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Introduction

The Semantic Evaluation (SemEval) workshops focus on the evaluation and comparison of systems that
analyze diverse semantic phenomena in text, with the aim of extending the current state of the art in
semantic analysis and creating high quality annotated datasets in a range of increasingly challenging
problems in natural language semantics. SemEval provides an exciting forum for researchers to propose
challenging research problems in semantics and to build systems/techniques to address such research
problems.

SemEval-2024 is the eighteenth workshop in the series of International Workshops on Semantic Evalu-
ation. The workshop began in 1998 and was originally known as SensEval and focused on word sense
disambiguation.

In 2007, the workshop was renamed SemEval, and evolved to include semantic tasks beyond word sense
disambiguation. Starting in 2012, SemEval has been organized every year. The tasks for the next itera-
tion of the workshop, SemEval-2025 (https://semeval.github.io/SemEval2025/), are underway.

SemEval-2024 is co-located (hybrid) with the 2024 Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL 2024). SemEval-2024 will be held in Mexico
City, Mexico and it includes the following 10 tasks:

¢ Semantic Relations

— Task 1: Semantic Textual Relatedness for African and Asian Languages
— Task 2: Safe Biomedical Natural Language Inference for Clinical Trials

* Discourse and Argumentation

— Task 3: The Competition of Multimodal Emotion Cause Analysis in Conversations
— Task 4: Multilingual Detection of Persuasion Techniques in Memes
— Task 5: Argument Reasoning in Civil Procedure

* LLM Capabilities

— Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration
Mistakes

— Task 7: NumEval: Numeral-Aware Language Understanding and Generation

— Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection

* Knowledge Representation and Reasoning

— Task 9: BRAINTEASER: A Novel Task Defying Common Sense
— Task 10: Emotion Discovery and Reasoning its Flip in Conversation

This volume contains both the task description papers (10), that describe each of the above tasks, and the
system description papers (279) that present the systems that participated in the tasks.

In addition, SemEval-2024 features two awards, one for the organizers of a task and one for a team
participating in a task. The Best Task award recognizes a task that stands out for making an important in-
tellectual contribution to empirical computational semantics, as demonstrated by a creative, interesting,
and scientifically rigorous dataset and evaluation design, and a well-written task overview paper. The
three Best System Description Paper awards recognize a system description paper (written by a team
participating in one of the tasks) that advances our understanding of a problem and available solutions
with respect to a task. It does not need to be the highest scoring system in the task, but it should have a
strong analysis component in the evaluation, as well as a clear and reproducible description of the prob-
lem, algorithms, and methodology.
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Keynote Talk: Beyond Single Scores: Transparent Evaluation
through Fine-Grained Error Detection and Uncertainty

Quantification

André F. T. Martins
Instituto Superior Tecnico, Senior Researcher at the Instituto de Telecomunicacoes, and VP of Al
Research at Unbabel in Lisbon, Portugal

Abstract: Automatic evaluation metrics are key to drive progress in NLP. We use them to compare sys-
tems and decide which models to deploy, to understand the strengths and weaknesses of each model, and
to help practitioners overcome existing failure modes. In this talk, I will discuss evaluation of machine
translation quality. Today, lexical-based metrics (such as BLEU or ChrF) are being replaced by learned
neural-based metrics, such as COMET and BLEURT, which exhibit much better correlation with hu-
man judgments. However, these metrics provide a single sentence-level score, offering little insight into
translation errors (e.g., what are the errors and what is their severity). Can we do better? I will start by
presenting XCOMET, an open-source learned metric which integrates both sentence-level evaluation and
error span detection capabilities, exhibiting state-of-the-art performance across all types of evaluation
(sentence-level, system-level, and error span detection). Moreover, it does so while highlighting and cat-
egorizing error spans, thus enriching the quality assessment. Then, I will discuss recent approaches that
endow evaluation metrics with uncertainty quantification capabilities, using techniques such as Monte
Carlo dropout, deep ensembles, heteroscedastic regression, quantile regression, and conformal predic-
tion. Finally, I will present Tower, an open multilingual LLM for translation-related tasks. We perform
continued pretraining on a multilingual mixture of monolingual and parallel data, creating TowerBase,
followed by finetuning on instructions relevant for translation processes, creating Towerlnstruct. The
final model surpasses open alternatives on several tasks relevant to translation workflows and is compet-
itive with general-purpose closed LLMs. To facilitate future research, we release the Tower models, our
specialization dataset, an evaluation framework for LLMs focusing on the translation ecosystem, and a
collection of model generations, including ours, on our benchmark.

Bio: André F. T. Martins is an Associate Professor at Instituto Superior Técnico, Senior Researcher at
the Instituto de Telecomunicagdes, and VP of Al Research at Unbabel in Lisbon, Portugal. I also do
scientific consulting for Priberam Labs. I work on natural language processing and machine learning.

Until 2012, André was a PhD student in the joint CMU-Portugal program in Language Technologies, at

Carnegie Mellon University and Instituto Superior Técnico. His advisors were Mario Figueiredo, Noah
Smith, Pedro Aguiar and Eric Xing.
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Abstract

This task is a sub-part of SemEval-2024 competition
which aims to classify Al vs Human Generated Text.
In this paper we have experimented on an approach
to automatically classify an artificially generated
text and a human written text. With the advent of
generative models like GPT-3.5 and GPT-4 it has
become increasingly necessary to classify between
the two texts due to various applications like
detecting plagiarism and in tasks like fake news
detection that can heavily impact real world
problems, for instance stock manipulation through
Al generated news articles. To achieve this, we start
by using some basic models like Logistic Regression
and move our way up to more complex models like
transformers and GPTs for classification. This is a
binary classification task where the label 1
represents Al generated text and 0 represents human
generated text. The dataset was given in JSON style
format which was converted to comma separated file
(CSV) for better processing using the pandas library
in Python as CSV files provides more readability
than JSON format files. Approaches like Bagging
Classifier and Voting classifier were also used.

1 Introduction

We perform Subtask A of the Task 8 [1] from the
International Workshop on Semantic Evaluation:
SemEval 2024" which stated - Multidomain,
Multimodal and Multilingual Machine-Generated
Text Detection. In this subtask we perform
Monolingual (English in this case) classification for
Al generated vs Human written texts.

This Binary classification task has utmost utility in
real world scenarios like - content moderation on
social media platforms, fake news detection that can
impact organizations financially and people
emotionally, detecting spam messages in email or
communication channels like Slack.

" https://semeval.github.io/SemEval2024/tasks

1

Another application can be used in healthcare
chatbots to make sure that a person is talking to a
person as this kind of task needs human speciality.
Product reviews classification - i.e., detecting
whether an organization has human written reviews,
or they had them generated through Al to rank their
product higher up in the chain.

To perform this task, we use a series of techniques
including manual feature engineering for supervised
learning techniques like logistic regression and
Bagging Classifier as well as more complex
techniques like Neural Networks and attention
mechanism with transformers. We used supervised
learning as well like K-Nearest Neighbours. The
best approach found was a combination of
transformers [2] with hand engineered features like
Coherence [3] of a text, Complexity, length and
emoji count. The accuracy and performance of these
experiments are discussed in the later sections.

In our experiments we found that some features were
very influential like length of a text, vocabulary used
in the text and coherence of a text. Other features
like complexity of the text had less weightage and
were thus, not used in all experiments. Even though
transformers gave us the best accuracy we also used
some other approaches that were competitive as
well.

We also had some limitations in the usage of
computing resources where one of our approaches
that combines TF-IDF vector along with
transformers uses over 50 GB of RAM that exceeds
the amount of any available computing resource
available to us.

2 Background

Dataset - The dataset that was used was provided by
SemEval that is an extension of the M4 dataset [4].
which had approximately 133551 data points in the
training set and the dev set contained 5000 samples.
The dataset contained texts from various sources

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1-6
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including Wikipedia, Reddit, WikiHow, and
PeerRead for English texts. The Al generated text
was curated from Generative models like ChatGPT,
Cohere, Dolly v-2 and Bloomz. After analysing the
data, we found that the dev set data only included the
data points from Bloomz and there were none of
Bloomz model’s generated texts in the training set.
This was meant to test the real-life situation where a
new generative model can come into picture when
our model would not have seen that generative
model’s pattern.

An exploratory data analysis of the text, gave the
following interesting observations:

1. The training set has a total vocabulary size of
2616365 in which there were around 328491
words that were only used by the Al generated
texts..

2. The total number of unique words used by Al
generated text was 581888 as compared to that
used by Humans which was 2034477. This data
suggests that Al used a lot of repetitive words as
compared to humans.

3. The average number of tokens used in a
sentence generated by humans were - 283 as
compared to Al which used only 755.
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We also explored some aspects of sentence structure
like coherence, complexity and length of the
sentences. We used these features along with the TF-
IDF vectors as an input to the Logistic Regression
model, Bagging Classifier and K-Nearest
Neighbours achieving a max training set accuracy

score of 0.91 and 0.6 on dev set using Bagging
Classifier. We also used a voting classifier which
performed better, achieving an accuracy score of
0.68 on the dev set using the above-mentioned
models. Later we used transformers (BERT) with
combination of the above-mentioned models in the
Voting classifier. There were two more approaches
where we tried topic modelling and feature
repetition which yielded better results.

One thing to note here is that when a certain text is
generated by Al it contains some sort of template or
pattern around it. So, to use that we tried
unsupervised learning to make possible clusters of
the texts, to identify which class of template the text
might belong to. This approach included the use of
the K-means clustering method, which reported a
dev set accuracy of 0.57

Heather et al. [5] mentions the use of simple
machine learning techniques with great accuracy.
Ahmed et al. [6] compared different methodologies
and tools and how each of them perform on unseen
data.

In any of the literature TF-IDF was not used along
with any other features, and we experimented by
including these features in our approach along with
topic modelling setup that was novel.

3 System Overview

Text Classification even though an already
accomplished task becomes challenging even for
state-of-the-art models like Transformers. In this
task the adaptability of GPT makes it even more
challenging to differentiate between the two types of
texts. Also, as Al progresses to understand human
emotions [7] and behaviour it is expected from the
model to generate texts i.e. convey its thought in a
more human centric manner. We aim to tackle the
same starting with the standard machine learning
algorithms and then moving on to much more
complex models like attention based transformer
models, example - BERT [8], RoBERTa [9] among
others.

We describe below in detail the specification used
along with each approach and mention its accuracy
and experimental setup.

For this task, we have used TF-IDF vectorization
technique. Along with that we also analysed text
structures and engineered 3 main features related to
the task at hand. These were Complexity of the
sentence, Coherence of a text and length of text
(tokenization).



These features were used by the algorithms
described below and are described in the next
section in detail.

1.

Standard ML Algorithms with TF-IDF: As
this is a binary classification task, we start by
using logistic regression. We used TF-IDF
vectors as input to this. As discussed earlier,
human text used a wide range of vocabulary
with an average length of around 283 words, Al
generated text used a smaller vocabulary set and
the average sentence length was around 155
words. There were a lot of words that were not
used in human Corpus (around 3.5 lakhs), so we
used TF IDF Vector as the input to various
machine learning models such as logistic
regression, bagging classifier and unsupervised
learning technique K-Nearest Neighbours.
BERT: BERT or Bidirectional Encoder
Representations from Transformers uses an
attention mechanism to capture the essential
information for a given task. We used the BERT
based uncased model as a baseline to compare
the performance of our algorithms. Variations of
BERT like RoBERTa, XLM-RoBERTa [10]
were also used along with experimentation with
our manually engineered features (with and
without repetition) achieving a dev set accuracy
of 0.66. Repetition of features is described in the
experimental setup in more detail.
Transformers with Features: Features like
Coherence and length of text were used in
addition to the tokens that were passed in the
transformer models. These were passed in the
form of a list followed by tokens inputted into
the transformers model. These features though
could be imagined to be captured by the model
itself but being complex features, it makes more
sense to extract these features from the models
specifically trained for this purpose. This helped
us enhance the efficiency and performance of
our models. Since these features were less in
number, to increase their effect on the output,
the features were repeated, and the repetition
was treated as a hyperparameter, this value was
randomly assigned in the range from 200 to 300.
Transformers with TF-IDF and SVD: Since
TF-IDF is a feature that proves to be useful in
trivial machine learning algorithms like logistic
regression, we experimented to use it with much
more complex models like state of the art -
transformers. Since, using transformers itself is
computationally expensive, along with TF-IDF
the computational complexity increases
exponentially, requiring over 50 GB of CPU
memory to prepare the input tensor. Due to the

lack of such computational resources, we relied
on dimensionality reduction algorithms such as
Singular Value Decomposition (SVD). After
experimentation over 1 epoch, although
requires more research, were appreciable.
Topic Modelling with Transformers: A
common trait in a generative model is that the
output follows from a particular prompt. That
means that every text generated by the Al model
can be segregated into a certain topic. So, we
aim to use topic modelling as a feature to the
input tensor while classifying Al and human
generated text. As every human has a certain
way of writing, similarly every Al model can be
said to have a way of generating text. So here
we approach this method by first using an
unsupervised learning technique such as K-
Means clustering that separates text into a
certain number of clusters. This number again is
a hyperparameter set to 100 in this experiment
that can be set by the experimenter. After that,
the output of this model i.e., the cluster number
is fed into higher order models such as
transformers to gain better results and an
accuracy of 0.56 was achieved on the dev set.

4 Experimental Setup

Various experiments were performed on the given
dataset. The train-test split for all the experiments
was kept the same to the ratio of 80:20. This split
comes from the training data itself and the dev set
was kept unseen from the model during the training
phase. The best results on the dev set after
hyperparameter tuning are logged in the results
section of the paper. In this section we discuss the
following:

1.

Performance Metrics: We used micro-F1 and
macro-F1 scores as well as accuracy itself to
measure the performance of the model across
various algorithms. We also monitored
precision and recall and observed lower recall
rates across the models. This means that the
algorithms are biased towards classifying the
output as Al generated text. This recall was later
used as a weightage in the voting classifier.
Feature Engineering: We used different
features as input to models, like:

a. Complexity of a Sentence: Using the

‘textstat’ module in python we calculated
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Figure 3: Complexity

the Flesch Score that indicates the
readability of a sentence in the range of 0 to
100, with 0 being most confusing and 100
being very easy to understand.

b. Length of a Sentence: Observing the
significant difference between the average
length of text between Al generated text
and Human Generated Text, we decided to
use it as a feature to our ML algorithms.
The average length of text in Al generated
text was noted to be 155, however it was
283 for human generated text. The length of
the sentence was calculated by first
removing the stop words using the NLTK
library, followed by lemmatization and then
counting the number of tokens after the
operation.

c. Coherence of Text: It is the measure of
transitions in a text along with smoothness
and logical flow. The coherence of text is
an important feature, we observed that a
human generated text was more coherent
than Al generated. Coherence of the text
was calculated using the SGNLP library in
Python.

The comparison of Al generated text and human

written text on the above features are shown in

figures 3, 4, and 5, respectively. These features
are referred as “sentence features” from now on
in the paper.

Loss Function: The loss function used for
logistic regression is the binary cross entropy
loss. The same loss function has been used in
Transformers as well.

Optimizer: Different optimization algorithms
including Adam, AdaGrad and RMSProp were
used during experimentation and the best
performance was shown by Adam optimizer.
Computational Resources: Kaggle and
Google Colab were used interchangeably for
experimentation. However, since GPU was a
requirement and the average time for
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experimentation for 1 epoch exceeded over 4
hours, multiple experiments were run on the
Kaggle platform on a T4x2 GPU accelerator,
this setup was exclusively used for
transformers-based experiments. For
experiments on machine learning algorithms,
12 GB CPU RAM was sufficient and hence
Google Colab was used.

6. Hyperparameter Tuning: There were several
hyper-parameters that required tuning over the
course of this experiment, most of the hyper-
parameter tuning was done in transformers with
learning rate, weight decay, epochs and
optimizer choice. Grid search was used to
obtain the most optimal values of hyper-
parameters. Other custom hyperparameters
were also involved such as the number of
repetition of features, d-dimensionality
reduction in experimentation of TF-IDF with
transformers and the number of topic models to
be included as a feature in addition to
transformers.

5 Results

We observed that the model combined with the
attention mechanism of transformers with TF-IDF
vectors provides is with the best results. However, it
should be noted that the dimensionality of the
vectors has been significantly reduced due to its
computational complexity and thus is bound to
affect the accuracy. The results mentioned in the
below table (Table 1) are the optimal results
obtained after repeated experimentation over
different optimizers, epochs and weight decay rates.
Some parameters have not been mentioned in the
table, as the standard grid search can be
reimplemented if there is a need for replication. As
evident from the table, the best results were obtained
when we used the XLM-RoBERTa model along with
TF-IDF features and the sentence features
(complexity, length and coherence).



Model Accuracy Epoch Precision F1
Logistic Regression 0.49 - 0.48 0.31
Bagging Classifier 0.57 - 0.55 0.42
Voting Classifier (LR, Bagging,
KNN) 0.57 - 0.55 0.42
BERT (with Sentence Features) 0.72 1 0.94 0.71
RoBERTa (with Features) 0.77 2 0.96 0.73
XLM-RoBERTa (with TF-IDF and 0.78 ) 0.97 0.74
Sentence Features)

Table 1: Performance of different models

6 Conclusion

This Binary Classification task of predicting the
mode of text generation is non-trivial in the aspect
that as the generative models are largely trained on
human generated text, they have learned to write
more like humans and thus this becomes a
challenging task. However, using proper means and
computational methods, it is possible to segregate
them using conventional feature extraction
techniques combined with self-attention mechanism
of transformers as seen in the experiments. We aim
to use the topic modelling approach combined with
TF-IDF and transformers further in the future that
might yield promising results.
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Abstract

In this system paper for SemEval-2024 Task 1
subtask A, we present our approach to evaluat-
ing the semantic relatedness of sentence pairs
in nine languages. We use a mix of statisti-
cal methods combined with fine-tuned BERT
transformer models for English and use the
same model and machine-translated data for
the other languages. This simplistic approach
shows consistently reliable scores and achieves
middle-of-the-pack ranks in most languages.

1 Introduction

SemEval 2024 Task 1 (Ousidhoum et al., 2024c¢)
calls for assigning scores indicating semantic tex-
tual relatedness (STR) of sentence pairs in 14 dif-
ferent languages. We participate in Track A, which
is the supervised subtask for systems that have been
trained using the provided labeled datasets (Ousid-
houm et al., 2024a). There are data in Algerian
Arabic, Amharic, English, Hausa, Kinyarwanda,
Marathi, Moroccan Arabic, Spanish, and Telugu
for Track A and we provide a solution for all 9
languages. The labeled data has been manually
annotated for relatedness using a comprehensive
annotation framework (Abdalla et al., 2023).

A large portion of previous work in STR has
been conducted for English-language data. This
task does include English, but the focus is on
lower-resourced languages (Hedderich et al., 2021;
Marreddy et al., 2022). STR is a crucial compo-
nent in information retrieval, summarization, and
question answering, as well as in developing Large
Language Models (LLMs). The lack of STR or
similar NLP resources for low-resource languages
means progress is often much slower in related
research such as the development of LLMs too
making the progress achieved through this task so-
cietally highly impactful by providing new tools
and datasets for language where NLP resources are
lacking (Vuli€ et al., 2020; Zhang et al., 2020).
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Our methodology uses both traditional TF-IDF
vectorization and transformer models like BERT
(Devlin et al., 2018) fine-tuned for semantic relat-
edness tasks. We leverage the high availability of
resources that exist for English to fine-tune a BERT
model that we then use on machine-translated ver-
sions of the datasets for the other languages (ex-
cept for Spanish where a multilingual BERT model
yielded better results than with machine translat-
ing the data). This approach seems to capture
both lexical patterns and deeper semantic relation-
ships, making it effective for linguistically diverse
datasets, and cost-effective because there is no need
to manually annotate more than one dataset (lan-
guage). It is therefore an alternative approach to
creating language-specific models. Although our
approach is simplistic, it has the upside of working
reasonably well for any low-resource language that
has some machine translation or parallel language
data resources.

2 Background

In SemEval-2024 Task 1, the dataset was adapted
from the STR-2022 dataset (Abdalla et al., 2023).
The STR-2022 dataset contains 5,500 English sen-
tence pairs that were manually annotated using a
comparative annotation framework, yielding fine-
grained scores ranging from 0 to 1 (maximally un-
related to maximally related). The dataset was
constructed by sampling sentences from various
sources to capture a wide range of text characteris-
tics such as sentence structure, formality, and gram-
maticality. The sources include datasets on formal-
ity (Rao and Tetreault, 2018), book reviews (Wan
and McAuley, 2018), paraphrases (Wieting and
Gimpel, 2018), natural language inference (Bow-
man et al., 2015), semantic textual similarity (Cer
et al., 2017), stance (Mohammad et al., 2016), and
text simplification (Horn et al., 2014).

The corresponding datasets for the other lan-
guages are much smaller and consist of roughly
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1000 sentence pairs each with minor variations in
size.

Semantic relatedness and semantic similarity
are closely related concepts in natural language
processing (NLP), however, the terms are not inter-
changeable. Semantic similarity is a narrower defi-
nition that only takes term similarity into account
(e.g. fork is similar to knife), whereas relatedness in
addition to similarity can include terms or concepts
that are related beyond hyponymic relationships
such as fork being related to eating) (Asaadi et al.,
2019; Batet and Sanchez, 2016). This task focuses
on the broader concept of relatedness but utilizes
more narrowly defined datasets based on similarity
as well in the construction of the datasets.

In recent years the development of NLP re-
sources for low-resource languages has been speed-
ing up, but there are still large discrepancies in
what types of tools, models, and resources exist
for languages other than English (Hedderich et al.,
2021). There are also significant differences in
the resources available among low-resource lan-
guages and what being a low-resource language
entails (Haméldinen, 2021; Marreddy et al., 2022).
For most of the languages in this task, there are at
least some models and tools (see e.g Deode et al.,
2023) but a handful of research groups working
on a language is quite different from nearly all re-
search groups in the world working on producing
models and tools for a language (English). When
there is a need for more data, often data augmen-
tation methods are used to increase data points.
Machine translation is an established method of
data augmentation, particularly with low-resource
languages where it might not be possible to use
language-specific models (Amjad et al., 2020).

3 System overview

Our choice of methodology was shaped by peda-
gogical considerations as well as technical. As we
participated in this task as part of an undergraduate
senior research seminar in computational methods,
we purposely started with the simplest most readily
available tools progressing towards more advanced
methods. Along the way, we compared the results
and progress at each step in an attempt to better un-
derstand how each of the specific NLP tools worked
and how accurate their output was when used on
real projects such as this dataset.

The main strategy of our system is integrating
classic NLP methods, such as the Dice Score and

TF-IDF, with advanced deep learning techniques
like BERT models, to determine semantic related-
ness between sentence pairs. Firstly, our system im-
ports a CSV dataset that contains pairs of English
sentences (separated by "\n"), each paired with a re-
latedness score ranging from 0 to 1. Then, to assess
semantic relatedness, the system adopts several ba-
sic NLP techniques, including Spacy’s Linguistic
Features for efficient text processing, TF-IDF for
calculating word importance in sentences, Spacy
Similarity and Cosine Similarity for measuring sen-
tence similarity, and fine-tuned BERT Models for
leveraging contextually rich semantic analysis (De-
vlin et al., 2018). These techniques collectively
contribute to a robust evaluation of semantic relat-
edness against the given scores. We tried early on
to adopt the same approach to the non-English lan-
guages with language-specific transformer-based
similarity and relatedness models, but the language-
specific models yielded much lower evaluation
scores than what the English model achieved with
machine-translated versions of the non-English
datasets. We used the Google Translate API to
translate the datasets into English to maintain con-
sistency in analysis. Compared to other translation
APIs such as DeepL, for this task, Google Trans-
late seemed to produce better translations, perhaps
because of how it favors more common words over
context thus being more suited for STR and/or STS
tasks (see e.g. Ohman, 2022).

Participating in the semantic relatedness task
using the hybrid strategy allows for a comprehen-
sive exploration of the system’s performance and
methodology. Through a detailed analysis, you can
assess the effectiveness of traditional NLP methods,
including TF-IDF and Spacy’s Linguistic Features,
in comparison to more advanced deep learning tech-
niques like BERT. Evaluating the impact of con-
textual embeddings from fine-tuned BERT models
provides insights into how well the model captures
nuanced semantic relationships. The inclusion of
Google Translate for non-English languages offers
an opportunity to examine the system’s ability to
maintain consistency across languages. Assess-
ing the generalization capability, scalability, and
efficiency of the system provides a holistic under-
standing of its applicability to diverse datasets and
real-world scenarios. Through this participation,
we can uncover strengths, weaknesses, and poten-
tial areas for improvement, guiding future research
directions and refining the hybrid strategy for en-



hanced semantic relatedness evaluation across lan-
guages and varied linguistic contexts. In particular,
this approach shows that it is possible to achieve
reasonable accuracies by leveraging the prevalence
of tools and models designed for English with low-
resource languages.

Our code is available on GitHub !.

4 Experimental setup

At the beginning stage of the experiment, we un-
dertook an examination of several readily imple-
mentable models on the English baseline dataset
and compared the predicted scores with human-
labeled scores through Pearson correlation scores.

In the initial English baseline model, we in-
cluded the SpaCy similarity model*, cosine vec-
tor similarity, and fine-tuned-BERT models. For
the SpaCy similarity, we directly applied it to the
training dataset, yielding a result of 0.34 (Pearson).
In the case of cosine similarity, we tried out two
methods of word embedding:

1. Binary occurrence vectors: This approach
involves creating set-based word vectors us-
ing binary occurrence, combining them into a
joint space, and comparing them using cosine
similarity to quantify the relatedness between
the original sets in vectorized forms.

2. TF-IDF transformer-based vectors: Using
the TF-IDF vectorizer from the sklearn (Pe-
dregosa et al., 2011) library, we obtained TF-
IDF weights for each word. The TF-IDF
weight is proportional to the word’s frequency
in the document but is offset by its frequency
in the corpus.

Upon comparing these two word-embedding meth-
ods, the Pearson correlation results did not reveal
a significant difference. Therefore, we selected
the Binary occurrence method as the cosine vector
similarity, which achieved a score of 0.61 as indi-
cated in Table 1. We use Pearson as opposed to
Spearman rank correlation simply because that is
what the original task description uses (Ousidhoum
et al., 2024a,b).

1https://github.com/esohman/SemEva12®24
3https://huggingface.co/sentence—transformers/
all-mpnet-base-v2 and Reimers and Gurevych (2020)
*https://spacy.io/usage/linguistic-featurest
vectors-similarity
Shttps://github.com/AndriyMulyar/
semantic-text-similarity

The final component of the English baseline
is the application of the fine-tuned BERT model
to compute semantic relatedness with the (unfine-
tuned) ClinicalBertSimilarity> and WebBertSim-
ilarity> models and a batch size of 10 for both.
The creators of the model claim that the “project
contains an interface to fine-tuned, BERT-based se-
mantic text similarity models. It modifies pytorch-
transformers by abstracting away all the research
benchmarking code for ease of real-world appli-
cability">. This proved to be the most successful
approach with a result of 0.8 for English. Although
the task in question is about semantic relatedness,
since many of the datasets involved in the creation
of the datasets come from similarity data. Addi-
tionally, as similarity can be considered a subtype
of relatedness, the use of similarity models seemed
logical due to their wider availability compared to
relatedness models.

After establishing the English baseline, we eval-
uated several multilingual and language-specific
BERT-based similarity models to assess textual re-
latedness (or similarity) across other language train-
ing datasets including the SBERT model for Tel-
ugu (Joshi et al., 2022), Sentence-BERT (Reimers
and Gurevych, 2019), BioLORD-2023(Remy et al.,
2023), etc. However, the results were subopti-
mal, which is surprising since previous work has
shown that sentence transformers show significant
improvements to semantic similarity tasks, partic-
ularly cross-lingual tasks (Himmerl et al., 2023).
Given the significantly better performance of the
English baseline, we decided to translate all lan-
guage datasets into English before applying the
relatedness prediction models. In the case of Span-
ish we found that using distiluse-base-multilingual-
cased-v1(Reimers and Gurevych, 2019) produced
higher accuracies than the translation approach,
and thus Spanish is the only language we did not
translate to English.

When introducing the translation tools, we ex-
plored two approaches: utilizing a translation
model (Machine Translation) and implementing
Google Translate.

1. Machine Translation: In the Machine Trans-
lation method, we applied M2M100 (Fan
et al., 2020) as the translation model. The
model can directly translate between the 9,900
directions of 100 languages.

2. Google Translate: For the machine transla-
tions, we utilized the deep-translator library®,


https://github.com/esohman/SemEval2024
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https://github.com/AndriyMulyar/semantic-text-similarity
https://github.com/AndriyMulyar/semantic-text-similarity

Train Data
LANGUAGE English Translation

Spacy fine-tuned

Similarity %% V€' SBERT
Algerian Arabic 0.25 0.44 0.51
Ambharic 0.37 0.61 0.78
English 0.34 0.61 0.80
Hausa 0.07 0.43 0.65
Kinyarwanda 0.18 0.39 0.57
Marathi 0.45 0.68 0.81
Moroccan Arabic | -0.01 0.45 0.34
Spanish 0.58 0.7 0.66
Telugu 0.44 0.67 0.78

Dev Data \

Multilingual Model Official score  Ranking

,  all-mpnet-
DBMCv1 base-v2®
0.42 0.39 0.37 18/20
0.16 0.12 0.78 11/16
* * 0.81 10/34
0.21 0.34 0.62 12/19
0.3 0.38 0.57 8/14
* * 0.86 13725
0.34 0.16 0.45 18/19
~ * 0.62 8/17
0.36 0.29 0.78 16/24

Table 1: Task scores for different methods

a versatile tool that facilitates simple language
translation using multiple translators.

Despite the relatively high performance claimed
by the M2M100 model as described by Fan et al.
(2020), the results after the translation process
are less than 0.5 for all languages except Spanish,
where it achieved a result of 0.67. In contrast, the
Google Translate API demonstrated better perfor-
mance during the training process with the English
baseline model (detailed results are listed in Table
1).

Our multilayered approach mirrors that of Je-
yaraj and Kasthurirathna (2021) although ours is a
much simpler setup.

5 Results

Our rankings show that our approach is nowhere
near the state-of-the-art, but it is still a reliable
option when more language-specific approaches
are unavailable as is often the case with moderately
low-resource languages. Out team ranked in the
middle of the pack for most languages, but in the
top third for English, Marathi, and Spanish, and
the bottom for both Arabic dialects, which was
expected. The rankings, scores, and models used
for each submission can be seen in table 1. We
analyze the results in the conclusions section.

6 Conclusions

To sum up, we first focused on English to have a
good solution with fine-tuned BERT, and then we
applied that solution to other languages by translat-
ing the sentences into English using machine trans-
lation. Since our English solution is reasonably

https://deep-translator.readthedocs.io/en/
latest/README. html#id1
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good (rank 10/34, official score of .81), the applica-
tion of the solution worked much better than using
multilingual models in many languages including
Ambharic, Marathi, and Telugu for which there exist
language-specific semantic similarity models. We
speculate that the reason the MT+English model
worked better than the language-specific related-
ness models is due to the higher quality and more
diverse training data for the English model(s) as
well as machine translation simplifying words to
the most commonly used ones, artificially making
similar sentences more similar.

The importance of an accurate machine transla-
tion can be seen in the failure of our approach with
the Arabic dialects in particular. Google Translate
does not have specific translators for Moroccan or
Algerian Arabic, instead, we had to rely on general
Arabic. This likely produced much lower quality
translations obfuscating the semantic links between
the sentence pairs making it difficult for the English
model to accurately judge relatedness. This issue
was further exacerbated by the fact that no one on
our team speaks any of the languages in the task
besides English, which made manual evaluations
of the MT output difficult.

Darja and Darija are the names for Algerian and
Moroccan Arabic respectively, and they are collec-
tively known as Maghrebi Arabic. Due to its roots
in Berber languages, there are notable distinctions
between Maghrebi Arabic and Standard Arabic,
and using the latter for these two dialects may yield
a suboptimal result.

Curiously, a similar issue occurred with Spanish.
Spanish is much more closely related to English
than the other languages in subtask A, and therefore
we expected our approach to get a fairly high score
similar to English, especially considering the cur-
rent state of machine translation between English


https://deep-translator.readthedocs.io/en/latest/README.html#id1
https://deep-translator.readthedocs.io/en/latest/README.html#id1

and Spanish. However, it seems that translation
of Spanish into English affects the semantic rela-
tions of the original sentences, which might be one
of the main reasons causing the very low scores
and making us choose the multilingual model for
Spanish rather than the machine-translated one.

We hypothesize that one of the reasons that
Google Translate worked so well on the low-
resource languages most dissimilar from English
might be because smaller training datasets for MT
would force the translation to use less context and
instead increase the reliance on individual lexical
items leading to sentence pairs with high related-
ness becoming more similar via translation. For
languages with better MT models, it is conceiv-
able that the better translations work against this
approach as it might make the sentence pairs less
similar as reflected by the higher scores for Spanish
using multilingual models, and the very low scores
for both Arabic dialects. In future work, it might
be worthwhile to use mixed methods starting with
language-specific models and then expanding to
incorporate machine translation and larger models
developed for, e.g., English.
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Abstract

This paper summarizes the participation of
the L3i laboratory of La Rochelle University
(L3i++) in SemEval-2024 Task 8: Multigenera-
tor, Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection. In this task,
we aim to solve two over three Subtasks: (1)
Monolingual and Multilingual Binary Human-
Written vs. Machine-Generated Text Classifi-
cation; and (2) Multi-Way Machine-Generated
Text Classification. We propose a comparative
study among three groups of methods to trigger
the detection: (1) Using metric-based models;
(2) Using a fine-tuned sequence-labeling lan-
guage model (LM); and (3) Using a fine-tuned
large-scale language model (LLM). Our find-
ings show that LLM surpassed the performance
of traditional sequence-labeling LM as the
benchmark and metric-based approaches. We
ranked 5" /62 in Multilingual Binary Human-
Written vs. Machine-Generated Text Clas-
sification and 6'"/70 Multi-Way Machine-
Generated Text Classification on the leader-
board. Our code is publicly available at
https://github.com/honghanhh/semeval8.

1 Introduction

The rise of large language models (LLMs) has
led to a significant step forward in producing re-
markably controllable, fluent, and grammatical text,
triggering a surge in machine-generated content
across diverse platforms such as news, social me-
dia, question-answering forums, educational, and
even academic contexts. Notably, recent LLMs
like ChatGPT' and GPT-4 (OpenAl, 2023) exhibit
a remarkable ability to generate coherent and con-
textually appropriate responses to a wide array of
user queries.

Unfortunately, use and abuse come hand in hand.
Although the fluency of these generated texts po-
sitions LLMs as potential candidates for replacing
human labor in numerous applications, this has

"https://chat.openai.com/

13

also raised concerns about their potential for mis-
use, particularly in spreading misinformation and
causing disruptions within the education system.
Given that humans struggle to distinguish between
machine-generated and human-written text, it be-
comes imperative to develop automated systems
capable of identifying machine-generated text to
curb the risks associated with its misuse.

In this paper, as the participants in SemEval-
2024 Task 8: Multigenerator, Multidomain, and
Multilingual Black-Box Machine-Generated Text
Detection (Wang et al., 2024), we investigate the
feasibility of training a classifier that can reliably
differentiate between text generated by humans
and text that appears human-like but is generated
by machines in two paradigms:

e Subtask A: Given a full text, determine
whether it is human-written or machine-
generated in monolingual (only English
sources) and multilingual versions.

e Subtask B: Given a full text, determine who
generated it (human-written or generated by a
specific language model).

To address these problems, we explore the per-
formance of diverse methodologies, which can be
divided into three categories, including:

* Five different metric-based methods: Log-
Likelihood, Rank, Log-Rank, Entropy, and
DetectGPT (He et al., 2023).

* Two traditional sequence-labeling language
models: monolingual ROBERTay,,.¢.” (Liu
et al., 2019) and multilingual XLM-R;4.¢¢
(Conneau et al., 2020).

* A large language model (LLM): LLaM A —
2 — 7b — hf* (LLaMA-2) (Touvron et al.,
2023).

*FacebookAl/roberta-large

*FacebookAl/xIm-roberta-large
*NousResearch/Llama-2-7b-hf
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This paper is organized as follows. We present
related work in Section 2, followed by Section 3,
where we introduce the data used to solve this chal-
lenge. Our proposed methods are described in
Section 4 before we present our findings and an
error analysis in Section 5. Finally, in Section 6
we present our conclusions, and future work and
discuss the limitations of the proposed methods.

2 Related Work

The success of LLMs in various downstream NLP
tasks (Perez et al., 2021; Vilar et al., 2022; Hegsel-
mann et al., 2023) leads to the overuse and abuse of
the information generated by LLMs. However, it is
essential to acknowledge that the outputs generated
by LLMs are not always accurate, giving rise to the
issue of hallucination (Azamfirei et al., 2023). Con-
sequently, there is a need for clear differentiation
in addressing this concern.

To address these issues, researchers have de-
veloped several automatic detection methods
(Badaskar et al., 2008; Zellers et al., 2019; Ippolito
et al., 2020; Uchendu et al., 2021) that can identify
the machine-generated text from the human-written
text, which initially can be divided into two cate-
gories, i.e., metric-based methods and model-based
methods.

2.1 Metric-based methods

Metric-based methods leverage pre-trained LLMs
to process the text and extract distinguishable fea-
tures from it, e.g., the rank or entropy of each
word in a text conditioned on the previous context.
Then, predicted distribution entropy determines
whether a text belongs to machine-generated or
human-written texts. Some metric-based detection
methods include Log-Likelihood, Rank, Entropy,
GLTR, Log-Rank, and DetectGPT (He et al., 2023),
to cite a few.

2.2 Model-based methods

In the model-based methods (Zellers et al., 2019;
Habibzadeh, 2023; Guo et al., 2023), the classifica-
tion models are trained using a corpus that contains
both machine-generated or human-written texts to
make predictions, for example, ChatGPT Detector
(Guo et al., 2023), GPTZero (Habibzadeh, 2023),
LM Detector (Ippolito et al., 2020), to mention a
few.

Regarding SemEval-2024 Task 8: Multigener-
ator, Multidomain, and Multilingual Black-Box
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Machine-Generated Text Detection (Wang et al.,
2024), RoBERTa (Liu et al., 2019) and XLM-R
(Conneau et al., 2020) are two language models
that can be considered as the baseline for these
specific tasks.

2.3 Challenges

Yet, there is currently no existing framework capa-
ble of automatically distinguishing between human-
written and machine-generated texts at both binary
and multi-way paradigms outlined in the described
tasks as well as no existing free available archi-
tecture taking advantage of recent open-sourced
LLMs to tackle the issue.

3 Data

We work on two datasets provided by SemEval-
2024 Task 8: Multigenerator, Multidomain, and
Multilingual Black-Box Machine-Generated Text
Detection (Wang et al., 2024), whose statistics cov-
ering the number of examples for each source and
each label are presented in Tables 1 and 2 for Sub-
task A and B, respectively.

Labels ‘ Human ‘ Machine
Source Monolingual Multilingual | Monolingual Multilingual
Train Dev | Train Dev | Train Dev | Train Dev
arxiv 15,498 500 | 15,998 - | 11,999 500 | 14,999
peerread 2,357 500 | 2,857 9,374 500 | 11,708
reddit 15,500 500 | 16,000 - | 12,000 500 | 14,999
wikihow | 15,499 500 | 15,999 - | 12,000 500 | 15,000
Wikipedia | 14,497 500 | 14,997 - | 11,033 500 | 14,032
bulgarian - 6,000 - - 6,000
chinese 6,000 5,934
urdu 3,000 2,899
indonesian 2,995 - 3,000 -
russian - 1,000 - 1,000
arabic 500 500
german - - 500 - - 500
Total 63,351 2,500 ‘ 83,846 2,000 ‘ 56,406 2,500 | 88,571 2,000

Table 1: Subtask A

In Subtask A of the monolingual version, both
the training and development sets are sourced from
the same data group for both labels. However, in
the multilingual version of Subtask A and Subtask
B, the development set is sourced from different
places compared to the training set.

For both versions of Subtask A, data were col-
lected from diverse sources, leading to label imbal-
ances. For example, in the monolingual Subtask
A training set, there is a notable scarcity of sam-
ples from peerread compared to the other sources.
Conversely, in Subtask B, the dataset is balanced.



Labels Source Train Dev | Labels Source Train Dev
Human arxiv 2,998 - | davinci arxiv 2,999
reddit 3,000 reddit 2,999
wikihow 2,999 wikihow 3,000
Wikipedia | 3,000 - Wikipedia | 3,000 -
peerread - 500 peerread - 500
total 11,997 500
chatGPT arxiv 3,000 - | bloomz arxiv 3,000
reddit 3,000 reddit 2,999
wikihow 3,000 wikihow 3,000
Wikipedia | 2,995 - Wikipedia | 2,999 -
peerread - 500 peerread - 500
total 11,995 500 total 11,998 500
cohere arxiv 3,000 dolly arxiv 3,000
reddit 3,000 reddit 3,000
wikihow 3,000 wikihow 3,000
Wikipedia | 2,336 - Wikipedia | 2,702 -
peerread - 500 peerread - 500

total 11,336 500‘ total 11,702 500

Table 2: Subtask B

4 Methodology

This section tackles the problem by formulating it
as supervised classification tasks. We then intro-
duce our proposed solution architecture for each
task, covering the models used, and present how
we fine-tuned them with hyperparameter configura-
tions, and how we assessed their performance.

4.1 Problem Statements
4.1.1 Subtask A

We formulate the problem at hand as a binary super-
vised classification task, whose objective is to learn
a mapping between a representation of the text and
a binary variable, which is 1 if the text is machine-
generated, and O otherwise. Mathematically, we
learn a function f that, given an input text ¢;, rep-
resented as a set of features [f, ..., fi], outputs an
estimated label [; € {0,1}, i.e., [; = f(t;). Note
that Subtask A covers two versions: monolingual
and multilingual versions.

4.1.2 Subtask B

Similarly, we consider the task as a supervised
classification where we aim to learn a function
f that, given an input text ¢;, represented as a
set of features [f, ..., fi], outputs an estimated la-
bel I; € {0,1,2,3,4,5}, ie., l; = f(t;) where 0
refers to the human-written texts and the rests are
those generated by different machines, including
1-ChatGPT, 2-cohere, 3-davinci, 4-bloomz, and
5-dolly, respectively.

Furthermore, we are interested in gaining in-
sights from the classifier’s predictions that allow us
to understand which features contribute positively
to detecting machine-generated text.
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4.2 Our architecture

The overall architecture of our proposed approach
is demonstrated in Figure 1. The general idea is to
use a machine learning model trained to discrimi-
nate between text samples generated by a human
and text samples generated by LLMs. Different di-
rections could be pursued to extract useful features
from a text and perform text classification.

4.2.1

Inspired the works from He et al. (2023) and
Spiegel and Macko (2023), we capture the local in-
formation from the texts using the following meth-
ods: (1) Log-Likelihood, (2) Rank, (3) Log-Rank,
(4) Entropy, and (5) MFDMetric.

Metric-based models

* Log-Likelihood: Given a text, we average the
token-wise log probability of each word gen-
erated from a language model to generate a
score for this text.

* Rank: For each word in a text, given its previ-
ous context, we calculate the absolute rank of
this word. Then, for a given text, we compute
the score of the text by averaging the rank
value of each word.

* Log-Rank: Slightly different from the Rank
metric that uses the absolute rank, the Log-
Rank score is calculated by first applying the
log function to the rank value of each word.

* Entropy: Similar to the Rank score, the En-
tropy score of a text is calculated by averaging
the entropy value of each word conditioned
with its previous context.

* Multi-Feature Detection Metric or MFDMet-
ric: This is a two-step zero-shot method that
(1) considers four distributional information
(Log-Likelihood, Log-Rank, Entropy), and sta-
tistical information (LLM-Deviation) as input
features; and (2) classify the text using neural
networks.

In Log-Likelihood, a larger score denotes the
text is more likely to be machine-generated. Mean-
while, in Rank and Log-Rank, a smaller score
denotes the text is more likely to be machine-
generated. Similarly, the machine-generated text
is more likely to have a lower Entropy score. Note
that metric-based methods are only applied to Sub-
task A.
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Figure 1: Our general architecture for Subtask A (both blue and green boxes) and Subtask B (only blue box).

4.2.2 Model-based models

LMs Two Transformer-based models have
been fine-tuned as sequence classifiers, namely
RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020). RoBERTa is a Transformers model
pretrained on a large corpus of English data in a
self-supervised fashion using a masked language
modeling (MLM) objective. Meanwhile, XLM-R
is a multilingual version of RoOBERTa that was pre-
trained on 2.5TB of filtered CommonCrawl data
containing 100 languages. These models are also
suggested as the baseline methods from SemEval-
2024 Task 8 organizers.

LLMs Given the recent success of the LLMs
architectures for solving downstream NLP tasks,
we decided to follow the same vein to build our
classifier. As such, we start with LLaMA-2 (Tou-
vron et al., 2023), an LLM model pre-trained for
the sequence classification task, using its corre-
sponding tokenizer to preprocess data. We then
fine-tune the model on the training subset of col-
lected data. Consequently, the fine-tuned model is
used for inference on the testing subset. Finally, the
obtained classification scores are evaluated against
the ground truth.

4.3 Hyperparameters

Metric-based models We took advantage of
IMGTB® framework with default parameter set-

Shttps://github.com/michalspiegel/ IMGTB
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tings suggested from He et al. (2023) and Spiegel
and Macko (2023).

LMs We fine-tuned 2 LMs, namely RoBERTa
and XLM-R, using HuggingFace Transformers
Pytorch Trainer with the following configuration:
batch size = 16, learning rate = le-5, weight decay
= 0.01, number of epoch = 10.

LLaMA-2 To make the comparison comparable,
we fine-tuned LS-LLaMAS® (version: LLaMA-2-7b-
hf) using the HuggingFace Transformers PyTorch
Trainer class with the same configuration: batch
size = 16, learning rate = le-5, and the number of
epochs = 10 with max length = 256 and Lora = 12.

All the experiments were implemented on an
NVIDIA RTX A6000 with CUDA Version of 12.0
and 49140MiB.

4.4 Evaluation metrics

For both Subtasks, we use Accuracy, macro-F1I,
and micro-F1 as the evaluation metrics to measure
our classifiers’ performance. These are also the
standard metrics in SemEval-2024 Task 8, which
makes our works more comparable with other par-
ticipants. We assess the performance of the devel-
opment sets first and apply the best models to the
test set. The final leaderboard reported results only
for Accuracy.

®https://github.com/4AT/LS-LLaMA
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Methods Subtask A - Mono Subtask A - Multi Subtask B
Accuracy Micro F1 Macro F1 | Accuracy Micro F1 Macro F1 | Accuracy Micro F1 Macro F1
Metric-based methods
Log-Likelihood 0.51880 0.40011 0.51880 0.49700 0.46172 0.49700 - - -
Rank 0.71760 0.71760 0.71262 0.51000 0.51000 0.47705 - - -
Log-Rank 0.51700 0.38751 0.51700 0.49675 0.49675 0.46197 - - -
Entropy 0.53880 0.43979 0.53880 0.49475 0.45385 0.49475 - - -
MFDMetric 0.65820 0.63645 0.65820 0.49450 0.45875 0.4945 - - -
Language model (LM)-based methods - Benchmarks from competition
RoBERTa 0.65920 0.65920 0.61629 0.49100 0.49100 0.48721 0.73167 0.73167 0.69539
XLM-R 0.75740 0.75740 0.75130 0.52275 0.52275 0.48949 0.60267 0.60267 0.56838
Large language model (LLM)-based methods
LS-LLaMAy_7,_p,y | 0.81500  0.81500  0.80862 | 0.87400  0.87400  0.87399 | 0.75500  0.75500  0.73165

Table 3: Performance of Subtask A (monolingual and multilingual versions) and Subtask B on development set
where the training set is split into training and validation set with the ratio of 8:2 for training progress.

5 Results and Discussion

Table 3 demonstrates the evaluation of different
methods on the development set before the test
set was released, while Table 4 reports our final
performance on the test set in comparison with the
baseline suggested by SemEval-2024 Task 8§ and
our approach ranking on the leaderboard.

Methods | A-Mono A-Multi B
Baseline 0.88466 0.80887  0.74605
LS—LLaMAQ,ﬂ,,hf 0.85840 0.92867 0.83117
Our ranking ‘ 25/125 5/62 6/70

Table 4: Our performance in Accuracy on the test set
with the same train-validation-test split of SemEval
TaskS.

5.1 General Observations

We first present different experiment results on
the development set in Table 3. We observed
that overall, LLM-based methods, such as LS-
LLaMA3_7,_py, tend to outperform other ap-
proaches across all sequence classification tasks,
suggesting the effectiveness of leveraging large pre-
trained language models for these tasks. Mean-
while, metric-based methods have varying per-
formance, with Rank showing some competitive-
ness, but generally, they are outperformed by LLM
and LM-based methods. Regarding LM-based ap-
proaches, XLM-R tends to surpass the performance
of RoBERTa in the monolingual version of Subtask
A despite RoOBERTa being specifically designed for
English only.

Based on the performance of the development
set, we applied LS-LLaMAy_7,_p, ¢, which yields

superior performance in these Subtasks compared
to other methods, to the test set. As shown in Table
4, despite not surpassing the baseline of Subtask
A’s monolingual version, our models significantly
outperform the baseline of Subtask A’s multilin-
gual version and Subtask B with approximately
10% gain on average. While we ranked only 255
over 125 participants in the monolingual version
of Subtask A, we demonstrate competitive perfor-
mance to be ranked 5 over 62 and 6" over 70
participants in the multilingual version of Subtask
A and Subtask B, respectively.

We conducted several analyses to investigate
how different factors would affect the detection
performance of our best classifier.

5.2 Effect of Text Length

We first present the distribution of the number of
words (# words) for predicted human-generated
and machine-generated texts (Predictions) and their
ground truth (G7T) in the dataset in each Subtask
(shown in Figure 2).

On ground-truth levels, Figure 2 highlights dis-
crepancies in word distribution between human-
written texts and those generated by different
LLMs. This is evident in Subtask A by the dif-
ference in word count distribution between human
and machine-generated labels and in Subtask B by
the varying generated performance of individual
LLMs compared to human-written ones. For in-
stance, davinci can generate long-context answers
(more than 2500 words) while others respond in
more concise ways (less than 1500 words).

Despite these discrepancies, compared predic-
tions against ground truth, our classifier effectively
captures the distribution of generated texts per
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Figure 2: The distribution of words (#. words) for human-written and machine-generated texts of our predictions
(Pred) and the ground truth (GT) on different datasets of different tasks (Subtask A: 0-Human, 1-Machine; Subtask
B: 0-Human, 1-ChatGPT, 2-cohere, 3-davinci, 4-bloomz, and 5-dolly).

class, resulting in comparable word distributions
between predictions and ground truth except in
ChatGPT and dolly where most of the examples
we misclassified are outliers.

5.3 Class-wise Performance

To better investigate the detection performance of
different classes, we visualize the normalized con-
fusion matrix of different tasks when we used our
LLaMA-2 classifier as shown in Figure 3.

On one hand, in terms of Accuracy, unlike the
multilingual version of Subtask A where all the
classes can be well detected with up to 94% in
Accuracy, the monolingual version suffers signif-
icantly from misclassifying human-written texts
into machine-generated ones, which reduces the
performance of the overall classifier (the accuracy
of the human-written class falls into around 76%).
Most of the misclassified texts are human-written
that our classifier mistakenly took for the machine-
generated ones.

On the other hand, when it comes to multi-way
machine-generated text classification as Subtask B,
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the predictive performance of our classifier varies
depending on the type of LLMs used to gener-
ate texts. Although LLaMA-2 has a good perfor-
mance in identifying human-written and machine-
generated texts generated by ChatGPT, bloomz,
and dolly, the performance in attributing machine-
generated texts from other LLMs (e.g., cohere, and
davinci) is largely limited. For example, the pre-
diction accuracy of ChatGPT, bloomz is almost
perfect (99.53% and 99.70%, respectively). Mean-
while, that of cohere is just above the average
(around 60%) and its texts are often misclassified
as machine-generated texts from davinci, followed
by ChatGPT. This is expected due to potential over-
lap in the distribution of the metric among various
LLMs, which introduces extra challenges in attri-
bution.

Broadly speaking, our findings suggest that the
fine-tuned LLMs (e.g., LLaMA-2) excel in detect-
ing machine-generated multilingual texts and accu-
rately classifying machine-generated texts within a
specific category, (e.g., ChatGPT, bloomz, dolly).
However, they do exhibit challenges in detecting
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them in other categories (e.g., cohere, and davinci).
Further studies are needed to improve the lower-
performing classes.

6 Conclusions

In conclusion, this paper outlines our contribu-
tion to the first two Subtasks of SemEval-2024
Task 8: Multigenerator, Multidomain, and Mul-
tilingual Black-Box Machine-Generated Text De-
tection, namely Monolingual and Multilingual Bi-
nary Human-Written vs. Machine-Generated Text
Classification and Multi-Way Machine-Generated
Text Classification. We conducted a compre-
hensive comparative study across three method-
ological groups: Five metric-based models (Log-
Likelihood, Rank, Log-Rank, Entropy, and MFD-
Metric), two fine-tuned sequence-labeling language
models (ROBERTA and XLLM-R); and a fine-tuned
large-scale language model (LS-LLaMA).
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Our findings suggest that our LLM outperformed
both traditional sequence-labeling LM benchmarks
and metric-based approaches. Furthermore, our
fine-tuned classifier excelled in detecting machine-
generated multilingual texts and accurately clas-
sifying machine-generated texts within a specific
category, (e.g., ChatGPT, bloomz, dolly). How-
ever, they do exhibit challenges in detecting them
in other categories (e.g., cohere, and davinci). This
is due to potential overlap in the distribution of the
metric among various LLMs. Overall, we ranked
6'" in both Multilingual Binary Human-Written vs.
Machine-Generated Text Classification and Multi-
Way Machine-Generated Text Classification on the
leaderboard.

In future work, we would like to take a step
further to evaluate whether our classifier is robust
enough against adversarial attacks (e.g., paraphras-
ing, random spacing, adversarial perturbation) as



well as investigate how to make our model more in-
terpretable and explainable, which is important, but
insufficiently addressed when detecting machine-
generated contents.

Limitations

Regarding specificity and domain dependence, our
classifier might not effectively distinguish among
different types of machine-generated texts, such as
texts generated by different models, for different
purposes, or in specific domains (which can be seen
in the case of detecting texts generated by cohere
and davinci).
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Abstract

Emotion expression is one of the essential traits
of conversations. It may be self-related or
caused by another speaker. The variety of
reasons may serve as a source of the further
emotion causes: conversation history, speaker’s
emotional state, etc. Inspired by the most recent
advances in Chain-of-Thought, in this work,
we exploit the existing three-hop reasoning
approach (THOR) to perform large language
model instruction-tuning for answering: emo-
tion states (THORgarr), and emotion caused
by one speaker to the other (THORyse). We
equip THOR,use With the reasoning revision
(RR) for devising a reasoning path in fine-
tuning. In particular, we rely on the annotated
speaker emotion states to revise reasoning path.
Our final submission, based on Flan-T5y ..
(250M) and the rule-based span correction
technique, preliminary tuned with THORgrare
and fine-tuned with THORAysg-rr ON competi-
tion training data, results in 3" and 4™ places
(Flpmportional) and 5th Place (Flstrict) among 15
participating teams. Our THOR implemen-
tation fork is publicly available: https://
github.com/nicolay—-r/THOR-ECAC

1 Task Overview

Extracting potential causes that lead to emo-
tion expressions in text is the crucial aim of
Emotion Cause Extraction (ECE) domain (Xia
and Ding, 2019). In particular, the SemEval-
2024 Task 3 (Wang et al., 2024) is aimed at
emotion-cause pair analysis in conversations
from the sitcom Friends. The conversations
are organized into Emotion-Cause-in-Friends
dataset (Wang et al., 2023) and includes the
JSON-formatted training (TRAINjson) and eval-
uation (TESTjson) parts. The authors propose
6 emotion classes to annotate: (i) speaker
emotion states, and (ii) emotion caused by one
utterance to the other. These classes are: E =
{SURPRISE, SADNESS, JOY, DISGUST, FEAR, ANGER },
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and NeuTraL for absence of emotion. We denote
E' = E U {~euTrAL} as a complete set.

Among the several subtasks of ECAC-2024,
in this paper we focused on Subtask I: textual
emotion-cause pair extraction in conversations. In
this subtask, each conversation represents a list of
utterances. Every utterance (u) yields the follow-
ing: utterance text (Usest), Speaker name (Ugpeaker )
emotion state (Ugtqre € E'), and ID (u;q). The an-
notation of the emotion cause pairs represents a
list P = [py ...pp||, in which each pair p € P is
a labeled source-target! tuple p = (u™, u'¥" e.),
where e. € FE.

We initiate our studies by analyzing the train-
ing data (TRAINjsop) for the subject of annotated
emotion-cause pairs <us"c, ut9t> in it, and report:

1. Quantitative statistics of the mentioned
emotion-cause pairs (Table 1);

2. Distance statistics (in utterances) between
u®"¢ and u'9¢ (Table 2);

3. Distribution statistics between speaker state
(ustate) and emotion speaker causes (e**)
(Table 3).

According to the Table 2, most emotion was
found to be caused by such utterances u°"¢ that
are the same as or mentioned before w9 (§ > 0).
Therefore, given <u”c, ut9t> we denote its context
X = {u'...u"} as a history of the past k — 1 ut-
terances of u'9t, where u9t = u* € X, v € X.
Task definition: Given an emotion-causing utter-
ance pair within context <usm, utdt X > answer the
emotion e, € E’ caused by u*"¢ towards u'9’.

2 Methodology

We propose a two-stage training mechanism for
performing instruction-tuning on large language
models (LLMs), aimed at accurately inferring of

! Spans-prediction is beyond the scope of our methodology.
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Parameter Value
Conversations (total) 1374
Emotion causes pairs per conversation 6.46
Emotion causes pairs in annotation (total) 8879
Self-cause per conversation (% from total) 51.86 %
Self-cause by different utterance (% from total) | 12.83%

Table 1: Quantitative statistics of the emotion-cause
pairs in the competition training data (TRAINjson)

Parameter future past

S=ud —uf| <0 0 1 2 3 4

Causes count 37714605 2759 810 332 160
Average per § 0.12 ] 335 2.01 059 024 0.12
Covering (%) -| 519 829 921 958 97.6

Table 2: Distance statistics (¢) (in utterances) between
source (1°"¢) and target (u'9%) of emotion-cause pairs
in the competition training data (TRAINjson)

u—>*

Ustate \€ JOY SUR ANG SAD DIS FEA
total 2653 2092 1984 1336 518 296
JOY 89 06 .03 .01 .01 .00
SURPRISE 07 78 .07 .03 .03 .02
ANGER 01 .07 | .83 .06 .02 .02
SADNESS 02 .09 .06 | .81 .01 .01
DISGUST .03 .07 .14 .06 .70 .01
FEAR .02 .13 .08 .05 .04 | .68
NEUTRAL 24 .38 22 .08 .04 .03

Table 3: . Distribution statistics between speaker state
(Ustate) and emotion speaker causes (e*—*) in the com-
petition training data (TRAINjsoq); values in each row
are normalized

the task answers. Given triplet (u®¢,u'9", X)
of emotion-cause pair (u*"¢,u'9") in context X,
the proposed mechanism aims at LLM instruction-
tuning, in order to answer ¢ € F’ that refers to:

tgt

STAGE 1: emotion state u ;.

STAGE 2: emotion cause by u*" to u'9t,

Therefore, for emotion-cause pairs extraction we
use the STAGE 2 towards the model tuned in STAGE
1 toinfer e, € E'caused by u*" towards u'9¢.

Instead of directly asking LLM the final result at
each stage, we exploit the Chain-of-Thought (CoT)
concept in the form of the Three-hop Reasoning
(THOR) framework (Hao et al., 2023). We believe
that LLLM can infer the span that conveys emotion
and opinion about it before answering ¢ € E’. Fig-
ure 1 illustrates the proposed training methodology,
empowered by the CoT prompting. We refer to the
instruction-tuning mechanisms of the STAGE 1 and
STAGE 2 as THORgparg and THOR,ysg respec-
tively.
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2.1 Chain-of-Thought Prompting

We adopt the THOR framework (Hao et al., 2023)
in LLM fine-tuning with the prompt templates
adapted for emotion-cause pair analysis in conver-
sations. We define the intermediate span (s) and
latent opinion expression (o). With C;,i € 1..3
we denote the prompts that wrap the content in
the input context. The construction of stages is as
follows.

THORGgysrg This is a STAGE 1 of the proposed
training methodology, aimed at preliminary LLM
instruction-tuning. Given (u'9*, X), we apply the

tgt
d e =€l eE"

following three steps to infer u; ;.

Step 1: s} = [C1(X), which text spans are
possibly causes emotion on u " 7]

Step 2: 0o} = [C2(CY, s}). Based on the com-
mon sense, what is the implicit opinion to-
wards the mentioned text spans that causes
emotion on u.?" ., and why?]

Step 3: ¢ = [C3(Cy,0)). Based on such

opinion, what is the emotion state of u?" 7]

where ] could be interpret as s}
argmaz p(si| X, ul?" ), latent opinion o} as o, =
argmaz p(o1])X,ul?, s}), and the final answer
¢} noted as: €/ = argmaz ple;| X, ul? st o).

THOR_ayse This is a STAGE 2 of the proposed
methodology, based on emotions-cause pairs. We
use this stage for (i) fine-tuning and (ii) task result
inferring purposes. Given context (u*, u'9", X')
we omit? u'9" € X from the input parameters by
referring to it as «end of the conversation». We
apply the following steps to infer ¢, € E’ caused
by u*"¢ to ul9t:

Step 1: s, = [C (X)), which specific text span

of ujls, is possibly causes emotion?]

Step 2: 0}, = [C2(C1, sb). Based on the com-
mon sense, what is the implicit opinion to-
wards the cause of mentioned text span of

Ui, and why?]

Step 3: ¢}, = [C53(C4, ). Based on such opin-
ion, what is the emotion caused by source
towards the last conversation utterance?]

To reduce the problem statement to the one for which
THOR was originally designed (Pontiki et al., 2016)
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towards u'9" (THORayse), optionally enhanced by Reasoning-Revision and by predicting u7¢,, (THOR causg-rr)-

state

instruction-tuning

where s, could be interpret as s, = 3 Datasets and Experiential Setup
/ src 11 /
argmax So| X, u , opinion o' could be )
g P 2,‘ ) Uicat)s O ore We adopt textual resources provided by the com-
interpret as o, = argmaz p(os|X,usrs,, sh), .. . .
; petition organizers (Wang et al., 2024): train-
and the final answer e, mnoted as: . :
, sre g ing (TRAINjson) and evaluation (TESTjson) data.

Within TRAINjson, for each conversation, we rely
2.2 Reasoning Revision with Supervision on (i) speakers emotion states, and (ii) emotion
causes annotation to compose the datasets Dggate
and D ,use, respectively. Each dataset represent a
list of tuples ¢ = (u, X, L), where w is an utterance
of the conversation context X = {u'...u*}, and
L is a list of emotion labels, defined as:

During the LLM instruction-tuning process with
the THOR, it is possible to devise a reasoning path.
Technically, at each step of the chain we have all
the necessary information to query our model with
the final answer. With the following approach, we

believe in a better model alignment on state-cause « L = [u¥,,.] inthe case of Dy (1. € E')
dependency (Table 3): speakers are likely to cause

an emotion, similar to their states>. To revise this * L = [Ustate, €"] in the case of Dcause, Where
knowledge, in this paper, we impute the following e* is emotion expressed by u towards u¥, or
prompt to support our opinion O, obtained at the NEUTRAL otherwise (e € E')

end of the THOR cuse step 2 (Fig. 1): Dyaie represent entries of all possible utterances

Step 3.1: WS =[C5(C5, o), Based on such in all conversations with .thelr emotional states
opinion, what is the emotion state of u}.¢,?] Ustate € E. For the particular utterance u, we

= consider its context as X, = {u’ : u;q — uly; < k}.
Due to the definition of the task, we be- Deause includes all possible pairs (u®¢, u9"),

lieve in the correctness of this knowledge within ~ where uj;° < ufgt, and utgt uzy¢ < k. For the
the emotion cause task. Once step 3.1 is partlcular pair, we compose the related context (X)
embedded, the result answer ¢, € FE' in asfollows: X’ = {u': u%' — u},; < k}. For each

THOR ayse from the step 3 could be reinterpret as  pair, we assign e € I if the pair is present in con-

eh = argmaz p(ea| X, uirs,, sh, o, u/sS,). We  versation annotation and NEUTRAL otherwise. We
refer to this setup as THOR ¢ xysg-rr- rely on the analysis in Table 2 to limit the number
S of pairs, as well as the size of the context. We

3
Except NEUTRAL speaker state (Table 3) . .
P P set k = 3 to cover 95.8% emotion-cause pairs.

We also cover the case of emotions caused from
within the same utterance (59.5%, see Table 1).
As for emotions caused by the same speaker of
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Source TRAINjson TESTjson
Part train dev test
Dyggae (total) 12144 1475

NEUTRAL 5299 630

JoY 2047 254

SURPRISE 1656 184

ANGER 1423 192

SADNESS 1011 136

DISGUST 372 42

FEAR 336 37 .
Dease (total) | 30445 3612 15794

NEUTRAL 23750 2765 15794

Joy 2111 279 —

SURPRISE 1725 202 -

ANGER 1307 174

SADNESS 932 120 -

DISGUST 387 47

FEAR 233 25 -

Table 4: Statistics of the composed datasets D, and
D ause from the publicly available competition data, for
the two training methodology stages respectively; statis-
tics is listed for k = 3.

other utterance, we assess that excluding this type
of pairs (12.83%, according to Table 1), results in
~ 23% pairs reduction of D, and hence reduces
training time. Therefore, the result Dy excludes
pairs of this type in train, dev and test parts.
Table 4 lists the statistics of the composed re-
sources. We use the 9:1 proportion for TRAINjson
to compose t rain and dev, respectively. To rep-
resent X € t, we concatenate its representation of
utterances. For each utterance u € X, we use the
following formatting template: «Ugpeaker @ Uteat>
To represent utterance u € t, we refer to ugeys. For
each [ € L formatting, we utilize its lowercase text
value. The implementation details for the datasets
preparation are publicly available.*
Setup. We follow the publicly available frame-
work setups (Hao et al., 2023) and adopt encoder-
decoder style instructive Flan-T5> as our backbone
LLM for the proposed methodology. We experi-
ment with a 250M (base) version. For evaluations
on dev, we adopt the F1-measure for E’, denoted
as F'1(E’). The evaluation on test assessed with
the set of F'l-metrics, provided by the competi-
tion organizers (details in Section 4). We consider
the instruction-tuning of the Flan-T5 model with
the following techniques: conventional PROMPT,
THOR (Section 2.1), and THOR ¢ ,ysg With reason-
ing revision (Section 2.2). To conduct the experi-
ment, we rent a server with a single NVIDIA A100
GPU (40GB). We set temperature 1.0, learning rate

4https ://github.com/nicolay-r/SemEval2024-Task3
https://huggingface.co/google/flan-t5-base
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Figure 2: Result analysis of the preliminary fine-tuning
of Flan-T5pase On Dgae dev using THORgare tech-
nique per epoch by F'1(E")
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Figure 3: Flan-TS5p. T fine-tuning results compari-
son by F1(E’) on Dy dev part per each epoch
across fine-tuning techniques: PROMPT, THOR ¢ use,
and THOR causg-rr-

2.1074, optimizer AdamW (Loshchilov and Hutter,
2017), BATCH-SIZE of 32.

For the PROMPT technique, we use the template
«C1(X). I(u). Choose from E’», where I(u) cor-
responds to the instruction. For Dy We use
I(u) = «What emotion causes e, towards the
last conversation utterance?»

4 Experiments

Stage 1. Figure 2 illustrates the analysis of the F'1
on dev part during the preliminary tuning of Flan-
TShase 0N Dgare.® We investigate the overfitting
after 2 epochs of training. The best state, obtained
at the end of the epoch #2 with the F'1(E’)= 47.81
on the Dge-dev part, has been selected. In fur-
ther, we refer to this model as Flan-T5pee T
Stage 2 Figure 3 provides a comparative analy-
sis of different fine-tuning techniques. As at the
pre-training stage, we investigate the ability to
learn task emotion states 2-3 training epoch, fol-
lowed by overfitting. Switching from PROMPT to
THORuse-rr technique, we investigate the im-
provement by 2.5% percent by F'1(E’) on the dev
We left the comparison with other pre-training techniques

listed in 3 out of scope of this paper due to alignment with the
CoT concept in STAGE 2.
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Source dev test

Model F1(E') F1Y¥ Flg’ F1i, F1,
PROMPT

FT5paet  43.51  9.68 2227 10.05 22.21
THOR 4use

FT5pet  43.72
THORcause-rr
FT5pet 44.64 9.74 2354 10.33 23.94
THOR Ausg-rr + Algorithm-based Spans Correction
FT5pact 44.64 1286 24.28 13.26 24.13

Table 5: Evaluation results for Flan-T5y,s. & on dev and
test parts of the D ,yse dataset; the results of the final
submission are highlighted in gray

part of the Dy dataset. We refer to the best fine-
tuned versions as Flan-TSy, £, separately per each
fine-tuning technique in Table 5 (dev column).

The official evaluation includes the following
F'1 measures: (i) weighted averaged F'1Y / non-
weighted (F'1,), and (ii) strict (F'15) / not-strict
(F'1,) towards predicted spans. To form the sub-
missions for official evaluation, the following span
corrections approaches were used: (i) punctuation
terms’ exclusion from utterance prefixes and suf-
fixes (by default), and (ii) algorithm-based (Sec-
tion 4.1). Table 5 (test columns) illustrate the
available results of T5y,s % in official evaluation.
Final submission represents the results of Flan-
TSpaset (THORause-rr technique), and applica-
tion of algorithm-based spans correction.

4.1 Algorithm-based Spans Correction

Our methodology (Section 2) is limited on utter-
ance level emotion cause prediction.® We believe
it is reflected in the relatively low results of F'1;
on the test dataset (see Table 5). Therefore, we
analyze TRAINjson and adopt a placeholder solution,
aimed at enhancing the results by F'1;.

We apply a rule-based approach based on dif-
ferences between the original utterance texts and
their span annotations in the training data. Us-
ing TRAINjson, We compose prefix- (V},) and suffix-
(V) vocabularies. For vocabulary entries, we select
those that satisfy all of the following criteria: (i) the
length of entry does not exceed 5 words, (ii) entry
starts (in the case of V), or ends (in the case of V}))
with the punctuation sign’.

"We use st ring.punctuation preset in Python

8Technically it is possible to obtain spans (Section 2),
however we could not investigate the practical valuty of the
THOR cause-based Flan-TSpq & responses from step #1.
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Parameter Value
Conversations (total) 2917
Emotion causes pairs in annotation 665

Average per conversation 4.39

Table 6: Quantitative statistics of the automati-
cally extracted emotion-cause pairs by Flan-TSpusd
(THORyse-rr technique) from the evaluation data
(TESTjson)

Parameter past

§=ull —uii© 0 1 2 3

Causes count 1711 1012 148 46
Average per 0 257 152 022 0.07
Covering (%) 587 933 984 100.0

Table 7: Statistic of distances in utterances (J) between
source (u*"¢) and target (u'9") of emotion-cause pairs
for automatically extracted emotion-cause pairs by Flan-
TSpase (THORause-rr technique) from the evaluation
data (TESTjson)

Ustate \€" " | JOY SUR ANG SAD DIS FEA
Joy 87 08 .02 .01 .01 .00
SURPRISE .09 75 06 .05 .03 .01
ANGER 05 .14 .68 .08 .03 .01
SADNESS .06 .11 .03 [.76 .02 .02
DISGUST .07 .11 .07 .05 .68 .01
FEAR .00 .15 .09 .02 .00 .74
NEUTRAL 36 40 07 .12 .03 .02

Table 8: Distribution statistics between speaker state
(ustate) and emotion speaker causes (e**) for auto-
matically extracted emotion-cause pairs by Flan-T5p,s F
(THORause-rr technique) from the evaluation data
(TESTjson); values in each row are normalized

Ustate \€ " | JOY SUR ANG SAD DIS FEA
JOY 97 .01 .01 .00 .01 .00
SURPRISE 04 89 .04 .01 .01 .01
ANGER 04 05 83 .05 .02 .01
SADNESS 02 .02 .03 .89 .02 .01
DISGUST 02 04 05 .07 .81 .01
FEAR .00 .06 .07 .04 .03 .80
NEUTRAL 60 .13 .03 .16 .05 .02

Table 9: Distribution statistics between speaker state
(Ustate) and emotion caused on them (e* %), for auto-
matically extracted emotion-cause pairs by Flan-T5p, F
(THORyse-rr technique) from the evaluation data
(TESTjson); values in each row are normalized

For each utterance text (use,¢) that causes emo-
tion, we compose an updated u}.,, by applying:
(1) correction of ue,; prefixes with V,,, followed
by (2) correction of suffixes from V for the results
from (1). We alter u},,, in the case of uj ., = 0.
The algorithm 1 illustrates an implementation for
the prefixes correction with Vp.9

“Implementation is publicly available in https://
github.com/nicolay-r/SemEval2024-Task3
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Algorithm 1 Emotion-cause prefixes correction for u¢ext

updated < True

Vp/ <+ sorted V}, by decreased entry lengths in words
while vutc.t # @ or updated do
updated < False
uéext — ut/ezt
for v, € V,, do
if w¢eqr ends with v, then
Upeqe < part of Uteq+ before vy
updated < True
break
end if
end for
end while

> Modified version of Utezt

4.2 Final Submission Analysis

We report the following emotion-cause pairs
(us¢,u'9") analysis results for the Flan-T5pqsci
(THOR ause-rr technique, final submission):

1. Quantitative statistics of the extracted
emotion-cause pairs (Table 6);

Distance statistics (in utterances) between
u®"¢ and u'9! (Table 7);

Distribution statistics between speaker state
(ustate) and the emotion speaker causes
(e"7*) (Table 8);

Distribution statistics between speaker state
(ustate) and emotion caused on them (e* %)
(Table 9).

According to the results in Table 8, we ob-
serve that the correlation between the state of the
speaker u utterance (usiqre) and the emotion it
causes (e¥*) is similar to the related statistics
on the competition training data (Table 3). We
also investigate the alignment of the speaker states
(ustate) With the emotion caused on them (e* %)
and the precision of the result varies between 80-
97% (Table 9). The known source of misalignment
is the case when emotion'? e*7* € E caused on u
with ugtqte = NEUTRAL (bottom row, Table 9).

5 Conclusion

In this paper, we present a Chain-of-Thought (CoT)
methodology aimed at fine-tuning LLLM for emo-
tion state and cause extraction. We consider the
problem of emotion cause analysis in conversa-
tions as a context-based problem with the men-
tioned utterance that causes emotion towards the
last utterance in context. We devise our CoT for

1950y especially, as the most frequently appearing class.
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emotion causes and propose a reasoning revision
methodology aimed at imputing the speaker emo-
tion to support the decision on caused emotion. Our
CoT represent a Three-hop Reasoning approach pri-
ory known as THOR. We apply this approach to
fine-tune LLM and predict: (i) emotion state of
the mentioned utterance, and (i) emotion caused
by mentioned utterance towards the last utterance
in context. We experiment with the Flan-T5pasc
(250M) model fine-tuning using resources provided
by task organizers. The application of CoT with
reasoning revision allows us to improve the results
by 2.5% (F1-measure) compared to prompt-based
tuning. In further work, we expect to contribute
with the: (i) analysis of larger models, and (ii) en-
hanced reasoning revision techniques, mentioned
in the final submission analysis.
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Abstract

In this paper, we explore three unsupervised
learning models that we applied to Task 9:
BRAINTEASER of SemEval 2024. Two of
these models incorporate word sense disam-
biguation and part-of-speech tagging, specifi-
cally leveraging SensEmBERT and the Stan-
ford log-linear part-of-speech tagger. Our third
model relies on a more traditional language
modelling approach. The best performing
model, a bag-of-words model leveraging word
sense disambiguation and part-of-speech tag-
ging, secured the 10" spot out of 11 places
on both the sentence puzzle and word puzzle
subtasks.

1 Introduction

Riddles often exploit the commonsense of the
solver to lead them astray, subverting expectations
with it’s answer. For example, the riddle “A young
girl fell off of a 20 foot ladder but wasn’t hurt.
How? She fell off of the bottom rung.” leads the
solver astray by including the height of the ladder in
the initial question, tricking one into latching onto
misleading information. Task 9: BRAINTEASER
(Jiang et al., 2024) presents riddles to a predictive
model and asks the model to choose one of four an-
swers to the riddle, in the hopes of bridging the gap
between vertical and lateral thinking (Waks, 1997)
within language models. The data provided for the
Task is written in English and was obtained from
public websites by utilizing web crawlers (Jiang
et al., 2023).

The three models we employ to solve this task
all apply an unsupervised learning approach, with
two of the three models leveraging word senses
and part-of-speech tagging to aid in their predictive
capabilities. We wanted to leverage the senses of
the nouns in the question and in each possible an-
swer as we hypothesized that the senses present in
the question and each answer may aid our models
in piercing the proverbial commonsense veil that
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makes brainteasers and riddles difficult to begin
with.

Our best approach, the bag-of-words model,
landed us in 10** place out of 11 places in the
“overall” results of both subtasks. While 13 teams
competed, two teams tied for both 2"¢ and 4"
place in the sentence subtask, two teams also tied
for both 1%t and 11" place in the word subtask
results.

Our code can be found on Github'.

2 Background

BRAINTEASER places emphasis on the ability of
a predictive model to use vertical and lateral think-
ing. Vertical thinking leverages logic and rational-
ity to perform a sequential analysis of a problem,
whereas lateral thinking (or “thinking outside the
box”) leverages creativity to solve problems. The
Task is divided into two subtasks — sentence puz-
zles and word puzzles. We applied our models to
both, with each subtask requiring vertical and lat-
eral thinking to solve. Figure 1 breaks down how
sentence and word puzzles can be solved with lat-
eral thinking. The train of thought labeled with a
red “X” demonstrates logical thinking based on the
information available at the time, whereas the al-
ternate thought process — the line of thinking that
allows the solution to be derived — displays how
lateral thinking can affect the answer to a riddle as
more context is provided.

The dataset associated with the Task presents
each sample as a question and four possible an-
swers. Table 1 shows an example of both a sen-
tence puzzle question and its possible answers, and
a word puzzle question and its possible answers.
Each sample also has two variants; a semantic re-
construction and a context reconstruction. These re-
constructions are designed to further test a model’s
reasoning ability.

"https://github.com/VeiledTee/BrainTeaser
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( Lateral Thinking
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entence Puzzle

¢ |'-> his beard gets clean everyday ,-xﬁ

he is a barber and he shaves others —*

Word Puzzle
What type of cheese!is made backwards?

? Mozzarella P x
Feta

—=>Edam

=

Figure 1: An example of how lateral thinking can be
used to solve sentence and word puzzles. Figure taken
from BRAINTEASER system paper (Jiang et al., 2023).

Whilst the training and development sets contain
extra information regarding the correct answer, our
unsupervised approaches only required the test set.
Not using the labeled training and validation data,
while limiting our models, allows them to be more
versatile in situations where labeled data is not
available.

Word Sense Disambiguation (WSD) is a natural
language processing (NLP) task that involves deter-
mining the correct meaning or sense of a word
within a given context (Navigli, 2009). Many
words in natural language have multiple senses,
and WSD aims to identify the intended sense of a
word in a specific sentence or context. This is used
in various language processing applications, such
as machine translation, information retrieval, and
text summarization. We employ WSD by leverag-
ing SensEmBERT (Scarlini et al., 2020), coupled
with WordNet (Fellbaum, 1998) to disambiguate
the sense of a token in a particular context.

SensEmBERT is a knowledge-based approach to
WSD that produces high-quality sense embeddings.
WordNet is a large lexical database that organizes
words and their meanings into sets of interlinked
synonyms called synsets.

We leverage part-of-speech (POS) tagging in
order to determine which tokens in each question
and answer are nouns we can determine the sense
of. We employ the English version of the Stanford
Log-Linear POS Tagger? (Toutanova et al., 2003)
— which leverages dependency networks to aid in
tagging tokens — in this work. For the purposes
of our work, we only work with nouns — tokens
whose tag begins with “NN”.

2https://nlp.stanford.edu/software/tagger.
shtml

3 System Overview

The following is a description of each approach
we took in an attempt to solve the Task. We im-
plemented a bag-of-words, language modelling,
and a sense comparison approach. The language
model at the core of all three of our approaches is
bert-large-cased (Devlin et al., 2018), the same
model leveraged by Scarlini et al. (2020) in the
creation of SensEmBERT.

3.1 Bag of Words with WSD Approach

Our bag-of-words (BOW-WSD) model combines
POS tagging with WSD to create a bag of words
for the question and each possible answer. When
presented with a question (g), the model creates a
list containing the most prevalent sense for each
noun in the question — ¢_senses — by leveraging
Algorithm 1. Note; in this algorithm, it is neces-
sary to concatenate the embedding of each noun to
itself in order to match the format of the WordNet
senses, allowing said WordNet senses to be com-
pared to and leveraged. From ¢_senses, we create
q_bag by removing all stop and duplicate words.
Token order and context is preserved during the
generation of ¢_senses but not for the creation of
q_bag.

The process used to create g_bag is then re-
peated four times — once for each possible answer
— creating five bags of words in total, one q_bag
and an answer_bag for each of the four answers.
Each answer_bag is compared to ¢_bag through
an overlap calculation — the number of common
tokens across both bags — shown in Equation 1.
For example, if q_bag is “[hair, shave, beard, cut,
trade]” and one of the answer_bags is “[trade, cut,
hair, someone]”, the overlap score would be 0.667
— three overlapping tokens of nine possible tokens.
The answer_bag with the highest overlap score is
predicted to be the correct answer.

2 - (|bagl N bag2|)
(Ibagl| + |bag2)

3.2 Language Modelling Approach

©)

avg_overlap =

In the example shown in Table 1, the correct an-
swer can be read as a natural continuation of the
question — contrary to the other possible answers
which do not make logical sense if appended onto
the end of the question. We explore this intuition
with our language modelling approach, which takes
each answer, concatenates it to the end of the ques-
tion, and calculate the probability of the text from
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Question

Choices

Sentence Puzzle Example

A man shaves everyday, yet keeps his beard long.

He is a barber.

He wants to maintain his appearance.

He wants his girlfriend to buy him a razor.
None of the above.

Word Puzzle Example

What part of London is in France?

The letter N.
The letter O.
The letter L.
None of the above.

Table 1: An example of a sentence puzzle and a word puzzle from the BRAINTEASER dataset. The correct answer

for each puzzle is in italics.

Algorithm 1: WordNet Sense Extraction

Input: Input sentence

bert-large-cased tokenizes input
Perform POS tagging on tokenized input

final_senses < ||
for n in filtered_nouns do

0 N T R W N -

permitting querying */

Append n_sense to final_senses

Return final_senses

Output: WordNet senses of nouns in the sentence

filtered_nouns < nouns from the POS tagging results

Concatenate the noun’s token embedding to itself /* This format matches that of WordNet,

Search WordNet for the most similar sense key using cosine similarity
Use sense key to retrieve WordNet sense of n

each answer following the question using BERT
(bert-large-cased)’. The predicted answer is
the one associated with the largest probability.

3.3 Sense Comparison Approach

In this approach we leverage an unsupervised WSD
model that makes predictions by comparing the
senses of nouns. Once the primary sense of each
noun in the question is identified, we utilize the
bert-large-cased model to retrieve the embed-
ding of the [CLS] token for each identified sense.
This procedure is replicated for every potential an-
swer, and the cosine similarity is employed to com-
pute a similarity score for each pairing of [CLS]
tokens between the senses of the question and those
of each individual answer. Subsequently, these sim-

Shttps://huggingface.co/bert-large-cased
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ilarity scores are aggregated and averaged based on
the number of senses being assessed in the current
computations, both for the question and the answer.
The predicted answer is the one with the highest
average similarity score. Algorithm 2 outlines the
steps this approach takes in further detail.

Beyond the data provided by the Task organiz-
ers, we leveraged the English stop words avail-
able through the NLTK Python library* (Bird et al.,
2009), and the senses provided by WordNet® (Fell-
baum, 1998).

4 Experimental Setup

As previously mentioned, we only use the test set in
our experiments. Due to the unsupervised nature of

4ht’cps: //www.nltk.org/
Shttps://wordnet.princeton.edu/
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Algorithm 2: Sense Comparison

Input: question, list of four possible answers
Output: Predicted answer

answer_similarity < ||
for a in answers do

e e NN A i R W N =

—
=)

total_similarity < 0;
for ¢ C'LS_embedding in g_CLS do
for a_CLS_embedding in a_CLS do

L

e
BOW N -
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total_similarity

q_senses < WORDNETSENSEEXTRACTION(question)
q_CLS < [embedding for sense in q_senses] // calculated by bert-large-cased
answers < [choicey, choicey, choices, choice,)

a_senses < WORDNETSENSEEXTRACTION(a)
a_CLS + [embedding for sense in a_senses] // calculated by bert-large-cased

similarity_score <— COS_SIM(q_CLS_embedding, a_CLS_embedding);
total_similarity < total_similarity + similarity_score;

answer_similarity[i] <

Return answers[max_index]

len(q_CLS)-len(a_CLS)
max_index < index of max element in answer_similarity

our approaches, the labels are not required to train
our models as none of them had hyperparameters
to tune.

4.1 Libraries used

Table 3 shows the Python libraries and their ver-
sions used for this Task. Python version 3.10.11
was used. The full requirements. txt file is avail-
able in our GitHub repository® for the project.

4.2 Evaluation Measures

The Task uses six metrics for both the sentence and
word puzzles — 12 total — of metrics to evaluate
a model’s ability to solve brainteasers. The three
different types of questions (original, semantic re-
construction, context reconstruction) were evalu-
ated individually and in two groups. For a model to
predict a sample in one of the groups (original and
semantic reconstruction, original and semantic re-
construction and context reconstruction) correctly,
all of the samples in said group must be predicted
correctly.

5 Results

The performances of our models, the provided base-
line models, and the best performing models sub-
mitted to this Task are found in Table 2.

Our BOW-WSD model (Section 3.1), the best
performing of our three approaches, was able to

®https://github.com/VeiledTee/BrainTeaser
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surpass the ROBERTa-L baseline in 2 of 6 of the
sentence puzzle categories, and outperforms the
same baseline on 5 of 6 of the word puzzle cat-
egories. BOW-WSD outperforms or comes very
close to outperforming the RoOBERTa-L baseline in
both “Overall” categories. The performance of our
unsupervised models didn’t approach the ChatGPT
or Human baselines in any category. The closest
our models got to the ChatGPT baseline was in the
original word puzzle category with a difference of
0.155, whereas the closest our models got to the
Human baseline was in the context sentence puzzle
category with a difference of 0.469. The numbers
achieved by our BOW-WSD model netted us 10"
place overall in the sentence puzzle subtask.

We suspect the relationship between the tokens
in the question senses and the tokens in the correct
answer’s senses allowed our BOW-WSD model to
outperform our other approaches. Using the sen-
tence puzzle in Table 1 as an example, the WordNet
sense of the noun “barber” (available below) from
the correct answer has two tokens that overlap with
the question, leading to this answer achieving a
higher score than other nouns that don’t overlap.

a hairdresser who cuts hair and shaves
beards as a trade

Our language modelling approach outperformed
the RoOBERTa-L baseline in 4 of 6 of the word puz-
zle categories, but did not perform well in any of
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Sentence Puzzle
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Test set o 7] &) (@) o (@) (@) 7] &) (@) o o
Bestoverall 1.00 975 925 975 900 967 .969 938 1.00 .938 .938 .969
Human 907 907 944 907 .889 920 917 917 0917 917 900 0917
ChatGPT 608 .593 .679 507 397 .627 .561 524 518 439 292 535
RoBERTa-L. 435 402 464 .330 .201 .434 .195 .195 .232 .146 .061 .207
BoW 425 400 475 350 .200 433 406 219 344 125 .063 .323
LM 225 200 375 .075 .050 267 438 250 .500 .125 .031 .396
SC 175 200 350 175 125 242 156 .063 219 .063 .031 .146

Table 2: The accuracy scores achieved by our models (Bag-of-Words, Language Model, and Sense Comparison) on
each sub-category of the test dataset. Approaches in gray are shown for comparison: the best scoring participant
model for each individual category; the participant model that performed best in both the sentence and word puzzle
subtasks; and the organizer’s ChatGPT, RoBERTa-L, and Human baselines.

the sentence puzzle categories. We suspect that the
way the word puzzles are structured lends more
to the language modelling approach than the sen-
tence puzzle structure as all the word puzzles in
the test set are structured as questions — adding
each answer to the end of the question can pro-
vide the language modelling approach with enough
context to choose the correct answer. We believe
the more succinct nature of the word puzzle prob-
lems allowed our language modelling technique to
outperform our BOW-WSD model on 4 of 6 word
puzzle categories, netting us 10*” place in the word
puzzle subtask too.

Our sense comparison model unfortunately per-
formed worse than all our models and the Task
organizers’ baselines. Our idea to leverage the
senses of nouns in the sentences did not perform
well when applied to this Task.

6 Conclusion

Whilst the best of our unsupervised models sur-
passed only one of the established baselines, we
have been able to show that word sense disam-
biguation may have a place in riddle-solving mod-
els. Our BOW-WSD model performed better on
the sentence puzzles, but our language modelling
approach performed better on the word puzzle sub-
task. The inherent logical reasoning large language
models obtain through the copious amount of train-
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ing data they’re trained on can be led astray by
the information provided by a riddle. Leveraging
word sense disambiguation we attempt to isolate
the meaning of each noun and compare and con-
trast said meanings to those present in each possible
answer.

In the future, we will explore other means
of incorporating WSD models within our riddle-
answering model along with an ensemble method.
While our unsupervised approaches didn’t perform
well compared to other submitted models on the
Task leaderboard, the senses of the nouns in each
question and answer held information valuable
enough to allow our models to surpass one of the
three proposed baselines. Regarding our bag-of-
words model, we will add a metric that penalizes an
answer if the senses it displays are wildly different
to those of the initial question. This penalty could
reduce the impact red herrings typically found in
riddles have on the BOW-WSD model’s predictive
abilities.
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A Appendix

Library Version
NumPy 1.26.17
NLTK 3.8.1%
Transformers 4.35.0°
Scikit-Learn 1.4.0'0
PyTorch 2.1.0+cul18"!

Table 3: Table of major Python libraries (and their ver-
sions) employed while working to solve the Task.
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Abstract

Numerical reasoning is challenging even for
large pre-trained language models. We show
that while TS5 models are capable of generat-
ing relevant headlines with proper numerical
values, they can also make mistakes in reading
comprehension and miscalculate numerical val-
ues. To overcome these issues, we propose a
two-step training process: first train models to
read text and generate formal representations
of calculations, then train models to read calcu-
lations and generate numerical values. On the
SemEval 2024 Task 7 headline fill-in-the-blank
task, our two-stage Flan-T5-based approach
achieved 88% accuracy. On the headline gen-
eration task, our T5-based approach achieved
RougeL of 0.390, BERT F1 Score of 0.453, and
MoverScore of 0.587.

1 Introduction

Comprehension of numerical values can signif-
icantly enhance performance in certain tasks as
numbers provide important information in words.
Numerical values are particularly important in ac-
counting and finance fields as the majority of data
is in monetary terms. While words can be ambigu-
ous, numbers provide clear and precise information.
They not only represent exact numerical values, but
can also indicate a magnitude of the subject matter,
which can be critical to fully understand a text.

Despite the significance of numerical values,
much natural language processing work has treated
numerical words in the same manner as all other
words, without any direct understanding of the val-
ues they represent. As a result, numerical reasoning
is still challenging for natural language processing
models, even the pre-trained language models that
have been so successful on other natural language
processing tasks.

NumEval (Chen et al., 2024) provides shared
tasks that encourage research systems to generate
headlines with accurate numeral information. We
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fine-tuned pre-trained models for two sub-tasks.
In the first, models are required to compute the
correct number to fill the blank in a news headline
given the corresponding news article. In the second,
models are required to construct an entire headline
(including its numerical information) based on the
provided news article.

2 Related Work

A Math Word Problem (MWP) consists of a short
natural language narrative describing a state of the
world and poses a question about some unknown
quantities Patel et al. (2021). The MWP task is
a type of semantic parsing task where given an
MWP the goal is to generate an equation, which
can then be evaluated to get the answer. The task
is challenging because a machine needs to extract
relevant information from natural language text as
well as perform mathematical reasoning to solve
it. Patel et al. (2021) proved in their paper that
the existing models can rely on superficial patterns
present in the narrative of the MWP and achieve
high accuracy without even looking at the question.

Ran et al. (2019) proposed a numerical Ma-
chine Reading Comprehension model named Num-
Net, which utilizes a numerically-aware graph neu-
ral network to make numerical comparison and
performs numerical reasoning over numbers in
the question and passage. Their NumNet model
achieved some numerical reasoning ability with Ex-
act Match (EM) of 64.56 and numerically-focused
F1 score of 67.97 on the test data. However, Num-
Net is not applicable when an intermediate number
has to be derived in the reasoning process such as
from arithmetic operation.

Geva et al. (2020) proposed a general method
for injecting additional skills into Language Mod-
els, assuming automatic data generation is possible.
They applied their approach to the task of numer-
ical reasoning over text, using a general-purpose
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model called GENBERT, and a simple framework
for generating large amounts of synthetic examples.
Their experiments demonstrated the effectiveness
of their method, showing that GENBERT success-
fully learns the numerical skills, and performs on
par with similarly sized state-of-the-art numerical
reasoning over text models.

Petrak et al. (2023) proposed arithmetic-based
pre-training that combines contrastive learning to
improve the number representation, and a novel
inferable number pre-training objective to improve
numeracy. Their experiments showed performance
improvements due to better numeracy in three dif-
ferent state-of-the-art pre-trained language mod-
els, BART, T5, and Flan-T5, across various tasks
and domains, including reading comprehension,
inference-on-tables, and table-to-text generation.

Peng et al. (2021) proposed a novel pre-trained
model, namely MathBERT, which is the first pre-
trained model for mathematical formula under-
standing. MathBERT was jointly trained with math-
ematical formulas and their corresponding contexts
to evaluate three downstreamtasks, including math-
ematical information retrieval, formula topic classi-
fication and formula headline generation. Formula
headline generation is a summarization task aiming
to generate a concise math headline from a detailed
math question which contains math formulas and
descriptions. In addition, in order to further capture
the semantic-level structural features of formulas,
a new pre-training task is designed to predict the
masked formula sub-structures extracted from the
Operator Tree (OPT), which is the semantic struc-
tural representation of formulas.

3 Data

3.1 Subtask 1: Headline Fill-in-the-Blank

The training dataset (Huang et al., 2023) consists
of 21,157 news articles with masked headlines and
the validation dataset consists of 2,572 news arti-
cles with masked headlines. Both the training and
validation datasets have four columns consisting of
“news”, “masked headline”, “calculation” and “an-
swer” as shown in Table 1. The numerical values
which should be predicted in the masked headline
are shown in underscores. The calculation column
shows the operations required to get to the answers,
such as copy, round, paraphrase, convert number
words to numbers, and arithmetic operations. The
calculation may also be a combination of multiple
operations.
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The test set consists of 4,921 news articles with
masked headlines without the calculation and an-
swer columns.

3.2 Subtask 2: Headline Generation

The training dataset consists of 21,157 news arti-
cles with unmasked headlines and the validation
dataset consists of 2,365 news articles with head-
lines. The datasets for subtask 2 do not have the
calculation column. The test dataset consists of
5,227 news articles.

4 Methodology
4.1 Models

We employed several different types of neural net-
work models for these tasks.

DistilRoBERTa RoBERTa (Liu et al., 2019) is
transformer network trained on 16GB of text
with a masked language modeling objective,
making it appropriate for fill-in-the-blank
tasks like Subtask 1. RoBERTa follows the
standard transformer formulation, using self-
attention to process an input sequence and
generate contextualized representations as the
output sequence. DistilRoBERTa (Sanh et al.,
2019) is a distilled version of the RoOBERTa-
base model.

T5-Headline-Pleban The Text-to-Text-Transfer-
Transformer (T5) model is a transformer net-
work trained on 750GB of text with a language
modeling objective where multiple consecu-
tive tokens are masked and the output is a
sequence. Because T5 models are designed
to produce a sequence, they are suitable for
headline generation tasks like Subtask 2. T5-
Headline-Pleban (Pleban, 2020) is a T5-base
model that was further fine-tuned to predict
headlines from articles using a collection of
500k articles.

T5-Title-Zearing (Zearing, 2022) is a T5-base
model that was further fine-tuned to predict ti-
tles from articels using a collection of Medium
articles.

Flan-T5-LaMini Flan-T5 is an enhanced version
of TS5 that has been finetuned on a mixture of
tasks (Chung et al., 2022). LaMini-Flan-T5-
783M is a fine-tuned version of google/flan-
t5-large on the LaMini-instruction dataset that



news

masked headline

calculation answer

(Apr 18,2016 1:02 PM CDT) Ingrid Lyne,
the Seattle mom allegedly murdered while
on a date, left behind three daughters—and
a GoFundMe campaign set up to help the
girls has raised more than $222,000 so far,
Us reports. A friend of the family set up
the campaign, and says that all the money
raised will go into a trust for the girls, who
are ages 12, 10, and 7. Lyne’s date was
charged with her murder last week.

$ K Raised for Kids
of Mom Dismembered
on Date

Paraphrase(222,000,K) 222

Table 1: Sample Data for Subtask 1

contains 2.58M samples for instruction fine-
tuning (Wu et al., 2023).

4.2 Subtask 1: Headline Fill-in-the-Blank
We trained three types of models for subtask 1.

4.2.1 DistilRoBERTa

To construct the input for DistilRoBERTa, we con-
catenated the news text, masked headline, and cal-
culation columns. The underscores we replaced
with DistilRoBERTa’s mask token, and time stamps
were removed. We then trained DistilRoBERTa to
predict the answer given this input, using a learning
rate of Se-5. At prediction time, we took the top 20
highest probability vocabulary tokens predicted by
the model for the mask token, and returned the first
numerical value.

4.2.2 TS5 One-Step

To construct the input for our one-step TS5 and Flan-
TS5 models, we replaced the underscores in the
masked headline with the token <extra_id_0>
and concatenated it to the news text. Unlike Dis-
tilRoBERTa, we did not include the calculation in
the input as we found it deteriorated model per-
formance. We trained the two TS models with a
learning rate of 5e-5, and the Flan-T5 model with a
learning rate of 2e-5. At prediction time, we found
the index of the extra token in the model output and
used that to extract the numerical value.

4.2.3 TS5 Two-Step

As Patel et al. (2021) demonstrated, if models rely
on shallow heuristics to solve the majority of math
problems without word-order information or ques-
tion text, instead of training the models to have
them directly predict numerical values from ques-
tion texts, it might be more beneficial to train them
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Ingrid Lyne, the Seattle mom allegedly mur-
dered. .. Lyne’s date was charged with her murder
last week. $<extra_id_0>K Raised for Kids of

Mom Dismembered on Date

Paraphrase(*222,000”, K)

222

Figure 1: Two-step prediction for the headline fill-in-
the-blank task.

to predict numerical values from formulas or calcu-
lation methods. Accordingly, we propose two-step
models in which we constructed two training sets.
For step one, we concatenated the news text and the
masked headline as input, and used the calculation
as output. For step two, we used the calculation as
input, and the answer as output. We then trained
two models, one on each dataset. At prediction
time, we applied the step-one model to the con-
catenation of the news text and masked headline,
then passed the output of the step-one model as the
input to the step-two model, which then predicted
the final answer. We used the same extra token
processing and learning rates as in the T5 One-Step
approach. This process is shown diagrammatically
in Figure 1.

4.3 Subtask 2: Headline Generation

We trained TS5 models with the news text as input
and the headline as output. We prefixed the input



Data Model Before After
Val DistilRoBERTa 6.23 3.68
Val T5-Headline-Pleban 2.66 1.05
Val  T5-Title-Zearing 2.14 1.05

Table 2: Perplexity of models on the Headline Fill-in-
the-Blank validation data

Data Model 1 Step 2 Steps
Val DistilRoBERTa 0.798 N/A
Val T5-Headline-Pleban 0.877  0.879
Val  T5-Title-Zearing 0.878  0.881
Val Flan-T5-LaMini 0.886  0.902
Test  Flan-T5-LaMini - 0.88
Test GPT-3.5 baseline 0.74
Test  Best system 0.95

Table 3: Accuracy of models on the Headline Fill-in-
the-Blank validation and test data

with a prompt "headline: " so TS5 knows this is a
headline generation task. Both TS5 models were
trained with the learning rate of 5e-5. We also tried
Flan-T5, but results were similar to the other TS
models, so we focused our analysis on the head-
lines generated by the TS models only.

5 Results and Evaluation

5.1 Subtask 1: Headline Fill-in-the Blank

One measure of the quality of a model is perplexity,
defined as the exponential of the cross-entropy loss
over the probabilities the model assigns to the next
word in all the sentences of the test set. As shown
on Table 2, perplexity decreased significantly for
all models after training.

A more direct measure of the models in the head-
line fill-in-the-blank task is accuracy, counting the
fraction of times that the model’s prediction of a nu-
meric value exactly matched the expected numeric
value in the data. Table 3 shows accuracy of the
different models on the validation data. Training
in two steps did not improve the performance of
T5-Headline-Pleban or T5-Title-Zearing, but did
slightly improve performance of Flan-T5-LaMini.
The final row of Table 3 shows that the best model,
two-step Flan-T5-LaMini, achieved 88% accuracy
on the test data.

We manually analyzed the errors of the models
on the validation data. Errors often revolve around
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Figure 2: Rouge Scores of models on the Headline
Generation validation data

arithmetic operations, rounding of decimal num-
bers, and the combination of operations. Table 4
shows examples of such errors.

While Patel et al. (2021) achieved about 65%
accuracy from their best model, we achieved on
the validation dataset the accuracy of 82% on pre-
dicting correct formulas while 88% on predicting
correct numerical values from those formulas. We
also noted that the accuracy on predicting right an-
swers from correctly predicted formulas is 96%.
This indicates that the models have no problem
with making predictions from simple heuristics,
which agrees with the findings by Patel et al.

5.2 Subtask 2: Headline Generation

We evaluated headline generation models based
on how well their generated headlines matched
the headlines in the data. We used two metrics,
Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) and BERTScore. Both of these metrics
measure the similarity between the predicted head-
lines and actual headlines, with the former relying
on word n-grams and the latter relying on cosine
similarity over contextualized embeddings derived
from BERT (Mansuy, 2023). Figures 2 and 3 show
the distribution of scores of the different T5 models
over the validation data. The models are similar in
terms of ROUGE score, but T5-Headline-Pleban
performs slightly better than T5-Title-Zearing in
terms of BERTScore.

We also used the official scoring script, produc-
ing the results shown in the first two rows of Table
5, where we see that T5-Title-Zearing is slightly
better than T5-Headline-Pleban on the validation
data for most measures. We thus submitted T5-
Title-Zearing on the test set. The last row of Table
5 shows that it acheived 62.3% numerical accuracy



Actual Predicted
Round(Divide(268,30),0) Copy(9)
Round(1.29,0) Span(a trillion)
Subtract(Sep 5,July 8) Subtract(30,7)

Add(22,Trans(four))
Subtract(2014,1974)
Multiply(Trans(one-quarter),100)

Add(Trans(four),22)
Subtract(2018,1974)
Multiply(Divide(Trans(one-quarter),100)

Table 4: Examples of incorrect calculations generated by Flan-T5-LaMini on the Headline Fill-in-the-Blank data

I T5-Headline-Pleban
[ T5Title-Zearing

400
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300 4

250 11

Counts
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Figure 3: BERTScores of models on the Headline Gen-
eration validation data

on the test set with F1 scores of R1 of 43.1, R2
of 19.7 and RL of 40.0. MathBERT which trained
with source texts, formulas and OPTSs, achieved F1
scores of R1 of 61.25, R2 of 48.06 and RL of 57.72
on formula headline generation, which indicates
that training the models with OPTs as inputs help
improving the results.

We manually analyzed some of the errors of the
models on the validation data. Table 6 shows ex-
amples of the headlines generated by TS5 models.
Items 1 and 2 show that both models properly in-
cluded the numerical values and captured the mean-
ings, but the expressions of the numerical values
and the wordings are different. Several headlines
were perfectly generated by T5-Headline-Pleban
but not by T5-Title-Zearing, as in item 3, and vice
versa, as in item 4. Item 5 is an example of perfect
generations by both models. In item 6, a woman
who offered a $25K reward for information on her
husband’s killer was arrested as the killer after 13
years. T5-Headline-Pleban properly captured the
$25K reward, but failed to mention that she was
the one who got arrested, while T5-Title-Zearing
did the opposite. The predictions for item 7 made
by both models are close to the actual headline,
but the actual headline is designed to better draw
attention and drive curiosity. For items 8 and 9,
both T5 models failed to capture the appropriate
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numerical values. Item 10 is an example that both
models failed to include any numerical value in the
headlines.

6 Conclusion

TS5 language models seem capable of generating
meaningful headlines including appropriate numer-
ical values. Although the models can reasonably
compute the correct numbers from the provided
news to fill the blank in headlines, they sometimes
failed reading comprehension and arithmetic opera-
tions. In hope of overcoming those limitations, we
trained them to generate the calculation methods
first and then trained again with those calculations
as inputs to predict the numerical values to fill the
blank in the news headlines, but it did not signifi-
cantly improve the results. In the future, we plan
to try larger pre-trained models, which might im-
prove performance. Also, the training datasets that
we used are relatively small. If we increase the
data size by data augmentation, we may be able to
obtain better results.
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Abstract

In this work, we address the challenge of iden-
tifying the inference relation between a plain
language statement and Clinical Trial Reports
(CTRs) by using a T5-large model embedding.
The task, hosted at SemEval-2024, involves
the use of the NLI4CT dataset (Jullien et al.,
2023a). Each instance in the dataset has one or
two CTRs, along with an annotation from do-
main experts, a section marker, a statement, and
an entailment/contradiction label. The goal is
to determine if a statement entails or contradicts
the given information within a trial description.
Our submission consists of a T5-large model
pre-trained on the medical domain. Then, the
pre-trained model embedding output provides
the embedding representation of the text. Even-
tually, after a fine-tuning phase, the provided
embeddings are used to determine the CTRs’
and the statements’ cosine similarity to per-
form the classification. On the official test set,
our submitted approach is able to reach an F1
score of 0.63, and a faithfulness and consis-
tency score of 0.30 and 0.50 respectively.

1 Introduction

In experimental medicine, clinical trials are essen-
tial because they verify the effectiveness and safety
of novel treatments (Giaccone, 2002). Clinical
Trial Reports (CTRs) are documents that describe
the design and outcomes of a clinical trial and are
used to direct patient interventions that are specific
to them. But with over 400,000 published CTRs
and more coming out each year (Bastian et al.,
2010), it is not feasible to manually conduct thor-
ough reviews of all the pertinent literature while
developing new treatment procedures. For these
reasons, the requirement for technologies that can
automatically extract and classify information is
always expanding.

With the development of machine and deep learn-
ing architectures in recent years, there has been a
surge in interest in natural language processing,
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or NLP. Many efforts have gone into creating al-
gorithms that can automatically identify and cat-
egorize text information that is accessible on the
internet. In the literature, to perform text classifi-
cation tasks, several strategies have already been
proposed. In the last fifteen years, some of the most
successful ones have been based on SVM (Colas
and Brazdil, 2006; Croce et al., 2022), on Convo-
lutional Neural Network (CNN) (Kim, 2014; Si-
ino et al., 2021), on Graph Neural Network (GNN)
(Lomonaco et al., 2022), on ensemble models (Miri
et al., 2022; Siino et al., 2022) and, recently, on
Transformers (Vaswani et al., 2017; Siino et al.,
2022b).

For example, to address the CTR proposed task,
and to enable a higher degree of accuracy and effi-
ciency in individualized evidence-based treatment,
Natural Language Inference (NLI) (MacCartney,
2009) provides a viable solution for the large-scale
interpretation and retrieval of medical evidence
(Sutton et al., 2020). SemEval-2024 Task 2 — Multi-
Evidence Natural Language Inference for Clinical
Trial Data (NLI4CT) (Jullien et al., 2024) — re-
lies on the NLI4CT dataset!. The task is to deter-
mine the inference relation between a natural lan-
guage statement, and a CTR. Inference chains in
this drop-off range have to be constructed for a sig-
nificant fraction of the NLI4CT dataset instances.
Furthermore, inference on NLI4CT requires quan-
titative and numerical reasoning. Research has
demonstrated that transformer-based models rely
on flimsy heuristics for predictions instead of con-
sistently applying this kind of reasoning (Helwe
et al., 2021).

To develop our model, we thought of a two-stage
architecture. In the first stage, we used a Sentence
Transformer specifically trained on the medical do-
main. On the generated embeddings, we evaluated
a cosine similarity to predict the entailment or con-

"https://github.com/ai-systems/nli4ct
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tradiction relationship between the two sentences
analyzed.

The remainder of the paper is structured as fol-
lows. We give some background information on
Task 2 hosted at SemEval-2024 in Section 2. Sec-
tion 3 offers an explanation of the submitted ap-
proach. We describe the experimental setup to
reproduce our work in Section 4. The outcomes
of the formal assignment and certain debates are
given in Section 5. We provide our conclusion and
suggestions for further research in section 6.

We make all the code publicly available and
reusable on GitHub?.

2 Background

We give some background information on Task 2
hosted at SemEval-2024 in this section. The task
is predicated on a set of CTRs, statements, labels,
and explanations related to breast cancer that have
been annotated by domain experts.

The gathered CTRs are compiled into four com-
ponents for the textual entailment task:

* Eligibility criteria — A list of requirements
that patients must meet in order to participate
in the clinical trial;

Intervention — Details about the type,
strength, frequency, and length of the treat-
ments under investigation;

Results — Units, outcome measures, number
of trial participants, and results;

* Adverse events — These are the symptoms
and indicators that the patients had throughout
the clinical study.

With an average length of 19.5 tokens, the anno-
tated statements are sentences that make a claim
regarding the data presented in one of the CTR
premise’s sections. The remarks could compare
two CTRs or make assertions about a single CTR.
Finding the inference relation (entailment vs. con-
tradiction) between CTR is the problem at hand.
The training set provided is identical to the training
set used in previous tasks (Jullien et al., 2023b),
however, the organizers have performed a variety
of interventions on the test set and development
set statements, either preserving or inverting the
entailment relations. The technical details adopted

2https ://github.com/marco-siino/SemEval2024/
tree/main/Task%202
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Task Example

Each instance for will contain 1-2 CTRs,  statement, a section marker, and an entailment/contradiction label.

Label Section

Entailment Intervention

Primary Trial

Secondary Trial

INTERVENTION 1 INTERVENTION 1

+ Letrozole, Breast Enhancement, Safety + Healthy Volunteers

+ Single arm of healthy postmenopausal women to have two
breast MR (baseline and post-treatment). Letrozole of 12.5 mg/day
is given for three successive days just prior to the second MR

+ Healthy women will be screened for Magnetic Resonance
and then

injection, and SWIFT acquisition.

* Magnetic ging: Patients and
will be first screened for MRI contraindications. The SWIFT MRI
workflow will be performed as follows:

Figure 1: A sample from the official webpage. Given
two trials and a section description, a model has to
predict if there is entailment or contradiction with regard
to the statement provided.

to perform the interventions were not disclosed,
to guarantee fair competition and in the interest
of encouraging approaches that are robust and not
simply designed to tackle these interventions.

An example is shown in the Figure 1 and is pro-
vided in the official task webpage available online>.

Even if it has already been proved that the Trans-
formers are not necessarily the best option for any
text classification task (Siino et al., 2022a), depend-
ing on the goal some strategies like domain-specific
fine-tuning (Sun et al., 2019; Van Thin et al., 2023),
or data augmentation (Lomonaco et al., 2023; Man-
gione et al., 2022; Siino et al., 2024a) can be bene-
ficial for the considered task.

The training and practice test sets were made
available by the task organizers prior to the com-
petition’s official commencement. The gold labels
were supplied for both sets. Participants could
build and test their models during the first phase,
called the practice phase, by uploading their pre-
dictions to CodaLab*. The second step, known as
the evaluation phase, began with the release of the
unlabeled test set.

3 System Overview

The rising use of Transformer-based architectures
in the literature, has been supported also by sev-
eral approaches presented at SemEval 2024. These
approaches address very different tasks, obtaining
interesting results. For example, in the case of the
Task 1, where the semantic textual relatedness is
evaluated using MPNet (Siino, 2024a), or in the
case of the Task 4, where a Mistral 7B model is
used for detecting persuasion techniques in meme

3https://sites.google.com/view/nlidct/
semeval-2024/dataset-description

4https: //codalab.lisn.upsaclay.fr/
competitions/16190
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(Siino, 2024c), or, eventually, as in the case of the
Task 8, where a DistilBERT model is employed to
detect machine-generated text (Siino, 2024b). To
develop our model, we also take advantage from
a Transformer architecture, creating a two-stage
pipeline. In the first stage, we used a Sentence
Transformer specifically trained on the medical do-
main. This is a Python framework to create cutting-
edge sentence, text, and image embeddings. The
initial work is described in (Reimers and Gurevych,
2019). More than 100 languages have sentences
and text embeddings that can be computed using
this method. Sentences with a similar meaning can
subsequently be found by comparing these embed-
dings, for example, using cosine-similarity. Se-
mantic search, paraphrase mining, and semantic
textual similarity can all benefit from this. The
framework offers a huge selection of pre-trained
models suited for different tasks and is built on
PyTorch and Transformers. Moreover, fine-tuning
models is also feasible.

The model used as Sentence transformer is T5-
large-medical, and it is available on Hugging Face’.
The base model is TS5 (Raffel et al., 2020). Specif-
ically, sentences and paragraphs are mapped to a
dense vector space of 768 dimensions. PyTorch
was used to convert the TensorFlow model st5-
large-1 to this one. While the TFHub model and
this PyTorch model can provide somewhat differ-
ent embeddings, they yield the same results when
applied to the same benchmarks.

The model was used to map all the words present
in the text to the domain-specific embedding. Fol-
lowing the embeddings of the primary section and
the statement, the cosine similarity between the two
was calculated. In the case of presence of a sec-
ondary section, the operation was also carried out
between the secondary section and the statement.
The cosine similarity between the two embedding
vectors is calculated as shown in the Equation 1.

_ A-B
1Al 11B1l

In the first case, if the cosine similarity was
greater than 0.5, the label of entailment was as-
signed, vice versa that of contradiction. In the
second case, before calculating the cosine similar-
ity, the average between the cosine similarity score
between the two sections and the statement was
calculated. Our code is available online together

cos(6) (D

5https://huggingface.co/sentence—transformers/
sentence-t5-large
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with the predictions generated and sent in relation
to the test set.

As noted in the recent study by (Siino et al.,
2024b), the contribution of preprocessing for text
classification tasks is generally not impactful when
using Transformers. More specifically, the best
combination of preprocessing strategies does not
provide relevant improvements compared to not
performing any preprocessing when using Trans-
formers. For these reasons, and to keep our system
faster and computationally light, we have not per-
formed any preprocessing on the text.

4 Experimental Setup

We implemented our model on Google Colab®.
The library we used is Sentence Transformer. The
library requires Python’ (>= 3.8) and PyTorch®
(>=1.11.0). The dataset provided for all the phases
are available on the Official Competition page. On
the basis of our preliminary experiments, we found
beneficial to set the threshold value for the cosine
similarity equal to 0.5. We did perform additional
fine-tuning on the TS embedding. To run the exper-
iment, a T4 GPU from Google has been used. After
the generation of the predictions, we exported the
results on the JSON format required by the orga-
nizers. As already mentioned, all of our code is
available on GitHub.

5 Results

For the task the official metric used were F1 (also
known as balanced F-score or F-measure), Faith-
fulness and Consistency.

The F1 score can be described as the harmonic
mean of the precision and recall, with a maximum
score of 1 and a minimum score of 0. Recall and
precision both contribute equally to the F1 score in
terms of relative importance. Equation 2 shows the
formula for the F1 score.

Precision * Recall

F1l1=2x )

Precision + Recall

Faithfulness is a measure of the extent to which
a given system arrives at the correct prediction for
the correct reason. Intuitively, this is estimated
by measuring the ability of a model to correctly
change its predictions when exposed to a semantic-
altering intervention. Given N statements x; in the

6https://colab.research.google.com/
"https://www.python.org/
8https://pytorch.org/
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F1
0.63

Faith Const
0.30 0.50

T5-large-medical

Table 1: The suggested method’s performance on the
test set. In the table, the words Faith and Const stand
out for Faithfulness and Consistency

contrast set (C), their respective original statements
yi, and model predictions f{) faithfulness can be
computed using Equation 3.

N
Faithfulness = ]177; |f(yi) — f(xi)]  (3)

Consistency is a measure of the extent to which a
given system produces the same outputs for seman-
tically equivalent problems. Therefore, consistency
is measured as the ability of a system to predict
the same label for original statements and contrast
statements for semantic preserving interventions.
That is, even if the final prediction is incorrect, the
representation of the semantic phenomena is con-
sistent across the statements. Given N statements
x; in the contrast set (C), their respective original
statements y;, and model predictions f{) we com-
pute consistency using Equation 4.

1 N
Consistency = ~ Z 1—|f(yi) — fx)| 4)
n=1

In Table 1, the results obtained using the three
metrics on the official test set are shown. Consid-
ered the very low effort required to run the pro-
posed approach and to generate the predictions, the
F1 score of 0.63 appears to be an interesting base-
line, while consistency and faithfulness exhibit a
very large room for improvements using the pro-
posed approach. It is worth noticing that the ap-
proach is a Zero-Shot one with no prior knowledge
on the specific task.

In the Table 2, the results obtained by the first
three teams and by the last one, as showed on the
official Codalab page, are reported. Compared to
the best performing models, our simple approach
exhibits some room for improvements. However, it
is worth notice that our proposed approach do not
require any further pre-training and the computa-
tional cost to address the task is manageable with
the free online resources offered by Google Colab.
We performed few interventions to assess the setup
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F1  Faith Const
dodoodo (1) 0.78 092 0.81
aryopg (2) 0.78 095 0.78
v (3) 0.78 0.80 0.77
MJ2301 (32) 047 044 047

Table 2: Comparing performance on the test set. In the
table are shown the results obtained by the first three
users and by the last one. In parentheses is reported the
position in the official ranking.

of our approach. For example, we evaluated the
number of the epochs to use for fine-tuning the
Transformer embedding, the number of warm up
steps and the train loss to use. All the details that
led our model to reach its final performance, can
be deducted from our code available on GitHub.

6 Conclusion

This paper presents the application of T5-large
model embedding for addressing the Task 2 at
SemEval-2024. For our submission we decided
to follow an easy Zero-Shot learning approach,
employing as-is, an in-domain pre-trained Trans-
former. After getting the contextual embedding
provided by the Sentence Transformer, we made
use of a cosine similarity to calculate the simi-
larity between sentences and generate the entail-
ment/contradiction labels. The task is challenging,
and there is still opportunity for improvement, as
can be noted looking at the final ranking. Possible
alternative approaches include utilizing the zero-
shot capabilities of models like GPT, increasing
the size of the training set by using further data, or
directly integrating ontology-based domain knowl-
edge differently than what has been proposed in
our work. To assess the effect of biomedical pre-
training on MLMs, performance consistency be-
tween sections, generalization capacity of models
trained on NLI4CT, performance comparability be-
tween numerical and biomedical cases and further
error analysis is required. Furthermore, given the
interesting results recently provided on a plethora
of tasks, also few-shot learning (Wang et al., 2023;
Maia et al., 2024; Siino et al., 2023; Meng et al.,
2024) or data augmentation strategies (Muftie and
Haris, 2023; Tapia-Téllez and Escalante, 2020; Si-
ino and Tinnirello, 2023) could be employed to
improve the performance. Eventually, an optimal
threshold learnt from the validation dataset could
be also employed in future works, in place of the



fixed one that we used in this study. Compared to
the best performing models, our simple approach
exhibits some room for improvements. However,
it is worth to notice that the proposed approach
required no further pre-training and the computa-
tional cost to address the task is manageable with
the free online resources offered by Google Colab.
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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in pushing the
boundaries of natural language understanding.
Nevertheless, the majority of existing open-
source LLMs still fall short of meeting satis-
factory standards when it comes to addressing
numerical problems, especially as the enhance-
ment of their numerical capabilities heavily re-
lies on extensive data. To bridge the gap, we
aim to improve the numerical understanding
of LLMs by means of efficient data alignment,
utilizing only a limited amount of necessary
data. Specifically, we first use a data discovery
strategy to obtain the most effective portion of
numerical data from large datasets. Then, self-
augment is performed to maximize the poten-
tial of the training samples. Thirdly, answers of
all training samples are aligned based on some
simple rules. Finally, our method achieves the
first place in the competition, offering new in-
sights and methodologies for numerical under-
standing research in LLMs.

1 Introduction

In recent years, the field of Natural Language
Processing (NLP) has witnessed remarkable ad-
vancements, particularly with the advent of gen-
erative large language models (Jiang et al., 2023;
Bai et al., 2023; Yang et al., 2023; Brown et al.,
2020). These models have predominantly focused
on textual data, demonstrating impressive capabil-
ities in understanding and generating human-like
text. However, an often-overlooked aspect of these
developments is the nuanced role that numerical
data plays in fully grasping the semantics of lan-
guage. This oversight becomes particularly glaring
in specialized fields such as stock market analysis,
medical diagnostics, and legal decisions (Cortis
et al., 2017; Modi et al., 2023; Jullien et al., 2023).

“Equal Contribution.
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In these domains, subtle numerical differences can
have far-reaching implications, significantly affect-
ing outcomes and decisions. Thus, the ability to un-
derstand and work with numbers, in these contexts
underscores a critical gap in the semantic under-
standing capabilities of current language models.

Acknowledging this deficiency, there has been
a growing interest within the NLP community to-
wards enhancing the textual numeracy and compu-
tational abilities (Huang et al., 2023) of language
models. This burgeoning interest has culminated
in the introduction of SemEval2024’s Shared Task
7. This innovative task is strategically designed
to elevate the standards in the field by promoting
the development of models that excel not only in
literacy but also in computational skills. Such mod-
els promise to significantly boost usefulness and
efficiency across a wide array of applications, rang-
ing from automated financial analysis to predictive
healthcare diagnostics and beyond.

However, the enhancement of numerical capa-
bilities of LLMs heavily relies on the inclusion
of a large amount of data, posing two significant
challenges. On one hand, obtaining high-quality
numerical annotated data is costly, as it requires
significant economic costs and manual effort from
professional annotators. On the other hand, the ex-
tensive use of as much data as possible to train the
model can diminish the utility of high-value data
and lead to increased computational consumption.

2
o~ @ @ & @ O
. = 1\"\ = A
Example Example
Example Data Source @ @
o @ ® O @ ® ®

High-Value Data Diverse Samples Aligned Samples

Figure 1: Pipeline of our system in this task.

As illustrated in Figure 1, this paper focuses on
how to efficiently use a limited amount of data to
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improve the numerical capabilities of LLMs. Our
goal is to enhance the model’s performance in nu-
meral while minimizing costs, such as data anno-
tation expenses and computational requirements
for model training. Our method propose effective
data alignment by employing strategies of data dis-
covery, self-augment and answer alignment. The
contributions are summarized as follows:

* A strategy of data discovery is proposed to
extract numerical training samples, obtaining
the most effective portion of numerical data
from datasets and minimizing training costs.

* We implement original self-augment to all the
training samples to maximize their effective-
ness in enhancing the numerical capabilities
of LLM.

* We align answers of all training samples ac-
cording some customized rules to improve
LLM’s numerical reasoning performance and
shorten the reasoning path.

After conducting numerous experiments and iterat-
ing on our strategies, we are proud to announce that
we have secured the championship title at the com-
petition of SemEval-2024 Task 7. Detailed ablation
study and analysis of our method are also provided
in this paper to identify contributions from individ-
ual components and facilitate future research.

2 Background

GPT-3 (Brown et al., 2020) marked significant
progress in large language models, enhancing few-
shot learning and demonstrating robustness across
diverse NLP datasets. Bai et al. (Bai et al., 2023)
developed the qwen model, notable for its perfor-
mance in various tasks, particularly its chat model
refined through human feedback. However, these
models largely focus on textual data, paying lim-
ited attention to the importance of numerical values
in semantic understanding.

Addressing this, the NumHG (Huang et al.,
2023) dataset was introduced, focusing on gen-
erating news headlines with numerical informa-
tion. Evaluations of high-performing models indi-
cated room for improvement in numerical accuracy,
aiming to advance research in numerically-focused
headline generation and improve task performance.

Additionally, learning Mathematical Reasoning
for tasks like GSMS8K (Cobbe et al., 2021) and
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MetaMATH (Yu et al., 2023) remains a signifi-
cant challenge for LLMs. Enhancing LLM rea-
soning through augmented output sequences (Wei
et al., 2022) has been explored, with methods like
Complexity-based CoT (Fu et al., 2022) showing
that increased in-context steps can improve per-
formance. Self-Consistency approaches (Wang
et al., 2022) use multiple reasoning paths and
majority voting to select answers. Other works
leverage closed-source LLMs (Brown et al., 2020)
for knowledge distillation (Magister et al., 2022),
while some apply rejection sampling for better rea-
soning (Yuan et al., 2023). Techniques like the
reinforced evol-instruct method (Luo et al., 2023)
and constraint alignment loss for calibration (Wang
et al., 2023) also contribute to the advancement of
LLMs in mathematical reasoning.

Building on these developments, our work in-
troduces a novel approach to refine LLMs’ numer-
ical reasoning capability. We fine-tune our base
model with a curated selection of numerically sam-
ples, focusing on diversity and efficiency to cover
a broader range of mathematical concepts.

3 System Overview

In this section, we will introduce our proposed
method from several aspects. We start with data
analysis of SemEval-2024 Task 7. Then, we
present the proposed data discovery, self-augment
and alignment strategies.

3.1 Data Analysis

The competition dataset, NumHG, provided news
articles with headlines, where the task involved
identifying masked numerical values in the head-
lines and explaining the calculations behind these
numbers. Each data sample from NumHG com-
prises four elements: News, masked headline, cal-
culation, and answer. As shown in Table 1, we
conducted an analysis of the mathematical process-
ing utilized in each data sample, and discovered the
following: (1) Most answers can be directly copied
from the text, indicating that these numerical val-
ues are explicitly mentioned. (2) Additionally, a
portion of the answers required converting textual
descriptions into numerical forms, involving text
understanding and translation. (3) Simple math-
ematical operations, such as basic arithmetic and
rounding, are also involved in a small subset of the
dataset, demanding LLM to perform context-based
mathematical operations.



Instruction:As a mathematical reasoning model,
you need to distinguish between Pure Calculation
Problems and Application Problems.
Definition: .....
Few-shot Example: .....

l Concat

Input Questions

— e o o o o o o oy

Large Language Model

Calculation Problem

Application Problem

—— o - - - o =

Figure 2: Data Discovery: Demonstrates the selection and integration of applicable problems from GSMS8K and

MetaMathQA datasets into the training set.

(Example 3.1 Application Problem

\ (Example 3.2 Pure Calculation Problem

At Rosa's Rose Shop, a bouquet containing a dozen
roses costs $1$208$. If the price of a bouquet is directly
proportional to the number of roses it contains, A
bouquet of  roses will cost 65 dollars. What is the
value of unknown variable  ?

Factor completely: $x"6 - 3x4 + 3x"2 - $. The answer is
3. What is the value of unknown variable ?

What is the value of \times (7 - 5) - 58? The answer is 1.
What is the value of unknown variable ?

Figure 3: Example of mathematical application problems and pure calculation problems in our dataset.

Table 1: Analysis on mathematical processing in the
NumHG dataset.

Mathematical Processing Type Count
Copy 15998
Trans 4111

Paraphrase 1727
Round 716
Subtract 496
Add 408
Span 104
Multiply 81
Divide 51
SRound 37

The above analysis reveals that the dataset and
task possess distinct characteristics (e.g., empha-
size understanding numbers within text rather than
solving complex mathematical problems), suggest-
ing that limited relevant data could potentially aid
in enhancing performance. Furthermore, the high
similarity among samples in this dataset under-
scores the importance of effective data augmen-
tation and alignment strategies to maximize the
utility of training samples.

To undertake the aforementioned investigation,
we employed Qwen-Chat (Bai et al., 2023) as our
base model, setting the input as a concatenation of
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news and masked headline, and output as a com-
bination of calculation and answer to compile our
training set. We crafted a preset prompt, You are
a numerical reasoning model. Please compute the
correct number to fill the blank in a news headline.,
to utilize the inherent command-following ability
of the LLM.

3.2 Data Discovery

As mentioned previously, we advocate for extract-
ing a limited yet most effective subset of the dataset
to enhance model performance. Specifically, we
utilized the GSM8K and MetaMathQA datasets as
the complementary source of external training data.

It is noted that, deviating from standard math
tasks, the NumHG dataset focuses on understand-
ing numerical semantics rather than complex cal-
culations, primarily involving basic arithmetic and
sourced from real news. Thus, we first integrated
the GSMS8K samples and selectively utilized Meta-
MathQA samples relevant to variable X to form a
new collection of numerical samples, matching the
competition’s focus on masked numbers. Then,
incorporating the analysis of both the NumHG
dataset and general mathematical datasets (i.e.,
GSMBS8K and MetaMathQA), we have defined all
mathematical samples into two categories: address-
ing mathematical application problems and pure



calculation problems. Specifically, we utilized a
large language model’s few-shot learning to clas-
sify the collected samples. We initially crafted
several examples for each problem type as input
to guide the mode, which covered a broad spec-
trum of scenarios to enrich the model’s adaptability.
Secondly, we instructed the model to distinguish
between the given samples, categorizing them as
either application or pure calculation problems, as
illustrated in Figure 2.

Figure 3 shows examples of mathematical ap-
plication problems and pure calculation problems.
Ultimately, we rely on the model’s output to de-
termine the category of the input questions. We
found that around 78% of GSMS8K questions are
application-based, versus 23% in MetaMathQA,
aiding our understanding of each dataset’s distri-
bution and shaping our data Strategies. Finally,
instead of using all external samples, we only re-
tained the numerical-based and application prob-
lem samples as supplementary training data. This
allows us to maximize the improvement in model
performance using as little data as possible.

3.3 Data Self-Augment

Given the high similarity among samples in the
NumHG dataset, we try to improve the diversity
of samples and the difficulty of the task through
data augmentation. Inspired by strategies from
the visual domain (Jo and Yu, 2021), we intro-
duced sentence-level random shuffling as a data
self-augment strategy, as shown in figure 4. Our
goal is to generate structurally diverse training sam-
ples while preserving the core information of texts.
After reshuffling sentences within each training
sample, the LLM continues to perform the original
task of filling numerical values across structurally
varied texts.

(E

xample 3.3 Self-Augment h

The New York Times followed the Best Picture win for 12 Years a
Slave. It spelled Northup's name wrong in two different ways. A
Twitter user caught the errors, and now the Times has corrected
them—just 161 years late, Poynter reports.

Random Resort

A Twitter user caught the errors, and now the Times has
corrected them—just 161 years late, Poynter reports. It spelled
Northup's name wrong in two different ways. The New York

\Timesfollowed the Best Picture win for 12 Years a Slave.

J

Figure 4: Self-Augment Strategy: sentence-level ran-
dom shuffling to increase sample diversity while pre-
serving key numerical information.

50

Although this strategy may disrupt the coherence
between sentences within each sample, our experi-
ments have found that it effectively improved the
model’s ability to handle mathematical problems
in more complex contexts.

3.4 Answer Alignment

Adhering to the shared task submission system, the
model’s output should be a string convertible to
a numerical value, devoid of computational meth-
ods and descriptive characters. Incorporating the
requirements above, we further devised a strategy
to simplify the model’s output, enhancing model’s
numerical reasoning performance and shorten the
reasoning path. Another reason for implementing
this strategy was to ensure data consistency with-
out compromising performance, given the unique
characteristics of the competition’s computational
expressions such as ’Copy and Add’.

Hence, for all samples (i.e., from NumHG,
GSMSK and MetaMathQA), we employed regular
expressions to directly extract the numerical value
as the output for training. Figure 5 shows some
example from NumHG. Additionally, this strat-
egy reduced cognitive inference time on 4,921 test
instances by eliminating complex computational
steps, offering a more direct feedback path.

( Example 3.4 Answer Alignment
Trans(Three) 3
Copy(11) » 11
Add(22,4) 26

- J

Figure 5: Examples of aligning answers in NumHG,
simplifying the model’s inference path.

4 Experimental Setup

We utilized the Qwen-72B-Chat model as our base
model, on which we performed full parameter fine-
tuning. The experiments were conducted on Nvidia
A800 GPU with 80GB of memory. During training,
we set the maximum token length to 2048, batch
size to 8, and performed gradient accumulation
every step. An initial learning rate of 5e-6 was
set, employing a cosine decay strategy, for a total



of 3 epochs of training. All samples processed by
our strategies were used as training data, while the
validation set of NumHG were utilized for error
analysis. For inference, we employed the default
inference parameters.

5 Results

5.1 Final Result

Public Score
0.94

Private Score
0.95

Team
CTYUN-AI

Table 2: Competition results of our team.

At the NumEval-2024 Task 7, the public and
private scores were derived from 20% and 80% of
the test set data, respectively. In the final standings
among all teams, we secured the first place with a
private score of 0.95, as shown in Table 2.

This achievement highlights the effectiveness
of our method, especially in the more heavily
weighted portion of the test set.

5.2 Ablation Study

We took ablation studies to confirm each strategy’s
(i.e., Data Discovery, Self-Augment, and Answer
Alignment) contribution to our final method’s suc-
cess. As shown in Table 3, data discovery, self-
augment, and answer alignment brought perfor-
mance gains of 2%, 4%, 2% separately. Finally,
we achieved a 9% performance increase over the
baseline in total, underscoring the significance of
our approach against high benchmarks.

Method Private Score  Public Score
Base Data 0.86 0.87
Base Data w/ Prompt 0.87 0.88
+ Data Discovery 0.89 0.88
+ Self-Augment 0.93 0.91
+ Answer Alignment 0.95 0.94

Table 3: Ablation study on our method.

Meanwhile, we evaluated the impact of using
samples for mathematical application versus pure
calculation problems during data discovery, as
shown in Table 4. Findings show application-type
problems improve model performance by enhanc-
ing real-world numerical understanding, while pure
calculation samples negatively affect it due to their
complexity leading to intricate computations.
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Method Type Method Private Score  Public Score
e w/o Prompt 0.86 0.87
Base Data w/ Prompt 0.87 0.88

w/ Data Discover Pure Calculation 0.87 0.87 (-0.01)
¥ Application 0.89 (+0.02) 0.88

Table 4: Ablation study on data discovery and fusion.

5.3 Error Analysis

In analyzing error cases, we discovered that round-
ing could lead to misunderstandings in numerical
comprehension. For instance, one example states:
"...Nielsen numbers show that 31.1 million peo-
ple,..." hence the answer to the question "____ M
Watched Jackson Memorial” should be 31.1, yet the
model predicted 31. This indicates that the model’s

rounding may lead to incorrect answers.

Example 5.1 Round Error )

News: ...Nielsen numbers show that million people...

Headline: M Watched Jackson

Pred:31

lCorrect

Pred:31.1

Abs(31.1-31)<0.5? Replace

N J

Figure 6: A rounding error case and we introduce a
post-processing strategy for it.

As shown in Figure 6, we implemented a post-
processing strategy to correct rounding errors. This
involves extracting all numbers from the text, com-
paring them with the model’s prediction, and ad-
justing predictions within a 0.5 difference to the
nearest number. This method enhanced our test set
performance to 0.95, although it was not included
in the competition submission.

6 Conclusion

In this work, we have demonstrated an approach to
enhance numerical understanding in large language
models (LLMs) using limited data through effec-
tive data alignment. Our method integrated data dis-
covery, self-augment, and answer alignment strate-
gies, and significantly improved the model’s perfor-
mance on numerical reasoning tasks. Our success
in SemEval-2024 Task 7 highlights the potential of
our method in advancing natural language process-
ing, particularly for enhancing the various basic
capabilities of large language models.
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Abstract

One of the most widely used content types in
internet misinformation campaigns is memes.
Since they can readily reach a big number of
users on social media sites, they are most suc-
cessful there. Memes used in a disinformation
campaign include a variety of rhetorical and
psychological strategies, including smearing,
name-calling, and causal oversimplification, to
achieve their goal of influencing users. The
shared task’s objective is to develop models for
recognizing these strategies solely in a meme’s
textual content (Subtask 1) and in a multimodal
context where both the textual and visual mate-
rial must be analysed simultaneously (Subtasks
two and three). In this paper, we discuss the ap-
plication of a Mistral 7B model to address the
Subtask one in English about finding the per-
suasive strategy that a meme employs from a
hierarchy of twenty based just on its textual con-
tent. Only a portion of the reward is awarded if
the technique’s ancestor node is chosen. This
classification issue is multilabel hierarchical.
Our approach based on the use of a Mistral
7B model obtains a Hierarchical F1 of 0.42 a
Hierarchical Precision of 0.30 and a Hierarchi-
cal Recall of 0.71. Our selected approach is
able to outperform the baseline provided for
the competition.

1 Introduction

When information is intentionally crafted to serve
a predetermined agenda, we often classify it as
propaganda (Geissler et al., 2023). Propaganda em-
ploys various psychological and rhetorical strate-
gies to achieve its goals (Cakmak, 2023). These
methods encompass the utilization of logical fal-
lacies and the manipulation of audience emotions
(Soares et al., 2023). Logical fallacies can be partic-
ularly deceptive as they may initially appear sound
and impartial, yet upon closer examination, it be-
comes evident that the conclusion cannot be log-
ically derived from the premises. Another tactic

involves employing emotionally charged language
to sway the audience’s opinion, bypassing ratio-
nal analysis in favour of an emotional connection.
Memes, typically comprising images overlaid with
text, serve as a platform for propagandistic dissem-
ination. Within deceptive memes, images either
reinforce or complement textual techniques, or they
themselves convey persuasive strategies.

To address these objectives, there is an ongoing
demand for automated tools capable of extracting
and categorizing data from online sources, facilitat-
ing the response to both established and emerging
societal concerns. Recent advancements in ma-
chine and deep learning architectures have spurred
heightened interest in Natural Language Process-
ing (NLP). Substantial endeavours have been di-
rected towards devising techniques for the auto-
mated identification and categorization of textual
content accessible on the internet today. In the lit-
erature, to perform text classification tasks, several
strategies have already been proposed. In the last
fifteen years, some of the most successful strate-
gies have been based on SVM (Colas and Brazdil,
2006; Croce et al., 2022), on Convolutional Neural
Network (CNN) (Kim, 2014; Siino et al., 2021), on
Graph Neural Network (GNN) (Lomonaco et al.,
2022), on ensemble models (Miri et al., 2022; Si-
ino et al., 2022) and, recently, on Transformers
(Vaswani et al., 2017, Siino et al., 2022b).

The surge in the adoption of Transformer-based
architectures within academic research has been
further propelled by diverse methodologies show-
cased at SemEval 2024. These methodologies ad-
dress a range of tasks and yield notable outcomes.
For instance, in Task 2 (Jullien et al., 2024), T5
is utilized to confront the challenge of identifying
the inference relation between plain language state-
ments and Clinical Trial Reports (Siino, 2024b). In
Task 10, a Mistral 7B model is employed to per-
form emotion Recognition in Conversation (ERC)
within Hindi-English code-mixed conversations

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 53—-59
June 20-21, 2024 ©2024 Association for Computational Linguistics



(Siino, 2024c). Additionally, in Task 8 (Wang et al.,
2024), a DistilBERT model is leveraged to identify
machine-generated text (Siino, 2024a).

Finally, for the Task 4 at SemEval 2024 (Dim-
itrov et al., 2024) — Multilingual Detection of Per-
suasion Techniques in Memes — three Subtasks
were proposed. As already stated, in a disinfor-
mation campaign, memes effectively manipulate
users through various rhetorical and psychologi-
cal strategies, including causal oversimplification,
name-calling, and smear tactics. The objective of
this shared task is to develop models capable of
detecting these techniques within the textual con-
tent of memes alone (Subtask 1), as well as within
a multimodal framework where both textual and
visual elements are analysed jointly (Subtasks 2
and 3). To face with the first Subtask in English,
we proposed a Transformer-based approach which
made use of Mistral 7B (Jiang et al., 2023). We
used the model in a particular few-shot way de-
scribed in the rest of this paper. Specifically, we
provided the definitions of the 20 techniques to the
model to identify, given each sample, all the tech-
niques detected. We opted for Mistral 7B because
the comparative analysis between Mistral 7B and
other leading models, namely Llama 2 and Llama 1,
reveals noteworthy advancements in common NLP
tasks. Across multiple benchmark evaluations, Mis-
tral 7B consistently exhibits superior performance
in comparison to Llama 2, a prominent open 13B
model. Moreover, its efficacy extends beyond mere
parity with, but rather exceeds, the achievements of
Llama 1, a state-of-the-art 34B model, particularly
in tasks pertaining to reasoning, mathematics, and
code generation. These findings underscore Mistral
7B’s substantive contributions to the advancement
of NLP, suggesting its potential as a benchmark
model in the field.

The rest of the paper is made as follows. In
Section 2 we provide some background on the Task
4 hosted at SemEval 2024. In Section 3 we provide
a description of the models presented. In Section 4
we provide details about the experimental setup to
replicate our work. In Section 5, the results of the
official task and some discussions are provided. In
section 6 we present our conclusion and proposals
for future works.

We make all the code publicly available and
reusable on GitHub'.

"https://github.com/marco-siino/SemEval2024/
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2 Background

This section furnishes background information re-
garding Task 4 (Subtask 1), held at SemEval 2024.
The task entails identifying, based solely on the tex-
tual content of a meme, which of the 20 persuasion
techniques, organized hierarchically, are employed.
The selection of an ancestor node of a technique
warrants only partial reward. The task thus presents
a hierarchical, multilabel classification challenge.
The hierarchical structure is illustrated in the offi-
cial task’s page, with 22 techniques depicted, al-
though "Transfer" and "Appeal to Strong Emotion"
are excluded from Subtask 1. For comprehensive
details, please refer to provided resources.

For all Subtasks, the annotations from the PTC
corpus, comprising over 20,000 sentences, were
utilized where feasible. Although the corpus per-
tains to news articles, annotations adhere to iden-
tical guidelines, albeit with fewer techniques con-
sidered. As highlighted by the task coordinators,
certain meme content may be deemed offensive or
excessively potent by certain audiences. A similar
multilingual corpus was also accessible during Se-
mEval 2023 (Piskorski et al., 2023). Here again,
the corpus revolves around news articles across
nine languages, yet the number of techniques and
annotation guidelines differ marginally. A training
set for local system development was additionally
provided. Furthermore, the organizers furnished
a development set and a public leaderboard for
real-time result sharing among task participants.
Ultimately, the organizers supplied a test set devoid
of annotations and an online submission platform
to evaluate the system performance.

Subtask 1 relies on the textual content extracted
from memes as input data. Training, development,
and test sets for all Subtasks are disseminated as
JSON files, with each Subtask having its own in-
dividual file. For Subtasks 2a and 2b, in addition
to the meme’s textual content, input data includes
the meme’s image. In the Figure 1, is reported a
sample from the official competition website?.

Given the Figure 1:

* ID consists of a unique identifier of the exam-
ple across all the Subtasks;

* fext represents the textual expression within
the meme, formatted as a singular UTF-8

2https://propaganda.math.unipd.it/
semeval2024task4/
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Subtask 1
The entry for that example in the json file for subtask 1 is

{
"id": "125",
"text": "I HATE TRUMP\n\nMOST TERRORIST DO",
"labels": [
“Loaded Language",
"Name calling/Labeling"
1,
"link":
+

“https://..."

Figure 1: An example from the dataset. In this case, two
labels are assigned to the sample’s text.

string. Initially, this text is automatically ex-
tracted from the meme, subsequently under-
going manual post-processing to rectify errors
and arrange it such that each sentence occu-
pies a distinct row. Furthermore, segments of
text originating from distinct regions within
the image are demarcated by blank rows. No-
tably, Task 1 qualifies as an NLP endeavour,
given that image input is absent;

labels denotes a compilation of permissible
technique names identified within the text.
These labels serve as the gold standard and
will solely be furnished for the training set. In
this particular instance, two techniques were
identified: "Loaded Language" and "Name
calling/Labelling."

3 System Overview

Even if it has already been proved that the Trans-
formers are not necessarily the best option for any
text classification task (Siino et al., 2022a), depend-
ing on the goal some strategies like domain-specific
fine-tuning (Sun et al., 2019; Van Thin et al., 2023),
or data augmentation (Lomonaco et al., 2023; Man-
gione et al., 2022) can be beneficial in several ap-
plications.

Our approach is a few-shot one (Littenberg-
Tobias et al., 2022) and make use of the above-
mentioned Mistral 7B. Mistral 7B, a language
model equipped with 7 billion parameters, is de-
signed to excel in both performance and efficiency.
Compared to the leading open 13B model (Llama
2), Mistral 7B demonstrates superior performance
across all evaluated benchmarks. Moreover, it out-
performs the top released 34B model (Llama 1)
in tasks related to reasoning, mathematics, and
code generation. The model leverages grouped-
query attention (GQA) to expedite inference, along
with sliding window attention (SWA) to efficiently
process sequences of varying lengths while mini-
mizing inference costs. Additionally, a fine-tuned
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variant, Mistral 7B — Instruct, tailored for adhering
to instructions, surpasses the Llama 2 13B — chat
model across both human and automated bench-
marks. The introduction of Mistral 7B Instruct un-
derscores the ease with which the base model can
be fine-tuned to achieve notable performance en-
hancements. Notably, this variant lacks any moder-
ation mechanisms. The Mistral 7B Instruct variant
requires a specific input format, as stated below:

<s>[INST] Instruction [/INST] Model an-
swer</s>[INST] Follow-up instruction
[/INST]

Instruction, along with the following Model an-
swer, can be a single sample with the related label
or a set of sample/label pairs (realizing, in this case,
a few-shot use of the model). Then, Follow-up
instruction is the current sample for which the pre-
diction has to be provided by the model. More
specifically, given the 20 persuasion techniques in
memes, we have prepared a text string containing
the techniques and their definitions to provide con-
text in the template ready. The definitions of the
20 techniques are provided by the task organizers>.
At this point, the full text containing the twenty
definitions plus the sample to be classified were
provided as prompt to Mistral.

Then the question provided as prompt to mis-
tral was: "Given the above Definitions of the Per-
suasion Techniques, Identify the Persuasion Tech-
niques used in the Sentence. Answer using ONLY
one or more numbers in the range 1-20 separated
by commas. No text nor other options are al-
lowed.".

To this request, the model replied with one or
more techniques detected in the corresponding sam-
ple. So, as an example, to the sentence: "Happy
April Fools Day - - Ooop I mean: March Fools
day" the model replied to the prompt with the num-
bers 3 and 5. These two numbers correspond to the
technique 3 (i.e., Whataboutism) and to the tech-
nique 5 (i.e., Obfuscation, Intentional vagueness,
Confusion). It is important to mention that we also
tried to use the model in a zero-shot configuration.
In this case, we just asked the model to pick one or
more categories given a meme. Unfortunately, the
model did not report one or more correct categories,
while developing discussions as answers.

Finally, we collected all the predictions provided

3ht’cps: //propaganda.math.unipd.it/
semeval2024task4/definitions.html
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on the test set to into a JSON file with the required
format to submit our predictions.

As noted in the recent study by (Siino et al.,
2024b), the contribution of preprocessing for text
classification tasks is generally not impactful when
using Transformers. More specifically, the best
combination of preprocessing strategies is not very
different from performing no preprocessing at all
in the case of Transformers. For these reasons,
and to keep our system fast and computationally
light, we have not performed any preprocessing on
the text. The low impact of the best preprocessing
techniques - or combinations of techniques - using
Transformers, as reported in the study, is due to
several factors like preserving the quantity and the
quality of the original information available.

4 Experimental Setup

We implemented our model on Google Colab. The
library we used comes from Hugging Face and as
already mentioned is Mistral 7B*. We employed
the v0.2 iteration of Mistral 7B, which represents
an enhanced version of the Mistral-7B-Instruct-
v0.1 model. To harness the capabilities of instruc-
tion fine-tuning, prompts must be enclosed within
[INST] and [/INST] tokens. Additionally, the ini-
tial instruction should commence with a sentence
identifier. The next instructions should not. The
assistant generation will be ended by the end-of-
sentence token ID. We also imported the Llama
library (Touvron et al., 2023) from llama_cpp. The
library is fully described on GitHub’. The dataset
provided for all the phases are available on the Of-
ficial Competition page. We did not perform any
additional fine-tuning on the model. To run the
experiment, a T4 GPU from Google has been used.
After the generation of predictions, we exported
the results on the format required by the organizers.
As already mentioned, all of our code is available
on GitHub.

5 Results

The evaluation was done by submitting to the
leaderboard the predictions provided by the model.
Subtask 1 and 2a are reliant on a hierarchical struc-
ture. The gold label consistently corresponds to
a leaf node within the Directed Acyclic Graph

4https://huggingface.co/TheBloke/
Mistral-7B-Instruct-v@.2-GGUF

Shttps://github.com/ggerganov/1lama.cpp

56

(DAG). However, any node within the DAG can
serve as a predicted label:

* If the prediction does not correspond to a leaf
node and is an ancestor of the correct gold
label, a partial reward is issued, with the re-
ward magnitude contingent upon the distance
between the two nodes. For instance, if the
gold label is "Red Herring" and the predicted
label is "Distraction" or "Appeal to Logic."

If the prediction does not align with any an-
cestor node of the correct label, no reward is
granted. For instance, if the gold label is "Red
Herring" and the predicted label is "Black and
White Fallacy" or "Appeal to Emotions." A
graphical representation illustrating this con-
cept is provided.

However, it’s worth noting that the hierarchical
structure can be disregarded by confining predic-
tions solely to technique names. This approach
renders the task analogous to SemEval 2023 Task
3 (Piskorski et al., 2023).

An illustrative example of the evaluation func-
tion can be accessed online®. In this case, the Sub-
task consists of a hierarchical multilabel classifica-
tion task. Drawing from the aforementioned figure
depicting the hierarchy, any node within the DAG
can be designated as a predicted label. The gold
label consistently corresponds to a leaf node within
the DAG. Hierarchical-F1, detailed in (Kiritchenko
et al., 2006), is employed as the official evaluation
metric.

In the Table 1, the results obtained by the first
three teams and by the last one, as showed on the
official page’, are reported. Compared to the best
performing models, our simple approach exhibits
some room for improvements, although it is able
to outperform the baseline. However, it is worth
notice that it required no further pre-training and
the computational cost to address the task is man-
ageable with the free online resources offered by
Google Colab.

6 Conclusion

This paper presents the application of Mistral 7B-
model for addressing the Task 4 at SemEval 2024.

6https://propaganda.math.unipd.it/
semeval2@24task4/data/hierarchy_evaluation.html

7https://propaganda.math.unipd.it/
semeval2024task4/SemEval2024task4_test.html
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H-F1 H-Prec H-Recall
914isthebest (1) 0.752  0.684 0.836
BCAmirs (2) 0.698 0.668 0.732
OtterlyObsessedWithSemantics (3) 0.697  0.648 0.755
Mistral 7B (30) 0.42 0.30 0.71
BASELINE (31) 0.369 0477 0.300
IIMAS1UTM1LaSalle (33) 0.199  0.755 0.115

Table 1: Comparing performance on the test set for Subtask 1 in English. In the table are shown the results obtained
by the first three users and by the last one. Furthermore, is included the result of the baseline considered and of our
approach making use of Mistral 7B. In parentheses is reported the position in the official final ranking.

For our submission, we decided to follow a few-
shot learning approach, employing as-is, an in-
domain pre-trained Transformer. After several ex-
periments, we found beneficial to build a prompt
containing the definitions of the techniques in
memes. Then we provide, as a prompt, the defini-
tions together with a sample. The model was asked
to select all the techniques detected in the sentence.
The task is challenging, and there is still opportu-
nity for improvement, as can be noted looking at
the final ranking. Possible alternative approaches
include utilizing the zero-shot capabilities of other
models like GPT and TS5, increasing the size of
the training set by using further data, or directly
integrating ontology-based domain knowledge dif-
ferently than what has been proposed in our work.
Further improvements could be obtained with a
fine-tuning and modelling the problem as a differ-
ent text classification task. Furthermore, given the
interesting results recently provided on a plethora
of tasks, also other few-shot learning (Wang et al.,
2023; Maia et al., 2024; Siino et al., 2023; Meng
etal., 2024) or data augmentation strategies (Muftie
and Haris, 2023; Siino et al., 2024a; Tapia-Téllez
and Escalante, 2020; Siino and Tinnirello, 2023)
could be employed to improve the results. Look-
ing at the final ranking, our simple approach ex-
hibits some room for improvements. However, it is
worth notice that required no further pre-training
and the computational cost to address the task is
manageable with the free online resources offered
by Google Colab. Also, thanks to the proposed
approach, we have been able to outperform the
baseline provided by the task organizers.
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Abstract

Within few-shot learning, in-context learning
(ICL) has become a potential method for lever-
aging contextual information to improve model
performance on small amounts of data or in
resource-constrained environments where train-
ing models on large datasets is prohibitive.
However, the quality of the selected sample
in a few shots severely limits the usefulness
of ICL. The primary goal of this paper is to
enhance the performance of evaluation metrics
for in-context learning by selecting high-quality
samples in few-shot learning scenarios. We em-
ploy the chi-square test to identify high-quality
samples and compare the results with those ob-
tained using low-quality samples. Our findings
demonstrate that utilizing high-quality samples
leads to improved performance with respect to
all evaluated metrics.

1 Introduction

The advent of large language models (LLMs) like
GPT-3.5 has brought about transformative capa-
bilities, seamlessly handling tasks like question
answering, essay writing, and problem-solving
(Aljanabi et al., 2023; Wu et al., 2023; Rasheed
et al.,, 2023a). However, this technological ad-
vancement necessitates careful consideration of
its associated challenges. Concerns regarding the
potential impact on creativity and ethical impli-
cations, particularly concerning the generation of
deepfakes (Tang et al., 2023), warrant careful atten-
tion (RAYMOND, 2023). Additionally, the limita-
tions of LLMs, including the possibility of produc-
ing erroneous information, require rigorous evalua-
tion and verification. The substantial energy con-
sumption required for training LLMs on massive
datasets raises environmental concerns, contribut-
ing to their carbon footprint. Moreover, plagiarism
issues emerge as users may misuse the generated
content, either inadvertently or intentionally (Hadi
et al., 2023).
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Various models have been introduced in recent
years designed to distinguish text generated by hu-
mans from that created by machines(Mitchell et al.,
2023). Examples include GPTZero(gpt), Al Con-
tent Detector(cop), and Al Content Detector by
Writer (wri) among others. Some of these mod-
els are trained on specific datasets, while others
are commercially available. Designing and imple-
menting LLMs for classification tasks requires sub-
stantial resources and computational power, which
are often only accessible to institutions and gov-
ernments. Therefore, various optimization models,
such as LoRA (Hu et al., 2021), distillation(Hsieh
et al., 2023), quantization(Dettmers et al., 2022),
and in-context learning (Liu et al., 2022), have been
developed to reduce the resource requirements for
LLM implementation. This paper focuses on In
Context Learning (ICL) (Liu et al., 2022), which
utilizes the capabilities of other models to enhance
their ability to classify Al-generated text.

In Context Learning (ICL) is a Natural Lan-
guage Processing (NLP) technique utilized to en-
able Large Language Models (LLMs) to learn new
tasks based on minimal examples. This technique
proves powerful in scenarios where training models
on extensive datasets is impractical or when there
are constraints on dataset availability for a specific
task. ICL operates on the premise that humans can
often acquire new tasks through analogy or by ob-
serving a few examples of task performance. It can
be employed without any examples and is referred
to as zero-shot learning. Alternatively, if the input
includes one example, it is termed one-shot learn-
ing, and if it contains more than one, it is known
as few-shot learning. This paper focuses on the
application of few-shot learning within the context
of ICL(Ahmed and Devanbu, 2022; Kang et al.,
2023).

In this study, our focus lies exclusively on few-
shot learning. We present a methodology that lever-
ages the chi-square statistic (Rasheed et al., 2023b;
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Lancaster and Seneta, 2005) to select samples for
few-shot learning and evaluate its impact on the
performance of a machine-generated text classifica-
tion model. We work on task A English language
only (Wang et al., 2024).

2 Dataset

The dataset employed for Task A comprises two
main components. The first part, derived from hu-
man writing, was collected from diverse sources
including WikiBidia, WikiHow, Reddit, ArXiv,
and PeerRead. The second part consists of a
machine-generated text produced by ChatGPT, Co-
here, Dolly-v2, and BLOOMz(Muennighoff et al.,
2023). For further details, please refer to the asso-
ciated paper (Wang et al., 2023).

3 Chi-square

Chi-square is a statistical test used to assess the
independence of two categorical variables. It cal-
culates the difference between observed and ex-
pected frequencies of outcomes, and a larger chi-
square value indicates a stronger rejection of inde-
pendence. In text analysis, chi-square can be used
to identify keywords that are more likely to occur in
one category than another, making it useful for fea-
ture selection and text classification. We computed
the chi-square values for each training sample and
recorded the sample index with the highest and
lowest chi-square values for both human-generated
and machine-generated samples. Table I displays
the index and corresponding chi-square values for
each of these instances. We will use X? to refer to
chi-square (Lancaster and Seneta, 2005).

Table 1: Indices and chi-square values for highest/lowest
in human-generated and machine-generated text

Name Index # X2 Value

Highest X2 (Human) 70873 1351.59
Lowest X2 (Human) 85726 1.21
Highest X2 (Machine) 2426 1154.27
Lowest X2 (Machine) 29111 0.8243

4 System overview

The system architecture is illustrated in Figure 1.
The process starts with feeding the entire training
dataset to a chi-square computation, where the chi-
square value for each sample is calculated. Subse-
quently, the indices of the samples with the highest
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and lowest chi-square values are selected for both
human-generated and machine-generated datasets
using information from Table I. Next, context learn-
ing is prepared. Initially, multiple templates were
tested, and the one presented in Figure 1 yielded the
best results. This template is then fed with two sam-
ples: the first being the machine-generated sample
with the highest chi-square value, and the second
being the human-generated sample with the high-
est chi-square value. Due to context window size
limitations, only the first 5000 characters of each
sample are incorporated. This is applied to training
samples exceeding 5000 characters to ensure the
context learning size is not exceeded. Finally, the
test sample is fed into the context-learning process.
The Flan-T5 model large version is used. The re-
sults are then recorded and evaluated. The dev/test
sample size was truncated to 3000. We also eval-
uated the system using samples with the lowest
chi-square values and doing the same process.

5 Findings and Analysis

We employed the Flan-T5 Large model for both
the development and testing datasets. We selected
samples from both human-generated and machine-
generated sources, with each sample limited to
5000 characters to avoid exceeding the token size
limit. A total of four experiments were conducted.
The first experiment utilized samples with high
chi-square values from the development set. The
second experiment focused on samples with the
smallest chi-square values from the development
set. The third experiment involved samples with
high chi-square values from the test set. Finally, the
fourth experiment utilized samples with low chi-
square values from the test set. Table II presents all
achieved results.

Based on the results presented in Table II, we
can discuss several key points.

* The results highlight the crucial role of sam-
ple quality in the performance of in-context
learning. By leveraging the chi-squared met-
ric and prioritizing samples with high values,
we essentially provide the Flan-T5 model with
examples rich in diverse features. This choice
enables the Flan-T5 model to learn more ef-
fectively, drawing substantial insights from
the samples. Consequently, the model be-
comes more familiar with the provided data,
ultimately enhancing its performance. In
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Figure 1: Proposed System Components

Dataset Chi Type Recall Precision F1-Score Accuracy
Lowest  46.92 46.90 46.84 46.92
Dev set .
Highest  53.76 53.76 53.74 53.76
Test set Lowest  55.04 55.07 55.03 55.27
Highest  58.68 58.81 58.81 55.99

Table 2: Experiments results

contrast, selecting samples with lower qual-
ity leads to less optimal performance. This
can be noticed for both the dev and test set.
The main reason behind this is that words
in the sample with high chi-square values
contain the most distinctive features. This
is because the chi-square test assigns high
values to words that are frequent within a
particular class but appear less frequently in
other classes.Conversely, samples with lower
chi-square values likely contain more ran-
dom words that appear with similar frequency
across all classes. In chi-square analysis,
words that appear equally or approximately
equally in each class receive lower scores.

The classification of machine-generated text
represents a novel frontier in machine learn-
ing, and the availability of datasets for this
task is currently limited. The dataset used
in this study was generated in 2023, marking
it as a recent development and underscoring
the lack of established benchmarks. Models
that support in-context learning have not been
trained extensively on such tasks, resulting
in lower accuracy when applied. While ex-
amples with high-quality data can enhance

model performance, it remain below the de-
sired threshold. Hence, it is advisable to train
the model directly on the dataset rather than
relying on in-context learning.

e We have utilized the Flan-T5 model; however,
other models can be employed to evaluate the
performance of text classification machinery.
We suggest considering alternatives such as
bard, Jurassic-1 Jumbo, and ChatGPT.

6 Conclusion

This work presents a system for classifying human-
generated and machine-generated text. The sys-
tem leverages the combined strengths of in-context
learning and Chi-square analysis. Chi-square is
employed to select high-quality samples from the
trainin dataset for few-shot learning in the in-
context learning. We implement Flan-T5 model
large version for in-context learning. Evaluation
using accuracy, recall, precision, and F1-score
demonstrates that selecting high-quality samples
improves system performance for both dev and
test. Furthermore, the results indicate that relying
solely on in-context learning for new tasks like
machine-generated text detection yields relatively
low performance.
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Abstract

The paper summarizes our research on multi-
lingual detection of persuasion techniques in
memes for the SemEval-2024 Task 4. Our work
focused on English-Subtask 1, implemented
based on a roberta-large pre-trained model pro-
vided by the transforms tool that was fine-tuned
into a corpus of social media posts. Our method
significantly outperforms the officially released
baseline method, and ranked 7th in English-
Subtask 1 for the test set. This paper also com-
pares the performances of different deep learn-
ing model architectures, such as BERT, AL-
BERT, and XLM-RoBERTa, on multilingual
detection of persuasion techniques in memes.
The experimental source code covered in the
paper will later be sourced from Github.

1 Introduction

Memes has been steadily increasing as human be-
havior as social media platforms have become more
prevalent. This type of content is known for its
rapid spread, achieved through the manipulation
of audience psychology and the blurring of logical
relationships.

Memes are generally made up of stacked images
and text. The essence of its expression in order to
generate an emotional effect is actually the skillful
role of three persuasive strategies (Davison, 2012)
in rhetorical portions:

1) Ethos: This involves the strategic employment
of statements from individuals endowed with
authority or credibility, thereby persuading
the audience of the veracity of the content and
augmenting its perceived legitimacy.

2) Pathos: By sharing personal anecdotes or ex-
periences, memes forge a connection with the
audience, evoking emotional resonance and
deepening the affective engagement with the
content.

3) Logos: The application of logical arguments
and reasoning enhances the structural integrity
and coherence of the message, fortifying its
persuasiveness.

If we further split these three categories of per-
suasion strategies into twenty-two, scientists are
able to obtain textual and visual features from
memes for analysis. For instance, it is feasible
to efficiently decrease or prevent the spread of hate
speech, racial discrimination, and deceptive infor-
mation by analysing memes, then simultaneously
preserving the peace and stability of social media.

Memes can assist merchants in quickly capturing
market trends, allowing them to carry out advertis-
ing and marketing operations more effectively and
raise brand influence. Memes helps media workers
in understanding the concerns of their audiences.
Memes in politics have the potential to help voters
demonstrate their policy views. The goal of the
task is to classify corpora of text in memes and
assign them to relevant persuasive strategies. Our
work in SemEval-2024 Task 4 focuses on subtask
1,and this is a multi label classification task.

Our contrbutions can be highlighted as follows:

1) We explored new possibilities by screening
models for news texts and multilingual corpus
models. Fine-tuning using the social media
posts corpus on the roberta-large model, and
the experiment obtained hierarchical F1 of
0.647 on the English - Subtask 1 the dev set.

2) In SemEval-2024 Task 4, our model has an
hierarchical F1 result of 0.66 in the English
- Subtask 1 the test set, and our model ranks
7th on the leaderboard.

2 Related Work

Since the introduction of BERT in 2018(Devlin
et al., 2018), its impact on the landscape of natural
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Figure 1: Number of Samples

language processing and multimodal analysis has
been profound(Khare et al., 2021). BERT and its
advanced derivatives, such as RoOBERTa(Liu et al.,
2019), XLM-RoBERTa(Xie et al., 2021), and AL-
BERT(Lan et al., 2019), have demonstrated their
robust capabilities in a broad spectrum of applica-
tions, ranging from sentiment analysis to complex
multimodal tasks that combine textual and visual
data. Notably, ROBERTa has been recognized for
its superior performance in accurately classifying
sentiment(Liao et al., 2021), emotion(Kamath et al.,
2022), and offensive content(Xu and Liu, 2023),
highlighting the model’s efficiency as a sophisti-
cated text encoder.

The advent of these models has revolutionized
the approach to analyzing diverse datasets and
tasks, enabling nuanced understanding and pro-
cessing of complex language patterns. This has
been particularly evident in the domain of multi-
modal research, where BERT-based models have
been instrumental in advancing the study of visual
and textual data integration(Khan and Fu, 2021; He
and Hu, 2021; Lee et al., 2021).

The success of these models in such a unique
and culturally rich context exemplifies their broad
applicability and the expanding frontiers of com-
putational linguistics and content analysis. In con-
clusion, the inclusion of BERT and its variants in
the analysis of persuasion techniques in memes
marks a significant milestone in the field(Avvaru
and Vobilisetty, 2020; Kougia and Pavlopoulos,
2021; Khedkar et al., 2022). It underscores the
models’ unparalleled flexibility and their emerging
role in understanding the complexities of human
communication in the digital age. As these models
continue to evolve, their contribution to bridging
the gap between textual and visual data analysis
will undoubtedly pave the way for groundbreak-
ing research and applications across diverse disci-
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ID text labels
WHEN YOU’RE THE FBI,
THEY LET YOU DO IT.
PUTIN’S SECRET
CAMOUFLAGE ARMY
Heaven has a Wall and strict
immigration policies.
Hell has open borders.
President Donald J. Trump
ME VOTING ANTI-TRUMP
IN 2016
ME VOTING ANTI-TRUMP
IN 2020

67641 Thought-terminating cliché

66402 none

Appeal to authority,

71251 Exaggeration/Minimisation

65282 Repetition

Table 1: Data Sample

plines.

3 System Overview

3.1 Datasets

Our experiment employed four distinct datasets:
the training set, validation set, development (dev)
set, and test set, all formatted in JSON. The datasets
feature a minimum sentence length of one. The
training set comprises 7,000 entries, categorized
into 20 distinct classes, showcasing an average sen-
tence length of 19.94 and a maximum of 253. The
validation set includes 500 entries, with an average
sentence length of 18.85 and a maximum reach-
ing 333. The development set, containing 1,000
samples, presents an average sentence length of
18.73 and a peak length of 145. Lastly, the test set
encompasses 1,500 instances, with the sentences
averaging 18 words in length.

Table 1 presents the sample dataset, illustrating
the structured data used in our analysis.

Figure 1 sorts the distribution of categories in the
training set in descending order of frequency, high-
lighting the frequency of each category. The term
"None" denotes instances lacking specific classifi-
cation. According to the depicted statistics, the cat-
egory "Smear" constitutes the most significant por-
tion of the dataset. In contrast, categories such as
"Obfuscation", "Intentional vagueness" and "Con-
fusion" represent the smallest proportions.

3.2 Pre-trained Model

The research team tends to choose from models
related to news, tweets, and comments. The re-
search team tested a number of models and de-
ciding that Jochen Hartmann’s sentiment-roberta-
large-english-3-classes model (As shown in Table
2) while it received the best ratings. A compar-
ison of outcomes from multiple models will be
presented in the results section.
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Figure 2: The architecture of model construction

ID Model
1 bert-base-uncased
2 bert-base-multilingual-cased
3 albert-base
4 roberta-base
5 xlm-roberta-base
6 roberta-large
7 | roberta-large(social media posts fine-tuned)

Table 2: Pre-trained Model

The sentiment-roberta-large-english-3-classes
model (Hartmann et al., 2021) is trained based on
tweets on social media platforms such as Twitter
and Instagram, and includes text that is expected to
include captions from the sender in the tweet image
and comments from other observers. ROBERTa is
used to construct the model. Achieving a hold out
accuracy of 86.1 % , this model is used to evaluate
user comments on posts and identify if the user is
willing to buy a certain product. It demonstrates
that the model has high robustness and a strong
capacity to extract complicated text features.

3.3 Model Construction

In English-Subtask 1, to commence our experi-
ment, we utilize the officially provided Train.json
and Validation.json files as the training and valida-
tion datasets for supervised learning. Additionally,
we assess subsequent results using the officially
available dev dataset.

Secondly, we’ll perform data preprocessing.
The training and validation sets are fed into the
Tokenizer, and the pre-trained model roberta-
large(social media posts fine-tuned) is used for
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word segmentation and vectorization processing.
Following that, regarding model structure:

1) Input processing: Feed the pre-trained model
with the processed token.

2) Dropout processing: Enter the dropout layer
after model processing and set the inactivation
probability to 0.1.

3) Linear fully connected layer: 1024 features
are carried into the linear fully connected
layer.

4) Loss function: For multi label classification
jobs, Binary Cross Entropy With Logits Loss
(Wang et al., 2022)serves as the loss func-
tion throughout the backpropagation gradient
calculation procedure. BCEWithLogitsLoss
comes with a sigmoid function that can con-
vert predicted result values into probabilities,
and can automatically handle numerical insta-
bility while preventing the sigmoid function
from overflowing upwards or downwards (Yue

et al., 2023).

Finally, the output layer is made up of 21 neu-
rons, 20 of which are classified and one of which
is none. The architecture of model construction is
shown in Figure 2.

4 Experiment Setup

4.1 Evaluation Metrics

For English-Subtask 1, the participating systems
are evaluated using standard evaluation metrics, in-
cluding precision, recall, and hierarchical F1 scores.
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These metrics are calculated as follows:

Precisi TruePositives o
recision =
TruePositives + FalsePositives
TruePositives
Recall = 2
cea TruePositives + FalseNegatives @
= 2 - Precision - Recall 3)

Precision + Recall

The organizers provided baseline models for
each subtask. For English - Subtask 1, the Hi-
erarchical F1 scores for the baseline model were
0.358 on the development set and 0.369 on the test
set.

4.2 Threshold Selection

The experimental results in training tasks will de-
pend on the threshold selection. We select the most
optimal hierarchical F1 value for determining the
threshold, assuming that recall and precision are
of identical significance. With a 0.01 interval, the
experiment increased the threshold from O to 1.

The red dots on the hierarchical F1 value curve in
Figure 3 represent the experimental results, which
show that the most suitable threshold value for
hierarchical F1 value is approximately 0.08. In our
threshold parameter experimentation, we attained
a recall rate of 0.69 and a precision of 0.60. Owing
to the threshold being established at 0.08, Figure 3
incorporates merely a fraction of the experimental
data. The hierarchical F1 scores start to decline as
the threshold surpasses 0.4.

4.3 Epoch Selection

The epoch was raised in the experiment from 1 to
20 at intervals of 1. The Figure 4 illustrates that
the Precision is low and unstable and the Recall
value is high but swings continuously when the
epoch is under seven. As a result of the Precision
and hierarchical F1 values’ continued continuous
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Figure 4: Impact of epoch on dev set

increase, the experimental model’s instability will
grow. The Recall steadily stabilizes as the epoch
gets closer to 20, while the hierarchical F1 value
also tends to stabilize.

In addition to the above parameters, other train-
ing parameters are set in Table 3 below.

Params Value
num_train_epochs 20
per_device_train_batch_size 4
per_device_eval_batch_size 8
warmup_steps 500
weight_decay 0.01
logging_steps 100
save_strategy epoch
evaluation_strategy epoch
learning_rate 1.5¢=°
threshold 0.08

Table 3: Training Arguments

5 Results

As Table 4 shown, the model’s performance on
the development set revealed an hierarchical F1
score of 0.64, a precision of 0.63, and a recall of
0.65. The results indicate that our model achieves
better results than other models. The performance
of English-Subtask 1 on the test set yielded an
hierarchical F1 score of 0.66, a precision of 0.65,
and a recall of 0.67, ultimately securing the 7th
position in the ranking.

6 Conclusion

In our participation in SemEval-2024 Task 4,
specifically English-Subtask 1, we focused on ad-
dressing the challenge of multi-label text classifi-
cation. Our study investigated the impact of vari-
ous pre-trained models on experimental outcomes
and the influence of different hyperparameters on



Model F1 Precision | Recall
bert-base-uncased | 0.59335 | 0.60017 | 0.58668
bert-base- 0.58840 | 0.58235 | 0.59459
multilingual-cased
albert-base 0.59484 | 0.58081 | 0.60957
roberta-base 0.62268 | 0.60781 | 0.63829
xlm-roberta-base | 0.58612 | 0.57927 | 0.59313
roberta-large 0.63679 | 0.61831 | 0.65640
roberta-large
(social media 0.64708 | 0.63666 | 0.65786
posts fine-tuned)

Table 4: Dev Set Results

model performance. Ultimately, the adoption of
the roberta-large model fine-tuned on social me-
dia posts led to outstanding performance, achiev-
ing a hierarchical F1 score of 0.66 on the test set
and securing a commendable 7th position among
English-Subtask 1 participants.

In our experimentation, we did not pursue a finer-
grained classification within the multi-label task.
Moving forward, our future research direction will
pivot towards fine-grained multi-label classifica-
tion. This would entail optimizing the loss func-
tion or implementing multi-level classification tech-
niques to enhance the model’s generalization capa-
bilities.
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Abstract

This paper delineates our investigation into
the application of BioLinkBERT for enhancing
clinical trials, presented at SemEval-2024 Task
2. Centering on the medical biomedical NLI
task, our approach utilized the BioLinkBERT-
large model, refined with a pioneering mixed
loss function that amalgamates contrastive
learning and cross-entropy loss. This method-
ology demonstrably surpassed the established
benchmark, securing an impressive F1 score of
0.72 and positioning our work prominently in
the field. Additionally, we conducted a com-
parative analysis of various deep learning ar-
chitectures, including BERT, ALBERT, and
XLM-RoBERTa, within the context of medical
text mining. The findings not only showcase
our method’s superior performance but also
chart a course for future research in biomedical
data processing. Our experiment source code
is available on GitHub at: https://github.
com/daojiaxu/semeval?2024_task2.

1 Introduction

Clinical Trial Reports (CTRs) play a crucial role
in documenting the methods and results of clinical
trials(Jullien et al., 2023a; Vladika and Matthes,
2023). It contains a detailed overview of partic-
ipant circumstances, intervention experiment de-
scriptions, experimental results, and adverse events
that happened in the participants. Natural Lan-
guage Inference is a valuable technique for ana-
lyzing experimental data in CTR and interpreting
the results. Natural Language Inference is able to
analyze logical linkages, consistency, and contra-
dictions in a document. It can assist detect logi-
cal relationships in text automatically, identify po-
tential conflict areas fast, and improve decision-
making accuracy and efficiency. Researchers can
better gather and analyze clinical trial data by using
Natural Language Inference techniques, which pro-
motes medical quality improvement(Jullien et al.,
2023Db).
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Clinical Trial ID: NCT00093145

Type: “Comparison”

— — "Adverse Events": [...." Supraventricular
Section_id: “Adverse Events’ tachycardia 1/32 (3.13%)"...]
Primary_id: “NCT00093145”

Secondary_id: “NCT00703326”

Statement: “Heart-related adverse events
were recorded in both the primary trial
and the secondary trial.”

Clinical Trial ID: NCT00703326

"Adverse Events": [..." Atrial fibrillation
1/752 (0.13%)"....]

Entailment

Type: “Single”
" Clini ‘ B

Section_id: “Eligibility” ‘ Clinical Trial ID: NCT00633750 ‘
Primary_id: “NCT00633750” "Eligibility": [ "Inclusion Criteria:", "
Statement: “Patients with Clinical stage _('h""f"I stage Lor I (T ]_ or lz,’,N’ or N1y

- e invasive mammary carcinoma”.....] )
II (T2 N1) invasive mammary NG J
carcinoma are not eligible for the _
primary trial.”

Figure 1: Dataset Example

The Figure 1 shows the example dataset used
in this work. The dataset includes two forms of
CTR: single and comparison. A single type CTR
can retrieve relevant evidence using a Primary Id.
To retrieve two relevant pieces of evidence using
comparison type CTR, Primary Id and Secondary
Id must be used simultaneously.

As an illustration, in the first instance, CTR
represents "Heart-related adverse events were
recorded in both the primary trial and the secondary
trial." Searching for the matching components of
the two pieces of evidence reveals that there are
heart-related adverse effects, such as supraventric-
ular tachycardia and atrial fibrosis. As a conse-
quence, the first example is labeled as "Entail-
ment"(Alsuhaibani, 2023). In a comparable way, in
the second example, CTR believes that "Patients
with clinical stage II (T2 N1) invasive breast cancer
are not eligible for the primary trial." However, the
participation conditions in the gathered evidence
clearly show that individuals with clinical stage I
or I (T1 or T2, NO or N1) invasive mammary car-
cinoma match the criteria. As a result, the second
case is labeled "Contradiction"(Liu et al., 2021;
Zhou et al., 2023).

In the quest to push the frontiers of biomedi-
cal natural language understanding, SemEval-2024
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Task 2 has emerged as a critical arena for testing
the efficacy of Al models in parsing complex medi-
cal texts(Jullien et al., 2024). Engaging with this
challenge, our work utilizes BioLinkBERT to set
new benchmarks in the safety and accuracy of clin-
ical trial inference(Ida et al., 2023; Karkera et al.,
2023; Kanakarajan et al., 2022). This endeavor
not only underscores the significance of developing
robust NLI systems but also highlights our commit-
ment to contributing meaningful innovations to the
biomedical domain(Wang et al., 2023; Mahendra
et al., 2023; Pahwa and Pahwa, 2023). Through
this paper, we aim to share our methodologies, find-
ings, and the implications they hold for the broader
field of medical research, hoping to inspire further
advancements and collaborative efforts in this vital
area of study.

We created a number of attempts using the above
dataset, and the following additions were con-
tributed to our work:

1) We have designed a new loss function by com-
bining the ideas of cross entropy and con-
trastive learning. This loss function can flexi-
bly adjust parameters according to actual situ-
ations and has strong adaptability.

2) We have performed fine-tuning on the
BioLinkBERT-large model and finally ranked
15th, achieving an F1 score of 0.72, a score
of 0.59 in Faithfulness, and a score of 0.64 in
Consistency.

2 System Description

2.1 Data Preprocessing

For this experiment, the training dataset was seg-
mented into four distinct categories: Statement,
Section, First Evidence, and Second Evidence. To
facilitate precise identification of these text seg-
ments by the BioLinkBERT-large model, we em-
ployed the token "[SEP]" as a delineator for seg-
ment segmentation. This approach ensured that the
model could accurately recognize and process the
varied input text paragraphs, thereby enhancing its
ability to understand and interpret the context and
relationships within the data. This method of data
preparation was crucial in optimizing the model’s
performance by providing clear structural demar-
cations within the training set.

More precisely, we create each input sample as
shown in Figure 2.
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Figure 3: Composite Loss Function
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Figure 2: The Architecture of Tokenizer

2.2 Model Construction

BioLinkBERT-large Model. In the domain of
biological medicine, the BioLinkBERT model
has been shown to be superior to the BERT
model due to its ability to learn information
across documents (Yasunaga et al., 2022). Bi-
oLinkBERT outperformed other models (BERT,
BioMegatron, PubMedBERT, BioClinical BERT,
BioMedLLM, BioGPT) in extracting the associa-
tion between microorganisms and diseases from
biomedical literature, with F1 precision and recall
more than 0.8 (Karkera et al., 2023). The opti-
mal accuracy was obtained in the histopathology
image captioning challenge by integrating the Bi-
oLinkBERT target model with the image feature ex-
tractor ConvNexT Large (Elbedwehy et al., 2023).
When compared to PubMedBERT and ChatGPT,
the BioLinkBERT has demonstrated superior per-
formance in all aspects in benchmark trials focused
on biomedical text production and mining(Chen
et al., 2023). The model we use is based on the
BioLinkBERT large model that has been fine tuned
from the MNLI and SNLI datasets.

Design of Loss Function. In the training phase,
our loss function is bifurcated into two pivotal com-
ponents. The initial segment utilizes the cross en-
tropy loss function (CrossEntropyLoss())(Zhang
and Sabuncu, 2018), which first computes the pre-
dicted probability values via a softmax function.
Subsequently, it leverages the cross entropy loss
to quantify the deviation between these predicted
probabilities and the actual labels, a process en-
capsulated by the symbol CE. The latter segment
incorporates the supervised contrastive learning
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[SEP]
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Figure 4: The Structure of System

loss function (SupConlLoss ())(Khosla et al., 2020).
Here, vectors generated post-processing by the pre-
trained model are juxtaposed against the true labels
to ascertain the contrastive learning loss, denoted
as SCL.

Simultaneously, we have instituted a threshold
parameter « to modulate the significance of each
loss component. By amalgamating CE and SCL
in accordance with this threshold, we obtain the
composite loss. This loss is then subjected to back-
propagation to minimize its magnitude, thereby
aligning the predicted values more closely with the
actual values. This methodology underscores our
strategic approach to loss optimization, blending
traditional and contrastive learning mechanisms to
enhance model accuracy and performance.
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Loss=(1—a)xLog+axLscr,  (3)

The Supervised Contrastive Learning (SCL) loss,
as delineated in Equation (2), plays a pivotal role
in the model’s learning process by promoting the
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aggregation of examples from the same class while
concurrently driving apart examples from distinct
classes. Within a given batch, examples are metic-
ulously grouped based on their corresponding la-
bels, ensuring that the learning process is finely
attuned to the nuances of class similarity and diver-
sity. This is achieved through the implementation
of the indicator function 1,,—,., which is designed
to ensure that the loss calculation exclusively con-
siders pairs of examples (i, 7) that, while sharing
the same label, are distinct entities (i # j). This
deliberate focus on fostering intra-class cohesion
and inter-class distinction is fundamental to aug-
menting the model’s discriminative capabilities. A
critical aspect of this approach is the use of Ny,
which denotes the count of examples within the
batch that share the same label as example 7. This
count is instrumental in normalizing the contribu-
tion of positive pairs to the loss, thereby ensuring
that the SCL loss effectively enhances the model’s
proficiency in distinguishing between classes. This
proficiency is further reinforced by the SCL loss’s
capacity to adjust based on the relative distances of
examples within the embedding space, taking into
account both positive pairs (belonging to the same
class) and negative pairs (belonging to different
classes), with N, playing a crucial role in normal-
izing these effects based on the representation of
each class within the batch.

This design strategy excels in leveraging anno-
tated data to its fullest potential, significantly en-
hancing the model’s generalization capabilities and
the discriminative power of its feature represen-
tations. The cross-entropy loss function plays a
pivotal role in assessing model performance by
quantifying the discrepancy between predicted out-
puts and actual labels. Concurrently, the supervised
contrastive learning loss function is instrumental
in refining the discriminative capacity of feature
representations, thereby bolstering classification
accuracy. This dual-faceted approach not only en-
sures a comprehensive evaluation of model quality
but also fosters a more nuanced understanding and
representation of data features, which is crucial for
achieving high precision in predictive tasks.

Model Layer Description. The levels in our
model are as follows:

1) Sentence Input Layer: The model feeds the
tokenizer with the text that was described in
2.1 as the training set.

2) Pre-trained Model Layer: To process the to-



Model Loss F1 Precision Recall Faithfulness Consistency
bert-base_uncased ce 0.6556 0.956 0.4989 0.0335 0.396
ce+scl  0.6474 0.944 0.4926 0.0486 0.3931
albert-base ce 0.6127 0.788 0.5012 0.1805 0.44
ce+scl  0.6447 0.784 0.5474 0.2361 0.4951
biolinkbertl ce 0.7042 0.824 0.6149 0.4629 0.5971
TOHMEDETIAIEE  cevscl 07166 0764 0.6749  0.5914 0.638

Table 1: Comparative results of experiments in the test set

F1 Value

1203 4 5 67 8 9 101

I
Epoch

Figure 5: F1 Changes at Different Epochs on The Test
Set

F1 Value

4 0
alpha

Figure 6: F1 Changes at Different Alpha on The Test
Set

kenized text and produce the resultant vector
representation of the text, the model makes
use of the pre-trained model Biolinkbert-large.

3) Dropout layer: We implemented inactivation
rate of 0.2 on the result vector to promote ro-
bustness and prevent overfitting of the model.

4) Linear Layer: To further process and trans-
form vectors, the model employs two linear
layers in the output module.

5) Softmax Function: Lastly, the model trans-
forms the linear layer’s output into a probabil-
ity distribution by using the softmax function.

The loss function shown in Figure 3 was em-
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ployed for backpropagation during the model train-
ing phase.The model’s accuracy and real perfor-
mance can be enhanced by adjusting the loss func-
tion parameter Alpha based on the current situation.

2.3 Hyper-parameters Fine-tuning

Epoch Selection. To ascertain the optimal F1
score, our experiment methodically adjusted the
training duration, varying the epoch count from 1 to
20 in increments of one. At each epoch, we metic-
ulously documented the corresponding F1 scores.
As depicted by the blue line in Figure 5, a detailed
analysis reveals that the F1 score peaks at epoch 12.
This finding underscores the significance of epoch
selection in maximizing model performance, illus-
trating that a carefully calibrated training period
can significantly influence the effectiveness of the
model’s predictive accuracy.

Alpha Setting. Building upon this groundwork,
we embarked on a series of experiments aimed at
identifying the optimal value of alpha within the
loss function, meticulously adjusting alpha from
0.1 to 1 in increments of 0.1. This systematic vari-
ation is represented by the green line in the accom-
panying graph. Through careful analysis, the ideal
F1 score was observed when alpha was set to 0.1.
This discovery not only highlights the critical role
of alpha in tuning the loss function for enhanced
model performance but also establishes a direct
correlation between the fine-tuning of alpha and
the achievement of peak predictive precision.

3 Experimental Results

In our methodology, we conducted two con-
trol trials by varying the loss function parame-
ter Alpha, and selected three models(BERT-base-
uncased(Devlin et al., 2018), ALBERT-base(LLan
et al., 2019), and Biolinkbert-large)as outlined in



Table 1, aligning with the structure of our exper-
iment. Subsequent to a rigorous examination of
the experimental outcomes, it became evident that
the experimental cohort employing the composite
CE+SCL loss function surpassed the cohort uti-
lizing the standalone CE loss function. This en-
hancement was observed across multiple metrics,
including F1 score, recall, faithfulness, and con-
sistency, specifically within the ALBERT-base and
Biolinkbert-large models.

Upon comprehensive evaluation, the Biolinkbert-
large model consistently demonstrates outstand-
ing stability and superior performance. While the
BERT-based-uncased model, employing the Cross-
Entropy (CE) loss function, achieved the highest
Precision score, it also registered relatively lower
scores in terms of Faithfulness and Consistency. To
encapsulate, the Biolinkbert-large model has ex-
hibited exceptional proficiency in addressing this
particular challenge.

4 Conclusion

This study has presented a comprehensive analysis
of the effectiveness of BioLinkBERT in enhancing
clinical trials. Our research has meticulously fine-
tuned the BioLinkBERT-large model with a novel
mixed loss function. The experimental results, par-
ticularly the achievement of an F1 score of 0.72,
underscore the potential of leveraging advanced
pre-trained language models in medical research.
Our findings suggest that the integration of con-
trastive learning and cross-entropy loss functions
significantly improves the model’s performance,
indicating a promising direction for future research
in biomedical text mining.

Moreover, the success of this project opens new
avenues for exploring the application of language
models like BioLinkBERT in other domains of
healthcare and medical research. Future work
could focus on expanding the dataset, experiment-
ing with different architectures, and exploring the
impact of domain-specific adaptations on model
performance. This could potentially lead to break-
throughs in how we process, understand, and derive
insights from clinical trial reports, ultimately con-
tributing to the advancement of medical science
and patient care.
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Abstract

This paper describes the system of the team
NRK for Task A in the SemEval-2024 Task
1: Semantic Textual Relatedness (STR). We
focus on exploring the performance of ensem-
ble architectures based on the voting technique
and different pre-trained transformer-based lan-
guage models, including the multilingual and
monolingual BERTology models. The ex-
perimental results show that our system has
achieved competitive performance in some lan-
guages in Track A: Supervised, where our sub-
missions rank in the Top 3 and Top 4 for Al-
gerian Arabic and Amharic languages. Our
source code is released on the GitHub site'.

1 Introduction

The SemEval-2024 Task 1 (Ousidhoum et al.,
2024b) aims at detecting the degree of semantic
relatedness between pairs of sentences across 14
different languages, encompassing Afrikaans, Al-
gerian Arabic, Amharic, English, Hausa, Hindi,
Indonesian, Kinyarwanda, Marathi, Moroccan Ara-
bic, Modern Standard Arabic, Punjabi, Spanish,
and Telugu. This shared task has three main tasks,
each focusing on different aspects of predicting
semantic textual relatedness within sentence pairs.

Semantic Textual Relatedness (STR) is a task
in Natural Language Processing (NLP) that aims
to measure the degree of semantic relatedness be-
tween two text passages, typically sentences. STR
plays a crucial role in various NLP applications, as
it allows computers to understand the relationships
between different pieces of text. As mentioned
in (Abdalla et al., 2023), it is also employed in
chatbots and dialogue systems to understand the
user’s intent and in question-answering systems
to identify answer passages that are semantically
related to the question. Additionally, STR finds
applications in text summarization, where it helps

"https://github.com/KiRzEa/Semeval2024-
SemanticTextualRelatedness
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identify the most important and semantically rel-
evant sentences to create a concise summary of a
longer document. STR also plays a role in text
generation tasks, such as machine translation and
dialogue systems, by guiding the model to generate
text that is semantically related to the input or con-
text. However, accurately measuring STR presents
several challenges. One key challenge lies in cap-
turing the nuances of language, such as synonyms,
paraphrases, and ambiguity. Another challenge is
dealing with different languages and cultural con-
texts, where semantic relationships might not be
directly translatable.

Our team only focuses on addressing Track A
in the shared task. Our approach is based on the
domain adaption for different transformer-based
models, and then we continue to fine-tune the
pre-trained transformer-based models on the task-
specific training data. Therefore, our system is
able to leverage domain-specific knowledge to im-
prove performance. Subsequently, we train a cross-
encoder model on the adapted transformer-based
models, harnessing its ability to capture semantic
relatedness between sentence pairs effectively. To
further enhance the robustness and performance of
our predictions, we adopt a weighted voting tech-
nique to combine the outputs of multiple models.

2 Background

2.1 Problem Description

This study investigates the task of predicting Se-
mantic Textual Relatedness (STR) between sen-
tence pairs across 14 languages. Each sentence pair
will be associated with a human-annotated related-
ness score ranging from O (completely unrelated)
to 1 (maximally related). There are three Tracks
for participants, however, in our work, we only fo-
cus on Track A: The first task entails a supervised
approach, wherein participants are tasked with de-
veloping systems that leverage labelled training

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 76-81
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Figure 1: Relatedness Score distribution over languages
on the training set.

datasets to infer the degree of semantic relatedness
between sentence pairs.

2.2 Data Description

The dataset (Ousidhoum et al., 2024a) typically
contains pairs of text along with their correspond-
ing relatedness score, which indicates how seman-
tically related the two fragments are.

Figure 1 shows the distribution of relatedness
score over languages. Among the languages in-
cluded in the dataset, English comprises the largest
subset of sentence pairs. The remaining languages
also contribute sentence pairs, albeit with varying
degrees of representation. It is notable that while
most languages exhibit relatedness score distribu-
tions spanning the entire range of 0 to 1, some
languages demonstrate more limited distributions.

3 Related Work

STR is a fundamental concept which has been con-
sidered as an important role in language under-
standing tasks. Historically, many previous stud-
ies focused on semantic similarity, which aims to
measure the likeness or resemblance between lin-
guistic elements based on their meaning (Abdalla
et al., 2023). Unlike semantic similarity, which
often involves assessing the degree of overlap or
similarity in meaning between words or phrases,
STR involves determining the overall relatedness or
closeness in meaning between pairs of sentences or
longer textual units (Mohammad and Hirst, 2012).
(Gabrilovich et al., 2007) proposed a novel method
called Explicit Semantic Analysis (ESA) for fine-
grained semantic representation of unrestricted nat-
ural language texts. The effectiveness of ESA is
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evaluated by automatically computing the degree
of semantic relatedness between fragments of natu-
ral language text. Hussain et al. (2023) proposed
a novel vector space model for computing seman-
tic similarity and relatedness between concepts by
aggregating taxonomic features from WordNet and
Wikipedia.

With the emergence of deep learning models,
Gu et al. (2023) introduced a novel Siamese Man-
hattan LSTM-SNP approach (SiMaLSTM-SNP)
which combines Word2Vec and a 10-layer Atten-
tion strategy to represent and extract sentence pairs.
The multi-head self-attention layer identifies text
associations and redistributes hidden state weights.
The last hidden state is extracted, and the related-
ness score is calculated using the Manhattan dis-
tance. Hany et al. (2023) employed a two-layered
approach. Firstly, embedding similarity techniques
were utilized, leveraging seven different transform-
ers to obtain vectors for each pair of sentences.
Secondly, a classical machine learning regressor
was trained on these seven vectors. This research
highlights the potential of combining embedding
similarity techniques with machine learning meth-
ods to enhance relatedness score assessment and
other NLP tasks.

4 System Description

4.1 Approach

The diagram in Figure 2 illustrates our ensemble
approach for Task A. The framework consists of
two main layers: a layer of cross-encoder model,
and a voting ensemble layer. Firstly, the input sen-
tence pair is passed through a single encoder to
produce a joint representation which captures the
semantic relationship between the two sentences in
the pair and produces a number ranging from 0 to
1. Following this, the predictions of chosen models
are combined using the weighted voting technique
with each weight determined by its performance in
the development phase.

Our approach commences with domain adapta-
tion on masked language modeling (MLM) task
(3) which has been shown a powerful training strat-
egy for learning sentence embeddings (Gururangan
et al., 2020). To achieve this, we leverage each sen-
tence in the sentence pairs of the training dataset
to train MLM which is called In-domain corpus
in Figure 2. This process involves masking cer-
tain tokens within the input sentences and train-
ing the model to predict the masked tokens based
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Figure 2: The overall framework of our system for the Track A: Supervised in the Semantic Textual Relatedness
shared task.

on their context. In the next stage, we employ a
cross-encoder architecture from Sentence-BERT
(Reimers and Gurevych, 2019) which is a variant
of the BERT model specifically designed for gener-
ating fixed-size sentence embeddings that capture
semantic similarity between sentences. The cross-
encoder architecture of SBERT processes sentence
pairs jointly, encoding them into dense fixed-size
vectors while considering their contextual informa-
tion and semantic relationships. After obtaining the
logits, we apply the sigmoid function to transform
the logits into scores ranging from O to 1.

1

Trer W

o(x) =

This transformation ensures that the output

scores are normalized and represent the degree of

semantic relatedness between sentence pairs. To

optimize the model during training, we utilize Bi-
nary CrossEntropy loss function £ as follows:

N
Zyzlog pi)+(1—y;) log(1—p;)] (2)

Fine-tuning Language Model: As can be
seen in Figure 2, we utilize the power of pre-
trained contextual language models, encompassing
BERT-based models which are BERT (?),
DeBERTa-V3 (He et al., 2022), XLM-RoBERTa
(Conneau et al., 2019) and E5 (Wang et al., 2022).
To fine-tune the language models, we followed
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Figure 3: Masked language modelling task illustration
for BERT-based models.

the approach of (Devlin et al., 2019), which is

presented in detail below.

Voting Scheme: Our motivation for apply-
ing an ensemble approach is to take advantage of
the performances of various models. Given pre-
dictions {9, , Ugs , --, Yo, } of the n base regressors.
We applied the weighted voting technique to merge
the predictions of the base models. In our case,
the individual regressors are treated based on their
performance in the evaluation phase. We compute
the weighted sum of the output of n regressors as
the final prediction.

4.2 Pre-trained Contextual Language Models
We briefly explain the pre-trained language models
used in this paper.

* mBERT: we use the multilingual version of
BERT (Devlin et al., 2019) which is trained



Table 1:

Results of our best submission compared with two top systems on 9 languages for Track A.

Track Al: Algerian Arabic

Track A2: Ambharic

Track A3: English

Team Score Team Score | Team Score
Top 1 0.6823 Top 1 0.8886 | Top 1 0.8596
Top 2 0.6788 Top 2 0.8878 | Top 3 0.8532
Ours (Top 3) 0.6736 Ours (Top 4) 0.8641 | Ours (Top 14) 0.8352

Track A4: Hausa

Track AS: Kinyarwanda

Track A6: Marathi

Team Score Team Score | Team Score
Top 1 0.7642 Top 1 0.8169 | Top 1 0.9108
Top 2 0.7472 Top 2 0.8134 | Top2 0.8968
Ours (Top 8) 0.6719 Ours (Top 6) 0.7568 | Ours (Top 6) 0.8792

Track A7:Moroccan Arabic

Track A8: Spanish

Track A9: Telugu

Team Score Team Score | Team Score
Top 1 0.8625 Top 1 0.7403 | Top 1 0.8733
Top 2 0.8596 Top 2 0.7310 | Top 2 0.8643
Ours (Top 6) 0.8269 Ours (Top 12)  0.6898 | Ours (Top8)  0.8341

on the top 104 languages with the largest
Wikipedia using a masked language modelling
(MLM) objective with case sensitivity.

XLM-R: XLM-R (Conneau et al., 2020) is
another multilingual language model. It is pre-
trained on 2.5TB of filtered CommonCrawl
data containing 100 languages.

mDeBERTa-V3: a DeBERTa (He et al.,
2020) version improved the efficiency of
original DeBERTa using ELECTRA-Style
pre-training with Gradient Disentangled Em-
bedding Sharing (He et al., 2022). In our
case, we choose the multilingual version of
DeBERTa-V3 which was pre-trained only on
the ConmmonCrawl dataset and other ver-
sions, which are fine-tuned on the XNLI
dataset and multilingual-NLI-26lang-2mil7
dataset (Laurer et al., 2024), respectively.

ES: E5 (Wang et al., 2022) is trained in a con-
trastive manner with weak supervision signals
from our curated large-scale text pair dataset.
We chose monolingual (which is trained only
in English) and multilingual versions for our
task.

5 Experimental Setup

Data and Pre-processing: We utilized the official
training set for training models. The development
set was used to determine the weights for each
model chosen to apply the voting technique based
on their performance.
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Configuration Settings: We implemented our
models using the Trainer API from the Hugging
Face library (Wolf et al., 2020) for the MLM task
and employed the Cross Encoder architecture from
SBERT (Reimers and Gurevych, 2019) for the
Cross Encoder task.

e MLM Task: The maximum input length is set
to 512 tokens, and the number of epochs is set
to 10 with a batch size of 16 for all languages.
During the training phase of the MLM, we set
the MLM probability to 0.15, which means
a token will be replaced with the [MASK]
token in the input sequence with a probability
of 0.15.

Cross Encoder Task: The maximum input
length is set to 512 tokens, and the number of
epochs is set to 10 with a batch size of 16 for
all languages.

We used the AdamW optimizer with a linear sched-
ule warm-up technique for both the MLM task and
the Cross Encoder task.

Submission Systems: We submitted the perfor-
mance of the ensemble weighted voting model
for all languages for both the development phase
and evaluation phase and as mentioned above, the
weights of each model based on its performance in
the development phase and determined manually.

6 Results and Discussion

In this section, we present the official results of our
final submission model for Track A in the SemEval



Table 2: Results of all the base models and our ensemble models on the development dataset.

Track Al: Algerian Arabic

Track A2: Amharic

Track A3: English

Model Score | Model Score | Model Score
XLMR-large 0.570 | XLMR-large 0.878 | XLMR-large 0.818
mBERT 0.566 | mBERT 0.257 | mBERT 0.798
mES5-base 0.559 | mES-base 0.828 | mES-base 0.805
mE5-large 0.523 | mE5-large 0.889 | mES5-large 0.824
mDeBERTa-v3-base 0.561 | mDeBERTa-v3-base 0.859 | mDeBERTa-v3-base 0.821
mDeBERTa-v3-xnli  0.664 | mDeBERTa-v3-xnli 0.878 | mDeBERTa-v3-xnli  0.823
- - - - ES5-v2-large 0.828
Ensemble 0.659 | Ensemble 0.891 | Ensemble 0.840

Track A4: Hausa

Track AS: Kinyarwanda

Track A6: Marathi

Model Score | Model Score | Model Score
XLMR-large 0.785 | XLMR-large 0.641 | XLMR-large 0.858
mBERT 0.741 | mBERT 0.651 | mBERT 0.822
mES5-base 0.747 | mES-base 0.664 | mES-base 0.825
mES5-large 0.752 | mES-large 0.652 | mE5-large 0.860
mDeBERTa-v3-base 0.718 | mDeBERTa-v3-base 0.646 | mDeBERTa-v3-base 0.829
mDeBERTa-v3-xnli  0.759 | mDeBERTa-v3-xnli  0.662 | mDeBERTa-v3-xnli  0.839
Ensemble 0.791 | Ensemble 0.665 | Ensemble 0.862

Track A7: Moroccan Arabic

Track A8: Spanish

Track A9: Telugu

Model Score | Model Score | Model Score
XLMR-large 0.833 | XLMR-large 0.665 | XLMR-large 0.803
mBERT 0.831 | mBERT 0.673 | mBERT 0.790
mE5-base 0.840 | mES5-base 0.666 | mES5-base 0.797
mES5-large 0.851 | mES5-large 0.691 | mES-large 0.809
mDeBERTa-v3-base  0.816 | mDeBERTa-v3-base 0.729 | mDeBERTa-v3-base 0.805
mDeBERTa-v3-xnli  0.818 | mDeBERTa-v3-xnli 0.701 | mDeBERTa-v3-xnli  0.810
Ensemble 0.860 | Ensemble 0.728 | Ensemble 0.827

2024 Task 1, comparing them with the results of
the two top-performing teams for each sub-track.

Table 1 showcases the performance of our en-
semble model alongside that of the top two teams
across nine tracks. Our system demonstrates com-
petitive performance across four sub-tracks: Track
A1l (Algerian Arabic), Track A2 (Ambharic), Track
A3 (English), and Track A7 (Moroccan Arabic).
Additionally, we provide the results of both base
models and ensemble systems on the development
set. As indicated in Table 2, the ensemble gives bet-
ter performance in most of the sub-tracks. Notably,
we observe a decline in the performance of the
ensemble on certain tracks (e.g., Track A1, Track
AS8) attributed to the presence of a base model that
significantly outperforms the others and when this
superior model is combined with the rest, it leads to
a degradation in the overall performance of the en-
semble that underscores the complexity of ensem-
ble. In Track A2, the mBERT model was excluded
from the ensemble due to its poor performance,
the ensemble was thus formed using only the re-
maining models. Consequently, we opted for the
ensemble model as the final submission system
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over the best model identified on the development
set.

7 Conclusion

This paper introduces a straightforward yet ef-
fective ensemble architecture for Track A in the
SemEval-2024 Task 1: Semantic Textual Relat-
edness. Our system leverages fine-tuning of pre-
trained transformer-based language models as base
regressors, coupled with a weighted voting tech-
nique to amalgamate predictions from diverse base
models. Experimental results demonstrate its com-
petitive performance across select languages in
Track A without any additional resources. For fu-
ture works, we propose enhancing our system by
integrating African transformer-based models and
exploring data augmentation techniques to improve
the overall performance.
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Abstract

Participants in the SemEval-2024 Task 6 were
tasked with executing binary classification
aimed at discerning instances of fluent over-
generation hallucinations across two distinct
setups: the model-aware and model-agnostic
tracks. That is, participants must detect gram-
matically sound output which contains incor-
rect or unsupported semantic information, re-
gardless of whether they had access to the
model responsible for producing the output
or not, within the model-aware and model-
agnostic tracks. Two tracks were proposed for
the task: a model-aware track, where organiz-
ers provided a checkpoint to a model publicly
available on HuggingFace for every data point
considered, and a model-agnostic track, where
the organizers do not. In this paper, we discuss
the application of a Llama model to address
both the tracks. Our approach reaches an accu-
racy of 0.62 on the agnostic track and of 0.67
on the aware track.

1 Introduction

In the modern Natural Language Generated (NLG)
domain, two interconnected challenges persist:
neural models often produce linguistically fluent,
yet inaccurate, output, while evaluation metrics pri-
marily focus on fluency rather than accuracy. This
situation leads to the phenomenon of “hallucina-
tions,” wherein neural networks generate output
that sound plausible but deviate from the intended
meaning, posing difficulties in automatic detection.
However, in many NLG applications, the accuracy
of output is paramount. For instance, generating
translations that diverge from the source text un-
dermines the effectiveness of machine translation
systems. Also, as reported in recent survey papers,
LLMs are prone to hallucinations, as proven in a va-
riety of recent survey papers (Huang et al., 2023; Ji
et al., 2023; Zhang et al., 2023). This LLMs draw-
back led to the proposal of SemEval-2024 Task
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6 (Mickus et al., 2024), where participants were
tasked with conducting detection of hallucinations
across two subtracks: model-agnostic and model-
aware. Put simply, participants were required to
detect grammatically correct output containing in-
correct or unsupported semantic information, re-
gardless of access to the model responsible for gen-
erating them. In the literature, the task has been
recently addressed with prompt engineering strate-
gies that provide further context to the models to
properly drive and control the models’ output (Mar-
tino et al., 2023; Li et al., 2024).

To aid in this assignment, a dataset including
references, inputs, checkpoints, and outputs from
systems trained for three NLG tasks (definition,
modeling, machine translation, and paraphrase gen-
eration) was provided. These systems were trained
with varying levels of accuracy. The dataset in-
cluded development and test sets annotated by a
minimum of five annotators, with a majority vote
establishing the gold label for binary annotations.

To address these objectives, there is an ongoing
demand for automated tools capable of extracting
and categorizing data, facilitating the classification
of NLG content containing hallucinations. Recent
advancements in machine and deep learning archi-
tectures have spurred heightened interest in Natural
Language Processing (NLP). Substantial endeavors
have been directed towards devising techniques for
the automated identification and categorization of
textual content accessible on the internet today. In
the literature, to perform text classification tasks,
several strategies have already been proposed (Kim,
2014; Siino et al., 2024a; Lomonaco et al., 2023).

To face with the task, we propose a Transformer-
based approach which made use of Llama (Touvron
et al., 2023). We used the model in a zero-shot
setup described in the rest of this paper. Specifi-
cally, we prompted the latest pre-trained version of
Llama with any sample in the dataset. Specifically,
we provided a context and a sentence, asking the
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model if the sentence was really supported by the
context or was an example of hallucination.

The subsequent sections of the paper are struc-
tured as follows: Section 2 offers background in-
formation on Task 6, held at SemEval-2024. In
Section 3, we outline the approach introduced in
this study. Section 4 delves into the specifics of the
experimental setup employed to reproduce our find-
ings. The outcomes of the official task and relevant
discussions are presented in Section 5. Finally, Sec-
tion 6 concludes our study and suggests avenues
for future research.

We make all the code publicly available and
reusable on GitHub!.

2 Background

This section furnishes background information re-
garding Task 6, held at SemEval-2024 (named,
SHROOM). SHROOM participants are tasked with
identifying grammatically correct output contain-
ing incorrect semantic information, regardless of
their access to the model responsible for generating
the output.

The data files are formatted as JSON lists, with
each element representing a datapoint. Each data-
point corresponds to a different model production
and includes the following details:

* Task (task): indicating the objective the model
was optimized for.

* Source (src): the input provided to the models
for the generation.

* Target (tgt): the intended reference "gold" text
that the model should generate.

» Hypothesis (hyp): the actual output generated
by the model.

» Annotator labels (labels): indicating whether
each individual annotator considered this dat-
apoint to be a hallucination or not.

* Majority-based gold label (label): based on
the previous per-annotator labels.

* Probability of hallucination
(p(Hallucination)): representing the propor-
tion of annotators who deemed this specific
datapoint to be a hallucination.

"https://github.com/marco-siino/SemEval2024/

&3

* Indicator of semantic reference (ref): specify-
ing whether the target, source, or both contain
the semantic information necessary to deter-
mine if a datapoint is a hallucination.

Furthermore, model-aware datapoints also iden-
tify the model used to produce each datapoint, rep-
resented by a Hugging Face identifier (model).

For each sample in the dataset, there is a source
text, a target text and a hypothesis text. Depending
on the task (DM, MT, PG) the goal is to determine
if the Hypothesis contains any hallucination.

In the Table 1 there are three different samples
from the official test set. Even if the labels are
shown in the table along with the hallucination
probabilities, during the evaluation phase of the
competition, labels, and probabilities were hidden
for the participants.

3 System Overview

Even if it has already been proved that the Trans-
formers are not necessarily the best option for every
text classification task (Siino et al., 2022), depend-
ing on the goal some strategies like domain-specific
fine-tuning (Sun et al., 2019; Van Thin et al., 2023),
or data augmentation (Lomonaco et al., 2023; Man-
gione et al., 2022; Siino et al., 2024a) can be bene-
ficial for the considered task.

However, to address the task 6 hosted at
SemEval-2024, we made use of a zero-shot learn-
ing approach (Chen et al., 2023; Wahidur et al.,
2024), making use of the GPT Transformer named
Llama 7B. This was dictated by our choice to bear
in mind the computational efficiency without fur-
ther feature engineering and/or heavy data prepro-
cessing strategies.

Llama 2, a suite of large language models
(LLMSs), includes pretrained and fine-tuned models
ranging from 7 to 70 billion parameters. Specif-
ically tailored for dialogue applications, the fine-
tuned LLMs are designated as Llama 2-Chat. The
models demonstrate interesting performance when
compared to open-source chat models across the
majority of assessed benchmarks. Additionally,
according to human evaluations focusing on help-
fulness and safety, they could potentially serve as
viable substitutes for closed-source models. Even
if several others Open LLMs have proved to be
able of outperforming Llama (Jiang et al., 2023),
here we investigate the model’s actual performance
on this specific task. The authors of the model of-
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Target Text Hypothesis Text Label p(Hallucination)
"Would you be sur-| "You’re gonna be sur- | Not Hallucination 0.0

prised if I told you | prised if I say my real

my name isn’t actually | name isn’t Tom?"

Tom?"

"There will be plenty of | "The food will be full.” | Hallucination 0.8

food."

"The two brothers are | "There’s a lot of | Hallucination 1.0

pretty different.” friends."”

Table 1: Three samples from the official test set are provided. Together with the labels for each sample, is also

reported the probability of hallucination.

fer a comprehensive account of the fine-tuning ap-
proach and safety enhancements for Llama 2-Chat,
with the aim of facilitating community engagement
and contributing to the responsible advancement of
LLM technology.

The Llama 2 suite comprises:

e [Llama 2: an enhanced iteration of Llama 1,
trained on a revised assortment of publicly
available data. Notable improvements include
a40% augmentation in the size of the pretrain-
ing corpus, a doubling of the model’s context
length, and the adoption of grouped-query at-
tention. Variants of Llama 2 with 7 billion, 13
billion, and 70 billion parameters are being
released. Additionally, authors have trained
34 billion parameter variants, detailed in their
paper but not released to the public;

¢ [lama 2-Chat: a fine-tuned version of Llama
2 tailored for dialogue applications.

To develop the new Llama 2 model family, the
authors commenced with the pretraining method-
ology outlined in Touvron et al. 2023, utilizing an
optimized autoregressive transformer. However,
the authors made several modifications to enhance
performance. These included more rigorous data
cleaning, updates to data mixtures, training on 40%
more total tokens, doubling the context length, and
implementing grouped-query attention (GQA) to
enhance inference scalability, particularly for larger
models.

More specifically, given the task hosted at
SemEval-2024, we asked the model: “Is the Sen-
tence supported by the Context above? Answer
using ONLY yes or no:”. To this request, the model
replied with one or more words — usually starting
with yes or no — that we parsed to extract one of
the two labels. For example, given the context:

“The East African Islands are in the
Indian Ocean off the eastern coast of
Africa”

The sentence:

“The eastern islands of the Indian Ocean
are located in the eastern part of the In-
dian Ocean”

And our question:

Is the Sentence supported by the Context
above? Answer using ONLY yes or no:

The model replied with:

no, the sentence is not supported by the
context provided

that we mapped into the label Hallucination.

It is worth noting that we needed to post-process
the model answers to extract only the first word
of the reply (i.e., yes or no). The model barely
replied with a single word, even if prompted with
the specific request of limiting its answer.

In the literature, several prompt engineering
strategies have already been introduced (Denny
et al., 2023; Giray, 2023). However, also from this
perspective, we opted for a straight interaction with
the GPT model, without any further engineering
of the process. Finally, we collected all the predic-
tions provided on the test set to into a JSON file
with the required format to submit our predictions.

As noted in the recent study by Siino et al. 2024b,
the contribution of preprocessing for text classifi-
cation tasks is generally not impactful when using
Transformers. More specifically, the best combina-
tion of preprocessing strategies is not very different
from doing no preprocessing at all in the case of
Transformers. For these reasons, and to keep our
system highly fast and computationally light, we
have not performed any preprocessing on the text.
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4 Experimental Setup

We implemented our model on Google Colab. The
library we used come from HuggingFace and as
already mentioned is Llama 2%. Llama 2 comprises
a series of pretrained and fine-tuned generative text
models with parameter ranges spanning from 7
billion to 70 billion. This repository specifically
hosts the 7B fine-tuned model, tailored for dialogue
applications and converted to the Hugging Face
Transformers® format. We also imported the Llama
library (Touvron et al., 2023) from llama_cpp. The
library is fully described on GitHub®*. The dataset
provided for all the phases are available on the
Official Competition page. We did not perform any
additional fine-tuning on the model. To run the
experiment, a T4 GPU from Google has been used.
After the generation of predictions, we exported
the results on the format required by the organizers.
As already mentioned, all of our code is available
on GitHub.

5 Results

Submissions were divided into two tracks: a model-
aware track, where organizers provide a checkpoint
to a model publically available on Hugging Face for
every data point considered, and a model-agnostic
track, where organizers do not. The organizers en-
couraged participants to make use of model check-
points in creative ways. For both tracks, all par-
ticipants’ submissions were evaluated using two
criteria: the accuracy that the system reached on
the binary classification; and the Spearman corre-
lation of the systems’ output probabilities with the
proportion of the annotators marking the item as
overgenerating. The evaluation script was made
available’, along with baseline systems and format
checkers.

In the Table 2 we report the results obtained by
our approach. In the rows are reported the two
tracks (i.e., model agnostic or model aware) while
in the column are reported the results according to
the output score provided on Codal.ab. As can be
noted from the Tables 3, 4 our proposed approach
it is not able to outperform the baseline provided
for the task (i.e., Mistral 7B).

In the Table 3 and in the Table 4, the results

2https://huggingface.co/TheBloke/
Llama-2-7B-Chat-GGUF

3https ://huggingface.co/

4https ://github.com/ggerganov/1lama. cpp

Shttps://helsinki-nlp.github.io/shroom/
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Acc Rho
Agnostic  0.625 0.204
Aware 0.671 0.244

Table 2: The method’s performance on the test set. In
the table are reported the results obtained by our private
area on CodaLab.

obtained by the first three teams and by the last
one, as showed on the official task page, are re-
ported. Compared to the best performing models,
our simple approach exhibits some room for im-
provements. Furthermore, our proposed approach
is not able to outperform the baseline provided for
the task. For this reason, we are confident that no
further investigations should be performed for this
task making use of the Llama model. However, it is
worth notice that it required no further pre-training
and the computational cost to address the task is
manageable with the free online resources offered
by Google Colab.

6 Conclusion

This paper presents the application of a Llama-
model for addressing the Task 6 at SemEval-2024.
For our submission, we decided to follow a zero-
shot learning approach, employing as-is, an in-
domain pre-trained Transformer. After several ex-
periments, we found beneficial to build a prompt
containing the question for the model. Then we
provide as a prompt the target sentence and the
hypothesis sentence. The model was asked to de-
cide if the hypothesis sentence is supported by the
content of the target sentence, or if it is just a hallu-
cinated text. The task is challenging, and there is
still opportunity for improvement, as can be noted
looking at the final ranking. Possible alternative ap-
proaches include utilizing the few-shot capabilities
or also the use of other models like GPT and T5, in-
creasing the size of the training set by using further
data, or directly integrating other samples from the
training and from the development sets. Further
improvements could be obtained with a fine-tuning
and modelling the problem as a text classification
task. Furthermore, given the interesting results re-
cently provided on a plethora of tasks, also other
few-shot learning (Wang et al., 2023; Maia et al.,
2024; Siino et al., 2023; Meng et al., 2024) or data
augmentation strategies (Muftie and Haris, 2023;
Tapia-Téllez and Escalante, 2020; Siino and Tin-
nirello, 2023) could be employed to improve the


https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
https://huggingface.co/
https://github.com/ggerganov/llama.cpp
https://helsinki-nlp.github.io/shroom/

TEAM NAME ACC RHO
GroupCheckGPT (1) 0.847 0.769
OPDAI (2) 0.836 0.732
HIT_WL (3) 0.831 0.768
baseline system 0.697 0.403
OxYuan (48) 0.461 0.134

Table 3: Comparing performance on the test set for the model agnostic track. In the table are shown the results
obtained by the first three teams and by the last one. In parentheses is reported the position in the official final

ranking.
TEAM NAME ACC RHO
HaRMoNEE (1) 0.813 0.699
GroupCheckGPT (2) 0.806 0.715
TU Wien (3) 0.806  0.707
baseline system 0.745 0.488
octavianB (45) 0.483 -0.064

Table 4: Comparing performance on the test set for the model aware track. In the table are shown the results obtained
by the first three users and by the last one. In parentheses is reported the position in the official final ranking.

results. Looking at the final ranking, our simple
approach exhibits some room for improvements.
However, it is worth notice that required no fur-
ther pre-training and the computational cost to ad-
dress the task is manageable with the free online
resources offered by Google Colab.
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Abstract

Safe and reliable natural language inference is
critical for extracting insights from clinical trial
reports but poses challenges due to biases in
large pre-trained language models. This paper
presents a novel data augmentation technique
to improve model robustness for biomedical
natural language inference in clinical trials. By
generating synthetic examples through seman-
tic perturbations and domain-specific vocab-
ulary replacement and adding a new task for
numerical and quantitative reasoning, we in-
troduce greater diversity and reduce shortcut
learning. Our approach, combined with multi-
task learning and the DeBERTa architecture,
achieved significant performance gains on the
NLI4CT 2024 benchmark compared to the orig-
inal language models. Ablation studies validate
the contribution of each augmentation method
in improving robustness. Our best-performing
model ranked 12th in terms of faithfulness and
8th in terms of consistency, respectively, out of
the 32 participants.

1 Introduction

In the domain of clinical trial analysis, researchers
and practitioners are overwhelmed with an ever-
expanding corpus of clinical trial reports (CTRs).
The current repository contains a vast number of
documents and is rapidly growing, a trend that
correlates with the increasing prevalence of cross-
national, cross-ethnic, and multi-center clinical
studies (Bastian et al., 2010). This growth necessi-
tates a scalable approach to evaluate and interpret
the massive amount of data in these reports (Gold-
berg et al., 2017; Li and Bergan, 2020).

Recent advances in Natural Language Process-
ing (NLP) offer promising avenues for the auto-
mated analysis of CTRs. Such analyses include
medical evidence understanding (Nye et al., 2021),
information retrieval (Wang et al., 2023b), causal
relationship identification (Cai et al., 2017), and
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the inference of underlying reasons for trial out-
comes (Steinberg et al., 2023). Integrating natural
language inference (NLI) with CTRs has the po-
tential to revolutionize the large-scale, NLP-based
examination of experimental medicine (Kim and
Delen, 2018). Despite the progress in NLP, the
application of large language models to this task
presents several challenges, including susceptibil-
ity to shortcut learning, hallucination, and biases
stemming from word distribution patterns within
the training data (Huang et al., 2023).

To address these issues, we propose a novel
method that leverages generative language models,
such as GPT-3.5', and biomedical domain knowl-
edge graphs to enhance data diversity. Our ap-
proach introduces three types of data augmenta-
tion: numeric question-answering data generation,
semantic perturbations, and domain-tailored lexical
substitutions for the biomedical field. By combin-
ing these data augmentation techniques with multi-
task learning and the DeBERTa (He et al., 2021)
architecture, we have achieved significant improve-
ments in terms of faithfulness and consistency on
the NLI4CT 2024 dataset. This paper outlines our
approach, elaborates on the design of the pertur-
bations and the multi-task learning process, and
demonstrates the efficacy of our method through
rigorous evaluation.

2 Background

In a crucial field like healthcare, where misinterpre-
tations can have severe implications, NLI models
must present precise predictions and reliable in-
terpretations. This highlights the importance of
accurate and trustworthy reasoning in these NLI
models.

SemEval 2024 Task 2 (Jullien et al., 2024) pro-
vides multi-sentence textual data consisting of pa-
tient case histories and medical reports. The objec-

"https://openai.com/chatgpt
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tive of this task is to predict the logical relationship
between the CTR and a given statement, includ-
ing entailment and contradiction. The evaluation
emphasizes prediction accuracy as well as the ro-
bustness to the controlled interventions, helping
increase healthcare practitioners’ trust in the sys-
tem’s predictions.

Enhancing the robustness of NLI models for
healthcare can be strategically achieved using data
augmentation techniques. Synthetic data genera-
tion via techniques like conditional text genera-
tion can expand training data diversity and volume
to improve model generalization capabilities (Liu
et al., 2020; Puri et al., 2020; Bayer et al., 2023).
Meanwhile, multi-task learning with auxiliary ob-
jectives related to logical reasoning and explana-
tion generation can enhance faithful reasoning abil-
ities (Li et al., 2022). Useful domain knowledge
can be captured by training language models on
domain-specific medical textual datasets (Singhal
et al., 2023; Tian et al., 2024). Complementary
data-centric methods can augment model architec-
ture design to develop more capable, trustworthy,
and clinical NLI systems.

3 System overview

In this section, we describe the proposed system to
tackle the NLI problem and enhance the model’s ro-
bustness against interventions spanning numerical,
vocabulary, and semantic dimensions, as shown in
Figure 1.

3.1 Data for Numerical Question Answering
Task

A major limitation of many language models lies
in their tendency to learn linguistic patterns and
features from large-scale textual data while lacking
capabilities for numerical and quantitative reason-
ing (Geva et al., 2020). Such capabilities are crucial
for analyzing relationships between CTRs and cor-
responding claims. Although BERT-based models
pre-trained on NLI tasks, i.e. DeBERTa, can con-
duct general linguistic inference, they remain vul-
nerable to numerical perturbations in statements.
Therefore, we propose to leverage GPT-3.5 to
generate data tailored to the numerical question-
answering task based on original entailed state-
ments: The entailed statement, denoted as x, cor-
responding to a given CTR, is converted into a
question g that requires numerical reasoning. Sub-
sequently, three candidate choices ¢ are enumer-
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ated, each accompanied by an answer a extracted
from the original statements. The loss function em-
ployed for this task is binary cross-entropy and is
expressed as follows:

c=a

ACNQA:{ C#a

where ¢(-) is the function to determine if the can-
didate choice is the correct answer, and 0 is the
corresponding parameters for the DeBERTa back-
bone network and the additional classifier.

This numerical question-answering task serves
as an auxiliary task to enhance numerical reasoning
abilities. The final loss function for the system
combines the losses from this task and the main
NLI task, i.e.

—log go (CTR, g, c;)
—[1 —log go (CTR, g, c)]

L=LNrr+ )\ENQA

where A is the hyper-parameter to be tuned in the
validation phase.

3.2 Semantic Perturbation

We utilize GPT-3.5 to generate perturbed state-
ments based on the original entailed input, ob-
taining both semantic-altering variants labeled as
“contradictions” and semantic-preserving variants
labeled as “entailment”. Specifically, to produce
contradictory versions, guiding keywords such as
“contradicted” and “minor changes” are injected
into the input prompt to slightly modify the origi-
nal statement while altering the semantics to create
a contradiction. Conversely, to generate entailed
versions, guiding phrases such as “paraphrase” are
included in the prompt to rephrase the statement
extensively while retaining semantic equivalence.
This controlled semantic perturbation of the input
statement via guided text generation allows us to
efficiently augment the dataset with both contra-
dicting and entailing variants of the original input.

3.3 Vocabulary Replacement

When we analyze textual data in the clinical do-
main, we need to pay attention to the vocabulary
because it contains many terms that are specific to
this domain (Wang et al., 2018). However, most
NLI models are pre-trained on data from general
domains, and they are unaware of the meaning
or relevance of these terms (Wang et al., 2023a).
To address this problem, we use a combination of
biomedical knowledge graph embedding and statis-
tical model, which can help us find the most impor-
tant keyword to replace the term in the statement
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Figure 1: The overall demonstration of the proposed system. The upper part of the demonstration involves
the application of data augmentation techniques to entailed statements extracted from the original NLI dataset,
leveraging generative artificial intelligence (AI) and biomedical domain knowledge graphs. Specifically, we
undertake the following procedures: 1) Transformation of statements into multiple-choice questions accompanied by
corresponding answers; 2) Introduction of semantic perturbations to the original entailed statements; 3) Employing
a statistical method to identify keywords within the original entailed statements, followed by their substitution with
synonyms sourced from the biomedical knowledge graph. In the lower part of the demonstration, we incorporate
the original entailed statements, augmented data, and CTRs as training data to develop a classifier based on the

DeBERTa architecture.

and generate the augmented data to improve the vo-
cabulary alignment. Specifically, given a statement
x, consisting of n words, i.e. x = {wy, wa, ..., wy, }
and the set of all the statements, denoted as D, we
first remove all the stop-words and apply Term-
Frequency-Inverse Document Frequency (TF-IDF)
to identify the most important term in the statement,
i.e.
w* = arg max TF(w;, ) x IDF(w;, D)
w;ET

Subsequently, we locate a term in the biomedi-
cal embedding space that shares the same part-of-
speech and has the highest similarity score with the
chosen term, using it as the substitute, i.e.

_— . .
w* = arg?ulg&({szm(w ,w) |
PoS(w) = PoS(w™*)}

where V' is the biomedical term vocabulary and
PoS(-) is the part-of-speech of a word. In this way,
we can substitute w™* in the original statement with
w* to generate a new adversarial sample to enhance
the model robustness in the vocabulary aspect.
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4 Experimental setup

4.1 Dataset

Ent. Con. Alt. Pres. | SUM
Train 850 850 - - 1,700
Val. 100 100 1,606 336 2,142
Test 250 250 4,136 864 | 5,500

Table 1: Statistics of the validation and test set. “Ent.”
and “Con.” stands for entailment and contradiction,
while “Alt.” and “Pres.” stands for altering and preserv-
ing.

We conducted experiments on the NLI4CT 2024
dataset (Jullien et al., 2024), generated by clinical
domain experts and sourced from a large database
for clinical studies”>. The statistic of this dataset
is summarized in Table 1. The training data is the
same as the NLI4CT 2023 dataset (Jullien et al.,
2023) while there are perturbed samples in the val-
idation and testing sets.

“https://Clinical Trials.gov



4.2 Metrics

We first assessed the performance of the original
statements without any perturbation and recorded
the corresponding F1 score, precision, and recall.
Then, we assessed the performance of the contrast
set, consisting of interventions. Specifically, to
evaluate the model’s robustness to the semantic-
preserving interventions, we used consistency as
the metric, i.e.

N

Consistency = %Z L= |f(@i) = f(z)]
1

x; € C : Label(z;) = Label(x})

Where C' is the contrast set, and N is the num-
ber of the statements in the contrast set. 2 is the
perturbed statement for x; and f(-) computes the
final prediction from the model. For the semantic-
altering interventions, we evaluated the model us-
ing faithfulness, i.e.

N
Faithfulness = % ; |f (@) — f(z4)]
x; € C : Label(z;) # Label(z;), and f(z;) = Label(z;)

4.3 Implementation details

We downloaded DeBERTa models from the Hug-
gingface repository® and implemented our pro-
posed method based on Python 3.10 and Pytorch
2.1.1. During the model training, we used the
Adam optimizer and set the learning rate to 5e — 6
with a batch size of 4, following the original work
(He et al., 2021). The maximum sequence length
the model can take was set to 512. The epoch num-
ber was set to 20, and the early stopping based on
the validation set was applied to avoid overfitting.
The input format for the NLI task in this work is
structured as follows: [CLS] + CTR + [SEP] +
claim + [SEP]. In this structure, [CLS] serves as
the initial token for classification in DeBERTa, and
[SEP] acts as a separator token. For the vocabu-
lary replacement, we used the bio-medical domain
embedding from the work by (Zhang et al., 2019),
which has been pre-trained over the MeSH knowl-
edge graph*. For preprocessing, such as stop word
filtering and part-of-speech tagging, we used the
NLTK library’ in Python. We include prompts for
numerical question-answering data generation and
semantic perturbation in Table 2.

3https://huggingface.co/
*https://www.ncbi.nlm.nih.gov/mesh/
>https://www.nltk.org/
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5 Results

We conducted experiments with different-sized De-
BERTa models, iteratively adding augmented data
from three different interventions to the training
set. As shown in Table 3, incorporating all three
types of augmented data greatly improved the av-
erage faithfulness and consistency scores. Specifi-
cally, we witnessed gains of 8.17% on DeBERTa-1
and 2.37% on DeBERTa-b. This result also sug-
gests that the augmented training data provided
more benefit to the larger-sized DeBERTa model
in terms of robustness. The additional augmented
examples may have provided useful regularization,
helping it generalize better on both the unaltered
control and contrast datasets. Our best-performing
model ranked 12th in terms of faithfulness and 8th
in terms of consistency, respectively, out of the 32
participants.

From this iterative process, we can see that se-
mantic perturbation with generative Al contributes
mainly to the performance gain for both NLI mod-
els. Compared with this, vocabulary replacement
in the biomedical domain has only a minor effect.
This may suggest that vocabulary replacement in
our work may be relatively less effective in this
case because it only swaps out individual words,
while semantic perturbation modifies the whole
statement. Hence, semantic perturbation provides
more meaningful variations to augment the training
data.

While the augmented data improved the robust-
ness to interventions, we noticed a slight perfor-
mance drop in the control set. For example, the
F1 score on the control set decreased by 3.16%
for DeBERTa-1 and 0.48% for DeBERTa-b after
adding all the augmented data. This performance
decline indicates there may have been a small trade-
off between improving robustness to interventions
and maintaining strong performance on the original
data. One of the reasons accounting for this could
be that the generative Al may generate noisy or
irrelevant data. For example, in numerical ques-
tion answering data generation, if the original en-
tailed statement discusses an assumption about a
50-year-old patient not mentioned in the CTR, the
generative model may create an unrelated question
about the patient’s age that cannot be inferred from
the given information. Another example involves
vocabulary replacement: we observed that there
exist some cases where even two words having
very similar embeddings in the biomedical domain



‘ Prompt

Please convert the statement to a multiple choice question that requires the numerical
or quantitative reasoning, and each question has 3 choices,

NQA using the given template: \n
Question: [Question] \n Choices: 1. [Choice I1\n 2. [Choice 2]\n 3. [Choice 3]\n
Correct Answer: [Correct Answer].

SP.-Ent. ‘ Please rephrase the given statement:

SP-Con Please generate a contradictory statement based on the given statement,

' " | with a minor change:

Table 2: Prompts for numerical question-answering data generation and semantic perturbation. NQA stands for
numerical question answering. SP.-Con. and SP.-Ent. means semantic perturbation to generate statements labeled as

contradiction and entailment, respectively.

Method Validation Test
F1 Prec. Rec. Faith. Con. \ F1 Prec. Rec. Faith. Con.
DeBERTa-l 81.82 90.00 75.00 73.81 71.48 |77.25 80.80 7399 67.13 71.06
+SP 81.77 83.00 80.58 8542 75.16 | 7552 72.80 78.45 7824 74.01
+VR 81.00 81.00 81.00 86.01 74.16 | 75.05 71.60 78.85 78.59 74.42
+NQA 80.60 81.00 80.20 86.61 7491 | 74.09 69.20 79.72 79.98 74.54
DeBERTa-b 70.87 73.00 68.87 4940 60.02 | 62.53 6040 64.81 57.75 59.33
+SP 71.84 74.00 69.81 51.49 60.65 | 62.08 59.60 64.78 60.65 59.70
+VR 70.59 72.00 69.23 5238 60.71 | 62.21 59.60 65.07 60.76 59.72
+NQA 70.30 71.00 69.61 5298 60.77 | 62.05 59.20 6520 61.92 59.89

Table 3: Results on the development set and testing set for NLI4CT 2024 dataset. DeBERTa-1 and DeBERTa-b are
the large version and base version of the DeBERTa model, respectively. SP and VR stand for semantic perturbation
and vocabulary replacement. The best results for F1 score on the control set, faithfulness, and consistency are

highlighted.

knowledge graph embedding space may not be very
closely related in the context of the current state-
ment. Including these illogical examples in the
augmented training data could mislead the original
DeBERTa model, resulting in worse performance
on the unaltered control set.

6 Conclusion

In this work, we proposed a data augmentation ap-
proach to enhance the robustness of natural lan-
guage inference models for clinical trial report
analysis. Our method leverages generative Al and
biomedical knowledge graphs to augment training
data along three dimensions: numerical reasoning,
semantic perturbations, and domain-tailored lex-
ical substitutions. Experiments on the NLI4CT
2024 dataset demonstrate that our approach effec-
tively improves model faithfulness and consistency
against controlled interventions, with significant

gains against the DeBERTa baselines.

However, we observed a slight performance drop
on the unaltered test set, indicating a trade-off be-
tween robustness to perturbations and maintain-
ing strong performance on original data. Future
work will focus on: 1) generating higher-quality
augmented examples using numerical question-
answering data generation to minimize or avoid per-
formance drop; 2) validating the perturbed samples
to help remove noisy or irrelevant examples (Wang
et al., 2023c); 3) incorporating external structured
knowledge via pre-training on knowledge graphs
and not just lexical substitution, which can provide
more contextual domain information.
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Abstract

This paper presents the SATLab participation
in SemEval 2024 Task 1 on Semantic Textual
Relatedness. The proposed system predicts se-
mantic relatedness by means of the Euclidean
distance between the character ngram frequen-
cies in the two sentences to evaluate. It em-
ploys no external resources, nor information
from other instances present in the material.
The system performs well, coming first in five
of the twelve languages. However, there is lit-
tle difference between the best systems.

1 Introduction

Semantic similarity between words, phrases and
texts has long attracted the attention of NLP re-
searchers. It is obviously a useful source of in-
formation in tasks such as information retrieval,
text summarization, question answering or machine
translation (Agirre et al., 2012). It has been the
subject of several shared tasks within SemEval
since 2012 (Agirre et al., 2012; Marelli et al., 2014;
Cer et al., 2017). More recently, interest has also
focused on Semantic Textual Relatedness (STR),
which is supposed to be a more general concept.
As Abdalla et al. (2023) point out, two sentences
must be paraphrases or present an entailment re-
lation to be semantically similar, whereas to be
related, it is sufficient that they deal with similar
themes or express similar points of view on a given
issue. Work on STR is less advanced due to the
lack of annotated datasets on this dimension (Ab-
dalla et al., 2023). It should be noted, however, that
the human annotators who evaluated semantic tex-
tual similarity for the SILK dataset (Marelli et al.,
2014) clearly evaluated relatedness, since they con-
sidered pairs of sentences that contradict each other
as semantically very similar (96% similarity), such
as in SILK Instance 466:

- A man is performing a trick on a green bicycle.

- There is no man performing a trick on a green
bicycle.
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The SILK dataset contains many other examples
of this kind of judgement. This observation sug-
gests that the term "relatedness" is more appropri-
ate to describe this field of research, at least when
dealing with the intuition of native speakers. It also
suggests that techniques that are effective in au-
tomatically estimating semantic similarity should
also be effective in estimating relatedness. These
are mainly state-of-the-art deep learning algorithms
(Cer et al., 2017).

In this context, Ousidhoum et al. (2024b) have
proposed the SemEval 2024 Task 1, which has a
number of specific features compared with previous
work. Firstly, the task focuses on relatedness, and is
based on material consisting of sentence pairs that
have been annotated on this dimension by native
speakers. Secondly, the task is highly multilingual,
covering more than ten languages, some of which
are very poorly resourced. Finally, it includes three
subtasks: supervised, unsupervised and crosslin-
gual. In the supervised subtask, the systems were
to be trained using training datasets provided by
the task organizers. In the unsupervised subtask,
no datasets labeled according to semantic related-
ness or semantic similarity could be used. In the
crosslingual subtask, the system had to be trained
on a language other than the target language.

2 The Proposed Approach

Due to its highly multilingual nature (twelve lan-
guages), the unsupervised subtask seemed a priori
to be particularly interesting for the development
of a generic approach, as language-independent as
possible. This would be the case of a system that
estimates the semantic relatedness of a pair of sen-
tences without recourse to any resources external to
the material and even without taking into account
the other instances present in the material. A sys-
tem takes other instances into account when, for
example, it weights an instance features according

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 95-100
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to their frequency in the complete material, using
the classic TF-IDF. A system is completely inde-
pendent of other instances when the processing of
one instance is not affected in any way by the other
instances it has to predict. The system proposed by
the SATLab fulfills this requirement by using the
Euclidean distance between the two sentences, cal-
culated on the basis of the frequency of the ngrams
of characters that make them up. If such a system
proves successful to predict semantic relatedness, it
could become a potential candidate for the analysis
of any language.

Admittedly, such a system is more akin to a
baseline than a state-of-the-art system. However,
it should also be noted that systems based on char-
acter ngrams have for many years been considered
particularly effective for NLP tasks such as lan-
guage identification, error correction, information
retrieval and even for hate speech and offensive
content identification (Damashek, 1995; Bestgen,
2021b). Character ngrams have the advantage of
not requiring material to be tokenized, which can
be problematic in some Asian languages, and of
being able to extract morphological information at
very low cost (Peng et al., 2003).

This paper presents SATLab’s participation in
SemEval 2024 Task 1 with this fully instance-
specific system. The following section introduces
the task and describes the proposed system. The
results obtained are then reported.

3 The Unsupervised Task

Subtask 1B of SemEval 2023 (Ousidhoum et al.,
2024b) asked participating teams to estimate the
semantic relatedness between pairs of sentences
in twelve languages: five Afro-Asiatic (Alge-
rian Arabic [arq], Amharic [amh], Hausa [hau],
Modern Standard Arabic [arb], Moroccan Arabic
[ary]), five Indo-European (Afrikaans [afr], En-
glish [eng], Hindi [hin], Punjabi [pan] and Spanish
[spal), one Austronesian (Indonesian [ind]) and
one from the Niger-Congo family (Kinyarwanda
[kin]). The material, collected by Ousidhoum et al.
(2024a), was selected from various resources such
as semantic similarity datasets, news articles and
Wikipedia texts. After this material had been care-
fully checked, it was submitted to native speakers
whose task was to assess the semantic relatedness
between pairs of sentences using the Best-Worst
Scaling procedure. Ousidhoum et al. (2024a) re-
ported high to near-perfect inter-rater reliabilities
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(split-half correlations: Min = 0.64, Max = 0.96).

In this Task 1B, the systems had to be unsuper-
vised, since no dataset including evaluations of se-
mantic relatedness between sentence pairs or texts
could be employed. It should be noted, however,
that the organizers provided participants with de-
velopment data similar to that provided later for
the testing phase, and that a team’s predictions for
these data could be evaluated by submitting them
to CodaLab. The few tests I carried out showed
that performance varied greatly depending on the
language. It therefore didn’t seem advisable to rely
on this development material to make general deci-
sions about the system to be developed. In the test-
ing phase, only one prediction for each language
could be submitted, and the performance measure
was Spearman’s rank correlation coefficient.

4 The SATLab System

A single system was used for all twelve languages.
It is adapted from the one developed for the author-
ship identification of source code (Bestgen, 2020).
This system takes as input each pair of utterances
and outputs a distance between them without any
other information, either from the rest of the ma-
terial or external to it. Each pair of utterances is
therefore processed in a way that is completely in-
dependent of the other pairs present in the material.

The only pre-processing is the lower-casing of
all texts as included in SAS. I have to admit that
it’s not obvious to me what impact this has on
languages as unknown to me as Kinyarwanda or
Ambharic. No tokenization or lemmatization has
been applied. The system uses character ngrams
made up of 1 to 5 characters. All characters are
taken into account, including spaces, punctuation
marks, symbols, characters from other writing sys-
tems, etc. The ngrams at the beginning and end of
each statement are distinguished from the others.
All ngrams in a statement are retained, so there is
no frequency threshold. The frequency of each fea-
ture is weighted by a logarithmic function using the
formula: 1 4 log(F'req). Finally, the features of
each statement are weighted by the L2 norm (thus
instance-wise). Most of these system components
have be taken from the one developed for a difficult
language identification problem (Bestgen, 2021a).

The Euclidean distance between the sets of
ngrams of each utterance in a pair is used to es-
timate the semantic dissimilarity between these
utterances. Before submission, these distances are



transformed into similarity by ranking them from
largest to smallest. No information is lost through
such ranking, since the organizers have chosen a
rank correlation as the efficiency criterion.

5 Analysis and Results
5.1 Official Results

Twelve teams took part in the test phase of Task
1B, but only five proposed solutions for all twelve
languages. One team proposed a solution for all
languages except Spanish. The organizers provided
a baseline based on the number of shared words
between the two sentences of a pair (SemRel Lexi-
cal Overlap Baseline, see Ousidhoum et al. (2024b)
for details).

Figure 1 shows the performance of all the sys-
tems for the twelve languages, highlighting the
baseline and the system proposed by the SATLab.
Marks not connected by a line are from systems
that did not submit a solution for all languages. I
don’t know whether the systems proposed by the
other teams are identical for all twelve languages,
as is the case for the baseline and the SATLab.

This figure merits several comments. Firstly,
when we analyze the overall results, we observe
that the profiles of the teams! who submitted for
all languages are similar. This observation is con-
firmed by an analysis of the Pearson correlations
between these profiles. The lowest correlation is
0.54, only two are below 0.63 and half of them are
above 0.73. These profiles highlight strong varia-
tions in performance according to language. While
almost all the teams performed well to very well for
Afrikaans (afr), Amharic (amh), English (eng) and
Spanish (spa), they performed poorly for Punjabi
(pan), with the SATLab system even achieving a
negative correlation. It therefore appears that the
material for some languages is considerably more
complicated than for others. A detailed analysis
of the differences between these materials would
therefore be very useful.

Figure 1 also shows that the SATLab’s perfor-
mance is as good as or better than that of other
teams in the vast majority of languages, but there
is little difference between the best teams. This
second observation would certainly be confirmed
if confidence intervals, obtained by bootstrapping
(Bestgen, 2022), were presented, but their calcula-
tion requires access to the predictions of all systems.

'In this discussion of results, the baseline is considered a
team".
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In any case, when performances are so close, it is
essential to take into account other factors such as
computational complexity, which will be possible
when reading the system descriptions of the other
teams.

Finally, Figure 1 also shows that the organiz-
ers’ baseline is superior to all other systems for
two languages: Hindi (hin) and Moroccan Arabic
[ary]. Clearly, this is an underperformance by all
participants.

5.2 System Component Analysis

To assess the contribution of each component to the
system overall performance, all of them were modi-
fied, one at a time, and the system was re-evaluated
using the gold standard provided by the task orga-
nizers for eleven languages. The results are shown
in Table 1 using the difference between each modi-
fied system and the official SATLab system, whose
performance is shown in the first row.

The only pre-processing of the material carried
out, the lower casing, brings benefits in only two
languages. Presumably, it doesn’t affect the many
languages that don’t use Latin characters. Using
ngrams whose maximum length is one character
shorter or one character longer has very little im-
pact. On the other hand, feature weighting by TF-
IDF is beneficial in ten out of eleven languages.
Not using L2 normalization profoundly alters per-
formance. While it brings significant benefit in one
language, the impact is negative in nine languages,
and can reach -0.574. As far as distance is con-
cerned, Dice is more efficient than the Euclidean
distance, but the gain is significantly lower than
that obtained by applying the Euclidean distance to
the weights transformed by TF-IDF.

The last line gives the correlations obtained by
the system when TF-IDF is used instead of the
logarithmic weighting. The gains over the offi-
cial SATLab submission are sufficiently large to
conclude that a fully instance-specific approach is
significantly less effective at predicting STR than
an approach that takes into account the other in-
stances of the test material (which TF-IDF does, as
explained in the introduction). There is no point
in comparing these correlations with those of the
other participants, since they would certainly have
submitted a different system if they had been able
to optimize it as just done.
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Figure 1: Performances of all systems for the twelve languages
Expe afr amh arb arq ary eng hau hin ind kin pan
Submitted 0761  0.764 0.487 0521 0599 0774 0513 0.649 0491 0458 -0.215
No Lowercase ~ 0.005  0.000 0.000 0.000 0.000 -0.02 -0.028 0.000 0.005 0.005 0.000
4-grams -0.003 -0.001 -0.016  0.005 -0.012 -0.002 -0.015 -0.007 0.007 0.012 0.018
6-grams 0.001  0.000 0.004 -0.009 -0.002 -0.001 0.003 0.000 -0.012 -0.004 -0.009
TF-IDF 0.021  0.001 0.061 0.052 0.024 0.024 0.057 0.046 -0.052 0.069 0.002
BM25 0.011 -0.008 0.043 -0.085 0.005 0.014 0.026 -0.091 -0.077 0.083 0.032
No L2 -0.144  -0.247 -0421 -0574 0211 -0.245 -0.059 -0432 0.003 -0.157 -0.135
Cosinus -0.008  0.013 -0.013 -0.022 -0.003 -0.005 -0.012 -0.020 0.001 -0.035  0.005
Dice -0.001  0.003 0.032 0.036 0.022 0.012 0.029 0.002 0.005 -0.021  0.003
Best 0.782 0.765 0548 0573 0.623 0.798 0570 0.695 0439 0527 -0.213

Table 1: Analysis of the impact of the system components
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6 Conclusion

This paper presents the SATLab participation in
SemEval 2024 Task 1: Semantic Textual Relat-
edness (STR). The proposed system predicts se-
mantic relatedness by means of the Euclidean dis-
tance between two sentences, calculated on the
basis of the frequency of the ngrams of characters
that make them up. It employs no resources ex-
ternal to the material and extracts no information
from other instances present in the material. The
system performs well, coming first in five of the
twelve languages. However, there is little differ-
ence between the best systems. What’s more, the
baseline proposed by the organizers was better than
all the systems proposed by the participants in two
languages.

Analysis of the system’s components shows that
the decision to develop a fully instance-specific ap-
proach was clearly the wrong one. Simply taking
into account the frequencies of features in the ma-
terial as a whole, as the TF-IDF weighting system
does, provides a significant benefit, as Damashek
(1995) has already pointed out when character
ngrams are used in other NLP tasks.

The performance of all teams varies considerably
according to language. It would be very interesting
to carry out further research to try and understand
the origin of these fluctuations. Otherwise, this
type of unsupervised approach cannot be recom-
mended, since negative correlations are observed
for one of the languages. It is possible that this is
linked to the way in which the material has been
designed, which varies greatly depending on the
language for obvious reasons of unavailability of
certain resources (Ousidhoum et al., 2024a).

7 Ethical Considerations

The ethical issues raised by this research are iden-
tical to those described by the researchers who
collected the data (Ousidhoum et al., 2024a) and
by the researchers who organized this task (Ousid-
houm et al., 2024b).
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Abstract

This paper describes the participation of the
Genaios team in the monolingual track of Sub-
task A at SemEval-2024 Task 8. Our best sys-
tem, LLMIXTIC, is a Transformer Encoder
that mixes token-level probabilistic features
extracted from four LLaMA-2 models. We ob-
tained the best results in the official ranking
(96.88% accuracy), showing a false positive
ratio of 4.38% and a false negative ratio of
1.97% on the test set. We further study LLMI1X-
TIC through ablation, probabilistic, and atten-
tion analyses, finding that (i) performance im-
proves as more LLMs and probabilistic features
are included, (ii) LLMIXTIC puts most atten-
tion on the features of the last tokens, (iii) it
fails on samples where human text probabilities
become consistently higher than for generated
text, and (iv) LLMIXTIC’s false negatives ex-
hibit a bias towards text with newlines.

1 Introduction

The analysis of Machine-Generated Text (MGT)
has gained popularity in recent times. This is im-
portant for detecting and attributing text to Large
Language Models (LLMs) such as LLaMA (Tou-
vron et al., 2023) and GPT (Ouyang et al., 2022),
and combating fake-news, intellectual property vi-
olations (Henderson et al., 2023), data leakages
(Nasr et al., 2023), among other malicious usages
(Kasneci et al., 2023). Recent efforts include zero-
shot (Bao et al., 2024) and supervised systems
(Wang et al., 2023). However, large-scale scenar-
ios that combine domains, data sources, or mod-
els are still challenging (Sarvazyan et al., 2023b;
Eloundou et al., 2023). As a result, different frame-
works to generate high-quality MGT datasets' (Sar-
vazyan et al., 2024) and evaluation campaigns
have been released (Shamardina et al., 2022; Sar-
vazyan et al., 2023a). In this paper, we describe

'One of these is TextMachina, freely available at https:
//github.com/Genaios/TextMachina
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Figure 1: Overview of the proposed system. Modules
marked with @ are frozen. Those with & are trainable.

our solution as the Genaios team at SemEval-2024
Task 8: Multigenerator, Multidomain, and Multilin-
gual Black-Box Machine-Generated Text Detection
(Wang et al., 2024a).

Our starting point is the observation that LLMs
assign higher probabilities to MGT than to hu-
man text. We propose LLMIXTIC, illustrated in
Figure 1, which leverages this via a Transformer
encoder (Vaswani et al., 2017) that mixes token-
level probabilistic features extracted from four
LLaMA-2 models, both instructed and base flavors:
LLaMA-2-7b, LLaMA-2-7b-chat, LLaMA-2-13b,
and LLaMA-2-13b-chat. For each token, our fea-
tures are (i) the log probability of the observed to-
ken, (ii) the log probability of the predicted token,
and (iii) the entropy of the distribution.

These probabilistic features capture MGT style
in a precise manner, favouring detection. As a
result, we obtained the best results in the offi-
cial ranking (96.88% accuracy) for the monolin-
gual track of Subtask A: Binary Human-Written
vs. Machine-Generated Text Classification. Our
analysis shows that performance improves as more
LLMs and probabilistic features are used. In ad-
dition, LLMIXTIC pays more attention to the last
tokens of the sequence, where higher probabilities
for human texts lead to misclassifications. Finally,

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 101-107
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Table 1: Statistics of the Subtask A Monolingual dataset
by split, label, model, and domain. Sizes in thousands.

texts with newlines are predominant among false
negatives.

2 Background

The monolingual track of Subtask A: Binary
Human-Written vs. Machine-Generated Text Clas-
sification focuses on detecting whether an English
text is entirely written by a 3 human or generated
by an & LLM. The data is an extension of the M4
dataset (Wang et al., 2024b) and combines texts
from different domains and LLMs. We show the
statistics of the dataset in Table 1. The official eval-
uation metric of the Subtask A is accuracy, which
we also employ in our experiments.

3 System Overview

It is known that high-quality human text does not
follow high-probability distributions over the next
tokens (Holtzman et al., 2020). In contrast, LLMs
are decoded to sample from regions of high prob-
ability, thus assigning higher probability to low-
diversity constructions and lower to human texts. In
practice, this causes MGT to be measurably differ-
ent from human texts, e.g., showing less idiomatic
expressions, scarce and repetitive discourse mark-
ers, or strictly complying with canonical orderings
of constituents (Simoén et al., 2023).

We developed our system by following these
previous findings, and considering that most of the
current LLMs share two key components which
condition the probability distributions they learn:
(i) the underlying backbone, namely Transformer
decoder, with few architectural changes and (ii)
large portions of their training data both for pre-
training and instruction tuning. Our system relies
on the hypothesis that token-level probabilistic fea-

tures extracted from an specific set of LLMs can be
used to differentiate human texts and MGT from a
potentially different set of LLMs, which has been
shown to be very effective in existing MGT detec-
tors (Przybyta et al., 2023; Wang et al., 2023).

As depicted in Figure 1, our final sys-
tem is a Transformer Encoder that mixes
token-level probabilistic features extracted
from four LLaMA-2 models (Touvron et al.,
2023), including base and instructed versions:
Llama-2-7b, Llama-2-7b-chat, Llama-2-13b,
and Llama-2-13b-chat. Following (Przybyta
et al., 2023), we build feature sequences where
each token is represented as the concatenation of
three probabilistic features extracted from each
LLM. Specifically, we employ the following
features.

Log probability of the predicted token. Mea-
sures the highest probability assigned by 6 to the
next token as:

o = max log py(y|z<;) )]
yey

Entropy of the distribution. Measures the un-
certainty of  for choosing the next token:

Bi==Y_ polylz<i) log po(ylz<i) ()

yey

Log probability of the observed token. Mea-
sures how likely is the observed token z; according
to the model 6 and the prefix z; as:

vi = log po(xilx<;) 3)

Given a text z = [y, ..., T, | and a set of LLMs
L = {01,...,0,,}, we represent x as a feature se-
quence h = [hy, ..., hy,] with each h; denoting the
probabilistic features from all the LLMs for the i-th
token, h; = [a; B} 72, ..., a™; B 4™ For in-
stance, our final system uses four LLLMs and three
features from each one, h € R™*12. Note that the
features are extracted per-token, which constrains
us to use LLMs with a shared tokenizer.

The feature vectors in h are projected to 128
dimensions through a feed-forward layer, and then
mixed with a Transformer encoder of 1 layer and
4 attention heads. The output of the Transformer
layer is averaged and a softmax layer is used to
compute a probability distribution over the human
and generated classes. This classifier on top of the
probabilistic features, LLMIXTIC’s only trainable
component, is comprised of solely 85k parameters,
being 0.0002% of the total.
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4 Experimentation

We focus on the monolingual track of Subtask A,
carrying out comparisons among models and ab-
lations of the best system. For these we employ
the original training and validation splits provided
by the organizers. In the post-evaluation stage, we
analyze the errors of LLMIXTIC in the test set by
inspecting the probabilistic features extracted from
LLaMa-2, the learned attention heads, and text pat-
terns in the misclassified samples.

4.1 Model Comparison

We compare LLMIXTIC with classical and neural
models, while also evaluating different LLMs to
extract the probabilistic features. All the models in
these comparisons are trained and evaluated on the
original training and validation splits provided by
the shared task organizers.

Classical baselines. We consider a Logistic Re-
gression classifier, using either TF-IDF features
with word n-grams ranging from 1 to 3-grams
(LR+TFIDF), or readability features (LR+READ). For
these, we employ scikit-learn (Pedregosa et al.,
2011) and readability,? training the model with
balanced class weights and default parameters.

Neural baselines. We also compare LLMIX-
TIC with two fully fine-tuned Transformer en-
coders, roberta-base (Liu et al., 2019) and
e5-base (Wang et al., 2022). These models are
trained for four epochs, using the cross-entropy
loss, a batch size of 32 samples, and a learning rate
of 5e-6.

LLMixTiC’s LLMs. We evaluate LLMIX-
TIC with probabilistic features from two
LLM families, namely GPT-2 (Radford
et al., 2019; Sanh et al., 2019) and LLaMA-2
(Touvron et al., 2023). For the GPT-2 fam-
ily,’ we include gpt2, gpt2-medium, and
distillgpt2. The LLaMA-2 family is com-
prised of LLaMA-2-7b, LLaMA-2-7b-chat,
LLaMA-2-13b, and LLaMA-2-13b-chat. These
are trained for ten epochs, with a maximum text
length of 512 tokens, a batch size of 32 samples, a
learning rate of 1e-3, and the cross-entropy loss.
All neural models are trained with Hugging-
Face’s Trainer (Wolf et al., 2020) in FP16 mode,
employing early stopping, with a patience of 3
2ht'cps://github.com/andreasvc/readability/

3Chosen for its success in previous shared tasks (Przybyta
et al., 2023) and to test for more efficient feature extractors.

Model Accuracy (%)
LR+READ 42.32
LR+TFIDF 61.26
roberta-base 80.58
e5-base 74.48
LLMIXTIC (w/ GPT-2) 67.42
LLMIXTIC (w/ LLaMA-2) 85.98

Table 2: Model comparison results on the dev set.

evaluation steps, on the validation set. The LLMs
used for feature extraction are always frozen, with
LLaMA-2 models also being quantized to 8§ bits. We
implement LLMIXTIC in PyTorch (Paszke et al.,
2019), and run all the experiments using a single
NVIDIA RTX A6000.

Results are presented in Table 2. Here we ob-
serve how LLMIXTIC using LLaMA-2 features out-
performs every baseline by large margins, improv-
ing upon the best baseline’s score by 5 points in
accuracy, while having only 0.07% relative train-
ing parameters. Notably, all the neural models
outperform classical baselines, which suggests that
grammatical features, especially those based on
readability measures, are not enough to properly
discriminate between human-written and generated
text. Also, the usage of probabilistic features from
GPT-2 models does not yield good results in com-
parison to neural baselines and LLMIXTIC with
LLaMA-2 LLMs. This suggests that the scale of the
LLM used to extract features could have a large im-
pact on the results. Considering that the LLaMA-2
family is more similar than GPT-2 models to the
LLMs that generated the text of the dataset, we also
hypothesize that using feature extraction LLMs that
more closely resemble the LLMs in the dataset can
yield better results.

4.2 LLM and Feature Ablations

We study the impact the number of LLMs and
probabilistic features have on LLMIXTIC’s perfor-
mance by means of two ablation studies: at LLM
and at feature level. These experiments are per-
formed with the same experimental setup: first
training with a single LLM or feature, and continu-
ally adding the other LLMs or features.

Ablation results are presented in table 3. In LLM
ablation we observe improvements as more LL.Ms
are included. Notably, the inclusion of chat mod-
els provides the largest improvements of up to ten
points. Building upon our hypothesis about similar-
ities in architecture, training strategies, and datasets
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Ablation  Configuration Accuracy (%) Track Rank Name Accuracy (%)
LLaMA-v2-7b 74.90 1 Genaios 96.88
LLM + LLaMA-v2-13b 75.86 Monolingual 2 USTC-BUPT 96.09
S + LLaMA-v2-7b-chat 78.48 20  baseline 88.46

+ LLaMA-v2-13b-chat 85.98 (119 more)
Predicted 79.40 1 USTC-BUPT 95.98
Features + Entropy 83.26 Multilingual ~ 14*  Genaios 89.97
+ Observed 85.98 25 baseline 80.88

(44 more)

Table 3: Ablation study over LLMs and features.

of instruction-tuned LLMs, it is expected that most
of them, especially the chat models we used, have
learned close distributions. Therefore, we con-
sider that this improvement can be explained by
the nature of the dataset, where all the generators
were instruction tuned. We also note that LLM1X-
TIC with only non-instructed LLMs achieves sim-
ilar results to one of the neural baselines, outper-
forming LLMIXTIC with GPT-2 by a large margin.
Similar to the LLM ablation, feature ablation re-
sults improve as more features are included, achiev-
ing an increment of more than six points when all
the features are used. We observe that LLMIX-
TIC obtains similar performance to the best neural
baseline just using the log probability of the pre-
dicted token and outperforms it after adding the
entropy of the distribution. Besides, only with one
feature, the performance is ten points higher than
LLMIXTIC with GPT-2 using all the features.

5 Results

Our official submission is LLMIXTIC with
LLaMA-2, trained on the training and validation sets,
using the previously described experimental setting.
Table 4 presents the results obtained by our system,
where it reaches an accuracy of 96.88%, surpassing
the other participants’ approaches and ranking first.
Due to time constraints, we focused our participa-
tion on the monolingual track. However, having
seen the performance of LLMIXTIC on the test
set of the monolingual track, we trained LLMI1X-
TIC under the same setting for the multilingual
track in a post-deadline stage (denoted in tables
with *). Here, we obtained an accuracy of §9.97%,
which would have placed us at 14th position.

6 Analysis

We further analyze the behavior of LLMIXTIC in
the test set by examining the probabilistic fea-
tures extracted from LLaMa-2, the learned attention
heads, and patterns in misclassified samples.

Table 4: Final results on the official ranking. Bold
denotes our team’s placement.

LLMIXTIC fails when human text probabilities
become larger than for generated texts. In con-
trast, LLMIXTIC works better when the generated
text probabilities are consistently larger than those
from human texts. To illustrate this behavior, Fig-
ure 2 shows each LLM’s feature averaged both for
correct and erroneous predicted samples. Errors oc-
cur with unusually high values of « and ~ features
in the human class, and unusually low values for
the generated class. The effect of feature f3 is also
notable, with the margin between human and gen-
erated curves being smaller in misclassifications.
Additionally, for each class, chat and base models
reveal different curves for all three features.

LLMIXTIC pays more attention to the last posi-
tions. Figure 3 shows the average of the attention
heads across all the samples to illustrate it. This
behavior could be the main cause of errors when
human text probabilities become consistently larger
than those for generated texts in the last positions,
as shown in Figure 2. A diagonal pattern with high
probability is also noticeable until approximately
position 150, after which it disappears.

Human text is more often confused with gen-
erated text than vice versa. There are twice as
many false positives as there are false negatives
(714 vs. 355). This translates into a false positive
rate of 4.38% and a false negative rate of 1.97%.

Newlines are predominant in false negatives.
We manually analyze the errors with higher con-
fidence, finding that most of LLMIXTIC’s false
negatives include \n to separate sentences or para-
graphs, while false positives do not, to the same
extent. Specifically, \n is present in 75.49% of false
negatives, whereas it is only present in 34.59% of
false positives. This difference could suggest (i)
a potential bias in the training data, with human
texts containing more \n than the generated texts,
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Figure 2: Sample-averaged probabilistic features of the four LLaMa-2 models, for the two classes (generated and
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Figure 3: Sample-averaged and head-averaged atten-
tion scores from LLMIXTIC’s Transformer encoder.
LLMIXTIC pays more attention to the last positions.

or (ii) our system is learning a spurious correlation
between \n and the human class.

7 Conclusion

We described the participation of the Genaios
team in the monolingual track of Subtask A at

SemEval-2024 Task 8. We proposed LLMIX-
TIC, a Transformer Encoder that mixes token-
level probabilistic features extracted from four
base and instructed LLaMA-2 models, namely
LLaMA-2-7b, LLaMA-2-7b-chat, LLaMA-2-13b,
and LLaMA-2-13b-chat. Our system obtained the
best results in the official ranking, with small false
positive and false negative ratios.

Our ablation analyses showed that LLMIXTIC’s
performance improves as more LL.Ms and prob-
abilistic features are used. We compared these
features across correctly predicted and misclassi-
fied samples, finding that LLMIXTIC works better
when MGT probabilities are consistently higher
than for human text. In addition, attentions are
mostly focused on the last tokens, which could be
one of the causes of the errors made by LLMIXTIC.
Finally, the newline character seems predominant
in false negatives but not in false positives, which
suggests biases either in the data or in our model.

Aiming to foster R&D in this area, future works
will focus on TextMachina,' a framework to gener-
ate MGT datasets for tasks such the ones addressed
in this SemEval shared task: detection, attribution,
boundary, and mixcase detection.
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Abstract

This paper presents two simple improvements
to the Self-Structuring AutoEncoder (Self-
StrAE). Firstly, we show that including recon-
struction to the vocabulary as an auxiliary ob-
jective improves representation quality. Sec-
ondly, we demonstrate that increasing the num-
ber of independent channels leads to significant
improvements in embedding quality, while si-
multaneously reducing the number of param-
eters. Surprisingly, we demonstrate that this
trend can be followed to the extreme, even
to point of reducing the total number of non-
embedding parameters to seven. Our system
can be pre-trained from scratch with as little as
10M tokens of input data, and proves effective
across English, Spanish and Afrikaans.

1 Introduction

Natural language is generally understood to be com-
positional. To understand a sentence, all you need
to know are the meanings of the words and how
they fit together. The mode of combination is gen-
erally conceived as an explicitly structured hierar-
chical process which can be described through, for
example, a parse tree. Recent work by Opper et al.
(2023) presents the Self-StrAE (Self-Structuring
AutoEncoder), a model which learns embeddings
such that they define their own hierarchical struc-
ture and extend to multiple levels (i.e. from the
subword to the sentence level and beyond). The
strengths of this model lie in its parameter and data
efficiency achieved through the inductive bias to-
wards hierarchy.

Learning embeddings such that they meaning-
fully represent semantics is crucial for many mod-
ern NLP applications. For example, retrieval aug-
mented generation (Lewis et al., 2020) is predi-
cated on the fact that the correct contexts for a
given query can be determined. The semantic rela-
tion between a query and a context is encompassed
by the notion of semantic relatedness. They are

50

/x, /1

g
B8y 0
El !

Figure 1: Self-StrAE forward pass. Red lines indi-
cate cosine similarity between adjacent nodes. Shared
colours indicate shared parameters.

not equivalent to one another (i.e. paraphrases),
but are close in meaning in a broader, more con-
textual sense. The focus of task one of this year’s
SemEval (Ousidhoum et al., 2024a,b) is capturing
this notion of semantic relatedness, with a particu-
lar focus on African and Asian languages generally
characterised by a lack of NLP resources.

In this work, we investigate whether Self-StrAE
can learn embeddings which capture semantic relat-
edness, when trained from scratch on moderately
sized pre-training corpora. We turn to the compe-
tition in order to examine whether the model can
even compare with dedicated STR systems. In or-
der to determine whether Self-StrAE can provide
an alternative approach in low resource settings
where systems that rely on large pre-trained trans-
formers (Vaswani et al., 2017) may not have suffi-
cient scale to prove effective. We show that with
two simple changes, Self-StrAE’s performance can
be substantially improved. Moreover, we demon-
strate that the the resulting system is not limited to
English, but can work equally well (if not better)
for both Spanish and Afrikaans !.

'Code available at:
Self-StrAE

https://github.com/mopper97/
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2 Model and Objectives
2.1 Model

The core architecture at the heart of this paper is
the Self-StrAE. A model that processes a given
sentence to generate both multi-level embeddings
and a structure over the input. The forward pass
begins by first embedding tokens to form an initial
frontier, using the embedding matrix {2y. This is
followed by iterative application of the following
update rule:

1. Take the cosine similarity between adjacent
embeddings in the frontier.

2. Pop the most similar pair.

3. Merge the pair into a single parent representa-
tion, and insert into the frontier.

4. If len(frontier) = 1, stop

Merge is handled by the recursively applied com-
position function C'y, which takes the embeddings
of two children and produces that of the parent. The
process is illustrated in 1. In the figure, the high-
est cosine similarity is between the embeddings of
“ate’ and "doughnuts’, so these two embeddings are
merged first. At the next step, ’Homer’ and ’ate
doughnuts’ are merged as they have the highest
similarity of the remaining embeddings. At this
point the frontier has shrunk to a single embedding
and the root has been reached.

If we consider the merge history at the root, we
can see that it has come to define a tree structure
over the input. This structure is passed to the de-
coder, which then generates a second set of em-
beddings, starting from the root and proceeding
to the leaves. The decoder achieves this through
recursive application of the decomposition function
Dg, which takes the embedding of a parent and
produces the embeddings of the two children. Once
the decoder reaches the leaves, it can optionally out-
put discrete tokens through use of a dembedding
function Ap.

We denote embeddings produced during com-
position as e and produced during decomposition
as e. For a vocabulary of size V, each embedding
e € R¥ consists of k independent channels of size
u. With this notation established, we can now
define the four core components of a Self-StrAE.

Embedding:
Qu(w;) = w; ¥, where ¥ € RV*F

Composition:
O@(écla écZ) = hcat(écla écQ)q) + ¢
where ® € R?“*% and ¢ € R*

Decomposition:
Deg(ep) = hsplit(e,© + 0)
where © € R**?% and § € R?

Dembedding:
Ar(e;) = e;I" where T' € REXV

Note that in the above the dembedding layer
is treated as a separate parameter matrix to the
embedding layer, however, it can just as easily be
weight tied to increase efficiency.

2.2 Objectives

There are a few options for pre-training Self-StrAE.
The simplest solution is to have the model re-
construct the leaf tokens, which can be achieved
by simply employing cross entropy over the out-
put of the dembedding layer. For a given sen-

tence s; = (w,>ZT;1 this objective is formulated
as:
1
Lcg = —Ezwi.logwi. (1)
1=1

An alternative approach adopted by Opper et al.
(2023) is to use contrastive loss as the reconstruc-
tion objective. For a given batch of sentences s;,
the total number of nodes (internal + leaves) in
the associated structure is denoted as M. This al-
lows for the construction of a pairwise similarity
matrix A € RM*M petween normalised upward
embeddings (¢;)}, and normalised downward em-
beddings (e;)},, using the cosine similarity metric
(where embeddings are flattened to be of shape E).
Denoting Aje, Aej, A;j the i row, 7 column, and
(i, )" entry of a matrix respectively, the objective
is defined as:

1 M M
Lecont = m Z; log UT(AiO) +z; log UT(A°j)
i= j=

2

where o;(-) is the tempered softmax (tempera-
ture 7), normalising over the unspecified (o) di-
mension.
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A final option is to combine these two objec-
tives, applying the cross entropy reconstruction
over leaves and the contrastive objective over all
other nodes, where constructing a vocabulary is
intractable due to the number of possible combina-
tions. The contrastive objective remains identical
except that A is now defined as pairwise similar-
ity matrix A € R?*! where I is the number of
internal nodes of the structure. In its simplest form,
this objective, which we will henceforth refer to as
CECO, can then be defined as:

1
Lceco = i(ﬁCE + Leont) )

3 Experiments

3.1 Setup

For all experiments, we utilise a pre-training set of
~10 million tokens. We make this choice because
Self-StrAE is intended to be data efficient, espe-
cially if it is to be useful for low resource languages
where scale may not be available. For English the
data was sourced from a subset of Wikipedia, while
for Afrikaans and Spanish we obtained corpora
from Leipzig Corpora Collection®. We utilise a pre-
trained BPE tokenizer for each language from the
BPEMB Python package (Heinzerling and Strube,
2018). Though the package also provides pre-
trained embeddings, we solely use the tokenizer
and learn embeddings from scratch.

During the course of model development, we
utilised additional evaluation sets as a further guide.
For English, we used Simlex (Hill et al., 2015)
and Wordsim353 (Agirre et al., 2009) as measures
of how well the model captures lexical semantics,
and STS-12 (Agirre et al., 2012), STS-16 (Agirre
et al., 2016) and STS-B (Cer et al., 2017). For
Afrikaans, due to lack of resources, we utilised a
Dutch translation of STS-B (Huertas-Garcia et al.,
2021) as the two languages are closely related. For
Spanish, we utilised a Spanish translation of STS-B
from the same source, as well as the labelled train
and dev sets from SemRel 2024 (Ousidhoum et al.,
2024a). While these sets contain labels, we apply
the model fully unsupervised and solely use them
for zeroshot evaluation.

We train Self-StrAE for 15 epochs using the
Adam optimizer at a learning rate of 1e-3 (Kingma

ZFor both Spanish and Afrikaans we selected the mixed
corpus and took a uniform subsample to reduce size to the
requisite scale.

-32 -3.0 -2.8 -26
Uniformity

Figure 2: Uniformity and Alignment plot for contrastive,

and CECO pre-training objectives. Re-
sults taken across four random seeds. Lower is better
for both measures.

and Ba, 2015). We set the embedding dimension
to 256, with a batch size of 512 and 7 of 1.2. We
conducted our primary experiments on English and
then applied the same system design to Spanish
and Afrikaans.

3.2 Which Objective is Best?

The first thing we want to establish is which objec-
tive is most suitable for training Self-StrAE, as the
original version only utilises contrastive loss. For
parity with the original implementation, we treat
the embeddings as square matrices (i.e. k = u) in
this experiment.

Figure 2 show the uniformity and alignment anal-
ysis (Wang and Isola, 2020) of the representations
learned by the different objectives. Uniformity de-
scribes the extent to which embeddings are spread
around the space, while alignment characterises
how similar positive target pairs are to each other.
To be successful, representations should optimise
both properties. We can observe that while the
cross entropy objective leads to uniformity, it is
comparatively poor at optimising alignment. This
essentially implies that the decoder embeddings
deviate from those of the encoder. Alignment is
clearly a desireable property, as the results in table
1 show. The contrastive loss leads to both better
sentence level representations and to more stable
performance.

However, the best setting of all is CECO (the
combination of cross entropy and contrastive).
There are two factors worth considering that may
explain this finding. Firstly, including reconstruc-
tion of discrete labels inherently provides addi-
tional meaningful information compared to just
organising the representations alone. Secondly, at
the token level the contrastive loss is most sus-
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Objective Simlex Wordsim S Wordsim R STS-12 STS-16 STS-B SemRel (Dev)

Contrastive 13.80 =0.41 5433 +0.78 52.40+£0.87 31.93+1.03 52484044 40.05+2.01 50.13+0.88
CE 13.77 £9.43 46.43 £24.00 51.23 £23.04 17.68 £4.88 25.40=£15.60 2243 +15.12 3295+ 14.93
CECO 19.15£2.39 5833 +£331 62.65+276 41.20+4.04 58.40+1.35 4835+1.36 54.40+0.81

Table 1: Comparison of Objective Performance. Results are taken across four random intialisations. Models are
trained on English.

k u Simlex Wordsim S Wordsim R STS-12 STS-16 STS-B SemRel (Dev) # Params
8 32 17.50+2.12 5845+£1.04 62.10£2.29 31.00+2.67 5253+£333 4190=£2.09 49.30+0.59 4192
32 8 17.28+594 4483 +£27.11 49.10+2547 3328 £17.49 46.75+30.85 41.35+25.57 43.95 + 30.50 280
64 4 16154982 48.63 £2095 51.30+23.05 38.88+22.39 4948 +£31.05 43.05+2891 46.13 4+ 30.35 88
128 2 17.33+£7.12 528541933 55.15+19.85 39.63 £20.83 5038 £31.92 46.63 +27.95 47.78 £30.92 22
256 1 12.00 +12.84 42.80 +23.35 45.05 £24.58 29.18 £24.68 39.65 +32.22 37.35+£29.55 40.63 £+29.07 7

8 32 19.4 59.4 64.3 27.6 56 445 50.1 4192
32 8 21.6 57.2 61.6 443 63.3 54.1 58.8 280
64 4 21.7 62.8 66.1 49.9 65.6 57.4 61.3 88
128 2 18.4 65.1 67.2 49 67.2 60.9 63.2 22
256 1 20.7 63.2 66.3 50.1 66.2 61.6 63.6 7

Table 2: Impact of number of independent channels on performance. Results are taken across four random
initialisations. Models are trained on English. Top half of the table represents average performance, the bottom half
contains the best performing initialisation. # Params is the number of non-embedding parameters.

ceptible to noise (e.g. the word ’the’ may occur initialisations, with some initialisations failing to
frequently in the batch, but each repeated instance  learn any meaningful representations whatsoever.
will be treated as a false negative), and under such ~ We have found a solution that is able to maintain
conditions the objective has been shown to lead to  performance and ensure stability between seeds,
feature suppression (Robinson et al., 2021). but we leave discussion of this to the appendix, as
Summary: We find that combining cross entropy ~ we do not yet have a clear picture of what exactly
and contrastive loss leads to better representations  is causing instability and wish to avoid speculation.
than applying each objective individually, and con- ~ We do however wish to emphasise that the problem

sequently use this approach going forward. is tractable and there is ample scope for further
development, and direct the interested reader to A
3.3 How many channels? for more information.

Each embedding in Self-StrAE is treated as con- ~Summary: Increasing the number of channels
sisting of k independent channels of size u. Thisis ~ While decreasing their size leads to significant im-
intended to allow the representations to capture dif- ~ provements in performance, though at the cost of
ferent senses of meaning. However, in the original ~ some instability between seeds. For our submisson
paper the number of channels is set to be the square ~ to SemRel we used the setting k = 128, u = 2 as
root of u, and not explored further. Consequently,  this allowed for an acceptable failure rate while not
we wanted to see what the optimal balance between ~ compromising performance (roughly 1 in 4 seeds
the number of channels and their size was. Results ~ fail). Consequently, our system utilises only 22
are shown in 2. Surprisingly, we found that as the ~ non-embedding parameters.
number of channels increased (and consequently
u decreased) performance improves quite dramati-
cally, even to the limit of treating each value in the ~ So far our experiments have only considered En-
embedding as independent. Furthermore, because  glish. We now examine whether the framework
the number of non-embedding parameters (i.e. the  is language agonistic, and pre-train Self-StrAE on
composition and decomposition functions) is di-  both Spanish and Afrikaans. As before we pretrain
rectly tied to the channel size u, decreasing model ~ on a small scale data (described in 3.1).
complexity improves embedding quality. Results are in 3. We can see that the improve-
However, it should be noted that this decrease = ments to Self-StrAE hold across different lan-
in complexity comes with a tradeoff in terms of = guages and are not the result of some quirk in our
reliability. The smaller the size of the channel, English pre-training set. In fact performance is
the more variance we observed between random  either comparable or better than on English. The
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Language NL STS-B (Dev) NL STS-B (Test) Afr SemRel (Dev)  Afr SemRel (Test) Competition Rank
Afrikaans 52.8 64.5 234 76.5 2
Language ESP STS-B (Test) ESP SemRel (Train) ESP SemRel (Dev) ESP SemRel (Test) Competition Rank
Spanish 61.5 58.5 68.7 63.5 6

Table 3: Self-StrAE Performance on Spanish and Afrikaans. Results correspond to those of the submitted systems,
which we selected using the best run from four random initialisations.

results on Afrikaans are particularly interesting as
the model performs significantly better on this lan-
guage. Whether this is due to how the test set was
created or to underlying features of the language
provides an interesting question for future work.
Moreover, the Afrikaans model, despite never hav-
ing been trained on Dutch, is able to generalise
fairly well to it, shown by the results on the trans-
lated STS-B sets.

4 Related Work

Recursive Neural Networks: Self-StrAE belongs
to the class of recursive neural networks first pop-
ularised by (Socher et al., 2011, 2013). Recursive
neural networks are extremely similar to recurrent
neural networks, they differ because they process
inputs hierarchically rather than sequentially (e.g.
going up a parse tree).

Learning Structure and Representations: Re-
cursive neural networks require structure as input.
An alternative approach is to train a model that
learns structure and the network at the same time.
Recent unsupervised examples include Drozdov
et al. (2019, 2020); Hu et al. (2021). However,
these mechanisms generally use search to deter-
mine structure making them highly memory inten-
sive. Self-StrAE differs from these as it asks the
representations to define their own structure, mak-
ing it much more resource efficient, though less
flexible in certain aspects.

Contrastive Loss: Contrastive loss is an objective
which optimises the representation space directly.
In broad terms this objective requires the represen-
tations of a positive pair to be as similar to each
other as possible, while minimising similarity to a
set of negative examples. The closest examples of
this objective, for the approach employed in this
paper, are Chen et al. (2020); Shi et al. (2020);
Radford et al. (2021).

5 Conclusion

We show that two simple changes can make Self-
StrAE significantly more performant: adding a dis-
crete reconstruction objective and increasing the

number of independent channels. The latter also
has the added benefit of reducing the number of pa-
rameters in the model, and surprisingly means that
simpler is better. More broadly, we believe these
findings demonstrate the potential of an inductive
biases towards explicit structure. Self-StrAE, at
present, is a very simple model. The only thing it
really has going for it is the inductive bias which
tasks embeddings with organising themselves hier-
archically. While the gap between Self-StrAE and
SoTA systems still remains, the fact that it is able to
perform at all demonstrates the promise. Moreover,
the fact that the two simple changes demonstrated
in this paper can lead to such improvements indi-
cates that the full potential of the inductive bias
has yet to be reached, and it is likely that further
refinements can lead to even more substantial ben-
efits. Finally, because this model does not require
significant scale to optimise pursuing further im-
provements may provide substantial benefits for
low resource languages where pre-training data is
scarce.

6 Limitations

The results in this paper represent steps towards
an improved model rather than a complete picture.
We still do not fully understand what causes the
instability in training when the number of channels
increased, and though we can provide a solution
(see A), further analysis is needed. The perfor-
mance of contrastive loss can depend quite heavily
on how positive and negative examples are defined
and it is likely that the explanation rests there. Sec-
ondly, while we have shown that Self-StrAE can
be applied to languages other than English the re-
sults are limited to Indo-European languages. An
interesting avenue for future work would be in-
vestigating a broader spectrum of languages, and
whether specific characteristics can be identified
which influence how well the model performs.
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A Stabilising High Channel Self-StrAE

One solution we have found to the instability is-
sue is modifying the objective. This formulation,
loosely inspired by SimCSE (Gao et al., 2021), runs
the same input through the model twice, with differ-
ent dropout masks applied each time. The objective
is cross entropy reconstruction for the leaves, and
contrastive loss between the two different sets of
decoder embeddings for the non-terminals. Cur-
rently we have two theories as to why this might
work:

* Better negatives: because the decoder embed-
dings represent the contextualised meaning of
node rather than it’s local one, the issue of
false negatives is somewhat mitigated.

* Encoder consistency: because we ask the two
sets of decoder embeddings to be similar to
each other the encoder is encouraged to pro-
duce the same structure regardless of dropout
mask. It may be that this pressure towards
regularity leads to the improved consistency.

Results are shown in 4. For lack of a better term
we refer to this alternative objective as StrCSE. In
its current form we do not consider this objective
to be well formed, and solely provide it here as a
possible starting point for further research.
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Objective Simlex Wordsim S Wordsim R STS-12 STS-16 STS-B SemRel (Dev)

Contrastive 13.80 £ 041 5433+0.78 5240+0.87 3193 +£1.03 5248+044 40.05+2.01 50.13+0.88
CE 13.77£9.43 4643 £24.00 51.23+£23.04 17.68+4.88 2540+ 1560 2243 £15.12 32.954+ 14.93
CECO 19.15+2.39 5833 £3.31  62.65+2.76 41.20+4.04 5840+135 4835+£136 54.40=+0.81

CECOk=128u=2 17.33 £7.12 52.85+19.33 55.154+19.85 39.63 £20.83 50.38 £31.92 46.63 +27.95 47.78 4 30.92
StrCSE k=128 u=2  21.68 +=1.88 59.06 £2.38 64.08 +=0.91 49.46 £0.59 66.18 +0.24 61.30 =0.76  62.88 + 0.42

Table 4: StrCSE compared with other objectives. Results are taken over four random intialisations. Training data is
English.
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Abstract

In this work, we (team RGAT) describe our ap-
proaches for the SemEval 2024 Task 2: Safe
Biomedical Natural Language Inference for
Clinical Trials (NLI4CT). The objective of this
task is multi-evidence natural language infer-
ence based on different sections of clinical trial
reports. We have explored various approaches,
(a) dependency tree of the input query as addi-
tional features in a Graph Attention Network
(GAT) along with the token and parts-of-speech
features, (b) sequence-to-sequence approach
using various models and synthetic data and
finally, (c) in-context learning using large lan-
guage models (LLMs) like GPT-4. Amongst
these three approaches the best result is ob-
tained from the LLM with 0.76 F1-score (the
highest being 0.78), 0.86 in faithfulness and
0.74 in consistence.

1 Introduction

Clinical trials are advanced treatments and tests to
evaluate new ways of treating life-threatening dis-
eases where interventions include new drugs, cells
and other biological products, advanced surgical or
radiological procedures and devices. As the trial
progresses the observations are documented sys-
tematically in a Clinical Trial report that includes
the subject selection criteria (’Eligibility’), treat-
ments (’Interventions’) and results at group level
including adverse effects. These reports constitute
a rich source of past endeavours to learn from and
help in formulating new treatment plans. However,
the sheer volume of CT reports' makes it impossi-
ble to conduct extensive manual evaluation. Thus,
it is necessary to have an automated pipeline that
can enquire a CT report for specific hypothesis and
provides high accuracy and reliability at the same
time.

'As of Jan 17, 2024, ClinicalTrials.gov lists 480,795 CT
studies

Natural language inference or NLI (Devlin et al.,
2019) is one of the standard NLP tasks where
a hypothesis is qualified as true (entailment) or
false (contradiction) or even undetermined (neutral)
given a premise. This task is adopted for reasoning
over CT reports by Jullien et al. (2023) where two
new tasks are created based on NLI4CT dataset,
(1) NLI over CT reports and (2) extracting the evi-
dence/mention from CT reports to support the in-
ference label. The Semeval 2024 Task 2 NLI4CT
is also based on the same NLI4CT dataset (identi-
cal for training) with modifications in the test split
(more details in the Data section). The inferencing
is challenging as it requires multi-hop reasoning,
i.e., dependency and aggregation are required over
different pieces of the document.

Other than the complexity associated with multi-
hop reasoning, the domain and the associated word-
distribution also creates significant challenge due
to the presence of aliases, acronyms and biomedi-
cal terminologies (Lee et al., 2019a; Shickel et al.,
2018; Jin et al., 2019). This results in significant
drop in model performance as is evident in the
NLI results last year (Jullien et al., 2023) where it
was found that majority of the submitted solutions
failed to outperform the baseline solution with a
significant margin. The challenge is also evident in
the overall performance of models on general NLI
datasets (e.g., Stanford NLI or SNLI) where the
best model results in 93.1% F1-score (Wang et al.,
2021).

When it comes to different modeling approaches,
many of the top-performing models for the SNLI
dataset are ensemble in nature. While initial in-
dividual models are based on RNN, most of the
latest ones are based on the Transformer architec-
ture and pretrained language models like RoOBERTa
or T5. Similar trend can also be seen in Jullien
et al. (2023) where the best model is an ensemble
and both DeBERTa and Flan-T5 made their way to
the top. Interestingly, LLMs like GPT3.5 could not
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make a significant boost in the performance.

In our approach, we explored three different
modeling paradigms, namely, (1) custom Graph At-
tention Network (GAT) based discriminative model
with novel features based on the dependency tree
of the input query, (2) generative models based on
TS5 and Flan-T5 but enriched with synthetic data
used for both pre-training and fine-tuning, and (3)
LLM like GPT-4 applied with and without few-shot
examples. It is not surprising that the best perfor-
mance was obtained by GPT-4 stressing on the im-
portance of generic knowledge (that is embedded
in these LLMs) rather than fine-tuning, especially
when the dataset is not large enough.

The organization of the paper is as follows. In
the next section we provide a detailed literature
survey on the techniques employed for NLI. Next,
we present the details of the proposed approaches.
Subsequently, the model predictions and compar-
isons with other baseline methods are discussed.
Finally, conclusions are drawn and scope for future
works is outlined.

2 Related Work

The existing body of work for the general NLI is
quite rich where they are based on the Stanford
NLI (SNLI) dataset (550k examples but restricted
to a single text genre) (Bowman et al., 2015) and
three other NLI datasets present in GLUE (Wang
et al., 2018), namely, MNLI, QNLI and WNLI.
The MNLI (Multi-Genre Natural Language Infer-
ence Corpus) dataset (Williams et al., 2018) is a
crowd-sourced NLI dataset gathered from differ-
ent sources, e.g., government reports (and cov-
ers different genres, e.g., fiction, travel). Given
a premise-hypothesis pair of sentences, the task is
to predict one of the three classes, namely, whether
the premise sentence entails the hypothesis (en-
tailment), contradicts the hypothesis (contradic-
tion), or neither (neutral). The QNLI is modi-
fied from Stanford Question Answer Dataset (Ra-
jpurkar et al., 2016) where the task is to deter-
mine whether the context sentence contains the an-
swer to the question. Similarly, the WNLI dataset
is created from the Winograd Schema Challenge
(Levesque et al., 2012) where a coreference res-
olution problem is converted into an entailment
problem involving a pronoun and its referent. An-
other large NLI dataset is multi-genre NLI (MNLI)
that has 433k examples covering multiple genres
and supporting cross-genre evaluation. Some of the

best performances are obtained by RoOBERTa (Liu
et al., 2019b), XLNet (Yang et al., 2020), Multi-
Task Deep Neural Network (MT-DNN) (Liu et al.,
2019a) and generative pre-training (GPT) approach
(Radford et al., 2018).

There are few NLI datasets in the biomedical
domain, namely, MedNLI (Romanov and Shivade,
2018) and BioNLI (Bastan et al., 2022). MedNLI
has 14k example pairs created by clinicians on
4,683 premises with three categories, entailment,
contradiction and neutral. BioNLI, on the other
hand, goes beyond sentence-level inference and in-
cludes large context as premises that requires han-
dling complex texts as well as domain knowledge.
Bastan et al. also includes negative examples as
adversarial hypothesis using nine strategies which
is a speciality of this dataset.

There are three biomedical domain specific mod-
els that are typically used on these datasets. Start-
ing with the available weights of BERT (pretrained
on general domain corpora), BioBERT (Lee et al.,
2019Db) is trained on PubMed abstracts and PMC
full-text articles and shown to outperform BERT
on NER, relation extraction and Q&A, all in the
biomedical domain. PubMedBERT (Gu et al.,
2021) is a BERT model created from scratch (rather
than starting with general domain corpora) on
large biomedical domain dataset like PubMed and
achieved impressive performance for tasks like
NER and Q&A. BioLinkBERT (Yasunaga et al.,
2022) further exploited links between PubMed
documents to create a richer context that is used
to build a language model (LM). This model
has obtained SOTA performance on biomedical
datasets such as BLURB (Gu et al., 2021) and
BioASQ (Nentidis et al., 2020). Another model
that achieved SOTA performance on MedNLI is
SciFive (Phan et al., 2021) which is based on T5
paradigm.

There are not many studies on the application
of Graph Neural Network for NLI. Inspired by
KIM (Chen et al., 2018) where external knowledge
is infused for NLI task, Song et al. (2020) devel-
oped a joint training model where Graph Attention
Network (GAT) is used to represent the sub-graph
associated with entities that are involved in the hy-
pothesis. Another closely related GAT application
is from Chen et al. (2021) applied for fact verifi-
cation on Wikipedia articles. Typical applications
of GAT in the NLP domain are for question an-
swering, semantic parsing, information extraction
and Named Entity Recognition (Wu et al., 2022;
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Chakraborty, 2023).

3 Task Description & Data

The dataset for Multi-evidence NLI for Clinical
Trial (NLI4CT) is based on a collection of breast-
cancer CT reports” containing statements, expla-
nations and labels annotated by domain expert an-
notators (Jullien et al., 2024). Each CT report has
four sections: (a) Eligibility criteria (a set of condi-
tions for patients to be included in the trial cohort),
(b) Intervention (information regarding the details
of treatments administered), (c) Results (what is
the outcome of these treatments) and (d) Adverse
events (if anything was observed during the period
of the trial). The annotated statements (hypothe-
sis) are claims extracted from one of the four sec-
tions (with an average length of 19.5 tokens) and
may even compare more than one report. Each
statement is qualified as either ’Contradiction’ or
’Entailment’.

There are 1700 examples in the training set and
200 in the development/validation set with exactly
50:50 split of the two classes. The test set has
5500 examples with unknown label distribution. A
typical example looks like the following:

1. Hypothesis: *All the primary trial participants
do not receive any oral capecitabine, oral lapa-
tinib ditosylate or cixutumumab IV, in contrast
all the secondary trial subjects receive these.’

2. Primary context: ’Patients with early stage,
ER positive primary breast cancer undergo
FLT PET scan at baseline and 1-6 weeks after
the start of standard endocrine treatment. The
surgery follows 1-7 days after the second FLT
PET scan.’

3. Secondary context: ’Patients receive oral
capecitabine twice daily on days 1-14 and oral
lapatinib ditosylate once daily on days 1-21.
Courses repeat every 21 days in the absence of
disease progression or unacceptable toxicity’

4. Label: ’Contradiction’

where the secondary context provides the justifica-
tion of the label.

4 Methodology

We have explored three different modeling strate-
gies for the prediction of the inference label. They

Zextracted from https://clinicaltrials.gov/ct2/home

logit
q
Ahyp
k,v
hdep htoken hpre
BERT/RoBERTa
h h p
Xdep Xtok Xtok
hypothesis ~ premise

Figure 1: The architecture of the custom model using
GAT and Multi-head attention (MHA).

are (1) custom discriminative model with GAT ap-
plied to create features from the dependency tree of
the hypothesis statement, (2) sequence-to-sequence
generative models based on T5 and Flan-T5 but en-
riched with synthetic data used in both pre-training
and fine-tuning and (3) LLM based solution with
and without Few-shot examples.

4.1 Discriminative Model

The architecture of our custom discriminative
model is shown in Fig 1. We use the tokens of
both the hypothesis and the premises to gener-
ate a representation using either a standard BERT
or RoBERTa model (referred as hiopens for the
hypothesis and Ay, for the premise. Following
the RGAT approach of Wang et al. (2020) (origi-
nally meant for aspect polarity detection) we utilize
the dependency structure of the input hypothesis
(X gep) that captures the grammatical relations by
connecting the words with the corresponding de-
pendency type. However, we do not reorient the
dependency tree since there is no aspect word in our
application. Using GAT based processing of the
hypothesis dependency tree we generate additional
features hgep. Details of the GAT based processing
are provided in Appendix A. We concatenate both
the features of the hypothesis (hgep and hyorens)
and pass through a linear layer to create the final
hypothesis feature, hy,,. For the premise, there is
only the token based feature, /.., which is used as
a key and value in a standard multi-head attention
(MHA) with hy,,,, as the query vector. This process
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is repeated multiple times (maximum 3) with the
output of the previous MHA layer. Finally, we take
the first vector of the MHA output (corresponding
to [CLS]) and pass it through a linear layer to gen-
erate the logits. The model is trained for binary
cross-entropy loss.

4.2 Generative Model

In the 2023 SemkEval challenge (Jullien et al.,
2023), it was found that generative models out-
performed discriminative models on the entailment
task. We also explore different TS models (small
and base T5 and base SciFive) for the current en-
tailment task with the exception that we have also
generated synthetic data for pre-training as well as
fine-tuning.

4.2.1 Generation of Synthetic Data

For generating synthetic data for TS pre-training we
follow (1) the standard TS5 random span masking>
for both the hypothesis and premise sentences and
(2) ask GPT-4 to identify spans and mask them
subsequently. The first approach works better for
the quality of the data and we use this approach for
generating the final pre-training data. We have used
noise density = 0.4 and average noise span length
of 2 and generate 73,457 pre-training examples.

For generating additional fine-tuning data, we
use GPT-4 (with temperature = 0.7) with three ad-
ditional tasks, namely, (a) Question answering on
the premise text, and (b) additional inference data
from the same set of premises and (c) create a con-
tradictory hypothesis from the original hypothesis.
For the first task, examples look like

1. Question: "How many weeks after the start of
standard endocrine treatment is the second
FLT PET scan conducted?’, Answer: ’1-6
weeks’

2. Question: *On which days is oral capecitabine
given in Arm A?’, Answer: days 1-14°

Additional NLI examples are

1. Hypothesis:No adverse events were reported
in the clinical trial., Label: Entailment

2. Hypothesis: The clinical trial report had 765
adverse events in one section and 88 in another
section., Label: Contradiction

3https://github.com/google-research/text-to-text-transfer-
transformer

In this process we generate 11k Q&A pairs and 45k
NLI pairs and 1700 contradictory NLI examples
from the original 1700 training examples.

4.3 Large Language Model

It was also observed in 2023 SemEval challenge
(Jullien et al., 2023) that increase in model size also
improves the performance. We further validate this
hypothesis by applying GPT-4 to the NLI task with
and without few-shot examples.

4.4 Implementation Details

For the discriminative model we use the bi-affine
parser (Dozat and Manning, 2016) from AllenNLP
for dependency parsing. For all experiments,
the embedding dimension for the dependency re-
lation is same as the hidden dimension of the
BERT/RoBERTa model. We use 3 MHA layers
with 8 heads and 2 GAT layers with 6 heads and
all the dropouts are fixed at 0.3. The model has
a total of 110 million parameters for BERT-base
and 351 million parameters for BERT-large. The
last hidden state of the pre-trained BERT* is used
for the initial token representations which is sub-
sequently fine-tuned. All models are trained for
50 epochs using Adam optimizer (Kingma and Ba,
2014) (with the default parameters), a learning rate
of 5 x 1075 and a batch size of 8.

We have pretrained both small and base T5 mod-
els for subsequent NLI task. Pretraining is done
for 20 epochs with a batch size of 16 and learning
rate of 5 x 10~° with Adam optimizer. From the
73,457 span masked examples, we use 66111 for
training and 7346 for validation that is used to keep
track of the validation loss and saving the model.

5 Results

In this section, first we describe the performance of
the custom discriminative model followed by the
performance of the fine-tuned TS5 model and finally
the results from GPT-4. Although we compute pre-
cision, recall and F1-score for all our experiments
we report only F1-score here. It is to be noted that
we did not evaluate our model on the test dataset
for all our experiments and submitted test results
only for the best validation performance. Thus, for
most of our experiments we report only the valida-
tion F1-score and also mention the test F1-score
wherever available. Table 1 summarizes the results
from the custom discriminative model. There are

“https://github.com/huggingface/transformers
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Model Type Base Model Model Parameters | Dev-F1  Test-F1
Cross-attention ~BERT-base 110 M 0.64
Combined pooler BERT-base 110 M 0.65
Cross-attention + GAT BERT-base 110 M 0.67 0.49
Cross-attention + GAT BERT-large 351 M 0.67 0.50

Table 1: Performance of the custom discriminative model on the validation and test dataset

Model Type Model Additional Data Dev-F1 Test-F1
random initial weight small T5 (60.5 M) None 0.55
random initial weight small TS (60.5 M) synthetic NLI data-I 0.51
random initial weight small TS (60.5 M) synthetic NLI data-II 0.53
pretrained with CTR data  small Flan-T5 (76 M) None 0.58
pretrained base T5 (223 M) None 0.64
pretrained base TS5 (223 M) Synthetic Q&A data 0.43
pretrained base TS5 (223 M) Synthetic NLI-I data 0.55
pretrained base T5 (223 M) Synthetic NLI-II data | 0.54

pretrained Flan-T5 base (247 M) None 0.66 0.608

pretrained Flan-T5 base (247 M) Synthetic NLI-I - 0.535

- GPT-4 (0613) Zero-shot - 0.761

Table 2: Performance of different generative models including GPT-4.

four flavors of this model, one with BERT-large and
three with BERT-base. Within BERT-base, we have
one with cross-attention, one without (’combined-
pooler’ that only concatenates the two BERT out-
puts) and the third one with cross-attention and
GAT. It can be seen that the presence of GAT im-
proves the validation F1 score over the other vari-
ants. However, the performance does not improve
with the larger BERT model. Surprisingly, the cor-
responding test F1-score shows significant degra-
dation implying substantial difference in the test
data distribution (tokens, nature of problem or la-
bel) from that of the validation dataset. The small
number of validation dataset also contributes to this
mismatch.

Table 2 captures the details of different experi-
ments with generative models like, T5, Flan-T5 and
GPT-4. The size of the generative model (small vs.
base) has strong contribution to the performance as
confirmed earlier (Jullien et al., 2023). However,
the addition of synthetic data does not improve
(rather degrade) the F1-score which is evident for
both the small and base version of T5. This chal-
lenges the traditional belief of improvement due to
multi-task learning and indicates potential conflicts
in the synthetic data due to either a mismatch in
the nature of the problem (e.g., Q&A) or accuracy
of the synthetic data (since they are not manually
verified). The best result is obtained by a base Flan-

TS5 model trained without any synthetic dataset that
results in a test Fl1-score of 0.61. Finally, using
GPT-4 (version 0613, maximum context length of
8192) without any Few-shot examples results in
the best test F1-score of 0.76.

6 Conclusion

In this work we have explored both discrimina-
tive and generative models for NLI applied to CT
reports. While our custom discriminative model
outperforms generative models like T5-base and
Flan-T5-base the same is not true when evaluated
on the test dataset indicating the limitation of the
small validation dataset and significant change in
data distribution. Since the training dataset is small
(1700) we also explore enriching the same with
synthetic data created by LLMs like GPT-4 for ad-
ditional task (e.g., Q&A) and the same NLI task.
However, the addition of these synthetic data sub-
stantially degrades the performance rather than im-
proving pointing to a deeper analysis of the role of
synthetic data for NLI task. The only exception is
in the pretraining synthetic data created for small
Flan-T5 model that boosted the final performance.
The best result is obtained by GPT-4 without using
Few-shot examples and we suspect both the addi-
tion of examples and modification of the prompt
can further improve the performance.
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A Graph Attention Network

The dependency tree can be represented by a graph
structure where each node is a word and the edges
between them are represented by the dependency

relation, e.g., nominal subject, adverbial modifier,
etc. Following Wang et al. (2020), given a neigh-
borhood of a node N;, the node embeddings can
be iteratively updated using multi-head attention
(with K attentional heads) as

hf;tl = concat}_; Z ozZ?W,ihé-, (1)
JEN;
o/;C = attention(i, j), ()

where hfl'ftli is the attention head of node-¢ at layer

[+1and a%‘? is the normalized attention coefficient
computed by the k-th attention at layer [ and W,i is
an input transformation matrix.

In addition to the attention head of word-: a rela-
tional head is also computed for this node as

i = concathl_) Y BImWLEL, (3)
JEN;

an = U(Telu (Tiijl + bml) Wm2 + me) 4

ﬁzg = exp gzg / Z exp gzg (5)
JEN;

where 7;; denotes the relation embedding between
node-¢ and j and M is the number of relational
heads. The final representation of each word (node)
is a concatenation of the attention and relational

embeddings:
x§+1

= concat(hf;gtl , hfgll) (6)

AL = reluy (WHM’ + bl+1) )
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Abstract

This paper outlines our multimodal ensemble
learning system for identifying persuasion tech-
niques in memes. We contribute an approach
which utilises the novel inclusion of consistent
named visual entities extracted using Google
Vision’s API as an external knowledge source,
joined to our multimodal ensemble via late fu-
sion. As well as detailing our experiments in
ensemble combinations, fusion methods and
data augmentation, we explore the impact of
including external data and summarise post-
evaluation improvements to our architecture
based on analysis of the task results.

1 Introduction

In this paper, we describe our approach to identify-
ing persuasion techniques for SemEval 2024 Task
4. The task involves the identification of up to 22
persuasion techniques in memes, which are inher-
ently multimodal. We participated in Subtask2a
and Subtask2b.

Subtask?2a is a multilabel classification task, re-
quiring the identification of 22 persuasion tech-
niques using both textual and visual content. The
subtask is evaluated by a hierarchical F1, as each
label is part of a subset of techniques and contains
a parent node. Subtask2b is a binary classification
task, determining the presence or absence of any
persuasion technique within a meme (propagan-
distic or non-propagandistic). For both subtasks,
training data is provided in the English language
and a development set also in English. As well
as English, 3 surprise languages in Arabic, North
Macedonian and Bulgarian were provided to offi-
cially evaluate our approach (Dimitrov et al., 2024).

Our system architecture is an amalgamation of
traditional NLP and vision models, exploring late
and early fusion techniques as well as carefully
crafted confidence thresholds. We extend beyond
the training data by incorporating resources such as

Google Vision', which provides consistent named
visual entities extracted from the image regardless
of language; in a multilingual context this reduces
reliance on sentence spans or tokens, which can be
problematic due to linguistic variations in unseen
language data. We also make our code publicly
available.”

2 Background

Identifying persuasion techniques in memes is nec-
essary endeavour for combating misinformation
and fostering critical media consumption among
the public, and the focus of a number of ongo-
ing research areas for the prevention of harm-
ful content, propaganda or disinformation spread
through memes (Dimitrov et al., 2021a; Dupuis and
Williams, 2019; Sharma et al., 2022).

Propaganda is generally referred to as informa-
tion which is purposefully shaped or presented to
support a particular agenda, often utilising the per-
suasion techniques in this shared task. Previous
shared tasks have also considered the identification
of persuasion techniques in text only (Da San Mar-
tino et al., 2020), multimodal contexts using memes
(Dimitrov et al., 2021b), and persuasion techniques
in multilingual text (Piskorski et al., 2023b). Se-
mEval 2024 Task 4 is a shared task of a similar
nature, however the task considers both image and
text as well as multilingual test data.

As meaning is often generating through the in-
teraction of both modalities in memes, meme re-
lated tasks are typically approached using pre-
trained convolutional neural networks (Beskow
et al., 2020; Hossain et al., 2022; Sherratt et al.,
2023; Suryawanshi et al., 2020) or vision transform-
ers (Afridi et al., 2021; Cao et al., 2023) in combina-
tion with language models. Our ensemble approach
therefore explores CNNs for the binary classifica-

'https://cloud.google.com/vision/docs/detecting-web
Zhttps://github.com/vemchance/BDA-SemEval4
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tion task; for the more complex multilabel classifi-
cation, we explore CLIP (Radford et al., 2021) to
leverage its significant pretraining on large-scale
natural language descriptions and images, as well
as its notable performance in zero-shot classifica-
tion and related downstream multimodal tasks such
as social media sentiment analysis (Bryan-Smith
etal., 2023).

Our motivation for including external knowledge
sources is inspired by previous successful appli-
cations of external information (Zhu, 2020) and
ongoing research to improve meme-related tasks
with the addition of structured knowledge to pro-
vide context to memes (Sherratt, 2022; Tommasini
et al., 2023).

3 Exploratory Analysis

We briefly explore the task data and use this anal-
ysis to inform our approach, particularly for the
more challenging Subtask2a. Exploring Subtask2a,
we calculated TF-IDF vectors for texts within each
label and calculated the cosine similarity between
these vectors. We noted that, for the majority of
labels, there is significant crossover in textual con-
tent. We also examine the number of labels in a
single meme, as Subtask2a was a multilabel clas-
sification problem where each meme could have
more than one persuasion technique, in Figure 1.

Given this crossover, we initially explored lever-
aging the annotation guidelines for the task, which
provides concrete examples of how to label each
persuasion technique. We noted the annotation
guidelines primarily provided examples annota-
tion based on the location of nouns or adjectives
per technique, but provided few examples of non-
European languages aside from Russian. However,
the guidelines did note the presence of ‘personal
characteristics, organisations, political orientation
or opinions’ in some techniques (Piskorski et al.,
2023a).

We therefore explore a more concise representa-
tion of these attributes using the Google Vision API
to extract ‘web entities’ and visual concepts from
an image. For multilingual data, this allows us to
rely less on sentence spans or tokens - elements that
vary across language - and instead leverage visual
entities that could consistently represent informa-
tion for each label regardless of textual content. In
Table 1, we outline a sample of extracted entities
from Google Vision’s web entities search.

Technique

Appeal to (Strong) Emotions
Appeal to (Strong) Emotions
Appeal to (Strong) Emotions

Entity Occurrence Count
Russia 48
United States 35
Amnesty International 34

Doubt Brand 52
Doubt Politics 48
Doubt Public Relations 40
Doubt Speech 39
Red Herring Entrepreneur 8
Red Herring Business 7
Red Herring Ukraine 7
Red Herring Russia 7

Table 1: Example Entities Extracted via Google Vision

4 System Overview

Our main system approach includes ensembling
NLP models with vision models for both subtasks.
We experimented with BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) family models as
well as VGG19 (Simonyan and Zisserman, 2014),
ResNet50 (He et al., 2015) and CLIP (Radford
et al., 2021).

For Subtask2a, we initially design an architec-
ture that combines multilingual text processing
with visual analysis. Our vision stream also in-
cludes web entities from Google Vision, processed
by a single BERT model. Our Subtask2b system
similarly integrates visual and textual modalities
with experiments in late and early fusion. We also
include additional novel implementations beyond
an ensemble of pretrained models:

External Knowledge: We use Google Vision
to extract information from meme images. The
Google Vision API annotates an image using web
detection, returning a list of predicted labels for
objects, people or concepts in an image, as well as
matching URLs and the Google Knowledge Graph
ID (Singhal, 2012). We utilise only the named
visual entities, with an example in Table 1.

Data Augmentation: We experiment with aug-
menting the task data. English training data is di-
rect translated using GPT-3.5 (Brown et al., 2020)
into a number of other languages, and then again
translated when the test datasets are released.

F1 Confidence Threshold: For Subtask2a,
we leverage the provided hierarchy of techniques
(Dimitrov et al., 2024) to change the confidence
threshold for predicted labels. The F1 Confidence
Threshold reduces both the threshold required to
classify a label from 0.50 to 0.40 (a full reward
when scored) and a confidence between 0.35 and
0.40 will return the parent node of the label (partial
reward when scored). We detail the impact of the
F1 Confidence Threshold in Section 5.2.
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Figure 1: Subtask2a Multilabel Classification Label Exploration

Late Fusion Engine: We implement a late fu-
sion system to combine our separate NLP and vi-
sion streams together into a single predictive value.
We calculate the per-label accuracy for each model,
and use this to weight the contribution of each. In
other words:

predictigpe; =

(Agaber % accAigper) + (Blapel X accBigper)
accAjapel + accBigper

where accAjgpe; € {0..1} and aceBgpe € {0..1}
refers to the accuracy for the respective models for
a given label.

5 Experimental Setup

We combine the training and validation sets for
Subtask2a and Subtask2b to train each architecture,
a total of 7,500 for Subtask2a and 1,350 for Sub-
task2b originally in English. We test our approach
on the Development Set in English (1,000 samples
for Subtask2a and 300 for Subtask2b). Detailed
in Section 5.1, the total samples are increased by
direct translating data for both subtasks. For all ex-
periments, we set the validation split in the model
to 30% of the total training data. When multiple
languages are included in the data, we stratify the
training and test splits based on language.

The number of epochs is determined by no im-
provement to validation loss after 5 epochs. We
find that the majority of the language models

‘ mBERT XLM-RBase BERT CLIP
Optimizer AdamW  AdamW AdamW  Adam
Dropout 0.4 0.4 0.3 0.5
Weight Decay | le-5 le-5 - -
Learning Rate | le-5 le-5 le-5 Se-5
Batch Size 8 8 8 16

Table 2: Model Parameters

in combination complete around 8 - 10 epochs,
whereas CLIP often stops improving around 6
epochs. Table 2 details the specific parameters
of our main models. We use pretrained models
for both image and text modalities, and therefore
the drop-out rate is applied before the respective
classification layer detailed in Figure 2.

5.1 Additional Data

We explore the use of the Persuasion Techniques
Corpus (PTC) (Da San Martino et al., 2020) as
additional training data. We use the Google Vision
API to extract descriptive entities for all task data
images, which is returned in English from the API
under the ‘web entities’ search response. We also
augment our dataset using GPT-3.5 (Brown et al.,
2020) to direct translate a sample of 500 texts from
Subtask2a for each unseen language in the task
(1,500 additional samples, or 20% of the available
training data). We perform the same process for
Subtask2b. Notably we do not augment or change
the image for this additional data.
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Figure 2: Subtask2a and Subtask2b Architecture

In our results detailed in Section 6, we refer
to the Persuasion Techniques Corpus as PTC, the
original task data as 7D, the task data with added
samples as ATD (augmented task data) and data
extracted via Google Vision as ED (External Data).
When external data is used as input, this is followed
by (ex) (e.g., BERT(ex)) in Section 6.

5.2 Subtask2a Details

For Subtask2a, we experiment with a number of
individual and ensemble models as detailed in Sec-
tion 6, as well as different fusion strategies and
the inclusion of the F1 Confidence Threshold. In
early fusion, models are jointly trained and their
learned feature vectors concatenated before passed
through final classification layer. In late fusion, we
use the late fusion engine detailed in Section 4 on
the predicted probabilities of each model.

The original architecture is detailed in Figure
2. The three-model NLP stream is referred to the
‘Triad’ model in experiments, which includes an ad-
ditional mBERT model with high drop-out to com-
bat over-fitting. However, as we experimented with
a number of model combinations, input data and
fusion techniques, we opted to choose the model
which performed the best on the English develop-
ment data for the official submission.

As detailed in Table 3 in Section 6, our origi-
nal architecture was less effective than other ex-
periments. In our final submitted architecture we
remove CLIP, so only the BERT model with exter-
nal data as input remains in the vision stream, and
use late fusion to merge this with the Triad NLP
architecture. This model is referred to as Traid +
BERT(ex) in Table 3.
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Metric Score

0.20
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0.00
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Classification Threshold (Parent Node)

—e—Precision Recall Hierarchial F1

Figure 3: F1 Score Against Parent Node Threshold

We also examine the impact of changing the re-
quired confidence threshold for a label, testing a
single mBERT model from our ensemble. Figure
3 provides an example each metric score mapped
against the threshold to return a parent node label.
The F1 Confidence Threshold reduces the threshold
required predict a technique, and then introduces
another lower threshold to predict the technique
label’s parent node from the task hierarchy (Dim-
itrov et al., 2024). We opted to use a configuration
which balances the Hierarchical F1, Precision and
Recall. In the F1 Hierarchy Threshold, the parent
node prediction is always 0.05 less than the label
confidence threshold. The configuration used is
0.40 for the label threshold, and 0.35 to return the
parent node of the label.

5.3 Subtask2b Details

For Subtask2b, if a model is reused from Subtask2a
(e.g., BERT(ex) models to process external data)
we reuse the parameters described above. For the
vision models, we use a different learning rate for
ResNet50 and VGG19 with the AdamW optimizer
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Model Fusion

Finetune Data H.F1 Precision Recall

XLM-RBase -
XLM-RBase -
XLM-RBase -
mBERT -
mBERT -
mBERT -
BERT(ex) -
BERT(ex)!'! -
CLIP -
CLIPF! -
mBERT + XLM-RBase Early
mBERT + XLM-RBase ! Early
mBERT + XLM-RBase + BERT(ex)?'!  Early
CLIP + BERT(ex) Early
CLIP + BERT(ex) Late
CLIP + BERT(ex)!'! Early
CLIP + BERT(ex)"'! Late
Triad Early
Triad + BERT(ex) Early
Triad + BERT(ex) Late
Triad + BERT(ex)f'! Late
Triad + BERT(ex) + CLIP Late
Triad + BERT(ex) + CLIPf'! Late

PTC 0.213 0.362 0.151
PTC, ATD 0.387 0.516 0.310
ATD 0.404 0.521 0.330
PTC 0.213 0.362 0.151
PTC, ATD 0.163 0.512 0.097
ATD 0.463 0.523 0.416
ED 0.395 0.528 0.316
ED 0.424 0.477 0.382
TD 0.315 0.375 0.272
TD 0.405 0.413 0.398
ATD 0.451 0.514 0.402
ATD 0.480 0.471 0.490
ATD, ED 0.475 0.466 0.484
ATD, ED 0.342 0.374 0.316
ATD, ED 0.345 0.523 0.257
ATD, ED 0.457 0.420 0.501
ATD, ED 0.435 0.488 0.392
ATD 0.470 0.515 0.433
ATD, ED 0473  0.467 0.480
ATD, ED 0.476 0.470 0.484
ATD, ED 0.483 0.526 0.446

TD, ATD,ED 0.463 0.541 0.405
TD, ATD,ED 0.455 0.461 0.450

Table 3: Subtask2a Experiment Results on Development Set (English)

of 1e-8, a batch size of 8 and the same early stop-
ping parameters as Subtask2a.

Both image models utilise ImageNet weights
(Deng et al., 2009). We apply the same dropout
rate specified in Table 2 to the text model before
this is passed through a classification layer in the
case of early fusion. As Subtask2b is a binary clas-
sification task, we do not require the F1 Confidence
Threshold for this architecture. In our final architec-
ture, VGG19 and XLM-RoBERTa-Base are trained
jointly on the augmented task data, and the late
fusion engine combines predictions from from the
Google Vision web entities.

6 Development Set Results

We detail the results of our experiments for Sub-
task2a in Table 3 and Subtask2b in Table 4. In the
Table 3, the F1 Confidence Threshold modification
is indicated by [Model] F1.

For Subtask?a, we found the Triad combination
performed best with BERT (trained on the extracted
Google Vision entities, model BERT(ex) in Table
3) predictions combined with late fusion. The F1

Hierarchy threshold increased the score of the same
model in the majority of cases.

Whilst we explored the use of PTC to finetune
our models, we found that, due to the different nam-
ing conventions of some techniques, performance
did not improve with incorporation of the PTC data.
We also noted the PTC data was drawn from a dif-
ferent domain (e.g., news articles) were the context
of techniques would be longer than short sentences
in memes, and potentially this corpus was less ef-
fective as a finetuning dataset for the task.

We originally aimed to leverage CLIP’s text and
image embeddings to inform a novel early fusion
neural network model for multilabel multiclass per-
suasion techniques classification. However, this
architecture including CLIP was slightly less ef-
fective than others. The reasons behind this sub-
optimal performance could be multifaceted, includ-
ing the complexity and subtlety of propagandistic
content within memes, the inherent challenges of
cross-modal understanding in this particular do-
main. One reason is suggested that, whilst the vi-
sual modality is important for identifying whether
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Model Fusion Data F1 Macro F1 Micro
BERT(ex) - ED 0.577 0.580
CLIP - TD 0.618 0.680
CLIP + BERT(ex) Late TD, ED 0.634 0.707
Triad Early ATD 0.383 0.613
VGG19 + BERT Early ATD 0.753 0.806
VGG19 + mBERT Early ATD 0.621 0.740
ResNet50 + mBERT Early ATD 0.638 0.700
VGG19 + XLM-RBase Early ATD 0.641 0.706
ResNet50 + XLM-RBase Early ATD 0.618 0.706
VGG19 + XLM-RBase + BERT(ex) Early ATD, ED 0.337 0.360
VGG19 + XLM-RBase + BERT(ex) Late ATD, ED 0.677 0.717
VGG19 + XLM-RBase + CLIP + BERT(ex) Late TD, ATD, ED 0.602 0.707
Table 4: Subtask2b Experiment Results on Development Set (English)

a technique is present, distinguishing between the S— Rank Fl1 Baseline (Diff))

specific types of techniques may primarily be a ubtaskzsa

s P Im S

ot o st il ol N s £ 04 055 (o

) Arabic 7 0.416 0.486 (-0.070)

tures retrained for a binary classification task from Subtask2b

Subtask2a on Subtask2b as a comparison, noting English 6 0.793  0.250 (+0.543)

these models did not perform as well. In Subtask2b, Bulgarian 0.506 0.167 (+0.339)

therefore, the vision modality was significant in the North Macedonian 11 0.435 0.091 (+0.344)

binary classification task. We note from the results Arabic 0.510  0.227 (+0.283)

monolingual language models outperform multi-
lingual models, and suggest this may be due to
the limited sample size for the augmented data in
Subtask2b. In line with our system strategy, we
include BERT(ex) only in conjunction with multi-
lingual models, as the aim of this additional data
is to improve zero-shot classification irrespective
of language. We observed significant performance
increase using the BERT(ex) model in late fusion
for Subtask?2b.

7 Test Set Performance and Analysis

For the test set, we submitted the best performing
model from each subtask experiment. For Sub-
task2a, this was the Triad + BERT(ex) with late
fusion. For Subtask2b, we submitted the VGG19 +
BERT model for English test sets and the VGG19
+ XLM-RoBERTa-Base + BERT(ex) for all other
languages.

Evaluating our results on the test set in Table
5, we found that our model for Subtask2a gener-
alised better on different languages, outperforming
the results on the English Development dataset in
some cases. Our system performed the best on
North Macedonian and the worst in Arabic for this

Table 5: Results on Official Test Set Leaderboard

task. The original and augmented task data for
Subtask2a was larger than Subtask2b, and we ef-
fectively traded English language performance for
better generalisability on other languages.

For Subtask2b, our architecture under-performed
from tests on the English Development dataset
aside from the VGG19+BERT model used in the
English test set. This approach was less able to
generalise on non-English data than our approach
from Subtask2a, with a significant score reduction
in North Macedonian, our highest scoring language
for Subtask2a.

7.1 Subtask2a Test Set Results Analysis

We examine the importance of each modality using
the English Development set using the late fusion
engine, which calculates the per accuracy label
from each model. Table 6 shows the weights of our
original architecture (Triad plus CLIP) alongside
visual entities extracted from Google, including
only the top entity categories with the highest oc-
currence count.

128



Technique NLP Weight Vision Weight Top Entities (English)

Appeal to (Strong) Emotions 0.793 0.949 Amnesty International; United States; Product; Russia
Appeal to authority 0.831 0.932 Quotation; US President; United States; Public Relations
Appeal to fear/prejudice 0.916 0.920 Russia; US President; United States; Product
Bandwagon 0.902 0.982 US Vice President; Product; United States; US President
Black-and-white Fallacy/Dictatorship 0.881 0.896 Russia; US President; United States; Product

Causal Oversimplification 0.921 0.943 Public; United States; Public Relations; Product

Doubt 0.912 0.944 Public speaking; Speech; Public Relations; Product
Exaggeration/Minimisation 0.868 0.927 Product; United States; US President

Flag-waving 0.847 0.897 Flag; Product; US President; United States; Speech
Glittering generalities (Virtue) 0.690 0.907 Product; Public Relations; United States; US President
Loaded Language 0.694 0.747 US President; Public Relations; United States; Product
Misrepresentation of Someone’s Position (Straw Man) 0.817 0.989 Humor; Russia; US President; United States

Name calling/Labeling 0.648 0.743 Public Relations; US President; United States; Product
Obfuscation, Intentional vagueness, Confusion 0.988 0.988 2023; Album cover; Getty Images; Product

Presenting Irrelevant Data (Red Herring) 0.990 0.990 Business; Ukraine; Russia; Entrepreneur

Reductio ad hitlerum 0.984 0.984 Al-Qaeda; Russia; Product; United States

Repetition 0.961 0.951 Public Relations; Politics; US President; Product; United States
Slogans 0.905 0.883 Public Relations; US President; United States; Product
Smears 0.645 0.468 United States; US President; Product; Public Relations
Thought-terminating cliché 0.906 0.486 Russia; Politics; United States; Product

Transfer 0.733 0.718 Ukraine; United States; Russia; Product

‘Whataboutism 0.942 0.818 Public Relations; US President; Presentation; Product

Table 6: NLP and vision stream weighting with corresponding visual entities (Subtask2a English Development set)

In Table 6 both streams have a high and some-
times equal weight. Examining the entities, we
see that higher weights in the vision stream some-
times corresponds to an identifiable and obvious
visual entity - for example, ‘Straw Man’ or ‘Name
Calling’ techniques with a slightly higher weight
for the visual stream are labels which are likely to
require a target that may not be present in the text;
the top entities for these types of meme usually
include a US President or Russia in the English
Development set.

Techniques where the weighting leans towards
the NLP stream include abstract entities; public
relations is often the most common entity before a
named entity such as a ‘US President’ or ‘Prod-
uct’. Additionally, techniques that use linguis-
tic techniques (such as ‘Repetition’ or ‘Slogans’,
‘Whataboutism’, “Thought-terminating cliché) had
a higher contribution from the NLP stream.

7.2 Subtask2b Test Set Results Analysis

For Subtask2b, we noted that the visual modal-
ity performed better than models re-trained from
Subtask2a. We also noted that, whilst CLIP per-
formed well, as with Subtask2a this was not the
best performing visual model. We suggest that
VGG19’s ability to capture complex visual features
were more relevant to the dataset in comparison to
CLIP’s generalised image-text representations.
Our approach for Subtask2b did not generalise
well in comparison to Subtask2a. Whilst the perfor-
mance drop could equally be attributed to a smaller
augmented data sample in Subtask2b, we also ex-

Language Entity Occurrence Count
English Politics 68
English United States 62
English US President 38
Bulgarian Product 24
Bulgarian Bulgaria 17
Bulgarian Public Relations 14
North Macedonian ~ Cartoon 78
North Macedonian  Public Relations 38
North Macedonian  Poster 28
Arabic Product 29
Arabic Humor 12
Arabic Laughter 11

Table 7: Sample Web Entities for Test Dataset in Sub-
task2b

amine North Macedonian memes to understand the
reduction of performance on this set.

Visually, North Macedonian memes were differ-
ent from memes in other languages, particularly
in English; they included a significant number of

‘cartoon’ type memes and comic strips compared to

others, which is also reflected in a sample of visual
entities outlined in Table 7. As our Subtask2b ar-
chitecture relied more on the visual modality than
Subtask2a, the reduction of performance is there-
fore expected given this analysis.

7.3 Post-Evaluation Analysis

Post official evaluation, we used our analysis of
the competition results to explore an improved ar-
chitecture for each task. Whilst these are not part
of the official SemEval Task 4 leaderboard, we
include these as additional experiments.

For Subtask2a, we incorporated the VGG19
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model instead of CLIP and removed the second
mBERT model with the 80% drop-out rate with the
aim to provide more information from the visual
modality. For Subtask2b, we attempted to improve
the linguistic part of the model by incorporating
XLM-Roberta-Large.

Additionally, for Subtask2b, we direct trans-
lated 200 memes per test language from the Mem-
otion (Sharma et al., 2020) dataset which were
considered ‘not offensive’ and labelled these non-
propagandistic, to significantly increase and re-
balance the data provided for Subtask2b. In this
new augmented data, each test language comprised
10% of the non-propagandistic label whereas En-
glish comprised 70%, also drawing memes from
Memotion in English to balance the label sample
size.

Despite incorporating the visual modality and
additional data, our second attempt at Subtask2a
under-performed. Considering the drop, we did
not feel the inclusion of external knowledge via
an additional BERT model as in prior experiments
would improve performance. Since our augmenta-
tion technique cannot replicate the visual modal-
ity, the visual information contains cultural entities
and concepts from English-memes which likely im-
pacts performance, particularly for techniques that
require more contribution from the visual modality.

In Subtask2b, all languages improved without
BERT(ex). Performance on Arabic decreased
slightly with the inclusion of external knowledge,
with no change in Bulgarian and an increase in
North Macedonian. The inclusion of external
knowledge via late fusion, comparative to the re-
sults in Table 4, provided marginal improvement;
likely the dataset re-balance and inclusion of a
larger language model were also significant. The
augmented data for this experiment were also more
diverse in this case as they were drawn from a dif-
ferent dataset, whereas augmenting the multilabel
classes in Subtask2a from another dataset was not
possible without native language speakers trained
in the specific annotation task.

8 Conclusion and Future Work

We presented our ensemble learning approach to
SemEval-2024 Task 4, including a number of exper-
iments with early and late fusion, the inclusion of
external knowledge and modifying the label thresh-
old. We found that the inclusion of external sources
of knowledge, even basic descriptive entities as in

Subtask2a Test Language Fl1 F1 Change
mBERT+XLM-RBase + VGG19 Bulgarian 0.424 -0.059
mBERT+XLM-RBase + VGG19 North Macedonian  0.358 -0.156
mBERT+XLM-RBase + VGG19  Arabic 0.376  -0.040
Subtask2b

XLM-RL + VGG19 Bulgarian 0.571  0.065
XLM-RL + VGG19 North Macedonian  0.570 0.135
XLM-RL + VGG19 Arabic 0.621 0.111
XLM-RL + VGG19 + BERT(ex) Bulgarian 0.571 0.065
XLM-RL + VGG19 + BERT(ex) North Macedonian 0.578 0.143
XLM-RL + VGG19 + BERT(ex) ~Arabic 0.603  0.093

Table 8: Post-Evaluation Model Results

our experiments, improved performance on both
subtasks especially using late fusion.

By their nature, memes are multimodal; our ap-
proach to Subtask?2a still utilised visual elements
via entities extracted from the image, and thus pro-
vided essential context to interpret ambiguous tex-
tual content, however we found the balance be-
tween visual and textual importance varied across
meme types and tasks. Whilst Subtask2a benefited
from the integration of visual entities as a more
concise representation of the visual modality, we
found that much of the context required for iden-
tifying specific techniques required either better
cross-modal understanding or finer text analysis.
In contrast, Subtask2b benefited from a strong vi-
sual model.

The identification of named entities in visual
modality of memes is a potential future area of
research, as this would enable drawing on com-
plex stores of knowledge (e.g., knowledge graphs)
for deeper cross-modal understanding when disen-
tangling persuasion techniques. We further sug-
gest that there is promise in generating more high
quality, multilingual data for persuasion techniques
across languages based on our experiments with
augmented data, particularly for low-resource lan-
guages. Although we augmented the task data to
cover more languages using direct translation, a
limitation in this method is the inability to change
the visual modality.

We also note there is a cultural element to memes
not considered in current research. We identified
that North Macedonian memes were visually dif-
ferent from other memes; the different cultural per-
spectives and practices in developing memes is
under-researched, with only limited studies inves-
tigating global meme practices (Nissenbaum and
Shifman, 2018). As well varied training data, a
better understanding of cultural meme production
could contribute to defining the most appropriate
approach for zero-shot multilingual meme tasks.
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Abstract

Nowadays, memes are considered one of the
most prominent forms of medium to dissemi-
nate information on social media. Memes are
typically constructed in multilingual settings
using visuals with texts. Sometimes people use
memes to influence mass audiences through
rhetorical and psychological techniques, such
as causal oversimplification, name-calling, and
smear. It is a challenging task to identify those
techniques considering memes’ multimodal
characteristics. To address these challenges,
SemEval-2024 Task 4 introduced a shared task
focusing on detecting persuasion techniques
in multilingual memes. This paper presents
our participation in subtasks 1 and 2(b). We
use a finetuned language-agnostic BERT sen-
tence embedding (LaBSE) model to extract
effective contextual features from meme text
to address the challenge of identifying persua-
sion techniques in subtask 1. For subtask 2(b),
We finetune the vision transformer and XLM-
RoBERTa to extract effective contextual infor-
mation from meme image and text data. Finally,
we unify those features and employ a single
feed-forward linear layer on top to obtain the
prediction label. Experimental results on the
SemEval 2024 Task 4 benchmark dataset mani-
fested the potency of our proposed methods for
subtasks 1 and 2(b).

1 Introduction

Modern social media represents a prominent envi-
ronment to disseminate information to a vast com-
munity in real time. Hence, persuasion techniques
are often embedded in social media content to sub-
liminally influence people and their unconscious
opinions. Such techniques are now incorporated
in memes due to the increasing popularity among
social media users. The visual aspect of memes
adds to the effectiveness of grabbing people’s at-
tention than purely word-based messages. Manip-
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ulators and propagandists now treat it as an effec-
tive tool to promote and achieve their nefarious
agendas. Sometimes different organizations use it
to spread fake news or propaganda which causes
social chaos and incitement of hate, which could
result in harm or even human casualties. Hence,
the detection of persuasion techniques embedded
in memes appears as a formidable task to shield
individuals from deceit. Moreover, detecting these
techniques from memes is a challenging task since
it requires a nuanced understanding of images, and
texts, and a proper appreciation of the satirical char-
acteristics of memes. To address these challenges,
SemEval-2024 introduced a shared task focusing
on detecting persuasion techniques from multilin-
gual memes (Dimitrov et al., 2024). This task com-
prises three subtasks. Whereas the first task is
based on identifying 20 persuasion techniques from
meme texts. This is a hierarchical multilabel text
classification task. Tasks 2(a) and 2(b) are based on
multi-modal contents. Task 2(a) is a hierarchical
multimodal multilabel classification task where the
proposed system needs to identify 22 persuasion
techniques from multimodal memes. Task 2(b) is a
multimodal binary classification task where the par-
ticipants need to apply the multimodal information
expressed by memes to classify them into whether
they contain a persuasion technique or not. A data
sample of each task along with corresponding la-
bels was articulated in Table 1.

However, some prior works have been done on
identifying persuasion techniques from texts and
visuals. SemEval 2023 shared task 3 introduced a
subtask based on identifying persuasion techniques
used in news articles (Piskorski et al., 2023). Most
of the participants used different multilingual trans-
former models to tackle the challenge of this task.
APatt (Purificato and Navigli, 2023) utilized an en-
semble of different pre-trained transformer models
e.g., XLNet, RoBERTa, BERT, ALBERT, and De-
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Table 1: Sample Data of subtask 1, 2(a), and 2(b) of SemEval 2024 Task 4

Task No. Sample Data Label
Subtask 1 WHEN THE POWER OF LOVE IS GREATER THAN THE LOVE Loaded Language, Black-and-white
OF POWER, THE WORLD WILL KNOW PEACE Fallacy/Dictatorship, Slogans
. . . Flag-waving,Glittering  general-
!
Subtask 2(a) Time To Stralgl;tgrgl ;)ut What Is Happening In Our Country! ities (Virtue),Black-and-white
Prop_meme_ -Phg Fallacy/Dictatorship
I MISSED THE SUPERBOWL-WHO WON?\\nEVERYONE
Subtask 2(b) WHO DIDN’T WATCH IT non_propagandistic

prop_meme_4388.png

BERTa incorporated by weighted average. Another
team, KInITVeraAl (Hromadka et al., 2023) used
fine-tuned XLM-RoBERTa-large model to address
the multilingual characteristics of this task. They
experimented with different prediction threshold
values to find the optimal one.

To detect persuasion techniques in texts and
images, SemEval 2021 Task 6 introduced three
subtasks including multilabel text classification,
span identification, and multi-modal multilabel
classification task (Dimitrov et al., 2021). The
top-performing team on the multilabel text clas-
sification task (Tian et al., 2021) leveraged five
fine-tuned transformer models: BERT, RoBERTa,
XLNet, DeBERTa, and ALBERT. They made use
of external PTC corpus (Da San Martino et al.,
2020) along with given training data to train these
transformer models. Team NLPIITR (Gupta and
Sharma, 2021) made use of a fine-tuned RoOBERTa
model to address the challenge of this task. Team
Volta (Gupta et al., 2021) explored the potency of
fine-tuned BERT and RoBERTa models for both
multi-label text classification and span identifica-
tion tasks and used RoBERTa Large for the final
model. Their proposed architecture ranked top on
span identification tasks. For the multi-label multi-
modal classification task, they tested the perfor-
mance of the ensemble of multimodal transform-
ers e.g., UNITER, VisualBERT, and LXMERT
alongside unimodal transformers e.g., BERT, and
RoBERTa. The winning team on subtask 3 (Feng
et al., 2021) experimented with the ensemble of
fine-tuned DeBERTa and ResNET, DeBERTa and
BUTD, and ERNIE-ViL models to address the chal-
lenge of leveraging features from different data
modalities.

In this paper, we demonstrate our proposed ar-
chitecture to address the challenges of Subtask
1 (multi-label hierarchical text classification) and
Subtask 2(b) (multi-modal binary classification) of
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SemEval 2024 Task 4. For subtask 1, we utilize a
fine-tuned Language-agnostic BERT Sentence Em-
bedding (LaBSE) model to extract effective contex-
tual features of meme texts. Next, we utilize an en-
semble of Vision Transformer and XLM-RoBERTa
models to address the challenge of multilingual and
multi-modal characteristics of subtask 2(b).

The remaining part of the manuscript is outlined
as follows: The pictorial description of our pro-
posed methods for both tasks is articulated in Sec-
tion 2. Section 3 presents the experimental setup,
result, and evaluation. We conclude this manuscript
with some future research directions in Section 4.

2 Proposed Architecture

2.1 Subtask 1: Hierarchical Multi-label
Persuasion Techniques Classification from
Meme Text

The main objective of our system is to detect avail-
able persuasion techniques in meme text from 20
pre-defined persuasion technique categories. An
overview of our proposed persuasion technique de-
tection framework is shown in Figure 1.

Upon obtaining the meme texts, we employed
Language-agnostic BERT sentence embedding
(LaBSE) on top of Flair’s Transformer Document
Embeddings to generate effective document em-
bedding vectors. Further, those document vectors
are then fed to a single-layer feed-forward linear
classifier to obtain the prediction label.

2.1.1 Language-agnostic BERT Sentence
Embedding (LaBSE)

LaBSE is a multilingual transformer-based
Language-agnostic BERT Sentence Embedding
model developed by (Feng et al., 2020). It was
trained on 6 Billion translation pairs and can gen-
erate sentence-level shared embedding features
for 109 languages. To obtain optimal represen-
tations of multilingual sentences, LaBSE integrates



‘ Meme Text ’

Document Embedding
Vector

Simple Feed-forward
Linear Classifier

!

[ Predicted Label ]

Figure 1: Proposed Framework of Subtask 1.

both monolingual and cross-lingual representations.
It incorporates Multilingual BERT utilizing the
masked language model and transformer language
model with a translation ranking task alongside
bidirectional dual encoders. We finetuned the
LaBSE model on the benchmark dataset to cap-
ture the task-specific context effectively.

2.1.2 Transformer Document Embeddings

Document embedding represents embedding fea-
tures of a full sentence rather than individual tok-
enized features. Flair’s transformer document em-
beddings (Akbik et al., 2019) furnish an embedding
for the entire text. We can extract embeddings di-
rectly from a pre-trained transformer model for a
full sentence which enables us to capture the con-
text of a sentence effectively. In our proposed archi-
tecture, we leverage the LaBSE model with trans-
former document embedding to obtain sentence-
level embedding for a particular meme text.

2.2 Subtask 2: Multimodal Binary
Classification Task

Figure 2 illustrates our proposed framework for
subtask 2(b) where we tackled the challenges of
multimodal meme classification.

Upon obtaining meme images and meme texts,
we utilize a vision transformer and XLM-RoBERTa
model to extract embedding features for both the
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Figure 2: Proposed Framework of Subtask 2(b).

meme images and meme texts. To tackle the mul-
timodal characteristics of this task, we then inte-
grated both visual and textual embedding features
together and fed the integrated features to a single-
layer feed-forward linear classifier to obtain the
final prediction label.

2.2.1 Vision Transformer

The vision transformer (ViT) is a self-supervised
transformer encoder model pre-trained on a large
image corpus (Dosovitskiy et al., 2020). ViT gener-
ates lower dimensional linear embedding by split-
ting the input image into fixed-size patches and
flattening the patches. After adding positional em-
beddings, the flattened patches are fed into a stan-
dard transformer encoder as a sequence of tokens.
The ViT encoder’s internal architecture is similar
to that of the original transformer. We utilize the
finetuned ViT model facebook/dino-vitb16 check-
point1 (Caron et al., 2021) to extract effective visual
information from memes.

2.2.2 XLM-RoBERTa

XLM-RoBERTa is a cross-lingual sentence encoder
introduced by the Facebook Al group (Conneau
et al., 2019). It was trained on a large 2.5 TB
Common Crawl(CC) corpus containing over 100

"https://huggingface.co/facebook/dino-vitb 16



languages. XLM-RoBERTa showed SOTA perfor-
mance in various cross-lingual tasks (Eronen et al.,
2022, 2023b,a). Both the base and large variants of
XLM-RoBERTa contain 250M and 560M param-
eters, respectively with 250K vocabulary. In our
proposed multimodal architecture, we utilized the
finetuned XLLM-RoBERTza large version to extract
an effective representation of meme texts.

2.2.3 Fusion of Features

The fusion of high-level features from different
data modalities in a neural architecture is con-
ventional to tackle the challenge of representing
multimodal features (Kumar and Nandakumar,
2022), (Pramanick et al., 2021), (Velioglu and Rose,
2020). In our proposed multimodal framework, we
concatenate visual and textual features extracted
from the finetuned ViT and the finetuned XLM-
RoBERTa model for the effective representation of
multimodal features.

2.3 Prediction Module

For both subtasks 1 and 2(b), We employed a single-
layer feed-forward linear layer with SoftMax acti-
vation function to obtain the prediction, like in the
equation 1 below.

q=Wp+b (D)

Here, the input and output feature vectors are rep-
resented by p and q respectively. W is the weight
matrix and b indicates the bias.

3 Experiments

3.1 Dataset Description

For subtasks 1 and 2(b), we utilized the dataset pro-
vided by the SemEval 2024 Task 4 organizers (Dim-
itrov et al., 2024) to train and finetune our proposed
frameworks. Table 2 shows the detailed statistics
of the dataset.

To evaluate the performance of our proposed
frameworks, we utilized the hierarchical F1 score
for subtask 1 and macro F1 score for subtask 2(b) as
per the benchmark of SemEval 2024 Task 4 (Dim-
itrov et al., 2024).

3.2 Experimental Setup

We utilized the Google Colaboratory platform for
system implementation, training, parameter tun-
ing, and performance analysis. For subtask 1, we
utilized the LaBSE model on Flair’s NLP frame-
work. The parameters used to train and finetune
our model are illustrated in Table 3.
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We made use of the vision transformer and XLM-
RoBERTa model to tackle the challenge of subtask
2(b). The parameters used to train the vision trans-
former and XLM-RoBERTa are shown in Table 4
and Table 5, respectively.

Table 2: The statistics of the dataset.

Language #Train #Val #Dev  #Test
Subtask 1:
English 7000 500 1000 1500
Bulgarian - - - 426
North Macedonian 259
Arabic 100
Subtask 2(b):
English 1200 150 300 600
Bulgarian - - - 100
North Macedonian 100
Arabic 160

Table 3: Optimal parameter settings for subtask 1.

Parameters List ‘ Search Space Value
Epochs {4} 4
Batch size {4} 4
Learning rate {5e-5} 5e-5
Optimizer {Adam, MADGRAD} | Adam
Multi-label

Threshold {0.1,0.2,0.30} 0.1

Table 4: Optimal parameter settings used in Vision
Transformer.

Parameters List ‘ Search Space Value
Epochs {4,6,8} 8
train_batch_size {4,8,16} 8
eval_batch_size {4,8,16} 8
Learning rate | {4e-5, 5e-5, 6e-5} | 6e-5
Optimizer {AdamW} AdamW

Table 5: Optimal parameter settings used in XLM-
RoBERTa.

Parameters List ‘ Search Space Value
Epochs {4,6,8} 6
train_batch_size {4,8,16} 4
eval_batch_size {4,8,16} 4
Learning rate | {4e-5, 5e-5, 6e-5} | 6e-5
Optimizer {AdamW} AdamW




Table 6: Synopsis of our proposed system performance
in subtask 1.

Table 7: Synopsis of our proposed system performance
in subtask 2(b)

Hierarchical .
Language F score Precision Recall Language F1 Macro F1 Micro
English 0.64096 0.61167 0.67320 English 0.49845 0.51500
Bulgarian 0.48627 0.46007 0.51563 Bulgarian 0.43363 0.45000
North Macedonian 0.42558 0.41395 0.43788 North Macedonian  0.42857 0.52000
Arabic 0.40370 0.35989 0.45965 Arabic 0.49831 0.53125

3.3 Results and Analysis

In this section, we assess the performance of our
submitted systems in SemEval 2024 Task 4 sub-
tasks 1 and 2(b). The test dataset comprises four
languages including English, Bulgarian, North
Macedonian, and Arabic. Table 6 and Table 7 illus-
trate the performance of our model for subtasks 1
and 2(b), respectively.

For subtask 1, the experimental result shows that
our proposed method achieved a good Hierarchi-
cal F1 score across the English, Bulgarian, North
Macedonian, and Arabic datasets. We also report
the hierarchical recall and hierarchical precision
scores. This signifies the versatility of our approach
across multiple languages. In subtask 2(b), there is
still a significant performance gap between the top-
performing systems and our system. One plausible
reason might be the imbalanced fusion of visual
and textual features.

4 Conclusion and Future Works

In this manuscript, we presented our proposed
frameworks to address the challenge of SemEval
2024 Task 4 subtasks 1 and 2(b). We employed the
LaBSE model to address the multilingual character-
istics of subtask 1 whereas Vision Transformer and
XLM-RoBERTa models were employed to address
the multi-modal and multilingual characteristics of
subtask 2(b). Both of our methods showed compet-
itive performance over other participant’s systems.

In the future, we aspire to explore the effective-
ness of different multimodal transformer models’
performance on this task. We also have a plan to
exploit the external knowledge for a better under-
standing of memes for this task.
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Abstract

The advancement of large language models
(LLMs), their ability to produce eloquent and
fluent content, and their vast knowledge have
resulted in their usage in various tasks and ap-
plications. Despite generating fluent content,
this content can contain fabricated or false in-
formation. This problem is known as halluci-
nation and has reduced the confidence in the
output of LLMs. In this work, we have used
Natural Language Inference to train classifiers
for hallucination detection to tackle SemEval-
2024 Task 6-SHROOM (Mickus et al., 2024)
which is defined in three sub-tasks: Paraphrase
Generation, Machine Translation, and Defini-
tion Modeling. We have also conducted ex-
periments on LLMs to evaluate their ability to
detect hallucinated outputs. We have achieved
75.93% and 78.33% accuracy for the model-
aware and model-agnostic tracks, respectively.
The shared links of our models and the codes
are available on GitHub'.

1 Introduction

Large language models are compelling in content
generation. The ability of these models has led to
their widespread use in various applications. Some
of the use cases of these models are in sensitive
fields, such as consulting in medicine and law. The
eloquence of LLMs makes their content appear
very acceptable, and these models respond with
high confidence. An important shortcoming of
these models is hallucination. Hallucination is the
production of fabricated or false content (Gehman
et al., 2020; Weidinger et al., 2021). Hallucination
detection and mitigation are necessary to avoid the
dangers of spreading false and harmful informa-
tion. According to Zhang et al. (2023), halluci-
nations can be divided into input hallucinations,
context hallucinations, and factual hallucinations.

"https://github.com/z-rahimi-r/
HalluSafe-at-SemEval-Task-6-SHROOM

In input hallucination, the output content of the
model has data that contradicts the input content.
In context hallucination, the model’s output content
contradicts the content the model itself produced
earlier. In the last case, factual hallucination, the
output content of the model has information that
contradicts the existing world knowledge. In the
dataset provided for the Shroom task, each data
sample has a reference to be checked with. Given
that reference-based hallucination detection entails
identifying contradictions between model output
and the reference (either input or target), a natural
language inference (NLI) approach presents an in-
tuitive solution to detect such contradictions and
consequently identify instances of hallucination,
therefore we adopt an NLI approach as the founda-
tion of our methodology.

Through this task, we have gained knowledge
about hallucinations, their causes, and the various
approaches to deal with them. Language model
responses can be so fluent that it becomes diffi-
cult even for a human agent to detect hallucina-
tions. Therefore, it is essential to train these mod-
els to recognize the limits of their knowledge. If
they lack sufficient understanding of a subject, they
should search for reliable sources and inform the
human user if they are unsure of their answer. Our
team ranked 19th and 30th in the model-aware
and model-agnostic tracks, respectively, with a dif-
ference of 2.93% and 8.4% compared to the top-
ranked team. We found that the decision boundary
for detecting hallucinations can be very narrow in
some cases. While our system has shown relatively
good performance, there is still room for improve-
ment.

2 Background

As mentioned earlier, there are three types of hallu-
cinations. The types of hallucinations considered
in this task are “factual” and “input”. The “factual”
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type occurs in the definition modeling task, where
the definition of a word or phrase must be provided,
and the “input” type appears in the paraphrase gen-
eration and machine translation tasks. The halluci-
nation detection track has two sub-tracks: model-
aware and model-agnostic. In the model-aware sub-
track, the model that generated the data is specified,
and participants can use model parameters for diag-
nosis or analysis. However, our approach assumes
the models are black-box and can be used for situa-
tions where we do not have access to the internal
states and parameters of the model. It is important
to note that overgeneration is another issue in LLM
outputs. Samples with this issue should also be
labeled as One, indicating the presence of hallu-
cinations. Hallucination is not specific to LLMs,
and before the emergence of these models, it has
been investigated in NLP tasks such as summariza-
tion and machine translation (Azaria and Mitchell,
2023).

To deal with the hallucination problem in LLMs,
it is essential to find the causes of the problem
first. Two probable causes of hallucination, stated
in Azaria and Mitchell (2023), are the model focus-
ing on producing one token each time and random
sampling to increase diversity in text production.
Some believe overfitting to training data may lead
to hallucination (McKenna et al., 2023). In con-
trast to this point of view, in Yao et al. (2023), they
have shown that prompts consisting of only random
meaningless tokens can also elicit hallucinations in
LLMs. They believe that hallucinations are beyond
training data and consider them as adversarial fea-
tures. They have observed in their experiments that
a slight change in the original prompt can produce
a completely different claim by the LLM, which
indicates that LLLMs are very non-robust. In Rawte
et al. (2023), they measure the relationship between
linguistic factors such as readability, formality, and
concreteness of prompts and hallucinations. Their
results show that more concrete and formal prompts
lead to fewer hallucinations, but no definite con-
clusion can be drawn regarding the effect of read-
ability on hallucinations. According to this article,
prompt engineering can be effective in reducing the
problem of hallucinations. Lengthy prompts can
hurt the understanding of the LLM. In some experi-
ments, it has been observed that the LLM performs
better when the critical information is placed at the
beginning or end of the prompt. The performance
quality decreases when the model needs to access
the middle parts of the prompt for information.

Hallucination can be mitigated in different stages
of an LLM’s life cycle. As we know, the life cycle
of an LLM consists of Pre-training, SFT (Super-
vised Fine-Tuning), RLHF (Reinforcement Learn-
ing with Human Feedback), and Inference (Zhang
et al., 2023). The datasets with which LLLMs are
pre-trained are collected without human supervi-
sion. These data can include false or outdated in-
formation, which may cause hallucinations. The
training in the SFT phase should also consider the
knowledge of the model, and the model should not
be fine-tuned for an application that has not ac-
quired sufficient knowledge during the pre-training.
One way to reduce hallucinations in both the SFT
and RLHF phases is to teach the model to be hon-
est. The language model should be trained to avoid
commenting on a subject if it does not have enough
information (Zhang et al., 2023). The methods
investigated in this work are related to detecting
and mitigating hallucination in the inference phase.
The related previous works can be categorized as
white box, gray box, and black box depending on
the level of access to internal parameters of the
LLM. The methods that use the internal state of
the language model for diagnosis are white-box
approaches. Gray box approaches are methods that
access the output distribution of the model, such
as detecting hallucinations at the token level. Fi-
nally, Blackbox approaches only have access to the
textual output of the model.

2.1 White-Box Approaches

In Azaria and Mitchell (2023), the SAPLMA ap-
proach (Statement Accuracy Prediction, based on
Language Model Activations) has been introduced.
Their approach uses the internal state of the LLM to
measure the truthfulness of the statements. This ap-
plies to both the statements provided to the model
and the statements produced by the model itself.
They use a relatively shallow feedforward network
as a classifier, which measures the truthfulness
probability of a statement based on the values of
the hidden layer activators.

2.2 Gray-Box Approaches

These approaches use the uncertainty of models to
detect hallucinations. The idea of these approaches
is that when the model is sure of the correctness of
a sentence, the distribution probability of tokens of
the sequence is sharp. Still, in uncertain conditions,
this distribution will probably be flat. Kadavath
et al. (2022) suggests that a model’s confidence in
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answering a specific question correlates with the
certainty of its response. They propose repeatedly
sampling the answer at T = 1, yielding an answer
distribution characterized by low entropy when the
model is confident. Conversely, when the model
is uncertain, it tends to produce "hallucinated" re-
sponses, resulting in an answer distribution with
high entropy. Nevertheless, experimental results
indicate that utilizing entropy as a metric for de-
termining whether a model knows the answer to a
question is not consistently reliable, particularly as
models scale in size. Another work in this group
of methods is Yuan et al. (2021), in which a score
named BART-Score evaluates the text’s quality gen-
erated by the model from different aspects such
as informativeness, fluency, and factuality. Using
token-level probabilities, BART-Score calculates
the probability of an output sequence given a spe-
cific input sequence.

2.3 Black-Box Approaches

The methods presented in Martino et al. (2023) and
Manakul et al. (2023) are black box methods. In
Martino et al. (2023), where a large language model
is used for the” Review Response” task, the knowl-
edge injection method adds related information to
the prompt. The relevant knowledge is extracted
from a knowledge graph specific to that particular
business. It includes information such as addresses,
phone numbers, etc., which are naturally not avail-
able in the training data of an LLM. The target
hallucination in this task is factual. Fact-based ver-
ification methods require an external database, and
their inference is computationally expensive. The
introduced method in Manakul et al. (2023) uses no
external knowledge source. Their approach, self-
checkGPT, is based on the idea that if an LLM
knows a subject, sampled responses do not contra-
dict each other. The proposed approach has five
variants: BERTScore, question-answering, n-gram,
NLI, and LLM prompting. The best-performing
variant is LLM prompting, in which they ask an
LLM if a sentence is supported by a context or not.
This variant has a high computational cost. The
second best is the NLI variant, which uses natural
language inference to detect inconsistency between
sampled responses.

In Miindler et al. (2023), a prompting-based
framework is introduced to efficiently identify and
address instances of self-contradiction, meaning
context hallucinations. Their investigation delved
into open-domain text generation utilizing a dual-

LM setup: one LM for text generation and another
as an analyzer. For each sentence generated by the
initial LM, a corresponding sentence is produced
based on the associated context, and both are sub-
sequently subjected to analysis by the second LM.
In cases where the analyzer LM identifies a contra-
diction between the two sentences, it is prompted
to revise the given sentences and remove the con-
tradiction so that the output is informative and co-
herent with the corresponding context. ChainPoll
(Friel and Sanyal, 2023) represents another recent
advancement in addressing hallucinatory phenom-
ena within LLMs. The approach adopted for hal-
lucination detection is straightforward: employing
a carefully crafted prompt, the authors prompt the
GPT-3.5-turbo model to assess whether the com-
pletion contains hallucinations driven by a chain of
thought (CoT) explanation. Iterating this process
several times and aggregating the "yes" responses
yields a probability score ranging from Zero to One,
indicating the likelihood of hallucination.

In Guerreiro et al. (2023), hallucinations in trans-
lation models are studied concerning two differ-
ent sources: perturbations and natural hallucina-
tions. Hallucinations induced by perturbations oc-
cur when the model memorizes the training data
and outputs a faulty translation triggered by a slight
change in the input sequence. In contrast, natural
hallucinations occur due to poor quality of training
data. Natural hallucinations are divided into two
categories (Raunak et al., 2021): detached and os-
cillatory. In the detached type, the output is fluent
but inadequate. In the oscillatory type, the output
has repeated n-grams. In this article, a black box
method (Top N-Gram (Raunak et al., 2021)) and a
white box method (ALTI+ (Ferrando et al., 2022))
have been used to detect natural hallucinations. It
has been observed that hallucinations in transla-
tions occur more often for low-resource languages.
Another work concerning detecting machine trans-
lation hallucinations is COMET (Rei et al., 2020),
a reference-based neural framework with superior
performance compared to conventional approaches
(Guerreiro et al., 2022). It has two architectures,
one of which is an estimator model, which tries
to directly regress on human judgment scores for
quality assessment. In contrast, the other one, a
ranking model, minimizes the distance between a
"better" hypothesis and its corresponding reference
and original source translations.
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Figure 1: Formulating hallucination detection problem as an NLI task

DM PG MT Total

Train 20000 20000 20000 60000
Dev 375 250 375 1000
Trial 36 9 35 80

Test 1125 750 1125 3000

Table 1: Dataset Statistics

3 System Overview

In this section, we introduce our proposed system.
The general system sketch is presented in Figure
1. Additionally, detailed statistics regarding the
dataset are outlined in Table 1. Since the train-
ing data provided for this task was unlabeled, we
labeled 3000 samples of the training data. Since
LLMs have hallucination problems themselves, the
labeling was done by a human agent. We have
trained separate models for each task (MT, PG,
and DM) to detect hallucinations. The model is
DeBERTa-v3 large (He et al., 2023) and was first
trained on the NLI task and then fine-tuned on
the labeled data of each task. Finally, the model
with the highest accuracy on validation data was
saved. For training a binary classification model
on the NLI task, only the data samples with labels
of contradiction and entailment of the NLI dataset
of Stanford University (Bowman et al., 2015) were
used.

Examples of data samples for PG, MT, and DM
tasks are presented in Table 2. Each sample has a
source, target, and hypothesis in the MT task. The
source sentence may be in languages other than
English, but the target sentence is always in En-
glish. In the PG task, each sample has a source
and hypothesis. We can detect hallucinations in
these two tasks using the target sentence as the
reference for the MT task and the source sentence
as the reference for the PG task. Since the nature
of hallucination in the PG and MT tasks is almost
the same, the training data of both tasks were used
to train the model for these two tasks. For Each
task, the model with the highest accuracy on vali-
dation data was saved. The sequence classification
method is utilized to detect hallucinations. The
reference sentence is placed at the beginning, fol-
lowed by the hypothesis sentence, separated with a
"[SEP]" token. The hypothesis is the output of the
LLM that may contain hallucinations. Finally, the
entire sequence is fed into the NLI model, which
outputs probabilities for each class, contradiction,
and entailment. If the hypothesis contains informa-
tion that contradicts the reference, the output label
of our NLI model should be equal to 1, indicating
contradiction. The probability of contradiction is
considered equivalent to the probability of halluci-
nation.

In addition to training classifier models, we have
conducted tests to evaluate the performance of
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sre The budget cannot be adopted against the will of the European Parliament.

PG | hyp

The European Parliament does not approve the budget.

label | Not Hallucination

sre Doonii fayyadamuun meeshaa geejibuun namootabaay’ee fi meeshaalee galaanarra
cesisuuf karaa baayee si’aataa dha.

tgt Using ships to transport goods is by far the most efficient way to move large
amounts of people and goods across oceans.

MT hyp | Using a gas-fired device is a way to stop people from using natural gas and other
equipment.
label | Hallucination
src Communistic birds. What is the meaning of communistic?
DM tgt Living or having their nests in common.
hyp | Of or pertaining to communism.
label | Hallucination

Table 2: Data samples of PG, MT, and DM tasks

two large language models, Falcon-7B and chat-
GPT3.5, on the hallucination detection task. For
this purpose, we have instruction-fine-tuned the
falcon-7B model on the labeled training and val-
idation data. For chat-GPT3.5, the accuracy was
calculated on the trial set using zero and two-shot
inference. For these two models, only the results
on the trial set were presented.

We also thought we might find a meaningful con-
nection between token probabilities in the output
sequence and hallucination. For this, we took the
top token probabilities of the output sequence of the
LLM (PG, MT, and DM LLMs) with their labels.
We fed them as input to an RNN model, such as
LSTM, to predict hallucination based on model un-
certainty of token probabilities. Unfortunately, we
found out that when outputting hallucinated output,
the model is as confident as non-hallucinated ones,
and the classifier model could learn absolutely noth-
ing from the token probabilities, no matter how we
change the model complexity or hyperparameters.

4 Experimental Setup

To provide enough labeled data to train our mod-
els, a total of 3000 of the model-aware and model-
agnostic training samples were labeled. Different
data splits were tested to get the best accuracy on
each task. The details of the split used to train the
model with the best accuracy for each task are spec-
ified in colab notebooks on GitHub!. The results

"https://github.com/z-rahimi-r/
HalluSafe-at-SemEval-Task-6-SHROOM

DM PG MT
#Samples 36 9 35
Falcon7B 2-shot 4722 4444 4571
Falcon7B 4-shot 33.33 5555 48.57
Falcon7B finetuned 41.66 66.66 04
ChatGPT3.5 zero-shot 86.11 65.71 44.44
ChatGPT3.5 2-shot 86.11 74.28 88.88
ChatGPT3.5 4-shot 83.33 82.85 66.66
Best-DM-DeBERTa 94.44 5555 85.71
Best-PG-DeBERTa 86.11 77.77 77.14
Best-MT-DeBERTa 91.66 5555 94.28

Table 3: Results on Trial set

of the trial set are presented in Table 3.

All three models are trained for ten epochs with
a learning rate equal to 2e-5 and batch size equal to
eight samples. The base model for all three tasks
is DeBERTa-v3-large (He et al., 2023), trained
on the NLI task with two classes of contradiction
and entailment. We have used the Hugging-Face
transformers library (Wolf et al., 2020) to train De-
BERTa models implemented with PyTorch. For in-
struction fine-tuning the Falcon-7B model, we also
used the Hugging-Face library and LoRA method
(Hu et al., 2022). The prompt used for fine-tuning
Falcon and inference from chatGPT is similar to
that used in the selfCheckGPT (Manakul et al.,
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sre A five, six, seven, eight.
PG tgt And5, 6,7, 8.
hyp A number between five and eight.
gold label | Hallucination
src Est-ce que tu I’aimes?
tgt Do you love him?
MT
hyp Do you love her?
gold label | Not Hallucination
sre Haul away, keeping strain on both parts of the halyard so that the <define>
pigstick </define> remains vertical as it goes up and doesn’t foul the spreaders.
DM tgt (nautical) A staff that carries a flag or pennant above the mast of a sailboat.
hyp (nautical) A halyard.
gold label | Not Hallucination
Table 4: Examples of wrongly classified samples
acc model-agnostic  rho model-agnostic  acc model-aware rho model-aware
Baseline 69.66 40.29 74.53 48.78
Nli-only 72.4 59.77 73.93 56.33
Best-models 75.93 61.53 78.33 53.74

Table 5: Results on Final Test set

2023). The examples can be found in the Appendix.
All notebooks, labeled data, and links to saved mod-
els are present on our GitHub.

5 Results

We have achieved 75.93% and 78.33% accuracy
for the model-aware and model-agnostic tracks of
hallucination detection on final test data. We have
ranked 19th and 30th in model-aware and model-
agnostic tracks with a 2.93% and 8.4% difference
with respect to the first-ranked team in the competi-
tion. The accuracies of the best model for each task,
along with the accuracy of the base NLI model, are
provided in Table 5. Also, examples of wrongly
classified samples are provided in Table 4. As you
can see the wrongly classified samples are challeng-
ing. The problem that exists with some samples
of the MT task is that in some cases, relying only
on the tgt field may result in a wrong label, and it
is necessary also to consider the content of the src
field as well. This is true about the MT example
presented in the table. In this example, hyp and tgt
are both correct translations of the source sentence,
but when the content of hyp is evaluated against
the tgt, it is wrongly labeled as hallucination.

6 Conclusion

In this work, we have trained classifiers based
on Natural Language Inference to detect halluci-
nated outputs for the two model-aware and model-
agnostic subtasks of the SemEval-2024 Task-6-
SHROOM (Mickus et al., 2024). We have also
conducted experiments to evaluate LLMs’ ability
to perform this task. The fluency of the output of
LLMs makes it difficult even for a human evaluator
to recognize the hallucinated output. To train the
classifiers, we labeled 3000 training data. Labels
may be a little affected by the subjectivity of the
annotator, and for future work, it is better to have
more than one person label each data sample. Our
HalluSafe classifiers have achieved 75.93% and
78.33% accuracy for the model-aware and model-
agnostic tracks of hallucination detection on final
test data and have outperformed official baselines.
Regarding future work, enhancing the quality of
training data in the pre-training and fine-tuning
stages can effectively reduce hallucinations. Given
the potential limitations of storing all necessary in-
formation within the memory of models, coupled
with the need for regular updates to certain infor-
mation, it may be beneficial to equip models with
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search tools rather than relying solely on memory.
It is important to train LLMs during the fine-tuning
and instruction-tuning stages to refrain from an-
swering questions if they lack sufficient knowledge
on a particular subject, which needs a mechanism
to be incorporated into these models to enable them
to identify the boundaries of their knowledge.
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A Appendix

An example of instruction used for fine-tuning
Falcon-7B is presented in Table 6. Also, a few-
shot example for the PG task for inference from
Chat-GPT and Falcon-7B is provided in table 7.
Few-shot examples are selected from the develop-
ment set for each task.
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<human>:

[Context]: Being familiar with the working environment and able to intervene early is
important for health care.

[Sentence]: Health care can be improved by being familiar with the working environment.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
<assistant>: [label]: yes

Table 6: Falcon-7B Fine-tuning Instruction Example

[Example 1]:

Context: I thought so, too.

Sentence: I thought you’d be surprised at me too.

Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: no

[Example 2]:

Context: I haven’t been contacted by anybody.

Sentence: I have not been contacted.

Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: yes

[Example 3]:

Context: That was my general impression as well.

Sentence: I thought you’d be surprised at me too.

Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: no

[Example 4]:

Context: I said nothing of the kind.

Sentence: I never told you that before.

Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: yes

[Example 5]: the sample to be labeled...

Table 7: 4-Shot Chat-GPT Prompt Example
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Abstract

The goal and dream of the artificial intelligence
field have long been the development of intel-
ligent systems or agents that mimic human be-
havior and thinking. Creativity is an essential
trait in humans that is closely related to lateral
thinking. The remarkable advancements in Lan-
guage Models have led to extensive research on
question-answering and explicit and implicit
reasoning involving vertical thinking. How-
ever, there is an increasing need to shift focus
towards research and development of models
that can think laterally. One must step out-
side the traditional frame of commonsense con-
cepts in lateral thinking to conclude. Task 9
of SemEval-2024 is Brainteaser (Jiang et al.,
2024), which requires lateral thinking to answer
riddle-like multiple-choice questions. In our
study, we assessed the performance of various
models for the Brainteaser task. We achieved
an overall accuracy of 75% for the Sentence
Puzzle subtask and 66.7% for the Word Puzzle
subtask. All the codes, along with the links to
our saved models, are available on our GitHub'.

1 Introduction

With recent advancements in deep learning and es-
pecially language models, extensive research has
been conducted about reasoning in various natural
language processing tasks, including question an-
swering. These reasoning methods adopt vertical
thinking. However, lateral thinking is another type
often associated with creativity. In the 9th task of
SemEval, Brainteaser (Jiang et al., 2024), a task
of answering multiple-choice riddle-like questions
is defined. To answer these questions, the model
needs to employ lateral thinking. This method of
thinking differs from vertical thinking in that the
reasoning process is not linear. To arrive at a con-
clusion, one must examine the subject from a per-
spective beyond the usual conventional thinking

"https://github.com/z-rahimi-r/
NIMZ-at-SemEval-Task-9-BRAINTEASER

paradigms (Waks, 1997). An example of a compar-
ison between the two types of thinking is provided
in Figure 2 in the Appendix. Lateral thinking de-
mands a mind that is open, flexible, and creative.
Equipping Al models with cognitive abilities such
as lateral thinking can enhance problem-solving,
adaptability, and coping with new situations and
challenges.

In this work, we have evaluated the performance
of three categories of models on answering brain-
teaser questions. We trained and evaluated two
language models, BERT (Devlin et al., 2019), and
RoBERTa (Liu et al., 2019), the model presented
in Yasunaga et al. (2021) (QA-GNN), and a TS
(Raffel et al., 2019) model for sentence puzzle and
word puzzle subtasks. In the QA-GNN method, the
ConceptNet knowledge graph (Speer et al., 2017)
is used as the source of commonsense knowledge.
Through the brainteaser task, we gained insights
into two types of thinking - vertical and lateral.
We also learned the significance of implementing
lateral thinking in Al systems to bridge the gap
between human and Al performance. Furthermore,
this task piqued our interest in the captivating sub-
ject of creativity in artificial intelligence models.
We achieved an overall accuracy of 75% and ranked
20th for the Sentence Puzzle subtask. For the Word
Puzzle subtask, we ranked 19th and achieved an
overall accuracy of 66.7%. All the codes, along
with the links to our saved models, are available on
our GitHub.

2 Background

The goal and dream of the artificial intelligence
field has long been the development of intelligent
systems or entities with human-like behavior and
thinking. According to existing research, there
are two types of thinking in humans: vertical and
lateral. Most of the existing research focuses on
vertical thinking. Vertical thinking involves a logi-
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cal and sequential approach, while lateral thinking
requires creativity and flexibility to explore prob-
lems from unique and unconventional perspectives
(Waks, 1997). The Brainteaser dataset (Jiang et al.,
2023) contains 1100 riddle-like English questions
requiring lateral thinking. The nature of questions
often defies commonsense when approached with
vertical thinking. The Brainteaser task includes two
subtasks: sentence puzzle and word puzzle. The
details of the dataset are presented in the Table 1.

Most research focuses on vertical thinking, us-
ing commonsense for implicit and explicit rea-
soning tasks such as commonsense question an-
swering. Commonsense intelligence is intuitively
reasoning about everyday situations and events,
which requires knowledge of how the world works
(Choi, 2022). In the task of commonsense question
answering, two popular methods are fine-tuning
language models and using graph neural network
(GNN) models. In recent years, the use of knowl-
edge graphs, the primary sources of commonsense
knowledge, has increased. Commonsense knowl-
edge stored in language model parameters is mainly
descriptive and taxonomic knowledge, often ex-
plicitly stated in the language content that these
models have been trained on (Hwang et al., 2021).
The method presented in COMET (Bosselut et al.,
2019) can be a means to teach language models
other types of knowledge. The success of COMET
can be attributed to the combination of neural and
symbolic representations of knowledge, as well as
the use of language to represent symbolic knowl-
edge (Choi, 2022). The COMET model is fine-
tuned on the ATOMIC knowledge graph (Hwang
et al., 2021). This knowledge graph serves as a
customized textbook for language models to learn
commonsense knowledge and how the world works
(Choi, 2022).

In the second popular category of methods, a
knowledge graph is used as the complementary
source of knowledge with the help of graph neu-
ral networks as the medium to harvest this knowl-
edge (Feng et al., 2020; Wang et al., 2022; Zhang
et al., 2022). One advantage of using graph neu-
ral networks is their interpretability. In QA-GNN
(Yasunaga et al., 2021), the RoBERTa LM is used
with graph neural networks. Each answer option
is checked independently in their method to deter-
mine if it is the answer. For each answer option, a
subgraph is extracted from the ConceptNet. This
subgraph consists of the entities in question and
the answer option, all the entities within two hops

Sentence Puzzle Word Puzzle

Train 507 395
Test 120 96

Table 1: Dataset Statistics

from question and answer entities on the Concept-
Net graph, and the relations between them. In the
presented method, the question and the answer op-
tion are concatenated and encoded using ROBERTa
LM (Liu et al., 2019), then placed as a context
node in the subgraph. Since some nodes in the
subgraph are more related to the question and its
answer, the RoOBERTa LM is used to calculate a
score for each node in the subgraph. This score
is used as an additional feature to the node em-
beddings to increase the influence of more related
entities. Training is done through the message-
passing method. Finally, the score of each option
being the answer is calculated and the answer op-
tion with the highest score will be the final answer
to the question. The approach described in Zhang
et al. (2023) is similar to QA-GNN but with one
key difference. While QA-GNN evaluates each
answer option independently using a local graph,
this method also includes a global graph that allows
for simultaneous evaluation and comparison of all
answer options, leading to refined probabilities. Re-
fining the probabilities of each answer option in
this way can produce a more accurate result. They
consider this method similar to how humans elimi-
nate less likely options. The most similar available
study to the Brainteaser task is Riddlesense (Lin
et al., 2021), where a riddle dataset is presented.
To solve the riddles, one needs advanced natural
language understanding, commonsense, and coun-
terfactual reasoning skills, which are complex cog-
nitive processes. They have trained and evaluated
several language models, GNN-based models, and
text-to-text models on the Riddlesense dataset.

2.1 MCQA in LLMs

Inference from LLMs for multiple choice question
answering is done using two methods: Multiple
Choice Prompting (MCP) and Cloze Promting (CP)
(Robinson et al., 2022). MCP involves presenting
a question with several answer options to an LLM
and asking it to select the most appropriate answer
from the given choices. The other method, CP, in-
volves creating a sentence or passage with a blank
that the model needs to fill in with an appropriate
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word or phrase. Robinson et al. (2022) criticizes us-
ing cloze-style prompts for evaluating LLMs, sug-
gesting that this approach may not fully leverage
these models’ capabilities for MCQA tasks. How-
ever, the evaluation of LLMs with the MCP method
has the problem that the order of presenting the op-
tions can change the final answer of the LLM. They
have evaluated different LLMs, and based on the
results, the model’s size and providing examples
(few-shot inference) to the language model can im-
prove its performance and reduce the dependence
of the final answer on the order of options.

2.2 How creative are LLMs?

Margaret Boden’s criteria for creativity _novelty,
value, and surprise_ are utilized to evaluate the
creative capabilities of LLMs. Franceschelli and
Musolesi (2023) discusses how much SOTA LLMs
satisfy these criteria. LL.Ms can indeed produce
valuable content, as evidenced by their impact and
the quality of their outputs. The novelty of an idea
or product is being dissimilar to existing examples,
the reference of which can either be the person who
comes up with it (psychological creativity) or the
entire human history (historical creativity). Novelty
in LLMs can occur accidentally or as a result of out-
of-distribution production or careful prompts, and
the degree of novelty is inherently limited by the
models’ design, focusing on probabilistic outputs
based on historical data. The definition of surprise
is how unexpected an idea is. Three types of sur-
prise are defined: Combinatorial creativity, which
is producing an unfamiliar combination of familiar
ideas; Exploratory creativity, which is finding new
and undiscovered solutions within the current style
of thinking; and Transformational creativity, which
is related to changing the current style of thinking.
The autoregressive nature of LLMs makes the pro-
duction of surprising content by them unlikely and
only limited to combinatorial creativity, making
truly surprising or transformational creativity chal-
lenging to achieve. True creativity requires self-
awareness and self-evaluation capabilities, which
current LLMs lack (Franceschelli and Musolesi,
2023).

3 System Overview

In this section, we will present the systems used
to tackle the brainteaser task. The three main
approaches in question-answering tasks are fine-
tuning language models, graph neural networks,

and text-to-text transformers. So, we decided to
evaluate the performance of these models on the
brainteaser task. Although the role of common-
sense in this task is as a distractor (Jiang et al.,
2023), we decided to evaluate the impact of us-
ing commonsense knowledge through Concept-
Net knowledge graph and graph neural networks.
While the answer may challenge commonsense in
the Brainteaser questions, it does not violate it. All
the models are trained for sentence puzzles and
word puzzles separately. The general sketch for
each type of system is presented in Figure 1.

3.1 Language models: BERT and RoBERTa

We trained and evaluated two language models,
BERT-Base (Devlin et al., 2019) and RoBERTa-
Large (Liu et al., 2019) on the Brainteaser dataset.
The training was done on two different in-house
splits of the training data, and the model with the
best performance on the validation data was saved
for final evaluation on the test set. During the train-
ing and inference phase for the two language mod-
els of BERT and RoBERTa4, the probability of each
option being the answer is checked separately. To
do that, the question and the answer option are
concatenated with the token [SEP] placed between
them and given to the language model as input. The
score of that option being the answer, is calculated
using the output representation of the [CLS] token
through a linear layer. Finally, the option that has
the highest probability will be the answer to the
question.

3.2 LM + GNN: QA-GNN

The QA-GNN model (Yasunaga et al., 2021) uses
RoBERTa LM and graph neural networks for rea-
soning. The knowledge source used in this method
is the ConceptNet knowledge graph (Speer et al.,
2017). In this method, a separate subgraph is ex-
tracted for each answer option. The question and
answer option are concatenated, and the resulting
embedding from RoBERTa is used as a context
node in the graph. This node is only connected
to the entities belonging to the answer option and
the question (it is not connected to other entities
extracted from the knowledge graph). To train the
QA-GNN model, pre-processing must be done on
the dataset first. For each question and answer op-
tion pair, their entities and all of their neighbor en-
tities up to two hops in the ConceptNet knowledge
graph are extracted, along with the relations be-
tween them. Training is done through the message-
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Question [SEP] choicet —»
a-Approach1 Question [SEP] choicez —»
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Figure 1: The three categories of methods evaluated for brainteaser task. a-Approachl: Fine-tuning LMs like
BERT and RoBERTa; b-Approach: LM+GNN method, the blue circles are question and choice entities, and the
green circles are extracted knowledge-graph entities; c-Approach: Fine-tuning a TS5 model.

passing method. The score of each answer op-
tion, being the final answer, is calculated using
the concatenation of the ROBERTa LM representa-
tion, context node representation learned through
message-passing, and the pooled graph represen-
tation, through a linear layer. Finally, the option
that has the highest score will be the answer to the
question. The interested reader can refer to the
original paper for more in-depth details.

3.3 Text-to-Text model

The third method we evaluated was the T5 text-to-
text model (Raffel et al., 2019). In this method,
the input question and the context, which includes
all the options concatenated together, are passed to
the TS5 model as input. The answer will be in the
form of a span extracted from the context, mean-
ing the options. This model considers all options
and makes a final decision, setting it apart from
previous models.

4 Experimental Setup

We have trained and evaluated base and large sizes
of BERT, RoBERTa, and T5 models using the
Hugging-Face transformers library, with different
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hyperparameters to find the best setting. To train
the QA-GNN model, we followed the procedure
provided by the code available on the GitHub of Ya-
sunaga et al. (2021). After preprocessing the Brain-
teaser dataset, the QA-GNN models were trained
for 100 epochs with early-stopping. In the infer-
ence phase of the T5 model, in some cases, the
extracted span was incomplete and did not include
the letter of the answer option, in these cases the
"none of above" option was selected. The code for
the in-house train-dev split and the hyperparame-
ters used for training the best-performing models
are available in the notebooks on our GitHub'.

4.1 Evaluation metrics

For each original question in the dataset, two addi-
tional adversarial variants are created: semantic re-
construction and contextual reconstruction. Seman-
tic reconstruction rephrases the original question
and does not change anything else. In contextual
reconstruction, the context of the question does not
change, but the surface form of the question and
its answer options are changed. An example from

Yhttps://github.com/z-rahimi-r/
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Table 2: Results on Test set. The baselines are zero-shot results

the dataset is available in Table 3 in the Appendix.
The purpose of designing these two variants is to
test the robustness of the model. If the model has
not memorized the content and is capable of lateral
thinking, it will correctly answer these two adver-
sarial variants of each question (Jiang et al., 2023).
Models are evaluated using two accuracy metrics:
instance-based accuracy metric and group-based
accuracy metric. In instance-based accuracy, each
question is evaluated separately. In group-based
accuracy, a question is evaluated with its adver-
sarial variants, and only if all three are answered
correctly, it is scored One. Otherwise, it is scored
Zero.

5 Results

We evaluated models from different categories on
this task. Due to the riddle-like and unique nature
of the questions, it was difficult for the models to
generalize to new questions of the test set. We
achieved an overall accuracy of 75% and ranked
20th for the Sentence Puzzle subtask. For the Word
Puzzle subtask, we ranked 19th and achieved an
overall accuracy of 66.7%. The QA-GNN model
performed best for the sentence puzzle in the eval-
uation phase. Still, for the word puzzle, the BERT-
base model had the best performance, and QA-
GNN performed poorly, which could be due to
the absence of reasoning paths on the knowledge
graph between the concepts of the answer option
and the question. The results of the two phases,
evaluation and post-evaluation, are presented in the
Table 2. Some wrongly predicted examples for the
Word Puzzle subtask are presented in Table 4 in the
Appendix.

6 Conclusion

In this study, we evaluated the performance of three
main categories of popular methods in the question-
answering task on the two subtasks of Sentence
Puzzle and Word Puzzle of the SemEval- task 9
Brainteaser. We have achieved an overall accu-
racy of 75% for the Sentence Puzzle subtask and
66.7% for the Word Puzzle subtask. The nature
of the Brainteaser questions is such that they chal-
lenge commonsense and require lateral thinking
and intellectual creativity to be solved. Models
other than LLMs tend to perform poorly in gener-
alizing to new and different examples, especially
when it comes to tasks that require creativity, such
as puzzles and brainteasers. While LLMs tend to
perform better, they still have limited capability
when it comes to being creative. Regarding the
suggestions for future work, we believe utilizing
the chain-of-thought (Wu et al., 2023) method and
teaching LLLMs to reason step by step with the in-
context-learning method can be effective. Another
idea is to develop two modules for LLMs or Al
agents. The first module will aid in the creative
production of knowledge, while the second module
will check the rationality of the produced knowl-
edge and its consistency concerning the context
of the desired problem. As mentioned earlier, the
autoregressive nature of current LLMs and reliance
on probabilistic solutions have limited their ability
to produce creative content. So, there is a need
to design new architectures and different training
methods to overcome this limitation. This can be a
helpful step towards enhancing creativity and lat-
eral thinking in Al systems.
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Adv. Strategy Question Answers

Original How could a cowboy ride into town on Friday, stay two days, and ride out on Wednesday? His horse is named Wednesday.

‘While in town, he stays in bed for two days.
Friday and Saturday are holidays.

None of the above.

Semantic How could a cowboy come into town on Friday, stay two days, and then ride away on Wednesday? His horse is named Wednesday.
Reconstruction ‘While in town, he stays in bed for two days.
Friday and Saturday are holidays.

None of the above.

Context How can a pilot take off in Los Angeles on Tuesday, fly for 48 hours, and land in Tokyo on Tuesday? | The pilot’s airplane is named Tuesday.
Reconstruction He flies straight for 24h and flies quickly for hours left.
There was a one-week long holiday.

None of the above.

Table 3: A sentence-based lateral thinking puzzle and its adversarial variations from Brainteaser (Jiang et al., 2023)

A Appendix

Question Choice List

What do you call a toothless bear? A brown bear. An example from the dataset is available in Table
A polar bear. 3. Also, a few wrongly predicted examples for
A gummy bear. .
None of above. the Word Puzzle subtask are presented in Table

What kind of birds always make noise? Humming bird. 4. Flgure 2 deplCtS a comparison of Vertical and
Hawk. Lateral thinking.

Owl.
None of above.

What is the best key for a satisfying meal? | A joykey.
A turkey.
A hockey.
None of above.

What lacks legs and feet but has toes? Cabbages.
Tomatoes.
Onions.

None of above.

Table 4: Examples of wrong predictions of Word Puzzle

Vertical Thinking A
PIQA h
cover with water

\_(A) Fill it with objects. (B) Fill it with water. )

/RiddleSense R
I have five fingers, but | amnot alive. What am I?

N \
five separate parts @ item like a hand
\_(A) Glove. -/ (B) Computer.

Y
( Lateral Thinking A
S

entence Puzzle

? ['-= his beard gets clean everyday X7
7

2

he is a barber and he shaves others —*

Word Puzzle

7 Mozzarella P x
‘ Feta

3

—=Edam

Figure 2: Comparing Vertical Thinking tasks (PIQA
(Bisk et al., 2019) and RiddleSense (Lin et al., 2021)) to
the BRAINTEASER lateral thinking task. (Jiang et al.,
2023)
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Abstract

At the SemEval-2024 Task 5, the organizers
introduce a novel natural language processing
challenge and corpus within the realm of the
United States civil procedure. Every datum
within the corpus comprises a comprehensive
overview of a legal case, a specific inquiry as-
sociated with it, and a potential argument in
support of a solution, supplemented with an
in-depth rationale elucidating the applicability
of the argument within the given context. De-
rived from a text designed for legal education
purposes, this dataset presents a multifaceted
benchmarking task for contemporary legal lan-
guage models. Our manuscript delineates the
approach we adopted for participation in this
competition. Specifically, we detail the use of a
Mistral 7B model to answer the questions pro-
vided. Our only and best submission reaches
an F1-score equal to 0.5597 and an Accuracy
of 0.5714, outperforming the task’s baseline.

1 Introduction

The content of the Task 5 hosted at SemEval-2024
(Held and Habernal, 2024), was originally intro-
duced in (Bongard et al., 2022).

Asserting a legal argument represents a funda-
mental proficiency necessary for aspiring legal pro-
fessionals to acquire. This proficiency demands
not only a comprehension of pertinent legal do-
mains but also advanced reasoning skills, including
the utilization of analogy-based arguments and the
identification of implicit contradictions. Despite
recent strides in establishing objective metrics for
contemporary natural language processing (NLP)
models across diverse facets of legal language com-
prehension, the absence of a sophisticated task ad-
dressing argumentative reasoning within legal con-
texts persists.

In this article, is discussed a novel task alongside
a corresponding benchmark dataset. The introduc-
tion of a genuinely challenging task, sourced from

legal educational resources, will serve to elucidate
strengths and weaknesses inherent in contemporary
legal transformer models, including but not limited
to Legal-BERT (Chalkidis et al., 2020). Specifi-
cally, at the SemEval-2024 Task 5 is unveiled a
novel, openly accessible legal dataset tailored for
the binary text classification of issues within U.S.
civil procedure. The primary objective is to ascer-
tain whether a proposed solution to a given inquiry
is deemed accurate or erroneous. The corpus draws
inspiration from "The Glannon Guide To Civil Pro-
cedure" authored by Joseph Glannon (Glannon,
2023), which caters to law students by offering
a comprehensive examination of fundamental U.S.
civil procedure topics, inclusive of multiple-choice
queries designed to assess reader comprehension.

Through the inception of this freshly minted cor-
pus, the intent extends to scrutinizing the efficacy
of various methodological approaches while estab-
lishing performance benchmarks.

To address these objectives, there is an ongoing
demand for automated tools capable of extracting
and categorizing data, facilitating the classifica-
tion with recent NLP models. Recent advance-
ments in the area of the machine and deep learning
architectures have spurred heightened interest in
Natural Language Processing (NLP). Substantial
endeavours have been directed towards devising
techniques for the automated identification and cat-
egorization of textual content accessible on the
internet today. In the literature, to perform text
classification tasks, several strategies have already
been proposed. In the last fifteen years, some of
the most successful strategies have been based on
SVM (Colas and Brazdil, 2006; Croce et al., 2022),
on Convolutional Neural Network (CNN) (Kim,
2014; Siino et al., 2021), on Graph Neural Net-
work (GNN) (Lomonaco et al., 2022), on ensemble
models (Miri et al., 2022; Siino et al., 2022) and,
recently, on Transformers (Vaswani et al., 2017;
Siino et al., 2022b).
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Participants in SemEval-2024 Task 5 were
tasked as follows. The task at hand involves eval-
uating the accuracy of an answer candidate pro-
vided in response to a question, accompanied by
a brief introductory passage pertaining to the sub-
ject of the question. The objective is to ascertain
whether the candidate answer is indeed incorrect
or correct. To face with the task, we propose a
Transformer-based approach which made use of
Mistral 7B (Jiang et al., 2023). We used the model
in a zero-shot setup described in the rest of this
paper. Specifically, we prompted the latest pre-
trained version of Mistral with each sample in the
dataset. Specifically, we provided a candidate an-
swer to a question, asking the model if the answer
to the legal question was correct or not. The model
replied with a yes or no, eventually providing some
further explanation.

The subsequent sections of this work are struc-
tured as follows: Section 2 offers background in-
formation on Task 5, held at SemEval-2024. In
Section 3, we outline the approach introduced in
this study. Section 4 delves into the specifics of the
experimental setup employed to reproduce our find-
ings. The outcomes of the official task and relevant
discussions are presented in Section 5. Finally, Sec-
tion 6 concludes our study and suggests avenues
for future research.

We make all the code publicly available and
reusable on GitHub'.

2 Background

For the Task 5 at SemEval-2024 is proposed a legal
corpus, publicly accessible for binary text classi-
fication tasks focusing on issues within U.S. civil
procedure. The primary objective is to determine
the correctness of solutions provided in response
to specific questions. This corpus draws its con-
tent from "The Glannon Guide To Civil Procedure"
authored by Joseph Glannon (Glannon, 2023), tai-
lored for law students. The book encompasses
fundamental U.S. civil procedure topics and in-
cludes multiple-choice questions aimed at evaluat-
ing reader comprehension.

Through collaboration with the author and pub-
lisher, task organizers secured permission to utilize
the content of "The Glannon Guide To Civil Proce-
dure" for constructing this dataset, which is freely
available to the research community. The book
comprises 25 chapters, each containing multiple-

"https://github.com/marco-siino/SemEval2024/

choice questions pertaining to a particular topic,
prefaced by an introduction. Every question is fol-
lowed by 3 to 5 answer candidates, among which
one is deemed correct. These answer candidates
serve as hypotheses, necessitating an examination
of their respective prerequisites for accuracy. The
correctness or incorrectness of an answer is sub-
sequently expounded upon in the accompanying
analysis.

The dataset construction process involved auto-
mated parsing of the book’s content, leveraging
its structured format to extract individual compo-
nents of each instance (i.e., introduction, question,
answers, and analysis). Additional parsing rules
were employed to detect anomalies in the struc-
ture, such as instances where the same introduction
was shared across multiple questions. However,
certain sections of the book required manual ex-
traction, particularly regarding the correctness of
answer candidates, as this information was typi-
cally embedded within the free-text analysis sec-
tion. The analysis segments were organized to ad-
dress each answer candidate separately, classifying
them as true or false. To achieve this, the orga-
nizers adopted a strategy of isolating the relevant
aspects for each answer, despite the absence of ex-
plicit keywords or structural indicators guiding the
segmentation process. Despite efforts to maintain
consistency, some structural inconsistencies were
noted throughout the dataset.

Two samples from provided datasets are avail-
able online? and reported in the Table 3 in the Ap-
pendix sectionA. In this case, the two samples con-
tain the same introduction and the same question
while providing different answers. Given the In-
troduction and the Question, the first answer (first
row) is wrong, while the second one (second row)
is correct.

The organizers adhere to the schedule for Se-
mEval24, which means the following dates:

* Tasks announced (with sample data available):
17 July 2023

* Training data ready 4 September 2023
 Evaluation start 10 January 2024

* Evaluation end by by 31 January 2024

* Paper submission due 19 February 2024

» Notification to authors 18 March 2024
Zhttps://github.com/trusthlt/semeval24
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* Camera ready due 01 April 2024

* SemEval workshop: June 16-21, 2024 (co-
located with NAACL 2024 in Mexico City,
Mexico)

3 System Overview

Even if it has already been proved that the Trans-
formers are not necessarily the best option for any
text classification task (Siino et al., 2022a), de-
pending on the goal, some strategies like domain-
specific fine-tuning (Sun et al., 2019; Van Thin
et al., 2023), or data augmentation (Lomonaco
et al., 2023; Mangione et al., 2022; Siino et al.,
2024a) can be beneficial for the considered task.

So far, several Large Language Models (LLMs)
have proved to be able to address a plethora of
different NLP tasks. For example, in the recent
literature, there has been mention of LLaMA, as
presented by (Touvron et al., 2023). LLaMA stands
out as a collection of publicly available Large Lan-
guage Models (LLMs) that rival the capabilities of
closed-source counterparts like GPT-3.

However, to address the Task 5 hosted at
SemEval-2024 we made use of a zero-shot learning
approach (Chen et al., 2023; Wahidur et al., 2024),
making use of Mistral 7B (Jiang et al., 2023). Mis-
tral 7B, a language model boasting 7 billion param-
eters, is engineered to excel in both performance
and efficiency. In comparison to the leading open
13B model (Llama 2), Mistral 7B demonstrates su-
perior performance across all assessed benchmarks.
Moreover, it outperforms the leading publicly avail-
able 34B model (LLaMA 1) across various tasks in-
volving code generation, mathematical operations,
and reasoning. The model capitalizes on grouped-
query attention (GQA) to expedite inference, com-
plemented by sliding window attention (SWA) to
effectively process sequences of varying lengths
while minimizing inference costs. Additionally,
a fine-tuned variant, Mistral 7B — Instruct, is tai-
lored for adhering to instructions. This version,
outperforms Llama 2 13B — chat model across both
automated and human benchmarks.

The introduction of Mistral 7B Instruct under-
scores the ease with which the base model can be
fine-tuned to achieve notable performance enhance-
ments. Notably, this variant lacks any moderation
mechanisms.

Our approach is few-shot (Littenberg-Tobias
et al., 2022) and make use of the above-mentioned
Mistral 7B. More specifically, given the task hosted

at SemEval-2024, we asked the model: "Is the An-
swer to the Question above True or False? Answer
using ONLY True or False:". To this request, the
model replied with one or more words - usually
starting with a true or false - that we parsed to ex-
tract one of the two labels (i.e., O for false and 1 for
true). For example, given the introduction:

"Defendant in denial. Cardozo is in
an accident on Main Street with two
other cars, driven by Hooper and Lopes.
Cardozo brings a suit in federal court
against Hooper and Lopes for his dam-
ages. Paragraph 21 of Cardozo’s com-
plaint alleges that Hooper had signaled
before he turned onto Main Street. The
police report on the accident states that,
according to a bystander, Hooper had
signaled before turning onto Main Street.
Lopes, who was coming from Hooper’s
left, had no view of the right side of
Hooper’s car, and did not see whether
he signaled or not. At the time an an-
swer is due, Lopes’s counsel has seen the
police report, but has not yet been able to
locate other witnesses to obtain their tes-
timony. The most appropriate response
for Lopes to Paragraph 21 of Cardozo’s
complaint would be to."

The answer:

"state that he is without sufficient infor-
mation to form a belief about the truth of
the allegation.”

And our question:

Is the Answer to the Question above True
or False? Answer using ONLY True or
False:

The model replied with:

true. lopes’ answer could state that he
lacks sufficient information to admit

that we mapped into the binary label / corre-
sponding to frue.

We did not find any inconsistency in the out-
puts generated by Mistral along all the provided
prompts. Specifically, we did not notice any vari-
ation in the behaviours of the model at different
times of prompting. This leads us to the conclu-
sion that given always the same input context (i.e.,
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few-shot samples) during the prompt, the output
provided is always consistent disregarding the time
and the previous prompts provided. Finally, we
collected all the predictions provided on the test
set to into a JSON file with the required format to
submit our predictions.

As noted in the recent study by (Siino et al.,
2024b), the contribution of preprocessing for text
classification tasks is generally not impactful when
using Transformers. More specifically, the best
combination of preprocessing strategies is not very
different from doing no preprocessing at all in the
case of Transformers. For these reasons, and to
keep our system highly fast and computationally
light, we have not performed any preprocessing on
the text.

4 Experimental Setup

We implemented our model on Google Colab. The
library we used come from HuggingFace and as
already mentioned is Mistral 7B>. We employed
the v0.2 iteration of Mistral 7B, which represents
an enhanced version of the Mistral-7B-Instruct-
v0.1 model. To harness the capabilities of instruc-
tion fine-tuning, prompts must be enclosed within
[INST] and [/INST] tokens. Additionally, the ini-
tial instruction should commence with a sentence
identifier. The next instructions should not. The
assistant generation will be ended by the end-of-
sentence token ID. We also imported the Llama
library (Touvron et al., 2023) from /lama_cpp. The
library is fully described on GitHub*. The dataset
provided for all the phases are available on the of-
ficial competition page. We did not perform any
additional fine-tuning on the model. To run the
experiment, a T4 GPU from Google has been used.
After the generation of predictions, we exported
the results on the format required by the organizers.
As already mentioned, all of our code is available
on GitHub.

5 Results

Given the binary nature of the classification task,
the organizers proposed F1 score and Accuracy
as the two evaluation metrics to be considered for
the final ranking. The F1 score is defined in the
Equation 1. Where TP stands for the number of
correctly predicted right answers, FP stands for the

3https://huggingface.co/TheBloke/
Mistral-7B-Instruct-v@.2-GGUF

*https://github.com/ggerganov/1lama.cpp

F1 Accuracy
Mistral 7B 0.5597  0.5714

Table 1: The method’s performance on the test set. In
the table, the results obtained and shown on the official
GitHub page are reported.

number of wrongly predicted right answers, and
FN stands for the right answers wrongly predicted
as wrong answers.

Pl 2 x Prectsion * Recall

ey

Precision + Recall

Given the previous definitions, the accuracy is
defined as stated in the Equation 2.

) TP+ TN o
ccuracy =
Y= TPYTN+FP+FN

In Table 1, we present the outcomes derived from
our methodology. They are the same results pub-
licly availble on the official final ranking shown on
the official task page® and on Codalab®.

In the Table 2, the results obtained by the first
three teams and by the last one, as showed on the
official task page, are reported. Compared to the
best performing models, our simple approach ex-
hibits some room for improvements. However, it is
worth notice that required no further pre-training
and the computational cost to address the task is
manageable with the free online resources offered
by Google Colab. Finally, the proposed approach
is able to outperform the baseline provided.

6 Conclusion

This paper presents the application of a Mistral
7B-model for addressing the Task 5 at SemEval-
2024. For our submission, we decided to follow a
zero-shot learning approach, employing as-is, an
in-domain pre-trained Transformer. After several
experiments, we found beneficial to build a prompt
containing the question for the model. Then we pro-
vide as a prompt: the introduction, the question and
an answer candidate. The model is asked to decide
whether the candidate answer is correct or not. The
task is challenging, and there is still opportunity for
improvement, as can be noted looking at the final
ranking. Possible alternative approaches include

5https://github.com/trusthlt/semeva124
6https://codalab.lisn.upsaclay.fr/
competitions/14817
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TEAM NAME F1 Accuracy
HW-TSC (1) 0.8231  0.8673

PoliToHFI (2) 0.7747  0.8265
SU-FMI(3) 0.7728  0.8367
lena.held (21) 0.4269  0.7449

Table 2: Comparing performance on the test set. In the table are shown the results obtained by the first three teams
and by the last one. In parentheses is reported the position in the official final ranking.

utilizing the few-shot capabilities or also the use
of other models like GPT and T3, eventually using
further data, or directly integrating other samples
from the training and from the development sets.
Further improvements could be obtained with a
fine-tuning and modelling the problem as a text
classification task. Furthermore, given the interest-
ing results recently provided on a plethora of tasks,
also other few-shot learning (Wang et al., 2023;
Maia et al., 2024; Siino et al., 2023; Meng et al.,
2024) or data augmentation strategies (Muftie and
Haris, 2023; Tapia-Téllez and Escalante, 2020; Si-
ino and Tinnirello, 2023) could be employed to im-
prove the results. Looking at the final ranking, our
simple approach exhibits some room for improve-
ments. However, it is worth notice that required no
further pre-training and the computational cost to
address the task is manageable with the free online
resources offered by Google Colab.
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A Appendix

As stated in the background section, in this ap-
pendix are shown two samples from the provided
datasets. The two samples in the Table 3 give an
example of a wrong answer candidate (first row
in the table) and an example of a correct answer
candidate (second row in the table).

161


https://doi.org/10.1109/ACCESS.2024.3350638
https://doi.org/10.1109/ACCESS.2024.3350638
https://doi.org/10.1109/ACCESS.2024.3350638
https://doi.org/10.1109/TCSVT.2023.3282777
https://doi.org/10.1109/TCSVT.2023.3282777
https://doi.org/10.1109/TCSVT.2023.3282777

Introduction Question Answer Candidate | Label
"My students always get confused | "7. A switch in time. Yasuda, | not waived by re-| 0
about the relationship between re- | from Oregon, sues Boyle, from | moval, but will be
moval to federal court and personal | Idaho, on a state law unfair com- | denied because the
Jjurisdiction. Suppose that a defen- | petition claim, seeking $250,000 | federal courts have
dant is sued in Arizona and believes | in damages. He sues in state | power to exercise
that she is not subject to personal | court in Oregon. Ten days later | broader personal ju-
jurisdiction there. Naturally, she | (before an answer is due in state | risdiction than the
should object to personal jurisdic- | court), Boyle files a notice of re- | state courts.

tion. [...] But generally the scope | moval in federal court. Five days
of personal jurisdiction in the fed- | after removing, Boyle answers
eral court will be the same as that | the complaint, including in her
of the state court, because the Fed- | answer an objection to personal
eral Rules require the federal court | jurisdiction. Boyle’s objection to
in most cases to conform to state lim- | personal jurisdiction is"

its on personal jurisdiction. Fed. R.
Civ. P. 4(k)(1)(A). I've stumped a
multitude of students on this point.
Consider the following two cases to
clarify the point."

"My students always get confused | "7. A switch in time. Yasuda, | not waived by |1
about the relationship between re- | from Oregon, sues Boyle, from | removal. The court
moval to federal court and personal | Idaho, on a state law unfair com- | should dismiss if
Jjurisdiction. Suppose that a defen- | petition claim, seeking $250,000 | there is no personal
dant is sued in Arizona and believes | in damages. He sues in state | jurisdiction over
that she is not subject to personal | court in Oregon. Ten days later | Boyle in Oregon,
Jjurisdiction there. Naturally, she | (before an answer is due in state | even though the
should object to personal jurisdic- | court), Boyle files a notice of re- | case was properly
tion. [...] But generally the scope | moval in federal court. Five days | removed.

of personal jurisdiction in the fed- | after removing, Boyle answers
eral court will be the same as that | the complaint, including in her
of the state court, because the Fed- | answer an objection to personal
eral Rules require the federal court | jurisdiction. Boyle’s objection to
in most cases to conform to state lim- | personal jurisdiction is"

its on personal jurisdiction. Fed. R.
Civ. P 4(k)(1)(A). I've stumped a
multitude of students on this point.
Consider the following two cases to
clarify the point.”

Table 3: Two different samples from the official dataset are provided. Together with the introduction, a question and
a candidate answer the label is provided (i.e., O if the answer is incorrect, 1 if the answer is correct)
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Abstract

SemEval-2024 Task 8 introduces the challenge
of identifying machine-generated texts from
diverse Large Language Models (LLMs) in
various languages and domains. The task
comprises three subtasks: binary classifica-
tion in monolingual and multilingual (Subtask
A), multi-class classification (Subtask B), and
mixed text detection (Subtask C). This paper
focuses on Subtask A & B. To tackle this task,
this paper proposes two methods: 1) using
traditional machine learning (ML) with nat-
ural language preprocessing (NLP) for fea-
ture extraction, and 2) fine-tuning LLMs for
text classification. For fine-tuning, we use the
train datasets provided by the task organizers.
The results show that transformer models like
LoRA-RoBERTa and XLLM-RoBERTa outper-
form traditional ML models, particularly in
multilingual subtasks. However, traditional ML
models performed better than transformer mod-
els for the monolingual task, demonstrating
the importance of considering the specific char-
acteristics of each subtask when selecting an
appropriate approach.

1 Introduction

Large Language Models (LLMs) are sophisticated
natural language processing (NLP) models exten-
sively trained on vast textual datasets (Wang et al.,
2023). These models demonstrate an impressive
proficiency in generating human-like text based on
the input they receive. However, using LLMs for
generating texts has raised concerns about potential
misuse, such as disseminating misinformation and
disruptions in the education system (Wang et al.,
2023). Thus, urgent development of automated sys-
tems to detect machine-generated texts is essential
(Mitchell et al., 2023; Wang et al., 2023).
Recently, several LLMs have been developed
such as ChatGPT! Brown et al. (2020), Cohere?,

'https://chat.openai.com/
Zhttps://cohere.com

Davinci®, BLOOMZ* (Muennighoff et al., 2022),
and Dolly’ (Conover et al., 2023). The versa-
tility of these models extends across various do-
mains, such as news, social media, educational
platforms, and academic contexts, in multiple lan-
guages not only English (Wang et al., 2023). This
wide application poses a challenge in developing
an automated system capable of detecting machine-
generated texts from various generators, across
multiple domains and languages.

To tackle this challenge, SemEval-2024 Task
8: Multigenerator, Multidomain, and Multilin-
gual Black-Box Machine-Generated Text Detec-
tion (Wang et al., 2024) introduces the task of de-
tecting machine-generated texts obtained from dif-
ferent LLMs, in various domains and languages.
This task consists of three subtasks: Subtasks A, B,
and C. Subtask A involves binary classification of
text as either human-written or machine-generated,
with two tracks: monolingual (English only) and
multilingual. Subtask B focuses on multi-class
classification of machine-generated text, aiming to
identify the source of generation, whether human or
a specific language model. Subtask C addresses the
detection of human-machine mixed text, requiring
the determination of the boundary where the tran-
sition from human-written to machine-generated
occurs in a mixed text. This paper focuses on Sub-
tasks A and B. To tackle these tasks, we propose
two approaches: (1) classical machine learning,
leveraging NLP techniques for feature extraction,
and (2) fine-tuning LLMs for the classification of
human-written and machine-generated texts.

2 Related Work

Researchers have employed a variety of methods
and tools to detect Al-generated texts. Broadly,

3https://platform.openai.com/docs/models/gpt-base
*https://huggingface.co/bigscience/bloomz
>https://huggingface.co/databricks/dolly-v2-12b
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these approaches can be categorized into two main
types: black-box and white-box detection methods
(Tang et al., 2023). Black-box detection relies on
API-level access to LLMs, utilizing textual samples
from both human and machine sources to train clas-
sification models (Dugan et al., 2020). The study
by Guo et al. (2023) integrated existing question-
and-answer datasets and leveraged fine-tuning of
pre-trained models to investigate the characteris-
tics and similarities between human-generated and
Al-generated texts.

As for white-box detection, Kirchenbauer et al.
(2023) introduced a novel approach involving the
embedding of watermarks in the outputs of LLMs
to facilitate the detection of Al-generated text. Ad-
ditionally, a variety of tools and methodologies, in-
cluding XGBoost, decision trees, and transformer-
based models, have been evaluated for their effi-
cacy in detecting texts produced by Al (Zaitsu and
Jin, 2023). These techniques incorporate multi-
ple stylistic measurement features to differentiate
between Al-generated and human-generated texts
(Shijaku and Canhasi, 2023).

Specific tools and techniques in this domain
include the GLTR tool developed by Gehrmann
et al. (2019), which analyzes the usage of rare
words in texts to distinguish between those gen-
erated by the GPT-2 model and human writers.
The DetectGPT method posits that minor rewrites
of LLM-generated texts tend to reduce the log
probability under the model, a hypothesis that
has been explored in depth (Mitchell et al., 2023).
Furthermore, intrinsic dimension analysis, includ-
ing methods like the Persistent Homology Dimen-
sion estimator (PHD), has been applied to distin-
guish between authentic texts and those generated
artificially (Tulchinskii et al., 2023). Detectors
specifically designed for certain LLMs, such as
the GROVER detector for the GROVER model
(Zellers et al., 2019) and the RoBERTa detector
using the ROBERTa model (Liu et al., 2019), also
play a significant role in this field.

In summary, the combination of statistical anal-
ysis with advanced language models is being em-
ployed by researchers to more effectively differ-
entiate between content generated by humans and
machines. The continuous evolution and refine-
ment of these techniques reflect the dynamic nature
of the field and the complexities involved in distin-
guishing between the increasingly nuanced outputs
of LLMs and human-authored texts.

3 Methods

To tackle these tasks, we employ two distinct strate-
gies. The first is classical machine learning, tai-
lored for natural language preprocessing (NLP).
The second approach involves transformer-based
LLMs, with an emphasis on LoRA (Low-Rank
Adaptation of Large Language Models) fine-tuning
(Hu et al., 2021). We then enhance our results by
integrating these methods through ensemble tech-
niques.

3.1 Machine Learning Models

Our approach for textual data analysis in machine
learning involves a concise yet comprehensive pre-
processing pipeline. Initially, URLs and excess
whitespace are removed from the text. Next, all
punctuation is eliminated, focusing solely on al-
phanumeric characters. The text is further refined
by excluding common stopwords and numeric char-
acters. Emojis are decoded into text, providing
additional context. Lemmatization standardizes
words to their base forms, ensuring consistent anal-
ysis. Texts are then converted to lowercase for
uniformity.

The final step involves using a Term Frequency-
Inverse Document Frequency (TF-IDF), configured
to handle a maximum of 8000 features and con-
sidering unigrams to trigrams. This vectorizer
excludes terms appearing in less than 10 docu-
ments, balancing feature representation with com-
putational efficiency. Furthermore, we enhance the
feature set for machine learning by incorporating
esteemed readability metrics such as the Gunning
fog index (Scott, 2023) and Flesch reading ease
score (Kincaid et al., 1975) into our text analysis,
which assess the complexity and readability of the
text respectively. This preprocessing strategy trans-
forms raw text into a structured numerical format,
ready for machine learning model analysis.

Expanding our feature extraction capabilities,
we introduce additional dimensions of analysis in-
cluding perplexity measures, sentiment analysis,
document and error analysis, text vector features,
the Al Feedback Query feature, and list lookup
features. Perplexity measures assess text complex-
ity through language models, offering insights into
predictability. Sentiment analysis is deepened to
reveal emotional tones and subjective nuances, pro-
viding a fuller understanding of the text’s emo-
tional landscape and authorial intent. Document
and error analysis afford a detailed look at structure
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and linguistic accuracy, enhancing content qual-
ity assessment. Text vector features, leveraging
Sentence-BERT embeddings, enable sophisticated
semantic content capture, facilitating nuanced the-
matic analysis. The Al Feedback Query feature
is a binary response achieved through a structured
inquiry where the Al model is presented with the
text and asked to determine its generative source.
List lookup features, examining elements like stop
word frequency and special character use, offer
stylistic and structural insights. Collectively, these
advancements enable a comprehensive and detailed
interpretation of textual data, significantly broaden-
ing our analytical capabilities by combining them.

In our study, we employed four distinct ma-
chine learning algorithms for both binary and multi-
class classification tasks: Logistic Regression (LR),
Multinomial Naive Bayes Classifier (Multinomi-
alNB), eXtreme Gradient Boosting (XGBoost)
(Chen and Guestrin, 2016) and Random Forest
(RM).

* LR: A linear model used for classification
tasks. It models the probability that a given in-
put belongs to a certain class. Logistic Regres-
sion is particularly effective for binary classi-
fication due to its simplicity and efficiency in
estimating probabilities.

* MultinomialNB: This algorithm is based on
the Bayes theorem and is particularly suited
for classification with discrete features (like
word counts for text classification). It as-
sumes independence between predictors and
is highly scalable to large datasets.

* XGBoost: This is an efficient and scalable
implementation of gradient-boosted decision
trees. It is known for its performance and
speed, especially in structured or tabular data,
and can handle both binary and multi-class
classification problems effectively.

* RF: A versatile ensemble learning method that
builds multiple decision trees for classifica-
tion or regression tasks. It improves accuracy
by averaging or taking the mode of predic-
tions from all trees, effectively reducing over-
fitting. Suitable for both binary and multi-
class problems, it excels in handling large,
high-dimensional datasets.

By integrating these algorithms, our approach
leverages the strengths of linear modeling, proba-

bilistic classification, and ensemble learning, aim-
ing to enhance predictive accuracy and robustness
across diverse classification scenarios.

3.2 XLM-RoBERTa

In our approach, we established XLM-RoBERTa®
(Conneau et al., 2019) as the baseline model among
transformer-based architectures. XLM-RoBERTa
represents a multilingual adaptation of the original
RoBERTa (Liu et al., 2019) model, specifically de-
signed to understand and process a diverse range of
languages. XLM-RoBERTa is pre-trained on a sub-
stantial dataset: 2.5TB of filtered CommonCrawl
data (Zhang et al., 2020), encompassing text in 100
different languages. This extensive pre-training
enables the model to capture nuanced language
features and patterns across a broad linguistic spec-
trum, making it highly effective for tasks involving
multiple languages. The use of such a diverse train-
ing dataset aids in achieving a robust understanding
of various linguistic structures and vocabularies,
which is crucial for accurate language processing
and analysis in a multilingual context.

3.3 LoRA-RoBERTa

To improve the predictive performance of LLMs,
we use LoRA for fine-tuning RoBERTa’ model.
LoRA is a technique enhancing the efficiency of
fine-tuning large models with reduced memory con-
sumption. It modifies the weight updates in neu-
ral networks using two smaller matrices derived
through low-rank decomposition. These matrices
adapt to new data while the original weights remain
unchanged. The final output combines the original
and adapted weights. In transformer models, LoRA
is often applied to attention blocks for efficiency.
The number of trainable parameters depends on the
low-rank matrices’ size, influenced by the rank and
the original weight matrix’s shape (Hu et al., 2021),
as shown in Figure 1.

3.4 Majority Voting

The Majority Voting ensemble in this study com-
bines the predictions of two transformer-based
models: XLM-RoBERTa and LoRA-RoBERTa.
The final prediction is determined by the major-
ity vote of these two models, offers several ad-
vantages over a single-model approach. This
technique, applicable in scenarios with /N classi-
fiers (C1,Co,...,Cy), determines the final out-

®https://huggingface.co/xIm-roberta-base
"https://huggingface.co/roberta-base
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Figure 1: LoRA-based fine-tuning streamlines the pro-
cess by freezing the original weights of LLMs and train-
ing a minimal number of parameters.

put V(z) as the class receiving the most votes:
V(x) = mode{C1(x),C(x),...,Cn(x)}. This
method effectively reduces variance by balancing
out individual model errors, leading to more sta-
ble predictions. Furthermore, it generally achieves
higher accuracy due to the diverse perspectives of
different models. Its robustness against overfit-
ting is enhanced, as it combines various models’
strengths, making it suitable for a wider range of
data scenarios. The flexibility in model selection
allows for a blend of different algorithms, each
capturing unique data patterns, which contributes
to better generalization on unseen data. Thus, ma-
jority voting stands out as a robust, accurate, and
flexible approach in machine learning.

3.5 DistimBERT

RoBERTa and XLM-RoBERTa are both power-
ful but computationally expensive. Therefore, we
investigate an alternative model that is more com-
putationally efficient, aiming to compare its per-
formance against these models. We adopted Dis-
tilBERT base multilingual cased® (DistilmBERT)
(Sanh et al., 2019), a distilled version of the BERT
base multilingual model. It was pretrained on the
concatenation of Wikipedia in 104 different lan-
guages. DistilmBERT consists of 6 layers, each
with 768 dimensions and 12 attention heads, to-
taling 134 million parameters. This configuration
balances model efficiency while retaining signifi-
cant representational power Sanh et al. (2019).

8https://huggingface.co/distilbert-base-multilingual-
cased

4 Experiments

In our study, subtask A focuses on distinguish-
ing between human-written (label 0) and machine-
generated text (label 1), offered in both monolin-
gual (119,757 train, 5,000 dev, 34,272 test) and
multilingual versions (172,417 train, 4,000 dev,
42,378 test), across various sources and languages
are given in Table 1. Subtask B, with 71,027 train,
3,000 dev, and 18,000 test, goes further by identify-
ing the specific model (including ChatGPT, Cohere,
DaVinci, BloomZ, and Dolly) that generated the
text, or if it’s human-generated. Both tasks uti-
lize datasets with an identifier, label, text content,
model name, and source, focusing on the nuanced
classification of texts.

Subtask #Train #Dev  #Test

A - Monolingual 119,757 5,000 34,272
A - Multilingual 172,417 4,000 42,378
B 71,027 3,000 18,000

Table 1: Dataset for text classification subtasks

4.1 Parameter Settings

In our experimentation, hyperparameter settings
varied between classical machine learning models
and LLMs. For the classical machine learning mod-
els, we adhered to default parameter settings during
training. This approach simplifies the process and
relies on the general applicability of these preset
parameters.

In contrast, for LLMs, specific hyperparameters
were carefully chosen. When training the XLM-
RoBERTa baseline model, we set the batch size
to 16 and the learning rate to 2.0e — 5 with the
model being trained for 3 epochs. This configu-
ration ensures efficient handling of data and op-
timal learning speed. For fine-tuning the LoRA-
RoBERTa base model, the learning rate was ad-
justed to 1.0e—3 over 5 epochs, a setting conducive
to the specific demands of fine-tuning.

Furthermore, we employed configuration for the
LoRA fine-tuning, defined with the following pa-
rameters: task_type set to SEQ_CLS indicating a
sequence classification task, r (rank of the low-rank
matrices) set to 4, lora_alpha (scaling factor for
learning rate) at 32, lora_dropout to manage over-
fitting set at 0.01, and rarget_modules focused on
the query module. These configurations are critical
in guiding the fine-tuning process, ensuring that the
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Subtask A - Monolingual Subtask A - Multilingual Subtask B
Method

Dev Test Dev Test Dev  Test
LR 0.673 0.764 0.473 0.721 0.251 0.393
MultinomialNB  0.555 0.832 0.483 0.717 0.435 0.511
XGBoost 0.692 0.800 0.515 0.738 0.540 0.545
RF 0.650 0.825 - - 0471 0.524
XLM-RoBERTa 0.783 0.717 0.679 0.875 0.735 0.600
LoRA-RoBERTa 0.783 0.811 0.726 0.672 0.735 0.699
Majority voting  0.735 0.828 0.728 0.862 0.717 0.602
DistilmBERT 0.702 0.730 0.670 0.810 0.629 0.619

Table 2: Performance comparison of ML and transformer models on text classification subtasks

adjustments to the model are precisely tailored to
enhance performance on the specified task.

As for DistilmBERT, the maximum length of
input sequences was set to 512. The AdamW op-
timizer was employed for training with a learning
rate set to 1.0e — 4 and a batch size of 20. This
model was trained for 5 epochs.

4.2 Results and Discussions

In our experiments, we evaluated various models
on three distinct subtasks: Subtask A - Monolin-
gual, Subtask A - Multilingual, and Subtask B.
Each subtask involved both development (Dev)
and test phases. The models tested included tradi-
tional machine learning algorithms - LR, Multino-
mialNB, XGBoost and RF - as well as advanced
transformer-based models like XLM-RoBERTa,
LoRA-RoBERTa, and DistilmBERT. However, due
to the complexity of RF and time constraints, exper-
iments on this approach for Subtask A - Multilin-
gual are still ongoing, we plan to report the results
in future work. Additionally, we employed a ma-
jority voting ensemble method combining XL.M-
RoBERTa and LoRA-RoBERTa.

The results, detailed in Table 2, reveal significant
variations in model performance across the sub-
tasks, highlighting the strengths and weaknesses of
each model. One notable observation is the large
performance gap between the dev and test sets for
some ML approaches. This discrepancy could be
attributed to several factors, such as overfitting, dif-
ferences in data distribution between the dev and
test sets, or the limited complexity of some ML
models in capturing the intricacies of the task. Fur-
ther investigation and error analysis are necessary
to fully understand and address these issues.

Subtask A - Monolingual In the monolingual
Subtask A, MultinomialNB emerged as a strong
performer with the highest test score of 0.832. RF
and XGBoost also showed robust performance with
test scores of 0.825 and 0.800, respectively. The
success of these ML models in the monolingual
setting suggests that they can effectively capture
relevant features and patterns when dealing with
a single language. However, their performance on
the dev set was notably lower, indicating potential
overfitting or limitations in generalizing to unseen
data. Among the transformers, LoORA-RoBERTa
was notable with a test score of 0.811, outperform-
ing XLM-RoBERTa, which scored 0.717. Distilm-
BERT, while not leading, still demonstrated a com-
mendable test score of 0.730, indicating its effec-
tiveness in monolingual contexts. The performance
of transformer models in this subtask highlights
their ability to capture complex language represen-
tations and generalize well to new data.

Subtask A - Multilingual In the challenging
multilingual Subtask A, XLM-RoBERTa excelled
with the highest test score of 0.875. The Majority
Voting ensemble was also highly effective, achiev-
ing a test score of 0.862. These results demonstrate
the strength of transformer models in handling di-
verse language inputs and their ability to learn
language-agnostic representations. DistilmBERT,
with a test score of 0.810, also showed notable
effectiveness in multilingual text classification, out-
performing traditional models and reflecting its
potential in handling complex, diverse language
data.

Subtask B In Subtask B, LoORA-RoBERTa led
with a Test score of 0.699, follwed by Distilm-
BERT, achieving a test score of 0.619 and XLM-
RoBERTa with 0.600. The strong performance
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of transformer models in this subtask underscores
their versatility and adaptability across different
text classification scenarios. Among the traditional
models, XGBoost was the most effective, with a
test score of 0.545. However, the performance gap
between ML models and transformers in Subtask
B suggests that the latter are better equipped to
handle the specific challenges and complexities of
this task.

At the model level, we observed that ML mod-
els often struggled with handling rare or out-of-
vocabulary words, leading to misclassifications.
Transformer models, on the other hand, showed
better resilience to such challenges, likely due to
their subword tokenization and ability to capture
broader context. However, transformers sometimes
struggled with very short or noisy inputs, indicating
room for improvement in their robustness.

5 Conclusions

The results showed that transformer models, par-
ticularly LoRA-RoBERTa and XLM-RoBERTa,
performed exceptionally well in most text classi-
fication tasks. DistilmBERT represented a more
streamlined transformer approach and was also
proven to be efficient, especially in multilingual
task. Contrary to popular belief, traditional ML
models such as MultinomialNB and XGBoost
can outperform transformers in monolingual tasks.
These findings highlight the importance of care-
fully considering the characteristics of the task and
the trade-offs between model complexity and per-
formance when selecting an appropriate approach.

Our results contribute to the understanding of
model selection strategies for text classification and
emphasize the need for a nuanced approach that
takes into account the specific demands of each
subtask. Future research could explore the develop-
ment of hybrid models that combine the strengths
of traditional ML techniques and transformer ar-
chitectures, as well as the design of more efficient
and lightweight transformer models for resource-
constrained environments. These findings reflected
the dynamic nature of NLP tools and the impor-
tance of selecting models based on the specific
requirements of the task.
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Abstract

The task of textual entailment holds significant
importance when dealing with clinical data, as
it serves as a foundational component for ex-
tracting and synthesizing medical information
from vast amounts of unstructured text.

To investigate the consistency with which Nat-
ural Language Inference (NLI) models cap-
ture semantic phenomena critical for intri-
cate inference within clinical NLI contexts,
SemEval—2024 has organized a shared task
focused on NLI for Clinical Trials (NLI4CT).
This task provides participants with a dataset
annotated by humans for the purpose of model
training and requires the submission of the re-
sults on test data for evaluation. We engaged in
this shared task2 at SemEval—2024, employing
a diverse set of solutions, with a particular em-
phasis on leveraging a Large Language Model
(LLM) based zero-shot inference approach to
address the challenge.

1 Introduction

Clinical NLI is a specialized application of Natural
Language Processing (NLP) that focuses on under-
standing and inferring information from text within
the healthcare domain. It involves analyzing and
drawing conclusions from clinical narratives, such
as electronic health records (EHRs), doctor’s notes,
medical transcripts, clinical trials and other forms
of medical documentation (Percha et al., 2022).
The goal of clinical NLI is to determine the logi-
cal relationship between premises and hypotheses
(conclusions) in clinical text. By inferring informa-
tion from clinical text, NLI can assist healthcare
providers in making informed decisions by provid-
ing evidence-based recommendations and alerts.
In addition, clinical NLI can be used to identify
patient cohorts for clinical trials or research studies
by inferring patient eligibility based on inclusion
and exclusion criteria mentioned in clinical records.
Applications of clinical NLI are not limited to the

ones mentioned and there are lots of other usages
in which clinical NLI can be useful (Percha et al.,
2021). NLI for clinical trials faces unique chal-
lenges due to the complexity of medical language,
the need for domain-specific knowledge, and the
sensitivity and privacy concerns associated with
health data. However, advancements in NLP and
specifically Large Language Models (LLMs) are
continuously improving the accuracy and applica-
bility of clinical NLI, making it an increasingly
valuable tool in the healthcare industry.

To foster collaboration and dissemination of
novel insights within this field, SemEval 2024 (Jul-
lien et al., 2024) has established a shared task ex-
clusively devoted to clinical NLI. A publicly acces-
sible dataset, annotated by humans, has been made
available to facilitate the comparison of solutions
proposed by different researchers.

To address the challenge, we developed an
ensemble-oriented solution that combines various
Large Language Models (LLMs) based models
within the framework of prompting and fine-tuned
classification. Our primary goals were to first un-
derstand the comparative performance of genera-
tive models versus classification models. Subse-
quently, we explored whether the use of automatic
summarization models to condense the premises
would influence the efficacy of both classifiers
and generative models. Ultimately, our approach
sought to facilitate synergistic interactions among
the different models, leveraging their respective
strengths to mitigate individual inference limita-
tions.

Nevertheless, despite conducting a variety of ex-
periments that involved combining summarization,
fine-tuning classifiers, prompting, and more, the
results demonstrated a clear superiority of genera-
tive models in comparison to the others, even when
used independently.

The remainder of this paper is organized as fol-
lows: Section 2 provides a brief review of related
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work. The proposed model and its constituent mod-
ules are detailed in Section 3. Sections 4 and 5
discuss the experiments conducted and the corre-
sponding results. Finally, we conclude the paper in
Section 6.

2 Past Work

Recent literature underscores the need for sophisti-
cated models that can accurately capture the seman-
tics of clinical narratives and support reasoning in
line with medical knowledge. Jullien et al. (2023),
introduced a shared task on NLI for clinical trials
(NLI4CT), providing a dataset of annotated clinical
trials and inviting researchers to develop models to
tackle the associated challenges. The shared task
comprises two sub-tasks: Textual Entailment and
Evidence Retrieval, each designed to advance the
state of NLI systems within the clinical domain.

Zhou et al. (2023), took part in the NLI4CT-
2023 challenge, proposing a model that utilizes
both sentence-level and token-level encoding to ad-
dress the task at hand. Furthermore, they enhanced
the model’s overall performance by employing gen-
eral (T5-based model) and domain-specific (Sci-
Five) pre-trained LLMs.

Kanakarajan and Sankarasubbu (2023), con-
ducted an evaluation of several instruction-tuned
Large Language Models (LLMs) in a zero-shot set-
ting and fine-tuned the best-performing instruction-
tuned model (T5 family models). Their findings
suggest that instruction-tuned models yield bet-
ter results for datasets with limited training sam-
ples. Additionally, they explored the impact of
various prompts on the overall performance of the
model. (Vladika and Matthes, 2023) and (Chen
et al., 2023), both created a model based on an en-
semble approach that combines various fine-tuned
iterations of biomedical LLMs. These models are
designed to extract evidence from clinical trial re-
port premises to support textual entailment in spe-
cific statements. Wang et al. (2023), developed
a system that utilizes prompts created by humans
to gather information from statements, section ti-
tles, and clinical trials. They then fine-tune pre-
trained language models on these prompted sen-
tences, training the models to identify the infer-
ential connections between the statements and the
clinical trials. Pahwa and Pahwa (2023), charac-
terized the NLI task as a form of text pair classi-
fication and utilized the GPT-3 model to classify
samples within the framework of few-shot prompt-
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ing. This approach takes advantage of the semantic
similarity between text samples and the examples
provided for in-context learning.

Dias et al. (2023), employed supervised con-
trastive learning to enhance the sentence pair repre-
sentations in the Biomed RoBERTa model. They
then fine-tuned a linear classifier built upon these
improved representations to identify evidence and
execute textual entailment classification for sen-
tence pairs.

Vassileva et al. (2023), introduced a two-tiered
system to address the sub-tasks of NLI4CT-2023.
Initially, the system employs a BERT-based clas-
sifier, supplemented by contextual data augmen-
tation, to categorize evidence-statement pairs as
relevant or irrelevant. Subsequently, leveraging
the relevant segments of the clinical trial identi-
fied in the first stage, the system applies another
BERT-based classifier to ascertain whether the rela-
tionship between the elements is one of entailment
or contradiction.

Volosincu et al. (2023), illustrated that a trans-
former model pre-trained on biomedical data for
the task of entailment relation in NLI4CT-2023
does not automatically outperform traditional ap-
proaches like CNNs. Nonetheless, their model
exceeded the baseline system’s performance and
provided meaningful directions for future research
on how the model’s architecture can be developed
further.

3 Proposed Model

In tackling the NLI4CT task, our approach involved
the construction of an ensemble model that inte-
grates the judgments of multiple distinct decision-
makers. These decision-makers differ concerning
the nature of input data they process, the founda-
tional models they employ, and the methodologies
they adopt for label determination. Figure 1 pro-
vides a comprehensive illustration of the proposed
solution. Components of the ensemble pool were
developed within the frameworks of classification
or prompting, utilizing LLMs. For classification
tasks, SciFive (Zhou et al., 2023) was selected as
the base model due to its exemplary performance
in the NLI4CT-2023 task. To enhance the mod-
els’ ability to assimilate information from the input
data, we employed both extractive and abstractive
summarization techniques. The abstractive summa-
rization was conducted using the T5-large model
(Raffel et al., 2020) to condense the premises. For
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Figure 1: Ensemble Model Proposed

extractive summarization, the premises were ini-
tially segmented into individual sentences, after
which those exhibiting lower semantic similarity to
the hypothesis were excluded.

The pre-trained SciFive model ingests the text
summarized by T5 to generate the initial compo-
nent of the ensemble pool. Subsequently, this
model undergoes fine-tuning through two distinct
methodologies utilizing the summarized data: com-
prehensive fine-tuning and parameter-efficient fine-
tuning, the latter of which is facilitated by employ-
ing LoRA (Hu et al., 2021) to produce subsequent
members of the ensemble pool.

The remaining decision-makers within the en-
semble are derived by prompting generative LLM!
in a zero-shot inference context, utilizing both the
original input data and variously summarized in-
puts. The specific prompt employed for the model
is delineated in Listing 1.

# For Type="Comparison"”
prompt = f''' Assess the logical
relationship between two clinical
trial descriptions (Primary Trial (
PT), Secondary Trial: (ST)) as
premises and the hypothesis given
below.
Return 'Entailment' if the premises
logically imply the hypothesis, and
'"Contradiction' if the hypothesis

'OpenOrca-Platypus2-13B, which is an autoregressive lan-
guage model that utilizes the Lllama 2 transformer architecture.
It is tailored for a variety of general-use applications, includ-
ing chat, text generation, and code generation. This model has
undergone training with a diverse mix of datasets, focusing on
STEM and logic-based content, and it incorporates a carefully
selected portion of data from the GPT-4 dataset within the
OpenOrca collection.

conflicts with the information in

the premises.

Primary Trial (PT) {PE}
Secondary Trial (ST): {SE}
hypothesis: {hypothesis}

# For Type="Single"”

prompt = f'''Evaluate the logical
relationship between the clinical
trial premise (PE) and the
hypothesis given below.

Return 'Entailment' if the premise
logically implies the hypothesis,
and 'Contradiction' if the
hypothesis conflicts with the
information in the premise.

Clinical Trial (PE): {PE}
hypothesis: {hypothesis}

Listing 1: Prompt Template Used.

Ultimately, the final decision for the test sam-
ples were made using a weighted majority voting
approach. The performance of models on prac-
tice_test set were used for the combination process.

4 Experiments

We have conducted our experiments utilizing the
dataset provided by the task’s organizers that is
explained in Section 4.1. For the models based
on prompting, we utilized only the test and prac-
tice_test datasets, whereas the training data was em-
ployed exclusively for fine-tuning the classification-
based models. Beyond experimenting with models
within our ensemble framework, we also explored
the integration of results from fine-tuned classi-
fication models as a form of external knowledge
within the context of prompting. The efficacy of
all models is evaluated using three metrics: Macro
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F1 Score, Faithfulness, and Consistency, each of
which is briefly described in Section 4.2.

4.1 Dataset

The corpus presented for analysis encompasses
training, development, practice_test, and test
datasets, each containing a distinct number of sam-
ples. Table 1 displays the quantity of samples for
each dataset. The content of each sample, including
statements and evidence, has been reconstructed
by a collaborative effort of clinical domain experts,
clinical trial organizers, and research oncologists
associated with the Cancer Research UK Manch-
ester Institute and the Digital Experimental Cancer
Medicine Team.

Split #Samples | #Entailment | #Contradiction

Train 1700 850 850
Practice_test 2142 730 1412
Development 200 100 100

Test 5500 1841 3659

Table 1: Overview of Dataset Splits: Distribution of
Samples, Entailment, and Contradiction Labels

4.2 Evaluation

In assessing system performance, the organizers,
in conjunction with the macro F1 score, opted to
examine model efficacy on a contrast dataset com-
prising statements with interventions. The compre-
hensive ranking of the systems is determined by
the mean of two novel metrics: Faithfulness (as de-
fined in Equation. 1) and Consistency (as defined
in Equation. 2), across all types of interventions.

N

1
FaithFulness = N Z |f(yi) — flxg)| (D)

1

where x; € C : Label(z;) # Label(y;), f(y;) =
Label(y;).

| X
Consistency = N Z L—|f(y) — flzs)] )
1

where z; € C : Label(x;) = Label(y;). Faith-
fulness quantifies the degree to which a system
reaches an accurate prediction based on the correct
rationale. While, Consistency measures the degree
to which a system yields identical outputs for se-
mantically equivalent queries. The results obtained
during the experimental trials are presented in the
subsequent section.

5 Results

The performance result of individual models within
the ensemble, as applied on both practice_test and
test datasets, are illustrated in Table 2.

The proposed model exhibits faithfulness and
consistency scores of 28% and 52%, respectively,
suggesting a necessity for more robust models to
effectively manage clinical trials involving diverse
data types. The findings reveal that the proposed
overall model performs similarly to the generative
model in the prompting context. This similarity
underscores the considerable potential of genera-
tive LLMs. These models can achieve better per-
formance when instruction tuning is applied with
domain-specific data. Additionally, using classifi-
cation results as external knowledge for the prompt-
ing model showed minimal impact. Moreover, the
use of extractive summarization yielded the lowest
results, aligning with our expectations. This ap-
proach, which focuses on the similarity between
individual sentences and the statement, can lead
to a loss of comprehension of the entirety of the
premises.

6 Conclusion

In conclusion, our participation in NLI4CT-2024 in-
volved proposing an ensemble approach that incor-
porated multiple decision-makers, with two Large
Language Models (LLMs) serving as foundational
models. We explored various data preparation tech-
niques, including abstractive summarization and
similarity-based sentence filtering, for use in both
prompting and classification contexts. The compa-
rable performance of the prompt-based model to
the overall ensemble model, coupled with its sig-
nificant outperformance of the classification mod-
els, underscores the substantial potential of pre-
trained generative foundation models in solving
similar problems. We posit that the application of
instruction tuning and the incorporation of domain-
specific data could markedly enhance the results.

7 Acknowledgments

We extend our sincere gratitude to Dana Osama and
Anees Hashmi for their valuable cooperation and
contributions to this work. In addition, this work
received support from the Natural Sciences and
Engineering Research Council of Canada (NSERC)
and the Digital Alliance of Canada, to whom the
authors extend their gratitude.

173



Practice_Test
M1 M2 M3 M5 M6 M7 M8
Score | 66.66 | 72.64 | 66.89 | 72.65 | 68.12 | 60.66 | 69.12 | 72.65
Test
M1 M2 M3 M5 M6 M7 M8
Score | 66.84 | 65.37 | 66.30 | 69.61 | 66.36 | 52.95 | 66.07 | 70.27

Table 2: Performance comparison in terms of F1-score on practice test and test Datasets: M1: Pretrained SciFive,
M2: Full Fine-tuned SciFive (Summarized Data), M3: Fine-tuned SciFive (LoRA and Summarized Data), M4:
Prompting, M5: Prompting with Summarized Data, M6: Prompting with Filtered Sentences, M7: SciFive Results as
External Knowledge for Prompting, M8: Ensemble Method
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Abstract

This paper describes our approach to SemEval-
2024 Task 4 subtask 1, focusing on hierarchi-
cal multi-label detection of persuasion tech-
niques in meme texts. Our approach was
based on fine-tuning individual language mod-
els (BERT, XLLM-RoBERTa, and mBERT) and
leveraging a mean-based ensemble model. Ad-
ditional strategies included dataset augmenta-
tion through the TC dataset and paraphrase gen-
eration as well as the fine-tuning of individual
classification thresholds for each class. During
testing, our system outperformed the baseline
in all languages except for Arabic, where no
significant improvement was reached. Analysis
of the results seem to indicate that our dataset
augmentation strategy and per-class threshold
fine-tuning may have introduced noise and ex-
acerbated the dataset imbalance.

1 Introduction

The SemEval-2024 shared Task 4 (Dimitrov et al.,
2024) proposed three distinct subtasks dedicated
to identifying persuasion techniques conveyed by
memes. The primary aim was to unravel how
memes, integral to disinformation campaigns, em-
ploy various techniques to shape user perspectives.
Subtask 1 focused on the analysis of textual content
alone; while subtasks 2 and 3 involved the analysis
of multimodal context that considers both textual
and visual elements. Subtasks 1 and 2 used hier-
archical multi-label classification metrics, while
subtask 3 involves a binary classification task. The
training dataset provided was in English but all
subtasks mandated the evaluation of our model’s
zero-shot performance in three surprise languages:
Bulgarian, North Macedonian, and Arabic and an-
other fourth dataset in English. The goal during
the testing phase was to explore our model’s ability
to generalize to these languages without explicit
training.

This paper describes our participation to sub-

task 1, focusing on the detection of 20 persua-
sion techniques structured hierarchically within
the textual content of memes. Inspired by suc-
cessful approaches in multilabel text classifica-
tion (Jurkiewicz et al., 2020; Tian et al., 2021),
our strategy involved fine-tuning three language
models i.e, BERT [bert-base-uncased], XLM-
RoBERTa [xlm-roberta-base], and mBERT
[bert-base-multilingual-uncased], followed
by ensemble modeling using the mean aggrega-
tion technique using the English training set. To
enhance performance, we used data augmentation
through paraphrasing and adjusted the classifica-
tion thresholds for each persuasion technique based
on class-wise metrics optimised using the valida-
tion set using grid search. During testing, a zero-
shot approach was implemented by translating the
surprise language data into English.

At the shared task, our system demonstrated sig-
nificant performance advantages over the baseline
in all languages except Arabic, where the perfor-
mance difference was not statistically significant.
Our system’s effectiveness, particularly in non-
Arabic languages, underscores its potential for an-
alyzing memes within disinformation campaigns,
emphasizing the need for language-specific consid-
erations in model development.

Section 2 provides an overview of the data uti-
lized and offers insights into relevant prior research.
Section 3 presents an overview of our classification
pipeline, while Section 4 describes the experiments
and data augmentation techniques that guided our
final model decisions. Finally, Section 5 analyses
the results of our model. All of the code used in
the implementation of the models described in this
paper is made available on GitHub.!

Thttps://github.com/CLaC-Lab/SemEval-2024-Task-4
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2 Background

SemEval 2024 Task 4 (Multilingual Detection Of
Persuasion Techniques In Memes) proposed 3 sub-
tasks, out of which we participated in the first one.
The goal of subtask 1 was to categorize the textual
content of memes into one or several persuasion
techniques. An inventory of 20 techniques was pro-
vided (eg: Smears, Loaded Language, Slogans) and
were structured hierarchically, rendering the task a
hierarchical multi-label classification problem.

2.1 Datasets

The SemEval organizers collected memes in En-
glish, Bulgarian, North Macedonian, and Ara-
bic from their personal Facebook accounts, scrap-
ing public groups discussing politics, vaccines,
COVID-19, gender equality, and the Russo-
Ukrainian War. For subtask 1, the input data com-
prised the text extracted from these memes. The
training (7k samples), validation (500 samples) and
development (1k samples) sets included only En-
glish texts; whereas the test set was multilingual
with 1500 samples for English, 426 samples for
Bulgarian, 259 samples for North Macedonian and
100 samples for Arabic. All datasets were the pro-
vided in the form of JSON files. The orange bars
in Figure 1 shows the distribution of the data for
each persuasion technique in the training set. As
Figure 1 shows some techniques, such as Loaded
Language and Smears, had a substantial number
of samples, while others like Straw Man and Red
Herring were severely underrepresented.

Instances per Label (Descending Order)

Appeal to authority {s

Doubt

Slogans {ml
Appeal to fear/prejudice {uI

Glittering generalities (Virtue)

Causal Oversimplification il
Whataboutism {
Loaded Language
Name calling/Labeling
Smears
Bandwagon I
Repetition o
Black-and-white Fallacy/Dictatorship sl
Exaggeration/Minimisation il

Flag-waving il

Thought-terminating cliché sl
Misrepresentation of Someone's Position (Straw Man) {i
Presenting Irrelevant Data (Red Herring) I
Reductio ad hitlerum I
Obfuscation, Intentional vagueness, Confusion

o S )
§ §§

N S

& S

Figure 1: Distribution of the data for each persua-
sion technique in the SemEval 2024 (in orange), the
Comb-14k (in orange + blue) and the Para-54k (in or-
ange + blue + green) training datasets.

2.2 Previous Work

In the context of the SemEval 2020
Task 11 (Da San Martino et al., 2020), two
subtasks were introduced addressing span identi-
fication of propagandistic textual fragments and
a multi-label technique classification (TC) of
propagandistic fragments using a corpus of ~7k
instances from the news domain. The subsequent
SemEval 2021 Task 6 (Dimitrov et al., 2021)
focused on the identification of propagandistic
techniques from multimodal data including text
and images from memes. This year’s shared task
build upon the 2021 task but included hierarchical
metrics as well as a multilingual setting. The
top-performing teams in 2020 and 2021, Appli-
caAl (Jurkiewicz et al., 2020) and MinD (Tian
et al., 2021) respectively, leveraged pre-trained
language models and ensemble techniques to
achieve top scores at the shared tasks. Inspired by
these works, our methodology is also based on an
ensemble of pre-trained language models.

3 System Overview

The aim of subtask 1 is to identify O or n persua-
sion techniques for each textual instance. Despite
the hierarchical organization of the persuasion tech-
niques, we opted to predicting solely the technique
names (leaf nodes) and not their ancestor nodes.
Figure 2 shows an overview of the classification
pipeline we employed for this subtask. As shown
in Figure 2, our methodology is based on fine-
tuning three distinct pre-trained language models:
BERT (Devlin et al., 2019), XLM-RoBERTa (Con-
neau et al., 2020), and mBERT (Devlin et al.,
2019). This fine-tuning process is conducted on
augmented datasets.

3.1 Data Augmentation

As Figure 1 shows, some persuasion techniques
have very few samples (eg: Red Herring, Straw
Man only have 59 and 62 instances respectively) in
the SemEval 2024 dataset (in orange). To mitigate
the lack of data we took advantage of data augmen-
tation strategies: The Technique Classification sub-
task from SemEval 2020 task 11 (Da San Martino
et al., 2020) (See Section 3.1.1) and automatically
generated paraphrases (See Section 3.1.2).

3.1.1 SemkEval 2020 Data (Comb-14k dataset)

The Technique Classification (TC) subtask from
the SemEval 2020 Task 11 (Da San Martino et al.,
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Figure 2: Schematic overview of our classification
pipeline for the detection of persuasion techniques in
memes.

2020) provided a dataset with ~7k instances an-
notated with the same guidelines as this year’s. In
contrast to the 2020 task, this year’s challenge fea-
tured a revised set of techniques compared to the
2020 inventory. In the 2020 TC dataset, a few tech-
niques were merged into a single category due to
lack of data, resulting in a list of 14 techniques.
In the current year, an expanded inventory of 20
techniques was employed. To ensure consistency
between the two sets, we preprocessed the 2020
TC dataset by splitting techniques that had previ-
ously been merged. For example, we singled out
Bandwagon and Reductio ad Hitlerum, which had
been merged into a single technique in the SemEval
2020 TC dataset.

We combined both datasets and fine-tuned models
on this combined dataset. For easy reference in
the rest of the paper, we call the combined dataset
Comb-14k. Figure 1 (orange + blue) shows the re-
sulting distribution of the persuasion techniques in
this dataset.

3.1.2 Paraphrasing (Para-28k, Para-52k and
Para-54k datasets)

Despite having almost doubled each class with the
use of the 2020 TC dataset, some classes were
still severely underrepresented; see Figure 1 (or-
ange + blue). To address this, we augmented the
dataset further by generating paraphrases for each
instance. To generate paraphrases, we leveraged
ChatGPT-3.5 turbo, setting the temperature to 0.7.

This value aimed to introduce diversity in the para-
phrases while maintaining relevance to the original
instances.

For each instance in Comb-14k, we generated n
paraphrases, then labeled these paraphrases with
the same set of labels as the original instance. We
experimented with n=1 and n=3. We call the
resulting datasets Para-28k and Para-52k. The
overall hierarchical F-score with the validation set
given showed an increase when training with these
datasets and n = 3 seemed to perform better than
n = 1. A per-class analysis showed that not all
classes benefited from the increase in support. For
example, the persuasion technique Bandwagon in-
creased its F1 from 0.17 to 0.29; whereas Repeti-
tion decreased its F1 from 0.56 to 0.31. We there-
fore identified the classes with improvement in F-
score greater than 0.03 when using the Para-52k
dataset compared to the Comb-14k dataset. These 8
techniques along with their increase in F-scores are
shown in Table 1. This set of 8 techniques, referred
to as benefited classes B, formed the basis for our
subsequent strategy. Since only these techniques
seemed to benefit from the use of paraphrases, we
only increased the number of paraphrases for these.
Specifically, for all data instances d; in Comb-14k
labeled with techniques T = {71, T%,...T),}, for
each T; € B, we generate 10 paraphrases of d; and
label them with all techniques from T N B. This
newly created dataset contained ~54k instances,
hence we call it Para-54k.

Figure 1 shows the distribution of instances for
each technique in the Para-54k dataset (orange +
blue + green), in comparison with the SemEval
2024 dataset and the Comb-14k dataset. As the fig-
ure shows, all datasets are severely imbalanced;
something that we tried to address with the use of
per-class custom thresholds (see Section 3.2).

3.2 Multi-label Classification

After creating the datasets, we preprocessed
them using standard tokenization, then pro-
ceeded to fine-tune three distinct models:
bert-base-uncased, xlm-roberta-base, and
bert-base-multilingual-uncased in addition
to an ensemble model, generated by averaging the
predictions from all three models.

Additionally, we implemented thresholding in
order to determine which techniques have a high
enough score to be part of the output label set. We
experimented with custom values for each of the
techniques in order to address the data imbalance
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Technique Comb-14k Para-52k

Support | F1 | Support | F1 | AF1
Bandwagon 169 | 0.17 676 | 0.29 | 0.12
Causal Oversimplification 449 | 0.00 1796 | 0.09 | 0.09
Appeal to fear/prejudice 631 | 0.26 2524 | 0.34 | 0.08
Doubt 843 | 0.08 3372 | 0.15 | 0.07
Appeal to authority 994 | 0.69 3976 | 0.74 | 0.05
Glittering generalities (Virtue) 488 | 0.38 1952 | 043 | 0.05
Slogans 796 | 0.42 3184 | 046 | 0.04
Whataboutism 366 | 0.32 1464 | 0.36 | 0.04

Table 1: Techniques that showed an improvement in F1 score when using n=3 paraphrases (i.e. Para-52k).

issue. We experimented with values ranging from
0.01 to 0.7 and picked the optimal values for each
class based on the validation set (500 samples).
These thresholds were applied to the scores
obtained after passing the logits of each class
through a sigmoid function. Table 2 shows the
results of the validation with the optimal threshold
for each class using the official scorer, which uses
hierarchical metrics. As Table 2 shows, the best
model with the validation set was the ensemble
trained on the Para-52k dataset which reached an
hierarchical F1 of 0.56. However, the ensemble
model when trained on the Para-54k dataset,
performed worse (hierarchical F1 of 0.54 with
the validation set) than the ones that used lesser
number of paraphrases (Para-28k and Para-52k).
The ensemble, leveraging the collective insights
of the three models, trained on the Para-52k
emerged as the most effective in enhancing the
overall system performance. Based on our results
in the official leaderboard with the development
set and validation results shown in Table 2, we
chose to submit the ensemble model trained on the
Para-52k dataset as it gave the best results with
both the validation and the development set.

During the testing phase, the datasets in Bul-
garian, North Macedonian, and Arabic were au-
tomatically translated to English for our model’s
zero-shot predictions. This was inspired by the
approach of (Costa et al., 2023). The English test
data was used as given.

4 Experimental Setup

4.1 Data Split and Augmentation

The training data provided in English initially
comprised 7k samples. After combining it with
2020 TC dataset, the total increased to approxi-
mately 14k samples (Comb-14k). Subsequently,

through paraphrase generation, the training dataset
expanded to around 28k (Para-28k) when only 1
paraphrase per instance was used (n=1) and 52k
(Para-52k), when n=3. Finally, the dataset with
ten paraphrases for the benefited classes B reached
approximately 54k samples (Para-54k). The origi-
nal 500-sample validation set was used consistently
for all our experiments. For the final submission,
the ensemble model was trained on the union of
(Para-52k) and the development set (1k samples),
for a total of 53k samples.

4.2 System Pipeline and Training Details

The system pipeline code was imple-
mented in PyTorch.  The pre-trained mod-
els BERT [bert-base-uncased]?, XLM-

RoBERTa [x1lm-roberta-base]®?, and mBERT
[bert-base-multilingual-uncased]* and their
tokenizers were sourced from Hugging Face.
Standard preprocessing, involving tokenization
based on each model’s tokenizer, was applied.
Across all phases, models were trained for 10
epochs using the Adam optimizer with a learning
rate of 2e-5. Batch sizes varied with BERT
utilizing 128, and XLM-RoBERTa and mBERT
using 64. A final feedforward layer with 20 logits
(equal to the number of considered techniques)
was added to each model. The Binary Cross
Entropy with logits served as the loss function,
with one-hot encoding applied to the true labels.
For prediction, a sigmoid activation function was
used on the logits, followed by thresholding. The
ensemble model used an unweighted average of
all predictions from the three individual models.

2huggingface.co/bert-base-uncased
3huggingface.co/FacebookAI/x1lm-roberta-base
“huggingface.co/bert-base-multilingual-uncased

178


huggingface.co/bert-base-uncased
huggingface.co/FacebookAI/xlm-roberta-base
huggingface.co/bert-base-multilingual-uncased

Training Set Used | Models Validation Set | Development Set
BERT 0.52 0.55
XLM-RoBERTa 0.53 0.54
Comb-14k mBERT 0.53 0.54
Ensemble Model 0.53 0.56
BERT 0.55 0.57
Para-28k XLM-RoBERTa 0.57 0.54
mBERT 0.50 0.53
Ensemble Model 0.55 0.56
BERT 0.54 0.55
Para-52k XLM-RoBERTa 0.54 0.54
mBERT 0.54 0.55
Ensemble Model 0.56 0.57
BERT 0.48 0.51
Para-54k XLM-RoBERTa 0.54 0.55
mBERT 0.51 0.53
Ensemble Model 0.54 0.55

Language Baseline | Our Score | Best Score
English 0.36865 0.57827 0.75427
Bulgarian 0.28377 0.44917 0.56833
North Macedonian | 0.30692 0.39471 0.51244
Arabic 0.35897 0.38070 0.47593

Table 2: Hierarchical F1 scores of our models, when trained on different English-language datasets for both the
validation and development sets.

Table 3: Comparison of the final hierarchical F1 scores obtained by our classification system, the best corresponding
classification system in the shared task and the baseline in each given language.

ChatGPT-3.5 turbo® API with a temperature set to
0.7 was used for paraphrase generation. During
testing, external languages were translated into
English using the deep-translator API®.
Throughout all phases hierarchical metrics were
employed for task evaluation using the official
scorer. On the other hand, standard precision,
recall, and F-score metrics were used to assess the
per class performance.

5 Results

The official performance results of our system are
shown in Table 3, along with the baseline score and
the score obtained by the best performing system
on each language. As Table 3 shows, although our
ensemble model was not among the top models,
it reached significantly better performance than
the baseline in all languages except Arabic, where

Shttps://platform.openai.com/docs/models/
gpt-3-5-turbo
Shttps://pypi.org/project/deep-translator/

the improvement was not significant. Overall, we
stood at 22" out of 33 participants for English, 12"
out of 20 for Bulgarian, 11" out of 20 for North
Macedonian and 11" out of 17 for Arabic.

6 Conclusion

This paper described the methodology used in our
participation to the Semeval 2024 Task 4 subtask 1,
focusing on hierarchical multi-label detection of
persuasion techniques in meme texts. We used
an ensemble model with three fine-tuned language
models and incorporated additional strategies such
as data augmentation through paraphrasing and
classification thresholds fine-tuning based on class-
wise metrics. During testing, our system signifi-
cantly outperformed the baseline in all languages
except Arabic, where the increase in performance
was not significant. Analysis shows that the data
augmentation and threshold fine-tuning may have
introduced noise and exacerbating dataset imbal-
ance.
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Abstract

This paper introduces our bagging-based en-
semble learning approach for the SemEval-
2024 Task 4 Subtask 1, focusing on multilin-
gual persuasion detection within meme texts.
This task aims to identify persuasion techniques
employed within meme texts, which is a hierar-
chical multilabel classification task. The given
text may apply multiple techniques, and persua-
sion techniques have a hierarchical structure.
However, only a few prior persuasion detection
systems have utilized the hierarchical structure
of persuasion techniques. In that case, we de-
signed a multilingual bagging-based ensemble
approach, incorporating a soft voting ensem-
ble strategy to effectively exploit persuasion
techniques’ hierarchical structure. Our method-
ology achieved the second position in Bulgar-
ian and North Macedonian, fifth in Arabic, and
eleventh in English.

1 Introduction

Memes have gained immense popularity among the
younger generation due to their entertaining nature.
However, some memes can lead teenagers towards
extreme ideas by employing persuasion techniques.
Even well-educated people often need help to iden-
tify misleading memes. Thus, the development of a
persuasion detection system holds significant value.
This study aims to create a system to identify per-
suasion techniques within meme texts. This task
is a multilabel and hierarchical classification task
since memes may contain multiple persuasion tech-
niques, and techniques have hierarchical structure
(Dimitrov et al., 2024).

A description of the corpus provided by
SemEval-2024 Task 4 (Dimitrov et al., 2024) re-
veals significant imbalances in the training data
for the techniques. For instance, while there are
1990 instances for the “Smears” technique, only
258 instances pertain to “Whataboutism.” More-
over, the training data for each technique is smaller

compared with the entire corpus, leading to the
imbalance between positive and negative instances
for each technique. These observations lead us to
formulate the following research questions: 1) How
can we mitigate the data imbalance between tech-
niques? 2) How can we ease the imbalance between
positive and negative instances for each technique?
3) How can we effectively leverage the hierarchi-
cal structure of techniques? We devise a bagging-
based ensemble learning system employing a soft
voting strategy to solve these questions. We group
techniques into ten subsets based on the amount
of their training data and the hierarchical structure
(Dimitrov et al., 2024), and construct a training set
for each subset. Subsequently, we train classifiers
(base learners), XLM—RoBertalm,ge1 models with a
classifier head, on these training sets. Finally, we
compute the final distribution through a weighted
average of the probability generated by classifiers,
with a model of identical structure generating the
weights in this step.

While our approach attained the second posi-
tion in Bulgarian and North Macedonian, fifth
in Arabic, and eleventh in English, the perfor-
mance of our weight model did not exhibit sig-
nificant improvement compared to our baseline.
Moreover, the lower-resource techniques continue
to suffer from imbalances between positive and
negative instances. Our code is publicly avail-
able at https://github.com/Yuhang-Zhu-nlp/
semeval2024_RDproj.

2 Background

2.1 Persuasion Detection

Previous research on persuasion detection has ex-
plored traditional classification techniques across
a range of domains. Regarding data augmenta-
tion, Modzelewski et al. (2023) experimented with

1https://huggingface.co/FacebookAI/
xlm-roberta-large
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enhancing performance by expanding the training
set using the DeepL. API to translate data from
source languages to target languages. Similarly,
Falk et al. (2023) introduced a data augmentation
method based on back-translation in the same year.
Regarding text representation, Qachfar and Verma
(2023) proposed a technique to generate language-
agnostic features specific to this task, which were
then concatenated with the CLS representation pro-
vided by XLM-RoBERTa to generate the final rep-
resentation. Ensemble learning has also been ex-
plored in this domain. Purificato and Navigli (2023)
developed a multilingual bagging-based ensemble
learning system, combining five different BERT
models using a soft voting strategy. Because of
BERT’s exceptional performance in sentence classi-
fication tasks, it has become a cornerstone in recent
research, with almost all contemporary studies in-
corporating BERT into their methodologies (Costa
et al., 2023; Ojo et al., 2023).

2.2 Ensemble Learning

The term ensemble learning is basically to im-
prove the model’s performance by combining dif-
ferent models (base learners) (Dong et al., 2020).
Presently, ensemble learning strategies primarily
include bagging, boosting, and stacking. Among
these, bagging is training models on distinct
datasets and combining them. One of the most
renowned bagging-based ensemble learning algo-
rithms is random forest (Cutler et al., 2012), which
trains numerous decision trees on different data sub-
sets and then combines these trees using a voting
strategy. Regarding voting strategies, there are two
main approaches: hard voting (Mohamed Kamr
and Mohamed, 2022) and soft voting (Purificato
and Navigli, 2023). Soft voting generates the final
distribution by computing the weighted average of
distributions from base learners, and has become a
prevalent strategy in classification tasks (Xu et al.,
2016; Kumari et al., 2021). Purificato and Navigli
(2023) devised a bagging-based multilingual en-
semble learning approach, employing five different
BERT models with a soft voting strategy in this
task. Their approach secured the first position in
English during SemEval 2023, underscoring the ef-
fectiveness of bagging-based ensemble learning in
this context. However, their approach determined
model weights based on the normalized F1-micro
score of diverse BERT models, ignoring the poten-
tial variability in model performance across differ-
ent techniques.

2.3 Data

We use both the corpus offered by SemEval-2024
Task 4 Subtask 1 (Dimitrov et al., 2024) which
contains English text of memes with 20 persuasion
techniques and the corpus provided by SemEval-
2023 Task 3 Subtask 3 (Piskorski et al., 2023)
which includes news articles in six languages, En-
glish, German, French, Russian, Polish, and Italian,
with 23 techniques.

3 System Overview

3.1 Data Preprocessing

In this task, we only focus on 20 techniques, but the
corpus provided by SemEval-2023 Task 3 Subtask
3 contains 23 techniques. In that case, We have
simply removed the three extra techniques from
the label set of each data. The corpus provided by
SemEval-2024 Task 4 Subtask 1 includes lots of
meaningless symbols like “\n”, we just simply re-
move them from the text. Moreover, we lowercase
all data of both corpora.

3.2 Technique Grouping

To utilize the hierarchical structure of techniques,
we categorize them into seven subsets based on
their hierarchical structure (Dimitrov et al., 2024).
For each subset, we assess whether data imbal-
ance exists among the techniques. If imbalances
exist, we create new subsets and copy the af-
fected techniques or divide the subset into smaller
subsets. For example, in the initial grouping,
“Loaded Language”, “Exaggeration/Minimisation”,
“Flag-waving”, and “Appeal to fear/prejudice” are
grouped in a subset. However, the training data
for “Loaded Language” significantly outnumbers
those for the other three techniques, so we sepa-
rate “Loaded Language” into a new subset while
removing it from the original subset. Addition-
ally, if some techniques unavoidably suffer from
data imbalances, we copy them to a new subset
(supporting subset). Through this process, we ulti-
mately establish ten distinct subsets, and the results
of grouping are shown in Appendix.

3.3 Corpus Creating

For each technique subset, we first sample all data
in the corpus provided by Semeval-2023 Task 3
Subtask 3 (Piskorski et al., 2023) (in the following
section, we call it positive data). Then, we sample
the data without techniques in the subset (in the
following section, we call it negative data). Next,
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we create the second corpus by doing the above
step in the corpus offered by Semeval-2024 Task 4
Subtask 1 (Dimitrov et al., 2024).

3.4 Model Structure

We have 11 models in our approach, including 10
base learners and a weight model. All models have
the same structure which is shown in Figure 1.

Sigmoid
FN

drop out

cls

XLM-RoBerta

|

input

Figure 1: The structure of the base learners, and the
weight model.

3.5 Training Strategy

Firstly, for each corpus sampled in the corpus pro-
vided by Semeval-2023 Task 3 Subtask 3 (Piskorski
et al., 2023), we train a base learner on it (we call it
pretrain in the following text). Then we fine-tune a
base learner on each corpus sampled in the corpus
offered by Semeval-2024 Task 4 Subtask 1 (Dim-
itrov et al., 2024). The task for base learners is to
predict which persuasion techniques are applied in
the given text. As for the weight model, we pretrain
it on the original corpus provided by Semeval-2023
Task 3 Subtask 3 (Piskorski et al., 2023), and then
fine-tune it on the corpus offered by Semeval-2024
Task 4 Subtask 1 (Dimitrov et al., 2024). The task
of the weight model is to predict which technique
subsets the persuasion techniques used in the given
text belong to.

3.6 Prediction Pipeline

The prediction pipeline begins with preprocessing
the text, which involves lowercasing and removing
meaningless symbols. Subsequently, the text is
sent to each base learner to obtain the technique
distributions from each base learner. Similarly, the

text is also sent to the weight model, and the output
of the weight model is activated using softmax to
generate the weight for soft voting. Finally, the
final distribution is calculated using Equation (1).

10
Dfinat = Y _wiD; (1)
i=0

where D ;4 is the final distribution, D; is the
distribution generated by the i** base learner, and
w; is the weight generated by weight model for the
i" base learner.

4 Experimental Setup

We use binary cross-entropy (BCE) with weight
as our loss function for each base learner. The
equation is below:

20
L(xj,y;) =Y wj(yjlogr;—(1—y;)log(1—x;))

j=0
(@)
where w; is the weight for the 4 technique, Y
is the boolean value for the j technique, and x;
is the probability generated by the model for the
4" technique. We use BCE without weight for the
weight model.

4.1 Training Setup

Each base learner has three hyperparameters:
weights in the loss function, learning rate, and
dropout rate. We set the learning rate to 2e-6 and
the dropout rate to 0.2 for all base learners. The
weights assigned to techniques belonging to the
subset used to create the corpus on which the base
learner is trained are set to 2, while all other tech-
niques are assigned a weight of 1. Similarly, we use
the same learning and dropout rates for the weight
model as the base learner. During pretraining, we
train each base learner for 60 epochs and the weight
model for 50 epochs. During fine-tuning, we train
each base learner for 20 epochs and the weight
model for 10 epochs. The batch size is set to 16 for
base learners and 8 for the weight model. we select
0.22 as our classification threshold.

4.2 Evaluation Metrics

Hierarchical-F1 (Kiritchenko et al., 2006) is used in
this research. The benefit of the hierarchical-F1 is
that it takes the hierarchical structure of techniques
into account.
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5 Results

5.1 Official Ranking

Table 1 shows our results in SemEval-2024 Task
4 Subtask 1. Although we get only the eleventh
position in English, our results in three languages
that are used to test zero-shot are competitive. We
achieve the second position in both Bulgarian and
North Macedonian, and the fifth position in Arabic.

5.2 Weight Model

We design a baseline model by removing the weight
model, and set the weights for soft voting as %. In
Table 2, we can find that our baseline and approach
get almost the same score in English, Bulgarian,
and North Macedonian. However, our baseline gets
a relatively higher score in Arabic, which means
that our weight model does not work well.

5.3 Error Analysis

In this section, we are aiming to find out the be-
haviour of our model facing different inputs by
analyzing the samples which make our model give
a wrong prediction in the dev set provided by
SemEval-2024 Task 4 Subtask 1.

Text: IF YOU SAY WE'RE IN THE
MIDDLE OF A DEADLY PANDEMIC
BUT YOU STILL SUPPORT OPEN
BORDERS\\n\\nYOU’RE EITHER A
LIAR OR A COMPLETE MORON

Gold labels: Loaded Language, Name
calling/Labeling, Black-and-white
Fallacy/Dictatorship, Smears

Our prediction: Appeal to
fear/prejudice, Black-and-white
Fallacy/Dictatorship, Loaded Language,
Name calling/Labeling, Smears

Weight vector: 0.0748, 0.0748, 0.0748,
0.1978, 0.2029, 0.0749, 0.0752, 0.0748,
0.0750, 0.0748

In this sample, we correctly identify all gold la-
bels but detect “Appeal to fear/prejudice” by mis-
take. Analysis of the weight vector reveals that our
weight model assigns a relatively higher weight of
0.2029 to the base learner trained on the corpora
sampled for the subset (we call the base learner

trained on the subset in the following text) con-
taining “Appeal to fear/prejudice”. However, it
does not assign higher weights to subsets contain-
ing other techniques in the gold labels, except
for “Loaded Language”. To comprehend why our
model can still make correct predictions despite
the weight model’s failure, we examine the out-
put of several base learners. We observe that al-
most all base learners assign high probabilities to
“Loaded Language”, “Name calling/Labeling”, and
“Smears”, indicating that each base learner can
support techniques not included in the subsets on
which they are trained. This suggests that each base
learner can support the target techniques that are
not included in the subsets they trained on.

Text: Name: Ted Bundy\\nVictims:
30\\n\\nName: Al Gore\\nVictims: ???

Gold labels:
Smears

Reductio ad hitlerum,

Our prediction: Name calling/Labeling

Weight vector: 0.1000, 0.1000, 0.1000,
0.1000, 0.1000, 0.1000, 0.1000, 0.1000,
0.1000, 0.1000

In this sample, we can find that our weight model
does not work and give every subset a same weight.
“Reductio ad hitlerum” is included in three tech-
nique subsets, and only the base learner trained on
the supporting subset gives a high probability for
this technique. However, other base learners give
a very low probability, which shows our idea to
create more subsets to support techniques suffering
from data imbalance is working. The reasons for
why we cannot distinguish ‘“Reductio ad hitlerum”
are 1) weight model cannot find which subsets the
final prediction should be in, 2) positive and neg-
ative instances for “Reductio ad hitlerum” are too
imbalanced, and our model tends to give a low
probability.

Weight vector: IS THE BUNDY
SHOOTOUT A FALSE FLAGN\\n

Gold labels: Doubt

QOur prediction: Loaded Language,
Name calling/Labeling, Doubt

Weight vector: 0.1663, 0.0958, 0.0922,
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language rank/nt F1 T1F1

English 11/34  0.64288 0.75247
Bulgarian= 2/20 0.54089 0.56833
North Macedonian* 2/20 0.49869 0.51244
Arabic* 5/17 0.41129 0.47593

Table 1: The ranking of our approach in the official ranking of SemEval-2024 Task 4 Subtask 1. Languages with
star are to test zero-shot. nt is the number of teams. F1 is the hierarchical-F1 score. T1F1 is the hierarchical-F1

score of the top-1 approach.

language Our Model Baseline
English 0.64288 0.64194
Bulgarianx 0.54089 0.54133
North Macedonian= 0.49869 0.49894
Arabicx 0.41129 0.41454

Table 2: The hierarchical-F1 score of our approach and
the baseline on the test set.

0.0922, 0.0923, 0.0922, 0.0922, 0.0922,
0.0922, 0.0922

The weight model gives a higher weight for the
first two subsets, which is correct because both
subsets contain “Doubt”. Almost all base learners
give a high probability for “Doubt”, which provide
another evidence that base learners trained on other
subsets can support gold labels. However, some
base learners also give high probabilities for other
two techniques in our prediction, resulting in wrong
prediction. We should find a way to expand the
gap between the weight of base learners trained on
the subsets that include gold labels and on other
subsets.

We can find some common elements in all sam-
ples. For example, “Loaded Language” and “Name
calling/Labeling” are always predicted by mistake.
A possible reason for this is that 0.22 is a reason-
able threshold for some techniques but too small for
some techniques which have rich training instances.
Moreover, the accuracy of the weight model is not
high enough.

6 Conclusion

In this study we build a persuasion detection sys-
tem to distinguish which techniques are used in the
given text of memes. Our system consists of ten
base learners trained on different technique subsets
and a weight model to generate the weight for soft
voting. In the official ranking of SemEval-2024
Task 4 Subtask 1, we get competitive results in
the zero-shot setting. However, our weight model

does not work very well, and does not show a sig-
nificant improvement compared with our baseline.
The problems may be 1) the accuracy of the weight
model is not high enough, 2) the gap between the
weight of base learners trained on target subsets
and other base learners is not big enough. Our idea
to create a new technique subset to support tech-
niques suffering from data imbalance seems fea-
sible but the data imbalance between positive and
negative instances of a technique is still a problem.
The above discussion suggests the ideas to improve
our approach. Firstly, we can improve the accu-
racy of the weight model by applying some new
training techniques because our training method is
very simple. Secondly, we need a more sophisti-
cated technique grouping strategy which considers
imbalance of positive and negative instances of a
technique better.
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subset techniques

Ethos_ad Name calling/Labeling
Doubt
Smears
Reductio ad hitlerum
Whataboutism
Ethos_ad_s Doubt
Reductio ad hitlerum
Whataboutism
Ethos_ot Bandwagon
Appeal to authority
Glittering generalities (Virtue)
Pathos_m1 Loaded Language
Pathos_m2 Exaggeration/Minimisation
Flag-waving
Appeal to fear/prejudice
Logos_JU Bandwagon
Appeal to authority
Flag-waving
Appeal to fear/prejudice

Slogans
Logos_ot Repetition
Obfuscation, Intentional vagueness, Confusion
Logos_DI Whataboutism

Misrepresentation of Someone$ Position (Straw Man)
Presenting Irrelevant Data (Red Herring)
Logos_SI Causal Oversimplification
Black-and-white Fallacy/Dictatorship

Thought-terminating cliché

support_imbalance Bandwagon
Reductio ad hitlerum
Obfuscation, Intentional vagueness, Confusion

Table 3: Grouping of Technique Labels
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Abstract

Semantic Text Relatedness (STR), a mea-
sure of meaning similarity between text ele-
ments, has become a key focus in the field
of Natural Language Processing (NLP). We
describe SemEval-2024 task 1 on Semantic
Textual Relatedness featuring three tracks: su-
pervised learning, unsupervised learning and
cross-lingual learning across African and Asian
languages including Afrikaans, Algerian Ara-
bic, Amharic, Hausa, Hindi, Indonesian, Kin-
yarwanda, Marathi, Moroccan Arabic, Modern
Standard Arabic, Punjabi, Spanish, and Telugu.
Our goal is to analyse the semantic represen-
tation of sentences textual relatedness trained
on mBert, all-MiniLM-L6-v2 and Bert-Based-
uncased. The effectiveness of these models
is evaluated using the Spearman Correlation
metric, which assesses the strength of the re-
lationship between paired data. The finding
reveals the viability of transformer models in
multilingual STR tasks.

1 Introduction

The rapid increase in digital information has
presented a critical challenge for researchers. The
web hosts around 50 million pages of text, which is

beyond the capacity of human interpretation alone.

To interpret this extensive text data effectively,
it is essential to comprehend the meanings of
various words (Jain et al., 2020). Semantic
Text Relatedness (STR) is a semantic analysis
of the relationship between two pieces of text
based on their meanings. STR of two language
units has long been considered fundamental
to understanding meaning (Miller and Charles,
1991; Lastra-Diaz and Garcia-Serrano, 2015),
It’s a metric used to measure the similarity in
meaning between two terms or documents. It is
a subset of computational linguistics and one of
the fundamental concepts of Natural Language

zd.nie@siat.ac.cn

Processing (NLP). STR can be measured using
datasets designed by experts, which are made up
of word pairs that are known to be related. It can
be used in identifying a paraphrase or duplicate, as
well as search engines to give users relevant and
personalized results.

When two sentences have a paraphrase or
entailment relation, they are considered to be
semantically similar and When evaluating the
semantic relatedness between them, humans
typically focus on identifying shared meanings. In
the case of the sentence pairs below, most English
speakers would agree that the sentences in the first
pair are more closely related in meaning than those
in the second pair, whether they are from the same
topic, express the same view or originate from the
same time period etc.(Abdalla et al., 2023).

Pair 1: a. There was a lemon tree next to
the house.

b. The boy enjoyed reading under the lemon tree.
Pair 2: a. There was a lemon tree next to
the house.

b. The boy was an excellent football player.

Previous NLP research has mainly dealt with
semantic relatedness primarily in English language.
However, in this task, we address a variety of
languages, including Afrikaans, Algerian Arabic,
Ambharic, Hausa, Hindi, Indonesian, Kinyarwanda,
Marathi, Moroccan Arabic, Modern Standard
Arabic, Punjabi, Spanish, and Telugu. The task
featured the following tracks: Track A which is
a supervised learning, track B is an unsupervised
learning and Track C is a cross-lingual learning.
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2 Related Works

Sentences are considered semantically related
when they share commonalities in meaning, such
as paraphrasal or entailment relations. A study
by (Abdalla et al., 2023) developed a Semantic
Textual Relatedness dataset (STR-2022) to manu-
ally annotate English sentence pairs and explore
the factors that contribute to the semantic related-
ness of sentences. The dataset has been used to
study the degree of semantic relatedness and the
reliability of human intuition in determining the
relatedness of sentence pairs while (Hasan et al.,
2020) assessed the methods for semantic related-
ness between words based on knowledge sources.
These methods exploit features from both structural
and statistical approaches, emphasizing on seman-
tic representation, measures of semantic similarity,
and knowledge-based text mining.

(Lastra-Diaz and Garcia-Serrano, 2015) proposed
Explicit Semantic Analysis (ESA), a recently in-
troduced approach that signifies the meaning of
texts by computing the semantic relevance of nat-
ural language texts. This approach assumes the
need for substantial amounts of common sense
and domain-specific knowledge, utilizing machine
learning techniques to explicitly depict the mean-
ing of any text. This is achieved by creating a
weighted vector based on concepts from Wikipedia.
ESA undergoes continuous development, ensuring
a consistent expansion of its breadth and depth over
time.

3 Task Description

STR Shared Task 1 (Ousidhoum et al., 2024b)
consists of predicting the semantic relatedness of
sentence pairs. Sentence pairs will be rank based
on their closeness in meaning in 14 different lan-
guages. All sentence pairs will have manually de-
termined relatedness scores between O (completely
unrelated) and 1 (maximally related). Participants
are provided with a gold label scores with a com-
parative annotation approach that led to a high reli-
ability of the final relatedness rankings. The shared
task consists of three tracks: supervised learning,
unsupervised learning and cross-lingual learning.
In this paper, we concentrate on all the three tracks.

3.1 Track A: Supervised

This track relies on labelled input and output train-
ing data. We used the labeled training datasets for
9 languages provided for the shared task which in-

.

v '] [
SUPERVISED UNSUPERVISED (CROSS-LINGUAL
[] ] ]
| TRAIN I
v ] []
L Labeled Data ] [ Unlabeled Data ] [ e.g English Dala]
[ (] []
[ TEST ‘
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[ Unlabeled Data ] [ Unlabeled Data ] [ Hausa Data ]

Figure 1: Task Overview

clude: Algerian Arabic, Amharic, English, Hausa,
Kinyarwanda, Marathi,Moroccan Arabic, Spanish
and Telgu.

3.2 Track B: Unsupervised

Unsupervised learning analyzes and cluster un-
labeled datasets, it is typically used when the
goal is to identify patterns and relationships in
data. We make this analysis using 12 languages:
Afrikaans, Algerian Arabic, Amharic, English,
Hausa, Hindi,Indonesian, Kinyarwanda, Modern
Standard Arabic, Moroccan Arabic, Punjabi and
Spanish.

3.3 Track C: Cross-lingual

Cross-lingual learning involves transferring models
from one language to another, typically to improve
performance. For this track we make use of 12
languages: Afrikaans, Algerian Arabic, Amharic,
English, Hausa, Hindi,Indonesian, Kinyarwanda,
Modern Standard Arabic, Moroccan Arabic, Pun-
jabi and Spanish.

4 Experiment and Evaluation

This section describes the system overview which
comprises the dataset description, model descrip-
tion and evaluation metric.

4.1 Dataset Description

The dataset consists of an instance of a sentence
pair of both the training, development and test sets.
Each instance is annotated with a gold label score
that represents the degree of semantic text relat-
edness between two sentences (Ousidhoum et al.,
2024a). The gold label scores are determine by
manual annotation and range from O (not related
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at all) to 1 (very related at all). A comparative
annotation approach is used to avoid biases of the
traditional rating scales and can result to a high
reliability of final relatedness rankings. The dataset
used in this shared task are from the following
languages: Afrikaans, Algerian Arabic, Ambharic,
English, Hausa, Hindi, Indonesian, Kinyarwanda,
Marathi, Morrocan Arabic, Modern Standard Ara-
bic, Punjabi, Spanish, and Telugu.

4.2 Models Description

We experiment with multiple pre-trained models be-
fore deciding to go with the selected models based
on the tracks. However, due to time constraint and
resources, we reported for the competitive models
across various languages based on the task specifi-
cation.

4.2.1 mBERT

We used mBERT in a supervised aapproach, mBert
is a multilingual derivative of BERT and trained on
adiverse set of 104 languages. The pre-training pro-
cess for mBERT involves masked language model-
ing (MLM) and the next-sentence prediction task
(Libovicky et al., 2019). To tailor the model for our
specific task, we fine-tune the mBERT-base-cased
model, which boasts 172 million parameters. A
70-30 train-test split is executed with a learning
rate of le-5 on Adam optimizer.

4.2.2 all-MiniLM-L6-v2

The all-MiniLM-L6-v2 model was used in an un-
supervised approach in this task, it is a lightweight
transformer-based model for semantic similarity
comparison with optimized model size and faster
inference (Wang et al., 2020). It has 66 Million
Parameters compressed in a Student-Mimicking-
Teacher network relationship. Using self attention
distribution, we utilized the Teacher’s last layer to
guide the training of the student distillation in an
unsupervised manner and generated effective and
flexible results for the 12 languages used.

4.2.3 BERT-BASED-UNCASED

The Bert-Based-Uncased model was used in a
cross-lingual approach in this task. It is a pre-
trained autoencoding language model trained on
vast English Wikipedia and BookCorpus with a se-
quence length of 512. The model is based on the
architecture presented in (Devlin et al., 2018). As
the track description, some of the languages were
initially trained on different language before ap-
plying task on new language. Bert-Based-Uncased

use WordPiece tokenizer, it has 110 parameters
12-layer, 768-hidden, 12- attention heads.

Task | Model Language Sp.
Corr.
Algerian Arabic 0.388
3 Ambharic 0.269
g English 0.762
§ E Hausa 0.580
72 gé Kinyarwanda 0.527
< =) Marathi 0.811
§ Moroccan Arabic 0.696
= Spanish 0.696
Telugu 0.791
Afrikaans 0.468
Algerian Arabic 0.398
3 Ambaric 0.098
Z2 |9 English 0.825
s |3 Hausa 0.273
zZ | = Hindi 0.465
5 |3 Indonesian 0.384
m S Kinyarwanda 0.131
g = Modern Standard Arabic | 0.200
= Moroccan Arabic 0.496
Punjabi 0.011
Spanish 0.603
Afrikaans 0.710
A Algerian Arabic 0.780
Tg k& Ambharic 0.660
%0 6 English 0.780
— Z. Hausa 0.630
2 |12 Hindi 0.740
&) 0 Indonesian 0.790
@) < Kinyarwanda 0.750
é ﬁ Modern Standard Arabic | 0.660
= Eé Moroccan Arabic 0.670
M Punjabi 0.730
Spanish 0.810

Table 1: Results of various tasks.

4.3 Spearman Correlation

The Spearman Correlation is a non parametric and
normality for monotonic relationship between vari-
ables (Ali Abd Al-Hameed, 2022). It measures the
strength of relationship between paired data. It is
similar to Pearson’s Product Moment Correlation
Coefficient (De Winter et al., 2016), or Pearson’s
r. It indicates magnitude and direction of the asso-
ciation between two variables that are on interval
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or ratio scale. For this task, we used Spearman
Correlation to measure the similarity between two
sentences.

5 Results and Discussion

This section presents the results of the Shared task
Tracks. Table 1 displays the Spearman correla-
tion scores for the evaluation of 14 low-resource
languages for semantic relatedness. The SemEval-
2024 task on STR provided an opportunity to ex-
plore the effectiveness of transformer models. The
models capture semantic relatedness across multi-
ple languages. In This section, the analyses and in-
terpretations of the results obtained from the given
tasks are Task A (supervised learning), Task B (un-
supervised learning) and Task C (cross-lingual).

In supervised learning track A, the multilin-
gual BERT (mBERT) model was used. The
model demonstrated different levels of perfor-
mance across the languages. Notably, mBERT
exhibited strong correlation scores in languages
such as English with 0.76, Marathi with 0.81, and
Telugu with 0.79 correlation. This indicates the
model’s ability to generalize well across linguistic
contexts in semantic relatedness tasks. These find-
ings suggest that mBERT can effectively capture se-
mantic relatedness, even in low-resource languages,
highlighting its robustness and cross-lingual gen-
eralization capabilities. However, challenges were
observed in languages with complex morpholog-
ical structures, underscoring the need for further
research to address such linguistic nuances.

Conversely, the unsupervised learning track B
featured the All-MiniLM-L6-v2 model, which
achieved promising results in certain languages,
particularly English with 0.82, Spanish with 0.60,
and Moroccan Arabic with 0.5 Spearman corre-
lation value. Despite its effectiveness, the model
faced difficulties in languages such as Punjabi and
Ambaric, where semantic relatedness was harder to
capture without labelled data. These challenges em-
phasize the importance of developing techniques
to improve unsupervised learning models’ perfor-
mance, especially in low-resource language set-
tings.

Similarly, track C (cross-lingual) which were en-
tirely trained with BERT-BASED-UNCASED per-
formed promisingly despite training and predicting
on different language pairs. The Spearman corre-
lation for Spanish achieved 0.81 and was trained
on English, while Hausa achieved the lowest with
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0.63 despite being trained on Kinyarwanda training
dataset. This performance especially in Seman-
tic Textual Relationship shows that cross-lingual
hold a prospective future for generalization of NLP
tasks.

However, the findings highlight the effectiveness
of transformer models, in capturing semantic re-
latedness across diverse languages. The choice of
evaluation metrics, such as Spearman correlation,
proved instrumental in assessing the models’ per-
formance and understanding their ability to capture
the ordinal relationship between predicted and true
semantic relatedness scores. Furthermore, the re-
sults contribute valuable insights into advancing
the understanding and application of semantic tex-
tual relatedness in multilingual NLP tasks, paving
the way for future research in this domain.

6 Conclusion and Future Works

The study on Semantic Text Relatedness (STR)
across multiple languages has demonstrated the
effectiveness of transformer models in capturing
semantic relatedness. The multilingual BERT
(mBERT) model showed strong correlation scores
in languages such as English, Marathi, and Telugu,
indicating its ability to generalize well across lin-
guistic contexts. The All-MiniLM-L6-v2 model
achieved promising results in English, Spanish,
and Moroccan Arabic, while facing challenges in
languages like Punjabi and Amharic. The cross-
lingual track, using BERT-BASED-UNCASED,
also performed well, especially in Spanish, trained
on English data. These findings underscore the
potential of transformer models in NLP tasks and
the importance of appropriate evaluation metrics
like Spearman Correlation. The study contributes
valuable insights into advancing semantic textual
relatedness in multilingual NLP, highlighting areas
for future research and development.

Future work should focus on exploring advanced
transformer Large Language Models (LLMs) like
GPT-3 and T5 to improve performance across di-
verse languages, including low-resource ones. Ex-
panding language coverage, incorporating contex-
tual and cultural information, and fine-tuning with
language-specific data will enhance model accu-
racy. Cross-lingual transfer learning techniques
can be investigated to adapt high-resource lan-
guage models to low-resource settings. Hybrid
approaches combining different learning methods
may offer improved results, while new evaluation



metrics could better capture semantic nuances. Ad-
ditionally, exploring multimodal STR and applying
research findings to real-world applications will
increase the practical impact of STR systems.
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A Appendix

Lang. Sentence 1 Sentence 2 Score
Amharic @IABDY PENFFAD: PAED ANNG:  NASEE +75 PHNAHAG: PARA 0.88
HINPFY AR Ooghe HOHC HIN AAG:  ANNG: HANLEFY ATy agh.
PMTHLOY ANATA

35505 s (5 )l Ggmna) il 310
a punto de comer trucha.
pens, just pull the plug.

Moroccan Arabic
Spanish
English

305 s (5l Al o S 110 s 0,72
Una mujer a punto de comer pescado. 1.0
if that ever happens, just pull the plug. 1.0

Hausa Yan bindiga sun yi garkuwa da mutane 11 Yan bindiga sun yi garkuwa da dalibai  0.59

Kinyarwanda

Marathi

Algerian Arabic

Telugu

Aftrikaans
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Romeobuy

T A & 1 et Rrepavr-en

ey a1 303 et 35 g g )
Jt i

250775228 SH0E0SHEDED
DBADAS HenshBd

My cerste stukkie advies is dat j

realisties moct wees oor die afstand wat jy
wil hengel

mata a jihar Zamfara AN GUDU NA A
TSIRA BA

ibonera abakiriya bayo ljambo a
muritegurirwa na Rejoice Ministries

Fa% HRdTad ATel, @ Iguf
AHASETS Arfesie e

e dnall 85 Sy m ol e la e s
) (o a3

0HS & Tow S

Dit bring tot n einde dic
verkenningsprogram van dic
e State

0.19

0.62

0.8

Indonesian

Hindi

Pendidikan Desa Pusaka memiliki 4

sekolal

(&= H BRI IR G HI BT BT

100 % UR Ug, forad 12 9 26 1
S}

Pendidikan Desa Serumpun Buluh
memiliki 4 sekolah.

{ TR PR ol
EA I}

0.83

0.72

Punjabi

Modern Standard
Arabic

(g 3 gt 2 feurfed 58 npia

WIF TN TTE I I}

ZlasViin

{feqi &g gl < feofea 98 4,
TBfried 44 7l AIeH3

wéagd

056

Figure 2: Example Sentences
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Abstract

This paper summarizes Team SCaLAR’s work
on SemEval-2024 Task 5: Legal Argument Rea-
soning in Civil Procedure. To address this Bi-
nary Classification task, which was daunting
due to the complexity of the Legal Texts in-
volved, we propose a simple yet novel similar-
ity and distance-based unsupervised approach
to generate labels. Further, we explore the
Multi-level fusion of Legal-Bert embeddings
using ensemble features, including CNN, GRU
and LSTM. To address the lengthy nature of
Legal explanation in the dataset, we introduce
T5-based segment-wise summarization, which
successfully retained crucial information, en-
hancing the model’s performance. Our unsu-
pervised system witnessed a 20-point increase
in macro F1-score on the development set and
a 10-point increase on the test set, which is
promising given its uncomplicated architecture.

1 Introduction

The Domain of Law demands sheer expertise and
experience for a human to master, but it takes much
more to teach a machine the same. Legal NLP
(Zhong et al., 2020) is advancing at a rapid pace,
and the advent of Transformers (Vaswani et al.,
2017) has widened the prospects of research in this
area. However, the intricate nature of Legal Texts
and the underlying complex relationships between
entities make it difficult even for state-of-the-art
Language models like BERT (Devlin et al., 2019)
to capture the details effectively. To advance our
understanding of the reasoning ability of LLMs
in the legal domain (Bongard et al., 2022), task 5
of SemEval-2024 was proposed (Held and Haber-
nal, 2024). The objective of this task is to discern
the accurate responses to legal inquiries in U.S.
Civil Procedure, as posited by the organizers. The
questions and answers adhere to a Multiple-choice
question-answering model, with accompanying ex-
planations provided to facilitate comprehension of

the legal concepts associated with each question.
We have also released the code on GitHub !

We delve into the foundational paradigms of
machine learning, specifically focusing on Super-
vised and Unsupervised Learning, to introduce in-
novative approaches and present a comprehensive
comparative analysis. The explanation part of our
dataset undergoes a two-level segment-wise sum-
marization generated by TS5 (Roberts et al., 2019),
which is consistently utilized throughout our inves-
tigation. Within the framework of the supervised
setup, we leverage a multi-level CNN fusion ap-
proach (Usama et al., 2019), integrating LSTM and
GRU architectures. This amalgamation facilitates
the extraction of ensemble feature representations
from questions, answers, and summaries. Addition-
ally, a one-dimensional CNN model (Jacovi et al.,
2018), is trained. We employ a manual grid search
technique to determine the optimal threshold that
maximizes the macro F1 score, contributing to the
refinement of our model.

In the unsupervised setup, we delve into the
acquisition of diverse word representations such
as word2vec and Glove. The assessment in-
volves computing the similarity between question-
answer pairs and answer-summary pairs, em-
ploying combinations like Glove-cosine, trans-
former embedding-cosine, transformer embedding-
euclidean and word2vec-cosine. Notably, the best-
performing supervised model achieved a macro F1
score of 66 % on the development set and 49.6 %
on the test set. In contrast, the unsupervised ap-
proach yielded scores of 62 % (development) and
52.3 % (test). This outcome highlights a nuanced
challenge related to generalization on the test set,
prompting further exploration into the intricacies
of model adaptability and robustness.

1https: //github.com/haricharan189/Semeval_
task5.
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2 Background

The dataset provided by the organizers comprises
three sets: Train Set, Dev Set, and Test Set, con-
taining 666, 84, and 98 data points, respectively.
Within the training and dev sets, each entry in-
cludes fields such as Question, Answer, Explana-
tion, Label (with values of 0 or 1), Analysis, and
Complete-Analysis providing a detailed examina-
tion. The test set, on the other hand, only consists
of Question, Answer, and Explanation. The Label,
when equal to 1, signifies a correct answer, while
0 denotes an incorrect one. The Explanation field
provides context and background details for each
question.

Field
Explanation

Text

The most basic point to un-
derstand about supplemen-
tal jurisdiction ........ on
this basic purpose of Ar-
ticle 1367(a).

This and that. Garabedian,
........... are treated fairly.
has constitutional author-
111 0P under Article
1367(a).

Label 0

Analysis Here, the Article 1983
claim ........... Amend-
ment claim.

This is pretty straightfor-
ward ............ D is the best
choice here.

Question

Answer

Complete analysis

Table 1: Sample data-point from Train Set.

3 Related Works

Legal texts pose a unique challenge for pre-trained
transformers (Vaswani et al., 2017) due to the in-
clusion of specialized terminology not commonly
used in everyday language . As a result, leveraging
pre-trained models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and others becomes
essential by training them on legal corpora to en-
hance their understanding of legal terminologies.
Notable examples of transformers tailored for legal
contexts include InLegalBERT (Paul et al., 2023),
Legal-RoBERTa (Geng et al., 2021), and similar
models.

Fine-tuning transformers, such as Legal-BERT
(Chalkidis et al., 2020), on available legal data has

been proposed as an effective strategy to improve
performance on test sets, as suggested by Bongard
et al. (2022) (Bongard et al., 2022). This approach
capitalizes on domain-specific knowledge encoded
during pre-training, enhancing the model’s profi-
ciency in handling legal language nuances.

In the domain of Legal Question Answering
(LQA), recent works have extensively discussed
significant advancements and challenges. The com-
prehensive review by Martinez-Gil provides in-
sights into the key works in LQA, outlining chal-
lenges and proposing future research directions.
Louis et al. (2023) (Louis et al., 2023) shed light on
the limitations of existing Large Language Models
(LLMs) in Legal Question Answering, emphasiz-
ing the need for interpretability.

4 System Overview

Transformers like TS5, as demonstrated in the work
of (Roberts et al., 2019), exhibit high efficiency in
producing summaries for lengthy paragraphs. In
this study, T5 was employed to generate segment-
level summaries on explanation column using a
two-step approach. The initial summary was cre-
ated from the original text, with a segment length
of 1000 tokens. These segment-wise summaries
were then concatenated with spaces in between to
form the first summary. Subsequently, the second
summary was generated from the first summary,
employing a segment length of 300 tokens, and
similarly concatenated to provide a comprehensive
summary of the input text. These summaries were
used for further applications in place of explanation.
Segment wise summary approach can be visualized
as follows:

‘ LONG EXPLANATION ‘

1000 TOKENS 1000 TOKENS

N\ e

[Iﬂ()mkem] + [mﬂmkenr.] + [mﬂmkens] + [mﬂmkeng]

1000 TOKENS 1000 TOKENS

LEVEL-1 SUMMARY

300 TOKENS 300 TOKENS 300 TOKENS

L/

[mﬂmkenr.] + [mﬂmkenr.] + [mﬂmkens]

‘_ LEVEL-2 SUMMARY ‘

Figure 1: Segment wise summary
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4.1 Supervised Models
4.1.1 Multi-Level Approach

Following the generation of summaries, we em-
ployed the Legal-Bert transformer to extract em-
beddings from the question, answer, and summary
columns. Each Legal-Bert output consists of a 768-
dimensional vector, resulting in tensors of shape
(number of data points, 768) for each dataset. Sub-
sequently, we executed the following steps:

1.The tensor underwent a series of transfor-
mations through three consecutive 1-dimensional
CNN layers, with ReL.U activation functions (Nair
and Hinton, 2010), and Adaptive max-pooling ap-
plied at each step. At each pooling layer, the output
was reduced to 100 dimensions. The kernel size
and padding were linearly increased, as depicted in
the Figure 2.

2.The outputs from the first and second pooling
layers were concatenated, yielding a first-level con-
catenated feature embedding of 200 dimensions.

3.This first-level output was then merged with
the output from the third pooling layer to obtain
a second-level concatenated embedding with 300
features.

4. Concurrently, the Legal-Bert embeddings
were fed into Bi-GRU (Chung et al., 2014) and Bi-
LSTM (Hochreiter and Schmidhuber, 1997) mod-
els, resulting in 100 features from each. These
features were concatenated.

5. The final multi-level feature representation
was achieved by concatenating the second-level
features with those from the GRU-LSTM models,
resulting in a 500-dimensional vector. This process
was applied to the question, answer, and summary,
culminating in an exhaustive 1500-dimensional rep-
resentation of the training data.

Kemel size=3
Padding=1

Kemel size=4
Padding=2 Kemel size=5

Max pooling Max pooling Fadding=3  wtax pacling

£6.
BERT
MBEDDING!

LSTM and
GRU Features

O Predictions
Sigmoid

Dense Layar
1D GNN

neural netvark

Seperate Training

Figure 2: Multi Level fusion

4.1.2 Multi-Feature Approach

In this approach, the output of the first pooling layer
was directly concatenated with the GRU-LSTM fea-
tures, resulting in 300 features per entity, and hence,
a 900-dimensional representation of the training
data.

Training and custom sigmoid layer: To con-
duct a comparative analysis, we trained separate
models using both multi-level and multi-feature
representations. In each case, we employed a
1-dimensional CNN architecture implemented in
TensorFlow, featuring a kernel size of 3 and 32
filters. Following max pooling, the resulting output
was flattened and fed into a dense layer comprising
128 neurons. Finally, to enhance the variability
of the probability distribution in the predictions,
we introduced a custom Lambda layer. This layer
subtracts the mean of the input tensor from each
element and subsequently applies the sigmoid
activation function.

f(x) = y = sigmoid(x — p) (1)

where p is the mean of x

Grid search and predictions: Following the gen-
eration of probability vectors for the development
set, we utilized manual grid search to determine the
optimal threshold for classifying correct answers,
aiming to maximize the macro-F1 score. Subse-
quently, the threshold associated with the highest
F1 score on the development set was applied to
make predictions on the test set

4.2 Unsupervised Models

4.2.1 Word2Vec-Cosine system

Word2Vec embeddings, as described in (Mikolov
et al., 2013), were extracted for the question, an-
swer, and summary columns. A window size of
7 and a vector size of 5 were utilized for each
word. Cosine similarities were computed between
question-answer pairs and answer-summary pairs.
The prediction was based on the mean of these
similarities.

During evaluation, it was observed that in cases
where the difference between the highest and
second-highest similarity scores for a question was
minimal, the answer with the second-highest sim-
ilarity often turned out to be the correct answer.
Consequently, a refinement was implemented: if
the disparity between the highest and second-
highest similarity scores was small, the answer
with the second-highest similarity was labeled as
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1, while the remaining answers were labeled as 0.
This adjustment yielded improved results in such
scenarios. A threshold of 0.0005 was used in this
case after optimization on train and dev set.

Algorithm 1: Word2Vec Similarity-based
Labeling

Data: Word2Vec embeddings for question,
answer, and summary columns
Result: Labels for answers based on
similarity scores
for each question do
max_id= highest similarity score;
second_max_id = second-highest
similarity score;
if |similarityjmaz_id) —
similarity[second_max_id]| <
0.0005 then
Label[second_max_id] = 1;
Label the remaining answers as 0;
end
else
Label[max_id] = 1;
Label the remaining answers as 0;

end

end

4.2.2 GloVE-Cosine system

In contrast to the Word2Vec-Cosine approach, the
methodology now incorporates GloVE embeddings
as opposed to Word2Vec embeddings, leveraging
the GloVE model proposed by Pennington et al.
in 2014 (Pennington et al., 2014). Despite this
shift, the overarching algorithm for label assign-
ment remains unaltered, ensuring continuity and
comparability with the Word2Vec-Cosine approach
discussed in the preceding section.

4.2.3 Transformer embeddings-Cosine system
and Transformer embeddings-Euclidean
system

We utilized the Deberta model (He et al., 2021)
trained on legal texts, specifically "LambdaX-
Al/legal-deberta-v1," accessible on Hugging Face
(Wolf et al., 2020). This model provided embed-
dings of questions, answers, and summaries, each
represented by vectors of size 1536. We employed
both cosine similarity and Euclidean distance met-
rics for label assignment.

For cosine similarity, the algorithm remained

straightforward: answers with higher cosine simi-
larity scores were assigned labels accordingly.

However, in the case of Euclidean distance, a
slightly different approach was employed. The
answer with the minimum distance was initially as-
signed a label of 1. Subsequently, if the difference
between the minimum distance and the second min-
imum distance was less than a predefined threshold
which is 0.8 in this case, the answer associated
with the second minimum distance was labeled 1
instead, replacing the initial assignment.

5 Experimental Setup

We utilized Google Colab for training and testing
our models, taking advantage of the T4 GPU pro-
vided by the platform.

5.1 Supervised Models

The Multi-feature concatenation method involved
the integration of 900 features, while the Multi-
level approach incorporated 1500 features. Both
methodologies underwent training for 15 epochs
with a batch size of 32. The optimization algo-
rithm chosen was "Adam" (Kingma and Ba, 2017),
employing a learning rate set to 0.001.

5.2 Unsupervised Models

Word2Vec and GloVe embeddings were both gener-
ated with an embedding size of 5. However, there
were differences in the window length used dur-
ing training: for Word2Vec embeddings, a window
length of 7 was utilized, while GloVe embeddings
were trained with a window length of 10. In the
case of GloVe, the training process spanned 30
epochs, employing a learning rate of 0.05 to opti-
mize the model parameters. These values of hyper-
parameters were arrived after experimentation with
several other values.

6 Results

The performance metrics of our models on the test
set and development set are presented in Table 2,
where "Acc" represents accuracy and "F1" denotes
the macro F1 score. Notably, our model demon-
strated strong performance on the development set.
However, it is worth mentioning that the perfor-
mance on the test set was comparatively lower. It
is important to highlight that our top-performing
model utilizes an unsupervised approach leverag-
ing Word2Vec embeddings and cosine similarity.
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Despite the varying performance, most of our mod-
els consistently outperformed the baseline.

Model Performance on Dev and Test set
Dev Set Test set

Model Acc | FI | Acc | FI
Baseline 0.798 | 0.444 | 0.7449 | 0.4269
Multi-level 0.74 | 0.65 | 0.4898 | 0.4102
approach

Multi- 0.81 | 0.66 | 0.6224 | 0.4966
Feature

approach

Word2vec- 0.71 0.62 | 0.6429 | 0.5238
cosine

Word2vec- 0.62 | 0.56 | 0.6020 | 0.5072
cosine

without

replacement

GloVE- 0.64 | 0.56 | 0.6020 | 0.4694
cosine

Transformer- | 0.60 | 0.46 | 0.5612 | 0.4150
cosine

Transformer- | 0.60 | 0.46 | 0.5816 | 0.4421
euclidean

Transformer- | 0.62 | 0.49 | 0.5612 | 0.4149
manhattan

Table 2: Performance comparison of all our models

Analysis from Table 2 reveals a notable enhance-
ment in model performance with the replacement
of the second-best answer. The subsequent com-
parison, illustrated in Tables 3 and 4, highlights
the impact of this replacement on the Wav2Vec-
cosine model’s results on both the training and
development sets, considering the influence of two
distinct similarity scores. Specifically, *Q’ signifies
instances where the Question-Answer similarity
surpasses the Summary-Answer similarity, while
’S’ denotes the reverse scenario. The predictions of
models in italics were submitted in Post-evaluation
period.

Observing Tables 3 and 4, it becomes evident
that the number of accurate predictions substan-
tially increases in the development set, relative
to its total size. In the Codalab leader-board we
ranked 16 out of 21 teams, and in the overall laeder-
board we ranked 15 out 21 teams.

7 Conclusion and Future scope

The dataset presents challenges for models to grasp
the intricate legal context, resulting in subpar per-

Training Set Counts:

Higher score | R/'W | Count
Q R 143
Q \Y 81
S R 284
S W 158
Development Set Counts:
Higher score | R/W | Count
Q R 11
Q W 14
S R 41
S W 18

Table 3: Distribution of right (R) and wrong (W) predic-
tions before replacement

Training Set Counts:

Higher score | R/W | Count
Q R 144
Q " 80
S R 286
S \ 156

Development Set Counts:

Higher score | R/'W | Count
Q R 14
Q \Y 11
S R 46
S W 13

Table 4: Distribution of right (R) and wrong (W) predic-
tions after replacement

formance of regular supervised models. Unsuper-
vised models heavily rely on embeddings, but avail-
able transformers inadequately capture the dataset’s
nuances. These models operate under the assump-
tion of at least one correct answer per question;
however, instances where all answers were labeled
as incorrect hindered unsupervised model perfor-
mance.

Future endeavors entail amalgamating these
models into a unified super model. This super
model would aggregate predictions from various
models to yield a singular final prediction, enhanc-
ing overall performance and addressing the limi-
tations of individual approaches. An alternative
strategy involves leveraging Siamese networks to
learn similarity, addressing challenges encountered
by unsupervised models when all answers for a
particular question are labeled as incorrect (0). By
employing Siamese networks, we believe that the
model can effectively capture nuanced similarities
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between question-answer pairs, and provide better
predictions. Exploring other kind of summarizers
and using other transformers for summarization
such BART (Lewis et al., 2020) may also increase
the overall performance of all the systems used in
this paper. Data augmentation (Feng et al., 2021)
can also be implemented to get better Word2Vec
and GloVE embeddings.
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Abstract

This study introduces a dedicated model aimed
at solving the BRAINTEASER task 9 (Jiang
et al., 2024), (Jiang et al., 2023), a novel chal-
lenge designed to assess models’ lateral think-
ing capabilities through sentence and word puz-
zles. Our model demonstrates remarkable effi-
cacy, securing Rank 1 in sentence puzzle solv-
ing during the test phase with an overall score
of 0.98. Additionally, we explore the compara-
tive performance of ChatGPT, specifically an-
alyzing how variations in temperature settings
affect its ability to engage in lateral thinking
and problem-solving. Our findings indicate a
notable performance disparity between the ded-
icated model and ChatGPT, underscoring the
potential of specialized approaches in enhanc-
ing creative reasoning in Al

1 Introduction

The BRAINTEASER task (Jiang et al., 2023) aims
to challenge the lateral thinking abilities of mod-
els, setting it apart from traditional tasks focused
on vertical logical reasoning. It introduces lateral
thinking puzzles in the form of multiple-choice
questions to test the models’ ability to think cre-
atively and challenge common sense associations.
The goal is to identify the gap between human and
model performances in creative thinking, highlight-
ing the need for progress in Al’s creative reason-
ing abilities. NLP (Natural Language Processing)
transformer models have revolutionized text un-
derstanding and generation with their architecture
capable of processing word sequences more effi-
ciently. For multiple-choice questions, these mod-
els utilize their ability to understand context and
language nuances to select the most appropriate an-
swer from several options. Thanks to deep learning
and attention mechanisms, they excel in various
NLP tasks, significantly improving the accuracy
and relevance of responses generated in complex
contexts. The integration of NLP transformer mod-

Mounir OKirim
ESIEA, Graduate School
of Engineering / France
okirim@et.esiea.fr

els into the BRAINTEASER task aims to explore
their ability to solve lateral thinking puzzles in the
form of multiple-choice questions. This approach
highlights the challenges posed by deep language
understanding and the creativity required to sur-
pass traditional logical reasoning. It emphasizes
the importance of advancing in the development
of models capable of navigating beyond common
sense associations, encouraging innovation in the
interpretation and generation of complex and nu-
anced responses. In our study, we will explore the
ability of language models to handle this task, with
the following main contributions of this paper :

* Development of a dedicated model for this
task with a good result for the sentence puzzle
task (Rank 1 in the test phase).

* A comparative analysis with ChatGPT: Specif-
ically, the relationship of temperature with
lateral thinking and performance.

2 Shared Task Description

The BRAINTEASER Shared Task 9 is a Ques-
tion Answering (QA) task based on evaluating the
capacity of language models to engage in lateral
thinking and to solve puzzles that require unconven-
tional thinking. BRAINTEASER comprises two
distinct subtasks: Sentence Puzzle and Word Puz-
zle, both of which involve defying commonsense
"defaults" but through different methodologies.

* Sentence Puzzle: Create sentence-based brain
teasers where the challenge lies in interpreting
sentence snippets in a way that goes against
commonsense expectations.

* Word Puzzle: Design word-based brain
teasers that require rethinking the default
meanings of words, with a focus on the com-
position of letters in the target question.
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Both tasks include an adversarial subset, created
by manually modifying the original brain teasers
without changing their latent reasoning path. They
construct adversarial versions of the original data
in two ways:

* (SR) Semantic Reconstruction rephrases the
original question without changing the correct
answer and the distractors.

* (CR) Context Reconstruction keeps the origi-
nal reasoning path but changes both the ques-
tion and the answer to describe a new situa-
tional context

Distractors are generated by identifying the implicit
and explicit premises of a puzzle and then manually
overwriting these premises, ensuring they remain
incorrect but challenging.

The BRAINTEASER paper reveals a significant
gap between human performances and Al models,
and underscores the need to enhance lateral reason-
ing in language models.

3 Related Work

The task of commonsense reasoning has long been
a challenge for deep learning and has been the
subject of research for several years, accompanied
by various benchmarks such as (Nie et al., 2020),
which introduces a new large-scale NLI benchmark
dataset created through an adversarial process in-
volving humans and models. This improves NLI
models’ performance on popular benchmarks and
reveals their weaknesses, offering a dynamic frame-
work for continuous improvement in natural lan-
guage understanding. A study demonstrated a sim-
ple and unsupervised method for commonsense rea-
soning using language models trained on vast text
corpora, significantly outperforming state-of-the-
art methods on Pronoun Disambiguation Problems
and the Winograd Schema Challenge without the
need for annotated knowledge bases or manually
engineered features (Trinh and Le, 2019).
Transformer models like BERT (Devlin et al.,
2019), GPT (Brown et al., 2020), and their variants
have revolutionized natural language understand-
ing, including question answering (Qu et al., 2019).
Their architecture captures semantic and contextual
nuances (Ethayarajh, 2019) (Zhang et al., 2020),
proving exceptionally effective in comprehending
and responding to complex inquiries. By training
on extensive text corpora, they develop a deep un-
derstanding, enabling them to identify the most

plausible answers among multiple choices (Roy
et al., 2023) (Ravi et al., 2023).

Large pretrained language models (PLMs) can
achieve near-human performance on commonsense
reasoning tasks by generating contrastive expla-
nations that highlight the key attributes needed to
justify correct answers. This approach not only
improves performance on commonsense reasoning
benchmarks but also produces explanations judged
by humans as more relevant and understandable
(Paranjape et al., 2021)

Recent studies reveal that ChatGPT has notable
capabilities to effectively solve a variety of prob-
lems in several languages, including the task of
answering questions. Moreover, its performance
improves with each new version. ChatGPT excels
in certain areas but also has its limitations in terms
of consistency and complex reasoning tasks.(Tan
et al., 2023).

4 Proposed Approach

4.1 Methodology

In our study, we have developed a model based on
transformers for multiple-choice questions, where
each option is combined with the question to form
separate pairs. These pairs are then pre-processed
as distinct inputs for the already pre-trained model.
The preprocessing includes adding special tokens
like [CLS] at the beginning and [SEP] to separate
the question from the choice. Each pre-processed
question-choice pair is passed through the trans-
former model, which encodes each pair using its
bidirectional attention mechanism, allowing every
word in the pair to capture the context of the entire
sentence and the related choice. For each question-
choice pair, the model generates a feature vector
from the output associated with the [CLS] token,
which serves as a summary of the information con-
tained in the pair. This means that for a question
with four answer choices, the model would be run
four times (once for each question-choice pair).
This process allows for the consideration of the
full context of the question as well as that of each
individual answer choice, which is crucial for un-
derstanding which choice best answers the question.

The feature vector for each question-choice pair
is then passed through a dense (or fully connected)
layer, which reduces the vector’s dimensionality to
a number corresponding to the number of classes or
answer categories. After the dense layer, a softmax
activation function is applied to convert the scores
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| [SEP] |-

—  Y=max(softmax(outputs))

slowlojsuel |
v
J9Ae payosuuo) Ajin4

Question Answer 4

[CLS] [SEP]

[SEP]

Figure 1: The overall architecture for predicting BRAINTEASER
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Figure 2: The Ranking Leaderboard Displaying Our Position

into probabilities.

The softmax function is ideal for classification
tasks because it transforms the scores into a set of
probabilities that sum up to 1, making the scores
directly interpretable as the probabilities that each
choice is the correct answer. Figure 1 illustrates
the prediction process described above.

The prediction formula can be expressed as fol-
lows in our model:

Each question-choice pair (Q,C;) is pre-
processed to form an input sequence X; by con-
catenating the question () with each choice C; and
adding special tokens:

= [CLS] + Q + [SEP] + C; + [SEP]

The transformer model processes each X; sepa-
rately to encode the pair, utilizing its bidirectional
attention mechanism. The output for each token
in X; is obtained, but we are specifically inter-
ested in the output associated with the [CLS] token,
TicLs),i» Which captures the contextualized repre-
sentation of the pair:

Ticrs),: = Trans formerModel(X;)

The feature vector F; is extracted from the trans-
former output associated with the [CLS] token for
each question-choice pair:

F; = ExtractFeatureVector(Ticrs))

Each feature vector F; is passed through a dense
layer to reduce its dimensionality to the number of

classes IV, resulting in a reduced feature vector R;:
R; = DenseLayer(F;)

The softmax activation function is applied to R;
to convert the scores into probabilities P;, indicat-
ing the likelihood that each choice is the correct

answer:
eRi

P, = Softmax(R;) =
T, efs
Where:
* () represents the question.

» (; represents the ith answer choice.

* X; is the input sequence formed by concate-
nating () and C; with special tokens.

* Ticps); 1s the transformer output for the
[CLS] token for the ¢th question-choice pair.

e F; is the feature vector extracted from
TicLs),i-

* R; is the reduced feature vector after passing
F; through a dense layer.

P, represents the probabilities that each choice
C; is the correct answer, obtained after apply-
ing the softmax function to R;.
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4.2 Evaluation Method

The BRAINTEASER task proposes the following
evaluation system, each system is evaluated based
on the following two accuracy metrics:

Instance-based Accuracy: They consider each
question (original/adversarial) as a separate in-
stance. They report accuracy for the original and
its adversaries.

Group-based Accuracy: Each question and its
associated adversarial instances form a group, and
a system will only receive a score of 1 when it
correctly solves all questions in the group.

The final score corresponds to the average of all
the scores.

4.3 Results

We trained our model using the pre-trained lan-
guage model DeBERTa-v3-base (He et al., 2023)
over 5 learning epochs, with a learning rate of 5e-5
and a batch size of 16. The results obtained are
presented in official Leaderboard of the task in the
evaluation phase 2.

Our model stands out for its good performance
in sentence-type puzzles, ranking first with with
an average accuracy score of 0.98 (leaderboard 2) .
This means it excels particularly in thinking chal-
lenges where the puzzle, often contrary to common
sense, is based on sentence excerpts. On the other
hand, for word-based puzzles, which require find-
ing a solution that goes against the usual meaning
of words by focusing on the letter composition of
the posed question, our model shows lower per-
formance. It ranks 16th with a total score of 0.61
. This performance difference suggests that, al-
though our model is very skilled at solving puzzles
involving the understanding and manipulation of
sentences, it could benefit from improvement in
the area of word-based puzzles. This indicates an
opportunity to deepen our research and develop-
ment efforts on word-type puzzles to enhance the
versatility and overall effectiveness 