NAACL 2024

Annual Conference of the North American Chapter of the
Association for Computational Linguistics - Industry Track

Proceedings of the Conference (Industry)

June 16-21, 2024

©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S

Suite 400 - 134

Kerrville, TX 78028

USA

Tel: +1-855-225-1962

acl@aclweb.org

ISBN 979-8-89176-120-9

Organizing Committee

General Chair

Yi Yang, ASAPP

Aida Davani, Google Research
Avi Sil, IBM

Anoop Kumar, Capital One

ii

Program Committee

Reviewers

Mohamed Abdelhady, Amazon

Sachin Agarwal, Apple

Prabhat Agarwal, Pinterest, Inc.

Alan Akbik, Humboldt Universitéit Berlin

Burak Aksar

Mohamed AlTantawy, Agolo

Enrique Henestroza Anguiano

Ankit Arun

AiTi Aw, I2R

Kfir Bar, College of Management

Leslie Barrett, Bloomberg, LP

Emre Barut, Amazon

Daniel Bauer, Columbia University

Frederic Bechet, Académie d’Aix-Marseille

Kasturi Bhattacharjee, Pryon and AWS Al

Trung Bui, Adobe Research

Sai Kiran Burle

Aoife Cahill, Dataminr

Sarah C Campbell, Amazon Alexa

Thiago Castro Ferreira, Universidade Federal de Minas Gerais
Sourish Chaudhuri

John Chen, Department of Speech and Natural Language Research, Interactions LLC
Luoxin Chen, Amazon

Jiangning Chen, UKG

Pengxiang Cheng, Bloomberg

Justin Chiu, Rakuten Institute of Technology, The University of Tokyo
Jaegul Choo, Korea Advanced Institute of Science and Technology
Deborah A. Dahl, Open Voice Interoperability Initiative and Conversational Technologies
Marina Danilevsky, International Business Machines

Aswarth Abhilash Dara

Anirban Das, Capital One

Vivek Datla, Capital One

Rahul Divekar, Educational Testing Service

Shuyan Dong, Facebook

Li Dong, Amazon

Matthew T. Dunn

Matthias Eck, Carnegie Mellon University

Lilach Eden

Wassim El-Hajj, American University of Beirut

Aparna Elangovan, Amazon

David Elson, Google

Ramy Eskander, Google

Michael Flor, Educational Testing Service

Lisheng Fu, Comcast

Aram Galstyan, Information Sciences Institute, University of Southern California and Amazon
Alexa

iii

Radhika Gaonkar

Jose Garrido Ramas

Diman Ghazi

Anmol Goel, Technische Universitit Darmstadt

Olga Golovneva, Facebook

Tong Guo

Ankush Gupta, IBM India Research Lab

Dilek Hakkani-Tur, University of Illinois at Urbana-Champaign
Benjamin Han, Apple

Hua He

Sanjika Hewavitharana, eBay Inc.

Wonseok Hwang, University of Seoul and LBox Co., Ltd.
Leslie Ikemoto

Alankar Jain

Rosie Jones, Spotify

Mohammad Kachuee, Amazon

Anup K. Kalia

Anup K. Kalia

Hidetaka Kamigaito, Division of Information Science, Nara Institute of Science and Technology
Jun Seok Kang

Damianos Karakos

Yannis Katsis, International Business Machines

Nikhil Khani, Google

Saurabh Khanwalkar, Course Hero Inc.

Kunho Kim, Microsoft

Geewook Kim, NAVER Cloud and KAIST

Sun Kim, Naver

Rajasekar Krishnamurthy, Adobe Systems

Vinayshekhar Bannihatti Kumar, Amazon

Anjishnu Kumar

Sanjeev Kumar

Sarasi Lalithsena

Brian Lester, Department of Computer Science, University of Toronto and Google
Yulong Li, IBM, International Business Machines

Zhouhan Lin, Shanghai Jiao Tong University

Antonie Lin, Amazon

Xuye Liu

Petr Lorenc

Liang Ma, Dataminr

Fred Mailhot, Dialpad, Inc.

Lorenzo Malandri, University of Milan - Bicocca

Yuval Marton, Genentech and University of Washington
Yuji Matsumoto, RIKEN Center for Advanced Intelligence Project
Chandresh Kumar Maurya, Indian Institute of Technology, Indore
Arne Mauser, Snowflake

David D. McDonald

Kartik Mehta, Amazon

Fabio Mercorio, University of Milan - Bicocca

Margot Mieskes, University of Applied Sciences Darmstadt
Nyalleng Moorosi, Distributed Al Research

Sidharth Mudgal, Google

Y

Matthew Mulholland, Educational Testing Service
Deepak Muralidharan, Apple

Prasanna Muthukumar

Varun Nagaraj Rao, Princeton University

Jinseok Nam, Amazon

Nobal B. Niraula, Boeing Research & Technology
Navid Nobani

Sergio Oramas, SiriusXM / Pandora

Laurel Orr, Computer Science Department, Stanford University
Feifei Pan

Taiwoo Park, NAVER Search US

Cheoneum Park, Hyundai Motor Group

Dookun Park

Abhay Dutt Paroha

Ioannis Partalas

Sangameshwar Patil, Indian Institute of Technology, Madras and Tata Consultancy Services Limi-
ted, India

Sachin Pawar

Stephan Peitz, Apple

Xujun Peng, Amazon

Pradyot Prakash, Facebook

Radityo Eko Prasojo, Rukita

Stephen Pulman, Apple

Haode Qi

Long Qin, Alibaba Group

Elio Querze

Nitin Ramrakhiyani, International Institute of Information Technology Hyderabad and Tata Con-
sultancy Services Limited, India

Shihao Ran

Vivek Kumar Rangarajan Sridhar

Nikhil Rasiwasia, Facebook

Ehud Reiter, University of Aberdeen

Giuseppe Riccardi, University of Trento

Alicia Sagae, Amazon

Avneesh Saluja, Netflix

Thomas Schaaf

Jonathan Schler, Holon Institute of Technology
Frank Seide

Jaydeep Sen

Shubhashis Sengupta

Igor Shalyminov, Amazon

Mingyue Shang, Amazon

Michal Shmueli-Scheuer

Lei Shu, Google

Svetlana Stoyanchev, Toshiba Research Europe
Marek Suppa, Comenius University in Bratislava
Sandesh Swamy, Amazon

Narges Tabari, Amazon

Joel R. Tetreault

Sudarshan R. Thitte, International Business Machines
Christoph Tillmann

Giuliano Tortoreto

Isabel Trancoso, Instituto Superior Técnico
Aashka Trivedi, International Business Machines
Keith Trnka

Morgan Ulinski, Soar Technology, LLC

David Uthus, Google

Vidya Venkiteswaran

Ngoc Phuoc An Vo, International Business Machines
Dakuo Wang, Northeastern University

Tong Wang, Amazon

Kyle Williams, Microsoft

Ziyun Xu

Ziyun Xu

Xiao Yang, Facebook and Facebook

Jinyeong Yim

Keunwoo Peter Yu, University of Michigan - Ann Arbor
Qingkai Zeng, University of Notre Dame

Ke Zhang, Dataminr, inc

Yichao Zhou, Google

Xiliang Zhu, Dialpad Inc.

Chenyang Zhu

Hila Weisman Zohar

Bowei Zou, A*STAR

vi

Table of Contents

HPipe: Large Language Model Pipeline Parallelism for Long Context on Heterogeneous Cost-effective
Devices
Ruilong Ma, Xiang Yang, Jingyu Wang, Qi Qi, Haifeng Sun, Jing Wang, Zirui Zhuang and Jianxin

Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding
Jie Ou, Yueming Chen and Prof. Wenhong Tian................. ..., 10

SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling

Sanghoon Kim, Dahyun Kim, Chanjun Park, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeo-
nwoo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn, Seonghoon Yang, Sukyung Lee,
Hyunbyung Park, Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee and Sunghun Kim............... 23

UlNav: A Practical Approach to Train On-Device Automation Agents
Wei Li, Fu-Lin Hsu, William E Bishop, Folawiyo Campbell-Ajala, Max Lin and Oriana Riva . 36

Efficiently Distilling LLMs for Edge Applications
Achintya Kundu, Yu Chin Fabian Lim, Aaron Chew, Laura Wynter, Penny Chong and Rhui Dih
P 52

Modeling and Detecting Company Risks from News
Jiaxin Pei, Soumya Vadlamannati, Liang-Kang Huang, Daniel Preotiuc-Pietro and Xinyu Hua 63

Multiple-Question Multiple-Answer Text-VQA
Peng Tang, Srikar Appalaraju, R. Manmatha, Yusheng Xie and Vijay Mahadevan............ 73

An NLP-Focused Pilot Training Agent for Safe and Efficient Aviation Communication
Xiaochen Liu, Bowei Zou and AiTi AW oottt e 89

Visual Grounding for User Interfaces
Yijun Qian, Yujie Lu, Alexander G Hauptmann and Oriana Riva........................... 97

Prompt Tuned Embedding Classification for Industry Sector Allocation
Valentin Leonhard Buchner, Lele Cao, Jan-Christoph Kalo and Vilhelm Von Ehrenheim 108

REXEL: An End-to-end Model for Document-Level Relation Extraction and Entity Linking
Nacime Bouziani, Shubhi Tyagi, Joseph Fisher, Jens Lehmann and Andrea Pierleoni........ 119

Conformer-Based Speech Recognition On Extreme Edge-Computing Devices
Mingbin Xu, Alex Jin, Sicheng Wang, Mu Su, Tim Ng, Henry Mason, Shiyi Han, Zhihong Lei,
Yaqgiao Deng, Zhen Huang and Mahesh Krishnamoorthy o .. 131

Generating Signed Language Instructions in Large-Scale Dialogue Systems
Mert Inan, Katherine Atwell, Anthony Sicilia, Lorna Quandt and Malihe Alikhani.......... 140

Leveraging Natural Language Processing and Large Language Models for Assisting Due Diligence in
the Legal Domain
Myeongjun Erik Jang and Gédbor Stikkel....... 155

AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators
Xingwei He, Zhenghao Lin, Yeyun Gong, A-Long Jin, Hang Zhang, Chen Lin, Jian Jiao, Siu
Ming Yiu, Nan Duan and Weizhu Chen. i e 165

vii

An Automatic Prompt Generation System for Tabular Data Tasks
Ashlesha Akella, Abhijit Manatkar, Brijkumar Chavda and Hima Patel 191

Fighting crime with Transformers: Empirical analysis of address parsing methods in payment data
Haitham Hammami, Louis Baligand and Bojan Petrovski 201

Language Models are Alignable Decision-Makers: Dataset and Application to the Medical Triage Do-
main

Brian H Hu, Bill Ray, Alice Leung, Amy Summerville, David Joy, Christopher Funk and Arslan
Basharat e 213

Reducing hallucination in structured outputs via Retrieval-Augmented Generation
Orlando Marquez Ayala and Patrice Bechard............ oL 228

Towards Translating Objective Product Attributes Into Customer Language
Ram Yazdi, Oren Kalinsky, Alexander Libov and Dafna Shahaf........................... 239

Automating the Generation of a Functional Semantic Types Ontology with Foundational Models
Sachin G Konan, Larry Rudolph and Scott Affens.........o oot 248

Leveraging Customer Feedback for Multi-modal Insight Extraction
Sandeep Sricharan Mukku, Abinesh Kanagarajan, Pushpendu Ghosh and Chetan Aggarwal..266

Optimizing LLM Based Retrieval Augmented Generation Pipelines in the Financial Domain
Yiyun Zhao, Prateek Singh, Hanoz Bhathena, Bernardo Ramos, Aviral Joshi, Swaroop Gadiyaram
and Saket Sharma e 279

Scaling Up Authorship Attribution
Jacob Striebel, Abishek Edikala, Ethan Irby, Alex Rosenfeld, J. Blake Gage, Daniel Dakota and
Sandra KUbDIer 295

Multimodal Contextual Dialogue Breakdown Detection for Conversational AI Models
Md Messal Monem Miah, Ulie Schnaithmann, Arushi Raghuvanshi and Youngseo Son 303

Deferred NAM: Low-latency Top-K Context Injection via Deferred Context Encoding for Non-Streaming
ASR

Zelin Wu, Gan Song, Christopher Li, Pat Rondon, Zhong Meng, Xavier Velez, Weiran Wang, Dia-
mantino Caseiro, Golan Pundak, Tsendsuren Munkhdalai, Angad Chandorkar and Rohit Prabhavalkar
315

Less is More for Improving Automatic Evaluation of Factual Consistency
Tong Wang, Ninad Kulkarni and Yanjun Qi.............c.ouiiiiiieniiiiiieennninnnn.. 324

DriftWatch: A Tool that Automatically Detects Data Drift and Extracts Representative Examples Affec-
ted by Drift
Myeongjun Erik Jang, Antonios Georgiadis, Yiyun Zhao and Fran Silavong................ 335

Graph Integrated Language Transformers for Next Action Prediction in Complex Phone Calls
Amin Hosseiny Marani, Ulie Schnaithmann, Youngseo Son, Akil Iyer, Manas Paldhe and Arushi
Raghuvanshi. 347

Leveraging LLMs for Dialogue Quality Measurement
Jinghan Jia, Abi Komma, Timothy Leffel, Xujun Peng, Ajay Nagesh, Tamer Soliman, Aram
Galstyan and Anoop Kumar e 359

Uncertainty Estimation in Large Language Models to Support Biodiversity Conservation
Maria Mora-Cross and Saul Calderon-Ramirez.............. oo, 368

viii

AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction
Shengkun Wang, Taoran Ji, Jianfeng He, Mariam ALMutairi, Dan Wang, Linhan Wang, Min
Zhang and Chang-Tien Lu o e e 379

Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for
Meeting Summarization?

Xue-Yong Fu, Md Tahmid Rahman Laskar, Elena Khasanova, Cheng Chen and Shashi Bhushan
TN 387

Shears: Unstructured Sparsity with Neural Low-rank Adapter Search
Juan Pablo Munoz, Jinjie Yuan and Nilesh Jain o i i 395

Tree-of-Question: Structured Retrieval Framework for Korean Question Answering Systems
Dongyub Lee, Younghun Jeong, Hwa-Yeon Kim, Hongyeon Yu, Seunghyun Han, Taesun Whang,
Seungwoo Cho, Chanhee Lee, Gunsu Lee and Youngbum Kim 406

LLM-based Frameworks for API Argument Filling in Task-Oriented Conversational Systems
Jisoo Mok, Mohammad Kachuee, Shuyang Dai, Shayan Ray, Tara Taghavi and Sungroh Yoon419

Large Language Models Encode the Practice of Medicine
Teja Kanchinadam and Gauher Shaheen......... i, 427

Leveraging Interesting Facts to Enhance User Engagement with Conversational Interfaces
Nikhita Vedula, Giuseppe Castellucci, Eugene Agichtein, Oleg Rokhlenko and Shervin Malmasi
437

Search Query Refinement for Japanese Named Entity Recognition in E-commerce Domain
Yuki Nakayama, Ryutaro Tatsushima, Erick Mendieta, Koji Murakami and Keiji Shinzato . . . 447

EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM
Henry Peng Zou, Gavin Heqing Yu, Ziwei Fan, Dan Bu, Han Liu, Peng Dai, Dongmei Jia and
Cornelia Caragea.outn ettt e e e e 453

Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with
Domain Hybrid Data

Dehai Min, Nan Hu, Rihui Jin, Nuo Lin, Jiaoyan Chen, Yongrui Chen, Yu Li, Guilin Qi, Yun Li,
Nijun Li and Qianren Wangttt e e e 464

Solving General Natural-Language-Description Optimization Problems with Large Language Models
Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang and Wotao Yin ... 483

Self-Regulated Data-Free Knowledge Amalgamation for Text Classification
Prashanth Vijayaraghavan, Hongzhi Wang, Luyao Shi, Tyler Baldwin, David Beymer and Ehsan

X

HPipe: Large Language Model Pipeline Parallelism for Long Context on
Heterogeneous Cost-effective Devices

Ruilong Ma*, Xiang Yang*, Jingyu Wang, Qi Qi, Haifeng Sun’, Jing Wang',
Zirui Zhuang, Jianxin Liao
State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications
{maruilong,yangxiang,wangjingyu,qiqi8266,hfsun,wangjing
zhuangzirui,liaojx}@bupt.edu.cn

Abstract

Micro-enterprises and individual developers
emerge long context analysis demands with
powerful Large Language Models (LLMs).
They try to deploy the LLMs at local, but only
possess various commodity devices and the un-
reliable interconnection between devices. Ex-
isting parallel techniques can not fully perform
in limited environment. The heterogeneity of
devices, coupled with their limited capacity and
expensive communication, brings challenges
to private deployment for maximized utiliza-
tion of available devices while masking latency.
Hence, we introduce HPipe, a pipeline infer-
ence framework that successfully mitigates
LLMs from high-performance clusters to het-
erogeneous commodity devices. By ensuring
a balanced distribution of workloads, HPipe
facilitates the inference through pipelining the
sequences on the token dimension. The eval-
uation conducted on LLaMA-7B and GPT3-2B
demonstrates that HPipe holds the potential for
long context analysis on LLM with heterogene-
ity devices, achieving an impressive speedup in
latency and throughput up to 2.28 times.

1 Introduction

The emergence of LLMs has significantly enhanced
automated content comprehension, as they adeptly
capture semantic information within extensive con-
texts. Enterprises employ techniques such as senti-
ment analysis (Zhang et al., 2023; Deng et al., 2023;
Wang et al., 2023) and content analysis (Gubel-
mann et al., 2023) to harness the potential value to
facilitate the anticipation of user engagement and
strategic decision-making. However, due to the
stringent memory and computational requirements
of LLMs, they are commonly deployed on high-
performance computing clusters. The advanced
devices and high-velocity transmission like NV-
link, boasting transfer rates approaching 900 GB/s,

“Equal Contribution.
Corresponding Author.

1

enable rapid computation and efficient synchroniza-
tion. While micro-enterprises introduce demands
to leverage the private LLM, they only have in-
consistent weaker devices. The interconnection
among these devices also suffers from limited band-
width. Devices connected via wireless network ex-
hibits transfer rate merely up to 1 GB/s. Thus, the
customized LLM deployment schema for micro-
enterprises deserves further exploration.

For the demands of effective inference, infer-
ence engines (Aminabadi et al., 2022b; Li et al.,
2023) provides hybrid data and pipeline parallelism
(Huang et al., 2019; Narayanan et al., 2021) and
combined with tensor parallelism (Shoeybi et al.,
2019; Jia et al., 2019). In high-performance com-
puting centers, they substantially alleviate compu-
tational and memory pressure, thereby augmenting
inference speed and enhancing throughput.

However, existing methods cannot be directly
applicable to the scenarios of micro-enterprises.
The deployment for the micro-enterprises presents
several problems. 1) Extended text: As LLM sup-
port longer inputs, the expanded context window
brings higher arithmetic pressure. The micro-batch
pipeline struggles to maintain efficiency. Each
stage of the pipeline demands longer processing
durations, and the coarser granularity diminishes
the parallelism. 2) Communication discrepancy:
The conditions for communication between devices
are discrepant. GPUs within a device generally ex-
change data via PCle, and GPUs between devices
rely on the network. This impedes the efficacy of
communication-intensive methods such as tensor
parallelism. 3) Heterogeneous devices: It is essen-
tial that integrating heterogeneous devices to em-
ploy all available resources for micro-enterprises.
The dual heterogeneity of both computation and
transmission, coupled with expensive communica-
tion, bring challenges to orchestrating the available
devices of micro-enterprises for LLMs deployment.

To address these challenges, we propose HPipe,

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 1-9
June 16-21, 2024 ©2024 Association for Computational Linguistics

a pipeline inference framework dedicated to con-
tent comprehension for private LLMs. It deploys
the LLMs on heterogeneous devices with pipeline
parallelism on the token dimension. HPipe shields
the heterogeneity of devices by distributing LL.Ms
based on computing capabilities and transmission
conditions. For extended context, HPipe slices
them into segments by a dynamic programming al-
gorithm and pipelines the computation of segments
to amplify the degree of parallelism. HPipe suc-
cessfully mitigates LLMs from high performance
clusters to heterogeneous devices, achieving up to
a 2.28 x increase in both latency and throughput,
alongside a 68.2% reduction in energy consump-
tion compared to other methods.

2 Background and Motivation

2.1 Parallelism

Pipeline and tensor parallelism are two popular
methods for accelerating the inference of LLMs
as shown in Fig. 1. Matrix multiplication (Mat-
Mul) contributes to most of the overall computa-
tion amount. Solving a MatMul can be converted
into the solving sum of several smaller MatMul.
Tensor parallelism leverages this by dividing and
distributing the weight matrix to multiple devices
to enable the computation in parallel. Once the
computation completes, devices will communicate
to synchronize the results. Thus, tensor parallelism
is commonly used when the transmission is guar-
anteed. The pipeline mechanism distributes LLMs
across multiple devices, with each device dedicated
to a stage of computation. The request is usually
segmented into micro-batches and processed se-
quentially. Transmission is only required for in-
termediate result. While pipeline is communica-
tion lightweight, pipeline in batch dimension still
bring challenge when LLMs are serving for micro-
enterprises. Memory constraints limit the batch
size of requests, which reduces space of dividing
data and hinders the degree of parallelism. More-
over, as sequence length increases, each pipeline
stage spends more time. The increasing execution
time of stages introduces more idle waiting.

2.2 Utilization of Devices

As the emerging demands of analysis long se-
quence, the context window of LLMs continues
to expand, occasionally surpassing 8000 tokens.
Processing lengthy sequences at once can overbur-
den the devices. Conversely, working with short

Tensor Parallelism Pipeline Parallelism

'
:
Device 1 : Device 2 ! SliceDatainto re————————————————
= = ! micro-batch | :|:
Embedding H !
~ i B;|
N [S &
Replicate l
i
Linear - i {[m]: Device 1
(Matmul) [L/ i
i
(T T— ﬂn}:’ i
i
v : Device 2
(Matmul) [Prote Prsone] H m]
i
v] i
' .
i {[E]: Device 3
i
i

Figure 1: Two popular parallelism approaches: tensor
parallelism (left) and pipeline parallelism (right).

=
o
o

~
vl

/ /V’W

—— LLaMA-7B
GPT3-2.7B

/

0 250 500 750 1000 1250 1500 1750 2000
Sequence length (tokens)

N
v
L

FLOPs Utilization (%)
w
o

o

Figure 2: The FLOPs utilization for a transformer block
with different sequence lengths on RTX3090 GPU.

sequences is prone to underutilizing the computa-
tional power. To explore the relationship between
sequence length and resource utilization, we in-
troduce FLOPs utilization, which refers to the ra-
tio of actual floating-point operations per second
(FLOPs) achieved to the maximum FLOPs sup-
ported by the hardware. Fig. 2 shows the results.As
the sequence length expands, FLOPs utilization ini-
tially improves and undergoes a decrease before
converging. At first, FLOPs utilization increases as
more tokens are fed, leading to full utilization of
resources. The gains are ultimately constrained by
frequent I/O operations. The low-bandwidth mem-
ory access causes the bottleneck as the longer em-
bedding involves. We also find fluctuations when
the length increase. GPUs conduct MatMul by di-
viding matrices into tiles to parallel them on distinct
thread blocks, which refers to a group of threads
computing the same arithmetic operations. There-
fore, MatMul achieves maximum GPU utilization
when the matrix dimensions are divisible by the tile
size. Otherwise, due to tile quantization (Nvidia),
some thread blocks perform wasted computation.
Therefore, selecting the appropriate length for ev-
ery process can increase device utilization.

2.3 Motivation

On the basis of the discussion above, pipeline par-
allelism is advantageous for LLMs inference in
constrained environments. It allows the reduction

runtime phase subsequences
repare phase
" : DDDDD DDDD HDDDD DDHD — i o
s |]2 - DODDO
blocks - ') [m): Device 1
E Device 1 E Dewcez - n P ‘zalance ,,,,,
T lorkload = S N W
¥ ¥ + Distribution | 4
(Latency I)
Specificationof __| ¥ 2 ¥ 2 ¥ C] D D D E] ““““
available devices t = t, = =t = o= E Device 2
Workload Partition Algorithm
s [s [Ts
fea) Network
) s, | [e : 7 DOD@G) pevie
\—~ Condition Stepl 5 = 1 i === G| W S R
; [IL 5 7
[. JL S, I s 7 R
@ Online Step2 | " T s 5 7 i N Optimal
U6 e P] 2 J| ™ “Sieing | Device 3 [T [T [i
Analyze the following passages as q
positive or negative “To be, or not Step 3 === ;s'— == 7/1/— == ;i’— — /-;I- == f’l-l —— _g — _I’ Device 2
to be, that is the question: e L i .
Whether s nobler inthe mind to Z Device 1 Time
suffer .. Sequence Slicing Algorithm
(a) (b)

Figure 3: HPipe workflow consists of two phases. In the prepare phase, HPipe determines the optimal schema
of workload distribution and the sequence slicing through dynamic programming. In the run-time phase, HPipe
pipelines the inference on the token dimension as scheduled.

of massive computational loads and only incurs tol-
erant communication. Meanwhile, decoder-based
transformers inherently facilitate pipeline inference.
It enables pipeline on the token dimension for long
context, which does not affect the results as the sub-
sequences are fed in sequentially. The K,V values
of each subsequence are cached for the calcula-
tions of subsequent tokens. Segmenting lengthy
sentences into multiple fragments for fine granular-
ity execution maximizes resource utilization. We
leverage these observations and design HPipe.

3 Method

3.1 Workflow

Fig. 3 shows the HPipe workflow. Taking into ac-
count the specifications of the devices and network
conditions, LLM is properly distributed across mul-
tiple devices to maximize the utilization of each de-
vice and avoid heavy transmission overhead. HPipe
preprocesses the optimal slicing schemes for inputs
of all supporting lengths. Once a sequence S ar-
rives, it is divided into subsequences s, ..., Sy, and
executed sequentially across devices. Device d;
can handle the computation task for s; involving
Si+1 and s;_1 is processing on d;_1 and d; 1. This
effectively reconstructs the pipeline, allowing for
parallel on the token dimension.

3.2 Formulation

Assuming that the LLM is composed of n lay-
ers {l1,...l,}, they are divided into N blocks
{b1,...,bn} and distributed across N devices.

Meanwhile, the input sequence will be segmented
into M subsequences in the token dimension. We
use t;; to denote the execution time of each stage in
the pipeline, which is the computation time of each
subsequence s; in device d; plus the transmission
time to the successor d; 1. The computation of the
embedding for subsequences consists of two steps:
computing the initial embedding for tokens and
combining information from the previous tokens
with the relevance scores. The transmission time
is related to the size of the intermediate activation
derived by the last layer /; and the bandwidth B.
The execution time ¢;; can be presented as :

tij = te (sl, Z Sm;d) + t:(l5, 83, B). €))

We use t. to denote the whole computation la-
tency for given s; and the previous subsequences
81, ..., 8; — 1, and t; to denote the transmission time.

Our goal is finding a balanced workload par-
tition {by,...,bn} and the proper slicing scheme
{50, ..., spr} that achieves optimal latency 7 to
close the ideal state as shown in Fig. 3. To improve
the efficiency of pipeline, it is essential to equalize
the stage execution times. We establish a constraint
to progressively approach the optimal schema:

0<i<M,
0<j<N

M
T sm%{ztu} + (N =1) max {t;}. (2

The first term is the complete inference latency on
the slowest device; The second term is the over-
head brought by the pipeline execution, which is

determined by the slowest stage. The constraint
allows us to determine the optimal solution by re-
stricting the upper limit of latency. It is obvious
that the slowest device and device ?;; dominates
the total latency. Hence, eliminating the gap be-
tween devices and stages will facilitate the pipeline
inference. We equalize the pipeline inference by
distribution balance and sequence schedule.

3.3 Distribution Balance

A balanced model partition minimizes the impact
of heterogeneity present in both devices and trans-
mission conditions. We first optimize the pipeline
by distributing the LLMs to align with capabili-
ties of devices while considering transmission over-
head. We take layer as the partition granularity
instead of transformer block, which provides the
opportunity to explore more balanced partition.

The objective of balance distribution is to find
the the N — 1 cut points to partition a LLM into
N subsets. Each has consecutive layers and is as-
signed to a specific device. In the heterogeneous
environment, this can be established as a device
placement problem and has been proven as NP-
hard in (Benoit and Robert, 2008). To address
this challenge, we make the assumption that the
sequence of devices remains constant, that is, the
block b; corresponds to the device d;. Since the
LLM is composed of repeating blocks, the con-
stant sequence of devices barely loses the optimal
solution, and the problem can be simplified.

The execution time for processing the layers
from [, to [, on device d,, encompasses two
components: the cumulative computation time of
the layers and the communication time to transfer
the intermediate activation. It can be obtained by:

b
T(a,b,m) = teomp(lki dm) + teomm(lj;m). (3)
k=a
For the optimal partition, it can be broken into
an optimal sub-pipeline consisting of layers from [/;
through [;, with m — 1 devices followed by a single
stage with layers [to [, on device d,,,. Using the
optimal sub-problem property, we can determine
a placement scheme that strives to equalize the
execution time among devices in stepwise manner:

AJb][m] = 1r§nkir<1j{max{A[k} [m—1], T(k+1,b,m)}},

(C)]
where A[b][m — 1] is the time taken by the slowest
stage of the optimal sub-pipeline from /; to [;, with

former m — 1 edge devices. Algorithm 1 in Ap-
pendix A.1 shows the pseudocode of how we use
dynamic programming to obtain balanced partition.

3.4 Sequence Schedule

With the balanced workload distribution, the execu-
tion time of the sequence on the devices is similar.
Thus, pipeline efficiency now is determined by the
most expensive subsequence. We further improve
the pipeline by optimally slicing the sequence.

Some studies (Zheng et al., 2023; Li et al., 2021)
observed that executing time of token is linearly
increase as the location index grows since more pre-
vious tokens involves in computation. Therefore,
an ideal slicing should include longer slices at the
beginning and shorter slices toward the end. Fur-
thermore, the granularity of dividing the sequence
also is of significance, as discussed in Section 2.2.
Employing a finer-grained slicing approach, char-
acterized by smaller values of |s;| results in the un-
derutilization of the computational power of GPUs.
In contrast, adopting a coarser slicing approach,
involving higher values of |s;|, reduces the number
of pipeline stages, which decreases the degree of
parallelism and may overburden the devices. Thus,
it is necessary to find the most suitable slicing gran-
ularity to fully leverage devices.

The t,,, = max{t;;} is the key to minimize the
overall latency. We enumerate possible ¢, to find
the optimal slicing S* from slicing space S:

M

e < < _ .
7" < min{max{ g,}lens{zotu|tw <tm}}+ (N = Dim}
=

m 1EN

&)

t,n, restricts each slice to have the similar execu-
tion time, which lead to minimum pipeline latency.
Since the optimization of sequence S can derive
from S — s,, we employ a dynamic programming
algorithm to produce an optimal slicing schema in
all possible t,,. The details are provided in Ap-
pendix A.2 Algorithm 2.

4 Evaluation

4.1 Experimental Setup

We established the HPipe prototype with a com-
putational cluster of two host machines. The first
machine contains four Pascal100 (P100), while the
second is fitted with two RTX3090 . Communica-
tion between hosts is via a wired network with a
bandwidth of 1000 Mbps, and intra-host commu-
nication is via PCle. We use this heterogeneous

Latency (s)
Throughput (K tokens/s)
Throughput (K tokens/s)

Latency (s)
o - N w & u o o~

22
188 197

T T T T T T 0 T

Base GP GPB MG TP TP-T HP Base

(a) (b)

GP GP-B MG TP TP-T HP

Figure 4: The latency and throughput of different ap-
proach on the LLaMA-7B (left) and GPT3-2B (right).

cluster to mimic a commodity hardware setup. We
evaluate HPipe on GPT3-2B, LLaMA-7B. The length
of the input sequence is set as 2048 tokens to simu-
late content analysis for long sequence. The batch
size of GPT3-2B and LLaMA-7B are set as 12 and 6.

4.2 Performance

We compare HPipe (HP) with the following method
(1) Base: LLM is uniformly distributed across
each GPU, and inference is performed sequentially
across the cluster. (2) GPipe (GP) (Huang et al.,
2019): Evenly distribute the LLM across GPU and
pipeline the inference with micro-batch (3) GP-B:
GPipe with the workload distribution proposed by
HPipe. (4) Megatron-LM (MG) (Shoeybi et al.,
2019): combine tensor parallelism with GPipe (5)
Terapipe (Li et al., 2021): Evenly distribute the
LLM across GPU and pipeline the inference on
the token dimension. (6) TP-T: Combine tensor
parallelism with TeraPipe.

4.2.1 Latency and Throughput

Fig. 4 presents the latency and throughput of dif-
ferent methods. Harnessing multiple devices for
parallelism allows efficient LLM inference. On
LLaMA-7B, HP markedly reduces latency to 2.24s,
achieving a speedup of 9.06x compared to Base. It
also increases the throughput from 0.56k to 5.03k
tokens/s, greatly improving the efficiency. GP
pipelines inference in micro-batch. The coarse
granularity of parallel remains room for optimiza-
tion. MG introduces tensor parallelism to share the
computation but is limited to the transmission cost.
While small volumes of synchronized data enable
acceleration through tensor parallelism, larger vol-
umes suffer from significant transmission overhead,
thereby impeding performance. With a balanced
workload distribution, GP-B and HP demonstrate
the latency reduction of 51~56% and the through-
put enhancement of 2.06~2.28 x. These improve-

Energy (K))

0.0
Base GP GP-B MG TP TP-T HP

(a) (b)

Base GP GP-B MG TP TP-T HP

Figure 5: The Energy consumption of cluster during
inference on the LLaMA-7B (left) and GPT3-2B. (right)

ments are attributed to judiciously managing the
computing resources of the cluster. What is more,
pipelining on the token dimension further expedites
the inference, a result of the smaller execution gran-
ularity achieved by HPipe. It facilitates higher par-
allelism degree, minimizes device idle time, and op-
timizes device utilization during inference, leading
to latency reduction by 33.1~39.3%. Comparsion
of TP and TP-T shows tensor parallelism is not suit-
able to combine with pipeline on token dimension.
This is because slicing tokens into fine-granularity
segments introduces more frequent synchroniza-
tion, which causes additional overhead.

4.2.2 Energy Consumption

Energy consumption is an important metric of infer-
ence performance. Fig. 5 shows the least dynamic
energy consumption that HPipe takes. The opti-
mization of GP, MG and TP does not consider the
power characteristics of different types of devices
so that the workload is processed in an energy-
lavish manner. In contrast, by jointly optimizing
the trade-off between computation and communica-
tion provided devices’ computing capabilities and
network conditions, HPipe achieves the lowest en-
ergy costs. It comes that HPipe finds the sequence
length that approximates the maximum utilization
of cluster execution through a two-step optimiza-
tion. The inference is executed under high resource
utilization, thus reflecting less energy consumption.

4.2.3 Memory Footprint

We record the memory footprint of devices as
shown in Table 1. Tensor Parallelism can reduce
the memory pressure by distributing the weight.
MeanWhile, with balanced workload distribution,
LLMs are apportioned among machines according
to their computing capabilities, thereby mitigating
the memory burden per machine as the increased
devices. We also find that the memory of P@4
and R@1 is relatively lower compared to peer de-

Table 1: Memory footprint of different methods dur-
ing inference on devices. OOM means device is out
of memory during the runtime. P denotes P100 and
R denotes RTX3090

Memory footprints (MB)
P@l P@2 P@3 P@4 R@]! R@2
Base 11479 11479 11019 11019 11461 11461
GP 7031 7031 6593 6593 5509 5509
LLaMA-7B GP-B 2897 3135 3655 3031 9691 10739
MG 5851 5851 5493 5493 5943 5943
TP 5459 5459 4505 4505 4957 4957
TP-P 4869 4869 4583 4583 5013 5013
HP 1873 2977 3143 1991 8713 10087
Base OOM OOM OOM OOM - -
GP 7031 7031 6593 6593 5509 5509
GPT3-2B GP-B 3665 3505 3495 3177 8525 8627
MG 4695 4695 4595 4595 5057 5043
TP 6601 6601 6629 6629 6681 6681
TP-P 4952 4952 5032 5032 5433 5437
HP 4693 4651 3153 2953 9757 9855

Model Methods

vices. This disparity is attributed to the inclusion
of the heterogeneous communication environment.
Devices with higher communication overhead are
allocated fewer layers to offset the increased bur-
den of communication, which is reflected in the
memory with fewer parameters.

4.3 Resource Utilization

To affirm HPipe in leveraging computational re-
sources, we visualize the inferences in Fig. 6,
which are measured on LLaMA-7B and batch size is
set as 1. Fig. 6a shows the result of equal distri-
bution of the LLM, along with the evenly slicing
of sequences. RTX3090 exhibits a tiny execution
time compared to P100, ascribed to LLM distribu-
tion failing to fully harness the device’s capabili-
ties. RTX3090 rapidly completes the computation
task of each subsequence and falls into a waiting
state for the next subsequence. A significant por-
tion of the computational resources remain idle.
Moreover, uniform slicing sequences lead to longer
execution times for subsequent subsequences, caus-
ing a bottleneck in the pipeline efficiency. Fig.
6b demonstrates that HPipe schedules the execu-
tion of subsequences. Computationally powerful
devices are burdened with heavier computational
tasks, which gives an approximate execution time
for each subsequence. Meanwhile, increasingly
shorter subsequences balance the pipeline.

5 Related Work

Parallel acceleration on deep neural networks has
been widely studied. Only using the data paral-
lelism (Hou et al., 2022; Zhang et al., 2021; Ma
et al., 2023) is not enough as parameters of LLMs
expand. Pipeline parallelism (Huang et al., 2019;

birrrnrnunld
(N

P1al

0.4

0.10
0.05
0.0 0.00

210081 100827 510083 \,\un@““mo«;n@%xsuao@l

Device Device

(a) (b)

|
OOEEEEE
(I{m{msE]]
OOofEEeE
OifioEEEE

(OO
AL

10081 (10087 10083 430008 50508 30062

Figure 6: The performance of the pipeline inference
with or without HPipe. Distinct colored blocks rep-
resent the execution time of subsequences. The gaps
between blocks are the communication time for trans-
ferring intermediate activation.

Aminabadi et al., 2022a; Li et al., 2021) and ten-
sor parallelism (Shoeybi et al., 2019; Bian et al.,
2021) distribute the model to multiple GPUs, thus
reducing the memory burden of the device and
allowing efficient scaling of LLM inference. On
the basis of them, lots of work achieve inference
speedup. Byte-Transformer (Zhai et al., 2023) pro-
poses a padding-free algorithm that liberates infer-
ence from redundant computations on zero padded
tokens when faced with variable-length sequences.
Kernel fusion (Choi et al., 2022; Dao et al., 2022)
optimized CUDA kernels to reduce memory access
and improve computation speed. These methods
focus on latency-oriented scenarios with advanced
devices, limiting their deployment to easily acces-
sible hardware with weaker computing capability
and memory storage. In comparison, this paper
derives the parallelism schema on a heterogeneous
cluster of commodity devices to cater to the private
application requirements. In addition, techniques
proposed by HPipe are orthogonal to the optimized
methods, including quantization (Dettmers et al.,
2022) and kernel optimization (Li et al., 2022),
hence they can be combined with them for better
performance.

6 Conclusion

This paper introduces HPipe, an inference frame-
work to accelerate the content analysis with LLMs
prototyped on the cluster of commodity devices. It
effectively integrates computing resources, allow-
ing a fine-granularity pipeline on heterogeneous
devices. HPipe demonstrates the potential to ac-
celerate LLMs inference with long sequence input,
offering a solution for LLMs deployment in hetero-

geneous commodity hardware environments.

7 Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China under Grants
(62201072, 62101064, 62171057, U23B2001,
62001054, 62071067), the Ministry of Education
and China Mobile Joint Fund (MCM20200202,
MCM20180101)

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, and Yuxiong He. 2022a. Deepspeed- in-
ference: Enabling efficient inference of transformer
models at unprecedented scale. In SC22: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022b. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-15. IEEE.

Anne Benoit and Yves Robert. 2008. Mapping pipeline
skeletons onto heterogeneous platforms. Journal of
Parallel and Distributed Computing, pages 790-808.

Zhengda Bian, Hongxin Liu, Boxiang Wang, Haichen
Huang, Yongbin Li, Chuanrui Wang, Fan Cui, and
Yang You. 2021. Colossal-ai: A unified deep learning
system for large-scale parallel training. CoRR.

Jaewan Choi, Hailong Li, Byeongho Kim, Seunghwan
Hwang, and Jung Ho Ahn. 2022. Accelerating trans-
former networks through recomposing softmax lay-
ers. In 2022 IEEE International Symposium on Work-
load Characterization (IISWC), pages 92—-103.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
pages 16344-16359.

Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon
Baumgartner, and Michael Bendersky. 2023. Llms to
the moon? reddit market sentiment analysis with
large language models. In Companion Proceed-
ings of the ACM Web Conference 2023, WWW 2023,
Austin, TX, USA, 30 April 2023 - 4 May 2023, pages
1014-1019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Reto Gubelmann, Aikaterini-Lida Kalouli, Christina
Niklaus, and Siegfried Handschuh. 2023. When truth
matters - addressing pragmatic categories in natural
language inference (NLI) by large language mod-
els (Ilms). In Proceedings of the The 12th Joint
Conference on Lexical and Computational Seman-
tics, *SEM@ACL 2023, Toronto, Canada, July 13-14,
2023.

Xueyu Hou, Yongjie Guan, Tao Han, and Ning Zhang.
2022. Distredge: Speeding up convolutional neural
network inference on distributed edge devices. In
2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1097-1107.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural infor-
mation processing systems, 32.

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Be-
yond data and model parallelism for deep neural net-
works. Proceedings of Machine Learning and Sys-
tems, 1:1-13.

Gongzheng Li, Yadong Xi, Jingzhen Ding, Duan Wang,
Ziyang Luo, Rongsheng Zhang, Bai Liu, Changjie
Fan, Xiaoxi Mao, and Zeng Zhao. 2022. Easy and
efficient transformer: Scalable inference solution for
large NLP model. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Industry Track, NAACL 2022,
Hybrid: Seattle, Washington, USA + Online, July
10-15, 2022.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vin-
cent Liu, Ying Sheng, Xin Jin, Yanping Huang,
Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al.
2023. {AlpaServe}: Statistical multiplexing with
model parallelism for deep learning serving. In 17th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pages 663—679.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. 2021.
Terapipe: Token-level pipeline parallelism for train-
ing large-scale language models. In International
Conference on Machine Learning, pages 6543—-6552.

Ruilong Ma, Xiang Yang, Qi Qi, Jingyu Wang, Zirui
Zhuang, Jing Wang, and Xin Wang. 2023. Brief
announcement: Accelerate cnn inference with zoning
graph at dynamic granularity. In Proceedings of the
35th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 295-298.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-
ficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the

International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
15.

Nvidia. Matrix multiplication background user’s guide.
docs.nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/
index.html.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng, and
Rui Xia. 2023. Is chatgpt a good sentiment analyzer?
A preliminary study. CoRR.

Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying
Jia, Shang Zhang, Zizhong Chen, Xin Liu, and Yibo
Zhu. 2023. Bytetransformer: A high-performance
transformer boosted for variable-length inputs. In
2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 344-355.

Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Jie Wu,
Yibo Jin, and Sanglu Lu. 2021. Deepslicing: collab-
orative and adaptive cnn inference with low latency.
IEEE Transactions on Parallel and Distributed Sys-
tems, pages 2175-2187.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
and Lidong Bing. 2023. Sentiment analysis in the
era of large language models: A reality check. CoRR,
abs/2305.15005.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang
Luo, Xin Jiang, and Yang You. 2023. Response
length perception and sequence scheduling: An llm-
empowered llm inference pipeline. arXiv preprint
arXiv:2305.13144.

A Appendix
A.1 Workload distribution Algorithm

Algorithm 1 shows the pseudocode of balance
workload distribution to shield the heterogeneity
of cluster. Line 1-2 initializes the execution time
of different numbers of layers assigned to the first
device. Line 3-5 outlines the dynamic program-
ming approach for balanced workload distribution.
A[N][j] record the the minimum execution time
of the stages that assign the first [V layers to the
first j layers, which is determined by the lesser as-
signment of the first k£ layers of the model to the
first n — 1 devices and the k£ + 1 to m layers to
the device n. The cut-off points are recorded in p;.
Line 6-9 derives the workload distribution schema
according to the cut points.

Algorithm 1 Workload distribution

Input: Computation and communication time
per layer of each device.
Output: Minimal slowest execution time
A[N][M] and corresponding workload distri-
bution schema.
for ¢ from 1 to NV do

calculate A[¢][1] using (3)

for j from 2 to M do

AN][j] + minj<p<n {max{A[k][j —
1], T(k+1, N, j)}}
5: pi ¢+ argming oy {max{A[k][j —
1, T(k+1,N,j)}}

> Dynamic programming for the balance

workload distribution
i<+ N,p«{}
while 7 > 0 do

p.append(p;)

11— p;
distribution scheme

B

R

> Derive the workload

IS n
o ~
o &

Latency (s)

Latency (s)
w
s

~

°
°
S

2 16 24 32 64 96 128 SS 1 8
Numbers of Slices

(a) (b)

16 32 64 9 128 SS
Numbers of Slices

Figure 7: The latency of the pipeline inference with
uniform slice from 1 to 128 in the token dimension and
the sequence schedule (SS). (a) GPT3-2B (b) LLaMA-7B

A.2 Sequence Slicing Algorithm

Algorithm 2 shows the detail of sequence slicing.
Line 4-13 shows the iteration that finds the opti-
mal slicing with £,,,,. Each time we slice a sub-
sequence in the front and treat the remaining se-
quence as a new sequence until the sequence is
divided. The least latency of a sequence with dif-
ferent lengths is stored in LL[s.,,| and the length of
the just segmented subsequence is stored in S[s¢y;].
Line 16-19 derives the optimal sequence slicing
based on the record in S. Line 20-22 gets the op-
timal slicing scheme among the enumeration of
different ¢,,,q-

A.3 Dynamic Sequence Schedule

We conduct an ablation study on the dynamic se-
quence schedule (SS) introduced in Section 3.4. To

docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Algorithm 2 Sequence slicing

Input: The maximum execution time of slices
tmas, €xecution time for slices of different
lengths G. Arrays to record the latency and
trace the sequence slicing L, S

Output: The optimal slicing {so, ..., sp }

T <+ all possible latency in G

1:
2: T* <« 00,5" + None
3: for ¢, iIn T do
4: for s.,, from 1 to N do
5: L[scur] ¢ o0
6: for s,4cp from 1 to 5.y do
7 lstep — G[Scur] [Scur - Sstep]
8: liotal <]L[Scur - Sstep] + lstep
9: if scur <tmaz && liotar < L[Scur]
then
10: L[Scur} < liotal
11: S[Scur] = Sstep

> Dynamic programming for the optimal

slicing under the t,,qs

12: i+ |S],S «{}

13: while : > 0 do

14: S.append(S[i))

15: i< 1 —Sl[i] > Derive the sequence
slicing

16: T = (M —1) * tpmae + L[N]

17: if 7 < T then

18: T« T,5%« S > Select the
optimal schema S*

contrast the inference latency of the slicing scheme
determined by the sequence schedule with that of a
heuristic that slices the input sequence uniformly,
we tested both the GPT3-2B and LLaMA-7B models
using a sequence length of 2048 tokens. The batch
sizes were set at 12 and 6, respectively. In the uni-
form slicing approach, the entire input was sliced
on the token dimension, with the number of slices
ranging from 1 to 128. We measured the inference
latency for each slicing configuration. The findings
are illustrated in Fig. 7 and align with our hypothe-
ses. Pipelines with fine granularity suffer from
GPU underutilization, whereas those with coarser
granularity present large pipeline bubbles, culmi-
nating in increased inference latency. Moreover,
due to the mask mechanism of the decoder-based
transformer, the uniform slice hides the discrep-
ancy in computational volume between front and
rear subsequences. HPipe with a proper sequence
schedule outperforms the best uniform slicing con-
figuration.

Lossless Acceleration of Large Language Model via Adaptive N-gram
Parallel Decoding

Jie Ou, Yueming Chen, Wenhong Tian*
University of Electronic Science and Technology of China, Chengdu, China

oujiewwb6@gmail.com,

yuemingchenl21l@gmail.com

tian_wenhong@uestc.edu.cn

Abstract

While Large Language Models (LLMs) have
shown remarkable abilities, they are hindered
by significant resource consumption and con-
siderable latency due to autoregressive process-
ing. In this study, we introduce Adaptive N-
gram Parallel Decoding (ANPD), an innova-
tive and lossless approach that accelerates infer-
ence by allowing the simultaneous generation
of multiple tokens. ANPD incorporates a two-
stage approach: it begins with a rapid drafting
phase that employs an N-gram module, which
adapts based on the current interactive context,
followed by a verification phase, during which
the original LLM assesses and confirms the
proposed tokens. Consequently, ANPD pre-
serves the integrity of the LLM’s original out-
put while enhancing processing speed. We fur-
ther leverage a multi-level architecture for the
N-gram module to enhance the precision of the
initial draft, consequently reducing inference
latency. ANPD eliminates the need for retrain-
ing or extra GPU memory, making it an effi-
cient and plug-and-play enhancement. In our
experiments, models such as LLaMA and its
fine-tuned variants have shown speed improve-
ments up to 3.67 %, validating the effectiveness
of our proposed ANPD.

1

The advent of Large Language Models (LLMs)
such as GPT-4 (OpenAl, 2023), ChatGPT (Brown
et al., 2020), LLaMA (Touvron et al., 2023a), and
PalLM (Chowdhery et al., 2023), has revolution-
ized the landscape of natural language processing.
However, the majority of LLMs (Touvron et al.,
2023a; Anil et al., 2023; Bai et al., 2023) rely on the
decoder-only Transformers architecture (Alec et al.,
2018), which is intrinsically autoregressive and
consequently leads to increased generation time
during inference. This characteristic has made the
improvement of LLM inference efficiency a sig-

Introduction

*Corresponding author

10

nificant research area within the natural language
processing community.

Model compression techniques such as quantiza-
tion (Han et al., 2015), pruning (Molchanov et al.,
2016), and distillation (Hinton et al., 2015) have
been employed to alleviate the computational costs
associated with LLMs. Recently, innovative meth-
ods such as early exit strategies (Yang et al., 2023b;
Bae et al., 2023; Kong et al., 2022; Schuster et al.,
2022; Varshney et al., 2023) and speculative decod-
ing (Kim et al., 2023; Xia et al., 2022; Leviathan
et al., 2023; Spector and Re, 2023; Zhang et al.,
2023a) have been proposed to speed up the in-
ference process. While these methods are effec-
tive, they typically necessitate modifications to the
model architecture and re-training, which can in-
cur substantial costs. Additionally, they may alter
the model’s output and require extra GPU mem-
ory needs. A method avoiding draft models using
retrieval is presented in (He et al., 2023), but it
requires a large database.

For certain LLMs, such as LLaMA, the tokeniza-
tion process can dissect a single word into multiple
tokens, thereby exacerbating inference latency. As
illustrated in Figure 1, the token count exceeds the
word count, resulting in an increased number of
autoregressive generation steps. In such scenar-
ios, given the constraints imposed by contextual
information, the search space for predicting the
next token that forms part of a word based on the
current token is significantly narrowed. Moreover,
contextual information can often be leveraged to
identify patterns and correlations between words.
This is especially evident for simple phrases and
paragraphs, where the context can provide clear
indicators that reduce the dependency on LLM de-
coding.

Based on the above motivation, this paper
presents a novel approach, the Adaptive N-gram
Parallel Decoding (ANPD), designed to enhance
inference efficiency without necessitating retrain-

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 10-22
June 16-21, 2024 ©2024 Association for Computational Linguistics

mmm word Counts
Token Counts.

0- .
CNN/Daily Mail XSUM

Datasets

Figure 1: The comparative analysis of the number of
words and tokens after tokenizer processing for the CN-
N/Daily Mail and XSUM datasets.

ing or the integration of an auxiliary small language
model. ANPD dynamically generates draft outputs
via an adaptive N-gram module using real-time
statistics, after which the drafts are verified by the
LLM. This characteristic is exactly the difference
between ANPD and the previous speculative de-
coding methods. The primary contributions of this
work can be summarized as follows:

* We propose ANPD, a novel and lossless algo-
rithm that offers a plug-and-play module for
acceleration of LLM inference.

* We propose an adaptive N-gram modeling
strategy that is specifically adapted for LLMs,
markedly diminishing the complexity of lan-
guage modeling and reducing the dependency
on large-scale textual datasets.

* We propose a Multi-Level N-gram (MLN) al-
gorithm aimed at increasing the precision of
draft outputs, thereby enhancing the efficiency
of the acceleration process.

* We conduct extensive experiments on various
models and datasets, demonstrating the robust
acceleration capabilities of ANPD, with a no-
table increase of 1.95x-3.67x on LLaMA and
its fine-tuned derivatives.

2 Related Work

Inference systems. The development of special-
ized inference systems for Large Language Mod-
els (LLMs), such as NVIDIA’s TensorRT-LLM
(NVIDIA, 2023), Orca (Yu et al., 2022), Flex-
Gen (Sheng et al., 2023), and DeepSpeed Inference
(Aminabadi et al., 2022), represents a notable ad-
vancement in the field. Despite progress, there is

11

still a gap in the careful co-design of algorithms
and systems, which is necessary to fully harness
the potential of the hardware.

Compression. Efficient LLM inference is facili-
tated by techniques such as quantization (Han et al.,
2015; Frantar et al., 2022; Dettmers et al., 2022;
Xiao et al., 2023), pruning (Bansal et al., 2023;
Frantar and Alistarh, 2023; Liu et al., 2023), distil-
lation (Tang et al., 2019; Touvron et al., 2021), and
exit early strategies (Schuster et al., 2022; Kong
et al., 2022; Yang et al., 2023b; Bae et al., 2023;
Del Corro et al., 2023) suggest that some tokens
can be accurately generated using only a fraction
of the model layers. Token Prunings (Hou et al.,
2022; Yao et al., 2022; Zhang et al., 2023b) reduce
memory and computational demand to accelerate
the inference process by prioritizing crucial tokens.
These methods enhance efficiency but may neces-
sitate model alterations, re-training, and potentially
reduce accuracy.

Speculative Execution. Speculative execution
(Burton, 1985), adapted as speculative decoding in
LLMs (Chen et al., 2023; Leviathan et al., 2023),
has improved inference speeds by preempting com-
putations. Speclnfer (Miao et al., 2023) leverages
existing distilled, quantized, and pruned variants of
an LLLM, to build a small speculative model pool
to guide speculation. However, these approaches
require a high-quality draft model, and increase
the memory footprint. Leviathan et al. (2023) also
mentioned that unigram and bigram can be used as
draft models, but they did not propose a method on
how to build a bigram model for the actual running
LLMs. Yang et al. (2023a) presented a method of
copying reference tokens to the decoder, though
its utility is limited by a dependency on repeated
text. These techniques increase resource use and
compel specialized training, such as distillation,
for the draft model to ensure compatibility with the
primary model.

3 Method

Figure 2 illustrates the framework and workflow of
proposed ANPD. We explain the original autore-
gressive decoding in the Appendix A.1.

3.1 Adaptive N-gram Parallel Decoding

Figure 2 illustrates the pipeline of our ANPD. The
process begins with tokenizing the input text into
tokens. The N-gram module’s Memory actually
stores token ids to streamline processing, Figure 2

,(Article \ ‘ Tokens \ N-gram Module
| ‘ " tokenizer) [‘'_who','_was','_ab','used',' _when',' _W", 'adding', 'ton’ !
P who was abused when Waddington was a i ,;tf)l_(e_nl_z?r_ .’ I was‘_' a! N ;ricsl" '_in' B Au;l;]ia' ' ,in'_' T:l' '9“'6‘ 0 i -
!priest in Australia in the 1960s, sent a picture of . |:> e T AP e ! '_%' .(‘) .
| disgraced Tory peer Lord Archer, who was jailed | . R o |
iforperjury‘ | e |
! . : > : == Bl
|)| > initialize
__ i i
J Ve — . — > _Robert e 1
— . — —_— . update |
= / =7 =7 Cm— =
L) : L) ! e ;
/ : / / .
\, / \, \Y Lo vy

t £ 2

Figure 2: The pipeline of the ANPD. The tokenizer first processes the text to obtain a list of tokens. These tokens
are used to initialize the N-gram module. Simultaneously, these tokens are fed into the LLM for processing via
autoregression. The predicted token at time ¢ in the figure is "_Very". This word is used as a query into the N-gram
module, yielding the token "_Re", which along with the "_Very" are sent to the LLM for inference at time ¢;. A

signifies acceptance of the predicted token, while a red cross indicates rejection. Each accepted
token, is combined with the first N — 1 tokens to form a tuple, and the update method is called to refresh the
N-gram module.

shows tokens as the basis for modeling to make it~ P(xz¢|z1,...,2—1) ~ P(x¢|xi—N41, .y Ti—1). In
easier for readers to understand and improve read- a bigram model (/N = 2), the sentence probability
ability. Next, the LLM engages in autoregressive is:

inference, divided into two parts: 1. Prefill, where "

the full prf)mpt is input to generaFe the first token; P21, %0,) & H P(xi]ai), (1
2. Decoding, ANPD feeds multiple tokens from
the N-gram module into the LLM, and the LLM
uses kv-cache for efficient computations to validate probabilities P(z;|x;_1) derive from frequency
tokens for parallel output generation. Tokens that counts in the corpus. We have architected the N-
fail validation are discarded along with subsequent gram module to encapsulate three principal func-
tokens. Simultaneously, we use an adaptive strat- tions essential for its operation:

egy to update the N-gram module throughout LLM

1=2

generation, avoiding reliance on static Memory. * Initialize: using a tokenizer converts each
Token Level N-gram Module. Contextual in- prompt into a sequence of token ids. It then

formation is vital for content extraction, summa- performs probabilistic statistics on these ids

rization, and code generation, as it helps refine and records the probability for each token tu-

the search space during each LLLM decoding step. ple.

This includes strong correlations among tokens

within words and between words in phrases and * Update: during the decoding, each new to-

contexts. We constructed a token-level N-gram ken is paired with the previous IV — 1 tokens

module to uniformly model the above correlations. to form a tuple, used to update the module’s

The N-gram module! is a probabilistic language probability Memory.

model, that predicts the next item in a sequence
using an (N — 1)-th order Markov model, where
N is the subsequence length. For a token sequence
x1,T2,..., Ty—1, the model estimates the probabil-
ity of z; based on the preceding N — 1 tokens, as

* Query: the query operation utilizes the to-
ken ids tuple, constructed through the subse-
quence fromt — N + 1 to ¢t — 1, to predict
the next token z;, effectively leveraging the
statistical results established by the preceding

"https://web.stanford.edu/~jurafsky/slp3/3.pdf functions.

12

These functions collectively enable the N-gram
module to dynamically adapt to the evolving text
generation process, ensuring that each token gener-
ated is contextually relevant and statistically coher-
ent.

Parallel Decoding. The parallel decoding in
our ANPD is similar to the speculative decoding
approach and occurs in two distinct stages:

1. Drafting: the N-gram module is harnessed
to generate a sequence of subsequent tokens.
By iterating through K steps, the module
constructs a preliminary draft tokens with
length K. Specifically, the draft module
generates a series of K temporary tokens
Tit1, ..., Tit K, succeeding a given prompt se-
quence 1y, ..., T;.

2. Verification: the original Large Language
Model (LLM) verifies the proposed draft
tokens, through a singular forward pass as
P($;+K+1‘(k, ?})1, cesy (k, ’U)i, Lijd1yeeey {L‘H_K),
within which the LLM computes the prob-
ability distributions for each draft token,
then to ascertain their congruence with the
proposed draft tokens x;i1,...,z;0 k. If a
draft token x; does not pass this validation, it
is replaced by the LLM’s prediction -, and a
new drafting begins from this token.

The ANPD enhances efficiency by eliminating
the need for a smaller draft deep learning model,
leveraging the much lower computational cost N-
gram module to accelerate LLM inference. For
LLMs, conducting parallel inference of K tokens
introduces a negligible increase in computational
latency compared to single token autoregressive
inference, as shown in Figure 7 in Appendix A.2.
Meanwhile, our technique is intrinsically capable
of yielding at least j tokens (1 < 5 < K + 1) for
each decoding step, this intrinsic capability fun-
damentally assures, in principle, an acceleration
of the decoding processes within the Large Lan-
guage Model (LLM), thereby enhancing the over-
all computational throughput and reducing latency.
The implementation of the two-stage process con-
fers upon the ANPD the ability to iteratively refine
draft outputs. Furthermore, this guarantees that
our ANPD method is lossless, maintaining consis-
tency with the original LLM’s generated content.
The detailed procedure of ANPD is presented in
Algorithm 1, with a comprehensive explanation
available in Appendix A.3.

13

Algorithm 1 Adaptive N-gram Parallel Decoding

1: Input: prompt, K, M

2: Output: O

3: token_ids < TOKENIZER (prompt)

4: Memory < INITIALIZE(token_ids)

5: O« [],drafts <[]

6: pred < LLM(prompt)

7: drafts.append(pred|—1])

8: while length(O) < M do

9: token_ids.append(drafts[1])

10: O.append(token_ids[—1]), UPDATE(O[—1])
11: tmp_token_ids < token_ids[—N +1 :]
12: for k < 1to K do

13: tmp < tmp_token_ids|—N + k]
14: drafts.append(QUERY (tmp))

15: tmp_token_ids.append(drafts[—1])
16: end for

17: predicts < LLM(drafts)

18: for j < 2 to LENGTH(drafts) do

19: if drafts[j] == predicts[j — 1] then
20 O.append(drafts[j])
21: UPDATE(drafts[j])
22: token_ids.append(drafts[j])
23: else
24: break
25: end if
26: end for
27: if j == LENGTH(drafts) then
28: drafts < [predicts[j]]
29: else
30: drafts < [predicts[j — 1]]
31 end if

32: end while

3.2 Multi-Level N-gram

The predictive accuracy of the N-gram module is
known to correlate with V, larger IV values gen-
erally result in more accurate content predictions.
This effect is especially noticeable in settings with
the longer context of Language Model (LM) tasks,
where increasing N can markedly decrease the fre-
quency of prediction errors.

While a larger N tends to improve the predictive
accuracy of the N-gram module, it may not always
result in a successful match during the Query oper-
ation. To address this, we propose the Multi-Level
N-gram (MLN) approach, which is based on opti-
mal prefix matching. The MLN design initializes
N — 1 separate modules, each corresponding to an
n-gram module (n € [2, N]). During prediction,

Algorithm 2 Multi-Level N-gram

Input: tmp, N token_ids
Output: result
Memory <+ INITIALIZE(token_ids)
result < NULL
n<< N
while n > 2 do
pred < QUERY (query, n)
if pred # NULL then
result < pred
break
end if
n<—n—1
. end while
: return result

s A G S i s

—_ e e e
Rl A N

the query starts with the largest NV and proceeds to
lower n levels, stopping when a successful match
is found as shown in Algorithm 2.

4 Experiments

4.1 Implementation Details

We selected a diverse range of models, varying in
scale, architectural design, and training approaches,
to ensure a thorough evaluation, including LLaMA-
7B (Touvron et al., 2023a), LLaMA-2-7B (Touvron
et al., 2023b), ChatGLM3-6B (Du et al., 2022),
LLaMA-2-13B, CodeLLaMA-7B (Roziere et al.,
2023), CodeLLLaMA-13B, and instruction-tuned
variants such as Alpaca-7B and Alpaca-CNN/DM-
7B, fine-tuning details are provided in the Ap-
pendix A.4. We use one RTX-3090 GPU for all 7B
models, while the larger 13B models necessitate
four RTX-3090 GPUs and the accelerate? library.

4.2 Datasets & Metrics

To validate the effectiveness of our method in accel-
erating text generation for LLMs, we concentrated
on two tasks: text summarization and code gener-
ation, utilizing datasets such as CNN/Daily Mail
(CNN/DM) (Hermann et al., 2015), Extreme Sum-
marization (XSum) (Narayan et al., 2018), and the
HumanEval (Chen et al., 2021). For additional de-
tails on the evaluation settings, please see Appendix
A.5. We employ the speed-up ratio as the evalu-
ation metric, which is calculated by dividing the
inference time of the autoregressive process by the
inference time of the ANPD process, under identi-
cal conditions across all samples (For summariza-

“https://github.com/huggingface/accelerate

14

tion tasks, we use a sample size of 1000 to ensure
statistical significance, as recommended by (Zhang
et al., 2023a)). This metric intuitively demonstrates
the performance improvement in speed when using
the ANPD algorithm.

4.3 Main Results

In Table 1, we present a comparative analysis that
outlines the acceleration benefits for various mod-
els and datasets. We have selected (Zhang et al.,
2023a) for comparison. Not only are their experi-
mental datasets and models aligned with ours, but
their methodologies are also open-sourced to fa-
cilitate easy replication. The prompts used with
these models are comprehensively documented in
Appendix A.5 to facilitate further examination and
ensure the reproducibility of the results reported in
this paper.

As illustrated in Table 1, the ANPD algorithm
consistently accelerates inference across various
models, including the base LLM, the instruction-
fine-tuned Alpaca, and the model fine-tuned with
dataset-specific instructions, indicating its robust-
ness and efficiency in accelerating text generation.
Remarkably, for the LLaMA-7B model, ANPD can
speed up the inference speed over 2.0x, which is
still valid on LLaMA2. Our method achieves a
twofold (2.9088 x vs. 1.3293 x) increase in accel-
eration compared to (Zhang et al., 2023a) on the
LLaMA-2-13B. Despite the ChatGLM3 model hav-
ing a significantly larger vocabulary (nearly twice
that of LLaMA, the token/word ratio will be closer
to 1), our ANPD algorithm still achieves a speed-
up of 1.7046x and 1.6647x for CNN/DM and
XSum, respectively. In ChatGLM3, ANPD’s pre-
dictive mechanism primarily leverages the asso-
ciative relationships between phrases and individ-
ual words, rather than engaging in token-level pre-
dictions within the words themselves. So, ANPD
maintains robustness and consistently enhances in-
ference speeds across varied LLMs. Owing to the
presence of a high occurrence of correlated patterns
in code writing tasks, which significantly enhanced
the prediction accuracy of the ANPD algorithm.
The ANPD algorithm was able to achieve a sub-
stantial speed-up of 3.6665x on the HumanEval,
but (Zhang et al., 2023a) only has a speed-up of
1.6758x for CodeLLaMA-13B.

4.4 Ablation Study

We conduct an analysis of hyperparameters on CN-
N/DM dataset, focusing primarily on K and N. In

Model shot | CNN/DM | XSum
LLaMA-7B 1 2.7455x | 3.1195x
Alpaca-7B 0 2.5566x | 2.3022x
Alpaca-CNN/DM-7B 0 1.9481x | 2.0561x
LLaMA-2-13b (Zhang et al., 2023a) 1 1.3293x | 1.2801x
LLaMA-2-7B 1 2.8604x | 2.7973x
LLaMA-2-13B 1 2.9088x | 2.6063x
ChatGLM3-6B 0 1.7046x | 1.6647x
Model shot HumanEval
CodeLLaMA-13B (Zhang et al., 2023a) 0 1.6758x
CodeLLaMA-7B 0 3.5985x
CodeLLaMA-13B 0 3.6665x

Table 1: The comparison of acceleration effects on dif-
ferent models and datasets.

Figure 3, we set NV to 2, and perform a comparative
analysis of the parameter K. Our findings indicate
that increasing K contributes to a greater accelera-
tion effect, however, the acceleration gains plateau
when K lies within the range of 6 to 8.

201 —e— LLaMA-7B

- R
—#— Alpaca-TB /0//

—— Alpaca-CNN/DM-7B

1 2 3 4 5 6 7 8 9

Figure 3: Speed up ratio of LLM for different K.

Based on the experiment in Figure 3, we selected
6, 7, and 8 for K to conduct further hyperparameter
combination experiments, as illustrated in Figures 4
and 5. The experimental results indicate that the
Multi-Level N-gram (MLN) approach enhances in-
ferential speed as the parameter IV increases. How-
ever, beyond N = 5, further increments in N yield
no significant additional gains. Additionally, the ef-
fect of the parameter K on acceleration is relatively
stable; as shown in Figure 3, the acceleration effect
reaches a plateau within the range of 6 to 8 for
K. These findings are consistent across different
models with different N.

Based on the empirical evidence presented in
Figure 4 and Figure 5, a pragmatic choice for N
and K can be posited at N = 5 and K = 7 respec-
tively. The analogous experiments pertaining to
the HumanEval dataset have been relegated to Ap-
pendix A.6 for reference, similar conclusions can
also be observed in this dataset. While employing
the Multi-Level N-gram (MLN) has improved the
accuracy of draft predictions, we have also carried
out distinct experiments (Figure 10, Appendix A.6)

15

using N-gram modules without MLN, to demon-
strate that simply enlarging the value of IV is not
effective.

Specd up

Figure 4: Decoding speed up ratio of LLaMA-7B for
different K and N.

K

Figure 5: Decoding speed up ratio of Alpaca-CNN/DM-
7B for different K and .

4.5 Case Study

Figure 6 showcases a detailed example of the
ANPD inference process, utilizing the Alpaca-7B
model on a sample from the CNN/DM test set. The
Alpaca-7B model, which has been fine-tuned with
instructions, was chosen due to its broad applica-
bility in practical scenarios. In this example, the
ANPD algorithm is configured with N = 5 and
K =7, achieving a 2.19 x decoding speed-up com-
pared to the original autoregressive process, with
a draft text pass rate (Draft hit ratio, a) of 20.59%
in the LLM verification phase. Based on the hit
ratio, we can derive the theoretical upper bound of
acceleration as (o x K') + 1, we can calculate that
the theoretical speed-up is 2.44, as the loss caused
by implementation problems will be slightly higher
than the actual acceleration rate. The Figure 6
uses red underlines to represent a decoding step,
including drafting and verification, with the yellow
background indicating the beginning of one step.
Light blue and green backgrounds mark the draft

Model: Alpaca-7B Speed Up: 2.19x Draft hit ratio : 20.59%

that appropriately completes the request.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response

Instruction:

Summarize the following articles.

#i## Input:

Former Valencia striker Aritz Aduriz denied his old team victory with a last-gasp equaliser for Athletic Bilbao at
San Mames Stadium. Aduriz pounced in the 90th minute to secure a 1-1 draw after Valencia had been reduced to
10 men. Nicolas Otamendi had harshly received a straight red card eight minutes earlier for a high challenge, and
Valencia were unable to hold out in his absence. Athletic Bilbao

Response:

Former Valencia striker Aritz Aduriz scored a last-minute equaliser for Athletic/Bilbao to deny his former club

victory in a I-1 draw. Valencia were reduced tol10 men after Nicolas Otamendi was harshly sent off for a high

challenge, but Athletic Bilbag held on for a draw. Rodrigo De Paul had given Valencia the lead but Athletlc

Bilbao equahsed in the

Figure 6: Visualizing the step-by-step inference process of ANPD: An example from CNN/DM.

content that has passed verification. This example
demonstrates that inference acceleration primar-
ily benefits from the combination of names (e.g.,

_Athlet, ic, _Bil, ba, o), partial words(e.g., _har, sh,
ly), and phrases (e.g., _reduced, _to), aligning with
the motivation behind the ANPD algorithm. The
ANPD can quickly capture the association between
tokens and words based on this information, and
establish the prediction model, thus accelerating
the end-to-end decoding process.

4.6 User Friendly

As ANPD does not involve additional deep learn-
ing models or plug-in databases, it does not re-
quire complex initialization processes and envi-
ronment configuration installations. Consequently,
users can employ it directly and with great conve-
nience, as illustrated in Listing 1. We plan to re-
lease the associated open-source software packages
on GitHub’, making them accessible for everyone
to utilize and contribute to.

Listing 1: Python example
from anpd import anpd_llm

model = AutoModel.from_pretrain()
model = anpd_llm(model, n=5, k=7)
prompt = "Hello,World!"

result = model.gen (prompt)

*https://github.com/oujieww/ANPD

16

5 Conclusion

In this paper, we presented the ANPD algorithm, a
novel and lossless approach to accelerate the Large
Language Models (LLMs) inference. This algo-
rithm implements an adaptive N-gram modeling
strategy, reducing the necessity for large corpora
and eliminating the requirement to build an addi-
tional deep-learning draft language model. The
Multi-Level N-gram (MLN) strategy not only en-
hances draft output accuracy but also further boosts
efficiency. Our empirical studies across various
models and datasets validate the ANPD algorithm’s
effectiveness, with a remarkable peak acceleration
of up to 3.67x achieved. The ANPD algorithm
has demonstrated its potency as a powerful tool
for enhancing the efficiency of LLMs. As a plug-
and-play module, it enables more extensive and
pragmatic use of LLMs in various real-world con-
texts.

Future Works. We believe that ANPD can be
further enhanced in two key aspects:

1. Incorporating the specific characteristics of in-
dividual LLMs (e.g., LLaMA, ChatGLM) by
creating features tailored to different LLMs to
further accelerate the inference performance.

. Exploring the possibility of generating multi-
ple tokens in parallel during the LLMs verifi-
cation process to further accelerate the infer-
ence performance.

6 Acknowledgements

This research is supported by the National Key Re-
search and Development Program of China with
Grant ID 2018AAA0103203 and the Chengdu Sci-
ence and Technology Project with Grant ID 2022-
YFO05-02014-SN. This research is also supported
by Huawei MindSpore Team for providing some
experimental equipment, technical assistance and
experience sharing.

References

Radford Alec, Narasimhan Karthik, Salimans Tim, and
S Ilya. 2018. Improving language understanding
with unsupervised learning. Citado, 17:1-12.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-15. IEEE.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. 2023. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5910-5924.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2023. Rethinking the role of scale for in-context
learning: An interpretability-based case study at 66
billion scale.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

F Warren Burton. 1985. Speculative computation, par-
allelism, and functional programming. IEEE Trans-
actions on Computers, 100(12):1190-1193.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John

17

Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. 2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient llm inference.
arXiv preprint arXiv:2307.02628.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335.

Elias Frantar and Dan Alistarh. 2023. Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693-1701.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin
Wu, Xinying Song, Xiaodan Song, and Denny Zhou.
2022. Token dropping for efficient bert pretraining.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3774-3784.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W Mahoney, Amir Gholami,
and Kurt Keutzer. 2023. Speculative decoding with
big little decoder. In Thirty-seventh Conference on
Neural Information Processing Systems.

Jun Kong, Jin Wang, Liang-Chih Yu, and Xuejie Zhang.
2022. Accelerating inference for pretrained language
models by unified multi-perspective early exiting. In
Proceedings of the 29th International Conference on
Computational Linguistics, pages 4677-4686.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine

Learning, pages 22137-22176. PMLR.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
llm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning convolutional
neural networks for resource efficient inference. In
International Conference on Learning Representa-
tions.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

NVIDIA. 2023. Tensorrt-1lm: NVIDIA tensorrt for
large language models.

OpenAl. 2023. Gpt-4 technical report.

18

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456-17472.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages

31094-31116. PMLR.

Benjamin Frederick Spector and Christopher Re. 2023.
Accelerating llm inference with staged speculative
decoding. In Workshop on Efficient Systems for Foun-
dation Models@ ICML2023.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following Ilama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In International
conference on machine learning, pages 10347-10357.
PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and
Chitta Baral. 2023. Accelerating llama inference by
enabling intermediate layer decoding via instruction
tuning with lite.

Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and
Zhifang Sui. 2022. Speculative decoding: Lossless
speedup of autoregressive translation.

http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
https://github.com/NVIDIA/TensorRT-LLM/
https://github.com/NVIDIA/TensorRT-LLM/
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2310.18581
http://arxiv.org/abs/2310.18581
http://arxiv.org/abs/2310.18581

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023a. Inference with reference: Lossless ac-

celeration of large language models. arXiv preprint
arXiv:2304.04487.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris
Papailiopoulos, and Kangwook Lee. 2023b. Predic-
tive pipelined decoding: A compute-latency trade-off
for exact llm decoding. In Workshop on Efficient
Systems for Foundation Models@ ICML2023.

Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes,
Minjia Zhang, Cheng Li, and Yuxiong He. 2022.
Random-Itd: Random and layerwise token dropping
brings efficient training for large-scale transformers.
arXiv preprint arXiv:2211.11586.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based }
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023a. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv e-prints, pages arXiv—2205.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023b.
H _2 o: Heavy-hitter oracle for efficient generative
inference of large language models. arXiv preprint
arXiv:2306.14048.

A Appendix

A.1 Standard Autoregressive Decoding

Transformer-based LLMs use autoregressive de-
coding, taking text input (z1, ..., x4—1) to predict
the next token probability, p(x|x1, ..., z;—1). Ef-
ficiency is improved by caching past states as
p(ze|(k,v)1, ..., (k,v);—1). This is an autoregres-
sive process, LLM can only predict one token at
a time, as subsequent tokens are dependent on the
previous token.

19

Figure 7: A single decoding step latency of LLaMA-7B
is recorded with different K.

A.2 Parallel Decoding Analysis

Figure 7 evaluates the latency impact of processing
varying numbers of tokens in the parallel decod-
ing step while maintaining a constant prompt size
of 512 tokens in the key-value (KV) cache. The
results indicate that small increments in X do not
significantly affect latency. It provides the opportu-
nity to verify multiple draft tokens simultaneously
without incurring significant additional latency.

A.3 Algorithm Details

In Algorithm 1, the complete process of our ANPD
is demonstrated. The variable K denotes the length
of the draft output (draft steps), M signifies the
maximum length for LLM generation, and O is an
output list utilized for recording the token ids of the
generated tokens. The presented algorithm initiates
by utilizing a prompt to generate token ids, which
are then stored in the N-gram module Memory. As
delineated in line 6 of the pseudocode, the LLM
engages in the prefill phase to produce a valid token
prediction (pred). This token is essential for updat-
ing the output O, the Memory, and the draft array
drafts. The decoding initiates with the slicing of
the most recent N — 1 tokens from the complete
token ids (token_ids), these tokens are then uti-
lized as the input for the QU FRY in the decoding
loop, which spans from line 8 to the terminal line
of the algorithm. Throughout the draft generation
phase, the tokens within the draft are dynamically
updated by QU ERY . Subsequently, at line 17,
parallel decoding is applied to the drafts. This is
followed by a meticulous comparison of each token
in the draft against the predictions rendered by the
large language model (LLM) to ensure alignment
and consistency. The comparison process is halted
upon the detection of a divergence at the j draft
token. At this critical point, the procedure reverts to
the next token of the last consistent token provided

by the large language model (LLM) to commence a
new draft iteration. If the entire content of the draft
withstands verification, the final token predicted by
the LLM is then adopted to initiate the generation
of a new draft sequence.

A.4 Alpaca Train Details

We train the Alpaca-7B model followed by (Taori
et al., 2023). The training dataset employed
consists of approximately 52,000 instances, as
introduced in (Taori et al., 2023). For fine-
tuning the LLaMA-7b model, the learning rate
was set to 2 x 107°, with a batch size of 128,
across a total of 3 epochs. To facilitate ef-
fective training within the computational con-
straints, the gradient_accumulation_steps pa-
rameter was used. We used floatl6 for train-
ing, engaging the stage2 optimization of Deep-
Speed and enabling gradient_checkpointing on
one NVIDIA-A100 GPU.

In the case of Alpaca-CNN/DM-7B, we random
sample a subset of 30,000 data samples from the
CNN/DM trainset, following the alpaca template
provided by (Taori et al., 2023), as shown in Figure
8. Notably, the remaining training hyperparameters
are the same as Alpaca-7B, except the number of
epochs is 5.

Below is an instruction that
describes a task, paired with

o
— an input that provides

— further context. Write a

— response that appropriately
—~ completes the request.

##4# Instruction:
{instruction}

Input:
{input}

Response:

Figure 8: Alpaca template, the instruction is "Summa-
rize the following articles." in our experiments.

A.5 Evaluation

Our evaluation involved a 1-shot setup for non-
instruction tuned models and a 0-shot setting for
instruction-tuned models, both using ROUGE-2

20

scores to assess text summarization. For code gen-
eration, a 0-shot setting with pass@ 1 metrics was
employed. It is important to note that our approach
does not modify the fundamental output or com-
putational processes of existing Large Language
Models (LLMs), thereby preserving their inherent
performance capabilities. Therefore, we do not
conduct a detailed analysis of the accuracy in this
paper. For the 0-shot setting, the alpaca template
illustrated in Figure 8 is utilized for the summariza-
tion task. For the 1-shot setting, the input template
employed is depicted in Figure 9. Regarding the
use of CodeLLaMA for HuamnEval, we directly
enter the text corresponding to the prompt keyword
of the sample content, and corresponding instruc-
tions have been written for each sample.

Article: {shot_article}
Summary: {shot_summary}
Article: {article}
Summary:

Figure 9: 1-shot Template.

Our proposed ANPD maintains the integrity of
the original model’s predictive performance. As
delineated in Tables 2 and 3, we report the em-
pirical evaluation results on the widely-adopted
benchmarks CNN/DM and HumanEval, respec-
tively. Notwithstanding minor discrepancies in the
findings, these can be ascribed to a documented
caching anomaly in the issue?; nonetheless, their
influence on the overall efficacy of ANPD is negli-
gible.

Method shot | ANPD | CNN/DM
LLaMA-7B 1 8.66
LLaMA-7B 1 v 8.64
Alpaca-7B 0 10.84
Alpaca-7B 0 v 10.83

Alpaca-CNN/DM-7B | 0 17.16
Alpaca-CNN/DM-7B | 0 v 17.23
LLaMA-2-13B 1 10.58
LLaMA-2-13B 1 v 10.61
ChatGLM3-6B 0 14.60
ChatGLM3-6B 0 v 14.54

Table 2: The comparison of the ROUGE-2 for CN-
N/DM.

A.6

In the experiment shown in Figure 10, where the
Multi-Level N-gram (MLN) strategy was not uti-

Multi-Level N-gram

*https://github.com/huggingface/transformers/issues/25420

Method shot | ANPD | HumanEval
CodeLLaMA-7B 0 0.3109
CodeLLaMA-7B 0 v 0.3109

CodeLLaMA-13B | 0 0.3415
CodeLLaMA-13B | 0 v 0.3415

Table 3: The comparison of the Pass@ 1 for HumanEval.

Figure 10: The acceleration comparison of the ANPD
for different K and N, without MLN, using the
CodeLLaMA-7B.

lized, we reverted to testing the original N-gram
module. The results from this setting indicate that
merely increasing the N value—referring to the
length of the word sequences considered by the
model—does not lead to a faster inference process
in LLMs. This is primarily attributed to the fact
that a larger NV value results in fewer successful
matches during the Query phase. As the N-gram
sequences become longer, the likelihood of finding
an exact match in the database diminishes, which in
turn negates the potential gains in inference speed
from expanding the N-gram size.

2727277
ITIIIE}

Speed up

Figure 11: The acceleration comparison of the
ANPD for different K and N, with MLN, using the
CodeLLaMA-7B.

Figure 11 Experiments on hyperparameters K
and N using the CodeLLaMA model on Hu-
manEval. Empirical analyses suggest that the set-

21

ting, in which the N-gram length (V) is set to 5
and the number of top candidates (K) is set to 7,
leads to a marked improvement in performance.
This specific configuration yields an inference ac-
celeration close to 3.6 x faster than the baseline.
Furthermore, with a smaller N, as K increases, the
acceleration effect tends to reach convergence more
quickly.

A.7 More Models

We also conducted relevant experiments on
the original OPT model (Zhang et al., 2022)
and instruction-tuned Alpaca-OPT-6.7B download
from the huggingface®. The experimental results in
Table 4 further verify that the ANPD we proposed
has good robustness and can effectively accelerate
inference for different models.

‘ Model ‘ shot ‘ CNN/DM ‘ XSum ‘
OPT-6.7B 1 3.0948x | 3.3672x
Alpaca-OPT-6.7B | 0 3.0249x | 3.1442x

Table 4: The comparison of acceleration effects on OPT
models, N =5and K = 7.

A.8 Runtime Update

In Figure 12, we present an experimental compari-
son to assess the impact of synchronizing updates
to the N-gram module (denoted as Runtime Up-
date) during the decoding stage. The comparison
involved three distinct models based on LLaMA-
7B, evaluated on the CNN/DM dataset. The ex-
perimental results reveal that employing a runtime
update strategy enhances the acceleration of the in-
ference process. This finding indicates that during
inference, the content generated by LLLMs can ex-
hibit correlations that provide valuable guidance for
the generation of content in subsequent contexts,
underscoring the importance of dynamic updates
within the decoding process.

A.9 Details for Table 1

In Table 1, our ANPD method utilizes a standard-
ized configuration with N = 5 and K = 7. For
(Zhang et al., 2023a), we have selected K = 12,
based on the specifications detailed in both the
published paper and the open-source code. Addi-
tionally, for (Zhang et al., 2023a) the draft model
of the LLaMA-2-13b and CodeLLLaMA-13B is con-

Shttps://huggingface.co/Manuel030/alpaca-opt-6.7b

3.0
W Without Runtime Update
W With Runtime Update

Speed Up Ratio

Alpaca-7B Alpaca-CNN/DM-7B
Model Name

LLaMA-7B

Figure 12: The comparison of acceleration effects for
updating the N-gram module during decoding.

structed according to the parameters provided in
the open source content’.

®https://github.com/dilab-zju/ self-speculative-decoding

22

SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective
Depth Up-Scaling

Sanghoon Kim*', Dahyun Kim*, Chanjun Park*’, Wonsung Lee*’, Wonho Song*
Yunsu Kim*, Hyeonwoo Kim*, Yungi Kim, Hyeonju Lee, Jihoo Kim
Changbae Ahn, Seonghoon Yang, Sukyung Lee, Hyunbyung Park, Gyoungjin Gim
Mikyoung Cha, Hwalsuk Lee', Sunghun Kim'

Upstage Al, South Korea

{limerobot,

Abstract

We introduce SOLAR 10.7B, a large language
model (LLM) with 10.7 billion parameters,
demonstrating superior performance in various
natural language processing (NLP) tasks. In-
spired by recent efforts to efficiently up-scale
LLMs, we present a method for scaling LLMs
called depth up-scaling (DUS), which encom-
passes depthwise scaling and continued pre-
training. In contrast to other LLM up-scaling
methods that use mixture-of-experts, DUS does
not require complex changes to train and infer-
ence efficiently. We show experimentally that
DUS is simple yet effective in scaling up high-
performance LLMs from small ones. Building
on the DUS model, we additionally present SO-
LAR 10.7B-Instruct, a variant fine-tuned for
instruction-following capabilities, surpassing
Mixtral-8x7B-Instruct. SOLAR 10.7B is pub-
licly available under the Apache 2.0 license,
promoting broad access and application in the
LLM field .

1 Introduction

The field of natural language processing (NLP)
has been significantly transformed by the introduc-
tion of large language models (LLMs), which have
enhanced our understanding and interaction with
human language (Zhao et al., 2023). These ad-
vancements bring challenges such as the increased
need to train ever larger models (Rae et al., 2021;
Wang et al., 2023; Pan et al., 2023; Lian, 2023;
Yao et al., 2023; Gesmundo and Maile, 2023) ow-
ing to the performance scaling law (Kaplan et al.,
2020; Hernandez et al., 2021; Anil et al., 2023;
Kaddour et al., 2023). To efficiently tackle the
above, recent works in scaling language models
such as a mixture of experts (MoE) (Shazeer et al.,
2017; Komatsuzaki et al., 2022) have been pro-
posed. While those approaches are able to effi-
*Equal Contribution T Corresponding Author

"https://huggingface.co/upstage/
SOLAR-10.7B-v1.0

kdahyun, chanjun.park, wonsung.lee,

23

hwalsuk.lee, hunkim}Q@upstage.ai

ciently and effectively scale-up LLMs, they often
require non-trivial changes to the training and infer-
ence framework (Gale et al., 2023), which hinders
widespread applicability. Effectively and efficiently
scaling up LLMs whilst also retaining the simplic-
ity for ease of use is an important problem (Alberts
et al., 2023; Fraiwan and Khasawneh, 2023; Sallam
et al., 2023; Bahrini et al., 2023).

Inspired by Komatsuzaki et al. (2022), we
present depth up-scaling (DUS), an effective and
efficient method to up-scale LLMs whilst also re-
maining straightforward to use. DUS consists of
scaling the number of layers in the base model and
continually pretraining the scaled model. Unlike
(Komatsuzaki et al., 2022), DUS does not scale
the model using MoE and rather use a depthwise
scaling method analogous to Tan and Le (2019)
which is adapted for the LLM architecture. Thus,
there are no additional modules or dynamism as
with MoE, making DUS immediately compatible
with easy-to-use LLM frameworks such as Hug-
gingFace (Wolf et al., 2019) with no changes to
the training or inference framework for maximal
efficiency. Furthermore, DUS is applicable to all
transformer architectures, opening up new gate-
ways to effectively and efficiently scale-up LLMs
in a simple manner. Using DUS, we release SO-
LAR 10.7B, an LLM with 10.7 billion parameters,
that outperforms existing models like Llama 2 (Tou-
vron et al., 2023) and Mistral 7B (Jiang et al., 2023)
in various benchmarks.

We have also developed SOLAR 10.7B-Instruct,
a variant fine-tuned for tasks requiring strict adher-
ence to complex instructions. It significantly out-
performs the Mixtral-8x7B-Instruct model across
various evaluation metrics, evidencing an advanced
proficiency that exceeds the capabilities of even
larger models in terms of benchmark performance.

By releasing SOLAR 10.7B under the Apache
2.0 license, we aim to promote collaboration and in-
novation in NLP. This open-source approach allows

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 23-35
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://huggingface.co/upstage/SOLAR-10.7B-v1.0
https://huggingface.co/upstage/SOLAR-10.7B-v1.0

Step 1-1 Step 1-2

Merge
8 Layers

Copy @

—

32 Layers 32 Layers

24 Layers

Step 1. Depthwise Scaling

24 Layers 24 Layers

P---mmmmmmns) > BEEIEES

Continued

8 Layers

Pretraining
24 Layers

Step 2. Continued Pretraining

Figure 1: Depth up-scaling for the case with n = 32, s = 48, and m = 8. Depth up-scaling is achieved through a
dual-stage process of depthwise scaling followed by continued pretraining.

for wider access and application of these models
by researchers and developers globally.

2 Depth Up-Scaling

To efficiently scale-up LLMs, we aim to utilize pre-
trained weights of base models to scale up to larger
LLMs (Komatsuzaki et al., 2022). While exist-
ing methods such as Komatsuzaki et al. (2022) use
MOoE (Shazeer et al., 2017) to scale-up the model ar-
chitecture, we opt for a different depthwise scaling
strategy inspired by Tan and Le (2019). We then
continually pretrain the scaled model as just scaling
the model without further pretraining degrades the
performance.

Base model. Any n-layer transformer architec-
ture can be used but we select the 32-layer Llama
2 architecture as our base model. We initialize the
Llama 2 architecture with pretrained weights from
Mistral 7B, as it is one of the top performers com-
patible with the Llama 2 architecture. By adopting
the Llama 2 architecture for our base model, we
aim to leverage the vast pool of community re-
sources while introducing novel modifications to
further enhance its capabilities.

Depthwise scaling. From the base model with n
layers, we set the target layer count s for the scaled
model, which is largely dictated by the available
hardware.

With the above, the depthwise scaling process
is as follows. The base model with n layers is
duplicated for subsequent modification. Then, we
remove the final m layers from the original model
and the initial m layers from its duplicate, thus
forming two distinct models with n — m layers.
These two models are concatenated to form a scaled
model with s = 2-(n—m) layers. Note that n = 32
from our base model and we set s = 48 considering

our hardware constraints and the efficiency of the
scaled model, i.e., fitting between 7 and 13 billion
parameters. Naturally, this leads to the removal of
m = 8 layers. The depthwise scaling process with
n = 32,s = 48, and m = 8 is depicted in ‘Step 1:
Depthwise Scaling’ of Fig. 1.

We note that a method in the community that also
scale the model in the same manner 2 as ‘Step 1:
Depthwise Scaling’ of Fig. 1 has been concurrently
developed.

Continued pretraining. The performance of the
depthwise scaled model initially drops below that
of the base LLM. Thus, we additionally apply
the continued pretraining step as shown in ‘Step
2: Continued Pretraining’ of Fig. 1. Experimen-
tally, we observe rapid performance recovery of
the scaled model during continued pretraining, a
phenomenon also observed in Komatsuzaki et al.
(2022). We consider that the particular way of
depthwise scaling has isolated the heterogeneity
in the scaled model which allowed for this fast
performance recovery.

Delving deeper into the heterogeneity of the
scaled model, a simpler alternative to depthwise
scaling could be to just repeat its layers once more,
i.e., from n to 2n layers. Then, the ‘layer distance’,
or the difference in the layer indices in the base
model, is only bigger than 1 where layers n and
n + 1 are connected, i.e., at the seam.

However, this results in maximum layer distance
at the seam, which may be too significant of a
discrepancy for continued pretraining to quickly
resolve. Instead, depthwise scaling sacrifices the
2m middle layers, thereby reducing the discrep-
ancy at the seam and making it easier for continued

https://huggingface.co/Undi95/
Mistral-11B-v0.1

24

https://huggingface.co/Undi95/Mistral-11B-v0.1
https://huggingface.co/Undi95/Mistral-11B-v0.1

Training Datasets

Properties Instruction Alignment
Alpaca-GPT4 OpenOrca Synth. Math-Instruct Orca DPO Pairs Ultrafeedback Cleaned ~Synth. Math-Alignment
Total # Samples 52K 291M 126K 12.9K 60.8K 126K
Maximum # Samples Used 52K 100K 52K 12.9K 60.8K 20.1K
Open Source O O X (0] (6] X

Table 1: Training datasets used for the instruction and alignment tuning stages, respectively. For the instruction
tuning process, we utilized the Alpaca-GPT4 (Peng et al., 2023), OpenOrca (Mukherjee et al., 2023), and Synth.
Math-Instruct datasets, while for the alignment tuning, we employed the Orca DPO Pairs (Intel, 2023), Ultrafeedback
Cleaned (Cui et al., 2023; Ivison et al., 2023), and Synth. Math-Alignment datasets. The ‘Total # Samples‘ indicates
the total number of samples in the entire dataset. The ‘Maximum # Samples Used* indicates the actual maximum
number of samples that were used in training, which could be lower than the total number of samples in a given
dataset. ‘Open Source* indicates whether the dataset is open-sourced.

pretraining to quickly recover performance. We
attribute the success of DUS to reducing such dis-
crepancies in both the depthwise scaling and the
continued pretraining steps. We also hypothesize
that other methods of depthwise scaling could also
work for DUS, as long as the discrepancy in the
scaled model is sufficiently contained before the
continued pretraining step.

Comparison to other up-scaling methods. Un-
like Komatsuzaki et al. (2022), depthwise scaled
models do not require additional modules like gat-
ing networks or dynamic expert selection. Conse-
quently, scaled models in DUS do not necessitate
a distinct training framework for optimal training
efficiency, nor do they require specialized CUDA
kernels for fast inference. A DUS model can seam-
lessly integrate into existing training and inference
frameworks while maintaining high efficiency.

3 Training Details

After DUS, including continued pretraining, we
perform fine-tuning of SOLAR 10.7B in two stages:
1) instruction tuning and 2) alignment tuning.

Instruction tuning. In the instruction tuning
stage, the model is trained to follow instructions in
a QA format (Zhang et al., 2023). We mostly use
open-source datasets but also synthesize a math QA
dataset to enhance the model’s mathematical capa-
bilities. A rundown of how we crafted the dataset is
as follows. First, seed math data are collected from
the Math (Hendrycks et al., 2021) dataset only, to
avoid contamination with commonly used bench-
mark datasets such as GSM8K (Cobbe et al., 2021).
Then, using a process similar to MetaMath (Yu
et al., 2023), we rephrase the questions and an-
swers of the seed math data. We use the resulting
rephrased question-answer pairs as a QA dataset

25

and call it ‘Synth. Math-Instruct®.

Alignment tuning. In the alignment tuning stage,
the instruction-tuned model is further fine-tuned
to be more aligned with human or strong Al
(e.g., GPT4 (OpenAl, 2023)) preferences using
sDPO (Kim et al., 2024a), an improved version
of direct preference optimization (DPO) (Rafailov
et al., 2023). Similar to the instruction tuning stage,
we use mostly open-source datasets but also syn-
thesize a math-focused alignment dataset utilizing
the ‘Synth. Math-Instruct* dataset mentioned in the
instruction tuning stage.

The alignment data synthesis process is as
follows. We take advantage of the fact that
the rephrased question-answer pairs in Synth.
Math-Instruct data are beneficial in enhancing the
model’s mathematical capabilities (see Sec. 4.3.1).
Thus, we speculate that the rephrased answer to the
rephrased question is a better answer than the orig-
inal answer, possibly due to the interim rephrasing
step. Consequently, we set the rephrased question
as the prompt and use the rephrased answer as the
chosen response and the original answer as the re-
jected response and create the {prompt, chosen,
rejected} DPO tuple. We aggregate the tuples from
the rephrased question-answer pairs and call the
resulting dataset ‘Synth. Math-Alignment‘.

4 Results

4.1 Experimental Details

Training datasets. We present details regarding
our training datasets for the instruction and align-
ment tuning stages in Tab. 1. We do not always
use the entire dataset and instead subsample a set
amount. Note that most of our training data is
open-source, and the undisclosed datasets can be
substituted for open-source alternatives such as the

Model Size Type H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
SOLAR 10.7B-Instruct ~ 11B Alignment-tuned 74.20 71.08 88.16 66.21 71.43 83.58 64.75
Qwen 72B ~72B Pretrained 73.60 65.19 85.94 77.37 60.19 82.48 70.43
Mixtral 8x7B-Instruct-v0.1 ~ ~ 47B Instruction-tuned 72.62 70.22 87.63 71.16 64.58 81.37 60.73
Yi 34B-200K ~ 34B Pretrained 70.81 65.36 85.58 76.06 53.64 82.56 61.64
Yi 34B ~ 34B Pretrained 69.42 64.59 85.69 76.35 56.23 83.03 50.64
Mixtral 8x7B-v0.1 ~47B Pretrained 68.42 66.04 86.49 71.82 46.78 81.93 57.47
Llama 2 70B ~ 70B Pretrained 67.87 67.32 87.33 69.83 44.92 83.74 54.06
Falcon 180B ~ 180B Pretrained 67.85 69.45 88.86 70.50 45.47 86.90 45.94
SOLAR 10.7B ~11B Pretrained 66.04 61.95 84.60 65.48 45.04 83.66 55.50
Qwen 14B ~ 14B Pretrained 65.86 58.28 83.99 67.70 49.43 76.80 58.98
Mistral 7B-Instruct-v0.2 ~ 7B Instruction-tuned 65.71 63.14 84.88 60.78 68.26 77.19 40.03
Yi 34B-Chat ~34B Instruction-tuned 65.32 65.44 84.16 74.90 55.37 80.11 31.92
Mistral 7B ~ 7B Pretrained 60.97 59.98 83.31 64.16 42.15 78.37 37.83

Table 2: Evaluation results in the Open LLM Leaderboard for SOLAR 10.7B and SOLAR 10.7B-Instruct along with
other top-performing models. We report the scores for the six tasks mentioned in Sec. 4.1 along with the H6 score
(average of six tasks). We also report the size of the models in units of billions of parameters. The type indicates the
training stage of the model and is chosen from {Pretrained, Instruction-tuned, Alignment-tuned}. Models based on
SOLAR 10.7B are colored purple. The best scores for H6 and the individual tasks are shown in bold.

MetaMathQA (Yu et al., 2023) dataset.

We reformatted the instruction datasets with an
Alpaca-styled chat template. For datasets such as
OpenOrca, which are derived from FLAN (Long-
pre et al., 2023), we filter data that overlaps with
the benchmark datasets (see Tab. 8 in Appendix. C
for more information). The alignment datasets
are in the {prompt, chosen, rejected} triplet for-
mat. We preprocess the alignment datasets follow-
ing Zephyr (Tunstall et al., 2023). We use Data-
verse (Park et al., 2024) for data preprocessing.

Evaluation. In the HuggingFace Open LLM
Leaderboard (Beeching et al., 2023), six types of
evaluation methods are presented: ARC (Clark
et al., 2018), HellaSWAG (Zellers et al., 2019),
MMLU (Hendrycks et al., 2020), Truthful QA (Lin
et al., 2022), Winogrande (Sakaguchi et al., 2021),
and GSMS8K (Cobbe et al., 2021). We utilize these
datasets as benchmarks for evaluation and also re-
port the average scores for the six tasks, e.g., H6.
We either submit directly to the Open LLM Leader-
board or utilize Evalverse (Kim et al., 2024b) for
running evaluations locally.

Model merging. Model merging methods such
as Yadav et al. (2023) can boost model perfor-
mance without further training. We merge some
of the models that we trained in both the instruc-
tion and alignment tuning stages. We implement
our own merging methods although popular open
source also exist such as MergeKit>.

4.2 Main Results

We present evaluation results for our SOLAR
10.7B and SOLAR 10.7B-Instruct models along

*https://github.com/cgl23/mergekit

26

with other top-performing models in Tab. 2. SO-
LAR 10.7B outperforms other pretrained models
of similar sizes, such as Qwen 14B and Mistral
7B, which shows that DUS is an effective method
to up-scale base LLMs. Furthermore, despite the
smaller size, SOLAR 10.7B-Instruct scores the
highest in terms of H6, even surpassing the recent
top-performing open-source LLM Mixtral 8x7B-
Instruct-v0.1 or Qwen 72B. The above results indi-
cate DUS can up-scale models that are capable of
achieving state-of-the-art performance when fine-
tuned. We also report data contamination results
for SOLAR 10.7B-Instruct in Appendix C.

4.3 Ablation Studies

We present ablation studies for both the instruction
and alignment tuning stages. Note that the evalua-
tion results for the following studies are ran locally
and may vary from results obtained by submitting
to the Open LLLM Leaderboard.

4.3.1 Instruction Tuning

Ablation on the training datasets. We present
ablation studies using different training datasets
for the instruction tuning in Tab. 3. The ablated
models are prefixed with SFT for supervised fine-
tuning. ‘SFT v1’ only uses the Alpaca-GPT4
dataset, whereas ‘SFT v2’ also uses the OpenOrca
dataset. ‘SFT v3’ uses the Synth. Math-Instruct
dataset along with the datasets used in ‘SFT v2’.
Similarly, ‘SFT v4’ uses the Synth. Math-Instruct
dataset along with the datasets used in ‘SFT v1’.
First, we analyze how Alpaca-GPT4 and
OpenOreca affect the trained models. The first ab-
lated model, ‘SFT v1’, which used only the Alpaca-
GPT4 dataset for training, resulted in 69.15 for H6.

https://github.com/cg123/mergekit

Model Alpaca-GPT4 OpenOrca Synth. Math-Instruct H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSMSK

SFT vl (6] X X 69.15 67.66 86.03 65.88 60.12 82.95 52.24
SFT v2 (6] O X 69.21 65.36 85.39 65.93 58.47 82.79 57.32
SFT v3 (6] (0] (0] 70.03 65.87 85.55 65.31 57.93 81.37 64.14
SFT v4 (6] X (0] 70.88 67.32 85.87 65.87 58.97 82.48 64.75
SFT v3 + v4 (6] O O 71.11 67.32 85.96 65.95 58.80 82.08 66.57

Table 3: Ablation studies on the different datasets used for instruction tuning. ‘SFT v3+v4’ indicates that the model
is merged from ‘SFT v3’ and ‘SFT v4’ by simply averaging the model weights. The best scores for H6 and the
individual tasks are shown in bold.

Model Ultrafeedback Clean ~ Synth. Math-Alignment H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSMS8K
DPO vl (0] X 73.06 71.42 88.49 66.14 72.04 81.45 58.83
DPO v2 (0] (6] 73.42 71.50 88.28 65.97 71.71 82.79 60.27
DPO vI +v2 (0] (6] 73.21 71.33 88.36 65.92 72.65 82.79 58.23

Table 4: Ablation studies on the different datasets used during the direct preference optimization (DPO) stage.
‘SFT v3’ is used as the SFT base model for DPO. We name ablated models with the ‘DPO’ prefix to indicate the
alignment tuning stage. ‘DPO v1+v2’ indicates that the model is merged from ‘DPO v1’ and ‘DPO v2’ by simply
averaging the model weights. The best scores for H6 and the individual tasks are shown in bold.

Model Base SFT Model H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSMS8SK

DPO v2 SFT v3 73.42 71.50 88.28 65.97 71.71 82.79 60.27
DPO v3 SFT v3 + v4 73.58 71.33 88.08 65.39 72.45 81.93 62.32

Table 5: Ablation studies on the different SFT base models used during the direct preference optimization (DPO)
stage. Ultrafeedback Clean and Synth. Math-Alignment datasets are used. We name ablated models with the ‘DPO’
prefix to indicate the alignment tuning stage. The best scores for H6 and the individual tasks are shown in bold.

When we add the OpenOrca dataset to train the and without OpenOrca. To our surprise, the result-
second ablated model, ‘SFT v2’, the resulting H6 ing merged model ‘SFT v3+v4’ retains the high
score is 69.21, which is little change from 69.15 of scores for non-GSMS8K tasks from ‘SFT v4’ but
‘SFT v1’. However, the task scores vary more as also achieves a higher GSM8K score than ‘SFT v3’
‘SFT v2’ gets a substantially higher GSM8K score or ‘SFT v4’. Thus, we see that merging models
of 57.32 compared to 52.24 of ‘SFT v1’ but also that specialize in different tasks is a promising way
gets noticeably lower scores across the board for to obtain a model that performs well generally.

ARC, HellaSwag, and Truthful QA. This seems to
indicate that using OpenOrca results in a model that
behaves differently from using only Alpaca-GPT4. As we utilize sDPO for practical alignment tun-
ing, there are additional aspects to ablate such as
the SFT base models used. Thus, we present ab-
lations for the different training datasets used for
training, the different SFT base models to initialize
the sDPO training, and finally, the model merging
strategy to obtain the final alignment-tuned model.

4.3.2 Alignment Tuning

Second, we investigate whether Synth. Math-
Instruct dataset is beneficial. For ‘SFT v3’, we
add the Synth. Math-Instruct dataset, which boosts
GSMBSK scores to 64.14 and achieves comparable
scores for the other tasks. Interestingly, when we
add the Synth. Math-Instruct dataset to ‘SFT v1’

to train SFT v4’, we get our highest H6 score of Ablation on the training datasets. We ablate on
70.88 with higher scores than “SFT VB_’, for all tasks. the different alignment datasets used during DPO
From the above, we ce.ln see that adding the Synth. in Tab. 4. We use ‘SET v3’ as the SET base model
Math-Instruct dataset is helpful. for DPO. ‘DPO v1’ only uses the Ultrafeedback
Lastly, we see whether merging models trained Clean dataset while ‘DPO v2’ also used the Synth.
with and without OpenOrca can boost performance. ~ Math-Alignment dataset.
In the first analysis, we saw that using OpenOrca re- First, we test how Ultrafeedback Clean and
sulted in a model that behaved differently from the =~ Synth. Math-Alignment impacts model perfor-
model that was trained without OpenOrca. Build- mance. For ‘DPO v1’, it achieves 73.06 in H6,
ing on this intuition, we merge ‘SFT v3’ and ‘SFT which is a substantial boost from the SFT base
v4’ as they are the best-performing models with model score of 70.03. However, we note that while

27

Model H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSMS8K
Cand. 1 73.73 70.48 87.47 65.73 70.62 81.53 66.57
Cand. 2 73.28 71.59 88.39 66.14 72.50 81.99 59.14

Table 6: Performance comparison amongst the merge candidates. ‘Cand. 1’ and ‘Cand. 2’ are trained using the
same setting as ‘DPO v2’ and ‘DPO v3’, respectively, but with slightly different hyper-parameters. The best scores

for H6 and the individual tasks are shown in bold.

Model Merge Method ~ H6 (Avg.) ARC HellaSwag MMLU TruthfulQA Winogrande GSMSK
Merge vl Average (0.5, 0.5) 74.00 71.16 88.01 66.14 71.71 82.08 64.90
Merge v2 Average (0.4, 0.6) 73.93 71.08 88.08 66.27 71.89 81.77 64.52
Merge v3 Average (0.6, 0.4) 74.05 71.08 87.88 66.13 71.61 82.08 65.50
Merge v4 SLERP 73.96 71.16 88.03 66.25 71.79 81.93 64.59

Table 7: Ablation studies on the different merge methods used for obtaining the final model. We use ‘Cand. 1’
and ‘Cand. 2’ from Tab. 6 as our two models for merging. We name the merged models with the ‘Merge’ prefix to
indicate they are merged. The best scores for H6 and the individual tasks are shown in bold.

scores for tasks like ARC, HellaSwag, and Truth-
fulQA all improved by good margins, the score
for GSMS8K is 58.83, which is lower than the
SFT base model score of 64.14. Adding Synth.
Math-Alignment to train ‘DPO v2’, we see that
the GSMB8k score improves to 60.27, which is
lower than the SFT base model but still higher
than ‘DPO v1’. Other task scores are also not nega-
tively impacted by adding Synth. Math-Alignment.
Thus, we can conclude that adding Synth. Math-
Alignment is beneficial for H6.

Then, we experiment whether merging ‘DPO
vl’ and ‘DPO v2’ is beneficial. Unfortunately,
‘DPO v1+v2’ scores 73.21 in H6, which is worse
than ‘DPO v2’. More importantly, the gain in
the GSMS8K score from adding Synth. Math-
Alignment is gone, which is undesirable. One
reason for this could be that ‘DPO v2’ is a strict
improvement over ‘DPO v1’, unlike the case for
merging ‘SFT v3’ and ‘SFT v4” where the models
had different strengths and weaknesses.

Ablation on the SFT base models. When ap-
plying DPO, we start from a model that is already
instruction tuned ,i.e., the SFT base model and ab-
late on using different SFT base models. We use
Ultrafeedback Clean and Synth. Math-Alignment
datasets for this ablation. Each of the ablated mod-
els is trained as follows. ‘DPO v2’ uses ‘SFT v3’
as the base SFT model, while ‘DPO v3’ uses ‘SFT
v3+v4’ as the SFT base model instead.

Note that ‘SFT v3+v4’ has higher scores on all
tasks compared to ‘SFT v3’, and the gap is espe-
cially large for ARC (+1.45) and GSM8K (+2.43).
Surprisingly, the two models perform similarly in
terms of H6. A closer look at the scores for the

28

individual tasks shows only a small margin in the
GSMBSK scores, and other task scores show little
difference. Thus, the performance gaps in certain
tasks in the SFT base models do not always carry
over to the alignment-tuned models.

Ablation on different merge methods. From
Tab. 3, we saw that merging two models that have
different strengths can be beneficial to performance.
To utilize this for the alignment-tuned model as
well, we train two models named ‘Cand. 1’ and
‘Cand. 2’ using the same training dataset and SFT
base model as ‘DPO v2’ and ‘DPO v3’ but with dif-
ferent hyper-parameters to maximize each model’s
respective strengths. We compare ‘Cand. 1’ and
‘Cand. 2’ in Tab. 6 where we can see that ‘Cand. 1’
has high GSM8K scores but relatively low scores
for the other tasks, whereas ‘Cand. 2’ has low
scores for GSM8K but high scores for the other
tasks. We merge these two models using various
methods and ablate the results in Tab.. 7.

We use two merge methods: 1) Average (a, b),
where a and b denote the weighting for ‘Cand.
1’ and ‘Cand. 2’ when averaging weights and 2)
SLERP (Shoemake, 1985). We use (0.5, 0.5), (0.4,
0.6), and (0.6, 0.4) for Average (a, b). From Tab. 7,
we can see that the different merge methods have
little effect on the H6 scores. The scores for the
individual tasks also do not differ by much, suggest-
ing that as long as the merge candidates have suffi-
ciently different strengths, the exact merge method
may not be as crucial. Thus, we chose ‘Merge v1’
as our SOLAR 10.7B-Instruct model.

5 Conclusion

We introduce SOLAR 10.7B and its fine-tuned vari-
ant SOLAR 10.7B-Instruct, which are depth up-
scaled (DUS) models with 10.7 billion parameters4.
They show superior performance over models like
Llama 2, Mistral 7B, and Mixtral-7B-Instruct in es-
sential NLP tasks while maintaining computational
efficiency. Thus, DUS is effective in scaling-up
highly performant LLMs from smaller ones. With
more exploration, DUS could be further improved,
paving a new path to efficiently scaling LLMs.

Acknowledgements

We would like to extend our gratitude to the teams
at Hugging Face, particularly Clémentine Four-
rier, Lewis Tunstall, Omar Sanseviero, and Philipp
Schmid. Our appreciation also extends to the
teams at AWS, notably Rahul Sharma, Jeongwon
Yoon, Nieves Garcia, Ritesh Vajaria, Gal Oshri, Jay
Kwon, Brandon Lee and Effie Bae. We are grateful
to the teams at Korea Telecom (KT), especially Jin
Hyoung Lee, Jungsuk Park, Sungjoon Park, Hong-
rae Wang, Kyeongsoo Jung, and Sunyoong Yoon,
whose significant support has been instrumental in
ensuring the broad compatibility of our model. Ad-
ditionally, we would like to extend our thanks to the
open community for their invaluable contributions
and feedback.

Limitations

Our study on the Depth Up-Scaling (DUS) has im-
portant limitations and considerations. One key
limitation is the need for more thorough explo-
rations of hyperparameters used in the DUS ap-
proach. Namely, we removed m = 8 layers from
both ends of our base model, primarily due to hard-
ware limitations. However, we have not yet deter-
mined if this value is optimal for enhancing perfor-
mance. The extended time and cost of continued
pretraining made it challenging to conduct more
comprehensive experiments, which we aim to ad-
dress in future work through various comparative
analyses.

In terms of the model’s broader implications,
there are several points to note. The model’s sig-
nificant computational demands for training and
inference might limit its use, especially for those
with restricted computational resources. Addition-

*Preprint version is available on https://arxiv.
org/abs/2312.15166.

29

ally, like all machine learning models, it is vulnera-
ble to biases in its training data, which could lead
to skewed outcomes in certain situations. Further-
more, the substantial energy consumption required
for training and operating the model raises environ-
mental concerns, which are critical in the pursuit
of sustainable Al development.

Lastly, while the fine-tuned variant of the model
shows improved performance in following instruc-
tions, it still requires task-specific fine-tuning for
optimal performance in specialized applications.
This fine-tuning process can be resource-intensive
and not always effective. Recognizing and address-
ing these limitations is essential for a comprehen-
sive understanding of the proposed Large Language
Model’s capabilities and for guiding future research
and development in the field of LLMs.

Ethics Statement

We conscientiously address and emphasize the
commitment of SOLAR 10.7B in maintaining the
highest ethical standards. First, we highlight that
SOLAR 10.7B-Instruct has shown low levels of
data contamination in our evaluations, a testament
to our rigorous data handling and processing pro-
tocols. This aspect is crucial, as it underpins the
reliability and integrity of the results obtained from
SOLAR.

Furthermore, during the course of our experi-
ments, we ensured that all setups and methodolo-
gies employed steer clear of any potential ethical
pitfalls. This preemptive consideration and avoid-
ance of ethically questionable practices underscore
our dedication to conducting research that is not
only innovative but also responsible.

Additionally, we ensure that SOLAR complies
with general ethical considerations in all aspects
of its operation. This includes adherence to pri-
vacy norms, respect for intellectual property, and
ensuring the absence of bias in our algorithms. Our
commitment to these ethical principles is unwaver-
ing, and we believe it significantly contributes to
the credibility and societal acceptance of SOLAR.

In conclusion, the ethical framework within
which SOLAR operates is robust and comprehen-
sive, ensuring that our advancements in this field
are not only scientifically sound but also ethically
responsible.

https://arxiv.org/abs/2312.15166
https://arxiv.org/abs/2312.15166

References

Ian L Alberts, Lorenzo Mercolli, Thomas Pyka, George
Prenosil, Kuangyu Shi, Axel Rominger, and Ali
Afshar-Oromieh. 2023. Large language models
(llm) and chatgpt: what will the impact on nuclear
medicine be? European journal of nuclear medicine
and molecular imaging, 50(6):1549-1552.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Aram Bahrini, Mohammadsadra Khamoshifar, Hos-
sein Abbasimehr, Robert J Riggs, Maryam Esmaeili,
Rastin Mastali Majdabadkohne, and Morteza Pase-
hvar. 2023. Chatgpt: Applications, opportunities,
and threats. In 2023 Systems and Information Engi-
neering Design Symposium (SIEDS), pages 274-279.
IEEE.

Edward Beeching, Clémentine Fourrier, Nathan
Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and
Thomas Wolf. 2023. Open llm leaderboard.
https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Ger-
stein, and Arman Cohan. 2023. Investigating data
contamination in modern benchmarks for large lan-
guage models. arXiv preprint arXiv:2311.09783.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

30

Mohammad Fraiwan and Natheer Khasawneh. 2023. A
review of chatgpt applications in education, market-
ing, software engineering, and healthcare: Benefits,
drawbacks, and research directions. arXiv preprint
arXiv:2305.00237.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei
Zaharia. 2023. Megablocks: Efficient sparse training
with mixture-of-experts. Proceedings of Machine
Learning and Systems, 5.

Andrea Gesmundo and Kaitlin Maile. 2023. Compos-
able function-preserving expansions for transformer
architectures. arXiv preprint arXiv:2308.06103.

Shahriar Golchin and Mihai Surdeanu. 2023. Time
travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, et al. 2023. Tutel: Adaptive
mixture-of-experts at scale. Proceedings of Machine
Learning and Systems, 5.

Intel. 2023. Supervised fine-tuning and direct prefer-
ence optimization on intel gaudi2.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale
Minervini, and Matt J Kusner. 2023. No train no
gain: Revisiting efficient training algorithms for
transformer-based language models. arXiv preprint
arXiv:2307.06440.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://medium.com/intel-analytics-software/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3
https://medium.com/intel-analytics-software/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702

Scaling laws for neural language models. arXiv

preprint arXiv:2001.08361.

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo
Kim, Yunsu Kim, Sanghoon Kim, and Chanjun Park.
2024a. sdpo: Don’t use your data all at once.

Jihoo Kim, Wonho Song, Dahyun Kim, Yunsu Kim,
Yungi Kim, and Chanjun Park. 2024b. Evalverse:
Unified and accessible library for large language
model evaluation.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby.
2022. Sparse upcycling: Training mixture-of-
experts from dense checkpoints. arXiv preprint
arXiv:2212.05055.

Wing Lian. 2023. https://huggingface.co/
winglian/omega-3b.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

OpenAl. 2023. Gpt-4 technical report.

Yu Pan, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng
Shang, Xin Jiang, and Qun Liu. 2023. Reusing pre-
trained models by multi-linear operators for efficient
training. arXiv preprint arXiv:2310.10699.

Hyunbyung Park, Sukyung Lee, Gyoungjin Gim, Yungi
Kim, Dahyun Kim, and Chanjun Park. 2024. Data-
verse: Open-source etl (extract, transform, load)
pipeline for large language models.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

31

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language

model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero,
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
Agirre. 2023. Nlp evaluation in trouble: On the
need to measure 1lm data contamination for each
benchmark. arXiv preprint arXiv:2310.18018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Malik Sallam, Nesreen Salim, Muna Barakat, and Alaa
Al-Tammemi. 2023. Chatgpt applications in medical,
dental, pharmacy, and public health education: A
descriptive study highlighting the advantages and
limitations. Narra J, 3(1):e103—e103.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’ Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In

International conference on machine learning, pages
5719-5728. PMLR.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. 2023. Detecting pretraining
data from large language models. arXiv preprint
arXiv:2310.16789.

Ken Shoemake. 1985. Animating rotation with quater-
nion curves. In Proceedings of the 12th annual con-
ference on Computer graphics and interactive tech-

niques, pages 245-254.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Re-
thinking model scaling for convolutional neural net-
works. In International conference on machine learn-
ing, pages 6105-6114. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of Im alignment. arXiv preprint
arXiv:2310.16944.

http://arxiv.org/abs/2403.19270
http://arxiv.org/abs/2404.00943
http://arxiv.org/abs/2404.00943
http://arxiv.org/abs/2404.00943
https://huggingface.co/winglian/omega-3b
https://huggingface.co/winglian/omega-3b
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2403.19340
http://arxiv.org/abs/2403.19340
http://arxiv.org/abs/2403.19340

Peihao Wang, Rameswar Panda, Lucas Torroba Hen-
nigen, Philip Greengard, Leonid Karlinsky, Roge-
rio Feris, David Daniel Cox, Zhangyang Wang, and
Yoon Kim. 2023. Learning to grow pretrained mod-
els for efficient transformer training. arXiv preprint
arXiv:2303.00980.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan
Wang. 2023. 2x faster language model pre-training
via masked structural growth. arXiv preprint
arXiv:2305.02869.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf:
Rank responses to align language models with
human feedback without tears. arXiv preprint
arXiv:2304.05302.

32

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong
Wen, and Jiawei Han. 2023. Don’t make your Ilm

an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A Contributions

The contributions of this study are as follows:

* Introduction of the SOLAR 10.7 Billion-
Parameter Model: We have released the SO-
LAR 10.7B model, which is not only depth-
wise scaled but also continually pretrained.
The availability of SOLAR 10.7B under the
Apache 2.0 license permits commercial us-
age, enabling the integration of this advanced
model into a diverse range of products and ser-
vices. This bridges the gap between academic
research and practical applications, fostering
wider accessibility and utility in various fields.

Superior Performance Across Diverse
Benchmarks: SOLAR 10.7B excels in var-
ious benchmarks, outperforming established
models like Llama 2 and Mistral 7B in reason-
ing, mathematics, and the MMLU framework.

Advancement in Instruction-Following Ca-
pabilities: The introduction of SOLAR 10.7B-
Instruct, a variant fine-tuned for enhanced
instruction-following abilities, marks a sig-
nificant improvement in the model’s ability to
understand and execute complex instructions.

Sanghoon Kim, Dahyun Kim, Chanjun Park,
Wonsung Lee, Wonho Song, Yunsu Kim and
Hyeonwoo Kim contributed equally to this paper.
Sanghoon Kim led the Foundation Model part,
with Dahyun Kim, Wonho Song, Yunsu Kim, and
Hyeonwoo Kim. Chanjun Park led the Data and
Evaluation (Data-Centric LLM) part, with Yungi
Kim, Jihoo Kim, Changbae Ahn, Seonghoon Yang,
Sukyung Lee, and Hyunbyung Park. Wonsung Lee
led the Adaptation Modeling part, with Gyoungjin
Gim, Hyeonju Lee, and Mikyoung Cha. Hwalsuk
Lee performed the role of the overall project opera-
tion. Dahyun Kim and Chanjun Park were the main
technical writers. All these individuals contributed
to the creation of SOLAR 10.7B.

B Related Works and Background

B.1 Large Language Models

Following the advent of context-based language
models, various studies have revealed a “scaling
law” (Kaplan et al., 2020; Hernandez et al., 2021;
Anil et al., 2023), demonstrating a positive corre-
lation between the size of model and training data

33

and model performance. This has led to the emer-
gence of Large Language Models (LLMs). Un-
like previous language models, LLMs possess the
ability for In-context learning, including Zero-shot
learning (Radford et al., 2019) and Few-shot learn-
ing (Brown et al., 2020), allowing them to perform
new tasks without updating model weights. These
capabilities of LLMs, not evident in smaller mod-
els, are referred to as Emergent abilities (Wei et al.,
2022a).

B.2 Mixture of Experts

In the landscape of machine learning architectures,
the Mixture of Experts (MoE) models like (Shazeer
et al., 2017; Shen et al., 2019; Komatsuzaki et al.,
2022) has gained attention for its capability to ad-
dress the challenges posed by complex and hetero-
geneous data. MoE models offer notable benefits,
including enhanced output diversity, allowing for
the capture of intricate patterns within the input
space. Moreover, their computational efficiency,
especially when implemented in a sparse form, has
made them valuable in scenarios where resource
constraints are a consideration (Shazeer et al., 2017;
Komatsuzaki et al., 2022).

However, efficient implementation of MoE mod-
els poses a considerable challenge, primarily due to
the intricacies associated with dynamic routing and
load-imbalanced computation (Gale et al., 2023).
Existing hardware and software for deep learning,
such as TPUs and XL A compilers, often demand
static knowledge of tensor shapes, making MoE
implementation on TPU challenging.

While GPU implementation offers more flexi-
bility, sparse computation compatibility becomes
a hurdle. Striking the right balance between fix-
ing the size of each expert to facilitate efficient
computation and maintaining model quality creates
a tradeoff between information preservation and
hardware efficiency. This tradeoff, in turn, necessi-
tates careful consideration during hyperparameter
tuning, adding a layer of complexity to the imple-
mentation of MoE models, potentially offsetting
their advantages. Given the formidable challenges
in MoE model implementation, it becomes almost
inevitable for researchers and practitioners to re-
sort to specialized tools and frameworks, such as
Tutel (Hwang et al., 2023) or Megablocks (Gale
et al., 2023).

Departing from the horizontal expansion char-
acteristic of MoE models, the DUS method intro-

duces model scaling in the vertical dimension. No-
tably, DUS does not introduce dynamism in the
scaled model, which significantly reduces the com-
plexity when compared to MoE. This shift in ap-
proach offers a unique and more straightforward
way of working, moving away from conventional
MOoE challenges. Not only that, DUS also under-
goes continued pretraining to quickly recover per-
formance of the scaled model.

B.3 Prompt Engineering

A key research area to harness the emergent abil-
ities of LL.Ms is prompt engineering. Prompt en-
gineering is the study of how to design inputs
(prompts) that enable LLMs to better perform spe-
cific tasks. A prime example of this research
is Chain-of-Thought (CoT) (Wei et al., 2022b),
which proposes CoT prompting that decomposes
multi-step problems into a series of intermedi-
ate reasoning steps. Moreover, efforts are under-
way to replace even such prompt engineering with
LLMs (Yang et al., 2023).

B.4 Instruction Tuning

To enhance the steerability of LLMs, instruction
tuning (Wei et al., 2021) has emerged as a learning
technique. This involves fine-tuning LLMs using
data formatted as (instruction, input, output) for
various tasks (Wang et al., 2022). Instruction tuning
allows for targeted adjustments, providing a more
controlled and task-oriented improvement to the
model’s capabilities.

Before instruction tuning, existing methods
faced challenges in effectively guiding and control-
ling the behavior of large language models (Zhang
et al., 2023). The sheer complexity of these models
made it difficult to ensure precise and task-oriented
responses. The need for a more targeted approach
arose from the limitations of existing methods, lead-
ing to the development of instruction tuning. This
targeted approach enables better control over the
model’s behavior, making it more suitable for spe-
cific tasks and improving its overall performance in
alignment with user-defined objectives. Therefore,
instruction tuning is computationally efficient and
facilitates the rapid adaptation of LLMs to a spe-
cific domain without requiring extensive retraining
or architectural changes.

B.5 Alignment Tuning

LLM has been observed to generate sentences that
may be perceived as linguistically incongruent by

34

human readers since they learned not human inten-
tion, but only vast knowledge across various do-
mains in the pretraining step (Ziegler et al., 2019).
To overcome this limitation and align with human
intentions, previous research (Ziegler et al., 2019)
have proposed Reinforcement Learning with Hu-
man Feedback (RLHF). RLHF operates by learning
a reward model based on human preferences, em-
ploying reinforcement learning to guide the LLM
towards prioritizing answers with the highest re-
ward scores. This process enhances the safety,
propriety, and overall quality of the generated re-
sponses. Despite demonstrating satisfactory per-
formance, RLHF encounters challenges such as
managing numerous hyperparameters and necessi-
tating the incorporation of multiple models (policy,
value, reward, and reference models).

In response to these challenges, the supervised
fine-tuning based approaches have proposed, such
as Rank Responses to align Human Feedback
(RRHF) (Yuan et al., 2023), Reward rAnked Fine-
Tuning (RAFT) (Dong et al., 2023), and Direct
Policy Optimization (DPO) (Intel, 2023). They
avoid the complexities associated with reinforce-
ment learning while achieving empirical perfor-
mance comparable to RLHF. Among them, DPO
that we used directly guides the LLM to increase
the probability of positive responses and decrease
the probability of negative responses through a "di-
rect”" approach. Interestingly, DPO demonstrates
more stable learning results compared to RLHEF,
despite its simple training approach.

B.6 Data Contamination

Recent researches (Zhou et al., 2023; Sainz et al.,
2023; Golchin and Surdeanu, 2023; Deng et al.,
2023) emphasize the need to measure whether a
specific benchmark was used to train the large lan-
guage models. There are three types of the data
contamination: guideline, raw text and annota-
tion (Sainz et al., 2023). Guideline contamination
occurs when a model accesses detailed annotation
guidelines for a dataset, providing advantages in
specific tasks, and its impact should be considered,
especially in zero and few-shot evaluations. Raw
text contamination occurs when a model has ac-
cess to the original text. Wikipedia is widely used
as a pretraining data, but also as a source for cre-
ating new datasets. The caution is advised in the
development of automatically annotated datasets
sourced from the web. Annotation contamina-

tion occurs when the annotations of the specific
benchmark are exposed during model training.

C Additional Information

We present additional information for the sake of
space in the main paper.

Filtered task names. We present task names
we use to filter FLAN dervied datasets such as
OpenOrca in Table 8.

Filtered Task Name

task228_arc_answer_generation_easy
ai2_arcARCChallenge:1.0.0
ai2_arcARCEasy:1.0.0
task229_arc_answer_generation_hard
hellaswag:1.1.0
task1389_hellaswag_completion
cot_gsm8k

cot_gsm8k_ii

drop:2.0.0

winogrande:1.1.0

Table 8: Task names that we use to filter data for FLAN
derived datasets such as OpenOrca.

ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
0.06 N/A 0.15 0.28 N/A 0.70

Table 9: Data contamination test results for SOLAR
10.7B-Instruct. We show ‘result < 0.1, %° values where
a value higher than 0.9 indicates high probability of data
contamination. HellaSwag and Winogrande datasets are
not currently supported. We set SOLAR 10.7B as our
reference model when performing the data contamina-
tion tests.

Results on data contamination. To show the in-
tegrity of SOLAR 10.7B-Instruct, we also report
the data contamination test (Shi et al., 2023) results
in Table. 9. All four tested benchmark datasets
yield results well below the contamination thresh-
old, affirming the absence of data contamination
in our model. One interesting point is that the
value for GSM8K is noticeably higher than for
other datasets, even without contamination. One
potential reason for this is the stronger data similar-
ity in math-related instruction datasets.

35

UINav: A Practical Approach to Train On-Device Automation Agents

Wei Li’ Fu-Lin Hsu** Will Bishop” Folawiyo Campbell-Ajala® Max Lin® Oriana Riva’

" Google Research
* University of Pennsylvania

Abstract

Automation systems that can autonomously
drive application user interfaces to complete
user tasks are of great benefit, especially
when users are situationally or permanently
impaired. Prior automation systems do not
produce generalizable models while Al-based
automation agents work reliably only in sim-
ple, hand-crafted applications or incur high
computation costs. We propose UINav, a
demonstration-based approach to train automa-
tion agents that fit mobile devices, yet achiev-
ing high success rates with modest numbers of
demonstrations. To reduce the demonstration
overhead, UINav uses a referee model that pro-
vides users with immediate feedback on tasks
where the agent fails, and automatically aug-
ments human demonstrations to increase diver-
sity in training data. Our evaluation shows
that with only 10 demonstrations UINav can
achieve 70% accuracy, and that with enough
demonstrations it can surpass 90% accuracy.

1 Introduction

The next frontier in artificial intelligence is agents
that autonomously operate computers as humans
do. Instructed by users in natural language, these
agents are especially valuable when their users have
visual or motor disabilities or when they are situa-
tionally impaired (e.g., driving, cooking). We are
particularly interested in agents that can execute
human tasks by interacting directly with the user
interface (UI) of a running application. These so-
called UI automation agents (Liu et al., 2018; Li
et al., 2020; Humphreys et al., 2022) can scale well
to support a myriad of tasks because they do not
depend on third-party APIs.

Existing approaches to Ul automation range
from UI scripting to Al-based agents. UI scripts
can work reliably, but they involve coding or man-
ual demonstrations (Kundra, 2020; Barman et al.,

“Work done as an intern at Google Research.

36

2016; Riva and Kace, 2021; Li et al., 2017) and
they cannot tolerate well changes in the Ul and
workflows, thus leading to high maintenance costs
— this is, however, what enterprises use to automate
business workflows (UIPath, 2023). Al-based ap-
proaches can scale better. Using imitation learning
and reinforcement learning (Liu et al., 2018; Gur
et al., 2018), agents are trained to navigate the
web autonomously. However, their synthetic and
simplified test environments (Shi et al., 2017) and
their dependency on large amounts of demonstra-
tions (Humphreys et al., 2022) make them hard to
deploy. Recent work leverages Transformers (Li
et al., 2020; Li and L1, 2023; Venkatesh et al., 2022;
Wang et al., 2023) and pre-trained large language
models (LLMs) (Yan et al., 2023; Venkatesh et al.,
2022; Zheng et al., 2024). Despite the performance
improvement, these solutions come with large re-
source costs (multiple days of training on hundreds
of GPUs/TPUs and high inference costs).

A practical approach to UI automation requires
trading between accuracy, generalizability and
computational costs. We find a sweet spot be-
tween these three properties, and propose UINav, a
demonstration-based system designed to produce
lightweight neural agents that can run on mobile
devices while yielding good success rates.

As in prior work, UINav needs to address the
challenge of how to achieve good success rates with
fewer demonstrations. We observe that the demon-
strations required to achieve good performance dif-
fers widely across tasks and environments. If the
environment is relatively static even a handful of
demonstrations is sufficient; for tasks that must
work across many different Uls more demonstra-
tions are needed. When collecting demonstrations,
UINav provide users with immediate feedback on
which tasks are failing and may benefit from addi-
tional demonstrations, and which are satisfactory.
It does so through a referee model which is trained
with the same set of demonstrations used to train

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 36-51
June 16-21, 2024 ©2024 Association for Computational Linguistics

the automation agent, but with a different goal: pre-
dicting whether a task is successfully completed
(rather than predicting which UI action to perform).

Another challenge UINav addresses is how to in-
crease the robustness of automation agents against
system delays and changes in the UI. It does so
through three key techniques. First, every UI ac-
tion is executed as a small program composed of
lower-level operations with status checks. These
programs, referred to as macro actions, abstract
the system-specific details thus greatly reducing
the agent’s state space and therefore the num-
ber of required demonstrations. Second, UINav
adopts demonstration augmentation where human
demonstrations are augmented by randomizing
non-critical Ul elements to increase their diver-
sity. Finally, through utterance masking variable
sub-strings in utterances are abstracted out.

We develop UINav using an internal dataset of
40+ tasks and test is on actual Android phones. We
also evaluate it on a public dataset, where UINav
outperforms various baselines and demonstrates
generalizability. Overall, we make the following
contributions: (i) a practical system to build UI
automation agents that achieve near perfect suc-
cess rates on previously seen tasks and that can
be deployed to mobile devices; (ii) an error-driven
process to collect demonstrations paired with aug-
mentation techniques and macro actions; and (iii) a
comprehensive evaluation demonstrating UINav’s
advantages over state-of-the-art systems.

2 Related work

UI automation scripts. Record-and-replay tools
like Selenium (Kundra, 2020) can be used to facili-
tate the generation of UI automation scripts. These
scripts can also be integrated with robotic process
automation tools (UIPath, 2023; Automation Any-
where, 2023; Blue Prism, 2023). Programming by
demonstration tools (Sugiura and Koseki, 1998;
Leshed et al., 2008; Lin et al., 2009; Li et al., 2010;
Barman et al., 2016; Li et al., 2017; Chasins et al.,
2018) are advanced record-and-replay tools that
can generate fully functional Ul scripts and even ac-
tion graphs (Riva and Kace, 2021) from recordings
of task interactions (demonstrations), which could
also be provided in the format of video record-
ings (Bernal-Cardenas et al., 2020; Chen et al.,
2022). Overall, a major downside of this line of
work is that these systems do not produce models
that generalize to new task workflows and Uls.

37

Al-based automation. Transformer-based archi-
tectures (Li et al., 2020; Bai et al., 2021; He et al.,
2021; Banerjee et al., 2022; Li and Li, 2023) and re-
inforcement learning approaches (Liu et al., 2018;
Gur et al., 2018; Li and Riva, 2021) have been pro-
posed to train agents capable of navigating apps
and websites when provided with natural language
instructions. Yet, it is unclear how well these sys-
tems perform in a variety of real-world environ-
ments and scale across task categories because ei-
ther they have been tested in synthetic webpages of
10-50 UI elements (Shi et al., 2017) or on limited
datasets (Li et al., 2020; Burns et al., 2022). Recent
work leverages LLMs to ground natural language
instructions in Uls (Venkatesh et al., 2022; Wang
et al., 2023; Yan et al., 2023; Zheng et al., 2024;
Rawles et al., 2023). These approaches come with
a large training overhead (e.g., multiple days of
training on hundreds of GPUs/TPUs) and a high
inference cost which prevents them from running
on mobile devices.

In this paper, we extend our previous work (Li,
2021) where macro actions were introduced but
was limited to work with OCR and icon recogni-
tion, into a full system, that bridges the gap be-
tween programming by demonstrations and Al-
based systems by providing an easy-to-learn sys-
tem to train robust, multi-task agents for UI naviga-
tion in real-world applications. While the system
requires manual demonstrations for training, it pro-
vides an error-driven collection of demonstrations
where testing scenarios are automatically gener-
ated and evaluated by the system, thus reducing
the number of redundant demonstrations. The er-
ror driven demo collection of UINav is inspired by
the DAGGER (Ross et al., 2011) algorithm and we
show that it is effective in reducing the number of
demonstrations for both sequential (referee) and
non-sequential (agent) models.

3 Why is UI automation hard?

We study the problem of how a UI automation sys-
tem can generalize to new execution environments,
including different apps and different tasks, without
requiring an excessive number of demonstrations.
To illustrate the challenges we use an apparently
simple task, search, i.e., operating the search bar
of an app. Two aspects make this task challenging.

Search is a universal task that must work across
a myriad of apps where search bars can take many
different formats. Some search bars require the user

Agent and referee g:\\ Utterance (“Add Max Smith to my contacts.

H type I text | position

utterance

|state‘ ‘ utterance ‘

[His number is 239 423 1123”) matching 1 input
development loop |+ Ul element [trainable
Demonstration ‘~ action @ El El El Language
collection Agent Environment screen representation L__model
) status | 5pservation
Model ; . attention element
evaluation “ Referee / listener NX Doy coded element weights Max |index
|
EEEES encoded element . ttenti i
. FK encoded element key,value | Attention aoilpﬁn \ at(;/;:zn
R EIED | UINav encoded element module | ————| MLP ———
% 0 attention action
. tput
encoded element [P MLP S
Figure 1: High-level architecture of UINav. encoder decoder

to type some keywords and then click an icon (typ-
ically on the right hand-side); others, as the user
types, automatically display search results which
can be directly opened; some others have an ad-
ditional field (e.g., a category) which must be set
beforehand; there are also search bars that are hid-
den and reveal only upon clicking on an icon; etc.

The second axis of complexity regards the
agent’s start state. When an agent is requested
to search in a specific app, the user’s device screen
may not display the target app or may display it
in a page (state) without any search functional-
ity. The agent must first understand how to navi-
gate to the state offering the search function, which
may involve navigating back, launching a different
app, or dismissing welcome screens and ads. Even
when the environment already shows the desired
search widget, its state may need to be reset, e.g.,
by deleting search terms previously entered (see
the YouTube example in Fig. 6 in the Appendix).

In general, in a real environment, an agent is ex-
posed to many different screen conditions caused
by a combination of factors: different apps, dy-
namic app content, previous interactions, layout
variance across devices, UI changes across app/OS
versions, ads and notifications, etc. An agent needs
to ignore irrelevant Ul elements and navigate to
relevant states. One way to tackle this variability
is through more demonstrations, but with obvious
overheads. UINav’s first contribution is to adopt
an error-driven process to collect demonstrations
(§4.2). Its second contribution is to amplify the
learning brought by each demonstration by auto-
mated augmentation (§5). Finally, to address vari-
ability issues due to system delays, rather than rely-
ing on demonstrations UINav takes a programmatic
approach by introducing macro actions (§5).

38

Figure 2: The neural network of the agent model.

4 System design

Fig. 1 shows the high-level architecture of UINav.
Given a task represented by a natural language ut-
terance and an observation of the device state (i.e., a
representation of what is currently displayed on the
screen), a neural network-backed agent responds
with its choice of action to complete the task. The
predicted action is executed by the environment
by interacting with a device’s system (an emulator
or a real phone). Then, the agent is provided with
a new observation describing the new state and a
new action is predicted. This setup is similar to
that of a reinforcement learning agent, but UINav
also includes a second agent called referee, which
is responsible for judging the completion status of
a task (episode) at each time step.

The development of UINav agents (left of Fig. 1)
involves first collecting human demonstrations for
some target tasks, then training the neural networks
of the agent (§4.1) and referee (§4.2), and finally
evaluating them on the device. Failures of either the
agent or the referee are recorded and used to guide
the collection of new demonstrations to be used in
the next round of training. The development loops
over these steps until no more errors of either the
agent or the referee are found.

4.1 Agent’s neural network architecture

The UINav agent consists of an encoder-decoder
architecture (Fig. 2). It perceives the state of the
device through observations of what is currently
displayed on the screen, represented by the set
of UI elements composing it. Each UI element
is described by a set of attributes: type (button,
icon, etc.), text (visible text, content description,
resource identifier, etc.), on-screen position, utter-
ance matching (whether on-screen text matches

the utterance!), and state (e.g., whether a check-
box is selected). The screen representation can
be generated from raw pixels processed by screen
understanding techniques (Chen et al., 2020; Wu
et al., 2021; Zhang et al., 2021), which also in-
clude icon detection and text recognition, or from
a tree-structured representation of the UI, such as
the Android accessibility tree. Our implementation
dynamically switches between the two sources of
screen representation based on simple heuristics,
such as whether the target app is known to provide
poor accessibility support or whether the number
of accessibility nodes is extremely small.

Then, the input to the neural network of the agent
is a set of Ul elements and an utterance. Each Ul el-
ement is represented by a vector concatenated from
the feature vectors of its attributes. Text labels of
Ul elements are encoded by a language model (De-
vlin et al., 2019). The feature vectors of the Ul
elements are fed into a Transformer encoder. The
output of the encoder is a function of the encoding
of each Ul element plus its attention over all other
Ul elements on the screen, including itself.

The decoder predicts which action to perform.
This involves predicting (i) the Ul element on
which to perform the action, (ii) the type of action
(click, type, etc.), and (iii) any argument for the ac-
tion. Actions (summarized in Table 3, §A.2) can be
of two types. Element actions (click, focus_and_type,
dismiss) manipulate a specific element, while global
actions (wait, back, scroll, open_app) are general op-
erations or platform-specific functions.

The decoder uses a single cross-attention mod-
ule, with the utterance embedding serving as the
query vector and element encodings serving as keys
and values. The largest attention weight is used to
select the element to act upon, while the vector out-
put of the cross-attention module is passed through
two independent multi-layer perceptrons (MLP) to
predict action type and argument.

In its essence, the agent’s neural network imple-
ments a scoring system. For any given screen, all
its elements are scored, and the highest-scored one
is selected. Due to the attention in the encoder, for
any UI element, its relationship with all the other
elements can be encoded. The Transformer model
learns how different combinations of UI elements
and utterances map to actions, and uses this knowl-
edge to rank elements to act on. It is essential that

'Similarly to previous work (Liu et al., 2018), we compute
utterance matching as the average of the similarity scores of
all words in the Ul element’s text with the utterance.

39

the model learns to evaluate single UI elements in
the context of others because the meaning of Ul
elements is often context sensitive (Banerjee et al.,
2022) — elements of similar appearance (color, size
and shape) can have different functions but neigh-
boring elements like text labels can help resolve the
ambiguity. For specific examples on how UINav
contextually evaluates Ul elements see §A.8.

4.2 Referee model

In the agent’s action space there is no “‘done” action.
This means that the agent does not stop on its own
but instead relies on the environment to terminate
a task. This is common practice in reinforcement
learning. Instead of building task-specific termi-
nation logic, we train a referee model to predict
whether a task is completed at each step and what
its outcome is. The referee is trained using the
exactly same set of demonstrations as the agent,
hence it does not incur extra effort in data collec-
tion. However, it also serves a second purpose.

A well-known challenge in demonstration-based
systems is that they can require excessive developer
time to collect a sufficient number of demonstra-
tions (Lau, 2009) and that it may be difficult to
provide samples that are sufficiently different from
each other (Myers and McDaniel, 2001; Lee et al.,
2017). By automatically evaluating the execution
of a currently-trained agent and identifying fail-
ing tasks, the referee guides users towards collect-
ing new demonstrations only for critical scenarios.
Failed executions are saved along with all their
parameters and passed to the demonstrator.

The neural architecture of the referee model is
similar to that of the agent except that it is wrapped
in a recurrent neural network to consider the history
of actions (see §A.3 for more details). The referee
predicts one out of 4 labels: (1) SUCCESSFUL: the
task is completed successfully; (2) FAILED: the task
has failed or has reached the maximum number of
allowed steps; (3) PENDING: the task is ongoing; or
(4) INFEASIBLE: the task cannot be executed.

4.3 Utterance masking

UINav’s focus is on generalizing to different execu-
tion environments without requiring an excessive
number of demonstrations. However, another large
source of variability is the input instruction pro-
vided in natural language. To address this problem,
we design UINav agents to learn general task work-
flows rather than specific task instances. We do so
by pre-processing utterances to identify sub-string

that represent the variables of a task. For example,
in Search for tiktok in Google, tiktok is the phrase to
search for and can be replaced by other keywords.
The variable sub-strings are masked and replaced
by placeholders before being encoded, so that the
utterance embedding is independent on the specific
instances. As a result, there is no need to train
with different utterances covering the distribution
of variables.

For any utterance, all the replaced sub-strings
are included in the list of entities associated with
the task. A matching vector is computed for each
Ul element on the screen and is included in the ele-
ment attributes passed as input to the agent. In the
matching vector, each scalar is in the range of [0, 1]
and computed as the cosine similarity between the
text label of the UI element and the corresponding
entity string.

Variable sub-strings can be identified by either
following pre-defined patterns, through the use
of explicit delimiters, or semantic parsers (Ka-
math and Das, 2019). LLMs can also be em-
ployed (Shin and Van Durme, 2022; Drozdov et al.,
2022; Mekala et al., 2022). UINav still works
without utterance masking but may require more
demonstrations to reach similar accuracy (see abla-
tion analysis in Table 2).

5 Increasing robustness and efficiency

We have described how UINav helps developers
balance accuracy and number of demonstrations.
Next, we describe the techniques that increase the
agent robustness in the face of system delays, Ul
changes, and variations in task descriptions.

Action validation and macro actions. Control-
ling Uls of an actual device involves dealing with
various system issues. There are unavoidable de-
lays between the time a state is collected from a
device and when a predicted action is ready to be
performed. Screens can also be slow at loading or
updating, hence an agent needs to wait for them to
stabilize. These delays are particularly noticeable
on a mobile device. To deal with these issues, rather
than modeling this variability through more demon-
strations, we take various programmatic measures.

First, before executing an action, UINav vali-
dates it by checking whether a referenced Ul ele-
ment is still on the current screen and if so, whether
it has changed. If the action is not applicable any-
more, it requests a new prediction.

40

Table 1: Inference time (msec) on high/low-end phones.
None of the models utilize any accelerators.

Device Agent Referee SmallBERT ‘ Total
High-end 198 221 262.79 267.00
Low-end 440 524 427.63 437.27

Second, every action is executed as a small pro-
gram that is composed of lower level operations
with status checks. Such a program is referred to
as macro. Each macro is implemented following a
state transition graph and it is atomic so that while
a macro is running the agent stays idle and changes
to the screen are not visible to it. An example of
macro action is focus_and_type which comprises 4
low-level actions: clicking the input field to obtain
focus, waiting for the blinking cursor to appear, typ-
ing the text in the field, and (optionally) pressing
Enter. See §A.4 for more details.

Demonstration augmentation. To further limit
the number of required demonstrations and amplify
the learning brought by each one, UINav also aug-
ments the collected demonstrations by randomizing
the attributes of randomly-selected, non-critical Ul
elements. This teaches the agent which elements
may be safely ignored, and ultimately makes it
more tolerant to UI changes. Non-critical Ul ele-
ments have their attributes modified with a prede-
fined probability by either (i) replacing the embed-
ding of their text labels with random vectors, or (ii)
by adding random offsets to the four scalars of their
bounding boxes, which is equivalent to randomiz-
ing both the element’s position and size. Despite its
simplicity, demo augmentation is highly effective
at improving UINav’s performance (see Table 2).

6 System evaluation

We built UINav for Android. Both the agent and
referee are implemented in TensorFlow. The agent
model has 320k parameters and its tflite version
occupies 1.3MB, while the referee has 430k param-
eters and it is 1.8MB large. For text encoding we
use SmallBERT (Turc et al., 2019) and convert it to
a 17.6MB tflite model. No quantization is applied
during the conversion (More implementation de-
tails in §A.5). As shown in Table 1), both the agent
and referee take only a couple of milliseconds to
execute on a high-end phone (e.g., Pixel6pro) and
around 5 milliseconds on a low-end phone (Pixel
3a). BERT dominates the total time.

Table 2: Task and step accuracy on MoTIE.

Model App seen task unseen App unseen task seen
task acc stepacc taskacc step acc
Seq2Seq 22.5% 40.4% 18.0% 31.3%
MOCA 21.3% 40.0% 17.0% 32.7%
Seq2Act 32.4% 66.4% 28.3% 67.7%
UINav 37.9% 73.7% 36.8% 66.8%
UINav-+aug 39.4% 74.9% 39.7% 68.4%
UlNav+aug+utt 68.3% 89.7% 59.6% 81.9%

6.1 Agent and referee accuracy

We evaluate UINav on the MoTIF dataset (Burns
et al., 2022). MoTIF includes two splits: (i) app
seen task unseen which tests whether a model can
generalize to new tasks, and (ii) app unseen task
seen which tests whether a model can generalize to
new apps. As in the evaluation of the MoTIF sys-
tem, we train UINav using low-level instructions,
and compare against three baselines: Seq2Seq
(Shridhar et al., 2019), MOCA (Singh et al., 2020),
and Seq2Act (Li et al., 2020). More training details
in §A.7. We measure (i) step accuracy, the percent-
age of task steps where the model and the dataset
have matching outputs, and (ii) task accuracy, the
percentage of tasks with all steps matching.

Table 2 reports the results. For ablation pur-
poses, we consider three variants of UINav, de-
pending on whether demonstration augmentation
(+aug) and utterance masking (+utt) are enabled.
UlINav+aug surpasses all baselines by 7 and 11
percentage points in task accuracy and 8.5 and 0.7
points in step accuracy. Without demo augmen-
tation UINav outperforms all three baselines, in
all except one case (step accuracy in app unseen
and task seen). This demonstrates the effectiveness
of the UINav design and how demo augmentation
effectively exposes the model to a larger variety of
training conditions thus improving generalizability.
In this dataset, generalizing to new apps appears
to be harder than generalizing to new tasks. With
the addition of utterance matching, on unseen apps,
UlINav still achieves 59.6% in task accuracy and
81.9% in step accuracy, well above all baselines.

To evaluate the referee model we use again the
MOoTIF dataset as its traces are labeled as “feasi-
ble” or “infeasible”, depending on whether the task
was successfully completed. We compare against
the MoTIF system, specifically designed to predict
task feasibility/infeasibility. As the UINav referee
predicts 4 states, we map SUCCESSFUL/ PENDING to
“feasible” and FAILED/INFEASIBLE to “infeasible”.
As Fig. 3 shows, our referee model produces a sig-

41

Ground Truth

Feasible Infeasible

Ground Truth

Feasible Infeasible

<@ o
| 76.4% || 8.6% c | 76.7% || 5.2%
S 3 S 3
g o
82 82
o Bl 4.0% || 11.0% o a| 2.3% || 15.8%
F1=63.5 F1=80.9
(a) MoTIF (b) UiNav referee

Figure 3: Referee model compared to the MoTIF sys-
tem (Burns et al., 2022) using the MoTIF dataset.

nificantly better F1 score, 80.9% vs. 63.5%, and it
is especially better in identifying infeasible tasks.

6.2 Demonstration effort

To evaluate the effectiveness of the error-driven
demo collection approach of UINav we cannot use
static datasets. Hence, we quantify the demon-
stration effort of UINav by using it to train high-
accuracy agents for 43 different tasks across 128
Android apps and websites, selected based on pop-
ularity (e.g., Gmail, Contacts, Amazon, Airbnb,
linkedin.com, target.com, etc.). Please see §A.9
for the full list. For demo collection we build a
dedicated GUI which can be connected to Android
phones or emulators (see §A.6). The GUI supports
macro actions and error-driven data collection. Dur-
ing data collection and testing, the environment
automatically performs a few random operations
at the beginning of each task, including randomly
changing pixel densities, font scales, device orien-
tation, and issuing a sequence of random number
of clicks on randomly selected UI elements. The
purpose is to start a task from a random state and
to diversify data coverage.

We collect demonstrations with the goal to
achieve near perfect success rates. With the ex-
ception of the search task we collect from 10 to 106
demonstrations (on average 32.7) per task, 3661 in
total (Fig. 4). Collecting 10 demonstrations takes
less than 10 minutes. The search task must work
across 100+ apps hence requiring 1700+ samples.
To verify this data is sufficient to train accurate
agents, in a second phase we collect additional 596
test samples. Because of the random initialization
of the environment, and the dynamic characteris-
tics of a live system, it is unlikely that the models
see a training sample that is identical to a test one.
The UINav agent achieves 90.6% task accuracy and
95.8% step accuracy; the referee is 99.5% accurate.

[72]
{4
2 1000
s 95 106 o . W 89
g 100 25 29 27 29 31 2894 3639 36 31 g 26293123 32 312324 4, 0 o6 26 9938l
£
S 10
: | |
e
z 1
S > D& S ¥ S o°§o°$\o°o\o°§d & o‘\(\d S S & D@ (\‘56“@*
ee"&\“%\@&e%'bg°&\\§¢§&é®éz‘>@ 7 6qi)q,o(v $r\\\/$a\/ 5 c')“"e*oov‘z"oe’fo&\"&db @‘?\} @/0&\\ R 0&&,&6"@‘\?}& ¥ SO
E S S Ser ol # 8 9700 o7 060 3O P P o0 507, P @ \\?~<°Q VY e}’@'”'&’
FLEEE oS NS E S S SEEL, NSO PN PRI IS
S e e S A T N Ee s IS e ¢ e TF LW T IR L8
AR R IS P SIFT TP O F Lolo? © S r
& ¢ € TP o & 23 Y 3O &P X d
o O S & & g (S 2
& e’ & gs O SIS K
& o & &
OQ & 9 @

Figure 4: Number of demonstrations in the training set collected for 43 tasks across 128 apps/websites.

Please note that the numbers of demonstrations 1.00

in Fig. 4 are most likely more than the minimum
required to reach the same accuracy, as we priori-

0.90
0.80

3 070
. . . . ©
tize improving accuracy over reducing the number g 06005
of training samples. It is less effort to add new & os0
. . D
demonstrations as a batch than finding out whether @ o040
. . . @® Multi-task agent @ Single task agent
a specific demonstration improves model accuracy. 0.300.38
I : : 0.20
n an informal user study, a few software engi- 1 10 100 1000
neers with no prior experience using UINav utilized Max number of demonstrations per task

it to build agents for a few tasks. They started from
scratch, without using any existing demonstrations.
The time spent on collecting data for each task was
between 10 to 20 minutes while all participants
claimed their resulting agents performed perfectly. agent model will fail. Our assumption is that a well-

designed UI often presents all the information that
6.3 Multi-task vs. single-task agents is needed for successful human interaction on the

To reduce the resource overhead on mobile de- current screen. The accuracy of our memory-less
vices, we train a single multi-task agent. We show g€nts proves that this is the case for the tasks tested
this choice is preferable also for small numbers of S0 far. For tasks or Uls that require memory, the
demonstrations. From our in-house dataset, we se- UINav agent model can be enhanced with memory
lect the 10 tasks with the largest number of demon- through either a recurrent neural network or by
strations. We then train one multi-task UINay ~ Padding previous states in its input.

agent using demonstrations across all 10 tasks and Our approach depends on Ul elements for both
10 single-task UINav agents using demonstrations ~ representing features of screens as well as defining
from individual tasks. We repeat the training for ~ actions. It will not work if a screen representa-
an increasing number of demonstrations. As Fig. 5 tion fails to capture critical UI elements. This can
shows, the multi-task agent reaches 51% accuracy ~ happen also when accessibility trees miss critical
even with just one demonstration, demonstrating ~ nodes because content embedded in WebViews and
transfer learning across tasks is happening. The av- ~ Canvas is generally not captured.

erage accuracy for both multi-task and single-task

agents surpasses 80% with 40 demonstrations. 8 Conclusions

Figure 5: Comparison between multi- and single-task
agents with an increasing number of demonstrations.

We presented a demonstration-based system for
building small and fast Ul automation agents
To limit the number of required demonstrations, the ~ that are suitable for mobile devices. Our ap-
UlINav agent makes decisions based only on the proach requires small human effort and no coding
contents of the current screen and does not utilize skills. With modest numbers of demonstrations
information from previous screens. However, if a ~ UINav agents achieve near perfect success rate on
task truly requires an agent to remember previous previously-seen tasks and with more effort they can
states or actions, then the current architecture of the ~ generalize well to new tasks and applications.

42

7 Limitations

References

Automation Anywhere. 2023.
www.automationanywhere.com.

https://

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agiiera y Arcas. 2021. UlBert: Learning
generic multimodal representations for UI under-
standing. In Proc. of the 30th International Joint
Conference on Artificial Intelligence, IJCAI 2021,
pages 1705-1712. ijcai.org.

Pratyay Banerjee, Shweti Mahajan, Kushal Arora,
Chitta Baral, and Oriana Riva. 2022. Lexi: Self-
supervised learning of the UI language. In Proc. of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Shaon Barman, Sarah Chasins, Rastislav Bodik, and
Sumit Gulwani. 2016. Ringer: Web Automation by
Demonstration. In Proc. fthe 2016 ACM SIGPLAN
International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications,
OOPSLA 2016, pages 748-764. ACM.

Carlos Bernal-Cardenas, Nathan Cooper, Kevin Moran,
Oscar Chaparro, Andrian Marcus, and Denys Poshy-
vanyk. 2020. Translating video recordings of mobile
app usages into replayable scenarios. In Proc. of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE °20, pages 309-321.

Blue Prism. 2023. https://www.blueprism.com.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A. Plummer. 2022.
A dataset for interactive vision language navigation
with unknown command feasibility. In European
Conference on Computer Vision (ECCV).

Sarah E. Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical
Web Data. In Proc. of the 31st Annual ACM Sym-
posium on User Interface Software and Technology,

UIST 18, pages 963-975. ACM.

Jieshan Chen, Amanda Swearngin, Jason Wu, Titus
Barik, Jeffrey Nichols, and Xiaoyi Zhang. 2022. Ex-
tracting replayable interactions from videos of mo-
bile app usage.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guogiang
Li. 2020. Object detection for graphical user inter-
face: Old fashioned or deep learning or a combina-
tion? In Proc. of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ESEC/FSE 2020, pages 1202-1214.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. EMNLP.

43

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186. Association for Computational Linguis-
tics.

Andrew Drozdov, Nathanael Schérli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models.

Izzeddin Gur, Ulrich Riickert, Aleksandra Faust, and
Dilek Hakkani-Tiir. 2018. Learning to navigate the
web. CoRR, abs/1812.09195.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying
Xu, Lijuan Liu, Nevan Wichers, Gabriel Schubiner,
Ruby B. Lee, and Jindong Chen. 2021. ActionBert:
Leveraging User Actions for Semantic Understand-
ing of User Interfaces. In 35th AAAI Conference
on Artificial Intelligence, AAAI 2021, pages 5931-
5938.

Peter C Humphreys, David Raposo, Toby Pohlen, Gre-
gory Thornton, Rachita Chhaparia, Alistair Mul-
dal, Josh Abramson, Petko Georgiev, Alex Goldin,
Adam Santoro, and Timothy Lillicrap. 2022. A data-
driven approach for learning to control computers.
ICML.

Aishwarya Kamath and Rajarshi Das. 2019. A survey
on semantic parsing.

Manav Kundra. 2020. Selenium - a trending automa-
tion testing tool. International Journal of Trend
in Scientific Research and Development, 4(4):1321-
1324.

Tessa Lau. 2009. Why Programming-By-
Demonstration Systems Fail: Lessons Learned
for Usable Al. AI Mag., 30(4):65-67.

Tak Yeon Lee, Casey Dugan, and Benjamin B. Beder-
son. 2017. Towards understanding human mistakes
of programming by example: An online user study.
In Proc. of the 22nd International Conference on In-
telligent User Interfaces, IUI 17, pages 257-261.

Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. CoScripter: Automating & Shar-
ing How-to Knowledge in the Enterprise. In Proc.
of CHI °08, pages 1719-1728.

Gang Li and Yang Li. 2023. Spotlight: Mobile UI un-
derstanding using vision-language models with a fo-
cus.

Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proc. of
CHI ’10, pages 723-732.

https://www.automationanywhere.com
https://www.automationanywhere.com
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/3377811.3380328
https://doi.org/10.1145/3377811.3380328
https://www.blueprism.com
https://arxiv.org/pdf/2202.02312.pdf
https://arxiv.org/pdf/2202.02312.pdf
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
http://arxiv.org/abs/2207.04165
http://arxiv.org/abs/2207.04165
http://arxiv.org/abs/2207.04165
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2209.15003
http://arxiv.org/abs/2209.15003
https://doi.org/10.48550/ARXIV.2202.08137
https://doi.org/10.48550/ARXIV.2202.08137
http://arxiv.org/abs/1812.00978
http://arxiv.org/abs/1812.00978
https://www.ijtsrd.com/engineering/software-engineering/31202/selenium-%E2%80%93-a-trending-automation-testing-tool/manav-kundra
https://www.ijtsrd.com/engineering/software-engineering/31202/selenium-%E2%80%93-a-trending-automation-testing-tool/manav-kundra
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1145/3025171.3025203
https://doi.org/10.1145/3025171.3025203

Toby Jia-Jun Li, Amos Azaria, and Brad A. My-
ers. 2017. SUGILITE: Creating Multimodal Smart-
phone Automation by Demonstration. In Proc. of
CHI ’17, pages 6038—-6049.

Wei Li. 2021. Learning ui navigation through demon-
strations composed of macro actions. arXiv preprint
arXiv:2110.08653.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Ja-
son Baldridge. 2020. Mapping natural language in-
structions to mobile UI action sequences. In Proc.
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 8198-8210. Association for Com-
putational Linguistics.

Yuanchun Li and Oriana Riva. 2021. Glider: A re-
inforcement learning approach to extract UI scripts
from websites. In Proc. of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2021).

James Lin, Jeffrey Wong, Jeffrey Nichols, Allen
Cypher, and Tessa A. Lau. 2009. End-user program-
ming of mashups with vegemite. In Proc. of the 14th
International Conference on Intelligent User Inter-
faces, IUI °09, pages 97-106. ACM.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and
Percy Liang. 2018. Reinforcement learning on web
interfaces using workflow-guided exploration. In
6th International Conference on Learning Represen-
tations (ICLR ’18).

Dheeraj Mekala, Jason Wolfe, and Subhro Roy. 2022.
Zerotop: Zero-shot task-oriented semantic parsing
using large language models.

Brad A. Myers and Richard McDaniel. 2001. Demon-
strational interfaces: Sometimes you need a little
intelligence, sometimes you need a lot. In Henry
Lieberman, editor, Your Wish is My Command, In-
teractive Technologies, pages 45—60. Morgan Kauf-
mann.

Chris Rawles, Alice Li, Daniel Rodriguez, Oriana Riva,
and Timothy Lillicrap. 2023. Android in the wild:
A large-scale dataset for android device control. In
NeurlPS 2023 Datasets and Benchmarks Track.

Oriana Riva and Jason Kace. 2021. Etna: Harvesting
action graphs from websites. In UIST "21: The 34th
Annual ACM Symposium on User Interface Software
and Technology, Virtual Event, USA, October 10-14,
2021, pages 312-331. ACM.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages
627-635, Fort Lauderdale, FL, USA. PMLR.

44

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3135-3144. PMLR.

Richard Shin and Benjamin Van Durme. 2022. Few-
shot semantic parsing with language models trained
on code. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5417-5425, Seattle, United States.
Association for Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2019. ALFRED:
A benchmark for interpreting grounded instructions
for everyday tasks. CoRR, abs/1912.01734.

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi.
2020. MOCA: A modular object-centric ap-
proach for interactive instruction following. CoRR,
abs/2012.03208.

Atsushi Sugiura and Yoshiyuki Koseki. 1998. Inter-
net Scrapbook: Automating Web Browsing Tasks by
Demonstration. In Proc. of the 11th Annual ACM
Symposium on User Interface Software and Technol-
ogy, UIST °98, pages 9-18.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. CoRR, abs/2105.13231.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962v2.

UlPath. 2023. https://www.uipath.com/.

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini
Narayanan. 2022. UGIF: UI grounded instruction
following.

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling
conversational interaction with mobile ui using large
language models. In Proc. of the 2023 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’23. Association for Computing Machinery.

Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P
Bigham. 2021. Screen parsing: Towards reverse en-
gineering of UI models from screenshots. In Proc.
of the 34th Annual ACM Symposium on User Inter-
face Software and Technology, UIST °21, pages 470-
483.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, Zicheng Liu,

https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
http://arxiv.org/abs/2110.08653
http://arxiv.org/abs/2110.08653
https://www.aclweb.org/anthology/2020.acl-main.729/
https://www.aclweb.org/anthology/2020.acl-main.729/
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/1502650.1502667
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
http://arxiv.org/abs/2212.10815
http://arxiv.org/abs/2212.10815
https://doi.org/https://doi.org/10.1016/B978-155860688-3/50004-X
https://doi.org/https://doi.org/10.1016/B978-155860688-3/50004-X
https://doi.org/https://doi.org/10.1016/B978-155860688-3/50004-X
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://doi.org/10.1145/3472749.3474752
https://doi.org/10.1145/3472749.3474752
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.1145/288392.288395
https://doi.org/10.1145/288392.288395
https://doi.org/10.1145/288392.288395
https://www.uipath.com/
http://arxiv.org/abs/2211.07615
http://arxiv.org/abs/2211.07615
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763

and Lijuan Wang. 2023. GPT-4V in Wonderland:
Large multimodal models for zero-shot smartphone
GUI navigation.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron
Everitt, and Jeffrey P Bigham. 2021. Screen Recog-
nition: Creating Accessibility Metadata for Mobile
Applications from Pixels. In Proc. of the 2021 CHI
Conference on Human Factors in Computing Sys-
tems, CHI *21.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

45

A Appendix
Ethical considerations

A use case that motivates UINav agents include
screen readers for visually-impaired users. As ac-
cessibility labels are often missing or incomplete in
mobile apps, UINav can provide them with access
to a much wider range of applications and func-
tionality. Another potential use case of UINav is
task automation, which has societal, security and
privacy implications. An agent may leak private
information or carry out a task in an unacceptable
way or produce unwanted side effects. Malicious
actors could also use UINav agents for undesired
purposes such as overriding anti-fraud mechanisms
or manipulating applications to achieve undesirable
goals.

To develop UINav we collected a dataset inter-
nally. The demonstrators were asked to avoid en-
tering any private information and received fair
compensation.

A.1 An example task: search in YouTube

Fig. 6 shows the UINav agent searching in
YouTube. The agent dismisses popups twice (a)
and (b) to reveal the search bar. It then clicks
the "X" button to erase the previous search phrase
“something” (c). The system does not reach the de-
sired start state for a search until the screen shown
in (d), where the agent sets the focus on the search
bar to then enter the search term.

Fig. 4 shows the SEARCH task requires over 1700
task demonstrations because it must work for 100
or more different apps and websites. All other tasks
are specific to a single app and thus require fewer
samples, 33 on average.

A.2 Action space

The types of action the agent can predict define
its action space, summarized in Table 3. Actions
can be of two categories. Element actions manipu-
late a specific element. Global actions are general
operations or wrappers for platform-specific func-
tions (e.g., for launching an app). All the tasks
that we have tested so far are solvable by these two
categories of actions. In the future, we expect to
expand the action space to incorporate additional
functionality including deep-links and APIs.

A.3 Referee model

The referee is a recurrent neural network (RNN)-
based model (Fig. 7). The attention over

http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186

< | someting ed | o :E
ogie Play © computer
B [GoogePiay
9 @ivebywire
Audiblef ’T‘

uuuuuuu] o
. audiobooks, D lord of the rings

odcasts & audio ;| © googlenys

5

The world's stories
[t selection of

oks

largest selection of
audiobooks

r

(a) (b)

nnnnnnnnnnnnnn

1221
Fm

dawn of titans kronos
simpliearn com
googleadservice.com
Sormething george harrison cover

soceen

CHCRCRCIRCING

fiverpool vs

fiverpool

@

chopin piano

@
A A A A A A A A A A A A A A|e

@l

fc barcelona

(d)

Figure 6: UINav agent searches in YouTube. The pink arrows highlight the agent’s actions that are also annotated
by red boxes and texts. To start using the search bar the agent must first dismiss popups (twice) and clear the search
bar. (a) Clicks the back button to dismiss a popup ads; (b) Clicks "X" to dismiss the install page of Audible; (c)
Clicks "X" to erase the previously entered search phrase “something”; (d) Focuses on the search bar to enter a new

search term.

Table 3: UINav action space.

click <elem>

Clicks the center of the specified element.

Element focus_and_type <elem,text> Sets focus on the specified element, types the

actions specified text, and optionally presses Enter.
dismiss <elem> Clicks outside of the specified element.
wait Waits until the next observation is received.
back Goes back to the previous app screen.

Global i . . L

actions scroll <left|right|up|down> Scrolls in the specified direction.

open_app <app_name>

Launches the specified application.

Transformer-encoded UI elements is similar to that
of the agent model, except that the query is the in-
put utterance concatenated with the action history
(the action performed in the previous step and its
outcome). Although action history could be de-
rived from previous screen representations, feeding
it as input directly makes it less challenging as the
referee does not have to learn it. The output of
the attention module is then fed into a gated re-
current unit (GRU) (Cho et al., 2014). The GRU
takes this along with the previous internal hidden
state as inputs to predict the current status of the
step: (1) SUCCESSFUL: the task is completed and it
is successful; (2) FAILED: the task has failed or has
reached the maximum number of allowed steps; (3)
PENDING: the task is ongoing; or (4) INFEASIBLE:
the task cannot be executed (e.g., the task may not
be well defined). Failed executions are saved along
with all their parameters and passed to the demon-
strator.

46

Task status
4 yt - 4 V\ﬂ
MLP

— GRU cell GRU cell T e
ht hi+t h2
attended e\lement attended-Ul element
[transformer attention] { transformer attention]
encoder KV module encoder K,V module

la

action
Ul elements | | utterance histol

Xt

|a

Ul elements | | utterance | 210N
histor

X+

Figure 7: The architecture of the UINav referee model.

A.4 Macro actions

In UINav, every action is executed as a small pro-
gram that is composed of lower level operations
with status checks. Such a program is referred
to as macro. Macro actions abstract the system-
specific details, thus making it possible to build
cross-platform agents and simplifying the agent’s
logic. Each macro action is implemented following
a state transition graph. Fig. 8 shows the state tran-
sition graph for most macro actions that result in

Action cancelled
SO0: started

S1: waiting for action to
complete

S2: waiting for screen to
change

S3: waiting for screen to
stabilize

S4: waiting for screen
representation to update
S5: failure

S6: success

Action failed

timeout

Screen representation £\
updated o0)
timeout -

Figure 8: The state transition graph for macro actions
resulting in screen changes.

screen changes, such as click and back. It starts
at S0, and transitions among the other states accord-
ing to incoming events, such as Action dispatched
and Screen changed, and exits either successfully
(S6) or with a failure (S5). The graphs of other
macro actions are similar.

Each macro is atomic so that the agent stays idle
while a macro is running. During the execution of a
macro action, changes to the screen are not visible
to the agent, and do not contribute to the state space.
In particular, each macro action is designed to en-
capsulate transitional screens, and finishes when
the screen becomes stable or a timeout is reached
(required for dynamic screens such as playing a
video).

Another advantage of using macro actions is that
they package highly dependent, low-level actions.
Fig. 9 shows an example. The focus_and_type action
(inspired from MiniWoB (Shi et al., 2017)) consists
of 4 low-level actions: clicking the input field to
obtain focus, waiting for the blinking cursor to
appear, typing the text in the field, and (optionally)
pressing Enter. (Note that large arrows in purple
are drawn to highlight interesting areas.)

As aresult, we are able to utilize a memory-less
neural network architecture for the agent. In other
words, our agent picks an action based only on
the information of the current screen. This makes
the neural network easier to train. Additionally,
a memory-less neural network can be trained us-
ing sets of single screenshots, rather than long se-
quences of screens which can be hard to collect.

A.5 Implementation

We built UINav for the Android platform. How-
ever, our design is applicable to other platforms

47

and some of our techniques (e.g., macro-actions
and screen representation) are specifically designed
to be platform agnostic. Both the agent and the ref-
eree models are implemented in TensorFlow. We
employ two inference modes, off-device and on-
device. During development we use the Python
API of TensorFlow to test the models off-device.
Once stable, the models are converted to Tensor-
Flow Lite (tflite) for on-device inference. Both
agent and referee models utilize the same pre-
trained language model to encode utterances and
texts appearing on screens. We choose the small-
est model, L-2_H-128_A-2, of SmallBERT (Turc
etal.,2019), and convert it to a 17.6MB tflite model.
Note that no quantization is applied during the tflite
conversion of any of the above models. For effi-
ciency, the sentence encoding computation of the
agent and referee models are shared.

The selection of SmallBERT over a larger lan-
guage model is mainly for on-device inference. We
restrict the input utterances to predefined patterns
so that arguments can be parsed through regular ex-
pressions. With the help of utterance masking, our
models deal with higher data diversity and main-
tain high-accuracy. If an LLM can be used, such
restrictions won’t be necessary.

For both off-device and on-device modes, we
rely on an in-house built companion Android app
to extract screen representations and to perform
macro actions. For off-device mode, we utilize
AndroidEnv (Toyama et al., 2021) to communicate
between the companion app and our learning en-
vironment. For on-device mode, all the models
interact with the companion app directly.

The neural networks are agnostic to whether the
Android accessibility tree or screen understanding
techniques are used to produce screen representa-
tions. We include demonstrations using both data
sources in the same pool of training samples. Both
approaches have their limitations. There are icons
that are unrecognizable by the icon detectors of
screen understanding models and the output of text
recognizer may contain errors. On the other hand,
visible UI elements may be absent in the corre-
sponding accessibility tree if the app contains Web
views, Canvas, etc.

A.6 UlNav Console

To collect demonstrations, we have developed a
dedicated application, the UINav Console, that can
be seen in the right-half side of the screenshots in
Fig. 10-12. At each step of a demonstration, a

P0/0 X00 Y00 X:00 W00 P00 Sze00 PO/0 X00 Y00 X:00 W00

P00 Sze00 P0/0 X00 Y:00 X:00 W00 Ps00 Sze00 P0/0 X00 Y:00 X:00 W00 P00 Sze00

= & Bearchin Drive & reinforcement learning & reinforcement learning X
B Google Ksep gocument . ICML Tutorial on Model-Ba,
N D 2 Modified Oct 29,2020
B PDRs” B PDFs
Personal ICML 2020 Virtual... .
H
Bl Documents Bl Documents 2 Modified Jul 13,2020
> thanks | we & > learning learnings leamings & > learning learnings |leamings ¥
gwertyuiopgwertyuiopgqwertyudioop

asdfghjk.

B Copy of Copy of Gettin...

723

()

7123

asdfghjk.I asdfghjk.I

G zxcvbnm@ ¢ zxcvbnm&@ ¢ zxcvbnmd

723

Figure 9: The focus_and_type macro action consists of four steps: (a) clicking the input field (“Search in Drive”)
to obtain focus; (b) waiting for the blinking cursor to appear; (c) typing the specified text (“reinforcement learn-
ing”); and (d) pressing Enter and wait for the screen to update.

user specifies a macro action, including action type,
referenced element, and action argument (if any),
and then requests execution of the action.

It is typically less effort to complete a task us-
ing the UINav Console than directly manipulating
the device. For example, entering text using the
console takes at most four clicks (clicking the tar-
get element, opening the drop-down list of can-
didate texts, selecting the text to input, clicking
the focus_and_type button), while manipulating
a real device requires keying-in individual char-
acters. The UINav Console also exposes system
APIs, such as opening an app through intents, that
are not available through the actual device. While
using the console may encourage users to com-
plete a task in a way that is different than how they
might do through a native interface, the main goal
of a trained agent is to successfully complete tasks.
Whether it behaves like a human is less important.

In the UINav workflow, new human demonstra-
tions are collected only in scenarios where the cur-
rent version of the agent or the referee make errors.
The demonstration collection interface is integrated
with the agent and referee. At each step, the agent’s
choice of an action and its optional argument are
assigned to the internal states and are visualized
on the GUI. It is not uncommon that an agent pro-
duces correct outputs for unseen scenarios due to
the neural networks’ capability of generalization.
In such cases, a demonstrator simply proceeds with
a single click to the next step, thus avoiding the
effort of manually specifying the action parame-
ters. Error-driven demonstration collection signifi-
cantly reduces human effort as well as the number
of training samples, which ultimately leads to lower

48

training times.

A.7 Model training details

Training the agent model. For the agent model,
demo augmentation happens dynamically with a
1% probability for a sample to remain unchanged.
The model is optimized by an Adam optimizer with
a fixed learning rate of le-3. Initially a training
runs up to 100,000 samples and can be terminated
earlier if the test accuracy stabilizes. If new demon-
strations are added, the agent will be trained with
additional 20,000 samples. It is trained on CPU or
GPU with a batch size of 256.

Training the referee model. For the referee
model, each demonstration is augmented to 10 sam-
ples at a pre-possessing stage. The model is opti-
mized by an Adam optimizer with a fixed learning
rate of le-3. A training takes up to 30 epochs and
can be terminated earlier if the test accuracy sta-
bilizes. It is trained on CPU or GPU with a batch
size of 128.

A.8 Case study of agent capabilities

In the following figures we report screenshots and
the associated UINav console. The large arrows in
purple are drawn on the screenshots to highlight
interesting areas. In the console it is the annotated
screen, where Ul elements are identified using blue
and green boxes. An element highlighted by a red
box indicates that it is selected to receive the next
action.

Sending an email with multiple text inputs.
Fig. 10 shows the image sequence of a UINav agent
completing the “send email” task. The task utter-
ance is “send an email to uinav@gmail.com with

r 1226 & @ &

r 1220 & @ &
= Searchinmail < Compose
Primary From weilij il.com
a Tap a sender il_v\igemw\ocl Dismiss
that conversation. To uinav@gmail.com

ne
g Promotions o e e .
NewsBreak Mountain View, Linkedin iy 1y neeting fzon | Subject

55T - Hew York) .

Tie:
m me, Mail 2 @ 1220AM
Events for the Week

Address not found Your message wasn't.. X

Compose email

me, Mail 2 © n20am
Updated Invitation
Address not found Your message wasn't.. Y¥

@ me, Mail 2 © w2Am
[eerebr..]

Address not found Your message wasn't.. Y

m me, Mail 2 © 123AM
Invitation

Address not found Your m tly
Z composs | I e,
me, Mail 2 ~ © nasam flag|h|]j
: . z|x|c|v|bfn|m .
& o .
Mail Meet ¥
\ < ° [] r—— °
rmsu-- w4 m r\z.zeal-
<« Compose e B < Compose
s o

From weilijutest@gmail.com

To uinav@gmail.com v To uinav@gmail.com

Events for the Week| fEom | Events for the Week
ok .

Hi, you are invited to attend our weekly
‘meeting from 4:00pm to 5:00pm on Tuesday
(EST - New York).

Compose email

Week | Weekend = Weekends &

asdfgnjk JULIL
.zxcvbnm .,E,,x,c‘i,bnT.
) e

(© (d)

Figure 10: The UINav agent sends an email: (a) Clicks the compose button; (b) Types the email address; (c) Types
the subject; (d) Types the email content. The action of clicking the send button is not shown due to space limitation.

(@) (b)

Figure 11: Two cases of an agent sending a message. The task description is “send the following message in
WhatsApp Messenger to Jerry: Are you coming to the meeting?”. (a) In the message view to a different recipient
from the one in the utterance; (b) In the message view of the same recipient as the one in the utterance.

49

Notifications

Allow notificatio
Suggested actions and 1@4
. |
|
J

Notification dot on app icon

Default notification sound

Do Not Disturb

<

\

T o s |
s =
ing 0.9983
1 down and turn off
fication dot on app

Notifications

Gmail

See allfrom last 7 days

Figure 12: An agent selects an action to turn off notification dot (a) when the switch is on, and (b) when the switch
is already off. The texts in red (click in a) and wait in b)) are the actions selected by the agent.

the subject: Events for the Week and the content:
Hi, you are invited to attend our weekly meeting
from 4:00pm to 5:00pm on Tuesday (EST - New
York)”.

Sending a message to the correct recipient.
Fig. 11 compares two cases of an agent sending
messages. The images are deliberately modified to
hide the real names of the recipients. Both (a) and
(b) are in the message view of the app but of dif-
ferent recipients, Tom in (a) and Jerry in (b), while
the utterance specifies the recipient to be Jerry. The
agent correctly recognizes the difference and se-
lects the correct action for both cases: pressing the
back button at the top left for (a) and typing the
content of the message at the bottom for (b). Note
that it is the title bar that contains the information
on the current recipient. We believe that it is due to
the self-attention of the Transformer encoder that
the agent learns whether the text of the title bar
matches the recipient is a critical signal in these
states.

Understanding the relationship between text la-
bel and switch. Fig. 12 shows how the UINav
agent selects actions to turn off notification dot
in two cases: (a) when the switch is on and the
agent selects the action to click the text label of
"Notification dot on app icon", and (b) when the
switch is already off and the agent chooses to wait
for the referee to terminate the task. Note that the
text label of "Notification dot on app icon" and its
switch are independent Ul elements in the screen
representation, and there are multiple switches on

50

the screen with identical attributes except for their
positions and states. The agent learns their relation-
ship probably by the relative positions (horizontally
aligned).

A.9 Apps and websites used in data collection

The full list of Android apps and websites that are
used in our data collection is as follows:

Facebook Messenger, TikTok, Instagram, What-
sApp, Amazon Shopping, Facebook, Walmart, Spo-
tify, Pandora, Amazon Prime Video, Google Play
Games, Wish, Pinterest, Google Messages, Target,
Poshmark, Waze, Twitter, Wayfair, google.com,
Google Play Store, Seamless, YouTube, Reddit,
Ebay, Etsy, Soundcloud, Tasty, Gmail, Contacts,
Android Auto, YouTube Music, Snapchat, Tubi TV,
Shop, News Break, Cash App, Pluto TV, Uber,
Burger King, Roku, Amazon Alexa, Life 360,
HBONow, ESPN, iHeartRadio, Nike, Amazon Pho-
tos, Letgo, Walmart Grocery, Weather App, Google
News, Files, Home Screen, Google Docs, Door-
Dash, Google Photos, AirBnB, AliExpress, Ama-
zon Music, Apple Music, Audible, Chewy, Chik Fil
A, Costco, Dollar General, Google Drive, Dunkin
Donuts, Google Earth, Emoji Home, Family Dol-
lar, wikipedia on firefox, Food Network, GroupMe,
Groupon, GrubHub, Instacart, KeepNotes, King
James Version, Kroger, Likee, LinkedIn, fb Lite,
Lyft, Maps, OfferUp, Phone, Pixaloop, Scanner,
SHEIN, Skype, SmartNews, Starbucks, thredUp,
Ticket Master, Walgreen’s, Yahoo Mail, Yelp,
YouTube Kids, Zedge, Zelle, Zillow, wikipedia.org,
youtube.com, yahoo.com, facebook.com, live.com,

reddit.com, bing.com, linkedin.com, Sam’s Club,
discord, GoodRx, Outlook, Breaking US News,
Lucky Go, CNN, Postmates, Transit, Sephora, tar-
get.com, twitter.com, irs.gov, craigslist.org, home-
depot.com, Recipes Home, Zillow, and Dialer.

51

Efficiently Distilling LLLMs for Edge Applications

Achintya Kundu, Fabian Lim, Aaron Chew, Laura Wynter, Penny Chong, Rhui Dih Lee
IBM Research, Singapore

Abstract

Supernet training of LLMs is of great interest in
industrial applications as it confers the ability
to produce a palette of smaller models at con-
stant cost, regardless of the number of models
(of different size / latency) produced. We pro-
pose a new method called Multistage Low-rank
Fine-tuning of Super-transformers (MLFS) for
parameter-efficient supernet training. We show
that it is possible to obtain high-quality encoder
models that are suitable for commercial edge
applications, and that while decoder-only mod-
els are resistant to a comparable degree of com-
pression, decoders can be effectively sliced for
a significant reduction in training time.

1 Introduction

Given their sizes up to billions of parameters, (Raf-
fel et al., 2020; Brown et al., 2020), it is challenging
for enterprises to fine-tune Large Language Models
(LLMs), and furthermore they are not suitable for
deployment on edge devices with limited memory
and computational power. We wish to enable LLMs
on edge environments for enterprise use cases. This
requires the following two capabilities. (1) Accom-
modating a variety of edge device hardware: A
single fine-tuned model is not optimal across the
spectrum of devices. For industrial applications, a
palette of fine-tuned LLMs is required for different
hardware. (2) Dynamically changing resource lev-
els: At run-time, the available resources on edge
devices evolve over time, and appropriate model
should be dynamically selected based on the avail-
able resources of each device.

A considerable amount of research has focused
on compressing LLMs (Zhu et al., 2023; Sanh et al.,
2019; Mukherjee and Awadallah, 2020; Mukherjee
et al., 2021; Jiao et al., 2020; Hsieh et al., 2023).
Methods that train a single small model guided by
a large teacher model such as DistilBERT (Sanh
et al., 2019) and BERT-PKD (Sun et al., 2019), ei-
ther achieve limited compression or do not scale to

52

a large number of deployment devices. Supernet
training methods (Hou et al., 2020; Xu et al., 2021;
Cai et al., 2019; Kundu et al., 2023; Lou et al.,
2021; Jawahar et al., 2023) were introduced to ad-
dress these limitations: multiple smaller subnets
within the supernet are trained simultaneously with
weight-sharing. This one-time training approach
produces a palette of smaller models, helping miti-
gate the computational cost of fine-tuning a model
for each deployment scenario. However, the full-
parameter supernet training approach is impractical
when fine-tuning of an LLM is required for mul-
tiple deployment scenarios, limiting its utility for
enterprises.

Parameter-efficient fine-tuning (PEFT) methods
such as Low-Rank Adaptation (LoRA) reduces
the number of trainable parameters by allowing
only rank-decomposition matrices to be trained
while freezing the pre-trained weights of the model.
PEFT methods, however, are not applicable to
supernet training due to the implications on the
weight-shared sub-networks. Our work bridges
this gap to enable efficient fine-tuning of LLMs for
edge devices. Our contributions are:

1. We propose a parameter-efficient, distillation-
based approach for supernet training of LLMs.

2. We devise a gradient scaling scheme to im-
prove convergence speed of any form of su-
pernet training.

3. We demonstrate significant compression of
encoder models for edge. We highlight the
limits of comparable compression for decoder
models, while demonstrating a huge reduction
in the steps needed for convergence.

2 Related Work

Classical compression methods have been used for
LLMs including pruning (McCarley et al., 2019;
Voita et al., 2019), low rank approximation (Ma

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 52—62
June 16-21, 2024 ©2024 Association for Computational Linguistics

et al., 2019; Lan et al., 2019), and quantization
(Shen et al., 2020; Zafrir et al., 2019; Bhandare
et al.,, 2019). Knowledge distillation (KD) is
adopted in BERT-PKD (Sun et al., 2019), tiny-
BERT (Jiao et al., 2020), and distilBERT (Sanh
et al., 2019) and (Gu et al., 2023) in MiniLLLM to
distill knowledge from the layers of a large trans-
former model to a smaller one. See also the survey
(Zhu et al., 2023). All these existing methods pro-
duce a single compressed model, unsuitable for
edge scenarios with multiple deployment devices
having varying computational capability.

Neural architecture search (NAS) based on rein-
forcement learning (Zoph and Le, 2016) and evo-
lutionary algorithms (Real et al., 2019; Zhu et al.,
2019) trains every possible architecture and is very
slow. Weight-sharing NAS was thus developed: in
Guo et al. (2020); Cai et al. (2018), the building
blocks in the same layer are isolated as all architec-
tures are single paths. Weight-sharing NAS does
not scale well to large architecture search spaces,
hence, weight-entangled NAS, where subnets with
common parts share weights, was introduced.

For resource-constrained edge deployment, su-
pernet training (Cai et al., 2019; Kundu et al., 2023;
Chen et al., 2021b; Xu et al., 2021; Gao et al.,
2022; Dong et al., 2022) was developed as a mode
of jointly training multiple sub-networks (subnets)
with entangled weights: one trains the supernet
only once for all deployment scenarios. Cai et al.
(2019) introduced an elastic convolutional neural
network with "progressive shrinkage", where larger
subnets are trained first. Recent works have im-
proved sampling strategies, e.g. the sandwich rule
with in-place distillation (Yu et al., 2020), attentive
sampling (Wang et al., 2021), stochastic nature gra-
dient (Zhang et al., 2021), or post-training sampling
(Lou et al., 2021). Our work is related to supernet
training for transformer models (Hou et al., 2020;
Zhang et al., 2021; Wang et al., 2022, 2020; Chen
et al., 2021b). This gradient scaling technique can
be used with any of the above supernet methods.

Parameter-efficient fine-tuning (PEFT) has been
of great benefit in fine tuning LLMs. BitFit
(Ben Zaken et al., 2022) updates the bias terms
in pre-trained models while freezing the remain-
ing parameters. LoRA (Hu et al., 2022) decom-
poses attention weight gradients into low-rank ma-
trices to reduce the number of trainable parame-
ters. AdaLLoRA (Zhang et al., 2023) and QLoRA
(Dettmers et al., 2023) further improve LoRA (Hu
et al., 2022). Note that PEFT allows fine-tuning a

53

base model on a single GPU but does not produce
smaller models. None of the PEFT methods can be
used for weight-sharing supernet training.

3 Solution Design

For use in enterprise settings, the solution must
allow fine-tuning of models on a small GPU foot-
print. In addition, inference cost in terms of storage
must be minimised. We therefore design a solution
which does not store the full size model check-
point for every downstream task but only the frozen
weights of the pre-trained base model and the low
rank matrices. For inference in commercial edge
use cases, we wish to enable storing the desired
models locally for a wide variety of edge device re-
source requirements. We thus develop an approach
where storage is minimised, storing only one base
model and as many low rank adapter matrices as
there are target model size variations, where low-
rank adapters are very small. If the model is stored
locally on an edge device, our proposed slicing op-
eration takes place where the supernet fine-tuning
is performed and the desired model is downloaded
for inference. The slicing operation takes place for
each model size-task combination and each result-
ing subnet can be cached for inference.

4 Problem Formulation

First, we provide notation. Given a transformer
model with architectural configuration ¢ and
weights W, we denote its forward-pass mapping
by fo(; W) : X —). We consider the output
space) to be the set of all non-negative vectors in
R” with elements summing to 1, where v denotes
the number of classes / vocabulary size). With
slight abuse of notation, we write the forward-pass
mapping of an input « € & through a transformer
model ® as g, z,h = fo(x; W), where § €) de-
notes the predicted probability distribution over the
(class labels) vocabulary, z denotes the vector of
logits, and h represents a tuple of features such as
hidden state vectors and attention values from dif-
ferent transformer layers. Note that § = o(z),
where o is the standard soft-max function that
maps a vector of logits into a probability vector.
Given a training data set Dy, C X X), model
weights W are learnt by minimizing training loss:

argmin | Lo(W) = E[{[fo(x; W), y] ”, (1)

W%

where E denotes expectation over training example
(x,y) drawn uniformly at random from D4, and

¢ denotes a loss function. Most commonly, £ is
chosen to be a task specific loss function, ftask,
such as cross-entropy (i.e., CE[-, -]) for classification
or causal language modeling loss for generative
models.

Next, we introduce the super-transformer and
related terminologies. We define three types of net-
works - Teacher network, Super-transformer (su-
pernet) and Sub-transformer (subnet). The teacher
is a fixed network with the same configuration as
the pre-trained transformer. A super-transformer is
a dynamic model whose architectural dimensions
(embedding dimension, number of heads, number
of layers, etc.) are configurable at run time. The
maxnet (resp. minnet) is the largest (resp. small-
est) network in the super-transformer’s architecture
space. Weight entanglement (weight-sharing) al-
lows super-transformer weights to be used across
sub-transformers, which are subsets of the super-
transformer. Pre-trained transformer weights ini-
tialise the super-transformer.

The dynamic nature of a super-transformer is
explicitly specified via a set A, called configuration
space, consisting of architectural configurations
of all sub-transformer models under consideration.
The definition of a super-transformer also includes
how the configuration ® € A is to be mapped to
a unique transformer model f3. A weight-sharing
super-transformer uses a set of shared weights Ws,
to define all sub-transformer models’ weights. This
is done through a weight projection operator 11
that slices (selects an appropriate subset of) the
super-transformer’s weights Ws,, into weights of a
sub-transformer model:

Wg := Il (Wsyp) , VO € A.)
The aim of a weight-sharing super-transformer is
to simultaneously train all the transformer models
{fo(Ie(W)) : X — Y|P € A} through the
shared weights Ws,,. A typical training objective
for super-transformers is the training loss averaged
over all model configurations in .A:

ar\%min Lsup(Wsyp) := E [Lo(TLe(Wsyp)) |
Sup

|.®
where [E denotes expectation over model configu-
ration ¢ drawn uniformly at random from .4 and
Ly, as defined in (1), is averaged training loss for
configuration ®. Super-transformer weights, W,
are learnt with stochastic gradient (denoted @) of

54

the super-transformer’s loss Ls,, estimated as

K
A 1 A
Vi Lsup(Weip) = 22 > Vv La, (T, (Weip)) (4)

j=1
. 1 . .
VwLe (W)= EZVWE [fo (27 Wa) ,], (5)
iEB
where {®1, - , g} are K sub-transformer con-

figurations sampled from A to approximate the
expectation in (3) and B is a mini-batch of train-
ing examples sampled from Dy, to approximate
the expectation in (1). Fine-tuning LLM super-
transformers is computationally challenging in en-
terprise use cases as it involves computing gradi-
ents of sub-transformers’ loss functions with re-
spect to a huge number of parameters.

5 MLFS

We therefore developed Multistage Low-rank Fine-
tuning of Super-transformers (MLFS). Given a
teacher model with configuration ®1cp and pre-
trained weights W?gﬁtram, we assume that its
weights (denoted W) can be fine-tuned on the
given task by learning low-rank matrices Ag, By

on top of pre-trained weights W%ﬁﬁtrain.

Wren := WEIEIM L A« By, (7)

where Ag, By are of (low) rank r. Note that
pre-trained weights WP "™ remain unchanged
during super-transformer fine-tuning. The low-
rank matrices, Ag and By, are learnt by minimiz-
ing the cross-entropy loss of the teacher model
o, (s Wren) @ X — Y over the training data
set Dyrqin. Specifically, we perform Ejy epochs of
fine-tuning on the teacher to learn Ag, By. This
is stage-0 of the multistage fine-tuning algorithm.
We denote the teacher weights obtained at the
end of stage-0 by Wrc,. We now define a super-
transformer with maxnet configuration the same as
the teacher’s. Thus the super-transformer’s weights
Wsyp are of the same size as the teacher weights
Wcen). To fine-tune the super-transformer weights
Wsyp, in each of the subsequent stages, we freeze
Wicn and propose learning two stage-specific low-
rank matrices Ag, B, of the same rank, r, as
Ay, By, that are shared across all sub-transformer
models in that stage. To be precise, we impose
the following structure on the weights of the sub-
transformers at stage-s:

WSup = Wren + Zgzl As x B,

Ws =1l (WSup), Vo c A. ®)

Algorithm 1 Multistage Low-rank Fine-tuning of Super-transformers (MLES)

Input: Transformer model (teacher) with configuration ®1cy & off-the-shelf pre-trained weights WPI™"a™,

model configuration space A consisting of smaller (than ®+¢p,) transformer architectures of interest, Dyyqin
fine-tuning data set for the target task, r: rank of the low-rank matrices and distillation factor v € [0, 1].
Loss functions: Target task loss {55k, knowledge distillation loss ¢xp, feature distillation loss £p.
Multistage Training:

1: for stage s = 0,1,2 do

2: Initialize the low-rank matrices { A, B} to be learned at stage s .
3: for iteration=1,...do
4: Get a mini-batch B of training examples from data set Dy;q;p,: {(ml, y") € Dirain |1 € B}.
5: Load the super-transformer model with weights Wy, <= WP 5™ 4 4 By,
6: A :={®q, Py, - - } «+ sample_sub-transformers(.A4, stage = s). [®; is the maxnet].
7: for each ®; € A, do
8: Load the sub-transformer model ®; with weights We, := Tl (Wsyp).
9: n; := # of fine-tuning weights in model configuration ®; .
10: Compute forward-pass on the sub-transformer ®;: g)}, z;:, hfI,j — fq>].($i; W<1>j), Vi € B.
11: For the case of maxnet ($1) set the distillation factor « to 0.
12: Find the loss: 1oss’ < (1 —) Crask[i}, y'] + (EKD[Z;, 2] + EFD[hfbj,hfbl]) , Vi € B.
13: Compute gradients (Vy, lossg-, Vgslossé) using backward-pass on sub-transformer @ ;.
14: end for
15: Update Ag, B; using the gradients (@AS Lsup, @BS Lsyp) of the super-transformer’s loss:
~ 1 ni 7. ~ 1 :
VwLsup = 5 Z() VwLe,, VwLle, = => Vwlossi, VW € {A,,B.}. (6)
ERPAA J ' 18]
jEAs ieB
16: end for
17: end for

Output: {A,, B,}2_, and fine-tuned super-transformer weights: Ws,p, = WP 1572 A 5 B

Stage-s of the fine-tuning process involves learning ~ where {As, Bs}s—01,2 are low-rank matrices
only the low-rank matrices, Ag, Bs, by minimizing shared across all sub-transformers ® € A.

the super-transform loss as in (3). In stage-1, we

sample sub-transformer models by sampling dif- To illustrate the computational savings, recall
ferent widths from the super-transformer keeping W?ﬁﬁ“w € R4, where d is typically of the or-
the depth (number of layers) same as the maxnet. ~ der 10* — 108, For rank 7 (typically < 10) for the
In stage-2, we sample sub-transformer models by ~ low-rank matrices: A, € R>", By € R™? s =
sampling different widths as well as depths. We 0, 1,2, where r < d. Then, the number of param-
always sample the maxnet model from the super- ~ eters to be learnt in the MLFS approach is 6rd.
transformer as the 15¢ sub-transformer model, ®;, In contrast, full fine-tuning requires updating d?
at every iteration. We call this Multistage Low- parameters at every iteration.

rank Fine-tuning of Super-transformers (MLFS)

and present it in Algorithm 1. Gradient Scaling For faster convergence of the
smaller sub-transformers within a super- trans-
former, we propose a novel weighted-combination
of the gradients of the sampled sub-transformers.

Proposition 1 Let the individually fine-tuned
weights of a subnet, ®, be expressed as Wo =
g (W™ 4 AWg. Then, MLFS has the fol-

lowing structure on AWe: Proposition 2 Let 15 sampled sub-transformer,

) D4, be the maxnet be in every iteration. Then the
AWg =Ilg <Zs:0 As * Bs) VO e A, (9 scaled gradient of the super-transformer training

55

loss, Lsyp, in Algorithm 1 is given by

S (1 /n)Y Vw L, (10)

where Vv denotes gradient w.rt. only those
weights that are being fine-tuned (in this case only
the LoRA matrices), nj denotes the actual number
of trainable weights in model configuration ®; and
v > 1is a hyper-parameter.

Proof: Each sub-transformer gradient in (10),
grad’, is scaled by (n1/n;), which is obtained
from the relative weighting of the loss functions.
Let £;(W) denote the j-th sub-transformer’s loss.
Using first-order Taylor expansion, we get:

E‘:Dj (W + 5) ~ £<I>j (W) + <VW£¢’J' (W)7 5>7
where (-, -) denotes inner (dot) product operation.
Therefore, the steepest possible decrease in the loss

function L4, can be approximated as:
Aﬁ.:pj ~ HVWEQJ (W

where we approximate the || - [|; norm using the
zero-th norm, i.e., number of non-zero elements
and n; stands for the actual number of trainable
parameters in sub-transformer configuration ®;.
Since the decrease in the loss of a sub-transformer
model ®; is approximately proportional to the num-
ber of trainable model parameters (n;), we scale
the losses using (n1/n;)7,7 > 1 so that training
losses of smaller sub-transformer models converge
at a rate similar to that of larger sub-transformer
configurations. Recall that n; is the maximum
number of trainable parameters as 1°¢ sampled sub-
transformer ®; is always the maxnet. O

Distillation Loss for Super-transformers:
Knowledge distillation is straightforward in a
fixed-network fine-tuning setting. However, it is
less so when fine-tuning a supernet, and in par-
ticular, fine-tuning a supernet using the proposed
multistage LoRA based approach. Specifically, the
subnets receive two types of knowledge distillation
(KD) from the teacher: (a) the usual KD loss that
utilizes the output logits of the teacher and (b)
distillation of features from transformer layers
(Jiao et al., 2020) of the teacher.

To define the distillation based losses pre-
cisely, let the forward-pass mapping of an in-
put training sample x’ through sub-transformer
®; be Q;, z;-, hfbj +— fq>j($i;Wq>j), where h;- =

(h;’l, ce hj.’l, ...) with hj.’l denoting the feature

M1 10]maz = O(1)|0]maz

56

vector from [-th layer of sub-transformer ®;. In
super-transformers, the model (maxnet) having
the largest configuration, ®1, acts as the teacher
and knowledge distillation loss for all other sub-
transformers w.r.t the teacher is defined as

EKD[Z‘%j7ZZi>1] = KL[U(ZfI)J/t)7 U(Zzbl/t)], v] > 17

where KL[-, -] denotes the standard KL divergence
between two probability vectors, and ¢ > 1 is a
hyper-parameter called the temperature. Let d;
denote the embedding dimension (hidden size) in
sub-transformer ®;. We compute feature based
distillation loss by projecting features hil;lj € R%

to a low-dimensional space R%ow
Z ,3l HUZ hz N}

where g; maps each layer index of the sub-
transformer configuration ®; to that of the super-
transformer (/ maxnet ®1). In this paper, we pro-
pose to share the maxnet’s feature projection ma-
trices {U} € R%ow>d1} across all sub-transformer
models. We do so by slicing the matrices {U} }:

1,95 (1
EFD h‘1> >h<I>1 Ul @glj()||27

Ul- . [Ui]j(l)]q>

; ; e Rdlodej,

(11

where the operation [|g, selects appropriate
subset of columns depending on the configura-
tion ®;. To reduce the number of user-chosen
hyper-parameters, we propose the following hyper-
parameter sharing: Bé» = ﬁgj(l), Vi, l=1,2,...
Thus, apart from setting fewer hyper-parameters,
one needs to learn only maxnet’s feature projec-
tion matrices {U} : [= 1,2, ...}, making feature
distillation in a super-transformer setting compu-
tationally efficient. Additionally, we save compu-
tation through use of features only from a fixed
subset of maxnet layers for distillation across all
sub-transformers: i.e., we use the following subset
of maxnet layers: { gmin({) : {1 = 1,..., Lmin},
where L,;, denotes the number of transformer lay-
ers in the smallest sub-transformer ®,;,, and gpin
maps layer indices of ®,;;, to that of maxnet ®;.

6 Results on Encoder and Decoder LLMs

We report performance on encoder tasks using
GLUE (Wang et al., 2018) with BERT},. as the
teacher model ®t1¢,. For decoder LLMs, we use
Santacoder (Allal et al., 2023) and Codellama7B
(Roziere et al., 2023) on a python coding task using
bigcode/the-stack data (Kocetkov et al., 2022). We

Data set: SST2

Data set: RTE

Data set: MRPC

90 B 90 90
X e TinyBERT S 3
.80 DistilBERT | 80 .80
8 * PD-BERT 8 . 8
§ 70 ° EERT-:;E)T g 70 S § 70
< T oyna < <
60 —— MLFS 60 60
40 50 60 70 80 90 40 50 60 70 80 90 40 50 60 70 80 90
Parameters (M) # Parameters (M) # Parameters (M)
Data set: SST2 Data set: RTE Data set: MRPC
90 e e 90 90
R R R °
Zs0 Zs0 Zs0 ﬁ
E TinyBERT E . E
g 70 glstHBERT g 70 § 70
g —— DynaBERT g £
60 —— MLFS 60 60
75 100 125 150 175 200 75 100 125 150 175 200 75 100 125 150 175 200
Latency (ms) Latency (ms) Latency (ms)

Figure 1: Performance of task-specific BERT models produced by MLFS vs. other methods on 3 GLUE data sets.

report performance of the sub-transformer models
at the end of stage s = 2. On GLUE, we use the
train set for fine-tuning and the dev set for accu-
racy evaluation. For santacoder, we evaluate per-
formance using HumanEval (Chen et al., 2021a)
and report pass@1 scores. All experiments were
conducted using PyTorch on a single Nvidia A100
(40GB) GPU. Additional details on the experiment
settings are provided in the Appendix.

6.1 Performance of Encoder Models

We compare performance of encoder models ob-
tained with the MLFS approach against a static,
fixed model (BERT base) from (Zhang et al., 2021;
Hou et al., 2020), two popular distilled variants
of the fixed model: TinyBERT (Jiao et al., 2020)
and DistilBERT (Sanh et al., 2019), and models
trained using existing super-transformer methods
(DynaBERT (Hou et al., 2020). Figure 1 shows
the performance of the palette of models, from
a 45M param. minnet to full-size 110M maxnet.
Encoder models produced by MLFS are at par or
better than much costlier methods. Results of PD-
BERT, BERT-PKD are from (Zhang et al., 2021),
static BERT from (Zhang et al., 2021) for all ex-
cept MRPC for which we use (Hou et al., 2020).
Note that TinyBERT performs data augmentation
leading to higher accuracy but much longer compu-
tation time. We do not perform data augmentation
for fairness of the comparison to the other meth-
ods. The main observation is that MLFS provides
accurate, smaller encoder models at 1/4 the size of

the teacher and 1/3 its runtime latency on a single
GPU.

57

MRPC train loss RTE train loss

1.0 14
no grad \ no grad
0.9 with grad 1 with grad
0.8 s
2 @
38 8
c0.7 c
F0.6 =
0.5 08
04% 200 400 0 500 1000
Step Step

Figure 2: Ablation study on gradient scaling: MLFS
minnet convergence is improved using gradient scaling.

Ablation Study on Gradient Scaling In super-
net training, the weights of maxnet and subnets
are shared and trained simultaneously. The maxnet
tends to converge and overfit earlier than smaller
subnets. The different convergence rates renders
selecting a single supernet checkpoint for all net-
works difficult. Gradient scaling solves this by
speeding up convergence of the smaller subnets
to match that of the larger subnets or the maxnet.
Fig. 2 shows that gradient scaling improves minnet
convergence, indicated by lower minnet loss.

RTE MRPC SST-2

0.875 ‘\.\‘ 0.75 e
0.92
0.850 0.70
0.91 /\
0.825 \ .
065 —"— o090

rank rank rank

accuracy

Figure 3: Ablation study on MLFS rank of A, B.
Maxnet (top: blue), minnet (bottom: green), and av-
erage of two medium-sized subnets (middle: orange).
Rank r = 8 is optimal for small and medium subnets.

Ablation Study on Rank in MLFS Finally, in
Fig. 3, we examines the impact of rank r of the

matrices A, B on performance. Note that the ac-
tual number of parameters fine-tuned vary as we
vary the rank . The aim is to provide good results
for the smaller networks. Here, rank » = 8 works
well across the GLUE data sets. Therefore, we use
rank r = 8 for A, B for all other MLFS experi-
ments. From the scale of the y-axis in 3, observe
that MLFS is not overly sensitive to the chosen
rank.

6.2 Performance of Decoder Models

~ 20

S M Full FT + random init.
~ | I MLFS (a=0, r=8)

© 157 o MLFS (a=0.9, r=8)
% M Teacher (Santacoder 1.1B)
o

=10

©

>

=

s 51

E ’_I

=

I

400K 1.2M

Data set size (# of examples)

10K 24.2M

Figure 4: Performance of MLFS on a custom Santacoder
0.7B model using 10K/400K/1.2M training examples.

Data set size Model size
0.5B 0.7B 0.9B

10K 4.5 8.6 13.4

400K 4.7 9.5 13.5

Table 1: HumanEval pass@1 (%) performance of 3 small
models produced by MLFS from Santacoder 1.1B.

Data set size Model size
45B 5.3B 6B

200K 11.0 195 232

400K 14.0 28.1 30.5

Table 2: HumanEval pass@l (%) performance of 3
small models produced by MLFS from CodeLlama-
7B-Python

Turning now to decoder models, we consider two
code-pre-trained LLMs, Santacoder (Allal et al.,
2023) and Codellama7B (Roziere et al., 2023).
We evaluate a custom 0.7B parameter Santacoder
model obtained from the 1.1B teacher. Due to an
inability to fine-tune on the full 24M coding exam-
ples, we use up to 1.2M. Fig. 4 shows that MLFS
pass@1 improves rapidly as number of tokens in-
creases from a low 10k to 400k to 1.2M examples,
only 5% of the 24M examples. Table 1 shows anal-
ogous results with 3 small MLFS models. The

58

—— Full FT + random init.
MLFS (a=0, r=8)
—— MLFS (a=0.9, r=8)

Validation loss

20000 30000 40000 50000

Iteration

10000

Figure 5: Convergence comparison of validation loss
while fine-tuning a custom model from random vs using
MLES. MLEFS achieves low validation loss much faster.

improvement in pass@1 indicates that the smaller
models retain the ability to learn from the larger
teacher. Again, from Table 2, we see that smaller
models produced by MLFS from CodelLlama-7B-
Python retain their ability to learn and improve
quickly as the number of examples increases. Note
that the full data set includes 24M examples; MLFS
achieves nearly 75% of the performance of fullsize
CodeLlama after less than 2% of the examples.

Contrary to encoder models, the compression
levels that retain sufficient performance of the
teacher with decoders is less. While MLFS re-
tains accuracy performance of encoder models at
1/4 the size of the teacher, the decoder models are
reduced to at most 2/3 the teacher’s size.

MLEFS slicing of the teacher model can, however,
benefit decoder models by reducing substantially
the training/fine-tuning time needed compared to
a randomly-initialised model, as shown in Fig. 5
on Santacoder sliced from 1.1B to 0.7B. In other
words, when a smaller model is required for edge
inference, one can train it from a random initiali-
sation, or slice from a teacher as does MLFS, and
train starting from the sliced weights. The latter
significantly reduces training time as seen in the
validation loss curves. See (Samragh et al., 2023)
for a similar observation.

7 Perspectives

Enterprise users require an efficient way to fine-
tune LL.Ms for inference on edge devices of many
sizes. We developed MLFS for such edge deploy-
ment scenarios. We demonstrate its benefits on en-
coder LLMs. We show the limitation of compress-
ing decoder LLLMs to a comparable degree; how-
ever, MLFS offers significant gains for smaller de-
coder training/fine-tuning by slicing from a larger
pre-trained teacher.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1-9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
arXiv preprint arXiv:1906.00532.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2019. Once-for-all: Train one net-
work and specialize it for efficient deployment. arXiv
preprint arXiv:1908.09791.

Han Cai, Ligeng Zhu, and Song Han. 2018. Proxyless-
nas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. 2021b. Autoformer: Searching transform-
ers for visual recognition. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 12270-12280.

59

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Peijie Dong, Xin Niu, Lujun Li, Linzhen Xie, Wen-
bin Zou, Tian Ye, Zimian Wei, and Hengyue Pan.
2022. Prior-guided one-shot neural architecture
search. arXiv preprint arXiv:2206.13329.

Jiahui Gao, Hang Xu, Han Shi, Xiaozhe Ren, LH Philip,
Xiaodan Liang, Xin Jiang, and Zhenguo Li. 2022.
Autobert-zero: Evolving bert backbone from scratch.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36-10, pages 10663—-10671.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. 2020. Single
path one-shot neural architecture search with uni-
form sampling. In Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK, August 23—
28, 2020, Proceedings, Part XVI 16, pages 544-560.
Springer.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782-9793.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Ganesh Jawahar, Haichuan Yang, Yunyang Xiong,
Zechun Liu, Dilin Wang, Fei Sun, Meng Li,
Aasish Pappu, Barlas Oguz, Muhammad Abdul-
Mageed, Laks V. S. Lakshmanan, Raghuraman Kr-
ishnamoorthi, and Vikas Chandra. 2023. Mixture-
of-supernets: Improving weight-sharing supernet
training with architecture-routed mixture-of-experts.
arXiv preprint arXiv:2306.04845.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163—
4174, Online. Association for Computational Lin-
guistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muiioz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Harm de Vries. 2022. The stack: 3 tb of per-
missively licensed source code. arXiv preprint
arXiv:2211.15533.

Achintya Kundu, Laura Wynter, Rhui Dih Lee, and Luis
Angel D. Bathen. 2023. Transfer-once-for-all: Al
model optimization for edge. In IEEE International
Conference on Edge Computing and Communica-
tions, EDGE 2023, Chicago, IL, USA, July 2-8, 2023,
pages 26-35. IEEE.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Wei Lou, Lei Xun, Amin Sabet, Jia Bi, Jonathon Hare,
and Geoff V Merrett. 2021. Dynamic-ofa: Runtime
dnn architecture switching for performance scaling
on heterogeneous embedded platforms. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3110-3118.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan,
Yuexian Hou, Ming Zhou, and Dawei Song. 2019. A
tensorized transformer for language modeling. Ad-
vances in neural information processing systems, 32.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a bert-based question answer-
ing model. arXiv preprint arXiv:1910.06360.

Subhabrata Mukherjee and Ahmed Awadallah.
2020. Xtremedistil: Multi-stage distillation for
massive multilingual models. arXiv preprint
arXiv:2004.05686.

Subhabrata Mukherjee, Ahmed Hassan Awadallah, and
Jianfeng Gao. 2021. Xtremedistiltransformers: Task
transfer for task-agnostic distillation. arXiv preprint
arXiv:2106.04563.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. The Journal of Machine Learning Research,
21(1):5485-5551.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for image
classifier architecture search. In Proceedings of the
aaai conference on artificial intelligence, volume 33-
01, pages 4780-4789.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

60

Mohammad Samragh, Mehrdad Farajtabar, Sachin
Mehta, Raviteja Vemulapalli, Fartash Faghri, Devang
Naik, Oncel Tuzel, and Mohammad Rastegari. 2023.
Weight subcloning: direct initialization of transform-
ers using larger pretrained ones.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low preci-
sion quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34-05,
pages 8815-8821.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chan-
dra. 2021. Attentivenas: Improving neural architec-
ture search via attentive sampling. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6418-6427.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020. Hat:
Hardware-aware transformers for efficient natural lan-
guage processing. arXiv preprint arXiv:2005.14187.

Rui Wang, Qibing Bai, Junyi Ao, Long Zhou, Zhixiang
Xiong, Zhihua Wei, Yu Zhang, Tom Ko, and Haizhou
Li. 2022. Lighthubert: Lightweight and configurable
speech representation learning with once-for-all
hidden-unit bert. arXiv preprint arXiv:2203.15610.

Jin Xu, Xu Tan, Rengian Luo, Kaitao Song, Jian Li, Tao
Qin, and Tie-Yan Liu. 2021. Nas-bert: task-agnostic
and adaptive-size bert compression with neural ar-
chitecture search. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1933-1943.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Ben-
der, Pieter-Jan Kindermans, Mingxing Tan, Thomas
Huang, Xiaodan Song, Ruoming Pang, and Quoc Le.
2020. Bignas: Scaling up neural architecture search

https://doi.org/10.1109/EDGE60047.2023.00017
https://doi.org/10.1109/EDGE60047.2023.00017
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2312.09299
http://arxiv.org/abs/2312.09299
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

with big single-stage models. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part VII 16,
pages 702-717. Springer.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36-39. IEEE.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Shaokun Zhang, Xiawu Zheng, Chenyi Yang, Yuchao
Li, Yan Wang, Fei Chao, Mengdi Wang, Shen Li, Jun
Yang, and Rongrong Ji. 2021. You only compress
once: Towards effective and elastic bert compression
via exploit-explore stochastic nature gradient. arXiv
preprint arXiv:2106.02435.

Hui Zhu, Zhulin An, Chuanguang Yang, Kaigiang Xu,
Erhu Zhao, and Yongjun Xu. 2019. Eena: efficient
evolution of neural architecture. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision Workshops, pages 0-0.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Appendix
A Details of Experimental Set-up

Following (Hu et al., 2022), we use the fine-tuned
MNLI checkpoint to initialize the model weights
for experiments on small data sets such as RTE
and MRPC. In MLFS, the Low rank matrices are
added on the QKV vectors and the intermediate
size of feed-forward network (FFN) layers. We set
B; = 0.1Vl in feature distillation loss and choose
distillation factor o = 0.9. For training, we use a
maximum sequence length of 128; effective batch
size of 128 for QQP, MNLI, QNLI, and 64 for the
other data sets. Training is done for a maximum
of 8 epochs for all GLUE data sets except SST-2
for which we allocate maximum 3 epochs. We
set an initial learning rate of 5e~* for QNLI &
MNLI, and 1e~3 for other GLUE data sets. We use
rank r = 8 for the low rank matrices A, B unless
mentioned otherwise. We choose gradient scaling
hyper-parameter v = 1 for SST-2 and v = 2 for all
other data sets.

61

B Additional Experimental Results

First, we present additional results on distilling
Santacoder-1.1B model. In Fig. 6, we compare Hu-
manEval performance of a 0.7B Santacoder model
fine-tuned through full fine-tuning (FT) from ran-
dom initialisation vs. full-rank (non-LoRA) MLFS
with (o« = 0.9) and without (o« = 0) distillation.
The improvement in the evaluation numbers is re-
markable even after fine-tuning on up to only 5%
of the examples. In Fig. 7, we also show better
convergence of validation loss on the Santacoder
0.7B for MLFS with distillation loss («« > 0). This
demonstrates the benefit of MLFS distillation as
compared to full MLFS fine tuning of the sliced
model.

B Full FT + random init.
[0 MLFS (a=0, r: full-rank)

| | MLFS (¢=0.9, r: full-rank)
I Teacher (Santacoder 1.1B)

I |

400K 1.2M
Data set size (# of examples)

= -
o 6]
)

wv
L

HumanEval pass@1 (%)

24.2M

Figure 6: Superior performance of supernet training
compared to other full fine-tuning based approaches on
three data sets with 10K/400K/1.2M examples.

1.5
MLFS (a=0, r=8)

@ —— MLFS (¢=0.9, r=8)
2 1.4
c
S
©
2134
>

1.2 : : : , .

0 10000 20000 30000 40000 50000
Iteration
Figure 7: Convergence comparison of validation

loss while fine-tuning a custom model using MLFS
with/without distillation.

Finally, in Fig. 8, we show performance of a
spectrum of models distilled from BERT}, 5. using
MLEFS on 3 more GLUE data sets: QNLI, QQP,
and MNLI.

Data set: QNLI Data set: QQP Data set: MNLI

.90 /‘/4,/4 90, - 90
S5 S 8 ;
>80 « TinyBERT =80 =80 '/_____4,,/44\.,/'
E + DistilBERT E E
g 70 ° PD-BERT g 70 g 70
$ ¢ BERT-PKD $ $
60 —— MLFS 60 60
40 50 60 70 80 90 40 50 60 70 80 90 40 50 60 70 80 90
Parameters (M) # Parameters (M) # Parameters (M)
Data set: QNLI Data set: QQP Data set: MNLI
X X X o
>80 =80 =80 M
(9] 9] 9]
© . e o
g 70 . ‘[I')I‘ny.EIBERT g 70 § 70
g . istilBERT £ 2
60 —— MLFS 60 60
75 100 125 150 175 200 75 100 125 150 175 200 75 100 125 150 175 200
Latency (ms)

Latency (ms) Latency (ms)

Figure 8: Performance of task-specific BERT models produced by MLFES vs. other methods on 3 GLUE data sets.

62

Modeling and Detecting Company Risks from News

Jiaxin Pei’* Soumya Vadlamannati’ Liang-Kang Huang!
Daniel Preotiuc-Pietro? Xinyu Hua?
fUniversity of Michigan, Ann Arbor, MI, USA
{Bloomberg, New York, NY, USA
pedropei@umich.edu
{svadlamannal, lhuang214, dpreotiucpie, xhua22}@bloomberg.net

Abstract

Identifying risks associated with a company
is important to investors and the wellbeing of
the overall financial markets. In this study, we
build a computational framework to automati-
cally extract company risk factors from news ar-
ticles. Our newly proposed schema comprises
seven distinct aspects, such as supply chain,
regulations, and competition. We annotate 666
news articles and benchmark various machine
learning models. While large language mod-
els have achieved remarkable progress in vari-
ous types of NLP tasks, our experiment shows
that zero-shot and few-shot prompting state-of-
the-art LLMs (e.g., Llama-2) can only achieve
moderate to low performances in identifying
risk factors. In contrast, fine-tuning pre-trained
language models yields better results on most
risk factors. Using this model, we analyze over
277K Bloomberg News articles and demon-
strate that identifying risk factors from news
could provide extensive insights into the opera-
tions of companies and industries.

1 Introduction

Risks are inherent and pervasive within compa-
nies’ operations and our society (Stephany et al.,
2022; Rausand, 2013; Albuquerque et al., 2019).
Understanding and identifying corporate risk fac-
tors could benefit diverse stakeholders, including
investors, regulators, and other relevant entities.
Notably, publicly listed companies are mandated
to disclose their risk factors, as these can inform
shareholders and the public when making financial
decisions (Beretta and Bozzolan, 2004). NLP mod-
els are also built to automatically extract company-
related risk factors from public filings, providing
consolidated and accessible insights for analysts
to fathom and integrate these factors (Kogan et al.,
2009; Yang et al., 2018).

While company filings offer a systematic view
of company-related risks, they are beset by three

* Work done as an intern at Bloomberg.

63

principal issues: (1) Limited frequency—owing
to mandatory quarterly reporting, risk analysis is
confined to three-month intervals, disregarding the
reality of swift, even daily, alterations in a com-
pany’s risk profile. (2) Subjectivity—authored by
internal personnel, company filings might inadver-
tently omit pivotal risk factors due to vested in-
terests (Masson and Montariol, 2020; Klingebiel,
2018). (3) Bias towards public entities—only pub-
licly listed companies are obligated to divulge risks
through filings, neglecting the imperative to com-
prehend risks associated with private companies,
which may be particularly pertinent when engaged
in financial activities such as bond issuance (Abdel-
Khalik, 1993; Vanstraelen and Schelleman, 2017).

To redress these limitations, we propose to
model company-related risk factors from news ar-
ticles. News articles offer the following merits in
analyzing company-related risk factors: (1) High
frequency—news updates occur in real time, pro-
viding a dynamic information stream conducive
to measuring companies’ risk factors in the ever-
evolving market. (2) External perspective—news
articles, devoid of company affiliations, proffer di-
verse viewpoints, shedding light on risk factors
from external vantage points. (3) Coverage over
both public and private companies—news articles
encapsulate both publicly listed and private compa-
nies, thereby bridging the information gap present
in public filings.

While there are existing studies on modeling
risk factors, they typically focus on company fil-
ings (Zhu et al., 2016; Kravet and Muslu, 2013)
and their categorization may not be directly ap-
plicable to news data. Combining existing liter-
ature and our manual examination of hundreds
of news articles, we propose a novel theoretical
framework to analyze company risk factors in
news. Our taxonomy encompasses seven categories
of risk factors: Supply Chain and Product,
People and Management, Finance, Legal and

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 63—72
June 16-21, 2024 ©2024 Association for Computational Linguistics

Regulations, Macro, Competition, and Markets
and Consumers.

We annotate 666 news articles from Bloomberg
News! and benchmark a series of models from
feature-engineered baselines to prompting large
language models (LLMs). Despite their impres-
sive results on various other NLP tasks, LLMs per-
form worse than smaller transformer models (e.g.,
RoBERT?3) fine-tuned on in-domain data. By apply-
ing the best-performing model to a large sample of
277,112 news articles, we analyze the risk factor
across companies in given industries, and across
the entire macroeconomy. Our analysis shows that
modeling company-related risk factors could reveal
important signals of not only companies’ opera-
tions but also can be used as the indicator of the
macro-level risk for society.

2 Related Work

2.1 Risk Factors in Finance Domain

In finance and corporate operations, risks refer to
the factors that may harm the company or may
cause it to fail (Rausand, 2013). Existing research
has identified many types of risk factors for com-
panies, including financial risk (Malz, 2011; Fujii
et al., 2022), credit risk (Kao, 2000), policy risk
(Blyth et al., 2007), macro risk (Hiang Liow et al.,
2006), operational risk (Fujii et al., 2022) and com-
petition risk (Raith, 2003). In many countries, regu-
lators require publicly listed companies to disclose
risk factors in their quarterly and annual reports to
inform the investors (Weil et al., 2006). Another
line of research relevant to risk factors is financial
and economic uncertainty (Moore, 2017). While
both are forward-looking, risks specifically con-
notate those factors that may negatively affect the
operations and market value of a company.

2.2 Risk Identification as an NLP Task

Natural Language Processing methods have long
been used to analyze text documents in the finance
domain (Loughran and McDonald, 2020), such
as news reports (Day and Lee, 2016), social me-
dia posts (Souza et al., 2015), and company fil-
ings (Wang et al., 2013). Existing studies primarily
focus on company filings (Wang et al., 2013; Yang
et al., 2018; Kogan et al., 2009), which are issued
by companies themselves and are subject to limited
frequency. While researchers have also extracted
risk factors from news articles (Lu et al., 2009;

"https://www.bloomberg.com

64

Bhadani et al., 2020), these either focus only on
specific types of risks (Bhadani et al., 2020) or only
tried to identify the relevant claims (Lu et al., 2009)
instead of providing a holistic view of the risks.

3 Theoretical Framework

In this study, we focus on modeling company-level
risk factors in news articles. We survey existing
literature (§ 2.1) and qualitatively examine hun-
dreds of news articles. Our proposed framework is
summarized as below.

Supply Chain and Product Risks associated
with the company’s supply chain, manufacturing,
product or core technology. For example, “Yum
China Faces Challenges with Chicken Prices” indi-
cates risks regarding the supply chain, as chicken is
an important ingredient in Yum China’s products.

People and Management Risks regarding a com-
pany’s internal operations such as layoffs, depar-
tures of top management, or specific operation
strategies. For example, “Tesla Pauses Hiring,
Musk Says Need to Cut Staff by 10%.”

Finance Risks related to the finances of a com-
pany such as cash flow, fund procurement, invest-
ments, and profits. For example, “NIO Shares Soar
as Loss Shrinks, Though Cash Concerns Linger.”

Legal and Regulations Risks induced by poten-
tial policy changes, pressure from regulations or
lawsuits. For example, “Maple Leaf Plunges as
China’s Hog Suspension Impacts Profits.”

Macro Risks caused by the macro socio-
economic environment such as inflation, pandemics
or a financial crisis. For example, “Absa Drops on
Profit Miss as South African Economy Struggles.”

Markets and Consumers Risks or challenges
from the market or consumer sales. For example,
“Hong Kong Protests Cut Demand for Hilton, Hyatt
Hotel Rooms” suggests that the demand for hotel
space is shrinking, which indicates Markets and
Consumer risk for both Hilton and Hyatt.

Competition Risks from a company’s competi-
tors in the market. For example, “Apple Revamp-
ing Smart-Home Efforts to Challenge Amazon,
Google”

https://www.bloomberg.com

100 125 150 175 200
Frequency of Annotated Risk Labels

|
0

25 50 75

Consumer Discretionary

Communications

Consumer Staples

Financials
Industrials
Technology

Materials
Health Care
Energy

Iii-il

Utilities
Real Estate
Government

20 40 60 80 100 120 140 160

0
Number of Risk Labels for Each Company Industry Sector

Figure 1: [Left] Label distribution over the 716 annotated samples. We denote Competition as Comp, Legal and
Regulations as Legal, People and Management as Mgmt, and Supply Chain and Product as Supp. All except
Competition have an approximately 14% positive rate. In total, 71.6% of the samples are labeled with at least one
risk factor. [Right] Distribution of risk labels for each company industry sector, based on the Bloomberg Industry
Classification Standard (BICS). In total, 12 different sectors are covered in the annotated dataset.

4 Data and Annotation

BN Dataset We draw five years of articles pub-
lished by Bloomberg News? (hereafter BN), cover-
ing diverse events and opinions pertaining to com-
panies across the world. We choose news pub-
lished between 2018 and 2022 to allow for COVID-
related comparisons. This initial dataset is filtered
by removing machine-generated and non-natural
language content, and is preprocessed with a rule-
based entity extraction pipeline. We further re-
moved articles where no company is mentioned.
This results in a collection of 277,112 news arti-
cles covering 14,972 public and 11,413 private
companies. For the sake of simplicity, we keep
only the headline and first five sentences of each
article for our study. These articles range from 20
to 4, 430 tokens long, with the average article being
151 tokens.

2018 2019 Total

#Docs. 56,741 62,862 57,421 53,906 46,182 277,112

Year 2020 2021 2022

Risk-Related Pre-Filtering Our pilot study
shows that risk factors can be sparse in news. Di-
rectly annotating over a random subset of BN arti-
cles will therefore yield a very high negative ratio.
We apply a lexicon-based filter before the sampling.
Concretely, we iteratively curate 53 unigrams to
capture various aspects of risk events, such as “chal-
lenge.” “layoff” ““shrink.”> We consider annotating
an article only if its headline matches at least one of
the keywords. We also experimented with hedges
similar to (Pei and Jurgens, 2021). However, we

Zhttps://www.bloomberg. com
3Full list can be found in Appendix.

65

found that while hedges are a good proxy for un-
certainty, they are not able to reliably recall news
articles regarding risks, highlighting the difference
between uncertainty and risk factors.

Annotation We conduct an annotation study
based on the seven risk factors mentioned in Sec-
tion 3, using a multi-label classification setting.
We hire three U.S.-based annotators who are ex-
perienced in the finance domain. They are first
instructed to label 100 articles independently, fol-
lowed by a discussion to resolve disagreements
and make modifications to the annotation guideline.
The adjudicated set is used as test data.

They further annotate 200 articles each. After
removing samples with wrong mentions or low-
quality text, the final dataset includes 716 samples
from 666 unique news articles. In this dataset, 49%
of the samples have exactly one label, while more
than 20% mention multiple factors . In Figure 1
we show the distribution of risk factors along with
the number of news without any risk factors (“NO-
RISK”).

SupPP MGMT FIN LEGAL MACRO COMP MRKT
Supp N/A 8 6 12 17 8 19
MGMT 8 N/A 15 16 12 1 12
FIN 6 15 N/A 8 22 0 9
LEGAL | 12 16 8 N/A 11 4 8
MACRO | 17 12 22 11 N/A 3 31
Cowmp 8 1 0 4 3 N/A 11
MRKT 19 12 9 8 31 11 N/A

Figure 2: Risk co-occurrence matrix (annotated dataset).

Statistics To better understand the characteris-
tics of our newly annotated dataset, we first show
the distribution of industry sectors to which the

*Detailed distribution is in Appendix (§ A.1)

https://www.bloomberg.com

detected companies belong. We match each com-
pany to one of the 12 high-level industry sectors
defined by the Bloomberg Industry Classification
Standard (BICS) °. As shown on the right side of
Figure 1, our dataset contains samples over all of
these sectors. The distribution of risk types dif-
fers across industry sectors. For instance, there are
more MARKET related risks for companies in “Con-
sumer Discretionary,” while more “Legal” risks are
mentioned for companies in the “Financials” and
“Communications” industries. For “Real Estate”,
the majority of the risks fall under FINANCE. In
Figure 2 we further illustrate the co-occurrence
of risk factors. Notably, we observe higher co-
occurrence of (FINANCE, MACRO) and (MARKET
and MACRO) pairs.

5 Benchmark

We formulate the risk prediction task as a multi-
label classification problem: given a news arti-
cle and a mentioned company, we aim to predict
whether each of the seven risk factors is men-
tioned. We consider non-neural baseline mod-
els, fine-tuning pre-trained transformers, and large-
language models (LLM) with in-context learning.
We split the dataset into 484 samples for training,
126 for validation, and 106 for testing.

5.1 Models

We first experiment with non-neural baseline mod-
els: (1) Random: for each risk factor, randomly
assign a binary label with equal probabilities. (2)
Logistic Regression: we calculate TF-IDF (up to
bigrams) features and run logistic regression mod-
els for each risk factor. Similarly, (3) Support
Vector Machine (SVM) models are trained using
the same TF-IDF features and linear kernel. (4) We
further implement k-nearest neighbor (KNN) mod-
els using document embeddings calculated from a
fine-tuned RoBERTa model (Liu et al., 2019) with
SimCSE (Gao et al., 2021) objective.

Pre-trained Transformers with Fine-tuning
We benchmark common pre-trained transformer
models as sequence classification tasks under
a supervised fine-tuning setting: (1) BERT-
large (Devlin et al., 2018), (2) RoBERTa-base and
RoBERTa-large (Liu et al., 2019), (3) RoBERTa-
large-BB: a RoBERTa model further pre-trained
on 13 years of Bloomberg News data.

Shttps://tinyurl.com/3nnzr3p9

MPT.7Binst. tF(ign%orB 1 i] baseline
-7B-instruct (0-sho
Llama-2-7B-chat (0-shot) [few-shot
Logistic Regression - B zero-shot
MPT-7B-instruct (3-shot) 1 B fine-tuning
SVM - : . :
Llama-2-7B-chat (3-shot) H
KNN (K=3) i
FLAN-UL2 (0-shot)
FLAN-UL2 (3-shot)
RoBERTa-base
BERT-large
RoBERTa-large
RoBERTa-large-BB

0.0 0.1 0.2 0.3 04 05 06
Macro F1 over All Risk Factors

Figure 3: The overall performance of different models.
The best result is achieved by fine-tuning the RoOBERTa-
large-BB model, which is pre-trained on domain-
specific datasets. Zero-shot and few-shot prompting
for LLM perform worse than the fine-tuned models by
a large margin.

Performance Breakdown of RoBERTa-large-BB
Supp |
Mgmt

Finance
Legal
Macro

Comp

Mrkt

0.6 0.8
I fl-score

0.4
e recall

0.0 0.2
Bl precision

Figure 4: The best performance on each risk factor.
Identifying company risks on Macro, Markets and
Consumer and Competition remains hard.

LLM with Prompting We further compare with
three open source, instruction-tuned large language
models (LLM) under the in-context learning set-
ting: (1) FLAN-UL2°, which is an instruction-
tuned version of the UL2 (Tay et al., 2022) model
over the FLAN (Longpre et al., 2023) dataset. (2)
MPT-7B-instruct (Team, 2023) is a decoder-only
model with 7 billion parameters, trained on the
dolly-hhrlhf 7 dataset. Lastly, (3) Llama-2-7B-
chat (Touvron et al., 2023) is a decoder-only model
optimized for dialogue tasks, achieving competitive
performance on various NLP tasks against closed-
source LLMs.

For each risk factor, we construct the following
prompt template 8 with the input news text, the

6ht'cps: //www.yitay.net/blog/flan-ul2-20b

"https://huggingface.co/datasets/mosaicml/
dolly_hhrlhf

$We empirically select prompt templates based on manual
inspection of the performance.

66

https://tinyurl.com/3nnzr3p9
https://www.yitay.net/blog/flan-ul2-20b
https://huggingface.co/datasets/mosaicml/dolly_hhrlhf
https://huggingface.co/datasets/mosaicml/dolly_hhrlhf

1.0

0.8 1

0.6 1

0.4

0.2

Negative mm Neutral Positive

0.0

Background Supp Mgmt

Finance

Legal Macro Comp

Figure 5: While news articles mentioning risk factors are more negative overall compared with the overall distribution
(background), both positive and neutral news can mention risk factors for companies.

target company name, and a full description of
the risk from the annotation guideline:

{news text}

For company {target}, does the above news
mention {risk} ?

Options: Yes, No

Your answer is (Please only use Yes or No):

We consider both the zero-shot and few-shot
settings for all LLMs. The few-shot samples are
chosen as the k-nearest neighbors (k = 3) from the
training set, which are represented using the same
template and directly prepended to the test sample.

5.2 Result

Figure 3 shows the overall model performance.
Fine-tuning transformers yields the best perfor-
mance, especially the RoOBERTa-large-BB model
that is trained on a domain-specific dataset. We
breakdown the per-risk performance in Figure 4.
The model achieves better results for Supply
Chain and Product and Finance. However, iden-
tifying Macro, Competition and Markets and
Consumers risks remain challenging.

6 Application and Analysis

Identifying company-related risk factors in news
opens many potential applications. In this section,
we explore the applications of our model over a
large-scale Bloomberg News dataset.

6.1 Are risk factors just negative sentiment?

The term “risk” inherently carries negative conno-
tations. In practice, are risk factors simply negative
sentiment? In this study, we explore the connection
between company-level sentiment and risk factors.
We run an off-the-shelf sentiment analysis model”

This model is based on DistilBERT (Sanh et al., 2019)
and is fine-tuned on finance news with sentiment labels.

67

over the large 5-year BN dataset. For each com-
pany mentioned in a news article, a probabilistic
distribution over “Positive,” “Neutral,” and ‘“Nega-
tive” is estimated.

As shown in Figure 5, the overall sentiment
for a company tends to be more negative when
it faces risks. The largest gap of sentiment oc-
curs for Legal and Regulations and Markets
and Consumers, where risks are usually mentioned
with negative sentiment. Nevertheless, risk factors
can be mentioned even when the overall sentiment
regarding a company is neutral or positive (See Ta-
ble 1 in Appendix for examples). This suggests
that risk factors are not just negative sentiment.

6.2 Company-level Study

Boeing In 2018, the first 737 MAX airplane
crashed into the Java sea. As shown in Figure 6,
Boeing faced high risks regarding its products
(Supp) in 2018, while other types of risks gener-
ally remained low. In 2019, the second 737 MAX
crashed, which immediately led to the involvement
of the regulators (Legal). Risks related to the mar-
ket, consumers, and management also rose in 2019.

Toyota Motor Corporation is the largest car-
maker in the world. From 2018 to 2020, Toyota saw
major Macro and Markets and Consumers risk.
In 2020, the world was faced with a global chip
shortage, which further led to a spike in Supply
Chain and Product risk for Toyota.

Evergrande The Chinese real-estate company
Evergrande Group has gone through various debt
issues in recent years, which is reflected by the
overwhelming percentage of Financial risks pre-
dicted by the model.

Huawei Unlike company filings which only in-
clude publicly traded companies, news articles also
allow us to analyze private companies. Huawei

—e— Supp Mgmt —%— Finance —&— Legal —¥— Macro —— Mrkt

100% 100% 100% 100%

80% 80% 80% 80%
60% | 60% 1 60% 1 \/\\ 60% ‘/\‘\\

40% 40% 4 40% 40%

20% 20% 4 20% 4 20%

——h—————

0% - 0% == T u u u 0% ¥ u T T T 0%

2018 2019 2020 2021 2022 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022
Boeing Toyota Evergrande Huawei

Figure 6: Percentage of news stories tagged by each risk factor type, for different companies.

Health Care Financials

Communications Consumer Discretionary

Mrkt
Comp
Macro
Legal
Finance
Mgmt
Supp

L
o

Consumer Staples Energy

Real Estate Industrials

Mrkt
Comp
Macro
Legal
Finance
Mgmt
Supp

i.
| (L I L

Materials Technology

Utilities

Government

Mrkt
Comp
Macro
Legal
Finance
Mgmt
Supp

| i LI L L

-

0% 20% 40% 0% 20%

40% 0%

20% 40% 0% 20% 40%

Percentage of Stories with Each Risk Category

Figure 7: Risk distribution for companies in different industries.

Technologies Co., Ltd. is the world’s leading
communication technology and phone producer.
Since 2018, Huawei has faced regulatory risks from
the U.S. government. Figure 6 shows the over-
all change in Huawei’s risk factors mentioned in
Bloomberg News data. Huawei saw major regu-
latory risks from 2018 to 2020. Because of these
regulations, Huawei’s market and sales are also af-
fected, and it has seen higher Macro and Market
risks since 2021.

6.3 Industry-level Study

Companies in different industries are different in
nature and therefore may face different types of risk
factors. In this section, we explore the risk factors
associated with companies in different industries.
We use Bloomberg internal company categoriza-
tion and map each company to one of the 12 top
industry categories: Health Care, Financials, Tech-
nology, Energy, Consumer Discretionary, Utilities,
Communications, Real Estate, Consumer Staples,

68

Industrials, Materials, and Government. The re-
sults are displayed in Figure 7.

Financials Financial companies rarely see risks
from the Supply Chain and Product side and
are more likely to face risks from People and
Management and Legal and Regulations.

Real Estate The real estate industry faced high
Finance risk from 2018 to 2022, potentially due
to the debt crisis of the real estate companies in
China.

Health Care The Health Care industries are as-
sociated with high Legal and Regulation and
Supply Chain and Product risks, potentially
due to the production of and regulations surround-
ing the COVID-19 vaccines, in addition to provid-
ing other health care services in response to the
COVID-19 pandemic.

Others Industries like Consumer Discretionary,
Consumer Staples and Industrials generally see

1
2020-03-11:
40% A

e —————

1
020-01-30: |
IWHO declared global 1
30% A Ihealth emergency. \
1
1
1
1
1

20% A

10% A

WHO declared COVID a pandemic.

—¥— Macro
—%— Mrkt

—— Finance
—A— Legal

—8— Supp
Mgmt

0% 1 1

202'0—1 202'0»2 202'0»3 202'0-4

2020-5

2020-6 2020-7 2020-8 2020-9

1
: —8— Supp —— Finance —¥— Macro
Fozz-oz-zo: Mgmt —A— Legal —— Mrkt
15% A IThe Russo-Ukrainian War started.
1
1
I

10%

5% A

0%

Figure 8: [Top] COVID-19 induces nearly all types of risk factors for companies. [Bottom] Russia’s invasion of

Ukraine sees increased Macro risks.

balanced risks across all factors.

6.4 Macro-level Study

COVID-19 Pandemic Since early 2020, the
COVID-19 pandemic posed huge global challenges.
Figure 8 shows the aggregated risk factors in each
month in 2020. The first COVID-19 case was iden-
tified in January 2020 and the World Health Orga-
nization (WHO) announced a global health emer-
gency on January 31st in response to the rapid
increase in infections and deaths worldwide. A
new global health emergency led to a sharp rise of
Macro risks in February. The world may still not
have been fully aware of other types of risks, and
therefore other risks remained stable in February.
However, the situation was changing rapidly. In
March, the WHO declared COVID-19 a pandemic
and the United States officially issued a national
emergency, which led to a sharp rise in all other
risk factors in April.

Russia’s Invasion of Ukraine In February 2022,
Russia invaded Ukraine and this event immediately
led to an increase in Macro risks for companies.
Similar to the beginning of COVID-19, other types
of risks are not reflected at this early stage. How-
ever, in June, Russia cut natural gas supplies by
more than half, which led to a rise in not only
Macro risk, but also Supply Chain and Product
and Markets and Consumers risks.

69

7 Conclusion

Risks are ubiquitous to all companies, industries,
and society-at-large. Computational modeling of
risk factors could better inform analysts, investors,
and policymakers. However, how to systemati-
cally model risk factors at scale is a challenging
question. In this study, we propose a new catego-
rization framework for risks, and further annotate a
new dataset over 666 news articles. We benchmark
state-of-the-art NLP models, and analyze a large
collection of Bloomberg News articles using the
best model. Our analysis demonstrates that model-
ing risk factors from news could reveal important
signals regarding the operations of a company. The
aggregated data could further provide information
regarding the risks to industries and society.

Acknowledgements

This work was conducted while Jiaxin Pei was an
intern in Bloomberg’s Al Engineering group. We
thank Genta Winata, Frederick Zhang, Chuck-Hou
Yee, Umut Topkara, and Anju Kambadur for their
early feedback on this project.

References

A Rashad Abdel-Khalik. 1993. Why do private com-
panies demand auditing? a case for organizational
loss of control. Journal of accounting, auditing &
finance, 8(1):31-52.

Rui Albuquerque, Yrjo Koskinen, and Chendi Zhang.
2019. Corporate social responsibility and firm risk:
Theory and empirical evidence. Management Sci-
ence, 65(10):4451-4469.

Sergio Beretta and Saverio Bozzolan. 2004. A frame-
work for the analysis of firm risk communication.
The International Journal of Accounting, 39(3):265—
288.

Saumya Bhadani, Ishan Verma, and Lipika Dey. 2020.
Mining financial risk events from news and assessing
their impact on stocks. In Mining Data for Financial
Applications: 4th ECML PKDD Workshop, MIDAS
2019, Wiirzburg, Germany, September 16, 2019, Re-
vised Selected Papers 4, pages 85-100. Springer.

William Blyth, Richard Bradley, Derek Bunn, Charlie
Clarke, Tom Wilson, and Ming Yang. 2007. Invest-
ment risks under uncertain climate change policy.
Energy policy, 35(11):5766-5773.

Min-Yuh Day and Chia-Chou Lee. 2016. Deep learn-
ing for financial sentiment analysis on finance news
providers. In 2016 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and
Mining (ASONAM), pages 1127-1134. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Motomasa Fujii, Hiroki Sakaji, Shigeru Masuyama, and
Hajime Sasaki. 2022. Extraction and classification of
risk-related sentences from securities reports. Inter-
national Journal of Information Management Data
Insights, 2(2):100096.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Kim Hiang Liow, Muhammad Faishal Ibrahim, and
Qiong Huang. 2006. Macroeconomic risk influences
on the property stock market. Journal of Property
Investment & Finance, 24(4):295-323.

Duen-Li Kao. 2000. Estimating and pricing credit risk:
An overview. Financial Analysts Journal, 56(4):50—
66.

Ronald Klingebiel. 2018. Risk-type preference shifts in
response to performance feedback. Strategic Organi-
zation, 16(2):141-166.

Shimon Kogan, Dimitry Levin, Bryan R Routledge, Ja-
cob S Sagi, and Noah A Smith. 2009. Predicting
risk from financial reports with regression. In Pro-
ceedings of human language technologies: the 2009
annual conference of the North American Chapter of
the Association for Computational Linguistics, pages
272-280.

70

Todd Kravet and Volkan Muslu. 2013. Textual risk
disclosures and investors’ risk perceptions. Review
of Accounting Studies, 18:1088—1122.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Tim Loughran and Bill McDonald. 2020. Textual anal-
ysis in finance. Annual Review of Financial Eco-
nomics, 12:357-375.

Hsin-Min Lu, Nina WanHsin Huang, Zhu Zhang, and
Tsai-Jyh Chen. 2009. Identifying firm-specific risk
statements in news articles. In Intelligence and Se-
curity Informatics: Pacific Asia Workshop, PAISI
2009, Bangkok, Thailand, April 27, 2009. Proceed-
ings, pages 42-53. Springer.

Allan M Malz. 2011. Financial risk management: Mod-
els, history, and institutions, volume 538. John Wiley
& Sons.

Corentin Masson and Syrielle Montariol. 2020. De-
tecting omissions of risk factors in company annual
reports. In Proceedings of the Second Workshop on
Financial Technology and Natural Language Process-
ing, pages 15-21.

Angus Moore. 2017. Measuring economic uncertainty
and its effects. Economic record, 93(303):550-575.

Jiaxin Pei and David Jurgens. 2021. Measuring
sentence-level and aspect-level (un) certainty in sci-
ence communications. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 9959-10011.

Michael Raith. 2003. Competition, risk, and managerial
incentives. American Economic Review, 93(4):1425-
1436.

Marvin Rausand. 2013. Risk assessment: theory, meth-
ods, and applications, volume 115. John Wiley &
Sons.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Tharsis Tuani Pinto Souza, Olga Kolchyna, Philip C
Treleaven, and Tomaso Aste. 2015. Twitter sentiment
analysis applied to finance: A case study in the retail
industry. arXiv preprint arXiv:1507.00784.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Fabian Stephany, Leonie Neuhiuser, Niklas Stoehr,
Philipp Darius, Ole Teutloff, and Fabian Braesemann.
2022. The corisk-index: a data-mining approach to
identify industry-specific risk perceptions related to
covid-19. Humanities and Social Sciences Commu-
nications, 9(1):1-15.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Dara Bahri, Tal Schuster, Steven Zheng, et al. 2022.
UI2: Unifying language learning paradigms. In The
Eleventh International Conference on Learning Rep-
resentations.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ann Vanstraelen and Caren Schelleman. 2017. Auditing
private companies: what do we know? Accounting
and Business Research, 47(5):565-584.

Chuan-Ju Wang, Ming-Feng Tsai, Tse Liu, and Chin-
Ting Chang. 2013. Financial sentiment analysis for
risk prediction. In Proceedings of the Sixth Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 802-808.

David Weil, Archon Fung, Mary Graham, and Elena
Fagotto. 2006. The effectiveness of regulatory dis-
closure policies. Journal of Policy Analysis and Man-
agement: The Journal of the Association for Public
Policy Analysis and Management, 25(1):155-181.

Rong Yang, Yang Yu, Manlu Liu, and Kean Wu. 2018.
Corporate risk disclosure and audit fee: A text mining
approach. European Accounting Review, 27(3):583—
594.

Xiaodi Zhu, Steve Y Yang, and Somayeh Moazeni.
2016. Firm risk identification through topic analysis
of textual financial disclosures. In 2016 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 1-8. IEEE.

A Risk-Related Lexicon

In Section 4, we discuss a risk-related pre-filtering
step to narrow down the dataset for annotation. We
rely on a manually curated list of keywords by
querying the entire dataset. They are listed below.

A.1 Label Count Distribution

We consider risk detection as a multi-label classifi-
cation problem. In Figure 9, we show the distribu-
tion of positive labels per sample (news article) in
our annotated dataset.

71

affect ban cash
cashflow challenge competition
concern crackdown cut

debt decline decrease
delay demand downgrade
drop fail finance
harm hit impact
inflation layoff liable

limit lose loss

lowest operation plunge
pressure protest regulation
restriction risk rival
shortage shrink slump
strike struggle sue

suffer supply suspend
tension unable uncertain
volatile warn weak
worsen worst

300

250

200 1

150 1

100 1

50

0 1 2 3 4 5
Number of Positive Labels per Sample

Figure 9: Distribution of number of positive labels per
sample. Approximately half of the samples have exactly
one risk label.

B Sample News Articles

In Table 1, we show sample articles where the sen-
timent analysis results are “Positive,” while various
risk factors are detected.

Tencent’s Set for Fastest Growth Since 2018 After Outbreak

(Bloomberg) — Tencent Holdings Ltd. picked up millions of new gamers during the global coronavirus outbreak — yet
that surge in mobile play may be slowing as the world’s No. 2 economy goes back to work. [...]

Detected risks: Market

Wirecard Shares Surge After Statement on KPMG Audit

(Bloomberg) — Wirecard AG , the German payments company trying to move on from reports of alleged questionable
accounting methods, said a special investigation has so far found no need to correct financial statements from 2016-2018.
[...]

Detected risks: Management, Legal

SoftBank Soars After Unveiling $41 Billion Asset Sale Plan

(Bloomberg) — SoftBank Group Corp. surged the most in 11 years after unveiling a plan to raise as much as 4.5 trillion
yen ($41 billion) over the coming year to buy back stock and slash debt, addressing concerns about its exposure to
money-losing businesses during the coronavirus pandemic. [...]

Detected risks: Finance

Twitter Surges After Activists Seek to Replace CEO Dorsey

(Bloomberg) — Twitter Inc. shares rose in early trading Monday after Bloomberg reported that activist investors have
built a sizable stake in the social media company and are pushing for changes, including possibly replacing co-founder
and Chief Executive Officer Jack Dorsey. [...]

Detected risks: Management

Table 1: Sample news articles where the sentiment is Positive but company risks are detected. Due to space
limitation, only the first paragraphs are shown.

72

Multiple-Question Multiple-Answer Text-VQA

R. Manmatha Yusheng Xie Vijay Mahadevan

AWS AI Labs

{tangpen, srikara, manmatha, yushx, vmahad}@amazon.com

Peng Tang® Srikar Appalaraju*
Abstract
We present Multiple-Question Multiple-

Answer (MQMA), a novel approach to do
text-VQA in encoder-decoder transformer
models. To the best of our knowledge, almost
all previous approaches for text-VQA process
a single question and its associated content to
predict a single answer. However, in industry
applications, users may come up with multiple
questions about a single image. In order to
answer multiple questions from the same
image, each question and content are fed into
the model multiple times. In contrast, our
proposed MQMA approach takes multiple
questions and content as input at the encoder
and predicts multiple answers at the decoder
in an auto-regressive manner at the same time.
We make several novel architectural modifica-
tions to standard encoder-decoder transformers
to support MQMA. We also propose a novel
MQMA denoising pre-training task which
is designed to teach the model to align and
delineate multiple questions and content with
associated answers. MQMA pre-trained model
achieves state-of-the-art results on multiple
text-VQA datasets, each with strong baselines.
Specifically, on OCR-VQA (+2.5%), TextVQA
(+1.4%), ST-VQA (+0.6%), DocVQA (+1.1%)
absolute improvements over the previous
state-of-the-art approaches.

1 Introduction

The task of text-based Visual Question Answering
(text-VQA) requires answering questions related to
a given image by understanding the text and visual
contents in the image. Unlike generic VQA (Antol
et al., 2015), where the task is to answer questions
mainly using visual information, the text-VQA task
involves multiple modalities (i.e., visual, language,
and layout) to answer questions (Biten et al., 2022;
Hu et al., 2020; Appalaraju et al., 2021; Huang
et al., 2022; Kant et al., 2020; Mathew et al., 2021,

“Equal contribution.

73

2020; Xu et al., 2020; Gao et al., 2024; Xu et al.,
2021; Yang et al., 2021; Appalaraju et al., 2024;
Tang et al., 2024; Zhuowan et al., 2024). The task
needs a model to not only consume multiple modal-
ities (text and image) but also to reason within and
across modalities to answer a question (see Figure
D).

In recent years, the text-VQA task has attracted
a lot of attention (Biten et al., 2019b; Mathew et al.,
2021, 2020; Methani et al., 2020; Mishra et al.,
2019; Singh et al., 2019; Tanaka et al., 2021; Li
et al., 2022). Almost all text-VQA approaches
known to us, consume a single question and asso-
ciated content to predict a single answer. We call
these approaches Single-Question Single-Answer
(SQSA) text-VQA, see Figure 2 (a). Typical SQSA
approaches (Biten et al., 2022; Hu et al., 2020;
Huang et al., 2022; Kant et al., 2020; Powalski
et al., 2021; Xu et al., 2021; Yang et al., 2021; Ap-
palaraju et al., 2024) first extract text in a given
image using an OCR engine. Then the entire con-
tent — image, OCR text and in some cases bounding
box information (Biten et al., 2022; Powalski et al.,
2021; Appalaraju et al., 2024), along with the text
of a single question are fed to a multi-modal trans-
former model which then predicts an answer.

Industry text-VQA applications often involve
multiple questions. For example, a user may ask
multiple questions about a single image, or a group
of users may ask different questions about the same
image (e.g., shipped date, order no., address, efc.
in Figure 1 (a)). Existing text-VQA models are not
well-equipped for answering multiple questions.
These models typically process a single question
and its associated content to predict a single an-
swer. In order to answer multiple questions from
the same image, each question and content are fed
into the model multiple times. This is inefficient
and can lead to sub-optimal performance (Sec. 5).

MQMA can address the limitations of existing
text-VQA models. MQMA takes multiple ques-

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 73—88
June 16-21, 2024 ©2024 Association for Computational Linguistics

(a)

Q: What number is on the
left bottle?
A:13

Q: What is the shipped date mentioned
in the given page?
A: Aug. 23, 1961

Figure 1: Examples of text-VQA. Examples are from
(a) DocVQA (Mathew et al., 2021) for document VQA
and (b) ST-VQA (Biten et al., 2019b) for scene-text
VQA. Answering questions for text-VQA requires multi-
modal information, including visual, language, and lay-
out information. Zoom in to see better.

(a) SQSA
AZ

f

(b) MQMA
A,

f

Ay

1

A

!

A,

f

[Decoder } [Decoder} [Decoder} [Decoder} [Decoder]
F4a,c T4, c T4a,c) Q,..Q,C 4
S S S P, P,
[Encoder } [Encoder J { Encoder J
1 ! i
Q, C Q,C Q,C Q;..Q,C

1..n0

Figure 2: Single-Question Single-Answer (SQSA)
vs. Multiple-Question Multiple-Answer (MQMA).
Qi/A/P; (i € {1,2,..,n}): the i-th ques-
tion/answer/prompt, C: content, S: [START] token for
decoder. i (i € {0,1,2,...,n}) at the bottom of (b):
question index. SQSA and MQMA share the same ar-
chitecture of encoder and decoder except for the starting
token/prompt. The blocks with the same color share the
same weights.

tions and content as a single input sequence and
predicts multiple answers at the same time. This
also opens up a possibility for the model to leverage
correlations between multiple questions and con-
tent to improve accuracy. Our choice of architec-
ture for MQMA is an encoder-decoder seq-to-seq
transformer (Vaswani et al., 2017), see Figure 2 (b).
In order to facilitate MQMA in this architecture,
we introduce question index embedding at encoder
and learnable prompt-based decoding, so that the
model learns to align multiple questions and con-
tent with the respective predicted answers during
auto-regressive decoding (i.e., Q1 — Al, Q2 —
A2 ..., etc.). During inference, each answer has
its own prompt to associate the corresponding ques-
tion and content and different answers are decoded
separately. At the core of our approach is a novel
MQMA unsupervised denosing pre-training task.
Unlike the standard denoising language modeling

74

task (Raffel et al., 2020) used in the previous state-
of-the-art text-VQA approaches (Biten et al., 2022;
Powalski et al., 2021; Appalaraju et al., 2024), our
MQMA denoising task pre-trains on unlabeled doc-
ument data on a proxy VQA task, i.e., a denoising
language modeling task formulated as a VQA task,
to align the pre-training task and the downstream
text-VQA task better. We highlight the contribu-
tions of our paper as follows.

* To our knowledge, we are the first to propose
MQMA, a novel approach to consume mul-
tiple questions and content as a single input
sequence and predict multiple answers at the
same time for text-VQA (see Section 3).

We also propose an MQMA unsupervised de-
noising task, a novel way to train a multi-
modal encoder-decoder transformer on a de-
noising language modeling posed as a text-
VQA task (see Section 4).

The MQMA pre-trained model achieves
state-of-the-art results on the OCR-VQA,
TextVQA, ST-VQA, and DocVQA datasets,
each with strong baselines. In particular,
+2.5% on OCR-VQA, +1.4% on TextVQA,
+0.6% on ST-VQA, and +1.1% on DocVQA
(see Section 5).

2 Related Work

Text-VQA has attracted more and more attention
recently (Biten et al., 2019b; Kafle et al., 2018;
Kahou et al., 2017; Mathew et al., 2022, 2021,
2020; Methani et al., 2020; Mishra et al., 2019;
Singh et al., 2019; Tanaka et al., 2021). Focus-
ing on different types of images with texts, several
works introduce various text-VQA datasets, includ-
ing OCR-VQA (Mishra et al., 2019) for book and
movie covers, TextVQA (Singh et al., 2019) and
ST-VQA (Biten et al., 2019b) for scene-text im-
ages, DocVQA (Mathew et al., 2021, 2020) for
document images, efc. Unlike generic VQA (Antol
et al., 2015) which answers questions by reasoning
visual contents, text-VQA reasons from both text
and visual contents in images to answer questions,
which introduces more challenges to the text-VQA
task compared with the generic VQA.

The most common text-VQA pipeline first ex-
tracts texts and bounding boxes using OCR, and
then feed multi-modal inputs (i.e., texts, bound-
ing boxes, and image) into multi-modal models

i) i)
Transformer Decoder | ... Transformer Decoder]
1 0
Z?::)ZZZ?:gS iﬁjesrition z?esrswtion
remruaommtions @ | [an | - [aw | [aa] « [e] [n [[n] - [s=0] [w][v]
0
[Transformer Encoder]
0
Embeddings. I [- [- [e T - [e
emocdangs 0] [0 ~ [[for] ~ o] [e o] - [o][a][a]
+ + + + + + + + + +
embeddings \Bofw\ \Boim\ \BTAD\ \Boj:w\ !BOEAD\ | o | o | !B°JX:AD\ | o | o |
Emtedangs o [Lou | [aa] - [Tau] [aa] « [[[n] - [[w][w]

Figure 3: MQMA Approach: Encoder-Decoder Transformer model architecture for the proposed MQMA approach.
Please note, transformer decoder has shared weights and is to be interpreted as a single decoder.

(e.g., multi-modal transformers) to get predictions
(Biten et al., 2022; Gao et al., 2020; Hu et al., 2020;
Huang et al., 2022; Kant et al., 2020; Li et al.,
2021; Lu et al., 2021; Powalski et al., 2021; Xu
et al., 2021; Yang et al., 2021; Appalaraju et al.,
2024). Xu et al. (2020) propose LayoutLM based
on the encoder only transformer model BERT (Ken-
ton and Toutanova, 2019) by using both language
and layout information as inputs. Xu et al. (2021)
and Huang et al. (2022) add visual information
to the inputs of LayoutLLM to improve the accu-
racy. Hu et al. (2020) and Kant et al. (2020) use
multi-modal transformers to fuse information from
different modalities and select answers from either
a fixed vocabulary or OCR texts by a pointer net-
work (Vinyals et al., 2015). Biten et al. (2022),
Powalski et al. (2021), and Appalaraju et al. (2024)
propose encoder-decoder transformer based ap-
proaches which encode multi-modal information
and decode the answer in an auto-regressive man-
ner (Raffel et al., 2020). These approaches do text-
VQA in a Single-Question Single-Answer (SQSA)
way by answering a single question at a time. Sim-
ilar to (Biten et al., 2022; Powalski et al., 2021;
Appalaraju et al., 2024), our approach is built on
top of encoder-decoder transformers. Unlike pre-
vious approaches that answer a single question at

75

a time, our approach answers multiple questions
at a time using our proposed Multiple-Question
Multiple-Answer (MQMA) approach.

Before fine-tuning on text-VQA datasets, pre-
vious approaches pre-train their models on unla-
beled data using tasks like masked language mod-
eling (Huang et al., 2022; Xu et al., 2021, 2020;
Yang et al., 2021), image-text matching (Yang
et al., 2021), and the standard denoising (Biten
et al., 2022; Powalski et al., 2021; Appalaraju et al.,
2024). These pre-training tasks do not align well
with the downstream task text-VQA, which may
limit the accuracy on the downstream task. In con-
trast, we propose a new unsupervised pre-training
task MQMA denoising which pre-trains the model
in a proxy VQA task. The MQMA denoising task
aligns the pre-training task with the downstream
task and improves the text-VQA accuracy.

3 MQMA Model Architecture

In this section, we discuss in detail the MQMA
model architecture. Our choice of architecture for
MQMA is an encoder-decoder transformer model
(see Figure 3). This architecture is chosen due to
its popularity, versatility, and state-of-the-art text-
VQA accuracy (Biten et al., 2022; Powalski et al.,

2021; Appalaraju et al., 2024). In addition, using a
vocabulary-free generative decoder lends itself as a
generic VQA architecture over approaches which
are designed for closed-vocabulary VQA (Antol
et al., 2015; Wu et al., 2017). The use of decoder
elicits additional challenges for MQMA as it is
not obvious how the model can auto-regressively
generate multiple answers for arbitrary number (>
1) of input questions for a content.

Our MQMA model is built on top of the state-of-
the-art multi-modal encoder-decoder model Doc-
Formerv2 (Appalaraju et al., 2024) which is termed
as the Single-Question Single-Answer (SQSA)
baseline in the experiment section 5. The input
questions and content - image, OCR text, layout
information are vectorized and fed into the trans-
former encoder. So the model can process multiple
modalities at the same time. See Section 3.1 for
more details. The transformer encoder processes
these inputs with a series of self-attention layers,
feed-forward layers, and layer normalization layers
to get transformer encoder representations. This
representation is then fed into the transformer de-
coder, consisting of a series of self-attention lay-
ers, cross-attention layers, feed-forward layers, and
layer normalization layers, decoding answers as
predictions in an auto-regressive manner.

In order to support MQMA functionality, the
model needs to be made aware of that the input
has multiple questions and that at the decoder, the
model needs to appropriately align each question
with the predicted answer. To facilitate this behav-
ior, we introduce two key changes to the above de-
scribed SQSA multi-modal encoder-decoder trans-
former architecture: a) Question distinguishing
multi-modal encoder - in order to distinguish dif-
ferent questions and content in the inputs, we in-
troduce a question index embedding layer which
uses different embeddings for different questions
and content, where the embedding of index 7 is
used for the ¢-th question and the embedding of
index 0 is used for content (see Section 3.1). b)
Learnable prompt at the decoder - Tradition-
ally, a decoder is trained to auto-regressively pre-
dict a token beginning with a fixed [START] to-
ken (Raffel et al., 2020; Vaswani et al., 2017). In-
stead, in our approach, we introduce n learnable
prompts corresponding to the n questions we fed
into the model at the encoder. The decoder auto-
regressively predicts n answers beginning with
these learnt prompts instead of the [START] token.
Each question uses a separate prompt to decode the

76

corresponding answer (see Section 3.2).

3.1 Multi-modal Encoder Inputs

Both visual, language, and layout information are
important to answer questions for text-VQA. Fol-
lowing common practice (Appalaraju et al., 2024;
Biten et al., 2022; Hu et al., 2020; Huang et al.,
2022; Kant et al., 2020; Powalski et al., 2021; Xu
et al., 2021; Yang et al., 2021), a given input im-
age is first processed by an OCR engine to ex-
tract text {T;} and bounding boxes {Boxr;} (i €
{1,2,3,...}. The OCR text, OCR bounding boxes,
question text (Q;;,7 € {1,2,...,n},j € {1,2,...},
where n corresponds to the number of questions
we want to answer at a time), and the image itself
are fed into different embedding layers to get dif-
ferent embeddings for different modalities. Notice
that here we use text from all n questions as in-
puts instead of a single question in previous SQSA
approaches (Appalaraju et al., 2024; Biten et al.,
2022; Hu et al., 2020; Huang et al., 2022; Kant
et al., 2020; Powalski et al., 2021; Xu et al., 2021;
Yang et al., 2021). See Figure 3.

Text Embedding. We compute text embeddings
for question text and OCR results. For text, we
first use the Sentence-piece tokenizer (Wu et al.,
2016) to tokenize the text, and we then use a learn-
able text token embedding layer to get the text
token embeddings. In particular, we add a [SEP]
token between question text tokens and OCR text
tokens and append a [SEP] token after OCR text
tokens. Apart from text token embeddings, we
compute layout embeddings of text by using learn-
able layout embedding layers to map the coordi-
nates (x1,y1, X2, Y2, w, h) of text bounding boxes
into layout embeddings, where all coordinates are
normalized to [0, 1000]. For question text tokens
and [SEP], we use a pseudo box [BOX]pap which
represents the box (0,0, 1000, 1000, 1000, 1000)
(Appalaraju et al., 2021, 2024; Biten et al., 2022).
We also use a learnable modality embedding layer
to distinguish text modality and visual modality,
where the modality embeddings of O are used for
the text modality. In addition, we use a learnable
question index embedding layer to distinguish dif-
ferent questions and content, where the question
index embeddings of ¢ and O are used for the i-
th question and content respectively. The final
text embeddings are the sum of text token, layout,
modality and question index embeddings.

Visual Embedding. We compute visual embed-
dings for the image itself. Given an input im-

age, first we resize the image to height 500 and
width 384. Then we split the image into 192 non-
overlapped patches with size 32x32. Next we map
the patches to embeddings by a linear layer with
Layer Normalization (Ba et al., 2016) and get 192
embeddings with dimension dn, which depends
on the model size (e.g., 512 for the small size model
and 768 for the base size model). After that, we
use a linear layer to map the embeddings to the fi-
nal visual token embeddings {V;}128,V,; € R%m,
which means the final sequence length of the visual
embeddings is 128. To compute layout embeddings
of the visual part, we first use some learnable layout
embedding layers to map the location of the image
patches into 192 layout embeddings, and we then
use a linear layer to map these 192 layout embed-
dings into the final 128 layout embeddings. Similar
to text embeddings, the final visual embeddings are
the sum of visual token embeddings, layout embed-
dings, modality embeddings, and question index
embeddings, where the modality embeddings of 1
and the question index embeddings of 0 are used
for visual embeddings.

3.2 Prompt-Based Decoder

In SQSA, it is straightforward to follow the stan-
dard decoding steps to do auto-regressive an-
swer prediction beginning with the [START] to-
ken (Powalski et al., 2021; Vaswani et al., 2017).
For MQMA, the most naive way to get multiple
answers is to decode the concatenation of multi-
ple answers. More precisely, suppose the answer
sequence length is L, to answer n questions, the
time complexities of the self-attention layers in de-
coder of SQSA and MQMA are n x O(L?) and
O((n x L)?) = n? x O(L?) respectively. Par-
ticularly, SQSA can decode n answers in parallel
which can benefit from the parallel GPU compu-
tations, whereas MQMA has to decode n answers
sequentially. All these facts show that decoding
the concatenation of multiple answers for MQMA
might not be a good choice.

To address the issues mentioned above and en-
able parallel answer decoding for multiple-answers,
we propose a prompt-based approach for the
MQMA decoder. More precisely, we use n learn-
able prompts {P;}7"_; to decode n answers in par-
allel. Instead of beginning with the [START] token,
the decoder begins with the i-th prompt P; to de-
code the answer A; for the ¢-th question in an auto-
regressive manner. These prompts are learnt to
associate the corresponding questions and content.

77

Ip / Target ‘ Standard denoising ‘ MQMA denoising
Original text ‘ Thank you fer-inviting me to your party tast week ...

Q1 Qz ... Q,, [SEP] Thank you
[MASK;] me to your party [MASK>]
week ...

| IMASK;] for inviting [MASK,] last ... | Aj A ... A,

Input text Thank you [MASK;] me to your party

[MASK;] week ...

Target

Table 1: Pre-training tasks: Standard vs. MQMA de-
noising.

Compared with SQSA, the prompt-based MQMA
decoder has almost the same decoder latency as
SQSA because the decoding processes of SQSA
and MQMA are the same except for which token
the decoder begins with. See Appendix A for anal-
yses on different MQMA approaches and why our
approach is most optimal for big-oh complexity.

4 MOQMA Unsupervised Pre-training

It is well established that pre-training followed by
task specific fine-tuning almost always leads to su-
perior performance when compared with models
trained with just supervised fine-tuning (Appalaraju
et al., 2021, 2024; Biten et al., 2022; Kenton and
Toutanova, 2019; He et al., 2019; Chen et al., 2022;
Ho et al., 2022; Brown et al., 2020). Ability to train
on vast amounts of unsupervised data has a key role
to play in the success of this training strategy. In
language domain, a number of pre-training strate-
gies inspired by cloze task (Taylor, 1953) have
been designed, e.g., masked language modeling
(Kenton and Toutanova, 2019). More recently, a
denoising language modeling pre-training task was
proposed in the T5 model (Raffel et al., 2020) and
this pre-training task has been successfully used
in previous text-VQA models like DocFormerv2
(Appalaraju et al., 2024) and LaTr (Biten et al.,
2022). The denoising language modeling task is
unsupervised. The task masks spans of original
text and the objective is to reconstruct the masked
text during training (see “Standard denoising” in
Table 1).

However, this standard denoising task is not well
coordinated with our downstream task of text-VQA
(we show in experiments, see Table 8). In order to
leverage unsupervised pre-training, we propose a
novel MQMA denoising language modeling task as
a proxy VQA task. We show that this pre-training
not only helps the MQMA setting but also helps
in general when the downstream task is text-VQA
(see Table 8). More precisely, we modify the stan-
dard denoising pre-training task to an MQMA text-
VQA task by asking and answering questions on
[MASK] tokens, see “MQMA denoising” Table 1.

We design which and what style questions, i.e.,
1) Which text tokens are masked by [MASK;] after
“xxx”?,
2) What are the masked text tokens of [MASK;] af-
ter “xxx”?
Where [MASK;] corresponds to the i-th mask and
“xxx” corresponds to the text before [MASK;]. The
answer to the question above is the original text
of [MASK;]. An example question-answer pair for
[MASK;] is
Q: Which text tokens are masked by [MASK;] after
“Thank you”? - A: for inviting

We experimentally show that this novel pre-
training task is better aligned with the downstream
text-VQA task and benefits the model for text-VQA
even if the MQMA setting is not desired. We also
tried “before” style question formulation and found
it to be not as beneficial when compared with the
“after” style. So in experiments we stick to the “af-
ter” style questions only. There could be other ways
to formulate the questions to get more benefits.

S Experiments

5.1 Experimental Setup

Datasets and Evaluation Metrics. For unsuper-
vised per-training, we use 1M, 64M, and 64M un-
labeled document images from the Industrial Doc-
ument Library (IDL)' dataset for small, base, and
large size models, respectively, following (Biten
et al., 2022; Appalaraju et al., 2024). For text-
VQA, we use OCR-VQA (Mishra et al., 2019) for
book/movie cover VQA, TextVQA (Singh et al.,
2019) and ST-VQA (Biten et al., 2019b) for scene-
text VQA, and DocVQA (Mathew et al., 2021,
2020) for document VQA. See Appendix B for
more stats on these datasets. For evaluation, we
use Average Normalized Levenshtein Similarity
(ANLS) (Biten et al., 2019a) which measures the
similarity between predicted and ground truth an-
swers for DocVQA and ST-VQA and the stan-
dard VQA accuracy (Antol et al., 2015) for other
datasets, following the standard evaluation proto-
col (Appalaraju et al., 2024; Biten et al., 2019b;
Mathew et al., 2021; Mishra et al., 2019; Singh
et al., 2019). Higher the better.

Implementation Details. Please see Appendix C
for implementation details.

"https://www.industrydocuments.ucsf.edu/

78

Approach ‘ Val Accuracy (%) ‘ Test Accuracy (%)
M4C (Hu et al., 2020) 63.5 63.9

LaAP (Han et al., 2020) 63.8 64.1
LaTrpase (Biten et al., 2022) 67.5 67.9

GIT (Wang et al., 2022a) 67.8 68.1
SQSApase (Appalaraju et al., 2024) 69.7 70.3
SQSAjuge (Appalaraju et al., 2024) 71.1 71.5
MQMAy,se (ours) 71.9 724
MQMA yge (ours) 73.6 74.0 (+2.5)

Table 2: Comparison on OCR-VQA: We answer 5
questions at a time for MQMA. +2.5% is absolute im-
provement from the previous state of the art (Appalaraju
et al., 2024) in that class. Bold indicates best and
underline indicates the previous state of the art.

Approach ‘ Val Accuracy (%) ‘ Test Accuracy (%)
LaAP (Han et al., 2020) 41.0 41.4
SA-M4C (Kant et al., 2020) 45.4 44.6
SMA (Gao et al., 2021) 44.5 455
M4C (Hu et al., 2020) 47.8 -
LOGOS (Lu et al., 2021) 51.5 51.1
TAP + TAG (Wang et al., 2022b) 53.6 53.7
TAP (Yang et al., 2021) 54.7 54.0
PreSTU (Kil et al., 2022) 56.7 56.3
GITT (Wang et al., 2022a) 59.9 59.8
LaTrlt,Me (Biten et al., 2022) 59.5 59.6
LaTrlTerge (Biten et al., 2022) 61.1 61.6
SQSA;M (Appalaraju et al., 2024) 61.6 60.0
SQSAfarge (Appalaraju et al., 2024) 65.6 064.0
MQMA;/, (ours) 63.1 62.3
MQMA,.., (ours) 66.6 65.4 (+1.4)

Table 3: Comparison on TextVQA: We answer 2 ques-
tions at a time for MQMA. T indicates using the com-
bination of the ST-VQA and TextVQA training sets to
train the model.

5.2 Comparisons with State of the Art

Results on OCR-VQA. Table 2 shows results of
different approaches on the OCR-VQA (Mishra
et al., 2019) dataset. Here we train our model on
the training set. We answer 5 questions at a time
for MQMA (i.e., n = 5) because the accuracy of
using different numbers of questions is similar on
OCR-VQA (see Table 10 in Appendix). On OCR-
VQA, there could be potential information leak
from the questions “Is this book related to xxx?”” to
the answer of the questions “What type of book is
this?” / “What is the genre of this book?” if we ask
these questions together. To avoid such information
leak, we keep these two sets of questions separate
and answer them separately. See Appendix F for
more detailed analyses. On the OCR-VQA testing
set, our MQMA approach obtains accuracy 74.0%
which is 2.5% higher than 71.5% of the previous
state-of-the-art SQSA approach (Appalaraju et al.,
2024) using the large size model.

Results on TextVQA and ST-VQA. Following
previous approaches (Biten et al., 2022; Appalaraju
et al., 2024), we train our models on the combina-

https://www.industrydocuments.ucsf.edu/

Approach | Val ANLS (%) | Test ANLS (%)

MA4C (Hu et al., 2020) 472 46.2
LaAP (Han et al., 2020) 49.7 48.5
SA-M4C (Kant et al., 2020) 51.2 50.4
LOGOS (Lu et al., 2021) 58.1 57.9
TAP (Yang et al., 2021) 59.8 59.7
TAP + TAG (Wang et al., 2022b) 62.0 60.2
PreSTU (Kil et al., 2022) - 65.5
LalTr;g,dse (Biten et al., 2022) 68.3 68.4
LaTr],... (Biten et al., 2022) 70.2 69.6
GIT' (Wang et al., 2022a) 69.1 69.6
SQSALabe (Appalaraju et al., 2024) 70.1 68.4
SQSALrge (Appalaraju et al., 2024) 72.9 71.8
MQMA/, . (ours) 70.6 70.0
MQMALrge (ours) 739 72.4 (+0.6)

Table 4: Comparison on ST-VQA: We answer 2 ques-
tions at a time for MQMA. T indicates using the com-
bination of the ST-VQA and TextVQA training sets to
train the model.

tion of TextVQA (Singh et al., 2019) and ST-VQA
(Biten et al., 2019b) training sets. We answer 2
questions at a time for MQMA (i.e., n = 2) be-
cause most images in TextVQA and ST-VQA only
have 1 or 2 questions. From the results shown in
Table 3 and Table 4, our MQMA approach consis-
tently gives the best accuracy on both datasets un-
der different settings. In particular, Table 3 shows
that our MQMA approach obtains accuracy 65.4%
on the TextVQA testing set, which is 1.4% higher
than the previous state-of-the-art SQSA approach
(Appalaraju et al., 2024). In addition, on the ST-
VQA testing set, our MQMA approach improves
ANLS from 71.8% to 72.4% compared with the
state-of-the-art SQSA approach (Appalaraju et al.,
2024), see Table 4.

Results on DocVQA. Here we compare our ap-
proach with the previous state of the art on the
DocVQA dataset (Mathew et al., 2021). We train
our model on the combination of training and val-
idation set and show results on the testing set (by
submitting to leaderboard). We answer 2 questions
at a time for MQMA (i.e., n = 2) because n = 2
gives the best accuracy on DocVQA (see Figure 5
in Appendix). As shown in Table 5, our approach
obtains ANLS 88.3% on the DocVQA testing set,
1.1% higher than 87.2% of the previous state-of-
the-art SQSA approach (Appalaraju et al., 2024).

See Appendix D for ablation studies on different
components of our approach, including the MQMA
architecture, the training data augmentation strat-
egy, the unsupervised pre-training task, the ques-
tion order, and the number of questions.

79

Approach | Test ANLS (%)
LayoutLMv2,,. (Xu et al., 2021) 78.1
LayoutLMv2jyee (Xu et al., 2021) 85.3
LayoutLMv3yp,s (Huang et al., 2022) 78.8
LayoutLMv3,,,e (Huang et al., 2022) 834
StructuralLM,rge (Li et al., 2021) 83.9
UDOP)4ge (Tang et al., 2023) 84.7
ERNIE-Layoutyge (Peng et al., 2022) 84.9
TILT], . (Powalski et al., 2021) 83.9
TILT], ... (Powalski et al., 2021) 87.1
SQSApase (Appalaraju et al., 2024) 834
SQSAjarge (Appalaraju et al., 2024) 87.2
ERNIE-Layout.,s (Peng et al., 2022) 88.4
GPT4 88.4
MQMA,s (ours) 84.8
MQMA ;g (ours) 88.3 (+1.1)

Table 5: Comparison on DocVQA: We answer 2 ques-
tions at a time for MQMA. T indicates using more QA
datasets instead of only DocVQA to train the model.
ERNIE-Layout., is the ensemble of 30 models and
GPT4 has billions of parameters, both of which are
much bigger than MQMA |, using a single model with
750M parameters.

6 Conclusion

In this paper, we propose a Multiple-Question
Multiple-Answer (MQMA) text-VQA approach.
Unlike previous approaches that process a single
question each time, MQMA can answer multi-
ple questions at a time. In addition, we propose
an MQMA denoising task for unsupervised pre-
training. The MQMA denoising task aligns the
pre-training task with the downstream text-VQA
task to improve accuracy. Experimental results
show that the proposed approach improves accu-
racy on a variety of challenging text-VQA datasets
compared with the previous state of the art.

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425-2433.

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,
Yusheng Xie, and R Manmatha. 2021. Docformer:
End-to-end transformer for document understanding.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 993—1003.

Srikar Appalaraju, Peng Tang, Qi Dong, Nishant
Sankaran, Yichu Zhou, and R. Manmatha. 2024.
Docformerv2: Local features for document under-

https://doi.org/10.1609/aaai.v38i2.27828

standing. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(2):709-718.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Ali Furkan Biten, Ron Litman, Yusheng Xie, Srikar
Appalaraju, and R Manmatha. 2022. Latr: Layout-
aware transformer for scene-text vqa. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16548—16558.

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis
Gomez, Marcal Rusinol, Minesh Mathew, CV Jawa-
har, Ernest Valveny, and Dimosthenis Karatzas.
2019a. Icdar 2019 competition on scene text visual
question answering. In 2019 International Confer-
ence on Document Analysis and Recognition (IC-
DAR), pages 1563-1570.

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis
Gomez, Marcal Rusinol, Ernest Valveny, CV Jawa-
har, and Dimosthenis Karatzas. 2019b. Scene text
visual question answering. In Proceedings of the

IEEE/CVF international conference on computer vi-
sion, pages 4291-4301.

Fedor Borisyuk, Albert Gordo, and Viswanath Sivaku-
mar. 2018. Rosetta: Large scale system for text de-
tection and recognition in images. In Proceedings of
the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 71-79.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Xi Chen, Xiao Wang, Soravit Changpinyo, A. J. Pier-
giovanni, Piotr Padlewski, Daniel M. Salz, Sebas-
tian Goodman, Adam Grycner, Basil Mustafa, Lu-
cas Beyer, Alexander Kolesnikov, Joan Puigcerver,
Nan Ding, Keran Rong, Hassan Akbari, Gaurav
Mishra, Linting Xue, Ashish V. Thapliyal, James
Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini,
Chao Jia, Burcu Karagol Ayan, Carlos Riquelme, An-
dreas Steiner, Anelia Angelova, Xiaohua Zhai, Neil
Houlsby, and Radu Soricut. 2022. Pali: A jointly-
scaled multilingual language-image model. ArXiv,
abs/2209.06794.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard H. Hovy. 2021. A survey of data augmentation
approaches for nlp. ArXiv, abs/2105.03075.

80

Chenyu Gao, Qi Zhu, Peng Wang, Hui Li, Yuliang Liu,
Anton Van den Hengel, and Qi Wu. 2021. Structured
multimodal attentions for textvqa. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,

44(12):9603-9614.

Difei Gao, Ke Li, Ruiping Wang, Shiguang Shan, and
Xilin Chen. 2020. Multi-modal graph neural network
for joint reasoning on vision and scene text. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12746—-12756.

Yuan Gao, Kunyu Shi, Pengkai Zhu, Edouard Belval,
Oren Nuriel, Srikar Appalaraju, Shabnam Ghadar,
Vijay Mahadevan, Zhuowen Tu, and Stefano Soatto.
2024. Enhancing vision-language pre-training with
rich supervisions. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion.

Wei Han, Hantao Huang, and Tao Han. 2020. Finding
the evidence: Localization-aware answer prediction
for text visual question answering. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 3118-3131.

Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston
Zhang, Wangian Zhang, Boyang Li, and Mu Li. 2023.
Mixgen: A new multi-modal data augmentation. In
IEEE WACYV 2023 - Pre train Workshop, volume
abs/2206.08358.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2019. Momentum contrast for un-
supervised visual representation learning. arXiv
preprint arXiv:1911.05722.

Chih-Hui Ho, Srikar Appalaraju, Bhavan Jasani,
R Manmatha, and Nuno Vasconcelos. 2022. Yoro-
lightweight end to end visual grounding. In Euro-
pean Conference on Computer Vision - ECCV CAMP
Workshop.

Ronghang Hu, Amanpreet Singh, Trevor Darrell, and
Marcus Rohrbach. 2020. Iterative answer prediction
with pointer-augmented multimodal transformers for
textvqa. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages

9992-10002.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for docu-
ment ai with unified text and image masking. arXiv
preprint arXiv:2204.08387.

Kushal Kafle, Brian Price, Scott Cohen, and Christo-
pher Kanan. 2018. Dvqa: Understanding data visual-
izations via question answering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648-5656.

Samira Ebrahimi Kahou, Vincent Michalski, Adam
Atkinson, Akos Kédér, Adam Trischler, and Yoshua
Bengio. 2017. Figureqa: An annotated fig-
ure dataset for visual reasoning. arXiv preprint
arXiv:1710.07300.

https://doi.org/10.1609/aaai.v38i2.27828

Yash Kant, Dhruv Batra, Peter Anderson, Alexander
Schwing, Devi Parikh, Jiasen Lu, and Harsh Agrawal.
2020. Spatially aware multimodal transformers for
textvqa. In European Conference on Computer Vi-

sion, pages 715-732.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171-4186.

Jihyung Kil, Soravit Changpinyo, Xi Chen, Hexiang
Hu, Sebastian Goodman, Wei-Lun Chao, and Radu
Soricut. 2022. Prestu: Pre-training for scene-text
understanding. arXiv preprint arXiv:2209.05534.

Chenge Li, Istvan Fehérvari, Xiaonan Zhao, Ives
Macedo, and Srikar Appalaraju. 2022. Seetek: Very
large-scale open-set logo recognition with text-aware
metric learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 2544-2553.

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si. 2021. Structurallm:
Structural pre-training for form understanding. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6309—
6318.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xiaopeng Lu, Zhen Fan, Yansen Wang, Jean Oh, and
Carolyn P Rosé. 2021. Localize, group, and select:
Boosting text-vga by scene text modeling. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2631-2639.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Minesh Mathew, Viraj Bagal, Rubén Tito, Dimosthe-
nis Karatzas, Ernest Valveny, and CV Jawahar. 2022.
Infographicvqa. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 1697-1706.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-
har. 2021. Docvga: A dataset for vga on docu-
ment images. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 2200-2209.

Minesh Mathew, Ruben Tito, Dimosthenis Karatzas,
R Manmatha, and CV Jawahar. 2020. Document
visual question answering challenge 2020. arXiv
preprint arXiv:2008.08899.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and
Pratyush Kumar. 2020. Plotqa: Reasoning over sci-
entific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 1527-1536.

81

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. Ocr-vqa: Visual
question answering by reading text in images. In

2019 international conference on document analysis
and recognition (ICDAR), pages 947-952. IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,
Zhenyu Zhang, Zhengjie Huang, Yuhui Cao, Wei-
chong Yin, Yongfeng Chen, Yin Zhang, Shikun Feng,
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 2022.
ERNIE-layout: Layout knowledge enhanced pre-
training for visually-rich document understanding.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 3744-3756, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Rafal Powalski, Lukasz Borchmann, Dawid Jurkiewicz,
Tomasz Dwojak, Michat Pietruszka, and Gabriela
Patka. 2021. Going full-tilt boogie on document
understanding with text-image-layout transformer. In
International Conference on Document Analysis and
Recognition, pages 732-747.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,21:1—
67.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8317-8326.

Ryota Tanaka, Kyosuke Nishida, and Sen Yoshida. 2021.
Visualmrc: Machine reading comprehension on docu-
ment images. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 13878—13888.

Peng Tang, Pengkai Zhu, Tian Li, Srikar Appalaraju, Vi-
jay Mahadevan, and R Manmatha. 2024. Deed: Dy-
namic early exit on decoder for accelerating encoder-
decoder transformer models. NAACL Findings.

Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang,
Yang Liu, Chenguang Zhu, Michael Zeng, Cha
Zhang, and Mohit Bansal. 2023. Unifying vision,
text, and layout for universal document processing.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19254—
19264.

Wilson L. Taylor. 1953. “cloze procedure”: A new
tool for measuring readability. Journalism & Mass
Communication Quarterly, 30:415 — 433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie
Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and
Lijuan Wang. 2022a. Git: A generative image-to-text
transformer for vision and language. arXiv preprint
arXiv:2205.14100.

Jun Wang, Mingfei Gao, Yuqgian Hu, Ramprasaath R
Selvaraju, Chetan Ramaiah, Ran Xu, Joseph F JaJa,
and Larry S Davis. 2022b. Tag: Boosting text-vqa via
text-aware visual question-answer generation. arXiv
preprint arXiv:2208.01813.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen,
Anthony Dick, and Anton Van Den Hengel. 2017.
Visual question answering: A survey of methods and
datasets. Computer Vision and Image Understanding,
163:21-40.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2021. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2579-2591.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192-1200.

Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin,
Dinei Florencio, Lijuan Wang, Cha Zhang, Lei
Zhang, and Jiebo Luo. 2021. Tap: Text-aware pre-
training for text-vqa and text-caption. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8751-8761.

82

(a) SQSA (b) MQMA (naive) (c) MQMA (ours w/o QIC)
A A A A A,

[Decoder] [Decoder] [Decoder]
I Q,C ; qmmcg

.0, C Q..

(d) MQMA (ours)
A A,
| |

[Decoder] [Decoder]

[Decoder]
T4ac
s

Qc

Q,..Q,C
1..n0

Q.c

Figure 4: Architecture Comparisons among SQSA
and Different MQMA approaches: SQSA: the SQSA
baseline, MQMA (naive): the naive MQMA approach
that concatenates answers of multiple questions to
form a single long output sequence, MQMA (ours w/o
QIE): our MQMA approach w/o question index embed-
dings, MQMA (ours): our MQMA approach, Q;/A;/P;
(i € {1,2,...,n}): the i-th question/answer/prompt,
C: content, S: [START] token for decoder. i (¢ €
{0,1,2,...,n}) at the bottom of (d): question index.

Li Zhuowan, Jasani Bhavan, Tang Peng, and Ghadar
Shabnam. 2024. Synthesize step-by-step: Tools, tem-
plates and 1lms as data generators for reasoning-based
chart vqa. arXiv preprint arXiv:2403.16385.

A Time Complexity and Latency of SQSA
and Different MQMA Approaches

We do detailed time complexity and latency analy-
ses of SQSA and different MQMA approaches here.
See Figure 4 for the architectures of SQSA and dif-
ferent MQMA approaches. Suppose we have n
questions, the sequence length of each question is
Lq, the sequence length of content is Lc¢, and the
sequence length of each answer is Ls. Without
loss of generality, Lo << Lc.

For SQSA, to answer each question, the
time complexity of each self-attention layer
in the encoder is O ((Lq + Lc)?) O (L3).
The time complexity of each self-attention
layer and cross-attention layer in the de-
coder is O (LA + La* (Lo + Lc))
O (Li—l—LA*LC), where L% is from the
self-attention layer and Lp * Lc is from the
cross-attention layer. So the encoder and decoder
time complexities of answering n questions
are n * O(LE) and n * O (L% + La * Lc)
respectively.

For MQMA (naive), we answer n questions
at a time. The time complexity of each self-
attention layer in the encoder to answer n ques-
tions is O ((n* Lq + Lc)?) O (LE) (n *
Lq << Lc¢) which is % of the encoder
time complexity of SQSA. The time complexity
of each self-attention layer and cross-attention
layer in the decoder to answer m questions is

~
~

~
~

~
~

| SQSA | MQMA (naive) | MQMA (ours w/o QIE) | MQMA (ours)
Encoder Time Complexity n* 0O (LE) O (L%) O (L3) O (Ld)
Encoder Latency (ms/image) | 19.7 11.5 11.5 11.5
Decoder Time Complexity n*x QO (Li + L * LC) n* O (n, * Li + L * Lc) nx*x QO (Li + L * LC) n*x QO (Li + LA * LC)
Decoder Latency (ms/image) | 68.9 77.6 68.9 68.9

Table 6: Time Complexity and Latency Comparisons among SQSA and Different MQMA Approaches: SQSA:
the SQSA baseline, MQMA (naive): the naive MQMA approach that concatenates answers of multiple questions to
form a single long output sequence, MQMA (ours w/o QIE): our MQMA approach w/o question index embeddings,
MQMA (ours): our MQMA approach, n: the number of questions, L¢: the sequence length of content, LA: the
sequence length of answer. The latency numbers here are from MQMA a1 on DocVQA (Mathew et al., 2021).

Dataset ‘ Train Set ‘ Val Set ‘ Test Set

OCR-VQA (Mishra et al., 2019) 166K/801.7K | 20.7K/100K | 20.8K/100.4K
TextVQA (Singh et al., 2019) 21.9K/34.6K 3.2K/5K 3.3K/5.7K
ST-VQA (Biten et al., 2019b) 17K/23.4K 1.9K/2.6K 3K/4.1K
DocVQA (Mathew et al., 2020, 2021) | 10.2K/39.5K 1.3K/5.3K 1.3K/5.2K
Table 7: Dataset Stats: The number of im-

ages/questions of different text-VQA datasets.

O ((n*La)>+ (nxLa)* (Lo + Lc)) =~ n *
O (nx L3 + La * Lc) which is higher than the
decoder time complexity n * O (Li + La * LC)
of SQSA.

For MQMA (ours w/o QIE) and MQMA (ours),
we answer n questions at a time. The time com-
plexity of each self-attention layer in the encoder
to answer n questions is the same as MQMA
(naive) because the input sequence length of dif-
ferent MQMA approaches is the same. The time
complexity of each self-attention layer and cross-
attention layer in the decoder to answer n questions
is the same as SQSA because we decode n answers
separately as in SQSA.

We summarize the time complexities of differ-
ent approaches and report latency in Table 6. Our
MQMA approaches give lower encoder time com-
plexity and latency than SQSA. In addition, the
decoder time complexity and latency of MQMA
(ours w/o QIE) and MQMA (ours) are the same as
that of SQSA and are lower than that of MQMA
(naive). So MQMA (ours w/o QIE) and MQMA
(ours) give the lowest overall time complexity and
latency among all these approaches.

B Datasets

As stated in the main paper, we use OCR-VQA
(Mishra et al., 2019) for book/movie cover VQA,
TextVQA (Singh et al., 2019) and ST-VQA (Biten
et al., 2019b) for scene-text VQA, and DocVQA
(Mathew et al., 2021, 2020) for document VQA.
See Table 7 for details of these text-VQA datasets.
As we can see, there are on average ~ 5 ques-

&3

tions/image on OCR-VQA, 1 or 2 questions/image
on TextVQA and ST-VQA, and on average ~ 4
questions/image on DocVQA.

C Implementation Details

Pre-training. We use small, base, and large
size models which are termed as MQMAgnai,
MQMAy;se, and MQMA e, respectively. Our
model is first initialized from the TS pre-trained
weights (Raffel et al., 2020), then pre-trained on the
unlabeled document data following DocFormerv2
(Appalaraju et al., 2024) - we call this model as
SQSA basline in our experiments. SQSA is next
pre-trained on the same unlabeled document data
using the MQMA denoising task descried in Sec.
4 of the main paper. In both, we pre-train for
50/3/3 epochs on 1M/64M/64M IDL data for the
small/base/large size model. We also do not do any
text augmentation (Ma, 2019; Feng et al., 2021)
or multi-modal augmentation (Hao et al., 2023).
We simply normalize the images to unit mean and
variance for training stability. The maximum input
sequence length of the text token embeddings is
set to 512. The input sequence length of the vi-
sual token embeddings is set to 128. The learnable
prompt P; is first initialized by the embeddings of
“answer of question 2:”.

Fine-Tuning. For text-VQA fine-tuning, we train
our models for 8 epochs on OCR-VQA and for 50
epochs on other datasets. The learning rate is set
to 0.0001 and the AdamW (Loshchilov and Hutter,
2018) optimizer is used to train our models. Our
training batch size is set to 128. The maximum
input sequence length of the text token embeddings
is set to 2048 for small and base size models and
1024 for large size model. The input sequence
length of the visual token embeddings is set to 128.
MQMA Dynamic Data Augmentation. During
pre-training and fine-tuning, we use an MQMA spe-
cific dynamic data augmentation strategy. Specif-

ically, during unsupervised pre-training, we ran-
domly sample 5 masks at a time with uniform-
random order and create 5 questions (as shown in
Section 4). During downstream fine-tuning, sup-
pose we want to answer n questions at a time, we
randomly sample n',n’ € {1,2,...,n} question-
answer pairs and randomly order the n’ question-
answer pairs. These randomly sampled and or-
dered n’ question-answer pairs are used during
fine-tuning. So if there are m questions for an
image, there will be m” +m"™~! + ... + 1 random
combinations during fine-tuning. We do this to
prevent any memorization and learn spurious co-
relations by the model. During inference, we fix the
order of questions and feed every n questions into
the model (if the remaining number of questions
is smaller than n we simply feed all the remaining
questions into the model).

Other Details. Following (Biten et al., 2022;
Powalski et al., 2021), we use Amazon Textract?,
Amazon Text-in-Image?, and Rosetta (Borisyuk
et al., 2018) to extract OCR results for document
images (i.e., IDL and DocVQA images), non-
document images (except for OCR-VQA images),
and OCR-VQA images, respectively. Our imple-
mentations are based on the PyTorch (Paszke et al.,
2019) deep learning framework and the Hugging-
Face (Wolf et al., 2020) library. All experiments are
ran on eight NVIDIA A100 GPUs with cudal1.x.

D Ablation Studies on DocVQA

We conduct several ablations on the DocVQA vali-
dation set to analyze the influence of different com-
ponents of our approach, including the MQMA ar-
chitecture, the training data augmentation strategy,
the unsupervised pre-training task, the question or-
der, and the number of questions. If not specified,
all experiments here are based on MQMAmair-

The Influence of the MQMA Architecture. As
we discussed in Section 3.2, apart from the prompt-
based decoder, we can also use a naive approach
that concatenates the answers of multiple questions
to form a single long output sequence. In addition,
we also remove the question index embeddings
to check the influence of the question index em-
beddings. Here we compare these three different
MQMA architectures. We do 2 questions 2 an-
swers document VQA (i.e., n = 2). As shown in

2https ://aws.amazon.com/textract/
3https ://docs. aws.amazon.com/rekognition/
latest/dg/text-detecting-text-procedure.html

84

Approach
SQS A [

‘ Data Aug. ‘ # Questions ‘ ANLS
| 730

MQMA man (naive) Static 2 68.6
MQMAman (naive) Dynamic 2 723
MQMAman (ours w/o QIE) Dynamic 2 72.7
MQMA;man (ours) Dynamic 2 729
MQMA i (ours) + MQMA denoising Dynamic 2 74.3
MQMAman (ours) + MQMA denoising + FDPF | Dynamic 2 74.1

Table 8: MQMA Ablations: Results of different
MQMA architectures, training data augmentation strate-
gies, and pre-training tasks on the DocVQA validation
set. “MQMA a1 (naive)” means the naive approach
that concatenates answers of multiple questions to form
a single long output sequence. “MQMA a1 (ours w/o
QIE)” means our approach w/o question index em-
beddings. “MQMAgnan (ours)” means our approach.
“MQMAnan (ours) + MQMA denoising” means using
MQMA denoising during pre-training (otherwise using
standard denoising). “MQMAgp,y (ours) + MQMA de-
noising + FDPF” is the same as “MQM Ay (ours) +
MQMA denoising” except for freezing decoder prompts
during fine-tuning. “Static” means that we do static data
generation by fixing question-answer pair combinations
during training. “Dynamic” means that we do dynamic
data generation by randomly sampling and ordering
question-answer pairs during training.

Table 8, our approach obtains higher ANLS than
the naive approach. In addition, our approach has
lower latency than the naive approach, see Table 6
in Appendix. Adding question index embeddings
also contributes to higher ANLS because the ques-
tion index embeddings help the model distinguish
different questions and content.

MQMA Training Data Augmentation Strategy.
As mentioned in Section C. we use a dynamic train-
ing data augmentation strategy by randomly sam-
pling and ordering question-answer pairs. Here
we compare the dynamic training data augmenta-
tion strategy with the static training data generation
approach which fixes question-answer pair com-
binations during training. From Table 8, we can
see that using the dynamic approach obtains 3.7%
higher ANLS than the static approach.

The Influence of the Unsupervised Pre-training
Task. Here we study the influence of different unsu-
pervised pre-training tasks. From Table 8, we can
see that adding the MQMA denoising pre-training
task improves ANLS by 1.4% when n = 2. With
the new pre-training task, our MQMA approach
obtains 1.3% higher ANLS compared with SQSA.
In addition, from Figure 5, we can see when pre-
trained with the MQMA denoising task, evenn = 1
contributes to higher ANLS than the SQSA base-
line with the standard denoising task. These re-

https://aws.amazon.com/textract/
https://docs.aws.amazon.com/rekognition/latest/dg/text-detecting-text-procedure.html
https://docs.aws.amazon.com/rekognition/latest/dg/text-detecting-text-procedure.html

Approach

MQMAgman
MQMAma (reversed order)

| #Questions | ANLS (%) | ANLS of Q1 (%) | ANLS of Q2 (%)

2 743 753 73.6
2 74.2 73.4 75.2

Table 9: MQMA Ablations: Results of different ques-
tion orders on the DocVQA validation set. The Q1/Q2
for MQM A, corresponds to Q2/Q1 for MOMA i
(reversed order).

Small Size Model Base Size Model
85
743

830 831

Le25

5 5
z

730 Z820

Questions
+SQSA -+MaMA

Questions
+SQSA -+MAMA

Figure 5: MQMA Ablations: Results of different num-
bers of questions on the DocVQA validation set using
the small size and base size models. We use the standard
denoising task and the MQMA denoising task for SQSA
and MQMA pre-training respectively.

sults confirm that MQMA denoising is beneficial
for text-VQA even if n 1. Also, even freez-
ing the decoder prompts during fine-tuning obtains
an ANLS of 74.1% (vs. 74.3%), which confirms
that our pre-training task can learn good decoder
prompts to associate the corresponding questions
and content even without fine-tuning learnable de-
coder prompts.

The Influence of the Question Order. In our
approach, questions are concatenated with fixed
order during inference. Here we study the influence
of the question order. From Table 9, we can see
our approach is robust to the order of the questions.
This is because our model is trained with dynamic
data augmentation which randomly samples and
orders questions during training.

The Influence of the Number of Questions. We
discuss the results of different numbers of ques-
tions we answer at a time (i.e., different n). As we
can see from Figure 5, our MQMA obtains higher
accuracy than SQSA for n = 1 to 5. Answering
2 questions at a time gives the best accuracy on
DocVQA, so we use n = 2 in Section 5.2. See
Appendix E for the influence of the number of
questions on other datasets.

E The Influence of the Number of
Questions on Other Datasets

In our main paper, we only show MQMA results
of answering 5 questions at a time on OCR-VQA
and results of answering 2 questions at a time on
TextVQA and ST-VQA. Here we should the influ-

85

Approach ‘ # Questions ‘ Accuracy (%)

SQSAbase | 1 | 697
MQMAbase 1 70.3
MQMAbase 2 71.7
MQMA s 3 71.9
MQMA e 4 71.9
MQMA,se 5 71.9

Table 10: MQMA Ablations: The influence of the
number of questions we answer at a time for MQMA
on the OCR-VQA (Mishra et al., 2019) validation set.

Approach ‘ # Questions ‘ TextVQA Accuracy (%) ‘ ST-VQA ANLS (%)

SQSApase 1 60.4 68.0
MQMApase 1 61.7 68.7
MQMAbase 2 61.9 69.2

Table 11: MQMA Ablations: The influence of the
number of questions we answer at a time for MQMA on
the TextVQA (Singh et al., 2019) and ST-VQA (Biten
et al., 2019b) validation set.

ence of the number of questions on OCR-VQA,
TextVQA, and ST-VQA datasets. Without loss of
generality, we use the base size model and train/test
our MQMA approach on the training/validation set.
OCR-VQA. Table 10 shows results of answering
different numbers of questions at a time for MQMA
on the OCR-VQA (Mishra et al., 2019) validation
set. Images in OCR-VQA have on average ~ 5
questions/image, so we compare results of answer-
ingn = 1 ton = 5 questions at a time. As we can
see, answering different numbers of questions at a
time (when n > 1) gives very similar accuracy on
the OCR-VQA validation set. Answering n = 5
questions at a time gives the highest accuracy on
the OCR-VQA validation set, so we only report re-
sults of n = 5 in our main paper. Answering n > 1
questions at a time gives much higher accuracy than
answering n = 1 question at a time. This is be-
cause the questions in the OCR-VQA dataset have
correlations. Our MQMA approach can leverage
correlations between multiple questions and con-
tent to improve accuracy. Even answering n = 1
question at a time for MQMA gives higher accu-
racy than SQSA, because our MQMA denoising
pre-training task aligns the pre-training task and
downstream text-VQA task.

TextVQA and ST-VQA. Table 11 show results of
answering different numbers of questions at a time
for MQMA on the TextVQA (Singh et al., 2019)
and ST-VQA (Biten et al., 2019b) validation set.
Here our model is trained on the TextVQA training

set only when evaluating on the TextVQA valida-
tion set, and is trained on the ST-VQA training
set only when evaluating on the ST-VQA valida-
tion set. Images in TextVQA and ST-VQA have
only 1 or 2 questions/image, so we compare re-
sults of answering n = 1 and n = 2 questions
at a time. From the results, we can see answering
n = 2 questions at a time gives slightly higher num-
bers than answering n = 1 question at a time on
TextVQA and ST-VQA, so we only report results
of n = 2 in our main paper. Similar to the results
on other datasets, even answering n = 1 question
at a time for MQMA gives higher accuracy than
SQSA thanks to the MQMA denoising pre-training
task.

F Information Leak Analyses on
OCR-VQA

In our initial experiments on OCR-VQA, we get
accuracy 77.5% using the MQMA base size model
(vs. 69.9% of the SQSA base size model) on the
validation set when we answer 5 questions at a time.
To verify where such big accuracy improvements
are from, we conduct detailed analyses on the OCR-
VQA dataset.

Unlike other datasets in which questions of the
same image are not strongly correlated, there are
correlations among different questions in the OCR-
VQA dataset. For most images in OCR-VQA, the
five questions below are asked
Q1: Who wrote this book? / Who is the author of
this book?

Q2: What is the title of this book?

Q3: What type of book is this? / What is the genre
of this book?

Q4: Is this book related to xxx? / Is this a xxx
book?

05: Is this book related to xxx? / Is this a xxx
book?

For Q4 and Q5, one of them has answer “yes” and
one of them has answer “no”. We can see there are
correlations among different questions. For exam-
ple, the title (for Q2) and the type/genre (for Q3)
are correlated to each other. Our MQMA approach
can leverage this correlation to improve accuracy.

However, there could be potential information
leak from the questions of Q4 and Q5 to the answer
of Q3, see the example below.

Q3: What is the genre of this book? - A: religion &
spirituality
Q4: Is this book related to religion & spirituality?

86

- A:yes

Q5: Is this book related to computers & technol-
0gy? - A: no

As we can see, the question of Q4 contains the
answer of Q3. In addition, if we evaluate the ac-
curacy of Q3 only and other questions, MQMA
gives accuracy 94.0% for Q3 only and 73.2% for
other questions, whereas SQSA gives accuracy for
67.0% for Q3 only and 70.7% for other questions.
These results show that the MQMA might take in-
formation from Q4 or Q5 to answer Q3, i.e., there
might be information leak.

To further analyze the information leak issue,
we conduct experiments under three settings as fol-
lows. Here we use the MQMA model trained with
n = b for the experiments and we do not add any
constraints during training.

Setting 1: Answer Q1, Q2, Q4, Q5 together and
answer Q3 alone.

Setting 2. Answer Q1, Q2, Q3 together and answer
Q4, Q5 together.

Setting 3. Answer Q1, Q2, Q3 together, answer
Q4 alone, and answer Q5 alone.

Both of these settings give accuracy 71.5%, which
further confirms answering Q3, Q4, and QS5 to-
gether would result in information leak from the
questions of Q4 and Q5 to the answer of Q3. In
addition, answering Q4 and Q5 together or alone
(Setting 2 and Setting 3) gives the same accuracy,
which shows our MQMA approach does not take
dataset-specific prior knowledge that there will be
one “yes” answer and one “no” answer for Q4
and Q5. This is because during training, we do
random sampling and ordering, so the training sam-
ples could have different numbers of “yes” answers
and different numbers of “no” answers.

To avoid such information leak, we check the
whole dataset and make sure all questions that
could result in information leak will not be an-
swered together during both training and testing,
e.g., for the five questions discussed before, we
always ensure that Q1, Q2, and Q3 can only be
answered together with each other, and Q4 and
Q5 can only be answered together with each other.
After doing this, we get accuracy 71.9% on the
OCR-VQA validation set if we answer n = 5 ques-
tions at a time.

G Qualitative Results

We show qualitative results in Figure 6. As we
can see, our MQMA approach shows better multi-

modal understanding ability than SQSA. There are
some failure cases from both MQMA and SQSA.
The errors are from multiple aspects, like OCR
error and hard images/questions. For example, for
the top right example in Figure 6, the ground truth
is “6.7” but both MQMA and SQSA give answer
“607”. The reason of this wrong prediction is from
the OCR error - OCR mis-recognizes the word
“6.7” as “607” and it is hard for models to fix this
OCR error. For the example at the last column of
row 3 in Figure 6, both MQMA and SQSA gives
wrong counts for the number of letters in the word
“police”. Counting is a difficult problem for text-
VQA models. Actually, MQMA gives a reasonable
prediction “7”, because from the appearance of
the word in the image it looks like there are “7”
letters. There are some cases that even human
has difficulty in answering the question - for the
bottom right example, it is hard to answer the time
because there is no clear information about which
part corresponds to 12 o’clock.

87

IO e——

Key Journais to e Targeted
Koy M o for s Practtiones (Fit T, High Crenaion)

Which is the new journal?

GT: annals of family medicine
SQSA: new england journal of medicine
MQMA: annals of family medicine

What is the black word on the yellow
background?

GT: crackers
SQSA: daily
MQMA:

i
What is written under the crossed out p sign?

GT: this side this block
SQSA: only one way
MQMA: this side this block

What s the name of the book next to the one
that says german?

GT: french
SQSA: slang
MQMA: french

What number is on the gold coin?

GT:5
SQSA: 1
MQMA: 5

What word is written just under the x on the

W | :53‘:‘ ol
g

ot o sy
 |amicns

I

. PR —— i s
.m@m,u.wn_«, e e gout

What is the objective for segment 1a?

GT: strong share growth
SQSA: cities where kool is strong
MQMA: strong share growth

dial?

GT: september
SQSA:a
MQMA: spetember

g 2w

What magazine is shown on the bottom half of
the entrance door?

GT: men'’s health
SQSA: ausrralian school
MQMA: mean's health

How many cups can this measuring cup hold?

GT:2
SQSA: 16
MQMA: 2

Where is the blue top from?

GT: cleveland
SQSA: north carolina
MQMA: cleveland

5 EXPEADURE M FOREION CUBENCY

aina) ety

7)okt o s s i, e s st
romiagea s oo (voand i)

Bonnatacay Sigs spae
[y S

[

et s (o0 W ome
oo o

kg 0838 o0 wn o mos

Wi ds i

o

e
D vma 2400 amn
Dk 300 o
S DA vt 600 00
a0

[T ——

What is serial number '5'?

GT: expenditure in foreign currency
SQSA: 891022
MQMA: expenditure in foreign currency

What does it say in white lettering under the

logo on the right of the black background?

GT: statoil
SQSA: Iso sky chefs
MQMA: statoil

What color is the motel painted?

GT: red
SQSA: green
MQMA: red

i L R |
What brand is the bottle furthest to the right on
the table?

GT: coke
SQSA: pepsi
MQMA: coke

What app does the green square represent?

GT: line
SQSA: telegram
MQMA: line

WEEKLY DIET (L] CONSUMED BY CONTROL (1 THIAMINE DEFICIENT 10
ETHANOLLFED [E7) AND (1D E1) GROUPS: - 00D PROVIDED AD LD

DT consuED (81

Which group shows the lowest diet
consumption in the 5th week?

GT:td
SQSA:
MQMA: td

o< 2 S e, =
What are the first three words of the sign?

GT: stop look listen
SQSA: stop
MQMA: stop look listen

What is the name of brown color boat?

GT: x5
SQSA X60
A: rx55

What is the word seen in red on the bottom of
this beer bottle?

GT: urbock
SQSA: bamberg
MQMA: urbock

What is on the sign with two down arrows?

GT: herning
SQSA: herning, ringkobing, holstebro
MQMA: herning

WATER ANALYSIS

What is the parts per million hypothetical
combinations for calcium phosphate?

GT:6.7
SQSA: 607

MQMA: 607

What time does the clock read?

Figure 6: Qualitative Comparisons between MQMA and SQSA: The first four columns show examples that
MQMA gives correct answers but SQSA gives wrong answers. The last column shows examples that both MQMA
and SQSA give wrong answers. MQMA shows better multi-modal understanding ability than SQSA. Zoom in to

see better.

88

An NLP-Focused Pilot Training Agent for Safe and Efficient Aviation
Communication

Xiaochen Liu, Bowei Zou, Ai Ti Aw
Institute for Infocomm Research (I12R), A*STAR, Singapore
{liu_xiaochen, zou_bowei, aaiti}@i2r.a-star.edu.sg

Abstract

Aviation communication is vital for safe and ef-
ficient flight operations. However, pilots often
struggle to adhere to strict phraseology due to
diverse backgrounds and language proficiency
levels. Traditional training methods involve
expensive setups and reliance on human-in-
the-loop simulations. To overcome these chal-
lenges, we propose an NLP-focused training
agent. Our approach leverages natural language
capabilities and involves fine-tuning on commu-
nication data to generate instructions based on
input scenarios (keywords). Given the absence
of prior references for this business problem,
we explored the feasibility of our proposed so-
lution by 1) generating all instructions at once
and 2) generating one instruction while incorpo-
rating conversational history in each input. Our
findings affirm the feasibility of this approach,
emphasizing the effectiveness of fine-tuning
pre-trained models and large language models
in advancing aviation communication training.

1 Introduction

Efficient and accurate communication is crucial in
air traffic management (Cardos et al., 1998). Dur-
ing real flying scenarios, Air Traffic Controllers
(ATCos) engage in timely communication with nu-
merous aircraft in designated airspace, including
aviation instructions, aeronautical announcements,
traffic advisories, aerodrome announcements, and
weather updates. Unfortunately, miscommunica-
tions frequently occur, attributed to pilot read-
back errors (Hamzah, 2018; Yang et al., 2023) and
phraseology issues (Helmke et al., 2021). This
long-standing problem, highlighted in an analysis
of NextGen 2013 found pilot mishearing (28%)
and no pilot readback (20%) as predominant fac-
tors, constituting 74% of human errors based on
382 miscommunication messages (Skaltsas et al.,
2013). A 2023 study showed that 92% of aviation
respondents believed language training was essen-
tial (Hamzah et al., 2023). Therefore, providing

89

training in pilots’ phraseology and domain-specific
language is crucial to addressing communication
challenges for safety and operational efficiency.

On the other hand, the aviation industry has been
actively seeking solutions amid the rapid advance-
ment and widespread adoption of artificial intel-
ligence technologies (Kashyap, 2019). Al-driven
tools, such as Natural Language Processing (NLP),
are seamlessly integrated into every facet of mod-
ern aviation (Kabashkin et al., 2023). Noteworthy
implementations include human-in-the-loop train-
ing involving flight simulations and communica-
tions (Williams et al., 2014), aviation ontology
construction (Helmke et al., 2022), readback er-
ror detection (Helmke et al., 2021), and phraseol-
ogy training (Zuluaga-Gomez et al., 2023). Despite
these efforts, none have addressed the requirements
for enhancing pilots’ communication. Training that
incorporated human actors often incurred substan-
tial costs for setup (Brudnicki et al., 2005), signif-
icant resources (Williams et al., 2014; Kabashkin
et al., 2023), and necessitated labor-intensive anno-
tated data for simulation (Wu et al., 2021). For
instance, an MITRE report (Johnson, 2010) re-
vealed that simulating an air traffic scenario for
communication training in a small class required
the involvement of four domain experts, four Al
assistants, and one traffic simulation system, all
within a meticulously configured environment inte-
grating Al, network, and interfaces.

To address the above challenges, we propose an
NLP-focused training agent that exclusively uti-
lizes aviation communication data. This agent of-
fers language training to pilots, aiming to enhance
their proficiency in domain-specific phraseology
while minimizing resource utilization and costs.
Essentially, pilots can effortlessly create a tailored
aviation communication environment, generating
a list of aviation instructions with just a few clicks
on a single machine. Subsequently, they can sys-
tematically perform readbacks of each instruction

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 89-96
June 16-21, 2024 ©2024 Association for Computational Linguistics

through an application interface, transmitting nat-
ural language data to the backend for processing.
Throughout the training loop, pilots receive prompt
feedback on their readbacks and are prompted for
repetition in the event of a readback error. Upon
successfully executing readbacks for all instruc-
tions in a training session, pilots have the flexibility
to opt for another training session with a different
set of instructions using the same setup. The core
of this method revolves around aviation instruction
generation, for which we leveraged transformer-
based pre-trained language models, including GPT-
2 (Radford et al., 2019), BART(Seq2Seq model)
(Lewis et al., 2020), and Llama2 (Touvron et al.,
2023). Our contributions include:

1. Cost-Effective Data Setup. The pro-
posed method is dedicated to generating
contextually-aware aviation instructions using
only communication data. Unlike traditional
approaches, it eliminates the need for a mas-
sive amount of annotated input and expensive
flight simulation setups, providing promising
task outcomes at a fraction of the cost.

Enhanced Method Explainability. The
method enhances explainability by highlight-
ing specific keywords in the input that signif-
icantly impact the generated content. This
feature ensures clarity for non-technical users,
offering a transparent understanding of the
rationale behind decision-making processes.

Efficient Domain Adaptation. The method
integrates existing NLP techniques to achieve
broader adaptation in solving aviation-related
problems. It aids in the analysis of deeper
contextual constraints and provides valuable
data insights for similar tasks in cases where
other forms of data are unavailable.

2 Training Agent Workflow

According to the International Civil Aviation com-
munications Organization (ICAO), aviation com-
munication phraseology is precisely defined with
specific vocabulary and content (ICAO, 2020).
While aviation instructions draw from a relatively
limited set of words, their meanings within this
context can significantly diverge from general lan-
guage, especially concerning terminology (ICAO,
2020). For example, consider a message, FAKEAIR
ONE TWO NINER DIRECT TO NOVEMBER

90

ECHO PAPA WHISKEY WHISKEY, which signi-
fies that it is an Air Traffic Control (ATC) commu-
nication directed at a pilot flying the aircraft. It
consists of domain-specific language for alphabets,
numbers, the placement of call-sign, and aviation
instruction for aircraft manipulation and readback.

Instruction Graph Instruction Generation Readback Error Detection

Pilots
Generate Keyword Sequence
oonerare ReyRore Sequentt >
Generate Instruction
Loenarate NGwLCHon |

Instruction(s)

Provide Readback

Readback

Identify Errors

alt __J [Errors Detected?]

Prompt for New Readback

[No Errors Detected]

Continue Instruction Generation
————————————

Timeout

Figure 1: Workflow of pilot training agent.

In a real-world scenario involving communica-
tion between a controller and an aircraft, a set
of aviation instructions would be issued sequen-
tially. If pilots provided correct readbacks, or if
ATCos rectified readback errors through clarifica-
tion, communication proceeded smoothly. How-
ever, instances of miscommunication could occur
during live flying operations. This becomes a focal
point for us, aiming to minimize such occurrences
through cost-effective simulations of these interac-
tions with pilots. These interactions include user
input processing, context-aware instruction gen-
eration, pilot response/readback detection, and a
reproducible workflow for generating content with
various instruction scenarios.

Consequently, we come up with a training agent
with an integrated solution leveraging existing NLP
techniques, as illustrated in Figure 1. At the appli-
cation level, pilots initiate a request for a flight
communication scenario, specifying the communi-
cation channel and desired instruction length for
practice. The request is transmitted to the Instruc-
tion Graph module, which generates a sequence of
instruction keywords based on transitional probabil-
ities specific to the chosen communication channel.
Subsequently, the instruction scenario is forwarded
to the Instruction Generation module to produce
instruction content. The module then returns either
a list of instructions, offloading the instruction is-
suance to the application layer, or transmits one in-
struction at a time along with conversational history.
Pilots provide readbacks of individual instructions

at the application layer and transcribe into natural
language data. Each readback is processed by the
Readback Detection module to raise a signal if a
readback error is found. In case errors are detected,
pilots are prompted for a new readback; otherwise,
the issuance of instructions continues. Once all
instructions are successfully read back and verified,
pilots can initiate the process for further practice.

3 Methodology

The proposed training agent aims to generate avia-
tion instructions that are both meaningful and con-
textually aware. To achieve this goal, we devise a
specific input format termed Instruction Scenario,
which comprises a collection of distinct keywords
representing various types of instructions and com-
munication channels. These instruction scenarios
are retrieved and stored in Instruction Graphs, serv-
ing as inputs for generation at the application layer.
Subsequently, the instruction generation process
utilizes the instruction scenario as input and gen-
erates words auto-regressively, where each token
is predicted based on the previously generated to-
kens. For this task, we employ transformer-based
language models and fine-tuned them with domain-
specific data.

Instruction Scenario and Graph. We establish
two state spaces: one for instruction keywords,
denoted as KW = {kwy, kwa, ..., kw, }, and an-
other for communication channels, represented by
C ={e1,c2,...,cm }. To calculate the transitional
probabilities among different types of instructions,
the transitional probability p; ; from one instruc-
tion kw; to another instruction kw; is calculated by
dividing the count of transitions from kw; to kw;
by the total count of transitions from kw; to all
possible instructions on a communication channel
C. Thus, each instruction scenario is defined as a
combination of a communication channel keyword
and a sequence of instruction keywords (/W) that
have occurred on that channel (C').

Subsequently, we organize the keywords and
their corresponding transitional probabilities into
matrices P = {p1,p2, ...pm}, Which are of size
(n 4 2,m) to accommodate an initial state and an
end state to K'TW. Equation 1 elucidates that the
summation of each row’s transitional probabilities
for KW always equals 1, where 7 and j signifies
rows and columns respectively, and p; ; denotes
the transitional probability from kw; to kw,. Con-
sequently, we derive directed graphs for KW, de-

91

noted as 3 = {91, 92, .--gm }, incorporating the
transitional matrices P. The graph can be symbol-
ized as G = (V,E,W), where E = {kw;, kw; €
V} and W = {wm |pi7j, wjj €]R}

N N
> pij =Y Plkwpir = jlkw, =i) =1 (1)

j=1 =1

Instruction Generation. We employ the trans-
former neural network architecture (Vaswani et al.,
2017) for the generation, including both decoder-
only and Seq2Seq architectures to explore and com-
pare methods. Our goal is to generate instruc-
tions for a given instruction scenario by predict-
ing the next token in the sequence based on the
context of the preceding tokens. Consequently,
each training instance is designed with a set of
domain-specific vocabulary V, an instruction sce-
nario ¢ = {x1, x2, ..., Ty } where x; € V, and a se-
quence of instructions S = {y1,y2, ..., yn } Where
y; € V. In summary, Equation 2 elucidates how
the model factorizes the probability of vocabulary
across instructions via the chain rule (Biswas et al.,
2022) and subsequently generates the current in-
struction y; given ¢ and all previous instructions

Y1:i—1-

n

p(Slg) =TT P (wilyr:i-1,9)

i=1

2

To systematically generate consecutive and cor-
related instructions given an instruction scenario,
we design two data templates, as illustrated in Fig-
ure 2. These templates compose the input context
differently, aiding in the coherent generation of
instructional content.

* Generating the entire sequence of instructions
at once. We utilize natural language features
for text generation, including the use of spe-
cial tokens embedded in text generation, in-
corporating contextual vocabulary to augment
contextual awareness among generated tokens,
and leveraging punctuation to discern lexical
boundaries. This enables us to predict the
entire sequence of instructions at a specific
timestamp, considering the context of the en-
tire instruction scenario. Further details can
be found in the first example depicted in Fig-
ure 2.

* Generating a single instruction with context.
To generate instructions one at a time, we

Prompt Generated Text
Format <|CHANNELZ |> EMULATING AN AVIATION DIALOGUE OVER THE THE EXPECTED QUTPUT OF INSTRUCTIONS ARE : [DESCEND TO
Setting COMMUNICATION CHANNEL, GENERATE A SET OF AVIATION TWO THOUSAND FIVE HUNDRED FEET ', "CONTINUE PRESENT
A INSTRUCTIONS ACCORDING TO THE FOLLOWING HEADING ', 'SINGAPORE ARRIVAL RUNWAY ZERO TWQ LEFT TWQO
SEQUENCE:[<|LEVEL|>, <|HEAD_TURN| >, <|APP_TAKE_C|=, SEVEN TRACK MILES FROM TOUCHDOWN', 'REDUCE SPEED TO
<|SPEED|>, <|FREQ_C|>] OME EIGHT ZERO KNOTS', 'CONTACT SINGAPORE TOWER ONE ONE
EIGHT DECIMAL SIX]
Format <|CHANNEL2 | ><| LEVEL | ><|APP_TAKE_C|><|HEAD_TURN | > TURN RIGHT HEADING TO ONE ONE ZERO
Setting <|SPEED |><|FREQ_C|><CONTEXT>DESCEND TQO TWO THOUSAND
B FIVE HUNDRED FEET<CONTEXT>SINGAPORE ARRIVAL RUNWAY
ZERO TWO LEFT TWO SEVEN TRACK MILES FROM TOUCHDOWN
[INST]IN THE CONTEXT OF COMMUNICATING OVER AVIATION CLIMB TO TWO THOUSAND FIVE HUNDRED FEET
CHANNEL <|CHANNEL1 | >, GENERATE THE NEXT INSTRUCTION
BASED ON A PROVIDED SET OF AVIATICN COMMANDS
REPRESENTED AS KEYWORDS[<|HEAD_TURN | >,< | LEVEL|>],
CONSIDERING THE ISSUED INSTRUCTIONS [TURN LEFT HEADING
THREE ONE FIVE][/INST]
Special Tokens: e.g. <|LEVEL | =, <|HEAD_TURN | >, <|APP_TAKE_C| = <|5PEED|= <|FREQ.C|=; The format of special tokens con vary dependent on o model's tokenization..

Conversational Context: Attaching the previous issued instructions is used to improve contextua! awareness for the issuance of the next subsequent instruction.

Natural Language Features: It involves increasing contextual awareness by expanding vocabulary space, applying punctuation for the generation boundaries, and utilizing readable

sentence structures,

Figure 2: Prompt and generated instructions under two distinct experimental settings. Format A: Generation of all
instructions with a specified instruction scenario. Format B: Sequential generation, producing one instruction at
each timestamp with the inclusion of previously issued instructions.

append previously issued instructions as dy-
namic context to the instruction scenario. It
involves feeding the model the instructions al-
ready generated, allowing it to build upon its
understanding of the scenario as it progresses.
As demonstrated in the second example of Fig-
ure 2, this approach facilitates the sequential
generation of each instruction with additional
context.

Finetuning. Similar to predicting the next se-
quence of tokens based on previous tokens as input
(Radford et al., 2019), our objective is to minimize
the language modeling loss through fine-tuning
the domain-specific dataset . This fine-tuning
process is devised to minimize the negative log-
likelihood L with parameters 6, as illustrated in
Equation 3.

|E|

L(E)=- ZZOQ po (Yily1 - i-1,9)
=1

3)

We adopt LoRA (Hu et al., 2021) for parameter
fine-tuning within finite GPU resources. LoRA pre-
serves the LLM parameters while introducing train-
able rank-decomposition matrices into each layer.
In Equation 4, A and B represent the decomposed
matrices, where B has dimensions B C R%*" and
A has dimensions A C R"**_ with the number of
rank denoted by r (where 1 < r < 4), and n refers
to the model’s dimension of its dense layer. The
objective is to customize an LLM for a specific task

92

by updating its parameters using trainable matrices
with dimensions n X r +r X n, without altering the
original LLM parameters, which are of size n x n.

h=W,+ AW, = Wox + BAx 4
Readback Error Detection. This component takes
in a pair of instruction texts from different speakers
to indicate whether an error is detected in the pilot’s
readback when compared against the Air Traffic
Controller’s (ATCo) instruction. The definition of
an error may vary depending on the implementa-
tion, such as the outcome of basic string matching,
the semantic distance between two strings, or the
matching of words only within the essential seman-
tic attributes of a specific type of instruction, akin
to the approach by Helmke et al. (2022). For the
sake of simplicity in this experiment, we adopt the
string-matching approach.

4 Experiments

The objective of this experiment is to objective
the potential of generating correlated aviation in-
structions exclusively with the proposed instruction
scenario and natural language input. For instruc-
tion generation, we finetune pre-trained language
models using domain-specific communication data,
including GPT-2 (Radford et al., 2019), BART-base
(Lewis et al., 2020), and Llama2-7b (Touvron et al.,
2023). Due to lack of aviation metadata, we assume

Table 1: Data distribution. “conv.”’: conversation; “in-
str.”’: instruction.

that training the models to reconstruct original avia-
tion communication would enable them to generate
meaningful communication context and content.
Additionally, several in-house developed tools and
components are employed to support the experi-
ments and the eventual integration at the business
level. However, their performance is not reported
in this experiment. Refer to Table 2 for references
to these complementary components contributing
to the final solution.

4.1 Dataset and Settings

The data is transcribed from live aviation commu-
nications across seven communication channels
at a certain airport, consisting of approximately
three months of audio transcriptions involving a
total of 500 different aircraft. Table 1 lists the
distribution of the original data per communica-
tion channel. Each conversation within the dataset
represents an instruction scenario, comprising spo-
ken utterances exchanged between one Air Traffic
Controller (ATCo) and one pilot at specific time
intervals. Subsequently, an in-house module for
instruction extraction is employed to process these
conversations, by which individual sequences of
ATCos’ instructions are extracted and associated
with keywords for categorization. Each instruc-
tion sequence serves as the foundation for devel-
oping both the graphs of application input and the
instructions’ generation process. As a result, we
eventually obtain a training set consisting of 14,433
instances, a development set comprising 2,548 in-
stances, and a domain-specific test set containing
10 annotated conversations.

We instantiate GPT2, BART-base, and LLama2-
7B models from HuggingFace' and conduct these
experiments independently, including the instan-
tiation of their respective tokenizers. For adding

"https://huggingface.co/

93

No. of Avg. Avg. In-house module Function
Channel e no. of tokens | no. of instr. Instruction Extract instructions from an
conversations . o -
per conv. per conv. Extraction aviation dialogue.

a 761 43 5 Read-back Error Detect and yield errors in the
b 1,553 38 5 Detection read-back of and instruction.
c 1,179 69 7 Semantic-slot Tag aviation instruction into
d 3,185 40 4 Filling semantic slots.
e 1,068 38 4 Front-end Fetch user input and system
f 5,763 41 4 Application response; User interaction.
g 683 55 5
h 2,789 35 3 Table 2: In-house components for training agent devel-

opment.

domain-specific vocabulary, we include keywords
representing instruction categories and communi-
cation channels as special tokens. Additionally,
in fine-tuning LLama2-7B, we utilize an existing
PEFT implementation of LoRa 2 with a rank-size
of 4 and the task type of CASUAL_LM. Further-
more, we utilize an existing quantization package,
bitsandbytes?, to load the model in 4-bit mode for
memory efficiency, enabling completion of experi-
ments within three GTX3090 GPUs.

In this experiment, we utilize a proprietary test
set derived from domain-specific data, expertly
annotated to assess the quality of the generated
instructions. The test set comprises 221 instruc-
tions across 10 conversations, exhibiting an above-
average volume of instructions. To evaluate the con-
tent overlap between the generated instructions and
the provided references, we conduct an automated
evaluation using BLEU-4 and ROUGE-L metrics.
In essence, the BLEU-4 score serves to measure
the precision of the generated instructions in com-
parison to the reference. A higher BLEU-4 score
signifies a substantial N-gram overlap between the
generated and reference instructions. Similarly, the
ROUGE-L metric is adopted to evaluate the re-
call of the generated content against the reference.
ROUGE-L focuses on the ability to generate the
longest sub-sequence of tokens compared to the
references, with a higher ROUGE-L score indicat-
ing a more comprehensive coverage of the intended
meaning.

4.2 Main Results

As shown in Table 3, the results for instruction
generation are presented for two experimental set-
tings: generating all instructions (Setting A) and
generating one instruction at a time (Setting B).
In the results for Setting A, Llama2-7b achieves

Zhttps://huggingface.co/docs/peft/en/package_
reference/lora
Shttps://huggingface.co/docs/bitsandbytes/

https://huggingface.co/
https://huggingface.co/docs/peft/en/package_reference/lora
https://huggingface.co/docs/peft/en/package_reference/lora
https://huggingface.co/docs/bitsandbytes/

Setting A | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | ROUGE-L
GPT2 0.512 0.296 0.215 0.180 0.471
BART-base 0.184 0.058 0.030 0.021 0.208
Llama2-7b 0.650 0.456 0.375 0.320 0.639

Setting B BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | ROUGE-L
GPT2 0.289 0.157 0.109 0.089 0.490
BART-base 0.445 0.284 0.207 0.173 0.446
Llama2-7b 0.644 0.509 0.427 0.372 0.582

Table 3: Performance of instruction generation under Settings A and B on test set.

the highest BLEU-4 and ROUGE-L scores among
the various models, followed closely by GPT2 and
BART-base. It indicates that Llama2-7b not only
captures the meaning of the reference instructions
but also produces a substantial portion of content
that closely aligns with the reference instructions.
While GPT2 demonstrates a closely ROUGE-L
score of 0.471 compared to Llama2-7b, it exhibits a
relatively lower BLEU-4 score than Llama2-7b. It
implies that the GPT2 model is relatively effective
in capturing the meaning (content) of the references
during generation but lacks a strong capability to
precisely replicate the exact wording or sequence
of words found in the reference instructions. Such
phenomenon may be attributed to the scope of the
models and the amount of natural language data
used in pre-training.

In the results for Setting B, Llama2-7b still gains
the highest BLEU-4 and ROUGE-L scores among
all the models. Notably, the ROUGE-L score indi-
cates minimal variation among all models in terms
of their ability to convey the meaning of the ref-
erence text, highlighting the effectiveness of in-
corporating conversational context into the mod-
els’ input for generating one instruction at a time.
Apart from the top performer, Llama2-7b, in this
setting, BART-base demonstrates the ability to gen-
erate a relatively higher amount of overlapping con-
tent with the references compared to GPT2, with
BLEU-4 scores of 0.173 and 0.089 respectively.
This phenomenon may be attributed to the mod-
els’ sensitivity to contextual information input and
controllable factors during pre-training.

4.3 Numeric Constraints in Instruction
Generation

This study is to evaluate whether the generated in-
structions can offer numeric values that align with
aviation constraints and remain contextually rele-
vant, even in the absence of metadata. To examine
the boundaries and numeric constraints for specific
instruction categories, we perform a post-analysis

94

UNIT
CHANNEL FL | FEET | KNOTS | QNH | HEAD | FREQ
a 0.89 | 0.94 0.75 1.00 | 0.68 1.00
b 0.89 | 1.00 1.00 1.00 | 0.89 1.00
c N.A | 091 1.00 N.A 0.90 0.80
d NA | NA N.A N.A N.A 0.72
e 0.62 | N.A 1.00 N.A 0.75 1.00
f 096 | N.A 1.00 N.A 0.84 0.94
g 1.00 | N.A N.A N.A 0.7 1.00
h 0.80 | N.A N.A N.A 0.86 1.00

Table 4: Accuracy for numeric value generation. N.A:
no samples of the specified type in this channel.

on the dev set. Utilizing an in-house tool, we an-
notate semantic slots to each token in a given in-
struction, similarly to Helmke et al. (2022). We
specifically focus on instructions related to Head-
ing Change, Altitude Change, Frequency Change,
Speed Change, and Frequency Change. These in-
struction types necessitate precise numeric values
for aircraft manipulation and are crucial for safety.
Numeric tokens are then converted to digits, and
potential outliers are removed by trimming values
falling between the 10th and 90th percentiles of
the original distribution. Such outliers may arise
from transcription or readback errors, as exempli-
fied by instances like DESCEND TO NINE THOU-
SAND THOUSAND FEET, which deviates from
aviation context and poses challenges for commu-
nication training. It is important to note that these
numeric constraints are channel-specific. For each
communication, we create 150 customized avia-
tion scenarios with the instruction graph, utilizing
a weighted random walk algorithm that considers
transition probabilities among instructions within
each communication channel. Finally, we format
these instruction scenarios according to Setting A
and feed them into Llama2-7b for evaluation.

The results presented in Table 4 reveal that the
accuracy of generated numeric values is signifi-
cantly higher for instructions designated to specific
aviation channels compared to those intended for
more widespread issuance with diverse constraints

based on airspace. For instance, the instruction
ONH, used for altimeter settings, demands only a
limited set of values, enabling the model to learn
and generate them accurately. In contrast, head-
ing instructions are commonly issued across all
communication channels, each presenting unique
constraints for this type of instruction. The model
requires further refinement to better identify these
constraints and develop an effective strategy for
generation. Enhancing this adaptability is crucial
for fostering a more realistic user experience when
training phraseology with the bot agent.

5 Conclusion

Accurate and clear communication plays a piv-
otal role in ensuring aviation safety and opera-
tional efficiency. Nevertheless, pilots with diverse
backgrounds frequently encounter difficulties in
adhering to strict phraseology requirements, po-
tentially hindering operational effectiveness. To
tackle this challenge, we present an NLP-focused
training agent that leverages natural language fea-
tures and existing communication data to generate
personalized instructions tailored to specific input
scenarios. Our experimental results demonstrate
the significant efficacy of the proposed method.
Consequently, this approach eliminates the need
for costly human-in-the-loop simulations and ex-
tensive annotated data entries, paving the way for
a cost-effective and accessible future in aviation
training.

Acknowledgements

This work is supported by the National Research
Foundation, Singapore, and the Civil Aviation Au-
thority of Singapore (CAAS), under the Aviation
Transformation Programme. (Grant No. ATP_IOP
for ATM_I2R_1 and Grant No. ATP_ASRU_I2R).
Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the
authors and do not reflect the views of the Civil
Aviation Authority of Singapore.

References

Biplob Biswas, Renhao Cui, and Rajiv Ramnath. 2022.
Retrieval based response letter generation for a cus-
tomer care setting. NAACL-HLT 2022 Industry Track,
Association for Computational Linguistics, pages 168
- 175.

Dan Brudnicki, Bob Ethier, and Kerri Chastain. 2005.
Application of advanced technologies for training the

95

next generation of air traffic controllers. The MITRE
Corporation.

Kim Cardos, Paul Falzarano, and Sherwin Han. 1998.
Pilot-controller communication errors: An analysis
of aviation safety reporting system (asrs) reports. U.S.
Department of Transportation Research and Special
Programs Administration.

Haryani Hamzah. 2018. Miscommunication in pilot-
controller interaction. ResearchGate.

Haryani Hamzah, Pramela Krish, and Afendi Hamat.
2023. Aviation communication challenges and lan-
guage training development: Perspectives from pilots
and air traffic controllers. Training, Language and
Culture, 7.

Hartmut Helmke, Matthias Kleinert, Shruthi Shetty,
Karel Vesely, Karel Ondfej, Pavel Smrz, ..., and
Christian Windisch. 2021. Readback error detec-
tion by automatic speech recognition to increase
atm safety. Fourteenth USA/Europe Air Traffic
Management Research and Development Seminar
(ATM2021).

Hartmut Helmke, Michael Slotty, Michael Poiger,
Damian Ferrer Herrer, Oliver Ohneiser, Nathan Vink,
..., and Mario Boyero Pérez. 2022. Ontology for
transcription of atc speech commands of sesar 2020
solution pj.16-04. Conference: 2018 IEEE/AIAA
37th Digital Avionics Systems Conference (DASC).

Edward Hu, Yelong Shen, Phillip Wallis Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv:2106.09685.

ICAO. 2020. Doc 4444, Procedures for Air Navigation
Services, Air Traffic Management. ICAO, Montréal,
Canada, 2016.

Craig M. Johnson. 2010. Human-in-the-loop (hitl) simu-
lation and analysis of optimized profile descent (opd)
operations at atlanta. The MITRE Corporation.

Igor Kabashkin, Boriss Misnevs, and Olga Zervina.
2023. Artificial intelligence in aviation: New pro-
fessionals for new technologies. MDPI applied sci-
ences.

R. Kashyap. 2019. Artificial intelligence systems in
aviation. in cases on modern computer systems in
aviation. IGI Global: Hershey, PA, USA.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Denois-
ing sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension.
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, 2020 Associa-
tion for Computational Linguistics.

https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/322234.322243

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Gerasimos Skaltsas, Jasenka Rakas, Matthew G., and
Karlaftis. 2013. An analysis of air traffic controller-
pilot miscommunication in the nextgen environment.
Journal of Air Transport Management.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, ..., and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Meta Al.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin.
2017. Attention is all you need. NIPS.

Kevin W. Williams, Bonny Christopher, Gena Drechsler,
Shawn Pruchnicki, Jason A. Rogers, ..., and Samuel
Cotton. 2014. Aviation human-in-the-loop simula-
tion studies: Experimental planning, design and data
management. Federal Aviation Administration.

Xingjiao Wu, Luwei Xiao, and Sun Yixuan. 2021. A
survey of human-in-the-loop for machine learning.
ResearchGate.

Hui-Hua Yang, Yu-Hern Chang, and Yi-Hui Chou. 2023.
Subjective measures of communication errors be-
tween pilots and air traffic controllers. Journal of
Air Transport Management.

Juan Zuluaga-Gomez, Amrutha Prasad, Tuliia Nigmat-
ulina, Petr Motlicek, and Matthias Kleinert. 2023. A
virtual simulation-pilot agent for training of air traffic
controllers. arXiv:2304.07842v1.

96

Visual Grounding for User Interfaces

Yijun Qian” Yujie Lu* Alexander G. Hauptmann® Oriana Riva®*

T Carnegie Mellon University
* University of California, Santa Barbara
¥ Google Research

Abstract

Enabling autonomous language agents to drive
application user interfaces (Uls) as humans do
can significantly expand the capability of to-
day’s API-based agents. Essential to this vi-
sion is the ability of agents to ground natu-
ral language commands to on-screen Ul ele-
ments. Prior Ul grounding models work by
relaying on developer-provided UI metadata
(UI trees, such as web DOM, and accessibility
labels) to detect on-screen elements. However,
such metadata is often unavailable or incom-
plete. Object detection techniques applied to
UI screens remove this dependency, by infer-
ring location and types of UI elements directly
from the UI’s visual appearance. The extracted
semantics, however, are too limited to directly
enable grounding. We overcome the limitations
of both approaches by introducing the task of vi-
sual Ul grounding, which unifies detection and
grounding. A model takes as input a UI screen-
shot and a free-form language expression, and
must identify the referenced Ul element. We
propose a solution to this problem, LVG, which
learns UI element detection and grounding us-
ing a new technique called layout-guided con-
trastive learning, where the semantics of indi-
vidual UI objects are learned also from their
visual organization. Due to the scarcity of Ul
datasets, LVG integrates synthetic data in its
training using multi-context learning. LVG out-
performs baselines pre-trained on much larger
datasets by over 4.9 points in top-1 accuracy,
thus demonstrating its effectiveness.

1 Introduction

Autonomous language agents that are capable of
interacting with real-world applications are emerg-
ing (Li et al., 2020; Liu et al., 2018; Kim et al.,
2023; Rawles et al., 2023; Zheng et al., 2024). Pro-
vided with a task described in natural language,
these agents drive application user interfaces as hu-
mans do by clicking, typing, scrolling, etc. The

“Work done while at Microsoft Research.

97

myriad of tasks such Ul agents could accomplish
is potentially unlimited, much beyond what tradi-
tional API-based agents can do. In this paper, we
focus on a fundamental problem UI agents must
solve: grounding natural language commands to
on-screen elements, i.e., mapping commands such
as "enable auto-notification" or "open the second
item in the list" to the correct UI action and on-
screen element.

Prior work (Bai et al., 2021; Li and Li, 2023)
achieves Ul grounding by assuming the location
bounds and types of Ul elements present in a screen
are known beforehand. Hence, they define ground-
ing as the problem of ranking a set of UI elements
based on the given natural language command. The
set of Ul elements is computed automatically using
developer-provided UI metadata, consisting of Ul
trees (e.g., web DOM tree or Android View Hierar-
chy) and accessibility annotations. The issue with
this approach is that such UI metadata is often not
accessible for security or privacy reasons (XDA,
2021). Developer-provided metadata can also be
noisy, corrupted with missing object descriptions or
misaligned structure information (Li and Li, 2023).
Finally, as others pointed out (Chen et al., 2020a),
accessibility labels are generally not provided for
all UI elements (see Appendix A.1 for further de-
tails). These constraints make these approaches
hard to deploy and limit their performance.

Another way of approaching this problem with-
out relying on Ul metadata is to train object de-
tection models for Ul screens (Chen et al., 2020b;
Zhang et al., 2021). This line of work, generally re-
ferred to as screen understanding or screen parsing,
localizes Ul elements in a screen solely from its
visual appearance. Elements are labeled with tech-
nical terms such as “Button”, “Text-Input”, “Icon”,
etc. As these labels carry limited semantic infor-
mation, they are not sufficient to directly support
grounding of natural language commands. This
means that a second model, possibly an LLM, must

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 97-107
June 16-21, 2024 ©2024 Association for Computational Linguistics

Ul grounding Screen understanding Visual Ul grounding
o —
—_— =1 \
1
AN A\
1] 13]
Detection
Groundin Detection)
[el] [] [& Grounding]
() i)
inaga(o.s, .36,) 1o delivery = | 7op delivery
label(0.09,0.39,...) button" — | button”
NL command NL command
Ul metadata

screen screen

Figure 1: Visual Ul grounding unifies the task of Ul
grounding that relies on the availability of UI metadata
and screen understanding which localizes elements in a
screen and classifies them into pre-defined types (but-
ton, text-label, text-input, icon, etc.). In this new task, a
UI element referenced by a natural language command
must be localized in the given UI screen, by relying
solely on the screen’s visual appearance (without assum-
ing UI metadata).

be used to map natural language commands to the
detected elements (Yan et al., 2023a). The adop-
tion of a 2-step process causes information loss and
increases maintenance and deployment costs.

We address the limitations of both worlds by uni-
fying detection and grounding into the new task
of visual Ul grounding, illustrated in Fig. 1. The
model takes as input a UI screenshot (without meta-
data) and a free-form language expression, and
must predict the bounding box of the referenced
element. Hence, unlike previously-proposed meth-
ods where bounding boxes of candidate UI objects
are given as input or pre-computed by a separate
model, here a single model must perform both ele-
ment detection and action grounding.

In the search for a solution to the problem of vi-
sual UI grounding, we first consider recent work on
open-vocabulary object detection (Li et al., 2022;
Yuan et al., 2021; Gu et al., 2022). These mod-
els are trained end-to-end to map natural language
expressions to objects in an image. While they rep-
resent a perfect fit for our problem, we find that,
despite their large training datasets, they do not
perform well on Ul screens (see baseline compar-
isons in §5). Our explanation is that these mod-
els are trained on real-world scene datasets (Lin
et al., 2014; Gupta et al., 2019) where objects of
the same appearance (color, shape, size) share sim-

98

ilar meanings, whereas UI objects are subject to
application and context sensitivity. In other words,
in UI screens, objects that may look similar have
different meanings depending on the application
and surrounding Ul elements. For example, con-
sider a heart icon which in Facebook loves a post,
but in Etsy adds a product to the favorites; if the
same icon appears next to a label “click for more”
it assumes yet another meaning.

To address the problem of application and
context-sensitivity of UI objects, we propose LVG
(Layout-guided Visual Grounding). We observe
that while objects in real-world scenes do not usu-
ally follow a regular pattern in their arrangement,
Ul elements are organized through layouts, which
can be key to understanding their meaning. For ex-
ample the function of an icon or an element in a grid
can be better understood by relating it to a nearby
text label or to another element spatially aligned to
it. Hence, we introduce layout-guided contrastive
learning where the model learns to classify ele-
ments into groups based on their visual containers
(headers, lists, tables, etc.). This enforces the tar-
get element’s features to be closer to those of its
sibling elements and far from those of elements in
other containers, thus enriching their semantic rep-
resentations. Application-derived features are then
combined with element-specific features. Further,
to cope with the lack of UI grounding datasets, we
synthetically generate natural language referring
expressions paired with original Ul screens. We
successfully transfer knowledge learned from syn-
thetic to real-user expressions using multi-context
learning, i.e., forcing the model to generate similar
features when synthetic and natural expressions are
referring to the same element.

In summary, we make the following contribu-
tions: (i) we define the task of Visual UI Ground-
ing, (ii) we propose a solution, LVG, and introduce
layout-based contrastive learning, and (iii) we gen-
erate a synthetic dataset of diversified language
queries and use it effectively through multi-context
learning. Overall, LVG surpasses strong baselines
by over 4.9 points on top-1 accuracy.

2 Related work

Ul grounding Ul grounding models detect Ul el-
ements referenced by natural language commands
in a screen. Both supervised (Pasupat et al., 2018;
Li et al., 2020; Liu et al., 2018; Gur et al., 2019)
and unsupervised (He et al., 2021; Bai et al., 2021;

Banerjee et al., 2022) methods rely on deriving the
bounding boxes and types of the candidate Ul el-
ements (or regions of interest (Li and Li, 2023))
from UI trees (e.g., Android View Hierarchy or
web HTML) and often make use of accessibil-
ity labels to enhance the UI element representa-
tion. This is the case also in recent LLM-based
approaches (Wang et al., 2022a; Zheng et al., 2024).
The issue with these methods is that Ul trees and
accessibility labels are often inaccessible (e.g., an
Android app cannot access the Ul tree of another
app) or unavailable (accessibility labels lack both
in websites and mobile apps (Chen et al., 2020a)).
While web HTML is accessible, raw HTML is
large and noisy, often not fitting the input win-
dow of LLMs (Zheng et al., 2024), which leads
to heuristics being used to reduce its size. For all
these reasons, these solution are hard to deploy and
scale. LVG performs grounding without depending
on Ul metadata.

Screen understanding Screen understanding
(also called screen parsing) models avoid the depen-
dency on Ul metadata, by inferring bounding boxes
and types of on-screen elements solely from a Ul
screenshot (Chen et al., 2020b; Zhang et al., 2021;
Wau et al., 2021). The inferred class labels ("but-
ton", "radio-button", "slider", "text-input", etc.),
however, are semantically very limited to directly
enable grounding of open-vocabulary referring ex-
pressions. For this reason these methods must be
paired with a second model, an LLM or VLM,
for language grounding. Rawles et al. (2023) use
screen understanding techniques based on a combi-
nation of OCR and IconNet (Sunkara et al., 2022)
to detect elements on the screen and produce a tex-
tual representation of the UL Then, they train a
grounding model using behavioural cloning or use
LLMs in a zero/few-shot manner to identify the
referenced element. Another 2-step approach (Yan
et al., 2023a) which involves GPT-4V uses the same
screen understanding techniques to identify bound-
ing boxes of relevant elements, which are then rep-
resented by visually adding numeric tags to the Ul
image (Yang et al., 2023). Finally, Pix2Act (Shaw
et al., 2023) adopts Pix2Struct (Lee et al., 2022)
(consisting of an image encoder and text decoder)
to first transform UI screenshots of MiniWob (Shi
et al., 2017) synthetic webpages into simplified
HTML and then apply behavioural cloning, rein-
forcement learning or Monte Carlo Tree Search.
The main downside of these approaches is that the

99

preliminary step of converting Ul screenshots into
textual representations or annotating Ul images
with numeric tags causes information loss. Some
elements may be missed, and especially text-only
representations are not well suited for visual ele-
ments such as icons and symbols. The two-step
approach also increases the deployment costs from
one model to two. In our approach, one model is
trained end to end, thus lowering the deployment
costs and avoiding any lossy pre-processing.

Open-vocabulary object detection Recent work
in the computer vision community tackles the prob-
lem of open-vocabulary object detection (Joseph
et al., 2021; Li et al., 2022; Zhong et al., 2022;
Gu et al., 2022; Kaul et al., 2023), where a model
is tasked to detect classes of objects that have not
been introduced to it before. RegionCLIP (Zhong
et al.,, 2022) learns a regional visual-semantic
space that covers rich object concepts such that
it can be used for open-vocabulary object detec-
tion. GLIP (Li et al., 2022) unifies grounding and
detection tasks by reformulating object detection
as phrase grounding, thus being able to learn from
both detection and grounding datasets. While re-
lated to our goal, these methods are designed for
images and objects that represent real-world scenes.
When fed with Ul datasets their performance is
inferior because Ul screens exhibit some unique
features (see results in §5 and Appendix A.3). To
address Ul-specific challenges we introduce layout-
guided contrastive learning and leverage global-
local feature aggregation.

3 Method

A key contribution of our work is to address
the problem of application and context sensitivity
which characterizes Ul screens. Application sen-
sitivity occurs with Ul elements that despite their
similar appearance have different functionality in
different applications (e.g., a “hand” symbol in a
video call application or in a drawing application
have completely different functions). Context sen-
sitivity occurs with Ul elements that change their
functionality depending on "context", i.e., neigh-
boring Ul elements (e.g., a list item must be consid-
ered in the context of the other items appearing in
the same list or a text-label can change the meaning
of a symbol located next to it).

Next, we describe how LVG addresses these
challenges. Fig. 2 shows the architecture of LVG.
We use SWIN Transformer (Liu et al., 2021) as the

Contrastive

Layout-guided contrastive learning

loss

Figure 2: LVG architecture.

click on the bible icon, . .
symbol next to notebook, Multi-context learning
B —— Fl F2 Em
, select settings N, Text F, 't ¢ ¢
£ BERT }Q features | | > MLP) click on|symbol
tap on the first icon of the | nextto select
the list, symbol below bible 'l';Otek' settings
bible icon, Multimodal o0
select the Synthetic fusion Global-local feature aggregation . - SO
last icon in the list EXPressions weFe FreFy Fre Ft
SWIN N, £, Region
= SREEll A DyHead gion F 24 p1 F2e F2 F2e pm
Transformer visual features features o F} FheF? 2o F7
, i
LM Sy oFl PR FhoFr
E Multimodal
alignment

Fhe F? FReFm

Alignment loss

l=———> lLocalization loss

visual backbone N, to extract visual features F),
from UI screens, and BERT (Devlin et al., 2019)
as text backbone N, to extract textual features F}
from natural language commands.

Application sensitivity We fuse visual and text
features using a multimodal fusion module (Li
et al., 2022). Specifically, we use multiple head
attention structures to fuse features from the two
modalities. Inspired by the design of the residual
block of ResNet (He et al., 2015), to account for
application-level information in element recogni-
tion, we build a shortcut that concatenates global
features (extracted from the whole Ul screenshot)
with pooled region proposal features generated by
Dynamic Head (Dai et al., 2021). Two task specific
head modules, which are implemented as Multi-
Layer Perceptron (MLP), are designed to perform
the regression of bounding box locations and clas-
sification of element labels based on the features
derived from the pooled region proposals.

We use an attention layer (Attn) to get the fused
region features Fr € R™ from the global fea-
tures Fg € R™P and proposal feature Fp €
R™*? where n is the number of region proposals
and d is the degree of feature space:

Fr = Attn(Fg, Fr)[1 | (1)
Context sensitivity A possible solution to this
problem is to augment the features of each re-
gion proposal with those of spatially-close regions.
We tried different settings such as fusing features
of horizontal regions, fusing features of vertical

regions, and fusing features of both horizontal
and vertical regions. However, none of these ap-
proaches worked effectively because features from
irrelevant regions were often included. In fact, be-
ing two UI elements spatially close does not au-
tomatically imply they have a relationship. For
example, a caption may be related to the image
appearing above or below it, and two text-labels
may or may not have a relationship depending on
whether they are spatially aligned and on whether
they use the same font size and color. Instead, we
observe that we have a reliable source of contextual
information which has been overlooked by prior
work: UI layouts. Layouts enforce how Ul ele-
ments are grouped and organized in visible or invis-
ible containers, such as lists, headers, or navigation
bars, which are in fact critical to help humans un-
derstand and navigate Uls. Layouts not only allow
us to identify nearby UI elements that are relevant
to a target element but also to exclude elements that
despite their spatial closeness are irrelevant.

We leverage Ul trees included in public
datasets (Deka et al., 2017) to teach the model how
to recognize layout structures from visual inputs
only. Atinference time, the model does not actually
take Ul trees as input. Ul trees provide a hierarchi-
cal representation of the UI where each node in the
tree may contain any number of nodes. We process
Ul trees to extract a multi-level tree representation
including leaf nodes (the visible UI elements) and
containers, such as lists, grids and navigation bars
(regardless of whether they are explicitly drawn in
the UI). We compute each leaf node’s bounding box

100

v 002 AOZA S $igws nONOXe e

TravelPirates

3 ® 5004

Mar10, 2017 10:52 AM

Fiights To Madrid, Spain From $362 Round
Trip!

o FLIGHTS
) njestad, Aruba Fr

SavE

Figure 3: Examples of element groupings as predicted
by LVG. The same color represents elements in the same
container. We do not report all detected groupings to
make the visualization more readable. LVG is able to
correctly group together icons, texts and buttons belong-
ing to the same navigation bar as well as date pickers,
icons and sliders with the corresponding text labels.

(based on location bounds provided in the UI tree)
and use the parent container information extracted
from the UI tree to identify its siblings. If a node
has no siblings under its direct parent container,
we recursively traverse the tree until we find one.
Hence, we build a mapping between elements and
containers as M = {Mj, Mo, ..., M,,} € R*¥*c,
where w is the number of containers and c is the
number of elements. Fig. 2 shows some examples
of layout mapping where icons are grouped with
their associated text labels despite the container not
being visible in the Ul screenshot. Additionally,
Fig. 3 demonstrates the layout grouping capabil-
ities learned by LVG through various examples
including header bars, date pickers, and list items.

Then, we introduce layout-guided contrastive
learning. The contrastive loss aims to separate el-
ements into groups, where each group contains a
target element and its siblings. Given the fused
region features F'r and the element-container map-
ping M, we compute the contrastive loss Lcon =
lossxe(scon§ M), where Scon = con(FR)- Ncon
is a Multi-Layer Perceptron that projects region
features to a probability distribution of layout con-
tainers Seon, € R™*¢ and loss,. is a cross-entropy
function.

In addition to contrastive loss, we implement
an alignment loss L, = (08Sgze(Sain; T), where
Sain = ¢(Fr)d(F,)T is the probability distribu-
tion of alignments between region proposals and
referring expressions. Similar to M, T € R™"*™
is a mapping dictionary that records the ground
truth alignments between elements and phrases (¢
represents the normalization function). Finally, we

add a standard localization loss L;,. to optimize
the localization task (Ren et al., 2015).

4 Datasets and data synthesis

For training, we use the UlBert dataset (Bai et al.,
2021),! which contains 16,660 referring expres-
sions associated with a total of 5,682 Android
UI screenshots. We also complement this human-
collected dataset with a synthetic dataset. We ob-
tain Ul screens of original Android apps from the
Rico dataset (Deka et al., 2017) and use the UI
tree information associated with each screenshot
to determine a set of cues from which we heuris-
tically generate referring expressions. Our cues
extend those proposed in RicoSCA (Li et al., 2020)
where every expression consists of an operation (a
verb, such as “tap”) and a target element. We make
various improvements to RicoSCA to increase the
diversity of the generated expressions, and add
layout-based cues. We generate expressions only
for interactable Ul elements (buttons, input fields,
icons, etc.) through the following process.

First, we assemble a collection of operational
phrases such as “click xxx”, “select xxx”, “type
xxx”, “tap xxx”, “go to xxx”. Each phrase con-
sists of a verb and a placeholder xxx. Second, we
establish a set of rules to replace “xxx” placehold-
ers with one or multiple object identifying expres-
sions. These expressions are generated using Ul
tree information. For example, a Ul tree may list
an object of type “button”, with name “Cancel”,
with location bounds x1,y1,X2,y2, and with property
clickable=true. We create rules to produce object
expressions such as “the button with name Cancel”
or “the Cancel button” or simply “Cancel”. In gen-
eral, we identify a target element using its name
(accessibility label, textual content), type (class
name) or location. We generate location-based ob-
ject expressions using the location bounds of the
object and the neighboring objects to obtain object
descriptions such as “at the top of the page” (us-
ing absolute location) or “appearing in the menu
next to the login button™ (using relative location).
Third, we create multiple rules based on the ob-
ject’s properties to determine which operational
phrases can be applied to an object. For example,

At the time this work was done very few UI datasets ex-
isted. The Android in the Wild (AitW) (Rawles et al., 2023)
and Mind2Web (Deng et al., 2023) datasets were released
recently. While focused on UI automation scenarios, they con-
tain high-level task instructions rather than low-level referring

expressions and are therefore not suitable for this study. AitW
also does not contain accessibility trees.

101

the text 2017
Just below set
date

Fri,Feb 17

Figure 4: Examples of generated synthetic expressions.
The expression with a specific color is referring to the
element within the bounding box of the same color.

if the object’s property “clickable” is set to true
and its type is “button’, operational phrases such
as “click xxx” or “tap xxx” can be applied to it.
Finally, for each object we assemble multiple refer-
ring expressions. The selected operational phrases
are instantiated using one or multiple object expres-
sions. For instance, the phrase “tap xxx” selected
for the “Cancel” element described above is instan-
tiated as “tap cancel” or “tap the cancel button” or
“tap the cancel button next to login”. Fig. 4 shows
some examples of generated synthetic expressions.

Overall, we generated 22,617 synthetic expres-
sions for 21,282 Android UI screens. We found that
simply mixing UlIBert’s real-user expressions with
synthetic ones did not bring noticeable improve-
ments due to the domain gap (synthetic expressions
can be longer and the ratio of referring queries us-
ing relative location is higher). We adopt multi-
context learning which in robotics has been shown
to successfully combine together imitation learn-
ing datasets of different sizes and nature (Lynch
and Sermanet, 2021). We find it is important to
generate for each UlBert expression a synthetic
counterpart, for the same referred element. This
forces the model to map both types of expressions
to the same space, and to ultimately leverage the
larger size of synthetic data.

5 Evaluation

We train and evaluate on the UlBert dataset (Bai
et al., 2021) using the official splits. We expand the
UlBert train set with 22,617 synthetic expressions.
As evaluation metric we use acc@k with IoU > 0.5,
which measures the fraction of correctly identified
UI elements in the top & ranked results.

We compare against 3 baselines: GLIP (Li
et al., 2022), OFA (Wang et al., 2022b), and
UNINEXT (Yan et al., 2023b). (UNINEXT and
OFA currently rank first and third, respectively, in
the RefCOCO leaderboard (ref, 2023).) All models
are trained on UlBert with or without synthetic data

Table 1: LVG performance compared to baselines when
trained on UlBert and synthetic data.

Backbone = Method Val Acc Test Acc
@1 @5 @1 @5
GLIP GLIP 38.42 5498 31.27 52.33
GLIP_synt 40.27 5520 33.98 54.85
LVG 38.85 62.05 33.74 55.92
LVG_synt 42.60 64.68 35.19 58.74
OFA OFA 37.79 5571 37.88 56.88
OFA_synt 41.80 62.19 40.27 59.26
LVG 43778 6348 4299 63.51
LVG_synt 45.67 64.40 45.19 65.25
UNINEXT UNINEXT 36.11 54.82 32.19 51.93
UNINEXT _synt 36.72 55.30 3248 51.46
LVG 38.19 57.21 34.03 53.28
LVG_synt 38.22 58.20 35.67 53.88

Table 2: Ablation analysis. Models trained on UlBert.

Method Val Acc Test Acc
@1 @5 @1 @5
GLIP 38.42 5498 31.27 5233
GLIP + LContast 40.33 62.84 33.80 55.09
GLIP + Glob-Loc 39.06 60.93 32.03 58.93
LVG 38.85 62.05 33.74 5592

(as specified). For all experimental settings see the
Appendix (A.2).

Main results As shown in Table 1, LVG con-
sistently outperforms the tree baselines on both
validation and test sets, demonstrating the efficacy
of layout-guided contrastive learning. The best
results are obtained with the OFA backbone and
synthetic data, where LVG_synt’s test acc@1 is
45.2% (acc@35 is 65.3%); this is 4.92 (5.99) per-
centage points higher than OFA_synt. As the error
analysis in §A.3 shows, OFA fails because it does
not manage to leverage the spatial context of the
target object. We also observe how all tested mod-
els benefit from synthetic data, thus demonstrating
our multi-context learning approach is successful at
transferring knowledge from the synthetic domain
to the natural descriptions.

Ablation analysis For ablation purposes we use
the GLIP backbone because it is less compute in-
tensive. We add layout-guided contrastive learning
(LContrast) and global-local feature aggregation
(Glob-Loc) to GLIP, and train on UlBert. As Ta-
ble 2 shows, LContrast surpasses the baseline by
2.53 points in test acc@1 (2.76 in acc@5) demon-
strating its effectiveness over traditional contrastive
learning for UI tasks. Glob-Loc also surpasses the

102

baseline by 0.76 points in acc@1 (6.6 in acc@5).
The full LVG model does not achieve the best per-
formance on all metrics, possibly due to the small
size of UlIBert, which increases model overfitting
as the number of parameters increases. To better
appreciate LVG’s layout detection capabilities we
provide examples of grouping predictions in Fig. 3

6 Limitations

LVG was evaluated on an Android dataset. We
acknowledge that the dense layouts of desktop Uls
may make the visual UI grounding task more chal-
lenging. Moreover, there are Ul structures such as
tables, charts and specialized grids which are not
included in our datasets and that may bring addi-
tional challenges. Referring expressions can also
vary widely. So far we have focused on relatively-
short referring expressions. Ideally, LVG should
be able to support expressions ranging from very
short, under-specified commands (as those charac-
terizing voice-based scenarios) to long and detailed
instructions (as those found in instruction manuals).
Finally, we acknowledge that the model is trained
and tested on referring expressions that are always
possible. In real world scenarios a user may refer
to a UI element that is not present on the screen.

7 Conclusions

We propose the new task of visual Ul ground-
ing and present our solution to it. Compared to
strong baselines trained on much larger datasets,
LVG’s layout-guided contrastive learning and
multi-context approach for synthetic data demon-
strate great improvements in identifying Ul ele-
ments referenced by NL expressions.

8 Ethical considerations

LVG uses some human-labeled data (UlBert
dataset), but also demonstrates how synthetic re-
ferring expressions can help improve model perfor-
mance and scale to many different types of appli-
cation. We think that investing further in synthetic
data generation can alleviate the risk of training
visual grounding models that work only for certain
types of application or platform.

A possible use case for our techniques are screen
readers for visually-impaired users. Accessibility
labels are often missing or incompletely defined;
LVG can enable visually-impaired users to access
a much wider range of applications. Another po-
tential use case of LVG is task automation. This

use case has tremendous opportunities to advance
human productivity. On the other hand, we ac-
knowledge that it also has societal and safety impli-
cations (e.g., what if an agent fails in the execution
and take irreversible actions?).

References

2023. Referring expression comprehension on Ref-
COCO.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agiiera y Arcas. 2021. UlBert: Learning
generic multimodal representations for UI under-
standing. In Proc. of the 30th International Joint
Conference on Artificial Intelligence, IJCAI 2021,
pages 1705-1712. ijcai.org.

Pratyay Banerjee, Shweti Mahajan, Kushal Arora,
Chitta Baral, and Oriana Riva. 2022. Lexi: Self-
supervised learning of the UI language. In Proc. of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei
Xu, Liming Zhu, Guogqiang Li, and Jinshui Wang.
2020a. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by
Deep Learning. In Proc. of the ACM/IEEE 42nd
International Conference on Software Engineering,
ICSE ’20, pages 322-334.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.
2020b. Object detection for graphical user interface:
Old fashioned or deep learning or a combination? In
Proc. of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2020, pages 1202-1214.

Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. 2021. Dy-
namic head: Unifying object detection heads with
attentions. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7369-7378.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App
Dataset for Building Data-Driven Design Applica-
tions. In Proc. of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST
17, pages 845-854. ACM.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248-255. leee.

103

https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco
https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2Web: Towards a generalist agent for the
web.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186. Association for Computational Linguis-
tics.

Google Research Blog. 2023. A vision-language
approach for foundational UI understanding.
https://ai.googleblog.com/2023/02/a-vision-
language-approach-for.html.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
2022. Open-vocabulary object detection via vision
and language knowledge distillation. In International
Conference on Learning Representations.

Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019.
LVIS: A dataset for large vocabulary instance seg-
mentation. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and
Dilek Hakkani-Tur. 2019. Learning to Navigate the
Web. In 7th International Conference on Learning
Representations (ICLR ’19).

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2015. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770-778.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying
Xu, Lijuan Liu, Nevan Wichers, Gabriel Schubiner,
Ruby B. Lee, and Jindong Chen. 2021. ActionBert:
Leveraging User Actions for Semantic Understand-
ing of User Interfaces. In 35th AAAI Conference on
Artificial Intelligence, AAAI 2021, pages 5931-5938.

K J Joseph, Salman Khan, Fahad Shahbaz Khan, and
Vineeth N Balasubramanian. 2021. Towards open
world object detection. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5830-5840.

Prannay Kaul, Weidi Xie, and Andrew Zisserman. 2023.
Multi-modal classifiers for open-vocabulary object
detection.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu,
Fangyu Liu, Julian Eisenschlos, Urvashi Khandel-
wal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2022. Pix2struct: Screenshot parsing
as pretraining for visual language understanding.

Gang Li and Yang Li. 2023. Spotlight: Mobile Ul
understanding using vision-language models with a
focus. In Proc. of the 11th International Conference
on Learning Representations.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10965—
10975.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile UI action sequences. In Proc. of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 8198-8210. Association for Computa-
tional Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and
Percy Liang. 2018. Reinforcement learning on web
interfaces using workflow-guided exploration. In 6th
International Conference on Learning Representa-
tions (ICLR ’18).

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 10012-10022.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Corey Lynch and Pierre Sermanet. 2021. Language
conditioned imitation learning over unstructured data.
Robotics: Science and Systems.

Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin
Guu, and Percy Liang. 2018. Mapping natural lan-
guage commands to web elements. In Proc. of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4970-4976. Association
for Computational Linguistics.

Chris Rawles, Alice Li, Daniel Rodriguez, Oriana Riva,
and Timothy Lillicrap. 2023. Android in the wild:
A large-scale dataset for android device control. In
NeurlPS 2023 Datasets and Benchmarks Track.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
39:1137-1149.

104

http://arxiv.org/abs/2306.06070
http://arxiv.org/abs/2306.06070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ai.googleblog.com/2023/02/a-vision-language-approach-for.html
https://ai.googleblog.com/2023/02/a-vision-language-approach-for.html
http://arxiv.org/abs/2306.05493
http://arxiv.org/abs/2306.05493
http://arxiv.org/abs/2303.17491
https://doi.org/10.48550/ARXIV.2210.03347
https://doi.org/10.48550/ARXIV.2210.03347
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://www.aclweb.org/anthology/2020.acl-main.729/
https://www.aclweb.org/anthology/2020.acl-main.729/
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be-
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan-
delwal, Kenton Lee, and Kristina Toutanova. 2023.
From pixels to ui actions: Learning to follow instruc-
tions via graphical user interfaces.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of Bits: An
Open-Domain Platform for Web-Based Agents. In
34th International Conference on Machine Learning

(ICML ’17), volume 70, pages 3135-3144.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles
Baechler, Yu-Chung Hsiao, Jindong Chen, Abhanshu
Sharma, and James W. W. Stout. 2022. Towards bet-
ter semantic understanding of mobile interfaces. In
Proc. of the 29th International Conference on Compu-
tational Linguistics, pages 5636—5650. International
Committee on Computational Linguistics.

Bryan Wang, Gang Li, and Yang Li. 2022a. Enabling
conversational interaction with mobile ui using large
language models. Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022b. OFA: unifying
architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In Inter-
national Conference on Machine Learning, ICML
2022, volume 162, pages 23318-23340.

Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P
Bigham. 2021. Screen parsing: Towards reverse en-
gineering of Ul models from screenshots. In Proc. of
the 34th Annual ACM Symposium on User Interface
Software and Technology, UIST ’21, pages 470-483.

XDA. 2021. Google is trying to limit what
apps can use an Accessibility Service (again).
https://www.xda-developers.com/google-trying-
limit-apps-accessibility-service/.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and
Lijuan Wang. 2023a. GPT-4V in Wonderland: Large
multimodal models for zero-shot smartphone GUI
navigation.

Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Zehuan
Yuan, Ping Luo, and Huchuan Lu. 2023b. Universal
instance perception as object discovery and retrieval.
In CVPR.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, et al. 2021. Florence:
A new foundation model for computer vision. arXiv
preprint arXiv:2111.11432.

105

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron
Everitt, and Jeffrey P Bigham. 2021. Screen Recog-
nition: Creating Accessibility Metadata for Mobile
Applications from Pixels. In Proc. of the 2021 CHI
Conference on Human Factors in Computing Systems,

CHI "21.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chun-
yuan Li, Noel Codella, Liunian Harold Li, Luowei
Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. 2022.
Regionclip: Region-based language-image pretrain-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
16793-16803.

http://arxiv.org/abs/2306.00245
http://arxiv.org/abs/2306.00245
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://api.semanticscholar.org/CorpusID:252367445
https://api.semanticscholar.org/CorpusID:252367445
https://api.semanticscholar.org/CorpusID:252367445
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186

A Appendix

A.1 Ul metadata

Ul metadata consists of the underlying tree-
structured representation of an application Ul
(called View Hierarchy on Android and DOM on
web) and accessibility labels. This metadata is
not always available and can be incomplete. Even
when available, it may not be accessible.

Technical reasons make Ul metadata hard to
obtain. On Android, UI metadata is observable
through the Accessibility Service. However, for
security and privacy reasons, Google heavily re-
stricts who can access it (XDA, 2021). Even when
the Accessible Service can be invoked, elements
rendered using OpenGL, Unity and Canvas are not
included in the retrieved View Hierarchy. This is
true also for elements residing inside WebViews
which are common in Android apps. View Hier-
archies can also present misaligned structure in-
formation (Google Research Blog, 2023; Zhang
et al., 2021). Accessibility labels are extremely
useful to infer the semantics of Ul elements. How-
ever, they are rare. A previous study reported that
more than 77% of 10k Android apps have missing
accessibility labels (Chen et al., 2020a).

In desktop apps, accessing Ul trees is generally
more difficult. For example, the Ul tree of com-
mon Electron apps like Microsoft Teams are not
accessible from the Windows UI Inspector service.
Finally, while web DOM trees are generally acces-
sible, they can be very large and noisy, and hence
hard to interpret.

A.2 Implementation details

We train on the UIBert dataset (Bai et al., 2021)>
using the official splits: train: 4,646 images, 15,624
expressions, validation: 471 images, 471 expres-
sions, test: 565 images, 565 expressions. We ex-
pand the train split of UIBert with 22,617 synthetic
expressions (no longer than 55 words) generated
for 21,282 different Android Ul screens.

For experiments with GLIP, we use GLIP-base
(SWIN Transformer (Tiny) and BERT) as default
backbone. Following the GLIP settings, SWIN-
Tiny is pre-trained on ImageNet (Deng et al., 2009),
and the input images are resized to 224 x 224
pixels. Models are trained for 100 epochs.

For experiments with OFA, we use OFA-base
(ResNet101 and BART-base) initialized with the

2released under license CC BY 4.0

same pretrained weights. The input images are
resized to 384 x 384 pixels. Models are trained for
50 epochs.

For experiments with UNINEXT, we use
UNINEXT-base (ResNet-50 and BERT) as the de-
fault backbone, initialized with weights pretrained
on Objects365. The images are pre-processed with
the same procedure as in UNINEXT. Models are
trained for 50 epochs.

For all the settings, the models are optimized by
AdamW (Loshchilov and Hutter, 2017) with initial
learning rate of le~, and weight decay of 0.05.
The best models are selected based on the results
on the validation split.

A.3 OFA error analysis

In Fig. 5 we show failure cases of the OFA model
on the UlBert dataset. Note that in these tests LVG
correctly identifies the referenced element. The
errors show how OFA does not manage to lever-
age the spatial context of a target object, which is
described by words such as “above”, “below”, or
“right to” in the referring expression. Understand-
ing localization in a grid (“first option in second
row”) is also challenging. In some cases, the predic-
tion is wrong due to closely-related elements, but
also in these cases understanding the spatial layout
can help the model (e.g., in the first example, LVG
can use layout-guided contrastive learning to group
the text “All countries” with “Countries” and the
text “All” with “Age”, thus identifying the correct
referenced object).

106

"select all countries"

Newest Members

Countries Age Sort by

All Countries | Default 4

wallymisr
29, rer Married, Muslim - Sunni
United States

D New!
shehary123 : Salam

NEw!

ryan22
34, Never Married, Muslim - Sunni
Ilinois, United States
New!
| Umer786

| 20, Never Married, Muslim - Sunni
Alabama, United States
1 photo

. NEW |

DFNDR: Antivirus &
Booster

"select a human icon which is "click on image which is

below week on the page" above history"
< Join Tribes SIIP
App C 4 v -
; .
= ’ -
Adventure Artsy Backpackers
' '(\) 'y .
i [] P K
. "0 75 ; £ Ad
o s, B
Budget Business Families
Add a note about your day
Foodies Green History

ARG

Select 4 Tribes the

Shed pounds while you walk

Try Noom Coach

"go to first option in second

TAP TO UNLOCK
TOP 100 MESSAGES
TN

b3

'%Tl{!’ﬂ‘fz Fami

Age Specific

L

"select the blue color text"

= Fantasy Surfing

s
m!ainabong Pipe Maste
¥ Bongratulations MichelBourez

First time playing WSL Fantasy?

You'll need to create a Fantasy Team

CREATE TEAM

"select the info button right to
pricing"

"click on the icon above me
at the bottom"

Me & Create Listing
DETAILS
appcrawlerd
ur profile
Category Sweatshirt, Pullover
Liked Posts
size (required)
Following
o Brand (optional)
Followers
& Condition (required)
Settings
SHIPPING
Report a problem
Fee (required)
Ships from (required)
Ships within (required)

PRICINCD

Post on your profile

"select the text above the sign
in option"

Q searchKmart Il =

h\/lember Sign In =

Not registered? join for free

Email required

Password required

Hide your password

forgot your password?

[Remember my email

[By signing in, | agree to the Shop Your Way™ Program
‘erms and the Sears.com Terms of Use and Privacy Policy

1

Figure 5: Examples of grounding errors of the OFA model. LVG correctly grounds these commands. Red-colored
bounding boxes are the ground-truth elements correctly idenfitied by LVG. Blue-colored bounding boxes are the

OFA predictions.

107

Prompt Tuned Embedding Classification for Industry Sector Allocation

Valentin Leonhard Buchner'>* Lele Cao'* Jan-Christoph Kalo>? Vilhelm von Ehrenheim'
"Motherbrain, EQT Group, Stockholm, Sweden
2Vrije Universiteit Amsterdam 3University of Amsterdam

Abstract

We introduce Prompt Tuned Embedding Clas-
sification (PTEC) for classifying companies
within an investment firm’s proprietary industry
taxonomy, supporting their thematic investment
strategy. PTEC assigns companies to the sec-
tors they primarily operate in, conceptualizing
this process as a multi-label text classification
task. Prompt Tuning, usually deployed as a
text-to-text (T2T) classification approach, en-
sures low computational cost while maintaining
high task performance. However, T2T classifi-
cation has limitations on multi-label tasks due
to the generation of non-existing labels, per-
mutation invariance of the label sequence, and
a lack of confidence scores. PTEC addresses
these limitations by utilizing a classification
head in place of the Large Language Models
(LLMs) language head. PTEC surpasses both
baselines and human performance while lower-
ing computational demands. This indicates the
continuing need to adapt state-of-the-art meth-
ods to domain-specific tasks, even in the era of
LLMs with strong generalization abilities.

1 Introduction

Investors leveraging thematic investment strategies
concentrate their efforts on specific industry sec-
tors, such as “Circular Economy.” This strategy
involves compiling a comprehensive list of com-
panies within these sectors by analyzing unstruc-
tured natural language data on platforms such as
Pitchbook (2024) and Crunchbase (2024). For in-
stance, investors might utilize the description and
associated keywords of a company like “Vinted” to
identify the industries it operates in. In this context,
machine learning can be instrumental by framing
this as a multi-label text classification challenge:
given a natural language description of a company
X, the goal is to categorize it into one or more

*Corresponding authors. The source code is publicly avail-
able at https://github.com/EQTPartners/PTEC.

{valentin.buchner,lele.cao,vilhelm.vonehrenheim}@eqtpartners.com j.c.kalo@uva.nl

industries from a predefined industry sector taxon-
omy T ={Y1,Ys,...,Y,}.

While there exist various machine learning solu-
tions for multi-label text classification, this indus-
trial application encompasses some challenges:

* Scarce annotations: The annotation process,
carried out by investment professionals familiar
with a firm’s taxonomy, results in only a limited
number of labeled examples. Given that an indus-
try taxonomy may include up to 300 industries,
there are only few annotations per industry.

¢ Imbalanced annotations: Annotations are pri-
marily focused on investment opportunities rele-
vant to the annotator’s industry of interest, lead-
ing to a long-tail distribution.

* Large and heterogeneous inference dataset:
The necessity to infer industries for over 10M
companies, coupled with the likelihood of the in-
ference data being out-of-distribution compared
to the annotated dataset in terms of language use
and descriptiveness.

* Dynamic taxonomy and training data: Fre-
quent updates in industry taxonomy, company
information, and annotations necessitate ongoing
re-training and inference processes.

Traditional text classification approaches de-
mand large amounts of annotated training data and
often struggle to generalize effectively to novel
data (Srivastava et al., 2023). Large Language
Models (LLMs) exhibit superior generalization ca-
pabilities to unseen data and can be fine-tuned on
smaller annotated datasets (Raffel et al., 2020).
However, fine-tuning LLMs may lead to the un-
desirable phenomenon of “catastrophic forgetting”
of pretraining knowledge (Chen et al., 2020), and
is computationally demanding. These challenges
can be mitigated through Parameter-Efficient Fine-
Tuning (PEFT, Ding et al., 2023) techniques such
as Prompt Tuning (PT). PT minimizes the number

108

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 108118
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/EQTPartners/PTEC

of parameters that need fine-tuning by focusing
on a soft prompt appended to the tokenized and
embedded input text, thus reducing computational
costs and preserving the pretrained knowledge of
the LLM, as the main body of the LL.M’s parame-
ters remains unaltered (Tam et al., 2022; Tu et al.,
2022; Lester et al., 2021). Hence, PT emerges as
a viable solution for computational efficiency and
knowledge retention in LLM applications.

This research evaluates the scalability, efficiency,
and performance of PT in a real-world industry
classification scenario, benchmarked against com-
mon baseline methods. However, PT as a text-
to-text (T2T) classification approach encounters
limitations on multi-label tasks as discussed in Sub-
section 2.4. We enhance PT by (1) integrating con-
strained decoding using Trie Search (Yang et al.,
2023; De Cao et al., 2020) and (2) replacing the lan-
guage model head with a specialized classification
head. Our key contributions include:

* The adaptation of the Trie Search decoding
method (Yang et al., 2023), preventing repetitive
prediction of the same label, akin to the approach
in (Chen et al., 2018).

* The introduction of Prompt Tuned Embedding
Classification (PTEC), which concurrently opti-
mizes the soft prompt and the classification head
with differential learning rates.

* A comparative analysis of the performance and
computational requirements of the proposed and
baseline methods on two datasets: our pro-
prietary IndustrySector classification task and
the publicly available HateSpeech classification
benchmark.

* Empirical evidence demonstrating that evaluating
PTEC on data it has more pretraining knowledge
about does not lead to an overestimation of the its
classification performance when applied to data
it has less pretraining knowledge about.

The paper first outlines existing text classifi-
cation methodologies and their limitations. We
then introduce constrained Trie Search decoding
and PTEC as potential solutions to these limita-
tions. Subsequently, we describe our experimen-
tal setup and compare the efficiency and perfor-
mance of current and proposed methods. Our code-
base and the HateSpeech dataset can be accessed
at https://github.com/EQTPartners/PTEC.

2 Related Methods

2.1 Parameter-Free Classification with gzip

A very simple approach to text classification makes
use of compression algorithms such as gzip (Jiang
et al., 2023). This method leverages the princi-
ple of lossless compression, where frequently oc-
curring symbols are encoded with shorter codes.
Similar texts are likely to have more common sym-
bols, leading to a shorter compressed length when
concatenated. This phenomenon forms the basis
for a low-computation distance metric for nearest-
neighbors classification methods.

2.2 In-Context Learning

In-Context Learning (ICL), or N-shot prompting,
involves prepending N input-output example pairs
to the prompt before the actual input (Brown et al.,
2020; Min et al., 2022). This method is particularly
appealing for text classification as it obviates the
need for any LLM fine-tuning.

2.3 Embedding Proximity

Another approach to text classification not requir-
ing LLM fine-tuning uses text embeddings gen-
erated with LLMs. These can be used as input
features for a separate classification model. The
most parameter-efficient classification models are
K-Nearest Neighbors (KNN) or Radius Nearest
Neighbors (RadiusNN) (Guo et al., 2003; Cover
and Hart, 1967). Alternatively, text embeddings
can be used as input to a classification layer, which
can be trained to perform the respective classifica-
tion task (Kowsari et al., 2019).

2.4 Prompt Tuning

To emulate fine-tuning’s effectiveness with re-
duced computational expense, various Parameter-
Efficient Fine-Tuning (PEFT) techniques have
been developed. These include Pattern-Exploiting
Training (Schick and Schiitze, 2021), Prefix-
Tuning (Li and Liang, 2021), Low-Rank Adap-
tation (LoRa, Hu et al., 2021), and Prompt Tun-
ing (Lester et al., 2021; Liu et al., 2022; Tam
et al., 2022). These methods limit trainable pa-
rameters compared to full LLM fine-tuning. PT in-
volves training the smallest amount of parameters
(< 0.1%), while still being reported to outperform
fine-tuning (Liu et al., 2021). It prepends a soft
prompt — a sequence of virtual token embeddings
— to the token embeddings of the input text, as
depicted in Fig. 1. During this process, only the

109

https://github.com/EQTPartners/PTEC

goooon

SPy B
®
noooon

X input

A
Loss
LLMy Prediction
Input Tokenization &
Text Embedding

Figure 1: Schematic overview of Prompt Tuning, showing the
trainable soft prompt (matrix S Pp), the tokenized and
embedded input text (Xinput), and the LLM with frozen
parameters (LLMgy).

Y

soft prompt undergoes training, leaving the LLM’s
parameters unchanged. This approach not only
demands fewer computational resources but also
supports multi-task processing in a single batch and
mitigates the risk of “catastrophic forgetting.”

2.5 T2T Classification for Multi-Label Tasks

Text-to-Text (T2T) classification leverages genera-
tive language models to produce the token(s) repre-
senting target categories. Historically, T2T has
surpassed other methods in public benchmarks,
aligning with the notion that text generation closely
mirrors the LLM’s pretraining tasks (Raffel et al.,
2020). For multi-label scenarios, T2T classifica-
tion sequentially generates labels, separated by a
separator token (SEP) and concluded with an end-
of-sequence (EOS) token (Yang et al., 2018, 2023).
However, this approach faces several limitations:
(a) The model might generate semantically simi-
lar but incorrect labels due to non-intuitive class
labels. For instance, in our proprietary taxonomy,
the model could misclassify “Healthcare I'T” as
“Healthcare Software”. (b) In multi-label instances,
labels must be provided in an arbitrary order during
fine-tuning. If the model’s correct label predictions
deviate from this order, it is penalized by the loss
function. Augmenting the label order at random
would result in an inconsistent learning signal and
unstable convergence. (c) The model computes the
probability of a subsequent label based on the pre-
viously decoded label, expressed as P(Y2|X, Y1),
where X is the input and Y; represents the i-th
label (Simig et al., 2022). This approach fails to
provide independent confidence scores for each
label P(Y3|X), which are vital in real-world appli-
cations for balancing the trade-off between false
positives and false negatives. Additionally, this
limitation does not allow for achieving optimal
performance in metrics like Precision@K, which
depend on label probabilities.

Label 3 Proposed Methods

3.1 Prompt Tuning + Trie Search

To address limitation (a) as detailed in Section 2.5,
constrained decoding methods such as Trie Search,
which are effective in generating only valid labels,
can be employed (De Cao et al., 2020; Yang et al.,
2023). Trie Search, a constrained decoding method,
utilizes a label trie structure for organizing target
labels, as illustrated in Fig. 2. The label trie, be-
ginning from the root node (BOS) and ending at
leaf nodes (EOS or SEP), enables valid label re-
trieval during label generation by guiding the LLM
to select tokens only from the trie. In the con-
text of multi-label classification, labels are gener-
ated sequentially and separated by the SEP token.
Upon reaching a leaf node, the LLM chooses ei-
ther to generate the SEP token, restarting the Trie
Search, or the EOS token, concluding label pre-
diction. However, this method may lead to repet-
itive generation of the same label, a known issue
with LLMs (Fu et al., 2021). To mitigate this, our
approach extends the Trie Search method by re-
moving a label from the trie once it is generated,
an idea inspired by (Chen et al., 2018). While this
method effectively addresses limitations (a), it does
not resolve limitations (b) and (c) since it requires
labels provided in an arbitrary order during training
and does not allow the calculation of appropriate
confidence scores.

3.2 Prompt Tuned Embedding Classification

PTEC addresses all limitations by combining PT
with Embedding Classification rather than T2T
classification. This is done by using a single linear
layer with a sigmoid activation function to pro-
cess the text embeddings generated by the Prompt
Tuned LLM. This layer produces a probability dis-
tribution over industry sectors in the taxonomy,
thus (a) ensuring valid industry selection, (b) en-
abling the application of label order-independent
loss functions, and (c) providing probability scores
useful for ranking or adjusting model prediction
sensitivity. This process is mathematically repre-
sented as:

1 if o(WLLM(SPy & Xipput) + b) > 7,
0 otherwise.

€]

Here, LLMy(SPy @ Xippu) parameterized by ¢

yields an embedding vector. The tokenized and em-

bedded input text is represented by X,pui, and 7 is

110

PT—»[<BOS> Specialty Pharma <SEP> Healthcare Software <EOS> j

Language
Head

[SPO @ Xianlt]'

PTEC.

PT + TS— BOS

Distributors

Specialty
Healthcare

Label Trie

. Classification

Head

Figure 2: A schematic comparison of Prompt Tuning with T2T classification (PT + T2T), Prompt Tuning with Trie Search (PT +
TS), and PTEC. Note that Healthcare Software would not be a valid label name, while Healthcare IT would be.

the threshold used. The weight matrix W € R?*!
and bias vector b € R are components of the lin-
ear layer, with d representing the dimensionality
of the LLM’s embedding vector and ! the num-
ber of labels. During training, the task-specific
classification layer and the soft prompt are opti-
mized concurrently, while the rest of the LLM’s
parameters are kept frozen. This approach is akin
to strategies used in Named Entity Recognition
(Liu et al., 2022) and multi-class text classifica-
tion (Hambardzumyan et al., 2021). Following
the observation by Lester et al. (2021), we found
that a soft prompt typically benefits from a higher
learning rate, while the classification head performs
optimally with a lower rate. Hence, in our PTEC
implementation, differential learning rates are ap-
plied to the soft prompt and the classification head.
Besides addressing the limitations listed in Sec-
tion 2.4, PTEC offers the advantage of faster infer-
ence times, requiring only a single forward pass
per prediction compared to one forward pass for
each predicted token.

4 Experiments

4.1 Dataset

Based on an investment firm’s proprietary database
we constructed the IndustrySector dataset of
around 5500 companies. Each company is anno-
tated with 1 to 4 of 76 different industries, and each
industry is labeled at least 20 times. For each com-
pany, its legal name, keywords, and a description
are available. This information is concatenated to
one text used as the input prompt in all experiments.
Appendix A.2 describes dataset analytics and pre-
processing steps. To facility reproducibility, we
further constructed the public HateSpeech bench-
mark, which is elaborated on in Appendix A.S.

4.2 Model Training

Our PT set-up follows the architecture described in
Section 3. Since for T2T classification the labels
need to be provided in a predefined order during
training, we sort the labels for each sample de-
scending by their frequency in the training data
as this has been confirmed to provide the best per-
formance (Yang et al., 2018; Jung et al., 2023).
We noticed that classes with class labels consist-
ing of more tokens have more influence on the
cross-entropy loss than classes with shorter labels.
Consequently, we developed the Normalized To-
ken Entropy (NTE) Loss, which is motivated and
elaborated on in Appendix A.3. Further, we use
token embeddings of the target classes to initialize
the soft prompt’s weights, as Lester et al. (2021)
showed this to be beneficial for task performance.
As there are more tokens available for the target
classes than there are tokens in the soft prompt,
we randomly sample the tokens to be used for soft
prompt initialization. All methods are compared
using the 7B parameter version of LL.aMa (LLaMa
7B, Touvron et al., 2023) and the 1.7 B parameter
version of Bloom (Bloom 1B7, Scao et al., 2022).
A detailed description of our hyperparameter tun-
ing strategy can be found in Appendix A.4.

4.3 Metrics

To achieve optimal business impact, it is crucial to
predict all industry sectors similarly well. This en-
ables an investment firm to not only find companies
in well-explored sectors but also in novel or niche
sectors. Consequently, we use the macro-averaged
F1 score to compare model performance. Further,
it becomes important to be cost-effective when fre-
quently retraining and running inference over a
large database. Therefore, we report on the com-

111

putational resources required for fine-tuning and
for inference over 10M companies by measuring
the consumed floating point operations (FLOPs).
These were measured using Pytorch’s profiler (Py-
Torch, 2024) for a representative sample of batches,
and the results were extrapolated on the full train-
ing and inference process. The FLOPs consump-
tion of KNN and RadiusNN were estimated as mo-
tivated in Appendix A.1. To investigate the subjec-
tivity of this industry classification task, an exhaus-
tive list of labels was created for a representative
subsample of the test set (N = 104) and anno-
tated by 3 independent professional raters. Chance-
corrected inter-annotater agreement was calculated
using Cohen’s kappa (x, McHugh, 2012).

4.4 The Impact of Pretraining Knowledge

Companies in our IndustrySector dataset were an-
notated depending on investment professionals’ in-
terests and are not a representative sample of the
inference dataset. On the contrary, investment pro-
fessionals are more likely to annotate companies
that are more widely known, which are compa-
nies the LLM may have encountered during pre-
training. The LLM may thus perform the desired
downstream task better for the annotated compa-
nies in our test set than for the full set of less-known
companies in the inference dataset, resulting in an
overestimation of model performance. To investi-
gate whether this is the case, we prompted an LLM
to indicate about which companies in the test set
it has pretraining knowledge, following the logic
that LLMs mostly know what they know (Kadavath
et al., 2022). We then conducted a nonparametric
Mann-Whitney U test (Nachar et al., 2008) to test
the hypothesis H; that classification performance
is higher for the companies the LLM indicates to
have pretraining knowledge about.

5 Results

5.1 Performance and Computational Cost

The computational efficiency and average perfor-
mance over 3 runs of various methods on the Indus-
trySector dataset are presented in Table 1. PTEC
shows an improvement ranging from 3.6 to 11.7
percentage points over the next best method while
being more efficient than other PT methods for
both training and inference. Additionally, PTEC
shows less variability between runs than PT with
T2T classification, particularly for Bloom 1B7.
Contrasting prior findings where T2T classifica-

Method FLOPs Macro F1
Training Inference Mean Std

PTEC 1.12e+17 1.09e+18 0.398 0.019
— PT+ TS 8.96e+16 1.65e+18 0.240 0.060
m PT 8.96e+16 1.65e+18 0.221 0.068
E CH 3.29e+16 3.97e+17 0.281 0.006
g KNN 3.29e+16 3.97e+17 0.230 0
o RadiusNN 3.29e+16 3.97e+17 0.101 0
N-shot + TS 0 8.5le+18 0.134 0.004
N-shot 0 5.68e+18 0.025 0.005
PTEC 1.69e+17 4.27e+18 0.448 0.001

PT + TS 9.73e+17 5.62e+18 0.412 0.005
Q8 pT 9.73e+17 5.62e+18 0.412 0.002
§ CH 2.13e+17 2.56e+18 0.400 0.007
= KNN 2.13e+17 2.56e+18 0.332 0
S RadiusNN 2.13e+17 2.56e+18 0.237 0
N-shot + TS 0 2.59%+19 0.032 0.001
N-shot 0 2.55e+19 0.015 0.002

CH = classification head; gzip = parameter-free classifica-
tion with gzip. Other abbreviations as defined in Fig. 2.

Table 1: Results on the IndustrySector dataset. The
method with the lowest FLOPs and highest Macro F1
Score is highlighted in bold for each LLM. A dash (—)
indicates unavailable data or no LLM required.

tion outperformed classification heads (Raffel et al.,
2020), PTEC outperforms PT + T2T in our study.
Several arguments can be made to explain this: (1)
T2T classification often outperforms because the
LLM can make a reasonable guess. However, the
proprietary and domain-specific nature of the indus-
try taxonomy limits the LLM’s ability to leverage
its pretraining knowledge. (2) While most tasks
used to evaluate T2T classification can be reduced
to singular-token targets (“good” or “bad”), the In-
dustrySector dataset consists of multi-token labels
and therefore presents a more complex label space.

Trie Search enhances T2T classification perfor-
mance by 0.17 to 10.9 percentage points with V-
shot prompting. However, it does not improve
LLaMa 7B’s performance when used with PT, sug-
gesting that PT effectively learns to predict valid
labels such that Trie Search does not result in any
additional performance gain.

Classification heads demonstrate comparable
performance to PT with T2T classification but are
significantly more computationally efficient. While
N-shot prompting eliminates training FLOPs, it
necessitates a higher number of inference FLOPs.
Table 2 summarizes the techniques each method
employs. Results on our public HateSpeech bench-
marking dataset followed nearly the same pattern
and can be inspected in Appendix A.5.

112

0]

+ 0.8 N

© R

o :

[0} :

> 06

r=,

2. %

o 04 ', - PTEC (AUROC = 0.96)

o i .. CH (AUROC = 0.79)

2 i -~ KNN (AUROC = 0.79)

Fo2 | *+++ RadiusNN (AUROC = 0.75)
: m T
! v ozip

0.0

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3: ROC curves using LLaMa 7B. Methods that cannot

be thresholded are displayed as individual points. AUROC =

Area Under the ROC curve. Other abbreviations as defined in
Fig. 2 and Table 1.

valid order conf. LLM Macro

labels invariant scores tuning F1
N-shot v 0.015
N-shot+TS v v 0.032
RadiusNN v v v 0.237
KNN v v v 0.332
CH v v v 0.4
PT + T2T v 0.412
PT + TS v v 0.412
PTEC v v v v 0.448
Abbreviations as defined in Fig. 2 and Table 1

Table 2: Overview of methods used and their perfor-
mance on the IndustrySector dataset using LLaMa 7B.
The highest F1 score is highlighted in bold.

Methods such as PTEC offer the advantage of
predicting appropriate confidence scores. This at-
tribute is evident in Fig. 3, which displays the Re-
ceiver Operating Characteristic (ROC) curves for
multiple methods. These confidence scores allow
for selecting a threshold to choose the appropriate
trade-off between precision and recall, a crucial
attribute for deploying a model in production.

5.2 The Impact of Pretraining Knowledge

In the IndustrySector dataset’s test split, 159 of
the 839 companies were recognized from pretrain-
ing, while 680 were not. A qualitative review con-
firmed that known companies had more accessible
online information than unknown companies. A
Mann-Whitney U test indicated that differences in
task performance using LLaMa 7B between both
groups were nonsignificant at a p-value of 0.243 (U
=50993.5; r =0.0385). This results in the rejection
of H; that classification performance is higher for
the companies the LLM indicates to have pretrain-
ing knowledge about. This indicates that we likely

Rater2 Rater3 Gold PTEC Agowd_prEC™
Raterl 0.477 0401 0.389 0.36 0.029
Rater2 0.444 0.551 0.422 0.129
Rater3 0.311 0.245 0.066
Average 0.417 0.342 0.075
Gold 0.562

“the difference in agreement of a given rater with the gold
annotations and the PTEC predictions.

Table 3: Agreement Matrix using Cohen’s Kappa com-
paring three independent human raters, gold labels, and
predictions made with PTEC LLaMA 7B.

do not overestimate performance on the inference
dataset.

5.3 Inter-rater Agreement

Table 3 displays the interrater agreement between
three independent human raters, the gold labels
used to train PTEC, and PTEC predictions on the
subsample described in Section 4.3. The moderate
agreement between human raters verifies the sub-
jectivity of our IndustrySector classification task.
Out of 104 companies, unanimous agreement was
reached on just 6 companies. Importantly, PTEC’s
agreement with the gold labels is up to 15.1 per-
centage points higher than the agreement between
human raters and the gold labels. This shows that
PTEC outperforms human professionals, meaning
that it provides value by accelerating and objectify-
ing the industry classification process.

6 Conclusion

This study benchmarks computational cost and
multi-label text classification performance of PT
as a parameter-efficient alternative to fine-tuning
all LLM parameters. To address the limitations of
a T2T approach on multi-label classification prob-
lems, PT is extended with Trie Search as a con-
strained decoding strategy, and with Embedding
Classification as an alternative to T2T classifica-
tion. Results indicate that Trie Search can signifi-
cantly improve the performance of N-shot prompt-
ing. PT can outperform popular text classification
approaches on both our domain-specific Industry-
Sector classification task, and the publicly released
HateSpeech classification benchmark. Both per-
formance and efficiency can be further improved
by combining PT with Embedding Classification.
The proposed solution, PTEC, outperforms base-
lines and human professionals and can be deployed
at scale to accelerate and objectify industry sector
allocation.

113

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 7870-7881.

Shang-Fu Chen, Yi-Chen Chen, Chih-Kuan Yeh, and
Yu-Chiang Wang. 2018. Order-free rnn with visual
attention for multi-label classification. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

T. Cover and P. Hart. 1967. Nearest neighbor pattern
classification. IEEE Transactions on Information
Theory, 13(1):21-217.

Crunchbase. 2024. Crunchbase. Accessed: 2024-01-
22.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
In International Conference on Learning Representa-
tions.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220-235.

Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei Shi.
2021. A theoretical analysis of the repetition problem
in text generation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12848-12856.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and
Kieran Greer. 2003. Knn model-based approach
in classification. In On The Move to Meaning-
ful Internet Systems 2003: CooplS, DOA, and
ODBASE: OTM Confederated International Confer-
ences, CooplS, DOA, and ODBASE 2003, Catania,
Sicily, Italy, November 3-7, 2003. Proceedings, pages
986-996. Springer.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual

Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921-4933, Online. Association for
Computational Linguistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
etal. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael
Tang, Yiqin Dai, and Jimmy Lin. 2023. Low-
resource text classification: A parameter-free clas-
sification method with compressors. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 6810—6828.

Taehee Jung, Joo-Kyung Kim, Sungjin Lee, and
Dongyeop Kang. 2023. Cluster-guided label gen-
eration in extreme multi-label classification. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 1662—-1677.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield Dodds, Nova DasSarma,
Eli Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura Barnes, and Donald
Brown. 2019. Text classification algorithms: A sur-
vey. Information, 10(4):150.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597.

X Liu, Y Zheng, Z Du, M Ding, Y Qian, Z Yang, and
J Tang. 2021. Gpt understands, too. arxiv. arXiv
preprint arXiv:2103.10385.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61—68.

Mary L McHugh. 2012. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276-282.

114

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2020.emnlp-main.634.pdf
https://aclanthology.org/2020.emnlp-main.634.pdf
https://aclanthology.org/2020.emnlp-main.634.pdf
https://doi.org/10.1609/aaai.v32i1.12230
https://doi.org/10.1609/aaai.v32i1.12230
https://arxiv.org/pdf/2210.11416.pdf
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://www.crunchbase.com/
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.48550/arXiv.2012.14660
https://doi.org/10.48550/arXiv.2012.14660
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.426
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.426
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.426
https://doi.org/https://doi.org/10.18653/v1/2023.eacl-main.122
https://doi.org/https://doi.org/10.18653/v1/2023.eacl-main.122
https://doi.org/https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/https://doi.org/10.3390/info10040150
https://doi.org/https://doi.org/10.3390/info10040150
https://doi.org/https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/https://doi.org/10.48550/arXiv.2103.10385
https://doi.org/https://doi.org/10.48550/arXiv.2110.07602
https://doi.org/https://doi.org/10.48550/arXiv.2110.07602
https://doi.org/https://doi.org/10.48550/arXiv.2110.07602
https://pubmed.ncbi.nlm.nih.gov/23092060/
https://pubmed.ncbi.nlm.nih.gov/23092060/

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064.

Nadim Nachar et al. 2008. The mann-whitney u: A test
for assessing whether two independent samples come
from the same distribution. Tutorials in quantitative
Methods for Psychology, 4(1):13-20.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Pitchbook. 2024. Pitchbook. Accessed: 2024-01-22.
PyTorch. 2024. Pytorch. Accessed: 2024-01-22.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Joni Salminen, Hind Almerekhi, Milica Milenkovic,
Soon-gyo Jung, Jisun An, Haewoon Kwak, and
Bernard Jansen. 2018. Anatomy of online hate: de-
veloping a taxonomy and machine learning models
for identifying and classifying hate in online news
media. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 12.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Timo Schick and Hinrich Schiitze. 2021. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339-2352.

Konstantinos Sechidis, Grigorios Tsoumakas, and Ioan-
nis Vlahavas. 2011. On the stratification of multi-
label data. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011,
Proceedings, Part Il 22, pages 145—158. Springer.

Daniel Simig, Fabio Petroni, Pouya Yanki, Kashyap
Popat, Christina Du, Sebastian Riedel, and Majid
Yazdani. 2022. Open vocabulary extreme classifica-
tion using generative models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1561-1583.

115

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Derek Tam, Anisha Mascarenhas, Shiyue Zhang, Sarah
Kwan, Mohit Bansal, and Colin Raffel. 2023. Evalu-
ating the factual consistency of large language mod-
els through news summarization. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 5220-5255.

Weng Lam Tam, Xiao Liu, Kaixuan Ji, Lilong Xue,
Xingjian Zhang, Yuxiao Dong, Jiahua Liu, Maodi
Hu, and Jie Tang. 2022. Parameter-efficient prompt
tuning makes generalized and calibrated neural text
retrievers. arXiv preprint arXiv:2207.07087.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Lifu Tu, Caiming Xiong, and Yingbo Zhou. 2022.
Prompt-tuning can be much better than fine-tuning
on cross-lingual understanding with multilingual lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
5478-5485, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: Sequence gen-
eration model for multi-label classification. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 3915-3926.

Zhichao Yang, Sunjae Kwon, Zonghai Yao, and Hong
Yu. 2023. Multi-label few-shot icd coding as autore-
gressive generation with prompt. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 5366-5374.

https://doi.org/https://doi.org/10.48550/arXiv.2202.12837
https://doi.org/https://doi.org/10.48550/arXiv.2202.12837
https://doi.org/http://dx.doi.org/10.20982/tqmp.04.1.p013
https://doi.org/http://dx.doi.org/10.20982/tqmp.04.1.p013
https://doi.org/http://dx.doi.org/10.20982/tqmp.04.1.p013
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://pitchbook.com/
https://pytorch.org
https://doi.org/https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/https://doi.org/10.1609/icwsm.v12i1.15028
https://doi.org/https://doi.org/10.1609/icwsm.v12i1.15028
https://doi.org/https://doi.org/10.1609/icwsm.v12i1.15028
https://doi.org/https://doi.org/10.1609/icwsm.v12i1.15028
https://doi.org/https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/https://doi.org/10.48550/arXiv.2009.07118
https://doi.org/https://doi.org/10.48550/arXiv.2009.07118
https://doi.org/https://doi.org/10.48550/arXiv.2009.07118
https://doi.org/http://dx.doi.org/10.1007/978-3-642-23808-6_10
https://doi.org/http://dx.doi.org/10.1007/978-3-642-23808-6_10
https://doi.org/https://aclanthology.org/2022.findings-acl.123
https://doi.org/https://aclanthology.org/2022.findings-acl.123
https://doi.org/https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.322
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.322
https://doi.org/https://doi.org/10.18653/v1/2023.findings-acl.322
https://doi.org/https://doi.org/10.18653/v1/2023.findings-emnlp.874
https://doi.org/https://doi.org/10.18653/v1/2023.findings-emnlp.874
https://doi.org/https://doi.org/10.18653/v1/2023.findings-emnlp.874
https://doi.org/https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/https://doi.org/10.48550/arXiv.2302.13971
https://aclanthology.org/2022.findings-emnlp.401
https://aclanthology.org/2022.findings-emnlp.401
https://aclanthology.org/2022.findings-emnlp.401
https://doi.org/https://doi.org/10.48550/arXiv.1806.04822
https://doi.org/https://doi.org/10.48550/arXiv.1806.04822
https://doi.org/https://doi.org/10.1609%2Faaai.v37i4.25668
https://doi.org/https://doi.org/10.1609%2Faaai.v37i4.25668

A Appendix

A.1 Inference FLOPs Calculation for
Nearest-Neighbors Methods

KNN and RadiusNN were implemented using
sklearn (Pedregosa et al., 2011). There is to our
knowledge no existing method to measure their
FLOPs consumption for nearest-neighbor methods
implemented with sklearn during inference. In-
stead, their inference FLOPs were estimated as:

FLOPs ~ E(T +1)+3(D-T-1) (2

Here, D represents the dimensionality of the
text embeddings, 1" denotes the number of train-
ing samples, I indicates the number of inference
samples, and E the FLOPs required to embed one
example. This equation can be derived as follows:
The term E(T + I) refers to calculating the embed-
dings for the training and inference samples, and
3(D - T - I) estimates the number of floating point
operations (FLOPs) for performing classification
with the KNN and RadiusNN algorithms. The av-
erage value of E is calculated by measuring the
FLOPs used for generating one embedding with
PyTorch’s profiler. Assuming a brute-force imple-
mentation, for both KNN and RadiusNN, each in-
ference embedding is compared with every training
embedding. The term 3 - D corresponds to calcu-
lating the Euclidean distance between two embed-
dings. This calculation involves the subtraction of
one embedding from the other (D FLOPs), squar-
ing each element of the new vector (D FLOPs),
taking the sum of these values (D — 1 FLOPs) and
finally taking the square root of this sum (1 FLOP).
As this is done once for each pair of training and
inference examples, the distance calculations will
need 3(D - N - M) FLOPs in total.

As this is only an estimate, the exact number
can vary based on the specifics of the operations
used. While the formula provided here assumes a
brute-force method for KNN and RadiusNN, it is
important to note that more efficient methods are
often employed in practice, especially in popular
machine learning libraries such as scikit-learn (Pe-
dregosa et al., 2011). True computational resources
required by KNN and RadiusNN methods may
therefore be lower than estimated in this paper.
However, this estimation provides a general idea
of the computational resources needed. For both
RadiusNN and KNN the FLOPs used for calculat-
ing the text embeddings of the training data are
considered as ‘training” FLOPs.

A.2 IndustrySector Dataset Preprocessing

The average number of labels in the IndustrySec-
tor dataset per example is 1.1. This indicates that
while the problem, in theory, is a multi-label classi-
fication problem, most examples in our dataset are
not exhaustively annotated and only carry one label
(see Fig. 4). The dataset is split into 75% training
set, 10% validation set, and 15% test set. Fig. 4
shows the highly imbalanced, long-tail class dis-
tribution: some industries occur only ~ 25 times,
while the most frequent industry occurs > 300
times. Importantly, this distribution only shows the
classes included in the IndustrySector dataset, and
our database contains many more classes with even
fewer annotations. To ensure that each industry in
the IndustrySector dataset is represented in simi-
lar proportions in all splits, and with a minimum
frequency in both validation and test split, stratifica-
tion is performed using multi-label stratified shuf-
fle splitting, as proposed by Sechidis et al. (2011).
During this process, it is ensured that each industry
is represented at least 2 times in the validation set,
3 times in the test set, and 15 times in the training
set. The imbalanced annotations were accounted
for by reweighing the loss: Class weights are cal-
culated for each class with 7y, /Nclass. The loss
for each instance is weighted by its class weight
before updating the gradients.

Since the LLM’s self-attention mechanism’s
complexity increases quadratically with prompt
length, long input prompts will easily result in out-
of-memory (OOM) errors. Therefore, descriptions
and keyword lists that consist of more than 1000
characters are summarized using the 250\ param-
eter instruction fine-tuned FLAN T5 model (Chung
et al., 2022), such that no input prompt supersedes
a length of 1000 characters. The result of this sum-
marizing step is displayed in Fig. 4.

A.3 Normalized Token Entropy (NTE) Loss

Careful attention has to be paid to the loss calcula-
tion when performing mini-batch gradient descent.
As PyTorch’s (PyTorch, 2024) cross-entropy loss
function by default averages the loss over all label
tokens in a batch, industries with names consisting
of more tokens (“Circular Economy & Sustainable
Materials”) have a larger influence on the batch
loss than industries with shorter names (“Market-
places”). This results in the model learning indus-
tries with longer names better than industries with
shorter names. To avoid this, we adjust the cross-

116

o
2

o
‘2.

Log Frequency
=
o

Log Frequency

-
=)

‘ nll

10°

103

Log Frequency
g
Frequency

=
°,.

100'~

HJ H R

0 1000 2000 3000 4000 5000 0 200 400 600 800 1000
Description Length (#Char) Description Length (#Char)

4

2 3
#Labels per Example #Examples per Label

Figure 4: Distributions of (a) original description lengths, (b) preprocessed description lengths, (c) number of labels per example,
and (d) number of examples per label

entropy loss calculation such that each label has
the same influence on the batch loss by reweighting
the influence that each token has on the loss. This
can be done by first taking the average loss of all
tokens belonging to one label, and then averaging
all individual losses over the batch. This is denoted
in (3), where L is the aggregated loss of the batch,
N is the number of examples of the batch, y; is
the label tokens for the i-th example in the batch,
ly;| is the length of the label of the i-th example
measured in it’s number of tokens, y;; is the target
value of the j-th token of the i-th label, and p;; is
the predicted probability of the j-th token of the
i-th label.

N lys

|
1 1
N Z m Z Yij log(pij)
j=1

=1

L=— 3)

A.4 Hyperparameter Tuning

The hyperparameters for all methods were opti-
mized using Bayesian Optimization (Snoek et al.,
2012) with 25 random initializations of hyperpa-
rameter combinations and 15 iterations of Bayesian
Optimization. Models involving PT are trained us-
ing the AdamW optimizer. Hyperparamters such as
the learning rate and weight decay were searched
on a logarithmic scale, such that the probability
to sample values from the interval [0.01 < z <
0.1] equals the probability to sample values from
[0.001 < x < 0.01], given that both intervals are
included in the searched hyperparameter space. For
the KNN and RadiusNN methods, the optimal hy-
perparameter values have large variability between
different models. For this reason, if a hyperpa-
rameter was close to the boundary of the searched
hyperparameter space, Bayesian Optimization was
continued with a broader hyperparameter range.
An overview over the optimized hyperparamters,

Method Hyperp Scl Searched Space Value
N-shot n lin {0,1,...,8} 7
RadiusNN radius lin [0.1,150] 25.25
KNN k lin {1,2,...,150} 1
CH Ir log [le”8, 1f3_3] le™328
wd log [0,1e77] 0
SPIr log [1e7°,1] 1e™166
PT (+TS) SPlength lin {50,51,..,200} 156
epochs lin {5,6,...,18} 18
SPIr log [1e7°,1] le™*9
SPlength lin {50,51,...,200} 53
PTEC CHIr log [le™2,0.1] le™*23
wd log [1e2,0.5] 1le=872
epochs lin {5,6,...,18} 13

Abbreviations as defined in Fig. 2 and Table 1

Table 4: Overview of hyperparameters (hyperp), scales
(scl), and search space. To ensure reproducibility, value
refers to the selected value for LLaMa 7B on the public
HateSpeech dataset.

the scale of searching, and the ranges of hyperpa-
rameter values searched are provided in Table 4.
Hyperparameter tuning was performed using the
validation set, while all results reported in Section
5 were calculated over the test set. While the maxi-
mum batch size fitting on one A100 GPU was used
for model training, an effective batch size of 32 was
used for gradient updates. Threshold 7 mentioned
in (1) is not considered a hyperparameter, since we
automatically select the value that optimized the F1
score.

A.5 Public Benchmarking

To enable reproducibility, we constructed a pub-
lic benchmark from Salminen et al.’s (2018) hate-
speech classification dataset. The task of this
dataset is to classify social media comments into
different kinds of hatespeech, where each comment
can have one or multiple labels. This dataset was
chosen because it is structurally similar to our In-

117

dustrySector dataset: It covers a set of 22 differ-
ent classes, its data is highly imbalanced, and the
length of the social media comments is similarly
distributed as the length of the company descrip-
tions. Each hate speech comment is annotated
with 1 to 4 labels, and a comment has 1.45 annota-
tions on average. It should be noted that we could
only find a substantially smaller and differently dis-
tributed subset of the original dataset, implying that
our results cannot directly be compared with Salmi-
nen et al. (2018). Nevertheless, this benchmark
serves as a possibility to verify our methodology
and results. The constructed HateSpeech dataset
can be found in our released codebase.

We achieved very similar results to the Industry-
Sector dataset on our public HateSpeech dataset,
as shown in Table 5. The most notable differ-
ence is that for LLaMa 7B, PT outperforms PTEC.
For both models, Trie Search decreases the perfor-
mance of the Prompt Tuned LLM, while it slightly
improves the performance for N-shot prompting
of Bloom 1B7. A relevant observation made is
the high standard deviation of T2T classification
performance when using Bloom 1B7. This goes
along with results of recent research showing that
models from the Bloom family produce the most in-
consistent summaries, as judged by other language
models (Tam et al., 2023).

Method FLOPs Macro F1
Training Inference Mean Std
PTEC 6.99¢+16 3.96e+17 0.48 0.015
- PT +TS 8.69e+16 6.85e+17 0.233 0.123
m PT 8.69e+16 7.94e+17 0.318 0.088
E CH 6.82e+12 3.59e+17 0.063 0.011
g KNN 8.39e+14 3.59e+17 0.12 0
7 RadiusNN 8.39¢+14 3.59e+17 0 0
N-shot + TS 0 28le+18 0.082 0.002
N-shot 0 251e+18 0.055 0.005
PTEC 1.31e+17 2.27e+18 0.437 0.007
PT + TS 2.22e+17 237e+18 047 0.032
@ pPT 2.22e+17 3.20e+18 0.526 0.021
%‘ CH 3.07e+13 1.59e+18 0.365 0.014
< KNN 3.72e+15 1.59e+18 0.195 0
3 RadiusNN 3.72e+15 1.59e+18 0.142 0
N-shot + TS 0 4.40e+18 0.094 0.008
N-shot 0 1.16e+19 0.107 0.021

gzip = Parameter-Free Classification with gzip. Other ab-
breviations as defined in Table 4.

Table 5: Experimental results on the HateSpeech bench-
mark. The method requiring the lowest FLOPs and
achieving the highest macro-averaged F1 Score is high-
lighted in bold for each model. A dash (—) indicates
that a value could not be estimated.

118

REXEL: An End-to-end Model for Document-Level Relation Extraction
and Entity Linking

Nacime Bouziani*!, Shubhi Tyagi?, Joseph Fisher?, Jens Lehmann?, Andrea Pierleoni?

'1-X Centre for Al In Science
Imperial College London, London, UK

2 Amazon Alexa Al
Cambridge, UK

n.bouzianil8@imperial.ac.uk
{tshubhi, fshjos, jlehmnn, apierleo}@amazon.com

Abstract

Extracting structured information from unstruc-
tured text is critical for many downstream NLP
applications and is traditionally achieved by
closed information extraction (cIE). However,
existing approaches for clE suffer from two
limitations: (i) they are often pipelines which
makes them prone to error propagation, and/or
(ii) they are restricted to sentence level which
prevents them from capturing long-range de-
pendencies and results in expensive inference
time. We address these limitations by propos-
ing REXEL, a highly efficient and accurate
model for the joint task of document level
cIE (DoclE). REXEL performs mention de-
tection, entity typing, entity disambiguation,
coreference resolution and document-level re-
lation classification in a single forward pass to
yield facts fully linked to a reference knowl-
edge graph. It is on average 11 times faster
than competitive existing approaches in a sim-
ilar setting and performs competitively both
when optimised for any of the individual sub-
task and a variety of combinations of different
joint tasks, surpassing the baselines by an av-
erage of more than 6 F1 points. The combi-
nation of speed and accuracy makes REXEL
an accurate cost-efficient system for extracting
structured information at web-scale. We also
release an extension of the DocRED dataset to
enable benchmarking of future work on DoclE,
which will be available at https://github.
com/amazon-science/e2e-docie.

1 Introduction

Extracting structured information from unstruc-
tured text is a critical step for many downstream
NLP tasks like knowledge graph construction
(Muhammad et al., 2020), question answering
(Yao and Van Durme, 2014), knowledge discov-
ery (Trisedya et al., 2019), and text summarization

“Work completed whilst at Amazon Alexa Al

(Genest and Lapalme, 2012). In cIE, this is defined
as extracting an exhaustive set of (subject, relation,
object) triples, or facts, from unstructured text that
are fully linked, i.e., consistent with a predefined set
of entities and relations from a knowledge graph
(KG) schema. cIE can be further decomposed into
the subtasks: mention detection (MD), entity typ-
ing (ET), entity disambiguation (ED), and relation
classification (RC).

Traditionally, cIE is done by combining these
subtasks sequentially (Nasar et al., 2021), which
involves the use of separate and often different
models for each task to yield facts that can be in-
gested into a KG. However, such pipeline architec-
tures are prone to error accumulation from each
component leading to significant deterioration of
the overall performance (Miwa and Sasaki, 2014;
Trisedya et al., 2019; Mesquita et al., 2019). Addi-
tionally, pipeline architectures assume a one-way
dependency between the subtasks, disregarding the
dependencies among components that could effec-
tively boost performance. For instance, while ED
typically informs RC, recent works have demon-
strated that RC information can also be effectively
utilised for the ED task (Ayoola et al., 2022a),
and help preventing issues such as popular entities
overshadowing less common entities (Provatorova
et al., 2021). Consequently, various joint/end-
to-end (E2E) systems have been proposed to ad-
dress this issue by jointly performing NER and RC
(Miwa and Sasaki, 2014; Pawar et al., 2017). This
joint task is often referred to as relation extraction
(RE). However, these approaches do not address
ED and thus do not yield facts fully linked to a KG.

Another drawback of existing approaches for
cIE is that they mostly operate at sentence level,
i.e., perform RC between two entities from a sin-
gle sentence at a time (Cai et al., 2016; Han et al.,
2018; Feng et al., 2018). Thus, they capture limited

119

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 119-130
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/amazon-science/e2e-docie
https://github.com/amazon-science/e2e-docie

—

[Fact extraction (Thurman, born in, New York)

((zmn) (v] [)

\ PER Q302166

ET final predictions ‘ \ ET predictions (ED) |
g Y

Entity Typing

Entity Disambiguation

Coreference Resolution

f RC final predictions ‘

‘ RC predictions ‘
RC predictions (ED) ‘ (Coref)

3 3

Cross-attention transformer

Top-k pruning

[) |]

))] J

Mention Encoder

graduated from Columbia University in 1835. [...]

was elected as a Whig to the Thirty - first

tohn Richardson Thurman (October 6, 1814 — July 24, 1854) was a U.S. Representative from New York. Born in

Congress (March 4, 1849 — March 3, 1851).

Figure 1: REXEL model architecture illustrating the interaction between different components. The model takes the
raw text as input and yields fully linked facts expressed across a document.

sentence-level context and miss the facts that are
expressed between entities across sentences. This
severely limits the amount of information that can
be extracted from the web. According to (Yao etal.,
2019), 40.7% of the facts in a document can only be
determined at the document level. Also, sentence-
level approaches require a forward pass for each
sentence, often leading to higher inference times,
which makes them inefficient for web-scale appli-
cations. In contrast, document-level RC is compu-
tationally more efficient as it extracts triples over
an entire document in a single forward pass. To
address these issues, several models have been pro-
posed for document-level RC (Zeng et al., 2020;
Wang et al., 2020; Xu et al., 2021; Zhang et al.,
2021) but they do not perform the remaining sub-
tasks needed for DoclE.

To address the above problems we introduce
REXEL, a computationally efficient E2E model
for DoclE. REXEL takes unstructured text
and extracts facts which are fully linked to
a reference KG in a single forward pass per
document. It has a modular architecture in which
the various subtasks for DoclE inform each
other by leveraging intermediate embedding
representations. Thus, the proposed framework
facilitates deployment not only for DoclE but
also for various combinations of its 5 subtasks
(e.g., use MD and ET only for NER). The
combination of modularity, fast inference speed
and high accuracy makes REXEL suitable for
performing DoclE or its sub-tasks at industry scale.

To summarize, our contributions are as follows:

1. We introduce REXEL, a unified E2E model
for DoclE, i.e., extracting facts at document
level fully linked to a reference KG in a single
forward pass per document.

2. We demonstrate that though REXEL is op-
timised for the E2E task of DoclE, it main-
tains a competitive edge with related work in
E2E RE setting and all its individual subtasks.
Specifically, REXEL improves upon the base-
lines for the E2E RE task by an average of >6
F1 points across datasets. When comparing
the performance of individual subtasks, we ob-
serve that REXEL outperforms the baselines
by an average of 6 F1 points.

3. We also demonstrate that when compared to
other E2E RE models, in the same setting
REXEL is on average 11 times faster.

4. Finally, we release an extension of the Do-
cRED (Yao et al., 2019) dataset released
by (Eberts and Ulges, 2021) augmented with
silver standard labels for entity linking to facil-
itate benchmarking of future work on DoclE.
We name this extension DocRED-IE.

2 Related work

2.1 Closed Information Extraction (cIE)

Several E2E systems have been proposed for clE
(Liu et al., 2018; Trisedya et al., 2019; Sui et al.,
2021; Josifoski et al., 2022). However, all these

120

methods are sentence-level architectures and there-
fore they inherently lose triples expressed across
sentences. They are also prohibitively expensive
for deployment at web-scale since the inference
compute increases linearly with the number of sen-
tences requiring a forward pass for each sentence.

In comparison, DoclE is a significantly more
challenging task as it involves capturing long-range
dependencies effectively to extract relations be-
tween entities which are further apart from each
other in the text. Scaling cIE to document level
from sentence level also requires an additional sub-
task of coreference resolution (Coref), i.e., group
all the different mentions in the document referring
to the same entity.

2.2 Document-level Relation Extraction
Various E2E models have been proposed that com-
bine the task of NER and document-level RC in
a joint setting (Eberts and Ulges, 2021; Zaporo-
jets et al., 2021). Other works such as REBEL
(Huguet Cabot and Navigli, 2021) and KBIE (Ver-
linden et al., 2021) have proposed using additional
data like the Wikipedia text, hyperlinks and Wiki-
data KG to further improve RE performance. How-
ever, these approaches do not perform ED and
hence do not yield facts fully linked to a reference
KG. Thus, ingesting the output of such models in
a KG necessitates a separate ED model to link the
extracted entities. This again results in a pipeline
architecture between RE and ED models.

To the best of our knowledge, REXEL is the first
E2E model to extract facts which are fully linked to
a reference KG, at document level and address the
task of DoclE. Also, while relation classification
(RC) is also usually referred to as relation extrac-
tion (RE), the E2E literature has adopted different
conventions. For sake of consistency with prior
works (Eberts and Ulges, 2021; Miwa and Bansal,
2016), we use RC to refer to the extraction of re-
lations between entity pairs and RE to refer to the
E2E task including MD, ET, RC, and Coref.

3 REXEL

We introduce REXEL (Relation Extraction and
Entity Linking), a novel end-to-end model for Do-
clE. REXEL extracts triples fully linked to a KG
by jointly performing MD, ET, document level RC,
Coref and ED in a single forward pass. It com-
bines the 5 subtasks in a unified architecture via
intermediate embedding representations. This fa-
cilitates each task to inherently benefit from each

other, significantly boosting task accuracy, extract-
ing facts expressed across sentences, and maintain-
ing computational efficiency for web-scale deploy-
ment. Figure 1 illustrates the architecture and each
module is detailed in following sections.

3.1 Task Formulation

Given a KG with a set of entities
E = {e1,e2,...,¢eg}, entity types
T = A{ti,t2,...,tp}, and relations R =
{7“1,7“2, ce 7T\R|}, let X = {xl,xg, .. .,l‘|X‘} be

the sequence of tokens in a document(d). The
goal of DoclE is to extract linked facts, i.e.,
G: X —- GwithG C EF x R x E being a set
of triples. This is done by (i) MD: extracting
mention spans resulting in a list of subsets of X,
(ii) Coref: clustering mentions into entities, (iii)
ET: extracting the entity types for each cluster, (iv)
RC: extracting relations by mapping entity pairs
{e1, e2} to relations r € R and (v) ED: assigning
each cluster of mentions to a corresponding KG
entity e € E.

3.2 Mention Detection (MD)

We encode the tokens x; in the input text docu-
ment using RoOBERTa (Liu et al., 2019) and use
the contextualised token embeddings h; from the
final layer of the encoder for the token x;. The
tokens are encoded using the BIO tagging format
(Ramshaw and Marcus, 1995). We then train a lin-
ear layer to perform token classification from the
token embeddings h; using cross-entropy loss £,
with respect to the gold token labels. We obtain
mention embeddings m; for each mention m; by
average pooling the contextualised token embed-
dings (h;) for all tokens in a mention from the final
transformer layer. The output of this module is a
list of mention spans present in the input text along
with their contextualised embeddings.

3.3 Entity Typing (ET)

Given a fixed set of types ¢t € T', the ET module is
trained by applying a linear layer f; followed by a
sigmoid activation to the mention embedding m; to
predict an independent unnormalised score for each
type ¢ for each mention m;. REXEL produces two
independent predictions for ET. The ET,4 layer
predicts fine-grained Wikidata types (1.3k) that are
later used to inform ED. We do not train on this ex-
plicitly, but via ED (see Section 3.6). The ET,q
layer predicts the type(s) for each mention accord-
ing to the ones permissible within the target dataset
for the target task. We train this module from the

121

gold entity types using binary cross-entropy loss
Ly corresponding to ET'f;y,, predictions. There
are two separate predictions for ET as the target
dataset may not have as many or the same fine
grained types. Fine grained entity types provide
critical additional information that can inform ED
and thus boost overall performance. We aggregate
predictions at entity cluster level by selecting the
most frequent type among the cluster mentions as
the entity type. REXEL supports both single and
multiple type classification.

3.4 Relation Classification (RC)

REXEL extracts relations at mention-level using
a cross-attention transformer and uses the corefer-
ence resolution predictions to map the extracted
relations to the entity-level. We employ top-k prun-
ing from (Lee et al., 2018) to extract relations only
for the & mention pairs with highest probabilities
of being connected by a relation. This probability
is computed for each mention pair using a bilin-
ear layer. This first stage results in less accurate
but more efficient predictions and is referred to as
the coarse stage. However, in REXEL the coarse
stage is adopted for both: relation classification
and coreference resolution. The coarse stage is
then followed by the fine stage, which extracts rela-
tions between surviving mention pairs. The result-
ing coarse-to-fine RC module yields competitive
accuracy with high efficiency. Similar to the ET
module, we have multiple prediction layers for RC:
RCg4, which predicts the Wikidata relations and
is used as an input to the ED module, RCopcy,
which predicts the pairwise coreference scores for
the Coref module, and RC't;p,q;, Which is the fi-
nal prediction layer on the target relations of the
given dataset. This module is trained from the gold
mention spans, gold entity types, gold entity IDs
and gold clusters using binary cross-entropy loss
L, with respect to the gold triples on the RC ',
prediction layer only.

3.5 Coreference Resolution (Coref)
This module has two stages: the first predicts pair-

wise coreference scores for each mention pair that
remains after top-k pruning, and the second uses
pair predictions to form entity clusters by using av-
erage linkage clustering based on a given distance
threshold. Other approaches like greedy clustering,
complete linkage and clustering via Wikidata iden-
tifiers resulted in similar performance. More details
can be found in Appendix A. The first stage can be
expressed as a relation classification task with one

relation that determines whether two mentions are
coreferent to each other. Hence, we delegate this
stage to the RC cross-attention transformer. The
training is done with respect to the predicted coref-
erence scores only. We train this module from the
pairwise scores of the gold mention spans using bi-
nary cross-entropy loss L. with respect to the gold
clusters. The output of this module is a group of en-
tity clusters in a document and their corresponding
mentions.

3.6 Entity Disambiguation (ED)
REXEL links each entity mention in the text to

a unique Wikidata ID using a training procedure
similar to (Ayoola et al., 2022a). The ED module
takes as input the mention embeddings my;, entity
type predictions for ED teq and RC predictions for
ED rqq. We also add a global entity prior P(e|m)
(PEM score), which is the probability of an en-
tity given the mention text and is obtained from
hyperlink count statistics as done in (Raiman and
Raiman, 2018). We train this module from gold
mention spans and gold entity types teq by using
binary cross-entropy loss £; with respect to the
gold entity IDs. Note that we do not train on E7;4
and RC.4 explicitly, instead, the training for those
predictions is done using the signal from £, only.
REXEL performs ED for each mention and we get
the entity IDs at the cluster level (i.e., when mul-
tiple mentions are clustered together by coref) by
taking the majority vote of the entity IDs for all the
mentions in the cluster.

3.7 Optimization and Inference
REXEL is optimised using a weighted sum of the

module-specific losses with fixed weights, which
are tunable hyperparameters as follows:

L=MLy+ XLy + 3L+ MLe+ AL, (1)

When training on a single subtask, the weights
for all the other task losses are set to zero. When
training for the RE task, A3 is set to zero. For
individual subtask inference, we use gold labels
for the other tasks. For the RE inference, we use
the predicted mention spans, predicted entity types,
predicted coref clusters and predicted entities as in-
put. Training environment details are in Appendix
B.

4 Experiments

4.1 Datasets

We report performance on DWIE (Zaporojets et al.,
2021), the only dataset available supporting Do-

122

cIE. We also augment the end-to-end DocRED
split (DocRED-E2E) (Eberts and Ulges, 2021),
which does not support annotations for ED, with
silver annotations for entity links, and release the
resulting dataset for future works. For this, we
use the SoTA EL model ReFinED (Ayoola et al.,
2022b) to link the mention spans against Wikidata
and report DoclE performance on the DocRed-E2E
split augmented with these entity links. We also
report performance on DocRED-E2E for the E2E
RE task, which allows comparison with existing
approaches. More details on the datasets can be
found in Appendix C.

4.2 [Evaluation settings

4.2.1 Subtask

In the Subtask training setting, we train and eval-
uate each of the 5 DoclE subtasks independently
as mentioned in 3.7. This setting measures the
ceiling performance of each component. We re-
port these metrics to understand the impact of the
performance of each component as we move from
independent subtask training to E2E RE and E2E
DoclE training settings.

4.2.2 Relation Extraction (RE)
Despite the recent works on the joint entity and re-
lation extraction task for document-level RE, there
has been a lack of a cohesive task definition and
consistent baselines, leading to discrepancies in
dataset usage and evaluation procedures, as dis-
cussed in (Taillé et al., 2021). We follow the hard-
metric setting to evaluate the E2E RE task in line
with previous works (Eberts and Ulges, 2021; Za-
porojets et al., 2021). More precisely, a triple is
considered as correct if the relation type and the
entity clusters associated to the head and tail en-
tities are correct. An entity cluster is correct if
the clustered mentions and the entity type match
a ground truth entity cluster. Finally, a mention is
correct if it matches exactly a ground truth mention
span. This evaluation setting penalizes clustering
mistakes, i.e., if a given predicted entity cluster is
incorrect, all the gold triples associated with all the
gold entity clusters which have at least one mention
span belonging to that predicted entity cluster will
not be resolved correctly. Other metrics have been
proposed to alleviate the constraint on predicted
clusters, such as the soft metric in (Zaporojets et al.,
2021).

While DocRED is restricted to one type per en-
tity, DWIE allows multiple types per entity. Hence,

for DWIE we aggregate mention-level predictions
to form the entity-level types predictions by taking
the union of the predicted types of the mentions in
the cluster in agreement with previous work (Za-
porojets et al., 2021; Verlinden et al., 2021).

4.2.3 Document level closed Information
Extraction (DoclE)

As document-level RE does not link entities, we
extend the evaluation setting to address the joint
DoclE task. We introduce the DoclE hard metric
for the E2E task: A triple is correct if the relation
type and the entity clusters associated with the head
and tail entities are correct. An entity cluster is
correct if the clustered mentions, the entity type
and the entity identifier match a ground truth entity
cluster. Finally, a mention is correct if it matches
exactly a ground truth mention span.

4.2.4 Inference Speed
Since we are pioneering the task of DoclE, we

do not have a related work to compare REXEL’s
performance in this setting. Thus, we compare
REXEL’s inference speed with JEREX (Eberts and
Ulges, 2021) and DWIE (Zaporojets et al., 2021)
in the RE setting. We use the code released by
the authors to report the inference time. Both of
these works support inference only for their re-
spective datasets, i.e., DocRED-E2E and DWIE
respectively.

5 Results

We summarize all results from single runs in Table
1. Note that DWIE and KBIE (Verlinden et al.,
2021) report performance on NER instead of MD
and ET separately. Therefore, they are only com-
parable for Coref and RC in the subtask setting. In
E2E RE and E2E DoclIE settings, we also report
REXEL’s performance on NER, which requires
both the mention span and the entity type to be
correct. We follow (Zaporojets et al., 2021) for
the scoring mechanism for evaluating NER perfor-
mance. We demonstrate that the performance of
REXEL on joint tasks (RE and DoclE) is on par
with task-specific learning, while being more effi-
cient due to shared parameters and training steps.

5.1 Subtask

In order to assess the performance of each compo-
nent of REXEL, we train and evaluate each sub-
task individually on DWIE and DocRED-EZ2E split.
When trained on individual subtasks only, REXEL
improves upon the SOTA model on DWIE by an

123

Training Setup Dataset Model Subtasks E2E
MD ET NER ED Coref RC

Subtask DWIE DWIE N/A N/A 87.1 N/A 91.1 71.3 N/A
REXEL 96.37 93.53 N/A 9322 96.05 74.89 N/A

DocRED JEREX 92.66 95.29 N/A N/A 9046 59.76 N/A

REXEL 90.56 96.01 N/A 86.74 9093 60.10 N/A

RE DWIE DWIE N/A N/A 88.8 N/A 91.6 N/A 50.4
KBIE N/A N/A 75 N/A 91.5 N/A 52.1

REXEL 95.88 93.00 90.59 N/A 9512 68.3 65.8

DocRED JEREX 9299 80.10 N/A N/A 82.79 N/A 40.38

KBIE N/A N/A 71.8 N/A 83.6 N/A 25.7

REXEL 90.68 95.78 87.49 N/A 89.02 57.38 39.06

DoclE DWIE REXEL 9535 9276 89.39 91.19 93.01 62.04 53.77
DocRED* REXEL 90.1 95.63 86.19 86.23 86.59 53.63 27.96

Table 1: Model evaluations under various training setups evaluated individually on each subtask and the end-to-end
(E2E) task. N/A denotes that the model does not support evaluation for that task. The best performing models are
marked in bold and the second best are underlined. For DoclE training, we report the first numbers for the two
datasets. * DocRED end to end split augmented with ReFinED (Ayoola et al., 2022b) entity links.

average of 4 F1 points while surpassing the SOTA
on DocRED-E2E on all subtasks except MD. Note
that JEREX and DWIE are not only the SoTA in
the RE setting but also in the subtask setting.

5.2 Relation Extraction (RE)

In the E2E RE setting, we compare with three other
related works: JEREX (Eberts and Ulges, 2021),
DWIE (Zaporojets et al., 2021) and KBIE (Verlin-
den et al., 2021). JEREX and DWIE report perfor-
mance on DocRED-E2E and the DWIE dataset for
RE, as well as performance on each subtask, thus
being directly comparable with our setting. On the
other hand, KBIE only reports performance when
trained for the E2E task. We do not compare with
REBEL (Huguet Cabot and Navigli, 2021) since
their E2E evaluation is less strict and thus is not a
fair comparison to JEREX and REXEL '.

We find that REXEL outperforms the baselines
on DWIE for all the individual subtasks and im-
proves upon the SoTA on the E2E RE task by al-
most 14 F1 points. However, on DocRED-E2E
even though REXEL improves upon JEREX for
the subtasks by an average of >6 F1 points the im-
provement does not translate into a corresponding
boost in E2E RE task. This can be attributed to
the false negatives prevalent in the dataset (64.6%),
which penalize the model due to missing annota-
tions (Tan et al., 2022), significantly hampering the
E2E hard metric. Also, while subtask training set-
ting involves a single task-specific loss, the E2E RE
setting involves multiple losses (cf. equation (1)),
which dilutes the training effort over all the sub-

"https://github.com/lavis-nlp/jerex/issues/15

tasks. This explains the slight drop in the subtasks’
performance when comparing models trained in
the E2E RE setting against models trained in the
subtask setting. However, the E2E approach yields
better E2E performance than the pipeline approach
as it does not suffer from the propagation of errors.

5.3 Document level closed Information

Extraction (DocIE)
For both datasets, we observe that REXEL is able

to scale from the E2E RE to E2E DoclE by in-
corporating ED. For all the subtasks we observe
comparable performance between models trained
for RE and DoclE, indicating that adding ED to
the joint task setting does not deteriorate REXEL’s
performance on individual subtasks.

On the other hand, we observe a significant drop
in the E2E task because of the additional criterion
in the proposed hard metric for DoclE. In this set-
ting, a cluster is considered incorrect if its corre-
sponding entity identifier is incorrect, thus all the
triples extracted for such a cluster are considered
incorrect.

5.4 Inference Speed

We report the comparison of inference speed across
datasets in Table 2. REXEL is on average al-
most 11 times faster than the baselines (19x on
DocRED and 3x on DWIE) in the E2E RE setting,
i.e., without performing ED. This can be explained
by our coarse-to-fine approach, which reduces train-
ing/inference time while still preserving compet-
itive accuracy. Even in the E2E DoclE setting,
REXEL remains faster than the baselines while

124

performing the additional task of ED.

DocRED DWIE

JEREX 344 N/A
DWIE N/A 82
REXEL (RE) 18 27
REXEL (DocIE) 90 74
Table 2: Inference speed comparison in seconds.

The best values are in bold and the second best are
underlined. N/A denotes that the code release does not
support inference on the target dataset.

6 Conclusion

In this work we introduce REXEL, a highly effi-
cient and accurate end-to-end model for document-
level closed information extraction. REXEL ex-
tracts facts from unstructured text which are fully
linked to a reference KG for an entire document
in a single forward pass. We further demonstrate
that REXEL is 11 times more computationally ef-
ficient than baselines in the same setting, while
improving upon the existing baselines on E2E RE
by an average of 6 F1 points across datasets and
across different task settings. Specifically, we im-
prove upon the state-of-the-art on DWIE for E2E
RE by almost 14 F1 points. We report the first
numbers for DoclE on DWIE and DocRED-E2E
augmented with entity links. We also release the
latter dataset to facilitate benchmarking of future
works on DoclE. Thus, the combination of accu-
racy, speed and scale makes REXEL suitable for
being deployed to extract fully linked facts from
web-scale unstructured data with state-of-the-art
accuracy and an order of magnitude lower cost than
existing approaches.

Limitations

One limitation of our work is that REXEL currently
supports fact extraction for entities only and will
miss the facts for relations where either the subject
or object is a string literal. We leave the extension
of REXEL to extract string literal-based facts for
future work. Another limitation is that, for a given
document, the context length of REXEL is limited
to the maximum number of tokens that can be en-
coded by the base transformer, which is RoOBERTa
(Liu et al., 2019) in our case (see Section 3.2). This
implies that the model cannot capture triples that in-
volve very long-range dependencies that go beyond
the maximal context length. In practice, we find
that this problem is negligible in our case as only a
few triples fall into that category for both DocRED
and DWIE. However, this might have a stronger

impact for other applications. In addition, this limi-
tation is not specific to the REXEL architecture per
se but is inherent to the transformer used. Finally,
while the proposed DoclE hard metric provides a
common ground for future benchmarks on DoclE,
it may not fully align with some industrial applica-
tions where missing a few mentions within entity
clusters is not critical. In such contexts, the hard
metric would provide a lower bound on the per-
formance, and other metrics can be considered for
better alignment with specific application require-
ments.

References

Tom Ayoola, Joseph Fisher, and Andrea Pierleoni.
2022a. Improving entity disambiguation by reason-
ing over a knowledge base. pages 2899-2912.

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022b.
ReFinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track, pages 209—
220. Association for Computational Linguistics.

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022c.
ReFinED: An efficient zero-shot-capable approach
to end-to-end entity linking. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Track, pages
209-220, Hybrid: Seattle, Washington + Online. As-
sociation for Computational Linguistics.

Rui Cai, Xiaodong Zhang, and Houfeng Wang. 2016.
Bidirectional Recurrent Convolutional Neural Net-
work for Relation Classification. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 756765, Berlin, Germany. Association for
Computational Linguistics.

Markus Eberts and Adrian Ulges. 2021. An End-to-
end Model for Entity-level Relation Extraction using
Multi-instance Learning. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 3650-3660, Online. Association for Computa-
tional Linguistics.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xi-
aoyan Zhu. 2018. Reinforcement Learning for Rela-
tion Classification From Noisy Data. Proceedings of
the AAAI Conference on Artificial Intelligence, 32(1).

Pierre-Etienne Genest and Guy Lapalme. 2012. Fully
abstractive approach to guided summarization. In

125

https://doi.org/10.18653/v1/2022.naacl-main.210
https://doi.org/10.18653/v1/2022.naacl-main.210
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/P16-1072
https://doi.org/10.18653/v1/P16-1072
https://doi.org/10.18653/v1/2021.eacl-main.319
https://doi.org/10.18653/v1/2021.eacl-main.319
https://doi.org/10.18653/v1/2021.eacl-main.319
https://doi.org/10.1609/aaai.v32i1.12063
https://doi.org/10.1609/aaai.v32i1.12063

Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 354-358.

Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and
Peng Li. 2018. Hierarchical Relation Extraction with
Coarse-to-Fine Grained Attention. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2236-2245, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Pere-Lluis Huguet Cabot and Roberto Navigli. 2021.
REBEL.: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370-
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenlE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626—4643,
Seattle, United States. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-Order Coreference Resolution with Coarse-
to-Fine Inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687-692, New Orleans, Louisiana. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Yue Liu, Tongtao Zhang, Zhicheng Liang, Heng Ji,
and Deborah L. McGuinness. 2018. Seq2rDF: 2018
ISWC Posters and Demonstrations, Industry and
Blue Sky Ideas Tracks, ISWC-P and D-Industry-
BlueSky 2018. CEUR Workshop Proceedings, 2180.

Filipe Mesquita, Matteo Cannaviccio, Jordan Schmidek,
Paramita Mirza, and Denilson Barbosa. 2019. Knowl-
edgeNet: A Benchmark Dataset for Knowledge Base
Population. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 749-758, Hong Kong, China. Association for
Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-End
Relation Extraction using LSTMs on Sequences and
Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1105-1116,
Berlin, Germany. Association for Computational Lin-
guistics.

Makoto Miwa and Yutaka Sasaki. 2014. Modeling Joint
Entity and Relation Extraction with Table Represen-
tation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1858—1869, Doha, Qatar. Associa-
tion for Computational Linguistics.

Igra Muhammad, Anna Kearney, Carrol Gamble, Frans
Coenen, and Paula Williamson. 2020. Open Informa-
tion Extraction for Knowledge Graph Construction.
In Database and Expert Systems Applications, Com-
munications in Computer and Information Science,
pages 103-113, Cham. Springer International Pub-
lishing.

Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran
Malik. 2021. Named Entity Recognition and Rela-
tion Extraction: State-of-the-Art. ACM Computing
Surveys, 54(1):20:1-20:39.

Sachin Pawar, Pushpak Bhattacharyya, and Girish Pal-
shikar. 2017. End-to-end Relation Extraction using
Neural Networks and Markov Logic Networks. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 818-827,
Valencia, Spain. Association for Computational Lin-
guistics.

Vera Provatorova, Samarth Bhargav, Svitlana Vaku-
lenko, and Evangelos Kanoulas. 2021. Robust-
ness evaluation of entity disambiguation using prior
probes: the case of entity overshadowing. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10501-10510,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Jonathan Raiman and O. Raiman. 2018. Deeptype: Mul-
tilingual entity linking by neural type system evolu-
tion. In AAAL

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Dianbo Sui, Chenhao Wang, Yubo Chen, Kang Liu,
Jun Zhao, and Wei Bi. 2021. Set Generation Net-
works for End-to-End Knowledge Base Population.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9650-9660, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Bruno Taillé, Vincent Guigue, Geoffrey Scoutheeten,
and Patrick Gallinari. 2021. Separating retention

126

https://doi.org/10.18653/v1/D18-1247
https://doi.org/10.18653/v1/D18-1247
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
http://www.scopus.com/inward/record.url?scp=85055312888&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85055312888&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85055312888&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85055312888&partnerID=8YFLogxK
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.1007/978-3-030-59028-4_10
https://doi.org/10.1007/978-3-030-59028-4_10
https://doi.org/10.1145/3445965
https://doi.org/10.1145/3445965
https://aclanthology.org/E17-1077
https://aclanthology.org/E17-1077
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
https://doi.org/10.18653/v1/2021.emnlp-main.760
https://doi.org/10.18653/v1/2021.emnlp-main.760
https://doi.org/10.18653/v1/2021.emnlp-main.816

from extraction in the evaluation of end-to-end Re-
lation Extraction. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10438—-10449, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Qingyu Tan, Lu Xu, Lidong Bing, Hwee Tou Ng, and
Sharifah Mahani Aljunied. 2022. Revisiting docred
— addressing the false negative problem in relation
extraction. In Proceedings of EMNLP.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural Relation Extraction
for Knowledge Base Enrichment. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 229-240, Florence,
Italy. Association for Computational Linguistics.

Severine Verlinden, Klim Zaporojets, Johannes Deleu,
Thomas Demeester, and Chris Develder. 2021. In-
jecting Knowledge Base Information into End-to-End
Joint Entity and Relation Extraction and Coreference
Resolution. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1952-1957, Online. Association for Computational
Linguistics.

D. Wang, Wei Hu, E. Cao, and Weijian Sun. 2020.
Global-to-Local Neural Networks for Document-
Level Relation Extraction. EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Benfeng Xu, Quan Wang, Yajuan Lyu, Yong Zhu, and
Zhendong Mao. 2021. Entity Structure Within and
Throughout: Modeling Mention Dependencies for
Document-Level Relation Extraction. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(16):14149-14157. Number: 16.

Liyan Xu and Jinho D. Choi. 2022. Modeling Task Inter-
actions in Document-Level Joint Entity and Relation
Extraction. ArXiv:2205.01909 [cs].

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion Extraction over Structured Data: Question An-
swering with Freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 956-966,
Baltimore, Maryland. Association for Computational
Linguistics.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai
Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie
Zhou, and Maosong Sun. 2019. DocRED: A Large-
Scale Document-Level Relation Extraction Dataset.
arXiv:1906.06127 [cs]. ArXiv: 1906.06127.

Klim Zaporojets, Johannes Deleu, Chris Develder, and
Thomas Demeester. 2021. DWIE: An entity-centric

dataset for multi-task document-level information
extraction. Information Processing & Management,
58(4):102563.

Shuang Zeng, Runxin Xu, Baobao Chang, and Lei Li.

2020. Double Graph Based Reasoning for Document-
level Relation Extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1630-1640, On-
line. Association for Computational Linguistics.

Ningyu Zhang, Xiang Chen, Xin Xie, Shumin

127

Deng, Chuangi Tan, Mosha Chen, Fei Huang,
Luo Si, and Huajun Chen. 2021. Document-
level Relation Extraction as Semantic Segmentation.
arXiv:2106.03618 [cs]. ArXiv: 2106.03618.

https://doi.org/10.18653/v1/2021.emnlp-main.816
https://doi.org/10.18653/v1/2021.emnlp-main.816
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.48550/arXiv.2205.01909
https://doi.org/10.48550/arXiv.2205.01909
https://doi.org/10.48550/arXiv.2205.01909
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
http://arxiv.org/abs/1906.06127
http://arxiv.org/abs/1906.06127
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
http://arxiv.org/abs/2106.03618
http://arxiv.org/abs/2106.03618

A Coref clustering

We detail the different approaches used for corefer-
ence clustering in the following sections.

A.1 Entity Linking

We use entity disambiguation for predicting an
identifier for each mention, and then cluster men-
tions which have the same identifier. This approach
relies on external knowledge. Also, this approach
necessitates performing entity disambiguation to
obtain the identifiers, which may not always be part
of the task of interest, e.g., RE does not require ED.

A.2 Greedy approach

Let’s consider a set of mentions to cluster
(mi)1<;<n- The greedy approach comprises two
stages: first, forming a similarity matrix S €
RN*N from the pairwise scores, and second, form-
ing the cluster (C;);. The model is trained on the
pairwise scores only. The clusters are then defined
as follows:

Ci:={m; :Vj € [|]1,N]]
such that S; ; > ¢ and 2)
mj ¢ Cpforl <k <i—1}

where ¢ € [0, 1] is the coreference threshold and
Sii = 1Vi € [|1, N|]. This approach iteratively
considers each mention m; and constructs a cluster
based on the coreference scores between m; and
all other valid mentions, where a valid mention
is one that has not yet been assigned to a cluster.
Notably, each mention span is allocated to only
one cluster. However, it’s crucial to acknowledge
that the hard-metric constraint implies that any
absent mention within a cluster renders the entire
cluster invalid.

Hence, we explore an alternative approach that
relaxes the constraint of a mention belonging to
only one cluster. This variant, termed the Greedy
approach (multiple-clusters), allows mentions to be
assigned to multiple clusters simultaneously. Each
cluster is then defined as follows:

C; = {mj :Vj € Hl,N” such that Si,j > t}
(3)
A.3 Agglomerative Clustering

The agglomerative clustering approach also relies
on forming a similarity matrix, see Figure 2. The

COREF methods P R F1

Greedy 0.89 09 0.9
Greedy (multiple-clusters) 0.88 09 0.89
EL-based 0.88 0.89 0.89
Complete linkage 0.89 09 0.9
Average linkage 0.9 0.9 0.9

Table 3: Coref evaluation using different approaches

model is trained to predict pairwise coreference
scores rather than directly predicting the clusters.
Put simply, the coreference resolution component
of our model is optimized for predicting a simi-
larity matrix. Then, the second stage exploits that
matrix to form the clusters. The distance threshold
was chosen experimentally and we did not perform
hyperparameter tuning to optimize it. The coref-
erence performance may be further improved by
including the threshold in the training.

B Training Details

REXEL uses Hugging Face implementation of
RoBERTa (Wolf et al., 2019) and the model is op-
timised using Adam (Kingma and Ba, 2015) with
a linear learning rate schedule. Our main hyperpa-
rameters are represented in Table 4. Due to the high
computational cost of training the model, we did
not conduct an extensive hyperparameter search.
Training across datasets took approximately 24
hours on average on a single machine with 1 V100
GPU. REXEL has approximately 284M parameters
in its architecture setup.

Hyperparameter Value
learning rate Se-5
batch size 2
max sequence length 510
dropout 0.1
RC threshold 0.2
description embeddings dim. 300

training epochs 150

candidates 30

wikidata entity types 1400
mention transformer init. roberta-base
mention encoder layers 12

description transformer init. roberta-base
description encoder layers 2

RC encoder layers 4
RC coarse-to-fine k 2000
description tokens 32

AL A2, A3, Mg, As (0.1, 0.005, 0.1, 0.02, 0.775)

Table 4: Our model hyperparameters

128

Pairwise coreference scores
Similarity matrix

[John Richardson Thurman] [New York

—
e

[1.0] 0.1

[:] S - [John Richardson Thurman]
{ John Richardson Thurman] [New York] 0.1

New York
(o)

Coreference scorer layers

0
9

Cross-attention transformer

Top-k pruning

[John Richardson Thurman] [New York]

(CNewvorkciy J

J
—
(S

Bidirectional Transformer

) graduated from Columbia University in 1835. [...]
Congress (March 4, 1849 — March 3, 1851).

(e o <)

John Richardson Thurman (October 6, 1814 —July 24, 1854) was a U.S. Representative from New York. Born in
was elected as a Whig to the Thirty - first

—

Figure 2: Architecture of the Coreference Resolution module

C Datasets

C.1 DocRED and DWIE

The DocRED dataset was constructed from
Wikipedia documents, whereas DWIE was con-
structed from news articles. DocRED and DWIE
both comprise document-level and sentence-level
facts, and they are both annotated at entity-level,
i.e., facts are reported between entity clusters made
of several mentions, which motivates the additional
coreference resolution step for extracting relations.
Also, they both require different types of reasoning
to extract triples living across multiple sentences
(e.g, pattern recognition, logical or common-sense
reasoning). We report some statistics on these
dataset in Table 5. Another similarity is that both
datasets have a class-imbalance problem, which
increases the complexity of the RC task. More
precisely, 10 relations account for about 60% of
the facts in DocRED, while the 10 most frequent
relations account for more than 75% of the facts for
DWIE. In addition, DocRED-E2E contains some
duplicate annotations, which we remove at evalua-
tion stage following the convention introduced by
(Eberts and Ulges, 2021). Likewise, DWIE con-
tains some spurious empty clusters (see Table 6),
which we remove with their associated triples fol-
lowing the setting adopted by (Xu and Choi, 2022).

C.2 DocRED-IE

To facilitate future works on DoclE, we release
DocRED-IE, an extension of the DocRED (Yao
et al., 2019) dataset further equipped with entity
links, making it the second dataset to support

DocRED DocRED-E2E DWIE

Documents 5051 4008 802
Entities/doc 19.5 194 28.3
Facts/doc 13.2 12.5 27
Entity types 6 6 311
Relations 96 96 65

Table 5: Some statistics for DocRED, DocRED-E2E
and DWIE. # Entities/doc and # Facts/doc refer respec-
tively to the averaged number of entities and facts per
document.

Mentions/Entity DocRED-E2E (%) DWIE (%)
0 0 53

1 81.7 62.9

2 11.1 144

3 3.6 6.1

>4 3.6 11.3

Table 6: Proportion of mentions per entity cluster in
DocRED-E2E and DWIE.

129

Train Dev Test

Documents 3008 300 700
Entities 58708 5805 13594
Entities linked 45874 4025 10191
Facts 37486 3678 8787
Entity types 6 6 6

Relations 96 96 96

Table 7: Some statistics for DocRED-IE.

DoclE evaluation, thereby facilitating future
research on document-level closed information
extraction. DocRED-IE allows for training and
evaluation in a multitask setting encompassing
mention detection, entity typing, coreference
resolution, document-level relation classification,
and entity linking, along with any combination
thereof in a joint setting, such as the end-to-end
RE task and DoclE.

DocRED-IE builds on the end-to-end DocRED
release introduced in (Eberts and Ulges, 2021)
(DocRED-E2E). We employ a state-of-the-art en-
tity linking model (Ayoola et al., 2022c¢) to popu-
late each mention in DocRED-E2E. Statistics of
the DocRED-IE dataset are shown in Table 7.

C.3 Dataset Licenses

The DWIE dataset (Zaporojets et al., 2021) and the
code has been released under GNU GPLv3 license
2. Both the DocRED-E2E 3 dataset (Eberts and
Ulges, 2021) and DocRED-IE are released under
MIT licence.

“https://github.com/klimzaporojets/DWIE/blob/master/LICENSE
3https://github.com/lavis-nlp/jerex/blob/main/LICENSE

130

Conformer-Based Speech Recognition
On Extreme Edge-Computing Devices

Mingbin Xu*!, Alex Jin*!, Sicheng Wang', Mu Su', Tim Ng', Henry Mason',
Shiyi Han', Zhihong Lei', Yaqgiao Deng', Zhen Huang', Mahesh Krishnamoorthy'
'Apple
mingbinxu@apple.com, alexgbjin @ gmail.com,

{sicheng_wang,mu_su,tim_ng,hmason,shan26,zlei,yaqiao_deng,zhen_huang,maheshk } @apple.com

Abstract

With increasingly more powerful compute ca-
pabilities and resources in today’s devices, tra-
ditionally compute-intensive automatic speech
recognition (ASR) has been moving from the
cloud to devices to better protect user privacy.
However, it is still challenging to implement
on-device ASR on resource-constrained de-
vices, such as smartphones, smart wearables,
and other small home automation devices. In
this paper, we propose a series of model archi-
tecture adaptions, neural network graph trans-
formations, and numerical optimizations to
fit an advanced Conformer based end-to-end
streaming ASR system on resource-constrained
devices without accuracy degradation. We
achieve over 5.26 times faster than realtime
(0.19 RTF) speech recognition on small wear-
ables while minimizing energy consumption
and achieving state-of-the-art accuracy. The
proposed methods are widely applicable to
other transformer-based server-free Al appli-
cations. In addition, we provide a complete
theory on optimal pre-normalizers that numer-
ically stabilize layer normalization in any L,,-
norm using any floating point precision.

1 Introduction

Conformer-based (Gulati et al., 2020) end-to-end
(E2E) automatic speech recognition (ASR) (Yao
et al., 2021; Zhang et al., 2022) with streaming
capabilities (He et al., 2019) have made numerous
advances recently. This has paved the way for fully
neural speech recognition on resource-constrained
mobile devices. These systems also have numerous
advantages over conventional hybrid-HMM ASR
(Hinton et al., 2012).

First, the training procedure is simplified; the en-
tire system can be defined in a single deep learning
framework such as PyTorch or TensorFlow. Sec-
ond, recent work (e.g. Miao et al., 2019; Sainath

“Equal contribution.
"left Apple after paper submission.

et al., 2020; Li et al., 2020; Lei et al., 2023a,b)
shows E2E ASR systems can provide better Word-
Error-Rate (WER) when compared to conventional
hybrid ASR systems. Third, with the continued
advancement of deep learning applications, special
hardware accelerators such as NVIDIA’s Graph-
ics Processing Units (GPU), Google’s Tensor Pro-
cessing Units (TPU), and Apple’s Neural Engine
(ANE) are becoming increasingly popular. A fully
neural ASR system can best utilize such hardware
advancements and operate with high throughput
while minimizing energy consumption.

In this paper, we present optimizations to enable
fully E2E neural network based ASR system under
resource-constrained environments, such as smart-
phones, wearables, and home automation devices.
Operating fully offline saves cloud computing re-
sources while providing stronger user privacy (Xu
et al., 2023) guarantees, as the user’s speech does
not need to be transmitted outside of the device.

When targeting resource constrained devices,
hardware limitations present many challenges. We
describe several multidisciplinary solutions we ex-
plored, including memory-aware network transfor-
mation, model structural adjustment, and numeri-
cal optimizations to address inference stability. We
specifically focus on our efforts to take advantage
of the inference efficiency provided by specialty
hardware accelerators. We derive a theory to nu-
merically stabilize computation of layer normaliza-
tion on hardware accelerators. This stabilization
technique does not require model retraining and is
applicable to the computation of any L,-norm.

2 Prior Work

Improving the efficiency of the Transformer ar-
chitecture has seen substantial interest. Tay et al.
(2023) provides a comprehensive survey primarily
concentrating on model architecture improvements.
Kim et al. (2023) is another noteworthy resource

131
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 131-139
June 16-21, 2024 ©2024 Association for Computational Linguistics

which delves deeper into considerations specific
to hardware configurations. Linear Transformer
(Katharopoulos et al., 2020) is a key technique,
mitigating the computationally expensive softmax
function (Bridle, 1989) within the attention mecha-
nism. Softmax is also susceptible to numeric over-
flow problems when computing with limited nu-
merical range. Hoffer et al. (2018); Zhang and
Sennrich (2019) discuss alternative normalization
methods other than Batchnorm (Ioffe and Szegedy,
2015) and Layernorm (Ba et al., 2016) to improve
computational efficiency and numerical stability
in low precision environments. Principles for op-
timizing transformers have been described in Ap-
ple (2022) which target Apple hardware, but are
generally applicable for similar devices. Within
the domain of speech recognition, Squeezeformer
(Kim et al., 2022) stands as a seminal work focus-
ing on efficiency optimization, particularly with
respect to the Conformer architecture. The paper
uses depthwise separable convolution subsampling
to substantially save computation which is central
to MobileNet (Howard et al., 2017). It’s worth
mentioning that the majority of prior work focuses
on improving training efficiency by making mod-
ifications to the existing model architecture. As a
result, these changes require model retraining to
achieve efficiency improvements. In contrast, our
research primarily concentrates on post-training,
inference-only processes while avoiding model re-
training whenever possible.

3 Backbone Model

Our backbone model is built upon the Conformer
neural architecture (Gulati et al., 2020) as shared
acoustic encoder while connectionist temporal
classification (Graves et al., 2006) (CTC) and
Attention-based Encoder Decoder (AED) (Chan
et al., 2016) as dual decoders trained with multi-
task learning mechanism (Caruana, 1997).

Similar to prior work (e.g. Gulati et al., 2020),
we stack transformer (Vaswani et al., 2017) layers
and convolution (LeCun et al., 1998) layers alter-
natively to convert speech frames into high-level
representation. We use a relative sinusoidal posi-
tional encoding (Dai et al., 2019) into transformer
layers. Since our goal is to stream ASR on edge
devices, we adopt the chunk-based attention strat-
egy to better balance accuracy and dependency of
future audio frames (Yao et al., 2021; Zhang et al.,
2022).

4 Proposed Optimizations

4.1 Depthwise Separable Convolution

In the original Conformer encoder design (Gulati
et al., 2020), the subsampling module at the be-
ginning of the architecture is implemented using
two vanilla convolution layers. Our profiling shows
that vanilla convolution subsampling accounts for
32.8% of the overall computation and becomes
expensive on resource-constrained devices. To alle-
viate this bottleneck, we used the idea of depthwise
separable convolution (Howard et al., 2017; Chol-
let, 2017) as a drop-in replacement and reduced
this computational bottleneck to 4.0% whilst main-
taining the WER (Kim et al., 2022), making it par-
ticularly well-suited for inference tasks on mobile
devices.

While most of the research emphasizes depth-
wise separable convolution’s (DWS) computational
efficiency and small memory footprint, its effect
on reducing dynamic range of the outputs needs
more study. The possible reason could be that DWS
reduces the number of multiply-accumulate opera-
tions needed for the convolution filters, hence the
chance of bigger values. Low numeric range is of
great importance for model deployment on edge de-
vices equipped with hardware accelerators. Those
hardware often operate in low precision (e.g.fp16)
to ease the burden of storage and memory and are
exposed to overflow.

4.2 Memory-aware Graph Execution

In Apple’s white paper (Apple, 2022) on deploying
transformers on the Apple Neural Engine (ANE),
four principles are elaborated for optimizing trans-
formers on the ANE:
* Principle 1: Picking the Right Data Format
— The (B, C, 1, S) {Batch, Channel, 1, Se-
quence} data format is chosen for tensor
representation to align with the ANE’s 4D
and channels-first architecture.

* Principle 2: Chunking Large Intermediate Ten-
sors
— Utilize split and concatenation operations
to divide tensor into smaller chunks and in-
crease L2 cache residency.
* Principle 3: Minimizing Memory Copies
— Minimize the number of memory operations
on tensors such as reshape and transpose.
— Represent batch matrix multiplication oper-
ations using Einstein summation layers.

132

(bz,h,d, t2-t1)

keylache (bz,h,t1,d)

(bz,h,t1,d) (bz,h,d tl)\ m (bz,h,t1,t2)

(bz,h,t1,d) (bz,t1,h,d) (bz,t1,f) (bz,t1,f)

bz,tl1,f
gurren{(aunk

.—»(Tr‘anspose)—b(Cat)—b(Matmul)—P(Softmax)—»(Matmul)—P(Trunspose)—b(Reshape)—»(Linear)—-b

(bz,h,t1,d)
(bz,h,t2-t1,d) (bz,h,t2,d)
valtetache ’

(bz,t1,f)

(bz,t1,f) (bz,t1,h,d) (bz,h,t1,d)

—P(Linear)—b(Reshape)—»(Tmnspnse}»

(a) Common compute flow of MHA

(bz,f,1,t1)
(ozidok2-tLd xh (T convag C Split

(bz,t1,1,f) (bz,t1,1,d) x h

(bz,d,1,t1) x h

(bthld)xh

h

G

(bz,f,1,t1)

currentthunk

LTLsposi)—b einsum Spht

(bz,t1,1,f)

(bz,d,1,t2-t1) x h ((onde Split h (bz,t2,1,d) x h
valtetathe Bz, 6.1, tl) (bz,d,1,tD X

(bzdltz)xh

—> bz,t2,1,t1 h
1 einsum / $(Z) x (bz,f,1,t)

(bz,f,1,t)
Conv2d

(((_)"w
eilnsum
(bz,d,1,t1) x h

(b) ANE-optimized compute flow of MHA

Figure 1: bz, h and f refers to batch size, number of attention heads and feature dimension respectively, whereas
d = f/h. Firstly, we transposed the input and output of Conformer CTC, expanding the input tensor to the desired
shape of (B, C,1,5). This transformation allowed us to execute most layers on the hardware accelerator as per
Principle 1. Additionally, we extensively employed split and concatenation operations to enhance L2 cache residency
(Principle 2). To address the issue of undesired memory copies resulting from batched matrix multiplication layers,
we replaced them with Einstein summation operations (Principle 3).

* Principle 4: Handling Bandwidth-Boundness

— We should carefully benchmark the model
performance with various batch sizes and se-
quence lengths and make an informed deci-
sion about the cost of memory fetches when
we become bandwidth-bound on the ANE.

The key idea behind these 4 principles is being
aware of high cost invoked by memory copies be-
tween CPU and our hardware accelerator. In our
implementation, we adhered to the aforementioned
principles. We demonstrate how to rewrite multi-
head attention (MHA) in Figure 1 as an example.

More importantly, operations not supported by
hardware accelerator were positioned at the begin-
ning or end of the network graph, thus minimizing
copies in the memory.

4.3 Stability of Layer Normalization

Layer normalization has become the de facto nor-
malization method in transformers after Attention
is all you need (Vaswani et al., 2017). This normal-
ization technique is widely used in the Conformer
CTC architecture. On the other hand, modern hard-
ware accelerators for deep learning often exploit
lower precision compute paths in order to reduce
memory and boost computation throughput. In
the Conformer model, we observed that layer nor-
malization and hardware accelerators are often in
dissonance with each other. The reason is that skip
connections in the Conformer model join values
of varying magnitudes to a single tensor and this
often leads to numerical underflows or overflows

in low precision compute paths. For example, the
maximum value is 65504 in half precision floating
point format (IEEE, 2008). As a contrast, the max-
imum value is 3.4e38 in single precision floating
point format.

Ti = Tt H (Layernorm).)

Vo?+e

Equation (1) is a common realization of layer
normalization with respect to the Lo-norm, where
p and o? are the mean and variance of a vector
x = {x;]1 <i < n,z; € R}. A small € is added
at the bottom to avoid division by zero when o is
small. In order to compute the variance, however,
we need to sum the squares of each x;, which of-
ten leads to numerical instability in low precision
compute paths. To combat this issue, we employ a
technique called Mean Absolute Deviation (MAD)
normalization as a pre-normalizer. We note that
Layernorm is unaffected by global shifts or global
re-scaling of the x;’s and will from here on assume
w=0.

Definition 1. Given a low precision compute
path with a maximum value M, an optimal L,-
norm pre-normalizer for this compute path maps
any distribution of values to a bounded region,
[—D, D], where D is as large as possible with-
out causing overflows during the computation of
the Ly-norm.

We note that in the above definition, we explic-
itly set a constraint to make D as large as possible

133

to minimize the effect of underflow while staying
below our low precision limit.

Lemma 1. Let x = {z1, 22, ...,z } be a finite
vector of real numbers with)" | x; = 0, and let
S =37 |zi| be its Li-norm. Letp > 1 be a
real number. We have

n
Il = > foul? < 2177

i=1

and the maximum is attained when x =
{~3,0,...0,5}.

Proof. For the cases where n = 1 or p = 1, the
inequality above trivially holds.

Let’s now look at the case where n > 2 and
p > 1. Let x = {x1,x2, ..., 2, } be any vector of
real numbers and let S be its Li-norm. Consider
the vector v = {—%, 0,...,0, g} then

S
M =2(5

P = ol-pgp

Hence we attain the maximum value of ||x||}
when x = v. We will now show that v is indeed
the maximum.

First we note that since) ;" ; z; = 0, the sum
of all the negative x;’s must be exactly the opposite
of the sum of all the positive x;’s. Furthermore, we
can partition the x;’s into two sets, P and N, where

S
N : = {zj]lz; <0,z; € x},and in: -3
z;<0
P={z|z; > 0,2; € x} andZ 5
L= 1| Ty = U, T4 , >O:L-Z_2
Ti2

If we have exactly one non-zero value in both P and
N, then our vector must be v. WL.O.G., assume
we have two non-zero values, x; > xj, > 0 and
xj, T € P.

Claim: (xj + xp)P > ¥ + aj.

Let’s consider the LP-space on R? with p-norm
[[ullp == (lu1l? + uz|?)'/?. Lety = (x;,0) and
z = (0, z). Applying Minkowski Inequality gives
us r; + xp > (m +x)1/p and the claim holds.

Following What we have shown above, ||x][5 is
strictly increasing if we replace x; and x; with
xj* = 0 and zp*x = x; + 7. We note that this
replacement does not change the mean or the value
of S. By symmetry, the same holds for N. We
may continue this replacement process until there’s
only one non-zero value left in both N and P, and

since this process monotonically increases ||x|b,
we conclude that ||x|[b < 2!7PSP and we attain
the maximum when x = v. We will now use the
above lemma to prove a useful theorem.

Theorem 1. (Optimal Low Precision Pre-
normalizer Theorem). Let x = {x1,z2, ...,z } be
a finite vector of real numbers with | x; = 0.
Let M be the maximum value of our low precision
path. Then,

X
IR TEAS S

is an optimal L,-norm pre-normalizer for this
compute path.

Proof: From Lemma 1, we know that ||x|[h
attains the maximum value when x = v =
{—%,0, oy 0, g}, where S is the Li-norm of x.
Thus it suffices to prove that f(v) satisfies Defini-
tion 1.

17ty W—}jggjm —r

11‘Z|

= (-3 Y+ e
%(%)1/:0 i il
H P
Gamsnm) @
S S
— 2 b 2 b
B (;(2)1) +<§(z\24)1/”5)
®)
M M

As shown above, the largest possible value attain-
able after applying our pre-normalizer is precisely
M, the maximum value of our low precision path.
O

Corollary 1. f(x) = —2——
y f() 512 Zz 1| L‘

low precision pre-normalizer for La-norm on the
FP16 compute path.

On a practical note, the pre-normalizer we used
for our experiment was the one from Lemmas A1l
and A2 (B) with n = 512, which gave a slightly
lower normalization constant than what Corollary
1 suggests. This worked well in our setup because
attaining or even getting close to the maximum
value as stated in Lemma 1 requires atypical dis-
tribution of values with very few extreme values
and everything else being 0. This does not hap-
pen in practice, however, with the most common
distribution of values observed being Gaussian.

is an optimal

134

4.4 Scaling of Softmax

Another common constraint on hardware acceler-
ators is their limited support in complex opera-
tions. For example, hardware accelerators may
choose to omit support for exponential operations
(Hu et al., 2018; Li et al., 2018). In such cases,
we seek to implement such operations in memory
instead, namely using lookup tables (LUT). How-
ever, since LUTs are slow and expensive in terms
of memory consumption, we would like the tables
to be as small as possible. To this end, we intro-
duce a technique called conditional re-scaling for
softmax layers:

{ 0905 if maz(x) > 4096
X =

X otherwise.

To interpret the above transformation, we first
assume that our LUT gives reasonably accurate
approximation for z;’s below 4096. Next we take
FP16 as an example of our low precision compute
paths. We note that for values greater than 4096,
gaps between values jump in increments of 4 ac-
cording to IEEE 754-2008 (IEEE, 2008). Under
such scenario, the softmax function behaves simi-
larly to an argmax operation. Since gaps of values
between 2048 and 4096 jump in increments of 2,
the “argmax behavior" is largely preserved after
the re-scaling and exponentiation.

W RTF CPU RTF with Hardware Accelerator

1.2
1.1

3.86
1.03 1.01
1
0.9
0.8
0y 0687
0.6 0.53
05 e
04 0.327
03
02 0.19 0.19
01 0.041 0.037

0
conv2dé dws2d6 conv2dé dws2d6 dws2d6
iPhone XR iPhone XR Apple Watch S7 Apple Watch S7 Apple Watch S7
(no beam search)

Figure 2: Realtime Factor (RTF) of the original Con-
former CTC vs Depthwise Separable Convolution
(DWS) architectures. Blue and green bars represent
the RTF on CPU and hardware accelerators, respec-
tively. We also added a horizontal line at 0.5 to illustrate
required RTF for ASR to process in realtime.

5 Experiments and Results

5.1 Setup

The training corpus contains 17k-hour audio-
transcript pairs where the audio is randomly sam-
pled from anonymized virtual assistant queries and

M Energy CPU () Energy with Hardware Accelerator (J)

10000 5420 4380

399 379 307 301 204
I 14 I : I .

dws2d6 conv2d6 dws2d6 dws2d6
iPhone XR Apple Watch S7 Apple Watch S7 Apple Watch S7
(no beam search)

1000

g

3

1

conv2dé
iPhone XR

Figure 3: Energy consumption (in joules) for 200
queries of the original Conformer CTC vs Depthwise
Separable Convolution (DWS) architectures. Blue and
green bars represent the values on CPU and hardware
accelerators, respectively. The y-axis is in log scale.

human-annotated. We curate 20k queries in the
same manner to form an accuracy test set. We use
it to examine the accuracy of the optimizations.
200 queries are sampled from the accuracy test set
and serve as the performance test set. The audio
is decoded lightweightedly with CTC prefix beam
search so as to rule out as many computationally
intensive components as possible (Graves et al.,
2006). The data choice and the training recipe do
not play important role in the experiments because
the proposed methods focus on hardware acceler-
ation. The experiments are conducted on iPhone
XR and Apple Watch Series 7.

Two models (conv2d6 and dws2d6) are trained
with the same hyper-parameters but minor differ-
ence in subsampling strategy, summarized in Ap-
pendix A. Another two models (conv2d6x22 and
dws2d6x22) are trained with the same configura-
tion except that the input to the first Conformer
block is scaled by a factor of square root of the
10 dimension described in (Vaswani et al., 2017).
Additionally we decode greedily on watch to show
that encoder’s workload dominates.

5.2 Performance

High performance is critical in an ASR sys-
tem in order to process a user’s request in real
time. To benchmark the performance, we define
a notion of Realtime Factor (RTF) as RTF =
processingTime/audioDuration. It is clear
from the definition that lower RTF values are desir-
able. On real devices, users may often multitask or
the operating system may occasionally use comput-
ing resources in the background. Therefore an RTF
value of at least 0.5 is a reasonable target. As we
can see from Figure 2, models running on CPUs
do not meet our RTF target of 0.5 and the perfor-

135

6000 -

5000 -

model w/ model w/o

. . overflow . . overflow
multiplier multiplier
conv2d6x22 | 6.85% conv2d6 3.26%
dws2d6x22 6.85% dws2d6 0.25%

frequency
N
(=]
o
o
|
—

w
o
o
o

Table 1: Layernorm overflow statistics when the pro-

posed transform in Section 4.3 is not applied

2000 - (‘

1000 A

Nt

conv2d6x22

dws2d6x22
[conv2d6

dws2d6

100

1000

value

100000

Figure 5: Distribution of Layernorm’s input’s max value

in log scale.

700
dws2d6
600 1 conv2d6
500 A dws2d6x22
- conv2d6x22
2 400 4
GJ
=
g 3001 1
200
100 A)
h
w] “
0 — T
100 1000 10000 100000

value

Figure 4: Distribution of the max value between vanilla
convolution and DWS in log scale.

mance is substandard on the watch. By leveraging
deep learning hardware accelerators, we are able to
bring the RTF down by an order of a magnitude for
both model variants and achieve the performance
goal. On Apple Watch, it is 5.26 times faster.

5.3 Energy

Another important aspect to consider when execut-
ing an ASR system on device is the energy con-
sumption. Energy consumption is particularly vital
on mobile devices and wearables. We report the
energy reduction from using hardware accelerators
in Figure 3, where we again see reduction by an
order of a magnitude.

5.4 Numeric Stability

In Figure 4 we compare the distribution of max-
imum value of each chunk’s subsampling output
during a chunk-based decoding procedure between
vanilla convolution and DWS over the performance
test set. Empirically the dynamic range of DWS
subsampling is a few times smaller than that of the
vanilla 2D convolution. When we compare dws2d6
against dws2d6x22 or conv2d6 against conv2d6x22,
we observe one or two orders of magnitude dy-
namic range increase introduced by the square root
multiplier. Therefore, switching to DWS and re-
moving the multiplier are crucial to keep the sub-
sampling in low-precision-friendly area. Similarly,
we plot the distribution of maximum value of each
chunk for the Layernorms in Figure 5. Due to resid-
ual connections, the enlarged effect of the subsam-

model WER WER

(FP16) (FP32)
conv2d6 4.45% 4.41%
dws2d6 4.55% 4.56%
conv2d6x22 4.57% 4.47%
dws2d6x22 4.57% 4.49%
conv2d6x22 4.76% 4.72%
+ modified Softmax

Table 2: WER comparison of FP16 and FP32

pling output is cascading, 4i.e. large subsampling
output increases the chance of overflow in upper
layers. In Table 1, we collected overflow statistics
of the un-modified Layernorm.

5.5 Quality

We compare the WER of the models on various
settings and observed that (1) The difference be-
tween FP16 and FP32 is negligible, (2) DWS and
vanilla convolution yield almost same accuracy and
(3) feature scale-up from the transformer work is
not necessary. conv2dx22 has an almost overflow
dynamic range. We apply the softmax modifica-
tion in Section 4.4 on top of conv2dx22. There
is a slight WER regression. However, such WER
regression does not affect user experience when
WER is already low.

6 Conclusions

Through architectural and numerical optimizations,
we demonstrate that Conformer CTC ASR models
are capable of running on resource-constrained de-
vices such as mobile phones, and wearables. The
optimizations preserve recognition accuracy while
performing faster than real time and consuming
lesser energy. Our theoretical findings of tech-
niques in numerical stabilization is applicable to a
wide range of deep learning models and computing
tasks.

136

References

Apple. 2022. Deploying transformers on the apple
neural engine. https://machinelearning.apple.
com/research/neural-engine-transformers.
Accessed: 2023-06-18.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

John Bridle. 1989. Training stochastic model recogni-
tion algorithms as networks can lead to maximum
mutual information estimation of parameters. Ad-
vances in neural information processing systems, 2.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28:41-75.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP
2016, Shanghai, China, March 20-25, 2016, pages
4960-4964. IEEE.

Frangois Chollet. 2017. Xception: Deep learning with
depthwise separable convolutions. In 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 1800-1807. IEEE Computer Society.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2978-2988. Association for Computational Linguis-
tics.

Alex Graves, Santiago Ferndndez, Faustino J. Gomez,
and Jiirgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In Machine
Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsyl-
vania, USA, June 25-29, 2006, volume 148 of ACM
International Conference Proceeding Series, pages
369-376. ACM.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. In Interspeech 2020,
21st Annual Conference of the International Speech
Communication Association, Virtual Event, Shang-
hai, China, 25-29 October 2020, pages 5036-5040.
ISCA.

Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar,
Tan McGraw, Raziel Alvarez, Ding Zhao, David Ry-
bach, Anjuli Kannan, Yonghui Wu, Ruoming Pang,

Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li,
Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-Yiin
Chang, Kanishka Rao, and Alexander Gruenstein.
2019. Streaming end-to-end speech recognition for
mobile devices. In IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17, 2019,
pages 6381-6385. IEEE.

Geoftrey Hinton, Li Deng, Dong Yu, George E. Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. 2012. Deep neural
networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82-97.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry.
2018. Norm matters: efficient and accurate normal-
ization schemes in deep networks. Advances in Neu-
ral Information Processing Systems, 31.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861.

Ruofei Hu, Binren Tian, Shouyi Yin, and Shaojun Wei.
2018. Efficient hardware architecture of softmax
layer in deep neural network. In 2018 IEEE 23rd In-
ternational Conference on Digital Signal Processing

(DSP), pages 1-5. IEEE.

IEEE. 2008. Ieee standard for floating-point arithmetic.
IEEE Std 754-2008, pages 1-70.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by re-
ducing internal covariate shift. In International con-
ference on machine learning, pages 448—456. pmlr.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 5156-5165.
PMLR.

Sehoon Kim, Amir Gholami, Albert E. Shaw,
Nicholas Lee, Karttikeya Mangalam, Jitendra Ma-
lik, Michael W. Mahoney, and Kurt Keutzer. 2022.
Squeezeformer: An efficient transformer for auto-
matic speech recognition. In NeurlPS.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong,
Minwoo Kang, Ruohan Yan, Hasan Genc, Grace
Dinh, Qijing Huang, Kurt Keutzer, Michael W. Ma-
honey, Yakun Sophia Shao, and Amir Gholami. 2023.
Full stack optimization of transformer inference: a
survey. CoRR, abs/2302.14017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to

137

https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
http://arxiv.org/abs/1607.06450
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/IEEESTD.2008.4610935
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://papers.nips.cc/paper_files/paper/2022/hash/3ccf6da39eeb8fefc8bbb1b0124adbd1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/3ccf6da39eeb8fefc8bbb1b0124adbd1-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2302.14017
https://doi.org/10.48550/arXiv.2302.14017
https://doi.org/10.1109/5.726791

document recognition. Proc. IEEE, 86(11):2278—
2324,

Zhihong Lei, Ernest Pusateri, Shiyi Han, Leo Liu,

Mingbin Xu, Tim Ng, Ruchir Travadi, Youyuan
Zhang, Mirko Hannemann, Man-Hung Siu, and Zhen
Huang. 2023a. Personalization of ctc-based end-to-
end speech recognition using pronunciation-driven
subword tokenization. CoRR, abs/2310.09988.

Zhihong Lei, Mingbin Xu, Shiyi Han, Leo Liu, Zhen

Huang, Tim Ng, Yuanyuan Zhang, Ernest Pusateri,
Mirko Hannemann, Yaqiao Deng, and Man-Hung Siu.
2023b. Acoustic model fusion for end-to-end speech
recognition. In IEEE Automatic Speech Recognition
and Understanding Workshop, ASRU 2023, Taipei,
Taiwan, December 16-20, 2023, pages 1-7. IEEE.

Jinyu Li, Rui Zhao, Zhong Meng, Yanqing Liu,

Wenning Wei, Sarangarajan Parthasarathy, Vadim
Mazalov, Zhenghao Wang, Lei He, Sheng Zhao, and
Yifan Gong. 2020. Developing RNN-T models sur-
passing high-performance hybrid models with cus-
tomization capability. In Interspeech 2020, 21st An-
nual Conference of the International Speech Commu-
nication Association, Virtual Event, Shanghai, China,
25-29 October 2020, pages 3590-3594. ISCA.

Zhenmin Li, Henian Li, Xiange Jiang, Bangyi Chen,

Yue Zhang, and Gaoming Du. 2018. Efficient fpga
implementation of softmax function for dnn applica-
tions. In 2018 12th IEEE International Conference
on Anti-counterfeiting, Security, and Identification
(ASID), pages 212-216. IEEE.

Haoran Miao, Gaofeng Cheng, Pengyuan Zhang,

Ta Li, and Yonghong Yan. 2019. Online hybrid
ctc/attention architecture for end-to-end speech recog-
nition. In Interspeech 2019, 20th Annual Conference
of the International Speech Communication Associ-
ation, Graz, Austria, 15-19 September 2019, pages
2623-2627. ISCA.

Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan,

Ruoming Pang, Antoine Bruguier, Shuo-Yiin Chang,
Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-Cheng
Chiu, David Garcia, Alexander Gruenstein, Ke Hu,
Anjuli Kannan, Qiao Liang, lan McGraw, Cal Peyser,
Rohit Prabhavalkar, Golan Pundak, David Rybach,
Yuan Shangguan, Yash Sheth, Trevor Strohman,
Mirké Visontai, Yonghui Wu, Yu Zhang, and Ding
Zhao. 2020. A streaming on-device end-to-end
model surpassing server-side conventional model
quality and latency. In 2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020,
pages 6059-6063. IEEE.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-

zler. 2023. Efficient transformers: A survey. ACM
Comput. Surv., 55(6):109:1-109:28.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

138

you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Mingbin Xu, Congzheng Song, Ye Tian, Neha Agrawal,

Filip Granqvist, Rogier C. van Dalen, Xiao Zhang,
Arturo Argueta, Shiyi Han, Yaqgiao Deng, Leo Liu,
Anmol Walia, and Alex Jin. 2023. Training large-
vocabulary neural language models by private fed-
erated learning for resource-constrained devices. In
IEEE International Conference on Acoustics, Speech
and Signal Processing ICASSP 2023, Rhodes Island,
Greece, June 4-10, 2023, pages 1-5. IEEE.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,

Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen,
Lei Xie, and Xin Lei. 2021. Wenet: Production
oriented streaming and non-streaming end-to-end
speech recognition toolkit. In Interspeech 2021, 22nd
Annual Conference of the International Speech Com-
munication Association, Brno, Czechia, 30 August -
3 September 2021, pages 4054-4058. ISCA.

Biao Zhang and Rico Sennrich. 2019. Root mean

square layer normalization. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurlIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 12360-12371.

Binbin Zhang, Di Wu, Zhendong Peng, Xingchen Song,

Zhuoyuan Yao, Hang Lv, Lei Xie, Chao Yang, Fup-
ing Pan, and Jianwei Niu. 2022. Wenet 2.0: More
productive end-to-end speech recognition toolkit. In
Interspeech 2022, 23rd Annual Conference of the In-
ternational Speech Communication Association, In-
cheon, Korea, 18-22 September 2022, pages 1661—
1665. ISCA.

https://doi.org/10.1109/5.726791
https://doi.org/10.48550/ARXIV.2310.09988
https://doi.org/10.48550/ARXIV.2310.09988
https://doi.org/10.48550/ARXIV.2310.09988
https://doi.org/10.1109/ASRU57964.2023.10389720
https://doi.org/10.1109/ASRU57964.2023.10389720
https://doi.org/10.21437/Interspeech.2020-3016
https://doi.org/10.21437/Interspeech.2020-3016
https://doi.org/10.21437/Interspeech.2020-3016
https://doi.org/10.21437/Interspeech.2019-2018
https://doi.org/10.21437/Interspeech.2019-2018
https://doi.org/10.21437/Interspeech.2019-2018
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.1145/3530811
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/ICASSP49357.2023.10096570
https://doi.org/10.1109/ICASSP49357.2023.10096570
https://doi.org/10.1109/ICASSP49357.2023.10096570
https://doi.org/10.21437/Interspeech.2021-1983
https://doi.org/10.21437/Interspeech.2021-1983
https://doi.org/10.21437/Interspeech.2021-1983
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.21437/Interspeech.2022-483
https://doi.org/10.21437/Interspeech.2022-483

A Hyper Parameters

conv2d6x22 follows the recipe of (Yao et al.,
2021; Zhang et al., 2022), where the subsam-
pling output is multiplied by v/512 before be-
ing fed into the first conformer layer. The mul-
tiplier is originated from the transformer work
(Vaswani et al., 2017). Its hyper-parameters
are summarized in Table 3.

dws2d6x22 is produced by replacing vanilla con-
volutional subsampling with depthwise sepa-
rable convolution (DWS). Their difference is
compared in Table 4.

conv2d6 is indentical to conv2dx22 except that
multiplier is not applied.

dws2d6 is same as dws2dx22 but without applying
the multiplier.

hyper-parameters values
#layers (encoder) 12
#layers (decoder) 3
#heads 8
layer IO dimension 512

feedforward dimension 2048

Table 3: Common hyper-parameters in the experiments

model channel kernel stride group
15512 (33 (22 |1

com2d6 | 510 512 (5.5 (33) 1
15512 (33 (22 1

dws2d6 | 512 512 (550 (3.3) 512
5125512 (L) (L) 1

Table 4: Different subsampling hyper-parameters. Con-
volution in the same group are applied sequentially.

B Mean Absolute Deviation
Normalization on Example
Distributions

Definition Al. A desirable low precision pre-
normalizer maps a distribution of values to a
bounded region, |—C, C|, for some small C.

Lemma Al. f(x) = m
low precision pre-normalizer for uniform distribu-
tions.

Proof:: suppose X ~ unif[—L,L] and x is a
vector of z;’s sampled from X. Consider the limit
of the denominator of our normalizer as n — oo,

is a desirable

139

n

1 Lozl L
lim — d=Elx]= | Zdo=2.
Tim =[] = Ex] /_LQLw :

1=0
Thus, f(x) = & ~ unif[— 2 2].
Lemma A2. f () = T=——— Z" P is a desirable

low precision pre—normalzzer for normal distribu-
tions.

Proof: suppose X ~ N(0,0) and x is a vector
of z;’s sampled from X. Consider the limit of the
denominator of our normalizer and n — oo,

n

. 1
Jim " [z = E[Jx]

1=0

|z|e™ 25 dg

0\/ 2T /
= re~ 3 dx
oV 2

(by Symmetry)
2

- —0.
e

Let x = ko for some real k, f(x k:f
When k = +4, f(z) = £5.01. In other words,
f(z) € [-5.01,5.01] with 99.99% probability.

The two lemmas above illustrate the effect of our
MAD normalizer on a couple of common distribu-
tions. Empirically, we observed no overflow during
our subsequent Layernorm computation after we
prepended our pre-normalizer. Let us now look at
the theory behind a bit more rigorously.

Generating Signed Language Instructions in Large-Scale Dialogue Systems

Mert inan', Katherine Atwell', Anthony Sicilia', Lorna Quandt?, Malihe Alikhani'
! Khoury College of Computer Science, Northeastern University, Boston, MA, USA
2 Educational Neuroscience Program, Gallaudet University, Washington, D.C., USA
{inan.m, atwell.ka, sicilia.a, alikhani.m}@northeastern.edu
lorna.quandt@gallaudet.edu

Abstract

We introduce a goal-oriented conversational
Al system enhanced with American Sign Lan-
guage (ASL) instructions, presenting the first
implementation of such a system on a world-
wide multimodal conversational Al platform.
Accessible through a touch-based interface, our
system receives input from users and seam-
lessly generates ASL instructions by leveraging
retrieval methods and cognitively based gloss
translations. Central to our design is a sign
translation module powered by Large Language
Models, alongside a token-based video retrieval
system for delivering instructional content from
recipes and wikiHow guides. Our development
process is deeply rooted in a commitment to
community engagement, incorporating insights
from the Deaf and Hard-of-Hearing commu-
nity, as well as experts in cognitive and ASL
learning sciences. The effectiveness of our sign-
ing instructions is validated by user feedback,
achieving ratings on par with those of the sys-
tem in its non-signing variant. Additionally, our
system demonstrates exceptional performance
in retrieval accuracy and text-generation qual-
ity, measured by metrics such as BERTScore.
We have made our codebase and datasets
publicly accessible at https://github.com/
Merterm/signed-dialogue, and a demo of
our signed instruction video retrieval sys-
tem is available at ht tps: //huggingface.co/
spaces/merterm/signed-instructions.

1 Introduction

Conversational systems have become increasingly
integrated into our everyday lives, yet their accessi-
bility to the Deaf and Hard-of-Hearing (DHH) com-
munity, who predominantly communicate through
signed languages, remains limited (Glasser et al.,
2017, 2020; Bragg et al., 2020). Despite growing
advocacy for more inclusive interactive technolo-
gies from DHH users (Bragg et al., 2019; Blair
and Abdullah, 2020; Kahlon and Singh, 2023), a

Task Instructions

Ingredients:
o

BINE MI)

Retrieve Videos

Step 1

Ingredients: 1 cup melted butter,
2 eggs, 1 tbsp vanilla extract

B

Figure 1: An overview of our multimodal dialogue sys-
tem, capable of giving signed instructions to Deaf or
Hard-of-Hearing users in ASL. We first translate task
instructions to an intermediate textual representation
called glosses using Large Language Models; then, we
fetch token-level sign videos to display on the screens
of Amazon Alexa Echo Show.

comprehensive dialogue system tailored for sign
language users has yet to be implemented on a
global scale. In response, within the Alexa Prize
TaskBot Challenge 2 framework, we developed
and launched the first task-oriented, multimodal
dialogue system utilizing ASL, aiming to bridge
the gap between DHH users and personal voice as-
sistants. This system translates touch-based inputs
into ASL video instructions, offering a ground-
breaking approach to interaction fig. This paper
introduces our ASL instruction framework, mark-
ing a significant stride towards integrating conver-
sational systems into the living spaces of sign lan-

140

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 140-154
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/Merterm/signed-dialogue
https://github.com/Merterm/signed-dialogue
https://huggingface.co/spaces/merterm/signed-instructions
https://huggingface.co/spaces/merterm/signed-instructions

guage users and enhancing accessibility for the
DHH community.

Many signers prefer to use ASL instead of text
due to grammatical and linguistic differences be-
tween spoken and signed languages (Hariharan
et al., 2018; Dangsaart et al., 2008). Yet currently,
systems claiming to be accessible resort to text-
based communication. As an alternative, videos or
avatars of signers are options, yet these technolo-
gies are underutilized. In this paper, we show that
deploying these signed systems on a large scale is,
in fact, possible without much production cost and
makes the system accessible to DHH users.

Further, prior linguistics research has shown that
DHH community members can experience higher
cognitive loads while reading compared to signing
(Traxler, 2000; Kelly, 2003; Luckner and Handley,
2008). In this paper, we investigate effective strate-
gies of multimodal information presentation for the
DHH to reduce cognitive load. With repeated con-
sultations with cognitive scientists, we design the
layout of our system’s user interface specifically
around the cognitive load of signers (see Figure 2).

We focus on creating a framework that is appli-
cable to a large-scale global platform (in our case,
Amazon Alexa), making it impossible at this time
to access camera footage. We investigate ways of
receiving input with other modalities instead of
voice commands and without camera access. This
leads us to focus on the task of instruction gener-
ation and delivery rather than recognizing signs
produced by the user. We receive input from the
user via touchscreen controls of Amazon Alexa
Echo Show devices so that signers can interact
without using voice commands (see Figure 2 for
the touch screen user interfaces where the user can
interact via buttons to select tasks and navigate
instructions).

To address all of the aforementioned points, in
the following sections, we introduce the compo-
nents of our framework. Our detailed contributions
are as follows:

1. We design a multimodal task-oriented dia-
logue system with signed instructions and de-
ploy it on multimodal devices.

2. We use co-design to build our system, actively
involving community members in the design,
development, and evaluation, ensuring our so-
lutions positively impact the community.

3. We implement a novel Large Language Model
(LLM)-based instruction generation technique

Arts and Crafts
"How to make origami®

Cooking Home Improvement
"cookies" “How to plant a tree”

¢ ASL Task

<

Select a task below for American Sign Language (ASL) instr

Classic blondies Strawberry Pretzel Mapo

How to Make an
Origami Chair Salad

¢ HOW TO MAKE AN ORIGAMI CHAIR IN ASL

Step 1

Exit

© Bill Vicars

Step 10f 13
—

¢ HOW TO MAKE AN ORIGAMI CHAIR IN ASL

Step 3

previous

© Bill Vicars

Step 30f 13

Figure 2: A storyboard of all the screens for an origami
task with ASL video instructions. The first screen from
the top is the landing page with an ASL Task button to
enter the signed section. The second screen shows dif-
ferent recipes and task options. The following screens
show an instruction step. Button interactions are espe-
cially important for signers as the audio is inaccessible.

for zero-shot text-to-sign translation. We use
linguistics rules and cognitive science-based
heuristics for this translation.

4. We make available a standalone library to
translate instruction texts into signed instruc-
tion videos, and we release our dataset used
for the top 200 signs in cooking and wikiHow
domains.

We hope this effort brings more focus to the
needs of signers and will be a step towards making
large-scale dialogue systems more accessible to all
users.

2 Related Work

With the rise of voice assistant devices, the DHH
community has been mostly left behind. Yet, there
have been multiple lines of work to make them
more accessible. Accessibility of personal assistant
devices to the Deaf and Hard of Hearing commu-
nity has been assessed multiple times before by
Glasser et al. (2017, 2020); Bragg et al. (2020).
In addition, design approaches incorporating the
DHH community have been proposed by Anind-
hita and Lestari (2016); Hariharan et al. (2018). We
build on these in our system design.

Most of the current work in interactive system
design focuses on sign recognition with the help
of cameras. For instance, in Wojtanowski et al.
(2020) Wizard-of-Oz studies have been done where
Alexa is combined with a camera to detect signs.
In SIGNS project', Alexa recognizes specific ges-
tures for simple task completion (such as getting
the weather forecast with a specific gesture), and
Huang et al. recognized signs for a healing robot.
Even though these systems provide a means for rec-
ognizing signs, they fall short in generating signs,
which we focus on in this paper.

There has been some line of work by Nasihati Gi-
lani et al. (2019) in generating avatars for 6-month-
old babies to learn ASL. Also, Hriz et al. (2011)
deployed a kiosk with sign recognition and genera-
tion capabilities for Czech Sign Language. How-
ever, these have not resulted in a widely available
system.

On the other hand, sign language processing has
been widely studied under controlled conditions.
Even though sign language generation and trans-
lation tasks are still open problems, transformer-
based models in Yin and Read (2020); Yin et al.
(2021); Moryossef et al. (2021); Inan et al. (2022);
Miiller et al. (2023); Lin et al. (2023); Viegas et al.
(2023) have shown that it is possible to automate
them better. As a core contribution, we present a
framework to apply any of these models in large-
scale interactive environments.

In order to make our system useful for signers,
we need to mitigate their cognitive load interpret-
ing instructions from multimodal devices. Models

lhttps ://projectsigns.org/

for the cognitive aptitudes and cognitive loads of
sign language interpreters have been studied before
by Macnamara (2012); Du Toit (2017); Tiselius
(2018); Chambers (2020). These models help guide
the design principles of our system, as the user will
need to focus on multiple modalities simultane-
ously through the visual modality, which increases
cognitive load.

3 A Goal-Oriented Dialogue System with
Signed Instructions

We design a multimodal goal-oriented dialogue
system as part of the Alexa Prize TaskBot Chal-
lenge 2 (Agichtein et al., 2023) and incorporate
signed instructions. The main dialogue system
that we develop follows a typical modular design:
Natural Language Understanding (NLU), Dialogue
Manager (DM), and Natural Language Generation
(NLG). In this setting, we embed signed instruc-
tions into the multimodal NLG module (Figure 3).

Due to privacy regulations, Alexa does not allow
third parties to process user gestures and videos.
Hence, to increase accessibility for signers, we
choose to generate signed instructions instead of
recognizing signs. To support users who cannot—
or prefer not to—provide voice input, our system
has a scrollable touchscreen with buttons. This
enables us to have a full dialogue system for signers
while complying with regulations.

3.1 Task Description

We take as input a task JSON with step-by-step
English text instructions, images, title, main im-
age, and ingredients and output a JSON array of
user interface screens corresponding to the gloss
translations for each step and their corresponding
sign videos (see Appendix A). The tasks are in the
domains of cooking, home improvement, arts and
crafts, and gardening. We provide our signed in-
struction generation as a standalone library for the
camera-ready version of this paper.

3.2 Community Co-Design

To inform our system design choices, we connect
with collaborators from the Deaf and Hard of Hear-
ing (DHH) signing community at Gallaudet Uni-
versity (a prestigious higher education institution
chartered for the DHH community). We incorpo-
rate the feedback from signers into the system’s
design.

The feedback incorporated into our design pro-
cess includes considering the cognitive load of sign-

142

https://projectsigns.org/

Offline

A4
Touch-Based Dialogue Multimodal
Natural Language @—> —> Sign & Text
Understanding (NLU) Manager (OM) Generation

ASL
Translation

wikiHow
+ WholeFoods Recipe +
Images + ASL videos +
Gloss Dictionary +

Background

- o =

~

Figure 3: The overall architecture of our dialogue system with sign instructions for American Sign Language.
Offline LLM translations make it easier to plug in a signing module into a traditional dialogue architecture.

ers, altering the dimensions of the text, video, and
images used to communicate instructions, choos-
ing which information to present as text versus
signed videos (compare screens in Figure 2 and
Appendix E for the placement of text and signed
videos in the same screen), and updating the design
of the interface for ASL signers.

4 Our Signed Instruction Framework

We employ the framework shown in Figure 1 to
generate signed instructions. We first retrieve in-
structions for a given task, and then we convert each
step into gloss tokens, which are intermediary tex-
tual representations using rule-based sign language
translation algorithms and LLMs. Afterward, we
segment each instruction into separate gloss tokens,
retrieve sign videos for each, and stitch them back-
to-back to create a continuous video sequence. For
each step, we display this sequence of videos and a
picture of the step. The picture for each step gener-
ally shows the result of the action as described in
the sign instructions. This approach is summarized
in Algorithm 1.

4.1 Large Language Model Translation

For the translation of spoken English instructions
to textual representations of ASL (glosses), we
prompt LLMs. Multiple methods exist in im-
plementing text-to-gloss translation: human an-
notation, rule-based automatic translation with
heuristics (Othman and Jemni, 2012a), fine-tuned
transformer-based models (Camgoz et al., 2018;
Yin and Read, 2020), and prompting LL.Ms (Lee
et al.). We make our system adaptable to all of these
alternatives for text-to-gloss translation. Any one
of these models can be plugged into line 4 of Algo-
rithm 1. We choose LLM translation for our current
system due to its scalability, translation understand-
ability, and ability to adapt to out-of-domain text.

Algorithm 1 Signed Instruction Retrieval

G+ {}
I < instruction steps
for i in I do
translated < LLM (i)
translated < PRUNE(translated)
end for
S« {}
for 7 in translated do
for ¢; in 7 do
S[ti] < SIGN_VIDEO(t;)
end for
: end for
V1]
: for iin I do
for ¢; in ¢ do
V[i] «+ V[i] + S[ti]
end for
: end for
: return V

D AR A > s

e e e e i e

We show in our system evaluation in section §5
that there is a trade-off between using LLMs or
rule-based heuristics for text-to-gloss translation.
Mainly, LLMs generate more diverse translations,
while rule-based heuristics have higher accuracy
depending on the video dataset size.

Our instructions consist of WholeFoods recipes?
and WikiHow tasks’. First, we aggregate all the
instruction steps of the task in a JSON construct
(given in Appendix A), then using the OpenAl chat
API we prompt gpt-3.5-turbo to “translate each
step to American Sign Language gloss", and re-
quest the result in a JSON format.* We then ag-

2
3

www.wholefoodsmarket.com/recipes
www.wikihow.com

*Our parameters for the API call are, temperature=1, max
tokens=1000, fop p=1, frequency penalty=0, and presence
penalty=0.

143

www.wholefoodsmarket.com/recipes
www.wikihow.com

gregate all these steps for all recipes and tasks.
For recipes, we do not translate the ingredients to
glosses, as our community outreach surveys indi-
cate that users prefer to see the ingredients written
statically on the screen instead of signed versions
(see Figure 1 for a reference of text-to-gloss trans-
lation steps).

After these instructions are generated, we have
an additional stage of manual correction of LLM-
generated glosses using rule-based heuristics for
quality>. We also remove the punctuation in
glosses, capitalize them, and concatenate the
fingerspellings—in which fingers form individual
letters to spell out words—if annotated using the
hyphen notation (i.e. “F-I-N-G-E-R"). Here, we
check that the glosses are unique across the tasks,
they are all present in the available video dictionary,
and they follow the general rules of ASL.

4.2 Sign Video Processing

We process the videos in four steps. First, we col-
lect sign videos corresponding to all the glosses in
our instruction set from an online platform. Then
we store these videos, retrieve them on the fly while
presenting instructions, and stitch them together.
We give the details of these steps in the following
paragraphs.

Sign Video Collection For video collection, we
use widely available American Sign Language sign
dictionary videos from video sharing platforms
with Creative Commons licenses online ©. We
mainly use videos from Lifeprint, but if they do
not contain a specific sign video, we use the ASL-
Dictionary on YouTube as the backup source. If
neither of these sources has a sign available, we
first check if the gloss can be deconstructed into
other signs or fingerspelled. If so, we check the
videos for the deconstructed versions and concate-
nate them into a single video. If these options are
not available and the gloss is crucial to the meaning
of the instruction, then we search for a synonym.
If it is not crucial to the meaning of the instruction,
then we drop the gloss.

Video Storage We generate a dictionary for all
the available sign glosses (found in Appendix Sec-
tion A) and upload all the videos with their gloss

Sthis curation step can be omitted for the deployment of
larger systems with bigger task sets, where it might be infeasi-
ble to go over each task step and glosses manually.

SLifeprint.com, and the ASLDictionary chan-
nel accessible on YouTube: https://youtube.com/
@smartsigndictionary

as their filename to an Amazon AWS S3 bucket for
storage.

Gloss-by-Gloss Sign Retrieval During a user’s
live use of the system for signed instructions, we
retrieve videos on a token level using the video
URL by cross-referencing its gloss filename. As
the last step, after retrieving all the video URLs
on the fly for each gloss in each instruction, we
concatenate all of the URLSs corresponding to the
glosses together and then present them on the user
interface of the app as a single stream of a video
(see Figure 2).

5 System Evaluation

We evaluate our system both quantitatively and
qualitatively. Because this is the first deployment of
a task-oriented signed multimodal dialogue system,
we chiefly compare the system with the non-signed
portion of our task-oriented dialogue system. We
first evaluate the performance of our LLM text-to-
gloss translation and discuss the trade-offs of using
an LLM for translation. Then, we evaluate our
algorithm using traditional information retrieval
metrics. Finally, we compare user ratings and pro-
vide detailed qualitative analyses by an expert who
is fluent in ASL.

Automatic Metrics

1 2BLEU3 4 ROUGE METEOR ChrF WER

9.52 159 042 0.16 0.11 0.11 2399 2.146
F1 Recall Precision

BERTScore ‘ 0.80 0.81 0.79

Table 1: This table shows the automatic metric results
between LLM and rule-based translations. Tasks on
the web do not contain readily available ground-truth
glosses. BERTScore is the best indicator of translation
success.

Text-to-Gloss Translation Analysis In this sec-
tion, we analyze the performance of LLM-based
translations using traditional automatic text metrics
(see Table 1). As also described in section § 4.1, we
experiment with two translation strategies: 1) LLM
translations and 2) rule-based gloss translations
with heuristics. We use the rule-based heuristics
strategy as ground truth in our results here because
no human-annotated ASL ground truth exists for
our datasets, and the accuracy of rule-based transla-
tions is high when compared to human annotations
in the works of Othman and Jemni (2012b, 2019).

144

Lifeprint.com
https://youtube.com/@smartsigndictionary
https://youtube.com/@smartsigndictionary

In order to generate rule-based glosses, we use
the Algorithm given in Appendix B. Automatic
evaluation metrics for sign translations do not yet
exist. Hence, we present results using traditional
automatic evaluation metrics such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Banerjee and Lavie, 2005), ChrF (Popovi¢, 2015),
and BERTScore (Zhang et al., 2020) between LLM-
generated glosses and the rule-based glosses. In
this case, BERTScore is more insightful than tradi-
tional metrics because the semantic representation
of tokens is more important in glossing than the
specific n-gram differences.

For our system, we deploy with LLM-based
translations and are able to scale from only 1-3
tasks with ASL expert manual annotations to 150
supported tasks with LLM-based translations. As
shown in Figure 3, the LLM translations happen of-
fline as all of our tasks are pre-determined. Right af-
ter the tasks are translated to ASL glosses, we have
a quality control stage before they are presented
to the user. So, our overall translation pipeline is
a human-in-the-loop system. During the duration
of our dialogue system’s deployment, we observe
that using LLMs reduces the time spent on the man-
ual checking process by human annotators from 10
minutes per instruction sentence to 1 minute per
sentence.

Retrieval Metrics No automatic evaluation
mechanism exists for signed interactive systems;
hence, in this section, we introduce two retrieval
metrics—Hit Rate and Recall@ 1—for our Signed
Instruction Retrieval Algorithm (see Algorithm 1)
with the two translation modules separately. Fur-
thermore, we also present an analysis of the
changes in Hit Rate and Recall@1 in response to
increases in the available video dataset size in Fig-
ure 4.

We use the following simplified definitions of
Hit Rate and Recall@1:

glosses w/ videos
total # of glosses
glosses w/ videos

Hit Rate = (D

Recall@1 = ;
synonyms of glosses w/o videos

+ # glosses w/ videos
2)

Essentially, Hit Rate measures how accurate
the system is in finding videos for a given token,
and Recall@1 tells how precise the system selects
videos corresponding to a token among a set of

Change of Hit Rate Based on Video Set Size

-®- Heuristes - A
0.90 1 -&- Large Language Model P Ll u
Py
- -m-==7
0.85 4 ,‘» »
y A
g Ve
0.80 4 . J
o A

0.75 [K

Hit Rate

0.70 4 1 /
0.65 /
0.60 4 I

055 4

250 500 750 1000 1250 1500 1750 2000
Available Video Set Size

Change of Recall@1 Based on Video Set Size

0.981 _m- Heuristics PUSEL
—k- Large Language Model /___‘,——”
0.96 - P
’
/
0.94 &
'Y
/
_, 0924 K
e poa
G 0.90 m
< ‘,.’,’ \
1
0.88 - DA \ m
. Lt “
[\
0.86 [\
| -
A T T e g e --
0.84 !l/ -

250 500 750 1000 1250 1500 1750 2000
Available Video Set Size

Figure 4: These plots show the changes in Hit Rate and
Recall@1 for our signed instruction retrieval algorithm
as the available video set increases in size. Two lines
represent two methods of translation from text to gloss.
In a constrained setup with limited sign video storage,
these plots show how many videos are needed with
different translation strategies. Overall, LLMs have
more diverse translations, while rule-based heuristics
provide more accurate translations changing with the
video dataset size.

synonyms. For instance, for a task step consist-
ing of glosses “CHOCOLATE CHOP ADD DOUGH MIX
STIR” if the system has only videos for CHOP, ADD,
COMBINE, and STIR, then the Hit Rate will be 0.5,
as three out of six glosses do not have videos; and
Recall@1 will be 3/4, where the denominator also
contains any synonym of a gloss that does not have
a corresponding video (MIX and COMBINE are con-
sidered synonyms in this case). Hit Rate and Re-
call@1 are complimentary metrics where Hit Rate
shows the direct presence of sign videos while Re-
call@1 indirectly shows how diverse the glosses
and selected videos are due to the inclusion of syn-
onyms in the denominator where multiple glosses
may exist for the same video that we have in our
database. We give detailed mathematical defini-

145

tions for both of these metrics in Appendix C.

Looking at the resulting plots in Figure 4, we can
make several claims. For Hit Rate, both of the trans-
lation strategies produce similar results because
our video database covers a majority of glosses
present in the restricted domain of cooking and
wikiHow tasks. For Recall@1, there is a dramatic
difference between LLLMs and heuristics. This hap-
pens because rule-based heuristics use nearly the
same tokens from the text, while LLMs can gener-
ate synonymous glosses for a given token. For a
more example-driven explanation, please refer to
Appendix D.

Overall, the Recall@1 for our Algorithm has
a minimum of around 80% and a maximum of
98%—as observed in Figure 4. This shows that
our algorithm can easily be deployed as part of dia-
logue systems with signed instructions regardless
of whether we use LLMs or rule-based heuristics
translations.

User Rating Comparisons Our system inter-
acted with a large number of public users for over
a period of six months. Because this is the first
task-oriented dialogue system with signed instruc-
tions, it increases our user outreach on international
platforms by a large margin. However, adding this
functionality could decrease overall user ratings if
they do not deem the interface usable or are unsure
about what ASL is. Thus, we examine the ratings
before and after adding the signed instructions to
our system. As shown in Appendix 7, our user
ratings remain constant after adding support for
this feature. Thus, we find that, besides making
task-oriented systems accessible to a larger audi-
ence, adding support for signed instructions does
not decrease user ratings.

Expert Qualitative Analysis One author fluent
in ASL evaluated the system with special regard
to the usability and clarity of the information pre-
sented. This evaluator noted two primary strengths:
1) the multimodal instructional support provided
by having both the ASL descriptions and the in-
structional images available, particularly for the
step-by-step tasks such as origami folding; 2) the
ease of processing and attending to multiple modal-
ities given the clear layout without overwhelming
the user. To expand, giving the user the option
to attend to the signed content or the referent of
the images (e.g., step-by-step origami folding) al-
lowed them to rely on each form of information
to the extent they prefer. The clear layout does

not overwhelm the user with too many streams of
information. It also allows for sufficient process-
ing of either sign videos, images, or both without
distracting the user.

The primary limitation of the current system lies
in the segmented nature of the ASL videos. Cur-
rently, there is a lack of smooth transitions between
signs, and different signers present each sign within
one instruction. The flow of the signs appears dis-
jointed, consequently impeding clear understand-
ing. The absence of step-by-step visuals in certain
tasks necessitates increased reliance on signing.
The disjointed nature of the current signing videos
rendered some tasks less comprehensible.

Overall, the multimodal presentation of signing
alongside informative images enhances accessibil-
ity and suggests that a dynamic display of signed
content will greatly enhance future task-oriented
dialogue systems. For future iterations of our sys-
tem, we plan to incorporate either human models
signing the entire content or synthesized avatars
(Quandt, 2020; Quandt et al., 2022).

6 Conclusion

In this work, we discussed a multimodal, task-
oriented dialogue system designed to generate
ASL instructions on a platform with global reach.
Emphasizing the critical importance of Deaf and
Hard-of-Hearing (DHH) community engagement
throughout the development cycle, our approach
integrates extensive feedback from both the signing
community and experts in the field. Our system not
only marks a significant technological milestone
but also enriches the dialogue on how video-based
ASL instruction delivery can be effectively scaled
internationally. We observed a nuanced prefer-
ence among signers for avatar-based instructions—
a finding underscored by our expert analysis. Our
system has improved the landscape of conversa-
tional Al, making it accessible and responsive to
the unique needs of the DHH community.

We make the code available for our pipeline
and encourage future researchers to incorporate
it into their own task-oriented systems to increase
accessibility. We hope that this system is a step
towards developing dialogue systems that can un-
derstand and generate signs for all signed lan-
guages. We encourage everybody to interact with
signed tasks by visiting https://huggingface.
co/spaces/merterm/signed-instructions.

146

https://huggingface.co/spaces/merterm/signed-instructions
https://huggingface.co/spaces/merterm/signed-instructions

7 Acknowledgement

This project was completed as part of and received
funding from the Alexa Prize TaskBot Challenge
2. We would like to thank the Alexa Prize team,
especially Lavina Vaz and Michael Johnston, for
supporting us throughout the competition and for
giving us the resources to develop and deploy our
system to a large audience. We would also like to
thank our team members: Yuya Asano, Qi Cheng,
Dipunj Gupta, Sabit Hassan, Jennifer Nwogu, and
Paras Sharma.

References

Eugene Agichtein, Michael Johnston, Anna Gottardi,
Cris Flagg, Lavina Vaz, Hangjie Shi, Desheng Zhang,
Leslie Ball, Shaohua Liu, Luke Dai, Daniel Pres-
sel, Prasoon Goyal, Lucy Hu, Osman Ipek, Sattvik
Sahai, Yao Lu, Yang Liu, Dilek Hakkani-Tiir, Shui
Hu, Heather Rocker, James Jeun, Akshaya Iyengar,
Arindam Mandal, Saar Kuzi, Nikhita Vedula, Oleg
Rokhlenko, Giuseppe Castellucci, Jason Ingyu Choi,
Kate Bland, , Yoelle Maarek, and Reza Ghanadan.
2023. Alexa, let’s work together: Introducing the
second alexa prize taskbot challenge. In Alexa Prize
TaskBot Challenge 2 Proceedings.

Vidia Anindhita and Dessi Puji Lestari. 2016. Design-
ing interaction for deaf youths by using user-centered
design approach. In 2016 International Conference
On Advanced Informatics: Concepts, Theory And
Application (ICAICTA), pages 1-6. IEEE.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Johnna Blair and Saeed Abdullah. 2020. It Didn’t
Sound Good with My Cochlear Implants: Under-
standing the Challenges of Using Smart Assistants
for Deaf and Hard of Hearing Users. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 4(4):1-
217.

Danielle Bragg, Oscar Koller, Mary Bellard, Larwan
Berke, Patrick Boudreault, Annelies Braffort, Naomi
Caselli, Matt Huenerfauth, Hernisa Kacorri, Tessa
Verhoef, Christian Vogler, and Meredith Ringel Mor-
ris. 2019. Sign Language Recognition, Generation,
and Translation: An Interdisciplinary Perspective. In
ASSETS ’19: Proceedings of the 21st International
ACM SIGACCESS Conference on Computers and Ac-
cessibility, pages 16-31. Association for Computing
Machinery, New York, NY, USA.

Danielle Bragg, Meredith Ringel Morris, Christian
Vogler, Raja Kushalnagar, Matt Huenerfauth, and
Hernisa Kacorri. 2020. Sign Language Interfaces:
Discussing the Field’s Biggest Challenges. In CHI
EA °20: Extended Abstracts of the 2020 CHI Con-
ference on Human Factors in Computing Systems,
pages 1-5. Association for Computing Machinery,
New York, NY, USA.

Necati Cihan Camgoz, Simon Hadfield, Oscar Koller,
Hermann Ney, and Richard Bowden. 2018. Neural
Sign Language Translation. [Online; accessed 9. Oct.
2023].

Cindy Chambers. 2020. Mindfulness and Interpreter
Cognitive Load. Digital Commons@WOU.

Srisavakon Dangsaart, Kanlaya Naruedomkul, Nick Cer-
cone, and Booncharoen Sirinaovakul. 2008. Intelli-
gent Thai text — Thai sign translation for language
learning. Computers & Education, 51(3):1125-1141.

P. T. Petri Du Toit. 2017. Mitigating the cognitive load
of South African Sign Language interpreters on na-
tional television. [Online; accessed 20. Jul. 2023].

Abraham Glasser, Kesavan Kushalnagar, and Raja
Kushalnagar. 2017. Deaf, Hard of Hearing, and Hear-
ing Perspectives on Using Automatic Speech Recog-
nition in Conversation. In ASSETS ’17: Proceedings
of the 19th International ACM SIGACCESS Confer-
ence on Computers and Accessibility, pages 427-432.
Association for Computing Machinery, New York,
NY, USA.

Abraham Glasser, Vaishnavi Mande, and Matt Huen-
erfauth. 2020. Accessibility for Deaf and Hard of
Hearing Users: Sign Language Conversational User
Interfaces. In CUI "20: Proceedings of the 2nd Con-
ference on Conversational User Interfaces, pages 1—
3. Association for Computing Machinery, New York,
NY, USA.

Dhananjai Hariharan, Sedeeq Al-khazraji, and Matt
Huenerfauth. 2018. Evaluation of an English Word
Look-Up Tool for Web-Browsing with Sign Lan-
guage Video for Deaf Readers. In Universal Access
in Human-Computer Interaction. Methods, Technolo-
gies, and Users, pages 205-215. Springer, Cham,
Switzerland.

Marek Hriz, Pavel Campr, Zdenek Kriioul, Milos
Zelezny, Oya Aran, and Pinar Santemiz. 2011. Multi-
modal dialogue system with sign language capabil-
ities. In ASSETS ’11: The proceedings of the 13th
international ACM SIGACCESS conference on Com-
puters and accessibility, pages 265-266. Association
for Computing Machinery, New York, NY, USA.

Xuan Huang, Bo Wu, and Hiroyuki Kameda. Devel-
opment of a Sign Language Dialogue System for a
Healing Dialogue Robot. In 2021 IEEE Intl Conf on
Dependable, Autonomic and Secure Computing, Intl
Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on

147

https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://doi.org/10.1109/ICAICTA.2016.7803135
https://doi.org/10.1109/ICAICTA.2016.7803135
https://doi.org/10.1109/ICAICTA.2016.7803135
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1145/3432194
https://doi.org/10.1145/3432194
https://doi.org/10.1145/3432194
https://doi.org/10.1145/3432194
https://doi.org/10.1145/3308561.3353774
https://doi.org/10.1145/3308561.3353774
https://doi.org/10.1145/3334480.3381053
https://doi.org/10.1145/3334480.3381053
https://openaccess.thecvf.com/content_cvpr_2018/html/Camgoz_Neural_Sign_Language_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Camgoz_Neural_Sign_Language_CVPR_2018_paper.html
https://digitalcommons.wou.edu/theses/139
https://digitalcommons.wou.edu/theses/139
https://doi.org/10.1016/j.compedu.2007.11.008
https://doi.org/10.1016/j.compedu.2007.11.008
https://doi.org/10.1016/j.compedu.2007.11.008
https://wiredspace.wits.ac.za/items/9adcf705-637c-4fc9-909e-7779dbef53e0
https://wiredspace.wits.ac.za/items/9adcf705-637c-4fc9-909e-7779dbef53e0
https://wiredspace.wits.ac.za/items/9adcf705-637c-4fc9-909e-7779dbef53e0
https://doi.org/10.1145/3132525.3134781
https://doi.org/10.1145/3132525.3134781
https://doi.org/10.1145/3132525.3134781
https://doi.org/10.1145/3405755.3406158
https://doi.org/10.1145/3405755.3406158
https://doi.org/10.1145/3405755.3406158
https://doi.org/10.1007/978-3-319-92049-8_15
https://doi.org/10.1007/978-3-319-92049-8_15
https://doi.org/10.1007/978-3-319-92049-8_15
https://doi.org/10.1145/2049536.2049599
https://doi.org/10.1145/2049536.2049599
https://doi.org/10.1145/2049536.2049599
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00144
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00144
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00144

Cyber Science and Technology Congress (DASC/Pi-
Com/CBDCom/CyberSciTech), pages 25-28. IEEE.

Mert Inan, Yang Zhong, Sabit Hassan, Lorna Quandt,
and Malihe Alikhani. 2022. Modeling intensifica-
tion for sign language generation: A computational
approach. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 2897-2911,
Dublin, Ireland. Association for Computational Lin-
guistics.

Navroz Kaur Kahlon and Williamjeet Singh. 2023. Ma-
chine translation from text to sign language: a sys-
tematic review. Univ. Access Inf. Soc., 22(1):1-35.

Leonard P Kelly. 2003. Considerations for designing
practice for deaf readers. Journal of deaf studies and
deaf education, 8(2):171-186.

Huije Lee, Jung-Ho Kim, Eui Jun Hwang, Jaewoo Kim,
and Jong C. Park. Leveraging Large Language Mod-
els With Vocabulary Sharing For Sign Language
Translation. In 2023 IEEE International Conference
on Acoustics, Speech, and Signal Processing Work-
shops (ICASSPW), pages 04-10. IEEE.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Kezhou Lin, Xiaohan Wang, Linchao Zhu, Ke Sun,
Bang Zhang, and Yi Yang. 2023. Gloss-free end-
to-end sign language translation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12904-12916, Toronto, Canada. Association
for Computational Linguistics.

John L Luckner and C Michele Handley. 2008. A sum-
mary of the reading comprehension research under-
taken with students who are deaf or hard of hearing.
American annals of the deaf, 153(1):6-36.

Brooke Macnamara. 2012. Interpreter Cognitive Apti-
tudes. Journal of Interpretation, 19(1):1.

Amit Moryossef, Kayo Yin, Graham Neubig, and Yoav
Goldberg. 2021. Data augmentation for sign lan-
guage gloss translation. In Proceedings of the Ist
International Workshop on Automatic Translation for
Signed and Spoken Languages (AT4SSL), pages 1-11,
Virtual. Association for Machine Translation in the
Americas.

Mathias Miiller, Zifan Jiang, Amit Moryossef, Annette
Rios, and Sarah Ebling. 2023. Considerations for
meaningful sign language machine translation based
on glosses. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 682—693, Toronto,
Canada. Association for Computational Linguistics.

Setareh Nasihati Gilani, David Traum, Rachel Sortino,
Grady Gallagher, Kailyn Aaron-Lozano, Cryss

Padilla, Ari Shapiro, Jason Lamberton, and Laura-
Ann Petitto. 2019. Can a Signing Virtual Human
Engage a Baby’s Attention? In IVA ’'19: Proceed-
ings of the 19th ACM International Conference on
Intelligent Virtual Agents, pages 162—169. Associa-
tion for Computing Machinery, New York, NY, USA.

Achraf Othman and M. Jemni. 2012a. English-ASL
Gloss Parallel Corpus 2012: ASLG-PC12. [Online;
accessed 20. Jul. 2023].

Achraf Othman and Mohamed Jemni. 2012b. English-
asl gloss parallel corpus 2012: Aslg-pc12.

Achraf Othman and Mohamed Jemni. 2019. Designing
High Accuracy Statistical Machine Translation for
Sign Language Using Parallel Corpus: Case Study
English and American Sign Language. J. Inf. Technol.
Res., 12(2):134-158.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Lorna Quandt. 2020. Teaching ASL Signs using Sign-
ing Avatars and Immersive Learning in Virtual Real-
ity. In ASSETS ’20: Proceedings of the 22nd Interna-
tional ACM SIGACCESS Conference on Computers
and Accessibility, pages 1-4. Association for Com-
puting Machinery, New York, NY, USA.

Lorna C. Quandt, Athena Willis, Melody Schwenk, Kait-
Iyn Weeks, and Ruthie Ferster. 2022. Attitudes To-
ward Signing Avatars Vary Depending on Hearing
Status, Age of Signed Language Acquisition, and
Avatar Type. Front. Psychol., 13:730917.

Elisabet Tiselius. 2018. Exploring Cognitive Aspects of
Competence in Sign Language Interpreting of Dia-
logues: First Impressions. HJILCB, (57):49-61.

Carol Bloomquist Traxler. 2000. The Stanford Achieve-
ment Test, 9th Edition: National Norming and Per-
formance Standards for Deaf and Hard-of-Hearing
Students. J. Deaf Stud. Deaf Educ., 5(4):337-348.

Carla Viegas, Mert Inan, Lorna Quandt, and Malihe
Alikhani. 2023. Including facial expressions in con-
textual embeddings for sign language generation. In
Proceedings of the 12th Joint Conference on Lexical
and Computational Semantics (*SEM 2023), pages 1-
10, Toronto, Canada. Association for Computational
Linguistics.

148

https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.1007/s10209-021-00823-1
https://doi.org/10.1007/s10209-021-00823-1
https://doi.org/10.1007/s10209-021-00823-1
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.acl-long.722
https://doi.org/10.18653/v1/2023.acl-long.722
https://digitalcommons.unf.edu/joi/vol19/iss1/1/?utm_source=digitalcommons.unf.edu%2Fjoi%2Fvol19%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/joi/vol19/iss1/1/?utm_source=digitalcommons.unf.edu%2Fjoi%2Fvol19%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aclanthology.org/2021.mtsummit-at4ssl.1
https://aclanthology.org/2021.mtsummit-at4ssl.1
https://doi.org/10.18653/v1/2023.acl-short.60
https://doi.org/10.18653/v1/2023.acl-short.60
https://doi.org/10.18653/v1/2023.acl-short.60
https://doi.org/10.1145/3308532.3329463
https://doi.org/10.1145/3308532.3329463
https://www.semanticscholar.org/paper/English-ASL-Gloss-Parallel-Corpus-2012%3A-ASLG-PC12-Othman-Jemni/473fffb95c3db24938a21346ecd117a8a9204404?p2df
https://www.semanticscholar.org/paper/English-ASL-Gloss-Parallel-Corpus-2012%3A-ASLG-PC12-Othman-Jemni/473fffb95c3db24938a21346ecd117a8a9204404?p2df
https://api.semanticscholar.org/CorpusID:67028968
https://api.semanticscholar.org/CorpusID:67028968
https://doi.org/10.4018/JITR.2019040108
https://doi.org/10.4018/JITR.2019040108
https://doi.org/10.4018/JITR.2019040108
https://doi.org/10.4018/JITR.2019040108
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.1145/3373625.3418042
https://doi.org/10.1145/3373625.3418042
https://doi.org/10.1145/3373625.3418042
https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.7146/hjlcb.v0i57.106193
https://doi.org/10.7146/hjlcb.v0i57.106193
https://doi.org/10.7146/hjlcb.v0i57.106193
https://doi.org/10.1093/deafed/5.4.337
https://doi.org/10.1093/deafed/5.4.337
https://doi.org/10.1093/deafed/5.4.337
https://doi.org/10.1093/deafed/5.4.337
https://doi.org/10.18653/v1/2023.starsem-1.1
https://doi.org/10.18653/v1/2023.starsem-1.1

Gabriella Wojtanowski, Colleen Gilmore, Barbra Ser-
avalli, Kristen Fargas, Christian Vogler, and Raja
Kushalnagar. 2020. "Alexa, Can You See Me?" Mak-
ing Individual Personal Assistants for the Home Ac-
cessible to Deaf Consumers. California State Uni-
versity, Northridge.

Kayo Yin, Amit Moryossef, Julie Hochgesang, Yoav
Goldberg, and Malihe Alikhani. 2021. Including
signed languages in natural language processing. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7347—
7360, Online. Association for Computational Lin-
guistics.

Kayo Yin and Jesse Read. 2020. Better sign language
translation with STMC-transformer. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5975-5989, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

149

https://scholarworks.csun.edu/handle/10211.3/215984
https://scholarworks.csun.edu/handle/10211.3/215984
https://scholarworks.csun.edu/handle/10211.3/215984
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2020.coling-main.525
https://doi.org/10.18653/v1/2020.coling-main.525
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675

A Input Constructs

Here we show the JSON format of the tasks:

"title": "Classic blondies”,
"main_image"”: "496287aBff@ecd2875af4c. jpg",
"ingredients": [

1,

"1\u@@bd sticks butter, plus more for greasing”,
"1\u2153 cups brown Muscovado sugar”,

"2 eggs”,

"1 tbsp vanilla extract”,

"1\u@@bd cups all-purpose flour",

"1 tsp salt”,

"6 oz semisweet chocolate (chopped) or chocolate chips”

"task_images"”: [

1,

"@PB52839c78b@c243540F . jpg”,
"98b46fde067b1f931863e. jpg",
"12f87efcb8f5623aaf9ab. jpg",
"aba679a26a4ebf26ces57c. jpg”,
"58e3947ac34dbb6at47a7i. jpg”

"task_texts"”: [

1,

"Preheat oven to 175F. Line a square baking pan with aluminum foil,
letting some hang over the sides. Grease the foil with a pat of butter.
Set pan aside. Melt remaining butter in a small saucepan over
medium-low heat until it starts to brown and smell nutty, swirling

it around the pan from time to time. Transfer to a large mixing bowl
and allow to cool completely.”,

"Add sugar to cooled butter and mix until emulsified. Then, add eggs
and vanilla to the butter and sugar mixture, and beat until combined.”,
"Whisk together flour and salt in a small bowl. Stir into butter
mixture and beat until combined.”,

"Chop the chocolate and add to the batter, or simply use chocolate
chips. Stir until incorporated."”,

"Transfer batter to prepared baking dish and bake in preheated oven

at 175F for approx. 20 \u2@13 3@ min. until golden brown. Blendies
should not be too soft in the middle and just starting to crack on

top. Cool completely, and then use the ALUMINUM-FOIL to help

transfer the blondies out of the pan. Cut into squares and enjoy!”

"task_glosses”: [

"OVEN HEAT PAN SQUARE BAKE LINE ALUMINUM-FOIL BUTTER SPREAD
PAN PUT-ASIDE BUTTER REMAINING MELT PAN TRANSFER BOWL LARGE
COOL COMPLETELY",

"BUTTER COOL MIX SUGAR ADD MIX BUTTER SUGAR MIX ADD VANILLA
EGG COMBINE MIX",

"FLOUR SALT WHISK BOWL SMALL TOGETHER MIX BUTTER ADD STIR
COMBINE MIX",

"CHOCOLATE CHOP ADD DOUGH MIX STIR",

"DOUGH TRANSFER DISH BAKE OVEN HEAT APPROXIMATELY 2@ 3@
MINUTE BROWN MIDDLE SOFT COMPLETELY COOL ALUMINUM-FOIL
TRANSFER PAN SQUARE CUT ENJOY™

150

Here is the dictionary of all the available glosses that have corresponding videos on the system.

e, ota2t, "3t, "4n,
“2e", "25", "3@0", "35",
“75", "8e", "85", "90",
"5-MINUTES", "ADD", "ALL",
"APPROXIMATELY", "BACON",
"BERRY", "BLACK",
"BREAD", "BRING",
"CAKE-PAN",
"CHICKEN",
"COAT",
"COOK",
"CRUSH",
“DRAIN",
"ENJOY",
"FLAP",
"FRY",

ngn
’

"BROWN" ,
"CAKE",
"CHOCOLATE",
"COMBINE",
"COOL", "CORNER",
"CUP", "CUT",
"DOUGH", "DOWN",
"EQUAL",
"FLIP-OVER",
"GARLIC",
"HEAT", "HOUR",
"LAST", "LEFT", "LINE",
"MEDIUM", "MEET", "MELT",
"MIX", ”MORE", "NOT”,
"OR", "OTHER", "OVEN",
"PAPER", "PART", "PEPPER",
"POT", "POTATO", "POUR",
"PUT", "PUT-ASIDE",
"REMAINING",
"ROLL",
"SERVE",

"GOLDEN",
" HOT " s

"REMOVE ",
"SALT", "SAUCE",
"SIDE", "SIMMER",
“SMOOTH", "SOFT", "SOUP",
"SQUASH", "START", "STIR",
"TABLESPOON", "TEASPOON",
“THROUGH", "TO", "TOMATO",
"TRANSFER", "UNTIL", "UP",
"WATER", "WAY", "WELL",

”6",
"49",
"95",

"BLENDER",
"CAREFUL",
"CHEESE",
"COMPLETELY",

"DEGREE",

"FAHRENHEIT",
"FLOUR",

nIF”,
"LOW",

nOIL”,
nOVERnJ

"PRESS",
"QUARTER",
"REPEAT",
"SAUTEE",

"WHISK",

DGO ORE_ DHT . 0(RT DED
"45" "5@", "55", "6@", "65",
“100", "3-MINUTES”,

"AND", "ALUMINUM-FOIL",
"BAKE", "BAKING-POWDER",
“BOIL", "BOTTOM", "BOWL",
"BUTTER", "BUTTERMILK",
"CENTER", "CHAIR",

“CHOP", "CINNAMON”,
"CONNECT", "CONTINUE",
"COVER", "CREAM", "CREAM-CHEESE",
"DISH", "DIVIDE",

"EACH”, "EDGE", "EGG”,
"FINISH", "FIRST",
"FOLD", "FORM", "FOUR",
"GREEN", "GROUND”, "HALF",
“IN”, "INCH", "LARGE",
"MAKE", "MEAT",
"MIDDLE", “MINUTE”,
“OLIVE", "ON", "ONION",
"PAN", "PANCAKE",
"PLACE-INTO", "PORK",
"PRETZEL",

"RED", "REDUCE”,
"RICE", "RIGHT",

"SEASON", "SEPARATE",
"SLICE", "SMALL",
"SPREAD”, "“SPRINKLE", "SQUARE”,

"STRONG", "SUGAR", "SYRUP",
"THEN", "THREE-QUARTERS",

"TOP”, "TOGETHER”, "TO0SS”,

"USE", "VANILLA", "VERTICAL”,
MWITH "

"SIX”,

151

”70",

"BAKING-SODA",

B Rule-based Gloss Translation
Algorithm

We give the pseudocode for the rule-based heuris-
tics algorithm as follows:

Algorithm 2 Rule-based Heuristic Glosses

I: heuristic_glosses < ||

2: for sentence in task['task_texts’| do

3 sentence < UPPERCASE(sentence)

4 text < TOKENIZE(sentence)

5: pos_tagged < POSTAGGING(text)

6: for token in pos_tagged do

7 if IsNotDesiredPOS(token[1]) then

8 REMOVETOKEN(pos_tagged, token)
9

: end if
10: end for
11: for i in range(LENGTH(pos_tagged)) do
12: pos_tagged]i] —

(LEMMATIZE(pos_tagged][i][0]),
pos_tagged][i][1])
13: end for
14: sentence —
15: for token in pos_tagged do
16: sentence < sentence + token[0] +
17: end for
18: sentence <— STRIP(sentence)
19: heuristic_glosses. APPEND(sentence)
20: end for
21: return heuristic_glosses

"nn

2N

C Detailed Mathematical Definitions for
Retrieval Metrics

To define Hit Rate and Recall@1 more precisely,
we first introduce some requisite definitions:

* D: set of glosses in our dictionary

* n: total number of task instructions

o [={ig,i1,...,9n }: set of all task instructions

* my: total number of glosses in instruction k

ik € I =< gro, Gk1s -+ Gkmy, >

* g € 1g: gloss in instruction ¢, (ordered)

* syn(g): the set of synonyms found for gloss
g using wordnet.synsets

We formalize our simplified definitions of Hit
Rate and Recall @1 below, using our notation. Note
that because we take into account repeated glosses
in our instruction set, the sets below are multisets
and thus contain repeated elements that are factored
into the cardinality of the set.

|9kt grt € D,y € 1, g € iy 3)
\gkt =ik € 1, g € ik
|gkl cgk € Dyigp e, gy € Zk’
gkt = grt € Dig € I, g € i
+ gkt : gkt & Dyig € 1, gry € i
“4)

Hit Rate =

Recall@Ql =

D Detailed Examples for Retrieval
Metrics

For example, for the instruction, “Chop choco-
late and add to batter. Stir until incorporated.”,
the LLM generates, “CHOCOLATE CHOP ADD
DOUGH MIX STIR”, while heuristics generates
“CHOP CHOCOLATE ADD BATTER STIR UNTIL
INCORPORATE”. Here, it can be seen that LLM
produces DOUGH (a synonym of “batter” for our
purposes), while heuristics directly uses the same
wording. This adds diversity to the generated
glosses, and as the number of videos increases, it
positively affects the score of LLMs. For the heuris-
tics algorithm, as the tokens are never changed into
synonyms, even after a lot of videos are added to
the set, the algorithm cannot retrieve videos and
gets lower Recall@1 scores.

152

E Interface Details

We show more screenshots of details in the interface in Figures 5, and 6.

" " N\ 4 ”
 BACKTO OPTIONS (Bt) CLASSIC BLONDIES IN ASL (Exit) CLASSIC BLONDIES IN ASL (-
q . Step 1 Step 2
Classic blondies
Ingredients: 1Y: sticks butter, plus more for Ingredients: 1¥s cups brown Muscovado
greasing sugar » 2 eggs « 1 tbsp vanilla extract
4 25m % 5 steps - Serves 12 |ngredients &= a8

L ASL Start cooking 1% sticks butter, plus more
for greasing

1% cups brown Muscovado
sugar ©Bill Vicars
2eqggs

©Bill Vicars

Preheat oven to 175°C/350°F. Line a

next previous next
Stop 1015 Sep25

Figure 5: These are the screens for an alternative task of a classic blondies recipe. The main difference for recipes is
that at each step, relevant ingredients are shown in addition to the signed instruction video. This is to ensure less
cognitive load on the user. Also, the first panel shows the ASL button that exists in supported recipes.

{ MAPO TOFU IN ASL { MAPO TOFU IN ASL
Step 1 Step 2
Ingredients: 12%: oz silken tofu « 1 green Ingredients: % oz bean paste « % oz

onion « 3% 0z ginger « 2 cloves garlic fermented soy beans « 1 tsp dark soy sauce «
a cup rice wine « Vegetable oil for frying

N

N\ \:V i “‘

| as;
© Bill Vicars
Step 10f 4 preVlous Step 20f 4
—
MAPO TOFU IN ASL i MAPO TOFU IN ASL
< Exit <
Step 3 Step 4

Ingredients: 2 tsp Sichuan pepper powder «

Ingredients: % cup water (divided) « 1 tsp
Green onions for serving

sugar « Vs oz cornstarch « Salt

© Bill Vicars

© Bill Vicars

previous

previous
Step 3of 4 Step4of 4

Figure 6: This figure demonstrates the screenshots of our signed multimodal dialogue bot for the recipe of Mapo
Tofu. This example is chosen to stress the fact that certain international recipes that have terms that may not exist
in ASL are also supported in the bot. In these cases, the ingredients are written on the screen and the instructions
are signed without the specific terminologies, like "tofu", and images are shown to aid with grounding the referred

ingredient.

153

F User Rating Analysis

We show a plot of 7-day averages of user ratings before and after adding support for signed instructions in

Figure 7.
User Ratings (7-day average)
40
38
36
3.4

3.2

Rating

3.0
2.8

2.6

6/29/2023 6/30/2023 7/1/2023 7/2/2023 7/3/2023 7/4/2023 7/5/2023 7/6/2023 7/7/2023 7/8/2023 7/9/2023 7/10/2023 7/11/2023 7/12/2023 7/13/2023

Figure 7: User ratings of our system before and after adding support for instructions in ASL. Here, we show the
week before and after adding signed instructions. Reaching out to real users and communities that use signed
languages is the main goal of our system. Adding ASL support allows our system to engage with a larger audience

without decreasing overall user ratings.

154

Leveraging Natural Language Processing and Large Language Models for
Assisting Due Diligence in the Legal Domain

Myeongjun Erik Jang!

Gabor Stikkel?

! Department of Computer Science, University of Oxford, UK
2 Data Science Lab, Clifford Chance, UK
myeongjun.jang @cs.ox.ac.uk gabor.stikkel @cliffordchance.com

Abstract

Due diligence is a crucial legal process that
mitigates potential risks of mergers and acqui-
sitions (M&A). However, despite its prominent
importance, there has been a lack of research
regarding leveraging NLP techniques for due
diligence. In this study, our aim is to explore
the most efficient deep-learning model architec-
ture for due diligence in terms of performance
and latency, and evaluate the potential of large
language models (LLMs) as an efficient due
diligence assistant. To our knowledge, this
is the first study that employs pre-trained lan-
guage models (PLMs) and LLMs for the due
diligence problem. Our experimental results
suggest that methodologies that have demon-
strated promising performance in the general
domain encounter challenges when applied in
due diligence due to the inherent lengthy na-
ture of legal documents. We also ascertain that
LLMs can be a useful tool for helping lawyers
who perform due diligence.

1 Introduction

Due diligence, one component of mergers and ac-
quisitions (M&A), involves identifying multiple
factors that indicate successful outcomes produced
by a target organisation (McGrady, 2005). The
primary objective of this process is to minimise
risks associated with the organisation. Like other
legal retrieval tasks, such as contract analysis and
cross-jurisdictional analysis, it has been conducted
manually by legal professionals. Due diligence is
often regarded as a tedious, expensive, and time-
consuming job, as the buyer must digest a colossal
amount of information within a limited time, often
without complete access to relevant information
sources (Howson, 2003). However, it is an excep-
tionally important task, as deficient due diligence
can result in significant detrimental outcomes for
the buyer !. For this reason, there has been a grow-

'13 Huge due diligence disasters. [Link]

ing demand for automated and precise techniques
for due diligence.

The recent remarkable advancements in natural
language processing (NLP) field have expanded the
potential for developing such techniques. The suc-
cess of pre-trained language models (PLMs) based
on Transformer structure (Vaswani et al., 2017) has
led to their application in the legal domain, giving
rise to legal-specific PLMs (Chalkidis et al., 2020;
Geng et al., 2021; Zheng et al., 2021) and datasets
for pre-training (Henderson et al., 2022) and down-
stream tasks, such as ContractNLI (Koreeda and
Manning, 2021) and LexGLUE (Chalkidis et al.,
2022). Furthermore, the recent emergence of large
language models (LLMs) gained significant at-
tention due to their impressive performance in
examinations in legal (Bommarito II and Katz,
2022; Choi et al., 2023) and other professional do-
mains (Terwiesch, 2023; Kung et al., 2023), spark-
ing the possibility of the advent of Al assistants in
industrial fields.

However, despite its importance, applying NLP
techniques to the due diligence problem has re-
ceived limited attention. A leading cause would
be the lack of publicly available datasets. Due
to the nature of M&A, documents for due dili-
gence often contain sensitive information, making
it challenging to collect a large-scale dataset. To
our knowledge, the KIRA dataset (Roegiest et al.,
2018), where the task is designed to detect cru-
cial information in legal contract documents, is
currently the only publicly available dataset for
due diligence, but it is firmly restricted only to aca-
demic usage and obtaining permission to access the
dataset requires time and effort. Also, the inherent
lengthiness of legal documents poses an additional
obstacle. Legal documents often substantially ex-
ceed the maximum length that state-of-the-art NLP
models can accommodate (Chalkidis et al., 2022),
making the models unable to process longer text
properly. As a result, most downstream tasks de-

155

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 155-164
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://www.globaldatabase.com/13-huge-due-diligence-disasters-and-what-weve-all-learned-from-them

signed to evaluate the performance of legal-specific
PLMs have primarily focused on relatively short
paragraphs, such as classification (Chalkidis et al.,
2022) and question answering (Hendrycks et al.,
2021a; Wang et al., 2023).

This paper explores the feasibility of applying
modern NLP techniques to the due diligence prob-
lem. We first examine the performance of three
different architectures on due diligence. Subse-
quently, we conducted a few-shot experiments on
GPT-4 to ascertain whether LLMs could be a use-
ful tool to help the due diligence problem. To the
best of our knowledge, this is the first work that
leverages PLMs and LLMs for due diligence. Our
contributions can be summarised as follows:

* We observe that the hierarchical sentence ex-
traction structure is the most suitable architec-
ture for due diligence and is more practically
efficient than the KIRA baseline models.

* We ascertain that legal-specific PLMs do not
necessarily outperforms normal PLMs.

* We confirm that LLMs like GPT-4 can be a
practical tool to help lawyers conduct due dili-
gence.

2 KIRA Dataset for Due Diligence

Due diligence is a legal process to effectively miti-
gate the potential risks associated with a company
during mergers and acquisitions (M&A). The due
diligence problem can be divided into two primary
processes: 1) the identification of relevant passages
presented in legal documents based on the required
information and 2) the utilisation of these passages
to predict any potential risks to the acquiring com-
pany. Roegiest et al. (2018) collected and released
the dataset for the first process exclusively for aca-
demic purposes. The dataset contains real-world
legal documents across 50 topics, such as “Evi-
dence of Loans” and “Administrative Agent Fees”.
Each document is transformed into text using Op-
tical Character Recognition (OCR) and other pre-
processing techniques. Each sentence within the
documents is annotated by KIRA’s in-house annota-
tors, including law students, contract lawyers, and
in-house senior lawyers. This annotation aims to
determine the presence of relevant information in
a sentence. The basic statistics of the dataset are
presented in Table 1. It is worth highlighting the
distinctive characteristics of the dataset, 1) the doc-
uments exhibit considerable length, having more
than 3K sentences, and 2) the number of relevant

of Docs Doc Length # of RS # of Docs w/o RS

Avg 3077
Std 94.8

3308.4 4.8 95.4
473.5 54 69.1

Table 1: Average and standard deviation of basic statis-
tics of KIRA dataset across 50 topics. “RS” denotes
relevant sentences, and “Doc Lenght” is the number of
sentences in a document.

sentences is exceedingly scarce. More detailed
statistics for each topic are available in Table 7 in
the Appendix A. The dataset consists of five folds,
where one fold is used for evaluation while the re-
maining folds are used for training in an alternating
fashion. Roegiest et al. (2018) transformed each
sentence to human-crafted features and trained a
conditional random field (CRF) model that predicts
the label of each sentence.

3 Experiments Design

The KIRA dataset (Roegiest et al., 2018), which
serves as the primary dataset in our study, is col-
lected for the first process. It formulates due dili-
gence as a binary sequential classification task,
where the relevant sentences in legal documents
are labelled by human annotators. The notewor-
thy characteristic of the KIRA dataset is that the
label distribution is highly skewed, where, on av-
erage, a document consists of 3300 sentences, but
only 4.8 sentences are labelled as “relevant”. Here,
we explore the due diligence performance of three
distinct architectures: 1) single-sentence classifica-
tion, 2) context-aware sentence classification, and
3) hierarchical sentence extraction. The brief illus-
trations of these models can be found in Figure 1.

Single-Sentence Classification. This is the
simplest-level architecture that considers each sen-
tence independently. The model takes a list of to-
kens and predicts its label, i.e., “relevant” or “non-
relevant”. We fine-tune two PLMs: BERT (De-
vlin et al., 2019) and LegalBERT (Chalkidis et al.,
2020).

Context-Aware Sentence Classification. This
is an improved version of the single-sentence clas-
sification. Following the work of Fang and Koto
(2022), the model incorporates the target sentence
along with its surrounding sentences to consider a
sentence-level context.

156

»
»

target sentence
vectors
target sentence
vectors
context sentence
vectors

4+ + 4
* *

[senti-1] ‘ sent i ‘ !senti+1l
target context target context

sentence sentence sentence sentence

(a) Single-sentence Classification (b) Context-aware Classification

» sentence vectors »
* sentence vectors »
» sentence vectors »
» sentence vectors »
» sentence vectors »

2 2« *
. lsenti-2| senti -1 l sent i ‘senti+1 senti +2| ...

target target target target
sentence sentence sentence sentence

Iy

sentence

(c) Hierarchical Sentence Extraction

Figure 1: Illustration of the explored model architectures.

Hierarchical Sentence Extraction Given that
the due diligence task aims to extract sentences
that deliver relevant information from a document,
the most similar NLP downstream task is an ex-
tractive summarisation that also selects summary
sentences from a document. However, the exten-
sive length of legal documents hinders employ-
ing PLM-based extractive summarisation methods,
such as BERTSUM (Liu, 2019), because they can
only accommodate the limited token length. To ad-
dress this concern, we adopted a hierarchical struc-
ture that effectively handles documents with long
lengths (Yang et al., 2020; Chalkidis et al., 2021;
Lu et al., 2021). Specifically, the architecture con-
sists of two encoders: a sentence-level encoder that
transforms each sentence into fixed-size sentence
vectors and a document-level encoder that takes
the list of sentence vectors as input and performs
a sequential binary classification of whether each
sentence contains relevant information.

Training Strategy. We observed that the label
distribution is highly skewed (see Table 1 in ap-
pendix), which can cause a huge class imbalance
issue. We devised a sampling strategy called IM-
BALANCED SAMPLER to address this concern. The
sampler first calculates the probability of an in-
stance with label /; being chosen in a mini-batch in
the following manner:

T K A
Zj:l N]

where NN; is the number of training samples la-
belled /;. Next, training instances for each mini-

bi

batch are sampled using a multinomial distribution,
where the probabilities p; are utilised to determine
the sampling with replacement.

On top of the IMBALANCED SAMPLER, we addi-
tionally introduced weighted binary cross-entropy
loss, as we observed that the class imbalance issue
persists. The loss function is defined as follows:

N
Lovce = Za X y; X log f(x;)
i=1

+(1—a)x (1—y) xlog(l— f(x;)),

where x; is the i-th instance, f is a model, y; is the
target label for i-th training example, and « is the
pre-defined weight.

Training Details. In the single-sentence classi-
fication model, both BERT-base and Legal-BERT
were trained for three epochs by using AdamW
optimiser (Loshchilov and Hutter, 2017) with a
learning rate of 5¢~% and a weight decay rate of
le~2. The batch size and maximum number of to-
kens were set to 32 and 512, respectively. The most
important hyperparameter for training is the cross-
entropy weight (o). We investigated the optimal
« value within a range of {0.7, 0.725, 0.75, 0.775,
0.8, 0.825, 0.85, 0.875, 0.9} and selected the value
that yields the highest validation performance.
The context-aware classification models were
fine-tuned with identical training hyperparameter
configurations as the single-sentence classification
model, apart from using a learning rate of le™>.
The optimal « value was determined through ex-
ploration within a search space of {0.7, 0.725, 0.75,

157

. 1086 1243 1244 1247 1469
Topics
R P F1 R P F1 R P F1 R P F1 R P Fl
BERT-base (Single) g5 81 78 - - - 62 77 69 - - - - - -
Legal-BERT (Singley .79 85 .82 - - - 38 89 54 - - - - - -
BERT-base (Context) .67 .87 .75 - - - 50 61 55 - - - - - -
BERT-base .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

BiLSTM-single-0.5 90 8 88 .77 64 70 81 .67 .74 .66 .67 .67 .74 70 .72
BiLSTM-single-0.9 89 8 B8 74 71 73 77 73 75 62 74 68 71 .15 .73
BiLSTM-ensemble-0.5 .90 .86 88 .77 65 .71 .80 .69 .74 .66 .68 .67 .73 .71 .72
BiLSTM-ensemble-09 .89 .89 89 74 72 73 76 .75 .76 .62 .76 .68 .71 .76 .73

KIRA-Baseline 91 95 93 71 86 .78 54 91 68 61 .8 71 57 .89 .69

Table 2: The performance of different model architectures. “P”” and “R” denote precision and recall, respectively.
The best performance is highlighted in bold. Single and Context refer to the single-sentence and context-aware
classification models, respectively. Each experiment is repeated five times, and their average is reported. 0.5 and 0.9

denote the cut-off confidence score.

0.775, 0.8, 0.825, 0.85, 0.875, 0.9}.

In hierarchical sentence classification models,
we segmented each document into multiple para-
graphs to facilitate efficient training. Each para-
graph consists of a maximum of k sentences, where
the value was set to 16 in our experiments. These
paragraphs serve as the basic training units. During
the inference phase, predictions were generated for
all paragraphs, which were then compared against
gold labels to calculate the evaluation metrics.

A model BERT-base as a document-level de-
coder was trained for 10 epochs with a batch size
of 32. AdamW optimiser (Loshchilov and Hutter,
2017) with a learning rate of 1e=> and a weight
decay rate of le~? was used for training. The
Bi-LSTM document-level decoder models were
trained for 30 epochs with a batch size of 32. The
learning rate and weight decay rate were set to e ™3
and 1le~?2, respectively. Early stopping was applied
for both models, whereby the training was halted
if the validation performance did not improve for
three consecutive epochs. Similar to the preceding
experiments, the optimal « value was searched in a
search space of {0.7, 0.725, 0.75, 0.775, 0.8, 0.825,
0.85, 0.875, 0.9}.

The Bi-LSTM document-level decoder models
have additional hyperparameters that decide the
model’s architecture. Below are such hyperparam-
eters and the corresponding search space we inves-
tigated to find the optimal values.

* Number of layers (N): 1, 2, 3,4

e Number of hidden dimension (H): 16, 32, 64,
128, 256

* Dropout rate (Dr): 0.1, 0.2, 0.3, 0.4

Table 3 presents the selected values for each
topic. All models were trained using a GeForce

1086 1243 1244 1247 1469

N 2 1 2 1 1
H 64 16 64 32 64
Dr 02 01 01 02 0.1

Table 3: Selected BiLSTM hyperparameters for each
topic.

GTX TITAN XP GPU. Huggingface transformer
package was used for the implementation.

4 Experiments and Results

Single-sentence classification result. We first
fine-tuned single-sentence classification models
based on BERT and LegalBERT. For the exper-
iment, we chose two topics in the KIRA dataset
due to the extensive time and resources needed to
conduct experiments on all 50 topics. Specifically,
we chose topics 1086 and 1244, where the KIRA-
baseline model performed the best and worst, re-
spectively. The experimental results are presented
in the second row of Table 2.

The results revealed two important findings.
Firstly, both BERT and LegalBERT produced com-
parable or lower F1 scores than the KIRA baseline,
a simple CRF employing human-crafted features.
The results indicate that sentence-level sequential
information is a crucial factor in the due diligence
problem rather than increasing the model complex-
ity. Secondly, LegalBERT did not exhibit a sub-
stantial performance advantage over BERT, imply-
ing that legal PLMs do not necessarily ensure im-
proved performance in legal-domain downstream
tasks. This finding also aligns with the findings of
Geng et al. (2021).

158

Context-aware classification result. Next, we
fine-tuned BERT-base with the context-aware ar-
chitecture (Fang and Koto, 2022) on topics 1086
and 1244. LegalBERT was not included in this
experiment because no significant performance dif-
ference was observed with BERT-base in single-
sentence classification experiments. The perfor-
mance of the context-aware classification model
is presented in the second row of Table 2. Inter-
estingly, even with additional context information,
the model performed similarly or worse than the
single-sentence classification model. We strongly
believe that a leading cause is that accommodat-
ing four context sentences is not guaranteed due
to the model’s maximum length limitation. Our
findings suggest the NLP techniques that exhibited
favourable performance in general corpora may en-
counter challenges and limitations when applied to
specific industrial fields due to the inherent unique
characteristic of the domain.

Hierarchical sentence extraction result. Sub-
sequently, we trained a hierarchical sentence ex-
traction model. On top of the two topics used in
preceding experiments, we added three more topics:
1243, 1247, and 1469, where the KIRA-baseline
models demonstrated the poorest performance. The
other two architectures were not evaluated for these
three topics, as they already generated inferior per-
formance than the hierarchical sentence extraction
model in topics 1086 and 1244,

When it comes to the sentence-level encoder,
we used Sentence-BERT (Reimers and Gurevych,
2019) ALL-MINILM-L6-V2 model . For the
document-level encoder, we employed two mod-
els: Bi-LSTM and BERT-base. Regarding the Bi-
LSTM document-level decoder, we introduced four
variations based on the cut-off confidence score
(0.5 and 0.9) and single/ensemble methods. The
ensemble method made decisions based on major-
ity voting by using the predictions of five models
for each test scenario.

The experimental results are presented in the
third row of Table 2. Contrary to the common
belief that fine-tuned PLMs generally outperform
simpler models like Bi-LSTM, BERT-base totally
fails to detect relevant sentences. We observed
that for all topics, fine-tuned BERT-base predicted
all sentences as “non-relevant”, a signal indicat-
ing the presence of an overfitting issue, which eas-

Zhttps://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

ily occurs in datasets having highly skewed label
distribution. The best Bi-LSTM hyperparameters
presented in Table 3 also support that the issue of
overfitting exists, which shows more layers or hid-
den dimensions produced worse performance in
general. Our findings suggest that increasing the
model’s scale is not always beneficial when dealing
with real-world data.

In topic 1086, the KIRA-baseline model per-
formed the best, but our Bi-LSTM models also pro-
duced a decent performance. For the other four top-
ics, while there was no huge difference in terms of
the F1 score, our approaches consistently produced
substantially higher recall values across all four
topics. The high recall model is more efficient than
the high precision model from a practical viewpoint
in due diligence, where the “relevant” sentences
account for an extremely small portion 3 , which
can greatly reduce the effort for extensive manual
review to detect false negatives. Let us assume that
we have 100K sentences and only 100 sentences are
relevant. Table 5 shows two extreme cases of high
recall but low precision (Case 1) and vice versa
(Case 2). For the former, given our awareness that
the model attains a high recall rate, it is evident that
the majority of relevant sentences are included in
the subset of sentences where the model predicts
them as “relevant”. Therefore, a lawyer can re-
view only 990 sentences (predicted as “relevant”)
to filter out false positives. However, regarding the
latter, the situation is entirely contrasting. While
the high precision rate implies that most of the
sentences predicted as “relevant” are correctly clas-
sified, the low recall rate indicates the presence of
numerous false negatives, 90 cases in the example
above. Missing 90% of true relevant sentences is
very critical, and a lawyer should review nearly
100K sentences to identify false negatives, which
would impose an extremely demanding workload.
Hence, we can argue that our hierarchical approach
is more practically efficient than the KIRA-baseline
model in the four topics.

In-context learning with GPT-4. Recently,
LLMs has gained huge attention for passing legal
examinations, such as the University of Minnesota
Law School exam (Choi et al., 2023) and the US bar
exam (Bommarito II and Katz, 2022). Hence, we
explored how LLMs can be employed to assist with

*In topic 1244, for example, we can estimate from Table 7
that about 500 sentences are “relevant” while 860K sentences
are “not relevant”.

159

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

PROMPT QUESTION: The definition of Collateral/Transaction Security topic is as follows. ’Lenders will typically require
some form of security/collateral to be provided by the borrower or other obligors as a precondition to lending to ensure that if
the borrower does not repay the loan or defaults under the credit agreement in any other way, the lenders will have recourse to
such security to ensure repayment of the loan. This topic assists in identifying which forms of security/collateral are applicable

to a particular transaction.’

Your task is to determine whether given document contains relevant information regarding Collateral/Transaction Security.

Here are samples for this task:
Document: {sample_doc_1}
Answer: {sample_answer_1}

Document: {sample_doc_2}
Answer: {sample_answer_}

Does this document contain relevant information?
Document: {test_doc}

Answer:
Table 4: Prompt used in in-context learning for topic 1243.
Pred: Casel | Pred: Case2 Also, GPT-4 exhibited a very high recall rate and
-R R -R R a decent level of precision rate, which can greatly
=R | 99,000 | 900 | 99,899 | 1 reduce lawyers’ workload in the due diligence prob-
Gold . . .
R 10 90 90 10 lem, as described above. Implementing a combined

Table 5: Example confusion matrices for high recall/low
precision (Casel) and high precision/low recall (Case2).
R and —R denote “relevant” and “non-relevant”, respec-
tively.

1243
R P Fl
GPT-4 (2shots) .93 .72 .81
GPT-4 (4 shots) 95 .70 .81
GPT-4 (6 shots) 95 .72 .82
GPT-4 (8 shots) .96 .72 .82
KIRA-baseline .71 .86 .78

Topics

Table 6: In-context learning performance on topic 1243.
The best performance is highlighted in bold.

the due diligence problem. To conduct experiments,
we simplified the task into a binary classification
that predicts whether a given paragraph contains
relevant sentences or not. We tested GPT-4 on topic
1243 by providing a paragraph consisting of 16
sentences. We sampled 100 examples for each ex-
periment, as conducting experiments on the whole
dataset is an extensive resource-consuming work.
Regarding the prompt design, we first demonstrated
the topic definition and task description, followed
by two samples. The model was then asked to make
a prediction of a new paragraph. The example of
the prompt design we used is presented in Table 4.

The experimental results are shown in Table 6.
Despite the simplified task transformation, GPT-4
achieved a comparable but lower f1-score than the
KIRA-baseline model. However, we observed that
providing more few-shot samples can improve the
performance, as demonstrated by Hu et al. (2023).

system that identifies paragraphs containing rel-
evant sentences through LLMs and then using a
high-precision model to detect relevant sentences
automatically could further diminish the workload.

5 Related Works

The progress in the field of NLP has been a driv-
ing force of the vigorous advancements in legal
NLP, leading to a substantial volume of published
papers each year since 2017 (Katz et al., 2023).
Many legal NLP studies involve predicting judge-
ment decisions (Zhong et al., 2018; Chalkidis et al.,
2019; Medvedeva et al., 2020), collecting legal
datasets (Zhong et al., 2020; Luz de Araujo et al.,
2020; Koreeda and Manning, 2021; Chalkidis et al.,
2022) and training legal PLMs (Chalkidis et al.,
2020; Geng et al., 2021; Zheng et al., 2021; Xiao
et al., 2021; Hendrycks et al., 2021b). However,
the application of NLP in due diligence for M&A
has not received attention despite its promising im-
portance. Roegiest et al. (2018) collected large
corpora to train an automated due diligence model
and developed a CRF model to assess the presence
of relevant information in each sentence of a legal
document. Chitta and Hudek (2019) developed a
question answering (QA) system for the due dili-
gence problem, which operates in two phases: 1)
identifying evidence from a contract that contains
the answer to the given question and 2) providing
an answer based on the detected evidence. The
CRF model developed by Roegiest et al. (2018)
is used to find evidence in the first phase. Don-

160

nelly and Roegiest (2020) employed the same CRF
model for named entity recognition (NER) in legal
documents, assuming that named entities would ex-
ist in sentences containing important information.
The CRF model is also utilised by Donnelly and
Roegiest (2020) for NER in legal documents. They
assumed that named entities in legal documents
would exist in sentences containing important infor-
mation. Therefore, they first used the CRF model
to extract candidate sentences, and subsequently
trained a named entity detection model using the ex-
tracted candidates. This two-step approach demon-
strated superior performance in terms of both time
and accuracy compared to the state-of-the-art deep-
learning NER model of that period (Akbik et al.,
2019). The wide adoption of the CRF model sug-
gests that implementing a more accurate relevant
sentence extraction model can greatly benefit vari-
ous legal NLP tasks.

6 Summary and Outlook

Due diligence plays a crucial role in ensuring a
successful M&A. Implementing an automated due
diligence system will offer significant benefits con-
sidering the resources required for due diligence.
This paper illuminates the unhighlighted legal NLP
topic: the due diligence problem. In this paper,
we first explored three neural model architectures:
1) sentence-level classification, 2) context-aware
classification, and 3) hierarchical sentence extrac-
tion. Subsequently, we examined how GPT-4 can
be utilised to assist the due diligence problem. We
confirmed that the hierarchical sentence extraction
model best suits due diligence and is practically
more efficient than the previous approach. Our ex-
perimental results indicate that previous traditional
approaches should not be underestimated, as they
possess valuable merits that can be employed in
practical applications to enhance productivity. We
also verified LLMs’ potential as a useful assistant
for lawyers who conduct due diligence.

7 Limitations

Due to the limited computing resources and the
enormous size of the KIRA dataset, we focused
on five selected topics, which is 10% of the total
number of topics the dataset covers. Investigat-
ing a broader range of topics could provide more
evidence that can support our claim.

161

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54-59.

Michael Bommarito II and Daniel Martin Katz.
2022. GPT takes the bar exam. arXiv preprint
arXiv:2212.14402.

Tlias Chalkidis, Ion Androutsopoulos, and Nikolaos Ale-
tras. 2019. Neural legal judgment prediction in En-
glish. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
43174323, Florence, Italy. Association for Compu-
tational Linguistics.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898—
2904, Online. Association for Computational Lin-
guistics.

Ilias Chalkidis, Manos Fergadiotis, Dimitrios Tsarapat-
sanis, Nikolaos Aletras, Ion Androutsopoulos, and
Prodromos Malakasiotis. 2021. Paragraph-level ratio-
nale extraction through regularization: A case study
on European court of human rights cases. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
226-241, Online. Association for Computational Lin-
guistics.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael
Bommarito, Ion Androutsopoulos, Daniel Katz, and
Nikolaos Aletras. 2022. LexGLUE: A benchmark
dataset for legal language understanding in English.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4310—4330, Dublin, Ireland.
Association for Computational Linguistics.

Radha Chitta and Alexander K Hudek. 2019. A reli-
able and accurate multiple choice question answer-
ing system for due diligence. In Proceedings of the
Seventeenth International Conference on Artificial
Intelligence and Law, pages 184—188.

Jonathan H. Choi, Kristin E. Hickman, Amy Monahan,
and Daniel B. Schwarcz. 2023. ChatGPT goes to law
school. Minnesota Legal Studies Research Paper.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

https://arxiv.org/abs/2212.14402
https://doi.org/10.18653/v1/P19-1424
https://doi.org/10.18653/v1/P19-1424
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2021.naacl-main.22
https://doi.org/10.18653/v1/2021.naacl-main.22
https://doi.org/10.18653/v1/2021.naacl-main.22
https://doi.org/10.18653/v1/2022.acl-long.297
https://doi.org/10.18653/v1/2022.acl-long.297
https://ssrn.com/abstract=4335905
https://ssrn.com/abstract=4335905
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Jonathan Donnelly and Adam Roegiest. 2020. The util-
ity of context when extracting entities from legal
documents. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge

Management, pages 2397-2404.

Biaoyan Fang and Fajri Koto. 2022. Context-aware
sentence classification in evidence-based medicine.
In Proceedings of the The 20th Annual Workshop of
the Australasian Language Technology Association,
pages 193-198, Adelaide, Australia. Australasian
Language Technology Association.

Saibo Geng, Rémi Lebret, and Karl Aberer. 2021. Le-
gal transformer models may not always help. arXiv
preprint arXiv:2109.06862.

Peter Henderson, Mark Krass, Lucia Zheng, Neel Guha,
Christopher D Manning, Dan Jurafsky, and Daniel
Ho. 2022. Pile of law: Learning responsible data
filtering from the law and a 256gb open-source legal

dataset. Advances in Neural Information Processing
Systems, 35:29217-29234.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer
Ball. 2021a. Cuad: An expert-annotated nlp dataset
for legal contract review. In Advances in Neural
Information Processing Systems.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer
Ball. 2021b. Cuad: An expert-annotated nlp dataset
for legal contract review. In Advances in Neural
Information Processing Systems.

Peter Howson. 2003. Due diligence: The critical stage
in mergers and acquisitions. Gower Publishing, Ltd.

Yan Hu, Igra Ameer, Xu Zuo, Xueqing Peng, Yujia
Zhou, Zehan Li, Yiming Li, Jianfu Li, Xiaoqian Jiang,
and Hua Xu. 2023. Zero-shot clinical entity recogni-
tion using chatgpt. arXiv preprint arXiv:2303.16416.

Daniel Martin Katz, Dirk Hartung, Lauritz Gerlach,
Abhik Jana, and Michael] Bommarito II. 2023. Nat-
ural language processing in the legal domain. arXiv
preprint arXiv:2302.12039.

Yuta Koreeda and Christopher Manning. 2021. Con-
tractNLI: A dataset for document-level natural lan-
guage inference for contracts. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1907-1919, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Tiffany H. Kung, Morgan Cheatham, Arielle Medenilla,
Czarina Sillos, Lorie De Leon, Camille Elepafio,
Maria Madriaga, Rimel Aggabao, Giezel Diaz-
Candido, James Maningo, et al. 2023. Perfor-
mance of ChatGPT on USMLE: Potential for Al-
assisted medical education using large language mod-
els. PLOS Digital Health, 2(2):e0000198.

Yang Liu. 2019. Fine-tune bert for extractive summa-
rization. arXiv preprint arXiv:1903.10318.

Ilya Loshchilov and Frank Hutter. 2017.
weight decay regularization in Adam.
abs/1711.05101.

Fixing
ArXiv,

Jinghui Lu, Maeve Henchion, Ivan Bacher, and
Brian Mac Namee. 2021. A sentence-level hierarchi-
cal bert model for document classification with lim-
ited labelled data. In Discovery Science: 24th Inter-
national Conference, DS 2021, Halifax, NS, Canada,
October 11-13, 2021, Proceedings 24, pages 231—
241. Springer.

Pedro Henrique Luz de Araujo, Tedfilo Emidio de Cam-
pos, Fabricio Ataides Braz, and Nilton Correia da
Silva. 2020. VICTOR: a dataset for Brazilian le-
gal documents classification. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 1449-1458, Marseille, France. European
Language Resources Association.

Steve McGrady. 2005. Extending due diligence to im-
prove mergers and acquisitions. Bank accounting
and finance, 18(4):17.

Masha Medvedeva, Michel Vols, and Martijn Wieling.
2020. Using machine learning to predict decisions
of the european court of human rights. Artificial
Intelligence and Law, 28:237-266.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Adam Roegiest, Alexander K Hudek, and Anne Mc-
Nulty. 2018. A dataset and an examination of iden-
tifying passages for due diligence. In The 41st in-
ternational ACM SIGIR conference on research &
development in information retrieval, pages 465-474.

Christian Terwiesch. 2023. Would Chat GPT get
a Wharton MBA? A prediction based on its per-
formance in the operations management course.
Mack Institute for Innovation Management at
the Wharton School, University of Pennsylva-
nia. Retrieved from: https://mackinstitute. wharton.
upenn. edu/wpcontent/uploads/2023/01/Christian-
Terwiesch-Chat-GTP-1.24. pdf [Date accessed:
February 6th, 2023].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Steven H Wang, Antoine Scardigli, Leonard Tang,
Wei Chen, Dimitry Levkin, Anya Chen, Spencer
Ball, Thomas Woodside, Oliver Zhang, and Dan
Hendrycks. 2023. Maud: An expert-annotated le-
gal nlp dataset for merger agreement understanding.
arXiv preprint arXiv:2301.00876.

162

https://aclanthology.org/2022.alta-1.27
https://aclanthology.org/2022.alta-1.27
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://aclanthology.org/2020.lrec-1.181
https://aclanthology.org/2020.lrec-1.181
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Chaojun Xiao, Xueyu Hu, Zhiyuan Liu, Cunchao Tu,
and Maosong Sun. 2021. Lawformer: A pre-trained
language model for chinese legal long documents. Al
Open, 2:79-84.

Liu Yang, Mingyang Zhang, Cheng Li, Michael Ben-
dersky, and Marc Najork. 2020. Beyond 512 tokens:
Siamese multi-depth transformer-based hierarchical
encoder for long-form document matching. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages
1725-1734.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter
Henderson, and Daniel E Ho. 2021. When does pre-
training help? assessing self-supervised learning for
law and the casehold dataset of 53,000+ legal hold-
ings. In Proceedings of the eighteenth international

conference on artificial intelligence and law, pages
159-168.

Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Chaojun Xiao,
Zhiyuan Liu, and Maosong Sun. 2018. Legal judg-
ment prediction via topological learning. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3540-3549,
Brussels, Belgium. Association for Computational
Linguistics.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020. Jec-
ga: A legal-domain question answering dataset. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9701-9708.

163

https://doi.org/10.18653/v1/D18-1390
https://doi.org/10.18653/v1/D18-1390

A Appendix

Topic Number Topic Name # of Doc Doc Length # of RS # of Docs w/o RS
1086 Evidence of Loans 78 4595.5 7.6 4
1238 "All-In Yield" Definition 203 4117.1 1.1 118
1239 "Applicable Margin" Definition 318 3552.6 242 30
1240 "Base Rate" Definition 407 3429.9 14.0 36
1242 "Cash Equivalents" Definition 318 3552.6 4.7 139
1243 "Collateral"/"Transaction Security" Definition 293 3043.1 4.0 109
1244 "Collateral Documents"/"Security Documents" Definition 253 3416.1 2.0 101
1245 "EBITDA" Definition 367 3425.6 12.6 82
1247 "Coverage Ratio"/"Interest Cover" Definition 318 3552.6 1.8 136
1248 Default Interest - Credit Agreement 290 2938.8 4.0 66
1249 "Defaulting Lender" Definition - Credit Agreement 253 3416.1 3.0 104
1250 "Disqualified Institutions" Definition 233 3999.2 0.6 168
1251 "Currency" Definition 293 3043.1 2.4 32
1252 "Disqualified Stock" Definition 203 3343.7 0.9 137
1253 "Excluded Subsidiary" Definition 516 4025.8 1.9 239
1261 Fundamental Changes Negative Covenant 334 2966.8 6.9 41
1262 Dispositions or Asset Sales Negative Covenant 294 3277.4 13.9 26
1265 Change of Business Negative Covenant 334 2966.8 2.5 48
1267 Burdensome/Restrictive Agreements Negative Covenant 294 32774 39 164
1272 Accounting Changes Negative Covenant 294 32774 1.2 140
1275 Anti-Corruption and Sanctions Covenant 339 35333 2.6 168
1300 Financial Statements Affirmative Covenant 374 3546.0 26.4 11
1304 Existence and Conduct of Business Affirmative Covenant 414 3269.4 4.3 35
1308 Books and Records Affirmative Covenant 414 3269.4 4.8 95
1309 Compliance with Laws Affirmative Covenant 414 3269.4 3.0 49
1312 "Change of Control" Definition - Credit Agreement 339 3684.0 5.6 32
1318 "Restricted Subsidiary" Definition 274 3589.1 0.4 211
1319 "Borrowing Base" Definition 452 4155.5 3.7 256
1320 "Excluded Taxes" Definition 224 3562.2 1.8 57
1321 "Indebtedness" Definition 379 3367.4 8.8 43
1439 Breach of Covenants - Event of Default - Credit Agreement 125 2097.9 43 8
1440 Cross Default - Event of Default - Credit Agreement 592 3274.4 4.4 37
1443 ERISA Events - Event of Default - Credit Agreement 376 3339.2 1.8 153
1444 Change of Control - Credit Agreement 252 2795.5 10.2 26
1460 "Specified Representations" Definition 196 3348.9 1.2 73
1462 "Change in Law" Definition 359 4373.4 1.8 68
1468 Commitment Fees - Credit Agreement 232 3106.2 4.4 68
1469 Facility Fee 415 3022.5 3.7 238
1474 Administrative Agent Fees 232 3106.2 1.5 72
1475 Several Liability 232 3106.2 2.6 69
1489 Financial Statements Representation - Credit Agreement 244 2828.3 39 38
1498 Environmental Representation - Credit Agreement 244 2828.3 4.1 84
1500 Full Disclosure Representation - Credit Agreement 244 2828.3 3.5 42
1509 Assignment Transfer Fees - Credit Agreement 367 2634.7 0.8 153
1512 Eligible Assignees 367 2634.7 1.0 181
1520 "Approved Fund"/"Related Fund" Definition 375 2685.6 0.5 200
1524 Costs and Expenses 172 2505.9 7.8 10
1551 "Excess Availability" Definition 317 3380.8 0.8 222
1601 Equity Cure Rights 201 3441.7 7.5 31
1611 "FATCA" Definition 327 3616.5 1.1 118

Table 7: Detailed statistics of KIRA dataset for each topic. “RS” denotes relevant sentences, and “Doc Lenght” is
the number of sentences in a document. “Doc Length” and “# of RS” is the average value.

164

AnnoLLM: Making Large Language Models to Be Better
Crowdsourced Annotators

Zhenghao Lin?,
Jian Jiao’,

Xingwei He';
Chen Lin?,

Yeyun Gong*,
Siu-Ming Yiu']

A-Long Jin’°, Hang Zhang*,
Nan Duan®, Weizhu Chen’

The University of Hong Kong, 2Xiamen University,
3Xi’an Jiaotong-Liverpool University, “Microsoft Research Asia, >Microsoft
hexingweil5@gmail.com, along.jin@xjtlu.edu.cn, smyiu@cs.hku.hk,
zhenghaolin@stu.xmu.edu.cn, chenlin@xmu.edu.cn,
{yegong, v-zhhang, jian.jiao, nanduan, wzchen}@microsoft.com

Abstract

Many natural language processing (NLP) tasks
rely on labeled data to train machine learn-
ing models with high performance. However,
data annotation is time-consuming and expen-
sive, especially when the task involves a large
amount of data or requires specialized domains.
Recently, GPT-3.5 series models have demon-
strated remarkable few-shot and zero-shot abil-
ity across various NLP tasks. In this paper, we
first claim that large language models (LLMs),
such as GPT-3.5, can serve as an excellent
crowdsourced annotator when provided with
sufficient guidance and demonstrated examples.
Accordingly, we propose AnnoLLM, an anno-
tation system powered by LLMs, which adopts
a two-step approach, explain-then-annotate.
Concretely, we first prompt LLMs to provide
explanations for why the specific ground truth
answer/label was assigned for a given exam-
ple. Then, we construct the few-shot chain-
of-thought prompt with the self-generated ex-
planation and employ it to annotate the unla-
beled data with LLMs. Our experiment results
on three tasks, including user input and key-
word relevance assessment, BoolQ, and WiC,
demonstrate that AnnoLLLM surpasses or per-
forms on par with crowdsourced annotators.
Furthermore, we build the first conversation-
based information retrieval dataset employing
AnnoLLM. This dataset is designed to facilitate
the development of retrieval models capable of
retrieving pertinent documents for conversa-
tional text. Human evaluation has validated the
dataset’s high quality.

1 Introduction

Labeled data refers to a dataset that has been man-
ually annotated with predefined target labels or
categories. It is crucial to develop machine learn-
ing models for many NLP tasks, such as sentiment
analysis (Socher et al., 2013), machine translation

*Work done during internship at Microsoft Research Asia.
f Corresponding author.

(Sutskever et al., 2014) and word sense disambigua-
tion (He and Yiu, 2022). The process of labeling
data is typically done by human annotators under
specific guidelines and criteria on how to assign
labels to each instance in the dataset. For exam-
ple, in sentiment analysis, each sentence or docu-
ment may be labeled with a polarity score such as
“positive”, “negative”, or “neutral”. However, it is
very labor-intensive and time-consuming to create
a large dataset with human annotation, which limits
the availability of such data in various NLP tasks.

Previous works have shown that LLMs, such as
GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022), achieve impressive results in
many downstream tasks without requiring large-
scale task-specific data or parameter tuning, but
only with a few examples as instructions. Ope-
nAlI has recently launched the GPT-3.5 series mod-
els, the upgraded versions of GPT-3. Shortly after,
OpenAl also unveiled ChatGPT, another fine-tuned
version of GPT-3.5, which has gained significant
global attention since its launch.

Augmenting manually labeled data with pseudo-
labeled data from GPT-3 is helpful for many NLP
tasks, particularly when the labeling budget is re-
stricted (Wang et al., 2021). However, the quality
of GPT-3’s labeled data still lags behind that of
manually labeled data. Considering the GPT-3.5
models’ remarkable zero/few-shot capabilities, we
raise an essential and significant inquiry: Can GPT-
3.5 potentially replace crowdsourced annotators?

Before answering this question, let us go over
the process of crowdsourced data annotation. First,
we need to provide annotators with a specific def-
inition of the task. Then, for classification tasks,
we need to tell annotators the specific meanings of
each category. Finally, we need to provide anno-
tators with a few examples that have already been
annotated as references. Naturally, we can guide
GPT-3.5 to annotate data using the same approach
as with human annotators by providing task defini-

165

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:

Industry Track), pages 165-190
June 16-21, 2024 ©2024 Association for Computational Linguistics

<)

[P

2. Provide the data to be annotated.

[1. Provide guidances on the task description, category definitions and demonstrated examples.]

Requester

v

!

[Crowdsourcing Platform) [

OpenAl Platform J

v

¢ Step 1: Explain

‘ Step2 : Annotate

1. Read and understand the annotation
instructions carefully.
2. Annotate the data for the requester.

Formulate the prompt with the task
description and category definitions to >
prompt GPT-3.5 to generate rationales for
demonstrated examples.

1. Create the few-shot CoT prompt with
annotation guidances and rationales.
2. Annotate the data for the requester.

— N

=) =2 =D

GPT-3.5

GPT-3.5

Figure 1: On the left is the annotation process used by crowdsourced workers, while on the right is AnnoLLLM’s
process. AnnoLLM mimics the manual annotation process, with the exception that it generates explanations for each
example before annotation. This ensures that each demonstrated example is accompanied by helpful explanations,
making the annotation guidelines more informative and useful.

tions and example samples. Furthermore, we found
that requesting LLMs to furnish the rationale be-
hind the ground truth label for a particular example
can prompt LL.Ms to produce high-quality explana-
tions. Based on this, we create the few-shot chain-
of-thought (COT) prompt (Wei et al., 2022) with
the self-generated explanations to annotate data.
We refer to this method as explain-then-annotate,
which further improves the annotation quality.

We summarize our contributions as follows: (1)
We propose AnnoLLM, an Annotation system
powered by Large Language Models, which is
based on explain-then-annotate and has the poten-
tial to replace crowdsourced annotators to annotate
data. (2) Our results on three datasets verify the
feasibility of substituting crowdsourced annotators
with GPT-3.5, where it either surpasses or matches
crowdsourced annotators. (3) Furthermore, An-
noLLLM is not limited to annotating classification
data, and we create the first conversation-based
information retrieval (ConlIR) dataset using An-
noLLM'. Through rigorous human evaluation, this
dataset exhibits high quality in terms of fluency,
relevance, and factual consistency.

2 Approach

Providing detailed instructions is crucial for crowd-
sourced workers to annotate data, as it helps them
better understand task requirements and annotation
standards, ultimately improving the quality and ac-
curacy of annotated data. The instructions for each

'ConlR is available at: https: //github.com/NLPCode/
AnnoLLM.

task mainly include three parts: task description,
category definition, and demonstrated examples.

Motivated by the guidance to human annotators,
we will introduce how to convert GPT-3.5 into a
zero-shot data annotator by providing guidance
on the task description and category definitions
in Section 2.1. Then, we will show how to trans-
form GPT-3.5 into a few-shot data annotator using
demonstrated examples in Section 2.2. To make
it easier to understand, we have provided a visual
representation of the crowdsourcing annotation and
AnnoLLM in Figure 1. Finally, in Section 2.3, we
will demonstrate the utilization of AnnoLLM for
constructing the conversation-based information
retrieval dataset.

2.1 GPT-3.5 as a Zero-shot Data Annotator

In the zero-shot setting, we give the annotators
only the task description and category definitions.
The task description includes information on the
task definition and purpose. Category definitions
provide clear definitions for each category, so that
the crowd workers can understand the meaning and
standard of each category. Similarly, we provide
GPT-3.5 with the task description and category
definitions, allowing it to act as a zero-shot data
annotator. We present the zero-shot prompts for
GPT-3.5 on the user query and keyword relevance
assessment (QK), WiC, and BoolQ tasks in Tables
12, 13, and 14, respectively.

2.2 GPT-3.5 as a Few-shot Data Annotator

Providing labeled samples for each category can
help annotators better understand how to annotate

166

https://github.com/NLPCode/AnnoLLM
https://github.com/NLPCode/AnnoLLM

the data accurately. Similarly, we can also offer
demonstrated examples to GPT-3.5, enabling it to
serve as a few-shot annotator. We show the few-
shot prompts for GPT-3.5 on QK, WiC, and BoolQ
tasks in Tables 15, 16, and 17, respectively.
Recent research (Wei et al., 2022) has discovered
that adding human written rationales to demon-
strated examples, called as chain-of-thought (CoT),
can elicit LLMs’ reasoning ability, thus gaining
improvements on reasoning tasks. In this paper, we
find that GPT-3.5 is proficient at generating rea-
sonable explanations for demonstrated examples.
In the following, we will introduce how to generate
explanations with GPT-3.5, and then create few-
shot CoT prompts with the generated explanations.

Generating Explanations with GPT-3.5. In this
step, we simulate the human reasoning process to
induce GPT-3.5 to explain the annotated examples.
To be concrete, we present the task description,
specific examplease, and the corresponding true
labels to GPT-3.5, and then ask it to explain why
the given label is appropriate for that example. By
doing so, GPT-3.5 will generate reasonable expla-
nations. For the QK task, we show how to use
GPT-3.5 to explain why the label between the user
query “google data studio sharepoint” and the
keyword “sharepoint migration tool file share” is
“Bad” in Table 8 in Appendix A. Please refer to
Table 9 and Table 10 for how to generate explana-
tions for the demonstrated examples of WiC and
BoolQ.

Creating Few-shot CoT Prompts. We construct
the few-shot CoT prompt using the explanations
generated by GPT-3.5. We show the few-shot CoT
prompts on QK, WiC, and BoolQ tasks in Tables
18, 19, and 20 in Appendix D, respectively.

2.3 GPT-3.5 as a Few-shot Data Creator

AnnoLLM is not limited to labeling classification
data. Next, we will introduce how we used An-
noLLM to construct the conversation-based infor-
mation retrieval dataset. This dataset will facilitate
the research and construction of conversation-based
retrieval models.

Recently, ChatGPT, as a general artificial intel-
ligence chatbot, has gained widespread attention,
leading to the emergence of numerous informa-
tion retrieval needs in the form of conversations.
Specifically, during a conversation, users may ask

We resort to ChatGPT to generate explanations.

questions that go beyond the knowledge scope of
ChatGPT, requiring us to retrieve relevant litera-
ture from external knowledge bases. Traditional
information retrieval datasets typically consist of
queries ¢ and positive paragraphs p, denoted as
D = {(q,p)}. We found that retrieval models
trained on traditional datasets perform poorly on
the conversation-based retrieval task (please refer
to Section 4 for more details). This illustrates the
necessity of constructing conversation-based re-
trieval datasets. Therefore, we propose to create a
conversation-based information retrieval dataset.

Conversation-based information retrieval aims
to retrieve relevant passages from a large corpus
for conversations. It is non-trivial to manually cre-
ate datasets for this task. One intuitive idea is to
use ChatGPT to generate a multi-turn conversa-
tion c based on the query ¢ and the corresponding
positive paragraph p, constructing a conversation
dataset, {(c,p)}. However, we have found that
this approach results in a dataset where a large por-
tion of the conversation c is directly copied from p.
This is not desirable since it becomes easy to find
p related to ¢ based on word overlaps.

To address this issue, we first utilize ChatGPT to
enrich the given text paragraph p, obtaining p’ (see
Table 27). Then, we generate the conversation c
based on the expanded paragraph p’ and the given
query q (see Table 28). The expanded paragraph p’
usually contains not only the information from the
original paragraph p but also some more detailed
relevant information, while reducing the overlap of
words with the original paragraph. In this way, the
generated conversation c can avoid having a large
amount of identical text segments with the original
paragraph p. However, since the expanded para-
graph p’ contains information beyond the original
paragraph p, this may result in a relatively low rele-
vance between the generated conversation c and the
original paragraph p. In other words, the original
paragraph p may not be a positive paragraph for
the generated conversation c. Therefore, it is nec-
essary to filter out the conversation instance c that
has low relevance to the original paragraph p. Due
to the comparable data annotation capability of our
proposed AnnoLLLM, we naturally used AnnoLLM
to judge whether the generated conversation ¢ and
the original paragraph p are related (see Table 29),
and discarded data pairs that are irrelevant, result-
ing in the conversation-based information retrieval
dataset.

167

Partition / Task | QK BoolQ WiC Models Dev Test
Dev 350 3270 638 Crowdsourced Annotator 65.58 71.5
Test 1000 3245 1400 -
text-davinci-003 + zero-shot 67.71 70.00
text-davinci-003 + 8-shot 65.71 67.80

Table 1: Basic statistics of QK, BoolQ and WiC datasets.

3 Experiment on Data Annotation

3.1 Experimental Setups

Datasets. We evaluate AnnoLLM on three differ-
ent tasks: QK, BoolQ, and WiC. The basic statistics
of these datasets are shown in Table 1. The QK task
aims to judge whether the user input query is re-
lated to the given keywords. BoolQ (Boolean Ques-
tions) (Clark et al., 2019) is a question-answering
task. In this task, each example comprises a
brief passage and a yes/no question related to the
passage. The WiC (Word-in-Context) task (Pile-
hvar and Camacho-Collados, 2019) involves dis-
ambiguating word senses by classifying sentence
pairs. The goal is to determine if the target word
shares the same sense in both sentences.

Implementation Details. We use ChatGPT (gpt-
3.5-turbo) to generate explanations for demon-
strated examples and implement AnnoLLM with
text-davinci-003 (a powerful GPT-3.5 model). Dur-
ing generation, we set the temperature ¢ = 0 for
text-davinci-003. As all tasks involve binary classi-
fication, accuracy is employed for evaluation.

Human Performances. To assess human perfor-
mance on QK, we use UHRS?, a crowdsourcing
platform, for data annotation. Before annotation,
we provide the task description, category defini-
tions, and annotated examples to annotators. If the
annotated results of three workers are consistent,
this result will be considered as the annotated la-
bel. Otherwise, additional annotators will continue
annotating this data instance until three annota-
tors have consistent annotation results. We require
crowdsourced annotators to annotate all develop-
ment and test sets. BoolQ and WiC are two of the
most challenging datasets in superGLUE (Wang
et al., 2019). For BoolQ, three authors labeled 110
randomly chosen examples, with human perfor-
mance reaching 89%. As for WiC, Pilehvar and
Camacho-Collados (2019) selected four groups of
100 test instances, and assigned each group to an
annotator, achieving a human performance of 80%.

3https ://prod.uhrs.playmsn.com/uhrs/

text-davinci-003 + 4-shot CoT (AnnoLLM) 74.17* 75.60*

Table 2: Evaluation results (%) on QK. Accuracy is
used as the evaluation metric. Results marked with
represent the average result of five CoT prompts con-
structed with different generated explanations.

3.2 Experimental Results

Table 2 shows our experimental results on the QK
development and test sets. Surprisingly, GPT-3.5
(text-davinci-003) performs worse in the few-shot
setting compared to the zero-shot setting in this
task. Fu and Khot (2022) speculate that the instruc-
tion tuning on GPT-3.5 may decrease its in-context
learning ability but increase its zero-shot ability.
On the other hand, AnnoLLLM (text-davinci-003 +
4-shot CoT) outperforms its counterparts under the
zero-shot and few-shot settings by around 6 and 8
points, respectively. Impressively, it even surpasses
the crowdsourced annotators.

Table 3 presents our experimental results on
WiC, from which we also see that AnnoLLM
(text-davinci-003 + 8-shot CoT) outperforms its
few-shot counterpart significantly. Nevertheless,
there remains a considerable disparity between An-
noLLM and crowdsourced annotators. This can be
attributed to the inherent complexity of the task,
since even the best supervised models still exhibit
a substantial gap compared to human performance.

As shown in Table 4, AnnoLLLM (text-davinci-
003+8-shot CoT) surpasses human annotators and
is comparable to supervised models on BoolQ, but
does not show significant improvement compared
to the few-shot method. However, this does not
imply that CoT with generated explanation is not
useful for this task. Section 3.4 shows that An-
noLLLM with CoT exhibits better stability across
different prompts, while its counterpart with the
few-shot setting is highly sensitive to templates.

Overall, AnnoLLM surpasses or matches human
performances in three tasks, demonstrating its po-
tential to replace crowdsourced annotators. An-
noLLM differs from previous methods (Wei et al.,
2022; Wang et al., 2022) in two aspects: (1) We
use explanations generated by LLLMs rather than
those written by humans. (2) We have shown, for
the first time, that the CoT method is effective in
tasks beyond typical reasoning tasks.

168

https