmost position before any punctuation marksin Quirk et al. (2005).
The sentence in Figure 1 thus has the following Translations are scored according to a linear
bunsetsu analysis (denoted by square bracketghmbination of feature functions:
with the locations of potential case marker inser-
tion indicated by scorg(§=> A, (9 (1)
[f&1E'correction]] [7'& 775 A 'programi1] L.dIlCI] [ 7 :
7 AV file' O] [ E# 2 S E 7 replace-PASE]., ]

For each of these p05|t|on§, our task IS to predlcz\t'l'hough this paper reports results in the contéxt toeelet
the case marker or to predigdNE, which means system, the model is also applicable to other syhtesed

that the phrase does not have a case marker. or phrase-based SMT systems.
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the case prediction model, and a disjoint set of

\ 1 \ | — three data sets, lambda-1K, dev-1K and test-2K,
DET NN VERB VERB VERB PREP  ADJ NN which are used to integrate and evaluate the case
This | service | cannot | be | statted | in | safe | mode prediction model in an end-to-end MT scenario.

f f 0 0 N f L. .

- = beusementSttsnsd s g ; Some characteristics of these data sets are given

; 5 i e e Mk in Table 2. We will refer to this table as we de-
[COIY—ERF] [£—7] [E-FT] [Bfs TEELA] scribe our experiments in later sections.
kono saabisu wa  seefu moodo de  kaishi dekimasen
ADN NN POSP NN NN POSP VN AUXV data set # sent # Of WOI’dS

this  service TPC safe mode in start cannot
1 j\/rj I Y pairs (average sent length in words)
| I English Japanese
. ) . . train-500K 500K 7,909,198 9,379,240
Figure 2. Aligned English-Japanese sentence pair (15.81) (18.75)

where/; are the model parameters &i{t) is the lambda-1K 1,000 15,219(15.2) 20,660 (20.7)
value of the feature functignon the candidate dev-1K 1,000 15,397(15.4) 21,280 (21.3)
There are ten feature functions in the treelet sys test2K 2,000 30,198(15.1) 41,269 (20.6)
tem, including log-probabilities according to in- Table2: Data set characteristics
verted and direct channel models estimated by
relative frequency, lexical weighting channel3 Statistical Models for Case Prediction
models following Vogel et al. (2003), a trigram inMT
target language model, an order model, word
count, phrase count, average phrase size fune-L
tions, and whole-sentence IBM Model 1 log-Our model of case marker prediction closely fol-
probabilities in both directions (Och et al. 2004)Jows our previous work of case prediction in a
The weights of these models are determined ugron-MT context (Suzuki and Toutanova, 2006).
ing the max-BLEU method described in OchThe model is a multi-class log-linear (maximum
(2003). As we describe in Section 4, the casentropy) classifier using 19 classes (18 case
prediction model is integrated into the system agarkers andioNE). It assigns a probability dis-
an additional feature function. tribution over case marker assignments given a
The treelet translation model is estimated ussource English sentence, all non-case marker
ing a parallel corpus. First, the corpus is wordwords of a candidate Japanese translation, and
aligned using GIZA++ (Och and Ney, 2000);additional annotation information. Letlenote a
then the source sentences are parsed into a dgmpanese translatios, a corresponding source
pendency structure, and the dependency is prgentence, and\ additional annotation informa-
jected onto the target side following the heuristion such as alignment, dependency structure,
tics described in Quirk et al. (2005). Figure 2and POS tags (such as shown in Figure 2). Let
shows an example of an aligned sentence pair: @as{t) denote the sequence of words iexclud-
the source (English) side, POS tags and worghg all case markers, ammhsét) a case marking
dependency structure are assigned (solid arcgdssignment for all phrasestinOur case marking
the word alignments between English and Japanodel estimates the probability of a case as-
nese words are indicated by the dotted lines. Oﬂgnment given all other information:
the target (Japanese) side, projected word de- P... (case(t) | rest(t), s, A)

pendeng:ies (sol!d arcs) are available. Additionajp,e probability of a complete case assignment is
annotations in Figure 2, namely the POS tags angd h5quct over all phrases of the probability of
the bunsetsu dependency structure (bold arcs) Qe case marker of the phrase given all context
the target side, are derived from the treelet Sy§parres used by the model. Our model assumes
tem to be used for building a case predictioq 4t the case markers in a sentence are independ-
model, which we describe in Section 3. ent of each other given the input features. This
23  Data independence assump_tion may seem strong, but
the results presented in our previous work (Su-
All experiments reported in this paper are ruryyki and Toutanova, 2006) showed that a joint
using parallel data from a technical (computermodel did not result in large improvements over
domain. We used two main data sets: traln'500|% local one in predicting case markers in a non-
consisting of 500K sentence pairs which we usefiT context.
for training the baseline treelet system as well as

Case prediction modd
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3.2 Modd featuresand feature selection Features Example

L i ition— kono,moodo
The features of our model are similar to the ong{Prds in position—1 and +2 _

. - i eadword & previous headword saabisu&kono
described in Suzuki and Toutanova (2006). Th&;ent word Kaishi
main difference is that in the current model wgligned word service
applied a feature selection and induction alg®arent of word aligned to headword started
rithm to determine the most useful features arﬂfxt W°fg EOS Cword POS N?%NNN
feature combinations. This is important for ungc, ot S D¢ Wr > oUN
derstanding tht sources of information are iMparent headword POS VN
portant for predicting grammatical elements, butiigned to parent word POS & next word VERB&NN&an
are currently absent from SMT systems. WEOS & prev word POS d

used 490K sentence pairs for training the cagarent POS of word aligned to headword  VERB
prediction model, which is a subset of the traiﬁ“—lg\?sv%;’("jogdogos & headword POS & - NN&NN&ZADN
500K set of Table 2. We divided the remainingos of word aligned to headword NOUN
10K sentences for feature selection (5K-feat) and

for evaluating the case prediction models on ref- Table 3: Features for the case prediction model

erence translations (5K-test, discussed in Sectiof, Figure 2. Conjunctions are indicated by &.
3.3). The paired data is annotated using thRigte that many features that refer to POS and
treelet translation system: as shown in Figure Z niactic (parent) information are selected, on

we have source and target word dependenGyoh the target and source sides. We also note
structure, source language POS and word alighpat the context required by these features is

ment directly from the aligned treelet structure,, e extensive than what is usually available

Additionally, we used a POS tagger of Japanesgring decoding in an SMT system due to a limit

to assign POS to the target sentence as well asjifnosed on the treelet or phrase size. For exam-

parse the sentence into bunsetsu (indicated Bya o model uses word lemma and POS tags of
pracket§ in Figure 2), using the method descrlbegp to six words (previous word, next word, word
in Section 2.1. We then compute .buns_ets_u den position +2, head word, previous head word
pendency structure on the target side (indicateg, parent word), which covers more context

by bold arcs in Figure 2) based on the word deg 5 the treelet system we used (the system im-
pendency structure projected from English. Weyoseq the treelet size limit of four words). This
apply this procedure to annotate a paired COrpYgeans that the case model can make use of much

(in which case the Japanese sentence is a refefsper information from both the source and tar-
ence translation) as well as translations generatefl; than the baseline MT system. Furthermore

by the SMT system (which may potentially beq, model makes better use of the context by

ill-formed). , combining the contributions of multiple sources
We derived a large set of possible featuregs ynowledge using a maximum entropy model,

from these annotations. The features are reépresier than using the relative frequency estimates

sented as feature templates, such as "Headwag 3 very limited amount of smoothing, which

POS=X", which generate a set of binary features, o ;sed by most state-of-the art SMT systems.
corresponding to different instantiations of the

template, such as "Headworbs=NOUN". We 3.3 Performance on reference trandations
applied an automatic feature selection and indu
tion algorithm to the base set of templates.

Before discussing the integration of the case pre-
diction model with the MT system, we present an
Bvaluation of the model on the task of predicting

original templates as well as arbitrary (bigramthe case assignment oéferencetranslations.

and trlgrgm) conjunctions of these 'template his performance constitutes an upper bound on
The algorithm performs forward stepwise featur§he model's performance in MT, because in ref-

selection, choosing templates which result in th%rence translations, the word choice and the word

foat a0t momtoned 2bove. The alanthm i simOrder are perfect.
' 9 Table 4 summarizes the results of the refer-

Iar_tr%(teh(; Or}ﬁ:gt?;frgegﬂ'sn fl\ggij?gusrgl(ezc?%?. ro.fnce experiments on the 5K-test set using two
PP | PrOmetrics: accuracy, which denotes the percentage
cedure gave us 17 templates, some of which a

[ . .
shown in Table 3, along with example instantiao‘? phrases for which the respective model

, L > "“guessed the case marker correctly, and BLEU
tions for the phrase headed $gabisu’service score against the reference translation. For com-
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Model ACC BLEU best re-ranking method, and our significantly

Baseline (frequency) 58.9 40.0 better performing extension. These are now dis-
Baseline (490K LM) 87.2 83.6 cussed in turn.
Log-linear model 94.9 93.0

41 Method 1: Standard n-best re-ranking
Table 4: Accuracy (%) and BLEU score for case

prediction when given correct context (reference  This method is a straightforward application of
translations) on the 5K-test set the n-best re-ranking approach described in Och
parison, we also include results from two base(-Et al. (2004). As described in Section 2.2, our

lines: a frequency-based baseline, which alway%ase“ne SMT system is a linear model which

assigns the most likely clasS@NE), and a lan- weighs the values of ten feature functions. To

: O integrate a case prediction model, we simply add
guage model (LM) baseline, which is one of the} to the linear model as an 11th feature function,

standard methods of generating grammatica{ : -
elements in MT. We trained a word-trigram LM Whose value is the log-probability of the case

using the CMU toolkit (Clarkson and Rosenfeld,falss'Ignment of the candidate hypotheésiscord-

. ing to our model. The weights of all feature func-

1997) on thg same 490K sentences which Wiions are then re-estimated using max-BLEU
used for training the case prediction model. L best list of the lambda- .
Table 4 shows that our model performs subEralnlng on the-best Ist of the lambda-1K set in

. ol Table 2. As we show in Section 5, this re-ranking
stantially better than both baselines: the accuracy o+ did not result in good performance
of the frequency-based baseline is 59%, and an 9 P '
LM-based model improves it to 87.2%. In con-42 Method 2: Reranking of expanded
trast, our model achieves an accuracy of 95%, candidatelists

which is a 60% error reduction over the LM drawback of th . hod is that i
baseline. It is also interesting to note that a&s th* drawback of the previous method is that in an

accuracy goes up, so does the BLEU score. ~ 'vbest list, there may not be sufficiently many
These results show that our best model caf?Se @ssignment variations of existing hypothe-

very effectively predict case markers when the€s- .If this is fche case, the m.odel' cannot be-effec
input to the model is clean, i.e., when the input!V€ in choosing a hypothesis with a good case

has correct words in correct order. Next, we se@SSignment. We performed a simple experiment

; ; ; ; to test this. We took the first (best) hypothdsis
the impact of applying this model to improve MT
outr;utl.o PplyIng this Improv from the MT system and generated the top 40

case variation$' of t, according to the case as-
4 Integrating Case Prediction Modelsin ~ Signment model. These variations differ fram
MT only in their case markers. We wanted to see
what fraction of these new hypothesgsoc-
In the end-to-end MT scenario, we integrate oucurred in a 1000-best list of the MT system. In
case assignment model with the SMT system antthe dev-1K set of Table 2, the fraction of new
evaluate its contribution to the final MT output. case variations of the first hypothesis occurring
As a method of integration with the MT sys-in the 1000-best list of hypotheses was 0.023.
tem, we chose am-best re-ranking approach, This means that only less than one (2.3% of 40 =
where the baseline MT system is left unchange@.92) case variant of the first hypothesis is ex-
and additional models are integrated in the fornpected to be found in the 1000-best list, indicat-
of feature functions via re-ranking ofbest lists ing that even an-best list for a reasonably large
from the system. Such an approach has been(such as 1000) does not contain enough candi-
taken by Och et al. (2004) for integrating sophisdates varying in case marker assignment.
ticated syntax-informed models in a phrase- In order to allow more case marking candi-
based SMT system. We also chose this approaciates to be considered, we propose the following
for ease of implementation: as discussed in Seenethod to expand the candidate translation list:
tion 3.2, the features we use in our case modébr each translatiohin then-best list of the base-
extend over long distance, and are not readilliine SMT systemwe also consider case assign-
available during decoding. Though a tighter intesment variations of. For simplicity, we chose to
gration with the decoding process is certainlyconsider the tojx case assignment variations of
worth exploring in the future, we have taken areach hypothesis according to our case mddel,
approach here that allows fast experimentation. for 1 <k < 40%
Within the space of-best re-ranking, we
have considered two variations: the stand&rd = rrom a computational standpoint, it is non-trivialcon-
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After we expand the translation candidate set, Models H#MT #case BLEU Oracle

we compute feature functions for all candidates hypothe  expan- BLEU
and train a linear model which chooses from this ses sions
larger set. While some features (e.g., word count _
feature) are easy to recompute for a new candBaseline 1 0 3799 37.99
date, other features (e.g., treelet phrase translzf\\/l- 20 0 3783 4179
tion probability) are difficult to recompute. We “ethod 1 100 0 3802 4279
. 1000 0 38.08 43.14
have chosen to recompute only four features of 1 1 3818 3875
the baseline model: the Ianguag_e model featur§yathod 2 1 10 3842 4051
the word count feature, and the direct and reverse 1 20 3854 41.15
whole-sentence IBM Model 1 features, assum- 1 40 38.41 41.74
ing that the values of the other baseline model 20 10 3801 45.32
features for a casing variatithof t are the same 20 20 38.72 45.94
as their values fot. In addition, we added the Method 2 20 40 38.78 46.56
following four feature functions, specifically 100 10 38.73 46.87
meant to capture the extent to which the newly 100 20 38.64 4747
100 40 38.74 47.96

generated case marking variations differ from the

original baseline system hypotheses they are de-Taple 5. Results of end-to-end experiments on the
rived from: dev-1K set

* Generated: a binary feature with a value of 0 om  These datasets are the lambda-1K set for
for original baseline system candidates, and gajning the weights. of the linear model from

value of 1 for newly generated candidates.  gqyation (1), the dev-1K set for model selection,
* Number NONE—nNON-NONE: the count of case ang the test-2K set for final testing including

markers changed fronNONE to NONNONE  pman evaluation.
with respect to an original translation candi-
date. 52 Results

* Number non-NONE—NONE: the count of case
markers changed from nOfGNE to NONE.

¢ Number non-NONE—hon-NONE: the count of

The results for the end-to-end experiments on the
dev-1K set are summarized in Table 5. The table
is divided into four sections. The first section
case markers changed from MeONE t0 an- o) shows the BLEU score of the baseline
other NONNONE case marker. SMT system, which is equivalent to the 1-best
Note that these newly defined features all have g-ranking scenario with no case expansion. The
value of 0 for original baseline system candidateg|EU score for the baseline was 37.99. In the
(i.e., whenk=0) and therefore would have notaple, we also show the oracle BLEU scores for
effect in Method 1. Therefore, the only differ- each model, which are computed by greedily se-

ence between our two methods of integration ifecting the translation in the candidate list with
the presence or absence of case-expanded cangie highest BLEU score.

date translations. The second section of Table 5 corresponds to

] the results obtained by Method 1, i.e., the stan-
5 Experimentsand Results dardn-best re-ranking, fon = 20, 100, and 1000.
51 Dataand settings Even though the oracle scores improvenais

increased, the actual performance improves only
For our end-to-end MT experiments, we used|ightly. These results show that the strategy of
three datasets in Table 2 that are disjoint frongnly including the new information as features in
the train-500K data set. They consist of sourcg standardh-best re-ranking scenario does not
English sentences and their top 1000 candidaiead to an improvement over the baseline.
translations produced by the baseline SMT sys- |n contrast, Method 2 obtains notable im-
provements over the baseline. Recall that we ex-
sider all possible case assignment variationshyfpathesis:  pand then-best SMT candidates with thé#best

even though the case assignment score for a senisnc cage marking variations in this method, and re-
locally decomposable, there are still global depewies in

the linear model from Equation (1) due to the rseger
whole-sentence IBM model 1 score used as a fefme > A modified version of BLEU was used to compute-sen

tion. tence-level BLEU in order to select the best hypsih per
4 Our results indicate that additional case van@iwould  sentence. The table shows corpus-level BLEU omehalt-
not be helpful. ing set of translations.
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train the model parameters on the resulting can- Fluency Adequacy

didate lists. For the values=1 andk=1 (which Annotator #1 Annotator #1
we refer to as lbest-1case), we observe a small S B E S B E
BLEU gain of .19 over the baseline. Even thoughAnno- | S | 27 1 8 |17 0O 9
this is not a big improvement, it is still better tator | B 1 9 16| O 9 12
than the improvement of standardbest re- E | 7 4 27] 9 8 36

ranking with a 1000-best list. By considering tape6, Results of human evaluation comparing

more case marke_r variatiorls £ 10, 20 and_ 40), 20best-10case vs. baseliSe proposed system is bet-
we are able to gain about a half BLEU point over  ter; B: baseline is betteE: of equal quality

the baseline. The fact that using more case varia- h luati ¢ tat
tions performs better than using only the bes Olgt umaln ez[va ua |o(;1, WO tanfngoa(ljors \t/vere
case assignment candidate proposed by the caﬁ%(e 0 evaluate a random set o sentences

model suadests that the proposed approacte! which the quels being compared produced
which integ?ates the case pr%di?:tion moggl as ifferent translations. The judges were asked to

feature function and retrains the weights of th %Twp?tzz :)v;{o_r;c;?n;:\igll_ons, t(te?ne ;ﬁge&le OOLt‘tth’t
linear model, works better than using the cas gl SYS utpu

prediction model as a post-processor of the M-F,hosen by the system augmented W't.h the case
output. marker generation component. Each judge was

The last section of the table explores Combi_asked to run two separate evaluations along dif-

nations of the values for andk. Considering 20 ferent evaluation criteria. In the evaluation of

best SMT candidates and their top 10 case vari I_uency.the_Judges were asked to de_ude \.Nh'Ch
tions gave the highest BLEU score on the de __ranslat|on is more readable/grammatical, ignor-

1K set of 38.91 which is an 0.92 BLEU points'ng the reference translation. In the evaluation of

improvement over the baseline. Consideriniﬁ??quacythey Wertels as';fadttotjﬁdge Wh.'Ch tr??ﬁ'
more case variations (20 or 40), and more SM lon more correctly retiects the meaning ot the

candidates (100) resulted in a similar but SIightI);eference translation. In either setting, they were

lower performance in BLEU. This is presumabIymt_l_g'\élenéhe source senttﬁnce. its of th |
because the case model does affect the choice tof af tﬁ Zs(l)men:alnozes e rZSlIJ 1S_h° ¢ gl eva ua-
content words as well, but this influence is lim- lon orthe est-10case model. The table shows

ited and can be best captured when using a smgﬂe results along two evaluation criteria sepa-
number (=20) of baseline system candidates. rgtely, fluency on the left and adequacy on the

Based on these results on the dev-1K set. wddht. The evaluation results of Annotator #1 are
chose the best model (i.e 20—best—10case), argown in the columns, while those of Annotator

evaluated it on the test-2K set against the basg- are |rt1)the frowst. Each t%”d n trlettablelshq}/ys d
line. Using the pair-wise statistical test desig € humber of sentences he annotators classitie

described in Collins et al. (2005), the BLEU im-as the proposed system output better (S), the

rovement (35.53 vs. 36.29) was statisticall aseline system better (B) or the transle_ttions are
gignificant ()(< .01) according) to the Wilcoxon J;f equal quality (E). Along the diagonal (in bold-
signed-rank test face) are the judgments that were agreed on by

the two annotators: both annotators judged the
5.3 Human evaluation output of the proposed system to be more fluent
27 translations, less fluent in 9 translations;

i
These results demonstrate that the proposetaey judged that our system output was more

muoaﬂiet} ! ;50:;:3?;'\/?[0?1E'}me[E\GnEC;?: Itﬁr;]?lsaggg_adequate in 17 translations and less adequate in 9
9 y 9 : . translations. Our system output was thus judged

ensure that the improvements in BLEU lead tg)etter under both criteria, though according to a

better translations according to human evaluatorS ign test, the improvement is statistically signifi
9 Gant f < .01) in fluency, but not in adequacy.

We performed human evaluation on the o .
- One of the reasons for this inconclusive result
20best-10casent20, k=10) and lbest-40case is that human evaluation may be very difficult

(n=1, k=40) models against the baseline usin : - vy
our final test set, the test-2K data. The performgf'lnd can be unreliable when evaluating very dif

: erent translation candidates, which happens of-
ance in BLEU of these models on the full test-2 en when comparing the results of models that

data was 35.53 for the baseline, 36.09 for th . ; .
' onsidern-best candidates where-1, as is the
1best-40case model, and 36.29 for the 20|Oes(i'ase with the 20best-10case model. In Table 6,

10case model, respectively.
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Fluency Adequacy iliaries, inflection and agreement. We plan to
Annotator #1 Annotator #1  extend and generalize the current approach to
S B E S B E  cover these phenomena in morphologically com-

Anno- | S | 42 0 9 |3 1 9 plex languages in general in the future.
tator B 1 0 7 0 9 7
E

#2 7 2 32 9 3 32 References

Table 7. Results of human evaluation comparing  Clarkson, P.R. and R. Rosenfeld. 1997. Statistical
1best-40case vs. baseline Language Modeling Using the CMU-Cambridge
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Abstract

This paper presents a maximum entropy ma-
chine translation system using a minimal set
of translation blocks (phrase-pairs). While
recent phrase-based statistical machine trans-
lation (SMT) systems achieve significant im-
provement over the original source-channel sta-
tistical translation models, they 1) use a large
inventory of blocks which have significant over-
lap and 2) limit the use of training to just a
few parameters (on the order of ten). In con-
trast, we show that our proposed minimalist
system (DTMZ2) achieves equal or better per-
formance by 1) recasting the translation prob-
lem in the traditional statistical modeling ap-
proach using blocks with no overlap and 2) re-
lying on training most system parameters (on
the order of millions or larger). The new model
is a direct translation model (DTM) formu-
lation which allows easy integration of addi-
tional/alternative views of both source and tar-
get sentences such as segmentation for a source
language such as Arabic, part-of-speech of both
source and target, etc. We show improvements
over a state-of-the-art phrase-based decoder in
Arabic-English translation.

1 Introduction

Statistical machine translation takes a source se-
quence, S = [s1 $2 ... Sk, and generates a target
sequence, T* = [t; t3 ... tz], by finding the most
likely translation given by:

T* = argmax p(T|S).
T

1.1 Block selection

Recent statistical machine translation (SMT) al-
gorithms generate such a translation by incorpo-
rating an inventory of bilingual phrases (Och and
Ney, 2000). A m-n phrase-pair, or block, is a se-
quence of m source words paired with a sequence
of n target words. The inventory of blocks in cur-
rent systems is highly redundant. We illustrate the
redundancy using the example in Table 1 which
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the
Almktb >/4 Politburo
AlsyAsy of
lljnp the
Almrkzyp Centra_l
IIHzb OCfommlttee
AI$yWEy the
AlSyny Chinese
Communist
Party

Figure 1: Example of Arabic snipet and alignment
to its English translation.

shows a set of phrases that cover the two-word
Arabic fragment “lljnp Almrkzyp” whose align-
ment and translation is shown in Figure 1. One
notices the significant overlap between the vari-
ous blocks including the fact the output target se-
quence “of the central committee” can be pro-
duced in at least two different ways: 1) as 2-4 block
“Ujnp Almrkzyp | of the central committee” cov-
ering the two Arabic words, or 2) by using the 1-
3 block “Almrkzyp | of the central” followed by
covering the first Arabic word with the 1-1 block
“Ujnp | committee”. In addition, if one adds one
more word to the Arabic fragment in the third posi-
tion such as the block “AlSyny | chinese” the over-
lap increases significantly and more alternate possi-
bilities are available to produce an output such as
the “of the central chinese committee.”

In this work, we propose to only use 1-n blocks and
avoid completely the redundancy obtained by the use
of m-n blocks for m > 1 in current phrase-based sys-
tems. We discuss later how by defining appropriate
features in the translation model, we capture the im-
portant dependencies required for producing n-long
fragments for an m-word input sequence including
the reordering required to produce more fluent out-
put. So in Table 1 only the blocks corresponding to
a single Arabic word are in the block inventory. To
differentiate this work from previous approaches in

Proceedings of NAACL HLT 2007, pages 57-64,
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1ljnp Almrkzyp

committee central

of the commission the central
commission of the central
of the committee of central
the committee and the central
and central
, central

’s central

of the commission on
the commission
committee of

of the central committee(11)
of the central committee of (11)
the central committee of (8)
central committee(7)
committee central (2)
central committee , (2)

Table 1: Example Arabic-English blocks showing
possible 1-n and 2-n blocks ranked by frequency.
Block count is given in () for 2-n blocks.

direct modeling for machine translation, we call our
current approach DTM2 (Direct Translation Model
2).

1.2 Statistical modeling for translation

Earlier work in statistical machine translation
(Brown et al., 1993) is based on the “noisy-channel”
formulation where

T* = argmaxp(T|S) = argmax p(T)p(S|T) (1)
T T

where the target language model p(T') is further de-
composed as

p(T) o Hp(ti|ti—1, s ticktt)

where k is the order of the language model and the
translation model p(S|T) has been modeled by a
sequence of five models with increasing complexity
(Brown et al., 1993). The parameters of each of the
two components are estimated using Maximum Like-
lihood Estimation (MLE). The LM is estimated by
counting n-grams and using smoothing techniques.
The translation model is estimated via the EM algo-
rithm or approximations that are bootstrapped from
the previous model in the sequence as introduced in
(Brown et al., 1993). As is well known, improved
results are achieved by modifying the Bayes factor-
ization in Equation 1 above by weighing each distri-
bution differently as in:

p(T|S) ocp*(T)p' ~*(S|T) (2)
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This is the simplest MaxEnt! model that uses two
feature functions. The parameter « is tuned on a
development set (usually to improve an error met-
ric instead of MLE). This model is a special case
of the Direct Translation Model proposed in (Pap-
ineni et al., 1997; Papineni et al., 1998) for language
understanding; (Foster, 2000) demostrated perplex-
ity reductions by using direct models; and (Och and
Ney, 2002) employed it very successfully for language
translation by using about ten feature functions:

PTIS) = 5 exp > Nien(5.T)

Many of the feature functions used for translation are
MLE models (or smoothed variants). For example,
if one uses ¢1 = log(p(T)) and ¢2 = log(p(S|T)) we
get the model described in Equation 2. Most phrase-
based systems, including the baseline decoder used
in this work use feature functions:

e a target word n-gram model (e.g., n = 5),
e a target part-of-speech n-gram model (n > 5),

e various translation models such as a block in-
ventory with the following three varieties: 1) the
unigram block count, 2) a model 1 score p(s;|t;)
on the phrase-pair, and 3)a model 1 score for
the other direction p(t;|s;),

e a target word count penalty feature |T7,
e a phrase count feature,

e a distortion model (Al-Onaizan and Papineni,
2006).

The weight vector A is estimated by tuning on a
rather small (as compared to the training set used to
define the feature functions) development set using
the BLEU metric (or other translation error met-
rics). Unlike MaxEnt training, the method (Och,
2003) used for estimating the weight vector for BLEU
maximization are not computationally scalable for a
large number of feature functions.

2 Related Work

Most recent state-of-the-art machine translation de-
coders have the following aspects that we improve
upon in this work: 1) block style, and 2) model pa-
rameterization and parameter estimation. We dis-
cuss each item next.

!The subfields of log-linear models, exponential fam-
ily, and MaxEnt describe the equivalent techniques from
different perspectives.



2.1 Block style

In order to extract phrases from alignments available
in one or both directions, most SMT approaches use
a heuristic such as union, intersection, inverse pro-
jection constraint, etc. As discussed earlier, these
approaches result in a large overlap between the ex-
tracted blocks (longer blocks overlap with all the
shorter subcomponents blocks). Also, slightly re-
stating the advantages of phrase-pairs identified in
(Quirk and Menezes, 2006), these blocks are effec-
tive at capturing context including the encoding of
non-compositional phrase pairs, and capturing local
reordering, but they lack variables (e.g. embedding
between ne...pas in French), have sparsity prob-
lems, and lack a strategy for global reordering. More
recently, (Chiang, 2005) extended phrase-pairs (or
blocks) to hierarchical phrase-pairs where a grammar
with a single non-terminal allows the embedding of
phrases-pairs, to allow for arbitrary embedding and
capture global reordering though this approach still
has the high overlap problem. However, in (Quirk
and Menezes, 2006), the authors investigate mini-
mum translation units (MTU) which is a refinement
over a similar approach by (Banchs et al., 2005)
to eliminate the overlap issue. The MTU approach
picks all the minimal blocks subject to the condition
that no word alignment link crosses distinct blocks.
They do not have the notion of a block with a vari-
able (a special case of the hierarchical phrase-pairs)
that we employ in this work. They also have a weak-
ness in the parameter estimation method; they rely
on an n-gram language model on blocks which inher-
ently requires a large bilingual training data set.

2.2 Estimating Model Parameters

Most recent SMT systems use blocks (i.e. phrase-
pairs) with a few real valued “informative” features
which can be viewed as an indicator of how proba-
ble the current translation is. As discussed in Sec-
tion 1.2, these features are typically MLE models
(e.g. block translation, Model 1, language model,
etc.) whose scores are log-linearly combined using
a weight vector, Ay where f is a particular feature.
The Ay are trained using a held-out corpus using
maximum BLEU training (Och, 2003). This method
is only practical for a small number of features; typ-
ically, the number of features is on the order of 10 to
20.

Recently, there have been several discriminative
approaches at training large parameter sets includ-
ing (Tillmann and Zhang, 2006) and (Liang et al.,
2006). In (Tillmann and Zhang, 2006) the model
is optimized to produce a block orientation and the
target sentence is used only for computing a sentence
level BLEU. (Liang et al., 2006) demonstrates a dis-
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criminatively trained system for machine translation
that has the following characteristics: 1) requires a
varying update strategy (local vs. bold) depending
on whether the reference sentence is “reachable” or
not, 2) uses sentence level BLEU as a criterion for se-
lecting which output to update towards, and 3) only
trains on limited length (5-15 words) sentences.

So both methods fundamentally rely on a prior
decoder to produce an “N-best” list that is used to
find a target (using max BLEU) for the training al-
gorithm. The methods to produce an “N-best” list
tend to be not very effective since most alternative
translations are minor differences from the highest
scoring translation and do not typically include the
reference translation (particularly when the system
makes a large error).

In this paper, the algorithm trains on all sentences
in the test-specific corpus and crucially, the algo-
rithm directly uses the target translation to update
the model parameters. This latter point is a critical
difference that contrasts to the major weakness of the
work of (Liang et al., 2006) which uses a top-N list of
translations to select the maximum BLEU sentence
as a target for training (so called local update).

3 A Categorization of Block Styles

In (Brown et al., 1993), multi-word “cepts” (which
are realized in our block concept) are discussed and
the authors state that when a target sequence is
sufficiently different from a word by word transla-
tion, only then should the target sequence should
be promoted to a cept. This is in direct opposition
to phrase-based decoders which utilize all possible
phrase-pairs and limit the number of phrases only
due to practical considerations. Following the per-
spective of (Brown et al., 1993), a minimal set of
phrase blocks with lengths (m,n) where either m or
n must be greater than zero results in the following
types of blocks:

1. n = 0, source word producing nothing in the
target language (deletion block),

2. m = 0, spontaneous target word (insertion
block),

3. m =1 and n > 1, a source word producing n
target words including the possibility of a vari-
able (denoted by X) which is to be filled with
other blocks from the sentence (the latter case
called a discontiguous block)

4. m > 1 and n = 1, a sequence of source words
producing a single target words including the
possibility of a variable on the source side (as in
the French ne...pas translating into not, called
multi-word singletons) in the source sequence



5. m > 1 and n > 1, a non-compositional phrase
translation

In this paper, we restrict the blocks to Types 1 and 3.
From the example in Figure 1, the following blocks
are extracted:

e lljnp = of the X Committee
e Almrkzyp = Central

e 1IHzb = of the X Party

e Al$ywEy = Communist

e AlSyny = Chinese.

These blocks can now be considered more “general”
and can be used to generate more phrases compared
to the blocks shown in Table 1. These blocks when
utilized independently of the remainder of the model
perform very poorly as all the advantages of blocks
are absent. These advantages are obtained using the
features to be described below. Also, we store with a
block additional information such as: (a) alignment
information, and (b) source and target analysis. The
target analysis includes part of speech and for each
target string a list of part of speech sequences are
stored along with their corpus frequencies.

The first alignment shown in Figure 1 is an exam-
ple of a Type 5 non-compositional block; although
this is not currently addressed by the decoder, we
plan to handle such blocks in the future.

4 Algorithm

A classification problem can be considered as a map-
ping from a set of histories, S, into a set of futures,
7. Traditional classification problems deal with a
small finite set of futures usually no more than a few
thousands of classes.

Machine translation can be cast into the same
framework with a much larger future space. In con-
trast to the current global models, we decompose the
process into a sequence of steps. The process begins
at the left edge of a sentence and for practical rea-
sons considers a window of source words that could
be translated. The first action is to jump a distance,
7 to a source position and to produce a target string,
t corresponding to the source word at that position.
The process then marks the source position as hav-
ing been visited and iterates till all source words have
been visited. The only wrinkle in this relatively sim-
ple process is the presence of a variable in the tar-
get sequence. In the case of a variable, the source
position is marked as having been partially visited.
When a partially visited source position is visited
again, the target string to the right of the variable is
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output and the process is iterated. The distortion or
jump from the previously translated source word, j
in training can vary widely due to automatic sentence
alignment that is used to create the parallel corpus.
To limit the sparseness created by these longer jumps
we cap the jump to a window of source words (-5 to 5
words) around the last translated source word; jumps
outside the window are treated as being to the edge
of the window.

We combine the above translation model with a
n-gram language model as in

p(T,41S) = [ [ p(ti. jlsi)
~ H ALmP(tiltiz, - tin)+

Armp(ti, jlsi)

This mixing allows the use of language model built
from a very large monolingual corpus to be used with
a translation model which is built from a smaller
parallel corpus. In the rest of this paper, we are
concerned only with the translation model.

The minimum requirements for the algorithm are
(a) parallel corpus of source and target languages
and (b) word-alignments. While one can use the
EM algorithm to train this hidden alignment model
(the jump step), we use Viterbi training, i.e. we use
the most likely alignment between target and source
words in the training corpus to estimate this model.
We assume that each sentence pair in the training
corpus is word-aligned (e.g. using a MaxEnt aligner
(Ittycheriah and Roukos, 2005) or an HMM aligner
(Ge, 2004)). The algorithm performs the following
steps in order to train the maximum entropy model:
(a) block extraction, (b) feature extraction, and (c)
parameter estimation. Each of the first two steps
requires a pass over the training data and param-
eter estimation requires typically 5-10 passes over
the data. (Della Pietra et al., 1995) documents the
Improved Iterative Scaling (IIS) algorithm for train-
ing maximum entropy models. When the system is
restricted to 1-N type blocks, the future space in-
cludes all the source word positions that are within
the skip window and all their corresponding blocks.
The training algorithm at the parameter estimation
step can be concisely stated as:

1. For each sentence pair in the parallel corpus,
walk the alignment in source word order.

2. At each source word, the alignment identifies the
“true” block.

3. Form a window of source words and allow all
blocks at source words to generate at this gen-
eration point.



4. Apply the features relevant to each block and
compute the probability of each block.

5. Form the MaxEnt polynomials(Della Pietra et
al., 1995) and solve to find the update for each
feature.

We will next discuss the prior distribution used in
the maximum entropy model, the block extraction
method and the feature generation method and dis-
cuss differences with a standard phrase based de-
coder.

4.1 Prior Distribution

Maximum entropy models are of the form,
. Do ta.j S .
pit.gle) = P2 0 3™ (e s)
i

where pg is a prior distribution, Z is a normalizing
term, and ¢;(¢t,j,s) are the features of the model.
The prior distribution can contain any information
we know about our future and in this work we utilize
the normalized phrase count as our prior. Strictly,
the prior has to be uniform on the set of futures to
be a “maximum” entropy algorithm and choices of
other priors result in minimum divergence models.
We refer to both as a maximum entropy models.

The practical benefit of using normalized phrase
count as the prior distribution is for rare transla-
tions of a common source words. Such a translation
block may not have a feature due to restrictions in
the number of features in the model. Utilizing the
normalized phrase count prior, the model is still able
to penalize such translations. In the best case, a fea-
ture is present in the model and the model has the
freedom to either boost the translation probability
or to further reduce the prior.

4.2 Block Extraction

Similar to phrase decoders, a single pass is made
through the parallel corpus and for each source word,
the target sequence derived from the alignments
is extracted. The ‘Inverse Projection Constraint’,
which requires that the target sequence be aligned
only to the source word or phrase in question, is then
checked to ensure that the phrase pair is consistent.
A slight relaxation is made to the traditional target
sequence in that variables are allowed if the length of
their span is 3 words or less. The length restriction is
imposed to reduce the effect of alignment errors. An
example of blocks extracted for the romanized ara-
bic words ‘lljnp’ and ‘Almrkzyp’ are shown Figure 2,
where on the left side are shown the unsegmented
Arabic words, the segmented Arabic stream and the
corresponding Arabic part-of-speech. On the right,
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the target sequences are shown with the most fre-
quently occuring part-of-speech and the corpus count
of this block.

The extracted blocks are pruned in order to min-
imize alignment problems as well as optimize the
speed during decoding. Blocks are pruned if their
corpus count is a factor of 30 times smaller than the
most frequent target sequence for the same source
word. This results in about 1.6 million blocks from
an original size of 3.2 million blocks (note this is
much smaller than the 50 million blocks or so that
are derived in current phrase-based systems).

4.3 Features

The features investigated in this work are binary
questions about the lexical context both in the source
and target streams. These features can be classi-
fied into the following categories: (a) block internal
features, and (b) block context features. Features
can be designed that are specific to a block. Such
features are modeling the unigram phrase count of
the block, which is information already present in
the prior distribution as discussed above. Features
which are less specific are tied across many transla-
tions of the word. For example in Figure 2, the pri-
mary translation for ‘lljnp’ is ‘committee’ and occurs
920 times across all blocks extracted from the corpus;
the final block shown which is ‘of the X committee’
occurs only 37 times but employs a lexical feature
‘ljnp committee’ which fires 920 times.

4.3.1 Lexical Features

Lexical features are block internal features which
examine a source word, a target word and the jump
from the previously translated source word. As dis-
cussed above, these are shared across blocks.

4.3.2 Lexical Context Features

Context features encode the context surrounding
a block by examining the previous and next source
word and the previous two target words. Unlike a
traditional phrase pair, which encodes all the infor-
mation lexically, in this approach we define in Ta-
ble 2, individual feature types to examine a por-
tion of the context. Omne or more of these features
may apply in each instance where a block is relevant.
The previous source word is defined as the previously
translated source word, but the next source word is
always the next word in the source string. At train-
ing time, the previously translated source word is
found by finding the previous target word and utiliz-
ing the alignment to find the previous source word.
If the previous target word is unaligned, no context
feature is applied.



lljnp

1# ljn +p

PREP NOUN NSUFF_FEM_SG

committee/NN (613)

of the commission/IN DT NN (169)
the committee/DT NN (136)
commission/NN (135)

of the committee/IN DT NN (134)

the commission/DT NN (106)
of the HOLE committee/IN DT -1 NN(37)

Almrkzyp

Al# mrkzy +p

DET ADJ NSUFF_FEM_SG

central/NNP (731)

the central/DT JJ (504)

of the central/IN DT NNP(64)
the cia/DT NNP (58)

Figure 2: Extracted blocks for ‘lljnp’ and ‘Almrkzyp’.

Feature Name Feature variables

SRC_LEFT source left, source word,
target word
SRC_RIGHT source right, source word,

target word

source left, target left,
source word, target word
source left, target left,
target left 2, source word,
target word

SRC_TGT_LEFT

SRC_TGT_LEFT_2

Table 2: Context Feature Types

4.3.3 Arabic Segmentation Features

An Arabic segmenter produces morphemes; in
Arabic, prefixes and suffixes are used as prepositions,
pronouns, gender and case markers. This produces a
segmentation view of the arabic source words (Lee et
al., 2003). The features used in the model are formed
from the Cartesian product of all segmentation to-
kens with the English target sequence produced by
this source word or words. However, prefixes and
suffixes which are specific in translation are limited
to their English translations. For example the pre-
fix ‘Al#’ is only allowed to participate in a feature
with the English word ‘the’ and similarly ‘the’ is not
allowed to participate in a feature with the stem of
the Arabic word. These restrictions limit the num-
ber of features and also reduce the over fitting by the
model.

4.3.4 Part-of-speech Features

Part-of-speech taggers were run on each language:
the English part of speech tagger is a MaxEnt tag-
ger built on the WSJ corpus and on the WSJ test
set achieves an accuracy of 96.8%; the Arabic part
of speech tagger is a similar tagger built on the Ara-
bic tree bank and achieves an accuracy of 95.7% on
automatically segmented data. The part of speech
feature type examines the source and target as well
as the previous target and the corresponding previ-
ous source part of speech. A separate feature type
examines the part of speech of the next source word
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when the target sequence has a variable.

4.3.5 Coverage Features

These features examine the coverage status of the
source word to the left and the source word to the
right. During training, the coverage is determined
by examining the alignments; the source word to the
left is uncovered if its target sequence is to the right
of the current target sequence. Since the model em-
ploys binary questions and predominantly the source
word to the left is already covered and the right
source word is uncovered, these features fire only if
the left is open or if the right is closed in order to
minimize the number of features in the model.

5 Translation Decoder

A beam search decoder similar to phrase-based sys-
tems (Tillmann and Ney, 2003) is used to translate
the Arabic sentence into English. These decoders
have two parameters that control their search strat-
egy: (a) the skip length (how many positions are al-
lowed to be untranslated) and (b) the window width,
which controls how many words are allowed to be
considered for translation. Since the majority of the
blocks employed in this work do not encode local re-
ordering explicitly, the current DTM2 decoder uses
a large skip (4 source words for Arabic) and tries
all possible reorderings. The primary difference be-
tween a DTM2 decoder and standard phrase based
decoders is that the maximum entropy model pro-
vides a cost estimate of producing this translation
using the features described in previous sections. An-
other difference is that the DTM2 decoder handles
blocks with variables. When such a block is pro-
posed, the initial target sequence is first output and
the source word position is marked as being partially
visited and an index into which segment was gener-
ated is kept for completing the visit at a later time.
Subsequent extensions of this path can either com-
plete this visit or visit other source words. On a
search path, we make a further assumption that only



one source position can be in a partially visited state
at any point. This greatly reduces the search task
and suffices to handle the type of blocks encountered
in Arabic to English translation.

6 Experiments

The UN parallel corpus and the LDC news corpora
released as training data for the NIST MTO06 eval-
uation are used for all evaluations presented in this
paper. A variety of test corpora are now available
and we use MT03 as development test data, and
test results are presented on MT05. Results obtained
on MT06 are from a blind evaluation. For Arabic-
English, the NIST MTO06 training data contains 3.7M
sentence pairs from the UN from 1993-2002 and 100K
sentences pairs from news sources. This represents
the universe of training data, but for each test set
we sample this corpus to train efficiently while also
observing slight gains in performance. The training
universe is time sorted and the most recent corpora
are sampled first. Then for a given test set, we obtain
the first 20 instances of n-grams from the test that
occur in the training universe and the resulting sam-
pled sentences then form the training sample. The
contribution of the sampling technique is to produce
a smaller training corpus which reduces the compu-
tational load; however, the sampling of the universe
of sentences can be viewed as test set domain adapta-
tion which improves performance and is not strictly
done due to computational limitations?. The 5-gram
language model is trained from the English Gigaword
corpus and the English portion of the parallel corpus
used in the translation model training.

The baseline decoder is a phrase-based decoder
that employs n-m blocks and uses the same test set
specific training corpus described above.

6.1 Feature Type Experiments

There are 15 individual feature types utilized in the
system, but in order to be brief we present the re-
sults by feature groups (see Table 3): (a) lexical, (b)
lexical context, (c) segmentation, (d) part-of-speech,
and (e) coverage features. The results show im-
provements with the addition of each feature set, but
the part-of-speech features and coverage features are
not statistically significant improvements. The more
complex features based on Arabic segmentation and
English part-of-speech yield a small improvement of
0.5 BLEU points over the model with only lexical
context.

2Recent results indicate that test set adaptation by
test set sampling of the training corpus achieves a cased
Bleu of 53.26 on MTO03 whereas a general system trained
on all data achieves only 51.02
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Verb Placement | 3
Missing Word 5
Extra Word 5
Word Choice 26
Word Order 3
Other error 1
Total 43

Table 4: Errors on last 25 sentences of MT-03.

7 Error Analysis and Discussion

We analyzed the errors in the last 25 sentences of the
MT-03 development data using the broad categories
shown in Table 4. These error types are not indepen-
dent of each other; indeed, incorrect verb placement
is just a special case of the word order error type
but for this error analysis for each error we take the
first category available in this list. Word choice er-
rors can be a result of (a) rare words with few, or
incorrect, or no translation blocks (4 times) or (b)
model weakness® (22 times). In order to address the
model weakness type of errors, we plan on investigat-
ing feature selection using a language model prior.
As an example, consider an arabic word which pro-
duces both ‘the’ (due to alignment errors) and ‘the
conduct’. An n-gram LM has very low cost for the
word ‘the’” but a rather high cost for content words
such as ‘conduct’. Incorporating the LM model as a
prior should help the maximum entropy model focus
its weighting on the content word to overcome the
prior information.

8 Conclusion and Future Work

We have presented a complete direct translation
model with training of millions of parameters based
on a set of minimalist blocks and demonstrated the
ability to retain good performance relative to phrase
based decoders. Tied features minimize the num-
ber of parameters and help avoid the sparsity prob-
lems associated with phrase based decoders. Uti-
lizing language analysis of both the source and tar-
get languages adds 0.8 BLEU points on MT-03, and
0.4 BLEU points on MT-05. The DTM2 decoder
achieved a 1.7 BLEU point improvement over the
phrase based decoder on MT-06. In this work, we
have restricted the block types to only single source
word blocks. Many city names and dates in Ara-
bic can not be handled by such blocks and in future
work we intend to investigate the utilization of more
complex blocks as necessary. Also, the DTM2 de-
coder utilized the LM component independently of

3The word occurred with the correct translation in
the phrase library with a count more than 10 and yet the
system used an incorrect translation.



Feature Types # of feats | MT-03 | MT-05 | MT-06
(MTO03)

Training Size

Num. of Sentences 197K 267K 279K

Phrase-based Decoder 51.20 49.06 36.92

DTM2 Decoder

Lex Feats a | 439,582 49.70 48.37

+Lex Context b | 2,455,394 | 50.45 49.61

+Seg Feats c | 2,563,338 | 50.97 49.96

+POS Feats d | 2,608,352 | 51.27 49.93

+Cov Feats e | 2,783,813 | 51.19 50.00 38.61

Table 3: Bleu scores on MT03-MTO06.

the translation model; however, in future work we
intend to investigate feature selection using the lan-
guage model as a prior which should result in much
smaller systems.
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Abstract

Conditional Random Fields (CRFs) have shown
gresat successfor problemsinvolving structured out-
put variables. However, for many real-world NLP
applications, exact maximum-likelihood training is
intractable because computing the global normal-
ization factor even approximately can be extremely
hard. In addition, optimizing likelihood often does
not correlate with maximizing task-specific evalu-
ation measures. In this paper, we present a novel
training procedure, structured local training, that
maximizes likelihood while exploiting the benefits
of global inference during training: hidden vari-
ables are used to capture interactions between lo-
cal inference and global inference. Furthermore,
we introduce biased potential functions that empir-
icaly drive CRFs towards performance improve-
ments w.r.t. the preferred evaluation measure for
the learning task. We report promising experimen-
tal results on two coreference data sets using two
task-specific evaluation measures.

1 Introduction

Undirected graphical models such as Conditional
Random Fields (CRFs) (Lafferty et a., 2001) have
shown great success for problems involving struc-
tured output variables (e.g. Wellner et a. (2004),
Finkel et al. (2005)). For many real-world NLP ap-
plications, however, the required graph structure can
be very complex, and computing the global normal-
ization factor even approximately can be extremely
hard. Previous approaches for training CRFs have
either (1) opted for atraining method that no longer
maximizesthe likelihood, (e.g. McCallum and Well-
ner (2004), Roth and Yih (2005)) *, or (2) opted for a

'Both McCallum and Wellner (2004) and Roth and Yih

(2005) used the voted perceptron algorithm (Collins, 2002) to
train intractable CRFs.
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simplified graph structure to avoid intractable global
normalization (e.g. Roth and Yih (2005), Wellner et
al. (2004)).

Solutions of thefirst type replace the computation
of the global normalization factor 3_y p(y|x) with
argmaxy p(y|X) during training, since finding an
argmax of a probability distribution is often an eas-
ier problem than finding the entire probability distri-
bution. Training via the voted perceptron algorithm
(Coallins, 2002) or using a max-margin criterion also
correspond to the first option (e.g. McCallum and
Wellner (2004), Finley and Joachims (2005)). But
without the global normalization, the maximum-
likelihood criterion motivated by the maximum en-
tropy principle (Berger et al., 1996) is no longer a
feasible option as an optimization criterion.

The second solution simplifies the graph struc-
ture for training, and applies complex global infer-
ence only for testing. In spite of the discrepancy
between the training model and the testing model,
it has been empirically shown that (1) performing
global inference only during testing can improve
performance (e.g. Finkel et a. (2005), Roth and Yih
(2005)), and (2) full-blown global training can of-
ten perform worse due to insufficient training data
(e.g. Punyakanok et a. (2005)). Importantly, how-
ever, attempts to reduce the discrepancy between the
training and test models— by judiciously adding the
effect of global inference to the training — have pro-
duced substantial performance improvements over
locally trained models (e.g. Cohen and Carvalho
(2005), Sutton and McCallum (2005a)).

In this paper, we present structured local training,
anovel training procedure for maximum-likelihood

Proceedings of NAACL HLT 2007, pages 65-72,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



training of undirected graphica models, such as
CRFs. The procedure maximizes likelihood while
exploiting the benefits of global inference during
training by capturing the interactions between local
inference and global inference via hidden variables.

Furthermore, we introduce biased potential func-
tions that redefine the likelihood for CRFs so that
the performance of CRFs trained under the max-
imum likelihood criterion correlates better empiri-
cally with the preferred evaluation measures such as
F-score and MUC-score.

We focus on the problem of coreference resolu-
tion; however, our approaches are general and can
be extended to other NLP applications with struc-
tured output. Our approaches also extend to non-
conditional graphical models such as Markov Ran-
dom Fields. In experiments on two coreference data
sets, structured local training reduces the error rate
significantly (3.5%) for one coreference data set and
minimally (< 1%) for the other. Experiments using
biased potential functions increase recall uniformly
and significantly for both data sets and both task-
specific evaluation measures. Results for the com-
bination of the two techniques are promising, but
mixed: pairwise F1 increases by 0.8-5.5% for both
data sets; MUC F1 increases by 3.5% for one data
set, but dightly hurts performance for the second
data set.

In §2, we describe structured local training, and
follow with experimental results in §3. In §4, we
describe biased potential functions and follow with
experimental results in §5. We discuss related work
in §6.

2 Structured Local Training

2.1 Definitions

For clarity, we define the following terms that we
will use throughout the paper.

e local inference: 2 Inference factored into smaller
independent pieces, without considering the
structure of the output space.

e global inference: Inference applied on the entire
set of output variables, considering the structure
of the output space.

2In this paper, inference refers to the operation of finding the
argmax in particular.
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e local training: Training that does not invoke
global inference at each iteration.

e global training: Training that doesinvoke global
inference at each iteration.

2.2 A Motivating Examplefor Coreference
Resolution

In this section, we present an example of the coref-
erence resolution problem to motivate our approach.
It has been shown that global inference-based train-
ing for coreference resolution outperforms training
with local inference only (e.g. Finley and Joachims
(2005), McCalum and Wellner (2004)). In particu-
lar, the output of coreference resolution must obey
equivalence relations, and exploiting such structural
constraints on the output space during training can
improve performance. Consider the coreference res-
olution task for the following text.

It was after the passage of this act, that Mary")’s attitude
towards Elizabeth™ became overtly hostile. The deliber-
ations surrounding the act seem to haverevived al Mary’s
memories of the humiliations she had suffered at the
hands of Anne Boleyn. At the same time, Elizabeth®’s
continuing prevarications over religion confirmed that she
was indeed her mother’s daughter.

In the above text, the “she” in the last sen-
tence is coreferent with both mentions of
“FElizabeth”. However, when we consider
“she” and “FElizabeth™” in isolation from the
remaining coreference chain, it can be difficult for
a machine learning method to determine whether
the pair is coreferent or not. Indeed, such a
pair may not look very different from the pair
“she” and “Mary™” in terms of feature vectors.
It is much easier, however, to determine that
“she” and “Elizabeth?” are coreferent, or that
“Elizabeth” and “ Elizabeth?” are coreferent.
Only by taking the transitive closure of these pair-
wise coreference relations does it become clear that
“she” and “Elizabeth(!)” are coreferent. In other
words, global training might handle potentially
confusing coreference cases better because it allows
parameter learning (for each pairwise coreference
decision) to be informed by global inference.

We argue that, with appropriate modification to
the learning instances, local training is adequate for
the coreference resolution task. Specifically, we pro-
pose that confusing pairsin the training data— such



as “she” and “Elizabeth(!)” — be learned as not-
coreferent, so long as the global inference step can
fix this error by exploiting the structure of the out-
put space, i.e. by exploiting the equivalence rela-
tions. Thisisthe key idea of structured local train-
ing, which we elaborate formally in the following
section.

2.3 A Hidden-Variable M odel

In this section, we present a general description of
structured local training. Let y be a vector of out-
put variables for structured output, and let x be a
vector of input variables. In order to capture the in-
teractions between global inference and local infer-
ence, we introduce hidden variables h, |h| = ly|,
so that the global inference for p(y, h|x) can be fac-
tored into two components using the product rule, as
follows:

p(y, hix) = p(y[h, x) p(h|x)
= p(ylh) p(hix)

The second component p(h|x) on the right hand side
corresponds to the local model, for which the infer-
ence factorizes into smaller independent pieces, e.g.
agmaxpp(hlx) = {argmax, ¢(h;,X)}. And the
first component p(y|h, x) on the right hand side cor-
responds to the global model, whose inference may
not factorize nicely. Further, we assumethat y isin-
dependent of x given h, so that p(y|h, X) = p(y|h).
That isto say, h captures sufficient information from
X, SO that given h, global inference of y only de-
pends on h. The quantity of p(y|X) then is given by
marginalizing out h asfollows:

p(ylx) = > p(y.hlx)
h

Intuitively, the hidden variables h represent the lo-
cal decisions that can lead to a good y after global
inferenceis applied. In the case of coreference reso-
lution, one natural factorization would be that global
inference is a clustering algorithm, and loca infer-
enceisaclassification decision on each pair of noun
phrases (or mentions)2 In this paper, we assume

3Formally, we define each y; € y to be the coreference de-
cision for the ith pair of mentions, and x; € x be the input
regarding the ith pair of mentions. Then h; corresponds to the

local coreference decision that can lead to a good coreference
decision y; after the clustering algorithm has been applied.
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that we only parameterize the local model p(h|x),
although it would be possible to extend the parame-
terization to the global model as well, depending on
the particular application under consideration. The
similarity between a pair of mentions is parameter-
ized vialog-linear models. However, once we have
the similarity scores extracted via local inference,
the clustering algorithm does not require further pa-
rameterization.

For training, we apply the standard Expectation-
Maximization (EM) agorithm (Dempster et da.,
1977) asfollows:

e E Step: Compute adistribution
PY = P(hly,x,0¢D)
e M Step: Set H®) to 0 that maximizes
Exq [logP(y,h|x,0)]

By repeatedly applying the above two steps for
t = 1,2,..., the value of # converges to the local
maxima of the conditional log likelihood L(0) =
logP(y|x, ).

2.4 Application to Coreference Resolution

For y; € y (and h; € h) inthe coreference resolution
task, y; = 1 (and h; = 1) corresponds to ith pair of
mentions being coreferent, and 3; = 0 (and h; = 0)
corresponds to ith pair being not coreferent.

[Local Model P(h|x)] Forthelocal model, we de-
fine cliques as individual nodes;* and parameterize
each clique potential as

d(hi,X) = ¢(hi, zi) = eXp Y A fr(hi, i)
k

~ ®(h,x)
Pl = >h @(h,x)

Notice that in this model, finding argmax, P(h|x)
corresponds to simply finding argmax;, ¢ (h;, z;) in-
dependently for each h; € h.

“Each node in the graphical representation of CRFs corre-

sponds to the coreferent decision for each pair of mentions. This
corresponds to the“Model 3" of McCallum and Wellner (2004).



ALGORITHM-1

INPUT: X, truelabeling y*, current local model P (h|x)
GOAL: Find the highest confidence labeling y’
such that y* = single-link-clustering(y’)
h* «— argmaxp, P(h|x)
h’ « single-link-clustering(h*)
construct agraph G = (V, E), where
E={h;:h;eh sty =1}
V = {v:visaNPreferred by ah] € E}
with edge cost cost,: = ¢(hl, z;) if b # yf
with edge cost cost,, = 0 if b} = y
find a minimum spanning %ree(or forest) M of G
for each b, € h’
if b, =y
yi — hi
eseif h, € M
else v 1

end for
returny’

yi —0

Figure 1. Algorithm to find the highest confidence labelingy
that can be clustered to the true labeling y*

[Global Model P(y|h)] For the global model, we
assume adeterministic clustering algorithm is given.
In particular, we focus on single-link clustering, asit
has been shown to be effective for coreference reso-
[ution (e.g. Ng and Cardie (2002)). With single-link
clustering, P(ylh) = 1 if h can be clustered to vy,
and P(y|h) = 0 if h cannot be clustered to y>

[Computation of the E-step] The E-step requires
computation of the distribution of P(hly,x, 6¢—1),
which we will simply denote as P(hly, x), since all
our distributions are implicitly conditioned on the
model parameters 6.

P(h,y[x)
P(ylx)

Notice that when computing P (hly, x), the denomi-
nator P(y|X) stays as a constant for different values
of h. The E-step requires enumeration of all possible
values of h, but it isintractable with our formulation,
because inference for the global model P(y|h) does
not factor out nicely. Therefore, we must resort to an

P(hly, x) = o P(ylh) P(h[x)

®Single-link clustering simply takes the transitive closure,
and does not consider the distance metric. In a pilot study, we
alsotried avariant of astochastic clustering algorithm that takes
into account the distance metric (set as the probabilities from
the local model) for the global model, but the performance was
worse.
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ALGORITHM-2
INPUT: X, truelabeling y*, current local model P (h|x)
GOAL: Find ahigh confidence labeling y that is
close to the true labeling y*

h* «— argmaxp, P(h|x)
h’ « single-link-clustering(h*)
foreach b}, € h’

ifhi =y;

! Rt
d% yZ — k2

/ *
endfor 71T Yi
returny’

Figure 2: Algorithm to find a high confidence labeling y' that
is close to the true labeling y*

approximation method. Neal and Hinton (1998) an-
alyze and motivate various approximate EM training
methods. One popular choice in practice is caled
“Viterbi training”, a variant of the EM algorithm,
which has been shown effective in many NLP ap-
plications. Viterbi training approximates the distri-
bution by assigning all probability mass to a single
best assignment. The algorithm for thisis shown in
Figure 1.

We propose another approximation option for the
E-step that is given by Figure 2. Intuitively, when
the current local model misses positive coreference
decisions, the first algorithm constructs ay that is
closest to h' for single-link clustering to recover the
true labeling y*, while the second algorithm con-
structs ay’ that is closer to y* by preserving all of
the missing positive coreference decisions. ©

[Computation of M-step] Because P(y|h) is not
parameterized, finding argmax, P(y,h|x) reduces
to finding argmax, P (h|x), which is standard CRF
training. In order to speed up the training, we start
convex optimization for CRFs using the parame-
ter values 6(*~1) from the previous M-step. For
the very first iteration of EM, we start by setting
P(y*|x) = 1 for E-step, so that the first M-step will
finds argmax, P(y*|x).

®In a pilot study, we found that ALGORITHM-2 per-
forms glightly better than ALGORITHM-1. We aso tried two
other approximation options, but none performed as well as
ALGORITHM-2. One of them removes the confusing sub-
instances and has the effect of setting a uniform distribution on
those sub-instances. The other computes the actual distribution
on a subset of sub-instances. For brevity, we only present ex-
perimental results using ALGORITHM-2 in this paper.



[Inference on the test data] It is intractable to
marginalize out h from P(y, h|x). Therefore, sim-
ilar to the Viterbi-training in the E-step, we approx-
imate the distribution of h by argmaxp, P(h|X).

3 ExperimentsH

Data set: We evaluate our approach with two
coreference data sets: MUC6 (MUC-6, 1995) and
MPQA’(Wiebeet al., 2005). For the MUC6 data set,
we extract noun phrases (mentions) automatically,
but for MPQA, we assume mentions for corefer-
ence resolution are given as in Stoyanov and Cardie
(2006). For MUCS, we use the standard training/test
data split. For MPQA, we use 150 documents for
training, and 50 documents for testing.

Configuration: We follow Ng and Cardie (2002)
for feature vector construction for each pair of men-
tions® and Finley and Joachims (2005) for con-
structing a training/testing instance for each docu-
ment: atraining/testing instance consists of al pairs
of mentions in a document. Then, a single pair of
mentions is a sub-instance. We use the Mallef® im-
plementation of CRFs, and set a Gaussian prior of
1.0 for all experiments. At each M-step, we train
CRFsstarting from the parameters from the previous
M-step. We train CRFs up to 200 iterations, but be-
cause we start training CRFs from the previous pa-
rameters, the convergence from the second M-step
becomes much faster. We apply up to 5 EM itera
tions, and choose best performing 9“),2 <t<35
based on the performance on the training datal®

Hypothesis.  For the baseline (BA SE) we employ
the locally trained model for pairwise decisions
without global inference. Clustering is applied only
at test time, in order to make the assignment on the
output variables coherent. We hypothesize that for
the baseline, maximizing the likelihood for training
will correlate more with the pairwise accuracy of the

" Available at http://nrre.mitre.org/NRRC/publications.htm.

8In particular, our feature set corresponds to “All Features’
in Ng and Cardie (2002), and we discretized numeric values.

®Available at http://mallet.cs.umass.edu.

10sgfecting 9*) on a separate tuning datawould be better, but

the datafor MUCS6 in particular is very limited. Notice that we
don't pick ' when reporting the performance of SLT, because
itisidentical to the baseline.
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MUCG6
after clustering before clustering
e% | R% P% F% | e% | R% P% F%
BASE | 150 | 59.2 56.2 57.7 | 1.18 | 38.0 856 526
SLT | 128 | 49.8 67.3 57.2 | 1.35 | 26.4 84.3 40.2
MPQA
after clustering before clustering
e% | R% P% F% | e% | R% P% F%
BASE | 9.83 | 758 57.0 65.1 | 7.05 | 52.1 834 64.1
SLT | 639 | 621 80.6 70.2 | 7.39 | 43.7 90.1 58.9

Table 1. Performance of Structured Local Training: SLT re-
duces error rate (e %) after applying single-link clustering.

incoherent decisions before clustering than the pair-
wise accuracy of the coherent decisions after cluster-
ing. We also hypothesize that by performing struc-
tured local training (SLT), maximizing the likeli-
hood will correlate more with the pairwise accuracy
after clustering.

Results: Experimental results are shown in Ta
ble 1. We report error rate (error rate = 100 —
accuracy) on the pairwise decisions (e %), and F1-
score (F %) on the coreferent pairs!' For compar-
ison, we show numbers from both after and before
single-link clustering is applied. As hypothesized,
the error rate of BASE increases after clustering,
while the error rate of SLT decreases after cluster-
ing. Moreover, the error rate of SLT is considerably
lower than that of BASE after clustering. However,
the F1-score does not correlate with the error rate.
That is, alower error rate does not always lead to a
higher F1-score, which motivates the Biased Poten-
tial Functions that we introduce in the next section.
Notice that when we compare the precision/recall
breakdown after clustering, SLT has higher precision
and lower recall than BASE.

4 Biased Potential Functions

We introduce biased potential functions for train-
ing CRFs to empirically favor preferred evaluation
measures for the learning task, such as F-score and
MUC-scorethat have been considered hard for tradi-

Y Error rate and F1-score on the coreferent pairs are not ideal
measures for the quality of clustering, however, we show them
here in order to contrast the effect of SLT. We present MUC-
scores for the same experimental settingsin Table 3.



tional likelihood-based methods to optimize for. In-
tuitively, biased potential functions emphasize those
sub-components of an instance that can be of greater
importance than the rest of an instance.

4.1 Definitions

The conditional probability of P(y|x)'? for CRFsis
given by (Lafferty et a., 2001)

. Hz ¢(CZ7 X)
POR) = & T (G

where ¢(C;, X) is a potential function defined over
each clique C;. Potentia functions are typically pa-
rameterized in an exponentia form as follows.

¢(Ci,X) = expz )\kfk(chx)
k

where )\, are the parameters and fi(-) are fea
ture indicator functions. Because the Hammerdley-
Clifford theorem (1971) for undirected graphical
models holds for any non-negative potential func-
tions, we propose aternative potential functions as
follows.

if 1(Ci,X) = true
otherwise

— qu(CZ,X)
w(CZvX) - { ¢(CZ,X)
where 3 is a non-negative bias factor, and 1.(C;, X)
isapredicate (or an indicator function) to check cer-
tain properties on (Cj, x).2® Examples of possible
w(-) would be whether the true assignment for C;
in the training data contains certain class values, or
whether the current observation indexed by C; has
particular characteristics. More specific details will
be givenin §4.2.

Training and testing with biased potential func-
tions is mostly identical to the traditional log-linear
formulations by ¢(-) as defined above, except for
small and straightforward modifications to the com-
putation of the likelihood and the derivative of the
likelihood.

2For the local model described in Section 2, y should be
replaced with h. We use y in this section however, as it is a
more conventional notation in general.

Bin our problem formulation, cliques are individual nodes,
and potentia functions are defined over the observations in-
dexed by the current i only: i.e ¢(Ci,x) = o¢(yi, xi),
w(Ci,X) = p(yi, z:) and Y(Cs, X) = P (yi, T1).
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The key idea for biased potential functions is
nothing new, as it is conceptualy similar to in-
stance weighting for problems with non-structured
output (e.g. Ahaand Goldstone (1992), Cardie et a.
(1997)). However, biased potential functions differ
technically in that they emphasize desired subcom-
ponents without altering the i.i.d. assumption, and
still weight each instance aike. Despite the con-
ceptual simplicity, we are not aware of any previ-
ouswork that explored biased potential functions for
problems with structured output.

4.2 Applicationsto Coreference Resolution

[Bias on Coreferent Pairs] For coreference res-
olution, pairs that are coreferent are in a minority
class'*, and biased potentia functions can mitigate
this skewed data problem, by amplifying the clique
potentials that correspond to coreferent pairs. We
define u(y;, x;) to be true if and only if the true as-
signment for g; in the training data is 'coreferent’.
Notice that 1(-) does not depend on what particu-
lar value y; might take, but only depends on the true
value of y; in the training data. For testing, (v, ;)
will be always false.’®

[Bias on Closer Coreferent Pairs] For corefer-
ence resolution, we hypothesize that coreferent pairs
for closer mentions have more significance, because
they tend to have clearer linguistic clues to deter-
mine coreference. We further hypothesize that by
emphasizing only close coreferent pairs, we can
have our model favor the MUC score. For this, we
define p(y;, z;) to be true if and only if x; is for a
pair of mentions that are the closest coreferent pair.

5 Experiments-|

Data sets and configurations for experiments are
identical to those used in §3.

Hypothesis:  We hypothesize that using biased po-
tential functions, maximizing the likelihood for
training can correlate better with F1-score or MUC-
score than the pairwise accuracy. In particular,

140nly 1.72% of the pairs are coreferent in the MUCS data,
and about 12% are coreferent in the MPQA data.

BNotice that 1(y:, ;) changes the surface of the likelihood
for training, but does not affect the inference of finding the
argmax in our local model. That is, argmax, &(yi, i) =
argmax,, ¢ (yi, x:) (with y; replaced with h;).



MUC6 MUC6
pairwise MUC pairwise MUC
e% | R% P% F% | R% P% F% e% | R% P% F% | R% P% F%
BASE 1.18 | 38.0 85.6 52.6 | 59.0 75.8 66.4 BASE 150 | 59.2 56.2 57.7 | 59.0 75.8 66.4
BASIC-P1'® | 1.20 | 38.9 82.1 52.8 | 64.2 71.8 67.8 SLT 128 | 498 673 572 | 563 77.8 653
Basic-P1%° | 1.32 | 46.9 713 56.6 | 68.9 64.3 66.5 sLT-p1%% | 1.9 | 52.8 70.6 60.4 | 59.3 74.6 66.1
BASIC-Pa® | 1.15 | 44.2 79.9 56.9 | 62.1 68.7 65.2 sit-p1%0 | 142 | 635 57.9 60.6 | 67.5 70.7 69.1
BASIC-Pa®® | 1.44 | 525 629 57.2 | 70.9 60.5 65.3 SLT-pa'® | 1.43 | 58.6 585 585* | 64.0 73.6 685
MPQA sLT-Pe®® | 1.71 | 65.2 50.3 56.8 | 70.5 69.3 69.9*
pairwise MUC MPQA
€% | R% P% F% | R% P% F% pairwise MUC
BASE 7.05 | 52.1 834 64.1 | 756 815 78.4 e% | R% P% F% | R% P% F%
BAsic-P1!'5 | 7.18 | 54.6 79.6 64.8 | 77.7 765 77.1 BASE 983 | 758 570 651 | 756 815 784
Basic-P1%° | 7.22 | 59.9 75.4 66.8 | 83.3 717 77.1 SLT 639 | 621 806 702 | 69.1 882 77.5
BASIC-pa!'® | 7.65 | 59.7 722 65.4 | 79.8 73.2 76.4 stT-P1'® | 654 | 64.9 77.4 70.6* | 72.2 845 77.9*
BAsiC-Pa®C | 822 | 69.2 65.1 67.1 | 85.8 67.8 75.7 sit-p1%0 | 909 | 77.2 59.6 67.3 | 784 795 789
sLT-pe’® | 674 | 652 757 701 | 72.4 87.2 79.1
Table 2: Performance of Biased Potential Functions: pairwise stT-pa®® | 1471 | 782 439 56.2 | 805 73.8 77.0

scores are taken before single-link-clustering is applied.

we hypothesize that biasing on every coreferent
pair will correlate more with Fl-score, and bias-
ing on close coreferent pairs will correlate more
with MUC-score. In genera, we expect that bias-
ing on coreferent pairs will boost recal, potentially
decreasing precision.

Results [BPF]: Experimental results for biased
potential functions, without structured local train-
ing, are shown in Table 2. BASIC-P1? denotes local
training with biased potential on the closest corefer-
ent pairs with bias factor 3, and BASI c-Pa’ denotes
local training with biased potential on the al coref-
erent pairs with bias factor 3, where 5 = 1.5 or 3.0.
For brevity, we only show pairwise numbers before
applying single-link-clustering1® As hypothesized,
biased potential functions in general boost recall at
the cost of precision. Also, for a fixed value of
B, BAsSIC-P1? gives better MUC-F1 than BASIC-
Pa®, and BASIC-Pa® gives better pairwise-F1 than
BASIC-P17 for both data sets.

Results [SLT+BPF]: Experimental results that
combine SLT and BPF are shown in Table 3. Sim-
ilarly as before, SLT-pz” denotes SLT with biased
potential scheme Pz, with bias factor 5. For brevity,

8This is because we showed in §3 that basic local training
does not correlate well with pairwise scores after clustering, and

in order to see the direct effect of biased potential functions, we
examine pairwise numbers before clustering.
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Table 3: Performance of Biased Potential Functions with
Structured Local Training: All numbers are taken after single-
link clustering.

we only show numbers after applying single-link-
clustering. Unlike the results shown in Table 2,
for a fixed value of 3, SLT-P1? correlates better
with pairwise-F1, and SLT- Pa’ correlates better with
MUC-F1. This indicates that when biased poten-
tial functions are used in conjunction with SLT, the
effect of biased potentia functions can be different
from the case without SLT. Comparing F1-scoresin
Table 2 and Table 3, we see that the combination of
biased potential functions with SLT improves per-
formance in general. In particular, sLT-P130 and
SLT-Pa!® consistently improve performance over
BASE on both data sets, for both pairwise-F1 and
MUC-F1. We present performance scores for all
variations of configurations for reference, but we
aso mark the particular configuration sLT-P2? (by
‘*’ on F1-scores) that is chosen when selecting the
configuration based on the performance on the train-
ing data for each performance measure. To con-
clude, structured local training with biased poten-
tial functions bring a substantial improvement for
MUC-F1 score, from 66.4% to 69.9% for MUC6
data set. For pairwise-F1, the performance increase
from 57.7% to 58.5% for MUC6, and from 65.1% to
70.6% for MPQA.YY

performance on the MPQA data for MUC-F1 is dlightly
decreased from 78.4% to 77.9%. Note the MUC scores for the



6 Reated Work

Structured local training is motivated by recent re-
search that has shown that reducing the discrep-
ancy between the training model and testing model
can improve the performance without incurring the
heavy computational overhead of full-blown global
inference-based training. 8 (e.g. Cohen and Car-
valho (2005), Sutton and McCallum (2005a), Sutton
and McCallum (2005b)). Our work differs in that
(1) we use hidden variables to capture the interac-
tions between local inference and global inference,
(2) we present an application to coreference resolu-
tion, while previous work has shown applications for
variants of sequence tagging. McCallum and Well-
ner (2004) showed a globa training approach with
CRFs for coreference resolution, but they used the
voted perceptron agorithm for training, which no
longer maximizes the likelihood. In addition, they
assume that all and only those noun phrases involved
in coreference resolution are given.

The performance of our system on MUCG6 data
set is comparable to previously reported systems.
Using the same feature set, Ng and Cardie (2002)
reports 64.5% of MUC-score, while our system
achieved 69.9%. Ng and Cardie (2002) reports
70.4% of MUC-score using hand-selected features.
With an additional feature selection or feature induc-
tion step, the performance of our system might fur-
ther improve. McCallum and Wellner (2004) reports
73.42% of MUC-score on MUCS6 data set, but their
experiments assumed perfect identification of all and
only those noun phrases involved in a coreference
relation, thus substantially simplifying the task.

7 Conclusion

We present a novel training procedure, structured
local training, that maximizes likelihood while
exploiting the benefits of global inference during
training. This is achieved by incorporating hidden
variables to capture the interactions between local

MPQA baseline are already quite high to begin with.

®The computational cost for SLT in our experiments were
about twice of the cost for the local training of the baseline. This
is the case because M-step converges very fast from the second
EM iteration, by initializing CRFs using parameters from the
previous M-step. Biased potential functions hardly adds extra
computational cost. In practice, BPFs reduce training time sub-
stantially: we observed that the higher the bias is, the quicker
CRFs converge.
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inference and global inference. In addition, we
introduce biased potential functions that alow
CRFs to empirically favor performance measures
such as F1-score or MUC-score. We focused on the
application of coreference resolution in this paper,
but the key ideas of our approaches can be extended
to other applications, and other machine learning
techniques motivated by Markov networks.
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Abstract

A twin-model is proposed for coreference res-
olution: a link component, modeling the coref-
erential relationship between an anaphor and
a candidate antecedent, and a creation com-
ponent modeling the possibility that a phrase
is not coreferential with any candidate an-
tecedent. The creation model depends on all
candidate antecedents and is often expensive
to compute; Therefore constraints are imposed
on feature forms so that features in the cre-
ation model can be efficiently computed from
feature values in the link model. The pro-
posed twin-model is tested on the data from
the 2005 Automatic Content Extraction (ACE)
task and the proposed model performs bet-
ter than a thresholding baseline without tuning
free parameter.

1

Coreference resolution aims to find multiple mentions
of an entity (e.g., PERSON, ORGANIZATION) in a
document. In a typical machine learning-based coref-
erence resolution system (Soon et al., 2001; Ng and
Cardie, 2002b; Yang et al., 2003; Luo et al., 2004), a
statistical model is learned from training data and is
used to measure how likely an anaphor * is corefer-
ential to a candidate antecedent. A related, but often
overlooked, problem is that the anaphor may be non-
coreferential to any candidate, which arises from sce-
narios such as an identified anaphor is truly generic and

I ntroduction

LIn this paper, “anaphor” includes all kinds of phrases to
be resolved, which can be named, nominal or pronominal
phrases.
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there does not exist an antecedent in the discourse con-
text, or an anaphor is the first mention (relative to pro-
cessing order) in a coreference chain.

In (Soon et al., 2001; Ng and Cardie, 2002b),
the problem is treated by thresholding the scores re-
turned by the coreference model. That is, if the max-
imum coreference score is below a threshold, then the
anaphor is deemed non-referential to any candidate an-
tecedent. The threshold approach does not model non-
coreferential events directly, and is by no means the op-
timal approach to the problem. It also introduces a free
parameter which has to be set by trial-and-error. As an
improvement, Ng and Cardie (2002a) and Ng (2004)
train a separate model to classify an anaphor as either
anaphoric or non-anaphoric. The output of this clas-
sifier can be used either as a pre-filter (Ng and Cardie,
2002a) so that non-anaphoric anaphors will not be pre-
cessed in the coreference system, or as a set of features
in the coreference model (Ng, 2004). By rejecting any
anaphor classified as non-anaphoricin coreference res-
olution, the filtering approach is meant to handle non-
anaphoric phrases (i.e., no antecedent exists in the dis-
course under consideration), not the first mention in a
coreference chain.

In this paper, coreference is viewed as a process of
sequential operations on anaphor mentions: an anaphor
can either be linked with its antecedent if the antecedent
is available or present. If the anaphor, on the other
hand, is discourse new (relative to the process order),
then a new entity is created. Corresponding to the two
types of operations, a twin-model is proposed to re-
solve coreferential relationships in a document. The
first component is a statistical model measuring how
likely an anaphor is coreferential to a candidate an-
tecedent; The second one explicitly models the non-

Proceedings of NAACL HLT 2007, pages 73-80,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



coreferential events. Both models are trained automat-
ically and are used simultaneously in the coreference
system. The twin-model coreference system is tested
on the 2005 ACE (Automatic Content Extraction, see
(NIST, 2005)) data and the best performance under
both ACE-Value and entity F-measure can be obtained
without tuning a free parameter.

The rest of the paper is organized as follows. The
twin-model is presented in Section 2. A maximum-
entropy implementation and features are then presented
in Section 3. The experimental results on the 2005
ACE data is presented in Section 4. The proposed twin-
model is compared with related work in Section 5 be-
fore the paper is concluded.

2 Coreference M odél

A phrasal reference to an entity is called a mention. A
set of mentions referring to the same physical object is
said to belong to the same entity. For example, in the
following sentence:

(1) John said Mary was his sister.

there are four mentions: John, Mary, hi s, and
si ster. John and hi s belong to the same entity
since they refer to the same person; So do Mary and
si st er. Furthermore, John and Mary are named
mentions, si st er is a nominal mention and hi s is a
pronominal mention.

In our coreference system, mentions are processed
sequentially, though not necessarily in chronological
order. For a document with n mentions {m; : 1 < <
n}, at any time ¢(¢ > 1), mention m; through m;_
have been processed and each mention is placed in one
of N; (N < (t—1)) entities: By, = {e; : 1 < j < N}
Index ¢ in m; indicates the order in which it is pro-
cessed, not necessarily the order in which it appears in
a document. The basic step is to extend E; to F;y;

Let us use the example in Figure 1 to illustrate how
this is done. Note that Figure 1 contains one possible
processing order for the four mentions in Example (I):
first name mentions are processed, followed by nom-
inal mentions, followed by pronominal mentions. At
time ¢t = 1, there is no existing entity and the mention
my=John is placed in an initial entity (entity is signi-
fied by a solid rectangle). Attime ¢ = 2, mo=Mary
is processed and a new entity containing Mary is cre-
ated. Attime ¢ = 3, the nominal mention ms=si st er
is processed. At this point, the set of existing entities

By = {{John}7{|vary}}.
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mg is linked with the existing entity {Mary}. At the
last step ¢t = 4, the pronominal mention hi s is linked
with the entity {John}.

The above example illustrates how a sequence of
coreference steps lead to a particular coreference result.
Conversely, if the processing order is known and fixed,
every possible coreference result can be decomposed
and mapped to a unique sequence of such coreference
steps. Therefore, if we can score the set of coreference
sequences, we can score the set of coreference results
as well.

In general, when determining if a mention m, is
coreferential with any entity in F;, there are two types
of actions: one is that m; is coreferential with one of
the entities; The other is that m, is not coreferential
with any. It is important to distinguish the two cases
for the following reason: if m; is coreferential with an
entity e;, in most cases it is sufficient to determine the
relationship by examining m, and e;, and their local
context; But if m. is not coreferential with any existing
entities, we need to consider m; with all members in
E,. This observation leads us to propose the following
twin-model for coreference resolution.

The first model, P(L|e;, m;), is conditioned on an
entity e; and the current mention m, and measure how
likely they are coreferential. L is a binary variable, tak-
ing value 1 or 0, which represents positive and nega-
tive coreferential relationship, respectively. The second
model, on the other hand, P(C|E;, m.), is conditioned
on the past entities F; and the current mention m,. The
random variable C'is also binary: when C'is 1, it means
that a new entity {m.} will be created. In other words,
the second model measures the probability that m, is
not coreferential to any existing entity. To avoid con-
fusion in the subsequent presentation, the first model
will be written as P;(-|e;, m¢) and called link model;
The second model is written as P.(-| E, m;) and called
creation model.

For the time being, let’s assume that we have the link
and creation model at our disposal, and we will show
how they can be used to score coreference decisions.

Given a set of existing entities £; = {e;}1"*, formed
by mentions {m;}!1, and the current mention m,
there are N; + 1 possible actions: we can either link
my With an existing entity e; (j = 1,2,---,Ny), or
create a new entity containing m,. The link action be-
tween e; and m; can be scored by P;(1|e;, m:) while
the creation action can be measured by P.(1|E:, m;).
Each possible coreference outcome consists of n such
actions {a; : t = 1,2,--- ,n}, each of which can be
scored by either the link model P;(-|e;, m;) or the cre-
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Figure 1: Coreference process for the four mentions in Example (I). Mentions in a document are processed se-
quentially: first name mentions, then nominal mentions, and then pronominal mentions. A dashed arrow signifies
that a new entity is created, while a solid arrow means that the current mention is linked with an existing entity.

ation model P.(-|E;, m;). Denote the score for ac-
tion a; by S(at|a§‘1), where dependency of a; on
ay through a;_; is emphasized. The coreference re-
sult corresponding to the action sequence is written as
E,({a;}7,). When it is clear from context, we will
drop {a;}~, and write E,, only.

With this notation, the score for a coreference out-
come E,({a;}?_ ;) is the product of individual scores
assigned to the corresponding action sequence {a;}* ;,
and the best coreference result is the one with the high-
est score:

E, =arg max S(E.)
= arg max H S(aglal™).

1
{a}7 =1 ( )

Given n mentions, the number of all possible
entity outcomes is the Bell Number (Bell, 1934):
B(n) = 1372 kL. Exhaustive search is out of the
question. Thus, we organize hypotheses into a Bell
Tree (Luo et al., 2004) and use a beam search with the
following pruning strategy: first, amaximum beam size
(typically 20) S is set, and we keep only the top S hy-
potheses; Second, a relative threshold » (we use 10~5)
is set to prune any hypothesis whose score divided by
the maximum score falls below the threshold.

To give an concrete example, we use the example
in Figure 1 again. The first step at ¢t = 1 creates a
new entity and is therefore scored by P.(1|{}, John);
the second step also creates an entity and is scored
by P.(1|{John},Mary); the step ¢ = 3, how-
ever, links si ster with {Mary} and is scored by
P (1|{Mary},si ster); Similarly, the last step is
scored by P;(1|/{John} his). The score for this
coreference outcome is the product of the four num-
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bers:

S({{John, hi s}, {Mary, si st er}})

=P.(1/{},John)P.(1|{John} Mary)-
P(1|{Mary},si ster)-
P, (1|{3ohn},hi s). 2
Other coreference results for these four mentions can
be scored similarly. For example, if hi s at the last
step is linked with {Mar y, si st er }, the score would
be:

S({{John},{lvar y, sister, hi s}})

=P.(1/{},John)P.(1|{John} Mary)-

P (1|{Mary},sister)

P (1|{Mary, si ster}, his). (3)
At testing time, (2) and (3), among other possible out-
comes, will be searched and compared, and the one
with the highest score will be output as the coreference
result.

Examples in (2) and (3) indicate that the link model
P,(-le;, m;) and creation model P.(-|E;, m;) form an
integrated coreference system and are applied simul-
taneously at testing time. As will be shown in the next
section, features in the creation model P.(:| E¢, m;) can
be computed from their counterpart in the link model
P(-|e;, m¢) under some mild constraints. So the two
models’ training procedures are tightly coupled. This
is different from (Ng and Cardie, 2002a; Ng, 2004)
where their anaphoricty models are trained indepen-
dently of the coreference model, and it is either used
as a pre-filter, or its output is used as features in the
coreference model. The creation model P.(:|E:, m;)
proposed here bears similarity to the starting model



in (Luo et al., 2004). But there is a crucial differ-
ence: the starting model in (Luo et al., 2004) is an
ad-hoc use of the link scores and is not learned auto-
matically, while P.(:|E:, m;) is fully trained. Training
P.(-|E, my) is covered in the next section.

3

3.1 FeatureStructure

To implement the twin model, we adopt the log linear
or maximum entropy (MaxEnt) model (Berger et al.,
1996) for its flexibility of combining diverse sources of
information. The two models are of the form:

ea:p(z,C Mgk (e, my, L))

I mplementation

P (Llej,m) = Vs mo) (4)
ea:p( > vihi(Ey,my, C))
PC(O|Et, mt) = Z(Et mt) ) (5)

where L and C are binary variables indicating either
my is coreferential with e;, or m, is used to create a
new entity. Y'(e;, m;) and Z(e;, m;) are normalization
factors to ensure that P;(-|e;, m;) and P.(-|E¢, my) are
probabilities; A; and v; are the weights for feature
gr(ej, my, L) and h;(Ey, my, C), respectively. Once
the set of features functions are selected, algorithm
such as improved iterative scaling (Berger et al., 1996)
or sequential conditional generalized iterative scal-
ing (Goodman, 2002) can be used to find the optimal
parameter values of {\} and {v;}.

Computing features {gx(e;,mq,-)} for the link
model P;(Llej, m;) 2 is relatively straightforward:
given an entity e; and the current mention m;, we
just need to characterize things such as lexical similar-
ity, syntactic relationship, and/or semantic compatibil-
ity of the two. It is, however, very challenging to com-
pute the features {h,(E;, m., -)} for the creation model
P.(-|E+, my) since its conditioning includes a set of en-
tities F;, whose size grows as more and more mentions
are processed. The problem exists because the decision
of creating a new entity with m, has to be made after
examining all preceding entities. There is no reason-
able modeling assumption one can make to drop some
entities in the conditioning.

To overcome the difficulty, we impose the follow-
ing constraints on the features of the link and creation

2The link model is actually implemented as:
P/(Llej,m¢) maX,,/ce; P/(Llej,m',m;).  Some
features are computed on a pair of mentions (m’, m.) while
some are computed at entity level. See (Luo and Zitouni,
2005) and (Daumé 111 and Marcu, 2005).

~
~
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model:
gr(ej me, L) =g (e;,me)gl> (L) (6)
hi(Eeyme, ©) =h(" ({gy) (e.my) : € € Ey})-
h§2>(0), for some k. )

(6) states that a feature in the link model is separable
and can be written as a product of two functions: the
first one, g,(cl)(-, -), is a binary function depending on
the conditioning part only; the second one, g,(f)(-), is
an indicator function depending on the prediction part
L only. Like ¢ (-), h{? () is also a binary indicator
function.

(7) implies that features in the creation model
are also separable; Moreover, the conditioning part
hz(»l)({g,(cl)(e,mt) : e € E}), also a binary function,
only depends on the function values of the set of link
features {g,il)(e7mt) : e € E,} (for some k). In other
words, once {g,il)(e, my) : e € E.} and C are known,
we can compute h;(E:, m¢, C') without actually com-
paring m. with any entity in E;. Using binary features
is a fairly mild constraint as non-binary features can be
replaced by a set of binary features through quantiza-
tion.

How fast " ({g" (e, m) : e € E;}) can be com-
puted depends on how hl(.l) is defined. In most cases
— as will be shown in Section 3.2, it boils down test-
ing if any member in {g,il)(e,mt) : e € E}is non-
zero; or counting how many non-zero members there
are in {g,il)(e,mt) : e € Ey}. Both are simple op-
erations that can be carried out quickly. Thus, the as-
sumption (7) makes it possible to compute efficiently
hi(Et, my, O)

3.2 Featuresin the Creation Model

We describe features used in our coreference system.
We will concentrate on features used in the creation
model since those in the link model can be found in
the literature (Soon et al., 2001; Ng and Cardie, 2002b;
Yang et al., 2003; Luo et al., 2004). In particular,
we show how features in the creation model can be
computed from a set of feature values from the link
model for a few example categories. Since g,(f) (-) and

hl@) (+) are simple indicator functions, we will focus on
g () and 1 ().
321 Lexical Features

This set of features computes if two surface strings
(spellings of two mentions) match each other, and are



applied to name and nominal mentions only. For the
link model, a lexical feature g( )(ej, my) is Lif e; con-
tains a mention matches m;, where a match can be ex-
act, partial, or one is an acronym of the other.

Since gx(e;,my) is binary, one corresponding fea-
ture used in the creation model is the disjunction of the
values in the link model, or

(8)

where V is a binary “or” operator. The intuition is that
if there is any mention in E, matching m., then the
probability to create a new entity with m, should be
low; Conversely, if none of the mentions in E; matches
my, then my is likely to be the first mention of a new
entity.

Take ¢ = 2 in Figure 1 as an example. There is
only one partially-established entity {John}, so F; =
{John}, and ms = Mary. The exact string match

feature g% (-, -) would be

W (Byymy) = Veer, {95 (e,m1)},

gem({‘JOhn} '\/Hr y) - O

and the corresponding string match feature in the cre-
ation model is

hn({John}, Mary) = Veer, {95,
=0.

(e,Mary)}

Disjunction is not the only operation we can use.
Another possibility is counting how many times m;
matches mentions in F;, so (8) becomes:

QLYo (e;mi)}],

ecEy

h(l)(Etamt (9)

where @[] quantizes raw counts into bins.

3.2.2 Attribute Features

In the link model, features in this category compare
the properties of the current mention m; with that of an
entity e;. Properties of a mention or an entity, when-
ever applicable, include gender, number, entity type,
reflexivity of pronouns etc. Similar to what done in
the lexical feature, we again synthesize a feature in the
creation model by taking the disjunction of the corre-
sponding set of feature values in the link model, or

hV (Brme) = Veer g, (e;my)},
where g,(:) (e, m;) takes value 1 if entity e and mention

m; share the same property; Otherwise its value is 0.
The intuition is that if there is an entity having the same
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property as the current mention, then the probability for
the current mention to be linked with the entity should
be higher than otherwise; Conversely, if none of the en-
tities in E; shares a property with the current mention,
the probability for the current mention to create a new
entity ought to be higher.

Consider the gender attribute at ¢ 4 in Fig-

ure 1. Let g(l) (+,-) be the gender feature in the

gender

link model, assume that we know the gender of John,
Mary and hi s. Then gglezlder({{John} his)is 1,
while ggmder({l\/ary, sister},his)is0. There-

fore, the gender feature for the creation model would
be

B e ({{30hn}, {Mary, sister}} his)
=0Vv1=1,

which means that there is at least one mention which
has the same the gender of the current mention m;.

3.2.3 Distance Feature

Distance feature needs special treatment: while it
makes sense to talk about the distance between a pair
of mentions, it is not immediately clear how to compute
the distance between a set of entities £, and a mention
mg. To this end, we compute the minimum distance be-
tween the entities and the current mention with respect
to a “fired” link feature, as follows.

For a particular feature g(l)(-, -) in the link model,
define the minimum distance to be

J(Et,mt;gk) = min{d(m,m¢) : m € E},

and g (m,m;) = 1},  (10)
where d(m, m;) is the distance between mention mand
my. The distance itself can be the number of tokens,
or the number of intervening mentions, or the number
of sentences. The minimum distance J(Et,mt;gk) is
quantized and represented as binary feature in the cre-
ation model. The idea here is to encode what is the
nearest place where a feature fires.

Again as an example, consider the gender attribute at
t =4 in Figure 1. Assuming that d(m, m.) is the num-
ber of tokens. Since only John matches the gender of
his,

d(E47 my; ggender) =3

The number is then quantized and used as a binary fea-
ture to encode the information that “there is a mention
whose gender matches the current mention within in a
token distance range including 3.”



In general, binary features in the link model which
measure the similarity between an entity and a mention
can be turned into features in the creation model in the
same manner as described in Section 3.2.1 and 3.2.2.
For example, syntactic features (Ng and Cardie, 2002b;
Luo and Zitouni, 2005) can be computed this way and
are used in our system.

4 Experiments

4.1 Dataand Evaluation Metric

We report the experimental results on ACE 2005
data (NIST, 2005). The dataset consists of 599 doc-
uments from a rich and diversified sources, which in-
clude newswire articles, web logs, and Usenet posts,
transcription of broadcast news, broadcast conversa-
tions and telephone conversations. We reserve the last
16% documents of each source as the test set and use
the rest of the documents as the training set. Statistics
such as the number of documents, words, mentions and
entities of this data split is tabulated in Table 1.

DataSet | #Docs #Words #Mentions  #Entities

Training 499 253771 46646 16102
Test 100 45659 8178 2709
Total 599 299430 54824 18811

Table 1: Statistics of ACE 2005 data: number of docu-
ments, words, mentions and entities in the training and
test set.

The link and creation model are trained at the same
time. Besides the basic feature categories described in
Section 3.2, we also compute composite features by
taking conjunctions of the basic features. Features are
selected by their counts with a threshold of 8.

ACE-Value is the official score reported in the ACE
task and will be used to report our coreference system’s
performance. Its detailed definition can be found in the
official evaluation document 3. Since ACE-Value is a
weighted metric measuring a coreference system’s rel-
ative value, and it is not sensitive to certain type of
errors (e.g., false-alarm entities if these entities con-
tain correct mentions), we also report results using un-
weighted entity F-measure.

4.2 Results

To compare the proposed twin model with simple
thresholding (Soon et al., 2001; Ng and Cardie, 2002b),

3The official evaluation document can be found at;

www. ni st. gov/ speech/tests/ace/ ace05/ doc/
ace05- eval pl an. v3. pdf .
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Figure 2: Performance comparison between a thresh-
olding baseline and the twin-model: lines with square
points are the entity F-measure (x100) results; lines
with triangle points are ACE-Value (in %). Solid lines
are haseline while dashed lines are twin-model.

we first train our twin model. To simulate the thresh-
olding approach, a baseline coreference system is cre-
ated by replacing the creation model with a constant,
i.e.,

Pc(1|Etamt) = 07 (ll)

where 6 is a number between 0 and 1. At testing time,
a new entity is created with score 6 when

Pi(1lej,m:) < 6, Ve, € Ey.

The decision rule simply implies that if the scores be-
tween the current mention m; and all candidate entities
e; € E, are below the threshold ¢, a new entity will be
created.

Performance comparison between the baseline and
the twin-model is plotted in Figure 2. X-axis is the
threshold varying from 0.1 to 0.9 with a step size 0.1.
Two metrics are used to compare the results: two lines
with square data points are the entity F-measure results,
and two lines with triangle points are ACE-Value. Note
that performances for the twin-model are constant since
it does not use thresholding.

As shown in the graph, the twin-model (two dashed
lines) always outperforms the baseline (two solid
lines). A “bad” threshold impacts the entity F-measure
much more than ACE-Value, especially in the region
with high threshold value. Note that a large 6 will lead
to more false-alarm entities. The graph suggests that
ACE-Value is much less sensitive than the un-weighted
F-measure in measuring false-alarm errors. For exam-
ple, at & = 0.9, the baseline F-measure is 0.591 while



the twin model F-measure is 0.848, a 43.5% difference;
On the other hand, the corresponding ACE-Values are
84.5% (baseline) vs. 88.4% (twin model), a mere 4.6%
relative difference. There are at least two reasons: first,
ACE-Value discounts importance of nominal and pro-
noun entities, so more nominal and pronoun entity er-
rors are not reflected in the metric; Second, ACE-Value
does not penalize false-alarm entities if they contain
correct mentions. The problem associated with ACE-
Value is the reason we include the entity F-measure re-
sults.

Another interesting observation is that an optimal
threshold for the entity F-measure is not necessarily op-
timal for ACE-Value, and vice versa: 8 = 0.3 is the
best threshold for the entity F-measure, while 6 = 0.5
is optimal for ACE-Value. This is highlighted in Ta-
ble 2, where row “B-opt-F” contains the best results op-
timizing the entity F-measure (at 8 = 0.3), row “B-opt-
AV” contains the best results optimizing ACE-Value (at
6 = 0.5), and the last line “Twin-model” contains the
results of the proposed twin-model. It is clear from
Table 2 that thresholding cannot be used to optimize
the entity F-measure and ACE-Value simultaneously.
A sub-optimal threshold could be detrimental to an un-
weighted metric such as the entity F-measure. The pro-
posed twin model eliminates the need for threshold-
ing, a benefit of using the principled creation model.
In practice, the optimal threshold is a free parameter
that has to be tuned every time when a task, dataset and
model changes. Thus the proposed twin model is more
portable when a task or dataset changes.

System F-measure ACE-Value
B-opt-F 84.7 87.5
B-opt-AV 81.1 88.0
Twin-model 84.8 88.4

Table 2: Comparison between the thresholding base-
line and the twin model: optimal threshold depends on
performance metric. The proposed twin-model outper-
forms the baseline without tuning the free parameter.

5 Reated Work

Some earlier work (Lappin and Leass, 1994; Kennedy
and Boguraev, 1996) use heuristic to determine
whether a phrase is anaphoric or not. Bean and Riloff
(1999) extracts rules from non-anaphoric noun phrases
and noun phrases patterns, which are then applied to
test data to identify existential noun phrases. It is in-
tended as as pre-filtering step before a coreference res-
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olution system is run. Ng and Cardie (2002a) trains a
separate anaphoricity classifier in addition to a corefer-
ence model. The anaphoricity classifier is applied as a
filter and only anaphoric mentions are later considered
by the coreference model. Ng (2004) studies what is
the best way to make use of anaphoricity information
and concludes that the constrained-based and globally-
optimized approach works the best. Poesio et al. (2004)
contains a good summary of recent research work on
discourse new or anaphoricity. Luo et al. (2004) uses
a start model to determine whether a mention is the
first one in a coreference chain, but it is computed ad
hoc without training. Nicolae and Nicolae (2006) con-
structs a graph where mentions are nodes and an edge
represents the likelihood two mentions are in an entity,
and then a graph-cut algorithm is employed to produce
final coreference results.

We take the view that determining whether an
anaphor is coreferential with any candidate antecedent
is part of the coreference process. But we do recog-
nize that the disparity between the two types of events:
while a coreferential relationship can be resolved by
examining the local context of the anaphor and its an-
tecedent, it is necessary to compare the anaphor with
all the preceding candidates before it can be declared
that it is not coreferential with any. Thus, a creation
component P.(-| E¢, m;) is needed to model the second
type of events. A problem arising from the adoption of
the creation model is that it is very expensive to have
a conditional model depending on all preceding enti-
ties E;. To solve this problem, we adopt the MaxEnt
model and impose some reasonable constraints on the
feature functions, which makes it possible to synthe-
size features in the creation model from those of the
link model. The twin model components are intimately
trained and used simultaneously in our coreference sys-
tem.

6 Conclusions

A twin-model is proposed for coreference resolution:
one link component computes how likely a mention is
coreferential with a candidate entity; the other compo-
nent, called creation model, computes the probability
that a mention is not coreferential with any candidate
entity. Log linear or MaxEnt approach is adopted for
building the two components. The twin components
are trained and used simultaneously in our coreference
system.

The creation model depends on all preceding enti-
ties and is often expensive to compute. We impose
some reasonable constraints on feature functions which



makes it feasible to compute efficiently the features in
the creation model from a subset of link feature val-
ues. We test the proposed twin-model on the ACE 2005
data and the proposed model outperforms a threshold-
ing baseline. Moreover, it is observed that the optimal
threshold in the baseline depends on performance met-
ric, while the proposed model eliminates the need of
tuning the optimal threshold.
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Abstract

Traditional noun phrase coreference res-
olution systems represent features only
of pairs of noun phrases. In this paper,
we propose a machine learning method
that enables features over sets of noun
phrases, resulting in a first-order proba-
bilistic model for coreference. We out-
line a set of approximations that make this
approach practical, and apply our method
to the ACE coreference dataset, achiev-
ing a 45% error reduction over a com-
parable method that only considers fea-
tures of pairs of noun phrases. This result
demonstrates an example of how a first-
order logic representation can be incorpo-
rated into a probabilistic model and scaled
efficiently.

1 Introduction

Noun phrase coreference resolution is the problem
of clustering noun phrases into anaphoric sets. A
standard machine learning approach is to perform a
set of independent binary classifications of the form
“Is mention a coreferent with mention b?”

This approach of decomposing the problem into
pairwise decisions presents at least two related diffi-
culties. First, it is not clear how best to convert the
set of pairwise classifications into a disjoint cluster-
ing of noun phrases. The problem stems from the
transitivity constraints of coreference: If @ and b are
coreferent, and b and ¢ are coreferent, then a and ¢
must be coreferent.
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This problem has recently been addressed by a
number of researchers. A simple approach is to per-
form the transitive closure of the pairwise decisions.
However, as shown in recent work (McCallum and
Wellner, 2003; Singla and Domingos, 2005), bet-
ter performance can be obtained by performing rela-
tional inference to directly consider the dependence
among a set of predictions. For example, McCal-
lum and Wellner (2005) apply a graph partitioning
algorithm on a weighted, undirected graph in which
vertices are noun phrases and edges are weighted by
the pairwise score between noun phrases.

A second and less studied difficulty is that the
pairwise decomposition restricts the feature set to
evidence about pairs of noun phrases only. This re-
striction can be detrimental if there exist features of
sets of noun phrases that cannot be captured by a
combination of pairwise features. As a simple exam-
ple, consider prohibiting coreferent sets that consist
only of pronouns. That is, we would like to require
that there be at least one antecedent for a set of pro-
nouns. The pairwise decomposition does not make
it possible to capture this constraint.

In general, we would like to construct arbitrary
features over a cluster of noun phrases using the
full expressivity of first-order logic. Enabling this
sort of flexible representation within a statistical
model has been the subject of a long line of research
on first-order probabilistic models (Gaifman, 1964;
Halpern, 1990; Paskin, 2002; Poole, 2003; Richard-
son and Domingos, 2006).

Conceptually, a first-order probabilistic model
can be described quite compactly. A configura-
tion of the world is represented by a set of predi-
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Figure 1: An example noun coreference graph in
which vertices are noun phrases and edge weights
are proportional to the probability that the two nouns
are coreferent. Partitioning such a graph into disjoint
clusters corresponds to performing coreference res-
olution on the noun phrases.

cates, each of which has an associated real-valued
parameter. The likelihood of each configuration of
the world is proportional to a combination of these
weighted predicates. In practice, however, enu-
merating all possible configurations, or even all the
predicates of one configuration, can result in in-
tractable combinatorial growth (de Salvo Braz et al.,
2005; Culotta and McCallum, 2006).

In this paper, we present a practical method to per-
form training and inference in first-order models of
coreference. We empirically validate our approach
on the ACE coreference dataset, showing that the
first-order features can lead to an 45% error reduc-
tion.

2 Pairwise Model

In this section we briefly review the standard pair-
wise coreference model. Given a pair of noun
phrases x;; = {x;,x;}, let the binary random vari-
able y;; be 1 if x; and x; are coreferent. Let F' =
{fx(zij,y)} be a set of features over z;;. For exam-
ple, fi(x;j,y) may indicate whether z; and z; have
the same gender or number. Each feature f; has an
associated real-valued parameter )\;. The pairwise
model is

1
P(yijlzij) = — exp > Nefil@ig, vig)
xij k

where 7, is a normalizer that sums over the two
settings of y;;.
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This is a maximum-entropy classifier (i.e. logis-
tic regression) in which p(y;;|z;;) is the probability
that x; and z; are coreferent. To estimate A = {\;}
from labeled training data, we perform gradient as-
cent to maximize the log-likelihood of the labeled
data.

Two critical decisions for this method are (1) how
to sample the training data, and (2) how to combine
the pairwise predictions at test time. Systems of-
ten perform better when these decisions complement
each other.

Given a data set in which noun phrases have been
manually clustered, the training data can be cre-
ated by simply enumerating over each pair of noun
phrases x;;, where y;; is true if z; and x; are in
the same cluster. However, this approach generates
a highly unbalanced training set, with negative ex-
amples outnumbering positive examples. Instead,
Soon et al. (2001) propose the following sampling
method: Scan the document from left to right. Com-
pare each noun phrase x; to each preceding noun
phrase z;, scanning from right to left. For each pair
xj, xj, create a training instance (x;;, yi;), where y;;
is 1 if x; and x; are coreferent. The scan for x; ter-
minates when a positive example is constructed, or
the beginning of the document is reached. This re-
sults in a training set that has been pruned of distant
noun phrase pairs.

At testing time, we can construct an undirected,
weighted graph in which vertices correspond to
noun phrases and edge weights are proportional to
p(yijlxi;). The problem is then to partition the graph
into clusters with high intra-cluster edge weights and
low inter-cluster edge weights. An example of such
a graph is shown in Figure 1.

Any partitioning method is applicable here; how-
ever, perhaps most common for coreference is to
perform greedy clustering guided by the word or-
der of the document to complement the sampling
method described above (Soon et al., 2001). More
precisely, scan the document from left-to-right, as-
signing each noun phrase z; to the same cluster
as the closest preceding noun phrase x; for which
p(yijlzij) > 0, where ¢ is some classification
threshold (typically 0.5). Note that this method con-
trasts with standard greedy agglomerative cluster-
ing, in which each noun phrase would be assigned
to the most probable cluster according to p(y;j|x;).



Choosing the closest preceding phrase is common
because nearby phrases are a priori more likely to
be coreferent.

We refer to the training and inference methods de-
scribed in this section as the Pairwise Model.

3 First-Order Logic Model

We propose augmenting the Pairwise Model to
enable classification decisions over sets of noun
phrases.

Given a set of noun phrases x/ = {z;}, let the bi-
nary random variable y; be 1 if all the noun phrases
x; € xJ are coreferent. The features fr and weights
A, are defined as before, but now the features can
represent arbitrary attributes over the entire set x/.
This allows us to use the full flexibility of first-order
logic to construct features about sets of nouns. The
First-Order Logic Model is

1 .
7 exXP > " Nefr(x,y;)
xJ k

py;lx’) =

where Z,; is a normalizer that sums over the two
settings of y;.

Note that this model gives us the representational
power of recently proposed Markov logic networks
(Richardson and Domingos, 2006); that is, we can
construct arbitrary formulae in first-order logic to
characterize the noun coreference task, and can learn
weights for instantiations of these formulae. How-
ever, naively grounding the corresponding Markov
logic network results in a combinatorial explosion of
variables. Below we outline methods to scale train-
ing and prediction with this representation.

As in the Pairwise Model, we must decide how to
sample training examples and how to combine inde-
pendent classifications at testing time. It is impor-
tant to note that by moving to the First-Order Logic
Model, the number of possible predictions has in-
creased exponentially. In the Pairwise Model, the
number of possible y variables is O(|x|?), where
x is the set of noun phrases. In the First-Order
Logic Model, the number of possible y variables is
O(2!): There is a y variable for each possible el-
ement of the powerset of x. Of course, we do not
enumerate this set; rather, we incrementally instan-
tiate y variables as needed during prediction.

A simple method to generate training examples
is to sample positive and negative cluster examples

83

uniformly at random from the training data. Positive
examples are generated by first sampling a true clus-
ter, then sampling a subset of that cluster. Negative
examples are generated by sampling two positive ex-
amples and merging them into the same cluster.

At testing time, we perform standard greedy ag-
glomerative clustering, where the score for each
merger is proportional to the probability of the
newly formed clustering according to the model.
Clustering terminates when there exists no addi-
tional merge that improves the probability of the
clustering.

We refer to the system described in this section as
First-Order Uniform.

4 Error-driven and Rank-based training
of the First-Order Model

In this section we propose two enhancements to
the training procedure for the First-Order Uniform
model.

First, because each training example consists of
a subset of noun phrases, the number of possible
training examples we can generate is exponential in
the number of noun phrases. We propose an error-
driven sampling method that generates training ex-
amples from errors the model makes on the training
data. The algorithm is as follows: Given initial pa-
rameters A, perform greedy agglomerative cluster-
ing on training document ¢ until an incorrect cluster
is formed. Update the parameter vector according to
this mistake, then repeat for the next training docu-
ment. This process is repeated for a fixed number of
iterations.

Exactly how to update the parameter vector is ad-
dressed by the second enhancement. We propose
modifying the optimization criterion of training to
perform ranking rather than classification of clus-
ters. Consider a training example cluster with a neg-
ative label, indicating that not all of the noun phrases
it contains are coreferent. A classification training
algorithm will “penalize” all the features associated
with this cluster, since they correspond to a negative
example. However, because there may exists subsets
of the cluster that are coreferent, features represent-
ing these positive subsets may be unjustly penalized.

To address this problem, we propose constructing
training examples consisting of one negative exam-
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Figure 2: An example noun coreference factor graph
for the Pairwise Model in which factors f. model the
coreference between two nouns, and f; enforce the
transitivity among related decisions. The number of
y variables increases quadratically in the number of
x variables.

ple and one “nearby” positive example. In particular,
when agglomerative clustering incorrectly merges
two clusters, we select the resulting cluster as the
negative example, and select as the positive example
a cluster that can be created by merging other exist-
ing clusters.! We then update the weight vector so
that the positive example is assigned a higher score
than the negative example. This approach allows
the update to only penalize the difference between
the two features of examples, thereby not penaliz-
ing features representing any overlapping coreferent
clusters.

To implement this update, we use MIRA (Mar-
gin Infused Relaxed Algorithm), a relaxed, online
maximum margin training algorithm (Crammer and
Singer, 2003). It updates the parameter vector with
two constraints: (1) the positive example must have
a higher score by a given margin, and (2) the change
to A should be minimal. This second constraint is
to reduce fluctuations in A. Let s™(A,x7) be the
unnormalized score for the positive example and
5~ (A,x*) be the unnormalized score of the neg-
ative example. Each update solves the following

'Of the possible positive examples, we choose the one with
the highest probability under the current model to guard against
large fluctuations in parameter updates

&4

Figure 3: An example noun coreference factor graph
for the First-Order Model in which factors f. model
the coreference between sets of nouns, and f; en-
force the transitivity among related decisions. Here,
the additional node y123 indicates whether nouns
{x1, 29,23} are all coreferent. The number of y
variables increases exponentially in the number of
x variables.

quadratic program:

A = argmin [|A? — A||?
A

S.t.
sTA,x7) — s (A, xF) > 1

In this case, MIRA with a single constraint can be
efficiently solved in one iteration of the Hildreth and
D’Esopo method (Censor and Zenios, 1997). Ad-
ditionally, we average the parameters calculated at
each iteration to improve convergence.

We refer to the system described in this section as
First-Order MIRA.

5 Probabilistic Interpretation

In this section, we describe the Pairwise and First-
Order models in terms of the factor graphs they ap-
proximate.

For the Pairwise Model, a corresponding undi-
rected graphical model can be defined as

P(ylx) = le IT oo i)

Yij €Y

H ft(yijayj,kayikyxijamjkawik)
Yij Yjk €Y



where Z is the input-dependent normalizer and fac-
tor f. parameterizes the pairwise noun phrase com-
patibility as fe(yij, zij) = exp(3_p, Ak fr(Yij» ij))-
Factor f; enforces the transitivity constraints by
fi(-) = —oo if transitivity is not satisfied, 1 oth-
erwise. This is similar to the model presented in
McCallum and Wellner (2005). A factor graph for
the Pairwise Model is presented in Figure 2 for three
noun phrases.

For the First-Order model, an undirected graphi-
cal model can be defined as

1 4
Plylx) = = [T fely.x)

X

Y €Y

I £ %)

Y €Y
where Zx is the input-dependent nor-
malizer and factor f, parameterizes the
cluster-wise noun phrase compatibility as
fe(yj;x?) = exp(y Aefe(yj, 7). Again,

factor f; enforces the transitivity constraints by
fi() = —oo if transitivity is not satisfied, 1 other-
wise. Here, transitivity is a bit more complicated,
since it also requires that if y; = 1, then for any
subset x* C x7, y, = 1. A factor graph for the
First-Order Model is presented in Figure 3 for three
noun phrases.

The methods described in Sections 2, 3 and 4 can
be viewed as estimating the parameters of each fac-
tor f. independently. This approach can therefore
be viewed as a type of piecewise approximation of
exact parameter estimation in these models (Sutton
and McCallum, 2005). Here, each f. is a “piece”
of the model trained independently. These pieces
are combined at prediction time using clustering al-
gorithms to enforce transitivity. Sutton and McCal-
Ium (2005) show that such a piecewise approxima-
tion can be theoretically justified as minimizing an
upper bound of the exact loss function.

6 Experiments

6.1 Data

We apply our approach to the noun coreference ACE
2004 data, containing 443 news documents with
28,135 noun phrases to be coreferenced. 336 doc-
uments are used for training, and the remainder for
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testing. All entity types are candidates for corefer-
ence (pronouns, named entities, and nominal enti-
ties). We use the true entity segmentation, and parse
each sentence in the corpus using a phrase-structure
grammar, as is common for this task.

6.2 Features

We follow Soon et al. (2001) and Ng and Cardie
(2002) to generate most of our features for the Pair-
wise Model. These include:

e Match features - Check whether gender, num-
ber, head text, or entire phrase matches

e Mention type (pronoun, name, nominal)

o Aliases - Heuristically decide if one noun is the
acronym of the other

e Apposition - Heuristically decide if one noun is
in apposition to the other

e Relative Pronoun - Heuristically decide if one
noun is a relative pronoun referring to the other.

e Wordnet features - Use Wordnet to decide if
one noun is a hypernym, synonym, or antonym
of another, or if they share a hypernym.

e Both speak - True if both contain an adjacent
context word that is a synonym of “said.” This
is a domain-specific feature that helps for many
newswire articles.

e Modifiers Match - for example, in the phrase
“President Clinton”, “President” is a modifier
of “Clinton”. This feature indicates if one noun
is a modifier of the other, or they share a modi-
fier.

e Substring - True if one noun is a substring of
the other (e.g. “Egypt” and “Egyptian”).

The First-Order Model includes the following fea-
tures:

e Enumerate each pair of noun phrases and com-
pute the features listed above. All-X is true if
all pairs share a feature X, Most-True-X is true
if the majority of pairs share a feature X, and
Most-False-X is true if most of the pairs do not
share feature X.



e Use the output of the Pairwise Model for each
pair of nouns. All-True is true if all pairs are
predicted to be coreferent, Most-True is true if
most pairs are predicted to be coreferent, and
Most-False is true if most pairs are predicted
to not be coreferent. Additionally, Max-True
is true if the maximum pairwise score is above
threshold, and Min-True if the minimum pair-
wise score is above threshold.

e Cluster Size indicates the size of the cluster.

e Count how many phrases in the cluster are
of each mention type (name, pronoun, nom-
inal), number (singular/plural) and gender
(male/female). The features All-X and Most-
True-X indicate how frequent each feature is
in the cluster. This feature can capture the soft
constraint such that no cluster consists only of
pronouns.

In addition to the listed features, we also include
conjunctions of size 2, for example “Genders match
AND numbers match”.

6.3 Evaluation

We use the B? algorithm to evaluate the predicted
coreferent clusters (Amit and Baldwin, 1998). B3
is common in coreference evaluation and is similar
to the precision and recall of coreferent links, ex-
cept that systems are rewarded for singleton clus-
ters. For each noun phrase x;, let ¢; be the number
of mentions in z;’s predicted cluster that are in fact
coreferent with x; (including z; itself). Precision for
x; is defined as ¢; divided by the number of noun
phrases in x;’s cluster. Recall for z; is defined as
the ¢; divided by the number of mentions in the gold
standard cluster for ;. F'1 is the harmonic mean of
recall and precision.

6.4 Results

In addition to Pairwise, First-Order Uniform, and
First-Order MIRA, we also compare against Pair-
wise MIRA, which differs from First-Order MIRA
only by the fact that it is restricted to pairwise fea-
tures.

Table 1 suggests both that first-order features and
error-driven training can greatly improve perfor-
mance. The First-Order Model outperforms the Pair-
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F1 | Prec | Rec

First-Order MIRA | 79.3 | 86.7 | 73.2
Pairwise MIRA 72.5 | 92.0 | 59.8
First-Order Uniform | 69.2 | 79.0 | 61.5
Pairwise 624 | 625 | 62.3

Table 1: B3 results for ACE noun phrase corefer-
ence. FIRST-ORDER MIRA is our proposed model
that takes advantage of first-order features of the
data and is trained with error-driven and rank-based
methods. We see that both the first-order features
and the training enhancements improve performance
consistently.

wise Model in F1 measure for both standard train-
ing and error-driven training. We attribute some of
this improvement to the capability of the First-Order
model to capture features of entire clusters that may
indicate some phrases are not coreferent. Also, we
attribute the gains from error-driven training to the
fact that training examples are generated based on
errors made on the training data. (However, we
should note that there are also small differences in
the feature sets used for error-driven and standard
training results.)

Error analysis indicates that often noun x; is cor-
rectly not merged with a cluster x/ when x/ has a
strong internal coherence. For example, if all 5 men-
tions of France in a document are string identical,
then the system will be extremely cautious of merg-
ing a noun that is not equivalent to France into x/,
since this will turn off the “All-String-Match” fea-
ture for cluster x/.

To our knowledge, the best results on this dataset
were obtained by the meta-classification scheme of
Ng (2005). Although our train-test splits may differ
slightly, the best B-Cubed F1 score reported in Ng
(2005) is 69.3%, which is considerably lower than
the 79.3% obtained with our method. Also note that
the Pairwise baseline obtains results similar to those
in Ng and Cardie (2002).

7 Related Work

There has been a recent interest in training methods
that enable the use of first-order features (Paskin,
2002; Daumé III and Marcu, 2005b; Richardson
and Domingos, 2006). Perhaps the most related is



“learning as search optimization” (LASO) (Daumé
IIT and Marcu, 2005b; Daumé III and Marcu,
2005a). Like the current paper, LASO is also an
error-driven training method that integrates predic-
tion and training. However, whereas we explic-
itly use a ranking-based loss function, LASO uses
a binary classification loss function that labels each
candidate structure as correct or incorrect. Thus,
each LASO training example contains all candidate
predictions, whereas our training examples contain
only the highest scoring incorrect prediction and the
highest scoring correct prediction. Our experiments
show the advantages of this ranking-based loss func-
tion. Additionally, we provide an empirical study to
quantify the effects of different example generation
and loss function decisions.

Collins and Roark (2004) present an incremental
perceptron algorithm for parsing that uses “early up-
date” to update the parameters when an error is en-
countered. Our method uses a similar “early update”
in that training examples are only generated for the
first mistake made during prediction. However, they
do not investigate rank-based loss functions.

Others have attempted to train global scoring
functions using Gibbs sampling (Finkel et al., 2005),
message propagation, (Bunescu and Mooney, 2004;
Sutton and McCallum, 2004), and integer linear pro-
gramming (Roth and Yih, 2004). The main distinc-
tions of our approach are that it is simple to imple-
ment, not computationally intensive, and adaptable
to arbitrary loss functions.

There have been a number of machine learning
approaches to coreference resolution, traditionally
factored into classification decisions over pairs of
nouns (Soon et al., 2001; Ng and Cardie, 2002).
Nicolae and Nicolae (2006) combine pairwise clas-
sification with graph-cut algorithms. Luo et al.
(2004) do enable features between mention-cluster
pairs, but do not perform the error-driven and rank-
ing enhancements proposed in our work. Denis and
Baldridge (2007) use a ranking loss function for pro-
noun coreference; however the examples are still
pairs of pronouns, and the example generation is not
error driven. Ng (2005) learns a meta-classifier to
choose the best prediction from the output of sev-
eral coreference systems. While in theory a meta-
classifier can flexibly represent features, they do not
explore features using the full flexibility of first-
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order logic. Also, their method is neither error-
driven nor rank-based.

McCallum and Wellner (2003) use a conditional
random field that factors into a product of pairwise
decisions about pairs of nouns. These pairwise de-
cisions are made collectively using relational infer-
ence; however, as pointed out in Milch et al. (2004),
this model has limited representational power since
it does not capture features of entities, only of pairs
of mention. Milch et al. (2005) address these issues
by constructing a generative probabilistic model,
where noun clusters are sampled from a generative
process. Our current work has similar representa-
tional flexibility as Milch et al. (2005) but is discrim-
inatively trained.

8 Conclusions and Future Work

We have presented learning and inference proce-
dures for coreference models using first-order fea-
tures. By relying on sampling methods at training
time and approximate inference methods at testing
time, this approach can be made scalable. This re-
sults in a coreference model that can capture features
over sets of noun phrases, rather than simply pairs of
noun phrases.

This is an example of a model with extremely
flexible representational power, but for which exact
inference is intractable. The simple approximations
we have described here have enabled this more flex-
ible model to outperform a model that is simplified
for tractability.

A short-term extension would be to consider fea-
tures over entire clusterings, such as the number of
clusters. This could be incorporated in a ranking
scheme, as in Ng (2005).

Future work will extend our approach to a wider
variety of tasks. The model we have described here
is specific to clustering tasks; however a similar for-
mulation could be used to approach a number of lan-
guage processing tasks, such as parsing and relation
extraction. These tasks could benefit from first-order
features, and the present work can guide the approx-
imations required in those domains.

Additionally, we are investigating more sophis-
ticated inference algorithms that will reduce the
greediness of the search procedures described here.
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Abstract correct, but is actually absent. We wish to find rele-
vant information in response to a query such as the
We explore the problem of retrieving one above even if a relevant document is completely
semi-structured documents from a real-  missing thesubjectandauthorfields.
world collection using a structured query. Our research is motivated by the challenges we
We formally develop Structured Rele- encountered in working with the National Science
vance Models (SRM), a retrieval model Digital Library (NSDL) collection! Each item in

that is based on the idea that plausible the collection is a scientific resource, such as a re-
values for a given field could be inferred search paper, an educational video, or perhaps an
from the context provided by the other entire website. In addition to its main content, each
fields in the record. We then carry out a resource is annotated withetadatawhich provides
set of experiments using a snapshot of the  information such as the author or creator of the re-
National Science Digital Library (NSDL) source, its subject area, format (text/image/video)
repository, and queries that only mention  and intended audience — in all over 90 distinct fields
fields missing from the test data. For such ~ (though some are very related). Making use of such
queries, typical field matching would re- extensive metadata in a digital library paves the way
trieve no documents at all. In contrast, the  for constructing highly-focused models of the user’s
SRM approach achieves a mean average information need. These models have the potential
precision of over twenty percent. to dramatically improve the user experience in tar-
geted applications, such as the NSDL portals. To
) illustrate this point, suppose that we are running
1 Introduction an educational portal targeted at elementary school
This study investigates information retrieval on€aCNers, and some user requests teaching aids for
semi-structured information, where documents cord” Introductory class on gravity. An intelligent
sist of several textual fields that can be queried iEcarch system would be able to translate the request
dependently. If documents containedbjectand 'Nt© & st_ructu,red query that might Io?k someth|r’1g
author fields, for example, we would expect to sed/Ke: SUbjeCt= gravity ‘_\ND,aUd'e”‘?F grafdes 1-4
queries looking for documents abaheory of rela-  ~ND format=image,video’ AND rights="free-for-
tivity by the authoEinstein academic-use’ Such a query can be efficiently an-

This setting suggests exploring the issue of ineﬁWSr?d :)y atrtellatlonal data}b?se slystem. i
act match—ispecial theory of relativityelevant?— riortunately, using a refational eéngine to query a

that has been explored elsewhere (Cohen, 200 (?tm|-struc:)uredfcollletctlcl)n S'_Th”ar _to NIS[:L wt)llrun.
Our interest is in an extreme case of that problen%, 0 @ humber ot obstacies. The simplest problem 1S

where the content of a field is not corrupted or in- *http://iwww.nsdl.org

&9
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that natural language fields are filled inconsistentlyet al (2001) demonstrate how PRM can be used to
e.g., theaudiencefield contains values such &  predict the category of a given research paper and
4, K-6, second gradeandlearner, all of which are show that categorization accuracy can be substan-
clearly semantically related. tially improved by leveraging the relational structure
A larger problem, and the one we focus on in thi®f the data. Heckerman et al (2004) introduce the
study, is that of missing fields. For example 24%Probabilistic Entity Relationship (PER) model as an
of the items in the NSDL collection have no sub-extension of PRM that treats relations between enti-
ject field, 30% are missing the author informationties as objects. Neville at al (2003) discuss predict-
and over 96% mention no target audience (readingg binary labels in relational data using Relational
level). This means that a relational query for eleProbabilistic Trees (RPT). Using this method they
mentary school material will consider at most 4% ofuccessfully predict whether a movie was a box of-
all potentially relevant resources in the NSDL col{fice hit based on other movies that share some of
lection? the properties (actors, directors, producers) with the
The goal of our work is to introduce a retrievalmovie in question.
model that will be capable of answering complex Our work differs from most of these approachesin
structured queries over a semi-structured collectioihat we work with free-text fields, whereas database
with corrupt and missing field values. This studyresearchers typically deal with closed-vocabulary
focuses on the latter problem, an extreme versioralues, which exhibit neither the synonymy nor the
of the former. Our approach is to use a generativeolysemy inherent in natural language expressions.
model to compute how plausible a word would aptn addition, the goal of our work is different: we aim
pear in a record’s empty field given the context profor accurateankingof records by their relevance to
vided by the other fields in the record. the user’s query, whereas database research has typ-
The remainder of this paper is organized as folically focused orpredictingthe missing value.
lows. We survey previous attempts at handling semi- Our work is related to a number of existing ap-
structured data in section 2. Section 3 will providgroaches to semi-structured text search. Desai et
the details of our approach, starting with a high-levehl (1987) followed by Macleod (1991) proposed us-
view, then providing a mathematical framework, andhg the standard relational approach to searching
concluding with implementation details. Section 4unstructured texts. The lack of an explicit rank-
will present an extensive evaluation of our model oiing function in their approaches was partially ad-
the large set of queries over the NSDL collectiondressed by Blair (1988). Fuhr (1993) proposed the
We will summarize our results and suggest direcase of Probabilistic Relational Algebra (PRA) over

tions for future research in Section 5. the weights of individual term matches. Vasan-
thukumar et al (1996) developed a relational imple-
2 Related work mentation of the inference network retrieval model.

The issue of missing field values is addressed in similar approach was taken by de Vries and

number of recent publications straddling the areas g¥1ISchut (1999), who managed to improve the ef-

relational databases and machine learning. In mol¢ie€ncy of the approach. De Fazio et al (1995) in-

cases, researchers introduce a statistical model ﬁ(ﬁgrated IR and RDBMS_ te(_:hnolc_)gy using an ap-
predicting the value of a missing attribute or reIationProac_heoI called cooperative indexing. Cohen (_2900)
based on observed values. Friedman et al (1999) in}SCI‘IbeS WH_lRL —a Iangugge tha_t a_llows efficient
troduce a technique called Probabilistic Relationd['€Xact matching of textual fields within SQL state-

Models (PRM) for automatically learning the struc-MeNts. A number of relevant works are also pub-

ture of dependencies in a relational database. Taskighed in the proceedings of tEX workshop?
The main difference between these endeavors and

2Some of the NSDL metadata fields overlap substantially igyyr work is that we are explicitly focusing on the

meaning, so it might be argued that the overlapping fields wil| h ts of the structured dat A
cover the collection better. Under the broadest possible intek@S€S Where parts or (ne structured data are missing

pretation of field meanings, more than 7% of the documen
still contain no subject and 95% still contain no audience field.  Shttp://inex.is.informatik.uni-duisburg.defindex.html
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or mis-labeled. dents. In the following section we will describe a
statistical model that will allow us to guess the val-
3 Structured Relevance Model ues of un-observed fields. At the intuitive level, the

In this section we will provide a detailed descriptionM0del takes advantage of the fact that records sim-
of our approach to searching semi-structured datd@" in one respect will often be similar in others.
Before diving into the details of our model, we want~Or €xample, if two resources share the same author

to clearly state the challenge we intend to addreg¥'d have similar titles, they are likely to be aimed at
with our system. the same audience. Formally, our model is based on

the generativeparadigm. We will describe a proba-
3.1 Task: finding relevant records bilistic process that could be viewed, hypothetically,
The aim of our system is to identify a set ofas the source of every record in our collection. We

records relevant to a structured query provided byill assume that the query provided by our user is
the user. We assume the query specifies a set g0 @ sample from this generative process, albeit a
keywords for each field of interest to the user, for€ry shortone. We will use the observed query fields
example Q: subject="physics,gravity’ AND audi- (€.9-audienceandsubjec} to estimate the likely val-
ence="grades 1-#. Each record in the database isues for other fields, which would h#ausiblein the

a set of natural-language descriptions for each fielgontext of the observed subject and audience. The
A record is considered relevant ifébuld plausibly ~distributions over plausible values will be callest-

be annotated with the query fields. For example, @vance modelsince they are intended to mimic the
record clearly aimed at elementary school studentdnd of record that might be relevant to the observed
would be considered relevant@even if it does not duery. Finally, all records in the database will be
contain’grades 1-4'in its description of the target ranked by their information-theoretic similarity to
audience. In fact, our experiments will specificallythese relevance models.

focus on finding relevant records that contain no di-

rect match to the specified query fields, explicitly3.3 Definitions

targeting the problem of missing data and inconsi§Ne start with a set of definitions that will be used
tent schemata. through the remainder of this paper. L€tbe a

p thz I?Sk tls no:c 31 typical I_R tasl_<t_ belcause tth%ollection of semi-structured records. Each record
Ielded structure of the query IS a critical aspect Ot -4 hqists of a set of fieldsvy...w,,. Each

the prfocessmg, Pottogle th;t Ist I_argeily gnotrhed 'r;r:aﬁeld w; iS a sequence of discrete variables (words)
vor of pure content based retneval. . Ln the oeg, = o taking values in the field vocabulary

. . Wil
hand, the a ’ ; : ;
' pproach us_ed is different fr.om most DR’/ZP When a record contains no information for the
work because cross-field dependencies are a keﬁ1 field. we assume.—0 for that record. A user's
] 7 .

pomponerrtf of tt)hfhtechnlque.;[. In;ddltlon,.tthe ta§ uery q takes the same representation as a record
is unusual for both communities because it considy databaseq={q; €V, : i=l..m,j = L.n;}.

ersé an unu‘:,uellll _C"’E;e v(;/here thetf'ild_s in the q;'e(;y e will usep; to denote danguage modebverV;,
notoccur at all in the documents being searched. ; o - 5 set of probabilitiep; (v)€]0, 1], one for each

Our approach is based on the idea that plausible V&a_et of all possible Ianggqge T“Ode's ovgrwil pe
. , : enoted as the probability simpldR;. We define
ues for a given field could be inferred from the con-

text provided by the other fields in the record. Foﬁjr;cg;lnxt'ﬁé:aﬂ:g?g’al] rtc())bZEiI?[ d:;;;(ete meas)ure
instance, a resource title@iransductive SVMsand 9 P y P1---Pm

. . : . . to a set ofm language models, one for each of the
containing highly technical language in its descrip-~ _. . .
o . : m fields present in our collection.
tion is unlikely to be aimed at elementary-school stu-

4For this paper we will focus on simple conjunctive queries. °We allow each field to have its own vocabulaty since we

Extending our model to more complex queries is reserved fagenerally do not expect author names to occur in the audience
future research. field, etc. We also allow; to share same words.
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3.4 Generative Model recordsw in the training pariC; of our collection,

We will now present a generative process that will b&nd Z€ro otherwise:

viewed as a hypothetical source that produced ev- 1 m

ery record in the collectio. We stress that this (P Pm) = > [T teer ®)
process is purely hypothetical; its only purpose is to wecn

model the kinds of dependencies that are necessafgrep} is the language model associated with the
to achieve effective ranking of records in response twaining recordw (equation 2), and,. is the Boolean
the user’s query. We assume that each reeorid  indicator function that returns 1 when its predicate
the database is generated in the following manner:is true and zero when it is false.

The generative model described in the previous
2. For each field = 1...m: section treats each field in the record abag of
(a) Pick the length; of thei’¢h field of w words with no particular order. This representation
. is often associated with the assumptionaaifrd in-
(b) Draw i.i.d. wordswi,... . Wiz, from p; dependenceWe would like to stress that our model

Under this process, the probability of observing 40€S Not assume word independence, on the con-
record{w; ; : i=1..m, j=1..n;} is given by the fol- trary, it allows for strongm—prc_jeredplependenmes
lowing expression: among thg Word§ - both within a fle!d, and across
different fields within a record. To illustrate this
m g point, suppose we let;—0 in equation (2) to re-

/ [HHpi(an)l m(P1---pm)dp1-..dpm (1)  duce the effects of smoothing. Now consider the

FretPm Li=1j=1 probability of observing the wordelementary’in
the audience field together with the wddifferen-

3.4.1 A generative measure function o X ; ) )
) ) . tial’ in the title (equation 1). It is easy to verify that
The generative measure functioplays a critical ¢ probability will be non-zero only if some train-

partin equation (1): it specifies the likelihood of S5, vecordw actually contained these words in their

ing different combinations of language models in theag e cfive fields — an unlikely event. On the other
process of generating. We use a non-paramelric ponq the probability ofelementary’and ‘differen-
estimate forr, which relies directly on the combi- i ¢o_occurring in the same title might be consid-
nations of language models that are observed in tr;_ﬁably higher.

training part of the collection. Each training record While our model does not assume word indepen-

Wi...Wp, corresponds to a unique combination ofyence it does ignore the relative ordering of the
language modelpy". ..py; defined by the following s in each field. Consequently, the model will
equation: fail whenever the order of words, or their proximity
(v, wi) + i within a field carries a semantic meaning. Finally,
wo \ _ #(0,Wi) + picy . .
piv) = T (2 our generative model does not capture dependencies
across different records in the collection, each record
Here #(v, w;) represents the number of times thés drawn independently according to equation (1).
word v was observed in thé'th field of w, n;
is the length of thei'th field, and ¢, is the rela- 3:5 Using the model for retrieval
tive frequency ofv in the entire collection. Meta- In this section we will describe how the generative
parametersu; allow us to control the amount of model described above can be used to find database
smoothing applied to language models of differentecords relevant to the structured query provided by
fields; their values are set empirically on a held-outhe user. We are given a structured quegryand
portion of the data. a collection of records, partitioned into the training
We definen(ps...pm) to have mas&]{] when portion C; and the testing portiot’.. We will use
its argumentps. . .p,, corresponds to one of th¥  the training records to estimate a setrefevance
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records| average| unique sometimes related) fields®Only 7 of these fields
covered| length words . .
file | 655,673 (99%) 71 102.772 are present in every record, and half the fields are
description| 514,092 (78%) 38 | 189,136 present in less than 1% of the records. An average
subject| 504,054 (77%) 121 37,385 record contains only 17 of the 92 fields. Our experi-
content| 91,779 (14%) 743 | 575,958 . .
audience| 22,963 (3.5%) 4 119 ments focus on a subset of 5 fieldisl¢, description,

o _ ~subject, contenaind audiencg. These fields were
Table 1: Summary statistics for the five NSDL fieldsselected for two reasons: (i) they occur frequently

used in our retrieval experiments. enough to allow a meaningful evaluation and (i)
they seem plausible to be included in a potential
modelsR;. . .R,,, intended to reflect the user's in- query’ Of these fieldstitle represents the title of the
formation need. We will then rank testing records byesourcedescriptionis a very brief abstractontent
their divergence from these relevance models. A relS @ more detailed description (but not the full con-

evanceR;(v) specifies how plausible it is that word t€Nt) Of the resourcesubjectis a library-like clas-
v would occur in thei'th field of a record, given Sification of the topic covered by the resource, and

that the record contains a perfect match to the queRpdiencereflects the target reading level (e.gle-

fieldsqy. . .qm: mentary schoobr post-graduatg Summary statis-
tics for these fields are provided in Table 1.
Ri(v) = Plai...voq;. ..qm) 4 The dataset was randomly split into three sub-
Plai-..qi--.qm) sets: thdraining set, which comprised 50% of the

- records and was used for estimating the relevance
We use ; to denote appending word to the i i i
vedi PP g models as described in section 3.5; bHadd-out set,

string q;. Both the numerator and the denomina- hich sed 25% of the dat q dt
tor are computed using equation (1). Once we hayg''ch comprise o ot the data and was used 1o

computed relevance model; for each of them tune the smoothing parametersand the bandwidth

fields, we can rank testing recordsg by their sim- parametersy; and theevaluation set, which con-
ilarity’to these relevance models. As a similarit ained 25% of the records and was used to evaluate

measure we use weighted cross-entropy, which is élﬁe performance of the tuned modlel

extension of the ranking formula originally proposed O_ur experiments are b_ased on a set of 127_auto-
by (Lafferty and Zhai, 2001): matically generated queries. We randomly split the

queries into two groups, 64 for training and 63 for
m evaluation. The queries were constructed by com-
H(Rimiwim) =) i )  Ri(v)logpl'(v) (5)  pjining two randomly pickegubjectwords with two
e audiencewords, and then discarding any combi-
The outer summation goes over every field of inteffation that had less than 10 exact matches in any
est, while the inner extends over all the words in th€f the three subsets of our collection. This proce-
vocabulary of the'th field. R; are computed accord- dure yields queries such s, ={subjectartificial
ing to equation (4), whilep? are estimated from intelligence’ AND audience="researchess’ or
equation (2). Meta-parametess allow us to vary @io1={subject:’philosophy’ AND audience="high
the importance of different fields in the final rank-School}.

ing; the values are selected on a held-out portion 9{2 Evaluation paradigm

the data. . 3 _

We evaluate our model by its ability to find “rele-
4 Experiments vant” records in the face of missing values. We de-
4.1 Dataset and queries ®As of May 2006, the NSDL contains over 1.5 million doc-

uments.
We tested the performance of our model on a Jan- "The most frequent NSDL fieldsd; icon, url, link and 4
uary 2005 snapshot of the National Science Digibragdflelds) seem gnllkely to be used in user queries.
tal Librarv repositorv. The snapshot contains a to In real use, typical pseudo relevance feedback scheme can
al Library rep Y- i P i Obe followed: retrieve top-k documents to build relevance mod-
tal of 656,992 records, spanning 92 distinct (thoughls then perform IR again on the same whole collection

93



fine a recordw to be relevant to the user's quetyy catenation includes theudienceand subjectfields,
if every keyword inq is found in the corresponding which are supposed to be missing from the testing
field of w. For example, in order to be relevant torecords. We use Dirichlet smoothing (Lafferty and
(101 a record must contain the woighilosophy’in ~ Zhai, 2001), with parameters optimized on the train-
the subject field and wordiigh’ and'school’inthe ing data. This baseline mimics the core search capa-
audience field. If either of the keywords is missingbility currently available on the NSDL website.
the record is considered non-relevint. bLM is a combination of SQL-like structured
When the testing records are fully observablematching and unstructured search with query ex-
achieving perfect retrieval accuracy is trivial: wepansion. We take all training records that contain
simply return all records that match all query key-an exact match to our query and select 10 highly-
words in the subject and audience fields. As wgeighted words from thétle, description andcon-
stated earlier, our main interest concerns the sctentfields of these records. We run the resulting 30
nario when parts of the testing data are missing. We&ords as a language modeling query against the con-
are going to simulate this scenario in a rather exsatenation ofitle, description andcontentfields in
treme manner bgompletelyremoving thesubject the testing records. This is a non-cheating baseline.
and audiencefields from all testing records. This bMatch is a structured extension of bLM. As in
means that a straightforward approach — matchirlg-M, we pick training records that contain an ex-
query fields against record fields — will yield no rel-act match to the query fields. Then we match 10
evant results. Our approach will rank testing recordsighly-weightedtitle words, against thétle field of
by comparing theirtitle, descriptionand content testing records, do the same for tiescriptionand
fields against the query-based relevance models, @sntentfields, and merge the three resulting ranked
discussed in section 3.5. lists. This is a non-cheating baseline that is similar
We will use the standard rank-based evaluatioto our model (SRM). The main difference is that this
metrics: precisionandrecall. Let Ny be the total approach uses exact matching to select the training
number of records relevant to a given query, supecords, whereas SRM leverages a best-match lan-
pose that the firsk records in our ranking contain guage modeling algorithm.
Ng relevant ones. Precision at raik is defined SRM is the Structured Relevance Model, as de-
as% and recall is defined a%% Average preci- scribed in section 3.5. For reasons of both effec-
sion is defined as the mean precision over all rankiveness and efficiency, we firstly run the original
where relevant items occuiz-precision is defined query to retrieve top-500 records, then use these

as precision at rank'=Ng. records to build SRMs. When calculating the cross
' entropy(equ. 5), for each field we only include the

4.3 Baseline systems top-100 words which will appear in that field with

Our experiments will compare the ranking perforihe largest probabilities.

mance Of the fo”owing retrieval Systems: Note that our baselines dO not inCIUde a Standard

cLM is acheatingversion of un-structured text SQL approach directly on testing records. Such
search using a state-of-the-art language-modelird! @PProach would have perfect performance in a
approach (Ponte and Croft, 1998). We disregar‘a:heating” scenario with observaldeibjectandau-
the structure, take all query keywords and run therdiencefields, but would not match any records when
against aconcatenatiorof all fields in the testing the fields are removed.
records. Thisis a “cheating” baseline, since the cony 4 Experimental results

This definition of relevance is unduly conservative by theTaple 2 shows the performance of our model (SRM)

standards of Information Retrieval researchers. Many recordé : .
that might be considered relevant by a human annotator will b gainst the three baselines. The model parameters

treated as non-relevant, artificially decreasing the accuracy Were tuned using the 64 training queries onttae-

any retrieval algorithm. However, our approach has the advarmg andheld-outsets. The results are for the 63 test
tage of being fully automatic: it allows us to test our model on . . . ..

a scale that would be prohibitively expensive with manual reledUErIes run against thevaluationcorpus. (Similar
vance judgments. results occur if the 64 training queries are run against
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cLM | bMatch bLM SRM %change improved
Rel-ret: 949 582 914 861 -5.80 26/50
Interpolated Recall - Precision:
at0.00| 0.3852| 0.3730| 0.4153| 0.5448 31.2 33/49
at0.10| 0.3014| 0.3020| 0.3314| 0.4783 44.3 42/56
at0.20 | 0.2307 | 0.2256| 0.2660| 0.3641 36.9 40/59
at0.30 | 0.2105| 0.1471| 0.2126| 0.2971 39.8 36/58
at0.40| 0.1880| 0.1130| 0.1783| 0.2352 31.9 36/58
at0.50 | 0.1803| 0.0679| 0.1591| 0.1911 20.1 32/57
at0.60| 0.1637| 0.0371| 0.1242| 0.1439 15.8 27/51
at0.70| 0.1513| 0.0161| 0.1001| 0.1089 8.7 21/42
at0.80 | 0.1432| 0.0095| 0.0901 | 0.0747 -17.0 18/34
at0.90| 0.1292| 0.0055| 0.0675| 0.0518 -23.2 12/27
at1.00 | 0.1154| 0.0043| 0.0593| 0.0420 -29.2 9/23
Avg.Prec.| 0.1790] 0.1050| 0.1668]| 0.2156 29.25 43/63
Precision at:
5docs| 0.1651| 0.2159| 0.2413| 0.3556 47.4 32/43
10docs| 0.1571| 0.1651| 0.2063 | 0.2889 40.0 34/48
15docs| 0.1577 | 0.1471| 0.1841| 0.2360 28.2 32/49
20docs| 0.1540| 0.1349| 0.1722| 0.2024 17.5 28/47
30docs| 0.1450| 0.1101| 0.1492| 0.1677 12.4 29/50
100 docs| 0.0913| 0.0465| 0.0849 | 0.0871 2.6 37/57
200 docs| 0.0552 | 0.0279| 0.0539| 0.0506 -6.2 33/53
500 docs| 0.0264 | 0.0163| 0.0255| 0.0243 -4.5 26/48
1000 docs| 0.0151| 0.0092| 0.0145| 0.0137 -5.8 26/50
R-Prec.| 0.1587 | 0.1204| 0.1681| 0.2344 39.44 31/49

Table 2: Performance of the 63 test queries retrieving 1000 documents on the evaluation data. Bold figures
show statistically significant differences. Across all 63 queries, there are 1253 relevant documents.

theevalutioncorpus.) We note that SRM continues to outperform bLM

The upper half of Table 2 shows precision apntil very high recall and until the 100-document
fixed recall levels; the lower half shows precisiorfUtoff- After that, SRM degrades rapidly with re-
at different ranks. Th&changecolumn shows rel- spect to bLM. We feel the drop in effectiveness is of

ative difference between our model and the bas&arginal interest because precision is already well
line bLM. The improved column shows the num- below 10% and few users will be continuing to that
ber of queries where SRM exceeded bLM vs. thd€Pthin the list.
number of queries where performance was different. It iS €ncouraging to see that SRM outperforms
For example33 /49 means that SRM out-performed both cLM, the cheating baseline that takes advantage
bLM on 33 queries out 0f63, underperformed on pf the field values that are_supposed to be “miss-
49-33=16 queries, and had exactly the same pefd", and bMatch, suggesting that best-match re-
formance on63—49=14 queries. Bold figures in- trieval provides a superior strategy for selecting a set
dicate statistically significant differences (accordin@f @ppropriate training records.
to the sign test withp < 0.05). .

g W ) 5 Conclusions

The results show that SRM outperforms three

baselines in the high-precision region, beatinyVe have developed and empirically validated a new
bLM’s mean average precision by 29%. Usersetrieval model for semi-structured text. The model
oriented metrics, such as R-precision and precisida based on the idea that missing or corrupted val-
at 10 documents, are improved by 39.4% and 44.3%es for one field can be inferred from values in other
respectively. The absolute performance figures afilds of the record. The cross-field inference makes
also very encouraging. Precision of 28% at rank 10 possible to find documents in response to a struc-
means that on average almost 3 out of the top Iired query when those query fields do not exist in
records in the ranked list are relevant, despite the réhe relevant documents at all.

guested fields not being available to the model. We validated the SRM approach on a large
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Abstract

We introduce a novel ranking algorithm
called GRASsHOPPER which ranks items
with an emphasis on diversity. That is, the
top items should be different from each
other in order to have a broad coverage
of the whole item set. Many natural lan-
guage processing tasks can benefit from
such diversity ranking. Our algorithm is
based on random walks in an absorbing
Markov chain. We turn ranked items into
absorbing states, which effectively pre-
vents redundant items from receiving a
high rank. We demonstratBRASSHOP-
PERSs effectiveness on extractive text sum-
marization: our algorithm ranks between
the 1st and 2nd systems on DUC 2004
Task 2; and on a social network analy-
sis task that identifies movie stars of the
world.

Introduction

j vangael ,

andrzej e}@s. W sc. edu

it likely conveys the central meaning of the articles.
On the other hand, we do not want multiple near-
identical sentences. The top sentences should be di-
verse.

As another example, in information retrieval on
news events, an article is often published by multi-
ple newspapers with only minor changes. Itis unde-
sirable to rank all copies of the same article highly,
even though it may be the most relevant. Instead,
the top results should be different and complemen-
tary. In other words, one wants ‘subtopic diversity’
in retrieval results (Zhai et al., 2003).

The need for diversity in ranking is not unique to
natural language processing. In social network anal-
ysis, people are connected by their interactions, e.g.,
phone calls. Active groups of people have strong in-
teractions among them, but many groups may exist
with fewer interactions. If we want a list of people
that represent various groups, it is important to con-
sider both activity and diversity, and not to fill the
list with people from the same active groups.

Given the importance of diversity in ranking,
there has been significant research in this area. Per-
haps the most well-known method is maximum

Many natural language processing tasks involvmarginal relevance (MMR) (Carbonell and Gold-

ranking a set of items. Sometimes we want the togtein, 1998), as well as cross-sentence informational
items to be not only good individually but alsti- subsumption (Radev, 2000), mixture models (Zhang
versecollectively. For example, extractive text sum-et al., 2002), subtopic diversity (Zhai et al., 2003),
marization generates a summary by selecting a feghiversity penalty (Zhang et al., 2005), and others.
good sentences from one or more articles on thehe basic idea is to penalize redundancy by lowering
same topic (Goldstein et al., 2000). This can be folan item’s rank if it is similar to items already ranked.
mulated as ranking all the sentences, and taking th#owever, these methods often treat centrality rank-
top ones. A good sentence is one that is represeimg and diversity ranking separately, sometimes with
tative, i.e., similar to many other sentences, so théeuristic procedures.
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We proposesRASSHOPPERGraphRandom-walk The user can optionally supply an arbitrary rank-
with Absorbing StateS that HOPs amongPEaks ing on the items as prior knowledge. In this
for Ranking), a novel ranking algorithm that en-caseGRASSHOPPERcan be viewed as a re-ranking
courages diversityGRASSHOPPERS an alternative method. For example, in information retrieval,
to MMR and variants, with a principled mathemat-the prior ranking can be the ranking by relevance
ical model and strong empirical performance. Iscores. In text summarization, it can be the po-
ranks a set of items such that: 1. A highly rankedition of sentences in the original article. (There
item is representative of a local group in the seis evidence that the first few sentences in an ar-
i.e., it is similar to many other itemsdntrality); ticle are likely good summaries.) Somewhat un-
2. The top items cover as many distinct groups asonventionally, the prior ranking is represented as
possible diversity); 3. It incorporates an arbitrary a probability distributionr = (ry,---,r,)" such
pre-specified ranking as prior knowledgerior). thatr; > 0, , r; = 1. The highest-ranked item
Importantly GRASSHOPPERachieves these in a uni- has the largest probability, the next item has smaller
fied framework ofabsorbing Markov chain random probability, and so on. A distribution gives the user
walks The key idea is the following: We define more control. For example, = (0.1,0.7,0.2)7
a random walk on a graph over the items. Itemandr, = (0.3,0.37,0.33)" both represent the same
which have been ranked so far become absorbimgnking of items 2, 3, 1, but with different strengths.
states. These absorbing states ‘drag down’ the inWwhen there is no prior ranking, one can tet=
portance of similar unranked states, thus encouragt/n,---,1/n)7, the uniform distribution.
ing diversity. Our model naturally balances central- . _
ity, diversity, and prior. We discuss the algorithmz'2 Finding the First Item
in Section 2. We presem@RASSHOPPER empiri- We find the first item inGRASSHOPPERanking by
cal results on text summarization and social networteleporting random walks. Imagine a random walker

analysis in Section 3. on the graph. At each step, the walker may do one of
two things: with probability\, she moves to a neigh-
2 TheGRrAssHOPPER Algorithm bor staté according to the edge weights; otherwise

she is teleported to a random state according to the

21 Thelnput distributionr. Under mild conditions (which are sat-
GRASSHOPPERequires three inputs: a graph, a isfied in our setting, see below), the stationary distri-
probability distributionr that encodes the prior rank- bution of the random walk defines the visiting prob-
ing, and a weighd € [0, 1] that balances the two.  abilities of the nodes. The states with large probabil-

The user needs to supply a graph witmodes, ities can be regarded as central items, an idea used
one for each item. The graph is represented by dh Google PageRank (Page et al., 1998) and other in-
n X n weight matrixW, wherew;; is the weight on formation retrieval systems (Kurland and Lee, 2005;
the edge fromito j. It can be either directed or undi- Zhang et al., 2005), text summarization (Erkan and
rected. W is symmetric for undirected graphs. TheRadev, 2004), keyword extraction (Mihalcea and Ta-
weights are non-negative. The graph does not neéau, 2004) and so on. Depending britems high on
to be fully connected: if there is no edge from itenrthe user-supplied prior rankingmay also have large
i to j, thenw;; = 0. Self-edges are allowed. For ex-Stationary probabilities, which is a way to incorpo-
ample, in text summarization one can create an undiate the prior ranking.
rected, fully connected graph on the sentences. TheAs an example, we created a toy data set with 300
edge between sentendeg has weightw;;, their co- points in Figure 1(a). There are roughly three groups
sine similarity. In social network analysis one carwith different densities. We created a fully con-
create a directed graph with;; being the number nected graph on the data, with larger edge weights
of phone callsi made toj. The graph should be if points are closét Figure 1(b) shows the station-
constructed carefully to reflect domain knowledgeary distribution of the random walk on the graph.
For examples, see (Erkan and Radev, 2004; Mihal- 1\ye ysestate nodeanditeminterchangeably.
cea and Tarau, 2004; Pang and Lee, 2004). 2We usew;; = exp(—||z; — x;]*/0.16), A = 1.
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Figure 1. (a) A toy data set. (b) The stationary distributioreflects centrality. The item with the largest
probability is selected as the firstitggm (c) The expected number of visksto each node aften, becomes
an absorbing state. (d) After bodth andg, become absorbing states. Note the diversity,iny., g3 as they
come from different groups.

Items at group centers have higher probabilities, arfl3 Ranking the Remaining Items

tighter groups have overall higher probabilities.

However, the stationary distribution does not a f—A‘S mentioned early, the key idea GRASSHOPPER

dress diversity at all. If we were to rank the items'f.S 1o trn rgnked ltems mFo absorbing states. We
by their stationary distribution, the top list would bel >t (N g1 into an absorbing state. Once the ran-
ym ary : P .. _dom walk reaches an absorbing state, the walk is ab-
dominated by items from the center group in Fig- . . .
ure 1(b). Therefore we only use the stationary diss_orbed and stays_there. It. SO Ipnger mformatlvg 0
tribution to find the first item. and use a metho ompute the stationary distribution of an absorbing
d ibed in th t fi t K th .. Markov chain, because the walk will eventually be
cescribed In the next section to rank the remalnlngbsorbed. Nonetheless, it is useful to compute the
ltems. expected number of visite each node before ab-
Formally we first define am. x n raw transition - gorption. Intuitively, those nodes strongly connected
matrix P by normalizing the rows ofV: Fj; = to g, will have many fewer visits by the random
wij /Y p—y Wik, SO thatP; is the probability that the \yalk, because the walk tends to be absorbed soon
walker moves tgj from i. We then make the walk after visiting them. In contrast, groups of nodes far
a teleporting random wall® by interpolating each away fromg, still allow the random walk to linger
row with the user-supplied initial distributian among them, and thus have more visits. In Fig-
ure 1(c), oncey; becomes an absorbing node (rep-
resented by a circle ‘on the floor’), the center group
is no longer the most prominent: nodes in this group
have fewer visits than the left group. Note now the

wherel is an all-1 vector, andr " is the outer prod- y-axis is the number of visits instead of probability.

uct. If A < 1 andr does not have zero elements, GRASSHOPPERselects the second itegg with the

our teleporting random walR is irreducible (possi- largest expected number of visits in this absorbing
ble to go to any state from any state by teleporting)Markov chain. This naturally inhibits items similar
aperiodic (the walk can return to a state after anto g; and encourages diversity. In Figure 1(c), the
number of steps), all states are positive recurrent (thitem near the center of the left group is selected as
expected return time to any state is finite) and thug. Oncegs is selected, it is converted into an ab-
ergodic (Grimmett and Stirzaker, 2001). Thereforsorbing state, too. This is shown in Figure 1(d). The
P has a unique stationary distribution= PTx. right group now becomes the most prominent, since
We take the state with the largest stationary probdpoth the left and center groups contain an absorbing
bility to be the first itemg; in GRASSHOPPERank- state. The nextiterp in ranking will come from the
ing: g1 = argmax;._; ;. right group. Also note the range gfaxis is smaller:

P=A\P+(1-Nir', (1)
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with more absorbing states, the random walk will be Input: W, r, A
absorbed sooner. The procedure is repeated until gll
items are ranked. The naneRASSHOPPEReflects
the ‘hopping’ behavior on the peaks.

Itis therefore important to compute the expectel 5, computeP’s stationary distributionr. Pick the
number of VISIt.S in an absorbing Markov chain. Let firstitemg; = argmax; 7.
G be the set of items ranked so far. We turn the states
g € G into absorbing states by settifgy, = 1 and 3. Repeat until all items are ranked:
P, = 0,Vi # g. If we arrange items so that ranked
ones are listed before unranked ones, we can write

1. Create the initial Markov chainP from
W,r, A (D).

(@ Turn ranked items into absorbing

P as states (2).
I O (b) Compute the expected number of visitg
P= [ R Q } . () for all remaining items (4). Pick the next

item g|g 41 = argmax; v;

Herelg is the identity matrix ornG. Submatrices®
and@ correspond to rows of unranked items, those Figure 2: TheGRASSHOPPERaIgorithm
from (1). It is known that théundamental matrix

N=1I-Q)! (3) determine the appropriate number and control the
shape of clusters. In contraRASSHOPPERJOES
gives the expected number of visits in the absorbingot involve clustering. However it is still able to
random walk (Doyle and Snell, 1984). In particularautomatically take advantage of cluster structures in
N;; is the expected number of visits to stgtde- the data.
fore absorption, if the random walk started at state  |n each iteration we need to compute the fun-

We then average over all starting states to obtain damental matrix (3). This involves inverting an
the expected number of visits to stgte In matrix (n — |G|) x (n — |G]) matrix, which is expensive.

notation, . However the) matrix is reduced by one row and
_ N1 (4) one column in every iteration, but is otherwise un-
n— |G| changed. This allows us to apply the matrix in-

where|G] is the size ofG. We select the state with Version lemma (Sherman-Morrison-Woodbury for-
the largest expected number of visits as the next iteMula) (Press et al., 1992). Then we only need to

9|c/+1 iN GRASSHOPPERANKINg: invert the matrix once in the first iteration, but not in
subsequent iterations. Space precludes a full discus-
9jGl+1 = argmax?:‘GHl v;. (5) sion, but we point out that it presents a significant

speed up. A Matlab implementation can be found
The completeGRASSHOPPERalgorithm is summa- atht t p: / / www. ¢s. wi sc. edu/ ~j erryzhu/

rized in Figure 2. pub/ grasshopper. m

24 Some Discussions 3 Experiments

To see howA controls the tradeoff, note when= 1
we ignore the user-supplied prior rankingwhile
when A = 0 one can show thatRASSHOPPERe- Multi-document extractive text summarization is a
turns the ranking specified by prime application foGRASSHOPPERIN this task, we
Our data in Figure 1(a) has a cluster strucmust select and rank sentences originating from a
ture. Many methods have exploited such structurset of documents about a particular topic or event.
e.g., (Hearst and Pedersen, 1996; Leuski, 2001, Lithe goal is to produce a summary that includes all
and Croft, 2004). In fact, a heuristic algorithm isthe relevant facts, yet avoids repetition that may
to first cluster the items, then pick the central itemsgesult from using similar sentences from multiple
from each cluster in turn. But it can be difficult todocuments. In this section, we demonstrate that

3.1 Text Summarization
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GRASSHOPPER balance of centrality and diversity LexRank, edges in the graph correspond to text sim-
makes it successful at this task. We present enflarity. To create a sparse graph, we use the cosine
pirical evidence thatRASSHOPPERachieves results threshold value of 0.1 obtained in (Erkan and Radev,
competitive with the top text summarizers in the2004). Specifically, the edge weight between sen-
2004 Document Understanding Confererttet(p:  tence vectors; ands; is defined as

/I duc. ni st. gov). DUC is a yearly text summa- .

rization community evaluation, with several tasks in o {1 if m > 0.1

recent years concentrating on multi-document sum- Wij = 0 otherwise ’
marization (described in more detail below).

Many successful text summarization system¥he second input fOGRASSHOPPERIiS an initial
achieve a balance between sentence centrality arahking distribution, which we derive from the po-
diversity in a two-step process. Here we review theition of each sentence in its originating document.
LexRank system (Erkan and Radev, 2004), whicRosition forms the basis for lead-based summaries
is most similar to our current approach. LexRanKi.e., using the firstV sentences as the summary)
works by placing sentences in a graph, with edgeand leads to very competitive summaries (Brandow
based on the lexical similarity between the sentences al., 1995). We form an initial ranking for each
(as determined by a cosine measure). Each sesentence by computing ©, wherep is the position
tence is then assigned a centrality score by findingf the sentence in its document, andis a posi-
its probability under the stationary distribution oftive parameter trained on a development dataset. We
a random walk on this graph. Unlike the similarthen normalize over all sentences in all documents
PageRank algorithm (Page et al., 1998), LexRano form a valid distribution oc p~ that gives high
uses an undirected graph of sentences rather tharobability to sentences closer to the beginning of
Web pages, and the edge weights are either cosidecuments. With a larger, the probability assigned
values or 0/1 with thresholding. The LexRank cento later sentences decays more rapidly.
trality can be combined with other centrality mea- To evaluat&GRASSHOPPERWe experimented with
sures, as well as sentence position information. ADUC datasets. We train our parametesisand \)
ter this first step of computing centrality, a secusing the DUC 2003 Task 2 data. This dataset con-
ond step performs re-ranking to avoid redundanctains 30 document sets, each with an average of 10
in the highly ranked sentences. LexRank uses crosgsecuments about a hews event. We &8ASSHOP-
sentence informational subsumption (Radev, 200@ERs performance on the DUC 2004 Task 2, Tasks
to this end, but MMR (Carbonell and Goldstein,4a and 4b data. DUC 2004 Task 2 has 50 document
1998) has also been widely used in the text sunsets of 10 documents each. Tasks 4a and 4b explored
marization community. These methods essentiallgross-lingual summarization. These datasets consist
disqualify sentences that are too lexically similar t@f Arabic-to-English translations of news stories.
sentences ranked higher by centrality. In short, simnFhe documents in Task 4a are machine-translated,
ilar graph-based approaches to text summarizatiavhile Task 4b’s are manually-translated. Note that
rely on two distinct processes to measure each sewe handle the translated documents in exactly the
tence’s importance and ensure some degree of divslame manner as the English documents.
sity. GRASSHOPPERoON the other hand, achieves the We evaluate our results using the standard text
same goal in a unified procedure. summarization metric ROUGEhh{t p: // www.

We applyGRASSHOPPERO text summarization in i si . edu/ ~cyl / ROUGE/ ). This is a recall-based
the following manner. Our graph contains nodeseasure of text co-occurrence between a machine-
for all the sentences in a document set. Wegenerated summary and model summaries manually
used the Clair Library {ttp://tangra.si. created by judges. ROUGE metrics exist based on
um ch. edu/clair/clairlib) to split docu- bigram, trigram, and 4-gram overlap, but ROUGE-1
ments into sentences, apply stemming, and credafieased on unigram matching) has been found to cor-
a cosine matrix for the stemmed sentences. Cosinelate best with human judgments (Lin and Hovy,
values are computed using TF-IDF vectors. As ir2003).

(6)
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Using the DUC 2003 training data, we tuned co-star relationship. Not surprisingly, actors from
and ) on a small grid ¢ € {0.125,0.25,0.5,1.0}; the United States dominate our dataset, although a
A € {0.0,0.0625,0.125,0.25,0.5,0.95}). Specifi- total of 30 distinct countries are represented. We
cally, for each of the 30 DUC 2003 Task 2 documenseek an actor ranking such that the top actors are
sets, we computed ROUGE-1 scores comparing oprominent. However, we also want the top actors to
generated summary to 4 model summaries. We abe diverse, so they represent comedians from around
eraged the resulting ROUGE-1 scores across all 3be world.
sets to produce a single average ROUGE-1 score toThis problem is framed as@RASSHOPPERank-
assess a particular parameter configuration. Aftémg problem. For each movie, we considered only
examining the results for all 24 configurations, wehe main stars, i.e., the first five cast members, who
selected the best ona:= 0.25 and\ = 0.5. tend to be the mostimportant. The resulting list con-

Table 1 presents our results using these paramigins 3452 unique actors. We formed a social net-
ter values to generate summaries for the three DU@ork where the nodes are the actors, and undirected
2004 datasets. Note that the averages listed are ageighted edges connect actors who have appearedin
tually averages over 4 model summaries per set, aadnovie together. The edge weights are equal to the
over all the sets. Following the standard DUC pronumber of movies from our dataset in which both
tocol, we list the confidence intervals calculated bctors were main stars. Actors are also given a self-
ROUGE using a bootstrapping technique. The fiedge with weight 1. The co-star graph is given to
nal column compares our results to the official SySSRASSHOPPERas an input. For the prior actor rank-
tems that participated in the DUC 2004 evaluationing, we simply letr be proportional to the number
GRASSHOPPERIS highly competitive in these text of movies in our dataset in which an actor has ap-
summarization tasks: in particular it ranks betweepeared. We set the weight= 0.95. It is important
the 1st and 2nd automatic systems on 2004 Task @. note that no country information is ever given to
The lower performance in Task 4a is potentially dUGSRASSHOPPER
to the documents being machine-translated. If they We use two measurements, ‘country coverage’
contain poorly translated sentences, graph edgasd ‘movie coverage’, to study the diversity and
based on cosine similarity could be less meaninggrominence of the ranking produced BRASSHOP-
ful. For such a task, more advanced text processimER We compareGRASSHOPPERO two baselines:
is probably required. ranking based solely on the number of movies an ac-

) _ tor has appeared imjOVIECOUNT, and a randomly
3.2 Social Network Analysis generated rankinggANDOM.
As another application c6RASSHOPPERWe iden- First, we calculate ‘country coverage’ as the num-
tify the nodes in a social network that are the modber of different countries represented by thek@z-
prominent, and at the same time maximally covetors, for allk values. Each actor represents a single
the network. A node’s prominence comes from itg€ountry—the country that the actor has appeared in
intrinsic stature, as well as the prominence of théhe most. We hypothesize that actors are more likely
nodes it touches. However, to ensure that the tope have co-star connections to actors within the same
ranked nodes are representative of the larger grapbuntry, so our social network may have, to some
structure, it is important to make sure the results amextent, a clustering structure by country. ‘Country
not dominated by a small group of highly prominentoverage’ approximates the number of clusters rep-
nodes who are closely linked to one another. This reesented at different ranks.
quirement makesRASSHOPPERa useful algorithm Figure 3(a) shows that country coverage grows
for this task. much more rapidly forGRASSHOPPERthan for

We created a dataset from the Internet Movi®OVIECOUNT. That is, we see more comedians from
Database (IMDDb) that consists of all comedy moviearound the world ranked highly bgRASSHOPPER
produced between 2000 and 2006, and have receivedcontrast, the top ranks efOVIECOUNT are dom-
more than 500 votes by IMDb users. This results ithated by US actors, due to the relative abundance
1027 movies. We form a social network of actors byf US movies on IMDb. Many other countries are
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Number of | Average GRASSHOPPER

Dataset Doc. Sets| ROUGE-1 95% C.I. Unofficial Rank
DUC 2004 Task 2 50 0.3755 | [0.3622, 0.3888] Between 1 & 2 of 34
DUC 2004 Task 43 24 0.3785 | [0.3613, 0.3958] Between 5 & 6 of 11
DUC 2004 Task 4h 24 0.4067 | [0.3883, 0.4251] Between 2 & 3 0f 11

Table 1: Text summarization results on DUC 2004 datassssSHOPPERvas configured using parameters
tuned on the DUC 2003 Task 2 dataset. The rightmost column lists what dumwauid have been if we
had participated in the DUC 2004 evaluation.

not represented until further down in the rankedge curve is roughly linear in the number of ac-
list. This demonstrates thaRASSHOPPERankingis tors. By ranking more prominent actors highly, the
successful in returning a more diverse ranking. BeSRASSHOPPERand MOVIECOUNT movie coverage
cause of the absorbing statesGRASSHOPPERthe curves grow faster. Many of the US actors highly
first few highly ranked US actors encourage the seanked by MOVIECOUNT are co-stars of one an-
lection of actors from other regions of the co-stabther, SOGRASSHOPPERoUtperformsMOVIECOUNT
graph, which roughly correspond to different counin terms of movie coverage too.

tries. RANDOM achieves even higher country cover- We inspect thesRASSHOPPERanking, and find
age initially, but is quickly surpassed I®BRASSHOP- the top 5 actors to be Ben Stiller, Anthony Anderson,
PER The initial high coverage comes from the ranJohnny Knoxville, Eddie Murphy and Adam San-
dom selection of actors. However these randomlgller. GRASSHOPPERaISO brings many countries, and
selected actors are often not prominent, as we shawajor stars from those countries, into the high ranks.
next. Examples include Mads Mikkelsen (“synonym to

Second, we calculate ‘movie coverage’ as the tdl1 great success the Danish film industry has had”),
tal number of unique movies the tdpactors are Cem Yilmaz (“famous Turkish comedy actor, cari-
in. We expect that actors who have been in morgaturist ar_1d scenarist”), Jun Ji-Hyun (“face of South
movies are more prominent. This is reasonable b&orean cinema”), Tadanobu Asano (“Japan’s an-
cause we count an actor in a movie only if the actopWer o Johnny Depp”), Aamir Khan (*prominent
is among the top five actors from that movie. OuPB©llywood film actor”), and so oh These actors
counts thus exclude actors who had only small roled® ranked significantly lower BMOVIECOUNT.
in numerous movies. Therefore high movie cov- 1hese results indicate thatGRASSHOPPER
erage roughly corresponds to ranking more promp_lchieves both prominence and diversity in ranking
nent actors highly. It is worth noting that this mea-2ctors in the IMDb co-star graph.
sure also partiall)_/ accounts for diversity, §ince an  conclusions
actor whose movies completely overlap with those
of higher-ranked actors contributes nothing to movi€RASSHOPPERanking provides a unified approach
coverage (i.e., his/lher movies are already covered ligr achieving both diversity and centrality. We have
higher-ranked actors). shown its effectiveness in text summarization and

Figure 3(b) shows that the movie cover-Social network analysis. As future work, one direc-

age of GRASSHOPPERgrows more rapidly than tion is “partial absorption,” where at each abso_rt_)ing

MOVIECOUNT, and much more rapidly thaRAN- state_ the random walk ha_s an escape_probablllty to
DOM. The results show that, while theANDOM continue the random walk instead of being absorbed.
ranking is diverse, it is not of high quality be_Tuning the escape probability creates a continuum
cause it fails to include many prominent actors ifP€tween PageRank (if the walk always escapes) and

its high ranks. This is to be expected of a rangRASSHOPPEF{if always absorbed). In addition, we

dom ranking. Since the vast majority of the acWill explore the issue of parameter learning, and

tors appear in only one movie, the movie cover- 3Quotes from IMDb and Wikipedia.
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Figure 3: (a) Country coverage at ranks up to 500, showingdRassSHOPPERaNndRANDOM rankings are
more diverse thamoVvIECOUNT. (b) Movie coverage at ranks up to 500, showing thRASSHOPPERand
MOVIECOUNT have more prominent actors theaANDOM. Overall, GRASSHOPPERS the best.

user feedback (e.g., “This item should be rankedren Kurland and Lillian Lee. 2005. PageRank without hyper-

higher.”). We also plan to applgRASSHOPPERO a links: Structural re-ranking using links induced by language
o . o . . models. INSIGIR'05

variety of tasks, including information retrieval (for

example ranking news articles on the same event Aston Leuski. 2001. Evaluating document clustering for inter-

in Google News, where many newspapers might use active information retrieval. ICIKM'01.

the same report and thus result in a lack of diversity$;hin-Yew Lin and Eduard Hovy. 2003. Automatic evalua-

image collection summarization, and social network tion of summaries using n-gram co-occurrence statistics. In

. . . . . . NAACL'03 pages 71-78.
analysis for national security and business intelli-
gence. Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based re-
trieval using language models. 8iGIR’04
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Abstract

A novel random text generation model is
introduced. Unlike in previous random
text models, that mainly aim at producing
a Zipfian distribution of word frequencies,
our model also takes the properties of
neighboring co-occurrence into account
and introduces the notion of sentences in
random text. After pointing out the defi-
ciencies of related models, we provide a
generation process that takes neither the
Zipfian distribution on word frequencies
nor the small-world structure of the
neighboring co-occurrence graph as a
constraint. Nevertheless, these distribu-
tions emerge in the process. The distribu-
tions obtained with the random generation
model are compared to a sample of natu-
ral language data, showing high agree-
ment also on word length and sentence
length. This work proposes a plausible
model for the emergence of large-scale
characteristics of language without as-
suming a grammar or semantics.

1 Introduction

G. K. Zipf (1949) discovered that if all words in a
sample of natural language are arranged in de-
creasing order of frequency, then the relation be-
tween a word’s frequency and its rank in the list
follows a power-law. Since then, a significant
amount of research in the area of quantitative lin-
guistics has been devoted to the question how this
property emerges and what kind of processes gen-
erate such Zipfian distributions.
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The relation between the frequency of a word at
rank r and its rank is given by f(r) =< r, where z is
the exponent of the power-law that corresponds to
the slope of the curve in a log plot (cf. figure 2).
The exponent z was assumed to be exactly 1 by
Zipf; in natural language data, also slightly differ-
ing exponents in the range of about 0.7 to 1.2 are
observed (cf. Zanette and Montemurro 2002). B.
Mandelbrot (1953) provided a formula with a
closer approximation of the frequency distributions
in language data, noticing that Zipf’s law holds
only for the medium range of ranks, whereas the
curve is flatter for very frequent words and steeper
for high ranks. He also provided a word generation
model that produces random words of arbitrary
average length in the following way: With a prob-
ability w, a word separator is generated at each
step, with probability (1-w)/N, a letter from an al-
phabet of size N is generated, each letter having
the same probability. This is sometimes called the
“monkey at the typewriter” (Miller, 1957). The
frequency distribution follows a power-law for
long streams of words, yet the equiprobability of
letters causes the plot to show a step-wise rather
than a smooth behavior, as examined by Ferrer i
Cancho and Solé (2002), cf. figure 2. In the same
study, a smooth rank distribution could be obtained
by setting the letter probabilities according to letter
frequencies in a natural language text. But the
question of how these letter probabilities emerge
remains unanswered.

Another random text model was given by
Simon (1955), which does not take an alphabet of
single letters into consideration. Instead, at each
time step, a previously unseen new word is added
to the stream with a probability a, whereas with
probability (1-a), the next word is chosen amongst
the words at previous positions. As words with
higher frequency in the already generated stream
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have a higher probability of being added again, this
imposes a strong competition among different
words, resulting in a frequency distribution that
follows a power-law with exponent z=(1-a). This
was taken up by Zanette and Montemurro (2002),
who slightly modify Simon’s model. They intro-
duce sublinear vocabulary growth by additionally
making the new word probability dependent on the
time step. Furthermore, they introduce a threshold
on the maximal probability a previously seen word
can be assigned to for generation, being able to
modify the exponent z as well as to model the flat-
ter curve for high frequency words. In (Ha et al.,
2002), Zipf’s law is extended to words and
phrases, showing its validity for syllable-class
based languages when conducting the extension.

Neither the Mandelbrot nor the Simon genera-
tion model take the sequence of words into ac-
count. Simon treats the previously generated
stream as a bag of words, and Mandelbrot does not
consider the previous stream at all. This is cer-
tainly an over-simplification, as natural language
exhibits structural properties within sentences and
texts that are not grasped by bags of words.

The work by Kanter and Kessler (1995) is, to
our knowledge, the only study to date that takes the
word order into account when generating random
text. They show that a 2-parameter Markov process
gives rise to a stationary distribution that exhibits
the word frequency distribution and the letter fre-
quency distribution characteristics of natural lan-
guage. However, the Markov process is initialized
such that any state has exactly two successor
states, which means that after each word, only two
other following words are possible. This certainly
does not reflect natural language properties, where
in fact successor frequencies of words follow a
power-law and more successors can be observed
for more frequent words. But even when allowing
a more realistic number of successor states, the
transition probabilities of a Markov model need to
be initialized a priori in a sensible way. Further,
the fixed number of states does not allow for infi-
nite vocabulary.

In the next section we provide a model that
does not suffer from all these limitations.

2 The random text generation model

When constructing a random text generation
model, we proceed according to the following
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guidelines (cf. Kumar et al. 1999 for web graph
generation):

e simplicity: a generation model should reach
its goal using the simplest mechanisms pos-
sible but results should still comply to char-
acteristics of real language

® plausibility: Without claiming that our
model is an exhaustive description of what
makes human brains generate and evolve
language, there should be at least a possibil-
ity that similar mechanisms could operate in
human brains. For a discussion on the sensi-
tivity of people to bigram statistics, see e.g.
(Thompson and Newport, 2007).

e emergence: Rather than constraining the
model with the characteristics we would like
to see in the generated stream, these features
should emerge in the process.

Our model is basically composed of two parts
that will be described separately: A word generator
that produces random words composed of letters
and a sentence generator that composes random
sentences of words. Both parts use an internal
graph structure, where traces of previously gener-
ated words and sentences are memorized. The
model is inspired by small-world network genera-
tion processes, cf. (Watts and Strogatz 1998,
Barabasi and Albert 1999, Kumar et al. 1999,
Steyvers and Tenenbaum 2005). A key notion is
the strategy of following beaten tracks: Letters,
words and sequences of words that have been gen-
erated before are more likely to be generated again
in the future - a strategy that is only fulfilled for
words in Simon’s model.

But before laying out the generators in detail,
we introduce ways of testing agreement of our ran-
dom text model with natural language text.

2.1 Testing properties of word streams

All previous approaches aimed at reproducing a
Zipfian distribution on word frequency, which is a
criterion that we certainly have to fulfill. But there
are more characteristics that should be obeyed to
make a random text more similar to natural lan-
guage than previous models:

e [exical spectrum: The smoothness or step-
wise shape of the rank-frequency distribu-
tion affects the lexical spectrum, which is
the probability distribution on word fre-



quency. In natural language texts, this distri-
bution follows a power-law with an expo-
nent close to 2 (cf. Ferrer i Cancho and Solé,
2002).

e Distribution of word length: According to
(Sigurd et al., 2004), the distribution of word
frequencies by length follows a variant of
the gamma distribution

e Distribution of sentence length: The random
text’s sentence length distribution should re-
semble natural language. In (Sigurd et al.,
2004), the same variant of the gamma distri-
bution as for word length is fit to sentence
length.

e Significant neighbor-based co-occurrence:
As discussed in (Dunning 1993), it is possi-
ble to measure the amount of surprise to see
two neighboring words in a corpus at a cer-
tain frequency under the assumption of in-
dependence. At random generation without
word order awareness, the number of such
pairs that are significantly co-occurring in
neighboring positions should be very low.
We aim at reproducing the number of sig-
nificant pairs in natural language as well as
the graph structure of the neighbor-based co-
occurrence graph.

The last characteristic refers to the distribution
of words in sequence. Important is the notion of
significance, which serves as a means to distin-
guish random sequences from motivated ones. We
use the log-likelihood ratio for determining signifi-
cance as in (Dunning, 1993), but other measures
are possible as well. Note that the model of Kanter
and Kessler (1995) produces a maximal degree of
2 in the neighbor-based co-occurrence graph.

As written language is rather an artifact of the
most recent millennia then a realistic sample of
everyday language, we use the beginning of the
spoken language section of the British National
Corpus (BNC) to test our model against. For sim-
plicity, all letters are capitalized and special char-
acters are removed, such that merely the 26 letters
of the English alphabet are contained in the sam-
ple. Being aware that a letter transcription is in
itself an artifact of written language, we chose this
as a good-enough approximation, although operat-
ing on phonemes instead of letters would be pref-
erable. The sample contains 1 million words in
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125,395 sentences with an average length of 7.975
words, which are composed of 3.502 letters in av-
erage.

2.2 Basic notions of graph theory

As we use graphs for the representation of memory
in both parts of the model, some basic notions of
graph theory are introduced. A graph G(V.E)
consists of a set of vertices V and a set of
weighted, directed edges between two vertices
EcVXxVxR with R real numbers. The first vertex
of an edge is called startpoint, the second vertex is
called endpoint. A function weight: VXV—R
returns the weight of edges. The indegree
(outdegree) of a vertex v is defined as the number
of edges with v as startpoint (endpoint). The
degree of a vertex is equal to its indegree and
outdegree if the graph is undirected, i.e. (u,v,w)e E
implies (v,u,w)e E. The neighborhood neigh(v) of
a vertex v is defined as the set of vertices s€S
where (v,s,weight(v,s))eE.

The clustering coefficient is the probability that
two neighbors X and Y of a given vertex Z are
themselves neighbors, which is measured for
undirected graphs (Watts and Strogatz, 1998). The
amount of existing edges amongst the vertices in
the neighborhood of a vertex v is divided by the
number of possible edges. The average over all
vertices is defined as the clustering coefficient C.

The small-world property holds if the average
shortest path length between pairs of vertices is
comparable to a random graph (Erdos and Rényi,
1959), but its clustering coefficient is much higher.
A graph is called scale-free (cf. Barabdsi and
Albert, 1999), if the degree distribution of vertices
follows a power-law.

2.3 Word Generator

The word generator emits sequences of letters,
which are generated randomly in the following
way: The word generator starts with a graph of all
N letters it is allowed to choose from. Initially, all
vertices are connected to themselves with weight 1.
When generating a word, the generator chooses a
letter x according to its probability P(x), which is
computed as the normalized weight sum of
outgoing edges:



P(x) = weightsum(x)
Z weightsum(v)
veV
weightsum(y) = Zweight(y,u).
ueneigh(y)

After the generation of the first letter, the word
generator proceeds with the next position. At every
position, the word ends with a probability we (0,1)
or generates a next letter according to the letter
production probability as given above. For every
letter bigram, the weight of the directed edge
between the preceding and current letter in the
letter graph is increased by one. This results in
self-reinforcement of letter probabilities: the more
often a letter is generated, the higher its weight
sum will be in subsequent steps, leading to an
increased generation probability. Figure 1 shows
how a word generator with three letters A,B,C
changes its weights during the generation of the
words AA, BCB and ABC.

& & @’

initial state state after 3 words

Figure 1: Letter graph of the word generator. Left:
initial state. Right.: State after generating AA,
BCB and ABC. The numbers next to edges are
edge weights. The probability for the letters for the
next step are P(A)=0.4, P(B)=0.4 and P(C)=0.2.

The word end probability w directly influences
the average word length, which is given by
1+(1/w). For random number generation, we use
the Mersenne Twister (Masumoto and Nishimura,
1998).

The word generator itself does produce a
smooth Zipfian distribution on word frequencies
and a lexical spectrum following a power-law.
Figure 2 shows frequency distribution and lexical
spectrum of 1 million words as generated by the
word generator with w=0.2 on 26 Iletters in
comparison to a Mandelbrot generator with the
same parameters. The reader might note that a
similar behaviour could be reached by just setting
the probability of generating a letter according to
its relative frequency in previously generated
words. The graph seems an unnecessary
complication for that reason. But retaining the
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letter graph with directed edges gives rise to model
the sequence of letters for a more plausible
morphological production in future extensions of
this model, probably in a similar way than in the
sentence generator as described in the following
section.

As depicted in figure 2, the word generator
fulfills the requirements on Zipf’s law and the
lexical spectrum, yielding a Zipfian exponent of
around 1 and a power-law exponent of 2 for a large
regime in the lexical spectrum, both matching the
values as observed previously in natural language
in e.g. (Zipf, 1949) and (Ferrer i Cancho and Solé,
2002). In contrast to this, the Mandelbrot model
shows to have a step-wise rank-frequency
distribution and a distorted lexical spectrum.
Hence, the word generator itself is already an
improvement over previous models as it produces
a smooth Zipfian distribution and a lexical
spectrum following a power-law. But to comply to
the other requirements as given in section 2.1, the

process has to be extended by a sentence generator.
rank-frequency
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Figure 2: rank-frequency distribution and lexical

spectrum for the word generator in comparison to
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2.4 Sentence Generator

The sentence generator model retains another di-
rected graph, which memorizes words and their
sequences. Here, vertices correspond to words and
edge weights correspond to the number of times
two words were generated in a sequence. The word
graph is initialized with a begin-of-sentence (BOS)
and an end-of-sentence (EOS) symbol, with an
edge of weight 1 from BOS to EOS. When gener-
ating a sentence, a random walk on the directed
edges starts at the BOS vertex. With a new word
probability (1-s), an existing edge is followed from
the current vertex to the next vertex according to
its weight: the probability of choosing endpoint X
from the endpoints of all outgoing edges from the
current vertex C is given by

weight(C, X)

D" weight(C,N)

Neneigh(C)

Otherwise, with probability se(0,1), a new
word is generated by the word generator model,
and a next word is chosen from the word graph in
proportion to its weighted indegree: the probability
of choosing an existing vertex E as successor of a
newly generated word N is given by

indgw(E)
Zindgw(v) ’

veV
indgw(X) = Zweight(v, X).
veV

For each sequence of two words generated, the
weight of the directed edge between them is in-
creased by 1. Figure 3 shows the word graph for
generating in sequence: (empty sentence), AA, AA
BC, AA, (empty sentence), AA CA BC AA, AA
CA CA BC.

P(word = X) =

P(word = E) =

During the generation process, the word graph
grows and contains the full vocabulary used so far
for generating in every time step. It is guaranteed
that a random walk starting from BOS will finally
reach the EOS vertex. It can be expected that sen-
tence length will slowly increase during the course
of generation as the word graph grows and the ran-
dom walk has more possibilities before finally ar-
riving at the EOS vertex. The sentence length is
influenced by both parameters of the model: the
word end probability w in the word generator and
the new word probability s in the sentence genera-
tor. By feeding the word transitions back into the
generating model, a reinforcement of previously
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generated sequences is reached. Figure 4 illustrates
the sentence length growth for various parameter
settings of w and s.

€05 B0 E0S
R

?

Current sentence: (empty)

BOS—

‘ﬁ Current sentence: (empty)

| @/“'

Current sentence: AA BC
2
BOS— €09
2
3 1
AR g0

Current sentence: AA
Figure 3: the word graph of the sentence generator
model. Note that in the last step, the second CA
was generated as a new word from the word gen-
erator. The generation of empty sentences happens
frequently. These are omitted in the output.

Current sentence: AA CA CABC

sentence length growth
100

avg. sentence length
o

1
10000 100000

text interval
Figure 4: sentence length growth, plotted in aver-

age sentence length per intervals of 10,000 sen-
tences. The straight line in the log plot indicates a
polynomial growth.
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It should be noted that the sentence generator
produces a very diverse sequence of sentences
which does not deteriorate in repeating the same
sentence all over again in later stages. Both word
and sentence generator can be viewed as weighted
finite automata (cf. Allauzen et al., 2003) with self-
training.



After having defined our random text genera-
tion model, the next section is devoted to testing it
according to the criteria given in section 2.1.

3 Experimental results

To measure agreement with our BNC sample, we
generated random text with the sentence generator
using w=0.4 and N=26 to match the English aver-
age word length and setting s to 0.08 for reaching a
comparable sentence length. The first 50,000 sen-
tences were skipped to reach a relatively stable
sentence length throughout the sample. To make
the samples comparable, we used 1 million words
totaling 125,345 sentences with an average sen-
tence length of 7.977.

3.1 Word frequency

The comparison between English and the sentence
generator w.r.t the rank-frequency distribution is
depicted in figure 5.

Both curves follow a power-law with z close to
1.5, in both cases the curve is flatter for high fre-
quency words as observed by Mandelbrot (1953).
This effect could not be observed to this extent for
the word generator alone (cf. figure 2).

rank-frequency

N sentence generator ©
nglish +
power law z=1.5 - -

100 1000 10000
rank

Figure 5: rank-frequency plot for English and the
sentence generator

1 10

3.2 Word length

While the word length in letters is the same in both
samples, the sentence generator produced more
words of length 1, more words of length>10 and
less words of medium length. The deviation in sin-
gle letter words can be attributed to the writing
system being a transcription of phonemes and few
phonemes being expressed with only one letter.
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However, the slight quantitative differences do not
oppose the similar distribution of word lengths in
both samples, which is reflected in a curve of simi-
lar shape in figure 6 and fits well the gamma dis-
tribution variant of (Sigurd et al., 2004).

word length
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Figure 6: Comparison of word length distributions.

The dotted line is the function as introduced in
(Sigurd et al., 2004) and given by f(x) o<x'-0.45.

3.3 Sentence length

The comparison of sentence length distribution
shows again a high capability of the sentence gen-
erator to model the distribution of the English
sample. As can be seen in figure 7, the sentence
generator produces less sentences of length>25 but
does not show much differences otherwise. In the
English sample, there are surprisingly many two-
word sentences.
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Figure 7: Comparison of sentence length distribu-

tion.
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3.4 Neighbor-based co-occurrence

In this section, the structure of the significant
neighbor-based co-occurrence graphs is examined.



The significant neighbor-based co-occurrence
graph contains all words as vertices that have at
least one co-occurrence to another word exceeding
a certain significance threshold. The edges are un-
directed and weighted by significance. Ferrer i
Cancho and Solé (2001) showed that the neighbor-
based co-occurrence graph of the BNC is scale-
free and the small-world property holds.

For comparing the sentence generator sample to
the English sample, we compute log-likelihood
statistics (Dunning, 1993) on neighboring words
that at least co-occur twice. The significance
threshold was set to 3.84, corresponding to 5%
error probability when rejecting the hypothesis of
mutual independence. For both graphs, we give the
number of vertices, the average shortest path
length, the average degree, the clustering coeffi-
cient and the degree distribution in figure 8. Fur-
ther, the characteristics of a comparable random
graph as defined by (Erdds and Rényi, 1959) are
shown.

degree distribution
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1000 3@\@ power law z=2 —
2100) o %6
£ ST NN
& 10 RN N
bl EaoteN
S 1 o $¢ N
c L‘ 1 AN
01 RN
0.01 RN
0.001 | | oty
1 10 100 1000
degree interval
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path
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Figure 8: Characteristics of the neighbor-based co-

occurrence graphs of English and the generated

sample.

From the comparison with the random graph it
is clear that both neighbor-based graphs exhibit the
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small-world property as their clustering coefficient
is much higher than in the random graph while the
average shortest path lengths are comparable. In
quantity, the graph obtained from the generated
sample has about twice as many vertices but its
clustering coefficient is about half as high as in the
English sample. This complies to the steeper rank-
frequency distribution of the English sample (see
fig. 5), which is, however, much steeper than the
average exponent found in natural language. The
degree distributions clearly match with a power-
law exponent of 2, which does not confirm the two
regimes of different slopes as in (Ferrer i Cancho
and Solé 2001). The word generator data produced
an number of significant co-occurrences that lies in
the range of what can be expected from the 5%
error of the statistical test. The degree distribution
plot appears shifted downwards about one decade,
clearly not matching the distribution of words in
sequence of natural language.

Considering the analysis of the significant
neighbor-based co-occurrence graph, the claim is
supported that the sentence generator model repro-
duces the characteristics of word sequences in
natural language on the basis of bigrams.

4 Conclusion

In this work we introduced a random text genera-
tion model that fits well with natural language with
respect to frequency distribution, word length, sen-
tence length and neighboring co-occurrence. The
model was not constrained by any a priori distribu-
tion — the characteristics emerged from a 2-level
process involving one parameter for the word gen-
erator and one parameter for the sentence genera-
tor. This is, to our knowledge, the first random text
generator that models sentence boundaries beyond
inserting a special blank character at random:
rather, sentences are modeled as a path between
sentence beginning and sentence end which im-
poses restrictions on the words possible at sentence
beginnings and endings. Considering its simplicity,
we have therefore proposed a plausible model for
the emergence of large-scale characteristics of lan-
guage without assuming a grammar or semantics.
After all, our model produces gibberish — but gib-
berish that is well distributed.

The studies of Miller (1957) rendered Zipf’s
law un-interesting for linguistics, as it is a mere
artifact of language rather than playing an impor-



tant role in its production, as it emerges when put-
ting a monkey in front of a typewriter. Our model
does not only explain Zipf’s law, but many other
characteristics of language, which are obtained
with a monkey that follows beaten tracks. These
additional characteristics can be thought of as arti-
facts as well, but we strongly believe that the study
of random text models can provide insights in the
process that lead to the origin and the evolution of
human languages.

For further work, an obvious step is to improve
the word generator so that it produces morphologi-
cally more plausible sequences of letters and to
intertwine both generators for the emergence of
word categories. Furthermore, it is desirable to
embed the random generator in models of commu-
nication where speakers parameterize language
generation of hearers and to examine, which struc-
tures are evolutionary stable (see Jédger, 2003).
This would shed light on the interactions between
different levels of human communication.
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An important information extraction task is relation
extraction, whose goal is to detect and characteri
semantic relations between entities in text. For exg,,

A Systematic Exploration of the Feature Space for Relation Extraction
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Abstract

Relation extraction is the task of find-
ing semantic relations between entities
from text. The state-of-the-art methods
for relation extraction are mostly based
on statistical learning, and thus all have
to deal with feature selection, which can
significantly affect the classification per-
formance. In this paper, we systemat-
ically explore a large space of features
for relation extraction and evaluate the ef-

fectiveness of different feature subspaces.

We present a general definition of fea-

ture spaces based on a graphic represen-

tation of relation instances, and explore
three different representations of relation
instances and features of different com-
plexities within this framework. Our ex-
periments show that using only basic unit
features is generally sufficient to achieve
state-of-the-art performance, while over-
inclusion of complex features may hurt
the performance. A combination of fea-
tures of different levels of complexity and
from different sentence representations,
coupled with task-oriented feature prun-
ing, gives the best performance.

Introduction

t@cs.uiuc.edu

converged on the square” contains theatedrela-
tion between thd’ersonentity “hundreds of Pales-
tinians” and theBounded-Areantity “the square”.
Relation extraction has applications in many do-
mains, including finding affiliation relations from
web pages and finding protein-protein interactions
from biomedical literature.

Recent studies on relation extraction have shown
the advantages of discriminative model-based sta-
tistical machine learning approach to this problem.
There are generally two lines of work following this
approach. The first utilizes a set of carefully se-
lected features obtained from different levels of text
analysis, from part-of-speech (POS) tagging to full
parsing and dependency parsing (Kambhatla, 2004;
Zhao and Grishman, 2005; Zhou et al., 2005)he
second line of work designs kernel functions on
some structured representation (sequences or trees)
of the relation instances to capture the similarity be-
tween two relation instances (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006a; Zhang et al., 2006b). Of particular interest
among the various kernels proposed are the convolu-
tion kernels (Bunescu and Mooney, 2005b; Zhang et
al., 2006a), because they can efficiently compute the
similarity between two instances in a huge feature
space due to their recursive nature. Apart from their
computational efficiency, convolution kernels also
implicitly correspond to some feature space. There-
fore, both lines of work rely on an appropriately de-

e ———
Although Zhao and Grishman (2005) defined a number of

nels for relation extraction, the method is essentially similar

ample, the text fragment “hundreds of Palestinians feature-based methods.
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fined set of features. As in any learning problem, théeature subspaces. Zelenko et al. (2003) and Culotta
choice of features can affect the performance signiknd Sorensen (2004) used tree kernels for relation
icantly. extraction. These kernels can achieve high precision
Despite the importance of feature selection, thereut low recall because of the relatively strict match-
has not been any systematic exploration of the fedlg criteria. Bunescu and Mooney (2005a) proposed
ture space for relation extraction, and the choices dependency path kernel for relation extraction.
of features in existing work are somewhat arbitrarylhis kernel also suffers from low recall for the same
In this paper, we conduct a systematic study of theeason. Bunescu and Mooney (2005b) and Zhang
feature space for relation extraction, and evalua!. al. (2006a; 2006b) applied convolution string ker-
the effectiveness of different feature subspaces. Ounels and tree kernels, respectively, to relation extrac-
motivations are twofold. First, based on previousion. The convolution tree kernels achieved state-
studies, we want to identify and characterize thef-the-art performance. Since convolution kernels
types of features that are potentially useful for relacorrespond to some explicit large feature spaces, the
tion extraction, and define a relatively complete anieature selection problem still remains.
structured feature space that can be systematicallyGeneral structural representations of natural lan-
explored. Second, we want to compare the effectivguage data have been studied in (Suzuki et al.,
ness of different features. Such a study can guide @903; Cumby and Roth, 2003), but these models
to choose the most effective feature set for relatiowere not designed specifically for relation extrac-
extraction, or to design convolution kernels in thdion. Our feature definition is similar to these mod-
most effective way. els, but more specifically designed for relation ex-
We propose and define a unified graphic repréraction and systematic exploration of the feature
sentation of the feature space, and experiment wigpace. Compared with (Cumby and Roth, 2003), our
three feature subspaces, corresponding to sequend@gture space is more compact and provides more
syntactic parse trees and dependency parse treg@gidance on selecting meaningful subspaces.
Experiment results show that each subspace is ef- o
fective by itself, with the syntactic parse tree sub® Task Definition

space being the most effective. Combining the thrégjyen 5 small piece of text that contains two entity
subspaces does not generate much improvemepfantions, the task of relation extraction is to decide
Within each feature subspace, using only the basig,ather the text states some semantic relation be-
unit features can already give reasonably good P&feen the two entities, and if so, classify the rela-
formance. Adding more complex features may NQfo into one of a set of predefined semantic rela-
improve the performance much or may even h“'ﬁon types. Formally, let = (s, argy, arg,) de-
the performance. Task-oriented heuristics can %te a relation instance, whesds a sentenceyry,
used to prune the feature space, and when approptisg ;. are two entity mentions containedsdnand
ately done, can improve the performance. A COMg., nrecedesuiry, in the text. Given a set of rela-
bination of features of different levels of complex-;,, instanced; }, each labeled with a type € 7
. . . 1 ’
ity and from different sentence representations, Co\are7 s the set of predefined relation types plus
pled with task-oriented feature pruning, gives thene typenil, our goal is to learn a function that maps
best performance. a relation instance to a typet € 7. Note that we
do not specify the representationsdfiere. Indeeds
2 Related Work can contain more structured information in addition

Zhao and Grishman (2005) and Zhou et al. (2005) merely the sequence of tokens in the sentence.

explored a large set of features that are potentialla_' Feature Space for Relation Extraction
useful for relation extraction. However, the feature

space was defined and explored in a somewhat édeally, we would like to define a feature space with
hoc manner. We study a broader scope of features least two properties: (1) It should bempleten
and perform a more systematic study of differenthe sense that all features potentially useful for the
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classification problem are included. (2) It shouldquence, syntactic or dependency relations between
have a goodtructureso that a systematic search intokens belong to the second category. Motivated by
the space is possible. Below we show how a unifiethis observation, we can represent relation instances
graph-based feature space can be defined to satisfygraphs, with nodes denoting single tokens or syn-
these two properties. tactic categories such as NPs and VPs, and edges de-

» _ _ noting various types of relations between the nodes.
4.1 A Unified View of Features for Relation

Extraction 4.2 Relation Instance Graphs

Before we introduce our definition of the featuréWe represent a relation instance as a labeled, di-
space, let us first look at some typical features usedcted graplG = (V, E, A, B), whereV is the set

for relation extraction. Consider the relation in-of nodes in the grapl¥ is the set of directed edges
stance*hundreds of Palestinians converged on then the graph, and!, B are functions that assign la-
square”with arg; =“hundreds of Palestiniansand bels to the nodes.

arg, = “the square”. Various types of information  First, for each nodev € V, A(v) =

can be useful for classifying this relation instance{ai,az, ..., a4} is @ set of attributes associated
For example, knowing thatrg, is an entity of type with nodev, wherea; € ¥, andX is an alphabet that
Personcan be useful. This feature involves the sineontains all possible attribute values. The attributes
gle tokert'Palestinians”. Another feature, “the head are introduced to help generalize the node. For ex-
word of arg, (Palestinian} is followed by a verb ample, if nodev represents a token, theh(v) can
(converged’, can also be useful. This feature in-include the token itself, its morphological base form,
volves two tokens'Palestinians” and“converged”, its POS, its semantic class (e.g. WordNet synset),
with a sequence relation. It also involves the knowletc. Ifv also happens to be the head word:ef, or
edge that'Palestinians” is part of arg; and“con- arg,, thenA(v) can also include the entity type and
verged”is a verb. If we have the syntactic parse treether entity attributes. If noderepresents a syntac-
of the sentence, we can obtain even more compléic category such as an NP or VR(v) can simply
and discriminative features. For example, the syrcontain only the syntactic tag.

tactic parse tree of the same relation instance con-Next, functionB : V' — {0, 1, 2,3} is introduced
tains the following subtree: [VP> VBD [PP — [IN  to distinguish argument nodes from non-argument
— on] NP]]. If we know thatarg, is contained inthe nodes. For each node € V, B(v) indicates how
NP in this subtree, then this subtree states #h@¢y nodevw is related toarg,; andarg,. O indicates that
isin a PP that is attached to a VP, and the propositiandoes not cover any argument, 1 or 2 indicates that
is “on” . This subtree therefore may also a usefub coversarg, or arg,, respectively, and 3 indicates
feature. Similarly, if we have the dependency parsthat v covers both arguments. We will see shortly
tree of the relation instance, then the dependentlyat only nodes that represent syntactic categories in
link “square ~» on” states that the tokéeisquare” a syntactic parse tree can possibly be assigned 3. We
is dependent on the tokéan” , which may also be refer toB(v) as theargument tagf v.

a useful feature. We now consider three special instantiations of
Given that useful features are of various forms, ithis general definition of relation instance graphs.
order to systematically search the feature space, e Figures 1, 2 and 3 for examples of each of the

need to first have a unified view of features. Thishree representations.

problem is not trivial because it is not immediately Sequence Without introducing any additional
clear how different types of features can be unifiedstructured information, a sequence representation
We observe, however, that in general features fafireserves the order of the tokens as they occur in the
into two categories: (1) properties of a single tokempriginal sentence. Each node in this graph is a token
and (2) relations between tokens. Features that inugmented with its relevant attributes. For example,
volve attributes of a single token, such as bag-ohead words ofirg; andarg, are augmented with the
word features and entity attribute features, belongorresponding entity types. A token is assigned the
to the first category, while features that involve seargument tag 1 or 2 if it is the head word @fg, or
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Figure 1: An example sequence representation. The
subgraph on the left represents a bigram feature. TiFgure 3: An example dependency parse tree rep-
subgraph on the right represents a unigram featuresentation. The subgraph represents a dependency
that states the entity type afg,. relation feature betweenrg, “Palestinians” and

“of” .
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the dependency relation types.

\\m@j 4.3 Features

Given the above definition of relation instance
graphs, we are now ready to define features. Intu-
itively, a feature of a relation instance captures part
of the attributive and/or structural properties of the
relation instance graph. Therefore, it is natural to de-
fine a feature as a subgraph of the relation instance
graph. Formally, given a grapi = (V, E, A, B),

Figure 2- An examole svntactic parse tree re resewhich represents a single relation instance, a fea-
9 : pie sy P P pure that exists in this relation instance is a sub-

tation. The subgraph represents a subtree featungaph G' = (V',E', A", B') that satisfies the fol-
(grammar production feature).

lowing conditions: V'’ C V, B/ C E, andYv €
V' Al(v) C A(v), B'(v) = B(v).
arg,. Otherwise, it is assigned the argument tag 0. We now show that many features that have been
There is a directed edge fromto v if and only if explored in previous work on relation extraction can
the token represented yimmediately follows that be transformed into this graphic representation. See
represented by in the sentence. Figures 1, 2 and 3 for some examples.

Syntactic Parse Tree The syntactic parse tree Entity Attributes : Previous studies have shown
of the relation instance sentence can be augmentdtht entity types and entity mention types @fy,
to represent the relation instance. First, we modifgndarg, are very useful (Zhao and Grishman, 2005;
the tree slightly by conflating each leaf node in th&hou et al., 2005; Zhang et al., 2006b). To represent
original parse tree with its parent, which is a pretera single entity attribute, we can take a subgraph that
minal node labeled with a POS tag. Then, each nod®ntains only the node representing the head word of
is augmented with relevant attributes if necessarthe argument, labeled with the entity type or entity
Argument tags are assigned to the leaf nodes in tmeention type. A particularly useful type of features
same way as in the sequence representation. Forame conjunctive entity featuresvhich are conjunc-
internal nodey, argument tag 1 or 2 is assigned iftions of two entity attributes, one for each argument.
eitherarg, or arg, is inside the subtree rooted@t To represent a conjunctive feature such agjj is
and 3 is assigned if both arguments are inside theePersonentity andarg, is aBounded-Areantity”,
subtree. Otherwise, 0 is assignedto we can take a subgraph that contains two nodes, one

Dependency Parse Tree Similarly, the depen- for each argument, and each labeled with an en-
dency parse tree can also be modified to represdity attribute. Note that in this case, the subgraph
the relation instance. Assignment of attributes andontains two disconnected components, which is al-
argument tags is the same as for the sequence repmwved by our definition.
sentation. To simplify the representation, we ignore Bag-of-Words. These features have also been

VBD
Palestinians | | converged

Person Bounded-Area
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explore by Zhao and Grishman (2005) and Zhohave been found effective in previous studies and
et. al. (2005). To represent a bag-of-word featurere intuitively necessary for relation extraction. We
we can simply take a subgraph that contains a singthen systematically add unit features with different
node labeled with the token. Because the node algpanularities. We first consider the minimum (i.e.
has an argument tag, we can distinguish between amost basic) unit features. We then gradually include
gument word and non-argument word. more complex features. The motivations for this
Bigrams: A bigram feature (Zhao and Grishman,strategy are the following: (1) Using the smallest
2005) can be represented by a subgraph consistifeptures to represent a relation instance graph pre-
of two connected nodes from the sequence represesumably covers all unit characteristics of the graph.
tation, where each node is labeled with the token. (2) Using small subgraphs allows fuzzy matching,
Grammar Productions: The features in convo- which is good for our task because relation instances
lution tree kernels for relation extraction (Zhang ebf the same type may vary in their relation instance
al., 2006a; Zhang et al., 2006b) are sequences gfaphs, especially with the noise introduced by ad-
grammar productions, that is, complete subtrees gctives, adverbs, or irrelevant propositional phrases.
the syntactic parse tree. Therefore, these featur€® The number of features of a fixed small size is
can naturally be represented by subgraphs of the ngelynomial in terms of the size of the relation in-
lation instance graphs. stance graph. It is therefore feasible to generate all
Dependency Relations and Dependency Paths the small unit features and use any classifier such as
These features have been explored by Bunescu aadnaximum entropy classifier or an SVM.
Mooney (2005a), Zhao and Grishman (2005), and In our experiments, we consider three levels of
Zhou et. al. (2005). A dependency relation can bsmall unit features in increasing order of their com-
represented as an edge connecting two nodes frgotexity. First, we consideunigramfeaturess,,,,; =
the dependency tree. The dependency path betwedn}, 0, Ayni, B), whereA,,;(u) = {a;} C A(u).
the two arguments can also be easily representedlasanother word, unigram features consist of a sin-
a path in the dependency tree connecting the twgle node labeled with a single attribute. Examples
nodes that represent the two arguments. of unigram features include bag-of-word features
There are some features that are not covered laynd non-conjunctive entity attribute features. At the
our current definition, but can be included if wesecond level, we considdiigram featuresG,;, =
modify our relation instance graphs. For examplel{u,v}, {(u,v)}, Auni, B). Bigram features are
gapped subsequence features in subsequence kberefore single edges connecting two nodes, where
nels (Bunescu and Mooney, 2005b) can be repreach node is labeled with a single attribute. The
sented as subgraphs of the sequence representatioind level of attributes we consider atrégram fea-
if we add more edges to connect any pair of nodestures G, = ({u, v, w}, {(u,v), (u,w)}, Auni, B)
andv provided that the token representeddbpc- or Gy = ({u,v,w}, {(u,v), (v,w)}, Auni, B).
curs somewhere before that representea bythe Thus trigram features consist of two connected
sentence. Since our feature definition is very geredges and three nodes, where each node is also la-
eral, our feature space also includes many featurbgled with a single attribute.

that have not been explored before. We treat the three relation instance graphs (se-
_ guences, syntactic parse trees, and dependency parse
4.4 Searching the Feature Space trees) as three feature subspaces, and search in each

Although the feature space we have defined is rebubspace. For each feature subspace, we incremen-
atively complete and has a clear structure, it is stilally add the unigram, bigram and trigram features
too expensive to exhaustively search the space b®-the working feature set. For the syntactic parse
cause the number of features is exponential in terntiee representation, we also consider a fourth level of
of the size of the relation instance graph. We thusmall unit features, which are single grammar pro-
propose to search the feature space in the follovaductions such as [VP-» VBD PP], because these
ing bottom-up manner: We start with the conjuncare the smallest features in convolution tree kernels.
tive entity features (defined in Section 4.3), whichAfter we explore each feature subspace, we try to
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combine the features from the three subspaces to g@m features on top of the unigram, bigram and tri-
whether the performance can be improved, that igram features. Adding production features allows us
we test whether the sequence, syntactic and depdo-study the effect of adding more complex and pre-

dency relations can complement each other. sumably more specific and discriminative features.
_ Table 1 shows the precision (P), recall (R) and F1
5 Experiments measure (F) from the experiments with the maxi-

mum entropy classifier (ME) and the SVM classi-
fier (SVM). We can compare the results in two di-
We used the data set from ACE (Automatic Conmensions. First, within each feature subspace, while
tent Extraction) 2004 evaluation to conduct our eXbigram features improved the performance signifi-
periments. This corpus defines 7 types of relationgantly over unigrams, trigrams did not improve the
Physical Personal / SociaEmpolyment/Memeber- performance very much. This trend is observed for
ship / SubsidiaryAgent-Artifact PER / ORG Affili- poth classifiers. In the case of the syntactic parse tree
ation, GPE AffiliationandDiscourse subspace, adding production features even hurt the
We used Collins parser to parse the sentences parformance. This suggests that inclusion of com-
the corpus because Collins parser gives us the hegiéx features is not guaranteed to improve the per-
of each syntactic category, which allows us to trangormance.
form the syntactic parse trees into dependency trees.Second, if we compare the best performance
We discarded sentences that could not be parsgghieved in each feature subspace, we can see that
by Collins parser. The candidate relation instancesr both classifiers, syntactic parse tree is the most
were generated by considering all pairs of entitiegffective feature space, while sequence and depen-
that occur in the same sentence. We obtained 48635ncy tree are similar. However, the difference in
candidate relation instances in total, among whicperformance between the syntactic parse tree sub-
4296 instances were positive. space and the other two subspaces is not very large.
As in most existing work, instead of using the enThis suggests that each feature subspace alone al-
tire sentence, we used only the sequence of tokensady captures most of the useful structural informa-
that are inside the minimum complete subtree covtion between tokens for relation extraction. The rea-
ering the two arguments. Presumably, tokens ouson why the sequence feature subspace gave good
side of this subtree are not so relevant to the task. fferformance although it contained the least struc-
our graphic representation of relation instances, th@ral information is probably that many relations de-
attribute set for a token node includes the token ifined in the ACE corpus are short-range relations,
self, its POS tag, and entity type, entity subtype angome within single noun phrases. For such kind of
entity mention type when applicable. The attributgelations, sequence information may be even more
set for a syntactic category node includes only theeliable than syntactic or dependency information,
syntactic tag. We used both maximum entropy clasvhich may not be accurate due to parsing errors.
sifier and SVM for all experiments. We adopted one Next, we conducted experiments to combine the
vs. others strategy for the multi-class classificatiofeatures from the three subspaces to see whether
problem. In all experiments, the performance showthis could further improve the performance. For se-
was based on 5-fold cross validation. quence subspace and dependency tree subspace, we
used up to bigram features, and for syntactic parse
tree subspace, we used up to trigram features. In Ta-
Following the general search strategy, we conductdile 2, we show the experiment results. We can see
the following experiments. For each feature subthat for both classifiers, adding features from the se-
space, we started with the conjunctive entity featureguence subspace or from the dependency tree sub-
plus the unigram features. We then incrementallgpace to the syntactic parse tree subspace can im-
added bigram and trigram features. For the syntaprove the performance slightly. But combining se-
tic parse tree feature space, we conducted an addidence subspace and dependency tree subspace does
tional experiment: We added basic grammar productot generate any performance improvement. Again,

5.1 Data Set and Experiment Setup

5.2 General Search in the Feature Subspaces
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Uni | +Bi | +Tri | +Prod 5.3 Task-Oriented Feature Pruning
P | 0.647 | 0.662 | 0.717
Seq| R | 0.614| 0.701 | 0.653| N/A Apart from the general bottom-up search strategy we
F | 0.630| 0.681 | 0.683 have proposed, we can also introduce some task-
P 0651 0.695 0.726 | 0.702 oriented heuristics based on intuition or domain
ME | Syn | R | 0.645| 0.698 | 0.688 | 0.691 knowled he
Floeas!| 0697 0707 | 0.696 nowledge to prune the feature space. In our ex-
P | 0647 | 0.673| 0.718 periments, we tried the following heuristics.
Dep 'Fi 8-2%3 8-232 8-222 N/A H1: Zhang et al. (2006a) found that usipgth-
5 0'583 0'666 0'684 enclosed tre@erformed better than usinginimum
Seq| R | 0.586| 0.650 | 0.648 | N/A complete treewhen convolution tree kernels were
F | 0.585| 0.658 | 0.665 applied. In path-enclosed trees, tokens beforg
P | 0.598 0.645| 0.679| 0.674 and afterarg, as well as their links with other nodes
SVM | Syn | R | 0.611| 0.663 | 0.681| 0.672 in the t d. Based thi :
F | 0604l 0652 0680 0673 in the tree are removed. Based on this previous
P | 0583 0.644| 0682 finding, our first heuristic was to change the syntac-
Dep | R | 0.586 | 0.638 | 0.645| N/A tic parse tree representation of the relation instances
F | 0.585]| 0.641 | 0.663

into path-enclosed trees.

Table 1: Comparison among the three feature sub- H2: We hypothesize that words such as articles,

spaces and the effect of including larger features. adjectives and adverbs are not very useful for rela-
tion extraction. We thus removed sequence unigram

Seq+Syn| Seq+Dep| Syn+Dep| All features and bigram features that contain an article,

P| 0737 0.687 0.695 | 0.724 adjective or adverb.
ME | R| 0.694 0.682 0.731 | 0.702 C Qimi - :

El 0715 0.684 0712 | 0.713 H3: Slmllar to H2, we can remove b!grams in thg

P 0689 0.669 0687 | 0691 syntactic parse tree subspace if the bigram contains
SVM | R| 0.686 0.653 0.682 | 0.686 an article, adjective or adverb.

F| 0.688 0.661 0.684 | 0.688

H4: Similar to H1, we can also remove the to-
Table 2: The effect of combining the three featur&€ns beforeurg, and afterarg, from the sequence
subspaces. representation of a relation instance.
In Table 3, we show the performance after apply-
ing these heuristics. We started with the best con-
this suggests that since many of the ACE relationgguration from our previous experiments, that is,
are local, there is likely much overlap between S€ombing up to bigram features in the sequence sub-
quence information and dependency information. space and up to trigram features in the syntactic tree
We also tried the convolution tree kernelsybspace. We then applied heuristics H1 to H4 in-
method (Zhang et al., 2006a), using an SVM tregrementally unless we saw that a heuristic was not
kernel package The performance we obtained waseffective. We found that H1, H2 and H4 slightly
P =0.705, R = 0.685, and F = 0.695This F mea- improved the performance, but H3 hurt the perfor-
sure is higher than the best SVM performance in Tanance. On the one hand, the improvement suggests
ble 1. The convolution tree kernel uses large subtraRat our original feature configuration included some
features, but such features are deemphasized Wwitfelevant features, and in turn confirmed that over-
an exponentially decaying weight. We found thainclusion of features could hurt the performance. On
the performance was sensitive to this decaying faghe other hand, since the improvement brought by
tor, suggesting that complex features can be usefHll, H2 and H4 was rather small, and H3 even hurt
if they are weighted appropriately, and further studyhe performance, we could see that it is in general

of how to optimize the weights of such complex feavery hard to find good feature pruning heuristics.
tures is needed.

2http://ai-nlp.info.uniromaz2.it/moschitti/Tree-Kernel.htm 6 Conclusions and Future Work

3The performance we achieved is lower than that reporte hi d d . dv of
in (Zhang et al., 2006b), due to different data preprocessin n this paper, we conducted a systematic study o

I}

data partition, and parameter setting. the feature space for relation extraction. We pro-
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Abstract

The task of identifying synonymous re-
lations and objects, or Synonym Resolu-
tion (SR), is critical for high-quality infor-
mation extraction. The bulk of previous
SR work assumed strong domain knowl-
edge or hand-tagged training examples.
This paper investigates SR in the con-
text of unsupervised information extrac-
tion, where neither is available. The pa-
per presents a scalable, fully-implemented
system for SR that runs in O(K N log N)
time in the number of extractions /N and
the maximum number of synonyms per
word, K. The system, called RESOLVER,
introduces a probabilistic relational model
for predicting whether two strings are
co-referential based on the similarity of
the assertions containing them. Given
two million assertions extracted from the
Web, RESOLVER resolves objects with
78% precision and an estimated 68% re-
call and resolves relations with 90% pre-
cision and 35% recall.

1 Introduction

Web  Information  Extraction (WIE)  sys-
tems extract assertions that describe a rela-
tion and its arguments from Web text (e.g.,
(is capital of, D.C., United States)). WIE systems
can extract hundreds of millions of assertions
containing millions of different strings from the

121

Oren Etzioni
Turing Center
Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195, USA

etzioni@cs.washington.edu

Web (e.g., the TEXTRUNNER system (Banko et al.,
2007)).! WIE systems often extract assertions that
describe the same real-world object or relation using
different names. For example, a WIE system might
extract (is capital city of, Washington, U.S.),
which describes the same relationship as above but
contains a different name for the relation and each
argument.

Synonyms are prevalent in text, and the Web cor-
pus is no exception. Our data set of two million as-
sertions extracted from a Web crawl contained over
a half-dozen different names each for the United
States and Washington, D.C., and three for the “is
capital of” relation. The top 80 most commonly
extracted objects had an average of 2.9 extracted
names per entity, and several had as many as 10
names. The top 100 most commonly extracted re-
lations had an average of 4.9 synonyms per relation.

We refer to the problem of identifying synony-
mous object and relation names as Synonym Res-
olution (SR).2 An SR system for WIE takes a set of
assertions as input and returns a set of clusters, with
each cluster containing coreferential object strings
or relation strings. Previous techniques for SR have
focused on one particular aspect of the problem, ei-
ther objects or relations. In addition, the techniques
either depend on a large set of training examples, or
are tailored to a specific domain by assuming knowl-
edge of the domain’s schema. Due to the number
and diversity of the relations extracted, these tech-

"For a demo see www.cs.washington.edu/research/textrunner.

Hronically, SR has a number of synonyms in the literature,
including Entity Resolution, Record Linkage, and Deduplica-
tion.

Proceedings of NAACL HLT 2007, pages 121-130,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



niques are not feasible for WIE systems. Schemata
are not available for the Web, and hand-labeling
training examples for each relation would require a
prohibitive manual effort.

In response, we present RESOLVER, a novel,
domain-independent, unsupervised synonym resolu-
tion system that applies to both objects and relations.
RESOLVER clusters coreferential names together us-
ing a probabilistic model informed by string similar-
ity and the similarity of the assertions containing the
names. Our contributions are:

1. A scalable clustering algorithm that runs in
time O(K'N log N) in the number of extrac-
tions N and maximum number of synonyms
per word, K, without discarding any poten-
tially matching pair, under exceptionally weak
assumptions about the data.

2. An unsupervised probabilistic model for pre-
dicting whether two object or relation names
co-refer.

3. An empirical demonstration that RESOLVER
can resolve objects with 78% precision and
68% recall, and relations with 90% precision
and 35% recall.

The next section discusses previous work. Section
3 introduces our probabilistic model for SR. Section
4 describes our clustering algorithm. Section 5 de-
scribes extensions to our basic SR system. Section
6 presents our experiments, and section 7 discusses
our conclusions and areas for future work.

2 Previous Work

The DIRT algorithm (Lin and Pantel, 2001) ad-
dresses a piece of the unsupervised SR problem.
DIRT is a heuristic method for finding synonymous
relations, or “inference rules.” DIRT uses a depen-
dency parser and mutual information statistics over
a corpus to identify relations that have similar sets of
arguments. In contrast, our algorithm provides a for-
mal probabilistic model that applies equally well to
relations and objects, and we provide an evaluation
of the algorithm in terms of precision and recall.
There are many unsupervised approaches for ob-
ject resolution in databases, but unlike our algo-
rithm these approaches depend on a known, fixed
schema. Ravikumar and Cohen (Ravikumar and Co-
hen, 2004) present an unsupervised approach to ob-
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ject resolution using Expectation-Maximization on
a hierarchical graphical model. Several other re-
cent approaches leverage domain-specific informa-
tion and heuristics for object resolution. For ex-
ample, many (Dong et al., 2005; Bhattacharya and
Getoor, 2005; Bhattacharya and Getoor, 20006) rely
on evidence from observing which strings appear as
arguments to the same relation simultaneously (e.g.,
co-authors of the same publication). While this is
useful information when resolving authors in the ci-
tation domain, it is extremely rare to find relations
with similar properties in extracted assertions. None
of these approaches applies to the problem of resolv-
ing relations. See (Winkler, 1999) for a survey of
this area.

Several supervised learning techniques make en-
tity resolution decisions (Kehler, 1997; McCallum
and Wellner, 2004; Singla and Domingos, 2006), but
of course these systems depend on the availability
of training data, and often on a significant number
of labeled examples per relation of interest. These
approaches also depend on complex probabilistic
models and learning algorithms, and they have order
O(n?) time complexity, or worse. They currently do
not scale to the amounts of data extracted from the
Web. Previous systems were tested on at most a few
thousand examples, compared with millions or hun-
dreds of millions of extractions from WIE systems
such as TEXTRUNNER.

Coreference resolution systems (e.g., (Lappin and
Leass, 1994; Ng and Cardie, 2002)), like SR sys-
tems, try to merge references to the same object (typ-
ically pronouns, but potentially other types of noun
phrases). This problem differs from the SR problem
in several ways: first, it deals with unstructered text
input, possibly with syntactic annotation, rather than
relational input. Second, it deals only with resolv-
ing objects. Finally, it requires local decisions about
strings; that is, the same word may appear twice in a
text and refer to two different things, so each occur-
rence of a word must be treated separately.

The PASCAL Recognising Textual Entailment
Challenge proposes the task of recognizing when
two sentences entail one another, and many authors
have submitted responses to this challenge (Dagan et
al., 2006). Synonym resolution is a subtask of this
problem. Our task differs significantly from the tex-
tual entailment task in that it has no labeled training



data, and its input is in the form of relational extrac-
tions rather than raw text.

Two probabilistic models for information extrac-
tion have a connection with ours. Our probabilistic
model is partly inspired by the ball-and-urns abstrac-
tion of information extraction presented by Downey
et al. (2005) Our task and probability model are dif-
ferent from theirs, but we make many of the same
modeling assumptions. Second, we follow Snow et
al.’s work (2006) on taxonomy induction in incorpo-
rating transitive closure constraints in our probabil-
ity calculations, as explained below.

3 Probabilistic Model

Our probabilistic model provides a formal, rigorous
method for resolving synonyms in the absence of
training data. It has two sources of evidence: the
similarity of the strings themselves (i.e., edit dis-
tance) and the similarity of the assertions they ap-
pear in. This second source of evidence is some-
times referred to as “distributional similarity” (Hin-
dle, 1990).

Section 3.2 presents a simple model for predict-
ing whether a pair of strings co-refer based on string
similarity. Section 3.3 then presents a model called
the Extracted Shared Property (ESP) Model for pre-
dicting whether a pair of strings co-refer based on
their distributional similarity. Finally, a method is
presented for combining these models to come up
with an overall prediction for coreference decisions
between two clusters of strings.

3.1 Terminology and Notation

We use the following notation to describe the proba-
bilistic models. The input is a data set D containing
extracted assertions of the form a = (r,01,...,0p),
where 7 is a relation string and each o; is an object
string representing the arguments to the relation. In
our data, all of the extracted assertions are binary, so
n = 2. The subset of all assertions in D containing
a string s is called D;.

For strings s; and s, let R?; ; be the random vari-
able for the event that s; and s; refer to the same
entity. Let RZJ» denote the event that R; ; is true,

and le j denote the event that it is false.
A pair of strings (r,s2) is called a property of
a string s if there is an assertion (7, s1,s2) € D
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or (r,s2,81) € D. A pair of strings (si,s2) is
an instance of a string r if there is an assertion
(r,s1,s2) € D. Equivalently, the property p
(r,s2) applies to s1, and the relation r applies to
the instance i = (s1, s2). Finally, two strings x and
y share a property (or instance) if both  and y are
extracted with the same property (or instance).

3.2 String Similarity Model

Many objects appear with multiple names that are
substrings, acronyms, abbreviations, or other sim-
ple variations of one another. Thus string similarity
can be an important source of evidence for whether
two strings co-refer. Our probabilistic String Sim-
ilarity Model (SSM) assumes a similarity function
sim(sy,s2): STRING x STRING — [0,1]. The
model sets the probability of s; co-referring with sg
to a smoothed version of the similarity:

a *sim(sy, s2) + 1
a+p

P(Raj |sim(s1,s2))

The particular choice of o and 3 make little differ-
ence to our results, so long as they are chosen such
that the resulting probability can never be one or
zero. In our experiments o« = 20 and 3 = 5, and we
use the well-known Monge-Elkan string similarity
function for objects and the Levenshtein string edit-
distance function for relations (Cohen et al., 2003).

3.3 The Extracted Shared Property Model

The Extracted Shared Property (ESP) Model out-
puts the probability that s; and s2 co-refer
based on how many properties (or instances) they
share. As an example, consider the strings
“Mars” and ‘“Red Planet”, which appear in our
data 659 and 26 times respectively.  Out of
these extracted assertions, they share four proper-
ties. For example, (lacks, Mars, ozone layer) and
(lacks, Red Planet,ozone layer) both appear as
assertions in our data. The ESP model determines
the probability that “Mars” and “Red Planet” refer
to the same entity after observing k, the number of
properties that apply to both, ny, the total number
of extracted properties for “Mars”, and ns, the total
number of extracted properties for “Red Planet.”
ESP models the extraction of assertions as a
generative process, much like the URNS model
(Downey et al., 2005). For each string s;, a certain



number, P;, of properties of the string are written on
balls and placed in an urn. Extracting n; assertions
that contain s; amounts to selecting a subset of size
n; from these labeled balls.? Properties in the urn are
called potential properties to distinguish them from
extracted properties.

To model coreference decisions, ESP uses a pair
of urns, containing F; and P; balls respectively, for
the two strings s; and s;. Some subset of the F;
balls have the exact same labels as an equal-sized
subset of the P; balls. Let the size of this sub-
set be S; ;. The ESP model assumes that corefer-
ential strings share as many potential properties as
possible, though only a few of the potential proper-
ties will be extracted for both. For non-coreferential
strings, the number of shared potential properties is a
strict subset of the potential properties of each string.
Thus if R; ; is true then S; ; = min(P;, P;), and if
R; ; is false then S; ; < min(F;, Pj).

The ESP model makes several simplifying as-
sumptions in order to make probability predictions.
As is suggested by the ball-and-urn abstraction, it
assumes that each ball for a string is equally likely
to be selected from its urn. Because of data sparsity,
almost all properties are very rare, so it would be dif-
ficult to get a better estimate for the prior probability
of selecting a particular potential property. Second,
it assumes that without knowing the value of k, ev-
ery value of .S; ; is equally likely, since we have no
better information. Finally, it assumes that all sub-
sets of potential properties are equally likely to be
shared by two non-coreferential objects, regardless
of the particular labels on the balls, given the size of
the shared subset.

Given these assumptions, we can derive an ex-
pression for P(R;;). First, note that there are
(o
tions for s; and s;. Given a particular value of S; ;,
the number of ways in which n; and n; assertions
can be extracted such that they share exactly k is
given by

Count(k, g, nj\Pi, Pj, S@j) =

P;—S; ; )

Si 1 1,7 T TS P’LiS’L y
Ch7) Zrs20 (Sr’isk)( j )(m—(k#)ﬂnj]—(ms)

By our assumptions,

)(5 j) total ways of extracting n; and n; asser-

3Unlike the URNS model, balls are drawn without replace-
ment because each extracted property is distinct in our data.
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P(k|m, nj, PZ‘, Pj, S@j) =
Count(k, n;, nj]Pi, Pj, Si,j)

() ()
Let Ppin = min(FP;, Pj). The result below fol-
lows from Bayes’ Rule and our assumptions above:

ey

Proposition 1 If two strings s; and s; have P; and
P; potential properties (or instances), and they ap-
pear in extracted assertions D; and D; such that
|D;| = n; and |Dj| = nj, and they share k extracted
properties (or instances), the probability that s; and
sj co-refer is:

P(R;;|D;, Dy, Py, Pj) =

P(k|ni,nj, P;, P;, S; j = Pmin)
(k|nivnj> Pia F)ja Sz,j)

2

2ok<S; i <Puin

Substituting equation 1 into equation 2 gives us a
complete expression for the probability we are look-
ing for.

Note that the probability for R; ; depends on just
two hidden parameters, P; and P;. Since we have
no labeled data to estimate these parameters from,
we tie these parameters to the number of times the
respective strings s; and s; are extracted. Thus we
set P, = N X ny;, and we set N = 50 in our experi-
ments.

3.4 Combining the Evidence

For each potential coreference relationship R; j,
there are now two pieces of probabilistic evidence.
Let E7 ; be the evidence for ESP, and let E7 ; be the
ev1dence for SSM. Our method for comblnlng the
two uses the Naive Bayes assumption that each piece
of evidence is conditionally independent, given the
coreference relation:

P(E};, B j|Ri j) = P(E;|R; j)P(

7 ] ’

Given this simplifying assumption, we can com-
bine the evidence to find the probability of a cofer-
ence relationship by applying Bayes’ Rule to both
sides (we omit the 7, j indices for brevity):

P(R'E*,E°) =

EF ;| R )

P(R'|E*)P(R'|E°)(1 — P(R"))
Yieit,y P(RIE*)P(R'|E€)(1 — P(RY))




3.5 Comparing Clusters of Strings

Our algorithm merges clusters of strings with one
another, using one of the above models. However,
these models give probabilities for coreference deci-
sions between two individual strings, not two clus-
ters of strings.

We follow the work of Snow et al. (2006) in in-
corporating transitive closure constraints in proba-
bilistic modeling, and make the same independence
assumptions. The benefit of this approach is that the
calculation for merging two clusters depends only
on coreference decisions between individual strings,
which can be calculated independently.

Let a clustering be a set of coreference relation-
ships between pairs of strings such that the corefer-
ence relationships obey the transitive closure prop-
erty. We let the probability of a set of assertions D
given a clustering C be:

p(D|C) = ][ P(DiUD;|R:;) x

t
R} jeC

[ P(D:;uD;IRL))
Rf eC

The metric used to determine if two clusters
should be merged is the likelihood ratio, or the prob-
ability for the set of assertions given the merged
clusters over the probability given the original clus-
tering. Let C’ be a clustering that differs from C
only in that two clusters in C' have been merged in
C’, and let AC be the set of coreference relation-
ships in C’ that are true, but the corresponding ones
in C' are false. This metric is given by:

P(D|C")/P(D|C) =
[g eac P(R;;|1Di U D;j)(1 = P(R; ;)
gt eac(l = P(R; ;|D; U D;))P (R ;)
The probability P(R}, ;|DiUD;) may be supplied
by the SSM, ESP, or combination model. In our ex-
periments, we let the prior for the SSM model be

0.5. For the ESP and combined models, we set the
prior to P(R} ;) =

1
min(P1 ,PQ) .
4 RESOLVER’s Clustering Algorithm

Our clustering algorithm iteratively merges clusters
of co-referential names, making each iteration in
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S := set of all strings
For each property or instance p,
Sp = {s € S|s has property p}
1. Scores := {}
2. Build index mapping properties (and instances)
to strings with those properties (instances)
3. For each property or instance p:
If |.S,| < Max:
For each pair {s1, s2} C S:
Add mergeScore(s1, s2) to Scores
4. Repeat until no merges can be performed:
Sort Scores
UsedClusters := {}
While score of top clusters ¢y, ca
is above Threshold:
Skip if either is in UsedClusters
Merge c; and ¢y
Add c1, ¢o to UsedClusters
Merge properties containing c1, 2
Recalculate merge scores as in Steps 1-3

Figure 1: RESOLVER’s Clustering Algorithm

time O(N log N) in the number of extracted as-
sertions. The algorithm requires only basic assump-
tions about which strings to compare. Previous work
on speeding up clustering algorithms for SR has ei-
ther required far stronger assumptions, or else it has
focused on heuristic methods that remain, in the
worst case, O(IN?) in the number of distinct objects.

Our algorithm, a greedy agglomerative clustering
method, is outlined in Figure 1. The first novel part
of the algorithm, step 3, compares pairs of strings
that share the same property or instance, so long as
no more than M ax strings share that same property
or instance. After the scores for all comparisons are
made, each string is assigned its own cluster. Then
the scores are sorted and the best cluster pairs are
merged until no pair of clusters has a score above
threshold. The second novel aspect of this algorithm
is that as it merges clusters in Step 4, it merges prop-
erties containing those clusters in a process we call
mutual recursion, which is discussed below.

This algorithm compares every pair of clusters
that have the potential to be merged, assuming two
properties of the data. First, it assumes that pairs
of clusters with no shared properties are not worth



comparing. Since the number of shared properties
is a key source of evidence for our approach, these
clusters almost certainly will not be merged, even if
they are compared, so the assumption is quite rea-
sonable. Second, the approach assumes that clus-
ters sharing only properties that apply to very many
strings (more than Maz) need not be compared.
Since properties shared by many strings provide lit-
tle evidence that the strings are coreferential, this as-
sumption is reasonable for SR. We use Max = 50
in our experiments. Less than 0.1% of the properties
are thrown out using this cutoff.

4.1 Algorithm Analysis

Let D be the set of extracted assertions. The follow-
ing analysis shows that one iteration of merges takes
time O(N log N), where N = |D|. Let NC be
the number of comparisons between strings in step
3. To simplify the analysis, we consider only those
properties that contain a relation string and an argu-
ment 1 string. Let A be the set of all such properties.
NC is linear in N:*

. |Sp| X (|Sp‘ - 1)
NC = ) 5
peEA
Max — 1
< M=oy,
pEA
_ (Ma:;— 1) N

Note that this bound is quite loose because most
properties apply to only a few strings. Step 4 re-
quires time O(N log N) to sort the comparison
scores and perform one iteration of merges. If the
largest cluster has size K, in the worst case the al-
gorithm will take K iterations. In our experiments,
the algorithm never took more than 9 iterations.

4.2 Relation to other speed-up techniques

The merge/purge algorithm (Hernandez and Stolfo,
1995) assumes the existence of a particular attribute
such that when the data set is sorted on this attribute,
matching pairs will all appear within a narrow win-
dow of one another. This algorithm is O(M log M)
where M is the number of distinct strings. However,
there is no attribute or set of attributes that comes

*If the Max parameter is allowed to vary with log|D],

rather than remaining constant, the same analysis leads to a
slightly looser bound that is still better than O(N?).
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close to satisfying this assumption in the context of
domain-independent information extraction.

There are several techniques that often provide
speed-ups in practice, but in the worst case they
make O(M?) comparisons at each merge iteration,
where M is the number of distinct strings. This can
cause problems on very large data sets. Notably,
McCallum et al. (2000) use a cheap comparison
metric to place objects into overlapping “canopies,”’
and then use a more expensive metric to cluster ob-
jects appearing in the same canopy. The RESOLVER
clustering algorithm is in fact an adaptation of the
canopy method; it adds the restriction that strings are
not compared when they share only high-frequency
properties. The canopy method works well on high-
dimensional data with many clusters, which is the
case with our problem, but its time complexity is
worse than ours.

For information extraction data, a complexity of
O(M?) in the number of distinct strings turns out
to be considerably worse than our algorithm’s com-
plexity of O(N log N) in the number of extracted
assertions. This is because the data obeys a Zipf law
relationship between the frequency of a string and its
rank, so the number of distinct strings grows linearly
or almost linearly with the number of assertions.’

4.3 Mutual Recursion

Mutual recursion refers to the novel property of
our algorithm that as it clusters relation strings to-
gether into sets of synonyms, it collapses proper-
ties together for object strings and potentially finds
more shared properties between coreferential object
strings. Likewise, as it clusters objects together into
sets of coreferential names, it collapses instances of
relations together and potentially finds more shared
instances between coreferential relations. Thus the
clustering decisions for relations and objects mutu-
ally depend on one another.

For example, the strings “Kennedy” and “Pres-
ident Kennedy” appear in 430 and 97 assertions
in our data, respectively, but none of their ex-
tracted properties match exactly. Many properties,

5The exact relationship depends on the shape parameter z
of the Zipf curve. If z < 1, as it is for our data set, the num-
ber of total extractions grows linearly with the number of dis-
tinct strings extracted. If z = 1, then n extractions will contain
Q=) distinct strings.

In n




however, almost match. For example, the asser-
tions (challenged, Kennedy, Premier Krushchev)
and (stood up to, President Kennedy, Kruschev)
both appear in our data. Because “challenged” and
“stood up to” are similar, and “Krushchev” and “Pre-
mier Krushchev” are similar, our algorithm is able
to merge these pairs into two clusters, thereby creat-
ing a new shared property between “Kennedy” and
“President Kennedy.” Eventually it can merge these
two strings as well.

5 Extensions to RESOLVER

While the basic RESOLVER system can cluster syn-
onyms accurately and quickly, there is one type of
error that it frequently makes. In some cases, it has
difficulty distinguishing between similar pairs of ob-
jects and identical pairs. For example, “Virginia”
and “West Virginia” share several extractions be-
cause they have the same type, and they have high
string similarity. As a result, RESOLVER clusters
these two together. The next two sections describe
two extensions to RESOLVER that address the prob-
lem of similarity vs. identity.

5.1 Function Filtering

RESOLVER can use functions and one-to-one rela-
tions to help distinguish between similar and identi-
cal pairs. For example, West Virginia and Virginia
have different capitals: Richmond and Charleston,
respectively. If both of these facts are extracted, and
if RESOLVER knows that the “capital of” relation is
functional, it should prevent Virginia and West Vir-
ginia from merging.

The Function Filter prevents merges between
strings that have different values for the same func-
tion. More precisely, it decides that two strings 1
and yo match if their string similarity is above a high
threshold. It prevents a merge between strings x
and x4 if there exist a function f and extractions
f(z1,y1) and f(x2,y2), and there are no such ex-
tractions such that y; and y match (and vice versa
for one-to-one relations). Experiments described in
section 6 show that the Function Filter can improve
the precision of RESOLVER without significantly af-
fecting its recall.

While the Function Filter currently uses func-
tions and one-to-one relations as negative evidence,
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it is also possible to use them as positive evidence.
For example, the relation “married” is not strictly
one-to-one, but for most people the set of spouses
is very small. If a pair of strings are extracted
with the same spouse—e.g., “FDR” and “President
Roosevelt” share the property (“married”, “Eleanor
Roosevelt”)—this is far stronger evidence that the
two strings are identical than if they shared some
random property.

Unfortunately, various techniques that attempted
to model this insight, including a TF-IDF weighting
of properties, yielded essentially no improvement of
RESOLVER. One major reason is that there are rel-
atively few examples of shared functional or one-
to-one properties because of sparsity. This idea de-
serves more investigation, however, and is an area
for future work.

5.2 Using Web Hitcounts

While names for two similar objects may often ap-
pear together in the same sentence, it is relatively
rare for two different names of the same object to
appear in the same sentence. RESOLVER exploits
this fact by querying the Web to determine how often
a pair of strings appears together in a large corpus.
When the hitcount is high, RESOLVER can prevent
the merge.

Specifically, the Coordination-Phrase Filter
searches for hitcounts of the phrase “s; and s3”,
where s; and s are a candidate pair for merging.
It then computes a variant of pointwise mutual
information, given by

_ hits(s1 and s3)?
~ hits(s) x hits(sz)

coordination score(sy, s2)

The filter prevents any merge for which the coor-
dination score is above a threshold, which is de-
termined on a development set. The results of
Coordination-Phrase filtering are discussed in the
next section.

6 Experiments

Our experiments demonstrate that the ESP model
is significantly better at resolving synonyms than a
widely-used distributional similarity metric, the co-
sine similarity metric (CSM) (Salton and McGill,
1983), and that RESOLVER is significantly better at



resolving synonyms than either of its components,
SSM or ESP.

We test these models on a data set of 2.1 million
assertions extracted from a Web crawl.® All models
ran over all assertions, but compared only those ob-
jects or relations that appeared at least 25 times in
the data, to give the ESP and CSM models sufficient
data for estimating similarity. However, the mod-
els do use strings that appear less than 25 times as
features. In all, the data contains 9,797 distinct ob-
ject strings and 10,151 distinct relation strings that
appear at least 25 times.

We judged the precision of each model by manu-
ally labeling all of the clusters that each model out-
puts. Judging recall would require inspecting not
just the clusters that the system outputs, but the en-
tire data set, to find all of the true clusters. Be-
cause of the size of the data set, we instead esti-
mated recall over a smaller subset of the data. We
took the top 200 most frequent object strings and top
200 most frequent relation strings in the data. For
each one of these high-frequency strings, we man-
ually searched through all strings with frequency
over 25 that shared at least one property, as well
as all strings that contained one of the keywords in
the high-frequency strings or obvious variations of
them. We manually clustered the resulting matches.
The top 200 object strings formed 51 clusters of size
greater than one, with an average cluster size of 2.9.
For relations, the top 200 strings and their matches
formed 110 clusters with size greater than one, with
an average cluster size of 4.9. We measured the re-
call of our models by comparing the set of all clus-
ters containing at least one of the high-frequency
words against these gold standard clusters.

For our precision and recall measures, we only
compare clusters of size two or more, in order to
focus on the interesting cases. Using the term hy-
pothesis cluster for clusters created by one of the
models, we define the precision of a model to be the
number of elements in all hypothesis clusters which
are correct divided by the total number of elements
in hypothesis clusters. An element s is marked cor-
rect if a plurality of the elements in s’s cluster refer
to the same entity as s; we break ties arbitrarily, as

%The data is made available at
http://www.cs.washington.edu/homes/ayates/.
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they do not affect results. We define recall as the
sum over gold standard clusters of the most num-
ber of elements found in a single hypothesis cluster,
divided by the total number of elements in gold stan-
dard clusters.

For the ESP and SSM models in our experiment,
we prevented mutual recursion by clustering rela-
tions and objects separately. Only the full RE-
SOLVER system uses mutual recursion. For the CSM
model, we create for each distinct string a row vec-
tor, with each column representing a property. If that
property applies to the string, we set the value of
that column to the inverse frequency of the property
and zero otherwise. CSM finds the cosine of the an-
gle between the vectors for each pair of strings, and
merges the best pairs that score above threshold.

Each model requires a threshold parameter to de-
termine which scores are suitable for merging. For
these experiments we arbitrarily chose a threshold
of 3 for the ESP model (that is, the data needs to
be 3 times more likely given the merged cluster than
the unmerged clusters in order to perform the merge)
and chose thresholds for the other models by hand so
that the difference between them and ESP would be
roughly even between precision and recall, although
for relations it was harder to improve the recall. It is
an important item for future work to be able to esti-
mate these thresholds and perhaps other parameters
of our models from unlabeled data, but the chosen
parameters worked well enough for the experiments.
Table 1 shows the precision and recall of our models.

6.1 Discussion

ESP significantly outperforms CSM on both object
and relation clustering. CSM had particular trouble
with lower-frequency strings, judging far too many
of them to be co-referential on too little evidence. If
the threshold for clustering using CSM is increased,
however, the recall begins to approach zero.

ESP and CSM make predictions based on a very
noisy signal. “Canada,” for example, shares more
properties with “United States” in our data than
“U.S.” does, even though “Canada” appears less of-
ten than “U.S.” The results show that both models
perform below the SSM model on its own for object
merging, and both perform slightly better than SSM
on relations because of SSM’s poor recall.

We found a significant improvement in both pre-



Objects Relations
Model Prec. | Rec. | Fl Prec. | Rec. | Fl1
CSM 0.51 | 0.36 | 0.42 || 0.62 | 0.29 | 0.40
ESP 0.56 | 0.41 | 047 || 0.79 | 0.33 | 0.47
SSM 0.62 | 0.53 | 0.57 || 0.85 | 0.25 | 0.39
RESOLVER || 0.71 | 0.66 | 0.68 || 0.90 | 0.35 | 0.50

Table 1: Comparison of the cosine similarity metric (CSM), RESOLVER components (SSM and ESP), and the RESOLVER

system. Bold indicates the score is significantly different from the score in the row above at p < 0.05 using the chi-squared test

with one degree of freedom. Using the same test, RESOLVER is also significantly different from ESP and CSM in recall on objects,

and from CSM and SSM in recall on relations. RESOLVER’s F1 on objects is a 19% increase over SSM’s F1. RESOLVER’s F1 on

relations is a 28% increase over SSM’s F1.

cision and recall when using a combined model over
using SSM alone. RESOLVER’s F1 is 19% higher
than SSM’s on objects, and 28% higher on relations.

In a separate experiment we found that mutual re-
cursion provides mixed results. A combination of
SSM and ESP without mutual recursion had a preci-
sion of 0.76 and recall of 0.59 on objects, and a pre-
cision of 0.91 and recall of 0.35 on relations. Mutual
recursion increased recall and decreased precision
for both objects and relations. None of the differ-
ences were statistically significant, however.

There is clearly room for improvement on the SR
task. Except for the problem of confusing similar
and identical pairs (see section 5), error analysis
shows that most of RESOLVER’s mistakes are be-
cause of two kinds of errors:

1. Extraction errors. For example, “US News”
gets extracted separately from “World Report”, and
then RESOLVER clusters them together because they
share almost all of the same properties.

2. Multiple word senses. For example, there are two
President Bushes; also, there are many terms like
“President” and “Army” that can refer to many dif-
ferent entities.

6.2 Experiments with Extensions

The extensions to RESOLVER attempt to address
the confusion between similar and identical pairs.
Experiments with the extensions, using the same
datasets and metrics as above, demonstrate that the
Function Filter (FF) and the Coordination-Phrase
Filter (CPF) boost RESOLVER’s performance.

FF requires as input the set of functional and one-
to-one relations in the data. Table 2 contains a sam-
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is capital of
named after
headquartered in

is capital city of
was named after
is headquartered in

Table 2: A sample of the set of functions used by the Func-
tion Filter.

Model Prec. | Rec. | Fl

RESOLVER 0.71 | 0.66 | 0.68
RESOLVER+FF 0.74 | 0.66 | 0.70
RESOLVER+CPF 0.78 | 0.68 | 0.73
RESOLVER+FF+CPF || 0.78 | 0.68 | 0.73

Table 3: Comparison of object merging results for the
RESOLVER system, RESOLVER plus Function Filtering (RE-
SOLVER+FF), RESOLVER plus Coordination-Phrase Filter-
ing (RESOLVER+CPF), and RESOLVER plus both types of fil-
tering (RESOLVER+FF+CPF). Bold indicates the score is sig-
nificantly different from RESOLVER’s score at p < 0.05 us-
ing the chi-squared test with one degree of freedom. RE-
SOLVER+CPF’s F1 on objects is a 28% increase over SSM’s
F1, and a 7% increase over RESOLVER’s F1.

pling of the manually-selected functions used in our
experiment. Automatically discovering such func-
tions from extractions has been addressed in Ana-
Maria Popescu’s dissertation (Popescu, 2007), and
we did not attempt to duplicate this effort in RE-
SOLVER.

Table 3 contains the results of our experiments.
With coordination-phrase filtering, RESOLVER’s F1
is 28% higher than SSM’s on objects, and 6% higher
than RESOLVER’s F1 without filtering. While func-
tion filtering is a promising idea, FF provides a
smaller benefit than CPF on this dataset, and the



merges that it prevents are, with a few exceptions,
a subset of the merges prevented by CPF. This is in
part due to the limited number of functions available
in the data. In addition to outperforming FF on this
dataset, CPF has the added advantage that it does not
require additional input, like a set of functions.

7 Conclusion and Future Work

We have shown that the unsupervised and scalable
RESOLVER system is able to find clusters of co-
referential object names in extracted relations with
a precision of 78% and a recall of 68% with the aid
of coordination-phrase filtering, and can find clus-
ters of co-referential relation names with precision
of 90% and recall of 35%. We have demonstrated
significant improvements over using simple similar-
ity metrics for this task by employing a novel prob-
abilistic model of coreference.

In future work, we plan to use RESOLVER on a
much larger data set of over a hundred million as-
sertions, further testing its scalability and its abil-
ity to improve in accuracy given additional data.
We also plan to add techniques for handling mul-
tiple word senses. Finally, to make the probabilistic
model more accurate and easier to use, we plan to
investigate methods for automatically estimating its
parameters from unlabeled data.
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The Domain Restriction Hypothesis:
Relating Term Similarity and Semantic Consistency

Alfio Massimiliano Gliozzo
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Abstract

In this paper, we empirically demonstrate
what we call the domain restriction hy-
pothesis, claiming that semantically re-
lated terms extracted from a corpus tend
to be semantically coherent. We apply
this hypothesis to define a post-processing
module for the output of Espresso, a state
of the art relation extraction system, show-
ing that irrelevant and erroneous relations
can be filtered out by our module, in-
creasing the precision of the final output.
Results are confirmed by both quantita-
tive and qualitative analyses, showing that
very high precision can be reached.

1 Introduction

Relation extraction is a fundamental step in
many natural language processing applications such
as learning ontologies from texts (Buitelaar et
al., 2005) and Question Answering (Pasca and
Harabagiu, 2001).

The most common approach for acquiring con-
cepts, instances and relations is to harvest semantic
knowledge from texts. These techniques have been
largely explored and today they achieve reasonable
accuracy. Harvested lexical resources, such as con-
cept lists (Pantel and Lin, 2002), facts (Etzioni et
al., 2002) and semantic relations (Pantel and Pen-
nacchiotti, 2006) could be then successfully used in
different frameworks and applications.

The state of the art technology for relation extrac-
tion primarily relies on pattern-based approaches
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(Snow et al., 2006). These techniques are based on
the recognition of the typical patterns that express
a particular relation in text (e.g. “X such as Y”
usually expresses an is-a relation). Yet, text-based
algorithms for relation extraction, in particular
pattern-based algorithms, still suffer from a number
of limitations due to complexities of natural lan-
guage, some of which we describe below.

Irrelevant relations. These are valid relations
that are not of interest in the domain at hand. For
example, in a political domain, “Condoleezza Rice
is a football fan” is not as relevant as “Condoleezza
Rice is the Secretary of State of the United States”.
Irrelevant relations are ubiquitous, and affect ontol-
ogy reliability, if used to populate it, as the relation
drives the wrong type of ontological knowledge.
Erroneous or false relations. These are particu-
larly harmful, since they directly affect algorithm
precision. A pattern-based relation extraction
algorithm is particularly likely to extract erroneous
relations if it uses generic patterns, which are
defined in (Pantel and Pennacchiotti, 2006) as
broad coverage, noisy patterns with high recall and
low precision (e.g. “X of Y” for part-of relation).
Harvesting algorithms either ignore generic patterns
(Hearst, 1992) (affecting system recall) or use man-
ually supervised filtering approaches (Girju et al.,
2006) or use completely unsupervised Web-filtering
methods (Pantel and Pennacchiotti, 2006). Yet,
these methods still do not sufficiently mitigate the
problem of erroneous relations.

Background knowledge.  Another aspect that
makes relation harvesting difficult is related to the

Proceedings of NAACL HLT 2007, pages 131-138,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



nature of semantic relations: relations among enti-
ties are mostly paradigmatic (de Saussure, 1922),
and are usually established in absentia (i.e., they are
not made explicit in text). According to Eco’s posi-
tion (Eco, 1979), the background knowledge (e.g.
“persons are humans”) is often assumed by the
writer, and thus is not explicitly mentioned in text.
In some cases, such widely-known relations can be
captured by distributional similarity techniques but
not by pattern-based approaches.

Metaphorical language. Even when paradigmatic
relations are explicitly expressed in texts, it can
be very difficult to distinguish between facts and
metaphoric usage (e.g. the expression “My mind is
a pearl” occurs 17 times on the Web, but it is clear
that mind is not a pearl, at least from an ontological
perspective).

The considerations above outline some of the dif-
ficulties of taking a purely lexico-syntactic approach
to relation extraction. Pragmatic issues (background
knowledge and metaphorical language) and onto-
logical issues (irrelevant relation) can not be solved
at the syntactic level. Also, erroneous relations can
always arise. These considerations lead us to the
intuition that extraction can benefit from imposing
some additional constraints.

In this paper, we integrate Espresso with a lex-
ical distribution technique modeling semantic co-
herence through semantic domains (Magnini et al.,
2002). These are defined as common discourse top-
ics which demonstrate lexical coherence, such as
EcoNoMICS or POLITICS. We explore whether se-
mantic domains can provide the needed additional
constraints to mitigate the acceptance of erroneous
relations. At the lexical level, semantic domains
identify clusters of (domain) paradigmatically re-
lated terms. We believe that the main advantage of
adopting semantic domains in relation extraction is
that relations are established mainly among terms in
the same Domain, while concepts belonging to dif-
ferent fields are mostly unrelated (Gliozzo, 2005),
as described in Section 2. For example, in a chem-
istry domain, an is-a will tend to relate only terms of
that domain (e.g., nitrogen is-a element), while out-
of-domain relations are likely to be erroneous e.g.,
driver is-a element.

By integrating pattern-based and distributional ap-
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proaches we aim to capture the two characteristic
properties of semantic relations:

e Syntagmatic properties: if two terms X and
Y are in a given relation, they tend to co-
occur in texts, and are mostly connected by spe-
cific lexical-syntactic patterns (e.g., the patter
“X 15 a Y” connects terms in is-a relations).
This aspect is captured using a pattern-based
approach.

e Domain properties: if a semantic relation
among two terms X and Y holds, both X
and Y should belong to the same semantic
domain (i.e. they are semantically coherent),
where semantic domains are sets of terms
characterized by very similar distributional
properties in a (possibly domain specific)
corpus.

In Section 2, we develop the concept of semantic do-
main and an automatic acquisition procedure based
on Latent Semantic Analysis (LSA) and we provide
empirical evidence of the connection between rela-
tion extraction and domain modelling. Section 3 de-
scribes the Espresso system. Section 4 concerns our
integration of semantic domains and Espresso. In
Section 5, we evaluate the impact of our LSA do-
main restriction module on improving a state of the
art relation extraction system. In Section 6 we draw
some interesting research directions opened by our
work.

2 Semantic Domains

Semantic domains are common areas of human
discussion, which demonstrate lexical coherence,
such as EcoNoMICS, POLITICS, LAW, SCIENCE,
(Magnini et al., 2002). At the lexical level, se-
mantic domains identify clusters of (domain) related
lexical-concepts, i.e. sets of highly paradigmatically
related words also known as Semantic Fields.

In the literature, semantic domains have been
inferred from corpora by adopting term clustering
methodologies (Gliozzo, 2005), and have been used
for several NLP tasks, such as Text Categorization
and Ontology Learning (Gliozzo, 2006).

Semantic domains can be described by Domain
Models (DMs) (Gliozzo, 2005). A DM is a com-



putational model for semantic domains, that repre-
sents domain information at the term level, by defin-
ing a set of term clusters. Each cluster represents a
Semantic Domain, i.e. a set of terms that often co-
occur in texts having similar topics. A DM is repre-
sented by a k x k' rectangular matrix D, containing
the domain relevance for each term with respect to
each domain, as illustrated in Table 1.

[ MEDICINE  COMPUTER-_SCIENCE
HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 1: Example of a Domain Model

DMs can be acquired from texts in a completely
unsupervised way by exploiting a lexical coherence
assumption. To this end, term clustering algorithms
can be used with each cluster representing a Se-
mantic Domain. The degree of association among
terms and clusters, estimated by the learning algo-
rithm, provides a domain relevance function. For
our experiments we adopted a clustering strategy
based on LSA (Deerwester et al., 1990), following
the methodology described in (Gliozzo, 2005). The
input of the LSA process is a term-by-document ma-
trix T reporting the term frequencies in the whole
corpus for each term. The matrix is decomposed by
means of a Singular Value Decomposition (SVD),
identifying the principal components of T. This op-
eration is done off-line, and can be efficiently per-
formed on large corpora. SVD decomposes T into
three matrixes T ~ V., U7 where ¥} is the di-
agonal k x k matrix containing the highest &’ < k
eigenvalues of T on the diagonal, and all the re-
maining elements are 0. The parameter &’ is the
dimensionality of the domain and can be fixed in
advance!. Under this setting we define the domain
matrix Dp,ga? as

Disa =INV/Z

is a diagonal matrix such that 1}\1 =

ey

where IN

——~—and u?{ is the i*"* row of the matrix V /Xy

(wi,wy)
Tt is not clear how to choose the right dimensionality. In

our experiments we used 100 dimensions.
Details of this operation can be found in (Gliozzo, 2005).
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Once a DM has been defined by the matrix D, the
Domain Space is a k' dimensional space, in which
both texts and terms are associated to Domain Vec-
tors (DVs), i.e. vectors representing their domain
relevancies with respect to each domain. The DV
tz for the term t; € V is the i" row of D, where
V = {t1,ta,...,tx} is the vocabulary of the corpus.
The domain similarity ¢4(t;,?;) among terms is then
estimated by the cosine among their corresponding
DVs in the Domain Space, defined as follows:
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Figure 1: Probability of finding paradigmatic rela-
tions

The main advantage of adopting semantic do-
mains for relation extraction is that they allow us to
impose a domain restriction on the set of candidate
pairs of related terms. In fact, semantic relations can
be established mainly among terms in the same Se-
mantic Domain, while concepts belonging to differ-
ent fields are mostly unrelated.

To show the validity of the domain restriction we
conducted a preliminary experiment, contrasting the
probability for two words to be related in Word-
Net (Magnini and Cavaglia, 2000) with their domain
similarity, measured in the Domain Space induced
from the British National Corpus. In particular, for
each couple of words, we estimated the domain sim-
ilarity, and we collected word pairs in sets charac-
terized by different ranges of similarity (e.g. all the
pairs between 0.8 and 0.9). Then we estimated the




probability of each couple of words in different sets
to be linked by a semantic relation in WordNet, such
as synonymy, hyperonymy, co-hyponymy and do-
main in WordNet Domains (Magnini et al., 2002).
Results in Figure 1 show a monotonic crescent rela-
tion between these two quantities. In particular the
probability for two words to be related tends to O
when their similarity is negative (i.e., they are not
domain related), supporting the basic hypothesis of
this work. In Section 4 we will show that this prop-
erty can be used to improve the overall performances
of the relation extraction algorithm.

3 The pattern-based Espresso system

Espresso (Pantel and Pennacchiotti, 2006) is a
corpus-based general purpose, broad, and accurate
relation extraction algorithm requiring minimal su-
pervision, whose core is based on the framework
adopted in (Hearst, 1992). Espresso introduces two
main innovations that guarantee high performance:
(1) a principled measure for estimating the reliabil-
ity of relational patterns and instances; (ii) an algo-
rithm for exploiting generic patterns. Generic pat-
terns are broad coverage noisy patterns (high recall
and low precision), e.g. “X of Y” for the part-of re-
lation. As underlined in the introduction, previous
algorithms either required significant manual work
to make use of generic patterns, or simply ignore
them. Espresso exploits an unsupervised Web-based
filtering method to detect generic patterns and to dis-
tinguish their correct and incorrect instances.

Given a specific relation (e.g. is-a) and a POS-
tagged corpus, Espresso takes as input few seed
instances (e.g. nitrogen is-a element) or seed surface
patterns (e.g. X/NN such/JJ as/IN Y/NN). It then
incrementally learns new patterns and instances
by iterating on the following three phases, until a
specific stop condition is met (i.e., new patterns are
below a pre-defined threshold of reliability).

Pattern Induction. Given an input set of seed
instances I, Espresso infers new patterns connecting
as many instances as possible in the given corpus.
To do so, Espresso uses a slight modification of the
state of the art algorithm described in (Ravichandran
and Hovy, 2002). For each instance in input, the
sentences containing it are first retrieved and then
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generalized, by replacing term expressions with a
terminological label using regular expressions on
the POS-tags. This generalization allows to ease
the problem of data sparseness in small corpora.
Unfortunately, as patterns become more generic,
they are more prone to low precision.

Pattern Ranking and Selection. Espresso ranks
all extracted patterns using a reliability measure r
and discards all but the top-k P patterns, where k is
set to the number of patterns from the previous iter-
ation plus one. r, captures the intuition that a reli-
able pattern is one that is both highly precise and one
that extracts many instances. r is formally defined
as the average strength of association between a pat-
tern p and each input instance ¢ in I, weighted by the
reliability r, of the instance 7 (described later):

pm’i(i,p) y
Zie[ <ma:ppmi *TL(Z)>

1]
where pmi(i, p) is the pointwise mutual information
(pmi) between ¢ and p (estimated with Maximum
Likelihood Estimation), and mawy,,; is the maxi-
mum pmi between all patterns and all instances.

Tx(p) =

Instance Extraction, Ranking, Selection.
Espresso extracts from the corpus the set of in-
stances I matching the patterns in P. In this phase
generic patterns are detected, and their instances
are filtered, using a technique described in detail in
(Pantel and Pennacchiotti, 2006). Instances are then
ranked using a reliability measure r,, similar to that
adopted for patterns. A reliable instance should be
highly associated with as many reliable patterns as

possible:
* T (2))

Finally, the best scoring instances are selected for
the following iteration. If the number of extracted
instances is too low (as often happens in small
corpora) Espresso enters an expansion phase, in
which instances are expanded by using web based
and syntactic techniques.

pmi(i,p)
ZPEP < MaTpmi
1P|

(i) =



The output Espresso is a list of instances
i=(X,Y) €I, ranked according to 7,(:). This
score accounts for the syntagmatic similarity be-
tween X and Y, i.e., how strong is the co-occurrence
of X and Y in texts with a given pattern p.

A key role in the Espresso algorithm is played
by the reliability measures. The accuracy of the
whole extraction process is in fact highly sensitive
to the ranking of patterns and instances because, at
each iteration, only the best scoring entities are re-
tained. For instance, if an erroneous instance is se-
lected after the first iteration, it could in theory af-
fect the following pattern extraction phase and cause
drift in consequent iterations. This issue is criti-
cal for generic patterns (where precision is still a
problem, even with Web-based filtering), and could
sometimes also affect non-generic patterns.

It would be then useful to integrate Espresso with
a technique able to retain only very precise in-
stances, without compromising recall. As syntag-
matic strategies are already in place, another strategy
is needed. In the next Section, we show how this can
be achieved using instance domain information.

4 Integrating syntagmatic and domain
information

The strategy of integrating syntagmatic and do-
main information has demonstrated to be fruitful in
many NLP tasks, such as Word Sense Disambigua-
tion and open domain Ontology Learning (Gliozzo,
2006). According to the structural view (de Saus-
sure, 1922), both aspects contribute to determine
the linguistic value (i.e. the meaning) of words:
the meaning of lexical constituents is determined
by a complex network of semantic relations among
words. This suggests that relation extraction can
benefit from accounting for both syntagmatic and
domain aspects at the same time.

To demonstrate the validity of this claim we can
explore many different integration schemata. For ex-
ample we can restrict the search space (i.e. the set of
candidate instances) to the set of all those terms be-
longing to the same domain. Another possibility is
to exploit a similarity metric for domain relatedness
to re-rank the output instances I of Espresso, hoping
that the top ranked ones will mostly be those which
are correct. One advantage of this latter method-
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ology is that it can be applied to the output of any
relation extraction system without any modification
to the system itself. In addition, this methodology
can be evaluated by adopting standard Information
Retrieval (IR) measures, such as mean average pre-
cision (see Section 5). Because of these advantages,
we decided to adopt the re-ranking procedure.

The procedure is defined as follows: each in-
stance extracted by Espresso is assigned a Domain
Similarity score ¢4(X,Y’) estimated in the domain
space according to Equation 2; a higher score is
then assigned to the instances that tend to co-occur
in the same documents in the corpus. For exam-
ple, the candidate instances ethanol is-a nonaro-
matic_alcohol has a higher score than ethanol is-a
something, as ethanol and alcohol are both from the
chemistry domain, while something is a generic term
and is thus not associated to any domain.

Instances are then re-ranked according to
¢a(X,Y), which is used as the new index of
reliability instead of the original reliability scores
of Espresso. In Subsection 5.2 we will show that
the re-ranking technique improves the original
reliability scores of Espresso.

5 Evaluation

In this Section we evaluate the benefits of applying
the domain information to relation extraction (ESP-
LSA), by measuring the improvements of Espresso
due to domain based re-ranking.

5.1 Experimental Settings

As a baseline system, we used the ESP- implemen-
tation of Espresso described in (Pantel and Pennac-
chiotti, 2006). ESP- is a fully functioning Espresso
system, without the generic pattern filtering module
(ESP+). We decided to use ESP- for two main rea-
sons. First, the manual evaluation process would
have been too time consuming, as ESP+ extracts
thousands of relations. Also, the small scale experi-
ment for EXP- allows us to better analyse and com-
pare the results.

To perform the re-ranking operation, we acquired
a Domain Model from the input corpus itself. To this
aim we performed a SVD of the term by document
matrix 7' describing the input corpus, indexing all
the candidate terms recognized by Espresso.



As an evaluation benchmark, we adopted the
same instance sets extracted by ESP- in the ex-
periment described in (Pantel and Pennacchiotti,
2006). We used an input corpus of 313,590 words,
a college chemistry textbook (Brown et al. 2003),
pre-processed using the Alembic Workbench POS-
tagger (Day et al. 1997). We considered the fol-
lowing relations: is-a, part-of, reaction (a relation
of chemical reaction among chemical entities) and
production (a process or chemical element/object
producing a result). ESP- extracted 200 is-a, 111
part-of, 40 reaction and 196 production instances.

5.2 Quantitative Analysis

The experimental evaluation compared the accuracy
of the ranked set of instances extracted by ESP- with
the re-ranking produced on these instances by ESP-
LSA. By analogy to IR, we are interested in ex-
tracting positive instances (i.e. semantically related
words). Accordingly, we utilize the standard defi-
nitions of precision and recall typically used in IR .
Table 2 reports the Mean Average Precision obtained
by both ESP- and ESP-LSA on the extracted rela-
tions, showing the substantial improvements on all
the relations due to domain based re-ranking.

[ ESP-  ESP-LSA
is-a 0.54 0.75 (+0.21)
part-of 0.65 0.82 (+0.17)
react 0.75 0.82 (+0.07)
produce | 0.55 0.62 (+0.07)

Table 2: Mean Average Precision reported by ESP-
and ESP-LSA

Figures 2, 3, 4 and 5 report the precision/recall
curves obtained for each relation, estimated by mea-
suring the precision / recall at each point of the
ranked list. Results show that precision is very high
especially for the top ranked relations extracted by
ESP-LSA. Precision reaches the upper bound for the
top ranked part of the part-of relation, while it is
close to 0.9 for the is-a relation. In all cases, the
precision reported by the ESP-LSA system surpass
those of the ESP- system at all recall points.

5.3 Qualitative Analysis

Table 3 shows the best scoring instances for ESP-
and ESP-LSA on the evaluated relations. Results
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Figure 3: Syntagmatic vs. Domain ranking for the
produce relation

show that ESP-LSA tends to assign a much lower
score to erroneous instances, as compared to the
original Espresso reliability ranking. For exam-
ple for the part-of relation, the ESP- ranks the er-
roneous instance geometry part-of ion in 23th po-
sition, while ESP-LSA re-ranks it in 92nd. In
this case, a lower score is assigned because ge-
ometry is not particularly tied to the domain of
chemistry. Also, ESP-LSA tends to penalize in-
stances derived from parsing/tokenization errors:
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Figure 4: Syntagmatic vs. Domain ranking for the
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Figure 5: Syntagmatic vs. Domain ranking for the
react relation

[-binary_hydrogen_compounds_hydrogen react ele-
ments is 16th for ESP-, while in the last tenth of
the ESP-LSA. In addition, out-of-domain relations
are successfully interpreted by ESP-LSA. For ex-
ample, the instance sentences part-of exceptions is
a possibly correct relation, but unrelated to the do-
main, as an exception in chemistry has nothing to
do with sentences. This instance lies at the bottom
of the ESP-LSA ranking, while is in the middle of
ESP- list. Also, low ranked and correct relations ex-
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tracted by ESP- emerge with ESP-LSA. For exam-
ple, magnesium_metal react elemental_oxygen lies at
the end of ESP- rank, as there are not enough syntag-
matic evidence (co-occurrences) that let the instance
emerge. The domain analysis of ESP-LSA promotes
this instance to the 2nd rank position. However, in
few cases, the strategy adopted by ESP-LSA tends
to promote erroneous instances (e.g. high voltage
produce voltage). Yet, results show that these are
isolated cases.

6 Conclusion and future work

In this paper, we propose the domain restriction hy-
pothesis, claiming that semantically related terms
extracted from a corpus tend to be semantically co-
herent. Applying this hypothesis, we presented a
new method to improve the precision of pattern-
based relation extraction algorithms, where the inte-
gration of domain information allows the system to
filter out many irrelevant relations, erroneous can-
didate pairs and metaphorical language relational
expressions, while capturing the assumed knowl-
edge required to discover paradigmatic associations
among terms. Experimental evidences supports this
claim both qualitatively and quantitatively, opening
a promising research direction, that we plan to ex-
plore much more in depth. In the future, we plan
to compare LSA to other term similarity measures,
to train the LSA model on large open domain cor-
pora and to apply our technique to both generic and
specific corpora in different domains. We want also
to increase the level of integration of the LSA tech-
nique in the Espresso algorithm, by using LSA as an
alternative reliability measure at each iteration. We
will also explore the domain restriction property of
semantic domains to develop open domain ontology
learning systems, as proposed in (Gliozzo, 2006).

The domain restriction hypothesis has potential
to greatly impact many applications where match-
ing textual expressions is a primary component. It is
our hope that by combining existing ranking strate-
gies in applications such as information retrieval,
question answering, information extraction and doc-
ument classification, with knowledge of the coher-
ence of the underlying text, one will see significant
improvements in matching accuracy.



Relation ESP- ESP - LSA
Xis-aY Aluminum ; metal F ; electronegative_atoms
nitride_ion ; strong_Br O ; electronegative_atoms
heat_flow ; calorimeter NaCN ; cyanide_salt
complete_ionic_equation ; spectator NaCN ; cyanide_salts
X part-of Y elements ; compound amino_acid_building_blocks ; tripeptide
composition ; substance acid_building_blocks ; tripeptide
blocks ; tripeptide powdered_zinc_metal ; battery
elements ; sodium_chloride building_blocks ; tripeptide
Xreact Y hydrazine ; water magnesium_metal ; elemental_oxygen
magnesium_metal ; hydrochloric_acid nitrogen ; ammonia
magnesium ; oxygen sodium_metal ; chloride
magnesium_metal ; acid carbon_dioxide ; methane
X produce Y bromine ; bromide high_voltage ; voltage
oxygen ; oxide reactions ; reactions
common_fuels ; dioxide dr_jekyll ; hyde
kidneys ; stones yellow_pigments ; green_pigment

Table 3: Top scoring relations extracted by ESP- and ESP-LSA.
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Abstract

This paper presents two Markov chain
Monte Carlo (MCMC) algorithms for
Bayesian inference of probabilistic con-
text free grammars (PCFGs) from ter-
minal strings, providing an alternative
to maximume-likelihood estimation using
the Inside-Outside algorithm. We illus-
trate these methods by estimating a sparse
grammar describing the morphology of
the Bantu language Sesotho, demonstrat-
ing that with suitable priors Bayesian
techniques can infer linguistic structure
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Carlo (MCMC) algorithms for inferring PCFGs and
their parses from strings alone. These can be viewed
as Bayesian alternatives to the 10 algorithm.

The goal of Bayesian inference is to compute a
distribution over plausible parameter values. This
“posterior” distribution is obtained by combining the
likelihood with a “prior” distributionP(6) over pa-
rameter value$. In the case of PCFG inferenéeas
the vector of rule probabilities, and the prior might
assert a preference for a sparse grammar (see be-
low). The posterior probability of each value 6f
is given by Bayes'’ rule:

P(9|D) o P(D|0)P(0). @)

in situations where maximum likelihood
methods such as the Inside-Outside algo-
rithm only produce a trivial grammar.

In principle Equation 1 defines the posterior prob-
ability of any value off, but computing this may
not be tractable analytically or numerically. For this
reason a variety of methods have been developed to
support approximate Bayesian inference. One of the
most popular methods is Markov chain Monte Carlo
The standard methods for inferring the parameters gMCMC), in which a Markov chain is used to sam-
probabilistic models in computational linguistics areple from the posterior distribution.
based on the principle of maximum-likelihood esti- This paper presents two new MCMC algorithms
mation; for example, the parameters of Probabilistifor inferring the posterior distribution over parses
Context-Free Grammars (PCFGs) are typically esand rule probabilities given a corpus of strings. The
timated from strings of terminals using the Insidefirst algorithm is a component-wise Gibbs sampler
Outside (I0) algorithm, an instance of the Ex-which is very similar in spirit to the EM algo-
pectation Maximization (EM) procedure (Lari andrithm, drawing parse trees conditioned on the cur-
Young, 1990). However, much recent work in matent parameter values and then sampling the param-
chine learning and statistics has turned away froraters conditioned on the current set of parse trees.
maximume-likelihood in favor of Bayesian methods,The second algorithm is a component-wise Hastings
and there is increasing interest in Bayesian methodsmpler that “collapses” the probabilistic model, in-
in computational linguistics as well (Finkel et al.,tegrating over the rule probabilities of the PCFG,
2006). This paper presents two Markov chain Montvith the goal of speeding convergence. Both algo-

1 Introduction
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rithms use an efficient dynamic programming techever trees as follows:
nique to sample parse trees.

Given their usefulness in other disciplines, we Pa(tl) = H afr(t)
believe that Bayesian methods like these are likely reft
to be of general utility in computational linguis- wheret is generated by and f,.(¢) is the number
tics as well. As a simple illustrative example, weof times the productionr = A — § € R is used
use these methods to infer morphological parses faf the derivation oft. If G does not generatelet
verbs from Sesotho, a southern Bantu language Wit (t|§) = 0. Theyield y(t) of a parse tree is
agglutinating morphology. Our results illustrate thathe sequence of terminals labeling its leaves. The
Bayesian inference using a prior that favors sparsitgrobability of a stringw € T of terminals is the
can produce linguistically reasonable analyses in sisum of the probability of all trees with yield, i.e.:
uations in which EM does not.

The rest of this paper is structured as follows. Pa(wl) = Z Pa(t]0).
The next section introduces the background for our ty(H)=w
paper, summarizing the key ideas behind PCFGs,, Bayesian inference for PCFGs
Bayesian inference, and MCMC. Section 3 intro-__ _
duces our first MCMC algorithm, a Gibbs sample/®!VEN & COrpus of stringsr = (Wi, ..., wy), where

for PCFGs. Section 4 describes an algorithm fof 2w iS @ string of terminals generated by a known

sampling trees from the distribution over trees deg':G G, we would like to be able to infer the pro-

fined by a PCFG. Section 5 shows how to integratguction probabilitie® that best describe that corpus.
out the rule weight parametefsin a PCFG, allow- Taking w to be our data, we can apply Bayes’ rule

ing us to sample directly from the posterior distriby{EQuation 1) to obtain:
tion over parses for a corpus of strings. Finally, Sec-

P(6 P 0)P(0 here
tion 6 illustrates these methods in learning Sesotho (Blw) o< Pa(wld)P(6), w

n
morphology. Pa(wlo) = []Pa(wild).
i=1
2 Background Using t to denote a sequence of parse treeswor
we can compute the joint posterior distribution over
2.1 Probabilistic context-free grammars t andf, and then marginalize over with P(0|w) =

. NS R b >t P(t,0|w). The joint posterior distribution on
LetG = (T, N, S, R) be a Context-Free Grammarande is given by:

in Chomsky normal form with no useless produc-

tions, wherel" is a finite set oterminal symbolsN P(t,0lw) o« P(w|t)P(t|0)P(0)

is a finite set olhonterminal symbol&isjoint from n

T), S € N is a distinguished nonterminal called the = <H P(wi|ti)P(ti|9)> P(0)
start symbaland R is a finite set ofproductionsof i=1

the formA — BC or A — w, whereA, B,C € N
andw € T. In what follows we use} as a variable

ranging over(N x N)UT. 2.3 Dirichlet priors

A Probabilistic Context-Free Grammai,0) is  The first step towards computing the posterior dis-
a pair consisting of a context-free gramn@rand tripution is to define a prior 0. We takeP(6) to
a real-valued vectof of length| | indexed by pro- pe a product of Dirichlet distributions, with one dis-
ductions, wheré 4.5 is theproduction probability  tripution for each non-terminalt € N. The prior
associated with the productiod — § € R. We s parameterized by a positive real valued veetor
require that 4.5 > 0 and that for all nonterminals indexed by production®, so each production prob-
A€N, > s perbla—p=1 ability 045 has a corresponding Dirichlet param-

A PCFG(G,0) defines a probability distribution etera4_.3. Let R4 be the set of productions iR

with P(w;|t;) = 1if y(¢;) = w;, and0 otherwise.
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with left-hand sideA, and letd4 and a4 refer to large — in our case, the state space includes all pos-
the component subvectors 6fand o respectively sible parses of the entire training corpws— and
indexed by productions i 4. The Dirichlet prior the transition probabilitie® (s’|s) are specified via a
Pp(f|a)is: scheme guaranteed to converge to the desired distri-
bution 7 (s) (in our case, the posterior distribution).

Pp(fle) = Al;[N Pp(0alea), where We “run” the Markov chain (i.e., starting in initial
1 statesy, sample a state;, from P(s'|s(), then sam-
Pp(falaa) = Clon) 11 0o~ and ple states, from P(s'|s;), and so on), with the prob-
A reRy ability that the Markov chain is in a particular state,
(a, . i \ asi .
Clay) = [lrer, I'ar) @ P(s;), converging tar(s;) asi — oo

L, er, ar) After the chain has run long enough for it to ap-

where T is the generalized factorial function andproach its stationary distribution, the expectation

C(«) is a normalization constant that does not de]?“[f ) c.)f any function f(s) of the states W'I.I be
approximated by the average of that function over
pend ord 4. .
the set of sample states produced by the algorithm.

Dirichlet priors are useful because they amn- . .
jugate to the distribution over trees defined by aFOr example, in our case, given sampiéso;) for
) , = 1,...,¢ produced by an MCMC algorithm, we

PCFG. This means that the posterior distributiod _ "
) . can estimat® as

on ¢ given a set of parse treeB(d|t, «), is also a

Dirichlet distribution. Applying Bayes’ rule,

1 l
EF[H] ~ - 61
Pg(0t,a) o< Pg(t|0) Pp(d]a) g;

x <H 9{*“) (H 97%1) The remainder of this paper presents two MCMC
reR reR algorithms for PCFGs. Both algorithms proceed by

= H a,fr(t)““*l setting the initial state of the Markov chain to a guess
reR for (t,0) and then sampling successive states using

which is a Dirichlet distribution with Ioarametersaparticular transition matrix. The key difference be-
f(t) + o, wheref(t) is the vector of production tWen the two algorithms is the form of the transition

counts int indexed byr € R. We can thus write; ~ Matrix they assume.

Pa(0t,a) = Pp(0f(t) + ) 3 A Gibbs sampler for P(t, 0|w, «)
which makes it clear that the production counts conTrhe Gibbs sampler (Geman and Geman, 1984) is
bine directly with the parameters of the prior. one of the simplest MCMC methods, in which tran-

sitions between states of the Markov chain result
_ _ _ S from sampling each component of the state condi-
Having defined a prior o, the posterior distribu- tioned on the current value of all other variables. In

tion overt and @ is fully determined by a corpus our case, this means alternating between sampling
w. Unfortunately, computing the posterior probabil-from two distributions:

ity of even a single choice daf andd is intractable,
as evaluating the normalizing constant for this dis-
tribution requires summing over all possible parses
for the entire corpus and all sets of production prob- p(git w o) = Pp(0[f(t) + )
abilities. Nonetheless, it is possible to define al- _ H P (0alfa(t) + )
gorithms that sample from this distribution using et bivAltA 4)-
Markov chain Monte Carlo (MCMC).

MCMC algorithms construct a Markov chain Thus every two steps we generate a new sample of
whose states € S are the objects we wish to sam-t and#. This alternation between parsing and up-
ple. The state spac8 is typically astronomically dating# is reminiscent of the EM algorithm, with

2.4 Markov chain Monte Carlo

P(t|0,w,a) = HP(tilwi,G), and
i=1
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QAy e QA e (A the Inside-Outside algorithm for PCFGs (Lari and

i i i Young, 1990). The second step involves a recursion
Oa, oo 04, . Oay from larger to smaller strings, sampling from the
/ \ productions that expand each string and construct-
£ o t, o s ing the corresponding tree in a top-down fashion.
i i i In this section we take to be a string of terminal
W w; w, symbolsw = (wy,...,w,) where eachw; € T,
and definew; , = (wiy1,...,w) (i.e., the sub-

string from w;,1 up to wy). Further, letG4 =
Q'T, N, A, R), i.e., a CFG just like7 except that the
start symbol has been replaced withso,P¢ , (£|0)

is the probability of a tre¢ whose root node is la-
the Expectation step replaced by samplirend the beled A andP¢ , (w|f) is the sum of the probabili-
Maximization step replaced by samplifig ties of all trees whose root nodes are labeledith

The dependencies among variables in a PCFG ayteld w.

depicted graphically in Figure 1, which makes clear The Inside algorithm takes as input a PCFG
that the Gibbs sampler is highly parallelizable (jus{G, #) and a stringw = wy, and constructs a ta-
like the EM algorithm). Specifically, the parsés ble with entriesp, ;, for eachA € N and0 <
are independent giveth and so can be sampled ini < k < n, wherepa;; = P, (w;|0), i.e., the
parallel from the following distribution as describedprobability of A rewriting tow; ;. The table entries

Figure 1. A Bayes net representation of depende
cies among the variables in a PCFG.

in the next section. are recursively defined below, and computed by enu-
P (t]6) merating all feasiblé, £ and A in any order such that
Pg(tilwi,0) = 713@(11)"9) all smaller values ok —i are enumerated before any
7

larger values.
We make use of the fact that the posterior is a

product of independent Dirichlet distributions inor- pa 11 = 0a—w,
der to _sgrnple? from Pp(0|t, ). The production Pair = Z Z 0a—BC PB,ij PCjk
probabilities 4 for each nonterminak € N are A—BCER icjek

sampled from a Dirchlet distibution with parameters o
o/y = fa(t) + aa. There are several methods forforall 4, B,C € Nand0 <4 <j <k <n. Atthe
samplingd = (61, ...,6,,) from a Dirichlet distri- €nd of the Inside algorithn®¢;(w[f) = ps,0,n-

bution with parameters: = (a1, ..., a.,), withthe ~ The second step of the sampling algorithm uses
simplest being sampling; from a Gammé;) dis- the function MPLE, which returns a sample from
tribution for j = 1,...,m and then setting; = Pa(t/w,0) given the PCFGG,0) and the inside
xj/ S0 . (Gentle, 2003). table p4;,. SAMPLE takes as arguments a non-
terminal A € N and a pair of string positions
4 Efficiently sampling from P(¢|w, 0) 0 < i < k < n and returns a tree drawn from

This section completes the description of the GibbgGA (t_’wi’k’ 0). It fun(_:t|ons in & top-down fashion,
sampler for(t, #) by describing a dynamic program- selecting the prqductlon - B C to expand thed,
ming algorithm for sampling trees from the set o nd then recurswely calling itself to expartiand
parses for a string generated by a PCFG. This a€ respectively.

gorithm appears fairly widely known: it was de- {,nction SAMPLE(A, i, k) :

scribed by Goodman (1998) and Finkel et al (2006)if 1. _ ; — 1 then return REE(A, wy)

and used by Ding et al (2005), and is very simi- (j, B,C) = MULTI (A, i, k)

lar to other dynamic programming algorithms for i, TREE(A, SAMPLE(B, 4, j), SAMPLE (C, 7, k)
CFGs, so we only summarize it here. The algo-

rithm consists of two steps. The first step conin this pseudo-code, REE is a function that con-
structs a standard “inside” table or chart, as used istructs unary or binary tree nodes respectively, and
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MULTI is a function that produces samples from D Cloa +£4(t))

a multinomial distribution over the possible “split” ey Claa +fa(t—y))
positions j and nonterminal childrenB and C,
where: Now, if we could sample from
GH P ZGP 1|0 P itiPtit,i,
P(],B,C) _ A—BC GB(w 7]| ) Gc(wj,k| ) P(ti]wi,t_i,a) (U}| ) ( | Oé)
PGA (wi7k|9) P(wi]t_i, Oé)
5 A Hastings sampler forP(t|w, «) we could construct a Gibbs sampler whose states

were the parse treas Unfortunately, we don’t even

The Gibbs sampler described in Section 3 hag,o if there is an efficient algorithm for calculat-
the disadvantage that each sample @f re- g p(y,(t_; a), let alone an efficient sampling al-
quires reparsing the training corpuss. In gorithm for this distribution.

this section, we describe a component-wise rqrynately, this difficulty is not fatal. A Hast-
Hastings algorithm for sampling directly from ygs sampler for a probability distribution(s) is
P(t|w,a), marginalizing over the produc- 5n MCMC algorithm that makes use ofpeoposal

tion probabilities 6. Trangltlons between istribution Q(s'|s) from which it draws samples,
states are produced by sampling pargesrom 50 yses an acceptance/rejection scheme to define a
P(tifwi, t—;, @) for each stringw; in turn, where  yansition kernel with the desired distributior(s).

t—i = (tr,-- o timastir, -, 1n) 1S the cument set gpecifically, given the current statea samples’ #

of parses fow_; = (wi, ..., wi—1, Wit+1,---sWn)- ¢ drawn fromQ(s'|s) is accepted as the next state
Marginalizing over 6 effectively means that the i probability

production probabilities are updated after each

sentence is parsed, so it is reasonable to expect , ) m(s")Q(s]s)

that this algorithm will converge faster than the (s,8) = mm{l’ W(S)Q(qu)}

Gibbs sampler described earlier. While the sampler

does not explicitly provide samples éfthe results and with probabilityl — A(s, s’) the proposal is re-

outlined in Sections 2.3 and 3 can be used to sampcted and the next state is the current state

the posterior distribution ovet for each sample of ~We use a component-wise proposal distribution,

t if required. generating new proposed values fgr wherei is
Let Pp(f|a) be a Dirichlet product prior, and let chosen at random. Our proposal distribution is the

A be the probability simplex fof. Then by inte- posterior distribution over parse trees generated by

grating over the posterior Dirichlet distributions wethe PCFG with grammag and production proba-

have: bilities #’, wheref’ is chosen based on the current
t_; as described below. Each step of our Hastings
P(tla) = / P (t|0)Pp(0|a)do sampler is as follows. First, we compué from
A t_; as described below. Then we samp)efrom
— H Claa +fa(t)) (3) P(ti|wi,0') using the algorithm described in Sec-
AN C(aa) tion 4. Finally, we accept the proposdlgiven the

] ] ] old parset; for w; with probability:
where C' was defined in Equation 2. Because we

are marginalizing ovef, the treeg; become depen- { P () |wi, t_;,
min < 1 L

dent upon one another. Intuitively, this is because‘l(’fi»t;‘) =
w; may provide information about that influences , ,
how some other string); should be parsed. — min {1 P(tift i, )P (ti|wi, 0 )}
We can use Equation 3 to compute the conditional TP (tift—i, )P (t]|w;, ')
probability P(¢;|t _;, ) as follows:

)P (ti|wi, 0)
’ P(ti]wi, t_z‘, Q)P(t; ’U)Z', 9/)

The key advantage of the Hastings sampler over the
P(t|a) Gibbs sampler here is that because the acceptance
P(tilt—, @) Pt i) probability is a ratio of probabilities, the difficult to
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computeP (w;|t_;, «) is a common factor of both 5
the numerator and denominator, and hence is not re- 4
quired. TheP(w;|t;) term also disappears, being p(g, )3
for both the numerator and the denominator since 2
our proposal distribution can only generate trees for
which w; is the yield. =

All that remains is to specify the production prob- O eerandaecod)
abilities ¢’ of the proposal distributiof® (¢;|w;, 0"). Binomial parametef;
While the acceptance rule used in the Hastings

algorithm ensures that it produces samples frofgigyre 2: A Dirichlet priore on a binomial parame-
: .

P(tijwi, t—i, ) with any proposal grammaf’ in  terg, Asa; — 0, P(6;]a) is increasingly concen-

which all productions have nonzero probability, thg,ated around.

algorithm is more efficient (i.e., fewer proposals are

rejected) if the proposal distribution is close to th%hat represent only major phrasal categories ignore

distribution to be sampled. . ) . .
. . a wide variety of lexical and syntactic dependen-
Given the observations above about the corre- .
cies in natural language. State-of-the-art systems
spondence between terms R(¢;|t_;,a) and the

for unsupervised syntactic structure induction sys-

relative frequency of the corresponding production%m uses models that are very different to these kinds

; ) / .
n tf“ we set” to the expected valuB[f[t —;, ] of of PCFGs (Klein and Manning, 2004; Smith and
0 givent_; and« as follows: .

Eisner, 2006}.

I T--F

, fr(t—i) + ay Our goal in this section is modest: we aim merely
0, = S e frr(t—i) + ap to provide an illustrative example of Bayesian infer-
reta ence using MCMC. As Figure 2 shows, when the
6 Inferring sparse grammars Dirichlet prior parametery,. approaches 0 the prior

. . . . ) robability P (0 becomes increasingly concen-
As stated in the introduction, the primary contrlbu-p YPp(0r]e) gy

. . . . trated around 0. This ability to bias the sampler
tion of this paper is introducing MCMC methods ) 'S abity 1as 3amp

o : .. “toward sparse grammars (i.e., grammars in which
for BaYeS'f"‘” mference.to computaponal I'ngl.“s“csmany productions have probabilities close to 0) is
Bayes_lan _mference using MCM(? 'S a te(_:hr_nqu'e 0Fjseful when we attempt to identify relevant produc-
generic utility, much like Expectation-Maximization tions from a much larger set of possible productions

and other general inference techniques, and we & parameter estimation

lieve that it belongs in every computational linguist's The Bantu language Sesotho is a richly agglutina-

toc;ll;ox_alongs@;éEzsesthzr techbnlquttra]s. i tive language, in which verbs consist of a sequence
i nterrlr:g a ¢ ¢ OI Iescrl € e syn gc_'of morphemes, including optional Subject Markers
Ic structure ‘ot a natural language 1S an o V"(SM), Tense t), Object Markers ™M), Mood (M)
ous application of grammar inference techniques

o ) and derivational affixes as well as the obligato
and it is well-known that PCFG inference us- gatory

. . o . Verb stem ¥), as shown in the following example:
ing maximum-likelihood techniques such as the 0 g P

Inside-Outside (10) algorithm, a dynamic program- re -a-di -bona

ming Expectation-Maximization (EM) algorithm for SMTOMV M

PCFGs, performs extremely poorly on such tasks. “We see them”

We have applied the Bayesian MCMC methods de- it is easy to demonstrate that the poor quality of the PCFG
scribed here to such problems and obtain resultgodels is the cause of these problems rather than seardhesr ot
algorithmic issues. If one initializes either the IO or Bsigs

very similar to those produced using 10. We be'estimation procedures with treebank parses and then rans th

lieve that the primary reason why both 10 and throcedure using the yields alone, the accuracy of the parses
Bayesian methods perform so poorly on this tasfermly decreases while the (posterior) likelihood unifdyrm-

. . creases with each iteration, demonstrating that improwiiey
is that simple PCFGs are not accurate models osterior) likelihood of such models does not improve pars
English syntactic structure. We know that PCFGaccuracy.
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We used an implementation of the Hastings samplgusted toward 1, sped the convergence of both algo-
described in Section 5 to infer morphological parsesthms. We ran both algorithms for several thousand
t for a corpusw of 2,283 unsegmented Sesothdterations over the corpus, and both seemed to con-
verb types extracted from the Sesotho corpus avaierge fairly quickly oncer was set to 1. “Jittering”
able from GHILDES (MacWhinney and Snow, 1985; the initial estimate of used in the 10 algorithm also
Demuth, 1992). We chose this corpus because tlsped its convergence.

words have been morphologically segmented manu- The 10 algorithm converges to a solution where
ally, making it possible for us to evaluate the morfyorq _. v = 1, and every stringv € w is analysed
phological parses produced by our system. We coms a single morphem¥. (In fact, in this grammar
structed a CFG- containing the following produc- P(w;|0) is the empirical probability ofv;, and it is
tions easy to prove that thigis the MLE).

Word — V The sampleg produced by the Hastings algo-
Word — VM rithm depend on the parameters of the Dirichlet
Word — SMVM prior. We seta, to a single valuex for all pro-
Word — SMTVM ductionsr. We found that for > 10~2 the sam-
Word — SMTOMVM

ples produced by the Hastings algorithm were the
together with productions expanding the pretermisame trivial analyses as those produced by the 10
nalsSM, T, OM, V andM to each of the 16,350 dis- algorithm, but asa was reduced below this be-
tinct substrings occuring anywhere in the corpusgan to exhibit nontrivial structure. We evaluated
producting a grammar with 81,755 productions irthe quality of the segmentations in the morpholog-
all. In effect, G encodes the basic morphologi-ical analyseg in terms of unlabeled precision, re-
cal structure of the Sesotho verb (ignoring factorgall, f-score and exact match (the fraction of words
such as derivation morphology and irregular forms)correctly segmented into morphemes; we ignored
but provides no information about the phonologicamorpheme labels because the manual morphological
identity of the morphemes. analyses contain many morpheme labels that we did
Note thatG' actually generates fnite language. not include inG). Figure 3 contains a plot of how
However,G' parameterizes the probability distribu-these quantities vary with; obtaining an f-score of
tion over the strings it generates in a manner tha.75 and an exact word match accuracy of 0.54 at
would be difficult to succintly characterize excepto = 10~ (the corresponding values for the MLE
in terms of the productions given above. Moreoverare both 0). Note that we obtained good results: as
with approximately 20 times more productions thawas varied over several orders of magnitude, so the
training strings, each string is highly ambiguous andctual value ofx is not critical. Thus in this appli-
estimation is highly underconstrained, so it providegation the ability to prefer sparse grammars enables
an excellent test-bed for sparse priors. us to find linguistically meaningful analyses. This
We estimated the morphological parged two  ability to find linguistically meaningful structure is
ways. First, we ran the IO algorithm initialized relatively rare in our experience with unsupervised
with a uniform initial esgimate% for 6 to produce PCFG induction.
an estimate of the MLE, and then computed the  We also experimented with a version of |0 modi-
Viterbi parses of the training corpusv with respect  fied to perform Bayesian MAP estimation, where the
to the PCFG(G, 0). Second, we ran the HastingsMaximization step of the 10 procedure is replaced
sampler initialized with trees sampled frof@, ;)  with Bayesian inference using a Dirichlet prior, i.e.,

with several different values for the parameters ofvhere the rule probabilitieé*) at iterationk are es-
the prior. We experimented with a number of techtimated using:

niques for speeding convergence of both the |10 and

Hastings algorithms, and two of these were particu- %)« max(0, E[f,|w, 0% D] + a —1).

larly effective on this problem. Annealing, i.e., us-

ing P(t|w)'/7 in place ofP(t|w) wherer is a“tem-  Clearly such an approach is very closely related to
perature” parameter starting around 5 and slowly adhe Bayesian procedures presented in this article,
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1 F-score— meaningful structure. We attribute this to the ability

Precision--- ) .
075 - So Recall- - - - of the Bayesian prior to prefer sparse grammars.
We expect that these algorithms will be of inter-
0.5 est to the computational linguistics community both
0. 251 because a Bayesian approach to PCFG estimation is

more flexible than the Maximum Likelihood meth-

O T T 05— st —1e.10 00s that currently dominate the field (c.f., the use
Dirichlet prior parametexy, of a prior as a bias towards sparse solutions), and

because these techniques provide essential building

Figure 3: Accuracy of morphological segmentation®l0cks for more complex models.
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Abstract

We relate the problem of finding the best
application of a Synchronous Context-
Free Grammar (SCFG) rule during pars-
ing to a Markov Random Field. This
representation allows us to use the the-
ory of expander graphs to show that the
complexity of SCFG parsing of an input
sentence of lengthv is Q(N°"), for a
grammar with maximum rule lengthhand
some constant. This improves on the
previous best result gB(N°V™).

such that tabular parsing strategies must take at least
Q(NeV™), that is, the exponent of the algorithm is
proportional to the square root of the rule length.
In this paper, we improve this result, showing that
in the worst case the exponent grows linearly with
the rule length. Using a probabilistic argument, we
show that the number of easily parsable permuta-
tions grows slowly enough that most permutations
must be difficult, where by difficult we mean that the
exponent in the complexity is greater than a constant
factor times the rule length. Thus, not only do there
exist permutations that have complexity higher than
the square root case of Satta and Peserico (2005),

but in fact the probability that a randomly chosen
permutation will have higher complexity approaches
one as the rule length grows.

Recent interest in syntax-based methods for statis- Our approach is to first relate the problem of
tical machine translation has lead to work in parsfinding an efficient parsing algorithm to finding the
ing algorithms for synchronous context-free gramtreewidthof a graph derived from the SCFG rule’s
mars (SCFGs). Generally, parsing complexity depermutation. We then show that this class of graphs
pends on the length of the longest rule in the granare expander graphswhich in turn means that the
mar, but the exact nature of this relationship has onliyeewidth grows linearly with the graph size.
recently begun to be explored. It has been known i _

since the early days of automata theory (Aho ana Synchronous Parsing Strategies

Ulliman, 1972) that the languages of string pairs genpfe write SCFG rules as productions with one
erated by a synchronous grammar can be arrangediéfthand side nonterminal and two righthand side
an infinite hierarchy, with each rule size 4 pro- strings. Nonterminals in the two strings are linked
ducing languages not possible with grammars reyith superscript indices; symbols with the same in-

stricted to smaller rules. For any grammar withdex must be further rewritten synchronously. For ex-

maximum rule sizen, a fairly straightforward dy- ample,

namic programming strategy yields @&{N""4) al-

gorithm for parsing sentences of length How-
- ) , @)

ever, this is often not the best achievable complexm{,S a rule with four children and no reorderina. while

and the exact bounds of the best possible algorithms 9

are not known. Satta and Peserico (2005) showed X — A1) B2 ¢®) p® = B p) A1) ¢G)

that a permutation can be defined for any length 2

1 Introduction

X — AW B@ ¢B) p@) 40 p@ ¢6) p@)
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Algorithm 1 BottomUpParser(gramma#, input stringse, f)
for xg, x, such thatl < z¢ < z,, < |e| in increasing order of;,, — z( do
for yo, y, such thatl < yo < y,, < |f| in increasing order of;,, — yo do
for RulesR of form X — XV x{, X(T(;))...X(?(’)‘)) in G do

(1 w(n
p= P(R) max H O(Xis Tim1, T4, Yr(i)— 15 Yn (i)
Y1--Yn—1 1
(S(X, L0y Tn, YO, yn) — max{&(X, 0, Tns Yo, yn)vp}
end for
end for
end for

expresses a more complex reordering. In generalearch; making this step more efficient is our fo-

we can take indices in the first grammar dimeneus in this paper. The maximization can be done
sion to be consecutive, and associate a permutatianth further dynamic programming, storing partial

7 with the second dimension. If we usk; for results which contain some subset of an SCFG rule’s
0 < i < n as a set of variables over nonterminakighthand side nonterminals that have been recog-
symbols (for exampleX; and X, may both stand nized. A parsing strategy for a specific SCFG rule
for nonterminalA), we can write rules in the gen- consists of an order in which these subsets should

eral form: be combined, until all the rule’s children have been
) (= (1)) (x(n) recognized. The complexity of an individual parsing
Xo— XX, Xaa) X step depends on the number of free boundary vari-

ables, each of which can take(N) values. It is

Grammar rules also contain terminal symbols, but ey helpful to visualize parsing strategies on the
their position does not affect parsing complexity, Wepermutation matrixcorresponding to a rule’s per-

focus on nonterminals and their associated permutas i~vionr Figure 1 shows the permutation matrix
tion 7 in the remainder of the paper. In a probabilis-

) _ of rule (2) with a three-step parsing strategy. Each
tic grammar, each rulé? has an associated proba-p,ne| shows one combination step along with the
bility P(R). The synchronous parsing problem con

X s > ) " 'projections of the partial results in each dimension;
sists of finding the tree covering both strings havingy,q ongnoints of these projections correspond to free
the maximum product of rule probabilitiés.

N boundary variables. The second step has the high-
We assume synchronous parsing is done by stols nmher of distinct endpoints, five in the vertical

ing a dynamic programming table of recognizedjiension and three horizontally, meaning parsing
nonterminals, as outlined in Algorithm 1. We referCan be done in im& (V).

to_a dyn_amic pr_o_gramming it_em.for a given nonter- As an example of the impact that the choice of
minal with specm_ed boundaries in each Iangugg_e q&:‘arsing strategy can make, Figure 2 shows a per-
gcell. The algorlthm_computes cells b_y MaxiMIZ-y ytation for which a clever ordering of partial re-
ing overboundary variables:; andy;, which range sults enables parsing in tim@(N'0) in the length

over positions in the two input strings, and ?pec!fyof the input strings. Permutations having this pattern

beglnnln_g and end points for the SCFG rule’s Ch'lq)f diagonal stripes can be parsed using this strat-

nonterminals. , egy in time O(N'?) regardless of the length of
The maximization in the inner loop of Algo- the SCFG rule, whereas aina strategy proceeding

rithm 1 is the most exper;siVQe part of the proceg,m |eft to right in either input string would take
dure, as it would take)(N-"~*) with exhaustive time O(N"+3)

We describe our methods in terms of the Viterbi algorithm .
(using the max-product semiring), but they also apply to non2.1 Markov Random Fields for Cells

probabilistic parsing (boolean semiring), language modelin . . L
(sum-product semiring), and Expectation Maximization (withSFn this section, we connect the maximization of

inside and outside passes). probabilities for a cell to the Markov Random Field

148



{A,B,C,D} :I | Y4 :|| \Z | Y4

¥3 y3 Y3

/\ Y2 B Y2 | Y2

{A,B,C} {D} :I | y1 } | y1 ‘ Y1

N Yo | Yo Yo
9{} {C} X0 X1 X2 X3 Xg X0 X1 X2 X3 X4 X0 X1 X2 X3 X4
{4} {B} — — —

[ | — — T 1

Figure 1: The tree on the left defines a three-step parsing strategydof2). In each step, the two subsets
of nonterminals in the inner marked spans are combined into a new chart itentheithuter spans. The
intersection of the outer spans, shaded, has now been processethrKicindicate distinct endpoints of the
spans being combined, corresponding to the free boundary variables.

(MRF) representation, which will later allow us to "]
use algorithms and complexity results based on the - - [ |
graphical structure of MRFs. A Markov Random u
Field is defined as a probability distribut®over a ] I. (W]
set of variablex that can be written as a product of [} = u
factors f; that are functions of various subsatsof ‘ [
x. The probability of an SCFG rule instance com- } ‘ ? ﬂ
puted by Algorithm 1 can be written in this func- u !
tional form: — —
0%(x) = P(R) H filxi) Figure 2: A parsing strategy maintaining two spans
‘ in each dimension i© (N '°) for any length permu-
where tation of this general form.
x ={zj,y;} for0<i<n
Xi = {Ti—1, Ti, Yr(i)—1> Ym (i) } value of 1 so as not to change the probabilities com-

puted.

Thus an SCFG rule with child nonterminals al-
ways results in a Markov Random Field wih + 2
variables and + 1 factors, with each factor a func-
tion of exactly four variables.

Markov Random Fields are often represented as
graphs. Afactor graphrepresentation has a node

For reasons that are explained in the followingor each variable and factor, with an edge connect-
section, we augment our Markov Random Fielding each factor to the variables it depends on. An ex-
with a dummy factor for the completed parent nonample for rule (2) is shown in Figure 3, with round
terminal’s chart item. Thus there is one dummy facnodes for variables, square nodes for factors, and a
tor d for each grammar rule: diamond for the special dummy factor.

and the MRF has one factgy for each child nonter-
minal X; in the grammar rule?. The factor’s value
is the probability of the child nonterminal, which can
be expressed as a function of its four boundaries:

filxi) = 0(Xi, i1, Tis Yu(i) =15 Ym(3))

d(xo, T, Yo, yn) = 1 2.2 Junction Trees

d functi fthe f bound Efficient computation on Markov Random Fields
expressec as a function ol the Jomter boundary i performed by first transforming the MRF into

variablesof the completed rule, but with aconstanta junction tree (Jensen et al., 1990; Shafer and

2In our case unnormalized. Shenoy, 1990), and then applying the standard
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Figure 3: Markov Random Field for rule (2). ~ Figure 4: The graphs resulting from connecting
all interacting variables for the identity permutation

, _ _ (1,2,3,4) (top) and the(2,4,1,3) permutation of
message-passing algorithm for graphical models, o (2) (bottom).

over this tree structure. The complexity of the mes-

sage passing algorithm depends on the structure of _
the junction tree, which in turn depends on the gralochm works from the leaves of the tree inward, alter-

structure of the original MRF. nately multiplying in potential functions and maxi-
A junction tree can be constructed from a MarkoyMiZing over variables that are no longer needed, ef-
Random Field by the following three steps: fectively distributing thenax and product operators

S0 as to minimize the interaction between variables.
e Connect all variable nodes that share a factolhe complexity of the message-passin@ig.N*),
and remove factor nodes. This results in thevhere the junction tree contail(n) clusters,k is
graphs shown in Figure 4. the maximum cluster size, and each variable in the
cluster can takév values.
However, the standard algorithm assumes that the
ctor functions are predefined as part of the input.
In our case, however, the factor functions themselves

e Decompose the triangulated graph into a tree gfepend on message-passing calculations from other
cligues. grammar rules:

e Choose driangulation of the resulting graph,
by adding chords to any cycle of length greateFa
than three.

We call nodes in the resulting tree, corresponding fi(x;) = 6(Xi,xl-,1,xi,yﬁ(i)_l,yﬂ(i))
to cliques in the trl'angulat_ed gra_phlgsters Ea_ch — max P(R) max 5R’(X/) 3)
cluster has gotential functionwhich is a function R:X;—a,8 x':
of the variables in the cluster. For each factor in the
original MRF, the junction tree will have at least one
cluster containing all of the variables on which the We must modify the standard algorithm in order
factor is defined. Each factor is associated with oni® interleave computation among the junction trees
such cluster, and the cluster’'s potential function isorresponding to the various rules in the grammatr,
set to be the product of its factors, for all combinausing the bottom-up ordering of computation from
tions of variable values. Triangulation ensures thailgorithm 1. Where, in the standard algorithm, each
the resulting tree satisfies thenction tree property message contains a complete table for all assign-
which states that for any two clusters containing thenents to its variables, we break these into a sepa-
same variable, all nodes on the path connecting therate message for each individual assignment of vari-
clusters also contain. A junction tree derived from ables. The overall complexity is unchanged, because
the MRF of Figure 3 is shown in Figure 5. each assignment to all variables in each cluster is
The message-passing algorithm for graphicadtill considered only once.
models can be applied to the junction tree. The algo- The dummy factor ensures that every junction

N A
xo—xthxn/—xz

Yo=Y (i—1) Y. =Y (i)
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X0 X3 X4 Y0Y2Y3Y4 converted into a junction tree as follows:

e For each leaf of the recursive partition, which

@@ represents' a single c_hild nonte_rmirval cre-
ate a leaf in the junction tree with the cluster

(Ti-1, T4, Yr(i)—1, Yr()) @nd the potential func-

@ tion fl (xi—la L, yﬂ(i)fla yT('(’L))

tion, create a corresponding node in the junc-
tion tree.

tree we derive from an SCFG rule has a cluster con-

taining all four outer boundary variables, allowing e Add each variable; to all nodes in the junction
efficient lookup of the inner maximization in (3). tree on the path from the node for child nonter-
Because the outer boundary variables need not ap- minali — 1 to the node for child nonterminal
pear throughout the junction tree, this technique al- ~ Similarly, add each variablg,; to all nodes
lows reuse of some partial results across different in the junction tree on the path from the node
outer boundaries. As an example, consider message for child nonterminalr (i) — 1 to the node for
passing on the junction tree of shown in Figure 5,  child nonterminalr ().

which corresponds to the parsing strategy of Fig- gecayse each variable appears as an argument of
ure 1. Only the final step involves all four bound-o )y o factors, the junction tree nodes in which it
aries of the complete cell, but the most complex steg present form a linear path from one leaf of the tree
Is the second, with a total of eight boundaries. Thig, gnother. Since each variable is associated only

efficient reuse would not be achieved by applyingyith nodes on one path through the tree, the result-

the junction tree technique directly to the maximizamg tree will satisfy the junction tree property. The

tion operator in Algorithm 1, because we would b&ee strycture of the original recursive partition im-
f!xmg the outer boundgrles and ComPU“”g the JUNGslies that the variable rises from two leaf nodes to
tion tree only over the inner boundaries. the lowest common ancestor of both leaves, and is
not contained in any higher nodes. Thus each node
in the junction tree contains variables correspond-
The complexity of the message passing algorithrimg to the set of endpoints of the spans defined by
over an MRF’s junction tree is determined by thehe two subsets corresponding to its two children.
treewidthof the MRF. In this section we show that, The number of variables at each node in the junction
because parsing strategies are in direct correspatnee is identical to the number of free endpoints at
dence with valid junction trees, we can use treewidtthe corresponding combination in the recursive par-
to analyze the complexity of a grammar rule. tition.

We define a tabular parsing strategy as any dy- Because each recursive partition corresponds to a
namic programming algorithm that stores partial rejunction tree with the same complexity, finding the
sults corresponding to subsets of a rule’s child norbest recursive partition reduces to finding the junc-
terminals. Such a strategy can be represented agi@n tree with the best complexity, i.e., the smallest
recursive partition of child nonterminals, as showmmaximum cluster size.
in Figure 1(left). We show below that a recursive Finding the junction tree with the smallest clus-
partition of children having maximum complexity ter size is equivalent to finding the input graph’s
at any step can be converted into a junction tree hatreewidth the smalleskt such that the graph can be
ing k as the maximum cluster size. This implies thaembedded in &-tree. In general, this problem was
finding the optimal junction tree will give a parsingshown to be NP-complete by Arnborg et al. (1987).
strategy at least as good as the strategy of the opkitowever, because the treewidth of a given rule lower
mal recursive partition. bounds the complexity of its tabular parsing strate-

A recursive partition of child nonterminals can begies, parsing complexity for general rules can be

3 Treewidth and Tabular Parsing
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bounded with treewidth results for worst-case ruled,emma 4.2 Let G be ak-regular graph. Letn be
without explicitly identifying the worst-case permu-the number of vertices @¥. Let )\, be the second
tations. largest eigenvalue af. Then

n

2k — A J —1
| . | ¢ 2)

In this section, we .show that the treewidth of t.he Note that in our settings — 3. In order to use
graphs corresponding to worst-case permutatlorLs

growths linearly with the permutation’s length. Our emma 4.2 we will need to give a lower bound on
. } the eigenvalue gap — \» of G.
strategy is as follows:

4 Treewidth Grows Linearly tw(G) > L

1. Define a 3-regular graph for an input permu#-1 Edge Expansion
tation consisting of a subset of edges from th&he edge-expansionf a set of verticed’ is the ra-
original graph. tio of the number of edges connecting verticeq'in
. to the rest of the graph, divided by the number of
2. Show that the edge-expansion of the 3-regu|§/r : : grapn. dwvi y )
. ertices inT,
graph grows linearly for randomly chosen per-
mutations. |[E(T,V =T

T
3. Use edge-expansion to bound the spectral gap. d

where we assume th#if’| < |V|/2. The edge ex-
pansion of a graph is the minimum edge expansion
For the first step, we defin = (V, E') as aran- of any subset of vertices:
dom 3-regular graph o2n vertices obtained as fol- E(T,V —T)|
lows. LetGy = (Vl,El) andGy = (VQ,EQ) be h(G) = min —; : .
cycles, each on a separate setofertices. These Tev min{|T}, [V =T}
two cycles correspond to the edges, ;1) and Intuitively, if all subsets of vertices are highly con-
(i yit1) In the graphs of the type shown in Fig-nected to the remainder of the graph, there is no way
ure 4. LetM be a random perfect matching be-to decompose the graph into minimally interacting
tweenV; andV;. The matching represents the edgesubgraphs, and thus no way to decompose the dy-
(7, Yx(;)) Produced from the input permutation  namic programming problem of parsing into smaller
Let H be the union ofG1, G2, and M. While H  pieces.
contains only some of the edges in the graphs de- Let (}) be the standard binomial coefficient, and
fined in the previous section, removing edges cannr o € R, let
increase the treewidth.
For the second step of the proof, we use a proba- n Lo n
bilistic argument detailed in the next subsection. <§ a) - Z (k)
For the third step, we will use the following con-
nection between the edge-expansion and the eigei¥e will use the following standard inequality valid
value gap (Alon and Milman, 1985; Tanner, 1984).for 0 < a < n:

4. Use spectral gap to bound treewidth.

k=0

Lemma 4.1 Let G be ak-regular graph. Let\, be ( n ) < (@)"‘ 4)
the second largest eigenvalue®f Leth(G) be the Sa a

edge-expansion &. Then Lemma 4.3 With probability at leas0.98 the graph

h(G)? H has edge-expansion at ledsts0.

2k
Proof :
Finally, for the fourth step, we use a relation bey o . — 1/50. Assume that” C V is a set with a
tween the eigenvalue gap and treewidth for regus. edge-expansion, . e. o

lar graphs shown by Chandran and Subramanian
(2003). |E(T,V = T)| <e|T], 5)

k— X2 >
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and|T'| < |V|/2 = n. LetT; = T NnV; and let Thus

t; = |T;|, fori = 1,2. We will w.l.o.g. assume

t1 < to. We will denote ag; the number of spans of

consecutive vertices fromy; contained inZ’. Thus k> (1— 5)’51 tta (1= &)t )

20; = |E(T;,V; — T;)|, fori = 1,2. The spans - 2 -

counted by/; and/,; correspond to continuous spans

counted in computing the complexity of a chart pars- -

ing operation. However, unlike in the diagrams in! he Probability that there are (1 — )¢, edges be-

the earlier part of this paper, in our graph theoretiéveenT1 andT5 is bounded by

argument there is no requirement tfiaselect only

corresponding pairs of vertices frol and V5.

There are atleagi(¢,+/¢5)+to—t; edges between t1 to (1=e)ta

T andV — T. This is because there a?é; edges <§ 5751) <>

within V; at the left and right boundaries of tifg

spans, and at least — ¢, edges connecting the extra

vertices fromI?; that have no matching vertexi.  where the first term selects verticesTih connected

Thus from assumption (5) we have to T, and the second term upper bounds the proba-
ty— 1 < ety + t2) bility that the selected vertices are indeed connected

- to 75. Using 6, we obtain a bound in terms of

n

which in turn implies alone:
1
h<ty< ot ©)
1= t1 14+¢ (1-e)ta
. . t 10
Similarly, using (6), we have << 5t1> (1—5 n> , (10)

t.(7)

5 £
€1+€2§§(751+752)§ 1

That is, forT' to have small edge expansion,
the vertices inl; and75 must be collected into a
small number of spang and/,. This limit on the
number of spans allows us to limit the number o
ways of choosingl; and7T;. Suppose that; is
given. Any pairTy,T5 is determined by the edges
in E(Tl,‘/l — Tl), andE(Tg,Vg — TQ), and two
bits (corresponding to the possible “swaps” ‘Bf
with V; — T;). Note that we can choose at most
201 + 209 < t1-2¢/(1 — ¢) edges in total. Thus the n/2] (o)t
number of choices df;, andT5 is bounded above by 5 Z 4_< 2n > < t ) (1 +e t1> 1

<

2e
=1 < ety 1—¢ n
2n t1=0 1—¢
4 ( ) ® (11)

< 2 t1
= l-e where the factor of is due to the assumptian <
For a given choice off; andT, for T to have ¢,.

small edge expansion, there must also not be too
many edges that connéegt to vertices inVy — Tb.
Let k& be the number of edges betwe&n and Ts.
There are at least + t2 — 2k edges betweeh and
V — T and from assumption (5) we have

Combining the number of ways of choosifg
and7> (8) with the bound on the probability that the
dgesM from the input permutation connect almost
Il the vertices ini; to vertices fromI, (10), and
using the union bound over valuesigf we obtain
that the probabilityp that there existd” C V with
edge-expansion less thaiis bounded by:

The graphH is connected and hen@ehas at least
one out-going edge. Thereforetif + t2 < 1/¢, the
edge-expansion df is at leaste. Thus a set with
edge-expansion less thamust have; +ty > 1/e,
which, by (6), impliest; > (1 —¢)/(2¢). Thus the
t1 4+ ta — 2k < e(t1 + t2) sum in (11) can be taken forfrom [(1 — ¢)/(2¢)]
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0 |n/2]. Using (4) we obtain 5 Conclusion

1n/2) 2y " We have shovyn i_n the ex_ponent ip the complex-

<8 Z ( 2ne ) <tle> ity of polynomial-time parsing algorlthm.s for syn-
~ l%sgt ety chronous context-free grammars grows linearly with
=l the length of the grammar rules. While it is very

1+e¢ t1> —e)h ] expensive computationally to test whether a speci-

l—e n fied permutation has a parsing algorithm of a certain
complexity, it turns out that randomly chosen per-

n/2
/2] << e(l—¢ > (g)a mutations are difficult with high probability.
1

—
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Abstract

This paper introduces an unsupervised
morphological segmentation algorithm
that shows robust performance for four
languages with different levels of mor-
phological complexity. In particular, our
algorithm outperforms Goldsmith’s Lin-
guistica and Creutz and Lagus’s Mor-
phessor for English and Bengali, and
achieves performance that is comparable
to the best results for all three PASCAL
evaluation datasets. Improvements arise
from (1) the use of relative corpus fre-
quency and suffix level similarity for de-
tecting incorrect morpheme attachments
and (2) the induction of orthographic rules
and allomorphs for segmenting words
where roots exhibit spelling changes dur-
ing morpheme attachments.

1 Introduction

Morphological analysis is the task of segmenting a
word into morphemes, the smallest meaning-
bearing elements of natural languages. Though
very successful, knowledge-based morphological
analyzers operate by relying on manually designed
segmentation heuristics (e.g. Koskenniemi (1983)),
which require a lot of linguistic expertise and are
time-consuming to construct. As a result, research
in morphological analysis has exhibited a shift to
unsupervised approaches, in which a word is typi-
cally segmented based on morphemes that are
automatically induced from an unannotated corpus.
Unsupervised approaches have achieved consider-
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able success for English and many European lan-
guages (e.g. Goldsmith (2001), Schone and Juraf-
sky (2001), Freitag (2005)). The recent PASCAL
Challenge on Unsupervised Segmentation of
Words into Morphemes' has further intensified
interest in this problem, selecting as target lan-
guages English as well as two highly agglutinative
languages, Turkish and Finnish. However, the
evaluation of the Challenge reveals that (1) the
success of existing unsupervised morphological
parsers does not carry over to the two agglutinative
languages, and (2) no segmentation algorithm
achieves good performance for all three languages.
Motivated by these state-of-the-art results, our
goal in this paper is to develop an unsupervised
morphological segmentation algorithm that can
work well across different languages. With this
goal in mind, we evaluate our algorithm on four
languages with different levels of morphological
complexity, namely English, Turkish, Finnish and
Bengali. It is worth noting that Bengali is an under-
investigated Indo-Aryan language that is highly
inflectional and lies between English and Turk-
ish/Finnish in terms of morphological complexity.
Experimental results demonstrate the robustness of
our algorithm across languages: it not only outper-
forms Goldsmith’s (2001) Linguistica and Creutz
and Lagus’s (2005) Morphessor for English and
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when
evaluated on all three datasets in the Challenge.
The performance improvements of our segmen-
tation algorithm over existing morphological ana-
lyzers can be attributed to our extending Keshava
and Pitler’s (2006) segmentation method, the best
performer for English in the aforementioned

! http://www.cis.hut.fi/morphochallenge2005/
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PASCAL Challenge, with the capability of han-
dling two under-investigated problems:

Detecting incorrect attachments. Many existing
morphological parsers incorrectly segment “candi-
date” as “candid”+"“ate”, since they fail to identify
that the morpheme “ate” should not attach to the
word “candid”. Schone and Jurafsky’s (2001) work
represents one of the few attempts to address this
inappropriate morpheme attachment problem, in-
troducing a method that exploits the semantic re-
latedness between word pairs. In contrast, we
propose two arguably simpler, yet effective tech-
niques that rely on relative corpus frequency and
suffix level similarity to solve the problem.
Inducing orthographic rules and allomorphs.
One problem with Keshava and Pitler’s algorithm
is that it fails to segment words where the roots
exhibit spelling changes during attachment to mor-
phemes (e.g. “denial” = “deny”+*“al””). To address
this problem, we automatically acquire allomorphs
and orthographic change rules from an unannotated
corpus. These rules also allow us to output the ac-
tual segmentation of the words that exhibit spelling
changes during morpheme attachment, thus avoid-
ing the segmentation of “denial” as “deni”+”al”, as
is typically done in existing morphological parsers.

In addition to addressing the aforementioned
problems, our segmentation algorithm has two ap-
pealing features. First, it can segment words with
any number of morphemes, whereas many analyz-
ers can only be applied to words with one root and
one suffix (e.g. DéJean (1998), Snover and Brent
(2001)). Second, it exhibits robust performance
even when inducing morphemes from a very large
vocabulary, whereas Goldsmith’s (2001) and
Freitag’s (2005) morphological analyzers perform
well only when a small vocabulary is employed,
showing deteriorating performance as the vocabu-
lary size increases.

The rest of this paper is organized as follows.
Section 2 presents related work on unsupervised
morphological analysis. In Section 3, we describe
our basic morpheme induction algorithm. We then
show how to exploit the induced morphemes to (1)
detect incorrect attachments by using relative cor-
pus frequency (Section 4) and suffix level similar-
ity (Section 5) and (2) induce orthographic rules
and allomorphs (Section 6). Section 7 describes
our algorithm for segmenting a word using the in-
duced morphemes. We present evaluation results
in Section 8 and conclude in Section 9.
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2 Redated Work

As mentioned in the introduction, the problem of
unsupervised morphological learning has been ex-
tensively studied for English and many other
European languages. In this section, we will give
an overview of the related work on this problem.

Harris (1955) develops a strategy for identifying
morpheme boundaries that checks whether the
number of different letters following a sequence of
letters exceeds some given threshold. DéJean
(1998) improves Harris’s segmentation algorithm
by first inducing a list of 100 most frequent mor-
phemes and then using those morphemes for word
segmentation. The aforementioned PASCAL Chal-
lenge on Unsupervised Word Segmentation has
undoubtedly intensified interest in this problem.
Among the participating groups, Keshava and Pit-
ler’s (2006) segmentation algorithm combines the
ideas of DéJean and Harris and achieves the best
result for the English dataset, but it only offers me-
diocre performance for Finnish and Turkish.

There is another class of unsupervised morpho-
logical learning algorithms whose design is driven
by the Minimum Description Length (MDL) prin-
ciple. Specifically, EM is used to iteratively seg-
ment a list of words using some predefined
heuristics until the length of the morphological
grammar converges to a minimum. Brent et al.
(1995) are the first to introduce an information-
theoretic notion of compression to represent the
MDL framework. Goldsmith (2001) also adopts
the MDL approach, providing a new compression
system that incorporates signatures when measur-
ing the length of the morphological grammar.
Creutz (2003) proposes a probabilistic maximum a
posteriori formulation that uses prior distributions
of morpheme length and frequency to measure the
goodness of an induced morpheme, achieving bet-
ter results for Finnish but worse results for English
in comparison to Goldsmith’s Linguistica.

3 The Basic Morpheme Induction Algo-
rithm

Our unsupervised segmentation algorithm is com-
posed of two steps: (1) inducing prefixes, suffixes
and roots from a vocabulary that consists of words
taken from a large corpus, and (2) segmenting a
word using these induced morphemes. This section
describes our basic morpheme induction method.



3.1 Extractingalist of Candidate Affixes

The first step of our morpheme induction method
involves extracting a list of candidate prefixes and
suffixes. We rely on a fairly simple idea originally
proposed by Keshava and Pitler (2006) for extract-
ing candidate affixes. Assume that a and f are two
character sequences and o/ is the concatenation of
a and g. If af and a are both found in the vocabu-
lary, then we extract f as a candidate suffix. Simi-
larly, if af and f are both found in the vocabulary,
then we extract a as a candidate prefix.

The above affix induction method is arguably
overly simplistic and therefore can generate many
spurious affixes. To filter spurious affixes, we (1)
score each affix by multiplying its frequency (i.e.
the number of distinct words to which each affix
attaches) and its length’, and then (2) retain only
the K top-scoring affixes, where K is set differently
for prefixes and suffixes. The value of K is some-
what dependent on the vocabulary size, as the af-
fixes in a larger vocabulary system are generated
from a larger number of words. For example, we
set the thresholds to 70 for prefixes and 50 for suf-
fixes for English; on the other hand, since the Fin-
nish vocabulary is almost six times larger than that
of English, we set the corresponding thresholds to
be approximately six times larger (400 and 300 for
prefixes and suffixes respectively).’

3.2 Detecting Composite Suffixes

Next, we detect and remove composite suffixes (i.e.
suffixes that are formed by combining multiple
suffixes [e.g. “ers” = “er”+“s”]) from our induced
suffix list, because their presence can lead to un-
der-segmentation of words (e.g. “walkers”, whose
correct segmentation is “walk”+“er”+*“s”, will be
erroneously segmented as “walk”+“ers”’). Compos-
ite suffix detection is a particularly important prob-
lem for languages like Bengali in which composite
suffixes are abundant (see Dasgupta and Ng
(2007)). Note, however, that simple concatenation
of multiple suffixes does not always produce a
composite suffix. For example, “ent”, “en” and “t”

all are valid suffixes in English, but “ent” is not a

% The dependence on frequency and length is motivated by the observation that
less-frequent and shorter affixes (especially those of length 1) are more likely to
be erroneous (see Goldsmith (2001)).

3 Since this method for setting our vocabulary-dependent thresholds is fairly
simple, the use of these thresholds should not be viewed as rendering our seg-
mentation algorithm language-dependent.
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composite suffix. Hence, we need a more sophisti-
cated method for composite suffix detection.

Our detection method is motivated by the fol-
lowing observation: if Xy is a composite suffix and
a word W combines with Xy, then it is highly likely
that w will also combine with its first component
suffix X. Note that this property does not hold for
non-composite suffixes. For instance, words that
combine with the non-composite suffix “ent” (e.g.
“absorb”) do not combine with its first component
suffix “en”. Consequently, given two suffixes X
and Yy, our method posits Xy as a composite suffix if
Xy and X are similar in terms of the words to which
they attach. Specifically, we consider Xy and X to
be similar if their similarity value as computed by
the formula below is greater than 0.6:

W'

Wi’

where IW’l is the number of distinct words that
combine with both Xy and X, and IW is the number
of distinct words that combine with Xy.

Smilarity (xy, X) = P(x| xy) =

3.3 Extractingalist of Candidate Roots

Finally, we extract a list of candidate roots using
the induced list of affixes as follows. For each
word, W, in the vocabulary, we check whether w is
divisible, i.e. whether w can be segmented as r+x
or p+r, where p is an induced prefix, X is an in-
duced suffix, and r is a word in the vocabulary. We
then add w to the root list if it is not divisible.
Note, however, that the resulting root list may con-
tain compound words (i.e. words with multiple
roots). Hence, we make another pass over our root
list to remove any word that is a concatenation of
multiple words in the vocabulary.

4 Detecting Incorrect Attachments Using
Relative Frequency

Our induced root list is not perfect: many correct
roots are missing due to over-segmentation. For
example, since “candidate” and “candid” are in the
vocabulary and “ate” is an induced suffix, our root
induction method will incorrectly segment “candi-
date” as “candid”+“ate”; as a result, it does not
consider “candidate” as a root. So, to improve the
root induction method, we need to determine that
the attachment of the morpheme “ate” to the root
word “candid” is incorrect. In this section, we pro-
pose a simple yet novel idea of using relative cor-



pus frequency to determine whether the attachment
of a morpheme to a root word is plausible or not.

Consider again the two words “candidate” and
“candid”. While “candidate” occurs 6380 times in
our corpus, “candid” occurs only 119 times. This
frequency disparity can be an important clue to
determining that there is no morphological relation
between “candidate” and “candid”. Similar obser-
vation is also made by Yarowsky and Wicentowski
(2000), who successfully employ relative fre-
quency similarity or disparity to rank candidate
VBD/VB pairs (e.g. “sang”/“sing”) that are irregu-
lar in nature. Unlike Yarowsky and Wicentowski,
however, our goal is to detect incorrect affix at-
tachments and improve morphological analysis.

Our incorrect attachment detection algorithm,
which exploits frequency disparity, is based on the
following hypothesis: if a word w is formed by
attaching an affix mto a root word r, then the cor-
pus frequency of W is likely to be less than that of r
(i.e. the frequency ratio of W to r is less than one).
In other words, we hypothesize that the inflectional
or derivational forms of a root word occur less fre-
quently in a corpus than the root itself.

To illustrate this hypothesis, Table 1 shows
some randomly chosen English words together
with their word-root frequency ratios (WRFRs).
The <word, root> pairs in the left side of the table
are examples of correct attachments, whereas those
in the right side are not. Note that only those words
that represent correct attachments have a WRFR
less than 1.

The question, then, is: to what extent does our
hypothesis hold? To investigate this question, we
generated examples of correct attachments by ran-
domly selecting 400 words from our English vo-
cabulary and then removing those that are root
words, proper nouns, or compound words. We then
manually segmented each of the remaining 378
words as Prefix+Root or Root+Suffix with the aid
of the CELEX lexical database (Baayean et al.,
1996). Somewhat surprisingly, we found that the
WRER is less than 1 in only 71.7% of these at-
tachments. When the same experiment was re-
peated on 287 hand-segmented Bengali words, the
hypothesis achieves a higher accuracy of 83.6%.

To better understand why our hypothesis does
not work well for English, we measured its accu-
racy separately for the Root+Suffix words and the
Prefix+Root words, and found that the hypothesis
fails mostly on the suffixal attachments (see Table
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2). Though surprising at first glance, the relatively
poor accuracy on suffixal attachments can be at-
tributed to the fact that many words in English
(e.g. “amusement”, “winner”’) appear more fre-
quently in our corpus than their corresponding root
forms (e.g. “amuse”, “win”). For Bengali, our hy-
pothesis fails mainly on verbs, whose inflected
forms occur more often in our corpus than their
roots. This violation of the hypothesis can be at-
tributed to the grammatical rule that the main verb
of a Bengali sentence has to be inflected according
to the subject in order to maintain sentence order.

To improve the accuracy of our hypothesis on
detecting correct attachments, we relax our initial
hypothesis as follows: if an attachment is correct,
then the corresponding WREFR is less than some
predefined threshold t, where t > 1. However, we
do not want t to be too large, since our algorithm
may then determine many incorrect attachments as
correct. In addition, since our hypothesis has a high
accuracy for prefixal attachments than suffixal at-
tachments, the threshold we employ for prefixes
can be smaller than that for suffixes. Taking into
account these considerations, we use a threshold of
10 for suffixes and 2 for prefixes for all the lan-
guages we consider in this paper.

Correct Parses Incorrect Parses
Word Root WRFR | Word Root WRFR
bear-able bear 0.01 candid-ate candid 53.6
attend-ance attend | 0.24 medic-al medic 483.9
arrest-ing arrest 0.06 prim-ary prim 3274
sub-group group | 0.0002 ac-cord cord 24.0
re-cycle cycle 0.028 ad-diction diction | 52.7
un-settle settle 0.018 de-crease crease 20.7
Table 1: Word-root frequency ratios
Root+Suffix | Prefix+Root | Overall
# of words 344 34 378
WRFR <1 70.1% 88.2% 71.7%

Table 2: Hypothesis validation for English

Now we can employ our hypothesis to detect in-
correct attachments and improve root induction as
follows. For each word, w, in the vocabulary, we
check whether (1) w can be segmented as r+x or
p+r, where p and X are valid prefixes and suffixes
respectively and r is another word in the vocabu-
lary, and (2) the WRFR for w and r is less than our
predefined thresholds (10 for suffixes and 2 for
prefixes). If both conditions are satisfied, it means
that w is divisible. Hence, we add w into the list of
roots if at least one of the conditions is violated.




5 Suffix Level Similarity

Many of the incorrect suffixal attachments have a
WREFR between 1 and 10, but the detection algo-
rithm described in the previous section will deter-
mine all of them as correct attachments. Hence, in
this section, we propose another technique, which
we call suffix level similarity, to identify some of
these incorrect attachments.

Suffix level similarity is motivated by the fol-
lowing observation: if a word w combines with a
suffix X, then w should also combine with the suf-
fixes that are “morphologically similar” to X. To
exemplify, consider the suffix “ate” and the root
word “candid”. The words that combine with the
suffix “ate” (e.g. “alien”, “fabric”, “origin”) also
combine with suffixes like “ated”, “ation” and “s”.
Given this observation, the question of whether
“candid” combines with the suffix “ate” then lies
in whether or not “candid” combines with “ated”,
“s” and “ation”. The fact that “candid” does not
combine with many of the above suffixes provides
suggestive evidence that ‘“candidate” cannot be
derived from “candid”.

More specifically, to check whether a word w
combines with a suffix X using suffix level simial-
rity, we (1) find the set of words W, that can com-
bine with X; (2) find the set of suffixes S, that
attach to all of the words in W, under the constraint
that S, does not contain X; and (3) find the 10 suf-
fixes in S that are most “similar” to X. The ques-
tion, then, is how to define similarity. Intuitively, a
good similarity metric should reflect, for instance,
the fact that “ated” is a better suffix to consider in
the attachment decision for “ate” than “s” (i.e.
“ated” is more similar to “ate” than “s”), since “‘s”
attaches to most nouns and verbs in English and
hence should not be a distinguishing feature for
incorrect attachment detection.

We employ a probabilistic measure (PM) that
computes the similarity between suffixes X and y as
the product of (1) the probability of a word com-
bining with y given that it combines with X and (2)
the probability of a word combining with X given
that it combines with y. More specifically,

PM(x, ) = P(y1X)*P(x] y) =51

1 2
where n; is the number of distinct words that com-
bine with X, n, is the number of distinct words that
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combine with y, and n is the number of distinct
words that combine with both X and y.*

After getting the 10 suffixes that are most simi-
lar to X, we employ them as features and use the
associated similarity values (we scale them linearly
between 1 and 10) as the weights of these 10 fea-
tures. The decision of whether a suffix X can attach
to a word W depends on whether the following ine-

quality is satisfied:
10
D fw >t
1

where f; is a boolean variable that has the value 1 if
W combines with X;, where X; is one of the 10 suf-
fixes that are most similar to X; W, is the scaled
similarity between X and X; and t is a predefined
threshold that is greater than 0.

One potential problem with suffix level similar-
ity is that it is an overly strict condition for those
words that combine with only one or two suffixes
in the vocabulary. For example, if the word “char-
acter” has just one variant in the vocabulary (e.g.
“characters”), suffix level similarity will determine
the attachment of “s” to “character” as incorrect,
since the weighted sum in the above inequality will
be 0. To address this sparseness problem, we rely
on both relative corpus frequency and suffix level
similarity to identify incorrect attachments. Spe-
cifically, if the WRFR of a <word, root> pair is
between 1 and 10, we determine that an attachment
to the root is incorrect if

-WRFR + y * (suffix level similarity) < 0,

where y is set to 0.15.

Finally, since long words have a higher chance
of getting segmented, we do not apply suffix level
similarity to words whose length is greater than 10.

6 Inducing Orthographic Rules and Al-
lomor phs

The biggest drawback of the system, described
thus far, is its failure to segment words where the
roots exhibit spelling changes during attachment to
morphemes (e.g. “denial” = “deny”’+“al”). The
reasons are (1) the system does not have any
knowledge of language-specific orthographic rules
(e.g. in English, the character ‘y’ at the morpheme
boundary is changed to ‘i’ when the root combines

* Note that this metric has the desirable property of returning a low similarity
value for “s”: while nis likely to be large, it will be offset by a large n,.



with the suffix “al”), and (2) the vocabulary we
employ for morpheme induction does not normally
contain the allomorphic variations of the roots
(e.g. “deni” is allomorphic variation of “deny”). To
segment these words correctly, we need to generate
the allomorphs and orthographic rules automati-
cally given a set of induced roots and affixes.

Before giving the details of the generation
method, we note that the induction of orthographic
rules is a challenging problem, since different lan-
guages exhibit orthographic changes in different
ways. For some languages (e.g. English) rules are
mostly predictable, whereas for others (e.g. Fin-
nish) rules are highly irregular. It is hard to obtain
a generalized mapping function that aligns every
<root, allomorph> pair, considering the fact that
our system is unsupervised. An additional chal-
lenge is to ensure that the incorporation of these
orthographic rules will not adversely affect system
performance (i.e. they will not be applied to regu-
lar words and thus segment them incorrectly).
Yarowsky and Wicentowski (2000) propose an
interesting algorithm that employs four similarity
measures to successfully identify the most prob-
able root of a highly irregular word. Unlike them,
however, our goal is to (1) check whether the
learned rules can actually improve an unsupervised
morphological system, not just to align <root, al-
lomorph> pair, and (2) examine whether our sys-
tem is extendable to different languages.

Taking into consideration the aforementioned
challenges, our induction algorithm will (1) handle
orthographic character changes that occur only at
morpheme boundaries; (2) generate allomorphs for
suffixal attachments only’, assuming that roots ex-
hibit the character changes during attachment, not
suffixes; and (3) learn rules that aligns <root, allo-
morph> pairs of edit distance 1 (which may in-
volve 1-character replacement, deletion or
insertion). Despite these limitations, we will see
that the incorporation of the induced rules im-
proves segmentation accuracy significantly.

Let us first discuss how we learn a replacement
rule, which identifies <allomorph, root> pairs
where the last character of the root is replaced by
another character. The steps are as follows:

(1) Inducing candidate allomor phs
If aAB is a word in the vocabulary (e.g. “denial”,
where a=“den”, A=“i", and f=“al”), f is an in-

* We only learn rules for suffixes of length greater than 1, since most suffixes of
length 1 do not participate in orthographic changes.
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duced suffix, aB is an induced root (e.g. “deny”,
where B="y”), and the attachment of § to aB is
correct according to relative corpus frequency (see
Section 4), then we hypothesize that aA is an allo-
morph of aB. For each induced suffix, we use this
hypothesis to generate the allomorphs and identify
those that are generated from at least two suffixes
as candidate allomorphs. We denote the list of
<candidate allomorph, root, suffix> tuples by L.

(2) Learning orthographic rules

Every <candidate allomorph, root, suffix> tuple as
learned above is associated with an orthographic
rule. For example, from the words “denial”, “deny”
and suffix “al”, we learn the rule “y:i / _ + al”;
from “social”, “sock” and “al”, we learn the rule
“k:1/ _ + al”, which, however, is erroneous. So, we
check whether each of the learned rules occurs fre-
quently enough for all the <allomorph, root> pairs
associated with a suffix, with the goal of filtering
the low-frequency orthographic rules. Specifically,
for each suffix f, we repeat the following steps:

(a) Counting the frequency of rules. Let L4 be the
list of <candidate allomorph, root> pairs in L that
are associated with the suffix £. For each pair p in
L, we first check whether its candidate allomorph
appears in any other <candidate allomorph, root>
pairs in Lg. If not, we increment the frequency of
the orthographic rule associated with p by 1. For
example, the pair <*“deni”, “deny”> increases the
frequency of the rule “y:i” by 1 on condition that
“deni” does not appear in any other pairs.

(b) Filtering the rules. We first remove the infre-
quent rules, specifically those that are induced by
less than 15% of the tuples in Lg. Then we check
whether there exists two rules of the form A:B and
A:C in the induced rule list. If so, then we have a
morphologically undesirable situation where the
character A changes to B and C under the same
environment (i.e. ). To address this problem, we
first calculate the strength of a rule as follows:

frequency(A: B)
strength(A: B) =
rengtn(A: B) > frequency(A: @)
@

We then retain only those rules whose fre-
quency*strength is greater than some predefined
threshold. We denote the list of rules that satisfy
the above constraints by Rg.

(c) Identifying valid allomor phs. For each rule in
Rs, we identify the associated <candidate allo-

® This is the Chomsky and Halle notation for representing orthographic rules. a:b
/ ¢ _ d means a changes to b when the left context is € and the right context is d.



morph, root> pairs in Ls. We refer to the candidate
allomorphs in each of those pairs as valid allo-
morphs and add them to the list of roots. We also
remove from the original root list the words that
can be segmented by the induced allomorphs and
the associated rules (e.g. “denial”).

(d) Identifying composite suffixes. For each rule
in R, we also check whether it can identify com-
posite suffixes where the first component suffix’s
last character is replaced during attachment to the
second component suffix (e.g. “liness” =
“ly”+“ness”). Specifically, if (1) AB/ _ fis a rule
in Rg, (2) aAB (say “liness”), B (say “ness”) and aB
(say “ly”) are induced suffixes, and (3) aApB satis-
fies the requirements of a composite suffix (see
Section 3.2), then we determine that aAf is a com-
posite suffix composed of aB and g.

We employ the same procedure for learning in-
sertion and deletion rules, except that strength is
always set to 1 for these two types of rules. The
threshold we set at step (b) is somewhat dependent
on the vocabulary size, since the frequency count
of each rule will naturally be larger when a larger
vocabulary is used. Following our method for set-
ting vocabulary-dependent thresholds (see Section
3.1), we set the threshold to 4 for English and 25
for Finnish, for instance.

Finally, we adapt our candidate allomorph de-
tection method described above to induce allo-
morphs that are generated through orthographic
changes of edit distance greater than 1. Specifi-
cally, if af is a word in the induced root list (e.g.
“stability”’, where a="stabil” and f="ity”), f is an
induced suffix, and the attachment of f to a is cor-
rect according to suffix level similarity, then we
hypothesize that a (“stabil”) is a candidate allo-
morph. For each induced suffix, we use this hy-
pothesis to generate candidate allomorphs and
consider as valid allomorphs only those that are
generated from at least three different suffixes.”

7 Word Segmentation

After inducing the morphemes, we can use them to
segment a word W in the test set. Specifically, we

" The correct segmentation of “stability” is “stable”+“ity”. The “stabil”-“stable”
allomorph-root pair is an example of an orthographic change of edit distance 2.

8 This technique can also be used to induce out-of-vocabulary (OOV) roots. For
example, the presence of “perplexity”, “perplexed” and “perplexing” in a vo-
cabulary allows us to induce the root “perplex”. OOV root induction is particu-
larly important for languages like Bengali, where verb roots mostly take the
imperative form and hence are absent in a vocabulary created from a newspaper
corpus, which normally comprises only the first and third person verb forms.
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(1) generate all possible segmentations of W using
only the induced affixes and roots, and (2) apply a
sequence of tests to remove candidate segmenta-
tions until we are left with only one candidate,
which we take to be the final segmentation of W.

Our first test involves removing any candidate
segmentation mym, ... M, that violates any of the
linguistic constraints below:

e Atleast one of m;, m, ..., M, is a root.

e For1<i<n,if mis a prefix, then m,; must

be a root or a prefix.

e Forl<i<gn,if mis a suffix, then m.; must

be a root or a suffix.

* M can’t be a suffix and m, can’t be a prefix.

Next, we apply our second test, in which we re-
tain only those candidate segmentations that have
the smallest number of morphemes. For example,
if “friendly” has two candidate segmentations
“friend”+“ly” and “fri”+“end”+“ly”, we will select
the first one to be the segmentation of W.

If more than one candidate segmentation still ex-
ists, we score each remaining candidate using the
heuristic below, selecting the highest-scoring can-
didate to be the final segmentation of w. Basically,
we score each candidate segmentation by adding
the strength of each morpheme in the segmenta-
tion, where (1) the strength of an affix is the num-
ber of distinct words in the vocabulary to which
the affix attaches, multiplied by the length of the
affix, and (2) the strength of a root is the number of
distinct morphemes with which the root combines,
again multiplied by the length of the root.

8 Evaluation

In this section, we will first evaluate our segmenta-
tion algorithm for English and Bengali, and then
examine its performance on the PASCAL datasets.

8.1 Experimental Setup

Vocabulary creation. We extracted our English
vocabulary from the Wall Street Journal corpus of
the Penn Treebank and the BLLIP corpus, preproc-
essing the documents by first tokenizing them and
then removing capitalized words, punctuations and
numbers. In addition, we removed words of fre-
quency 1 from BLLIP, because many of them are
proper nouns and misspelled words. The final Eng-
lish vocabulary consists of approximately 60K dis-
tinct words. We applied the same pre-processing



steps to five years of articles taken from the Ben-
gali newspaper Prothom Alo to generate our Ben-
gali vocabulary, which consists of 140K words.
Test set preparation. To create our English test
set, we randomly chose 5000 words from our vo-
cabulary that are at least 4-character long’ and also
appear in CELEX. Although 95% of the time we
adopted the segmentation proposed by CELEX, in
some cases the CELEX segmentations are errone-
ous (e.g. “rolling” and “lodging” remain unseg-
mented in CELEX). As a result, we cross-check
with the online version of Merriam-Webster to
make the necessary changes. To create the Bengali
test set, we randomly chose 5000 words from our
vocabulary and manually removed proper nouns
and misspelled words from the set before giving it
to two of our linguists for hand-segmentation. The
final test set contains 4191 words.

Evaluation metrics. We use two standard metrics
-- exact accuracy and F-score -- to evaluate the
performance of our segmentation algorithm on the
test sets. Exact accuracy is the percentage of the
words whose proposed segmentation is identical to
the correct segmentation. F-score is the harmonic
mean of recall and precision, which are computed
based on the placement of morpheme boundaries.'’

8.2 Resultsfor English and Bengali

The basdline systems. We use two publicly avail-
able and widely used unsupervised morphological
learning systems -- Goldsmith’s (2001) Linguis-
tica'’ and Creutz and Lagus’s (2005) Morphessor
1.0" -- as our baseline systems. The first two rows
of Table 3 show the results of these systems for our
test sets (with all the training parameters set to
their default values). As we can see, Linguistica
performs substantially better for English in terms
of both exact accuracy and F-score, whereas Mor-
phessor outperforms Linguistica for Bengali.

Our segmentation algorithm. Results of our
segmentation algorithm are shown in rows 3-6 of
Table 3. Specifically, row 3 shows the results of
our basic segmentation system as described in Sec-
tion 3. Rows 4-6 show the results where our three
techniques (i.e. relative frequency, suffix level

? Words of length less than 4 do not have any morphological segmentation in
English. Hence, by imposing this length restriction on the words in our test set,
we effectively make the evaluation more challenging. This is also the reason for
our using words that are at least 3-character long in the Bengali test set.

10 See http://www.cis.hut.fi/morphochallenge2005/evaluation.shtml for details.

' http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/

12 http://www cis.hut.fi/projects/morpho/
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similarity and allomorph detection) are incorpo-
rated into the basic system one after the other. It is
worth mentioning that (1) our basic algorithm al-
ready outperforms the baseline systems in terms of
both exact accuracy and F-score; and (2) while
each of our additions to the basic algorithm boosts
system performance, relative corpus frequency and
allomorph detection contribute to performance im-
provements particularly significantly. As we can
see, the best segmentation performance is achieved
when all of our three additions are applied to the
basic algorithm.

English Bengali

A P R F A P R F
Linguistica | 68.9 | 84.8 | 75.7 | 80.0 | 36.3 | 58.2 | 63.3 | 60.6
Morphessor | 64.9 | 69.6 | 85.3 | 76.6 | 56.5 | 89.7 | 67.4 | 76.9
Basic in- | 68.1 | 79.4 | 82.8 | 81.1 | 57.7 | 79.6 | 81.2 | 80.4
duction
Relative 740 | 864 | 825 | 844 | 63.2 | 856 | 79.9 | 82.7
frequency
Suffix level | 74.9 | 88.6 | 82.3 | 85.3 | 66.1 | 89.7 | 78.8 | 83.9
similarity
Allomorph | 783 | 88.3 | 864 | 874 | 683 | 89.3 | 81.3 | 85.1
detection

Table 3: Results (reported in terms of exact accu-
racy (A), precision (P), recall (R) and F-score (F))

8.3 PASCAL Challenge Results

To get an idea of how our algorithm performs in
comparison to the PASCAL participants, we con-
ducted evaluations on the PASCAL datasets for
English, Finnish and Turkish. Table 4 shows the F-
scores of four segmentation algorithms for these
three datasets: the best-performing PASCAL sys-
tem (Winner), Morphessor, our system that uses
the basic morpheme induction algorithm (Basic),
and our system with all three extensions incorpo-
rated (Complete). Below we discuss these results.
English. There are 533 test cases in this dataset.
Using the vocabulary created as described in Sec-
tion 8.1, our Complete algorithm achieves an F-
score of 79.4%, which outperforms the winner
(Keshava and Pitler, 2006) by 2.6%. Although our
basic morpheme induction algorithm is similar to
that of Keshava and Pitler, a closer examination of
the results reveals that F-score increases signifi-
cantly with the incorporation of relative frequency
and allomorph detection.

Finnish and Turkish. The real challenge in the
PASCAL Challenge is the evaluation on Finnish




and Turkish due to their morphological richness.
We use the 400K and 300K most frequent words
from the Finnish and Turkish datasets provided by
the organizers as our vocabulary. When tested on
the gold standard of 661 Finnish and 775 Turkish
words, our Complete system achieves F-scores of
65.2% and 66.2%, which are better than the win-
ner’s scores (Bernhard (2006)). In addition, Com-
plete outperforms Basic by 3-6% in F-score; these
results suggest that the new techniques proposed in
this paper (especially allomorph detection) are also
very effective for Finnish and Turkish.

English Finnish Turkish
Winner 76.8 64.7 65.3
M or phessor 66.2 66.4 70.1
Basic 75.8 59.2 63.4
Complete 79.4 65.2 66.2

Table 4: F-scores for the PASCAL gold standards

As mentioned in the introduction, none of the
participating PASCAL systems offers robust per-
formance across different languages. For instance,
Keshava and Pitler’s algorithm, the winner for
English, has F-scores of only 47% and 54% for
Finnish and Turkish respectively, whereas Bern-
hard’s algorithm, the winner for Finnish and Turk-
ish, achieves an F-score of only 66% for English.
On the other hand, our algorithm outperforms the
winners for all the languages in the competition,
demonstrating its robustness across languages.

Finally, although Morphessor achieves better re-
sults for Turkish and Finnish than our Complete
system, it performs poorly for English, having an
F-score of only 66.2%. On the other hand, our re-
sults for Finnish and Turkish are not significantly
poorer than those of Morphessor.

9 Conclusions

We have presented an unsupervised word segmen-
tation algorithm that offers robust performance
across languages with different levels of morpho-
logical complexity. Our algorithm not only outper-
forms Linguistica and Morphessor for English and
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when
evaluated against all three target languages --
English, Turkish, and Finnish -- in the Challenge.
Experimental results indicate that the use of rela-
tive corpus frequency for incorrect attachment de-
tection and the induction of orthographic rules and
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allomorphs have contributed to the performance of
our algorithm particularly significantly.
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Abstract

This paper reports experiments in
which pcrRu — a generation framework
that combines probabilistic generation
methodology with a comprehensive
model of the generation space — is
used to semi-automatically create sev-
eral versions of a weather forecast text
generator. The generators are evaluated
in terms of output quality, development
time and computational efficiency against
(i) human forecasters, (ii) a traditional
handcrafted pipelinediLG system, and
(i) a HALOGEN-style statistical genera-
tor. The most striking result is that despite
acquiring all decision-making abilities
automatically, the bespcrRU generators
receive higher scores from human judges
than forecasts written by experts.

Introduction and background
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or after 2000 that are listed on a katyG websité,
only five have any statistical component at all (an-
other six involve techniques that are in some way
corpus-based). The likely reasons for this lack of
take-up are that (i) many existing statistioalG
techniques are inherently expensive, requiring the
set of alternatives to be generated in full before the
statistical model is applied to select the most likely;
and (ii) statisticaINLG techniques have not been
shown to produce outputs of high enough quality.
There has also been a rethinking of the traditional
modularNnLG architecture (Reiter, 1994). Some re-
search has moved towards a more comprehensive
view, e.g. construing the generation task as a single
constraint satisfaction problem. Precursors to cur-
rent approaches were Hovy™ULINE which kept
track of the satisfaction status of global ‘rhetori-
cal goals’ (Hovy, 1988), and Power et allsoN-
OCLAST which allowed users to fine-tune different
combinations of global constraints (Power, 2000).
In recent comprehensive approaches, the focus is on
automatic adaptability, e.g. automatically determin-
ing degrees of constraint violability on the basis of

Over the last decade, there has been a lot of iffO"PUS frequencies. Examples include Langkilde's
terest in statistical techniques among researchers . R -
natural language generationL@), a field that was based on constr_alnt optimisation, and I\_/Ia_rcmlak and
largely unaffected by the statistical revolution inStrube’s (2005) integrated, globally optimisable net-
NLP that started in the 1980s. Since Langkilde anOrK of classifiers and constraints.

Knight's influential work on statistical surface real-
isation (Knight and Langkilde, 1998), a number ofrends have developed at least in part to address two
statistical and Corpus_based methods have been i‘@t.errelatEd issues INLG: the considerable amount
ported. However, this interest does not appear
have translated into practice: of the 30 implementeg ; o'/ / ww. f b10. uni
systems and modules with development starting inangpr o/ NLG-t abl e/ , 20/01/2006.

(005) general approach to generation and parsing

Both probabilistic and recent comprehensive

1Bateman and Zock's list of NLG systems,

-brenen. de/ angl i sti k/

Proceedings of NAACL HLT 2007, pages 164-171,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



of time and expense involved in building new syscomposed of generation rules that apply transforma-
tems, and the almost complete lack in the field ofions to representations (performing different tasks
reusable systems and modules. Both trends haire different modules). The basic idea ptRru is
the potential to improve on development time andhat as long as the generation rules are all of the
reusability, but have drawbacks. form relation(args,...argn) — relationi(args,...argy)

Existing statisticaNLG (i) uses corpus statistics to ... relationm (args, ...argq), m > 1,n,p,q > 0, then the
inform heuristic decisions in what is otherwise symset of all generation rules can be seen as defining
bolic generation (Varges and Mellish, 2001; Whitea context-free language and a single probabilistic
2004; Paiva and Evans, 2005); (ii) appliegram model can be estimated from raw or annotated text
models to select the overall most likely realisatiorio guide generation processes.
after generationHALOGEN family); or (iii) reuses pCcRU uses straightforward context-free technol-
an existing parsing grammar or treebank for surfacegy in combination with underspecification tech-
realisation (Velldal et al., 2004; Cahill and van Gen#hiques, to encode base generator as a set of ex-
abith, 2006). N-gram models are not linguistically pansion rulesi’ composed ofz-ary relations with
informed, (i) and (iii) come with a substantial man-variable and constant arguments (Section 2.1). In
ual overhead, and (ii) overgenerates vastly and hasan-probabilistic mode, the output is the set of fully
high computational cost (see also Section 3). expanded (fully specified) forms that can be de-

Existing comprehensive approaches tend to irfived from the input. ThepCRU (probabilistic CRU)
cur a manual overhead (finetuningitoNocLAsT, — decision-maker is created by estimating a proba-
corpus annotation in Langkilde and Marciniak &bility distribution over the base generator from an
Strube). Handling violability of soft constraints isunannotated corpus of example texts. This distri-
problematic, and converting corpus-derived probbution is used in one of several ways to drive gen-
abilities into costs associated with constraintgration processes, maximising the likelihood either
(Langkilde, Marciniak & Strube) turns straightfor- Of individual expansions or of entire generation pro-
ward statistics into and hocsearch heuristic. Older cesses (Section 2.2).
approaches are not globally optimisabfaLINE)
or involve exhaustive searcicONOCLAST).

The pcRU language generation framework com-Using context-free representational underspecifica-
bines a probabilistic generation methodology witfion. or CRu, (Belz, 2004), the generation space is
a comprehensive model of the generation spacgNcoded as (i) a s€t of expansion rules composed
where probabilistic choice informs generation as iPf n-ary relationsrelation(args, ...argn) where the
goes along, instead of after all alternatives have beéfig: are constants or variables over constants; and
generated. pcRU uses existing techniques (Belz,(”) argument and relation type hierarchies. Any sen-
2005), but extends these substantially. This papé@ntial form licensed by~ can be the input to the
describes thexcru framework and reports experi- 9eneration process which expands it under unify-
ments designed to rigorously tgatRU in practice ing variable substitution until no further expansion is
and to determine whether improvements in develofRossible. The output (in non-probabilistic mode) is
ment time and reusability can be achieved withodhe set of fully expanded forms (i.e. consisting only

2.1 Specifying therange of alternatives

sacrificing quality of outputs. of terminals) that can be derived from the input.
The rules inG define the steps in which inputs can
2 pCRU language generation be incrementally specified from, say, content to se-

mantic, syntactic and finally surface representations.
pcRuU (Belz, 2006) is a probabilistic language gen-G therefore defines specificity relations between all
eration framework that was developed with the aingsentential forms, i.e. defines which representation is
of providing the formal underpinnings for creatingunderspecified with respect to which other represen-
NLG systems that are driven by comprehensive proltations. The generation process is construed explic-
abilistic models of the entire generation space (initly as the task of incrementally specifying one or
cluding deep generation)NLG systems tend to be more word strings.
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Within the limits of context-freeness and atom- alternative decision®; and D-, with the model
icity of feature valuescRru is neutral with respect  giving p(D;) = 0.8 andp(D3) = 0.2, then the
to actual linguistic knowledge representation for- proportion of times the generator decides ap-
malisms used to encode generation spaces. Theproachess0% andDy 20% in the limit.
main motivation for a context-free formalism is
the advantage of low computational cost, while the 3 The pCRU-1.0 generation package
inclusion of arguments on (non)terminals permit

keeping track of contextual features. The technology described in the two preceding sec-

tions has been implemented in theru-1.0 soft-
2.2 Sdection among alternatives ware package. The user defines a generation space

ThepcRu decision-making component is created b)Py creating a base generator composed of.

estimating a probability distribution over the set of 1. the setV of underspecified:-ary relations
expansion rules that encodes the generation space. the sefV of fully specifiedn-ary relations

(the base generator), as follows: 3. asetR of context-free generation rules— «,

1 Convert corpus into multi-treebankdetermine neN,ae (WUN)*
for each sentence all (left-most) derivation trees 4. a typed feature hierarchy defining argument
licensed by the base generatocgu rules, us- types and values

ng maxw_nal _partlal derivations if there is N0 COM- " rhis hase generator is then trained (as described
plete derivation tree; annotate the (sub)strings in

above) on raw text corpora to provide a probability

the sentence with the derivation trees, resulting iaistribution over generation rules. Optionally, @an

a S?t oigeneration treej\sﬁor the sentence. gram language model can also be created from the
2 Train base generator:Obtain frequency COUNtS gume corpus. The generator is then run in one of the
for each individual generation rule from the multi-,, .o modes above or one of the following:

treebank, addind/n to the count for every rule, _ . .

wheren is the number of alternative derivation 1. Random ignoring pCRU probabilities, ran-
trees; convert counts into probability distributions ~ domly select generation rules.

over alternative rules, using add-1 smoothing and 2. N-gram ignoring pCcRU probabilities, gener-
standard maximum likelihood estimation. ate set of alternatives and select the most likely

The resulting probability distribution is used in  @ccording to the-gram language model.

one of the following three ways to control gener- The random mode serves as a baseline for gen-
ation. Of these, only the first requires the generaeration quality: a trained generator must be able to
tion forest to be created in full, whereas both greedglo better, otherwise all the work is done by the base
modes prune the generation space to a single pathgenerator (and none by the probabilities). The

1 Viterbi generation:do a Viterbi search of the gen- 9ram mode works exactly likeALOGEN-style gen-
eration forest for a given input, which maximises€ration: the generator generates all realisations that
the joint likelihood of all decisions taken in the the rules allow and then picks one based onrthe
generation process. This selects the most likelgram model. This is a point of comparison with

generation process, but is considerably more egXisting statisticaNLG techniques and also serves
pensive than the greedy modes. as a baseline in terms of computational expense: a

generator usingpCRU probabilities should be able

2 Greedy generationmake the single most likely it
produce realisations faster.

decision at each choice point (rule expansion) ifP
a generation process. This is not guaranteed
result in the most likely generation process, bu
the computational cost is very low.

3 Greedy roulette-wheel generationuse a non- The automatic generation of weather forecasts is
uniform random distribution proportional to theone of the success stories wEp. The restrictive-
likelihoods of alternatives. E.g. if there are twoness of the sublanguage has made the domain of

Building and evaluating pCRU wind
forecast text generators
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G5 1oy O 1 3-FIELDS into wind direction, wind speed, gust speed,
08/ 06 SSW18 22 27 3.0 4.8 SSW 2.59 gust sta.tc_aments, time expressions, verb phrases,
S1gg 12 14 51 53 4033W 533 pre-modifiers, and post-modifiers.  Preterminal
generation rules were automatically created from
the resulting chunks. Then, higher-level rules which
FORECAST FOR - . ) )
ol17a12/G13 FIELDS combine chunks into larger components, taking
2 FORECASTNG: 24 GML,  THURSDAY, 0o, Cot 2000 care of text structuring, aggregation and elision,
WND(KTS)" " CONF) DENCE: HL G :
10 SSW 16-20 GRADUALLY BACKI NG SSE were manually authored. The top-level generation
THEN FALLI NG VARI ABLE 04- 08 BY : :
LATE EVENI NG rules interpret wind statements as sequences of

independent units of information, ensuring a linear
ncrease in complexity with increasing input length.
nputs encode meteorological data (as shown in Ta-
ble 1), and were pre-processed to determine certain
types of information, including whether a change
weather forecasting particularly attractiveNoG re-  in wind direction was clockwise or anti-clockwise,
searchers, and a number of weather forecast genegastd whether change in wind speed was an increase
tion systems have been created. or a decrease. The final generator takes as inputs

A recent example of weather forecast text generumber vectors of length 7 to 60, and generates up
ation is the SMTIME project (Reiter et al., 2005) to 1.6 x 103! alternative realisations for an input.
which developed a commercially usedc system  The job of the base generator is to describe the
that generates marine weather forecasts for offshotextual variety found in the corpus. It makes no deci-
oil rigs from numerical forecast data produced bysions about when to prefer one variant over another.
weather simulation programs. The/@TIME cor-
pus is used in the experiments below.

Figure 1. Meteorological data file and wind forecast
for 05-10-2000, a.m. (oil fields anonymised).

3.3 Training

The corpus was divided at random into 90% train-
3.1 Data ing data and 10% testing data. The training set
Each instance in the 1TIME corpus consists of WaS multi-treebanked with the base generator and

three numerical data files (the outputs of weathdf'® Multi-treebank then used to create the probabil-

simulators) and the forecast file written by the forelty distribution for the base generator (as described

caster on the basis of the data (Figure 1 shows df Section 2.2). A back-off 2-gram model with
example). The experiments below focused on a.np0od-Turing discounting and no lexical classes was

forecasts of wind characteristics. Content determ@!SO created from the training set, using 8rLM
nation (deciding which meteorological data to int00lkit, (Stolcke, 2002).pcRU-1.0 was then run in -
clude in a forecast) was carried out off-line. all five modes to generate forecasts for the inputs in

The corpus consists of 2,123 instances (22,0g%0th training and test sets. o
words) of which half are a.m. forecasts. This may | Nis Procedure was repeated five times for hold-
not seem much, but considering the small number Sut cross-validation. The small amount of variation

vocabulary items and syntactic structures, the coficross the five repeats, and the small differences be-

pus provides extremely good coverage (an initial imt_vyeen results for training and test sets (Table 2) in-

pression confirmed by the small differences betwee#icated that five repeats were sufficient.
training and testing data results below). 34 Evaluation

3.2 Thebase generator 3.41 Evaluation methods

The two automatic metrics used in the evalua-

The base generafor was written semi-auto- i q h b h i lat
matically in two steps. First, a simple chunker'ONS: NIST andBLEU have been shown to correlate

was run over the corpus to split wind statementlé'ighly with expert judgments (Pearson correlation
coefficients0.82 and 0.79 respectively) in this do-

2For a fragment of the rule set, see Belz (2006). main (Belz and Reiter, 2006).
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Input
Corpus

[[1, SSW 16, 20, -, -, 0600],[2, SSE, -, -, -, -, NOTI ME], [ 3, VAR 04, 08, -, -, 2400] ]
SSW 16- 20 GRADUALLY BACKI NG SSE THEN FALLI NG VARI ABLE 4-8 BY LATE EVEN NG

Reference 1 SSWLY 16-20 GRADUALLY BACKI NG SSE' LY THEN DECREASI NG VARI ABLE 4-8 BY LATE EVEN NG
Reference 2 SSW 16- 20 GRADUALLY BACKI NG SSE BY 1800 THEN FALLI NG VARI ABLE 4-8 BY LATE EVEN NG
SuUMTIME-Hyb. SSW 16- 20 GRADUALLY BACKI NG SSE THEN BECOM NG VARI ABLE 10 OR LESS BY M DNI GHT
pcru-greedy SSW 16- 20 BACKI NG SSE FOR A TI ME THEN FALLI NG VARI ABLE 4-8 BY LATE EVEN NG
pcRru-roulette SSW 16- 20 GRADUALLY BACKI NG SSE AND VARI ABLE 4-8

pcru-viterbi SSW 16- 20 BACKI NG SSE VARI ABLE 4-8 LATER

pcRuU-2gram SSW 16- 20 BACKI NG SSE VARI ABLE 4-8 LATER

pcru-random SSW 16- 20 AT FI RST FROM M DDAY BECOM NG SSE DURI NG THE AFTERNOON THEN VARI ABLE 4-8

Table 1. Forecast texts (for 05-10-2000) generated by ebtife@cRru generators, the @v TIME-Hybrid

system and three experts. The corresponding input to therggems is shown in the first row.

BLEU (Papineni et al., 2002) is a precision met NIST-5 BLEU-4
ric that assesses the quality of a translation in termsT | pCRU-greedy | 8.208(0.033) | 0.647(0.002)
of the proportion of its worch-grams ¢ < 4 has | R | pCRu-roulette | 7.035(0.138) | 0.496(0.010)
become standard) that it shares with several refer-A | pCRU-2gram | 6.734(0.086) | 0.523(0.008)
ence translationsBLEU also incorporates a ‘brevity | | | pCRu-viterbi | 6.643(0.023) | 0.524(0.002)
penalty’ to counteract scores increasing as length deN | pcRu-random | 4.799(0.036) | 0.296(0.002)
creasesBLEU scores range from 0 to 1. pCRU-greedy | 6.927(0.131) | 0.636(0.016)

TheNisT metric (Doddington, 2002) is an adapta-| T | pCRu-roulette | 6.193(0.121) | 0.496(0.022)
tion of BLEU, but wheresLEU gives equal weightto | E | pcRU-2gram | 5.663(0.185) | 0.514(0.019)
all n-gramsNIST gives more weight to less frequent| S | pcRu-viterbi | 5.650(0.161) | 0.519(0.021)
(hence more informativeh-grams. There is evi- | T | pcRu-random| 4.535(0.078) | 0.313(0.005)

dence thaNIST correlates better with human judg-
ments tharBLEU (Doddington, 2002; Belz and Re-
iter, 2006).

The results below include human scores from two

separate experiments. The first was an experimefife systems included in the evaluations reported be-
with 9 subjects experienced in reading marine foregy, together with the corresponding input and three

experiment with 14 similarly experienced subjécts

The main differences were that in Experiment 13.4.2 Comparing different generation modes
subjects rated on a scale from 0 to 5 and were asked
for overall quality scores, whereas in Experiment 2
subjects rated on a 1-7 scale and were asked for |

guage quality scores. eraged over the five runs of the hold-out validation,

In comparing differentpcRu modes,NIST and . S
W{th average mean deviation figures across the runs

BLEU scores were computed against the test set PL i in brackets.

of the corpus which contains texts by five different
P y The Tukey Test produced the following results for

authors. In the two human experimentssT and he diff bet in Table 2. For th
BLEU scores were computed against sets of multf— © drrerences berween means in fable 2. Forine

ple reference texts (2 for each date in Experiment Ha‘”'”g STIL dr.;efsults are the s_am_(fa. rﬁns;gtn d%“glu
and 3 in Experiment 2) written by forecasters whg¢ores: all differences are significant/at< ©.91,
had not contributed to the corpus. One-wayovAS except for t_he d_|frerences N Scores tmRu—Zgram
with post-hoc Tukeysp tests were used to analysez.?fdeRU'V'terb" F or.ft_he t::tz[?set %n;leT’ agal? fa I
variance and statistical significance of all results. ! ere; ces are signi |c§:n bi If ;[h ' teX(t:ep i or d
Table 1 shows forecast texts generated by each RRU-~gram vS pCRU-VIIETDI. =or the test Set an
BLEU, three differences are non-significamicRu-

2gram vs. pCRuU-viterbi, pCcRu-2gram vs.pCRU-

Table 2:N1ST-5 andBLEU-4 scores for training and
test sets (average variation from the mean).

Table 2 shows results for the five differgmtru
eneration modes, for training sets (top) and test sets
bottom), in terms oNIST-5 andBLEU-4 scores av-

3Belz and Reiter, in preparation.
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Experiment 1| Experiment 2| 345 Computingtime
SumTIME-Hyb. | 3.82(1) 4.61(2) The following table shows average number of sec-
pCRU-greedy 3.59(2) 4.79(1) onds taken to generate one forecast, averaged over
PCRU-roulette 3.22(3) 4.54(3) the five cross-validation runs (mean variation figures

across the runs in brackets):
Table 3: Scores for handcrafted system and two best

PCRU-systems from two human experiments. Training sets  Test sets

pcrRu-greedy:  1.65%=0.02) 1.58s(< 0.04)
pCRu-roulette: 1.61%<0.02) 1.58s(< 0.05)

roulette, angcRuU-viterbi vs.pCcRU-roulette. pCRU-viterbi:  1.745(< 0.02) 1.70S(= 0.04)

NIST-5 depends on test set size, and is necessar-pcru-2gram:  2.83%< 0.02) 2.78s(< 0.09)
ily lower for the (smaller) test set, but tre.EU-4
o . Forecasts for the test sets were generated some-
scores indicate that performance was slightly worse o .
~what faster than for the training sets in all modes.

on test sets. The deviation figures show that var@; . .
. . ariation was greater for test sets. Differences
tion was also higher on the test sets.

The clearest result is thatRU-greedy is ranked betweenpCRU-greedy andpCRU-roulette are very

, . small, but pcru-viterbi took 1/10 of a second
highest, andocru-random lowest, by considerable
. . longer, andpcru-2gram took more than second
margins. pcrRu-roulette is ranked second yST- lonaer to cenerate the averade forekast
5 and fourth byBLEU-4. pCRuU-2gram andpCRU- 9 9 9
viterbi are virtually indistinguishable. 3.4.6 Brevity bias
Experts in both human experiments agreed with

) N-gram models have a built-in bias in favour of
theNIST-5 rankings of the modes exactly.

shorter strings, because they calculate the likelihood
3.4.3 Text quality against handcrafted system of a string of words as the joint probability of the

The pcrU modes were also evaluated againsf’0rds, or, more precisely, as the product of the prob-
the SUMTIME-Hybrid system (running in “hybrid’ abilities of egch _word given tha_— 1 precedlng
mode, taking inputs as in Table 1). Table 3 Showg/ords. The likelihood of any string WI|| therefpre
averaged evaluation scores by subjects in the two ig€nerally be lower than that of any of its substrings.
dependent experiments described above. There werd”Sing & smaller data set for which all systems had
altogether 6 and 7 systems evaluated in these expePHtPUts, the average number of words in the fore-
ments, respectively, and the differences between t5@Sts generated by the different systems was:

scores shown here were not significant when sub- pCRU-random: 19.43
jected to the Tukey Test, meaning that both experi- SUMTIME-Hybrid:  12.39
ments failed to show that experts can tell the differ- PCRU-greedy: 11.51
ence in the language quality of the texts generated by Corpus: 11.28
the handcrafted @vTIME-Hybrid system and the PCRU-roulette: 10.48
two bestpcru-greedy systems. PCRU-2gram: 7.66

pCRuU-viterbi: 7.54

3.4.4 Text quality against human forecasters
In the first experiment, the human evaluators gave PCRU-Tandom has no preference for shorter
an average score of 3.59 prRu-greedy, 3.22 to strings, its average string length is almost twice that
the corpus texts, and 3.03 to another (human) for&f the othepcru-generators. The 2-gram generator
caster. In Experiment 2, the average human scorliefers shorter strings, while the Viterbi generator
were 4.79 fopcru-greedy, and 4.50 for the Corpusprefers shorter generation processes, and these pref-
texts. Although in each experiment separately, st&/€NCces result in the shortest texts. The poor evalu-
tistical significance could not be shown for the dif-2tion results above for the-gram and Viterbi gen-
ferences between these means, in combination tR&ators indicate that this brevity bias can be harm-

scores provide evidence that the evalu_ators thoug “The Viterbi and the 2-gram generator were implemented
pCcRuU-greedy better than the human-written texts. identically, except for the-gram model look-up.
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ful in NLG. The remaining generators achieve goofiorm HALOGEN-style shallow statistical methods, in
matches to the average forecast length in the corpusrms of quality and efficiency.

An interesting question concerns the contribution
of the manually built component (the base genera-

The most time-consuming part REG system de- tor) to the quality of the outputs. The random mode
velopment is not encoding the range of alternativegerves as an absolute baseline in this respect; it in-
but the deCiSion-making Capabilities that enable S@icates how well a particu]ar base genera‘[or per-
lection among them. IN@TIME (Section 3), these forms on its own. However, different base genera-
were the result of corpus analysis and consultatiogys have different effects on the generation modes.
with writers and readers of marine forecasts. In thghe base generator that was used in previous exper-
pCRU wind forecast generators, the decision-makingments (Belz, 2005) encoded a less structured gen-
capabilities are acquired automatically, no expelration space and the set of concepts it used were
knowledge or corpus annotation is used. less fine-grained (e.g. it did not distinguish between

The UMTIME team estimafethat very approx- an increase and a decrease in wind speed, consid-
imately 12 person months went directly into develering both simply a change), and therefore it lacked
oping the &MTIME microplanner and realiser (the some information necessary for deriving conditional
components functionally analogous to tpeRU-  probabilities for lexical choice (e.dresheningvs.
generators), and 24 on generic activities such assing. As predicted (Belz, 2005, p. 21), improve-
expert consultation, which also benefited the miments to the base generator made little difference to
croplanner/realiser. Th@cRuU wind forecasters the results fopcru-2gram (up fromsLEU 0.45 to

were built in less than a month, including familiari-o.5), but greatly improved the performance of the
sation with the corpus, building the chunker and cregreedy mode (up frorf.43 to 0.64).

ating the generation rules themselves. However, the o pasic question for statisticalLG is whether
SumMTIME system also generates wave forecasts arglrface string likelihoods are enough to resolve re-
appropriate layout and canned text. A generous esthaining non-determinism in generators, or whether
mate is that it would take another two person monthgelihoods at the more abstract level of generation
to equip thepcRu forecaster with these capabilities. jes are needed. The former always prefers the
This is not to say that the two research efforts remgst frequent variant regardless of context, whereas
sulted in exactly the same thing. It is clear that forei the atter probabilities can attach to linguistic ob-
cast readers prefer theuBTIME system, but the jects and be conditioned on contextual features (e.g.
point is that it did come with a substantial price taghne useful feature in the forecast text generators en-
attached. ThecRru approach allows control over coded whether a rule was being applied at the be-
the trade-off between cost and quality. ginning of a text). The results reported in this paper
provide evidence that probabilistic generation can be
more powerful tham-gram based post-selection.

3.4.7 Development time

4 Discussion

The main contributions of the research described )
in this paper are: () a generation methodology Conclusions

that imp_roves substantially on development time am?he bCRU approach to generation makes it possi-
reusability compared to traditional hand-crafted Syst_)le to combine the potential accuracy and subtlety

tems; (ii) techniques for training linguistically in- ¢ boli i | th detailed linaui
formed decision-making components for probabili59 Symbolic generation rules with detaiied inguls-

tic NLG from raw corpora; and (iii) results that Shothc features on the one hand, and the robustness and

that probabilistioNLG can produce high-quality text. handle on nondeterminism provided by probabili-

Results also show that (i) a preference for shortet'reS associated with these rules, on the other. The

realisations can be harmful inLG: and that (i evaluation results for thecru generators show that

linguistically literate, probabilistic\LG can outper- outputs of h'gh. quality can be produced with th'.s
approach, that it can speed up development and im-

®Personal communication with E. Reiter and S. Sripada. prove reusability of systems, and that in some modes
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itis more efficient and less brevity-biased than existc. Gazdar. 1996. Paradigm merger in NLP. In Robin
ing HALOGEN-style n-gram techniques. Milner and lan Wand, editorsComputing Tomor-

; o ; row: Future Research Directions in Computer Sci-

The current situation INLG recall§|\!LU in the ence pages 88-109. Cambridge University Press.

late 1980s, when symbolic and statisticalr were
separate research paradigms, a situation memorafilyHovy. 1988. Generating Natural Language under
caricatured by Gazdar (1996), before rapidly mov- Pragmatic ConstraintsLawrence Erlbaum.
ing towards a paradigm merger in the early 1990$. Huang, K. Knight, and A. Joshi. 2006. Statistical
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Abstract

This paper explores the use of statisti-
cal machine translation (SMT) methods
for tactical natural language generation.
We present results on using phrase-based
SMT for learning to map meaning repre-
sentations to natural language. Improved
results are obtained by inverting a seman-
tic parser that uses SMT methods to map
sentences into meaning representations.
Finally, we show that hybridizing these
two approaches results in still more accu-
rate generation systems. Automatic and
human evaluation of generated sentences
are presented across two domains and four
languages.

1 Introduction

This paper explores the use of statistical machine
translation (SMT) methods in natural language gen-
eration (NLG), specifically the task of mapping
statements in a formal meaning representation lan-
guage (MRL) into a natural language (NL), i.e. tacti-
cal generation. Given a corpus of NL sentences each
paired with a formal meaning representation (MR),
it is easy to use SMT to construct a tactical gener-
ator, i.e. a statistical model that translates MRL to
NL. However, there has been little, if any, research
on exploiting recent SMT methods for NLG.

In this paper we present results on using a re-
cent phrase-based SMT system, PHARAOH (Koehn
et al., 2003), for NLG.! Although moderately effec-

"We also tried IBM Model 4/REWRITE (Germann, 2003), a
word-based SMT system, but it gave much worse results.
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tive, the inability of PHARAOH to exploit the for-
mal structure and grammar of the MRL limits its ac-
curacy. Unlike natural languages, MRLs typically
have a simple, formal syntax to support effective au-
tomated processing and inference. This MRL struc-
ture can also be used to improve language genera-
tion.

Tactical generation can also be seen as the inverse
of semantic parsing, the task of mapping NL sen-
tences to MRs. In this paper, we show how to “in-
vert” a recent SMT-based semantic parser, WASP
(Wong and Mooney, 2006), in order to produce a
more effective generation system. WASP exploits
the formal syntax of the MRL by learning a trans-
lator (based on a statistical synchronous context-
free grammar) that maps an NL sentence to a lin-
earized parse-tree of its MR rather than to a flat MR
string. In addition to exploiting the formal MRL
grammar, our approach also allows the same learned
grammar to be used for both parsing and genera-
tion, an elegant property that has been widely ad-
vocated (Kay, 1975; Jacobs, 1985; Shieber, 1988).
We present experimental results in two domains pre-
viously used to test WASP’s semantic parsing abil-
ity: mapping NL queries to a formal database query
language, and mapping NL soccer coaching instruc-
tions to a formal robot command language. WASP~!
is shown to produce a more accurate NL generator
than PHARAOH.

We also show how the idea of generating from
linearized parse-trees rather than flat MRs, used
effectively in WASP™!, can also be exploited in
PHARAOH. A version of PHARAOH that exploits
this approach is experimentally shown to produce
more accurate generators that are more competi-

tive with WASP™!’s. Finally, we also show how

Proceedings of NAACL HLT 2007, pages 172-179,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



((bowner our {4})
(do our {6} (pos (left (half our)))))
If our player 4 has the ball, then our player 6
should stay in the left side of our half.
(a) CLANG

answer (state (traverse_l (riverid(’ohio’))))
What states does the Ohio run through?

(b) GEOQUERY

Figure 1: Sample meaning representations

aspects of PHARAOH’s phrase-based model can be
used to improve WASP~!, resulting in a hybrid sys-
tem whose overall performance is the best.

2 MRLs and Test Domains

In this work, we consider input MRs with a hi-
erarchical structure similar to Moore (2002). The
only restriction on the MRL is that it be defined
by an available unambiguous context-free grammar
(CFG), which is true for almost all computer lan-
guages. We also assume that the order in which MR
predicates appear is relevant, i.e. the order can affect
the meaning of the MR. Note that the order in which
predicates appear need not be the same as the word
order of the target NL, and therefore, the content
planner need not know about the target NL grammar
(Shieber, 1993).

To ground our discussion, we consider two ap-
plication domains which were originally used to
demonstrate semantic parsing. The first domain is
RoBOCUP. In the ROBOCUP Coach Competition
(www.robocup.org), teams of agents compete in a
simulated soccer game and receive coach advice
written in a formal language called CLANG (Chen
etal., 2003). The task is to build a system that trans-
lates this formal advice into English. Figure 1(a)
shows a piece of sample advice.

The second domain is GEOQUERY, where a func-
tional, variable-free query language is used for
querying a small database on U.S. geography (Kate
et al., 2005). The task is to translate formal queries
into NL. Figure 1(b) shows a sample query.

3 Generation using SMT Methods

In this section, we show how SMT methods can be
used to construct a tactical generator. This is in con-
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trast to existing work that focuses on the use of NLG
in interlingual MT (Whitelock, 1992), in which the
roles of NLG and MT are switched. We first con-
sider using a phrase-based SMT system, PHARAOH,
for NLG. Then we show how to invert an SMT-based
semantic parser, WASP, to produce a more effective
generation system.

3.1 Generation using PHARAOH

PHARAOH (Koehn et al., 2003) is an SMT system
that uses phrases as basic translation units. Dur-
ing decoding, the source sentence is segmented into
a sequence of phrases. These phrases are then re-
ordered and translated into phrases in the target lan-
guage, which are joined together to form the output
sentence. Compared to earlier word-based methods
such as IBM Models (Brown et al., 1993), phrase-
based methods such as PHARAOH are much more
effective in producing idiomatic translations, and
are currently the best performing methods in SMT
(Koehn and Monz, 2006).

To use PHARAOH for NLG, we simply treat the
source MRL as an NL, so that phrases in the MRL
are sequences of MR tokens. Note that the grammat-
icality of MRs is not an issue here, as they are given
as input.

3.2 WASP: The Semantic Parsing Algorithm

Before showing how generation can be performed
by inverting a semantic parser, we present a brief
overview of WASP (Wong and Mooney, 2006), the
SMT-based semantic parser on which this work is
based.

To describe WASP, it is best to start with an ex-
ample. Consider the task of translating the English
sentence in Figure 1(a) into CLANG. To do this,
we may first generate a parse tree of the input sen-
tence. The meaning of the sentence is then ob-
tained by combining the meanings of the phrases.
This process can be formalized using a synchronous
context-free grammar (SCFQ), originally developed
as a grammar formalism that combines syntax anal-
ysis and code generation in compilers (Aho and UlI-
man, 1972). It has been used in syntax-based SMT
to model the translation of one NL to another (Chi-
ang, 2005). A derivation for a SCFG gives rise to
multiple isomorphic parse trees. Figure 2 shows a
partial parse of the sample sentence and its corre-



RULE

If CONDITION

TEAM  player  UNUM has the ball

our 4

(a) English

RULE

( CONDITION ced)
(bowner TEAM { UNUM  })
\ \
our 4
(b) CLANG

Figure 2: Partial parse trees for the CLANG statement and its English gloss shown in Figure 1(a)

sponding CLANG parse from which an MR is con-
structed. Note that the two parse trees are isomor-
phic (ignoring terminals).

Each SCFG rule consists of a non-terminal, X,
on the left-hand side (LHS), and a pair of strings,
(ar, B), on the right-hand side (RHS). The non-
terminals in 3 are a permutation of the non-terminals
in « (indices are used to show their correspondence).
In WASP, « denotes an NL phrase, and X — [ is
a production of the MRL grammar. Below are the
SCFG rules that generate the parses in Figure 2:

RULE — (if CONDITION[], DIRECTIVEf. ,
(CONDITION7) DIRECTIVEf)) )
CONDITION — (TEAM, player UNUM, has the

ses and braces are delimiters that are semantically
vacuous. Such tokens can easily confuse the word
alignment model. Second, MR tokens may exhibit
polysemy. For example, the CLANG predicate pt
has three meanings based on the types of arguments
it is given (Chen et al., 2003). Judging from the pt
token alone, the word alignment model would not be
able to identify its exact meaning.

A simple, principled way to avoid these difficul-
ties is to represent an MR using a list of productions
used to generate it. This list is used in lieu of the
MR in a word alignment. Figure 3 shows an exam-
ple. Here the list of productions corresponds to the
top-down, left-most derivation of an MR. For each

ball, (powner TEAM[y {UNUM})) MR there is a unique linearized parse-tree, since

TEAM — (our , our)
UNUM — (4, 4)

All derivations start with a pair of co-indexed start
symbols of the MRL grammar, (.Srj, Sr), and each
step involves the rewriting of a pair of co-indexed
non-terminals (by « and f3, respectively). Given an
input sentence, e, the task of semantic parsing is to
find a derivation that yields (e, f), so that f is an MR
translation of e.

Parsing with WASP requires a set of SCFG rules.
These rules are learned using a word alignment
model, which finds an optimal mapping from words
to MR predicates given a set of training sentences
and their correct MRs. Word alignment models have
been widely used for lexical acquisition in SMT
(Brown et al., 1993; Koehn et al., 2003). To use
a word alignment model in the semantic parsing
scenario, we can treat the MRL simply as an NL,
and MR tokens as words, but this often leads to
poor results. First, not all MR tokens carry spe-
cific meanings. For example, in CLANG, parenthe-
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the MRL grammar is unambiguous. Note that the
structure of the parse tree is preserved through lin-
earization. This allows us to extract SCFG rules in a
bottom-up manner, assuming the alignment is n-to-1
(each word is linked to at most one production). Ex-
traction starts with productions whose RHS is all ter-
minals, followed by those with non-terminals. (De-
tails can be found in Wong and Mooney (2006).)
The rules extracted from Figure 3 would be almost
the same as those used in Figure 2, except the one for
powner: CONDITION — (TEAM[ player UNUM
has (1) ball, (powner TEAM {UNUM})). The
token (1) denotes a word gap of size 1, due to the un-
aligned word the that comes between has and ball.
It can be seen as a non-terminal that expands to at
most one word, allowing for some flexibility in pat-
tern matching.

In WASP, GizA++ (Och and Ney, 2003) is used
to obtain the best alignments from the training ex-
amples. Then SCFG rules are extracted from these
alignments. The resulting SCFG, however, can be



v \

our
player

4

has

the -
ball

RULE — (CONDITION DIRECTIVE)
CONDITION — (bowner TEAM {UNUM})
TEAM — our

UNUM — 4

Figure 3: Partial word alignment for the CLANG statement and its English gloss shown in Figure 1(a)

ambiguous. Therefore, a maximum-entropy model
that defines the conditional probability of deriva-
tions (d) given an input sentence (e) is used for dis-
ambiguation:

Z,\l(e) exp Z Aifi(d) (D)

Pr)\(d\e) =

The feature functions, f;, are the number of times
each rule is used in a derivation. Z,(e) is the
normalizing factor. The model parameters, \;, are
trained using L-BFGS (Nocedal, 1980) to maxi-
mize the conditional log-likelihood of the training
examples (with a Gaussian prior). The decoding
task is thus to find a derivation d* that maximizes
Pr)(d*|e), and the output MR translation, f*, is the
yield of d*. This can be done in cubic time with re-
spect to the length of e using an Earley chart parser.

3.3 Generation by Inverting WASP

Now we show how to invert WASP to produce
Wasp~ !, and use it for NLG. We can use the same
grammar for both parsing and generation, a partic-
ularly appealing aspect of using WASP. Since an
SCFG is fully symmetric with respect to both gen-
erated strings, the same chart used for parsing can
be easily adapted for efficient generation (Shieber,
1988; Kay, 1996).

Given an input MR, f, WASP~! finds a sentence
e that maximizes Pr(e|f). It is difficult to directly
model Pr(e|f), however, because it has to assign
low probabilities to output sentences that are not
grammatical. There is no such requirement for pars-
ing, because the use of the MRL grammar ensures
the grammaticality of all output MRs. For genera-
tion, we need an NL grammar to ensure grammati-
cality, but this is not available a priori.

This motivates the noisy-channel model for
Wasp~!, where Pr(e|f) is divided into two smaller
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components:

arg max Pr(e|f) = argmax Pr(e) Pr(fle) (2)
e e

Pr(e) is the language model, and Pr(f|e) is the
parsing model. The generation task is to find a sen-
tence e such that (1) e is a good sentence a priori,
and (2) its meaning is the same as the input MR. For
the language model, we use an n-gram model, which
is remarkably useful in ranking candidate generated
sentences (Knight and Hatzivassiloglou, 1995; Ban-
galore et al., 2000; Langkilde-Geary, 2002). For the
parsing model, we re-use the one from WASP (Equa-
tion 1). Hence computing (2) means maximizing the
following:

max Pr(e) Pr(f|e)
~ max Pr(e(d))Pry(dle(d))

deD(f)
C e Pr(e(d)) -exp ), Aifi(d) 3)

deD(f) Zx(e(d))
where D(f) is the set of derivations that are con-
sistent with f, and e(d) is the output sentence that
a derivation d yields. Compared to most exist-
ing work on generation, WASP™! has the following
characteristics:

1. It does not require any lexical information in
the input MR, so lexical selection is an integral
part of the decoding algorithm.

2. Each predicate is translated to a phrase. More-
over, it need not be a contiguous phrase (con-
sider the SCFG rule for bowner in Section 3.2).

For decoding, we use an Earley chart generator
that scans the input MR from left to right. This im-
plies that each chart item covers a certain substring
of the input MR, not a subsequence in general. It



requires the order in which MR predicates appear
to be fixed, i.e. the order determines the meaning
of the MR. Since the order need not be identical to
the word order of the target NL, there is no need for
the content planner to know the target NL grammar,
which is learned from the training data.

Overall, the noisy-channel model is a weighted
SCFG, obtained by intersecting the NL side of the
WASP SCFG with the n-gram language model. The
chart generator is very similar to the chart parser, ex-
cept for the following:

1. To facilitate the calculation of Pr(e(d)), chart
items now include a list of (n—1)-grams that encode
the context in which output NL phrases appear. The
size of the list is 2N 4 2, where NN is the number of
non-terminals to be rewritten in the dotted rule.

2. Words are generated from word gaps through
special rules (9) — («, (), where the word gap,
(g), is treated as a non-terminal, and « is the NL
string that fills the gap (|a] < g¢). The empty set
symbol indicates that the NL string does not carry
any meaning. There are similar constructs in Car-
roll et al. (1999) that generate function words. Fur-
thermore, to improve efficiency, our generator only
considers gap fillers that have been observed during
training.

3. The normalizing factor in (3), Z)(e(d)), is not
a constant and varies across the output string, e(d).
(Note that Z)(e) is fixed for parsing.) This is un-
fortunate because the calculation of Z)(e(d)) is ex-
pensive, and it is not easy to incorporate it into the
chart generation algorithm. Normalization is done
as follows. First, compute the k-best candidate out-
put strings based on the unnormalized version of (3),
Pr(e(d)) - exp ), Ai fi(d). Then re-rank the list by
normalizing the scores using Z, (e(d)), which is ob-
tained by running the inside-outside algorithm on
each output string. This results in a decoding al-
gorithm that is approximate—the best output string
might not be in the k-best list—and takes cubic time
with respect to the length of each of the k candidate
output strings (k = 100 in our experiments).

Learning in WASP~! involves two steps. First, a
back-off n-gram language model with Good-Turing
discounting and no lexical classes? is built from all

This is to ensure that the same language model is used in
all systems that we tested.
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training sentences using the SRILM Toolkit (Stolcke,
2002). We use n = 2 since higher values seemed to
cause overfitting in our domains. Next, the parsing
model is trained as described in Section 3.2.

4 Improving the SMT-based Generators

The SMT-based generation algorithms, PHARAOH
and WAsp~!, while reasonably effective, can be
substantially improved by borrowing ideas from
each other.

4.1 Improving the PHARAOH-based Generator

A major weakness of PHARAOH as an NLG sys-
tem is its inability to exploit the formal structure of
the MRL. Like WASP™!, the phrase extraction al-
gorithm of PHARAOH is based on the output of a
word alignment model such as G1zA++ (Koehn et
al., 2003), which performs poorly when applied di-
rectly to MRLs (Section 3.2).

We can improve the PHARAOH-based generator
by supplying linearized parse-trees as input rather
than flat MRs. As a result, the basic translation units
are sequences of MRL productions, rather than se-
quences of MR tokens. This way PHARAOH can
exploit the formal grammar of the MRL to produce
high-quality phrase pairs. The same idea is used in
WASP~! to produce high-quality SCFG rules. We
call the resulting hybrid NLG system PHARAOH++.

4.2 Improving the WASP-based Generator

There are several aspects of PHARAOH that can be
used to improve WASP~!. First, the probabilistic
model of WASP™! is less than ideal as it requires
an extra re-ranking step for normalization, which is
expensive and prone to over-pruning. To remedy this
situation, we can borrow the probabilistic model of
PHARAOH, and define the parsing model as:

Pr(dle(d)) = ] [ w(r(a))

ded

)

which is the product of the weights of the rules used
in a derivation d. The rule weight, w(X — («, (3)),
is in turn defined as:

P(Bla)™ P(a]8)2 Py (Bla)** Py (o] 8)* exp(—|a])*

where P((3|«) and P(«|f3) are the relative frequen-
cies of § and «a, and P,(f|a) and P, (a|f3) are



the lexical weights (Koehn et al., 2003). The word
penalty, exp(—|al), allows some control over the
output sentence length. Together with the language
model, the new formulation of Pr(e|f) is a log-
linear model with \; as parameters. The advantage
of this model is that maximization requires no nor-
malization and can be done exactly and efficiently.
The model parameters are trained using minimum
error-rate training (Och, 2003).

Following the phrase extraction phase in
PHARAOH, we eliminate word gaps by incorpo-
rating unaligned words as part of the extracted
NL phrases (Koehn et al., 2003). The reason is
that while word gaps are useful in dealing with
unknown phrases during semantic parsing, for
generation, using known phrases generally leads to
better fluency. For the same reason, we also allow
the extraction of longer phrases that correspond to
multiple predicates (but no more than 5).

We call the resulting hybrid system WASP™14++.
It is similar to the syntax-based SMT system of Chi-
ang (2005), which uses both SCFG and PHARAOH’s
probabilistic model. The main difference is that we
use the MRL grammar to constrain rule extraction,
so that significantly fewer rules are extracted, mak-
ing it possible to do exact inference.

S Experiments

We evaluated all four SMT-based NLG systems in-
troduced in this paper: PHARAOH, WASP ™!, and the
hybrid systems, PHARAOH++ and WASP ™4+,

We used the ROBOCUP and GEOQUERY corpora
in our experiments. The ROBOCUP corpus consists
of 300 pieces of coach advice taken from the log files
of the 2003 ROBOCUP Coach Competition. The ad-
vice was written in CLANG and manually translated
to English (Kuhlmann et al., 2004). The average
MR length is 29.47 tokens, or 12.82 nodes for lin-
earized parse-trees. The average sentence length is
22.52. The GEOQUERY corpus consists of 880 En-
glish questions gathered from various sources. The
questions were manually translated to the functional
GEOQUERY language (Kate et al., 2005). The av-
erage MR length is 17.55 tokens, or 5.55 nodes for
linearized parse-trees. The average sentence length
is 7.57.
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Reference: If our player 2, 3, 7 or 5 has the ball
and the ball is close to our goal line ...
PHARAOH++: If player 3 has the ball is in 2 5 the
ball is in the area near our goal line ...
WASP ' ++: If players 2, 3, 7 and 5 has the ball
and the ball is near our goal line ...

Figure 4: Sample partial system output in the
RoBOCUP domain

RoBOCUP GEOQUERY

BLEU NisT | BLEU NIST

PHARAOH | 0.3247 5.0263 | 0.2070 3.1478
Wasp~! | 0.4357 5.4486 | 0.4582 5.9900
PHARAOH++ | 0.4336 5.9185 | 0.5354 6.3637

WaASsp~L++

0.6022 6.8976

0.5370 6.4808

Table 1: Results of automatic evaluation; bold type
indicates the best performing system (or systems)
for a given domain-metric pair (p < 0.05)

5.1 Automatic Evaluation

We performed 4 runs of 10-fold cross validation, and
measured the performance of the learned generators
using the BLEU score (Papineni et al., 2002) and the
NI1ST score (Doddington, 2002). Both MT metrics
measure the precision of a translation in terms of the
proportion of n-grams that it shares with the refer-
ence translations, with the NIST score focusing more
on n-grams that are less frequent and more informa-
tive. Both metrics have recently been used to eval-
uate generators (Langkilde-Geary, 2002; Nakanishi
et al., 2005; Belz and Reiter, 2006).

All systems were able to generate sentences for
more than 97% of the input. Figure 4 shows some
sample output of the systems. Table 1 shows the
automatic evaluation results. Paired ¢-tests were
used to measure statistical significance. A few
observations can be made. First, WASP~! pro-
duced a more accurate generator than PHARAOH.
Second, PHARAOH++ significantly outperformed
PHARAOH, showing the importance of exploiting
the formal structure of the MRL. Third, WASP—1++
significantly outperformed WASP~!. Most of the
gain came from PHARAOH’s probabilistic model.
Decoding was also 4-11 times faster, despite ex-
act inference and a larger grammar due to extrac-
tion of longer phrases. Lastly, WASP~!++ signifi-
cantly outperformed PHARAOH++ in the ROBOCUP



ROBOCUP | GEOQUERY
Flu. Ade. | Flu. Ade.
PHARAOH++ | 2.5 2.9 43 4.7
WASP '4++ | 3.6 40 | 41 4.7

Table 2: Results of human evaluation

domain. This is because WASP~!++ allows dis-
contiguous NL phrases and PHARAOH++ does not.
Such phrases are commonly used in ROBOCUP
for constructions like: players 2 , 3, 7 and 5;
26.96% of the phrases generated during testing were
discontiguous. When faced with such predicates,
PHARAOH++ would consistently omit some of the
words: e.g. players 2 3 7 5, or not learn any phrases
for those predicates at all. On the other hand, only
4.47% of the phrases generated during testing for
GEOQUERY were discontiguous, so the advantage of
WASP~!++ over PHARAOH++ was not as obvious.

Our BLEU scores are not as high as those re-
ported in Langkilde-Geary (2002) and Nakanishi et
al. (2005), which are around 0.7-0.9. However,
their work involves the regeneration of automati-
cally parsed text, and the MRs that they use, which
are essentially dependency parses, contain extensive
lexical information of the target NL.

5.2 Human Evaluation

Automatic evaluation is only an imperfect substitute
for human assessment. While it is found that BLEU
and NIST correlate quite well with human judgments
in evaluating NLG systems (Belz and Reiter, 2006),
it is best to support these figures with human evalu-
ation, which we did on a small scale. We recruited 4
native speakers of English with no previous experi-
ence with the ROBOCUP and GEOQUERY domains.
Each subject was given the same 20 sentences for
each domain, randomly chosen from the test sets.
For each sentence, the subjects were asked to judge
the output of PHARAOH++ and WASP™!4++ in terms
of fluency and adequacy. They were presented with
the following definition, adapted from Koehn and
Monz (2006):

Score ‘ Fluency Adequacy
5 | Flawless English All meaning
4 | Good English Most meaning

3 | Non-native English | Some meaning
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PHARAOH++ WASP™ L+

BLEU NIST | BLEU NIST
English | 0.5344 5.3289 | 0.6035 5.7133
Spanish | 0.6042 5.6321 | 0.6175 5.7293
Japanese | 0.6171 4.5357 | 0.6585 4.6648
Turkish | 0.4562 4.2220 | 0.4824 4.3283

Table 3: Results of automatic evaluation on the mul-
tilingual GEOQUERY data set

‘ Adequacy
Little meaning
No meaning

Score ‘ Fluency
2 | Disfluent English
1 | Incomprehensible

For each generated sentence, we computed the av-
erage of the 4 human judges’ scores. No score
normalization was performed. Then we compared
the two systems using a paired t-test. Table 2
shows that WASP~!4++ produced better generators
than PHARAOH++ in the ROBOCUP domain, con-
sistent with the results of automatic evaluation.

5.3

Lastly, we describe our experiments on the mul-
tilingual GEOQUERY data set. The 250-example
data set is a subset of the larger GEOQUERY cor-
pus. All English questions in this data set were
manually translated into Spanish, Japanese and
Turkish, while the corresponding MRs remain un-
changed. Table 3 shows the results, which are sim-
ilar to previous results on the larger GEOQUERY
corpus. WASP~'4++ outperformed PHARAOH++
for some language-metric pairs, but otherwise per-
formed comparably.

Multilingual Experiments

6 Related Work

Numerous efforts have been made to unify the tasks
of semantic parsing and tactical generation. One of
the earliest espousals of the notion of grammar re-
versability can be found in Kay (1975). Shieber
(1988) further noted that not only a single gram-
mar can be used for parsing and generation, but the
same language-processing architecture can be used
for both tasks. Kay (1996) identified parsing charts
as such an architecture, which led to the develop-
ment of various chart generation algorithms: Car-
roll et al. (1999) for HPSG, Bangalore et al. (2000)
for LTAG, Moore (2002) for unification grammars,



White and Baldridge (2003) for CCG. More re-
cently, statistical chart generators have emerged, in-
cluding White (2004) for CCG, Carroll and Oepen
(2005) and Nakanishi et al. (2005) for HPSG. Many
of these systems, however, focus on the task of sur-
face realization—inflecting and ordering words—
which ignores the problem of lexical selection. In
contrast, our SMT-based methods integrate lexical
selection and realization in an elegant framework
and automatically learn all of their linguistic knowl-
edge from an annotated corpus.

7 Conclusion

We have presented four tactical generation systems
based on various SMT-based methods. In particular,
the hybrid system produced by inverting the WASP
semantic parser shows the best overall results across
different application domains.
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Abstract

We present a sentence compression system based
on synchronous context-free grammars (SCFG),
following the successful noisy-channel approach
of (Knight and Marcu, 2000). We define a head-
driven Markovization formulation of SCFG dele-
tion rules, which allows us to lexicalize probabili-
ties of constituent deletions. We also use a robust
approach for tree-to-tree alignment between arbi-
trary document-abstract parallel corpora, which lets
us train lexicalized models with much more data
than previous approaches relying exclusively on
scarcely available document-compression corpora.
Finally, we evaluate different Markovized models,
and find that our selected best model is one that ex-
ploits head-modifier bilexicalization to accurately
distinguish adjuncts from complements, and that
produces sentences that were judged more gram-
matical than those generated by previous work.

1 Introduction

Sentence compression addresses the problem of re-
moving words or phrases that are not necessary
in the generated output of, for instance, summa-
rization and question answering systems. Given
the need to ensure grammatical sentences, a num-
ber of researchers have used syntax-directed ap-
proaches that perform transformations on the out-
put of syntactic parsers (Jing, 2000; Dorr et al.,
2003). Some of them (Knight and Marcu, 2000;
Turner and Charniak, 2005) take an empirical ap-
proach, relying on formalisms equivalent to proba-
bilistic synchronous context-free grammars (SCFG)

*This material is based on research supported in part
by the U.S. National Science Foundation (NSF) under Grant
No. IIS-05-34871 and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HRO0011-06-C-0023.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or DARPA.
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(Lewis and Stearns, 1968; Aho and Ullman, 1969) to
extract compression rules from aligned Penn Tree-
bank (PTB) trees. While their approach proved suc-
cessful, their reliance on standard maximum like-
lihood estimators for SCFG productions results in
considerable sparseness issues, especially given the
relative flat structure of PTB trees; in practice, many
SCFG productions are seen only once. This problem
is exacerbated for the compression task, which has
only scarce training material available.

In this paper, we present a head-driven
Markovization of SCFG compression rules, an
approach that was successfully used in syntactic
parsing (Collins, 1999; Klein and Manning, 2003)
to alleviate issues intrinsic to relative frequency
estimation of treebank productions. Markovization
for sentence compression provides several benefits,
including the ability to condition deletions on
a flexible amount of syntactic context, to treat
head-modifier dependencies independently, and to
lexicalize SCFG productions.

Another part of our effort focuses on better align-
ment models for extracting SCFG compression rules
from parallel data, and to improve upon (Knight
and Marcu, 2000), who could only exploit 1.75% of
the Ziff-Davis corpus because of stringent assump-
tions about human abstractive behavior. To alleviate
their restrictions, we rely on a robust approach for
aligning trees of arbitrary document-abstract sen-
tence pairs. After accounting for sentence pairs with
both substitutions and deletions, we reached a reten-
tion of more than 25% of the Ziff-Davis data, which
greatly benefited the lexical probabilities incorpo-
rated into our Markovized SCFGs.

Our work provides three main contributions:

Proceedings of NAACL HLT 2007, pages 180-187,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



(1) Our lexicalized head-driven Markovization
yields more robust probability estimates, and our
compressions outperform (Knight and Marcu, 2000)
according to automatic and human evaluation.
(2) We provide a comprehensive analysis of the im-
pact of different Markov orders for sentence com-
pression, similarly to a study done for PCFGs (Klein
and Manning, 2003). (3) We provide a framework
for exploiting document-abstract sentence pairs that
are not purely compressive, and augment the avail-
able training resources for syntax-directed sentence
compression systems.

2 Synchronous Grammars for Sentence
Compression

One successful syntax-driven approach (Knight and
Marcu, 2000, henceforth K&M) relies on syn-
chronous context-free grammars (SCFG) (Lewis
and Stearns, 1968; Aho and Ullman, 1969). SCFGs
can be informally defined as context-free grammars
(CFGs) whose productions have two right-hand side
strings instead of one, namely source and target
right-hand side. In the case of sentence compres-
sion, we restrict the target side to be a sub-sequence
of the source side (possibly identical), and we will
call this restricted grammar a deletion SCFG. For in-
stance, a deletion SCFG rule that removes an adver-
bial phrase (ADVP) between an noun phrase (NP)
and a verb phrase (VP) may be written as follows:

S — (NP ADVP VP, NP VP)

In a sentence compression framework similar to
the one presented by K&M, we build SCFGs that
are fully trainable from a corpus of document and
reduced sentences. Such an approach comprises
two subproblems: (1) transform tree pairs into syn-
chronous grammar derivations; (2) based on these
derivations, assign probabilities to deletion SCFG
productions, and more generally, to compressions
produced by such grammars. Since the main point of
our paper lies in the exploration of better probability
estimates through Markovization and lexicalization
of SCFGs, we first address the latter problem, and
discuss the task of building synchronous derivations
only later in Section 4.

2.1 Stochastic Synchronous Grammars

The overall goal of a sentence compression system is
to transform a given input sentence f into a concise
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and grammatical sentence ¢ € C, which is a sub-
sequence of f. Similarly to K&M and many suc-
cessful syntactic parsers (Collins, 1999; Klein and
Manning, 2003), our sentence compression system
is generative, and attempts to find the optimal com-
pression ¢ by estimating the following function:'

¢ = arg max {p(cyf)}

ceC

= arg max {p(f, c)} (1)

ceC

If 7(f, c) is the set of all tree pairs that yield (f, c)
according to some underlying SCFG, we can esti-
mate the probability of the sentence pair using:

2

(7rf:7rc) ET(fvc)

p(f,c) = P(mg, me) 2

We note that, in practice (and as in K&M), Equa-
tion 2 is often approximated by restricting 7(f, c)
to a unique full tree 7¢, the best hypothesis of an
off-the-shelf syntactic parser. This implies that each
possible compression c is the target-side yield of at
most one SCFG derivation.

As in standard PCFG history-based models, the
probability of the entire structure (Equation 2) is fac-
tored into probabilities of grammar productions. If

1 o r’/, where

0 is a derivation § = r- o ---o07J ...

rJ denotes the SCFG rule [/ — <oz§c, ol), we get:

J

plre,me) = [ [ pled, oY)
j=1

3)

The question we will now address is how to esti-
mate the probability p(a’}, a|l7) of each SCFG pro-
duction.

2.2 Lexicalized Head-Driven Markovization of
Synchronous Grammars

A main issue in our enterprise is to reliably estimate
productions of deletion SCFGs. In a sentence com-
pression framework as the one presented by K&M,
we use aligned trees of the form of the Penn Tree-
bank (PTB) (Marcus et al., 1994) to acquire and
score SCFG productions. However, the use of the
PTB structure faces many challenges also encoun-
tered in probabilistic parsing.

'In their noisy-channel approach, K&M further break down

p(c, £) into p(f|c) - p(c), which we refrain from doing for rea-
sons that will become obvious later.



Firstly, PTB tree structures are relatively flat, par-
ticularly within noun phrases. For instance, adjec-
tive phrases (ADJP)—which are generally good can-
didates for deletions—appear in 90 different NP-
rooted SCFG productions in Ziff-Davis,> 61 of
which appear only once, e.g., NP — (DT ADJP JJ
NN NN, DT JJ NN NN). While it may seem ad-
vantageous to maintain many constituents within the
same domain of locality of an SCFG production, as
we may hope to exploit its large syntactic context to
condition deletions more accurately, the sparsity of
such productions make them poor candidates for rel-
ative frequency estimation, especially in a task with
limited quantities of training material. Indeed, our
base training corpus described in Section 4 contains
only 951 SCFG productions, 593 appearing once.

Secondly, syntactic categories in the PTB are par-
ticularly coarse grained, and lead to many incorrect
context-free assumptions. Some important distinc-
tions, such as between arguments and adjuncts, are
beyond the scope of the PTB annotation, and it is
often difficult to determine out of context whether a
given constituent can safely be deleted from a right-
hand side.

One first type of annotation that can effectively be
added to each syntactic category is its lexical head
and head part-of-speech (POS), following work in
syntactic parsing (Collins, 1999). This type of an-
notation is particular beneficial in the case of, e.g.,
prepositional phrases (PP), which may be either
complement or adjunct. As in the case of Figure 1
(in which adjuncts appear in italic), knowing that the
PP headed by “from” appears in a VP headed by
“fell” helps us to determine that the PP is a com-
plement to the verb “fell”, and that it should pre-
sumably not be deleted. Conversely, the PP headed
by “because” modifying the same verb is an adjunct,
and can safely be deleted if unimportant.®> Also, as
discussed in (Klein and Manning, 2003), POS an-
notation can be useful as a means of backing off
to more frequently occurring head-modifier POS oc-
currences (e.g., VBD-IN) when specific bilexical co-

’Details about the SCFG extraction procedure are given in
Section 4. In short, we refer here to a grammar generated from
823 sentence pairs.

3The PP headed by “from” is an optional argument, and thus
may still be deleted. Our point is that lexical information in gen-
eral should help give lower scores to deletions of constituents
that are grammatically more prominent.
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NP ADVP VP

NN RB  VBD

Earning also fell IN

PP PP
NP IN N NP

from DT Y NN because of VBG NN NN

the vyear-ago period dlowing microchip demand

Figure 1: Penn Treebank tree with adjuncts in italic.

occurrences are sparsely seen (e.g., “fell”’-“from”).
At a lower level, lexicalization is clearly desirable
for pre-terminals. Indeed, current SCFG models
such as K&M have no direct way of preventing
highly improbable single word removals, such as
deletions of adverbs “never” or “nowhere”, which
may turn a negative statement into a positive one.*

A second type of annotation that can be added to
syntactic categories is the so-called parent annota-
tion (Johnson, 1998), which was effectively used in
syntactic parsing to break unreasonable context-free
assumptions. For instance, a PP with a VP parent
is marked as PP"VP. It is reasonable to assume that,
e.g., that constituents deep inside a PP have more
chances to be removed than otherwise expected, and
one may seek to increase the amount of vertical
context that is available for conditioning each con-
stituent deletion.

To achieve the above desiderata for better SCFG
probability estimates—i.e., reduce the amount of
sister annotation within each SCFG production, by
conditioning deletions on a context smaller than an
entire right-hand side, and at the same time in-
crease the amount of ancestor and descendent an-
notation through parent (or ancestor) annotation and
lexicalization—we follow the approach of (Collins,
1999; Klein and Manning, 2003), i.e., factor-
ize n-ary grammar productions into products of n
right-hand side probabilities, a technique sometimes
called Markovization.

Markovization is generally head-driven, i.e., re-
flects a decomposition centered around the head of
each CFG production:

| — AL™.-..L'HR'---R"A 4)

*K&M incorporate lexical probabilities through n-gram
models, but such language models are obviously not good for
preventing such unreasonable deletions.



where H is the head, L',..., L™ the left modi-
fiers, R',..., R"™ are right modifiers, and A termi-
nation symbols needed for accurate probability es-
timations (e.g., to capture the fact that certain con-
stituents are more likely than others to be the right-
most constituent); for simplicity, we will ignore A
in later discussions. For a given SCFG production
I — (af,ac), we ask, given the source RHS o
that is assumed given (e.g., provided by a syntactic
parser), which of its RHS elements are also present
in «... That is, we write:
placlay, 1) = (5)

p(klm’ 7kl17kh7k;7”' 7k;}‘af7l)
where ky,, li, kzﬁ (‘k’ for keep) are binary variables
that are true if and only if constituents H, L;, R’ (re-
spectively) of the source RHS a are present in the
target side a.. Note that the conditional probabil-
ity in Equation 5 enables us to estimate Equation 3,
since p(ay, acll) = placlag,l) - p(ag|l). We can
rely on a state-of-the-art probabilistic parser to ef-
fectively compute either p(a¢|l) or the probability
of the entire tree 7¢, and need not worry about esti-
mating this term. In the case of sentence compres-
sion from the one-best hypothesis of the parser, we
can ignore p(as|l) altogether, since 7¢ is the same
for all compressions.

We can rewrite Equation 5 exactly using a head-
driven infinite-horizon Markovization:

p(ac‘afJ) :p(kh‘afJ) (6)

: H p(kﬂklla"'7k:li717khaafal)

i=1...m
. H p(k;‘ki7 Ty ki_17 kh,A,O&f, l)
i=1..n
where A = (k},--- k") is a term needed by the

chain rule. One key issue is to make linguistically
plausible assumptions to determine which condi-
tioning variables in the terms should be deleted. Fol-
lowing our discussion in the first part of this section,
we may start by making an order-s Markov approx-
imation centered around the head, i.e., we condi-
tion each binary variable (e.g., k2) on a context of
up to s sister constituents between the current con-
stituent and the head (e.g., (R*™%,..., R%)). In or-
der to incorporate bilexical dependencies between
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the head and each modifier, we also condition all
modifier probabilities on head variables H (and k).
These assumptions are overall quite similar to the
ones made in Markovized parsing models. If we as-
sume that all other conditioning variables in Equa-
tion 6 are irrelevant, we write:

p(ac‘aﬂl) :ph(kh’Hv l) @)
T KL LR kT H g, D)
i=1...m
T pr(RLIR, o R RS, K H K, 1)
i=1...n
Note that it is important to condition deletions on
both constituent histories (R*~%, ..., R") and non-
deletion histories (ki7%,... ki~1); otherwise we
would be unable to perform deletions that must op-
erate jointly, as in production S — (ADVP COMMA
NP VP, NP VP) (in which the ADVP should not be
deleted without the comma). Without binary his-
tories, we often observed superfluous punctuation
symbols and dangling coordinate conjunctions ap-
pearing in our outputs.

Finally, we label [ with an order-v ancestor anno-
tation, e.g., for the VP in Figure 1, | = ¢ for v = 0,
I =VP’S for v = 2, and so on. We also replace H
and modifiers L’ and R’ by lexicalized entries, e.g.,
H =(VP,VBDfell) and R’ =(PPIN,from). Note
that to estimate p;(k!|---), we only lexicalize L’
and H, and none of the other conditioning modifiers,
since this would, of course, introduce too many con-
ditioning variables (the same goes for p, (kL] ---)).
The question of how much sister and vertical (s and
v) context is needed for effective sentence compres-
sion, and whether to use lexical or POS annotation,
will be evaluated in detail in Section 5.

3 The Data

To acquire SCFG productions, we used Ziff-Davis,
a corpus of technical articles and human abstractive
summaries. Articles and summaries are paired by
document, so the first step was to perform sentence
alignment. In the particular case of sentence com-
pression, a simple approach is to just consider com-
pression pairs (f,c), where c is a substring of f. K&M
identified only 1,087 such paired sentences in the en-
tire corpus, which represents a recall of 1.75%.

For our empirical evaluations, we split the data as
follows: among the 1,055 sentences that were taken



to train systems described in K&M, we selected the
first 32 sentence pairs to be an auxiliary test corpus
(for future work), the next 200 sentences to be our
development corpus, and the remaining 823 to be
our base training corpus (ZD-0), which will be aug-
mented with additional data as explained in the next
section. We feel it is important to use a relatively
large development corpus, since we will provide in
Section 5 detailed analyses of model selection on
the development set (e.g., by evaluating different
Markov structures), and we want these findings to
be as significant as possible. Finally, we used the
same test data as K&M for human evaluation pur-
poses (32 sentence pairs).

4 Tree Alignment and Synchronous Gram-
mar Inference

We now describe methods to train SCFG models
from sentence pairs. Given a tree pair (f, c), whose
respective parses (7¢,me) were generated by the
parser described in (Charniak and Johnson, 2005),
the goal is to transform the tree pair into SCFG
derivations, in order to build relative frequency es-
timates for our Markovized models from observed
SCFG productions. Clearly, the two trees may
sometimes be structurally quite different (e.g., a
given PP may attach to an NP in ¢, while attach-
ing to VP in m.), and it is not always possible to
build an SCFG derivation given the constraints in
(¢, me ). The approach taken by K&M is to analyze
both trees and count an SCFG rule whenever two
nodes are “deemed to correspond”, i.e., roots are the
same, and a is a sub-sequence of ay. This leads
to a quite restricted number of different productions
on our base training set (ZD-0): 823 different pro-
ductions were extracted, 593 of which appear only
once. This first approach has serious limitations;
the assumption that sentence compression appropri-
ately models human abstractive data is particularly
problematic. This considerably limits the amount
of training data that can be exploited in Ziff-Davis
(which contains overall more than 4,000 documents-
abstract pairs), and this makes it very difficult to
train lexicalized models.

An approach to slightly loosen this assumption
is to consider document-abstract sentence pairs in
which the condensed version contains one or more
substitutions or insertions. Consider for example
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S

T

NP[2] VP J
/\ ‘
DT[3]  J95] NN[7] VP cc VP[9] |
NN
The[4] second[6] computer[8] VBD ~ PRT and  VBD[10] PP[12)
N
started  RP ran[11] IN[13]  NP[15]
up without[14] NN[16]
/S[l]\ incident[17]
NP[2] VP9 18]
|
DT[3] 351 NN[7] VBD[10] PP[12] 119
The[4] second[6] unit[8] ran[11] IN[13] NP[15]

without[14] NN[16]

incidentl171

Figure 2: Full sentence and its revision. While the latter is not a
compression of the former, it could still be used to gather statis-
tics to train a sentence compression system, e.g., to learn the
reduction of a VP coordination.

the tree pair in Figure 2: the two sentences are syn-
tactically very close, but the substitution of “com-
puter” with “unit” makes this sentence pair unus-
able in the framework presented in K&M. Arguably,
there should be ways to exploit abstract sentences
that are slightly reworded in addition to being com-
pressed. To use sentence pairs with insertions and
substitutions, we must find a way to align tree pairs
in order to identify SCFG productions. More specif-
ically, we must define a constituent alignment be-
tween the paired abstract and document sentences,
which determine how the two trees are synchronized
in a derivation. Obtaining this alignment is no triv-
ial matter as the number of non-deleting edits in-
creases. To address this, we synchronized tree pairs
by finding the constituent alignment that minimizes
the edit distance between the two trees, i.e., mini-
mize the number of terminals and non-terminals in-
sertions, substitutions and deletions.” While criteria

>The minimization problem is known to be NP hard, so we
used an approximation algorithm (Zhang and Shasha, 1989) that



other than minimum tree edit distance may be effec-
tive, we found—after manual inspections of align-
ments between sentences with less than five non-
deleting edits—that this method generally produces
good alignments. A sample alignment is provided in
Figure 2. Once a constituent alignment is available,
it is then trivial to extract all deletion SCFG rules
available in a tree pair, e.g., NP — (DT JJ NN, DT
JINN) in the figure.

We also exploited more general tree productions
known as synchronous tree substitution grammar
(STSG) rules, in an approach quite similar to (Turner
and Charniak, 2005). For instance, the STSG rule
rooted at S can be decomposed into two SCFG pro-
ductions if we allow unary rules such as VP — VP to
be freely added to the compressed tree. More specif-
ically, we decompose any STSG rule that has in its
target (compressed) RHS a single context free pro-
duction, and that contains in its source (full) RHS
a single context free production adjoined with any
number of tree adjoining grammar (TAG) auxiliary
trees (Joshi et al., 1975). In the figure, the initial tree
is S — NP VP, and the adjoined (auxiliary) tree is
VP — VP CC VPS5 We found this approach quite
helpful, since most useful compressions that mimic
TAG adjoining operations are missed by the extrac-
tion procedure of K&M.

Since we found that exploiting sentence pairs con-
taining insertions had adverse consequences in terms
of compression accuracies, we only report experi-
ments with sentence pairs containing no insertions.
We gathered sentence pairs with up to six substi-
tutions using minimum edit distance matching (we
will refer to these sets as ZD-0 to ZD-6). With a
limit of up to six substitutions (ZD-6), we were able
to train our models on 16,787 sentences, which rep-
resents about 25% of the total number of summary
sentences of the Ziff-Davis corpus.

5 Experiments

All experiments presented in this section are per-
formed on the Ziff-Davis corpus. We note first that
all probability estimates of our Markovized gram-

runs in polynomial time.

%To determine whether a given one-level tree is an auxiliary,
we simply check the following properties: all its leaves but one
(the “foot node”) must be nodes attached to deleted subtrees
(e.g., VP and CC in the figure), and the foot node (VP[9]) must
have the same syntactic category as the root node.
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mars are smoothed. Indeed, incorporating lexical
dependencies within models trained on data sets as
small as 16,000 sentence pairs would be quite fu-
tile without incorporating robust smoothing tech-
niques. Different smoothing techniques were eval-
uated with our models, and we found that interpo-
lated Witten-Bell discounting was the method that
performed best. We used relative frequency es-
timates for each of the models presented in Sec-
tion 2.2 (i.e., pp, D, pr)s and trained p; separately
from p,. We interpolated our most specific models
(Iexical heads, POS tags, ancestor and sister annota-
tion) with lower-order models.’

Automatic evaluation on development sets is per-
formed using word-level classification accuracy, i.e.,
the number of words correctly classified as being
either deleted or not deleted, divided by the to-
tal number of words. In our first evaluation, we
experimented with different horizontal and vertical
Markovizations (Table 1). First, it appears that ver-
tical annotation is moderately helpful. It provides
gains in accuracy ranging from .5% to .9% forv = 1
over a simpler models (v = 0), but higher orders
(v > 1) have a tendency to decrease performance.
On the other hand, sister annotation of order 1 is
much more critical, and provides 4.1% improvement
over a simpler model (s = 0, v = 0). Manual exami-
nations of compression outputs confirmed this anal-
ysis: without sister annotation, deletion of punctu-
ation and function words (determiners, coordinate
conjunctions, etc.) is often inaccurate, and compres-
sions clearly lack fluency. This annotation is also
helpful for phrasal deletions; for instance, we found
that PPs are deleted in 31.4% of cases in Ziff-Davis
if they do not immediately follow the head con-
stituent, but this percentage drops to 11.1% for PPs
that immediately follow the head. It seems, how-
ever, that increasing sister annotation beyond s > 1
only provide limited improvements.

In our second evaluation reported in Table 2, we

"We relied on the SRI language modeling (SRILM) toolkit
library for all smoothing experiments. We used the following
order in our deleted interpolation of py,: lexical head, head POS,
ancestor annotation, and head category. For p; and p,, we re-
moved first: lexical head, lexical head of the modifier, head
POS, head POS of the modifier, sister annotation (L* deleted
before k;), kn, category of the head, category of the modifier.
We experimented with different deletion interpolation order-
ings, and this ordering appears to work quite well in practice,
and was used in all experiments reported in this paper.



assessed the usefulness of lexical and POS anno-
tation (setting s and v to 0). In the table, we use
M to denote any of the modifiers L; or R;, and
¢, t, w respectively represent syntactic constituent,
POS, and lexical conditioning. While POS annota-
tion is clearly advantageous compared to using only
syntactic categories, adding lexical variables to the
model also helps. As is shown in the table, it is es-
pecially important to know the lexical head of the
modifier we are attempting to delete. The addition of
Wy, to conditioning variables provides an improve-
ment of 1.3% (from 66.5% to 67.8%) on our op-
timal Ziff-Davis training corpus (ZD-6). Further-
more, bilexical head-modifier dependencies provide
a relatively small improvement of .5% (from 69.8%
to 70.3%) over the best model that does not incor-
porate the lexical head wy. Note that lexical con-
ditioning also helps in the case where the training
data is relatively small (ZD-0), though differences
are less significant, and bilexical dependencies actu-
ally hurt performance. In subsequent experiments,
we experimented with different Markovizations and
lexical dependency combination, and finally settled
with a model (s = 1 and v = 1) incorporating all
conditioning variables listed in the last line of Ta-
ble 2. This final tuning was combined with human
inspection of generated outputs, since certain modi-
fications that positively impacted output quality sel-
dom changed accuracies.

We finally took the best configuration selected
above, and evaluated our model against the noisy-
channel model of K&M on the 32 test sentences se-
lected by them. We performed both automatic and
human evaluation against the output produced by
Knight and Marcu’s original implementation of their
noisy channel model (Table 3). In the former case,
we also provide Simple String Accuracies (SSA).®
For human evaluation, we hired six native-speaker
judges who scored grammaticality and content (im-
portance) with scores from 1 to 5, using instructions
as described in K&M. Both types of evaluations fa-
vored our Markovized model against the noisy chan-
nel model.

Table 4 shows several outputs of our system

8SSA is defined as: SSA = 1 — (I + D + S)/R. The
numerator terms are respectively the number of inserts, deletes,
and substitutions, and R is the length of the reference compres-
sion.
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Vertical Horizontal Order

Order s=0 s=1 s=2 s=3
v=0 | 63 67.1 67.2 67.2
v=1 63.9 67.6 67.7 67.7
v=2 | 657 66.6 66.9 66.9
v=23 | 652 66.8 67.1 67

Table 1: Markovizations accuracies on Ziff-Davis devel set.

Conditioning Variables ZD-0 ZD-3 ZD-6
M=cm H=cp 622 624 044
M= (cm,tm) H=c¢y 63.0 634 66.5
M= (cm,wm) H=cy 642 652 66.7
M= (Cm,tm,wm) H=cp 63.8 658 67.8
M= (cm,tm,wm) H="(cpn,tn) 66.7 68.6 69.8
M= (Cm,tm, Wm) H=_(cn,wn) 669 689 70.3
M= (cm,tm,wm) H=(cp,th,wn) | 663 69.1 69.8

Table 2: Accuracies on Ziff-Davis devel set with different head-
modifier annotations.

Models | Acc SSA Grammar Content Len(%)
NoisyC | 61.3 14.6 437+0.5 387+£12 704
Markov | 67.9 31.7 4.68+04 4224+04 62.7
Human - - 495+0.1 443+03 533

Table 3: Accuracies on Ziff-Davis test set.

(Markov) that significantly differed from the output
of the noisy channel model (NoisyC), which con-
firms our finding that Markovized models can pro-
duce quite grammatical output. Our compression for
the first sentence underlines one of the advantages of
constituent-based classifiers, which have the ability
of deleting a very long phrase (here, a PP) at once.
The three next sentences display some advantages
of our approach over the K&M model: here, the lat-
ter model performs deletion with too little lexico-
syntactic information, and accidentally removes cer-
tain modifiers that are sometimes, but not always,
good candidates for deletions (e.g., ADJP in Sen-
tence 2, PP in sentences 3 and 4). On the other hand,
our model keeps these constituent intact. Finally, the
fifth and last example is one of the only three cases
(among the 32 sentences) where our model produced
a sentence we judged clearly ungrammatical. After
inspection, we found that our parser assigned par-
ticularly errorful trees to those inputs, which may
partially explain these ungrammatical outputs.

6 Related Work

A relatively large body of work addressed the prob-
lem of sentence compression. One successful recent
approach (McDonald, 2006) combines a discrimi-
native framework with a set of features that cap-
ture information similar to the K&M model. Mc-



Input Many debugging features, including user-defined break points
and variable-watching and message-watching windows, have
been added.

NoisyC Many debugging features, including user-defined points and
variable-watching and message-watching windows, have been
added.

Markov | Many debugging features have been added.

Human Many debugging features have been added.

Input The chemical etching process used for glare protection is effec-
tive and will help if your office has the fluorescent-light overkill
that ’s typical in offices.

NoisyC The process used for glare protection is and will help if your
office has the overkill

Markov | The chemical etching process used for glare protection is ef-
fective.

Human Glare protection is effective.

Input The utilities will be bundled with Quickdex II in a $90 pack-
age called super quickdex, which is expected to ship in late
summer.

NoisyC The utilities will be bundled

Markov The utilities will be bundled with Quickdex II.

Human The utilities will be bundled with Quickdex II.

Input The discounted package for the SparcServer 470 is priced at
389,900, down from the regular $107,795.

NoisyC The package for the 470 is priced

Markov | The discounted package for the SparcServer 470 is at $89,900.

Human The SparcServer 470 is priced at $89,900, down from the reg-
ular $107,795.

Input Prices range from $5,000 for a microvax 2000 to $179,000 for
the vax 8000 or higher series.

NoisyC Prices range from $5,000 for a 2000 to $179,000 for the vax
8000 or higher series.

Markov | Prices range from $5,000 for a microvax for the vax.

Human Prices range from $5,000 to $179,000.

Table 4: Compressions of sample test sentences.

Donald’s features include compression bigrams, as
well as soft syntactic evidence extracted from parse
trees and dependency trees. The strength of McDon-
ald’s approach partially stems from its robustness
against redundant and noisy features, since each fea-
ture is weighted proportionally to its discriminative
power, and his approach is thus hardly penalized
by uninformative features. In contrast, our work
puts much more emphasis on feature analysis than
on efficient optimization, and relies on a statisti-
cal framework (maximum-likelihood estimates) that
strives for careful feature selection and combination.
It also describes and evaluates models incorporating
syntactic evidence that is new to the sentence com-
pression literature, such as head-modifier bilexical
dependencies, and nth-order sister and vertical an-
notation. We think this work leads to a better un-
derstanding of what type of syntactic and lexical ev-
idence makes sentence compression work. Further-
more, our work leaves the door open to uses of our
factored model in a constituent-based or word-based
discriminative framework, in which each elemen-
tary lexico-syntactic structure of this paper can be
discriminatively weighted to directly optimize com-
pression quality. Since McDonald’s approach does
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not incorporate SCFG deletion rules, and conditions
deletions on less lexico-syntactic context, we believe
this will lead to levels of performance superior to
both papers.

7 Conclusions

We presented a sentence compression system based
on SCFG deletion rules, for which we defined
a head-driven Markovization formulation. This
Markovization enabled us to incorporate lexical con-
ditioning variables into our models. We empirically
evaluated different Markov structures, and obtained
a best system that generates particularly grammati-
cal sentences according to a human evaluation. Our
sentence compression system is freely available for
research and educational purposes.
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Abstract

This paper addresses the problem of clas-
sifying Chinese unknown words into
fine-grained semantic categories defined
in a Chinese thesaurus. We describe
three novel knowledge-based models that
capture the relationship between the se-
mantic categories of an unknown word
and those of its component characters in
three different ways. We then combine
two of the knowledge-based models with
a corpus-based model which classifies
unknown words using contextual infor-
mation. Experiments show that the
knowledge-based models outperform
previous methods on the same task, but
the use of contextual information does
not further improve performance.

1 Introduction

Research on semantic annotation has focused
primarily on word sense disambiguation (WSD),
i.e., the task of determining the appropriate sense
for each instance of a polysemous word out of a
set of senses defined for the word in some lexi-
con. Much less work has been done on semantic
classification of unknown words, i.e., words that
are not listed in the lexicon. However, real texts
typically contain a large number of unknown
words. Successful classification of unknown
words is not only useful for lexical acquisition,
but also necessary for natural language process-
ing (NLP) tasks that require semantic annotation.

This paper addresses the problem of classify-
ing Chinese unknown words into fine-grained
semantic categories defined in a Chinese thesau-
rus, Cilin (Mei et al., 1984). This thesaurus clas-
sifies over 70,000 words into 12 major catego-
ries, including human (A), concrete object (B),
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time and space (C), abstract object (D), attributes
(E), actions (F), mental activities (G), activities
(H), physical states (I), relations (J), auxiliaries
(K), and honorifics (L). The 12 major categories
are further divided into 94 medium categories,
which in turn are subdivided into 1428 small
categories. Each small category contains syno-
nyms that are close in meaning. For example,
under the major category D, the medium cate-
gory Dm groups all words that refer to institu-
tions, and the small category Dm05 groups all
words that refer to educational institutions, e.g.,
2288 xuéxiao ‘school’. Unknown word classifi-
cation involves a much larger search space than
WSD. In classifying words into small categories
in Cilin, the search space for a polysemous
known word consists of all the categories the
word belongs to, but that for an unknown word
consists of all the 1428 small categories.

Research on WSD has concentrated on using
contextual information, which may be limited
for infrequent unknown words. On the other
hand, Chinese characters carry semantic infor-
mation that is useful for predicting the semantic
properties of the words containing them. We pre-
sent three novel knowledge-based models that
capture the relationship between the semantic
categories of an unknown word and those of its
component characters in three different ways,
and combine two of them with a corpus-based
model that uses contextual information to clas-
sify unknown words. Experiments show that the
combined knowledge-based model achieves an
accuracy of 61.6% for classifying unknown
words into small categories in Cilin, but the use
of contextual information does not further im-
prove performance.

The rest of the paper is organized as follows.
Section 2 details the three novel knowledge-
based models proposed for this task. Section 3
describes a corpus-based model. Section 4 re-
ports the experiment results of the proposed
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models. Section 5 compares these results with
previous results. Section 6 concludes the paper
and points to avenues for further research.

2 Knowledge-based Models

This section describes three novel knowledge-
based models for semantic classification of Chi-
nese unknown words, including an overlapping-
character model, a character-category association
model, and a rule-based model. These models
model the relationship between the semantic
category of an unknown word and those of its
component characters in three different ways.

2.1

The baseline model predicts the category of an
unknown word by counting the number of over-
lapping characters between the unknown word
and the member words in each category. As
words in the same category are similar in mean-
ing and the meaning of a Chinese word is gener-
ally the composition of the meanings of its char-
acters, it is common for words in the same cate-
gory to share one or more character. This model
tests the hypothesis that speakers draw upon the
repertoire of characters that relate to a concept
when creating new words to realize it.

For each semantic category in Cilin, the set of
unique characters in its member words are ex-
tracted, and the number of times each character
occurs in word-initial, word-middle, and word-
final positions is recorded. With this informa-
tion, we develop two variants of the baseline
model, which differ from each other in terms of
whether it takes into consideration the positions
in which the characters occur in words.

In variant 1, the score of a category is the sum
of the number of occurrences of each character
of the target word in the category, as in (1),
where ¢ denotes a category, w denotes the target
word, ¢; denotes the ith character in w, n is the
length of w, and f{c;) is the frequency of ¢; in ;.

) Score(t ;, w) = if(ci)
i=l

In variant 2, the score of a category is the sum
of the number of occurrences of each character
of the unknown word in the category in its corre-
sponding position, as in (2), where p; denotes the
position of ¢; in w, which could be word-initial,
word-middle, or word-final, and f{c,p; denotes
the frequency of ¢; in position p; in .

@ Score(t; W= 3 (e py)

i=1

The Baseline Model
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In each variant, the category with the maxi-
mum score for a target word is proposed as the
category of the word.

2.2  Character-Category Associations

The relationship between the semantic category
of an unknown word and those of its component
characters can also be captured in a more sophis-
ticated way using information-theoretical models.
We use two statistical measures, mutual infor-
mation and y°, to compute character-category
associations and word-category associations.
Chen (2004) used the y* measure to compute
character-character and word-word associations,
but not word-category associations. We use
word-category associations to directly predict
the semantic categories of unknown words.

The mutual information and y* measures are
calculated as in (3) and (4), where Asso(c,t;) de-
notes the association between a character ¢ and a
semantic category #, and P(X) and f{X) denote
the probability and frequency of X respectively.

! ) . P(c,t;)

3) 850, (¢,1;) = ogm
__ o)

(4) AsSOlz (c’t,/) - max a(C,tk)
FACAD) &

5 DN Tt

) ale,t;) SO+ f())

Once the character-category associations are
calculated, the association between a word w and
a category t;, Asso(w,t), can be calculated as the
sum of the weighted associations between each
of the word’s characters and the category, as in
(6), where ¢; denotes the ith character of w, |w|
denotes the length of w, and 4, denotes the weight
of Asso(c,t;). The 2’s add up to 1. The weights
are determined empirically based on the posi-
tions of the characters in the word.

W
(6) Asso(w,t ;) = EﬂiAsso(ci,tj)

As in variant 2 of the baseline model, the
character-category association model can also be
made sensitive to the positions in which the
characters occur in the words. To this end, we
first need to compute the position-sensitive asso-
ciations between a category and a character in
the word-initial, word-middle, and word-final
positions separately. The position-sensitive asso-
ciation between an unknown word and a cate-
gory can then be computed as the sum of the
weighted position-sensitive associations between
each of its characters and the category.



Once the word-category associations are com-
puted, we can propose the highest ranked cate-
gory or a ranked list of categories for each un-
known word.

2.3 A Rule-Based Model

The third knowledge-based model uses linguistic
rules to classify unknown words based on the
syntactic and semantic categories of their com-
ponent characters. Rule-based models have not
been used for this task before. However, there
are some regularities in the relationship between
the semantic categories of unknown words and
those of their component characters that can be
captured in a more direct and effective way by
linguistic rules than by statistical models.

A separate set of rules are developed for
words of different lengths. Rules are initially
developed based on knowledge about Chinese
word formation, and are then refined by examin-
ing the development data. In general, the com-
plete rule set takes a few hours to develop.

The rule in (7) is developed for bisyllabic un-
known words. This rule proposes the common
category of a bisyllabic word’s two characters as
its category. It is especially useful for words
with a parallel structure, i.e., words whose two
characters have the same meaning and syntactic
category, e.g., Y145 tanta ‘collapse’, where
tan and 33} ta both mean ‘collapse’ and share the
category 1d05. The thresholds for f; and f; are
determined empirically and are both set to 1 if
AB is a noun and to 0 and 3 respectively other-
wise.

(7) For a bisyllabic word 4B, if A and B share a cate-
gory ¢, let f; and f; denote the number of times
A and B occur in word-initial and word-final po-
sitions in ¢ respectively. If f; and f3 both surpass
the predetermined thresholds, propose ¢ for AB.

A number of rules are developed for trisyl-
labic words. While most rules in the model are
general, the first rule in this set is rather specific,
as it handles words with three specific prefixes,
K da ‘big’, /I xido ‘little’, and & ldo ‘old’,
which usually do not change the category of the
root word. The other four rules again utilize the
categories of the unknown word’s component
characters. The rules in (8b) and (8c) are similar
to the rule in (7). The ones in (8d) and (8e)
search for neighbor words with a similar struc-
ture as the target word. Eligible neighbors have a

' 4 and B may each belong to more than one category.
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common morpheme with the target word in the
same position and a second morpheme that
shares a category with the second morpheme of
the target word. For example, an eligible
neighbor for #EH4 R tuixido-shang ‘sales-man’
is B4R xidgoshou-shang ‘distribut-or’. These
two words share the morpheme Fi shang ‘busi-
nessman’ in the word-final position, and the
morphemes #fE#Y tuixido ‘to market’ and #4%
xidoshou ‘distribute’ share the category He(3.
The rule in (8d) therefore applies in this case.

(8) For a trisyllabic word ABC:

a. IfA4 equals K da ‘big’, 7]\ xido ‘little’, or &
ldo ‘old’, propose the category of AB for
ABC if C is the diminutive suffix )L er or the
category of BC for ABC otherwise.

b. If A and BC share a category ¢, propose ¢ for
ABC.

c. If AB and C share a category ¢, propose ¢ for
ABC.

d. If there is a word XYC such that XY and 4B
share a category, propose the category of
XYC for ABC.

e. If there is a word XBC such that X and 4
share a category, propose the category of
XBC for ABC.

The rules for four-character words are given
in (9). Like the rules in (8d) and (8e), these rules
also search for neighbors of the target word.

(9) For a four-character word ABCD:

a. If there is a word XYZD/YZD such that
XYZ/YZ and ABC share a category, propose
the category of XYZ/YZ for ABCD.

b. If there is a word ABCX such that X and D
share a category, propose the category of
ABCX for ABCD.

c. Ifthere is a word XYCD such that XY and AB
share a category, propose the category of
XYCD for ABCD.

d. If there is a word XBCD/BCD, propose the
category of XBCD/BCD for ABCD.

3 A Corpus-Based Model

The knowledge-based models described above
classify unknown words using information about
the syntactic and semantic categories of their
component characters. Another useful source of
information is the context in which unknown
words occur. While contextual information is the
primary source of information used in WSD re-
search and has been used for acquiring semantic
lexicons and classifying unknown words in other
languages (e.g., Roark and Charniak 1998; Ci-



aramita 2003; Curran 2005), it has been used in
only one previous study on semantic classifica-
tion of Chinese unknown words (Chen and Lin,
2000). Part of the goal of this study is to investi-
gate whether and how these two different
sources of information can be combined to im-
prove performance on semantic classification of
Chinese unknown words.

To this end, we first use the knowledge-based
models to propose a list of five candidate catego-
ries for the target word, then extract a general-
ized context for each category in Cilin from a
corpus, and finally compute the similarity be-
tween the context of the target word and the gen-
eralized context of each of its candidate catego-
ries. Comparing the context of the target word
with generalized contexts of categories instead
of contexts of individual words alleviates the
data-sparseness problem, as infrequent words
have limited contextual information. Limiting
the search space for each target word to the top
five candidate categories reduces the computa-
tional cost that comes with the full search space.

3.1

A generalized context for each semantic cate-
gory is built from the contexts of its member
words. This is done based on the assumption that
as the words in the same category have the same
or similar meaning, they tend to occur in similar
contexts. In terms of context extraction and rep-
resentation, we need to consider four factors.

Context Extraction and Representation

Member Words The issue here is whether to
include the contexts of polysemous member
words in building the generalized context of a
category. Including these contexts without dis-
crimination introduces noise. To measure the
effect of such noise, we build two versions of
generalized context for each category, one using
contexts of unambiguous member words only,
and the other using contexts of all member
words.

Context Words There are two issues in select-
ing words for context representation. First,
words that contribute little information to the
discrimination of meaning of other words, in-
cluding conjunctions, numerals, auxiliaries, and
non-Chinese sequences, are excluded. Second, to
model the effect of frequency on the context
words’ contribution to meaning discrimination,
we use two sets of context words: one consists of
the 1000 most frequent words in the corpus; the
other consists of all words in the corpus.
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Window Size For WSD, both topical context
and microcontext have been used (Ide and
Véronis 1998). Topical context includes substan-
tive words that co-occur with the target word
within a larger window, whereas microcontext
includes words in a small window around the
target word. We experiment with topical context
and microcontext with window sizes of 100 and
6 respectively (i.e., 50 and 3 words to the left
and right of the target word respectively).

Context Representation We represent the con-
text of a category as a vector <w;, wy, ..., w,>,
where n is the total number of context words,
and w; is the weight of the ith context word. To
arrive at this representation, we first record the
number of times each context word occurs
within a specified window of each member word
of a category in the corpus as a vector <fj, /5, ...,
1>, where f; is the number of times the ith con-
text word co-occurs with a member word of the
category. We then compute the weight of a con-
text word w in context ¢, W(w, c¢), using mutual
information and #-test, which were reported by
Weeds and Weir (2005) to perform the best on a
pseudo-disambiguation task. These weight func-
tions are computed as in (10) and (11), where N
denotes the size of the corpus.

B P(w,c)
(10) W ey (W, ¢) = log —P(w)P(c)
P(w,c)—P(w)P(c)
11 W,(w,c) =
an (w,¢) o)V
3.2 Contextual Similarity Measurement

We compute the similarity between the context
vectors of the unknown word and its candidate
categories using cosine. The cosine of two n-
dimensional vectors X and y, cos( X,y ), is com-

puted as in (12), where x; and y; denote the
weight of the ith context word in X and y .

ZL Xi Vi

(12)  cos(x,y) =

Z?:l xi2 v Zin=1 yiz
4 Results
4.1 Experiment Setup

The models are developed and tested using the
Contemporary Chinese Corpus from Peking
University (Yu et al. 2002) and the extended
Cilin released by the Information Retrieval Lab
at Harbin Institute of Technology. The corpus



contains all the articles published in January,
1999 in People’s Daily, a major newspaper in
China. It contains over 1.12 million tokens and is
word-segmented and POS-tagged. Table 1 sum-
marizes the distribution of words in Cilin. Of the
76,029 words in Cilin, 35,151 are found in the
Contemporary Chinese Corpus.

Length  Unambiguous  Polysemous Total
1 2,674 2,068 4,742
2 39,057 5,403 44,460
3 15,112 752 15,864
4 9,397 942 10,338
>5 590 34 624
Total 66,830 9,199 76,029

Table 1: Word distribution in the extended Cilin

We classify words into the third-level catego-
ries in the extended Cilin, which are equivalent
to the small categories in the original Cilin. The
development and test sets consist of 3,000 words
each, which are randomly selected from the sub-
set of words in Cilin that are two to four charac-
ters long, that have occurred in the Contempo-
rary Chinese Corpus, and that are tagged as
nouns, verbs, or adjectives in the corpus. The
words in the development and test sets are also
controlled for frequency, with 1/3 of them occur-
ring 1-3 times, 3-6 times, and 7 or more times in
the corpus respectively.

As Chen (2004) noted, excluding all the
words in the development and test data in the
testing stage worsens the data-sparseness prob-
lem for knowledge-based models, as some cate-
gories have few member words, and some char-
acters appear in few words in some categories.
To alleviate this problem, the remove-one
method is used for testing the knowledge-based
models. In other words, the models are re-trained
for each test word using information about all
the words in Cilin except the test word. The cor-
pus-based model is trained once using the train-
ing data only, as the data-sparseness problem is
alleviated by using generalized contexts of cate-
gories. Finally, if a word is polysemous, it is
considered to have been correctly classified if
the proposed category is one of its categories.

4.2 Results of the Baseline Model

Tables 2 and 3 summarize the results of the
baseline model in terms of the accuracy of its
best guess and best five guesses respectively.
The columns labeled “Non-filtered” report re-
sults where all categories are considered for each
unknown word, and the ones labeled “POS-
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filtered” report results where only the categories
that agree with the POS category of the unknown
word are considered. In the latter case, if the tar-
get word is a noun, only the small categories un-
der major categories A-D are considered; other-
wise, only those under major categories E-L are
considered. The results show that using POS in-
formation about the unknown word to filter cate-
gories improves performance. Variant 2 per-
forms better when only the best guess is consid-
ered, indicating that it is useful to model the ef-
fect of position on a character’s contribution to
word meaning in this case. However, it is not
helpful to be sensitive to character position when
the best five guesses are considered.

Model Non-filtered POS-filtered

variant Dev Test Dev Test
1 0.391 0.398 0.450 0.464
2 0.471 0.469 0.514 0.517

Table 2: Results of the baseline model: best guess

Model Non-filtered POS-filtered

variant Dev Test Dev Test
1 0.757 0.760 0.813 0.817
2 0.764 0.762 0.809 0.805

Table 3: Results of the baseline model: best 5 guesses

4.3 Results of the Character-Category As-

sociation Model

In this model, only categories that agree with the
POS category of the unknown word and that
share at least one character with the unknown
word are considered. These filtering steps sig-
nificantly reduce the search space for this model.

We discussed three parameters of the model in
Section 2.2, including the statistical measure, the
sensitivity to character position in computing
character-category associations, and the weights
of the associations between categories and char-
acters in different positions. In addition, the
computation of the character-category associa-
tions can be sensitive or insensitive to the POS
categories of the words containing the characters.
In the POS-sensitive way, associations are com-
puted among nouns (words in categories A-D)
and non-nouns (words in categories E-L) sepa-
rately, whereas in the POS-insensitive way, they
are computed using all the words.

Tables 4 and 5 summarize the results of the
character-category association model in terms of
the accuracy of its best guess and best five
guesses respectively. In all cases, the weights
assigned to word-initial, word-middle, and word-
final characters are 0.49, 0, and 0.51 respectively.



In terms of the best guess, the model achieves
a best accuracy of 58.2%, a 6.5% improvement
over the baseline result. The results show that y*
consistently performs better than mutual infor-
mation, and computing position-sensitive char-
acter-category associations consistently im-
proves performance. However, computing POS-
sensitive associations gives mixed results.

In terms of the best five guesses, the model
achieves a best accuracy of 83.8% on the test
data, a 2.1% improvement over the best baseline
result. Using y* again achieves better results.
However, in this case, the best results are
achieved when the character-category associa-
tions are insensitive to both character position
and the POS categories of words.

recall of the model is only 21.6%. The compara-
ble results on the development and test sets indi-
cate that the encoded rules are general. The
model generally performs better on longer words
than on shorter words.

45 Combining the Character-Category

Association and Rule-Based Models

Given that the rule-based model achieves a
higher precision but a lower recall than the char-
acter-category association model, the two mod-
els can be combined to improve the overall per-
formance. In general, if the rule-based model
returns one or more categories, these categories
are first ranked among themselves by their asso-
ciations with the unknown word. They are then
followed by the other categories returned by the

Sensitivity Development Test
POS  Position MI v MI X2
Yes Yes 0.482 0.586 | 0.507 0.582
Yes No 0.440 0.578 | 0.458 0.573
No Yes 0.487 0.565 | 0.511 0.567
No No 0.457 0.555 | 0.459 0.559

character-category association model. Tables 7
and 8 summarize the results of combining the

Table 4: Results of the character-category association
model: best guess

Sensitivity Development Test
POS  Position MI X MI Y
Yes Yes 0.735 0.805 | 0.720  0.810
Yes No 0.743 0.828 | 0.754 0.821
No Yes 0.702 0.813 | 0.718 0.812
No No 0.735 0.830 | 0.746  0.838

Table 5: Results of the character-category association
model: best 5 guesses

two models.
Sensitivity Development Test
POS  Position MI x MI r
Yes Yes 0.561 0.623 | 0.572 0.616
Yes No 0.536  0.622 | 0.542 0.615
No Yes 0.562 0.610 | 0.575 0.608
No No 0.530  0.601 | 0.532  0.606

Table 7: Results of combining the character-category
association and rule-based models: best guess

Sensitivity Development Test
POS  Position MI 'y MI 1
Yes Yes 0.834 0.846 | 0.845 0.843
Yes No 0.791 0.860 | 0.801 0.851
No Yes 0.760 0.848 | 0.742 0.845
No No 0.773  0.859 | 0.782 0.856

Word Development Test
Len R P F R P F
2 0.159 0.796 0.265 | 0.158 0.772 0.262
3 0.368 0.838 0.511 | 0.351 0.830 0.493
4 0.582 0.852 0.692 | 0.540 0.900 0.675
All [0.218 0.816 0.344 ]| 0.216 0.803 0.340

Table 6: Results of the rule-based model: best guess

4.4  Results of the Rule-Based Model

Table 6 summarizes the results of the rule-
based model in terms of recall, precision and F-
score. The model returns multiple categories for
some words, and it is considered to have cor-
rectly classified a word only when it returns a
single, correct category for the word. Precision
of the model is computed over all the cases
where the model returns a single guess, and re-
call is computed over all cases. The model
achieves an overall precision of 80.3% on the
test data, much higher than the accuracy of the
other two knowledge-based models. However,

193

Table 8: Results of combining the character-category
association and rule-based models: best 5 guesses

In terms of the best guess, the combined
model achieves an accuracy of 61.6%, a 3.4%
improvement over the best result of the charac-
ter-category association model alone. This is
achieved using ° with POS-sensitive and posi-
tion-sensitive computation of character-category
associations. In terms of the best five guesses,
the model achieves an accuracy of 85.6%, a
1.8% improvement over the best result of the
character-category association model alone.

To facilitate comparison with previous studies,
the results of the combined model in terms of its
best guess in classifying unknown words into
major and medium categories are summarized in
Table 9. As y consistently outperforms mutual
information, results are reported for y* only.
With POS-sensitive and position-sensitive com-



putation of character-category associations, the
combined model achieves an accuracy of 83.0%
and 69.9% for classifying unknown words into

on words with higher frequency, suggesting that
it may benefit from a larger corpus.

major and medium categories respectively. Run Parameter Setting Accuracy
ID MW CW WS WF Dev Test
Sensitivity Development Test 1 un 1000 100 mi | 0.326 0.303
POS  Position | Major Med | Major Med 2 un 1000 100 t 0317 0.288
Yes Yes 0.840 0.705 | 0.830 0.699 3 un 1000 6 mi | 0.304 0.301
Yes No 0.831 0.698 | 0.828 0.698 4 un 1000 6 t 0.299 0.301
No Yes 0.832 0.692 | 0.825 0.692 5 un all 100 mi | 0.359 0.371
No No 0.821 0.687 | 0.821 0.689 6 un all 100 t 0.292  0.296
Table 9: Results of the combined model for classify- 7 un all 6 mi | 0.370 0.365
ing unknown words into major and medium catego- 8 un all 6 t 0322 0.297
ries: best guess 9 all 1000 100 mi | 0.302 0.294
10 all 1000 100 t 0.314 0.304
4.6  Results of the Corpus-Based Model 11 all 1000 6 mi | 0313 0314
The corpus-based model re-ranks the five high- g all 1000 6 t 0.308 ~0.308
. . all all 100 mi | 0.336 0.333
est ranked categories proposed by the combined 14 all all 100 ¢ 0287  0.300
knowledge-based model. Table 10 enumerates 15 all all 6 mi | 0356 0356
the parameters of the model and lists the labels 16 all all 6 t 0308 0.308

used to denote the various settings in Table 11.

Parameter Label Setting Label
Member MW  All members words all
words Unambiguous members  un
Context Ccw All words all
words 1000 most frequent 1000
Window ~ WS 100 100
size 6 6
Weight WF Mutual information mi
function t-test t

Table 10: Parameter settings of the corpus-based
model

Table 11 summarizes the results of 16 runs of
the model with different parameter settings. The
best accuracy on the test data is 37.1%, achieved
in run 5 with the following parameter settings:
using unambiguous member words for building
contexts of categories, using all words in the
corpus for context representation, using a win-
dow size of 100, and using mutual information
as the weight function. As the combined knowl-
edge-based model gives an accuracy of 85.6%
for its best five guesses, the expected accuracy
of a naive model that randomly picks a candidate
for each word as its best guess is 17.1%. Com-
pared with this baseline, the corpus-based model
achieves a 13.0% improvement, but it performs
much worse than the knowledge-based models.

Table 12 summarizes the accuracy of the top
three runs of the model on words with different
frequency in the corpus. Each of the three groups
consists of 1,000 words that have occurred 1-2,
3-6, and 7 or more times in the corpus respec-
tively. The model consistently performs better
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Table 11: Results of the corpus-based model

Run Development Test
ID 1-2 3-6 >7 1-2 3-6 =7
5 0.331 0360 0.385 | 0.323 0.389 0.402

7 0323 0.363 0.423 | 0.335 0.357 0.402
15 10328 0.346 0.395) 0334 0355 0.379

Table 12: Results of the corpus-based model on
words with different frequency

5 Related Work

The few previous studies on semantic classifica-
tion of Chinese unknown word have primarily
adopted knowledge-based models. Chen (2004)
proposed a model that retrieves the word with
the greatest association with the target word.
This model is computationally more expensive
than our character-category association model,
as it entails computing associations between
every character-category, category-character,
character-character, and word-word pair. He re-
ported an accuracy of 61.6% on bisyllabic V-V
compounds. However, he included all the test
words in training the model. If we also include
the test words in computing character-category
associations, the computationally cheaper model
achieves an overall accuracy of 75.6%, with an
accuracy of 75.1% on verbs.

Chen and Chen (2000) adopted similar exem-
plar-based models. Chen and Chen used a mor-
phological analyzer to identify the head of the
target word and the semantic categories of its
modifier. They then retrieved examples with the
same head as the target word. Finally, they com-
puted the similarity between two words as the



similarity between their modifiers, using the
concept of information load (IC) of the least
common ancestor (LCA) of the modifiers’ se-
mantic categories. They reported an accuracy of
81% for classifying 200 unknown nouns. Given
the small test set of their study, it is hard to di-
rectly compare their results with ours.

Tseng used a morphological analyzer in the
same way, but she also derived the morpho-
syntactic relationship between the morphemes.
She retrieved examples that share a morpheme
with the target word in the same position and
filtered those with a different morpho-syntactic
relationship. Finally, she computed the similarity
between two words as the similarity between
their non-shared morphemes, using a similar
concept of IC of the LCA of two categories. She
classified unknown words into the 12 major
categories only, and reported accuracies 65.8%
on adjectives, 71.4% on nouns, and 52.8% on
verbs. These results are not as good as the 83.0%
overall accuracy our combined knowledge-based
model achieved for classifying unknown words
into major categories.

Chen and Lin (2000) is the only study that
used contextual information for the same task.
To generate candidate categories for a word,
they looked up its translations in a Chinese-
English dictionary and the synsets of the transla-
tions in WordNet, and mapped the synsets to the
categories in Cilin. They used a corpus-based
model similar to ours to rank the candidates.
They reported an accuracy of 34.4%, which is
close to the 37.1% accuracy of our corpus-based
model, but lower than the 61.6% accuracy of our
combined knowledge-based model. In addition,
they could only classify the unknown words
listed in the Chinese-English dictionary.

6 Conclusions

We presented three knowledge-based models
and a corpus-based model for classifying Chi-
nese unknown words into fine-grained categories
in the Chinese thesaurus Cilin, a task important
for lexical acquisition and NLP applications that
require semantic annotation. The knowledge-
based models use information about the catego-
ries of the unknown words’ component charac-
ters, while the corpus-based model uses contex-
tual information. By combining the character-
category association and rule-based models, we
achieved an accuracy of 61.6%. The corpus-
based model did not improve performance.
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Several avenues can be taken for further re-
search. First, additional resources, such as bilin-
gual dictionaries, morphological analyzers, par-
allel corpora, and larger corpora with richer lin-
guistic annotation may prove useful for improv-
ing both the knowledge-based and corpus-based
models. Second, we only explored one way to
combine the knowledge-based and corpus-based
models. Future work may explore alternative
ways to combine these models to make better
use of contextual information.
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Abstract used in an automatic learning process. Despite their
high performance, these supervised systems have an
This paper describes a method for generat-  important drawback: their applicability is limited to
ing sense-tagged data using Wikipedia as  those few words for which sense tagged data is avail-
a source of sense annotations. Through  able, and their accuracy is strongly connected to the

word sense disambiguation experiments,  amount of labeled data available at hand.
we show that the Wikipedia-based sense

annotations are reliable and can be used to
construct accurate sense classifiers.

To address the sense-tagged data bottleneck prob-
lem, different methods have been proposed in the
past, with various degrees of success. This includes
the automatic generation of sense-tagged data using
1 Introduction monosemous relatives (Leacock et al., 1998; Mi-
L . _halcea and Moldovan, 1999; Agirre and Martinez,
Ambiguity is inherent to human language. In partic-, . . . :

o : 004), automatically bootstrapped disambiguation
ular, word sense ambiguity is prevalent in all natura% T
) . atterns (Yarowsky, 1995; Mihalcea, 2002), paral-
languages, with a large number of the words in an? .
._lel texts as a way to point out word senses bear-
ghg different translations in a second language (Diab
o . and Resnik, 2002; Ng et al.,, 2003; Diab, 2004),
plant or factory, similarly the French wordeuille e
and the use of volunteer contributions over the Web
can meaneafor paper The correct sense of an am-

biguous word can be selected based on the conte(%hklovSkl and Mihalcea, 2002).
where it occurs, and correspondingly the problem of [N this paper, we investigate a new approach for
word sense disambiguatids defined as the task of Puilding sense tagged corpora using Wikipedia as a
automatically assigning the most appropriate mea§ource of sense annotations. Starting with the hy-
ing to a polysemous word within a given context. perlinks available in Wikipedia, we show how we
Among the various knowledge-based (LeskCan generate sense annotated corpora that can be
1986; Galley and McKeown, 2003; Navigli and ve-used for building accurate and robust sense clas-
lardi, 2005) and data-driven (Yarowsky, 1995: Ngsifiers. Through word sense disambiguation ex-
and Lee, 1996; Pedersen, 2001) word sense dikeriments performed on the Wikipedia-based sense
ambiguation methods that have been proposed §839ed corpus generated for a subset of thesE
date, supervised systems have been constantly offt- @mbiguous words, we show that the Wikipedia
served as leading to the highest performance. gnnotations are reliable, and the quality of a sense
these systems, the sense disambiguation probld@@9ing classifier built on this data set exceeds by a
is formulated as a supervised learning task, whel@rg& margin the accuracy of an informed baseline
each sense-tagged occurrence of a particular wotieat selects the most frequent word sense by default.

is transformed into a feature vector which is then The paper is organized as follows. We first pro-

For instance, the English nophantcan meargreen
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vide a brief overview of Wikipedia, and describe thenecticut. If the surface form and the unique iden-
view of Wikipedia as a sense tagged corpus. We thdifier of an article coincide, then the surface form
show how the hyperlinks defined in this resourcean be turned directly into a hyperlink by placing
can be used to derive sense annotated corpora, atmlble brackets around it (e.f§feducationalist]]).
we show how a word sense disambiguation systeAternatively, if the surface form should be hyper-
can be built on this dataset. We present the resulisked to an article with a different unique identi-
obtained in the word sense disambiguation experiier, e.g. link the wordAmericanto the article on
ments, and conclude with a discussion of the resultelnited Statesthen a piped link is used instead, as in
[[United StatesAmerican]].
2 Wikipedia One of the implications of the large number of

contributors editing the Wikipedia articles is the

Wikipedia is a free online encyclopedia, represents..oqjonal lack of consistency with respect to the
ing the outcome of a continuous collaborative eﬁorhnique identifier used for a certain entity. For in-

of a large number of volunteer contributors. V'rtu'stance, the concept afrcuit (electric) is also re-

ally any Internet user can create or edit a Wikipedigy oy 1o aselectronic circuit integrated circuit
webpage, and this “freedom of contribution” has o tric circuit and others. This has led to the so-

positive impagt on both the quantity (faSt'grOWir_]gcalledredirect pageswhich consist of a redirection
number of articles) and the quality (potential m'shyperlink from an alternative name (e.igtegrated

takes are quickly corrected within the collaborativeyir, ity 1o the article actually containing the descrip-
environment) of this online resource. Wikipedia ediz;;, of the entity (e.gcircuit (electric)

tions are available for more than 200 languages, with Finally, another structure that is particularly rel-

- ) Qvant to the work described in this paper is the
more than gne mllllqn art!c!es per'langud.ge. disambiguation page Disambiguation pages are
The basic entry in Wikipedia is aarticle (or  gheifically created for ambiguous entities, and con-
page, which defines and describes an entity or agigt of jinks to articles defining the different mean-
event, and consists of a hypertext document with hyq g of the entity. The unique identifier for a dis-
perlinks to other pages within or outside Wikipediaambiguation page typically consists of the paren-

The role of the hyperlinks is to guide the reader @ qica| explanation(disambiguation)attached to
pages that provide additional information about thg,o name of the ambiguous entity, as in egjt-

entities or events mentioned in an article. cuit (disambiguationwhich is the unique identifier
Each article in Wikipedia is uniquely referencedq; the disambiguation page of the entitiycuit.

by an identifier, which consists of one or more words

separated by spaces or underscores, and occasi@n- Wikipedia as a Sense Tagged Cor pus

ally a parenthetical explanation. For example, the . _

article for bar with the meaning of‘counter for A large number of the concepts mentioned in

drinks” has the unique identifidrar (counter)? Wikipedia are explicitly linked to their correspond-

The hyperlinks within Wikipedia are created us"9 article through the use of links or piped links.

ing these unique identifiers, together with an- Interestingly, these links can be regardedsasse

chor textthat represents the surface form of the hy2nnotationsfor the corresponding concepts, which
perlink. For instance*Henry Barnard, [[United is a property particularly valuable for entities that

StatesAmerican]] [[educationalist]], was born in are ambiguous. In.fact, it is precisely this observa-
[Hartford, Connecticut]]” is a